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ABSTRACT

This thesis investigates the current inventory model used in the
Canadian Armed Forces (Army) to field spare parts to various self-
cantained organization (units) to sustain operational equipments for
fixed cycle periods. Since the current model determines inventory
levels for each spare j, j=1,..,J up to a specified fixed availability
service measure which is the same for each item, we propose ard analyze
two distinct models in which the dbjective sought is to determine the
optimal mmber of spares Sy, j=1,..,J (considered consumables or throw-
away modules subject to Poisson demands) required at the begiming of
the pericd in order to optimize system performance by either 1)
maximizing system availability Ag and/or minimizing total expected
System backorders BO, constrained to a specified budget. Both models
result in optimized stock levels {sy, 3=1,..,3} that are appraximately
the same. Various solution methods for solving this non-linear integer
optimization type of problem such as dynamic progranming, marginal and
Lagrange analysis are investigated and carpare both models vs the
Ccurrent military model; simple heuristics are developed to improve near
optimal solutions. We also analyze the link between both performance
measures and develop a more appropriate measure of System performance:
the expected mumber (and proporticn) of equipments still operaticnal at
the end of the period or Ajg, with and without part failure
deperdencies. Variants and extensions to multiple location and
indentured types of systems are also discussed. We include randomly
generated mumerical test problems, whose results significantly
underscore the usefulness of the proposed procedures across all
measures of system performance Ag, BO ard AAg.



(HAPTER 1: INTRODUCTTION
1.1 GENERAL.

In the past, several traditional types of inventory systems have
been studied and account for hundreds of papers ard articles that have
been published in the literature. Varicus policies were analyzed such
as contimious and periodic review models, with and without reorder
point levels, deterministic and variable delivery lead time, constant
and stochastic demands, backorders vs lost sales, consumables vs
repairables, .. A class of inventory systems that have been the focus of
further study in the past 20 years are those associated with various
carbinations of multiple item, multiple indentures, multiple location
and multi-echelon types of inventory systems for both consumable and
repairable items.

In this thesis, we restrict our attention to the current model
used by the Canadian Armed Forces (Land element) to field spares to
self-contained units and we investigate and campare two alternative
multiple item inventory models, each subjected to a ane-pericd,
statianary Poisson failure process for consumable or throw-away
repairable items.

It is motivated by the case where a set of identical operating
equipments or wachines, subject to random and independent failures,
need to be supported by an inventory of spare assemblies or parts that
will maximize or minimize a defined system performance measure; several
important variants of the basic models are investigated.

In particular, the dbjective is to determine how many of each type
of assenblies or items to purchase and stock in inventory, or the
order-up-to quantity vector (S} = {Sj, j=1,2,..,J} at the begimning of
each cycle period either to 1) maximize system availability Ag and/or
2) minimize total expected system backorders E(BO) which will be
denoted BO, ard subject to a fixed single investment budgetary
constraint consisting of purchasing costs. These two models will be
formulated in chapter 2 and be known as model P1 and P2 respectively.



1.2 CRGANIZATION

The remainder of chapterlw:‘_lldescrjbet:hewrrmtnodelusedby
the Canadian Armed Forces (Land element), and the System performance
measures used to determine the mmber of spares {Sj, j=1,..,J} in order
to keep a set of M identical equipments operating during fixed cycle
pericds.

In chapter 2, the necessary notation, terminology ard definitions
used throughout the thesis are introduced and includes the description,
formulation and assumptions for the two different single location,
multiple item inventory models P1 and P2 for consumables Or repairable
(throw-away type), the basic building block from which more camplex
extensions can be analyzed in later chapters. It also discusses various
solution methods and model variants that yield the same solutions but
lead to different managerial interpretation. A literature review is
included.

Chapters 3 to 6 describe the various methods and important factors
used to cbtain the near or optimal solution vector {Sj, j=1,..,J3} for
each model P1 and P2 and their related variants, so that they may be
carpared with the current military model and considered for eventual
implementation.

In chapter 3, dynamic programming methodology is described to
solve for the optimal solution to the prablem; undominated solution
vectors {Sj} can be generated for various budget values and are
guaranteed to be optimal only if all possible budget values are
erumerated at every stage; associated seriocus camputational
difficulties are discussed which lead to a DP approximation methodology
with increments (or discretized values) at every stage and a lower
bound on the total cost solution Cg is derived. Equivalent FULL and GAP
network structures illustrating both models are presented. The
requirement to develop faster and more efficient methods is also
discussed.

Chapter 4 analyzes the marginal analysis procedure used to cbtain
near or optimal solutions for both models Pl and P2, based on the
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Poissan distribution, by generating successive undominated allocatians
(but not necessarily all of them) until the maximum available budget
has been reached; error bourds on the system availability performance
measure Ag for model P1 and for expected System backorders BO of model
P2aswellasermrbamdsmt:hetot:alcostssolutimscsaze
developed. We shall extend the analysis by deriving a simple heuristic,
which will be called the "top-up" marginal analysis procedure, that
can significantly improve the performance measures, particularly for
low budget values, and reduce the total cost soluticn Cg to within the
least expensive of all J items or an error less than the min {cj,
j=1,..,d3}.

Switching the cbjective function with the constraint in each of
the model results in two variants of the models when minimizing costs,
called models Pla and P2a, which give the same sequence of undominated
solution vectors {Sj, j=1,..,J} but lead to a different managerial
interpretation.

Chapter S derives Lagrange multipliers for each model and provides
accurate and useful lower and upper bourds to help us calculate (as
opposed to guessing) the first estimated value of the multiplier, from
which the efficient bisection search technique can then be used to
cbtain the near or optimal solution to the problem even faster than the
marginal analysis procedure; the Lagrange multipliers for model
variants Pla and P2a are also included.

Chapter 6 uses simulation to analyze the end of cycle effect and
its impact on system availability Ag due to part failure dependencies;
an equivalent system availability measure EAg is defined ard is
campared to an alternate and more appropriate measure of system
performance AAg = average proportion of equipments still operaticnal at
the end of the cycle, byvaxyingthemmberofcperatimalequiprents
available at a location. Theoretical derivations of AAg ard practical
results are conpared with and without part failure deperdencies.

Chapters 7 discusses variocus extensions to models P1 and P2. An
analysis of a system with multiple indenture levels of assarblies and
their companents, a derivation of the conditions urder which it
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becomes worthwhile to disaggregate the Poisson process for an assembly
into smaller anes (for its components) once additicnal information an
their fajlure rates and costs becare more accurate, and how a marginal
analysis technique can be used for our models to solve for the near or
optimal solutiaon vector {sy}, even though the sum of the costs of
individual camponents may be more than the cost of the whole assembly
while still providing higher system availability Ag.

It also provides a further extension from the cne locaticn System
to the multiple location type of systems by formulating two new
models: model (Plb) to maximize Ag and model (P2b) to minimize BO;
specifically, the camputational difficulties associated with the DP
methodology to allocate the total available budget B among the variocus
locatiaons i, i=1,..,I are examined; an I=3 locaticn and J=5 item
example is shown to be equivalent to a problem of I=1 x J=15 items in
whidlthesanepaxaxmtersoftheSitarsareapperﬁedBtinesatthe
same location. Marginal amalysis and Lagrange multiplier techniques can
then be used to cbtain a near or optimal solution much faster than DP,
and both methods provide a fast and canvenient procedure to optimally
determine and allocate budget levels to each location.

Network analysis, presented earlier in chapter 3, is also shown to
be applicable to the multiple location models; the FULL network
structure is equivalent to the optimal DP methodology with emmeration
of all possible budget values at each stage. The GAP network, however,
drastically reduces network size and we show that an error bound on Cg
is exactly the same as the single location model if items with equal
Costs cjy are listed adjacently, thus reducing the error an Cg by a
factor of I (mumber of locations). The cancept of "reverse" marginal
analysis is used to demonstrate how to optimally re-distribute stocked
items from a central location (warehouse or base) among various
operatiaonal locations.

Chapter 8 provides a set of 40 rardaomly (correlated) generated,
and realistic larger scale and practical prablems for the single
location case, covering an appropriate range of values for the mmber
of itatsJandthemmberofequiprmtthostudytheeffectscnthe
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ave:agepmportimofequipnentsoperationalattheendofthecycleor
AAg, an important altermate and more appropriate measure of system

performance. We also develop a sinple heuristic to estimate AAg within
+ 1% when caompared to simulated values for Ahg while taking into
account part failure deperdencies.

Concluding remarks are in chapter 9 and include recammendations
for possible inplementation and further areas of study for similar
organizations.

1.3 CQURRENT MILITARY MODEL

1.3.1 General. When the Canadian Armed Forces (Land element) decide to
purchase a fleet of M identical vehicles or weapan systems, a series of
procedures are set in motion which ultimately lead to the selecticn of
a contractor and the signature of a cantract to acquire these capital
assets, which will eventually be distributed to several self-contained
field units, along with the appropriate technical documentaticn support
for operating and maintaining the equipments with replacement, repair
and overhaul of spares.

A portion of the total budget, under the responsibility of a
project manager, is allocated to the purchase and distribution of
selected spare assenblies and related components to all the units and
bases receiving the equipments. Since each unit has its own role and
organizaticn, each one may receive a different rumber of equipments,
thus requiring different levels of spares to support the equipments.

All first line units are required to hold in inventory a minimum
of 15 days supply of spares as defined in Canadian Forces
Administration Orders, in order to camplete their assigned mission,
which may vary depending an whether it is an infantry, armoured,
artillery unit, or engineering squadron, ... Pericdically, some units
aredeployedforvazimspen‘.odsotherthanlSdays, which can be up to
6 months or longer when they are assigned as part of a United Nations
force, or when they deploy for simulated training operations for
various lengths of time and budgets for fuel, spares, rations,.. nmust



be plammed and budgeted accordingly.

Secand line field units such as service batallians must also carry
a minimm of 15 days spares to supporttheirmmequipxentsandwdays
Spares to support first line field units when they deploy together,
which is not always the case; all first and second line spares are
calculated based on a modified Poisson formila up to 99.8% confidence
level for each item, as described further in the next section. Bases
provide further support by holding various amounts of spares based on 4
months mean demands and depot stocks based an 23 months mean demands
and constitute "pipeline" stocks, used for replenishment during normal
peacetime operations. Overhaul quantity applicable for same types of
equipments anly, may also be calculated based an 10% of the total
mmber of equipments. Wartime spares are based on the AQ system as well
arnd are handled by simply multiplying Poisson mean failure demards in
peacetime by a factor to be determined as the situation may dictate.

Imrediately following the signature of the mjor contract, a
procedure known as the initial provisioning sequence is initiated,
whereby spare assemblies and/or components are earmarked for eventual
purchase, and distribution to all the first and secard line field
units, bases and depots. The total amount of money required for spares
for all first line units (and other pipeline stocks) depends on the
mmber of equipments each ane holds, individual item costs ard failure
rates, ard is not known until the calculations for each spare and each
unit is executed and then tabulated during the initial provisioning.

The mmber of equipments each unit will receive is known (fixed),
and costs and failure rates are estimated based cn prior experience
from similar equipments, preliminary cost and test data provided by the
marufacturer or independent reliability tests performed on prototypes,
and the procedure to determine stock levels for all spares j, j=1,..,J
is based on the "AQ" or assessed quantity system and the related
scaling model, both of which will be descrided in more details in the
next section.

Once the calculations of the stock level S for item j have been
done based an the scaling model, the same type of calculations are then



executed for all other spares j=1,..J for that unit and the same
process is repeated for each of the remaining units (including pipeline
stocks such as second line field units, base and depot stocks.

The total costs of all spares Cg to be distributed at all first
line units (and other pipeline stocks) are then tabulated; if there is
not enough budget available to buy all the spares, the scaling
quantities or Sy values j=1,..,J are reduced either proporticnately,
most expensive items first, pipeline stocks first, or any other
selection method or combination devised by the project manager or his
representative, a process that is not standardized and the cansequences
of which remain unknown.

Once the quantities have been finalized and eventually meet the
budget requirements, all spares are purchased and distributed to all
the appropriate locations, along with a scaling document listing all
applicable spare items within the equipment. The published document
includes the AQ quantity assigned for each item and the same standard
lock-up tables of the scaling quantities S for fixed time equivalent
usage period of U=15 and U=30 days for various values of AQ (fram 1 to
100 in increments of 5) and for various M values (from 5 to 120, also
in increments of 5). The inventory level or Sy values can be found at
the intersection of any conbination of the AQ and M values applicable
to the unit.

Since the camputer program to determine stock levels for all
first and secand line field units, bases and depots processes one item
at a time, irrespective of its cost, there is no mechanism set in place
to control the total costs of all spares and, as a result, require
adhoc procedures to lower stock levels when the total budget is
exceeded. Furthermore, there is no aggregate system performance against
which we can measure the effectiveness of the calculaticn of spares for
first line units.

Therefore, the dbjective will be two-fold:

1. to present alternative models to calculate spare levels for all

first line units during the initial provisioning phase to
ensure a fixed available budget is not exceeded and;



2. to enable each first line unit to optimally calculate
appropriate system performance measure quickly and efficiently
for any specified cycle pericd.

Note that the thesis does not analyze the effect of pipeline stocks, as
they are currently not used as a measure of system performance and
first line units are required to hold at least 15 days worth of spares,
without the possible impact of such pipeline stocks. Furthermore, that
requirement becomes evident when a first line unit deploys and canducts
similated training exercises, often by themselves, and are without the
benefit of periodic replenishment during the period, which may also
vary in length other than 15 days.

We now describe the AQ system and the related military scaling

model to achieve the 99.8% availability measure for each item, discuss
its relevancy and appropriate system performance measures.

1.3.2 The AQ system. The AQ system was originally documented by

[Gibsan 1976) and intended to calculate all the necessary individual
scaled quantities S5, j=1,..,J for every first and secand line units,
bases and depot stocks and determine the total costs required to
support the equipments; it was also designed to provide standard lock-
up tables published in documents from which individual units can
determine the scaled quantity of each spare 8§ it should hold in stock
during a specified (fixed) period of either 15 or 30 days, and based on
the mmber of equipments it will receive.

The AQ system assigns for each earmarked spare, a required average
quantity to support M=100 equipments operating for U=l year's usage at
mid-life; it assumes an exponential distribution for the mean time
between failures or MIBF of all items, and cansiders each item equally
vital to the operation of the equipment, whether it is an engine or a
carpanent, and whether that companent may be an "expendable" type of
item such as a nut, bolt or screw. The Provisional Parts Breakdown or
PPB sequence of parts provided by the manufacturer may be used (but is
often unreliable) in such cases to ammotate indenture levels to parts
that relate them to their next higher assembly, in a similar mammer



than the Bill of Material is used to make up a Material Requirement
Plamming or MRP.

As a result of the assumption of exponential failure times, each
AQ is a Poisson process with mean parameter based on M=100 equipments,
and U=1 year's usage; for exanple an item j whose estimated failure
rate is 73 = 1 failure/20,000 kilareters (or canversely, an MIBF; =
20,000 kms), which is required to operate for U=10, 000 km/year will
yield an AQ = Mxilx7 = 100 x 10,000 km x 1/20,000 = 50, and becomes the
Poissan mean parameter Gj for that part. The AQ system is thus a
System that assigns a mean Poissan parameter for M=100 equipments. Fram
this AQ value, the scaling quantity S is obtained by finding the mmber
of spares S required to achieve an "availability" of at least .998 or
99.8%, irrespective of its cost, and using the modified Poisson model
described below:

A(S) = >: &* exp(-6x) + 2 (M-1)%-S axg@( 5x) (1.1)
x=0 x! x=S+1 M

where § = AD xM
100 x 24

For example, if the AQ value for an item is 50 (which is for 100
equipments and U=1 year's expected usage), a first line (U=15 days or 1
year/24) unit having M=36 equipments will result in a mean 6 = (50 x
36) / (100 x 24) = 0.75; then the required scaled quantity S is
camputed from equation (1.1) above until its availability exceeds 99.8%
or S = 2 in this case.

1.3.3 Coments. We first note that the model optimizes an availability
measure set arbitrarily high at 99.8%, is based for an individual item
whose inportance to the successful operation of the equipment is the
same as the next, and does not take into account its cost. As
ariginally documented by [Gibson 1976), the availability measure was
set very high so that the probability of any equipment being
unoperaticnal due to a lack of spares, cansidering that there may be
several items in series, would be reascnable, but does not include
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further analysis. The model is equivalent to equalizing service levels
across all items regardless of their costs; thus, it is possible to
achieve much higher system availability (depending on how it is
measured) for the same budget.

As to the model itself, the first summation in the above equation
is the straight cumulative Poisson and the secand summation is the
probability that the (S+1)st failure does not occur on the k th
equipment which is (M-1) /M nor that the (S+2)nd failure occur on the k
th equipment which is ((M-1)/M)2 and so an; thus the modified Poisson
model is the probability that the k th equipment does not fail during
the period due to a lack of spares.

[Vincent 1982] has later published a paper camenting on the
scaling model by Gibsan; he first points out the error in the secand
summation by replacing the term ((M-1)/M)X~S in equation (1.1) above
with another expression for successive failures exceeding S, which take
into account the decrease in the mmber of operational equipments, and
is given by (M-1)/M for the (S+l)st failure, (M-1)/M x (M-2) / (M-1) for
the (S+2)nd failure, and so on... In general, if there are x > §
failures, the mmber of ways the x-S failures do not affect the k th
equipment is (M_1)C(x-g) and the total mmber of ways they can occur is
MC(x-s) 7 therefore the probability that the x-S failures cause
equipments to be DOWN (due to lack of spares) other than on the k th
equipment will be M-1)C(x-8) * MC(X-S)' which reduces to (M+S-x/M) and
is valid only until the (M+S)th failure since at this failure, the k th
equipment will definitely be DOWN due to lack of spares. The second
summation term in equation (1.1) above should thus be revised ard the
model becomes as follows:

M+S-1
A(S) = E K exp(-6x) + T (M+ x) bxm(-éxl (1.2)
x=0 x! X=S+1

The author correctly points out that this correction factor makes
little difference at such a high level of assurance of 99.8%. More
importantly, he questions the usefulness of the modified Poisson model
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in its current form and suggests dropping the secand summation term in
either (1.1) or (1.2) since the performance measure is related to the
prabability of a specific equipment, say the k th equipment failing
before the end of the period due to a lack of spares, which is not
meaningful to unit cammanders and urmecessarily provides higher S
values, as campared to the straight cumulative Poisson given by the
first summation in either equation.

A more useful expression for the probability of a subset of the M
equipments not being in a failed state at the erd of the period due to
a lack of spares has also been included but the expression derived
assures there is only ane type of spare. We will extend the analysis
about this important measure of performance and discuss it later in
chapter 6.

More recently, (Hebert 1995] has pointed out that for parameter
values of interest (AQ and M), a specified 99.8% availability level
used to calculate S values would yield corresparding cunulative Poisson
availability values ranging appraximately from 86% to 99%. For
example, if 6 = 5 and M = 10, then using equation (1.1) to a .998
availability yields S = 11, and would result in an availability of .994
or 99.4% if the cumulative Poisson is used; but for higher reliability
parts, such as 6 = .75 and M = 36, the modified Poisson up to .998
availability yields S = 2 and with S = 2 correspards to a cumulative
Poisson availability of .959 or 95.9%.

In his document, Hebert also provides a comparative analysis with
another model [Shapelavey and Mickel 1989) to calculate spares required
at the unit level, for possible various usage periods and easy
implementation by units on microcarputers. The model uses an
appraximation to the Poisson, however, and the performance measure used
remains at the individual item level, and therefore will not be pursued
any further.

1.3.4 Applicability of the model. Today, the current model still uses
the original modified Poisson model as given by equation (1.1) to
determine all item stockage levels for all first line wunits in the




12

Canadian Armed Forces (Land element). Since the performance measure
used is calculated for individual items, system performance and total
costs are unknown at the time of procurement until all calculations
have been done, creating additional problems if the budget has been
exceeded. Furthermore, procedures and modeling at unit level have not
yet been devised to link all items together and provide for meaningful
models that can be implemented for various usage periods and budgeted
or costed accordingly. Furthermore, the level of system performance
measures that can be campared with other models is very restricted,
unless the second summation is dropped, as described earlier.

We intend to develop and demonstrate the usefulness of other such
models which could also be widely applicable to any similar
organization that operates a set of identical equipments and do not use
an aggregate performance measure. For example, mumnicipalities that
operate a fleet of buses, airlines that fly regional jets,
mamufacturers with mumerically controlled machines; we shall
demonstrate that it is possible to achieve significantly higher system
availability, higher average mmber (and proportion) of equipments
Operational at the end of the period, and lower total expected system
backorders for amny specified available budget level, when compared to
the current military model, which we will refert:oast:heequalAj
model .

1.4 MEASURES OF SYSTEM PERFORMANCE

In particular, the dbjective is to determine how many of each type
of assemblies or items to purchase or the order-up-to quantity vector
{s} = {Sj, j=1,2,..,J} at the beginning of each cycle pericd either to
1) maximize system availability Ag and/or 2) minimize total expected
System backorders E(BO) which will be denoted BO, and subject to a
fixed single investment budgetary constraint consisting of purchasing
costs.

The models cantlmsbecmsideredatrade-offbetwempmchct
operaticnal requirements and the total purchasing costs. The thesis
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will provide a comprehensive analysis of solution methods to optimally
(or near optimally) solve this problem, point cut the computaticnal
difficulties associated with each ane as well as provide appropriate
error bourds for near optimal solution methods.

Maximizing system availability Ag links all items together through
the multiplication of individual item availabilities Ai's, j=1,..,J and
provides a convenient and practical performance measure for managers to
optimally allocate a limited budget during a fixed time pericd among
various assemblies (or to components of an assembly) so as to maxdmize
the probability of not rumming out of any cne of them or the
prabability that all equipments will not be "down" due to a lack of any
spare. It is equivalent to corpleting the mission with all its
equiprents still functicnal at the end of the period, assuming mission
reliability is anly related to spares availability.

Maximizing the expected mmber (and proportion) of equipments
operatianal at the end of the period AAg would be another valid and
more appropriate measure of system performance than Ag; as we shall
demonstrate, however, its distribution is camplex and mathematically
untractable for even moderate carbination values for the mumber of
items J and the total mumber of equipments M that typical
organizaticnal units have ( 10s J s 50 and 1 < M < 20), except for the
special case M=1 (and regardless of J), where an exact value can be
abtained. Given a stock level vector {SJ, j=1,..,J}, we can use
simulation methodology to cbtain accurate values of this important
System performance measure, and will be treated in chapter 6.

As we have already pointed ocut, several different organizatians
such as in the military, industrial or service sectors are contimually
faced with that type of decision cn a seasonal, quarterly or amrmual
basis; budget allocations for spares of identical equipments (vehicles,
airplanes, buses, equipment machinery,..) from cne pericd to the next
may either substantially decrease while the same mmber of equipments
are kept cperational, or increase significantly due to new capital
acquisitions programs, or widely fluctuate due to the mumber of
replacements or overhauls of older equipments.
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In the Canadian Armed Forces (Land element), the importance of
providing solution methods that link items together with an aggregate
performance measure and are quick, easily inrplemented (specially on
microcamputers, see [DesRochers 1984], [Shepelavey and Mickel 1989],
(Hebert 1995]) and interpreted correctly at individual locations or in
multiple locations types of situations where transshipments may not be
possible or allowed, cammot be overemphasized. However, true optimal
solutiaons can still be elusive for this type of nan-linear integer
optimization prablem as we shall soon demonstrate, and the need to
develop, calculate and conpare error bounds for near optimal solutions
will form an important part of this thesis.

Similarly, minimizing the total expected System backorders BO
links all items together through the sum of individual backorders for
each type of asserbly BOy's, j=1,..,J and provides another convenient
ard practical performance measure to optimally allocate a limited
budget during a fixed time period among several different types of
assemblies. The total expected system backorders measures the average
rumber of stockouts expected during the period, whether they are due to
a starter or a radiator is irrelevant; for exanple, if on average, we
expect to run aut of 1.2 starters and 1.8 radiators during the pericd,
then the total expected BO = 3 (an average) during the period, which
also means that if I had M=10 equipments at the beginning of the
pericd, I can expect to have 7 equipments still operaticnal at the ernd
of the periocd and 3 equipments in a failed state due to lack of spares
(either starters or radiators). It also provides an altemate
performance measure whose optimal (or near optimal) stockage level
solution vector {Sj, j=1,..,J} is strikingly similar and practically
the same (not always equal but slightly different) as the solution
vector {sj, j=1,..,J} cbtained when maximizing Ag. Since all stockouts
willoccurtowardstl'xeendofthecycleper.:iod, the impact of measuring
System BO as a function of time is considered negligible and will not
be analyzed here.

Although both performance measures Ag and BO practically yield the
sare results, managerial interpretation can be quite different. For
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exanple, the same optimal stockage level solution vector {Sj} resulting
in Ag=.70 may appear quite low when meximizing Ag but if the total
muber of equipments is M=10, it may yield an average of 9 out of 10
equipments (.90 proporticn) still operaticnal at the end of the periaod,
which can be more than acceptable, and may also yield correspondingly
very low values for total expected system backorders (say BO = .10 for
exanple) .

We shall thus develop alternative models with system performance
measures Ag and/or BO to be optimized for any specified budget level,
and simulate the corresponding AAg values. We will then be able to
compare their values with Ag and corresponding simulated Adg values
dbtained as a result of solving the Equal item availability at the
same specified budget level. Since all models are solved starting from
$0, the response curves {Ag,Cg} also gives valuable information to
managers by quickly showing the improvement in system performance.
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CHAPTER 2: PROBLEM FORMULATION
2.1 GENERAL

Consider first a single location system having several identical
equipments (vehicles, airplanes,..) each one of which operates for a
fixed period of time t. Each identical equipment consists of several
replaceable assemblies (simply referred to as cawponents or items) such
as engine, transmission, battery,.. and that failure of arty ane of the
j items (j=1 to J) within the equipment occurs independently and will
result in a failed or unavailable equipment until the end of the cycle
period of fixed length t if no spare of the failed item is available.

