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Abstract

Longitudinal data modelling is complicated by the necessity to deal appropriately with the
correlation between observations made on the same individual. A thorough examination of
popular approaches to longitudinal analysis establishes the essential features of an effec-
tive longitudinal model. Building upon an earlier non-robust version proposed by Heagerty
[20], our robust marginally specified generalized linear mixed model (ROBMS-GLMM) is
successful in exhibiting such features. This type of model is one of the first to allow both
population-averaged and individual specific inference. As well, this type of model adopts
the flexibility and interpretability of generalized linear models for introducing dependence,
but builds regression structure for the marginal mean, allowing valid application with time-
independent and time-dependent covariates. These new estimators are obtained as solutions
of a robustified likelihood equation involving Huber’s least favorable distribution and a col-
lection of weights. Huber’s least favorable distribution produces estimates which are resis-
tant to deviations from the random effects distributional assumptions. Innovative weighting
strategies enable the ROBMS-GLMM to perform well when faced with outlying observa-
tions both in the response and covariates. A simulation study allows us to investigate the
sampling properties of the ROBMS-GLMM estimates. We illustrate the methodology with
an analysis of a prospective longitudinal study of laryngoscopic endotracheal intubation, a
skill which numerous health care professionals are expected to acquire. We also look at data
collected on pregnancies and births in Nova Scotia with interest in the smoking habits of
the expectant mothers. Psychiatric data concerning an anti-depression drug is also used for
demonstrative purposes. The principal goal of our research is to achieve robust inference
in longitudinal analyses. Robust model testing strategies and asymptotics properties of the
ROBMS-GLMMs are also of interest. A concurrent goal is to investigate and potentially
alleviate some of the difficulties with current model fitting software.



Chapter 1

Introduction

1.1 Motivation

This research was motivated by two main objectives:

e to work in an area of statistics which is both computationally challenging and of
current interest,

e to contribute to the advancement of medical research.

Longitudinal binary data analysis seemed a natural candidate and has since proven to be an
excellent choice.

1.2 Introduction

Longitudinal studies span a variety of disciplines including economics, pharmacology, so-
ciology, biology and medicine. The defining characteristic of a longitudinal study is that
individuals are measured repeatedly through time. Examples of such repeated measure-
ments include daily stock prices for a selection of information technology companies; dis-
ease status of those involved in a clinical trial for a new cancer drug; behavior patterns for a
group of recovering alcoholics; tree sizes over a growing season in an area with high ozone
pollution; and the series of blood pressures of patients involved in a medical study of heart
disease.



Effective modelling of longitudinal data is complicated by the necessity to deal appro-
priately with the correlation that exists between observations made on the same individual.
In most longitudinal studies this correlation is a nuisance factor that must be taken into
account in order to make valid statistical inferences. Diggle, Liang and Zeger [12] pro-
vide an excellent overview of methods for longitudinal data analysis, while more recent
developments are reviewed by Heagerty and Zeger [23].

In essence there are three basic approaches to modelling longitudinal data: marginal, la-
tent variable and response conditional models, with the first two being the most widely used
and consequently our emphasis. Each of these approaches models the within-individual
correlation differently and as a result achieves different objectives. Marginal models, for
instance, separate the regression from the within-individual correlation which leads to de-
scriptions of how the response average changes across various subsets of the population.

A thorough examination of popular approaches to longitudinal analysis establishes the
essential features of an effective longitudinal model. Building upon an earlier non-robust
model proposed by Heagerty [20], our robust marginally specified generalized linear mixed
model (ROBMS-GLMM) is successful in exhibiting such features. This type of model is
one of the first to allow both population-averaged and individual specific inference. As
well, it adopts the flexibility and interpretability of generalized linear models for intro-
ducing dependence, but builds regression structure for the marginal mean, allowing valid
application with time-independent and time-dependent covariates.

The ROBMS-GLMM estimators are obtained as solutions of a robustified likelihood
equation involving Huber’s least favorable distribution and a collection of weights. Huber’s
least favorable distribution [26] is introduced to make the ROBMS-GLMM less sensitive
to violations on the distributional assumptions. Innovative weighting strategies enable the
ROBMS-GLMM to perform well when faced with outlying observations both in the re-
sponse and covariates. By changing the tuning constants defining the ROBMS-GLMM we
can fit models with varying degrees of robustness. Close agreement of the estimates across
a range of tuning constants suggests little, if any, contamination is present. Heagerty’s
non-robust model in fact becomes a special case of the ROBMS-GLMM when the tuning
constants are set appropriately.

The ROBMS-GLMM is designed to simultaneously provide estimates of the parameters
of interest and assess the fit of our data to the model. The robust enhancements it possesses



are paramount since these models are widely used in medical research where up to 10% of
the observations may be contaminated [18]. In fact the development of robust procedures,
like the ROBMS-GLMM, is one of the major developments in statistics this century.

Demonstrations and a simulation study allow us to investigate how our ROBMS-GLMM
performs in practice. We see the ROBMS-GLMM succeed at identifying contamination
when it exists while at the same time yielding reasonable parameter estimates based on the
data that is well fit by the model. The ROBMS-GLMM performs similarly to its non-robust
version when there is no contamination present and substantially better in the presence of
contamination. The asymptotic properties of the ROBMS-GLMM estimators are derived
in two different fashions by appealing to the results of White [48] as well as those of Yuan
and Jennrich [49]. A simulation study demonstrates these properties.

One cannot estimate the parameters of a model robustly and then apply classical model
selection procedures. We therefore recommend two approaches to robust model selection.
The first is a robust version of the Akaike Information Criterion suggested by Ronchetti
[44]. The second is based on obtaining robust deviances which can then be used for step-
wise model selection as in the classical framework. With these additional tools one can
achieve robust inference in longitudinal analyses.

The methodology is illustrated with analyses of longitudinal data currently of interest
to medical researchers. We commence with an analysis of a prospective longitudinal study
of laryngoscopic endotracheal intubation (LEI), a skill which numerous health care pro-
fessionals are expected to acquire. Unfortunately, at present there is little information to
indicate the amount of training required, or what signifies true competence in LEI. Hence
our goal in working along side of the anesthesiologists directing the study, is to identify
features of the process of LEI which are predictive of a successful LEI

Longitudinal studies are also very popular in psychiatric clinical research. We brei-
fly examine data involving 269 Nova Scotian adults taking an anti-depressant drug. Each
patient makes regular visits to the psychiatrist for assessment, during each of which com-
prehensive information about health, drug use and psychiatric status are recorded. Interest
is in the probability of remission from depression and how it varies with certain factors.

We also examine data extracted from a database which contains information on every
women in Nova Scotia who has given birth since 1988. Interest is in examining the smok-
ing behavior of women and whether certain outcomes influence smoking behavior during



subsequent pregnancies.

User-friendly R routines are provided for fitting ROBMS-GLMMs. These routines
help conceal the numerical intensity of fitting such models. We address numerical issues
associated with current model fitting software for the ROBMS-GLMM as well as its earlier
non-robust version. Recommendations for future implementations are made in light of
recent advances in statistical computing.

1.3 Outline

This thesis will be broken down in the following manner. In chapter 2 we introduce lon-
gitudinal data and present popular methods for its analysis. In chapter 3 we contrast these
popular approaches using a real example and motivate the need for a new modelling ap-
proach. We select Heagerty’s marginally specified generalized linear mixed model: a newly
available alternative which is both flexible and easily interpreted. In chapter 4 we discuss
our robust extension: the robust marginally specified generalized linear mixed model and in
chapter 5 demonstrate its performance via a simulation study. Also included in this chap-
ter is a section highlighting some important computational issues and recommendations.
In chapter 6 we discuss the asymptotic properties of our model estimates and propose
methodologies for robust model selection. Chapter 7 contains some interesting medical
applications. Finally, chapter 8 summarizes our results and discusses some possible further
research.



Chapter 2

Methods for the Analysis of
Longitudinal Data

In this chapter we introduce longitudinal data and demonstrate the merits of performing
longitudinal studies. We then give an overview of approaches used to model such data.
This includes a detailed look at marginal, latent variable and response conditional models.
A critical appraisal of these models follows in chapter 3.

2.1 What is Longitudinal Data?

In classical univariate statistics, one usually assumes that each of a number of subjects, or
experimental units, gives rise to a single measurement on some relevant variable. This sin-
gle measurement is termed the response. In multivariate statistics, the single measurement
on each subject is replaced by a vector of measurements. For example, in a univariate med-
ical study we might measure the weight of each subject, whereas in a multivariate study we
might measure weight, blood pressure, cholesterol level and so on. In longitudinal studies,
each subject gives rise to a matrix of measurements, these measurements now represent
the same quantity(s) measured at a sequence of observation times. Thus, for example, we
might measure a subject’s blood pressure on each of five successive days. In one of the
medical data sets we consider, the subjects are patients and the measurements on each sub-
ject consist of a collection of binary responses indicating whether or not the patient was in
remission from depression at each of a series of visits to the psychiatrist for assessment.

5



Longitudinal data show up in many fields of empirical research. In sociology and eco-
nomics longitudinal data arise frequently and are often referred to as panel data [12]. Lon-
gitudinal studies are an integral part of medical and biological science. They have been
fundamental to the study of physical and cognitive development [16] and are important in
the study of chronic diseases such as arthritis and diabetes.

Longitudinal data exhibits characteristics of multivariate, time series and survival data.
Unlike multivariate data, longitudinal data generally exhibit a more highly structured pat-
tern of interdependence. With multivariate data we again have a vector for each subject but
this vector is comprised of a number of different measurements. As well, with longitudinal
data we are measuring the same quantity at a sequence of observation times. Longitudinal
data are also inherently unbalanced which is not usually the case with multivariate data.
It is also worthwhile contrasting longitudinal data with that of time series. Longitudinal
data consists of a large number of short time series, rather than a single, long time series.
As well, in longitudinal studies the correlation structure is normally of secondary interest
whereas in time series we often wish to determine whether the data exhibits an autoregres-
sive or stationary structure, for example.

Finally we make comparisons with survival data. Such data is concerned with the time
to a clinical outcome. Hence time is usually the principal response and generally there
is only one observation per subject unlike with longitudinal data where we have repeated
measurements on each subject.

2.1.1 Notation

To explore the ideas surrounding the approaches to longitudinal data analysis we commence
with an introduction to the standard notation used. Consider the response Y and set of
predictors X where n; repeated measurements were taken on each subject i:

e The response is denoted Y = {Y,--- ,Y;} where k represents the number of individu-
als. The response for each individual iis ¥; = (¥;1,---,Yin,)7 where ¥; j is the response
at time j for individual i. In general n; may not equal n; for all i # j and therefore Y
is not a matrix. In longitudinal studies Y; is considered to be the natural experimental
unit as opposed to ;.

e For each individual i, X; represents an n; x p matrix of p predictors. The elements of



Xi, Xijp, represent the J** observation of predictor p on individual i.

2.1.2 Merits of Longitudinal Studies

The defining characteristic of a longitudinal study is that subjects are measured repeatedly
through time. Consequently each subject gives rise to a vector of measurements which
represent the same physical quantity measured at a sequence of observation times.

The major advantage of a longitudinal study over a cross-sectional study (in which a
single outcome is measured for each individual) was eloquently described by Diggle, Liang
and Zeger (12]:

Longitudinal studies can distinguish changes over time within subjects (ageing
or longitudinal effects) from differences among subjects in their baseline levels
(cohort effects).

This idea is best illustrated with an example. In Figure 2.1(a) some measure of computer
literacy is plotted against age for a hypothetical cross sectional study of Nova Scotians be-
tween the ages of 10 and 40. The conclusion suggested by this plot is that computer literacy
is poorer among adults. In Figure 2.1(b) we assume that the same data were obtained in
a longitudinal study in which each person was measured twice. It is now clear that while
younger people began at a higher literacy level, everyone improved with time.

We can now generalize this example to the class of linear regression models. We
consider the simple linear regression model without intercept. In a cross-sectional study
(n; = 1) we are restricted to the model

Yo = XuBc +¢i, i=1,---,k .1

where B¢ represents the difference in average Y across two sub-populations which differ
by one unit in x. With repeated observations, the linear model can be extended to the form

Yij = XaBc+ (Xij — Xi1)BL +€ij, =1, ,n, i=1,---,k (2.2)

Note that when j = 1, (2.2) reduces to (2.1) so B¢ has the same cross-sectional interpreta-
tion. However, we can now also estimate f3,. The interpretation is made clear by subtracting
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(2.1) from (2.2) to obtain
(Yij—Ya) = (Xij — Xa)BL +&ij —€ar.

That is, B, represents the expected change in Y over time per unit change in X for a given
subject.

To estimate how individuals change with time from a cross-sectional study, we must
assume PBc = B.. With a longitudinal study, this strong assumption is unnecessary since
both can be estimated.

Even when B¢ = B, longitudinal studies tend to be more powerful than cross-sectional
studies. The basis of inference about B¢ is a comparison of individuals with a particular
value of X to others with a different value. In contrast, the parameter B, is estimated by
comparing a person’s response at two times, assuming X changes with time. In a longitu-
dinal study, each person can be thought of as serving as his or her own control. For most
outcomes, there is considerable variability across individuals due to the influence of unmea-
sured characteristics such as genetic make-up, environmental exposures, personal habits,
and so on. These tend to persist over time. Their influence is cancelled in the estimation of
BL; they obscure the estimation of B¢ .

Another merit of the longitudinal study is its ability to distinguish the degree of varia-
tion in Y across time for one person from the variation in ¥ among people. This partitioning
of the variation in Y is important for the following reason. With repeated values, we can
borrow strength across time for the person of interest as well as across people. If there
is little variability among people, one person’s estimate can rely on data for others as in
the cross-sectional case. However, if the variation across people is large, we might prefer
to use only data for the individual. Given longitudinal data, we can acknowledge the nat-
urally occurring differences among subjects when estimating a person’s current value or
predicting a future one.

2.1.3 Approaches to Analysis

Repeated observations on individuals enable direct study of change. Longitudinal data
require special statistical methods because the repeated observations on a subject tend to be
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correlated (however the subjects themselves are independent of one another). This within-
subject correlation presents additional opportunities and challenges for analysis and must
be taken into account to draw valid scientific inferences. Ignoring correlation when it
exists results in two problems: inefficient estimates of regression parameters, and, more
importantly, inconsistent estimates of precision [52].Consequently, we have two objectives
for statistical models of longitudinal data:

1. to adopt the conventional regression tools, which relate the response variables to the
explanatory variables; and

2. to account for the within-subject correlation.

In their cardinal book on longitudinal data [12], Diggle er al. discuss three distinct
strategies available for analyzing longitudinal data: marginal, random effects and transition
models. More recently [23] the latter two approaches have been renamed latent variable
and response conditional models, respectively. All three are designed for the analysis of
discrete and continuous longitudinal data using extensions of generalized linear models
(GLMs). Consequently, we now first review GLMs and then look at each of the approaches
in detail in subsequent subsections.

2.1.4 Review of Generalized Linear Models

In biomedical applications, it is common to confront both discrete and continuous outcome
measures. Regression models for independent responses, discrete and continuous, have
been unified under the class of generalized linear models (GLM). This Las facilitated data
analysis by providing a common set of methods regardless of the type of response.

Consider the cross-sectional situation with response Y; and 1 x p vector of explanatory
variables X;,i = 1--- , k. The objective is to describe the dependence of the mean response
#i = E(Y;) on the covariates. A GLM is a member of the exponential family with likelihood
function of the form

f(yi) =exp{(y6; +a(6:))/0+c(yi,0)}

where the mean y; equals the first derivative of the function a(8;) and the variance of ; is
proportional to the second derivative of a(6;). The mean ; is related to the explanatory
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variables by g(u;) = X where g is the link function. The variance is related to the mean
by var(Y;) = vi = v(u;)¢ where v is called the variance function.

The GLM family includes linear, logistic, log-linear and some parametric survival re-
gression models as special cases. In each GLM the regression coefficients P are estimated
by solving the estimating equation

S(B) = 3 2 1 - () = @3
The solution P can be obtained by iteratively weighted least squares and is a consistent
estimate as long as g(y;) = X; whether or not the variance function is correctly specified.
Wedderburn [47] first pointed out that the estimating equation (2.3) provides a consis-
tent estimate of B with a variety of link and variance functions whether or not they corre-
spond to a member of the exponential family of distributions. The name quasi-likelihood
estimate was coined for the solution of equation (2.3) in the more general case since its
integral does not necessarily constitute a proper likelihood function.

2.2 Marginal Models

The marginal modeling approach builds separate regressions for first, second and higher
moments of the joint distribution, [¥;|X;]. The marginal expectation is linked to covariates
using a generalized linear model. Additional moments are then specified for the second
moment, and possibly for the higher moments. For example, Dale [11] parameterized
the joint distribution of two binary variables in terms of their marginal means and their
odds ratio. Others, including Heagerty and Zeger [22], extended this idea to vectors of
ordinal responses specifying separate regression models for: the marginal means; pairwise
odds ratios; and higher order contrasts among log-odds ratios to complete the likelihood
function.

In these marginal models, the mean (or first moment) regression parameters represent
the change in expected response, per unit change in a given predictor without conditioning
on the other responses or any latent variables (random effects). Correlation among elements
of ¥; given X;, even if reasonably attributed to shared unobservable latent variables, are
accounted for by a separate association regression.
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Specifically, we can formulate a marginal model by assuming:

1. the marginal expectation of Y;;, E(Y;) = u, is related to X, by
8(pi) = XaB,

where g is a known link function such as the logit function for binary responses
where logit (pi) = log(uir /(1 — ptir)):

2. the marginal variance is a function of the marginal mean, that is,

var(Y,-,) = V(Fit)/¢’

where v is a known function and ¢ is the over-dispersion parameter which accounts
for the variation of ¥;; not explained by v(u;);

3. the covariance between Yj; and Y, s <t = 1,--- n; is a function of the marginal
means and additional parameter ¢, that is,

COV(Y,'S,Y";) = C(l‘n’salli:;a),
where ¢ is a known function.

There are several advantages to the marginal approach. First, the interpretation of re-
gression coefficients in the mean model does not depend on the dimension of ¥; as it does
in response conditional models. Hence unbalanced data can be easily accommodated. Sec-
ond, the interpretation of mean parameters, B, is invariant with respect to specification of
the association or higher order models. This property does not hold for response conditional
or latent variable models. Marginal models are often referred to as population-averaged
models because they describe how the response average changes across various subsets of
the population. These subsets are defined by the covariate values.

Note that only the first two moments of the joint distribution of ¥; are specified by as-
sumptions 1-3. In general, marginal models separate the parameterization of the mean and
higher order moments, so it is possible to estimate mean parameters without specifying the
complete joint distribution of ¥;. Liang and Zeger [33] introduced generalized estimating
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equations (GEE), a technique for fitting marginal models, requiring only tne first two mo-
ments of the joint distribution of ¥;. This approach is now very popular and is discussed in
the next subsection.

2.2.1 Generalized Estimating Equations

Generalized estimating equations (GEE) were developed by Zeger and Liang [52] by build-
ing on the quasi-likelihood theory. They enable us to fit marginal models.

Quasi-likelihood functions, are a useful tool when we only know the form of the re-
lationship between mean and variance. Quasi-likelihood is a method of making inference
even if there is insufficient information to construct a likelihood.

Suppose that Y}, - - - , ¥, are k independent observations such that E[Y;] = y; and Var[Y}] =
V(u;). In other words, the variance is assumed to be proportional to some function of the
mean. We can now present the quasi-likelihood function Q(Y;,u;) for a generic observation
Y; having mean y; and variance V (y;). The function Q(Y;, ;) is defined by

Yi—ui

d
EQ(Y.\M&) = V)

or equivalently

Q(Yi, ) = :i YVL(:T’dt.

The global quasi-likelihood for a whole sample is then defined to be the sum of the indi-
vidual contributions, that is,

k
Q(va) = z Q(Yivyi)y
i=1

Wherey= (”lv"' 1”’() adY = (Ylv"' 1Yk)'
If we suppose that u is expressed as a function of B, then Q(Y,u) has the following
properties:

1. E[£Q(Y,u)] =0,
2. E[F0(Y.u)] =0,

3. E[Z0(Y.1) £07(V.p)] = ~E[3570(¥.)] =0, and
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4. E(0(Y.n) 0" (Y.1)] = ~E[ 555 O(Y, ).

For the GLM the mean y; can be expressed as a function of X;B via the link function,
that is 4 = g~'(X;B). We may then use the quasi-likelihood (in place of the likelihood
function) for estimation and inference.

Consider the longitudinal observations (Y;;,X;;) for times j = 1,---,n; and subjects
i=1,--- k. HereY; is the outcome variable and X; jis a 1 x p vector of covariates. Quasi-
likelthood was originally applied to the regression context where n; = 1 for all i. So, if we
drop the subscript j the quasi-likelihood estimator is the solution of the score-like equation
system (which we initially saw in Section 2.1.4, see equation (2.3))

Sm(B) = zaﬁ -l(Yl - Hi) =0, m=1,.--,p. (2.4)

GEE are a modification of the estimating equations for quasi-likelihood (2.4) which
allow the estimation of regression parameters when dealing with longitudinal data.

To apply the quasi-likelihood approach to the analysis of longitudinal data, the mean
and covariance of the vector of responses, Y;, for the ith subject must be considered. Zeger
and Liang extend the quasi-likelihood theory by letting R;(a) be an n; x n; symmetric ma-
trix which fulfills the requirement of being a correlation matrix, and o be an s x 1 vector
which fully characterizes R;(a). They refer to R;(«t) as a working correlation matrix be-
cause they do not expect it to be correctly specified and desire estimators that are consistent
and have consistent variance estimates even when R;(@) is incorrect. Note that the obser-
vation times and correlation matrix can differ from subject to subject. R;(ct) however, is
assumed to be fully specified by the unknown parameter, a, which is the same for all sub-
jects. Then following the quasi-likelihood approach, the working covariance matrix for Y;
is given by

Vi = a(0)A!*Ri(@)A}* /¢

where A; is an n; x n; diagonal matrix with g(u;;) as the jth diagonal element and ¢ is
some scale parameter. If R;(a) is the true correlation matrix of ¥;, then V; will be the true
covariance matrix of Y;.

Zeger and Liang’s [52] extension of equations (2.4) to the longitudinal data case is
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given by

k
U(B.a)= % k) =0 @)
i=

The estimating equations (2.5) now depend on « as well as B, but can be re-expressed
as a function of B alone by first replacing « by a k!/2-consistent estimator, &(Y,p,¢) and
then replacing ¢ in & by a k!/2-consistent estimator, ¢(Y,B). Consequently, for any given
R(w), the estimate P, of P is defined as the solution of equation (2.5) with the appropriate
estimates involved.

To solve the GEE for B we iteratively solve for the regression coefficients and the cor-
relation and scale parameters, a and ¢. Given an estimate of R;(a) and of ¢, an updated
estimate of P is calculated by iteratively re-weighted least squares as described by McCul-
lagh and Nelder [34). Given an estimate of B one calculates Pearson residuals, e;; = %,
which are used to consistently estimate a and ¢. These two steps are iterated until conver-
gence.

There are several choices for the working correlation matrix, R;. The simplest is to
assume R; = I, the n; x n; identity matrix, i.e. that repeated observations are uncorrelated.
The GEE:s then reduce to the score equations (2.4) used with independent observations. A
second extreme case is applicable when observations times are the same for all subjects so
that R;(a) = R(at) and n; = n. One can then let R(a) be fully unspecified and estimate the
n(n—1)/2 correlations. The following are the structures of the working correlation matrix
supported by most software packages. Let R, ; denote the ¢, s element of R;.

o fixed
Ri(a) =Ro

where Ry is a user-specified correlation matrix.

o Exchangeable

1 t=s,
Rfvs = .
a otherwise.
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e Unstructured

1 t=s,
Rr,: = .
a,; otherwise, oys = 0.

e Auto-regressive:

1 t=s,
R]J = .
al=sl  otherwise.

e m-dependent:

1 t=s,
Rr,s = .
0 _s Otherwise.

2.3 Latent Variable Models

Both latent variable and response conditional models (to be treated in the next subsection)
are different from marginal models in that they attempt to address both the regression ob-
jective and the within-subject correlation simultaneously. In other words, parameters for
the dependence on X and for correlation are introduced on the same scale in a common
equation.

One way to model the joint distribution, [¥;,X;], is to postulate the existence of unob-
served latent variables, b;, which are shared by, and hence introduce correlation among the
elements of ¥;. The observed data likelihood is constructed by integrating over the latent
variable distribution:

PoltiX] = [ PoliiXi,bilfo(biX )b
There are two common assumptions to simplify the model:

e conditional independence among responses such that

Py[Yi|Xi, bi) = nPe[YiﬂXi,bi]
J
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e homogeneous latent variable distribution
fo(bilX:) = fo(bi).

The first assumption forms the basis for structuring the correlation among responses within
individuals. The second assumption is a strong one and recently Heagerty and Zeger [23]
have considered a less stringent regression structure for the random effects variance com-
ponents.

The most common partition of 0 is into B and & where

PoltiX = [ (T Polti X bil} falbilX )b
J

Here B are canonical regression parameters in a GLM for the conditional expectation of the
response:

E(Yij|Xi,b:) = pij
8(uij) = Xijp + bij.
Assumptions about b;; commonly used in practice include: mixed models where b;; =
Ziju;; for Z;; a subset of X;; and u;; is a ¢ x 1 vector of random effects; and serial or
spatial models where b;; represents an autocorrelated stochastic process. The parameter o
identifies the specific distribution of b; from within the chosen parametric family.

Such models are often referred to as multilevel models and are popular in the empiri-
cal sciences for a number of reasons. First, it is often reasonable to postulate that shared,
unobservable, variables influence the response, thereby making observations on one in-
dividual correlated with one another. Second, the muitilevel regression parameter has a
desirable causal interpretation as the change in (possibly transformed) expected response
per unit change in X, holding the other observed variables and unobserved latent factors
fixed. Third, these models make possible the estimation of individual-specific regression
coefficients, for example intercepts, that use information from observations on a specific
individual but which also borrow information from other individuals. Such estimates are
often superior to competitors which rely only on an individual’s own data [23].