Therefore, it is assumed that each item life has exponential
density £5 (x) with constant failure rate 75 and thus the failure rate
process for multiple identical items is a Poisson process. When arty of
the possible J items within an equipment fails, it is immediately
replaced by a spare item, if ane is available, from the inventory,
otherwise the equipment remains DOWN or in a failed state until the end
of the pericod.

With this type of inventory system, the objective is to determine
the optimal mumber of spare items Sy of each type j=1,..,J to stock at
the begimning of each cycle time period of fixed duration t (or
equivalently for a usage period of U days, months, hours, ..) in order
to ensure that an adequate system service level is provided during the
whole time period subject to a fixed investment budget constraint made
up of purchasing costs.

As a result of formulating and analyzing related models whose
dojective functians to be optimized will link all items together
through relevant system performance measures and subject to a fixed
available amount of money (budget), organizations such as the military
that implement these models will be able to effectively allocate
restricted resources in an optimal way at the time of procurement while
providing user sub-units (or clients) with increased awareness and
flexibility in planning inventory levels.



2.2 NOTATION

The index j (j=1 to J) represents the mmber of items making up an
equipment and the index i (i=1 to I) represents the mmber of different
locations where identical equipments are operaticnal; the index i is
deferred until it is introduced in a later chapter when the multiple
location case will be analyzed; so, for the single location models, the

following notation will be used:

t
U

M

j

SO EFIIST

fixed cycle period (say 1 year)

expected usage (miles, hours,..) of each
identical equipment during period t

mmber of identical equipments cperating at
the location

fixed available budget ($) during pericd t
constant and cammon interest rate for
inventory holding costs H ($/$/time period)
index of part (item) types (j=1,2,..,J)
time-to-failure density (pdf) of item j
item or companent failure rate (fr/time)
Poisson probability mass function (pmf)
Poisson rate parameter for a fixed time period
Cumulative distribution function (cdf)
Carplementary odf = 1—Fj

C4jR = inventory holding costs for item j

L hy = total inventory holding costs ($)
purchase cost for item j ($/item)

L ¢4Sy = total purchase costs ($)

total systems costs = (C+H)

up-to inventory level for item j at the

begiming of the period

{S}={Sj, j=1,2,..,J3} = inventory quantity vector

of all items at the beginning of the period

BOy= expected mmber of backorders for item j
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K):totaleqaectedsystanbackoxders:Emj
Ay = availability for item j

Ag = system availability = L

i = index for number of locatioms (i=1,2, « I)

As an exanple, consider an item (within an equipment) whose
failure rate 75 is assumed constant ard 74 = 1 failure/100,000
kiloreters. Within a specific location, M=15 identical equipments are
each expected to operate for U=10,000 kilameters during t=1 year; then
the mmber of failures for that item during the period will be Poissan
distributed with expected parameter value 6j = 15 x 10,000 x 1/100,000
= 1.5 failures or 6j = MU74. We will refer from now an to the failure
(demand) process for each item j as Poisson with mean rate {6} = {6j,
j=1,2,..,d3}.

2.3 MXIEL FORMILATION

2.3.1 Model P1 to maximize Ag. If S§ items of type j are available
(held) in inventory at the begiming of the period, then a measure of
the service level provided for any item j is its availability or the
prabability of not rumning out of stock which is defined by its
cumulative Poisson probability density function as:

Ay =x§ pj(x,éj) = Fj (2.1)

where o (x, 6j) is Poisson (rate éj)
or By = éjx.exp(-éj)/x!

o

C 1A = = psix,6:) (Unavailability) (2.2)
Aj AJ x;GJEl J &

The aggregate performance measure that links all items together by
their equal contribution to the equipment's operational effectiveness
is the system availability or the joint probability of not ruming out
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of 'stock of any type of item given by:

J
=1rA3=1r(§,pJ(x)) (2.3)

J=1 x=0

Since this measures the probability of not rurming ocut of any type
of item j, j=1,..,J, it can also be interpreted as the mission
reljability or the probability that all M equipments will remain
operational (not "down") until the end of the cycle pericd, if it is
critical that we do not run out of any type of spare j during the
period, regardless of the mmber of equipments at the begimming of the
cycle. This measure of system performance will make up the cbjective
function to be optimized (maximized) in model P1, formulated below.

If we only have M=1 equipment available at the begimning of the
pericd and we do run cut of any ane type of spares, then it will remain
in a failed state until the end of the cycle. If multiple equipments
are involved, then the expected proportion of the M equipments still
cperational at the end of the cycle, denoted AAg and defined as the
expected mumber of equipments still operaticnal + M, way be a more
meaningful and appropriate measure of system performance; its
distribution is camplex and will be analyzed in a later chapter.

The dbjective sought by the inventory policy adopted is to order
at the begimning of the cycle period t enough of each type of item or
order-up-to quantity vector (S} = {Sj, j=1,2,..,J} in order to maximize
system availability Ag while not exceeding a fixed available investment
budget B. Model P1 can thus be formulated as follows:

T o
Max =1rA3=1r( pj(x)) (P1)
J=1 x=0
J
s.t. z:c:isj s B (Budget) (2.4)
j=1

Sy =20 j=1,2,..,J (2.5)
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Switching the dbjective function and the constraint yields the
following equivalent model variant Pla below:

Min Cs =j§10jsj (Pla)

s.t. As=iAj=i(§jpj(x) ) 2« (2.6)
j=1 Jj=1 x=0

S§ =20 j=1,2,..,0 (2.7)

Marginal analysis will be used in a later chapter to demonstrate
that the model variant Pla i.e. minimizing total costs Cg(.) and
subject to a minimm specified system availability Ag 2 ¢, will yield
the same optimal stockage level vectors {Sj, j=1,..,J3} and the same
respanse curve {Ag,Cg(.)} as model P1, from which menagers can select
the optimal stockage level vector {Sj, j=1,..,J} corresponding to a
desired value on the respanse curve.

The managerial interpretation between models P1 and Pla are
different: model P1 seeks to maximize Ag subject to total available
costs and is usually encountered in organizations where budgets
allocated are limited and/or difficult to predict, such as large
military and public organizations whereby service levels are not the
main concern; managers are thus faced with the decision to dbtain
maximm efficiency from the allocated budget and is practically
impossible to secure additicnal funds to meet a service level, and
sametimes are faced with downsizing or reduced budgets.

Model Pla, however shifts the emphasis on meeting a minimum
service level such as system availability Ag here, regardless of the
costs and would usually be of primary concern to organizations facing
tough conmpetition within the same industry: the industrial and service
Sectors are prime exanples of the applications of this type of model,
along with model P2a discussed below. Managers are forced to meet the
service level abjective at minimm costs.
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2.3.2 Model P2 to minimize BQ. A service level frequently used in the
performance of an inventory system is called 'part-fill' criterion or
item shortages, often called the expected mmber of backorders = BOJ
for any item j, given by equation (2.8) below, and is not dependent an
time; their duration is ignored since for all practical purposes, they
will only be incurred at the end of the period as described ard shown
in figure 2.1 below:

Boj = T (x—Sj).pj (x) (2.8)
x=Sj+l

Fis 2.1: level vs

Again, the aggregate service level linking all items together can be
measured by the total expected system backorders EO, by summing all
individual item backorders as:

J J o

BO= & i = T (%x-S3).ps (%) (2.9)

j=1BOJ j=1 x=S; +1SJ &
and will make up the the abjective function to be optimized (minimized)
in model P2, formulated as follows:
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J J o
Min BO=ZX (BOj) = £ I (x-S5).ps(x) (P2)
j=1 mj j=1 x=Sj+1$j Pj
J
s.t. b c]S] < B (Budget) (2.10)
j=1
Sj =20 j=1,2,..,J (2.11)

Switching the dbjective function and the constraint yields the
following equivalent model variant P2a below:

Min Cs =.g cJ-Sj (P2a)
j=1
J J o
s.t. BO =j§1(mj) = jfl xzsj(fl..sj) Pj(x) = 8 (2.12)
Sj 20 j=1,2,..,J (2.13)

Marginal analysis will be used in a later chapter to demonstrate
that the model variant P2a i.e. minimizing total costs Cg(.) and
subject to a maximum specified expected mmber of backorders EO » B,
will yield the same optimal stockage level vectors {s3, j=1,..,3} and
the same response curve {BO,Cg(.)} as model P2, fram which managers can
select the optimal stockage level vector {Sj, j=1,..,J} correspanding
to a desired value on the response curve.

The managerial interpretation between both models P2 and P2a is
essentially the same as the one discussed for models Pl ard Pla; the
System performance measure used here is the total expected System
backorders BO cbtained as a result of summing all individual item
backorders B0y, j=1,..,J, whereby each item is equally crucial to the
operation of the equipment.

2.4 ASSOMPTIONS FOR MODELS P1 AND P2.

2.4.1 Mcdel assumptions. Assumptions for both models P1 and P2 are as
follows:
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Al. All equipments at a location are identical and operate
independently.

A2. Each equipment consists of J single types of items each cne
of which is required to operate for the equipment to remain
operaticnal.

A3. Each item j (j=1,2,..,J) is subject to random failure
(canstant failure rate Tj) .

A4. Any item that fails is replaced immediately by an identical
item if one is available from the inventory; otherwise, the
equipment remains in a failed state until the end of the
periad t.

AS. At the begimning of the periocd, a stockage level vector
{S}:{Sj j=1,2,..,J} is purchased with no possibility of
resupply until the end of the period.

A6. A fixed budget B is available to cover the purchasing
costs for all items j until the end of the period.

A7. There is no ordering cost for any item, or if there is, the
order cost/item is fixed and can be included in the purchase
cost cj.

A8. Failure of an equipment is caused by only cne item.

A9. Instantaneous delivery.

Because failures of each item occur independently and at a
canstant rate, the times between failures are assumed to be
exponential and the muber of failures in a fixed interval of time
[0,t] are Poisson distributed with rate Gj . The consequence of
assurption (A8) is that each failure results in a single demand for
that item and demands occur independently of one another.

This one-period review model of length t is concerned with the
determination of an order-up-to quantity vector {S}={Sj j=1,2,..,J3} to
last the whole period without possibility of resupply during the
period. Instantaneous delivery ensures that the quantity ordered prior
to the end of the period is delivered so that each period starts with a
canstant inventary level vector (S} = {sj j=1,2,..,J3} for each type of
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item, therefore stochastic lead times are not considered here. As shown
in figure 2.1 earlier, the inventory level for one specific item as a
function of time starting with Sy identical items, and is equivalent to
a periodic review inventory system where the cycle repeats itself after
each pericd t.

2.4.2 Equivalent system availability EAg. Since we assume that the

mrber of failures for each part type jeJ in a cycle of fixed length t
as illustrated in figure 2.1 is Poissan distributed with parameter
6j=rjt:, then the times between failures is expconential with parameter
(l/rj). Thus, if S§ items type j are stocked at the begirming of the
period, the distribution of the time at which the (S5+1) th failure
occurs is the sum of exponential variates (l/Tj) and known to be Gamma
distributed with parameters (S4+#1,1/75), also called the m-Erlang
distribution since S4+1 is an integer.

From the definition of system availability Ag defined earlier by
the product of individual item availability A4, given S parts type j
are available at the beginning of the period, then an equivalent
definition of system availability performance measure, denoted EAs, can
be defined as:

EAs| (S} = Prob {Min Garmaj (S5+1,1/75) > t} (2.14)
jeg

In other words, if we were given an initial inventory quantity
vector {S} = {Sj, j=1,2,..,J} for each type of part at the beginning of
the pericd, we would start ruming out of parts at the time the first
of the (Sj+1)™ failure occurs. This can be equated to a reliability
system of J sub-systems in series, each ane of which consists of SJ
available redundant parts failing at an expanential rate of T

The distribution of the minimm of the Gamraj variates approaches
asymptotically a Weibull distribution but its parameters can not be
derived analytically (See [Hahn and Shapiro 1967] for a discussion can
the distribution of various minimums). We could solve this problem,
however, by simulating the system for N cycles for various inventory
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stockage level vectors (S}, estimate EAs with equation (2.15), that is
the proportion of the N cycles that the System survived past t without
ruming ocut of any parts. Unfortunately, repeating this methodology for
every stockage level vector {S} in order to construct the entire
response curve {Ag,B} to find the best stockage level vector {Ss} that
will maximize P1 for a given budget B falls in the category of
carbinatorial analysis, would be analytically time consuming and
therefore not pursued.

Nevertheless, a program was developed to similate N cycles of this
type of inventory system (see chapter 9) to carpare and discuss the
empirical results with those cbtained with exact and more efficient
methods to be presented in subsequent chapters. Furthermore, the
simulation methodology provides us with an opportunity to analyze the
effects of part failure dependencies, discussed in the next section,
and to introduce another more appropriate measure of performance,
denoted AAg or alternate system availability.

2.4.3 Alternate system availability Aas. Noting that both performance

n'easuresusedinnndelsplandmpgtequalenphasisoneachtypeof
part, the optimal stockage level vector (S} = {Sj, j=1,2,..,J3)} for
each model will usually be similar. Furthermore, the product of
individual availability service measure is a canservative estimate and
therefore a lower bound on the exact availability achieved (system
performance service level) since a part that runs out of inventory
beforetheendofthecyclewillhavetheeffectofdecreasingthe
expected mmber of failures for other parts as the mmber of equipments
operating towards the end of the period decrease; this end of cycle
phencmenan is illustrated in figure 2.2a and 2.2b below for two
different parts. [Emst and Pyke 1992] have discussed the end of cycle
effects in more detail and verified with simulaticn results that
increasing inventory for acne part will benefit product service level
anly up to a certain extent and tend to equalize inventories across all
items individual service level.
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The system availability aggregate performance measure Ag ard its
equivalent counterpart EAs defined in the earlier section with the
Gamma distributicon, is the probability of not ruming out of any item
during the time period. The measures of performance Ag or EAg then
provide us with a lower bound IB (arnd therefore conservative measures)
on the true proportion (or mumber) of equipments still operatiocnal at
the end of the cycle, denoted AAg, since part failure dependencies
cause the expected mumber of failures (Poisson parameters {65,
j=1,..,J}} for parts to actually decrease towards the end of the cycle.
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This altermative measure of system availability to model part
deperdencies or AAg, ard defined as the expected proportion of
equipments that are still operational at the end of the cycle period
when {S} = {S] j=1,2,..,J} spare items are available at the begiming
of the cycle, will be shown in a later chapter with simulation
methodology, to be a more appropriate measure of actual system
performance when multiple equipments are involved.

2.5 LITERATURE REVIEW

The constrained multi-item inventory models P1 and P2 introduced
above have been treated in the literature in various forms and is model
dependent. Surprisingly, the system availability performance measure
has seldaom been analyzed and has been discussed mainly in the context
of least cost allocation of redundant units in parallel to improve the
system's "availability" during a specific time period. Also, the budget
or investment constraint consisting of purchasing costs has not been
extensively used other than in multiple-item "Newsboy" types of
problems where single abjective functions trading off costs or profits
vs shortage costs are analyzed.

Several practical applications in solving this type of prablem can
be implemented effectively in different types of organizations. For
exanple, military organizations and public institutions traditicnally
include purchasing costs only and do not include inventory holding
costs in their formulations although they are presumably "accounted
for" in sare other logistic support organizations (supply,
warehousing, .) . Due to the on-going major restructuring and downsizing
by the defense industry and goverrment organizations, both types of
costs should be included in the analysis and provide for better
accountability as to the real costs incurred, an extension to both
models Pl and P2 that include inventory holding costs, will be analyzed
in a later chapter.

Another practical application is in the retail industry where
inventory holding costs are a significant factor when plamming for the



28

purchase of a range of similar items on a seasonal or anmual basis.
From a managerial point of view, if anly a fixed investment budget is
available for a period, optimizing a service level adbjective such as
maximizing Ag in model P1 subject to a fixed budget is clearly not the
Same as trying to minimize costs subject to a minimm Ag or simply
trying to maximize profits as camonly found in the literature.
Therefore, the dbjective function of model P1 or P2 may be much more
appropriate than minimizing total costs subject to a specified minimum
(maximm) service level.

The reason for describing the different systems below is because
most of them focus on solution procedures that are similar to the cnes
that will be used throughout this analysis. Because they are also model
dependent, necessary derivations are carried out for the 2 models of
interest, as related to the Poisson distribution, and major
cansiderations and key factors to consider for selection of varicus
specific solution procedures will be studied and campared.

If the function to be optimized is linear and the single
canstraint is also linear, the problem is camonly referred to as a
distribution of effort or knapsack problem. It attempts to determine
the cptimal mmber (0-1 variables or multiple items) of each type of
items to include in a knapsack if a benefit w5 is cbtained for each
item j; it is formulated in [Wagner 1975a] as follows:

J
Max Z = T wyxj (P3)
j=1
J
s.t. %4 = B (budget or volume) (2.15)
j=1
Xj = 0,1 or 2 0 and integer (2.16)
where w4 = return/benefit of item j

and X4 = number of items type j to be included in the
knapsack (usually 0-1 variables).
Cther practical applications often encountered include the fly-
awdy or tool-kit problem discussed by [Geisler and Karr 1956], (Hadley
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and Whitin 1963] and the submarine spare parts provisioning problem
also discussed in [Hadley and Whitin 1963] and [Silver and Petersan
1985] . Solution procedures usually involve branch and bound ( Wagner
1975a]), dynamic programming ([Winston 1994] and [Hadley and whitin
1963]) and network analysis (([Winston 1994], [Lawler 1976] and Wagner
1975b]) . For both models P1 and P2 treated here, multiple values other
than 0,1 for the variables are required and will be further discussed
below.

Variants of this prablem usually attempt to optimize a cost
function or the expected mmber of part shortages (i.e. backorders BO)
when subjected to a total investment canstraint or same service level
measure such as "Fill rate". A typical formulation from (Hadley and
Whitin 1963 pp 304-307] which seeks to minimize weighted backorders
for all items is as follows:

o]

Min z i (X%-S5)ps (%) (P4)
X;SJE—?, 3'P3
J
s.t. Z c4S§ s B (budget or volume) (2.17)
j=1
Sy = 0 and non-negative integers (2.18)

Lj=penaltycostforabackorderj

Model (P4) is similar to our model of interest P2 except that all
part shortages (i.e backorders) are equally crucial to the successful
operation of equipments, i.e. all parts have equal penalties Lj=1 in
(P4) . Although the model to be developed is mostly concerned with the
availability aggregate performance measure (model Pl) which is non-
linear, it will include comparison with the backorder abjective
function for model P2 previously described and similar to model (P4)
above.

[Black and Proschan 1959] have developed a similar model to
maximize system availability of a spare parts kit subject to a fixed
budget but the solution procedure presented is based on an
approximation of Poisson's exponential binamial limits, published in
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Molina's tables for high reliability parts/ campanents, to determine an
initial allocation S4 for part j from which the stock levels for all
other parts are calculated. The result is a short-cut equivalent to the
marginal analysis analyzed here in that the sequence of stock level
vectors {Sj, j=1,..J3} generated are all undaminated allocations but
skips over several iterations of the marginal analysis procedure and
yields much wider gaps in the budget, which may cause large errors from
the exact solution.

The authors briefly mention but do not describe in detail the more
efficient marginal analysis procedure to generate successive
undominated allocations. This thesis extends the analysis by deriving
and describing the procedure for all models included here, including
the necessary conditions for its application, by developing error
bourds and camparing the maximm possible mmber of iterations (order
of magnitude) with DP, approximate DP and Lagrange relaxation methods.
We also provide two simple and useful heuristics to further improve the
solution.

[Kettelle 1962] has analyzed the system's availability objective
in least cost allocation of redundancy units (in parallel) subject to
an investment constraint. The system's availability measure is defined
by Ag = 7 [1-(1-aj)™] where aj is a fixed availability for item j and
only item purchasing costs are considered. Dynamic progranming and
marginal inprovements in availability per dollar invested are used to
solve the problem.

Fox [1966] has published a widely quoted paper on the general
application of the marginal analysis, stating the conditions under
which it is justified and an important proof that the sequence of
points generated are undominated (or efficient) when the abjective
function is separable by item, each cne of which is concave and
strictly increasing when weximizing, which is the case for model P1
here, or canvex ard strictly decreasing, which is also the case for
model P2. It also formally established the close relationship of the
marginal analysis with the Lagrange relaxation method.

The paper by Fax further states that the solution dbtained depends
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on the spacings of the successive allocaticns generated until the
budget B is exceeded and should be "sufficiently near" optimal for
practical purposes, otherwise the exact solution must be found by DP at
the expense of much more computational effort. The marginal analysis
applicable to the models treated here, will be analyzed in further
details in chapter 4 by describing its characteristics appplicable to
the Poisson distribution, including error bounds and introducing two
sinmple heuristics to further improve the near optimal solutions.

Due to the generic nature of the procedure, several authors
(briefly described below) have successfully used its results in a wide
range of applications, including all the models presented here. We
explore in more details the computaticnal difficulties associated with
DP and the errors that can be generated by a DP appraxdimation
procedure, derive the procedure and the error bounds (or "spacings" as
described by Fox) based on cost for several other solution methods,
including reducing the size of the spacings, and provide extensive
muerical results on randamly generated test problems.

Another performance measure similar to the availability criterion
is the "job campletion" or "job £ill" rate criterion which has been
usedinavarietyofrrodelsnnstlyconcernedwiththeoptinal "repair
kit" type of problem where solution procedures developed for our models
Pl and P2 are similar.

The [Smith, Chambers and Schlifer 1980] model minimizes the cost
of a repair parts kit (0-1 variables) based an the fraction of jabs
campleted without stockout, inventory holding costs and incurring
penalty costs for each job non-completion; solution procedure involves
Separable programming for which marginal analysis applies.

[Graves 1982] selects a spare parts kit (0-1 variables) that has
the minimm inventory costs for a specified job campletion criterion.
He eliminated the need to specify shortage costs which are difficult to
evaluate in the Smith, Chambers and Schlifer model above which
essentially results in a binary knapsack problem that can be solved
with the specialized optimization procedures developed by (Balas and
Zemel 1980] for large scale problems of this type.
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Mamer and Smith 1982] has extended the Smith, Chanbers, Shlifer
model by allowing for parts demands that are not necessarily
inieperxientandshowshmitcanbesolvedbyaua}dmmflow/minimm
cut network algorithm. A camumication by [Hausman 1982] has commented
an the set of efficient points for the three (3) models described above
and discussed mixed strategy solutions but may be difficult or
impractical to implement.

(Brurelle and Granot 1993] examined the properties of same of the
models above and incorporated the theory of lattice programming and the
Structure of the Pareto set of the covex hull of the 0-1 variables
included in the repair kit models, resulting in sare camputational
simplifications.

[Schaefer 1983] has developed another model based an 3
altermnative job completion rate criteria (different abective functions)
for the selection of repair parts in the context of equipment overhaul
at periodic time intervals and allow for multiple units of each part to
be stocked; solution procedures for the 3 models include a brief
carparisan between dynamic programming (assuming costs are integer) and
marginal analysis. A key assurpticon in the application of the model is
that Poisson mean rates are so low, i.e much smaller than 1, so that
the prabability of 2 or more failures for any part j during the cycle
is negligible, and requires a job non-completion penalty (difficult to
assess), both of which are not required here. Similar procedures to
derive error bounds from the marginal analysis are developed here for
all our models but we extend the analysis further by reducing the error
bounds with sinple heuristics.

[Cohen, Kleindorfer and ILee 1989] analyzed a similar modified
version of Pl by switching the cdbjective function with the constraint
of model P1 and thus seek to minimize costs subject to a minimum
System availability service level, which lead to a different managerial
interpretation. They developed a general Lagrangian relaxation
procedure to cbtain the solution and demonstrated that it is closely
related to marginal analysis (or greedy algorithm), as did [Fax 1966]
earlier. Small scale test prablems (with J=3,6 and 9 items) are
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included but are restricted to the binamial distribution and Lagrange
analysis.

We extend the analysis to the Poissan distribution and camparative
results for randomly generated test problems up to J=99 items for other
models and include a more appropriate measure of System performance
when multiple equipments are involved, with and without part failure
deperdencies. The top-up marginal analysis procedure is also shown to
further improve the solution.

Consider a multi-indenture equipment mede up of assemblies, sub-
assemblies and camponents as depicted in figure 2.3 below. Random
failure of such an equipment is caused by randam failures of specific
components. In this context, the amount of spare items held in
inventory will affect the availability or some other suitable aggregate
performance service level (SL) of camplete equipments depending an its
defined structure. [Audet 1986, 1984], [Bitran and Hax 1981], [Dermy
1970], Muckstadt 1973] and [Svoronos ard Zipkin 1988]) .

These types of systems were initially developed in the context of
reliability studies where an equipment is broken down into individual
repairable or throw-away type modules. If it is assumed that failure of
an equipment is caused by at most 1 failure of a module (or camponent)
ard that failures occur independently, then the possibility of
disaggregation of the resulting Poisson failure process becares most
important. We develop an extension to both models in a later chapter in
which a 2-phase approach can effectively be applied at the assembly
level first to optimize system performance, followed by optimization at
camponent level, when more reliable information is known and it can be
worthwile to disaggregate the Poisson process into smaller ones and
cbronstratehowthisuethodcantl:msbeusedtoincreasesystan
performance measure. This procedure has the net effect of reducing the
size of the original prablem to a more manageable size by successively
optimizing a mmber of assenblies, then its sub-assemblies, and so an
down to component level, similar to calculating requirement levels for
carponents using an MRP system (Materdial Requirement Planning) .
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Ilevel 0 ------e-cmceeooo Equipment
l l |
level 1 ------ Assy 1 Assy 2 Assy I
[ 1
level 2 ~----- Sub 1 Sub 2 Sub J
l 1
Level 3 ------ Item 1 Item 2 Item K

Fiqure 2.3: Multiple indentured equipment

Multi-location inventory systems involve failures of items which
result in demards at different rates depending on the location (figure
2.4 below) . Models developed in this context often refer to consumable
items and retail cutlets and cover a wide variety of assumptions and
solution procedures [Badinelli and Schwarz 1988], [Deuermeyer and
Schwarz 1981], [Eppen and Schrage 1981] . An extension to models Pl and
P2 studied here will demonstrate that a problem with I locations x J
items is equivalent to a single location with I x J items, under some
of the assumptions of the models treated here.

Ioc 1 loc2 f— ... — Ioc1I

Figure 2.4: Multiple location system

Consider now a multi-location, multi-echelaon organization made up
of several locatians each operating several identical equipments as
shown in figure 2.5. When a failure occurs, the companent which has
causedthefailumisidmtifiedandadecisimastowlmetherepair
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should be done is made in accordance with the maintenance policy.

If a spare item is available locally, it is replaced immediately
and the equipment is restored back to an operating condition; the
failed item is then repaired locally or sent to a higher echelon and
stored back on the shelf. If a spare is not available locally, then a
stockout occurs and a request is sent to the central location; a spare
item is shipped back if available otherwise the stockout condition
remains in effect until the failed item has been repaired either
locally or centrally.

Extemal

supplier
Echelon 1 ----------- Central

(Top)
| ] 1
Echelon 2 Ioc 1 Loc 2 .o Ioc I
(Bottcm) l ’
demards demands demands

j=1,..,J dlj 623' 633

The situation described above has became common in practice for
several types of large organizations. The development of various
carbinations of multi-item, multi-indenture, milti-location, multi-
echelon inventory models has received considerable attention in the
past several years. The development of repairable items maintenance
policies has been mostly concentrated in military organizations, such
as the US Air Force, where operating equipments in several bases are
supportedbyacautraldepotinthecaseofrepairablesaxﬁinthe
retail industry where several retailers are supplied by a central
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warehouse in the case of consumables. (See [Clark and Scarf 1960] for
early multi-echelon models) .

In most of the models developed in this type of enviromment, the
decisians involve the determination of the optimal mmber of spare
items (repairable or consumeble items) quantity vector {s} = {Sj
j=1,2,..,J} to be stocked at each location and at each echelon in order
to achieve a desired performance service level subject to a specified
available budget. Most formulations attempt to minimize the sum of
System (depot and locations) backorders expressed as a functicn of
time, which are not applicable here; some of the common solutian
procedures, however, will be commented throughout the thesis.

Complex and time-consuming Multi Echelon Techniques for
Recoverable Items Control or MEIRIC based programs originally
discussed, developed for various military applications and reported by
(Sherbrocke 1968] have been extensively modified and improved upon over
the past 20 years. The most important models were derived by [Simon
1971], [Muckstadt 1973, 1976a and 1976b] for the MOD-METRIC model,
Muckstadt and Thomas 19801, [Haber and Sitgreaves 1975}, [Hillestadt
1982] for the DYNA-MEIRIC wmodel and [Graves 1985], [Sherbocke 1986]
and (Slay 1984] for the VARI-METRIC model.

Other authors like (Jackson 1988], [Johnson and Silver 1987) .
[Cahen, Kleindorfer and Lee 1986], [Nordin and Maier 1989], [Svoronos
and Zipkin 1991] and [Nahmias and Smith 1994] derived results under
various assunptians.

A comprehensive review up to 1980 on this subject can be fourd in
chapters of [Schwarz 1981], written by [Nahmias 1981], [Demmy and
Pressuti 1981] and [Clark 1981] and more recently by [Hausman and Erkip
1994] who compare multi-echelon sub-optimization with single-echelon
inventory control policies.

The vast majority of these models involve repairable items and
requires Palm's assumption [Palm 1938], [Little 1961], of "anmple
service" or infinite repair capacity and hence assumes independent
repair times; the extensive use of the well known Palm's theorem from
queuing theory can lead to serious errors as reported by [Gross 1982],
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and [Hausman and Scudder 1982] improved System performance by up to 20%
reduction in spares inventory levels when similating improved priority
scheduling rules for repair facilities (See also (Pyke 1990]) .

[Gross and Ince 1981 and 1978) modeled the classic machine repair
problem as cyclic queues or closed queuing networks originally
developed by [Mirasol 1964]; later, [Gross, Miller and Solland 1983]
and [Gross and Harris 1985] have modeled a two-echelon system for
repairable items also as a closed queuing network to determine optimal
spares level arnd repair capacities.

(Ebeling 1991] used the machine repair M/M/s finite population
queueing model results and dynamic programming to allocate a fixed
budget among various components in order to max Ag subject to an
investment constraint consisting of the sum of the purchase cost of
each type of item and the individual cost of repair facilities for each
type of item; his model structure for repairables is similar to the one
used here for cansumables but presents seriocus camputational
difficulties due to the integer requirements of budget allocation
amounts at various stages and the cost of repair facilities for each
type of item may prove difficult to cbtain just like shortage costs are
to the multi-item "Newsboy" class of problems; we will show how his
model, can be solved using the FULL and GAP network structures to be
discussed in the next chapter.
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CHAPTER 3: DYNAMIC PROGRAMMING SCHUTION PROCEDURE

3.1 EXAMFIE 1

In this chapter, we present the dynamic progranming method to
solve both models P1 and P2 with a sample problem mumerically using
both models P1 and P2 and demonstrate the computational difficulties
associated with this procedure, particularly for moderate to larger and
more realistic problems, including multiple location problems to be
discussed in a later chapter. This chapter also includes an analysis of
an appraximate DP (or incremental, mesh or grid) procedure where an
error bourd an the total cost solution Cg(.) is developed. Finally,
illustration with equivalent FULL (and GAP network approximation)
network structures are presented.

Before we develop the various solution methods with an exanple,
both models P1 and P2 are repeated below for canvenience:

model Pl:
J J ZS’J
Max Bg = mAj =7 (Tpj() ) (P1)
j=1 j=l x=0
J
s.t. chSj s B (Budget) (3.1)
jo1
Sj 20 j=1,2,..,0 (3.2)
model P2:
J J o
Min BO=Z (BO5) = £ I (x-S3).ps (%) (P2)
j=1 e j=1 X=Sj-i-lsJ Fj
J
s.t. z c:)S:J s B (Budget) (3.1a)
j=1

S5 =20 j=1,2,..,J (3.2a)
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The following mumerical example (to be referred to as exanple 1
throughout) will be used to illustrate the application of various
solution procedures for both models Pl and P2. With a budget B = $50,
J=3 items (and M=1 equipment, the parameters are: {65} = {1,1.5,2} and
{cy}={$5,$3,$2}. Note that the order of magnitude of the budget ard
cost parameters is irrelevant in the sense that the soluticon vector
{Sy, j=1,..,J} cbtained would be the same as the equivalent example
with B=$5000 and the following costs: {cj} = {$500., $300. and $200.}.

The expanential failure rate parameters 7y and the corresponding
expected mmber of failures Poisson parameters 6j during a fixed period
of length t are similar to results of reliability studies of various
Canadian Armed Forces military equipments such as the Canadian Leopard
Main Battle Tank as reported by [Turmel and Wright 1986 and 1985] or
such as the Jeep Iltis Canadian reported by [Parsons 1985] and [Dufcur
and Parscons 1984] . Only a subset of asserblies/parts were taken arnd the
costs ¢§ and the budget B have deliberately been scaled down for
simplicity and canvenience in the presentation of results.

The dbjective is to determine the optimal mumber of each type of
spares or vector quantity (S} = {8y, =1,2,..,3=3} = {S1.5,,83} at the
begimning of the period in order to maximize the system availability Ag
(model P1) subject to a fixed budget B consisting of purchasing costs.

3.2 FORWARD AND BACKWARD RECURSION FOR MIDEL Pl

3.2.1 Procedure. A forward or backward recursion formula for the case
of a miltiplicative return function, can easily be found to solve model
Pl using the following notation:

Stage j=1,2,3 = item j

State bJ = amount available for allocation
up to the end of stage j
ision iabl

Sj = nmuber of items allocated at stage j
Y = amount allocated for S:J items at stage j = cJS]
Returmn functiaon



40
A4 (sj) = availability for item j
=x§(3) Py (x, bj) = Poisson cdf = Fj (Sj)
Forward recursive formula
fo(bj)
fj (bj) = A._., (bj) -fj—l(bj‘Yj) for j=1,2,3
Optimal value fj*(bj) at any stage
fj*(bj) = max { Aj(B5) .£5.1 (By-v4) }
Yj

mlnyj syjsrrax i

= max {&A%}isg; -£5-1(b5-c485) }

min SJ sSjs

1

where bj: all possible available budget values
Y4= all possible values to be allocated
= [min Yy, max yj]

min Y4= [cj(min S4)1
J

max y4= [B- T cj(max S;)]
i=1
i<>j where "<>" means "not equal to"

The solution procedure is to start at stage j=1 (item 1) and to
determine sequentially the optimal allocatian Sy (or Yj=°jsj) for all
its possible values, when bJ is available up to that stage; once the
optimal allocation for a given budget B has been calculated at the last
Stage J, the optimal allocation Sy at each stage is determined by
working backwards from J to stage 1.

Table 3.1 (Stages 1 and 2 on page 1 and stage 3 on page 2)
displays the camwplete DP solution for example 1 with J=3 types of
items.
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Stage j=1 Lamda = 1 ct,min,in $5 $0 $5

b1\S1 0 1 2 3 4 5 8 7 8 9 10| rowmax

$0 | 0,36788 0 4] ] o )] [} [} [+] ] 0] 0.36788

$5 0 0,73576 0 o) o [} 0 o} ) [o] 0] 0.,73576
$10 0 0 0,91970 (] o 0 0 0 (o] o 0] 0.91970
$15 o] 0 0 0,98101 o (] 0 (o] (o] 4] 0] 0.98101
$20 o] o] (o] 0 0,99634 [+] 0 o ) (o] 0] 0,99634
$25 o) 0 0 0 0 0,993941 (o] o Q 0 0f 0,99941
$30 o} 0 0 0 0 0 0,99992 o] o] Q 0] 0,99992
$35 o) [+] [o] (o] 0o 0 0 0,99999 o) (¢} 0] 0,993999
$40 [s) ] o) 0 0 o] (o] 0 1,00000 o] 0f 1,00000
$45 (o] 0 [s] 0 0 (o] 0o (o] (o] 1 0f 1.00000
$50 [*] 0 [*] [*] 0 0 0 ] [*) 0 1] 1,00000

Stage j=2 Lamds = 1.5 c2,min,in $3 $0 $1

b2\S2 [+] 1 2 3 4 5 6 7 8 9 10§ rowmax

$0 | 0.08208 [} o] o] ] 0 0 0 [] [} 0] 0,08208

$1]0,08208 [} o (o] (o] 0 0 0 (o] (o} 0} 0,08208

$210,08208 0 o] 0 0 0 0 0o (o] (] 0} 0.08208

$3 ] 0,08208 0,20521 (o] o] 0 0 [} 0 (o} 0 0] 0,20521

$4 | 0,08208 0,20521 s] o] (o] [+] o} 0o [o] (o} 0} 0,20521

$510,16417 0,20521 [s) [s] 0o 4] o] 0 0 0 0} 0,20521

$6 | 0,16417 0,20521 0,29756 [+] (] [} o] (] (] ] 0] 0,29756

$710,16417 0,20521 0,29756 o] (o] o 0 [+] 0 0 0] 0,29756

$810,16417 0,41042 0,29756 (o] 0 o (V] (o} (o} o 0] 0.41042

$910,16417 0,41042 0,29756 0,34373 (] [+] [o] 0 0 (o] 0} 0,41042
$10 | 0,20521 0,41042 0,29756 0,34373 0 [+] 0 o] 0 o] 0] 0,41042
$11 10,20521 0,41042 0,59512 0,34373 o] [+] [o] Q 0 0 0] 0,59512
$1210,20521 0,41042 0,59512 0,34373 0,36105 (] o} 0 0 o 0] 0,59512
$13 1 0,20521 0,51303 0,59512 0,34373 0,36105 0 [o] 0 [+] (o} 0] 0.58512
$14 10,20521 0,51303 0,59512 0,68746 0,36105 o] 0 o] o 0 0] 0.68746
$15]0,21889 0.51303 0,59512 0,68746 0,36105 0,36624 (o} 0 (o] o] 0] 0.68746
$16]0,21889 0.51303 0,74390 0,68746 0,36105 0,36624 0o 0 (o} (o] 0] 0.74330
$17]10.,21889 0,51303 0.74390 0.68746 0,72208 0,36624 [o] o] (] [o] 01 0,743380
$18 10.21889 0,54723 0,74390 0,68746 0,72209 0,36624 0,36754 (o} o] (] 0] 0.743%0
$19 10,21889 0,54723 0,74390 0,85933 0,72209 0,36624 0,36754 0 [o] 0 0] 0,85933
$20 1 0,22231 0,54723 0,74390 0,85933 0,72209 0,73248 0,36754 [o] [0} (o} 0] 0,85933
$21 10,22231 0,54723 0,79349 0,85933 0,72209 0,73248 0,36754 0,36782 (o} (o} 0] 0,85333
$22 }0,22231 0,54723 0,79349 0,85933 0,80281 0,73248 0,36754 0,36782 o) (o] 0] 0.90261
$23 10,22231 0,55578 0,79349 0,85933 0,80261 0,73248 0,73508 0,36782 (o] o) 0] 0.90261
$24 ] 0,22231 0,55578 0,79349 0,91662 0,80261 0,73248 0,73508 0,36782 0,36787 o) 0] 0.91662
$25 | 0,22300 0.55578 0,79349 0,91662 0,80261 0,91560 0,73508 0,36782 0,36787 e} 0} 0,91662
$26 | 0,22300 0.55578 0,80589 0.91662 0,90261 0,31560 0,73508 0,73563 0,36787 o] 0] 0.91662
$27 1 0.22300 0.55578 0.80589 0,91662 0,96279 0.91560 0.73508 0,73563 0,36787 0,36788 01 0.,96279
$28 10,22300 0.55749 0,80589 0,91662 0,96279 0,91560 0,91885 0,73563 0,36787 0,36788 0] 0.96279
$29 10,22300 0,55749 0,80589 0,93094 0,96279 0,91560 0,91885 0,73563 0,73574 0,36788 0] 0,96279
$30 ]0,22311 0,55749 0,80589 0,93094 0,96279 0.97664 0,91885 0,73563 0,73574 0.36788 0,36788] 0,97664
$31 ] 0,22311 0,55749 0,80837 0,93094 0,96279 0.,97664 0,91885 0,91954 0,73574 0.,36788 0,36788] 0,97664
$32 | 0.22311 0,55749 0,80837 0,93094 0,97783 0,97664 0,91885 0,91954 0,73574 0,73576 0,36788] 0,97783
$33 | 0.22311 0,55778 0,80837 0,93094 0.97783 0,97664 0,98010 0,91954 0,73574 0,73576 0.36788} 0,98010
$34 1 0,22311 0,55778 0,80837 0,93380 0,97783 0,97664 0.98010 0,91954 0,91967 0,73576 0,36788] 0,98010
$35 1 0,22313 0,55778 0.80837 0,93380 0,97783 0,99190 0,98010 0,91954 0,91967 0,73576 0,73576 0,99190
$36 10,22313 0,55778 0,80878 0,93380 0,97783 0,99130 0,98010 0,98085 0,91967 0,73576 0,73576] 0,99130
437 | 0,22313 0,55778 0,80878 0,93380 0,98084 0,99190 0,98010 0,98085 0,91967 0,91969 0,73576 0.99190
$38 | 0,22313 0,55782 0,80878 0,93380 0,98084 0,99190 0,99542 0,98085 0,91967 0,91969 0,73576 0,99542
$39 ] 0,22313 0,55782 0,80878 0,93428 0,98084 0,99190 0,99542 0,98085 0,98098 0,91969 0,73576] 0,99542
$40 1 0.22313 0,55782 0,80878 0,93428 0,98084 0,99495 0,99542 0,98085 0,98098 0,91969 0,91970 0,99542
$41 10.22313 0,55782 0,80884 0,93428 0,98084 0,99495 0,99542 0,99617 0,98098 0,91969 0.91970 0,99617
$42 10.22313 0.55782 0,80884 0,93428 0,98134 0,99495 0.99542 0,99617 0,98098 0,9810%1 0,91970 0,99617
$43 ] 0,22313 0,55782 0,80884 0,93428 0,98134 0,99495 0,99848 0,99617 0,98098 0,98101 0,91970| 0.99848
$44 1 0,22313 0,55782 0,80884 0,93435 0,98134 0,99495 0,99848 0,99617 0,99631 0,98101 0,91970] 0,99848
$45 | 0,22313 0,55782 0,80884 0,93435 0,98134 0,99546 0,99848 0,99617 0.99631 0,98101 0,98101] 0,99848
$46 ] 0,22313 0,55782 0,80885 0,93435 0,98134 0,99546 0,99848 0,99924 0,99631 0,98101 0,98101] 0,99924
$47 | 0,22313 0,55782 0,80885 0,93435 0,98141 0,99546 0,99848 0,99924 0,99631 0,99634 0,98101] 0,99924
$48 ] 0,22313 0,55783 0,80885 0,93435 0,98141 0,99546 0,99899 0,99924 0,99631 0,99634 0,98101} 0,99924
$49 ] 0,22313 0,55783 0,80885 0,93436 0,98141 0,99548 0,99899 0,99924 0,99938 0,99634 0,98101}] 0,99938
$50 § 0.22313 0,55783 0,80885 0,93436 0,98141 0.99553 0,99899 0,99924 0,99938 0,99634 0,99634) 0,99938

Page 1
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Row increments of $1 up to B=$50 have been included to reflect the
entire range of possible allocation amounts remaining at each stage.
Although row increments in $1 increments are not really necessary for
the first and the last stage, it will become of crucial importance for
all intermediate stages fram j=2 to j=J-1 (j=2 anly for example 1) in
larger scale problems.

3.2.2 Optimal solution. The correspanding mumerical values of the
adbjective function measuring the system availability performance
measure Ag at each stage j=1,2 and 3 and the optimal solution can
easily be cbtained from table 3.1 by working backwards from stage j=3
with any specified available budget B up to $50 for this exanmple.

Thus, with an available budget of say B=$20 at stage 3, the best
System availability from stage j=3 is found to be Ag = .5892 by
allocating S3 = 3 items type j=3 for a total cost of 3 x $2 = $6 ard,
therefore, $20-$6 = $14 remains to be allocated at stage j=2 from
which the highest cell in row $14 is to allocate S2=3 items type j=2
for a total cost of 3 x $3 = $9 and $14-$9 = $5 remains for stage j=1
from which we allocate S;=1 item type j=1. The optimal solution vector
thus becames {sy} = {1,3,3} and yields Ag = .5892 at a total cost Cg =
$20 which is exactly the same as the specified available budget B.

There is no other allocation S* yielding a higher Ag at a lower
cost Cg. The major advantage of DP is that it guarantees an optimal
solution but only if all possible budget values are considered, and in
general, solving model P1 for a given budget B results in a whole set
Of allocations Sg which also solve Pl for smaller B values. As shown
in table 3.1, the set of allocaticms {sg} and the correspanding
response curve {Ag,B} can easily be determined for the whole range of B
fram $0 to $50 in $1 increments.

As a result of applﬂgthedynamicprogmnﬁ.ngprocedure, all of
theallocationsinSBthatna:dmizeAsazetmdaninatedasdesczibed
below:

- If S'eSg, then Ag(S)>Ag(S') ==> Cg(S)>Cg(S') for
all other allocations S, hence S' is the optimal



solution for P1 with Cg(S') as the budget.
- If S'eSg, then Cg(S)>Cg(S') ==> Ag(S)>Ag(S') for

all other allocatians S.

In other words, the sequence of allocations generated for any
possible budget values (from $0 to $50 in example 1) gives us the
entire trade-off curve between the system availability Ag and the
System costs Cg for CgsB that is: {Ag(S),Cg(S)}; or, similarly, cne
allocation is said to dominate another if it has either (1) more
availability at no more cost, or (2) no less availability at less cost
(See [Kettelle 1963]). We also note that Ag is nondecreasing as Cg
increases and approaches 1 for an arbitrary large budget value.

3.2.3 Advantages and disadvantages. The major advantage of DP

methodology is that the solution vectors {Sj, j=1,..,J} ard its
corresparding total costs Cg cbtained from this procedure is guaranteed
to be undaminated and therefore optimal, but anly if all possible
budget values are examined for all intermediate stages j=1,..,J-1, ard
there lies its major problem: the camputational difficulties associated
with this approach; otherwise, the solution resulting from the use of
the procedure no longer guarantees that it will be the true optimal
solution.

For eample 1, table 3.1 shows increments of $1 (the lowest common
denominator of all items costs S5 's) for stage j=2 which include all
possible carbinations of mumerical budget values that can be allocated
between $0 and the total available budget B = $50. However, the problem
can best be described as follows: Suppose we had used incremental
amounts of cy=$3 from $0, $3, $6, .., $48 at stage j=2, ard that we had
$17 remaining to allocate at stage 2 (from stage 3), then this
"appraximate" DP procedure would have resulted in an allocaticn of S,=3
items from the best row element at $15 (row above $18) resulting in a
system availability of 0.68746, which is clearly non-optimal since
increments of $1 in table 3.1 shows that a higher system availability
of 0.74389 can be achieved by allocating S;=2 items, had we included
row $17. This problem can occur for several available budget values
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when optimal allocation vectors {S*} are determined by working
backwards from stage 3.

Furthermore, the solution cbtained is also a functian of the order
or the sequence in which the items are listed. Tius, keeping the $3
item at stage 2 in increments of $3 and listing the $5 item first at
stage 1 and the $1 item at stage 3 vs the reverse ($1 item first and $5
item last), can lead to different solution vectors {Sj} and therefore
different values for Ag.

To illustrate these effects, table 3.1 has been redrawn with Co=$3
increments at stage 2 listing the $5 item first ard listing the $5 item
last. A camparative summary of the performance measure Ag and the
possible significant errors for same budget values, when selecting
equally sized increments of c,=$3 for item type j=2 and the decreasing
(vs increasing) order in which the items are listed ($5 item first vs
last), were compared with the true optimal DP solutions using all

Note that no particular order ($5 item first vs last) dominates
the other ane and therefore no conclusions can be drawn about which ane
is the best sequence. Figure 3.1 shows the optimal respanse curve
{Ag,B} fram B = $20 to $50 in increments of $1 as compared with
increments of $3 at stage 2 to highlight those errors and clearly show
the crucial importance of emmerating all possible budget amounts that
could be available (remaining) at each stage, otherwise optimal
solutions from the appraximate DP procedure are no longer guaranteed,
and can be unpredictable. Although the appraximate DP procedure may
reduce the carvbinatorial nature of the problem to a more manageable
size, the selection of incremental values of budget amounts to be
allocated at each stage j is subjective and lead to unpredictable
errors for same available budget values.

The important conclusion is that any selection of incremental
values (mesh or grid) for the amount yi allocated for Sy at each stage
j can no longer guarantee that the true optimal solutions will be found
unless the size of the increments is sufficiently small so that the
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process results in the emmeration of all possible budget values, at
the expense of increasing the state space to possibly urmanageable
proporticns for more realistic carplex problems, as the mumber of items
J increase.

Short of emmerating all possible allocation vectors {Sj} and
calculating Ag for each one, in order to guarantee that the true
optimal soluticn is found, we would have to find all possible budget
cambinations which quickly become unmanageable as the murber of items J
increase; for example, if each cne of J = 20 different items can take
an average of 10 possible values, then 1020 possible carbinations (rows
at the later stages) would be required, if the amaunt allocated at each
stage is assumed to be contimious. If the amount to be allocated at
each stage can be assumed to be an integer, then $1 increments could be
selected for each intermediate stage and if a total budget of say
$1,000,000 or 106 is available, then the total cambimations would be
reduced to an order of magnitude of 20 x 106, and the solution cbtained
would no longer be guaranteed to be optimal, which lead to our secord
major problem, the appropriate interval or incremental values to choose
for each intermediate stage j=1,..,J-1.

One such logical size increment for each row is Cj or simply the
item cost c; = $3 we have chosen for our exanple. Regardless of the
increment, the optimal solution can no longer be guaranteed ard can
lead to significant errors on Ag from the optimal solution, unless the
increments become sufficiently small but increase the state space to
unacceptable levels, as discussed previcusly.