In the conditional mean parameterization, the regression contrasts, , measure the
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change in transformed mean per unit change in a covariate, controlling for all other vari-
ables including the latent variables b;;. Since the latent variable assumptions determine
what values of b;; are equivalent, these assumptions also determine the interpretation of the
parameter . If the b;; are constant over time (which is the random intercepts assumption)
the parameters B have a subject-specific interpretation [50]. However one can view the ran-
dom intercepts assumption as a special case of a more general serially dependent stochastic
process model with cov(b;;, by) = 6?p!/=*|, where for the random intercepts model, p = 1
[23]. One can then relax the random intercepts model to allow dependence to decay as the
time separation increases and then f no longer measures the change in an individual’s log-
odds since controlling for the individual no longer ensures that the latent variables b;; and
by are equal. A simple change in the latent variable assumptions can make P both subject
and time specific.

As an example of a simple latent variable model, consider a study of changes in weight
during pregnancy. It may be reasonable to assume that the relationship between weight
and the gestational week is linear for each expectant mother, but with linear regression
parameters that vary among mothers. In this formulation, the probability distribution for the
multiple measurements is the same for each mother, but the parameters of that distribution
vary over mothers. These parameters are the random effects or latent variables.

At present, the latent variable models that are most commonly used in practice assume
random intercepts. These models are most useful when the objective is to make inference
about individuals rather than the population average. Sometimes they are referred to as
cluster-specific methods.

2.4 Response Conditional Models

There are two main classes of models for multivariate data that can naturally be viewed as
models for the expected value of one response conditional on subsets of the other responses
from the same individual. These are (i) transition models and (ii) log-linear models and are

both effective for modeling associations but do not admit simple models for the marginal
means.



19

2.4.1 Transition Models

Transition models focus on the conditional expectation of Y;; given past outcomes, Y;;_1,--- , Y.
Here the data analyst specifies a regression model for the conditional expectation,
E(Yjl|Yij-1,---, Y, Xij). as an explicit function of X;; and of the past outcomes.

Transition models assume

1. the conditional expectation of Yy, 1, = E(Y;|Yi-1, -+ ,Y;1), depends on X;; and past
responses as follows:

8Uf) =XuB* + X Vi fi(¥acr, -+ Yar), (2.6)
j=l

where {f;},j=1,---,v are known functions.

2. the conditional variance of Y;; given the past is a function of 1(;; that is,
var(Ye|Yi-1,--- Y ) = v(t;)9,

where v is a known function.

It is possible to construct a multivariate model by decomposing the joint distribution
into a sequence of predictive distributions:

n
Py, (Y1, Y2, -+, Yin) = Po,(Ya) II,PO,(Yijlyik k< j).
J=-
It is straightforward to allow the parameters to depend on covariates, X;, but difficult to
obtain simple expressions for E(Y;;|X;) since sums over the joint distribution of times
1,2,---,j are required. Azzalini {4] has been successful in marginalizing some simple
transition models for discrete responses. We will see in section 3.3 that the development of
the marginalized latent variable model parallels the approach taken by Azzalini[23] as well
by Fiizmaurice and Laird [14].
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24.2 Log-linear Models

Log-linear models [5] have been widely used for the analysis of cross-classified discrete
observations. In a log-linear model, the natural univariate regressions are for the condi-
tional expectations logit E(Y;;|Yy : k # j). Unfortunately, the models result in complicated
functions for the marginal expectations since these are obtained as sums over the response
variable joint distribution, yielding mixtures of exponential functions of the parameters.
Therefore, although log-linear models are well suited for describing multivariate dependen-
cies or for modeling joint and conditional distributions, they do not facilitate generalized
linear regression modeling of the marginal means.

There have been a number of attempts to marginalize log-linear models so as to permit
likelihood based regression estimation of the marginal means. Fitzmaurice and Laird [14]
were successful in doing so for balanced data and Lang and Agresti [32], for small or
moderate cluster sizes. Unfortunately such restrictions limit the use of these models.

2.5 Computational Aspects

SAS, Stata, SUDAAN and S-Plus are the four packages most commonly used for fitting
marginal models to longitudinal data. On the whole, GEEs were found to be well-supported
by all of these software packages and straightforward to use [25]. Since these methods are
not likelihood based they may afford robustness to misspecification of the multivariate
dependence structure, yet do not allow for the use of likelihood based procedures such as
profile likelihood functions and likelihood ratio tests. In many situations likelihood based
methods may be preferred.

Latent variable models are more difficult to fit because evaluation of the likelihood
requires numerical integration in most problems. Serious computational difficulties have
resulted in a wide range of methods being investigated. One approach to avoid the numer-
ical integrals is to approximate the integrands (see equation (2.3)) with simple expansions
whose integrals have closed forms. This was the approach proposed from a Bayesian per-
spective by Stiratelli er al. [46] and recently reviewed by Breslow and Clayton [7]. These
approximate techniques give effective estimates of the fixed effects but are somewhat bi-
ased for estimating random effects and the random effects variance matrix, especially when
the variance is large. A Bayesian approach for fitting random effects GLMs using Gibbs
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sampling has been proposed by Zeger and Karim [S1]. Other methods include maximum
penalized quasi-likelihood and marginal quasi-likelihood via EM or quasi-Newton (Fisher
scoring) algorithms, and Markov Chain Monte Carlo (MCMC) methods.

When fitting latent variable models many suggest that when the random effects are only
of one-dimension, numerical integration can be implemented fairly easily. Our experience
suggests that this is not the case. Even with one-dimensional random effects, algorithms are
slow, and careful approximation is required. These computational issues will be elaborated
on in Chapter S.

We have now given an overview of longitudinal data and introduced the popular model-
ing approaches. In the next chapter we contrast these approaches via a medical application.
It becomes clear that a new model is required, one which combines desirable properties
from each of these distinct approaches.



Chapter 3

A Critical Appraisal of Longitudinal
Data Analysis Methods

In chapter 2 we outlined three approaches to longitudinal data analysis. Heagerty [20]
states that marginal and latent variable models are the two major regression approaches
for the analysis of longitudinal binary data. Our literature review supports this statement
and suggests that it is also true for longitudinal data in general. We therefore discuss all
three approaches while placing less emphasis on response conditional models. While there
are no substantial reasons to suggest that response conditional models are inferior, in the
context of biomedical research they are less commonly used. Possible explanations may
include the lack of readily available routines in standard statistical software packages as
well as the difficulty in arriving at simple models for the marginal means.

In this chapter we expose limitations of both marginal and latent variable models using a
medical application. We look in detail at the interpretation of coefficients. We then present

Heagerty’s marginally specified generalized linear mixed model [20], a newly available
alternative.

3.1 Contrasting Approaches

In order to effectively contrast the commonly used approaches to longitudinal data analysis
we introduce a longitudinal data set which typifies problems arising in biomedical research.

22
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Dr. John LeBlanc and colleagues in the Department of Psychiatry at Dalhousie Univer-
sity conducted a study of Nova Scotian adults using Zoloft, an anti-depressant drug. Inter-
est was in determining what factors influence the probability of remission from depression.
Each patient involved in the study made regular visits over a six month period to the psy-
chiatrist for assessment. Explanatory variables (covariates) include dose level (dose), and
a quantitative depression score (score) which are time-dependent. That is, dose;, equals
1 if patient i is taking the high dose of Zoloft at visit ¢ and O if they are taking the low
dose. score; is the Hamilton-D depression index score for patient i at the rth visit. The
Hamilton-D depression index score is on a 29 point scale: the higher the score the more
severe the depression. The response is binary, that is, Y;; equals 1 if patient i is in remission
from depression at visit j and 0 otherwise.

3.1.1 Marginal Model

We are interested in whether the probability of remission is related to the level of dose of
Zoloft prescribed. In a marginal model, we might assume

1. logit(uy) = Bo + Bidose; + Bascore;;, where yy; = E(Y;;) = Pr(Y; = 1) and
2. var(Yy) = py(1 — pir), and
3. corr(Yis,Yy) = o105 < 2.

That is, the correlation coefficient between two repeated observations from the same subject
depends only on the time between the two visits. The covariance between Y;; and Y is fully
specified by assumptions 2 and 3 above.

o Remark 1. In this example, e has the interpretation as approximately the ratio of
odds of remittance for two populations of patients, those taking the high dose of
Zoloft and those taking the low dose at a given visit. In other words

B~ prevalence of remittance among patients taking the high dose
" prevalence of remittance among patients taking the low dose

The marginal model regression coefficients have what we call population-averaged
interpretations because they contrast odds of remission from depression in the two
populations.
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e Remark 2. Note that the effect of the depression score, B2, can be estimated cross-
sectionally if there is heterogeneity in the depression score distribution of the patients
sampled at one time. However, this cross-sectional depression score effect may be
subject to bias if so-called cohort effects are present in the study population. For
instance, suppose that remittance from depression is more likely for those with a
lower depression score at baseline. This bias can be detected and corrected with
longitudinal data by expanding the model to include depression score at baseline and
change in depression score from baseline as covariates. The coefficient for score at
baseline is sensitive to cohort effects; that for change in score is not. It is of interest
to examine if, and in what way, these two depression score coefficients are different.

e Remark 3. Because B describes the effect of covariates on the marginal expecta-
tion of the Y’s, it has the same interpretation regardless of the number of repeated
observations, n;, which may vary among subjects.

e Remark 4. The third assumption is needed to account for within-subject correla-
tion. However, the magnitude of this correlation, indexed by a, does not alter the
interpretations of p.

3.1.2 Response Conditional Model

In order to fit a response conditional model to the Zoloft data, we might assume
L. logit Pr(Yy = 1|Yy_1,--- Y1) = By + Bidose; + B3scorey + ¥ Yi-1,
2. var(YalYa-1) = 1 (1~ 15).

In this special case, v = 1 (see Section 2.4.1), so that ¥; is assumed to depend upon the past
responses only through the immediately preceding response.

e Remark 1. The table that follows gives the transition probability of remission from
depression.
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Suppose the depression duration is similar to the sampling interval. Then because of
the adjustment for ¥;_| in assumption 1, ebi is approximately the ratio of incidences
from two groups, one taking the high dose of Zoloft and one not. In other words,

Incidence of remittance among patients taking the high dose
Incidence of remittance among patients taking the low dose °

ePi =

e Remark 2. Examining assumption 1 closely as well as equation (2.6), we note that
the interpretation of B* changes with the length of the dependencies, that is, by in-
cluding additional terms such as ¥3Y;;_,. This is to be contrasted with Remark 4 of
the previous subsection conceming the parameters in marginal models.

e Remark 3. Transition models can be fit with standard software by treating fi,---, fy
in equation (2.6) along with x, as the set of regressors.

3.1.3 Latent Variable Model

In order to propose a latent variable model to describe the Zoloft data, we might assume a
random intercept model as follows:

1. logit Pr(Y; = 1|b;) = By’ + b; + B}"dosei + B3 score;.
2. Var(Y;|b;) = E(Yy|b;){1 —E(Y;|b:)}.

3. b; ~ N(0,0).

e Remark 1. ePi" has interpretation as the odds ratio of remission from depression for a
patient who is taking the high dose versus the same patient if he/she is taking the low
dose. In other words, it describes the change in the odds of remission for a patient
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whose dose level changes. Note the odds ratio is assumed in the model to be the
same across subjects.

e Remark 2. The value of B** depends on the assumed distribution F for the b;’s. For
discrete longitudinal data with small n;, it is difficult to check the validity of F. It is
therefore good practice, but difficult, to examine how sensitive the results are to the
specified distribution for the b;’s.

Table 3.1 summarizes the interpretation of the regression coefficients B, p* and p** using
the variable dose to illustrate. Given different interpretations for coefficients in each model,
their magnitudes are expected to be different as well.

Table 3.1: Summary of regression coefficient interpretations.

Model Parameter Interpretation

Marginal exp(Bi1) ratio of population prevalences
Response Conditional  exp(B]) ratio of population incidences
Latent Variable exp(Bi*) odds ratio for individual patient

The relationship between f§ and B* can be established in special cases. If we ignore
the depression score variable for simplicity, eP is the odds ratios relating the frequency
of remission from depression to dose level. On the other hand, Pi, is the odds ratio for
remission from depression and dose level controlling for the remission status at the previous
visit. If a positive correlation exists between Y;_; and Y; as we expect, and there is a positive
effect of dose level on the probability of remission, it can be shown that (5]

B3| < IBal.

The latent variable model discussed here is most useful when the objective is to make
inference about individuals rather than the population average. In the Zoloft Study, the
latent variable model would permit inference about the probability of a particular patient
being in remission from depression. The regression coefficients, B**, represent the effects
of the explanatory variables on an individual’s chance of remission. This is in contrast to
the marginal model coefficients which describe the effect of explanatory variables on the
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population average. In the next section we look in greater detail at the interpretation of
latent variable and marginal mode! coefficients.

3.2 Interpretation of Regression Coefficients

A latent variable model results in the probability distribution of Y;; being modeled as a
function of the covariates X;;, and parameters b; specific to the ith subject. With a marginal
model, the marginal or population-averaged expectation of Y;; is modeled as a function of
the covariates.

To compare these two approaches in more detail, we will begin by considering a hypo-
thetical linear model. We can formulate the two regression approaches to have coefficients
with the same interpretation. To illustrate, consider the simple linear regression model:

Yij = Bo+XijP1 +e&;

where X;; is the age, in years of individual i at visit j, ;; is the response at age X;; and ¢;; is
a mean-zerc deviation. The residuals, €;1, - - - , €, for individual i will likely be correlated
with one another. The marginal modeling approach is to assume:

1. E(Y;j) = Bo+Xi;B:
2. Corr(e,-,-,s,-k) = p(Xij,X,-k,a).

Assumption 1 is that the average response for all individuals in the population at any age X
is Bo + XP;. The parameter B, is therefore the change per year in the population-average
response. Assumption (2) specifies the nature of the correlation. Clearly, in the marginal
approach we separate the modeling of the regression and the correlation; either can be
changed without necessarily changing the other.

A linear latent variable model can be written

Yij=Bo+bi +Xi;p] +¢;

where the €}; are independent N(0, 62) variates and the b; are independent N (0, 63) variates.
In this model, the regression coefficients also have a marginal interpretation since E(Y;;) =
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B + Xi;B}. This is because the average of the rates of change in response for individuals is
the same as the change in the population-average response across time in a linear model.

We have just shown for the linear model that regression coefficients can have a marginal
interpretation for both the marginal and latent variable approaches. This fact may help
explain why there has been so much confusion and difficulty understanding why in some
cases the regression coefficients have different interpretations. For instance, with non-linear
link functions, such as the logit, this is not the case. It is the non-linear link that causes
the problem as will be shown by what follows. We consider the logistic regression model
which is suitable for longitudinal binary data.

For demonstrative purposes we return to the Zoloft data but for the sake of simplicity
consider only the dose level covariate. That is, we let X;; equal 1 if patient i is taking the
high dose of Zoloft at visit j and 0 if he/she is taking the low dose. Given that logit~!(x) =
exp(x)/{1 +exp(x)}, the latent variable logistic model

P(Y;j = 11b;) = logit™" (Bg + bi + Xi;B}) 3.1)

then states that each patient has their own baseline chance of remission exp(Bg + b:)/{1 +
exp(Bg +bi) } and that a patient’s odds of remission are multiplied by exp(B3) if they switch
to the high dose of Zoloft. Hence, the odds ratio for dose level is the same for every patient.
However the corresponding change in odds of remission differs depending on the baseline
rate.

The population rate of remission is given by
PYV;=1)= / logit ™! (B} + bi + Xi;B})dF (b;)

where F(.) is the Gaussian distribution function since we are assuming b; are independent
N(0,62).

In the marginal model, we ignore the differences among individuals and model the
population-average, P(Y;; = 1) rather than P(Y;; = 1|b;), by assuming that

PYi=1)= Iogit’l(Bo +XiiB1). (3.2)

Here, the remission rate in the sub-group taking the low dose is exp(Bo)/{1 +exp(Bo)}.
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This establishes the important point: the marginal and latent variable model parameters
differ in the logistic model. The former describes the ratio of population odds; the latter
describes the ratio of an individual’s odds. Integrating the individual odds ratio (3.1) over
the random effects will also not give the same result as the population odds ratio (3.2)
from the marginal model. Note that the marginal parameter values will always be smaller
in absolute value than their latent variable analogues. Neuhaus et al. [39] show that if
Var(b;) > 0, then the elements of the marginal (B) and random effects (B*) regression
vectors satisfy

1. !Bkl < |Bl:|’k =1,---,p;
2. equality holds if and only if B; = 0;
3. the discrepancy between By and B} increases with Var(b;).

Marginal models and latent variable models fitted to longitudinal binary data, and mod-
els with non-linear link functions in general, yield parameters with different interpretations.
It turns out that additional complications also arise depending upon the type of covariates
to which the parameters correspond.

There are basically two types of covariates; those whick are time-independent and those
which are time-dependent. A time-independent covariate might be the sex of a subject in-
volved in a longitudinal study. This covariate will not change within a subject, i.e. remains
constant as we repeatedly measure the subject through time. On the other hand, a time-
dependent covariate might be say the depression score of a subject. This covariate could
change from visit to visit depending on how he/she feels at a particular visit. Hence with
time-dependent covariates we see a change within observations made on the same subject.

Recently, Neuhaus and Kalbfieisch [38] went further to divide time-dependent covari-
ates into those which were designed versus non-designed. A designed time-dependent co-
variate varies with identical distribution across the measurements on each individual. For
example, consider a longitudinal study of infants which commences at birth, and monitors
them on the first day of every month for a two year period. Age (in months) here is a de-
signed time-dependent covariate varying in the identical manner for each infant involved
in the study. On the other hand, a non-designed time-dependent covariate is more gen-
eral. Now, suppose that for a similar longitudinal study of infants, Age is recorded at each
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visit (scheduled or otherwise) to their family doctor. Age now represents a non-designed
time-dependent covariate, assuming a different value for each observation on each infant,
with the covariate pattern and individual miean of the covariate, varying between infants.
Such a covariate then actually has both a time-dependent and time-independent compo-
nent. For example, we can distinguish between (i) an overall effect of age on response,
as measured by the association of the mean age with the response, and (ii) the effects of
deviations from the average age on the series of responses on an individual. Often au-
thors do not distinguish these effects in latent variable models and so implicitly assume
that they are the same, with the result that we obtain estimates without any substantive
interest. Consequently, Neuhaus and Kalbfleisch recommend analysts of longitudinal data
examine whether the between- and within-individual components of covariate variability
exhibit common effects on response {38].

If we imagine fitting a latent variable model with random intercepts then the param-
eters are measuring a contrast in covariates when the random effects are controlled for,
that is, held fixed. For time-dependent covariates this is straightforward, since for a par-
ticular patient there will be empirical evidence of this contrast in the data. However, with
time-independent covariates we never see a change in the covariate level so in a sense the
parameter estimate obtained almost invites an unjustified causal statement. That is, there is
no empirical verification of this statement available from the data. For example, consider
a longitudinal study where the sex of the individuals is one covariate of interest. There is
an unobserved random effect associated with each individual and by holding this random
effect fixed we restrict our attention only on observations made on one particular individ-
ual. Clearly, we will observe no change in the sex covariate for these observations and yet
the latent variable model will generate an individual-specific coefficient for sex. Such a
coefficient consequently has no reasonable interpretation.

With marginal models, time-independent covariates generate parameters with straight-
forward interpretation. These parameters simply describe how the response average changes
across various subsets of the study population where subsets are defined by covariate val-
ues. Unfortunately problems arise with time-dependent covariates. Marginal models don’t
use within subject comparisons so consequently may substantially underestimate the re-
gression coefficients.

In summary, marginal models effectively handle time-independent covariates whereas
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latent variable models are often best suited to time-dependent covariates. However, neither
can deal effectively with both types of covariates. A new modeling strategy which can
handle both time-dependent and time-independent covariates is sought. Since latent vari-
able models have long been praised for their ability to provided individual-level estimates,
it would be nice to have a model which could provide population-averaged and well as
individual-level estimates. In the next section we present an innovative modeling strategy,
recently proposed by Heagerty [20], that overcomes both these limitations.

3.3 The Marginally Specified Generalized Linear Mixed
Model

Latent variable models are now often referred to as generalized linear mixed models (GLMMs),
and as pointed out earlier, are individual-specific methods since inference is about individ-
uals rather than the population average. As well, for covariates that do not vary within
individuals, the interpretation of individual-specific coefficients can be difficult or mislead-
ing since they measure a contrast in covariates when the random effects are held equal.

Heagerty’s marginally specified generalized linear mixed model (MS-GLMM)[20], ori g-
inally designed for longitudinal binary data, presents an alternative parameterization for the
latent variable model in which the marginal mean, rather than the conditional mean given
random effects, is regressed on covariates.

Basically the MS-GLMM separates the mean model from the correlation model by first
assuming a regression model for the marginal mean, and then by assuming that correla-
tion among response variables is attributable to unobserved latent variables. Specifically it
adopts two models: a model for the distribution of ¥; conditional on a vector of unobserved
latent variables, or random effects, b; = vec(b;;); and a model for the population distri-
bution of random effects. Covariates X; can be accommodated by conditioning on them
at each level of the hierarchical model: [Y;|b;,X;]; and [b;|X;]. With the assumption that
the observations (¥;1,Y2, - -, Yi,) are conditionally independent given b;, the likelihood is
obtained as:

Li(8) = pre(Yi|X;) =/b{ﬁP"O(Yij|biaxi)}f9(bilxi)dbi (3.3)

i j=1
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where 0 is a parameter vector that characterizes the distribution of [¥;|X], or equivalently
characterizes the distributions of both [Y;]b;, X;] and [b;|X;].

The parameter vector @ is typically partitioned into a generalized linear model regres-
sion coefficient, B, that models averages of ¥;; as a function of covariates, and a vector of
variance components, @, that characterize the distribution of random effects ;. GLMMs
adopt a generalized linear model for the conditional mean, pf’l = E(Y;j|bi,X;). Alternatively
MS-GLMM s adopt a generalized linear model for the marginal mean y;; = E(Y;;1X;), while
still modeling 4?;.

A marginal regression model describes variation in the mean, u;; = E(Y;;|X;), as a func-
tion of measured covariates:

8(uij) = XijB.
To model 42, we note that
Ep(15;) = .

This correspondence between the marginal and conditional means can also be expressed
via the convolution equation (also referred to as the integral equation):

iij = /,, (b falbij|Xi)dbi;

where upon taking h(x) = g~!(x) as the inverse link function, g(u; i) = Xi;p, and g(pf’j) =
A,'j +b,‘j we arrive at

h(XiiB) = /b__h(A«'j+bij)fa(bij|xi)dbij (3.4)

which can be solved for A;;.

In this approach, the mixed model is used primarily as a parsimonious mechanism for
modeling the multivariate dependence structure. The assumption of an underlying mixed
model is given by the conditional mean model g(;t,’-’j) = Ajj + b;j, where the parameter A;;
is determined from (B, ) as the solution to the convolution equation.

A model which adopts the flexibility and interpretability of latent variable models for
introducing dependence, but builds regression structure for the marginal mean, allowing
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valid application with time-dependent and time-independent covariates, is now in place.
However we should not be satisfied since models of this sort are often used in medical
research where up to 10% of the observations may be contaminated {19]. We will see in
Chapter S that such contamination can greatly affect the parameter estimates. There is a
need for a robust model, one which will still achieve the aforementioned objectives but also
afford us robustness.

In the next chapter we introduce the theory of robustness, discuss some robust efforts
that have been proposed for longitudinal data, and then present our robust marginally spec-
ified generalized linear mixed model (ROBMS-GLMM).



Chapter 4
Extension to Robust Estimation

In a wide range of research areas a great deal of progress has been made in finding proce-
dures which are robust. In fact, the robustification of many statistical procedures is one of
the major developments in statistics this century. Our goal is to show the usefulness and
necessity of robust techniques for modelling longitudinal data.

We begin with an overview of robust estimation and then introduce some robust proce-
dures currently available for the analysis of longitudinal data. We then present our robust
marginally specified generalized linear mixed model (ROBMS-GLMM), which is an effec-
tive method for dealing with longitudinal data in a robust fashion.

4.1 The Theory of Robustness

A tacit hope in ignoring deviations from ideal models was that they would not
matter; that statistical procedures which were optimal under the strict model
would still be approximately optimal under the approximate model. Unfor-
tunately, it turned out that this hope was often drastically wrong; even mild
deviations often have much larger effects than were anticipated by most statis-
ticians (J. Tukey, [45]).

Estimation is an art, as well as a science, whose goal is to infer information about an
unknown quantity based on available data. Estimators are selected to perform well under
assumed underlying conditions. However, since these conditions are never known exactly,

34
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we should choose estimators which are robust, that is, perform well under a variety of
underlying conditions. In so doing we obtain estimators which are reasonably accurate and
efficient in the presence of outliers and other departures from the assumptions.

Outliers and other deviations from underlying model assumptions are unfortunately a
fact of life. Common examples are recording and derinition errors. Increased accessibility
to high speed computing and data storage has facilitated the collection and analysis of larger
data sets. Unfortunately little effort has been spent ensuring data quality. Therefore, often
with larger data sets come more errors and consequently an even greater need for robust
procedures.

4.1.1 Influence Function

A useful tool for investigating the robustness properties of a statistical procedure is the
influence function. Roughly speaking, it describes the asymptotic bias caused on the es-
timator by a small amount of contamination in the underlying distribution. Therefore, a
desirable local stability property is a bounded influence function.

The idea of influence functions was formulated by Hampel [18] and developed later by
Hampel ef al. [17]. Let F, represent the empirical distribution of the data putting mass 1/n
on each observation. As estimators of 8 we consider statistics T, = T(y1,-*,ya) Which
can be represented, at least asymptotically, as functionals of the empirical distribution, i.e.
T.(y1, - ,¥n) = T(F,). The robustness of the estimator T is assessed by means of the
influence function (IF), which is defined at the model Fg by

((1 —€)Fg+€Ay) — T(Fg)

T
IF (y;T, Fg) = lim . . 4.1)

Ay is a probability measure which puts all its mass in y. Notice that (1 —€)Fg + €A, yields
good observations from Fg with high probability 1-€ and bad observations from point y
with small probability €. The IF describes the effect of this small contamination (£4y) at
the point y on the estimate (standardized by the mass of the contamination). In fact, the
linear approximation €/F (y; T, Fg) measures the asymptotic bias of the estimator caused by
the contamination.

One of the great strengths of influence functions rests with their ability to expose the
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limitations of many commonly used estimators in the presence of contamination. Un-
boundedness of the IF permits small deviations from the model distribution to cause large
changes in the estimator. Such a characteristic is most detrimental as it can lead to badly
biased results. '

Alternatively, estimators exhibiting the desirable robustness property of a bounded IF
are more attractive. Such estimators are called B-robust (Bias-robust). By bounding the IF,
we can ensure that small deviations from the model distribution do not cause large changes
in the estimates.

4.1.2 Robust Estimators

Good robust estimators should be efficient as well as insensitive to small and large devia-
tions in the data. As is often the case in real life, these goals cannot normally be reached
simultaneously. Instead we must often compromise by sacrificing some degree of efficiency
to increase robustness or vice versa.

A great many robust procedures involve weighting functions. Such functions assign
weights, between 0 and 1, to each data point. A weight near 0 indicates that the data point
is not well fitted by the model. Hence the weight function gives us precisely the informa-
tion needed to determine whether our model is consistent with the data. Our options are to
base inferences on the points which are well fitted by the model and downweight the ob-
servation(s) which are not, or try to develop alternative models in which all the weights are
close to one. In identifying such potential outliers we may obtain very useful information
regarding the data.

4.2 Robust Models for Longitudinal Data

We now examine some robust models which have been proposed for various sorts of lon-
gitudinal data. Given that both marginal and latent variable models build upon generalized
linear models, we discuss these first.
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4.2.1 Robust Estimation for Generalized Linear Models

As seen in Section 2.1.4, generalized linear models allow one to model the iclationship
between the predictors and a function of the mean of the response for both continuous .
and discrete response variables. The response variables Y;, for i,---,n are supposed to
come from a distribution belonging to the exponential family, such that E[Y;] = u; and
VY] =V(y) fori=1,--- ,nand

g(mi) = X,

i=1,---,n, where B C R is the vector of parameters, X; C R, and g(.) is the link function.

The non-robustness of the maximum likelihood estimation for B has been studied ex-
tensively in the literature [31], [36]. The quasi-likelihood estimator for f§ shares the same
non-robustness properties. As a solution, Cantoni and Ronchetti [8] recently proposed a
natural robust generalization based on the idea of quasi-likelihood functions. This gener-
alization leads to a class of estimators that are (1) easy to deal with, and (2) admit handy
inference for the whole class of generalized linear models.

Their new estimators are a solution of a set of estimating equations which involve two
sets of weighting functions. The first is introduced to control deviations in the y-space
while the second downweights leverage points in the x-space.

These robust estimators are said [8] to be a valuable complement to classical techniques
and are more reliable than their predecessors in the presence of outlying points and other
deviations from the assumed model.

4.2.2 Resistant Generalized Estimating Equations

Preisser and Qaqish [41] considered the robustification of marginal models. As we learned
in chapter 3, generalized estimating equations are often used to fit marginal models. Pressier
and Qaqish demonstrated that parameter estimates from GEE may be highly influenced by
a small subset of the data and consequently introduced resistant generalized estimating
equations (REGEE). REGEE is an alternative estimation procedure to GEE, which auto-
matically downweights influential observations or clusters. A cluster in their discussion
would be analogous to an individual for the types of data we discuss.

When there are no unusual observations present, then all observations receive equal
weight and REGEE reduces to GEE. Their approach is a multivariate generalization of
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Carroll and Pederson [9], who provide robust estimates in the logistic regression model
that are of the Mallows class. Estimates of the Mallows class are obtained by downweight-
ing large leverage values. Alternatively, Schweppe estimates are obtained by downweight-
ing according to residuals. They consider two approaches for the Mallows and Schweppe
classes, which they call observation downweighting and cluster downweighting. The for-
mer downweights each observation separately, whereas the latter method assigns equal
weight to all observations in a cluster based on some aggregate measure of the influence of
the entire cluster.

Mallows cluster downweighting is achieved by assigning the weights equal to some
function of the trace of the hat matrix. In the Schweppe class, clusters may be down-
weighted according to a summary measure of fit of the observations in the cluster based on
residuals.

Mallows observation downweights are based on some measure of covariate distance or
an observation'’s leverage. Carrol and Pederson [9] define non-iterative Mallows weights
as a function of the distance of a covariate vector from a robust estimate of its central
value. In contrast, leverage weights based on the hat matrix assign the smallest weights to
observations with potentially large influence on the overall fit.

REGEE provides an alternative approach to data that is commonly analyzed with the
GEE procedure. Statistical inference based on the GEE procedure is often sensitive to
the influence of unusual data values. In contrast, the REGEE procedure automatically
downweights individual observations or clusters with large influence. It is therefore a very
useful procedure which allows us to fit marginal models robustly. It can also be used in
parallel with classical procedures, especially to aid with data screening and preliminary
analyses.

4.2.3 Robust Latent Variable Models

Latent variable models have been shown to be sensitive to deviations from the model distri-
bution, to outlying observations, and to model misspecifications. A number of approaches
to the robustness of latent variable models have been proposed.

In 1993 Huggins [27] proposed a robust inference procedure consisting of a robustified
version of the log-likelihood for multivariate normal data. The method was proposed for the
analysis of repeated measures in the presence of outliers. His concern was that likelihood
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techniques in this setting are least squares estimators and may be expected to be sensitive
to outliers and other departures from multivariate normality. For this reason he robustified
the log-likelihood for multivariate normal data by using Tukey’s bisquare function. The
resulting estimators were shown to be consistent and asymptotically normal. His estimates
were calculated using optimization routines, which required only the input of a function,
such as -log-likelihood, to be minimized. All derivatives and matrices of second derivatives
were then calculated numerically.

Richardson and Welsh [43] reviewed and extended robust estimation in the mixed linear
model. Robustification was achieved by applying Huber-type v functions to the residuals
in the estimating equations.

Krishnakumar and Ronchetti [29] extended the work of Richardson and Welsh to a
general context of econometric models with a full covariance matrix of errors. They limited
the influence of any single observation on the estimators of both the coefficients and the
covariance parameters thus yielding estimators associated with the bulk of the data when
contamination is present.

4.3 The Robust Marginally Specified Generalized Linear
Mixed Model

We now introduce our robust model: the robust marginally-specified generalizea linear
mixed model (ROBMS-GLMM). The ROBMS-GLMM is designed to simultaneously pro-
vide estimates of the parameters and assess the fit of our data to the model. It includes
weighting strategies to handle outlying observations both in the response and covariates.
Huber’s least favorable distribution is also introduced to make ihe ROBMS-GLMM less
sensitive to violations on the distributional assumptions. By changing the tuning constants
defining the ROBMS-GLMM we can fit models with varying degrees of robustness, close
agreement of the estimates across a range of tuning constants usually suggests little, if any,
contamination is present. The MS-GLMM in fact becomes a special case of the ROBMS-
GLMM, obtained by setting tuning constants appropriately.
The subsections that follow detail the various robust features of our ROBMS-GLMM.



4.3.1 Random Effects Distributional Assumptions

We first consider how to protect against violations of the random effects (latent variable)
distributional assumptions. Commonly the random effects [b;|X;] are assumed to follow
a unit spherical multivariate Gaussian distribution with b; being a linear transformation
of a possible lower dimensional random effect, b; = Cz;, for an n; X ¢ matrix C;, and
zi € R? spherically normal, z; ~ ¢4(z;). To achieve our goal of robustness we use Hu-
ber’s Least favorable distribution for scale (¢f,’ ) in place of the Gaussian distribution where

o =%, ¢ (z) with

122 exp[-5] iflz] < &,
07(z) = 4.2)
l7‘2-ft-exp[—%] [%] otherwise.
Huber’s Least favorable distribution for scale is normal in the middle, behaves like a ¢-
distribution with k degrees of freedom in the tails, and consequently downweights the
influence of extremes. It is not downweighting in the traditional sense (as described in
Section 4.1.2) but rather does so by allowing longer tails which is a usual type of devia-
tion. This makes outliers less unlikely under the model so that their effect on the parameter
estimates is reduced. Choices for €, k pairs are given in Huber [26]. A reasonably effi-
cient choice is € = .005 and k = 2.46. Note that Huber’s least favorable density appears in
both the likelihood and the convolution equation. Our mixed model is now comprised of
the marginal regression model, g(u;;) = X;;P, the conditional assumption g(pf-’j) = A;ij+bij
and the distributional assumptions ¢Z’ (zi). For this model the parameters are 6 = (B, a) and

the observed data likelihood for subject i can be written

n;
L8(®) = pro(tiX) = [ (I pro(t o X0 6§z 43)
j=

Heagerty and Kurland [21] helped establish the need for our ROBMS-GLMM by ex-
amining the performance of the MS-GLMM for scenarios in which the marginal mean re-
gression models were correctly specified; but where the distributional assumptions for the
random effects were wrongly specified. They found that maximum likelihood estimates
of § may contain modest bias if the dependence (random effects) assumptions are grossly
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violated. Final recommendations suggested that careful attention should be given to the
random effects model assumptions when using generalized linear mixed models for regres-
sion inference with longitudinal data. Our ROBMS-GLMM automates this task making [3
less sensitive to violations of the random effects distributional assumptions.

If wesetk=o and e =0, ¢;’ becomes the unit spherical multivariate Gaussian density
and likelihood (4.3) corresponds exactly to Heagerty’s MS-GLMM thereby yielding the
classical maximum likelihood estimates.

One of the most popular MS-GLMMs for longitudinal binary data is the marginally
specified logistic-normal model with random intercepts. It assumes b;; = bg ~ N(0,63)
allowing us to rewrite b;; = 6z where z ~ ¢. With ¥;;'s that take on values 0 or 1,

g(uij) = logit P(Y;; = 11X;;) = Xi;B
and
8(ut;) = logit P(Yij = 1|b;, Xyj) = Aij +oz.
In this case the ROBMS-GLMM yields a robustified likelihood for individual i of the form:
n

LR(B,a) = / [T (A +02)% {1 — h(Ai; +02)} FioH (2)dz
j=1

_ (4.4)
n;
= /exp {Z {yij(Aij +02) +log[1 — h(Aij +62)]} 07 (2)dz
j=1
where h = g~! = logit 1. The corresponding convolution equation (3.4) is
H(Xs8) = [ hay+020" (2)dz (4.5)

We are particularly interested in modelling longitudinal binary data and consequently we
now restrict our attention to model (4.4), referring to it as the robust marginally specified
logistic-normal model, while still recognizing that our conclusions can be generalized back
to model (4.3).



4.3.2 Outlying Observations in the Covariates

Having now robustified against violations of the random effects distributional assumptions
there are still ways to further improve the model. Specifically, we are concerned with the
estimation of B and how it may be impacted by deviations from the model assumptions.

In section 4.1.1 we learned that estimators are deemed non-robust if they possess IF
which are unbounded. M-estimators have IF proportional to their score functions. Conse-
quently, proving that an M-estimator’s score function is unbounded allows one to proceed
directly to the conclusion that the estimator is non-robust.

Heagerty’s MS-GLMM estimators are in fact maximum likelihood estimators which
are a special form of M-estimator. We therefore examine score functions to evaluate their
robustness, or lack thereof. Looking specifically at the marginally-specified logistic-normal
model, the score function for B takes the form:

o(z)dz.

[2{)’11 Au +07) }a

I/exp{Z{yu Aij+062) +log(l — h(Aij+02)]} 3
Ll . i B

The above score function, and consequently also the IF, are unbounded. This is most

easily seen by recognizing that the partial derivative %Bﬂ can be written:

0Aij _ dA;j onij
oBx  omi; OBk’

In the above expression 1;j = X;;B, %ﬁ} = p;j(1 — pij) /Aij where A;j = [h(A;j +062){1 -
h(A;j +0z) }¢(z)dz, see Heagerty [20] for further details. Now given that n;; = X;;, we
have %?# = Xijk- Therefore %‘%‘f will include a term involving only the covariate X; . Hence,
by making this covariate arbitrarily large we can unbound the score function. We conclude
that these estimators of B are non-robust and hence a small amount of contamination can
severely distort the parameter estimates (as will be demonstrated numerically later). Our
approach to obtaining more robust estimators is to further robustify the likelihood equations
such that they are not so sensitive to outlying observations in the covariates.

Outlying observations in the covariates are often referred to as observations with high
leverage. To reduce the impact of high leverage we introduce weights w;; into the likelihood
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producing:
(B, = [ TTIh(ay + 02 {1 iy + 00 e (e
j=1

A simple and effective choice for w;; is to base it on some function of the hat matrix
while noting that more sophisticated choices are also available. Specifically, we take w;; =
/1—hjj/T=H; where hj; are the diagonal elements of the hat matrix #; = X;(X7 X;) !XT
and Hj; are the diagonal elements of the hat matrix H = X (X7X)"!'X7. h; contains only
the time-dependent covariates while H contains the time-independent covariates. When no

time-independent covariates are present we require only the first term in the definition of
Wij.

An observation with a small weight will contribute less information to the likelihood
equation than one with a large weight. We design our robust approach such that those
observations (or individuals) who are ourlying obtain small weights. In the maximum like-
lihood approach this is not the case since all weights are one and hence an observation with
outlying covariates could significantly influence the maximum likelihood estimator.

The Convolution Equation

The convolution equation (4.5) is solved for A;; using a quadrature program to approxi-
mate the integral and a root finder algorithm to obtain A;;. The quadrature program was
recommended by Dr. Pat Keast, a numerical analyst in the Department of Mathematics and
Statistics, Dalhousie University. This program uses formulae originally due to Patterson
but later modified by Krogh and Snyder [30]. Patterson [40] derived a family of quadrature
formulae in which additional abscissae are added so as to maximize precision. Krogh and
Snyder reduced the number of coefficients necessary to represent Patterson’s quadrature
formulae as well as the amount of storage necessary for function values. We have chosen a
root finder algorithm given by Forsythe et al. [15]. This algorithm makes use of the bisec-
tion procedure combined with linear or quadratic inverse interpolation. At every step the
algorithm selects one of two new approximations, the first being obtained by the bisection
procedure and the second resulting from the interpolation.

Outlying observations in the covariates can render the convolution equation (4.5) un-
solvable (as well as the convolution equation (3.4) for the MS-GLMM). This happens



because such extreme observations force the left hand side of the convolution equation,
h(X;jB), towards either 0 or 1. Our experience suggests that when A(X;;B) is within ap-
proximately 10~> of either 0 or 1, then no solution for 4;; in

h(nj) = / h(Aij +02)0 (2)dz

can be found. Our robust procedure automatically checks the value of A(n;;) so as to
identify instances where there will be no solution for A;;, and then sets the corresponding
leverage weight w;; equal to 0. Unfortunately, the MS-GLMM does not protect against
the convolution equation becoming unsolvable and consequently cannot be fit when such
outlying observations are present. One could put similar flags in with the MS-GLMM, and
then ignore the observations which do not yield a solution for A;;. However this was not
done in the Heagerty implementation.

4.3.3 Outlying Observations in the Response

When considering longitudinal binary data there is also another type of outlying obser-
vation which may arise: outlying observations in the response. In the case of the robust
marginally specified logistic-normal model, an outlying observation in the response will
be one for which the differences |yij — P(Y;; = 1|X;;, bi)| and |yi; — P(Yij = 1|Xi;)| are very
close to one. Given that the random effects are unobserved we can only examine the lat-
ter difference. Fortunately, in cases where the first difference is large, A;; is necessarily
large, and hence the second difference must also be large. This is a direct result of that fact
that P(Y;j = 1|X;;) and P(Y;; = 1|X;j,b;) are linked by the convolution equation. For such
outlying observations the data and the model are in fairly strong disagreement suggesting
that the contribution to the likelihood should possibly be re-weighted. Specifically we pro-
pose to downweight the likelihood contribution P(Y;; = 1|X;;,b;)""i and upweight that of
P(Y;; = 0|X;j,b:)! ™, or vice versa. Re-weighting the likelihood in this way results in a
robustified likelihood of the form:

LRB,a) = / fl[h(Aij+oz)"ff“‘f{1 ~h(Aij+oz)} ithirigH(z)dz - (4.6)
j=1
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where the A;; determine the degree of re-weighting. Care must be taken to ensure that we
do not re-weight too drastically such that we begin fitting the outliers instead of the bulk of
the data. We define a function A which takes as an argument the Pearson residual r;; for the
particular observation and produces a value A;;. That is, A;; = A(r;;) where

0 1f|r1j| S c,
Mrijy=1q .
sign(ri;)(1 - %) otherwise

and c is an appropriately chosen constant. It is common with robust procedures to choose
values for tuning constants like this one such that one achieves 95% efficiency when there is
no contamination present. Let us examine how this function behaves with ¢ = 1.7. Taking
yij = | and P(y;; = 1|b;,X;;) = .2, then ri; = 2.0 making A;; = .15. This decreases the
weight of the first contribution to the likelihood (by Ai; = .15) and increases the weight
of the second as is sensible here. On the contrary when y;; = 0 and P(y;; = 0) = .8, then
Aij = —.15 and the reverse weighting occurs. An appropriate choice for ¢ will depend on
various properties of the data set, including both size and the amount of within-individual
correlation. ¢ will also affect the efficiency of the estimates of the model.

Since we are dealing with repeated observations on individuals there are two weight-
ing schemes available. Observation weighting assigns a weight to each observation (Y;;)
separately, whereas individual weighting assigns the same weight to all observations on
an individual (Y¥;) based on some aggregate measure of their influence. These weighting
schemes were first considered by Preisser and Qaqish {41] in the context of marginal mod-
els, as previously discussed in subsection 4.2.2 .

For individual weighting we set A;; = A; where A; is some summary measure of the
deviations for the entire individual. For example, we can define A; = ¥ j Aij and use A; in
place of A;; in Equation (4.6). Notice that this is a non-robust mean which will consequently
allow one outlier to significantly impact the A;. If there is indeed correlation between the
individual observations then one outlying observation can influence all those that follow
it. This choice of A; will behave in a similar manner and re-weight all observations on
the particular individual. Individual weighting is most applicable in situations where we
believe the correlation within an individual is fairly large. This is more frequently the case
when we have only a few observations per individual.
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Alternatively we can restrict our attention to the observation level which amounts to
keeping A;; as defined earlier. Either approach to re-weighting could result in a loss of
efficiency for the resulting estimators as is generally the case with robust statistics. In
section 6.1.1 we discuss this issue in further detail.

Up to now we have focused on re-weighting the likelihood contributions. However,
instead of re-weighting we can weight the entire contribution to the likelihood for a partic-
ular observation. Again, these weights are defined based on the Pearson residuals. For an
appropriately chosen constant ¢ we have the weight v;; = v(r;;) where

1 iflrij| <c,

£
{rijl

v(rij) = '
otherwise.
Notice that the first type of weighting we propose actually shifts mass through y;; £ A;;
by downweighting one term in the likelihood contribution and upweighting the other. The
second weighting approach is multiplicative in that we downweight the entire contribution
to the log-likelihood from 1 to v;;. We choose to use only one or the other of the weighting
approaches, their performances are compared in section 5.1. In terms of implementation,
the second approach is more straightforward since it simply involves multiplying each term
in the log-likelihood by v;;. The first approach is more complicated in that it requires that
the A;; be inserted into each likelihood term twice (and with different sign).

We have now arrived at the final ROBMS-GLMM, defined by the robustified likelihood

LY (B, ) =/I-i1[h(Aij+UZ)yij-k‘i{l — h(Aij +oz) } Mo (2)dy 4.7)
=l

along with the convolution equation:
h(nij) = [ (8 +02)0 2)dz.

4.3.4 The Infiuence Function

In section 4.1.1 we saw that it is very desirable to have estimators with bounded IF. Hence
we now investigate the ROBMS-GLMM estimators to see if they in fact exhibit this feature.
The IF for the ROBMS-GLMM is proportional to its score function which takes the
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form

1
LR /u exp[z wijvii{ (vij — Aij) (Aij + 62) + log[l — h(Aij +62)] } o (z)d (4.8)
Jj=

olR
where for 5

0A;;
u= Z&v,JV,J{y--— ,--—h(A,‘_,‘-%-OZ)}a—], 4.9)
- ot
and similarly for i3
n; a
u=z w,-jv,-j{[y,-j—-?»,'j A,J+O'<.]aB A,j+ B }+
j=! (4.10)

Wij‘a_ﬁ:;{(yij —Xij)(Aij+02) +log(1 — h(Aij+02)}|.

In order to unbound the score function (4.8) the function of z must be non-integrable.
For this to happen our integral over z must involve a term which is either undefined (i.e.
division by zero) or grows at too rapid a rate. We need not be concerned with the y;; since
they are always 0 or 1. However we must examine what happens to the score function when
the covariate X;x becomes extreme.

The covariate X;jx enters (4.8)-(4.10) through A;; and well as through the residual r;;.
We begin by considering A;; which is a function of X; jx, obtained by solving the convolution
equation. We must determine whether A;j, or any function of A;;, is unbounded as this
would lead to the score function (4.8) being unbounded.

In subsection 4.3.2, we saw that making X; i arbitrarily large renders the convolution
equation unsolvable and hence we robustify against such extreme X;; by setting the cor-
responding leverage weight w;; equal to 0. With problematic observations eliminated by
setting w;; = 0, A;; is never unbounded.

Next we consider the partial derivative %%;l. We saw in section 4.3.2 that %?;‘l can be

written:
dAi; _ dAij dny;
oBx  omij oBx’
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or equivalently as,
0Ai; _  mij(1 — pij) Xijk
9B LR __oH(z)dz

(1+5i7%)2

Clearly then, by making X;  arbitrarily large we can unbound %%%. However examination

of the cxpressions (4.9-4.10) reveals that %’%—‘f only appears in conjunction with w;;. Con-
sequently, if we take X;; very large it will render the convolution equation unsolvable in
which case w;; becomes 0 and hence desirably, any terms including w; j%%‘f are bounded.

We now consider terms involving the residual r;;, specifically, %;E:- and %Ef Both of
these terms are well-defined but unbounded with X; j; extreme. Fortunately, they too always
occur with w;; and hence are again protected by the fact that when X; ;. is made arbitrarily
large, the convolution equation will be rendered unsolvable such that the corresponding w;;
is set equal to 0 by our robust procedure.

We are now able to state that the score function (4.8) is bounded and consequently the

ROBMS-GLMM are robust.

4.3.5 Robust Starting Values

Our ROBMS-GLMM estimates are calculated using iterative optimization routines, which
require only the input of the negative of the log of the robustified likelihood. All deriva-
tives and matrices of second derivatives are then calculated numerically. The optimization
routines require reasonable starting values for good performance. By naively assuming that
observations on individuals are independent, we can obtain an initial fit to the data using
a generalized linear model. This was the approach taken by Heagerty. In section 4.2.1
we noted that Cantoni and Ronchetti have recently developed a procedure for fitting such
models robustly. Therefore we use their estimates as starting values, computation of which
involves a Fisher scoring procedure. S-Plus routines are available from Cantoni. Use of
these robust starting values results in faster convergence to the solution which is desirable.

In the next chapter we examine the performance of the ROBMS-GLMM via a simula-
tion study.



Chapter 5

The Performance of the
ROBMS-GLMM

We now investigate how ROBMS-GLMMs perform in practice. This chapter includes a
demonstration for illustrative purposes as well as a simulation study designed to investigate
the sampling properties of the estimates. This chapter concludes with a discussion of some
important computational issues concerning the fitting of these models.

5.1 Demonstration

We begin by considering a simulated data set which allows us to compare MS-GLMM and
ROBMS-GLMM estimates to true parameter values. At the same time we judge how well
we are able to identify contamination when it exists. We look specifically at a logistic-
normal formulation, that is,

logit (uij) = Bo + Xij1B1 + Xij2 B2,

and

logit(pf-’j) = Aij+b;
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with 7 = (—2,3,1) and [;|X;] following a standard normal distribution such that o =
In(c) = 0. The covariate X; was generated from a uniform distribution on [0,1] and X»
from a Bemnoulli distribution with probability of success p = 1/2. Hence we have two
non-designed time-dependent covariates, one continuous and one discrete. The response is
binary, coded by O or 1. Leverage contamination was introduced by changing 5% of the X,
covariates. Their decimal was moved one place to the left. This contamination mimics data
recording errors commonly occurring in practice. Prediction contamination was introduced
by changing 5% of the response (from O to 1, 1 to O respectively). This contamination is
again reflective of what occurs in practice, when a 0 is recorded instead of a 1, and vice
versa.