Optimal $5 item first % $5 item last %
$Budget As($1 incr) As($3 incr)  Error | As($3incr)  Error
$0 0,01111 0,01111 0,00 0,011 0,00
$1 0,01111 0,01111 0,00 0,01111 0.00
$2 0,03333 0,03333 0,00 0.01111 66,67
$3 0,03333 0,03333 0,00 0,03333 0,00
$4 0,05554 0,05554 0,00 0,03333 40,00
$5 0,08332 0,08332 0,00 0.03333 60,00
$6 0,08332 0,08332 0.00 0,08332 0.00
$7 0,13886 0.13886 0.00 0.08332 40,00
$8 0,13886 0,13886 0.00 0,08332 40,00
$9 0,17589 0.,17589 0.00 0.17589 0.00
$10 0,20135 0,20135 0.00 0.17589 12,64
$11 0,20135 0,20135 0,00 0.17589 12,64
$12 0,27772 0,25504 8,17 0,25504 8,17
$13 0,27772 0,27772 0,00 0.25504 8,17
$14 0,35178 0,28189 19,87 0,35178 0.00
$15 0,40270 0,35178 12,64 0,35178 12,64
$16 0,40270 0,40270 0,00 0.35178 12,64
$17 0,51009 0,40270 21,05 0.51009 0,00
$18 0,51009 0,51009 0,00 0,51009 0.00
$19 0,56378 0,51009 9,52 0.51009 9,52
$20 0,58924 0,66378 4,32 0.58924 0,00
$21 0,58924 0.58924 0,00 0,58924 0,00
$22 0,65126 0,68924 9,52 0.63761 2,10
$23 0,65126 0,65126 0.00 0.65126 0,00
$24 0,70473 0,65126 7,59 0.65126 7.59
$25 0,73655 0,67608 8,21 0,73655 0,00
$26 0,73655 0,70473 4,32 0,73655 0,00
$27 0,81408 0,73655 9,52 0,73655 9,52
$28 0,81408 0,73655 9,52 0,81408 0,00
$29 0.84509 0.81408 3,67 0.81408 3.67
$30 0,85509 0.81408 4,80 0.81408 4,80
$31 0.85543 0.84509 1,21 0.85543 0,00
$32 0.88766 0,86835 2,18 0.85543 3,63
$33 0.88766 0.86835 2,18 0.86835 2,18
$34 0.90143 0.90143 0,00 0.89852 0,32
$35 0.91209 0.91209 0,00 0.89852 1,49
$36 0.91246 0.,912486 0,00 0.91246 0.00
$37 0.,94684 0,94684 0,00 0.91246 3.63
$38 0,94684 0,94684 0,00 0.91246 3.63
$39 0,95842 0,95842 0,00 0,95842 0,00
$40 0.,86046 0,96046 0,00 0,95842 0,21
$41 0,96173 0,96173 0,00 0,95842 0,34
$42 0,97221 0,97221 0,00 0,97221 0,00
$43 0,97221 0,97221 0,00 0,97221 0,00
$44 0,97557 0,87557 0,00 0,97340 0,22
$45 0,87566 0,97566 0.00 0,97566 0,00
$46 0,97676 0,97641 0,04 0.97566 0,11
$47 0,98740 0,97903 0.85 0,98740 0,00
$48 0,98740 0.,98740 0,00 0.98740 0.00
$49 0,99081 0.,98740 0,34 0,98740 0.34
$50 0,99090 0,99081 0,01 0,99090 0.00

47
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As we have shown, any appraximate DP procedure (incremental values
at intermediate stages) could lead to significant errors in the
measures of system performance such as Ag, ard is urpredictable; the
problem is further compounded since all item individual availabilities
Aj's, j=1,..,J are multiplied together, same of which may be high
reliability parts and the difference of 1 item can have significant
impact an the performance measure Ag. This problem becares
progressively worse in the multiple location case ard therefore, other
methods that yield near (or optimal) solutians faster and within
reascnable and acceptable error bounds are required.

3.2.4 Maxdmm and Minimm Sj'_s. It is possible to reduce the state
space shown in table 3.1 to a smaller size since there is abvicusly an
upper bound for each item UB(SJ-, j=1,..,J) that can be derived from
constraint (3.1) and is givenbyUB(Sj) = Integer [B/cj]; thus, the
upper bound vector {UB(Sj)} carmot be expanded beyond the mmerical
values {UB(Sj)}={4,6,10} for each type of item in example 1.

For more realistic examples, the state Space can becare quite
large but it is possible to further reduce it even after taking into
account the {UB (S4)} discussed above, by simply replacing constraint
(3.2) Sy 2 0 with the canstraint S = [Gj] j=1,2,..,J which constitutes
a lower bound LB(Sj) for each item j, j=1,..J. This procedure
essentially means that the stockage level Sy for each item must be at
least as large as its mean integer Poisscn failure demand parameter
which is not cverly restrictive since it ensures that each item j will
have a nﬁ.n:imeAj(sj) of appradmately .55 to .60 for the Poisson
distritution.

When all Aq's are multiplied together, we ensure a minimm Ag > 7
Aj = (.55 to .60)J,- for example, a minimm specified Aj = 60% for an
equipment consisting of J=10 items will result in an arprodmate Ag =
.6010 or 006 (less than 1%); since it is hardly ccnceivable to cbtain
such an unacceptably low value for Ag, even higher minimm values for
eachAj, suc'hasAj 2 .70 or .80 can be specified as long as the
overall cost of this initial starting allocation does not exceed the
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budget or ZcyS4 = B, otherwise an unfeasible solutian will result.

The mumber of equiprents M operating during the period becare a
more important cansideration since lower values for Ag when J increases
may be perfectly acceptable if the expected mumber (proportion) of M
equipments remain high. For example, if J=50 items and each Ay = .99,
then Ag = .60 which might be unacceptably low, but if the average
mmber of the M = 20 equipments still operational at the end of the
period is 19, then a 95% proportion (defined earlier as AAg) might be
perfectly acceptable to managers, as we shall demonstrate later.

In our example 1, given a maximum available budget B=$20, the
lower bound vector {IB(Sj)} for each item j results in the minimm
stockage level {LB(Sj)}={1,2,2}. Specifying the lower bound IB(Sj) =
[Gj] for each item's stockage level S5, j=1,..,J autcmatically inplies
that a tighter or better UB(Sj) can easily be found by applying
constraint (3.1) again and defined as:

J
UB(Sj) = (B -ifl(ci(Mln Si)) / S (3.3)
i<>j

For exanple 1, the result of applying (3.3) to item 1 when
{1B(S4)}={1,2,2} means that UB(S;)= [($20-%$10)/$5] = 2. Similarly, we
can derive the following complete upper bound vector of stockage levels
for each item as {UB(Sj)}={2,3,4}. Therefore, we need to be concerned
with only the following range of possible values for each item S4:
§1=[1,2], Sp=[2,3] and S3=[2,3,4] which has been considerably reduced
in size as campared to the original problem of table 3.1 earlier.

Even though the {LB(Sj)} ard {UB(Sj)} vectors provide a realistic
and most canvenient way to reduce the mmber of possible carbinations
to a more manageable size, for more practical and real-world prableams
of larger sizes, this procedure campounds the problems defined earlier
(incremental values at intermediate stages and sequence in which the
items are listed) and creates an additional problem: selecting the
minimm and the maximum allocation amount (range of possible values)
for each intermediate stage in the DP table. For exanple, selecting
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incremental values of cy=$3 at stage 2 fram $0, $3,... vs from $1,
$4,... vs $2, $5,.. will likely result in different solution vectors
{Sj}, which is also unpredictable.

Another more useful upper bourd vector {UBJ-, j=1,..,J} would be
based an the magnitude of the mean Poisson parameter vector {éj,
j=1,..,J}. For example 1, if the budget B=$50, the UB; would becare =
25 since its cost C3=$2, but with a Poisson mean parameter of 63=2, the
item availability Ay would become extremely high; we could thus specify
a max A4 = 0.999999 (or amy other reasonable mumber such as 5 times its
standard deviation) for each item, which would further refine the
respective {IB} and {UB} vectors. This procedure shall be the ane
adopted for the remaining examples, including the mmerical examples
presented in a later chapter. However, we must ensure that the optimal
solution vector {Sj} using this procedure does not contain any S5,
j=1,..,J that is at its minimm or maximm value, otherwise, the
soluticn is not guaranteed to be the true optimal ane; thus a sinmple
check on {Sj} optimal values campared to its minimm and mexdmum value
is required.

3.2.5 Lower bamd on Cg. We can establish a lower bound IB(Cg) an the
total cost solution Cg(.) abtained when increments are used from stage
Jd=J-1,..,1; suppose we are given a budget of $50 and we use increments
Of ¢1=$5 and c=$3 as opposed to $1 increments in table 3.1, then we
can lose no more than $3 at stage 2 since rows are separated by at most
$3 ard by at most $5 at stage 1 for a total of stricly less than $8. In
general the total loss, denoted R, will be < & Cy. j=J-1,..,1. So,
given a starting available budget of B=$50 at stage j=3, the total cost
solution vector Cs(.) 2B - 8 or $50 - $8 = $42.
'Ihesizeoftheerrorsonhowfarawaycancsbefrunthe
starting budget B can also be expressed as % of the budget or Rx100%/B
and deperds an the size of increments used at each stage j=1,..,J-1 as
well as the sequence the items are listed, and the budget size B.
Camparing the 2 different sequences ($5,$3,%$2 vs $2,$3,$5) for a given
available budget of B=$50 at stage 3 gives us a maximm a-priori error
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Of ($5+%$3)/$50 or 16% vs ($2+$3)/$50 or 10% respectively and a
corresparnding IB(Cg) of $42 and $45., which can be used as a gquide for
acceptability of results by an analyst.

Thus, if working backward from stage 3, listing the items in
increasing order from j=1,..,J-1 would yield the lowest possible
theoretical error. Unfortunately, no conclusion can be drawn about the
effect on the performance measure Ag (or the expected system backorders
BO) ascanbesemfmntheamnaxytableB.Zabove, but the % error on
the system performance measure Ag can be unacceptable for lower
available budget values, and progressively improve for higher budget
values, as would be expected.

As shown in table 3.2 (colum with $5 item first) with B=$50 from
stage j=3, we obtain the following near optimal soluticn vector {s} =
{4,5,7} and Ag = .99081 at a total Cg = 4x$5 + 5x$3 + 7x$2 = $49 which
is greater than the a-priori IB(Cg) of $42 as expected and the error
achieved 8 = $1 (or 2% of B=$50), compared with the true optimal
solution vector {S} = {4,6,6} and Ag = .99090 at a total cost Cg = $50
which is greater than IB(Cg) = $45, and the error achieved 8 = 0 (or 0%
of B=$50) . The solution vector {S} = {4,6,6} with Ag = .99090 is also
guaranteed to be the optimal solution as confirmed by table 3.1 since
all possible budget values were emmerated.

3.2.6 Summary. The first major praoblem of DP methodology is to ensure
all possible budget values are emmerated at intermediate stages
j=2,..,J if we are to guarantee that true optimal solution is found. We
could solve the problem by emumerating at each stage j=2,..,J all
possible budget allocations (combinations) resulting from every budget
value examined at the previous stage j-1 and successively adding budget
increments of $Cj (item's cost from the previous stage), up to the
mexdimum possible amount that can be allocated at the current stage.

Or, alternatively, we could accamplish the same cbjective starting
fraom the last stage J and working backward for each stage from j=J-
1,..,1 to stage 1 by successively subtracting from every budget value
examined at the previous stage j+1 an amount equal to 5 (item's cost
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fram the current stage), up to the maximum possible amount that can be
deducted as a result of increasing S at stage j+1.

This latter approach will be shown next to be equivalent to a FULL
network representaticn of the DP problem and guarantee the true optimal
solution will be found; furthermore, the total mmber of rows in the DP
tables as a result of the application of this technique will be equal
to the total mmber of nodes N in the network mimis 1 (destination
node) . This process, however, could also become quickly urmanageable as
the mmber of items J increases (mumber of stages) since the possible
budget values expand expanentially, particularly when non-integer
(real) budget allocation values are introduced whenever cj's for amy
item type j are real valued (dollars and cents) or of different orders
of magnitude when campared with ane another, which is very likely in
real-world applications.

We are thus still faced with an emmeration type of problem to
solve. Another solution would be to find the lowest common dencminator
of all cost terms Gy j=1,..,J and proceed as described in the
previous paragraph. Since item costs may have fractianal values, this
can lead to very small increments and increase significantly the mmber
of possible allocation amounts to be examined at each stage and would
also remain an emmeration type of praoblem for which the total mumber
of possible carbinations is unacceptable.

The second major problem with DP (other than emmerating all
possible budget allocation values for all stages) is associated with
the possible selection of equally sized increments to build the DP
tables at each stage, creating gaps between the rows listed in the DP
table for each intermediate stage j=2,..,J-1, and thus possibly losing
part of the budget remaining for each subsequent stage. However, this
procedure no longer guarantees that the true optimal soluticn will be
found and therefore, lower system availability Ag may occur as a
result; furthermore, it is subjective and can lead to different
solution vectors {Sj, j=1,..,J} depending cn the size of the
increments and also on the sequence in which the items are listed in
the DP tables, and the starting/ending values at each stage, as table



3.2 has clearly shown.

The subjective and unpredictable nature of the appradmate DP
procedure leads us to a search for faster, more efficient and practical
solution methods such as the marginal analysis and/or Lagrange
relaxation methods, to be presented in the next 2 chapters
respectively. As a quick overview of what lies ahead, table 3.3 below
provides a comparative summary of the optimal (or near optimal)
solutions for example 1, given an available budget B from $17 to $22,
cbtained from various other solution methods to be studied in the next

chapters.

Table 3.3: Optimal solutions for P1 with B=[17,22]

B s* Ag(s*) Cg(S*) Method used
17 (1,2,3) .5101 17 DMLF
18 (1,2,3) .5101 17 D FG
19 (1,2,4) .5638 19 DMLPFG
20 (1,3,3) .5892 20 D F
21 (1,3,3) .5892 20 D FG
22 (1,3,4) .6513 22 DMLF
Notes: D = Dynamic programming
M = Marginal analysis
L = Lagrange multiplier
F = Full network
G = Gap network (gaps in the budget)
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3.3 FORWARD AND BACKWARD RECIRSION FOR MODEL P2

3.3.1 Procedure. A forward/backward recursion formula for the case of
an additive return function, can also be found to solve model P2 using
the following notatian:

Stage j=1,2,3 = item j

State bJ = amount available for allocatian

up to the end of stage j
Decision variable
Sy = mmber of items from the allocation of Yy at
stage j

Y§ = amount allocated for S5 items at stage j = £ C555

Return function

BO; (S4) = Expected backorders for item j

[+ <]
=Z (x-S5).p5 (x,64)
s Sj) -pj (x, 65
Forward recursive formula
fo(bj=0) =0
fj(bj): K)J(yj) + fj-l(bj'Yj) for j=1,2,3
Optimal value fj*(bj) at amny stage

£5°04) =min { BOj(y§) + £5-1 j-v4) }
3 ny; Tye oty 3

in S: ?S?s{nijs(fj) + fj-l(bj—Cij) }

where bj: all possible available budget values
Yj= all possible values to be allocated
= [min Yy, max yj]
min Yi= [cj (min Sj)]
J
mex y4= [B - I cj (max Sj)]

1=1
i<>j
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The solution procedure is to start at stage j=1 (item 1) and
determine the optimal allocation Y§ (or S4) for all its possible
values, whenbj is available up to that stage; ance the optimal
allocaticon has been calculated for a budget B at the last stage J has
been calculated, the optimal allocation {Sy} is determined by working
backwards from J to stage 1.

3.3.2 Optimal solutian. The sequence of optimal allocations for example
1 in the range B=[17,22] for model P2 to minimize total expected
system backorders BO is shown in the summary table 3.4 below (no DP
tables are included) alang with other possible solution methods, to be
discussed later. All of the allocations generated by the DP procedure
are guaranteed to be undominated, if all possible budget values that
can be allocated at each intermediate stage similar to model P1, and
are described as follows:
- If S'eSp, then BO(S)<BO(S') ==> Cg(S)>Cg(S') for
all other allocations S, hence S' is the optimal
solution for P1 with Cg(S') as the budget
- If S'eSg, then Cg(S)>Cg(S') ==> BO(S)<BO(S') for

all other allocations S

In other words, the sequence of allocations generated for any
specified budgetary values (from $17 to $22 shown in this exanple)
gives us the entire trade-off curve between the total system backorders
BO ard the system costs Cg for CgsB that is: {BO(S),Cg(S)}; or,
similarly, ane allocation is said to daminate another if it has either
(1) less backorders at no more cost, or (2) no more backorders at less
cost. We also note that BO is nonincreasing as Cg increases and
approaches 0 for an arbitrary large budget value.
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Table 3.4: Optimal solutions for P2 with B=[17,22]

B s* BOg(S*)  Cg(S*) Method used
17 (1,2,3) .8669 17 DML

18 (1,2,3) .8669 17 D

19 (1,2,4) .7240 19 DML

20 (1,3,3) .6760 20 D

21 (1,2,5) .6702 21 D

22 (1,3,4) .5328 22 DML

Notes: D Dynamic progranmming

3.3.3 Sumary. The same comments apply for model P2 to minimize BO as
for model P1 to maximize Ag previously described. The procedure
guarantees that all the allocations in {Sg} that minimize BO are
undaminated, as lang as all possible budget values remaining are
emmerated for all intermediate stages j=J-1,..,1, which lead to the
appraximate DP procedure with the problems of selecting incremental
values, thesequoeitarsarelistedandthebeg:’mingandendrarge
of possible allocation budget values remaining at each stage.

In the next section, we develop a FULL network structure
(equivalent to the exact DP method) of the same problem and therefore
Quarantees that the true optimal solution will be found, while a GAP
network structure (with GAPS in the budget) is equivalent to choosing
increments of ¢4 at various stages; although, for the GAP network, the
error bound an Cg from the budget B is identical to the cne calculated
previcusly, i.e. £ 5, j=J-1,..,1, the GAP network procedure can be
shown to be slightly more accurate and therefore likely to give better
results than the approximate DP procedure with increments.

Both types of network structures (FULL and GAP) will also be
applicable to all other models studied here in this thesis (models P1,
Pla, Plb, P2, P2a, P2b, P2' and PE), as well as for Ebeling's multiple
machine repair model, denoted model (PE) [see Ebeling 1991], which uses
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similar DP solution methodology, but uses an impractical or
unrealistic mmerical exanple and does not discuss the camputational
difficulties associated with it.

3.4 FULL NETWORK STRUCTURE

3.4.1 Concept. The contents of this section describe the network
structures and the solution procedures to solve problems related to all
our models. The main reasons for discussing the network structures are
as follows: 1) the lack of practical models represented as networks in
the literature, 2) drawing parallels with DP methodology and its
equivalent structure and 3) comparing the GAP network with the
appradmate DP methodology.

The optimal solution can be found with a node labeling procedure
such as Dijkstra's algorithm for the shortest path in a network and the
techniques autlined here are purely academic and for small scale
prablems anly; for larger scale problems, applying DP at each
successive stage or alternate methods discussed in the next chapters
would be far more productive.

The cancept is to construct a network in which each stage
(j=1,2,..,J) represents an item type and whereby part of the budget is
allocated for 85 items. Nodes represent the exact budget remaining to
be allocated for the subsequent stages after purchasing S5 items at
stage j ard each arc length represents the cumulative Poisson
availability Ajk resulting from the allocation (purchase) of k items at
stage j. The same concept is applied in the case of model P2 to
minimize BO except that the length of each arc represents the mmber of
backorders BO4k resulting from the allocation of k items at stage j.

For both models P1 and P2, the dynamic programming method is used
to develop each stage of the network and the marginal analysis to
create each node and each arc within each stage. While a stage is
developed, the sequence of node mumbering becomes a critical factor
since we must keep track of the exact budget label for each node
created (hence FULL network) which can be discarded ance we proceed to
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the next stage.

The result is a directed acyclic network for which the optimal
solution for model P1 is abtained by finding the most reliable path in
the network through a matrix multiplication algorithm or equivalently,
finding the shortest path in a network when the transformation to -
In(Ajx) for each arc is performed.

For model P2 to minimize BO, the shortest path can be directly
applied to the network to cbtain the optimal solution, without any arc
transformation, by calculating for each arc the expected backorders
BO4k as a result of allocating k items type j at each stage.

In the literature, there are very few inventory systems that are
solved using network analysis but the method described in this chapter
offers a better and faster altemative other than DP for finding exact
optimal solutions to models P1 and P2.

The network for model Pl is constructed similar to the resource
allocation prablem described in [Winston 1994] which is set up as a
linear knapsack problem; the Turmpike theorem discussed by Winstan,
based an sorting the benefit to cost ratio of each item by decreasing
order, is valid only when the cbjective function is linear ard is
equivalent totherrarginalanalysisprocedm:eden'.vedinthenact
chapter, except that the benefit to cost ratio presented here is non-
linear i.e. the increase in availability as a result of adding cne more

chapters 8 and 10) such as distributicn management effort and
financial allocation to projects whereby the DP prablem structure can
be represented as networks and solved with a shortest (or langest) path
algorithm.

Other examples of network analysis can be found in (Lawler 1976 ch
2 p.64] for the 0-1 spare parts profit mexdmization problem in knapsack
form where the solution is to find the langest path in the network.
[Mamer and Smith 1982] has analyzed a 0-1 type of "tool kit" problem
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which is solved using a maximm flow/ minimm cut algorithm as
described in [Lawler 1976 ch 4 p.125] for a spares provisioning type of
problem.

3.4.2 FULL network for model P1 (Max As). The same exarple 1 previously
described for model P1 with the dynamic programming, will now be
solved using the FULL network analysis with B=$20 to keep the network
structure to a reascnable size. The parameters are repeated here for
convenience: (B=$20, 61=1, 6;=1.5, 63=2, c;=$5, c2=$3 and c3=$2, min
A4=.001 and max Aj=.999) - The procedure results in an acyclic network
ard is illustrated in figure 3.2 below. Each arc length thus represents
the cumilative Poisson probability A4k if k items are allocated at that
stage; stage 1 for item type 1 with k=[min=0, max=(B/cy)] or k=(0,4];
we must keep track of the exact budget left after allocating k items at
stage j=1.

Note that at the last stage j=3, in ocur example, the "sink" or
"destination" node mumber 24 is created and the reverse procedure is
used to determine the possible allocations (mumber of items type 3 and
A3k, k=[0,8]) from the preceding nodes to the destinaticn node. The
final result is an acyclic directed network consisting of N=24 nodes
and A=42 arcs for which the optimal solution can be found by applying
Dijkstra's shortest route node labelling procedure or same other
method.

Within any stage j=2 to j=J-1, nodes are created ally if no other
node with the same budget label (called a matching label) has been
previcusly created; this prevents multiple nodes with the same budget
labels from being urmecessarily created and ensures that multiple arcs
emanating from different nodes at the previous stage will in fact be
djzectedtothesaremmberednodewithﬂuesareexacthldgetrerajnmg
at the current stage. The mmber of times an arc is directed to an
already existing node or sharing the same budget labels are called
matching labels and are cumulated with the value M which is 3 for aur

example.
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The solution using Dijkstra's method for this small example yields
the optimal allocation vector {S*}={1,3,3} by selecting the shortest
path through nodes 1-3-17-24 in the network for a total path length or
distance of T -ln(Ajk) = .5289223 ard a corresparding system
availability Ag of exp(-.5289223) = .5892397 which is the same optimal
solution abtained from exact DP earlier.

3.4.3 Comrents. One of the critical computational problem associated
with this approach (equivalent to establishing rows in DP tables) is
that the budget remaining when creating nodes and its associated budget
node labels, is a real (fractional) value as opposed to an integer
value, caused by individual item costs as is usually the case in
practice. This will result in a large increase in the mmber of nodes
Created as the mmber of items (and therefore mumber of stages)
increases and will quickly became unmanageable, as was the case with
the exact DP method; when faced with the decision to select "suitable"
incremental row values of budget allocatians for appraximate DP tables
described earlier, the results can become unpredictable. The reducticn
of network size with the various available techniques just mentioned in
the various sections above become of critical importance, just as it
was for DP, but leads to additional problems, as discussed earlier and
reiterated below.

We can significantly decrease the mmber of possible allocations
by specifying lower {IB;} and upper bounds {UBj} quantity vectors on
the mmber of k possible items of each type j=1,..,J to consider, but
could lead to possible infeasibility for small budgets or that cne of
any item j is at its lower or upper bound, in which case the solutian
vector {Sj} cbtained is no longer guaranteed to be optimal.

The selection of how individual items should be considered before
the network is created, which is equivalent to the sequence the items
are listed, becomes an important factor. Although the mmber of
possible "matching labels" M camnot be accurately predicted, regairdless
of the order in which the items are considered (and therefore the
nunber of nodes and arcs), then listing the most expensive items first
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(in decreasing order of costs c(1)>C(3)>..>C(3)) should ensure that
less nodes and arcs are created in later stages, ard equivalently that
the mmber of corresponding rows in DP tables is less. That is why item
j=1 with ¢;=$5 in figure 3.2 has been listed first followed by c=$3
and c3=$2 as the last item.

Had we listed the least expensive item first, i.e. cy=$2 followed
by c;=$3 and c3=$5, the network created by this procedure using the
same original parameters of example 1 would have resulted in N=24
nodes, A=42 arcs and M=3 matching labels vs N=19, A=59 and M=34 for
the original network, with the most expensive item listed first
(c1=$5) .

The important conclusion here is that the total mumber of rows in
the DP table = N-1 nodes created as a result of the FULL network setup
procedure and that the total mmber of DP cell evaluations = total
mmber of arcs A in the network, as shown in the equivalent DP table
3.5 below. The total mmber of rows of the DP table is exactly equal
to the total mmber of nodes N of the equivalent network less 1
(destination node) or N-1 = 24-1 = 23 in figure 3.2 and that the total
nnber of entries to be evaluated in the DP table is equal to the
mmber of arcs A = 42; the procedure developed here gives us a
camwenient way to quickly estimate the size of the problem should DP be
used to solve the problem; the mmber of matching labels M simply mean
the mmber of duplicate rows that would have the same budget value
within a particular stage.



Tabl ; e ! Min Aj=
Stage j=1 Lamda = 2.00 ctl.min,in  $2.00 $0.00 $1.00
b1\S1 0 1 2 3 4 5 6 7 8 9 10 | rowmax
$0 0,13534 0 0 0 0 0 0 0 0 0 0 {0.13534
$1 0,13534 0 0 0 0 ] 0 §0.13534
$2 0 0.40601 0 0 0 0 DP rows = Nodes - 1 =23 0 | 0.40601
$3 0 0.,40601 0 0 0 0 DP entries = Ascs = 42 0 § 0.40601
$4 0 0 0.67668 0 0 0 0  0.67668
$5 0 0 0.67668 0 0 0 0 0 0 o 0 1 0.67668
$6 0 0 0 0,85712 0 0 0 0 0 o 0 §0.85712
$7 0o ] 0 0,85712 0 0 [ 0 [\] 0 0 ]Jo.85712
$8 0 0 0 0 0,84735 o 0 0 2] 0 0 ] 0.94735
$9 0 0 0 0 0,94735 0 0 0 0 0 0 [ 0.94735
$10 0 0 V] 0 0 0,98344 0 0 0 0 0 §0,98344
$11 0 0 0 0 0 0,98344 0 0 0 0 0 ] 0,98344
$12 0 0 0 0 0 0 0.99547 0 0 0 0 § 0.99547
$14 0 0 0 0 0 0 0 0.998%0 0 0 0 §0.99890
$15 0 0 o] 0 0 [} 0 0.99890 0 0 0 ] 0.99890
$17 0 0 0 0 0 0 0 0 0,99976 0 0 ] 0.,99976
$20 0 0 0 0 0 0 0 0 0 0 0.,99399] 0,99999
Stage J=: Lamda= 1,50 c2.minin $3.00 $0.00 $1.00
b2\S2 0 1 2 3 4 S 6 7 8 9 10 § rowmax
$0 0.03020 0 o] 0 0 0 0 0 0 0 0 ]0.03020
$5 0,15099 0.22648 [0} 0 0 0 0 0 0 0 0 ] 0.22648
$10 0.21943 0.47813 0,54733 0.12645 0 0 0 0 0 0 0 10.54733
$15 0,22289 0,55530 0,76626 0,80086 0,39846 0.13473 0 0 0 0 0 ] 0,80086
$20 022313 0.55769 0.80796 0.91888 0.92975 0.67366 0.40563 0 0 0 0 ] 0.92975
Stage Lamda = 1,00 c3.minin  $5.00 $0.00 $1.00
b3\S: 0 1 2 3 4 S 6 7 8 9 10 | rowmax
$20 0.34204 0.58924 0.50338 0.22218 0.03009 0 0 0 0 0 0 | 0.58924
Table 3.5b: DP FULL network equivalent (Min Aj=.6)
[Stage = Lamda = 2.00 ci.minin_ $2,00  $0,00  $1.00
bI\S 0 1 2 3 4 5 6 7 8 9 10 ] rowmax
$0 0 0 0 0 0 0 0 0 0 0 v} 0
$1 0 0 0 0 0 0 o} 0
$3 0 0o 0 0 0 o] DP rows = Nodes - 1 = 11 0 0
$4 0 0 0.67668 0 0 0 DP entries = Arcs = 13 0 ] 0,67668
$6 0 0 0 085712 0 (o} 0 jo.85712
39 0 o 0 0 094735 0 0 0 0 0 0 10,94735
Stage Lamda = 1,50 c2.minin  $3,00 $0.00  $1.00
b2\S: 0 1 2 3 4 5 6 7 8 9 10 | rowmax
$0 0 0 0 0 0 0 0 0 0 0 0 0
$5 0 0 0 0 0 0 0 0 0 0 0 0
$10 0 0 0.54733 0,12645 0 1] 0 0 0 0 0 }0.54733
$15 0 0 0.76626 0,80086 0,39846 0,13473 0 0 0 0 0 §0.80086
_S_laﬂo Lamda = 1,00 c3.min.in  $5,00 $0.00 $1.00
b3\S: [}] 1 2 3 4 5 8 7 8 9 10 | rowmax
$20 0 0,58924 0.50338 0,22218 0,03009 0 0 0 0 0 0 § 0.58924
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Starting from stage J=3 with B=$20 (first row of the DP table 3.5a
ard therefore the first or origin node of the network), we have four
entries for row $20, creating rows $20, $15, $10, $5 and $0 at stage
J-1=2 as a result of the possible allocation of S3=0,1,2,3 0r 4
items type j=3 costing c3=$5 each. The procedure is then repeated from
stage j=2 to create all rows at stage j=1 as a result of the possible
allocation of S; = 2,3 or 4 items type j=2 costing $3 each. Note that
rows in the DP table (or nodes in the network) need to be created
before the actual optimal calculations of Ag are executed, just as was
the requirement to create the nodes and arcs of the network before the
shortest route optimal algorithm in the network is executed.

The following 5-item example illustrates how a network (and the
muber of rows in exact DP method) increases in size very quickly: with
an initial available budget of $500, min Aj=.70 and max A.j=.999 for 5
different types of items whose cost vector {scj} = {19.99, 17.67,
15.00, 11.11, 9.99} and Poisson parameter {5j} = {1,2,8,3,5} results in
a FULL network structure cansisting of N = 2012 nodes, A=3109 arcs ard
M=41 matching labels. The equivalent exact DP method with emmeraticn
of all possible budget allocation values at each intermediate stage
would thus require a total of N-1 or 2011 rows and A = 3109
availability calculations within all of the 2011 rows, without counting
the comparisons for each row to determine the row maximum; this
campares with N = 9245, A = 19454 and M = 1990 had we specified a
tm.mnunAj = .001 for each item j, j=1,..,S.

The GAP network discussed in a later section will deal
specifically with a powerful technique to reduce the network to more
manageable sizes, and is equivalent to the approximate DP method (with
incremental budget values at each intermediate stage), and although it
Cammot guarantee that the solution found is the true optimal ane, an
error bound an the total costs Cg similar to the appraximate DP is
shown, on average, to be slightly superior.

3.4.4 Full network for model P2 (Min BO). The modificatiens required

(if minimizing total system backorders BO in model P2) to utilize the
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full network concept and the solution procedures just described for
model Pl can easily be accommodated because its abjective function ard
its constraint(s) are also separable by item.

As for model P1, the network structure for model P2 is set up as
per dynamic programming, that is, each item represents a stage where
nodes represent the budget left as a result of adding 1 more item j
from a specified minimum k value to a specified mexdimum, and arc
lengths represent theexpectedrnmberofbackordexsmj from the
possible allocation of 55 items.

Successive arcs from each node then use the same marginal benefit
concept that was utilized in the marginal analysis solution procedure
for model P2 earlier, in that, adding 1 more item type j from S4-1 to
S4 results in a decrease of backorders by its camplimentary
distribution function Pj(85).

Since the length of each arc does not require any logarithmic
transformation unlike model P1, the optimal solution is found by
directly applying a shortest route algorithm such as Dijkstra's from
the origin to the destination. Therefore, the network structure for
model P2 is the same as the ane shown in figure 3.1 for model P1
except that the arc lengths represent the mmber of BOyk (S4) instead of
the cunulative Poisson prababilities Ajk's.

The same comments apply for model P2 as for model P1 to reduce
the network to a more manageable size: sorting and listing the most
expensive items first and a judicious selection of {LB(SJ-)} and
{uB(S§)} vectors for {s;}.

Because of the similarities between max Ag in model P1 and min BO
in model P2, the {1B(s4)} or minimm S;j's can be specified as {sy} >
{[6j]} or min Aj's=Ag such that L pj(x) fram 0 to S§ is = min Ag ard
appropriate mexdmum Sy's or {UB(Sj)} selected such that © pj (%) from 0
to S5 is < max A4 or applying equations (3.3) as before.

The permanent labelling process is also the same as for model P1,
since the nodes with the lowest mmber of backorders (bottam arcs of
each node) will be favored and as a result, will improve the
performance of the shortest route algorithm. Although example 1 was not
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solved for model P2 using the full network analysis method, it can be
programmed along the same logic as for model P1.

3.4.5 Machine repair model. The FULL network analysis techniques (and
the GAP network next) can be applied to other models such as the
classic machine repair prablem for repairable items described by
[Eveling 1991]. His model, denoted (PE) below, seeks to determine the
optimal allocation of repair chammels (or crews) Ky and spares levels
S4 for each item type j {j=1,..,J} in order to maxdimize the total
operaticnal system availability Ag subject to an investment constraint
made up of total purchasing costs Cljsj ard total repair charmel costs
C24Ky which nust be < the available budget B. The model is briefly
summarized as follows:

J J S5
Max Ag = TAj(SyKj) = T DAy 5(54.K;) (PE)
j:l j=1 n=0
J
s.t. ( Clij + CZjKj) s B (3.4)
j=1
Sj = 0,1, .., [(B-c39) /e15] (integer) (3.5a)
Ky = 1,2,.., [B/coy] «C " ) (3.5b)

where:
Ag = joint probability that the mmber of failed items do not
exceed their stock levels S§ or
= probability that all L systems are operating
(from queueing theory)
Sj = mumber of items type j held as spares
K4y = mumber of repair chamnels for item type j
C1j= cost per item type j
C24j= cost per repair chamnel type j
L = mmber of operating systems (items)

A3 (85.55) = E, 2,3 (85.K)
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= Steady state praobability of s S4 items in repair,
basedmtheM/M/Kj queueing system with (L + S5)
items where at least L items are operating.

As described in his paper, Ebeling optimizes Ag in two steps. The
first determines the optimal stock levels Sy and the murber of repair
chamnels K; for each item j, j=1,2,..,J, using a direct search
technique that must include a comparison of the optimal An,j(sj,xj) for
each possible budget allocaticn, unlike the network technique we will
be using here. The secand step allocates the total budget B among the J
types of items using dynamic programming, similar to the procedure
described earlier.

Besides the prablem of cbtaining accurate estimates for the
repair chammel costs C24's, the model would become much more complex if
any of the cost elements C1j Or Cy4 was real valued, as is usually the
case in practice. The mmerical exanple provided by Ebeling consists
of a J=4 item exanple with a maximm available budget B of $300. , L=10
operating equipments and the following failure rate parameters: {Gj} =
{.50,1.00, .25, .50}, the repair rates {p,j} = {4,6,3,5} and the item ard
repair chammel costs: {c15} = {15,5,10,5} and {c24} = {20,10,20,15}.

This exanple can be illustrated as a FULL network structure as
shown in figure 3.3 below. The procedure used to create the nodes and
arcs is almost the same as for model P1 for consumebles seen earlier in
the chapter.



Stage j=1 Stage j=2 Stage j

k1220 k2=10 kj=?

c1=15 c2e5 cj=?
= 7
= ?
= ?

)

N

=) indicates multiple arcs

Aks = Pj(k,s) = Prob of at least s operating items | k crews

Figure 3.3: Network for Ebeling example
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Dynamic programming is used in stages, ane stage for each item
type j; within each stage, arcs emanating from each of the nodes
Created at the previous stage (starting from the top node having the
highest budget remaining) are directed to previcusly created nodes if
they currently exist and have the same matching budget label, or are
directedintonewnodesmmbe.redinsequence. Each arc represents the
steady state probability An,3(S4,K4) or Age shown in figure 3.3, that
the mmber of failed itansdonot:exceedsj givenlcj repair chamels
for item type j.

Fram each node, repair chamnels Ky are successively added
starting from a minimm value of Kj=1 (at least 1 repair chamel to
ensure items can be returned to an cperaticnal state) to a specified
mexcimum value of [B/Z C24l; then, for each Ky value, spare items S§ are
also successively added fram its minimm of 0 to its maximum specified
value of [(B'CZj)/clj] ,» thus creating an arc emanating from a node with
a budget value label of say by and directed to a node with a budget
label value reduced to by - (€1584+c24K5) -

The procedure is repeated until stage J-1 and the reverse
procedure is then applied for the last stage J, as was done for model
Pl. The result is an acyclic network whose optimal solution can be
abtained by applying a shortest path algorithm once the length of each
arc has been transformed to -1n(Ap, 5 (S4,K5)) .

The network procedural setup described above for Ebeling's model
differsfrunn'odelplinthatthereisnorequimmttodmedcthe
optimal carmbination of the two variables Sy and K5 within each stage
since the shortest path algorithm and its correspanding
temporary/permanent labeling procedure autamatically determines the
best altemativeas, as already described previously.

The same network analysis technique can be used if the abjective
function in Ebeling's model was changed to minimize the total expected
backorders function BO; in this case, we could use standard queueing
results and seek to minimize Lg = I n.Ap §(54,K5) from n=S4+1 to
infinity; the length of each arc would then represent the expected
mmber of failed items times the Steady state probability which is
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solvedasaresﬂtofhavirngsj items heldassparesarxixj repair
charmels/crews for each item type j, j=1,...30.

The network reduction techniques studied earlier can also be
easily implemented; for exanple, lower and upper bounds {LBj} and {[]Ej}
for Sy and Ky can also be specified as a function of steady state
availability A, 4 (S4,K4) which can be much tighter restrictions than
anly the {UBj}'s specified by equations (3.5a) and (3.5b) in Ebeling's
model above.

Finally, the powerful reduction technique described next as a GAP
network will considerably help reduce the network of Ebeling's model to
a more reasanable size as the mmber of items J increases.

3.5 GAP NETWORK STRICIURE

3.5.1 Concept. A powerful alternative to the full network analysis is a
network structure that can quickly appruximate the optimel solution for
both models P1 and P2 by reducing the network size significantly. The
concept is nearly identical to the FULL network structure and will be
called a GAP network, ane in which gaps in budget node labels are
occurring while arcs and nodes are created, ard is equivalent to the
appraximate DP method with increments of 5 within each intermediate
stage.

The procedure is again represented by a network whereby each item
type j represents a stage just like dynamic programing and budget node
labels indicate the budget left for subsequent stages after allocating
S5 items at stage j, j=1,..,J. At the begirming of each stage and from
the top node of that stage, new arcs and nodes with their budget labels
are successively created as a result of adding k items of type j fram
its specified lower bound until its specified upper bound has been
reached or until there is no more budget available.

The anly critical difference from the full network structure is
that from the remaining nodes within each stage, arcs are again
successively created and the budget remaining as a result of adding cne
more item type j is calculated, then the arc is directed into a node
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already created at the current stage if it matches its budget label;
otherwise, if the budget remaining falls between two budget node labels
already created i.e. no match is found, then the arc is directed into
the lower of the two budget node labels instead of creating a new node
as was the case for the FULL network procedure. Furthermore, the arc is
directed into a newly created node (if no match is found or it doesn't
fall between two already existing nodes) with the new node having an
assigned budget label (remaining for subsequent stages) that is exact
i.e. no budget loss is incurred.

We note that since all nodes created within a stage are spread by
at most the amount Cj as a result of successively adding one more item
type j, a maximum possible budget loss of Cy may occur within each
stage by forcing the arc to be directed into a lower budget node and
therefore can incur a total possible maximum loss of £ S5, j=2,..,d.

The result is a directed acyclic network for which the optimal
solution is cbtained by applying a shortest path algorithm just like
the full network analysis. Since this procedure causes a possible loss
in the budget, the solution vector {S} may not be the true optimal
solution but it canstitutes a conservative lower bound IB on the system
availability Ag. It is also a true optimal solution for the
correspanding lower budget if a budget loss has occurred.

However, the major advantage over the full network structure is
that it considerably reduces the network size (mmber of nodes and arcs
in the network) by increasing the mmber of matching labels and
therefore dramatically improves the performance of the shortest path
algorithm used to determine the near or optimal solution. Before we
formalize the results described above, we shall demonstrate the

3.5.2 GAP network for model P1 (Max As). The parameters for example 1

with B=$20 are coarveniently repeated here: (B=20, 61=1, 62=1.5, 63=2,
€c3=5, c3=3 and c3=2, min A4=.001) . The network structure as a result of
the GAP network procedure is presented in figure 3.4 below.
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Once the first stage is campleted (from node 1 to nodes 2 to 6 in
figure 3.4), at each subsequent stage j=2,..,N, nodes and arcs are
Created as before from the top node of each stage to the bottom node
(emanating from nodes 2 to 6). Fram each node, a series of arcs is
Created, emanating from that node representing the cumilative
availabilitijk to nodes being created and mmbered in sequence with
the identifying budget remaining label after the possible allocation of
k items.

For ocur example, from node 2, arcs with length -1n(Ayg) to -
In(Ajg) directed to nodes 7 to 13 are created (Ajk where j=2 and
k=[0,6]), since with a possible budget remaining of 20, anly fram 0 to
6 items type 2 costing c,;=$3 each can be allocated or up to the
specified maximm of A4=.999 or until no more budget remains to be
allocated. Thus, nodes 7 to 13 are created exactly Cy = $3 apart with
budget node labels of $20, $17, $14, $11, $8, $5 and $2 budget
remaining to be allocated for subsequent stages.

The only critical difference between the FULL and GAP network
structures occurs when the process is repeated for nodes 3 to 6 to
camplete stage j=2 before proceeding to the next stage. From node 3
(budget of $15), an arc Ajx = Ago resulting from the allocation of k=0
items type j=2 should be directed to a new node to be created (node 14)
with a budget label of $15 remaining; however, nodes 8 and 9 with
respective budgets of $17 and $14 remaining (the cost spread between
these 2 nodes can be at most a maximm of C2 = $3 anly) have already
been created from an earlier node (node 2) within the same stage j=2,
therefore, node 14 is NOT created ard arc Ajp is instead directed to
the lower budget node mmber 9, incuring a budget loss of $15-$14=$1 in
the process.



i*3 =2 je1 j=0

Ajk = Availability from allocating k items type j (stage)

Figure 3.4: Gap network for example 1 with B=$20
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The top node (node 2) of the current stage j=2 thus determines the
starting budget node labels to be used for the next stage (j=3) and c;
= C2 = $3 determines the interval between budget node labels for all
nodes created at the current stage j=2 and fram which new arcs and
nodes will be created for the next stage j=3.

The same procedure is then successively applied for the next arc
Ajk = A1 directed into node 10 until the maximm k=5 value for arc
Ags, at which time node 14 is created at the bottom with a budget
remaining of exactly $0. The process is repeated for all remaining
nodes 4 to 6 to camplete the network structure at stage j=2. Budget
labels for each of nodes 2 to 6 can then be discarded, just like the
FULL network, ast:heyarenolongerrequ:i_redforthene:d:stage.

Finally at the last stage j=3, the "sink" or "destination" node
assigned mumber 15 is created and the reverse procedure identical to
the FULL network structure is used to determine the possible
allocations Az from the preceding nodes 7 to 14 to the destination
node 15. The final result is an acyclic directed network consisting of
a total rumber of N=15 nodes, A=33 arcs and M=12 matching labels during
execution, (vs N=24, A=41 and M=3 for the FULL network structure in
figure 3.1).

The solution using Dijkstra's method yields the near optimal
solution {S*}={1,2,4} at a total cost Cg=$19, by selecting the shortest
path through nodes 1-3-11-15 in the network. The total path length or
distance is = ¢ In(-Ak) = .5730885 and a corresponding system
availability Ag = exp(-.5730885) = .5637815 which compares with the
eact solution of {$*}={1,3,3} and Ag=.5892397 cbtained from the FULL
network structure and dynamic programming, or 4.32% error from the true
optimal solution.

3.5.3 Coments. In addition to the comments that applied for the FULL
network to reduce the size of the network (most expensive item first,
judicious selection of lower {184} and upper bound {uB3} vectors for
S4's, the concept of using GAPS in the budget to construct the network
canstitutes a most powerful technique to reduce its size and thus
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providesacawenientwaytodetemﬁnethetotalmmberofrowsarxi
cell evaluations within each row if the appraximate DP procedure with
5 increments at each intermediate stage.

Other than considerably reducing the network size, the other
major advantage is that it can easily accommodate real budget node
values (or fractional) without modifications, which is a major problem
for the full network (and the equivalent exact DP method) since it
Causes the mmber of nodes and arcs to increase significantly as the
mumber of items also increase and quickly become urmanageable. Finally,
the GAP network techmique can also be applied to the classic machine
repair model and Fbeling's model (PE) as was the FULL network
technique.

The GAP network procedure constructs networks that have
interesting properties and closely match those of the FULL network
procedure described earlier. Since the procedure specified increments
of C; in cur example (increments of any other size can be accamodated) ,
we know that the solution cbtained is not guaranteed to be the optimal
ane, as was the case for the approximate DP method discussed earlier.

It can be easily shown (proof amitted) that the mexdimm possible
budget loss that may result from the application of the GAP network
procedure is T ST j=2,..,J. For eanple 1, the maxdimum total possible
loss in budget is therefore T Cj 3=2,..,3 = cy + c3 = $3+$2 = $5 and
whose total costs Cg(.) =B - £ Cj. J=2,..,J or Cg(.) = $20 -
($3+$2=$5) = $15.

We can also state that we carmot cbtain a system availability Ag
lower than if we had started with a budget of Cs(.) =B - Sy, 3=2,..3
or $20-$5 = $1S for example 1; in other words, the solution vector {Sj,
j=1,..,J} generated from the GAP network structure provides us with a
lower bound IB(Ag) = .5730 on the true optimal system availability of
Ag = .5892 cbtained from DP earlier.

Also as a direct consequence, the maxdmm (a-priori) error R of
the total costs Cg(.) of the solution vector {Sj} obtained as a resuit
of the application of the GAP network procedure ard a shortest path
algorithm, denoted B - Cg(.), has to be smaller or equal to I cj,
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j=2,..,J or, expressed as a percentage (%) of the total available
budget B, [(B-Cg(.))/B] x 100% s [T cy/B] x 100% = B(%), j=2,..,J.
(Note that it isthesaneassayingthat:alowerbo.mdcmcs(.) is B -
Z cy(1+R), j=2,..,d).

For our small exanple, the a-priori error R(%) = ($3+$2)/$20 x
100% = 25% (or a lower bound for Cs(.) will be $20-($3+$2) = $15);
since the GAP network solution vector cbtained was {Sj}={1,2,4} at a
total cost Cg(S)=$19, the error ®(%) achieved was thus only [($20-
$19) /$20] x 100% = 5% of the total available budget B.

The GAP network procedure described in this chapter is almost
equivalent to the approximate DP method (with increments of c§ at each
intermediate stage j=J-1,..,1). Although the error bound cn Cg(.) is
the same as the one developed for the DP structure with equal sized
increments of $cj, the GAP network increments is governed not only by
the top node at each stage but also the secand top node etc.. so it is
possible for any given stage j=2,..J to create nodes with exact budget
labels remaining from the second top node or the third top node etc. .,
thus giving solution vectors whose total costs Cg(.) are likely to be
better (but carmot be worse) .

3.5.4 Gap network for model P2 (Min BO). Finally, the same type of GAP

network structure can be setup for model P2 to minimize the expected
systenbadmrdersmaswasthecaseherefornodelPltorra:dmizeAs,
theonlydifferencebeingthearclengths which would represent the
expected mumber of backorders BOjk as a result of allocating k items
type j instead of the Poisson cumilative availability A4k as in model
Pl. Thelowerbamdmcsarxithecorrespozﬁingezrorz(%) of the
budget B also remain the same as for model P1.

3.5.5 Camparisan Full vs Gap networks (J=5 item exanple) . We can now

demanstrate the powerful effect of the GAP network structure campared
with the FULL network with another exanple cansisting of anly J=5 items
which involves decimals: B=$500., min Ay=.7, max Ay=.999, item cost
vector {cj} = {19.99, 17.67, 15.00, 11.11 and 9.99} and Poisson
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parareter {65} = {1,2,8,3,5}. The results for the FULL and GAP network
structures in table 3.6 below indicate savings of more than 1 order of
nagnitudeinthernmberofnodesNarxiarcsAcreatedarxisavingsof
mrethanzordersofnagnitudeinsetupnmizgtine. The more
realistic cost parameters are such that budget node matching labels in
the resulting networks (and possible duplicate rows in DP tables) tend
to be low and conversely, themntberofnodesarxiarcsgrwrapidly.

Table 3.6: FULL and GAP networks sumary (J=5 items)

Type of network FULL GAP
Number of nodes N = 2012 86
Number of arcs A= 3109 331
Number of matches M= 41 224
Setup time (secords) T = 17.3 0.7

Optimal solution

Total costs Cg (S)
System availability Ag

$499.89 | $478.33
0.8719 0.8323

We note that DP methodology would require N-1 or 2011 rows and A =
3109 cell calculations (Aj X the highest availability at the previous
stage) and camparisons and selection of the highest of all A4's for
each of the 2011 rows to cbtain the true optimal solution by
enumerating all possible budget cambinations, without counting the
camparisons of Aj's required for each row.

The approcimate DP methodology, if using increments of size $cj,
resulted in the following near optimal solution vector: {Sj} =
{2,5,12,7,9} with Ag = .81005 ard Cg = $476.01, a loss of $500 -
$476.01 = $23.99 or 4.8% of B.

We also note that the a-priori maximm error ®(%) for Cs(.) from
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the original budget B=$500., which is applicable to the appraximate DP
procedmewithscj increments at each stage and the GAP network
procedure, are both identical and s [($17.67 + $15.00 + $11.11 +$9.99)/
$500] x 100% = [$53.77/$500] x 100% = 10.75% from the original budget
B=$500 when listing the items in increasing order of $c_-j starting at
stage 1. Thus, the lower bound on Cg(.) will be $500-$53.77 = $446.23;
the actual error achieved was [($500-$478.33)/$500] x 100% =
[$21.67/$500] x 100% = 4.33% of the budget for the GAP network (vs 4.8%
for DP with $Cj increments) .

The optimal allocation vector for the J=5 item exanple above, was
{s*} = {3,5,13,6,9} at a total cost Cg=$499.89 and Ag=.8719; this
solution compares with the GAP network near optimal solution vector (S}
= {3,4,12,7,9} and Ag = 0.8323 for a total cost of Cg=$478.33, which is
different and slightly better than the appraximate DP procedure with
thesarresc]- increments. Furthermore, a total of 21 nodes were never
examined during the execution of Dijkstra's shortest path algorithm for
the GAP network.