The simulation involved 40 individuals with 20 observations per individual. Initially we
fitted both the ROBMS-GLMM and MS-GLMM to the non-contaminated data. The results,
which are shown in Table 5.1, are in fairly close agreement, with the ROBMS-GLMM esti-
mates giving up a small amount of efficiency for robustness. Standard errors are computed
from the inverse of the hessian matrix, which implies that those for the ROBMS-GLMM
are computed under the assumption that the robustified likelihood is the true likelihood.
This is discussed in further detail in Chapter 6. Note that the ROBMS-GLMM was fitted
twice in order to utilize both prediction weighting strategies as discussed in section 4.3.3.
The first re-weighted likelihood contributions where appropriate via the A;; (recall that a
small value of |A;;| results in fairly little re-weighting), and the second downweighted like-
lihood terms where appropriate using the v;; (recall that a small value of v;; implies a large
amount of downweighting). Results were similar for both. All of the prediction re-weights
(Aij) were smaller in absolute value than 0.4, and both the prediction downweights (vi;) and
leverage downweights (w;;) all larger than 0.6. Hence fairly little weighting was performed
suggesting that most of the data was well fit by the model as would be expected with no
contamination.
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Table 5.1: Parameter estimates (standard errors) with non-contaminated data, *k = 2.46,
¢ =1.70.

Model
Variable True Value MS-GLMM ROBMS-GLMM*
Re-Weight Downweight

Bo -2.00 -1.63(.22) -1.83(.26) -1.74(.25)
B 3.00 2.89(.28)  3.24(.33) 3.10(.35)
B2 1.00 0.80(.14) 0.91(.16) 0.86(.13)
o 0.00 0.04(.16) -0.07(.17) -0.03(.21)

Table 5.2 presents the estimates obtained by fitting both the ROBMS-GLMM and MS-
GLMM in the presence of leverage contamination. Such contamination renders the con-
volution equation unsolvable so that one cannot fit the MS-GLMM. The ROBMS-GLMM
yields sensible parameter estimates while at the same time correctly downweighting over
95% of the contamination. The contamination and associated weights are shown in Table
5.3. Weights above 0.9 have fairly little impact so this is the contamination that we consider
missed by our model.

Table 5.2: Parameter estimates (standard errors) with 5% leverage contamination, *k =
2.46,c =1.70.

Model
Variable True Value MS-GLMM ROBMS-GLMM*
Re-Weight Downweight

Bo -2.00 _ -1.80(25)  -1.72(.25)
By 3.00 — 320(.34)  3.08(.32)
Ba 1.00 — 0.82(.14)  0.78(.15)

o 0.00 — -.10(.18) -.06(.18)
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Table 5.3: 5% Leverage contamination and associated weights.

Contaminant  Weight

Ind. Obs. Wij
0 4 0.0

18 0.0
1 11 0.0
2 10 .79
4 16 91
6 3 54
9 13 .86
10 0 95
11 2 .88

18 0.0
13 19 0.0
14 9 0.0

17 94
16 19 0.0
17 1 0.0
18 9 0.0

19 94
19 17 0.0
20 8 0.0

10 .88
21 14 0.0
22 0 0.0
23 0 0.0
25 13 94

19 0.0
26 1 0.0
27 2 0.0
29 5 0.0

10 0.0
3 12 0.0
31 1 0.0

9 0.0

13 0.0
32 6 0.0
34 7 0.0

9 0.0

12 95
3s 0 0.0
38 17 0.0

Table 5.4 presents the results obtained in the presence of prediction contamination.
Again the ROBMS-GLMM outperforms the MS-GLMM by producing parameters esti-
mates closer to the true values. Prediction contamination is much more difficult to deal
with than leverage contamination. Multiple contamination on one individual increases the
probability of masking. This makes it unreasonable to try to identify all of the contamina-
tion precisely. Rather, we are interested in the overall effect on the parameter estimates and
the amount of weighting occurring. One would hope that the amount of weighting that oc-
curs is in line with the amount of contamination. This is indeed the case as approximately
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5% of the observations are being re-weighted (or downweighted).

Although « is a nuisance parameter, care must be taken when interpreting its estimates.
In replacing the Gaussian distribution with Huber’s Least Favorable distribution, o acquires
a different interpretation. Since the variance of Huber's Least Favorable distribution is
larger, we expect o to be smaller to ensure that the function is still a density. Results are as
expected.

Table 5.4: Parameter estimates (standard errors) with 5% prediction contamination, *k =
2.46,c=1.70.

Model
Variable True Value MS-GLMM ROBMS-GLMM*
Re-Weight Downweight

Bo -2.00 -1.46(.21) -1.58(.21) -1.53(.19)
B, 3.00 2.58(.26) 2.81(.29) 2.72(.26)
B2 1.00 0.72(.15)  0.80(.16) 0.77(.15)

o -0.00 -0.12(.17)  -0.22(.18) -0.20(.18)
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5.2 Simulation Study

To further evaluate the performance of our robust procedure, we carried out a simulation
study that compared ROBMS-GLMMs to MS-GLMMs. For one simulation run, we pro-
ceeded as follows. A design matrix was generated and values for the parameters were given.
Random effects were generated according to a random effects distribution, and vectors y;;
were then generated as conditionally independent Bernoulli random variables with means
h(A;j+0z;). Note that A;; must be recovered as the solution of the convolution equation.

We consider models that contain both a time-dependent (within-individual) and time-
independent (individual-level) covariate. The multinomial time-independent covariate, X;;) =
x;1 takes on integer values between 0 and 5 (rescaled) with equal probability. The continu-
ous uniform non-designed time-dependent covariate X;;» varies between 0 and 1. We gen-
erate data involving 60 individuals with 10 observations on each.The model was assumed
to be

logit (p;;) = Bo + Xij1B1 + Xij2B2

with BT = (=2,3,1) and [b;|X;] following a standard normal distribution such that o =
In(¢) =0.

5.2.1 Background

Neuhaus, Hauck, and Kalbfleisch [37] have studied generalized linear mixed models when
the mean parameters are conditionally specified (CS-GLMM). Note that such models are
often referred to simply as GLMMs or latent variable models. They investigated the im-
pact of assuming the random effects are distributed as F when in truth they are G. They
looked specifically at logistic-normal models and found that the maximum likelihood es-
timate (MLE) of a mean parameter has bias of less than 20% when random effects are
non-normally distributed. These results suggest that likelihood based mean estimates using
a CS-GLMM may be moderately insensitive to distributional assumptions.

Heagerty [20] performed simulation studies to investigate the potential bias due to max-
imum likelihood estimation using MS-GLMM. He looked specifically at logistic-normal
models with random intercepts, when G is a function of subject-level covariates or when
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random effects are autocorrelated. Bias may result, but it was found to be slight (relative
bias < 15%) in the scenarios considered.

Heagerty and Kurland [21] explored the bias that arises due to incorrectly assuming
that the variance of the random effects is independent of the covariates. In particular,
they considered a model where the random effects variance differs according to a binary
covariate. They assessed the impact of this model misspecification on both marginally
specified and conditionally specified mean parameters. They compared MS-GLMMs and
CS-GLMMs and found that the MLEs for MS-GLMMs are much less sensitive to variance
component specification than for CS-GLMMs. Their conclusion was that MLEs for MS-
GLMMs may be biased due to variance component misspecification but the magnitude of
the bias is generally small.

The aforementioned work influenced our decision to focus on robustness of the random
effects distribution to outliers, rather than to misspecified distributions, given that such
misspecification appears to have little impact.

Both the MS-GLMM and ROBMS-GLMM allow for a multi-dimensional random ef-
fects distribution. This makes a wide variety of models available, including those which
involve serial correlation of the random effects. However with the increased complexity
of the random effects distribution comes heavy computational requirements. Investigations
are therefore suggested as a direction of future research.

5.2.2 Design

In the study we consider three factors: random effects distribution, design matrix, and pre-
diction. We choose two random effects distributions labeled as follows: no mix is standard
normal; and mix is 5% wild (i.e., 95% from a standard normal distribution and 5% from a
normal withy=0and 6 =9).

We used two design matrices. The first as discussed in Section 5.2 and labeled no
lev; the second, labeled lev, is similar except that it contains 5% high leverage points.
This leverage was introduced by changing covariates for a randomly chosen 5% of the
individuals. These covariates had their decimal place shifted one place to the left so as to
mimic data recording errors.

Prediction contamination was introduced by changing 5% of the responses y;; (from 0
to 1, 1 to O respectively). We label the non-contaminated design no pred whereas that with
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prediction contamination as pred.

Table 5.5 gives the results. For each situation, we carried out 50 simulation runs. The
entries include the parameter estimates and their associated standard errors for both the
ROBMS-GLMM and the MS-GLMM. Those marked with an x could not be fitied due to
the contamination. The ROBMS-GLMM is utilizing the prediction downweighting strategy
as this was found to be slightly more stable. We would expect results to be similar when
using re-weighting as suggested by the demonstraticn.

The standard errors in Table 5.5 are based on performing 50 simulations (i.e. they are
the standard errors of the S0 corresponding ﬁk). The standard errors of the means obtained
by simulation (Monte Carlo) are therefore those reported divided by V/50. If we were to
compare the ﬁl estimates for the case where there is only prediction contamination we
would find that the two means —2.80 and 3.03 are only just significantly different (using
a two-sided t4-test with oo = .05). One can see that even when there is no contamina-
tion present the standard errors of the ROBMS-GLMM estimates are slightly smaller than
those for the MS-GLMM estimates. We believe this is due to the increased stability of the
ROBMS-GLMM algorithm.
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Table 5.5: Parameter estimates (standard errors) based on 50 simulations.

no mix
no pred pred
MS ROBMS MS ROBMS
no lev

Bo -2.06(.36) -2.12(.27) -1.90(.31) -2.04(.24)
B 3.02(49) 3.13(.37) 2.80(.42) 3.03(.69)
B> 1.06(.28) 1.05(.21) 0.96(.21) 0.96(.24)
o -07(20) -06(.14) -.03(.17) -.14(.36)

lev
Bo X -1.94(.29) X -2.04(.31)
B1 X 2.94(.36) X 3.08(.46)
B2 X .98(.26) X 1.02(.27)
a P -.00(.15) X -.04(.22)
mix
no pred pred
MS ROBMS MS ROBMS
no lev

Bo -1.92(48) -1.95(.37) -1.91(.28) -1.94(.28)
Bi 2.89(.68) 2.90(.50) 2.90(.40) 2.92(.70)
B> 0.93(.25) 1.02(.29) .85(.30)  .93(.31)
o 0.12(.14) .08(.15) .14¢17)  .11(.17)

lev
Bo x -1.99(.25) X -1.92(.25)
By X 3.04(.41) X 2.89(.40)
B> X .98(.25) X .95(.29)
o X 11(.18) X .18(.14)

Note: x indicates model could not be fitted.
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5.2.3 Analysis of Results

While examining the results in Table 5.5, it is useful to consider the following insightful
comments of David Cox [10] in discussing the role of statistical models:

“It is important to distinguish the parts of the model that define aspects of
subject matter interest, the primary aspects, and the secondary aspects that
indicate efficient methods of estimation and assessment of precisions.”

“Especially in empirical models, it is desirabie that parameters (e.g., contrasts,
regression coefficients and the like) have an interpretation largely independent
of secondary features of the models used.”

The primary objective of both MS-GLMMs and ROBMS-GLMMs is to make inference re-
garding the mean response as a function of the covariates. We are therefore most interested
in the estimates of ¢, K = 1,-- -, p rather than a, which here is a secondary feature of the
model. Consequently the comments that follow are based largely on the estimation of .

We discuss first the results with no contamination (no mix, no flip, no lev) and we
see that, as expected, both models perform similarly, with the MS-GLMM estimates being
slightly closer to the true parameter values. However, as soon as we go to the contaminated
normal situation (mix), the result is different, with the ROBMS-GLMM outperforming the
MS-GLMM by producing estimates which are somewhat closer to the true values. This
result demonstrates that the ROBMS-GLMM has good robustness characteristics with a
contaminated normal, whereas the MS-GLMM does not perform as well.

We next consider the results under leverage contamination. The ROBMS-GLMM gives
reasonable results unlike the MS-GLMM which cannot be fitted to the data as it has no
mechanism in place for dealing with cases where the convolution equation is rendered
unsolvable by the contamination. Our robust procedure identifies such observations and
downweights their contribution to the likelihood.

In the presence of prediction contamination the ROBMS-GLMM once again yields
estimates slightly closer to the true values than the MS-GLMM. The results are not as
startling as those with leverage contamination but still support the use of our ROBMS-
GLMM.

Finally, the results also illustrate that the ROBMS-GLMM performs well when faced
with a variety of types of contamination. We see it perform better than the MS-GLMM
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when faced with both prediction contamination and a contaminated normal distribution
for the random effects. As well, when faced with all three types of contamination (mix,
flip, lev) the ROBMS-GLMM still performs well unlike the MS-GLMM which once agair.
cannot be fitted to the data.

It is important to remember that the ROBMS-GLMM provides additional information
that is not shown in Table 5.5. This insightful information is provided by the weights and
tells us about the fit of the model to the data. These weights are invaluable for assessing
the performance of the models and provide another reason for fitting ROBMS-GLMMs.

In summary, our robust procedure performs similarly to the MS-GLMM when there is
no contamination present but does better in the presence of contamination. The behavior
that we have observed is quite typical of robust estimates compared to maximum likelihood.
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5.3 Computational Issues

Many researchers have commented on the serious computational difficulties in fitting GLMMs
and for this reason a wide range of methods have been proposed. We look first at efforts that
have been made at eifectively fitting CS-GLMMs. We then consider fitting MS-GLMMs
and finally discuss our experiences when fitting ROBMS-GLMMs. We conclude this sec-
tion with some recommendations.

53.1 CS-GLMMs

There are serious limitations to methods for fitting CS-GLMMs because of the need for
numerical integration of dimension g to evaluate the likelihood. The computational burden
has limited data analysis in several ways. First, investigators have largely restricted their
attention to random intercepts models (¢=1) to avoid higher dimensional numerical inte-
gration. Second, specialized software is required and is typically optimized for a particular
random effects distribution (e.g. the normal). Such limitations have recently led to the
development of several methods using analytical approximations to the likelihood.

Methods involving analytical approximations to the likelihood include maximum pe-
nalized quasi-likelihood and marginal quasi-likelihood [7] via EM or quasi-Newton (Fisher
scoring) algorithms, and Markov Chain Monte Carlo (MCMC) methods. McCulloch [35]
demonstrates that calculating ML estimates for CS-GLMMs is feasible using either a Monte
Carlo EM algorithm or a Monte Carlo Newton-Raphson algorithm.

Zeger and Karim [51] illustrate the use of the Gibbs sampler for estimating parameters
in CS-GLMMs. They focus on the logistic-normal case because it is the most common
example and yet still poses numerical difficulties. In models with only a random inter-
cept, likelihood evaluation by numerical integration is a competitive alternative to Gibbs
sampling from a computational viewpoint. However, the strength of the Gibbs sampling
approach is its extendibility to multivariate and non-normal random effects.

Booth and Hobert [6] discuss using the EM algorithm for finding maximum likelihood
estimates in the CS-GLMM setting. Because the E-step of the algorithm involves an inte-
gral which cannot be evaluated analytically, they consider computer-intensive alternatives.
They propose two different implementations of the Monte Carlo EM algorithm in which
simulation methods are used to evaluate the intractable integral at the E-step. The first
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method uses rejection sampling whereas the second method uses an importance sampling
approximation. Their Monte Carlo EM algorithm is not restricted to models with normally
distributed random effects.

53.2 MS-GLMMs

When Heagerty first proposed the MS-GLMM [20] he investigated both likelihood and es-
timating equation approaches to parameter estimation. For each of the estimation methods,
there is the additional complexity associated with A;;, which must be computed as a func-
tion of the marginal mean parameters [ and the -andom effects covariance parameters Q.
This is achieved through numerical solution of the convolution equation (3.4). To numeri-
cally evaluate the convolution equation Heagerty uses 20-point Gauss-Hermite quadrature
[1] which is a specialized method tailored to the logistic-normal integral. Unfortunately
with 6 > 2 Heagerty reports that this method produces an error in the approximation to the
integral which is no longer acceptable. Our experience supports this statement. We view
this as a limitation to Heagerty’s implementation of the MS-GLMM.

An estimating-equations approach requires the specification of a model for the marginal
mean and a working model for the marginal covariance cov(Y;). It is possible to use estimat-
ing equations [33] and a working logistic-normal model because we are able to calculate
the induced covariance structure. Using paired estimating equations (42], Heagerty [20]
obtained estimates of the mean regression parameter and the logistic-normal variance com-
ponents and used these model estimates to construct covariance matrices for iterative esti-
mation of . Use of this approach requires that cov(Y;;, Yi|X;) be computed via numerical
integration for which Heagerty again uses Gauss-Hermite quadrature. The primary advan-
tage of an estimating equations approach is that inference regarding regression parameters
P is robust to incorrect specification of the within-subject dependence model. However, al-
though estimates of f obtained as the solution of the estimating equation have been shown
to be consistent under quite general conditions, efficient estimation still requires that the
within-subject dependence model be correctly specified.

In many situations likelihood based methods may be preferred. One advantage of
likelihood-based methods is that they can handle data that may be missing at random. To
obtain valid inference using estimating equations requires the data be missing completely
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at random. This ubiquitous phenomenon of missing data is an important issue with lon-
gitudinal data for which the natural consequence is individuals with a varying number of
observations. We have seen that the observed data likelihood for subject i is a mixture over
the random effects distribution and is given by

Li(B, o) =/I1P(ﬂj = yij|bi, Xi)dFy,.
j=1

Since L; cannot be evaluated analytically, numerical methods are required to compute
the g-dimensional integral. Heagerty suggests using Gauss-Hermite quadrature for low-
dimensional random effects models. However, as ¢ (the dimension of the random effects
increases), the computational burden for quadrature methods grows exponentially, and al-
temnative approaches are desirable.

5.3.3 ROBMS-GLMMs

A great deal of time and effort has been spent in arriving at a precise method for obtaining
ROBMS-GLMM estimates. We focused on maximizing the robustified likelihood, rather
that working with estimating equations. This likelihood approach was usually taken by
Heagerty perhaps because the gains of estimating-equations in term of robustness to a mis-
specified covariance are questionable, and both methods still require numerical integration.
As well, likelihood based methods are usually preferred.

Maximization of the robustified likelihood for ROBMS-GLMMs as compared with the
likelihood for MS-GLMMs, is additionally complicated by a number of factors. First, we
are no longer assuming normally distributed random effects and are consequently unable to
use Gauss-Hermite integration or take advantage of its many simplifications. Second, cal-
culation of the leverage weights requires the inversion of the design matrices which is also
computationally demanding. Third, prediction downweights or re-weights must be calcu-
lated at every step. Fourth, we must set tuning constants appropriately so as to achieve the
desired amount of robustness. In summary, maximizing the robustified likelihood requires:

e appropriate selection of tuning constants,

¢ solving the convolution equation (requires both a root finder algorithm and numerical
integration, see section 4.3.2),
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e calculation of weights (requires inversion of the design matrices),

¢ numerical integration of the robustified likelihood (requires three separate numerical
integrations for each individual),

e numerical computation of the hessian and the scores.

nlm in R [28] was the nonlinear minimizer chosen to take us on an efficient path towards
the solution.

Let us consider one of the simulated data sets discussed in Section 5.2 and the effort
required of the nonlinear minimizer in its search towards the maximum likelihood estimate.
To compute the robustified likelihood at one location requires approximately 2,950,000 in-
tegrand evaluations. Each integrand evaluation takes approximately 5¢~6 seconds. The
fact that we must compute so many of them makes obtaining a solution very expensive
and extremely nontrivial. Fitting ROBMS-GLMMs (as well as MS-GLMMs) is there-
fore computationally intensive and requires some approximation (introduced by numerical
integration etc.). This is certainly motivation for considering other approaches to fitting
ROBMS-GLMMs.

Our routines are readily available and listed in Appendix A. To reduce the time required
to fit the ROBMS-GLMMs we provide a collection of C programs for computation of the
likelihood. This C code must be dynamically loaded into R and can then be called via some
user friendly R routines.

5.3.4 Recommendations

Our experience suggests that the future of statistical computation for longitudinal data will
include the heavy use of iterative simulation methods. We believe that recent advances in
computer hardware combined with the development of new statistical methodology, such
as the ROBMS-GLMM, will create a bright future for generalized linear mixed models,
particularly in the context of longitudinal data.

At present, the methods available for fitting both MS-GLMMs and ROBMS-GLMMs
are extremely numerically intensive and rely heavily on numerical integration. Fortunately
we anticipate that many, if not most, of the methods involving analytical approximations to



the likelihood suggested for CS-GLMMs can be applied to both MS-GLMMs and ROBMS-
GLMMs. We intend to investigate application of the work of Booth and Hobert [6] to fitting
ROBMS-GLMMs.

Recent procedures which avoid the need for numerical integration by using importance
or Gibbs sampling techniques are attractive. Potential drawbacks include the intensive com-
putations and some uncertainty as to when the sampling process has achieved equilibrium.
Regardless, they are certainly worthy of investigation.



Chapter 6
Inference and Model Selection

We begin this chapter with a discussion of the asymptotic properties of ROBMS-GLMM
estimators, including the examination of some simulation results. Some philosophical is- -
sues pertaining to robust estimation are also addressed. In section 6.2 we consider model
selection since choosing a model is often an important goal of a statistical analysis. We rec-
ommend robust methods of model selection and testing procedures to be used when fitting
ROBMS-GLMMs.

6.1 Asymptotics

Neuhaus, Hauck and Kalbfleisch [37] followed the approach of Akaike [2] and White [48]
to investigate the effect of mixture distribution misspecification on estimates of model pa-
rameters for CS-GLMMs. Heagerty and Kurland [21] applied the results of White [48]
to investigate the effects of misspecification of the mixture distribution for MS-GLMM:s.
We now apply the results of White [48] in order to investigate the asymptotic properties of
ROBMS-GLMMs.

6.1.1 ROBMS-GLMM Estimates

For simplicity, we assume that n; = n for all i, so that all individuals have the same number
of observations and that the covariate vectors X; are independent and identically distributed,
fori=1,--- k. We denote the response vector by Y = (Y1, ---,¥;) and the covariate matrix
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by X = (Xj,---,Xi). Without loss of generality we can assume that E(X) = 0. We investi-
gate the asymptotic properties of ROBMS-GLMM estimates as k — o with n fixed. This is
the standard approach to investigating the asymptotic properties of models for longitudinal
data [21]. We also assume that the weights w;; depend only on the covariates for individual
i, that is X;. This will be the case for models involving only time-dependent covariates, the
LEI data being one example (analysis of which is presented in section 7.1). In section 6.1.2
we propose an alternative approach to investigating the asymptotic properties of ROBMS-
GLMM estimate for the more realistic scenario which allows weights to depend on the
entire covariate matrix X. Both time-dependent and time-independent covariates can then
be accommodated.

Following the approach of White, we take our robustified likelihood to represent a
misspecified likelihood and the likelihood corresponding to Heagerty’s MS-GLMM to be
that of our model distribution. This implies that the random effects are assumed to be
normally distributed. Such an approach is consistent with much of robustness theory where
often the model distribution is assumed to correspond to that model which would best
describe the data were there no contamination present.

We denote by 8* = (B*,a*) the value which minimizes the Kullback-Leibler divergence
between the true and misspecified models. That is, 6 minimizes

ExEyxlog{Pc(Y =y|8,X)/Pr(Y =y|6",X)}, (6.1)

where F denotes the misspecified model, G denotes the true model and the expectation
is taken with respect to the true model. Akaike and White show that the maximum likeli-
hood estimator, 6°, under the misspecified model converges to the value 8*. In the above
expression (6.1),

Po(¥ =18,%) = [ [1(psV7(a) Vr0(2)dz,
J

Pr(Y =16",%) = [ TT(p; P a0 2ot (2)ds,
J

where o = log(6), a* = €%, logit pj=Aij+0z,logit p; =Aj;+0z,q;=1-pj,q;=1-
p;. Aij is a function of 6 and Aj; is a function of 6°. Dependence on / has been suppressed.
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Assumptions

In order to get asymptotic normality (via the results of White [48]) we require the following
assumptions:

Al Theindependent random 1 x n vectors ¥;, i = 1,- - - , k, have common joint distribution
function G(y,0) on €, a measurable Euclidean space, with density g = dG/dv =
Pg(Y = y|0,X)k(X) where v is the appropriate counting measure. Here, and in what
follows, k(X) denotes the density of X.

A2 The family of distribution functions F(y,8) has densities f(y,0) = dF(y,8)/dv =
Pr(Y = y|6,X)k(X) which are measurable in y for every 8 in ©, a compact subset of
a p-dimensional Euclidean space, and continuous in 8 for every y in Q.

A3 (a) E[logP;(Y = y|8,X)] exists and |logPr(Y = y|6,X)| < m(y|x) for all 8 in O,
where m is integrable with respect to G; (b) The Kullback-Leibler divergence (see
equation (6.1)) has a unique minimum at 8* in ©.

A4 OJlog Pr(Y =y|6,X)/06;,i=1,---, p, are measurable functions of y|x for each 8 in
© and continuously differentiable functions of 6 for each y|x in Q.

AS |0%log Pr(Y = y|6,X)/06,00;| and
|0log Pr(Y =y|6,X)/06; - dlog Pr(Y = y|6,X)/06|, i,j = 1,---, p, are dominated
by functions integrable with respect to G for all y|x in Q and 6 in ©.

A6 (a) 6* is interior to ©; (b) B(8") is nonsingular where B(8") = {E(dlog Pr(Y =
y|6*,X)/06; - dlog Pr(Y = y|6%,X)/d9;)}; (c) 6" is a regular point of A(8) where
A(8) = {E(d*log Pr(Y = y|6,X)/06,09,)}. A regular point of the matrix A(8) is a
value of 0 such that A(8) has constant rank in some open neighborhood of 6.

A7 |0[0PF(Y =y|8,X)/0;- PF(Y =y|8,X)]/d8}|,i,j=1,---, p, are dominated by func-
tions integrable with respect to v for all 8 in ©, and the minimal support of Pr(Y =
¥|6,X) does not depend on 6.
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Discussion of Assumptions

Al and A2 are satisfied by letting G correspond to the distribution specified in the MS-
GLMM and F correspond to those specified in the ROBMS-GLMM.