3.6 CHAPTER SUMMARY

This chapterdescribedhowtosolveu’odelsPlandPZWiththe
dynamic programming method, given an available budget value; the
results yield the optimal solution vector {Sj, j=1,..,J} only if all
budget allocation amounts are emmerated at every stage j=J-1,..,1,
which significantly increase the camputational efforts as the budget B
and/or the mmber of items J increases. Both models can be represented
as FULL network structures, from which the optimal soluticn can be
found and are equivalent to the DP method with a total mmber of rows
equal to N-1 nodes of thenetwoﬁcandcellevaluationsequal to the
total mmber of arcs in the corresponding network structures. Both
types of networks can thus be effectively used to setup the DP tables
and determine an a-priori error bound an Cg, if using the GAP network.

The appraximate DP strategy of emumerating possible budget
allocation values in increments at eévery stage no longer guarantees
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that the optimal solution will be found; the near optimal and
unpredictable solutions abtained with this method are a function of the
size of the possible allocation increments used at every stage, which
has a cumilative effect, the sequence in which items are listed or make
W the DP stages, and the starting possible budget allocation values at
every stage. This method is equivalent to GAP network structures for
which a LB an the total cost Cg can be developed.

As a result of these problems, we will analyze alternative
solution methods for our models such as the marginal analysis in
chapter 4 next, followed by the Lagrange relaxation method in the
following chapter 5, both of which are faster and more practical to
implement and will be shown to vield near or optimal solution vectors
and corresponding useful respanse curves {Ag, Cg} for model P1 and/or
{BO, Cg} for model P2 from which error bounds an Ag, BO and Cg can be
readily obtained. We shall then compare the results with the military
model discussed earlier when these methods are applied to larger scale
and more representative problems.
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CHAPTER 4: MARGINAL ANALYSIS SOLUTTION PROCEDURE
4.1 INTRODOCTION

Marginal analysis, also camonly referred to as incremental
analysis or the greedy algorithm, can be used effectively to solve both
Pl and P2. The analysis can be applied due to the structure of the
dbjective function and the constraint. When the dbjective function and
the canstraint are both separable by item and the constraint is
linear, the iterative procedure consists of calculating the benefit to
cost ratio for every item, selecting the cne with the best ratio ard
adding it to the current solution; the procedure is then repeated until
the budget B is exceeded by the additicn of the last item at the k+1 st
iteration.

A widely quoted paper an the subject is by [Fax 1966] who relied
on the generalized Lagrangian multiplier method developed earlier by
[Everett 1963] and discussed in the next chapter; Fax proves that the
sequence of allocations generated by the marginal analysis are
undominated and also proves optimality for the special case of
identical unit costs. Variants and the conditions for which it can be
applied, including the case of a non-linear canstraint and various
applications are also discussed.

[Rolfe 1971) has derived an application of the marginal
allocation in multiple-server service systems by seeking to minimize
expected queueing time subject to a fixed rumber of available servers
and is similar to the machine repair prablem analyzed by [Ebeling
1991], which was discussed earlier. [Shih 1974] has demonstrated this
alternative procedure for a special class of resource allocaticn
problems which is much simpler and faster than dynamic programming. He
also has provided a heuristic proof of its optimality in two simple
cases. [Mjelde 1975] has provided a general proof for the distribution
of effort problem with cne linear constraint. [Kao 1976] has provided
an alternative proof to Fax and has shown that the fundamental issue of
several applications in [Fox 1966], [Barlow and Proschan 1965] and
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(Rolfe 1971] is to show that the retum functions are concave.
4.2 GENERAL, PROCHIXRE

The general sequential marginal allocaticn procedure can be
applied [see Fox 1966] if each term in the abjective function is
separable by variable and if the function is cancave when maximizing or
canvex when minimizing. Adopting a similar notaticn given in [Fox 1966]
for the general procedure:

J
Max &(x) = ¢ <I>J (Xj) (P5)
j=1
J
s.t. C(x) = CjXj s M (4.1)
j=1
Xj = 0 and integer (4.2)

Steps: 1. Start with the allocation vector {x0}={o, ..,0};
2. Set k=1;
3. Gdlculate x‘ﬁ-xk‘]wej where € is any index for
which [ (6j%"1+1) -85 (K1) /c; is meodimm,
4. if C(K)>M, terminate; otherwise set k=ks+l and
go to step 3.

The procedure described above selects the most profitable item to
be added at each iteration until the total costs C(xX) > M and
generates a sequence of undominated allocations but not necessarily all
of them. The procedure does not guarantee an optimal solution unless
the total costs C(xX) is exactly equal to M.

4.3 PROCEDURE FOR MXIREIL P1

4.3.1 Derivatian. For convenience, we repeat ocur model P1 below:

J J 3
NBXAS=1TAj=1I’(§Jpj(X)) (P1)

j=1 j=1 x=0
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J

s.t. b CJSJ s B (4.3)
j=1
Sj20 j=1,2,..,J (4.4)

For our model, we can easily obtain separability by variable S5,
which is the first requirement of the marginal analysis procedure, by
transforming the dbjective function fram a product form into a sum of
separate functions (and variables S§) . Since Max Ag = T Ay is
equivalent to Max ln(Ag), we cbtain the following equivalent model
(P1'):

J J S5

Max In Ag = £ In(a4) = £ (In Ip; o) ) (P1')
j=1 j=1 x=0
J

s.t. L cJS] s B (4.3)
j=1
$520 j=1,2,..,0 (4.4)

The second requirement is that the abjective function be concave.
[Fox 1966] has supplied a general proof and [Black and Proschan 1959]
have proved it for the exponential /Poisson case for all values of s]
defined over the integer set S4=0,1, .. Since ane can show that if each
A4 is concave (non-decreasing) in Sy, the In (Aj) is also cancave and
the sum of cancave functions is also concave; therefore, marginal
analysis procedure as described by Fax can be applied to model P1 with
B=M, Aj(Sj)=<I>j(Xj) and Sy=xj. Once P1 has been transformed to model
(P1'), we can define the function:

d[ln(Aj (85+1))] = 1n (a4 (Sj+1))-ln(Aj (85)) (4.5)
which represents the increase in the cbjective function In Ag by adding
ane item type j in stock at a cost of ¢4 per item, then the benefit to
Cost ratio as a result of adding item j to the current solution would
become::

d{ln(a;(Sj+1))] = [In(A;(85+1)) - In@A;(S5)1 (4.6)
|



84

The procedure can be applied starting with any undaminated initial
allocatian vector; since {sk=0}={0,..,0} is cbviocusly urdominated, the
procedure is valid and can thus be formally defined as follows:

- Start with sk=0=(g,0,..,0);

- Set k=1;

- Calculate the benefit to cost ratio for each item:
d[In(a4(s5+1))1/ ¢4 ard select the item which has the
maximum ratio;

- If Cg(s%)>B, stop, otherwise set k=k+1 and
go to step 3 (repeat until B is exceeded).

4.3.2 Solution. The solution for example 1 given earlier with B=$20 and
the 3 item parameters {65} = {1, 1.5, 2} and {c5} = {5, 3, 2} yield the
following sequence of undominated allocaticns given that we start from
the initial allocation vector {Sk=0}=(0,0,0}:

Table 4.1: Marginal amalysis allocations for P1

S As

(0,0,0) .011
(0,0,1) .033
(0,1,1) .083
(ol ll 2) .139
(1,1,2) .278
(1,2,2) .403
(1,2,3) .s510
(1,2,4) .564
(1,3,4) .651

XN hWNNRO | F
NoELERvuno | &

4.3.3 Coments on the solution. The sequence of allocatiaons generated
by the marginal analysis procedure for model p1 are undominated. In
our example, given a budget B=$20, the solution vector {Sj}={1,2,4}
with a total cost Cg = $19 and Ag = .564 is an undominated allocation
vector if B had been $19, and thus yields a near optimal solution for
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the given budget $20. The optimal solution cbtained with dynamic
programming earlier was: {S*}={1,3,3} at a total cost Cg(S*)=$20 and
Ag(S*)=.589. If we had specified an available budget of $19 then the
solution cbtained from the application of marginal analysis procedure,
resulting in {S}={1,2,4} at a total cost Cg(S)=$19 would be optimal ard
would have also been cbtained with the DP method as shown in table 3.1
earlier.

So, the sequence of allocations cbtained from marginal analysis
and shown in table 4.1 above does not necessarily gives all undominated
allocation vectors {S} for all possible budget values but yields all
optimal solutions for Ag for all intermediate budget values B =
0,2,5,7,12,15,17,19, 22 in our example.

The major advantages of marginal analysis over dynamic programming
are that real valued total costs do not, in any way, hinder the
process, and that its execution time is much faster since the maxdmm
total mmber of iterations (items added in the sequence) is simply the
sum of the possible range (max S5 - min Sy) for each itanorEMaxsj,
j=1,..,J when starting from the initial allocaticn vector {min S5,
j=1,..,3} = {8}={0,0,..,0}. For exanple 1 with a specified budget
B=$20, the UB vector is simply {4,6,10} and the procedure will require
at most a total of {(4-0)+(6-0)+(10-0)} = 20 iterations.

A better initial allocation vector quantity S={Sk} with k total
parts would be to specify a minimum target for system availability Ag
such as, say Ag >.60 or any other appropriate value; since the
dbjective function for Pl is to multiply individual item
availabilities A_.j, we know that each Aj > Ag and a starting allocation
will be S4= smallest integer that satisfies:

A'j = %pj (x) > Ag (3=1,2,..,J3) (4.7)
X=

J
sK=(s1,S5,..,S7) withk = £ 85 (4.8)
j=1
and, as a result, determine the corresponding upper bound vector {uB})
as described in the previous chapter. If a {18, j=1,..,d} is
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specified, then it may yield an infeasible solution since the total
costs Cg may have already exceeded the specified available budget value
B, but more inmportantly, the marginal analysis procedure will guarantee
a sequence of urdaminated allocations as soon as all items j=1,..,J
have been increased by at least ane, thus requiring a simple check of
the starting and final allocation vector to validate the procedure;
therefore, the maxdmum mumber of possible iterations simply became
Z,‘{UB—LB}j, j=1,..,dJ.

4.3.4 Error bound on Ag. Using the marginal (or incremental)
allocatiaon sequencing procedure, we can derive an error bound o on the
system availability Ag as shown by the following proposition:

Proposition 4.1: Error « = Ag(S*)-Ag(SK) < Ag(sk*l)-ag(sK), the right-
hand side cbtained from marginal analysis after (k+l1) parts just
exceeded the budget.

Proof. Let {S*} be the cptimal soluticn vector to P1 consisting of a
total of k parts of all types; as Cg(S) increases with the incremental
addition of a part of any type at each iteration, then the following
inequality must hold:

C5(s5) s Cg(s¥) = B < cg(sk+l) (4.9)
since at same point during the allocation sequence of parts, the
(k+1) St part will eventually cause the budget B to be exceeded. From
the total costs Cg(.) in (4.9) above, we therefore dbtain the following
correspording system availabilities Ag(.):

Ag(SK) s Ag(S*) < Ag(sk+l) (4.10)
the last inequality must also hold since Ag(S) increases as Cg(S)
increases as a result of the incremental addition of a part of any type
j whose total increases from k to k+1; we thmobtainﬁeermraml\s
after subtracting Ag(SK) from all three sides of (4.10):

0 s Ag(S™) - Ag(S) < Ag(sk*l) - Ag(sk), or (4.11)

0= o < Ag(sk+l) - Ag(sk)
the right-hand side cbtained from marginal analysis after (k+1) parts
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just exceeded the budget ard this campletes the proof. Then the
solution with k parts not exceeding the budget is our near or optimal
solutian.

For example 1, from the sequence of allocations shown in table 4.1
after the k=8th part (costing $3) was added ard resulted in the total
costs Cg to jump from $19 to $22, thereby exceeding the specified
available budget B=$20; the marginal allocation sequence procedure was
therefore terminated after that iteration and the solution with k=7
parts is the near optimal solution. We can then determine the
theoretical error @ an Ag to be at most = Ag(sk=8) - ag(sk=7) -
Ag(S=1,3,4) - Ag(S=1,2,4) = .651-.564 = .087

In other words, we conclude that the true optimal solution Ag for
our target budget B=$20 lies between Ag=.564 at a cost of Cg=$19 and
Ag=.651 at a cost of Cg=$22. The actual error achieved can be campared
with the optimal DP solution (table 3.1) and is Ag(S*) - Ag(sk) =
Ag(s*=1,3,3) - Ag(S=1,2,4) = .589 -.564 = .025 or less than cne-third
of the theoretical error «. We also note that a camwenient lower bound
LB on the exact system availability Ag is readily cbtained from the
marginal analysis sequence of allocations: given B=$20, the lower
bound IB(Ag{S=1,2,4})= .564 at a total cost of Cg=$19 and, in general:

LB(Ag) = 1B(SK) (4.12)
such that Ag(sK) with k parts is the last allocation (before B is
exceeded at the next iteration k+1) cbtained from marginal analysis
with Cg(sK) s B.

4.3.5 Error bourd on Cs. Before the marginal analysis procedure is
carried out, we can also determine how close the total solution cost

(sK) will be from the specified budget value B, the co i
Cs rresponding
maximum (a-priori) error 8.

Proposition 4.2: The mexdmm (a-priori) error 8(%) for Cg(s) from the
budget B as a result of the application of the marginal analysis
procedure will be < max {Cj, j=1,..,J} *100 /B. The proof is similar to
proposition 4.1 earlier.
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Proof. Let {S™} be the optimal solution vector to Pl consisting of a
total of k parts of all types; as Cg(S) increases with the incremental
addition of a part of any type j at each iteration, then the following
inequality must hold:
Cs(s%) s Cg(S*) = B < cg(gk#l,
since at some point during the allocation sequence of parts, the
(k+1) St part will eventually cause the budget B to be exceeded.
Subtracting Cg(SK) on all three sides of the inequality, we cbtain:
0 = C5(8™)-Cs(85) = B-Cg(89) < Cg(sK*1)-cg(sK), but we know that as a
result of the incremental additicxlofapa.rtofanytypej at each
iteration of the marginal analysis, the total cost increase from the
Current solution Cg(SK) with k total parts to Cg(s%*1) with k+1 total
parts or simply CS(Sk"“l) -Cs(Sk) must be s max {cj, j=1,..,J3} as the
increasecamotexceedt:heincremtal cost of the most expensive of
all items j, j=1,..,J}. Therefore, the above inequality becomes:
0 = Cg(8")-C5 (%) s B-Cg(sK) < og(sk+l -Cs(S9) = mex {cj, j=1,..,3).
Dropping the temms Cg(SX*1)-Cg(SX) no longer needed and dividing
all sides oft:heabove:i.nequalitybthoexpress the error as a
relative proportion to the budget, we dbtain:

0 = [C5(8")-C5(sM)] /B s (B-Cg(SK)] /B < max {c5, jeg}/m
(exact) (achieved) (a-priori)

and multiplying by 100% to express the error as a percentage of the
budget B, we finally obtain:
Error 8(%) s max {cj, j=1,..,J} x 100% /B (4.13)
(a-priori)
which conpletes the proof.

In a later section, we shall describe the top-up marginal analysis
procedure that will fmtherreducetheenormcsfmnthen'ost
expensive item or max {c5, j=1,..,3} down to the least expensive item
or min {cJ-, j=1,..,J}. So, for example 1, since the most expensive item
costs $5, we know before we apply the procedure that the solution
vector {Sj} will yield a total cost solution Cg whose a-priori error
B8(%) will be:
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Error 8(%) = $5 x 100% /$20 = 25%
(a-priori)
which turns out to be fairly high for this small example with a
limited budget; we also know that the error achieved once the procedure
has been carried out, will be:
Error 8(%) = [B-Cg(SK)] x 100% /B (4.14)
(achieved)
which, for our example 1, turned out to be:

Error 8(%) = [20-19] x 100% /20 = 5%
(achieved)
The exact solution cbtained from DP earlier resulted in Cg

exactly equal to the budget B=$20, the error = 0% while the error
achieved from the application of marginal analysis above was reduced
fram a possible theoretical 25% (a-priori) to an actual 5% error from
the budget. Since the error size is based an the most expensive item as
campared to the budget B, increasing the available budget will
automatically reduce the error size proporticnally.

4.3.6 Example 2 (J=10 items). We now illustrate the marginal analysis
procedure with a larger scale J=10 item example 2 (file 10 10 in
chapter 8). With a specified available budget B = $15,000., item costs
ranging from the least expensive = $152 to the most expensive = $860.
and mean Poisson parameters ranging from 0.293 to 1.398; thus, the a-
priori maximm error 8 of Cg from B will be < $860/$15000 or < 5.73% of
the budget. By specifying a min Aj = .000001 and max A; = 0.999999 for
each item j=1,..,J=10, the maximm mmber of possible iterations of the
procedure will be £ {max - min}4, j=1,..,10 which turn out to be 87.

Starting from the initial alocation vector {sk=0}-{o, ..,0}, figure
4.1 below shows the respanse curve {Ag vs Cg} as a result of the
sequence of iterations until the budget has been exceeded at iteration
k+l = 33 rd; the initial iterations resulting in Ag s .01 are not shown
for any of the more camplex prablem in order not to downgrade the
visual appearance of the figures due to scale.

The solution vector {sj} = {2,2,5,3,3,3,2,3,4,5)} at a total cost
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Cs = $14,851 (achieved error an Cg s $149/$15,000 or less than 0.99 %
from B) at the k=32 nd iteration resulting in Ag = 0.93010 which is a
lower bound LB(Ag) while the k=33 rd iteration caused the budget
B=$15,000 to be exceeded by the addition of an item costing $860
(coincidence that it happens to be the most expensive) for a total cost
Cg = §15,711 and Ag = 0.94853 which becomes the UB(Ag) ; thus, the true
optimal solution lies between IB = 0.93010 s A* < UB = 0.94853 or less
than 0.01843 or 1.98% possible increase over the IB.
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The marginal analysis procedure proves to be a very fast and
efficient method to use repeatedly for several equipment types, ard
the response curve {AsvsCs} gives managers a very versatile tool from
which knowledgeable decisions can be made, if the aggregate system
availability Ag = A4 j=1,..,J is the performance measure to be
optimized. The next section discusses model P2 to minimize BO subject
to the same constraint and whose solution vector {Sj, j=1,..,10}
practically yields the same results, i.e. the response curve {BO vs Cg)
cbtained by minimizing BO also gives a correspanding respanse curve {Ag
vs Cg} nearly identical to the one just described above and thus also
gives near identical solution vectors {Sj j=1,..,J}. This conclusion is
valid for all larger scale mmerical problems presented in chapter 8.

4.3.7 Variant of P1 (model Pla). Solving P1 for an arbitrary high
budget B with the marginal analysis procedure described earlier, will
also solve the equivalent model Pla shown below:

J
j=1
J J S5
s.t. AS=7rA.J-=1r(£]pj(x)) z o (4.15)
j=1 j=1 x=0
S$§ =20 j=1,2,...,J3 (4.16)

where o is the minimum system availability specified by the user.
Exanple 1 could have been solved using this procedure for any a (as
given by discrete integer steps of S] 's) anly by specifying an
arbitrarily high budget value (say B=$100 vs B=$20) and anitting to
specify maximm (S5} values.

The reason is that the natural log transform of (4.15) above ard
the marginal analysis procedure can be applied to the model: Minimizing
Cgs.t. Z1n (Aj) 2 In o. The model is separable by item ard the
dbjective function is convex, which is equivalent to Maxxdimizing - Cg,
which is concave. The marginal analysis procedure would select the item
with the minimm cost to benefit ratio or simply cJ-/ [ln(Aj (84+1)) -
In(A5(84))], which is the reciprocal of equation (4.6) seen earlier for
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model P1. The sequence of iterations, as a result of adding items cne
at a time until the budget is exceeded, will thus be exactly the same.

The managerial interpretations of both models Pl and Pla are
clearly different from an operational standpoint; model P1 seeks to
max Ag subject to a meximum cost constraint (allowable budget) while
Pla attempts to minimize total costs subject to a minimum system
availability performance measure. Since model Pla is just the inverse
of model P1, its abjective function and constraint are both separable
by item (variable Sy) and its cost function is clearly convex, marginal
analysis can thus be applied to both models and will result in the same
sequence of undominated stockage level allocations {Sj} .

[Cahen, Kleindorfer and Lee 1989] analyzed a similar model,
without purchasing costs but including transportation and ordering
costs. The solution procedure presented is the general Lagrange
relaxation method for this type of model and proved (as Fax did earlier
in 1966) the close relationship between the two procedures in that the
solution cbtained from marginal analysis when meximizing Ag is the same
as the solution cbtained from Lagrangian analysis.

4.4 PROCEDORE FOR MIDEL P2

4.4.1 Derivation. As for model P1, we need an dbjective function which
is separable by item; model P2, however, is already separable by item
as the backorder function is the sum of individual item backorder
functions, eachmeofvmichiscomecinSj as will be demonstrated
shortly.

Therefore, marginal analysis is also applicable for model P2
since we could simply multiply the dbjective function by -1 and
maximize the sum of concave functions instead of minimizing as
described in [Fax 1966] and [Kao 1976].

J J o

Min BO=ZBOs =L ¢ (x—Sj).pj (x) (P2)
j=1 j=1 x=85+1
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J
s.t. £ c§85 s B (4.17)

j=1

8520 j=1,2,..,3 (4.18)

Theorem 4.2: The BOj(x) is canvex for all values of x defined over the
integer set {I1}={0,1,..}. A proof is supplied below even though it may
not necessarily be original.

Proof: We need to prove that the function BO(x) is increasing in x or
that the first difference of the function h(x) = h(x+l)-h(x) is
increasing in x. We first define the first successive difference
functians:

h; (x) = BO(x+1) - BO(x) and

hy (x) = BO(x+2) - BO(x+1)
and require to show that hy(x) > hj(x). First, we know that BO(x) -
BO(x+1) = 1 - F(x+1) and that BO(x+l) - BO(x+2) = 1 - F(x+2) by
expansian of each backorder function, an example of which is given
below. Then:
hy(x) = BO(x+2) - BO(x+1l) = F(x+2) - 1 and
hj (x) = BO(x+1) - BO(x) F(x+1l) - 1; therefore,
hy(x) = F(x+2) - 1 > hj(x) = F(x+l) - 1 and the strict inequality holds
since F(x+2) > F(x+l) for all values of x € {I} which campletes the

proof.
To apply the procedure, we need then to determine the benefit to

cost ratio for each item and select the best ane; the marginal benefit
of adding cne (1) item type j from S to §4+1 will result in a
reduction of backorder by its complementary odf P4 (Sj+1) =1 - Fy (Sj)
or simply 1 - Aj(Sj) as shown below with a simple example:

(=] o
from S =3 = BOj:xis fx—sj)pj(x) =x§3 (x-3)p5 (x)
;) =

= 0.p(3)+1.p(4)+2.p(5) +...
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[0 ] [ ]
to Sj+1 = 4 ==> Boj= z (x-Sj)pj(x) =z (x-4)pj(x)
x=85 x=4

= 0.p(4)+1.p(5)+2.p(6) +...
results in a net reduction in BO for item j of:

BO(S4=3) -BO(S4y=4)

1.p(4)+1.p(5)+1.p(6) +...

o o]
BO(S4) -BO(S5+1) = £ pj(x) = Py (S4+1) = 1-F5 (S§) = 1-34 (S) (4.19)
x=Sj+1
The cost of purchasing and adding the item to inventory from the
current solution will be Cj, the same as model P1 when mesdmizing Ag.
We note that if we start with an initial allocation of k=0 parts or
{sk=0}={0,0,..,0}, we can immediately calculate the system expected
backorder function BO = B0, (S4=0) which is simply the sum of the mean
expected murber of failures or = 6j, j=1,..,J and the marginal
analysis procedure can thus be formalized as follows:
- start with {sk=0}={0,..,0} and calculate BO = £65 given the
starting allocation vector SO;
- Set k=1;
- (Calculate the benefit to cost ratio for each item:
Pj(Sj)/ c4 and select the item which has the meximm ratio
i.e. provides the max net reduction of BO from all J items;
- If CS(Sk) >B, stop, otherwise set k=k+l ard go to step 3
(repeat until B is exceeded).

4.4.2 Solution. The solution for example 1 given earlier with B=$20 and
the 3 item parameters {éj} = {1, 1.5, 2} and {cj} = {5,3,2} yields the
following sequence of allocatians given that we start from the initial
allocation vector {sk=0}={0,0,0}:
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Table 4.2: Marginal amalysis allocations for P2
k Cg S BO
3
0 0 (0,0,0) 4.500 =X éj
1 2 (0,0,1) 3.635 | 3=
2 4 (0,0,2) 3.041
3 7 (0,1,2) 2.264
4 S (0,1,3) 1.941
5 12 (0,2,3) 1.499
6 17 (1,2,3) 0.867
7 19 (1,2,4) 0.724
8 22 (1,3,4) 0.533

4.4.3 Caments on the solution. The sequence of allocations generated
by the marginal analysis procedure for model P2 are undominated for BO
as was the case for Ag in model Pl. For example 1, given a budget of
B=520, the solution resulted in {S}={1,2,4} with a cost Cg(S)=$19 and
BO(S) = 0.724.

The optimal solution cbtained with the dynamic programming
solution procedure described in the previous chapter for model P2
yielded the optimal solution vector {S}={1,3,3} while the soluticn
cbtained from the application of marginal analysis resulted in the near
optimal solution {S}={1,2,4} with a Cg=$19; if we had started with a
budget of B=$19, then {S}={1,2,4} with Cg(S)=$19 would have been
optimal and the same solution would heve been cbtained with DP.

So, the sequence of allocations cbtained from marginal analysis
also yields optimal solutions for BO for all intermediate budget values
B=0,2,4,7,9,12,17,19,22 in our exanple, whereby a total of k=7
iterations or items were added, but does not necessarily produce all
the undominated possible allocations, as was the case for model P1.

We also note that the sequence of allocations generated by
marginal analysis for model P2 is not necessarily the same sequence
generated for model P1 but is highly correlated and, for all practical
purposes, nearly the same since Max Ag is similar to Min BO. All
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examples, including larger scale problems with up to J=99 items with
different parameter values presented in a later chapter confirmed this
finding and execution time proved to be appraximately twice as fast as
model P1.

4.4.4 Exror bounds on BO and Cs. As with model P1, we can derive an
error bound « for the total expected system backorders BO (and the

total costs Cg) when the marginal analysis procedure is applied to
model P2.

Proposition 4.3: Error o = BO(S*)-BO(SK) < BO(sK*1)-BO(SK), the right-
hand side dbtained from marginal analysis after (k+1) parts just
exceeded the budget.

Proof: Let {S*} be the optimal solution vector to P2 consisting of a
total of k parts of all types; as Cg(S) increases with the incremental
addition of a part of any type at each iteration, then the following
inequality must hold: Cg(sK) < Cg(S*) s B < Cg(sk*1) since at some
point during the allocation sequence of parts, the (k+1)St part will
eventually cause the budget B to be exceeded. We therefore have:

BO(sK) < BO(S*) < BO(Sk*1) (4.20)
the last inequality must also hold since BO is non-increasing (comvex)
as Cg(S) increases; we can then dbtain the following error o« an RO
after subtracting BO(SX) from all sides:

0 s a = BO(S*) - BO(sK) < BO(sk*l) - po(sk) (4.21)
the right-hand side cbtained from marginal analysis after (k+1) parts
just exceeded the budget and this completes the proof. The solution
with k parts not exceeding the budget is our near or optimal solution.

For our example 1, from the sequence of allocations shown in table
4.2 after the k=8th part (costing $3) was added and resulted in the
specified available budget B=$20 to jump from $19 to $22 and therefore
the marginal allocation procedure terminated after that particular
iteration. We can determine the theoretical error o on BO to be at most
= BO(sk=8) -Bo(sk=7) = BO(S=1,3,4)-BO(S=1,2,4) = .724-.533 = .191
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In other words, we can conclude that the true optimal solution BO
for our target budget of $20 lies between BO=.533 at a cost of B=$19
and BO=.724 at a cost of B=$22. The actual error achieved can be
campared with the optimal DP solution shown in table 3.6 is
BO(S=1,2,4) - BO(S*=1,2,5) = .670-.533 = .137. We also note that a
canvenient upper bound UB on BO is readily cbtained from the marginal
analysis sequence of allocatians as follows: given B=$20, the upper
bound UB(BO{S=1,2,4})= .724 ard, in general:

UB(BO) = BO(SK) (4.22)
such that BO(SK) with k parts is the last allocation (before B is
exceeded) obtained from marginal analysis with Cg(sX) s B.

Finally, the error bound cn Cg is the same as for model P1, namely
that Cg will be at least as close to B as the most expensive item or
max {Cj, j=1,..,J}, thus yielding an a-priori error 8 s max {cj'
j=1,..,J} * 100 / B, ard the error achieved as a result of the
procedure will be = (B - Cg) * 100/B.

4.4.5 Bample 2 (J=10 items). We now illustrate the marginal analysis
procedure for model P2 with the larger J=10 item example 2 described
earlier for P1. With a specified available budget B = $15,000., item
costs ranging fram the least expensive = $152 to the most expensive =
$860. and mean Poisson parameters ranging from 0.293 to 1.398; thus,
the a-priori maximum error 8 of Cg from B will be s $860/$15000 or s
5.73% of the budget. By specifying a min A5 = .000001 and max Ay =
0.999999 for each item j=1,..,J=10, the maximum rumber of possible
iterations of the procedure will be & {max - rm'.n}j, j=1,..,10 which
turm out to be 87. All of the above remain the same as model Pl to max
Ag earlier.

Starting from the initial alocation vector {SK=0}={o,..,0}, figure
4.2 below shows the response curve {BO vs Cg} as a result of the
sequence of iterations until the budget has been exceeded at iteration
k+l = 33 rd. The solution vector {Sj} = {2,2,5,3,3,3,2,3,4,5) at a
total cost Cg = $14,851 (achieved errar an Cg s $149/$15,000 or less
than 0.99 ¥ from B) at the k=32 nd iteration resulting in BO = 0.08472
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which is an upper bound UB(BO) while the k=33 rd iteration caused the
budget B=$15,000 to be exceeded by the addition of an item costing $860
(coincidence that it happens to be the most expensive) for a total cost
Cs = $15,711 and BO = 0.06210 which becomes the LB(BO); the true
optimal solution lies between LB = 0.06210 < BO* < UB = 0.08472 or less
than 0.02262 or 26.7% possible decrease over the UB. The % errors can
became fairly high as BO tends towards 0.

The same caments apply for model P2 as for model P1 when using
the marginal analysis procedure; it is much faster than DP and very
efficient in providing a response curve {BO vs Cg} that is extremely
useful for managers to plan and make decisions, if the aggregate system
performance measure to be used is to minimize EO.
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4.4.6m'smnndelmvsP2.Wenowcmparethe2nndelsPlarﬁP2
and find out that solving both models practically give the same

results; for example 1 with J=3 items and example 2 with J=10 items,
the results are exactly the same stock level vectors {Sj, j=1,..,3},
given the specified budget values, therefore the correspanding Ag and
BO values are also the same.

Figure 4.3 below gives the overlaid response curves {Ag vs Cg}
when solving P1 to meximize Ag (same as figure 4.1) and the
corresponding respanse curve {Ag vs Cg} when solving P2 to minimize BO
(same as figure 4.2). As the figure clearly shows, most of the
undaminated points generated with the marginal analysis procedure are
identical for both models and do not differ by much when some
iterations are not the same. For all larger scale problems presented in
chapter 8, the results follow the same patterm and can be considered
practically the same.

The reason for this striking similarity can be analyzed using the
marginal analysis derivation procedure; at each iteratian k, model P1
seeks to max Ag by selecting the best (maxdimm) ratio {1n A(S4+1) - In
A(S4) }/c4, 3=1,..,J which is concave for all values of $4=0,1,.. but
the resulting increase in A4 per dollar invested is not concave for
values of Sy below the mean Gj for the Poisson distribution, but do
becore cancave for values §§ > 64 individual Aj's provide the greatest
impact on Ag when Sj's are close to 4. For model P2 the best (maxdmum)
ratio {BO(Sj) - BO(S4+1) } /ey = (1-24 (S4)) /¢4, j=1,..,J or the item
providing the most net reduction in BO per dollar invested ard is
canvex for all values of Sj. Ttus, for higher values of Ag, all
individual item availabilities A4's have progressively higher S4 values
ard once all of thsnhavesjvalues >6j, the tails of the Poisson
distribution become well behaved exponential functions and the ratios
for both models are closely related: model P1 behaves like increasing
the Aj(Sj+1) - Aj(Sj) =pj(Sj+1) while model P2 is (1-Aj) =z pj(xj),
fram xj=Sj+1 to infinity, which tends towards pj(Sj+1) as S5 becares
increasingly larger and tends towards infinity.
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This explains why the response curve {Ag vs Cg} between the 2
models have several points that differ for low values of Ag, when A5's
are such that stock levels {Sj's} in the current solution are below
and/or close to their Poisson mean parameter values {65's} where the
mcreasemAj values impacts Ag the most, and progressively share more
undaminated common points as Ag increases past their means, and
eventually became equal by equalizing inventories across all items i,
j=1,..,J, since the ratios become less affected by their individual
costs cj.

4.4.7 Variant of P2 (model P2a). For the identical reasans described
earlier for the variant of model P1, solving P2 for an arbitrary high
budget value B with the marginal analysis procedure for backorders will
also solve the following equivalent model P2a:

Min Cs =ngCij (P2a)
J J o

s.t. BO =ji‘lmj =j£1 xisj(fj-.sj) By (x) s B (4.23)

Sj 20 j=1,2,...,0 (4.24)

where 8 is the mexdmum allowable total expected mmber of backorders
for an arbitrarily high budget value B ard given that we start at same
stockage vector quantity {S}. Example 1 could have easily been solved
by the marginal analysis procedure by setting a budget of say B=$100.
and the initial allocation vector quantity {s®}={0,0,0}.

With this initial allocatian, the starting mmber of total
expected system backorders is easily determined to be = T 65 and the
procedure will allocate cne item at a time selecting the maxdmum
benefit to cost ratio from all items at each iteration which is the
mexdmum net reduction in backorders per dollar invested and stop when
the total system backorders has decreased to the threshold value R set
by the analyst.

Again, the managerial interpretations of both models P2 and Pla
are also clearly different as were models P1 and Pla, but marginal
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analysis applied to both models will result in the same sequence of
undominated stockage levels allocation vectors {Sj} and therefore can
provide managers with an altermative soluticn methodology to choose
from in order to select the optimal stockage level vector {Sj,
j=1,..,J} based on the cbjective function they wish to optimize.

4.5 TOP-UP MARGINAL ANALYSIS PROCEDURE

We have seen that the regular marginal analysis procedure for both
models P1 and P2 (and others) results in a sequence of undaminated
allocation vectors {Sj, j=1,..,J} and a corresponding response curve
{Ag, Cg} or {BO, Cg} that should prove extremely useful to managers in
deciding the best appropriate service level to choose from an
arbitrarily high specified budget value. The procedure is much faster
than the dynamic programming procedure since the mmber of iterations
required is much smaller; before the procedure can be carried out, the
total possible mmber of iterations can easily be determined as the sum
of the range of possible values for each item or simply £ {UB - L‘B}j,
j=1,..,d.

Furthermore, we know that the procedure increases one item at a
time until the last iteration k at a total cost CX < B when the next
item to be added caused the budget to be exceeded at iteration k+1 for
a total cost {(¥*1} strictly greater than B; since each successive
undominated point {X*1 - X} can be spaced by at most the most
expensive cost item, an a-priori error of at most {CK*l - X} = (max
¢j, j=1,..,J} can easily be calculated. We now turn our attention to
the top-up marginal analysis procedure which will reduce the spacing
between iteration k and k+1 from at most the most expensive to the
least expensive item, thus reducing the error to {min ¢y, j=1,..,J}.

Once the last iteration k of the marginal analysis procedure has
given us the undominated point {Ag, Cg(k)} and therefore a lower bound
on Ag or IB(Ag), the next iteration k+l that added the next most
profitable item j whosecostc;_j caused the budget to be exceeded, also
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gave us the undominated point {Ag, Cg(k+1)} and therefore an upper
bourd UB(Ag) . It is possible to further improve the IB on Ag by simply
topping up the current optimized stock level vector {sj}, cbtained at
iteration k, by using marginal analysis and adding lower cost items
than the item cost at iteration k+l.

This procedure essentially starts by first eliminating all items
whose cost Cj = cost of the item added at the (k+l)st iteration since
noneofthencanbeaddedtothecurrmtstodclevelswithmte:medjng
the budget; then, from the remaining items whose costs are stricly
smaller, we select the most profitable cne still using the marginal
analysis procedure. If the item selected has a cost cj s B - {C5(k},
it is added to the current solution, otherwise, all remaining items
whose cost exceed the selected item are eliminated. The procedure is
repeated until no more items can be added or, conversely, until all
items have successively been eliminated, the last point cbtained on the
response curve {Ag, Cg} constitutes an improved LB an Ag or LB*(Ag),
but does not guarantee that it is undominated.

Adding an item using this method will autamatically increases Ag
the most profitable way and thus improves its lower bound from LB(Ag)
to LB*(Ag) and will bring the total cost Cg closer to B. Since the
process of eliminating items whose costs C4 causes the budget to be
exceeded, we know that the total cost solution Cg will be at least as
close to the budget B as the least expensive of all cost item or min
{Cj, j=1,..,J3}, or an a-priori error 8(%) = (B - min {Cj,
j=1,..,3})*100/B), which is substantially better than the one derived
earlier, which was based on the most expensive item or max {cj,
j=1,..,J}.

The top-up procedure is also applicable to model P2 and all other
models for which the regular marginal analysis applies, including
[Schaefer 1983] and [Ebeling 1991] models discussed earlier. In fact,
Schaefer used integer inventory costs (1,2,1} for J=3 items and the
top-up procedure would have resulted in the complete optimal response
curve for the model described in the paper, while incorporating more
realistic cost parameters in Ebeling's model would have resulted in a
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much more camputationally difficult problem to solve using DP and

We now illustrate the topup marginal analysis procedure with the
same larger scale J=10 item example 2 introduced earlier but at a lower
budget B=$10,000 vs $15,000. With a specified available budget B =
$10,000., item costs ranging from the least expensive = $152 to the
most expensive = $860. and mean Poisson parameters ranging from 0.293
to 1.398, as before; thus, the a-priori maximum error 8 of Cs from B
based an the least expensive item will be = $152/$10000 or < 1.52% of
the budget, which compares with 8.60% based an the most expensive item
for the regular procedure. Byspecifyi.ngaminAj = .000001 anduaxAJ
= 0.999999 for each item j=1,..,J=10, the meodmum mmber of possible
iterations of the procedure will be T {max - min}j, j=1,..,10 which
turn cut to be 87.

Starting from the initial alocation vector {sk=0}=(o,..,0}, figure
4.4 below shows the sequence of iterations until the budget has been
exceeded at iteration k+l = 23 rd, using the regular marginal analysis
procedure. The solution vector {SJ} = {1,1,4,2,2,2,2,2,2,4} at a total
cost Cg = $9484 (actual error on Cg s $516/$10,000 or less than 5.16 %
from B) at the k=22 nd iteration resulting in IB(Ag) = 0.62961 while
the k=23 rd iteration caused the budget B=$10,000 to be exseded by the
addition of an item costing $860 (coincidence that it happens to be the
most expensive) for a total cost Cg = $10,344 and UB(Ag) = 0.69948; the
true optimal solution lies between 0.62961 s A* < 0.69948.

The topup marginal analysis procedure then reverted back to the
solution vector cbtained at the 22 nd iteration and proceeded to
eliminate all items whose cost exceeded c,_j=$860 ard added the next most
profitable item from the remaining cnes, whose cost Cj was s $10,344 -
$10,000 = $344; as a result of the topup procedure, figure 4.4 shows
that three more items (2 type j=3 and 1 more type j=4) were
subsequently added to yield {sy} = {1,1,6,3,2,2,2,2,2,4} for a total
cost Cg = §9,974 (actual error on Cg s $26/$10,000 or less than .26%
from B) and improved the lower bound from LB(Ag) = 0.62961 to LB*(Ag) =
0.64895 or a 3.07% increase over the regular procedure. Every
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successive point ensures the function is strictly increasing and
daminates the previous one in the sequence, but cammot guarantee that
it is the true optimal solution. The true value of Ag is likely to be
slightly = the one fourd by the top-up procedure.
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4.6 INTERPOLATTON PROCEDURE

Since the topup procedure is likely to slightly underestimate the
true value of Ag, another heuristic procedure is to use a simple linear
interpolation at the budget value B between the two undominated points
IB (lower than B) and UB (higher than B) found earlier with the
marginal analysis procedure. Since this technique is equivalent to
drawing a straight line between the two points as opposed to the
increasing concave function drawn as a result of the top-up procedure,
the estimate for Ag is likely to be slightly higher than the true value
of Ag.

For the same J=10 item problem discussed above with a budget
B=$10,000., the linear interpolation between the two points LB and UB,
evaluated at B=$10,000 is illustrated in figure 4.5 below and fourd as
follows:

Interp Ag = LB(Ag) + _ (B-Cg(IB))*(UB(Ag) -IB(Ag)) (4.25)

(Cg (UB) -Cg (LB))
.62961 + (10000-9484)*(.65948-.62961)
(10344-9484)
.62961 + .04192 = .67153

which campares with the .64895 value or a 3.48% increase over the topup
procedure described in the previous section. This method is shown in
figure 4.5 below at the intersection of the straight line drawn from LB
to UB values for Ag and on the vertical line at B = $10,000. Even
though the estimate found using the interpolation procedure is, on
average, likely to be higher than the estimate found with the top-up
procedure, it cammot guarantee that it is an undominated point, nor
that it will always be higher.
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In order to campare the two methods more equally, the
interpolation of Ag should also be carried out at the Cg value abtained
as a result of the top-up procedure as opposed to the budget value B;
therefore, replacing B by Cg cbtained at the LB* (Ag) yields the
following alternate formula to (4.25):

Interp Ag = LB(Ag) + __(Cg(IB*) -Cg(ILB)) * (UB(A5) -IB(Ag))  (4.26)
(Cs (UB) -Cg (LB) )
= .62961 + (9974-9484)* (.69948-.62961)
(10344-9484)

.62961 + .03981 = .66942

which is close to the Ag value of .67153 when interpolated at B.
Camparisans of the interpolation procedure with the top-up marginal
analysis procedure for model P1 when maxdmizing Ag is further discussed
for several larger scale problems in chapter 8, which will also include
Summary results vs the current military model when optimizing items
individually. The same procedure can be carried cut for model P2 to
minimize BO. Since the end result of this procedure may give us a
better estimate for Ag, it does not give us the resulting stock level
vector {S]-, j=1,..,J} and will therefore not be analyzed any further.

4.7 COMPARISON MIDEL Pl vs BQUAL Aj's

Weaxenowinapositimtocarparetherespalsemes{Asvscs}
betwemmeqmmtmlitaxymdelwherebyequalAj'sazecarpatedvs
the marginal analysis procedure, whereby the most cost benefit items
are added one at a time until the budget B is exceeded. For the equal
Aj's model (military), the respanse curve {Ag vs Cg} was derived as
follows: a starting low value for Ay was specified ard for each item
j=1,..,J, the stock level S..J was cbtained from the cumulative Poisson
distribution, from which the system availability Ag = T A5, j=1,..,J
and the resulting Cg was calculated; then A4 was successively increased
toAj + (1-Aj)/1ooo and the procedure repeated until Cg exceeded the
budget B.



112

If the aggregate system performance measure Ag is the criterion to
be optimized, then the solution vector {Sj, j=1,..,J} and the resulting
points {Ag vs Cg} cbtained from marginal analysis will always dominate
the solution cbtained by equalizing Aj's across all items j=1,..,J. For
a given specific available budget B, the solution vector and the last
undaminated point {Ag vs Cg(k)} cbtained from marginal analysis at
iteration k and the next undaminated point {Ag vs Cg(k+1)} at iteration
k+1 may be dominated by equalizing Aj's across all items when Cg(k) s B
s Cg(k+l), but is highly unlikely. The reason would be mainly due to
the jump in costs fram Cg(k) to Cg(k+l), where Cg s B s Cg(k+l), as a
result of ane of the most expensive of all J items, which is impossible
to predict and can be considered a highly unlikely event, as figure 4.6
for eample 1 (J=3 items) below clearly shows.

The respanse curves {Ag vs Cg} for the 3 models: Pi, P2 and Equal
Aj's for a specified available budget value B=$50 in figure 4.6 do not
differ much and thus, result in stock levels {Sj, j=1,2,3} that are
identical (or nearly) for practically all possible intermediate budget
values fram B=$0 to B=$50, except for budget values that could fall in
between undominated points. For exanple, suppose we had specified
B=$26, marginal analysis for Pl causes both points {0.65126, $22} and
{0.81408, $27} to be undominated at these costs but the equal 24
(military) model would give the better solution {0.73655, $25} if B=$25
or $26 and would also give the same soluticn {0.81408, $27} for B=$27;
this event could theoretically occur for any prablem but is
increasingly unlikely as the mmber of items J increases.

The immediate consequence of this conclusicn is that significant
savings can be achieved by optimizing an aggregate system performance
measure such as meximizing Ag and/or minimizing BO. Since models Pl and
P2 result in identical (or nearly) stock level vectors {S]r j=1,..,3},
we shall mostly restrict our analysis to the camparison between the
current military model or Equal Aj's and model P1 to maximize Ag.
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Figure 4.7 below illustrates for the J=10 item exanmple 2 discussed
earlier, the differences between the response curves {Ag vs Cg} between
all 3 models: P1, P2 and Equal Aj's (military model) for 2 different
possible available budget values at B=$10,000 and B=$15,000., or at any
other possible budget value, for which the following carparative
results were cbtained:

B=$10, 000 Ag Cg

Model P1 (Max Ag, no topup): 0.62961 $9,484
Model P1 (topup, not shown) : 0.64895 $9,974
Model P2 (Min BO, no topup) : 0.62961 $9,484
Model P2 (topup, not shown):  0.64895  $9,974
Model Equal Aj's 0.61040 $9,550
B=$15, 000 Ag Cs
Model P1 (Max Ag, mo topup) :  0.93010  “14,851
Model Pl (topup, not shown) : 0.93010  $14,851
Model P2 (Min BO, no topup):  0.93010  $14,851
Model P2 (topup, not shown) : 0.93010 $14,851
Model Equal Aj's 0.90469 $14,513
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As can be seen from figure 4.7, theequalAj'snodel equalizes all
individual item availabilities A4's regardless of their cost and will
underperform the marginal analysis procedure; we note that the
respanse curves {Ag vs Cg} between model P1 and the model with equal
Aj's is the same from the starting allocation vector of {S} = {0,..,0}
whose total cost is Cg=$0, and progressively widens in the middle
portion of the Ag curve as stock levels S4's increase around their
Poisson means and cause the greatest increase in item availabilities
Aj's,- finally, it tends to become the same again for higher Ag values
since individual A4's became high enough that equalizing stock levels
across all items at a given Aj j=1,..,J, regardless of their costs,
becore optimal. For example 2 with J=10 items and Ag =.90 in figure 4.7
means that all Aj's > .90(1/10) - 0.99; at their current S5 levels, the
increase in Ag as a result of adding any item will become less and less
significant and less dependent on their cost parameters.

So, we can canclude from the above data that if anly $10,000 was
available for the period, the stock level vector {Sj} cbtained from the
topup marginal analysis shown earlier in figure 4.4 would cost Cg =
$9,974. and result in Ag = 0.64895 while the equal Aj's model
(military) stock level vector {sj} would cost $9,950. and Ag = 0.61040,
a 5.94% decrease in Ag at approximately the same costs.

Canversely, as the model Pla variant would show, in order to
achieve a minimm system availability Ag = .64, the vector {Sj} from
marginal analysis would cost $9,974. compared to approximately
$10,284. for the military model with equal Ay's, or a 3.0% savings (The
exact values at each iteration have not been shown here but are
available on request) .

If the analysis is projected over several locations, each having a
different mmber of equipments M which proporticnately increase
/decrease the Poisson mean parameters {éj, j=1,..,J}, then the increase
in Ag at each location, given a budget level or, canversely, the
savings in costs to achieve a minimm Ag at each location can become
significant when a system performance measure such as Ag is maximized
(or when BO is minimized for model P2) with the marginal analysis
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procedure as opposed to sinply equalizing inventory levels across all
items at a given availability level.

In figure 4.8 below, we analyze the differences in stock level
vectors {Sj} between the 2 models of the J=10 item example 2 by
plotting the difference between {sj, j=1,..,10} cbtained with the
marginal analysis and {Sj, j=1,..,10) cbtained from the equal Aj's
model, denoted {Margsj -E‘qualsj} on the Y-axis vs the cost to MIBF
ratio for each item, denoted 4 /MIBFj on the X-axis. Thus a positive
(+) difference for an item j indicates the mumber of those items that
the marginal analysis stocks more of thattypethantheequalAjnodel
and vice versa for a negative (-) difference.

As expected, items with (+) difference have lower cost to MIBF
ratio, meaning that the marginal analysis procedure will stock more of
an item that has either (or both) lower cost or/and high MIBF, i.e.
reliable items at low costs, as campared with the indiscriminate
process of the equal A4 model, which tends to stock more of an item
with high cost or/and low MIBF or less reliable and expensive parts, as
indicated by the (-) differences on the right side of the X-axis. This
finding becames more accentuated as the Poissan mean parameters {65}
increase; in our J=10 item example 2, parameters vary anly from 0.293
£o 1.398 but if the mmber of equipments M operating at a location
becore larger, then the Poisson means become proporticnately higher and
the same pattern becames accentuated as will be shown in chapter 8 for
larger scale problems.

The size of the gap between the 2 models can easily vary up to 10%
in the middle portion of the curve as the range between cost to MIBF
ratios for items within an equipment beccme progressively larger, as
wauld be expected, since the marginal analysis procedure will always
select the most profitable item to add at each iteration while the
equal Ay model disregards costs entirely and selects the mmber of
items to achieve a specified Aj across all items j=1,..,J; as discussed
earlier, the differences will be largest when stock levels S4 are close
to their means 64 and cause the greatest inpact an Ag.
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The Lagrangian multiplier method has also been used to solve
models similar to P1 and P2. Although the procedure is general in
nature, the derivatian to find the best and hopefully optimal value for
the multiplier is model dependent. We therefore have to manipulate the
models before we can begin a systematic iterative search procedure.

Two widely quoted papers on Lagrange multipliers, which are
important in our context, have been written by [Everett 1963] and [Fax
and Landi 1970] and applied in a variety of models. Everett has
developed a generalized Lagrange multiplier method for optimizing
functions that are not necessarily differentiable, which is well
suited for resource allocaticn models. The method does not guarantee a
feasible solution but, if one is found, then the solution cbtained fram
the application of the method is undominated.

For discrete types of models (like P1 and P2), Everett suggests
maximizing analytically the Lagrangian functicn assuming it is
contimious, and then testing the integer on each side, selecting the
ane that maximizes the Lagrangian function. The parallel corponents
exanple used by [(Kettelle 1962] to determine the system reliability,
is solved via the Lagrange multiplier method by Everett to illustrate
the procedure and the source of possible "gaps" caused by a discrete
function.

Fox and Landi compared different search methods to abtain the
multiplier(s) and showed that the minimax sequential search is the
bisection method. The technique can be applied in multi-echelon type of
inventory systems developed by (Sherbrocke 1968], [Muckstadt 1973 and
1978], Muckstadt and Thomas 1980], [Cchen et al 1992] as eanples.