A3 requires that E{log P(Y = y|0, X)] exists. We can be certain this expectation exists
as it is simply a finite summation. That is,

E(logPs(Y = y|8,X)] = Y log Pc(Y =y|8,X) * P5(Y = y|8,X).
y

Condition A3(a) also requires that | log Pr(Y = y|0,X)| be bounded above by some function
m(y|x) not involving 6. Since Pr(Y = y|6,X) must be between 0 and 1 it follows that

0<{logPr(Y =y|6,X)| <o

with |log Pr(Y = y|0,X)| — o as Pr(Y = y|6,X) — 0. Hence if we can make Pr(Y =
¥16, X) arbitrarily small then |log Pr(Y = y|8,X)| will be unbounded.
Can we make Pr(Y =y|6,X) arbitrarily small? Let us suppose that we can. Then, since

Pr(Y =6,X) = /H[(Pj)"’_l’(qj‘)l_"""k"]w"v’q’"(zﬁ
J

Pr(Y = y|6,X) will be arbitrarily small only when at least one term in the right hand side
of the above expression is arbitrarily small. In order for one of these terms to be arbitrarily
small we require that the corresponding p; (or g;) be arbitrarily small. Requiring p; be
arbitrarily small means that —£-

Aj-oz N .
1e lA,-?oz must be arbitrarily small since
-~e

eA,“O’Z
P T

Now since p; is also involved in the convolution equation this implies that the right hand
side of the convolution equation (4.5):

h(nj) = [ pj0(2)dz

must be arbitrarily small. However our robust procedure ensures that when [ p j¢” (z)dz< d
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(3 > 0) then w; = 0 and hence
[(p, Y1~ Hi(g) i)t = 1.

(A similar argument can be made for the case in which g; is arbitrarily small). There-
fore we cannot make one term in the expression for Pr(Y = y|0,X) arbitrarily small and
consequently Pr(Y = y|0,X) cannot be made arbitrarily small. Hence by contradiction
|log Pr(Y = y|6,X)| must be be bounded above. Condition A3(a) is therefore satisfied.
Note that there is a problem with Heagerty’s MS-GLMM since his implementation allows
Ip ;¢” (2) to be made arbitrarily small and hence violates assumption A3(a).

Classical estimation theory is based on assuming a unique maximum likelihood esti-
mate [18]. Following this approach, we assume both the true and misspecified likelihoods
have unique maxima. Assumption A3(b) then follows.

A4 requires that the first two derivatives with respect to 0 in © exist. By locally smooth-
ing functions A and v in the definition of the ROBMS-GLMM we satisfy this assumption.

A5 requires that the derivatives are appropriately dominated by functions integrable
with respect to G. Since integrating with respect to G in this case is simply performing a
finite summation, this assumption is verified.

For A6(a) we must assume 0* is interior to ©. A6(b) and A6(c) as well as A7 follow
from the fact that the expectations involved in these expressions are again simply finite
summations.

With Al - A7 satisfied, we can now state four important thcorems based on the results
of White [48].

Results

We define the robust log-likelihood of the sample as

k
Y logPr(Y: = (6, X),

=1

Le(Y =y|6,X) =

x| -

and our robust maximum likelihood estimator (ROBMLE) as the parameter vector é,: which
solves the problem
Y|X,0).
gleang( 1X,8)
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THEOREM 1 (Existence): Given assumptions Al and A2, for all k there exists
a measurable ROBMLE, 8. (see Theorem 2.1 of [48])

Having established the existence of the ROBMLE, we examine its properties. It is well
known that when F is in fact the model distribution, the MLE is consistent for 89 under
suitable regularity conditions.

THEOREM 2 (Consistency): Given Assumptions A1-A3, B — 0" ask — oo
for almost every sequence (Y;); i.e., ék 25 0. (see Theorem 2.2 of [48))

In other words, the ROBMLE is generally a strongly consistent estimator for 6°, the pa-
rameter vector which minimizes the Kullback-Leibler divergence.

If the probability mode! agrees with the model distribution 8y is consistent for the true
parameter vector 8g. Stated differently, we have, under F, 6 — 8o, whereas under G,
&, — 6*. These results raise some important philosophical questions pertaining to what
we should consider our model distribution to be. A detailed discussion follows in section
6.1.3.

We define the matrices

k
Ak(8) = (k™' Y 9*logPr(¥; = y16,X)/36:08;},
=1
k
By(6) = {k™' Y dlog Pr(Y; = y,16,X)/86;- dlog Pr (¥, = y16,X)/28;},
1

=

Ci(8) = Ac(8) "' Br(8)Ak(8) !,

and
C(6) =A(8)"'B(©)A(B) .

THEOREM 3 (Asymptotic Normality): Given Assumptions A1-A6
VN(By —0°) £ N(0,C(8%)).

(see Theorem 3.2 of [48])

Moreover, Ci(8x) 25 C(6*), element by element.
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If we further assume that the model is correctly specified, then with A7, we have the fa-
miliar equality in maximum likelihood theory which ensures the equivalence of the Hessian
(left-hand side) and outer product (right-hand side) form for the information matrix.

THEOREM 4 (Information Matrix Equivalence): Given Assumptions Al-
A7, if Pg(Y = y|09,X) = Pr(Y = y|60,X) for 8¢ is ©, then 6° = 6p and
A(8g) = —B(89), so that C(8g) = ~A(8g)~! = B(8g)~!, where —A(8p) is
Fisher’s information matrix.(see Theorem 3.3 of [48))

Application

In summary, we have shown that if our model distribution is assumed to correspond to
the MS-GLMM then the ROBMLE are asymptotically normal with variance as given in
Theorem 3. However, if our model distribution is assumed to correspond to the ROBMS-
GLMM then the ROBMLE are consistent for 8y and asymptotically normal with variance
as given in Theorem 4.

Table 6.1 compares the standards errors of the ROBMS-GLMM estimates for 50 sim-
ulated data sets containing 5% leverage contamination. As in section 5.2, each data set
involves 60 individuals, with 10 observations per individual. However, to avoid repetition,
the leverage contamination is now restricted to only the X;;; unlike in section 5.2 where
both X;;1 and X;;> were contaminated. The standard errors sd0 are computed based on the
simulations. The standard errors sd/ are computed based on assuming the ROBMS-GLMM
is the model distribution whereas the standard errors sd2 are computed assuming the MS-
GLMM is the model distribution. Both sd/ and sd2 are based on matrices A;(8) and By (0)
which are calculated at the estimated parameter values. One can see that as expected the
standard errors (sd/) based on assuming the true model is the ROBMS-GLMM are slightly
smaller. The fact that there is not a great deal of difference gives us additional confidence
in reporting either form of standard error depending on what we wish to assume about the
true model.
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Table 6.1: Standard errors based on 50 simulations.

Estimate sd0 sdl sd2
Bo -2.05 .48 .44(.08) .58(.24)
Bi 3.14 62 .63(.14) .87(.32)
B2 1.01 30 .28(.06) .29(.08)
o 0.01 19 .17(.04) .18(.06)

With no contamination present and normally distributed random effects, the ROBMS-
GLMM estimates were found to be approximately 85% to 95% as efficient as the MS-
GLMM estimates as ¢ varied from 2 to 3, respectively.

6.1.2 Extension

The asymptotic development presented in the previous subsection requires an assumption
that cannot always be satisfied. The assumption is that the w;;, required in the definition
of the ROBMS-GLMM, depend only on the covariates specific to the ith individual. With
only time-dependent covariates present in our model, this is always the case since we define
our weights w;; as being /1 — h;; where h;; are the diagonal elements of the hat matrix
h; = X,—(X,-TX,-)"X,-. However when there are time-independent covariates present we in-
stead define the w;; based on the entire hat matrix and hence do not satisfy the assumption.
Without this assumption, we no longer have independent and identically distributed obser-
vations and consequently cannot apply the results of White [48].

In the presence of both time-dependent and time-independent covariates we therefore
propose an alternative asymptotic development based on the work of Yuan and Jennrich
[49]. We believe this development will lead to results similar to those given in the previous
subsection.

By assuming that the covariate matrix X = (X),X3,---,Xn) is fixed we have observa-
tions ¥; which are are independent but not identically distributed. Yuan and Jennrich [49]
give very general conditions under which the existence, strong consistency, and asymptotic
normality of estimators can be obtained. They state that their results have application to
maximum likelihood as well as robust estimation.
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In order to apply the results of Yuan and Jennrich [49] we must be able to write down
our robust estimators as the solution of a set of estimating equations G;(6) = O where
Gi(8) = 3X_, £i(8) and interest is in estimating a value 6. In what follows 8¢ represents the
true parameter value. Yuan and Jenunch [49] state that the following conditions lead to the
existence, consistency and asymptotic normality of a sequence ék of roots of G(8) =0.

1. For each i, g;(8o) has mean zero and covariance V;, and V = | /szf:, V; — V which
is positive definite.

2. For the V; in Assumption 4, there are positive numbers B and d such that for all i,
E|gT (80)(/ +Vi)~'gi(80)'*® < B.

3. With probability one g;(0) is twice continuously differentiable on ©.

4. For each 8 € ©, EG,(8) — G(8) with A = G(6p) being nonsingular, and with prob-

ability one G(8) — G(8). G denotes the matrix of derivatives taken with respect to
0.

5. For each i, ||gi(8)|| < T; and P(supi>T; < =) = | where § denotes the matrix of
second derivatives taken with respect to 6.

If the G, (0) satisfy Assumptions 1 through 5, then the estimating equations have roots
which are consistent and asymptotically normal such that

Vk(6; —69) — N(0,Q)

where Q = A~!'VA'~! with A = G(8y).

The distinguishing feature of Yuan and Jennrich’s approach [49] is the requirement that
the g;(8p) have mean zero (as stated in Assumption 1). In order to ensure this condition is
met we introduce a Fisher consistency correction term a(0) and take

8i(0) = = 10gLE(®) ~a(o),

with LE(8) as defined in (4.7) and

a®=3 [ ’OgLf(e(F»ﬁ e ()i
-

! L] 1+ eBitou
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where F is the assumed model distribution (as discussed in section 6.1.3). Although non-
trivial, one can compute the Fisher consistency correction term. We believe this result
will then lead to estimators; similar in form to our ROBMS-GLMM estimators, which are
both consistent and asymptotically normal. Unfortunately, the computation of these new
estimators requires solving a set of simultaneous equations (the estimating equations) rather
than the use of iterative maximization procedures. We expect that finding the solution will
be even more computationally challenging that our current approach.

6.1.3 What is the True Model?

In classical estimation theory we are often in search of a true model, with true constants
which describe it. However, as Hampel [18] suggests, there are relatively few cases when
a simple true model appears to hold, even for huge data sets. Often this is due to the fact
that we only have a limited sample and much of classical statistics is based on assuming
that the sample size can be increased arbitrarily. As well, even if one believes in a true
constant, its value is tied to our practical experience only through measurements with their
errors. Therefore it seems reasonable to admit that there will generally be some amount of
distortion associated with what we often refer to as the true model.

In acknowledging that there is an unknown though limited distortion of the true model,
we accept that there must then be an unknown bias which is bounded but in general non-
vanishing with increasing sample size, as is shown in Huber [26]. Then with this unavoid-
able bias, what can be estimated? Hampel [18] believes that this question seems to be one
of the most difficult philosophical questions in the background robust statistics.

For a moment we will ignore the problems of existence of a true model. In doing so,
we begin with a data set and are instead concerned with the totality of all model distribu-
tions compatible with the data. Given our data and the set of all probability distributions
which might have generated them, how do we select a model distribution to describe the
data? Keeping in mind that our model is intended to serve as a summary of the data it
would be nice to choose one which is simple. However, generally speaking, the more data,
the more complicated the model and consequently we may consider entertaining a simple
model even if it is only approximate. Experience shows that simplified models which do
not explain all idiosyncrasies of the data, are often much better than more complicated ones
[18]. In theories of robust statistics we consider keeping the same simple model, although
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explicitly only as an approximation. This does not destroy the beauty of classical paramet-
ric models but rather keeps them and fortifies them against mishap. The price is that any
model distribution and hence any parameter in some neighborhood of the actual distribu-
tion may be chosen to describe the data. However as we have shown, this limitation is only
one of several existing already for other reasons.

The idea is to choose an estimator which estimates the correct quantity if the model
were exactly true, and which changes as little as possible in neighborhoods of the model.
We assume our actual underlying distribution has been generated from a model distribution
with ideal but unknown parameter by some unknown but bounded distortion; the distortion
causes a bounded but unknown and unavoidable bias.

In light of some of the concerns that have been raised above, we prefer to speak of
assumed model distributions as opposed to a true model. This seems to alleviate the difficult
problem associated with trying to specify a single true model, especially since one will
rarely exist. We instead investigate results obtained with different model distributions, and
as demonstrated by Table 6.1, insightful conclusions can still be drawn.

6.2 Model Selection

Model selection is a key component in any statistical analysis. Typically the choice of the
final model(s) is an iterative procedure based on subject matter knowledge and on formal
selection criteria. Here we recommend robust methods of model selection and testing use-
ful when fitting ROBMS-GLMMs. After all, one cannot estimate the parameters robustly
and apply unmodified classical model selection procedures [44].

We consider two approaches to performing model selection. The first is based on the
Akaike Information Criterion while the second mimics the approach taken by Cantoni and
Ronchetti [8] in the context of generalized linear models.

6.2.1 A Robust Akaike Criterion

In 1997 Ronchetti {44] considered a general parametric model {Py|0 € ©} and discussed a
robust version of the Akaike Information Criterion.

Suppose we have n independent and identically distributed observations z,,-- - ,z, and
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we denote by L, the log-likelihood of the model with p parameters. Akaike's Criterion
amounts to choosing the model that minimizes —2L, + 2p. This procedure may be viewed
as an extension of the likelihood principle and is based on a general information theoretic
criterion, which is in tumn based on the computation of the log-likelihood function at the
maximum likelihood estimator for 8. However since it is well known that maximum like-
lihood estimators are non-robust for many important parametric models, Ronchetti instead
considered general M-estimators.

A general M-estimator is defined as the minimum with respect to 8 of the objective
function ¥ ;t(z;,0), for a given function 1, and satisfies the first order condition

Y w(z:,8) =0, (6.2)

]

where y(z,0) = 9t(z,0)d0. If we choose t(z,0) = —log pe(z), where pg is the density of
Py, the objective function equals minus the log-likelihood function, y is the score function,
and the corresponding M-estimator is the maximum likelihood estimator.

In order to derive the Akaike Criterion based on a general M-estimator, Ronchetti [44]
looks at such an estimator as a maximum likelihood estimator with respect to an underlying
density pg(z) proportional to exp(—1(z,0)). This is of course only true when the function
T satisfies certain conditions but this does not affect the result which follows. The usual

Akaike Criterion based on this density can then be written, yielding the following robust
version

AICR(p;0p,7) =2 1(2:,8) + ap, 6.3)
i

where 8 is the general M-estimator defined by (6.2), a, =tr(M~'0), M = —E[dy/39),
and Q = E[yyT].

Application to the ROBMS-GLMM

It is straightforward to apply the robust Akaike Criterion (6.3) to the ROBMS-GLMM
since we have k observations yy, -, yx with ¥;7(y;,0) equal to 3;log L¥ and L® as defined
in (4.7). In the next chapter we apply this robust model selection criterion as part of the
statistical analysis of a real medical application.
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6.2.2 Robust Testing

Cantoni and Ronchetti [8] proposed a natural class of robust estimators for generalized
linear models based on the notion of quasi-likelihood. They then derived robust deviances
that can be used for stepwise model selection as in the classical framework. The asymptotic
distribution of tests based on robust deviances were also discussed. We suggest that a
similar approach can be followed for ROBMS-GLMMs.

To evaluate the adequacy of a model, we define a robust goodness-of-fit measure which
we call robust deviance, that is:

k
DLR(ya”b) = _2LR(vab) = -221-5()'!9”?)1 (64)
i=1

where u? contains the 1 = h(A;; + 62) and L is as defined in (4.7) but now expressed
alternatively as a function of the data and the parameters, that is,

Lf(y,-,pf’) = / In'ill[{”{?j}m-lu{l _”?j}l-YEj+Aij]WijVij¢H(z)dz.
=

D, r(y, 1) describes the quality of a fit and we will use it to define a statistic for model
selection. Let us consider the model M, with p parameters. Suppose that the correspond-
ing set of parametersis 0 = (B,B2,--- ,Bp-1,0) = (9'(1), ’(2)). We consider a nested model
M),_, € M, with (p — q) parameters, and testing whether the sub-model M,,_ holds.

We estimate the vector of parameters by minimizing — ¥¥ log L for the complete model,
and we obtain an estimator 8 of 8. Under the null hypothesis, the same procedure yields
an estimator 0 of (8;),0). We write i and j/ for the estimated linear predictors associated
with the estimate 6 and 6 respectively. Then, we define a robust measure of discrepancy
between the two nested models by

ALR = [DLR(yvi‘b) _DLR(yai‘b)] (6.5)

where D;r(y,1f) is defined by (6.4).
Cantoni and Ronchetti [8] go further to establish the asymptotic distribution of their test
statistic, similar to ours as given by (6.5). By assuming the conditions for the existence,
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consistency, and asymptotic normality of M-estimators, they show that the asymptotic dis-
tribution of their test statistic is a linear combination of %2 random variables with one degree
of freedom. The reader is referred to their discussion for further details. At present we are
at work on establishing the asymptotic distribution for the test statistic (6.5).

We now have a set of tools to undertake a complete robust analysis. We can obtain
robust parameters estimates using our ROBMS-GLMM and can then use either the test
statistic (6.3) or potentially (6.5) to make inference and model choice. Complete robust
analyses of some important medical applications are presented in the next chapter.



Chapter 7

Applications

In this chapter we apply our robust procedure to data arising from two biomedical studies.
We are able to answer some important questions posed by associated medical researchers
as well as compare the performance of the ROBMS-GLMM with its earlier non-robust
version. Robust model selection strategies are also demonstrated. First, we consider data
collected on laryngoscopic endotracheal intubation (LEI) with the goal of identifying the
parts of the process of LEI which are most predictive of successful completion. We also
look at data collected on Nova Scotian women who have had more than one pregnancy.
Interest is in their smoking habits as related to pregnancy outcomes.

7.1 Evaluation of Proficiency of Laryngoscopic Intubation

Laryngoscopic endotracheal intubation (LEI) is a potentially life saving procedure in which
numerous health care professionals are trained and expected to be competent. Unfortu-
nately, there is little information to indicate the amount of training required, or what signi-
fies true competence in LEL As it is, training programs for personnel such as paramedics
and respiratory therapists are arbitrary and potentially inadequate. This is a concern given
the critical importance of good airway management.

Data from a prospective longitudinal study of novice endotracheal intubators directed
by Dr. Orlando Hung of the Department of Anesthesia, Dalhousie University is examined.
The goal is to identify features of the process of LEI which are predictive of a successful

79
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LEI These features are entered as covariates into the proposed model and we are inter-
ested in how the performance of a successful LEI changes across various subsets of the
population.

In this section we apply the MS-GLMM and ROBMS-GLMM to the LEI data. Tradi-
tional teaching of LEI has focused on certain key aspects of successful intubation including
proper positioning, timely performance and proper lifting of the laryngoscope blade dur-
ing LEI. Accordingly we sought to clarify the issue of quality and competence on these
grounds by studying specific features of the LEI thought to be important.

A total of 438 LEI were analyzed during this longitudinal study. We let the response
Y;; equal 1 if trainee i performs a complete LEI in less than 30 seconds on trial j, and 0
otherwise. We restrict our attention to judging trainees based on: whether they inserted the
scope properly (PROPLGSP); whether they performed the lift successfully (PROPLIFT);
and if there was unsolicited intervention by the attending anesthesiologist (HELP). Each
of these criteria were included as covariates in our model. Later, in subsection 7.1.1 we
demonstrate how our robust model selection procedure actually led us to arrive at this
model. 19 trainees performed anywhere from 18 to 33 trials. A covariate TRIALCAT was
defined; TRIALCAT=1 for trials 1-5, TRIALCAT=2 for trials 6 thru 10, and so forth.

The results of fitting both the ROBMS-GLMM and MS-GLMM are shown in Table
7.1. Recall that k and c are the tuning constants required for Huber’s least favorable distri-
bution and the response weighting strategies, respectively. We assumed that the underlying
model involved normally distributed random effects. Corresponding standard errors could
then be computed from the inverse of the Hessian matrix for the MS-GLMM, and using the
sandwich estimator (Theorem 3)for the ROBMS-GLMM. Observation weighting was per-
formed since there were a fairly large number of observations per individual and relatively
small correlation between them (8 = .61). The parameter estimates are quite similar and
as expected the corresponding standard errors are slightly larger for the ROBMS-GLMM.
Table 7.2 summarizes some additional information given by the ROBMS-GLMM. 2% of
the observations were actually re-weighted with ¢ = 3.0 suggesting that a small but signif-
icant amount of the data was not well fitted by the model. As well, the 20th observation on
trainee 12 was assigned a leverage weight of .61 suggesting that it should be re-examined.
Upon doing so we noticed that this trainee performed particularly poorly (PROPLGSP=0,
PROPLIFT=0) on this trial, even though the trainee had a reasonable amount of practice
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(19 previous trials) and previous success. Hence, the relatively small weight appears rea-
sonable. With ¢ = 2.0 approximately 4% of the data were re-weighted, and more extremely.

Table 7.1: Parameter estimates (standard errors) for the LEI data, *k = 2.46.

Model
Variable MS-GLMM ROBMS-GLMM*
Re-Weight Downweight

c=2.0 c=3.0 c=2.0 c=3.0
INTERCEPT -4.26(.49) -5.45(.66) -4.62(.56) -5.34(.64) -4.61(.55)

TRIALCAT 30(.09)  .36(.11)  .32(.10)  .36(.11)  .32(.10)
PROPLGSP 94(.31) 1.13(.38) 1.02(.35) 1.11(.38) 1.02(.35)
PROPLIFT 1.82(.33) 2.60(.48) 2.00(.38) 2.50(.46) 1.99(.38)
HELP .78(.26)  .85(.30)  .87(29)  .85(.30) .87(.29)
o -49(.49) -74(48) -.66(.43) -69(46) -.65(.42)

Table 7.2: Weights assigned to the LEI data by the ROBMS-GLMM.

Observation
Ind. Obs. A, viy
¢=20 ¢=30 =20 ¢=30
0 10 n 52 24 49
1 4 n 42 .30 .59
9 31 0 n 1
14 .65 26 .38 .76
5 0 58 .10 45 91
6 50 0 54 1
8 50 0 54 1
19 12 0 93 1
8 16 52 05 51 96
28 14 0 .89 1
10 13 17 0 .86 1
1 5 49 0 54 1
12 2 84 65 A7 35
13 11 65 26 37 .76
14 5 31 0 n 1
17 3 N 0 92 1
1 .60 .19 42 .82
18 17 58 12 AS .89
21 12 0 93 1

To demonstrate how the maximum likelihood estimates for the MS-GLMM may be
highly influenced by modest contamination in the data we examine its performance in the
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presence of both influential and outlying observations. First let us suppose that some trial
categories were confused. That is, the trial number was used instead of trial category for
each of 20 randomly chosen trials. This would amount to approximately 5% contamination.
The leverage weights of the ROBMS-GLMM should adjust for this sort of contamination.
Resulting estimates are shown in Table 7.3 and demonstrate that 5% contamination can
drastically change MS-GLMM estimates, especially for the contaminated covariate. The
corresponding ROBMS-GLMM estimates are also provided and are less impacted by the
contaminated data. Note especially the coefficient for TRIALCAT. Given the large dis-
crepancy between the ROBMS-GLMM and MS-GLMM, one would suspect that contami-
nation was present and thoroughly examine the weights. Notice that the ROBMS-GLMM
estimates are closer to that obtained with the original, non-contaminated data. In general
the ROBMS-GLMM is more reliable and also provides additional information concerning
the fit of the model.

Table 7.4 presents the contamination that was introduced and the corresponding weights.
A number of interesting features are apparent. Our robust procedure does best at identifying
contamination when there is only a single contaminant per individual. It also does better
at identifying contamination when it occurs later in an individual’s series of observations.
This is a direct result of the type of contamination we have introduced. Later observations
will have larger trial numbers and consequently higher leverage that those occuring earlier
in the series for a particular individual. The more contaminants per individual the more dif-
ficulty the procedure has. It appears that if more than approximately 10% of an individual’s
observations are contaminated, this contamination can no longer be identified.
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Table 7.3: Parameter estimates (standard errors) for LEI data with 5% leverage contamina-
tion introduced, *k = 2.46.

Model
Variable MS-GLMM ROBMS-GLMM*
Re-Weight Downweight

c=2.0 c=3.0 c=2.0 c=3.0
INTERCEPT -3.44(.38) -5.06(.64) -4.10(.52) -4.88(.65) -4.08(.49)

TRIALCAT 00(.01)  .12(.05) 0.10(.05) .11(.05) .10(.05)
PROPLGSP 99(.31)  1.21(.39) 1.11(.36) 1.19(.38) 1.11(.36)
PROPLIFT 1.92(.32) 2.96(.52) 2.14(.38) 2.81(.50) 2.13(.38)
HELP J79(.26)  .78(.30)  .81(.29)  .77(.30)  .81(.26)
o -62(.37) -98(.63) -.82(50) -91(57) -.81(.49)

Table 7.4: Weights on the leverage contamination for the LEI data.

"Real Contamination _ Weight

Ind. Obs.  Leverage
0 16 .28
1 5 -
2 2 27
6 16 -

20 .56
8 10 -
23
29
9 13 48
10 15 46
11 17 27
12 14 -
19 .60
14 17 33
15 18 -
24 .58
16 3 -
20 29
18 4 -
20 .24

Now we consider another type of contamination. We randomly choose one individual:
Individual 14. This is equivalent to choosing 5% of the individuals in the data set. We
then introduce 5% contamination by examining all 22 of Individual 14’s observations and
flipping the first half of the responses. This amounts to flipping observations 1 thru 11.
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This contamination seems reasonable when compared with real situations, where a 0 is
commonly recorded instead of a 1 and vice versa. The results of fitting both the MS-
GLMM and ROBMS-GLMM are shown in Table 7.5. One can see that the ROBMS-
GLMM estimates are much more in line with the original estimates than those of the MS-
GLMM. Table 7.6 illustrates that much of the contamination is identified by our procedure.
It is immediately clear that Individual 14 is outlying and should be re-examined.

Table 7.5: Parameter estimates (standard errors) for the LEI data with 5% prediction con-
tamination introduced, *k = 2.46.

Model
Variable MS-GLMM ROBMS-GLMM*
Re-Weight Downweight

c=2.0 c=3.0 c=2.0 c=3.0
INTERCEPT -3.61(.45) -4.78(.58) -3.96(.50) -4.60(.56) -3.93(.50)

TRIALCAT 23(.09)  .29(.10)  .25(.10)  .28(.10)  .25(.09)
PROPLGSP 97(.30) 1.17(37) 1.05(33) 1.15(.36) 1.05(.33)
PROPLIFT 1.43(.29) 2.12(.40) 1.58(.33) 2.00(.39) 1.56(.33)
HELP 70(.25)  .84(.29)  .80(.27)  .82(.29)  .80(.27)

o -23(.26) -.62(.41) -42(.33) -55(.38) -.40(.32)
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Table 7.6: Weights on the prediction contamination for the LEI data.

Contamination "Weights
Ind.  Obs. Reweight Downweight
¢=2.0 ¢=30 =20 =30

0 10 1 .40 31 .61

1 4 .62 21 42 81
9 .29 - .74 -
14 57 .10 47 91

L} 0 42 - 63 -
6 33 - 3 -
8 .33 - 3

8 15 .05 98
16 41 64

9 19 .05 98

10 13 18 85

11 5 33 . 13 -

12 2 .79 .53 24 48

13 11 57 .10 47 9

14 0 62 21 42 .81
1 .39 - 64 -
4 42 - 63 -
6 75 A7 27 54
8 75 47 27 .54
9 .56 .10 48 91
18 .05 - 98 -

17 3 .07 97
11 .49 56

18 17 .50 54

In general, it appears that the choice of ¢ = 2.00 is superior for the LEI data. This is
substantiated by the fact that there is fairly close agreement with the parameter estimates
obtained with the uncontaminated data and in the presence of both types of contamination.
As well, the choice of ¢ = 2.00 results in a modest amount of weighting while at the same
time identifying the majority of the contamination.

7.1.1 Robust Model Selection

Deletion of covariates from a model can in fact improve a model as well as reduce collinear-
ity. In many problems, we may seek a relatively small set of covariates that have nearly
the same information as the full set; further analysis can then concentrate on this subset of
predictors, and possibly simplify results. Both cost and time savings are also motivation
for performing model selection. The large computational requirements for fitting ROBMS-
GLMMs (as well as MS-GLMMs) make the possibility of performing model selection very
desirable, provided we can do it robustly.
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In the original LEI data there were actually two more covariates thought to be of rele-
vance to the performance of a successful intubation. The first was NECKFLEX, an indi-
cator variable which was set equal to 1 if the neck flexion was performed properly. The
second, EXTOA, also an indicator variable, was set equal to 1 when there was proper ex-
tension of the Atlanto-Occipital joint.

The robust Akaike Criterion (AICR), discussed in section 6.2.1, provides us with a
straightforward mechanism for performing model selection. Basically we choose the model
that minimizes this criterion. Table 7.1.1 presents the models that were under considera-
tion along with their corresponding AICR values. One immediately sees that the model
involving only TRIALCAT, PROPLGSP, PROPLIFT and HELP is the best model based on
the robust Akaike Information Criterion. This justifies its use in earlier sections and more
importantly suggests that NECKFLEX and EXTOA are not important covariates and can
therefore be removed for the sake of simplicity and computational efficiency. It is of inter-
est to note that model selection procedures performed on the corresponding MS-GLMMs
yield the same conclusion concerning the removal of EXTOA and NECKFLEX.

Table 7.7: Models with smallest AICR for the LEI Data.

AICR Predictors in the Model

303.98
323.72
307.81
320.32

A W U T

TRIALCAT
TRIALCAT
TRIALCAT
TRIALCAT

PROPLGSP
PROPLGSP
PROPLGSP
PROPLGSP

PROPLIFT
PROPLIFT
PROPLIFT
PROPLIFT

HELP
HELP
HELP
HELP

EXTOA
NECKFLEX
NECKFLEX

EXTOA
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7.2 Smoking Habits During Pregnancies

Dr. Linda Dodds of the IWK-Grace Hospital, Halifax, Nova Scotia, works closely with
the Nova Scotia Atlee Perinatal Database (NSAPD), a unique repository of comprehensive
maternal and newborn information. It contains demographic variables, procedures, inter-
ventions, maternal and newborn diagnoses, and morbidity and mortality information for
pregnancies and births occurring in Nova Scotia hospitals since 1988. The information
is collected from patient care records by health records personnel and is entered into the
database soon after collection [3]. The research objectives of Dr. Dodds include attempt-
ing to learn more about the smoking habits of women who are childbearing. Interesting
questions that have been posed include:

e Does it take a bad pregnancy outcome to convince women to stop smoking for sub-
sequent pregnancies?

e Are women who smoke during pregnancy more likely than nonsmoking women to
have a low birth weight baby?

For each pregnancy in the NSAPD there are a vast number of covariates recorded,
including the amount smoked (average number of cigarettes/day), mother’s age, baby’s
birth weight, etc. The database in its entirety includes approximately 24,000 women. If we
limit it to only those who smoked during their first pregnancy, the database is reduced by
about 70%. Note that a woman who smokes before she is pregnant but stops as soon as
she knows she is pregnant is categorized as a non-smoker since research suggests that the
effects of smoking prior to pregnancy are negligible [13].

For the purposes of our analysis we restricted our attention to only those women who
had two or more pregnancies and smoked during the first. We then chose a random sample
of 300 of these women. Our final data set consisted of 669 pregnancies distributed as
follows:

Number of pregnancies (n;) 2 3 4 5 6
Women 224 54 12 1 1

In Nova Scotia it has also been found that the smoking rate is highest among women
under 20 years of age and decreases with increasing age [13]. These findings suggest that
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mother’s age may be an important predictor of smoking behavior. Studies have also shown
that both ceasing to smoke at some point during pregnancy and reducing smoking during
pregnancy can be beneficial to the baby [24]. The predominant effect of nicotine (inhaled
during smoking) is to decrease blood supply to the fetus. Medical rusearch has established
that the risks to the baby of smoking during pregnancy include low birth weight, SIDS,
respiratory diseases, and morbidity (illness) [13]. Of these risks, low birth weight seems
to be the one most commonly experienced. Discussions with Dr. Dodds suggested that
it would be useful to include in our model a covariate for low birth weight as well as
another covariate summarizing the remaining aforementioned problems. Hence we define
a covariate PROB and set it equal to 1 if any of the problems were experienced in a previous
pregnancy and equal to O otherwise.

To complete our model formulation we let the response Y;; equal 1 if woman i smokes
during pregnancy j, and O otherwise. This is consistent with a previous paper by Dodds
[13] in which smoking is analyzed as a dichotomous variable. We include the covariate
PROB as well as the age (standardized) of the mother (AGE); and the birth weight (kg) of
the baby (BIRTHWEIGHT).

The results of fitting both the ROBMS-GLMM and MS-GLMM with and without the
covariate PROB suggested that this covariate was not of significance to the model. This
statement is supported by the fact that the corresponding AIC and AICR values decreased
with its exclusion. As well, the parameter estimates and associated standard errors in-
dicated that the coefficient for PROB was not significantly different from zero. From a
medical perspective the conclusion that the covariate PROB is not an important predic-
tor of smoking behavior suggests that poor outcomes during a previous pregnancy do not
seem to influence a womans smoking behavior during subsequent pregnancies. Although
unfortunate, this does seem reasonable.

We now discuss the results of fitting the ROBMS-GLMM and MS-GLMM with the
covariates AGE and BIRTHWEIGHT. A number of preliminary fits suggested that ¢ =
3.0 and k = 2.46 were appropriate values for the tuning constants. Individual leverage
weighting was chosen since there are few observations per individual and we performed
prediction downweighting (v;;).
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Table 7.8: Parameter estimates (standard errors) for the Pregnancy data, *k = 2.46, ¢ = 3.0.

Model
Variable MS-GLMM ROBMS-GLMM*
INTERCEPT 4.85(1.02) 6.49(.36)
AGE -.48(.16) -.59(.22)
BIRTHWEIGHT -.65(.29) -1.03(.06)
o -.05(.52) -.94(.97)

We begin by considering the weights assigned by the ROBMS-GLMM. All of the lever-
age weights (w;;) were larger than .95. However, upon examining the prediction down-
weights (v;;) we found that there were 9 women for which the prediction downweights
on their second (and final) pregnancy were close to or less than .5 as shown in Table 7.9.
Re-examination of the data for these women revealed that in all 9 cases these women had
given up smoking after their first pregnancy (although the outcome of this first pregnancy
was fine). As well, the birth weight for their second pregnancy was in fact lower than that
of their first. The smaller the weight in Table 7.9, the lower the birth weight of the second
pregnancy. Having low birth weights associated with smoking cessation is not consistent
with medical findings [13] which have shown that reducing smoking increases birth weight.
Such behavior is also not consistent with the majority of the data which is well fitted by
the ROBMS-GLMM, and consequently explains why such observations are assigned small
weights. Our ROBMS-GLMM has been successful in identifying this aberrant behavior.
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Table 7.9: Weights assigned to the Pregnancy data by the ROBMS-GLMM.

Observation

Woman Pregnancy vj;
135 2 47
158 2 47
164 2 M
169 2 22
210 2 38
220 2 56
238 2 52
245 2 48
288 2 Sl

The present robust analysis is an example of a situation where the outlying data may
well be the most interesting part of the data set. Perhaps some women who give up smoking
after their first child inadveriently pursue some other behavior associated with a decrease
in birth rate. Clearly these women are worthy of further investigation.

We now look in detail at the MS-GLMM and ROBMS-GLMM parameter estimates
(standard errors were computed from the inverse of the Hessian matrix) shown in Table
7.8. Their moderate differences are no doubt a result of the modest amount of contamina-
tion (3% of the women) that has been detected and properly corrected for by the ROBMS-
GLMM. Both models yield estimated marginal log odds for AGE and BIRTHWEIGHT that
make it reasonable to conclude that the probability of smoking is higher among younger
women, and those who have low birth weight pregnancies. These conclusions are consis-
tent with the findings of many other medical researchers [24], [13]). It is also worthwhile
comparing the estimates of &. The MS-GLMM yields & = exp(&) = exp(—.05) = .95
which can be interpreted as the variance between women. Notice that the ROBMS-GLMM,
having downweighted women not consistent with the model, yields & = exp(—.94) = .39.
That is, the ROBMS-GLMM suggests that the women well fitted by the model are not as
different as the MS-GLMM would originally have us believe.

Both applications discussed in this chapter demonstrate the additional and very insight-
ful information that is gained from fitting ROBMS-GLMMs. As part of a complete analysis
we therefore recommend fitting both ROBMS-GLMMs and MS-GLMMs. When they are
in agreement we have additional confidence in our results, when is disagreement further
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Chapter 8
Conclusions

In this final chapter we provide a summary of the results presented in this thesis and then
outline some possible directions for future research.

8.1 Summary

In this thesis we have derived, demonstrated and recommended the ROBMS-GLMM as
a powerful method for modelling longitudinal data. This model is useful in a variety of
disciplines, biology and medicine being just two of many examples. Attention was focussed
on biomedical applications where longitudinal binary data arise naturally and make the
ROBMS-GLMM achieve a number of very useful objectives.

There have been a number of attempts at modelling longitudinal data, all of which are
complicated by the necessity to deal appropriately with the correlation that exists between
observations made on the same individual. Previous methods have been successful in pro-
viding either population-averaged or individual-specific inference but have been unable to
provide both simultaneously. At the same time there is the additional requirement to simul-
taneously handle time-dependent and time-independent covariates. As we have shown, the
ROBMS-GLMM can meet both of these objectives.

In many biomedical applications, the primary objective of the analysis is to make in-
ference regarding the mean response as a function of covariates. Implicitly, this means that
even if random effects are a necessary part of the model, they are usually regarded as a nui-
sance factor. For instance, in the LEI study we include a random effect to account for the
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variance between trainees. However, we are not overly concerned with what this variance
actually is, but rather include it to ensure we are making valid inferences about the other
parameters such as PROPLIFT, for example. Often the motivation for including random
effects in models like the ROBMS-GLMM is simply to account for correlation among an
individual’s observations. The ROBMS-GLMM allows us to include necessary random
effects while at the same time yielding the desired population-averaged interpretations of
the parameters of interest. Even with a fairly simple random effects assumption involving
a small number of parameters, the ROBMS-GLMM provides a rich class of models for the
association among observations from the same individual. This is not the case with many
likelihood based methods.

In many real life problems a significant portion of the data may be contaminated, up
to 10% in biomedical studies, for example. Such contamination is a fact of life and in
being able to deal with it the ROBMS-GLMM is more durable than than its predecessors.
Not only does it possess the ability to check that likelihood estimation has not been unduly
influenced by a few extreme observations but it is also able to identify and analyze the good
and applicable portion of the data. That is, if outliers are present, or model assumptions are
violated, the ROBMS-GLMM estimates characteristics associated with the bulk of the data,
consequently reducing the influence of aberrant observations. It can deal with outlying
observations in both the response and covariates and at the same time is less sensitive to
violations of the random effects distributional assumptions. Robust inference procedures
like the ROBMS-GLMM are now an essential part of the statistician’s tool box, particularly
for longitudinal data where model assumptions may be difficult to check directly.

The ROBMS-GLMM functions as an invaluable aid in data screening and preliminary
analyses. It performs similarly to the MS-GLMM when there is no contamination but
does substantially better when there is contamination present. When the two models are
in agreement we can place additional confidence in our results. When the models disagree
more investigation is required. Perhaps the greatest strength of the ROBMS-GLMM is
its ability to facilitate such investigation by providing us with additional information con-
cerning the fit of the data to the model. This information, provided in the form of easily
interpretable weights, was previously unavailable with similar but non-robust procedures.
By way of example, in the smoking habits application, the bulk of the data supported the
generally accepted conclusion that smoking decreases birth weight. However, the data that
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were identified by the ROBMS-GLMM as contamination are in fact the most interesting.
These are women who had stopped smoking after their first pregnancy and yet had subse-
quent babies of significantly lower birth weight. It may be possible to reach some important
conclusions from the data for these women with further study.

The derivation of the asymptotic properties of the ROBMS-GLMM along with the ro-
bust model selection strategies, provides us with the tools necessary to achieve robust in-
ference for longitudinal data. User friendly R-routines have been designed to make these
tools readily available to statisticians and analysts alike.

Fitting both ROBMS-GLMMs and MS-GLMM s is difficult. Both require iterative so-
lutions which are dependent on the selection of reasonable starting values. While consid-
erable effort was expended to obtain good starting values, accurate approximations and ef-
fective maximization strategies, these methods remain computationally intensive (although
this is masked somewhat by the R-routines). We were prevented from implementing our
ROBMS-GLMM in Splus due to its well known problems with memory allocation. Al-
though high speed computing is now easily accessible more work needs to be done to make
the fitting of models like these more computationally efficient. After all, robust procedures
will almost certainly play an increasingly important role in the analysis of longitudinal data.

8.2 Future Directions

Currently, the limiting factor in the use of the ROBMS-GLMM is its computational inef-
ficiency. After all, the availability of high speed computing notwithstanding, high speed
statistical analysis is still not available, at least not in the context of longitudinal data anal-
ysis. Although realizable optimization procedures make it possible to analyze data which
was not possible even a few years ago, there is still much work to be done. Specifically, the
amount of approximation should be lessened and more efficient paths to the solution should
be found. Preliminary investigations suggest that new implementations of the EM algo-
rithm proposed by Booth and Hobert [6] may be very useful. These methods use random
sampling to construct Monte Carlo approximations at the E-step and can be considerably
more efficient than those based on Markov chain Monte Carlo algorithms.

With new model fitting strategies in place it will be possible to more easily implement
ROBMS-GLMMs which include multiple random effects. As well, we can then fine tune
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Appendix A
Program Listings

A.1 rob-like.c

/' __________________________________________________________ '/
/* rob_like.c (to be used with the nlm optimizer in R */
/* Computes the Robustified Log Likelihood - J.Mills 16/12/99 */
/' __________________________________________________________ '/
/* This function takes as arguments the following: */
/* S_id = The vector detailing which observations */
/* correspond to the various individuals */
/* S_y = The vector of responses (0s and ls) */
/* S_x = The X matrix of covariates */
/* S_beta = The starting value for the vector beta */
/* (returns the maximized likelihood estimates) */
/* S_epsilon = The epsilon to be used for Huber’'s Least */
/* favorable density. v/
/* (epsilon = 0 yields the MLE) */
/* S_lw = The leverage weight flag, 0 for weights all 1, */
/* 1 for weights calculated based on the hat matrix. */
/* S_pr = The prediction weight flag, 0 for no weighting, */
/* 1 for reweighting, 2 for downweighting */
/* S_eta = v/
/* S_ints = The vector which includes: */
/* p=dim(beta) */
/* q=dim(alpha) */
/* nobs=total number of observations */
/* nclust= number of individuals */

/* S_logL = Returns the value of the maximized log likelihood */
/* S_indlike = Returns the individual log likelihoods values */

/* S_flag = */
/* S_c = Tuning constant c for prediction weighting */
/* S_print = The printing flag, 0 for no printing, 1 for */
/* printing. */
/' __________________________________________________________ '/

#include °"chanmatstruct.h®
#include °*chanmatfuns.h®

/* Common Block Declarations */
struct {
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MATRIX **Y, **N, **X, **Z, **Eta, *gamma, *E, **Mu;
MATRIX **Muinit;

MATRIX **LWGHT, **PWGHT, **Lbda,
int c,
double

} coml;

jind, kind, ppar, gqpar;
HLF_k, HLF_eps, cflag;

#define glob coml
#define abs(i) (1)<0 ? -(i) : (i)

extern double

extern double likelihood_();
extern double likelihlf_();
extern double get_lambda();
extern double get_pweight();
extern double HLF_f():
extern void convol () ;
extern int quad_();

extern MATRIX

**Hat;

matmaxabs(), antilogit(), logit(), get_HLF_k();

*matantilogit(), *matxdiagasvec(), *luinv();

void rob_like( S_id, S_y, S_x, S_beta, S_betainit,S_z, S_alpha,
S_epsilon, S_lw, S_pr, S_eta, S_ints, S_logL, S_indlike,

double
double
int

double
doukle
double
double
double
double
double
MATRIX
MATRIX
MATRIX
MATRIX
MATRIX
MATRIX

double
double
double
double
double
double
double

int
int
int
int

FILE

S_flag, S_c, S_print )

*s_id, *S_y, *S_x, *S_beta, *S_betainit, *S_z, *S_alpha;
*S_epsilon, *S_eta, *S_logL, *S_indlike, *S_c;
*S_ints, *S_flag, *S_print, *S_lw, *S_pr;

*1bd;

*ubd;
error=(float)le-6;
a,b,cutl, cuty;
loglike, like_i;
answer, results{8];
w_i;

*idin, *yin, *xin, *zin, *etain;

*beta, *alpha, *betainit,
*mu, *eta, *hatin, *semi,
*HATi, *SEMIi, *redx;
*1p, *lpinit;

*indx;

sumweight, mweight;

'zl 'w'.

HLF_eps, HLF_k, lambdai;
y_i;

*indlike;
*TLWGHT;

eta_i, gi, ps, pm, p.qs, h_i;
wind_i, weight_i, wov_i, x_c;

mu_i;

i, j. k, nobs, nclust, p, q, one, count, s, Ni;
c, lwflag, prflag, printflag;

flagger;
npots, m, checker;

*wfile, wfile2;



/* Parameter Initialization */

p = *(S_ints+0);
glob.ppar=p;

q = *(S_ints+l);
glob.qgpar=q;

nobs = *(S_ints+2);
nclust = *(S_ints+3);
glob.HLF_eps = *S_epsilon;
lwflag=*S_lw;
prflag=*S_pr;
printflag="S_print;

glob.cflag="S_c;

/' __________________________________________________ C/
/* Choose between ROBMS-GLMM and MS-GLMM (non-robust) */

LA et */
if(glob.HLF_eps==0 ) { /* NON-ROBUST */ glob.HLF_k=1000.; )
else { glob.HLF_k = get_HLF_k(glob.HLF_eps}; }

/' _____________________________ '/

/* Transfering information for S */

/' _____________________________ '/

from_S( S_beta, &p, &one, beta );
make_permanent( beta };

from_S( S_betainit, &p, &one, betainit );
make_permanent ( betainit );

from_S( S_alpha, &g, &one, alpha );
make_permanent( alpha );

from_S(S_indlike, &nclust, &one, indlike );

from_S( S_id, &nobs, &one, idin );
from_S( S_y, &nobs, &one, yin };
from_S( S_x, &nobs, &p, xin );
make_permanent (xin) ;

from_S( S_z, &nobs, &q, zin );
from_S{ S_eta, &nobs, &one, etain );

glob.Y = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) ):
glob.X = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) );
glob.Z2 = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) );

glob.Eta = (MATRIX **)calloc{ nclust, (unsigned)sizeof( struct matrix) );
glob.Mu = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) ):
glob.Muinit = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix));
glob.Lbda = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) );

glob.PWGHT = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) ):
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glob.LWGHT = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix)

make_permanent ( idin };

split( yin, idin, glob.Y );
split( xin, idin, glob.X );
split( zin, idin, glob.Z );
split( etain, idin, glob.Eta });

destroy_matrix( idin );
destroy_matrix( yin );
destroy_matrix{ xin );
destroy_matrix{ zin );
destroy_matrix(etain);

for( ¢c=0; c<nclust; c++ }{
make_permanent( glob.Y(c] ):
make_permanent( glob.X[c] );
make_permanent ( glob.Z[c] };
make_permanent( glob.Eta(c] );
glob.Mu[c] = create_matrix( glob.Y(c]->nrows, 1, EPHEMERAL );
glob.Muinit(c] = create_matrix( glob.Y[c]->nrows, 1, EPHEMERAL );
glob.Lbda(c] = create_matrix( glob.Y([c]->nrows, 1, EPHEMERAL );
glob.PWGHT [c] = create_matrix( glob.Y(c]->nrows, 1, EPHEMERAL);
glob.LWGHT(c] = create_matrix( glob.Y([c]->nrows, 1, EPHEMERAL);
}

indx= create_matrix(nclust,3,EPHEMERAL);

/*Individual weighting preliminaries*/
for(c=0; c<nclust; c++){
x_c= MEL{(glob.X(c],1,1);
MEL(indx,c,1l)=x_c;
x_c= MEL(glob.X(c],1,2);
MEL(indx,c,2)=x_c;
MEL(indx,c,0)=(float}l.;
}

make_permanent (indx) ;

semi=luinv(matmult (transp(indx),indx)};

hatin = matmult{ indx, matmult(semi,transp(indx)));
destroy_matrix(semi);

destroy_matrix({indx);

/' _______________________________ '/
/* Preliminaries *y
/t _______________________________ '/

sumweight=0.; /* sums the prediction downweights*/

for( glob.c=0; glob.c<nclust; glob.c++ ){/* loop thru individuals*/
Ni = glob.Y[glob.c]->nrows;
lp = matmult( glob.X[glob.c], beta );
lpinit = matmult( glob.X[glob.c], betainit);
/* Looping through observations on individual c */
h_i=MEL (hatin,glob.c,glob.c);
for( i=0; i<Ni; i++ ){

/*Individual Leverage weights*/
MEL(glob.LWGHT [glob.c],i,0) =(float)l.;
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if (lwflag==1){
if (h_i>=0 && h_i<=1) { /* makes sure weights well-defined */
MEL (glob.LWGHT [glob.c],1i,0) = sqrt(l-h_i);}
}

MEL( glob.Mu(glob.c], i, 0 ) = antilogit( MEL(1lp,i,0) );

MEL( glob.Muinit[glob.c], i, 0 ) = antilogit( MEL(lpinit,i,0) ):
/*If any of these are 0 or 1, can't solve convolution!!! */
/* Basing them on betaint, stop algorithm driving to 0*/
if (glob.HLF_eps!=0) {
if (MEL (glob.Muinit[glob.c],i,0)>=(float)l.) {
MEL (glob.LWGHT [glob.c),i,0) = (float)0.; }
if (MEL(glob.Muinit[glob.c],i,0)<=(float)0.) {
MEL (glob.LWGHT {glob.c},i,0) = (float)O.;}

}
if (prflag==0) {
MEL (glob.PWGHT (glob.c),i,0)=1.;}

/* Calculate fixed prediction weights */
if (prflag==1) (/*Reweighting*/
y_i = MEL( glob.Y[glob.c], i, 0 );
mu_i = MEL( glob.Muinit{glob.c], i, 0 );
MEL (glob.PWGHT [glob.c],1,0)=1.;
MEL( glob.Lbda(glob.c}, i, 0 ) = get_lambda(glob.c,i,y_i,mu_i);}

if (prflag==2) (/*Downweighting*/

y_i = MEL( glob.Y[glob.c], i, 0 );

mu_i = MEL( glob.Muinit[glob.c], i, 0 );

MEL (glob.PWGHT [glob.c],i,0 )=get_pweight{glob.c,i,y_i,mu_i);
sumweight +=MEL (glob.PWGHT [glob.c],i,0);}

} /* end loop thru observations */
}/* end loop thru individuals */

/*Rescale prediction weights and print*/
mweight=sumweight/nobs;
if (printflag==1) {wfile=fopen(*PWGHTS.out","a");}

for{ glob.c=0; glob.c<nclust; glob.c++ ){
Ni = glob.Y[glob.c]->nrows;
for( i=0; i<Ni; i++ ){
if (prflag==2) (
MEL (glob.PWGHT [glob.c],i,0) = MEL(glob.PWGHT(glob.c],i,0)/mweight;
if(printflag==1){
fprintf( wfile, *ind.= %i, obs.= %i, downweight= %f \n®, glob.c, i,
MEL (glob.PWGHT [glob.c],i,0));}}

if (prflag==1){(
if (printflag==1) (
fprintf( wfile, *ind.=%i, obs=%i, reweight = %f\n",
glob.c, i, MEL(glob.Lbda(glob.c],i,0));}}
}
destroy_matrix(glob.Muinit(glob.c]);
}

if (printfiag==1) (fclose(wfile);}
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/' _____________________________ i/
/* Begin Likelihood Maximization */

loglike = 0.
for{ glob.

0;
0; glob.c<nclust; glob.c++ ){/* loop thru individuals*/
Ni o

c=
glob.Y([glob.c]l->nrows;

/*Observation leverage weight initializations */
ILWGHT=create_matrix(Ni, 1, EPHEMERAL );
if(lwflag==1){
HATi=create_matrix(Ni,Ni, EPHEMERAL) ;

/* With no time-independent don’t need these */

/*SEMIi=create_matrix(p-1,p-1,EPHEMERAL);
redx=create_matrix(Ni,p-1,EPHEMERAL) ;
redx=extract_cols(glob.X(glob.c],2,p);
make_permanent (redx);*/

SEMIi = luinv(matmult(transp(glob.X[glob.c)),glob.X[glob.c])};

HATi = matmult(glob.X{glob.c],matmult (SEMIi,transp(glob.X[glob.c]}));
/*destroy_matrix(redx);*/

destroy_matrix(SEMIi);

}

glob.gamma = matexp(matmult(glob.Z[glob.c],alpha)};
make_permanent( glob.gamma );

/* score and hessian for individual i*/
like_i = 0.0;

/* Calculation of observation leverage weights */
for(i=0; i<Ni; i++)(

MEL (ILWGHT,1,0)=(float)1.;

/*if (lwflag==1) {

h_i = MEL(HATi,i,i):
if (h_i>=0 && h_i<=1) { /* makes sure weights well-defined */
/*MEL (ILWGHT,i,0) = sqrt(l-h_i);}
}/

if(lwflag==1){ destroy_matrix(HATi);)

/* Looping through observations on individual c */
for( i=0; i<Ni; i++ ){

eta_i = MEL( glob.Eta(glob.c}, i, 0 );
gi = MEL( glob.gamma, i, 0 };
mu_i = MEL( glob.Mu[glob.c], i, 0 );

/* Multiply overall and individual weights*/

/* For LEI data we have no time-independent covariates */
wind_i= MEL(ILWGHT,i,0);

wov_i = MEL(glob.LWGHT(glob.c},i,0);

weight_i = wind_i*wov_i;

/*if (weight_i<=.4)(*/

MEL (glob.LWGHT [glob.c],i,0)= weight_i; /*}

else{
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/*if (weight_i<=.8)(*/

/*MEL (glob.LWGHT {glob.c],i,0)=(float)l.;/*}

else{MEL(glob.LWGHT [glob.c]},i,0)=(float)l.;}

/*store final value for if statement to follow*/
/* MEL(glob.LWGHT[glob.c]),i,0)= (float)l.;}*/

flagger=0;
/* Solve convolution equation */

if(weight_i!=(float)0.)(
convol{ &eta_i, mu_i, gi, glob.HLF_k, glob.HLF_eps, &flagger );}
else({
if(glob.HLF_eps!=0) {/*robust*/
flagger=1;}
else{/*non-robust*/
convol( &eta_i, mu_i, gi, glob.HLF_k, glob.HLF_eps, &flagger ):}}

if( flagger==0 ){
MEL( glob.Eta[glob.c], i, 0 ) = eta_i;
}else(
if(glob.HLF_eps!'=0) {
MEL (glob.LWGHT[glob.c],i,0)=(float)0.;
}

else { /*MEL( glob.Eta(glob.c], i, 0 ) = eta_i;*/
loglike = -(float)10000;
printf(°*");
goto loop:

}
}/* end loop through individuals */

/' ________________________________________ '/
/* Calculation numerical integration bounds*/

if(glob.HLF_eps==0) ( /*NON-ROBUST*/
a=gi*-5.;
b=gi*+5.;
ubd=&b;
do{b=b+l.;
ubd=&b;
}while(likelihood_(ubd)>=(float).0000001);
dof{a=a-1.;
1bd=ga;
}while({likelihood_(1lbd)>=(float).0000001);
}else{/*ROBUST*/
a=gir*-5.;
=gi*+5.;
do(b=b+l.;
ubd=&b;
}while(likelihlf_(ubd)>=(float).0000001);
dof{a=a-1.;
1bd=ka;
}Jwhile(likelihlf_(1bd)>=(float).0000001);
}

/* numerically evaluate likelihood for individual c*/
cutl=-glob.HLF_k;
cutu=glob.HLF_k;



}
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like_i=0.;
if (glob.HLF_eps==0) { /*NON-ROBUST*/
quad_(&a, &b, results, &m, &error, &npots, &checker, likelihood_) ;
like_i=results(m-1];}
else { /*ROBUST*/
quad_(&a, &cutl,results, &m, &error, &npots, &checker, likelihlf_):
like_i=results(m-1];
quad_(&cutl, &cutu, results, &m, &error, &npots, &checker, likelihood_):
like_i+=results(m-1];
quad_(&cutu, &b, results, &m, &error, &npots, &checker, likelihlf_);
like_i+=results(m-1];
like_i=(1.- glob.HLF_eps)*like_i;

}
if(like_i<=(float)le-45) ( printf(***);}
loglike = loglike + log(like_i);

MEL( indlike, glob.c, 0 ) = log(like_i);

if (printflag==1){(
wfile=fopen(°ROBLIKE.out",*a");
fprintf(wfile,*like_i = %f, log(like_i) = $f for individual %i\n", like_i,
log(like_i), glob.c);
fclose(wfile};}
destroy_matrix{glob.Mi(glob.c]);
destroy_matrix(glob.Lbda([glob.c]);
destroy_matrix(glob.PWGHT[glob.c]):
destroy_matrix(glob.LWGHT[glob.c]);

Y*r et/

destroy_matrix(ILWGHT);

loop: loglike=-(float)l.*loglike;

/* For use with nlm since it is a minimizer !'!!! */
*S_logL = loglike;

to_S( indlike, S_indlike);

/* end of routine */

? S e CeCeEeCatefeteCtetetcteteCteteSeCetectateSetetet e eSeeetetat et e atas~ '/

double get_HLF_k( eps )

}
/

{

double eps;
double k:
if (eps==.001) k=2.88;
if (eps==.002) k=2.70;
if (eps==.005) k=2.46;
if (eps==.01) k=2.27;
if(eps==.02) k=2.07;
if(eps==.05) k=1.81;
if(eps==.1) k=1.62;
return k;
? 2eZeZeZ-C-ZeC~Z~CeZeZeSeZefeSeSeSeleteZoSeZeTeSeS+eSeSeSaZaSeSeSaS=S=SaS- */

double get_lambda( ind,num, obs,prob)

double obs,prob;
int ind, num;



double lbda, dev, res, ares, abdev;
FILE *wfile;

/*Weights are based on Pearson Residuals®*/
res=(obs-prob) /sqrt (prob* (1-prob)});

ares=abs (res);

if (ares<=glob.cflag){ /*Huber's Psi Function*/
1bda=0.;

}else { if{res<=0){1lbda=-1.*(1l.+(glob.cflag/res));}

else{lbda=1.-(glob.cflag/res);}}

return lbda;

/¥ =-=ez-ZeZeZ-Z-Zez-z-2-Z-2-ZeZ-Z~Z-Z--S-2-S-S-S-SeZ-Z-Z-Z-=-Z-S-Z-Z-3-2-

double get_pweight( ind,num, obs,prob)

double obs, prob;
int ind, num;

double weight, dev, res, ares;
FILE *wiile;
/*Weights are based on Pearson Residuals*/
/*if (prob==0.) {printf(*expected =0, problem!®);}*/
if (prob<=0.) {weight=0.;}
else if (prob>=1.) (weight=0.;}
else{
res=(obs-prob) /sqrt (prob* (1-prob));
ares=abs(res);
if (ares<=glob.cflag){ /*Huber’s Psi Function*/
weight=1.;
}else{
weight=glob.cflag/ares;
}

}
return weight;

double 1likelihood_(x)

double *x;

{
double ret_val, rl, res, lambdai;
double yi, etai, gi,ps, wi, ui;

int Ni, i;
FILE *wfile;
rl=*x;
ret_val=0.;

Ni=glob.Y[glob.c]~->nrows;
for(i=0; i < Ni; i++){ /*loop thru observations for this
res=0.;
yi = MEL( glob.Y({glob.c], i, 0 );
etai = MEL( glob.Eta{glob.c}, i, 0 );
gi = MEL{ glob.gamma, i, 0 );
wi=MEL{glob.LWGHT{glob.c],i,0);
ui=MEL (glob.PWGHT(glob.c],i,0);
lambdai = MEL(glob.Lbda(glob.c],i,0);

individual®*/

104



105

if (wi==0.){res=0.;}
else{
ps = antilogit(etai+gi*rl);
lambdai = MEL{ glob.Lbda(glob.c}, i, 0};
res = ui*wi*((yi-lambdai)*(etai+gi*rl) + log(l.-ps));}
ret_val=ret_val+res;
} 1tivy
ret_val= exp(ret_val)*(float)l. / sqrt((float)6.2831853071795862) *
exp(-{rl * rl)/(float)2.);
return ret_val;
} /* likelihood_ */

/* =-=-=-S-=+S-=-Ses-S-S-=-Ze=-S-Z-2-2-3-5-"-2-Z-=~3-Z=Z=S-SeS=S-Z=Z=Z«Z-z- ¥/

double 1likelihlf_(x)
double *x;
{
double ret_val, rl, res, k, lambdai;
double vyi, etai, gi,ps, wi, ui,test;
int Ni, i;
FILE *wfile;
rl="x;
ret_val=0.;
Ni=glob.Y¥[glob.c]->nrows;
k=glob.HLF_k;
for(i=0; i < Ni; i++){ /*loop thru observations for this individual®/
res=0.;
yi = MEL{ glob.Y[glob.c}, i, 0 };
etai = MEL( glob.Eta{glob.c], i, 0 );
gi = MEL{ glob.gamma, i, 0 };
wi=MEL(glob.LWGHT[glob.c],i,0);
ui=MEL(glob.PWGHT[glob.c],i,0);
lambdai = MEL(glob.Lbda(glob.c],i,0);
if(wi==0.){res =0.;}
else{

ps = antilogit(etai+gi*rl);
res = ui*wi*((yi-lambdai)*(etai+gi*rl) + log(l.-ps));}
ret_val=ret_val+res;
| IVASSY

ret_val= exp(ret_val)*(float)l. / sqrt((float)6.2831853071795862) *
exp(-pow(k,2)/(float)2.) * pow{abs(k/rl),pow(k,2));

return ret_val;

} /* likelihlf_ */

/' SeS=ZeZ=Z~Z=S=Z=Z=C=S=2=Z=S=S-ZeZ~T~Z=T=S~aSeZ«Z~S-S~S=S-S-S-=aS-Z-S-z-=- ¥/

double antilogit( x )
double x;
double out;
out = exp( x )/(1.0+exp( x ) );

return out;



double logit( x )

double x;
{
double out;

out = log( x ) - log{ 1.-x );
if (out<=-100.) {printf(*We are in trouble , out = %f\n",out);}
return out;

double HLF_f( x,eta,sigma,kpar )

double x, eta, sigma, kpar;
{
double out;

if( abs(x)<=kpar) {
out = 1.;
Jelse(
out = pow((kpar/abs(x)),pow(kpar,2.));
out = out*exp(-pow(kpar/sqrt(2.),2.))
}
return out;

/ exp(-pow(x/sqrt(2.),2.));

A.2 convol.c

/' ________________________________________________________________ '/
/* convol.c (to be used with rob_like.c) */
/* Solves the deconvolution equation - J.Mills 15/12/99 */
/' ________________________________________________________________ '/
/* */
/t ________________________________________________________________ Q/

#include "f2c.h* /* required because this problem includes a
re-implementation of Patterson’s QUAD
numerical integration routine, originally
written in fortran - must compile with -1lm -1f2c*/

#include *chanmatstruct.h®
#include °chanmatfuns.h*®
#include *math.h’

#define cfree free

#define ETA_TOLERANCE le-§
#define ETA_MAX_ITER 50
#define ETA_EPS le-7

extern double £1_(),£2_(),£3_(),£4_(),£5_(),£6_{);

extern double flhlf_(),£f2hlf_(),£3h1f_(),£4h1f_(),£Sh1f_(), £6h1f_{();
extern double coneq (), robconeq {);

extern int quad_{();

extern double antilogit();



extern double zerofind():
/* Common Block Declarations */

struct {
double HLF_eps;
double HLF_k;
double etai;
double sigma;
double mu;
double upbd;
double lobd;

} com;

#define com_l com

/*Main program alias*/
void convol (eta, mu, sigma, HLF_k, HLF_eps, flagg)
double *eta;
double mu, sigma, HLF_k, HLF_eps;
int *flagg;
/* S-z-s-s-Z-z-S-Z-ZeZ~ZeS-Z-2-S-Z-S-2-3-S-%-Z-S-=
{
double upper, lower;
double a,b;
double *1b4d;
double *ubd;

double cutl,cutu;

double epsil=(float)le-6;

int npts, k, check;

double answr, result{8];

double etai, dmuidetai, new_mui, delmu, ps;

double dmuids, detads;
double dl, 42, int2, int3, int4, x;
double RELERR;

int eta_converge, s, count, NPTS, NLIMIT,
int counter;

FILE *wfile;

double root;

/* Parameter Initialization */
com_1.HLF_eps=HLF_eps;
com_1.HLF_k=HLF_k;
com_l.etai="eta;
com_l.sigma=sigma;

/* Calculate bounds of integration */

if (HLF_eps==0) { /*NON-ROBUST*/
a=sigma*-S.;
b=sigma*+5.;
ubd=&b;
do{b=b+1.;
ubd=&b;
}while({coneq (ubd)>=(float).0000001);
do{a=a-1.;
1bd=&a;
}while(coneq (1lbd)>=(float).0000001);
}else{/*ROBUST*/

IFAIL;
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a=sigma*-5.;
b=sigma*+5.;
do{b=b+l1.;

ubd=&b;
Jwhile(f1hlf_(ubd)>=(float).0000001);
do{a=a-1.;

1bd=&a;
}while(f1hlf_(1bd)>=(float).0000001);

com_1.upbd

b; /*upper bound of integration*/
com_1.lobd

a; /*lower bound of integration*/

/* etai = deltai in Heagerty's notation */
eta_converge = 0;
count = 0;

cutl=-HLF_Kk;
cutu=HLF_k;

/* Computing eta (delta_ij) */

/* We need adaptive bounds for the root finder */
com_1.mu=0.;
upper=sigma*4.;
lower=sigma*-4.;
counter=0;
/* forcing non-robust convolution */
/*com_1.HLF_eps=0;*/
if (com_1.HLF_eps==0) {/*NON-ROBUST"*/
do{upper=upper+1.;
}while (coneq_(upper)<=(float).9999999);
do{lower=lower-1.;
}while(coneq_(lower)>=(float)0.0000001);
upper = -1.*lower;
}else{/*ROBUST*/
do{upper=upper+l.;
counter=counter + 1;
if(counter>=15) {goto next;}
}while{robconeq (upper)<=(float).999933);
next: do{lower=lower-1i.;
}while(robconeq (lower)>=(float)0.0000001);
}

/* Now consider the appropriate mu value */
com_1.mu=mu;

if (com_1.HLF_eps==0) { /*NON-ROBUST*/
root=zerofind(lower,upper,coneq_,le-6);

} else { /*ROBUST*/
root=zerofind(lower, upper, robconeq ,le-6); }

*eta =root;
if (root== upper) {
*flagg=1;}
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if (root==lower) {

*flagg=1;}
return;
}
/¥ S=ZeZeSeZeZeS-CeZeSeS-=-SeZ-ZeS-ZeZ-SeZeSeC+TeSeC~ZeZeSeZeZaZeSe=-Z-=ez-~ */
/* z==== Convolution Equation = === */

double coneq_(delta)

double delta;

{
double ret_val, rhs, rl, ps;
double a, b;
int npts, k, check;
double result([8];
double epsil=(float)le-6;
FILE *wfile;

a=com_l1.1lobd;
b=com_1.upbd;
com_l.etai = delta;
quad_(&a, &b, result, &k, &epsil, &npts, &check, f1_);
rhs=result(k-1];
ret_val=rhs-com_l.mu;
return ret_val;
} /* coneq_ */

/* ===z==  Robust Convolution Equation ====s================zz=z===zz=z=zzz */
double robconeq_(delta)
double delta;
{
double ret_val, rhs, rl, ps:
double a,b;
double cutl, cutu;
int npts, k, check;
double result(8];
double epsil=(float)le-6;
FILE ‘r*wfile;

com_l.etai = delta;
cutl=-com_1.HLF_k;
cutu=com_1.HLF_k;
a=com_1.lobd;
b=com_1.upbd;

quad_(&a, &cutl,result, &k, &epsil, &npts, &check, f1hlf_);
rhs=result{k-1];
quad_(&cutu, &b, result, &k, &epsil, &npts, &check, f1hlf_);
rhs+=result[k-1];
quad_(&cutl, &cutu, result, &k, &epsil,&anpts, &check, f1_);
rhs+=result(k-1};
rhs=(1.-com_l.HLF_eps) *rhs;
ret_val=rhs-com_1.mu;
return ret_val;

} /* robconeq_ */

/* s===== First Integrand Function s====== v/
double f1_(x)
double *x;
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double ret_val, rl, ps;

= antzloglt(com l.etai+com_l.sigma*rl);
ret_val = (float)l. / sqrt((float)é. 2831853071795862) *

exp(-1.*(rl * rl)/(float)2.)*ps;

} o/ £1_ ¢

double flhlf_(x)
double *x;

{

return ret_val;

double ret_val, rl, ps;

antilogit(com_l.etai+com_l.sigma*rl);

rl = *x;
ps =
ret_val =

ps* (float}l. / sqrt((float)6.2831853071795862) *

exp(-1.*(com_l.HLF_k * com_l1.HLF_ k)/(float)2.) *
pow(abs(com_l.HLF_k/rl),pow(com_l.HLF_k,Z.));

return ret_val;

} /* £lhlf_ *

int quad_(a, b, result, k, epsil, npts, icheck, f)
double *a,

int

double

int

double

{

'k,.

*b, *result;

tepsil;

*npts, *icheck;

(*f)

():

/* Initialized data */

static
static
static
static
static
static

int £1(7] = { 2,3,5,9,12,14,1 );

int fh{7] = 2,4,8,16,17,17,0 }:

int k1(11} = ( 1,1,1,1,1,3,5,9,5,9,12 };

int kh(11) = { 1,2,4,8,16,3,6,17,5,9,17 };

int kx(8) = { 0,1,2,3,4,5,8,11 };

double p[305] = { (float)-.11111111111111111111, (float)

.22540333075851662296, (float). 55555555555555555556 {float)
.00647209421402969791,(float)-.00928968790944433705.(float)
.039508731291979716579, (£loat) .10465622602646726519, (float)
-565756250653197442, (float) .40139741477596222291, (float)
5.223046896961622e-5, (float)1.712103096175e-4, (float)
-7.24830016153892898e-4, (float)-7.017801099209042e-5, (float)
.0061680367872449777899, (float).017001719629940260339, (float)
.1115407671277430011, (float) .092927195315124537686, (float)
-37889705326277359705, (float).17151190913639138079, (float)
.77661331357103311837, (float).2191568584015874964, (float)
6.82166534792e-9, (float)1.2667409859336e-7, (float)
5.9565976367837165e-6, (float)1.392330106826e-8, (float)
-6.629407564902392e-5, (float)-7.04395804282302e-7, (float)
-3.4518205339241e-8, (float)-8.14486910996e-9, (float)
9.0187503233240234038e-4, (float).0025447807915618744154, (float)
.01846885044625989313, (float).016446049854387810934, (float)
.07034514257025994333, (float}.035957103307129322097, (float)
.16327406183113126449, (float).056979509494123357412, (float)
.29750379350847292139, (float) .076879620499003531043, (float)
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.46868025635562437602, (float).093627109981264473617, (float)
.66886460674202316691, (float).10566989358023480974, (float)
.88751105686681337425, (float).11195687302095345688, (float)
3.71583e-16, (float)2.1237877e-13, (float)1.0522629388435e-9, (float)
1.748029%e-15, (float)3.47571898301716e-7, (float)9.0312761725e-12, (
float)1.2558916e-14, (float}5.4591e-16, (float)
-7.2338395508691963e-6, (float)-1.69699579757977e-8, (float)
~8.54363907155e-11, (float)-1.228130093e-12, (float)-4.62334825e-14,
(float)-4.2244055e-15, (float)-8.8501e-16, (float)-4.0904e-16, (
float)1.2711187964238806027e-4, (float)3.632214818455306596%e-4, (
float).0027937406277780409196, (float).0025790497946856882724, (
float).011315242452570520059, (float) .0061155068221172463397, (
float).027817125251418203419, (float) .01049824690962132189§, (float)
.053657141626597094849, (float) .015406750466559497802, (float)
.089628843042995707499, (float) .020594233915912711149, (float)
.13609206180630952284, (float).025869679327214746911, (float)
.19305946804978238813, (float).03107355111168796488, (float)
.26024395564730524132, (float).03606443278078257264, (float)
.33709033997521940454, (float).040715510116944318934, (float)
.42280428994795418516, (float).044914531653632197414, (float)
.51638197305415897244, (float).048564330406673198716, (float)
.61664067580126965307, (float).051583253952048458777, (float)
.72225017797817568492, (float).053905499335266063927, (float)
.83176474844779253501, (float) .055481404356559363988, (float)
.94365568695340721002, (float).056277699831254301273, (float)
1.041098e-16, (float)2.49472054598e-11, (float)5.5e-21, (float)
2.90412475995385e-8, (float)3.67282126e-14, (float)5.568e-19, {float)
-8.71176477376972025e-7, (float)-8.147324267441e-10, (float)
~8.830920337e-13, (float)-1.801823%e-15, (float)-7.0528e-18, (float}
-5.06e-20, (float)1.7569645108401419961e-5, (float)
5.0536095207862517625e-5, (float)4.0120032808931675009¢e-4, (float)
3.7774664632698466027e-4, (float).0016833646815926074696, (£loat)
9.3836984854238150079e-4, (float) .00427589530159281149, (float)
.0016811428654214699063, (float).0085042788218938676006, (float)
.0025687649437940203731, (float).01462850040147962889, (float)
.0035728927835172996494, (float) .02285848536029428584, (float)
.0046710503721143217474, (float) .03336214844158343291, (float)
.0058434498758356395076, (float) .046269993574238863589, (float)
.007072489995433555468, (float).06167960222040711635, (float)
.0083428387539681577056, (float) .07965997452998757927, (float)
.0096411777297025366953, (float).10025510022305996335, (float)
.010955733387837901648, {float).12348658551529473026, (float)
.012275830560082770087, (float) .14935550523164972024, (float)
.01359157100976554679, (float) .17784374563501959262, (float)

.014893641664815182035, (float)
.016173218729577719942, (float)
.017421930159464173747, (float)
.018631848256138790186, (float)
.019795495048097499488, (float)
.020905851445812023852, (float)
.021956366305317824939, (float)
.022940964229387748761, (float)

.20891506620015163857, (float)
.24251603361948636206, (float)
.27857691462990108452, (float)
.31701256890892077191, (float)
.35772335749024048622, (float)
.40059606975775710702, (float)
.44550486736806745112, (float)
.49231224246628339785, (float)

.02385405210603854008, (float).54086998801016766712, (float)
.024690524744487676909, (float) .59102017877011132759, (float)
.025445769965464765813, (float) .64259616216846784762, (float)
.02611567337670609768, (float).69542355844328595666, (float)
.026696622927450359906, (float) .74932126969651682339, (float)
.027185513229624791819, (float) .80410249728889984607, (float)
.027579749566481873035, (float) .8595757668474398254, (float)
.027877251476613701609, (float).91554595991628911629, (float)
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.028076455793817246607, (float).97181535105025430566, (float)
.028176319033016602131, (float)3.326e-19, (float)1.14094770478e-12, (
float)2.952436056970351e-9, (float}5.1608328e-16, (float)
-1.10177219650597323e-7, (float)-5.8656987416475e-11, (float)
-2.3340340645e-14, (float)-1.24895e-17, (float)
2.403620251535380763e-6, (float)6.937936432410826717e-6, (float)
5.6003792945624240417e-5, (£loat}5.3275293669780613125e-5, (float)
2.3950907556795267013e-4, (float)1.3575491094922871973e-4, (float)
6.1366197497641806982e-4, (float)2.4921240048299729402e-4, (float)
.0012543855319048853002, (float)3.8974528447328229322e-4, (float)
.0021946455040427254399, (float)5.5429531493037471492e-4, (float)
.00348585408510972615, (float)7.4028280424450333046e-4, (float)
.0051684971993789994803, (float)9.4536151685852538246e-4, (float)
-0072786557172113846706, (float) .0011674841174299594077, (float)
.0098486295992298408193, (float) .0014049079956551446427, (float)
.012907472045965932809, (float).0016561127281544526052, (float)
.01648134242136727124, (float).0019197129710138724125, (float)
.020593718329137316189, (float).0021944069253638388388, (float)

.02526554024759733224, (float).

0024789582266575679307, (float)

.030515340497540768229, (float).002772195764593450994, (float)

.03635937843018786748, (float)

.04988470247870512344, (float)
.05758843480891694019, (float)

.07492106709292434764, (float)
.08456241284423495936, (float)
.09485964118673840481, (float)
.10581543166444097714, (float)
.11743115975265809315, (float)
.12970694445188609414, (float)
.14264168911376784347, (float)
.15623311732729139895, (float)
.17047780536259859981, (float)
.18537121234486258656, (float)
.20090770903915859819, (float)

.0030730184347025783234, (float)
.042811783890139037259, (float).0033803979910869203823, (float)
.0036933779170256508183, (float)
.0040110687240750233989, (float)
.065931563842274211999, (float) .0043326409680929828545, (float)
.0046573172997568547773, (float)
.0049843645647655386012, (float)
.0053130866051870565663, (float)
.0056428181013844441585, (float)
.0059729195655081658049, (float)
.0063027734490857587172, (float)
.0066317812429018878941, (float)
.0069593614093904229394, (float)
.0072849479805538070639, (float)
.0076079896657190565832, (float)
.0079279493342948491103, (float)

.2170806058817169836, (float) .0082443037630328680306, (float)

.23388218069623990928, (float) .
.25130370638306339718, (float).

.26933547875781873867, (float)

0085565435613076896192, (float)
0088641732094824942641, {float)

.0091667111635607884067, (float)

.2879668446377479654, (float) .0094636899938300652943, {float)

.30718623022088529711, (float)
.32698116976958152079, (float)
.34733833458998250389, (float)
.36824356228880576959, (float)
.38968188628481359983, (float)
.41163756555233745857, (float)
.43409411457634557737, (float)
.45703433350168850951, (float)
.48044033846254297801, (float)
.50429359208123853983, (float)
.52857493412834112307, (float)
.55326461233797152625, (float)
.57834231337383669993, (float)
.60378719394238406082, (float)
.62957791204992176986, (float)
.65569265840056197721, (float)
.68210918793152331682, (float)
.70880485148175331803, (float)
.73575662758907323806, (float)

.0097546565363174114611, (float)
.010039172044056840798, (float)
.010316812330947621682, (float)
.010587167904885197931, (float)
.010849844089337314099, (float)
.011104461134006926537, (float)
.011350654315980596602, (float)
.011588074033043952568, (float)
.011816385890830235763, (float)
.01203527078527956263, (float)
.012244424981611985899, (float)
.012443560190714035263, (float)
.012632403643542078765, (float)
.012810698163877361967, (float)
.012978202239537399286, (float)
.013134690091960152836, (float)
.01327995174393053065, (float)
.013413793085110098513, (float)
.013536035934956213614, (float)
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/'
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/'
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*/
/'
/'
/'
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/'
/'
/'
/'
/'
/'
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*/
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.76294115441017027278, (float) .013646518102571291428, (float)
.79033476175681880523, (float) .013745093443001896632, (float)
.817913503.4074780175, (float).013831631909506428676, (float)
.8456531885186218913, (float).013906019601325461264, (float)

.87352941562769803314, (float).013968158806516938516, (float)
.90151760340188079791, (float) .01401796803945660881, (float)

.92959302395714482093, (float).014055382072649964277, (float)
.95773083523463639678, (float).014080351962553661325, (float)
.98590611358921753738, (float).014092845069160408355 };

/* System generated locals */
int i1, i 2;
double r__1, r_2;

/* Local variables */

static double diff;

static double acum;

static double work{1l7];

static int b

static double x, delta;

static double pacum;

static int jl. j2, jh, jl, kk, ip:
static double fncval;

This quadrature program uses formulae due to T. N. L. Patterson, */
Mathematics of computation, Volume 22, 1968, pages 847-856, as */
modified by F. T. Krogh and W. V. Snyder, ACM Transactions on */
Mathematical Software 17, 4 (December 1991) pp 457-461. It is a */
functional replacement for Algorithm 468, T. N. L. Patterson, */
Communications of the ACM 16, 11 (November 1973) 694-699. */

tEWER Fomal ArgumEnts 22222 2222222222 EER RSS2 X

Input: */

A, B Lower and upper limits of integration, respectively. */

EPSIL Relative accuracy required. When the relative difference of */
two successive formulae does not exceed EPSIL the last formula

computed is taken as the result. */
F A FUNCTION subprogram that evaluates the integrand at a given

abscissa. F is invoked F(X). F MUST BE MENTIONED IN AN */
EXTERNAL STATEMENT IN THE CALLING PROGRAM. */

Output: */

RESULT This array, which should be declared to have at least 8 */
elements, holds the results obtained by the 1, 3, 7, etc. */

point formulae. The number of formulae computed depends on */
EPSIL. */
K RESULT(K) holds the value of the integral to the specified */

relative accuracy. */

NPTS Reports the number of integrand evaluations. */

ICHECK On exit normally ICHECK=0. However if convergence to the */
accuracy requested is not achieved ICHECK=1 on exit. */
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ACUM is the accumulating estimate of the integral. */
DELTA is B - A. */
DIFF is 0.5 * DELTA. */

m'

FL contain subscripts to indicate where to store integrand */
samples in WORK. */

FNCVAL 1is an integrand sample, or a sum of two symmetrically placed */

IpP

Ji,
JH'

integrand samples. */
is a subscript used to index P. */
is a subscript and loop inductor. */

J2 are bounds of the indexes at which integrand samples are */
stored in WORK. */

JL are bounds for the loop that accumulates new function values */
into the integral estimate. */

KH, KL are bounds for indexes at which integrand samples are */

B&

retrieved from WORK in order to begin applying a quadrature */
formula. */

is a loop inductor and subscript. */

is a list of bounds of subscripts into KH and KL. KH is */
indexed by K. The set of indexes from which to retrieve */
integrand samples is given by the set of bounds in KL and KH */
indexed by KX(K-1)+1 to KX(K) inclusively. */

contains the coefficients necessary to the quadrature */
formulae. Their organization is described below in the */
section on DATA statements. */

PACUM is the previous value of ACUM. */

X is the distance of the abscissa from the boundary of the */
region . */
WORK is space in which to store function values to be used in the */

next formula. */

LA A S A Data statements BRRERE RN AN PRSP RN E RN

/* Parameter adjustments */
--result;

/* Function Body */

In the comments below, F(K,I) refers to the function value */
computed for the I’'th node of the K'th formula. The abscissae and

weights are stored in order according to the distance from the */
boundary of the region, not from the center. Since we store */

1 - |abscissa|, the first °node® coefficient for each formula is */
the smallest. */

Corrections, nodes and weights for the 3-point formula. */

Correction for F(1,1). */
Node and weight for F(2,1). */

Corrections, nodes and weights for the 7-point formula. */

Corrections for F(1,1) and F(2,1). */
Nodes and weights for F(3,1-2) */

Corrections, nodes and weights for the 15-point formula. */

Corrections for F(1,1), F(2,1), F(3,1-2). */



/'
/'

/'
/'

/'
/'

/'

/'
/'

/'
/'

/*
*/

/0

/'

/'
/'

/'
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Nodes and weights for F(4,1-4). */
Corrections, nodes and weights for the 31-point formula. */
Corrections for F(1,1), F(2,1), F(3,1-2), F(4,1-4). */
Nodes and weights for F(5,1-8). */
Corrections, nodes and weights for the 63-point formula. */
Corrections for F(1,1}, F(2,1), F{3,1-2), F(4,1-4), F(5,1-8). */
Nodes and weights for F(6,1-16). */
Corrections, nodes and weights for the 127-point formula. */
Corrections for F(3,1), F(4,1-2), F(5,1-3), F(6,1-6). */
Nodes and weights for F(7,1-32). */
Corrections, nodes and weights for the 255-point formula. */
Corrections for F(4,1), F(5,1), F{(6,1-2), F(7,1-4). */
Nodes and weights for F(8,1-64). */
tTERWR Executable statements L 2222222222222 322222222 222 X2 ]
*icheck = 0;
delta = *b - *a;
diff = delta * (float).5;
ip = 1;
jh = 0;
Apply l-point Gauss formula (Midpoint rule). */
r 1= *a + diff;
fncval = (*f) (&r__1);
Don’'t write "0.5*(b+a)" above if the radix of arithmetic isn’t 2.
*npts = 1;
work{0] = fncval;
acum = fncval * delta;
result(l] = acum;
for (*k = 2; *k <= 8; ++(*k)) {
Go on to the next formula. */
pacum = acum;
acum = (float)o0.;
Compute contribution to current estimate due to function */
values used in previous formulae. */
i1 = kx(*k - 1);
for (kk = kx{*k - 2] + 1; kk <= i__1; ++kk) {
i_2 = kh(kk - 1];
for (j = kl{kk - 1]; j <= i__2; ++3) {
acum += (double) (plip - 1] * work([j - 1]):
++ip;
L10: */
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/* L20: */
}
/* Compute contribution from new function values. */
jl = jh + 1;
jh = j1 + j1 - 1;
jl = f1[*k - 2];
j2 = th(*k - 2);
i_1 = jh;
for (j = 31; j <= i__1; ++3) {
x = plip - 1] * 4iff;
r_1=*a+ x;
r_2="'"b-x;
fncval = (*f)(&r__1) + (*f)(&r__2;;
*npts += 2;
acum += (double) (pl[ip] * fncval);
if (31 <= j2) {
work(jl - 1] = fncval;
++31;
}
ip += 2;
/* L30: %/
}

acum = (double) diff * acum + pacum * .5;
result(*k] = acum;
if ((r__1 = result{*k] - result(*k - 1], dabs(r__1)) <= (r_2 = *
epsil * result[*k], dabs(r_2))) {
goto L50;

/* =~S-Z-CeZezZezezaSezez-zesez-
/*

2SS S22 Rl R AR X 2 R R R R NS R R R L 2 PR R RS RS SR RS R R

=-S-2-Z-Z-Z-2-S-Z-Z-Z-Z=S-S-S-Z-Z-Z-Z-=-z-=2- ¥/

* C math library

* function ZEROIN - obtain a function zero within the given range

*

* Input

. double zeroin(ax,bx,f,tol)

. double ax; Root will be seeked for within

* double bx; a range [ax,bx]

* double (*f) (double x); Name of the function whose zero
* will be seeked for

* double tol; Acceptable tolerance for the root
* value.

* May be specified as 0.0 to cause
* the program to find the root as
* accurate as possible

* Qutput

* Zeroin returns an estimate for the root with accuracy

* 4*EPSILON*abs(x) + tol

*

*

Algorithm
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*EEEE

*/

G.Forsythe, M.Malcolm, C.Moler, Computer methods for mathematical
computations. M., Mir, 1980, p.180 of the Russian edition

The function makes use of the bissection procedure combined with
the linear or quadric inverse interpolation.
At every step program operates on three abscissae - a, b, and c.
b - the last and the best approximation to the root
a - the last but one approximation
c - the last but one or even earlier approximation than a that

1) [f(b)]| <= |[f(c)]

2) £(b) and f(c) have opposite signs, i.e. b and ¢ confine

the root

At every step Zeroin selects one of the two new approximations, the
former being obtained by the bissection procedure and the latter
resulting in the interpolation (if a,b, and ¢ are all different
the quadric interpolation is utilized, otherwise the linear one).
If the latter (i.e. obtained by the interpolation) point is
reasonable (i.e. lies within the current interval {b,c) not being
too close to the boundaries) it is accepted. The bissection result
is used in the other case. Therefore, the range of uncertainty is
ensured to be reduced at least by the factor 1.6

P N N R P P N R R N R P N P R N T I N N T P RN E R R R PR P R R PR R R RN R IR R R TR RN PR

#include *math.h*
#include<float.h>

#define EPSILON DBL_EPSILON
double zerofind(ax,bx,f,tol) /* An estimate to the root v/
double ax; /* Left border | of the range */
double bx; /* Right border| the root is seeked*/
double (*f) (double x); /* Function under investigation */
double tol; /* Acceptable tolerance */
(
double a,b,c; /* Abscissae, descr. see above */
double fa; /* fla) */
double fb; /* £(b) */
double fc; /* f£(c) */
a=ax; b=Dbx; fa= (*f)(a); fb = ("f)(b);

c=a; fc = fa;
for(;;) /* Main iteration loop */
{
double prev_step = b-a; /* Distance from the last but one*/
/* to the last approximation */
double tol_act; /* Actual tolerance */
double p; /* Interpolation step is calcu- */
double q; /* lated in the form p/q; divi- */
/* sion operations is delayed */
/* until the last moment */
double new_step; /* Step at this iteration */
if( fabs(fc) < fabs{(fb) )

{ /* Swap data for b to be the */
a=b; b=c c¢=a; /* best approximation */
fa=fb; fb=fc; fc=fa;

}

tol_act = 2*EPSILON*fabs(b) + tol/2;
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new_step = (c-b)/2;

if( fabs(new_step) <= tol_act || fb == (double)0 }

return b; /* Acceptable approx. is found */
/* Decide if the interpolation can be tried ./
if( fabs(prev_step) >= tol_act /* 1f prev_step was large enough®/
&& fabs(fa) > fabs(fb) ) /* and was in true direction, */
{ /* Interpolatiom may be tried */
register double tl,cb,t2;
¢cb = ¢-b;
if( a==c ) /* 1f we have only two distinct */
{ /* points linear interpolation */
tl = fb/fa; /* can only be applied */
p = cb*tl;
q=1.0-1¢tl;
}
else /* Quadric inverse interpolation*/
{
q = fa/fc; tl = fb/fc; t2 = fb/fa;
p=1t2* (cb*q*(q-tl) - (b-a)*(tl-1.0) );
q = (q-1.0) * (t1-1.0) * (t2-1.0):
}
if( p>(double)0 ) /* p was calculated with the op-*/
q=-q; /* posite sign; make p positive */
else /* and assign possible minus to */
P = -pi /" q "/
if( p < (0.75*cb*q-fabs(tol_act*q)/2) /* If b+p/q falls in (b,c]*/
&& p < fabs(prev_step'q/2) ) /* and isn’'t too large */
new_step = p/q; /* it is accepted */
/* 1f p/q is too large then the */
/* bissection procedure can */
/* reduce (b,c] range to more */
/* extent */
)
if( fabs(new_step) < tol_act } /* Adjust the step to be not less*/
if( new_step > (double)0 ) /* than tolerance */
new_step = tol_act;
else
new_step = -tol_act;
a=b; fa=fb; /* Save the previous approx. t/
b += new_step; fb = (*f)(b); /* Do step to a new approxim. */
if( (fb > 0 && fc > 0) || (fb < 0 && fc < 0) )
{ /* Adjust c for it to have a sign*/
c=a; fc-=fa; /* opposite to that of b */

}
}

A.3 sim-data.c

/t ________________________________________________________________ t’/
/* N,
/* Simulate Data From a Marginalized */

/* Logistic-Normal Model */



/* ( Clustered Binary (Binomial) Data )

/.

/* J. Mills

/* 17/01/00

/'

/e cccemccccececmemmmemcc e cm——— e

#include °chanmatstruct.h*
tinclude °*chanmatfuns.h®

#define cfree free

#define HALFSTEP 1
#define PI 3.1415927
#define RIDGE le-1
#define NSAFE 15

extern double matmaxabs{), antilogit(), logit();
extern void convol();

extern MATRIX *matantilogit(), *matxdiagasvec(), *luinv{();

void sim_data{ S_id, S_y, S_n, S_Pr, S_x, S_beta, S_z, S_ints,

S_alpha, S_eta)

double *s_id, *S_y, *S_n, *S_Pr, *S_x, *S_beta, *S_z, *S_alpha, *S_eta;

integer *S_ints;
{
HATRIX Q'Y' t'N' "x' Q'z' thta' "Mu' "pr;
MATRIX *idin, *yin, *nin, *prin, *xin, *zin, *etain;
MATRIX ‘*beta, *alpha, *gamma;
MATRIX *mu, *eta, *H, *Hi, *U, *Ui;
MATRIX *Di, 'E;
MATRIX “*delta;
MATRIX ‘*beta_0, *mu_0, *lp;
double *z, *w;
double dmax, tolerance, lambda;
double y_i, n_i;
double eta_i, gi, ps, pm, p_qs;
double log_like, logPi, Pi_s, logPi_s, logPi_indep;
double mu_i, detadb, detads, d11, d12, d422;
double HLF_k, HLF_eps;

double dEta_dTheta_j, dEta_dTheta_k, d2Eta_dTheta_jk,

int ¢, i, j. k, nobs, nclust, p, q, r, one, count, s, Ni;
int maxiter, flag;

int flagg:;

/*FILE *wfile;*/

one = 1;

p = *(S_ints+0);

q = *(S_ints+l1);

nobs = *(S_ints+2);

nclust = *(S_ints+3);

flagg = *(S_ints+4);

from_S( S_beta, &p. &one, beta );
make_permanent( beta );

from_S( S_alpha, &g, &one, alpha );
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make_permanent( alpha );

from_S( S_id, &nobs, &one, idin };
from_S( S_n, &nobs, &one, nin };
from_S( S_Pr, &nobs, &one, prin });
from_S( S_x, &nobs, &p, xin );
from_S( S_z, &nobs, &q, zin );
from_S({ S_eta, &nobs, &one, etain );

N = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) ):
X = (MATRIX **)calloc{ nclust, (unsigned)sizeof( struct matrix) };
Z = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) );

Eta = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) };
Mu = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) );

Pr = (MATRIX **)calloc( nclust, (unsigned)sizeof( struct matrix) );

make_permanent( idin );

split( nin, idin, N );
split( xin, idin, X );
split( zin, idin, 2 );
split( etain, idin, Eta );
split{ prin, idin, Pr);

destroy_matrix( idin );
for( c=0; c<nclust; c++ ){
make_permanent( N(c] }:
make_permanent ( X[c] );
make_permanent( Z([c)] );
make_permanent( Etafc] ):
make_permanent( Pr(c] };
Mu(c] = create_matrix( Pr{c]->nrows, 1, EPHEMERAL );
}
HLF_k=1000.;
HLF _eps=0.;
for( c=0; c<nclust; c++ ){
Ni = Pr(c]->nrows;
gamma = matexp( matmult( Z[c], alpha ) );
make_permanent{ gamma );
lp = matmult( X(c]}, beta ):
for( i=0; i<Ni; i++ ) MEL{ Mufc], i, 0 ) = antilogit( MEL(1lp,i,0) );
destroy_matrix( 1p ):

/* update deconvolution calcs */

for( i=0; i<Ni; i++ ){
eta_i = MEL( Eta(c], i, 0 );
gi = MEL( gamma, i, 0 );
mu_i = MEL( Mu{c], i, 0 );
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flag=0;

convol( &eta_i, mu_i, gi, HLF_k, HLF_eps, &flag );
if( flag==0 ){

MEL( Etalc], i, 0 ) = eta_i;

ps= MEL(Pr(c],i,0);

MEL( Prc), i, 0) = antilogit(eta_i+(ps * gi));
Jelse(

*(S_ints + 4) = flag;
}

yriovy
eta_i = MEL( Etalc], i, 0 );
gi = MEL( gamma, i, 0 );
Y*c*/

destroy_matrix( gamma );

to_S( beta, S_beta );
to_S( alpha, S_alpha );

count = 0;
for(c=0;c<nclust;c++){
Ni = Mu(c]->nrows;
for(i=0;i<Ni;i++)(
*{S_eta + count ) = MEL( Etalc}, i, 0 );
*(S_Pr + count ) = MEL(Pr(c],i,0);
count++;

}

}/* end of routine */

A4 sim-data.q

sim.data<-function(mix, corr,ni,nclust)

{

# Simulation Study for Thesis - J.E. Mills

# Simulate data from a Random Intercepts logistic-normal model
# or variants there of.

# Initializations:
beta<-¢c(-2.,3.,1.)
x<-gen.X.matrix(1,1,ni,nclust)
sigma<-1.
alpha<-log(sigma)
p<-length(beta)
id<-rep(1l:nclust,rep(ni,nclust))
if( ncol(x)!=p ){

stop("x and beta do not conform!®) }

nobs <- nclust*ni
Y <-length{nobs)
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n <-rep(l,length(y))
q <- length(alpha)
2z <-rep(l,length(y))
if(g>1) stop("cannot deal with multidimensional alpha yet®)
if( is.null(ncol(z)) ){
if{ g>1) stop(®z non-matrix but len(alpha)>l !®)
}else({
if( ncol(z)'!=q ) stop(*z and alpha do not conform!")

)
if( is.null( dimnames(x)([2]] ) }{

xnames<-paste( rep(°beta",p), as.character(c(l:p)) )
}else(

xnames<-dimnames (x) [ [2]]

}
if( is.null{ dimnames(z)({([(2]] ) ){

znames<-paste( rep(“alpha",q), as.character{c(l:q)) )
}else(

znames<-dimnames (z) ((2]]
}
flag<-0

# Generate random effects:

# N(0,1):
Pr<-rep(rnorm{(nclust),rep(ni,nclust))

# (1-E)N(0,1)+EN(0,9):

if (mix==1){ #take E = .05

con<-3

# Randomly select individuals to be contaminated -

ind<-round(sort (runif(3,1,nclust)))

for( i in l:con){
contam<-rnorm(l,mean=0,sd=9)
first<-(ind(i}-1}*ni + 1
last<-ind{i])*ni
for (k in first:last) {
Pr(k]<-contam }

}
}
# Call C Program:
$omememmm——————em
int.parms<-c(p,q,nobs,nclust, flag)
eta <- as.vector{ x\%*\%beta)
L

2 <- .C(*sim_data",
as.double(id),
as.double(y),
as.double(n),
Pr=as.double(Pr),
as.double(x),
beta = as.double(beta),
as.double(z),
int.parms=as.integer(int.parms),
alpha = as.double(alpha),
eta = as.double(eta))

# On return from °C* Pr contains P(Yij=1]|zi,Xij)



beta<-as.vector(z[["beta"]])

Pr<-as.vector(z{(*"Pr"]])

y<-rbinom(length(Pr),1,Pr)

names (beta) <-xnames

alpha<-as.vector(z[[*alpha‘]])}

names (alpha) <-znames

int.parms<-as.vector(z{("int.parms®]})

flag<-int.parms (5]

if(flag!=0) stop("Simulation did not complete successfully®)

$
out <- list( #title = "Simulated Data from a Logistic-Normal Model",
#beta = beta,
#alpha = alpha,
Y=Y,
id=iq,
X=X,

eta = z([["eta"]],
Pr = z[{"Pr"]],
flag=flag)

#class(out) <- "sim.data"
out

}

A.S gen-X-matrix.q

gen.X.matrix<-function( nc, nd, ni, nclust)
{
# Simulation of X design matrix for use with Logistic-Normal Model - J.Mills
# nclust = number of clusters
nobs<-nclust*ni
x<-matrix(c(rep(l,nobs),

L Time-independent
rep(round(runif (nclust,min=1,max=5))/5,rep(ni,nclust)),
# Time-dependent

runif (l*nobs, min=0, max=1)),nrow=nobs)
#The above makes use of S-plus vector capabilities
x
}

A.6 rob-like.q

rob.like<-function( id, y, x, beta, betain, z, alpha,
epsilon, lwflag, prflag, cflag, print)

robust maximum likelihood for logistic-normal model -J.Mills
random intercept std dev design

LK K B I Fea

betain is used to calculate prediction weights!

n<-rep( 1, length(y) )

nclust<-length( table( id ) )
# for storing individual likelihoods:

indlike<-rep(~10,nclust)

p <~ length(beta)
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if( ncol(x)!=p ){
stop(*x and beta do not conform!") }
nobs <- length(y)
g <- length(alpha)
if (epsilon!=.001 & epsilon!= .002 & epsilon!= .005 &
epsilont= .01 & epsilon!= .02 & epsilon!= .05 &
epsilon!= .1 & epsilon!= 0.) {
stop("epsilon must be one of .001,.002,.005,.01,.02,.05 or .1°%})}

if( is.null(ncol(z)}) ){

if( g>1) stop(®z non-matrix but len(alpha)>l !")
lelse({

if( ncol(z)'!'=q ) stop(®z and alpha do not conform!*)

if( is.null( dimnames(x)([(2]}] ) ){

Xnames<-paste( rep(°"beta®,p), as.character(c(l:p)) )
Jelse(

xnames<-dimnames (x) ([2] ]

if( is.null( dimnames(z)[[2]] )} ){

Znames<-paste( rep("alpha®,q), as.character(c(l:q)) )
Jelse{

znames<-dimnames(z) [[2]]
}

flag<-0

logl <~ 0.0
int.parms <- c( p, q, nobs, nclust)
eta <- as.vector( x%*%beta)

2 <- .C("rob_like",
as.double(id),
as.double(y),
as.double(x),
beta = as.double(beta),
betainit = as.double(betain),
as.double(2),
alpha = as.double(alpha),
epsilon = as.double(epsilon),
lw = as.integer(lwflag),
pr = as.integer(prflag),
eta = as.double(eta),
as.integer(int.parms),
logL = as.double(loglL),
indlike = as.double(indlike),
flag=as.integer(flag),
c=as.double(cflag),
print=as.integer(print) )

beta<-as.vector(z[[*beta*]])
# names (beta) <-xnames
alpha<-as.vector(z{(“alpha®"]])
$ names (alpha) <-znames
#

indlike<-as.vector(z([*indlike*}])
out <- list( title = °*ML Estimation for Logistic-Normal Models*,
dispersion = *logistic-normal random effects®,
beta = beta,
alpha = alpha,
epsilon = epsilon,
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L eta = z[["eta"]],
logL = z[["logL"]],
indlike=indlike,
tol=z{["tol"]],
iter=z{("iter"}],

. flag=z[["flag"]] )

#class(out) <- "rob.like”
$out
}
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