The general procedures have also been described in textbooks such
as [Hadley and Whitin 1963], [Eiselt, Pederzoli and Sandblam 1987],
[Bertsekas 1982], [Hillier and Lieberman 1990], [Winston 1994], and
others.
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[Nahmias and Schmidt 1984] have studied a special case where the
multi-item "Newsboy" type of problem when demands are from a contimous
function (normal distribution) and the Lagrangian method causes
difficulties when optimal stockage levels for S4's are set close to
their mean mmber of failures.

[Cohen, Kleindorfer and Iee 1989] have generalized the procedure
for the reverse of model P1 treated here, which is equivalent to the
variant model Pla, already discussed, and lead to a different
managerial interpretation of the results. In this chapter, we derive
the procedure for the Poisson distribution for both models P1 and p2
(which will also be extended to the multiple locaticon case models Pib
and P2b, and develop the bounds on the multipliers, its initial
estimate and error bounds on the solutions.

The exploratory camparative test results for model Pla provided by
Cohen et all, were restricted to n=3,6 and 9 items and to the Lagrange
relaxation and the binomial distribution, which will be extended to 16
randamly generated test problems for the Poisson distribution with J=10
up to J=99 items and the mmber of equipments M=1 up to 20; results
will be campared and summarized in a later chapter. Although no formal
camparison in execution time between the two procedures are presented,
experimental empirical results indicate that the Lagrange relaxation
method is appraximately 5 to 10 times faster than the marginal analysis
for models P1 and P2, Plb and P2b (multiple location models), as
successive iterations of the Lagrange relaxation skip over several
iterations of the marginal analysis procedure.

5.2 IAGRANGE MILTTPLIER METHID KR Pl

5.2.1 Procedure derjvation. Model P1 and its modified version (P1')
are repeated here to illustrate the procedure:

J .
Max Ag = TAj =T ( gjpj (x) ) (P1)

J=1 J=1 x=0
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J
s.t. & CJS] s B (5.1)
j=1
Sj 20 j=1,2,..,J (5.2)
J J ):S:J
MaxlnAS=£ln(Aj) =Z (In pj(x) ) (P1')
j=1 j=1 x=0
J
s.t. & cJSJ < B (5.1)
j=1
Sj 20 j=1,2,..,J (5.2)

We form the following lagrangian function P1'' with the Lagrange
multiplier 6 based on model (P1') which is separable by item and use
the general notation for contimious functions fj for Py (x) and E'j the
cdf, instead of Ag:

J J
MaxL=.2 ln(FJ) +8 [B -'2 stj ] (P11')
J:l J:l

The solution to P1'' is to find the set of Sy that will maximize
L, by setting the partial derivatives to 0, i.e. dL/dsj =0 = fj/Fj -
8.cy which yields:
e* = £5/ [Fjc51 j=1,2,..,J (5.3)
The procedure is then to:
- select an initial value for 8, say 6;;
- determine all S's fram (5.3);
- calculate T C-_ISJ = By;
- if B <B, select 82<8; or if By>B, select 85>61
with a search procedure such as bisection ard
repeat until Bn=B or |8,-6,_1|< error o;
- mxrinPorDCMNallsj values.
The problems with the general procedure applied to discrete functicns
are as follows:
- calcaulating upper ard lower bauds for 6;
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- guessing the initial estimate 6; for §;

- canleadtoserimsprobletsv&msj-'saresnall, say s 5,
which is not umusual in practice with expensive/low demand
items since small changes in 8 may cause large variations
in the solution;

- the contimious assumption for Pj(x) for our model, which is
discrete (Poisson demand distribution) and lead to integrality
problems.

Although the procedure is well defined, the first two problems
described above became a significant factor as discussed by [Muckstadt
1978] for larger size problems in the U.S. Air Force; since the
determination of upper and lower bounds and initial estimates for 6 can
be inpossible to dbtain, it can result in a few unsuccessful trial runs
before the systematic search procedure is undertaken. For model P1,
however, we can solve these problems as shown in the next sections.
[Nahmias and Schmidt 1984] discusses the third problem while [Everett
1963] and [Fox and Landi 1970] analyzed the integrality problems
caused by discrete functions. Everett recommends to test the integer
solution cbtained from the procedure on either side to maxdmize the
Lagrangian function.

5.2.2 Upper and lower bounds for 8. Based on (5.3), note that as Fj

terds to 0, the ratio fj/Fj terds to 1 for the Poissan distribution
since p(x=0) /P(x<0] = 1; furthermore, the ratio £4/F4 decreases to 0 as
F4 tends to 1, since p(x=n)/P[xsn] = 0 for n in the extreme right tail
of the Poisson distribution. Thus the lower bound for 6 becames:

IB(68) =0 as Fj tends to 1 (5.4)
and, for the upper bound UB, as Fy terds to 0:
UB(6) = 1/ min [cy, j=1,..,J); (5.5)

in other words, UB(8) is 1/ least expensive of the J items.

5.2.3 Initial estimate for 8. Although any initial estimate 8, for o
between its UB and LB can be successful, it is desirable to reduce the
nunber of iterations to as few as possible; the procedure outlined next
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will ensure an excellent starting value for 1. The initial estimate 6,
for & can be determined as follows: for a reasanably high budget B
(usually the case in practice), we wish Fy to tend towards 1 resulting
in o* Closer to its LB of 0 since the ratio fj/FJ- tends to 0, and we
also want 6120" so that the corresponding value of B; is sB for the
simple reason that the next value 82 using the bisection search method
will halve the interval between 81 and IB=0 as illustrated in figure
5.1 below. Successive iterations will quickly tend towards 6*.

1B UB

0

Fie 5.1: Bonds and estimate of 0 far P1

Since all item availabilities Fy (or A) must be at least as large
as the system availability Ag, that is, Fy 2 Ag (j=1,2,..,0), we can
use (1-Ag) as a mumerator in (5.3) for the ratio fj/Fj which tend
towards 0, and use HBX[Cj] in the denaminator of (5.3) as well to
campensate for the fact that all Ay's will in fact be > Ag ard
therefore 1-Ay = 1-Ag; (1-Ag) is a conservative estimate for (1-34) .
Several examples suggest that the initial estimate works very well for
reascnable parameter values:

Y
1

61>6" 1/min[cy]

>

@

Initial estimate: 8y = (1-Ag) j=1,2,..,J0 (5.6)
max [c]

5.2.4 Solution. The solution example 1 given earlier with B=$20 and the
3 item parameters {65}={1, 1.5, 2} and {c5}={s5, $3 and $2} and a
minimm Ag = .001 and .600 displayed in tables 5.1 and 5.2 below for
Camparative purposes. The solution yielded the following Lagrange
multiplier sequence of allocations which stopped after 14 and 12
iterations respectively when a specified error was reached:
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0 S Cg(s)  Ag
.1998 0,1,2 7 .139
.0999 1,2,3 17 .510
.05 1,2,3 17 .510
.025 2,3,4 27 .814
.037 2,3,4 27 .814
.044 1,3,4 22 .651
.047 1,2,4 19 .564
.045 1,2,4 19 .564
.044 1,3,4 22 .651
.045 1,2,4 19 .564

Table 5.2: lagrange iterations for Pl, Min As=.600 (J=3 items)

6 S Cg(8) Ag
.08 1,2,3 17 .510
.04 2,3,4 27 .814
.06 1,2,3 17 .510
.05 1,2,3 17 .510
.045 1,2,4 19 .564
.0425 1,3,4 22 .651
.044 1,3,4 22 .651
.044 1,3,4 22 .651
.045 1,2,4 19 .564

5.2.5 Coments. First we note that the method does not guarantee an
optimal solution for B=$20 which was {S*}={1,3,3)} with Ag=.589 and
Cg=$20 cbtained earlier with DP because of the discrete nature of the
Poisson distribution and the derivation of the procedure that assumed a
contimious function. As recommended by [Everett 1963], we could test
all possible carbinations of Sj's on either side of the integer
solution which would have resulted in the optimal allocation vector
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{s*}={1,3,3}. Second, this method is much faster than the marginal
analysis described earlier, which is itself faster than dynamic
programming since the procedure skips several iterations of the
marginal analysis described earlier. Third, we notice the validity of
the UB, LB and the initial estimate 6;. For our example 1:

Ag=.001, LB=0, UB=1/2=0.5, 8;=(1-.001)/5 = 0.1998, B;=7

Ag=.600, LB=0, UB=1/2=0.5, 81=(1-.600) /5 = 0.0800, By1=17.

Fourth, the interpretation of the multiplier value as the shadow price
for the original constraint is more difficult to interpret for our
model. Since the modification fram P1 to (P1') uses the log
transformation of model P1, we can say that small unit increases in
the budget B will result in an increase of the cbjective functicn
In(Ag), by approxdimately 6. Since this is valid for small increases in
B coupled with the integrality problem due to the discrete nature of
the model, we must be cautious about its significance.

Finally, [Cohen, Kleidorfer and Lee 1992] have reported scme
experimental results of using this procedure with a model very similar
to model Pla, described earlier; although a restricted mmber of items
J=3,6 and 9 items and the Binomial distributicon instead of the Poisscn
distribution have been used, no comparison with the marginal analysis
hasbeennadeandtheauthorshavequotedarefereethatlagrange
relaxation may do fewer iterations than marginal analysis but each
Lagrange iteration may require more calculations than an iteration
done with marginal analysis.

The experimental results of mumerous problems (more than 100
generated prablems varying J=1 up to 99) indicate that Lagrange is
approxdimately S to 10 times faster than the marginal analysis, and all
of them giving the optimal solution in less than 30 iterations. Thus
the speed of execution is much faster and although it can be a valid
criterion for selecting this method over marginal analysis, the
response curve {Ag, Cg} can be made up of anly a few points (generally
less than 20), which do not give valuable information in between the
total initial costs Cg of the initial starting vector {sy, j=1,..,3}
ard the available budget B.
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If more points an the respanse curve {Ag, Cg} provided by Lagrange
relaxation is desired, then ane could conceivably use a different
searchpmceduxethanchebinaxyseamhpmceduredescribedbyFox 1966
ard used here; for example, sincewehavederivedalowerarﬁanupper
bourd for the multiplier 8, we could divide the range (UB - LB) into
say 100 equally divided values for 8 and solve for each cne; the most
important drawback of this procedure is that most of the points on the
curve may be above the available budget B.

The authors have also proved (as Fox did earlier in 1966) that the
optimal solutian vector using the Lagrange relaxation method for model
Pla (and consequently model P1) will be the same as the optimal
solution cbtained from marginal analysis. The mmerical experiments
performed for the Poisson distribution irnvolving up to J=99 items and
budgets up to $5 million dollar budgets confirmed this important
theorem.

5.2.6 lagrange multiplier method for Pla. As with the marginal

procedure, solving P1 for an arbitrarily high budget value B will also
solve model Pla to minimize total cost Cg subject to a minimm
specified service level as described earlier in chapter 4. The reader
can easily verify that the Lagrange multiplier found for Pla will
becare:

0* = [Fjc] /£ (5.7)
which is just the inverse (reciprocal of 8*) derived above for Pl. The
natural logarithm tranformation must first be performed an the
availability constraint and the derivaticn is along the same steps and
the contimious assumption used previously for model P1. Bounds and
initial estimate also remain the same as above but will be for 1/6*.

5.3 LAGRANGE MILTTPLIER METHID KR P2

5.3.1 Procedure derivation. Model P2 is repeated here for convenience:
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J J o
Min BO=Z E(BO3) =L L (x-S3).ps(x) (P2)
j=1 e j=1 Jvc=Sj+1Sj Fj
J
s.t. .E chj < B (5.8)
j=1
S5 20 j=1,2,..,J (5.9)

We form the Lagrangian function L, assuming that Py (x) is a contimious
function fj ard Fy, its pdf and cdf respectively:

J ©
MinL==¢ j (x-S4) .£5(x)&x + © [B-).':cj-sj ] (P2')

j=1 x=S4+1

The solution to P2' is to find the set of Sy that will minimize L,
by setting the partial derivatives to 0, i.e. dL/dSy = 0 = -(1-F3) - @
8" = - (1-F3)/c5  3=1,2,..,7 (5.10)
The value of 6 is negative and can be interpreted as the decrease
in BO resulting from a budget unit increase for the investment
canstraint. The procedure described below, the problems about bounds
for 6, its initial estimate 67 and the integrality requirements are the
same as for model Pl except the reverse sign of 8; we therefore assume
it is positive and adopt the same procedure as for P1:
- select an initial value for 6, say 81;
- determine all S4's from (5.7);
- calculate Z 58§ = By
- If B1<B, select 65<67 or if B;>B, select 82>69 with a search
procedure such as bisection and repeat until B,=B or
|6n-6n-1/< error o;
- mmdUPorDCMNallSj values.

5.3.2 Upper and lower bounds for 8. We can also derive UB and LB for §
as follows: as Fj tends toward 1, 6 tends towards 0, therefore:

IB(8)=0; as Fy tends towards 0 (5.11)
and the ratio (1-F5)/[cj] will tend towards 1/[c4], leading to the
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upper bound:
t]B(e)=1/nﬁ-n»[cjl j=1r--l'J] (5.12)
or the least expensive of all J items.

5.3.3 Initial estimate for 8. The initial estimate 8, for 6 can be
determined as follows: for a reasonably high budget B (usually the case
in practice), we wish F5 to tend towards 1 resulting in 6* closer to
its IB of 0 since the numerator (1-F3) in (5.10) terds to 0, and we
also want elze* so that the corresponding value of By is sB for the
simple reason that the next value 6, using the bisection search method
will halve the interval between 6, and IB=0 which is illustrated in
figure 5.2 below. Successive iterations will quickly tend towards the
optimal multiplier value 8.

1B UB

0

"
]

N
)Y l

6,>6" 1/min(c]

»

@D

Figure 5.2: Bourds ard estimate of 8 far P2

Since all item availabilities Fy (or Aq) must be at least as large
as the system availability Ag, that is, Fj z Ag (j=1,2,..,J), we can
substitute Ag for Fj and use (1-Ag) as a rumerator in (5.10) and use
nax[Cj] in the dencminator of (5.10) to campensate for the fact that
all Aj's will be > Ag ard (1-Ag) is a conservative estimate for (1-A9) .
Several examples also suggest as was the case for model P1 that the
initial estimate works very well for these examples.

Initial estimate: 6, = (1-Ag) 3j=1,2,..,J (5.13)
max [c:j]

5.3.4 Solution. The solutions for example 1 with B=$20 and the 3 item
parameters given earlier {6j}={1, 1.5, 2} and {Cj}={$5, $3, $2} ard a
minimum Ag = .001 and .600 are displayed in tables 5.3 and 5.4 below

for cawparative purposes. The solutions yielded the following Lagrange
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multiplier sequence of allocations which stopped after 14 and 12
iterations respectively (same as P1 but not the exact same sequence for
lower Ag values) when a specified error was reached:

Table 5.3: Iagrange iterations for P2, Min As=.001 (J=3 items)
8<0 S Cg(8) BO
.1998 0,0,1 2 3.635
.0999 0,1,2 7 2.264
.05 1,2,3 17 .867
.025 1,2,4 19 .724
.0125 2,3,4 27 .269
.0187 1,3,4 22 .533
.0219 1,3,4 22 .533
.0234 1,2,4 19 .724
.0226 1,2,4 19 .724
.0224 1,2,4 19 .724

Table 5.4: Iagrange iterations for P2, Min As=_600 (J=3 items)

8<0 S GCg(s) BO
.08 0,1,2 7  2.264
.04 1,2,3 17 .867
.02 1,3,4 22 .533
.03 1,2,3 17 .867
025  1,2,4 19 .724
0225 1,2,4 19 .724
.0213  1,3,4 22 .533
0219 1,3,4 22 .533
0222 1,2,4 19 .724

5.3.5 Coments. The same comments apply for model P2 as for model Pl
described earlier. We notice the validity of the UB, IB and initial
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estimate elwhichttmnmttobethesarreasnndelmexceptin
reversed sign and help to explain why the optimal solution tends to be
the same for both models P1 and P2 particularly for high Fy values.
The initial allocations, as shown in tables 5.1 and 5.3 (or52and
5.4), are not the same however, since the starting allocations have low
Fj values. For our example:
Ag=.001, IB=0, UB=1/2=0.5, 81=(1-.001) /5 = 0.1998 and By=2
Ag=.600, 1B=0, UB=1/2=0.5, 6;=(1-.600)/5 = 0.0800 and B,=7.
The interpretation of the multiplier value as the shadow price for the
original constraint indicates that small unit increases in the budget B
will improve the adbjection function by appraximately 6%, which means a
reduction of BO since 6%<0. Again, this is valid for small increases in
B caupled with the integrality problem due to the discrete nature of
the model .

5.3.6 Lagrange multiplier method for PPa. As with the marginal
brocedure, solving P2 for an arbitrarily high budget value B will also
solve model variant P2a to minimize Cs subject to a specified upper
bamdeOasdescnbedearhermchapter4 The reader can easily
verify t:hat: the Lagrange multiplier found for P2a will become :

= - cy/ (1-F5) ; (5.14)
which is just the inverse (reciprocal of 8*) derived above for model
P2. The derivation is along the same steps and the contimious
assunption used previocusly for model P2. Bounds and initial estimate
also remain the same as for P2 above but will be for 1/6*.

5.4 COMPARISON OF MODELS Pl vs P2

Taking up the same J=10 item exanple 2 earlier with a specified
available budget of B=$15,000., figure 5.3 below illustrates the
sequence of iteraticons for both models P1 and P2 and their effects an
the response curve {Ag, Cg}. As discussed in the previcus chapter with
marginal analysis, the sequence between both models P1 arnd P2 is
closely related and results in identical stock level vectors {Sj,
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j=1,..,10}. They do not always give the same results but are (nearly
or) identical and can be considered the same for practical purposes, as
shown in chapter 8 later, unless the level of precision required for a
specific problem is warranted.

The reason both sequences are nearly identical and do not differ
bymchwlmtheydodiffercanalsobeanalyzedwiththe Lagrange
multipliers. For model P1, the optimal 6* = £5/(Fjcy) and 8* = (1-F;)
for model P2. As was the case with the marginal analysis procedure, the
Close relationship between the multipliers can be analyzed as follows:
for P1 the ratio fj/Fj or fj/Aj tends towards Py (Sj+1) as Sj becomes
increasingly larger while for model P2, the term 1-Fj = 1-A5 =T o (xj)
frcmxj = S4+1 to infinity becomes pj(sj+1) + pj(Sj+2) + ... ard the
term Py (sj+1) becomes the largest term in value as S5 becomes
increasingly larger and tends towards infinity, the remaining terms
becaning less and less significant.
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CHAPTER 6: END OF CYCLE EFFECT AND PART FATIURE DEPRNDENCIES

6.1 PERFORMANCE MEASURES: REVISITED

So far, several solution procedures have been presented to
maximize the system availability Ag performance measure specified in
model P1 or to minimize expected system backorders BO in model p2
subject to a budget investment canstraint cansisting of purchasing
costs.

Max Ag = i%:n(?pj(x)) (P1)
J=1 x=0
J J
Min BO _J?IE(BOJ) = §1 xfsj(fl-.sj) By (x) (P2)
J
s.t. I cjSj s B (6.1)

We noted that the DP (and equivalent network) procedure presented
in chapter 3 guaranteed an optimal solution solution vector {S
j=1,..,J} only if all possible budget values are emmerated at every
stage, the faster and more efficient marginal analysis procedure in
chapter 4 and the even faster Lagrange multiplier method in chapter 5
provided more practical and near or optimal soluticns to both models,
within an acceptable margin of error. We also proved with the marginal
analysis procedure that maximizing the system performance measure E as
the proportion of item demands that are satisfied immediately from
inventory or:

J
E=1-B0/(BO|{S}=0}) =1 -BO/ & 65 (6.3)
j=1
is equivalent to minimizing total expected system backorders BO
performance measure of model P2. We also stated that simulation,
although impractical to use as a search to the optimal solutiaon vector
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{s}, can be used to determine the system availability Ag, given an

initial stockage vector quantity {S}; Ag can thus be re-defined and the

equivalent performance measure EAg for system availability is given by:
EASI{sj} = Prob {lﬁg Ganma; (Sj+1,1/'rj)} >t (6.4)

This chapter introduces a third mmerical example (known as
example 3 throughout with J=4 items and B=$50) which will be solved
with the various solution methods presented thus far in previous
chapters to cbtain the exact cpimal solution and/or near optimal
solutions with their appropriate error bounds. We then demonstrate the
equivalence of both performance measures Ag and EAg (equation 6.4
above) with the use of simulation and introduce a new performance
measure, denoted AAg and defined as the average proportion of
equipments still operaticnal at the end of the cycle, taking into
account part failure dependencies. Thus, AAg = average mumber of
equipments still operaticnal (UP) at the end of the cycle and divided
by the mmber of equiptmtsMavailableatthebeghmirgofthecycle
or simply average mumber UP/M; eguivalently, AAg = [(M - the average
rmunber DOWN) /M] or simply (1 - average mumber DOWN/M] .

Since AAg may be a more appropriate and useful measure of system
performance, we shall demonstrate that the distribution of the average
mmber of equipments still operatiocnal at the end of the cycle can be
analytically solved for very small combination values of J items and M
equipments and without taking into account part failure dependencies),
but it quickly becames too complex or mathematically untractable to
solve. The simulation methodology developed here will be critical in
cbtaining solutions to estimate AAg with and without part failure
dependencies as referred to in [Ernst and Pvke 1992] and discussed
earlier.

6.2 EXAMPIE 3 (J=4 ITEMS)

6.2.1 Parameters. Exanple 3 cansists of a one location, J=4 types of
items with the Poisson mean parameters {6j} = {1,2,3,5} and cost {$cj}
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= {$7,%$5,$2,%$1}. With a budget B=$50 and min Aj = 0.700 and max Ay =
0.999, the range of possible stockage levels for each item become
{1B(s4)}={1,3,4,6} and {uB(s4) }={5,8,10,13} from the Poisson cumulative
probabilities. A minimum available budget of B=$36 at stage j=4 is
required to ensure the minimm allocation vector {sy} = {1.3,4,6} at a
total cost Cg = $36 is met.

6.2.2 Optimal solution for P1 (J=4). Using DP with an available budget
B=$50 and $1 increments at each stage to ensure optimality, we can show
that the true optimal solution vector is {Sj} = {2,3,6,9} and a
corresponding system availability Ag = .7376 at a total cost Cg = $50.
The order in which the items are listed is of no consequence if all
possible allocation values at intermediate stages j=2,..,J-1 are
eumerated, and will yield the same response curve {Ag, Cg)}.

For comparative purposes, when items at stages 2 and 3 are
incremented by $c2=$5 and $c3=$2 respectively, the solution vectors
{Sj, j=1,..,4} dbtained result in near optimal soluticns at scame budget
values. As an example, for an available budget B=$50, we cbtain the
following solution vector {Sj} = {2,3,5,8} and Ag = .67296 at a total
cost of Cg = $47. We also remember that the approximate DP methodology
developed in chapter 3 earlier in which increments of $Cj are used for
all intermediate stages will yield a solution vector Cg(.) whose lower
bound cammot be lower than B -~ T cy for j=J-1,..,1 or $50 - ($2+$5+$7)
= $36.; thus, Cg(.) can be as much as $14 lower than B = $50 (or 28%
fraom B) . Listing the items in reverse order, however, would give an
improved lower bound on Cg(.) of $5+$2+$1 = $8 (or 16% of B).

Table 6.1 summarizes and compares the effects on system
availability Ag when dynamic programming is used without emmerating
all possible budget allocation values for intermediate stages j=2,..,J-
1 (j=2 ard j=3 for example 3); errors are as high as 10% for upper
budget values and illustrate the unpredictability of the results and
the camputaticnal difficulties of the methodology as discussed earlier
in chapter 3. We also note that another respanse curve {Ag,B} would
have been dbtained (just as was the case for exanple 1 earlier with J=3
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items) if items had been listed in reverse order i.e. least expensive
items first, when increments used at intermediate stages do not include
all possible budget values that can be allocated at these stages.

Table 6.1: DP solution Ag optimal vs $cj increments (J—4)

$Budget As(*) As(incr) (¥)error
36 .39186 .39186 0.0
37 .44556 .44556 0.0
38 .47912 .47912 0.0
39 .50066 .50066 0.0
40 .53837 .53837 0.0
41 .55932 .55932 0.0
42 .56980 .56980 0.0
43 .59010 .59010 0.0
44 .60115 .60115 0.0
45 .60618 .60618 0.0
46 .62582 .61459 1.8
47 .67296 .61973 7.9
48 .69915 .62978 9.9
49 . 71225 .65222 8.4
50 .73763 .67296 8.8

The correspanding FULL and GAP network structures for this exanple
could easily be constructed from which we can campare the total mmber
of nodes N, arcs A and matching labels M for both of them: for the FULL
network, N=43 nodes, A=78 arcs and M=24 matching labels while for the
GAP network, N=27, A=54 and M=21. The error R(%) as a percentage of
the budget B described in chapter 3 earlier for the total costs Cs(.)
solution vector (S5} of the GAP network is L ¢y, 3=2,..,4 and is equal
Lo (cy+c3+cy) = ($5+$2+$1) = $8 or ($8/$50) x 100% = 16% fram which we
can easily calculate the lower bound for the total costs Cg(.)
solution vector {sj} as equal to B - £ Cj, 3=2,..,4 or $50-$8 = $42 ar
84% of the total available budget B. In other words, Cg(.) of the
solution vector (S5} cbtained with the GAP network will be at least
$42 or 84% of the budget. FULL network analysis corresponding to the DP
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approach also gave the same optimal solution, while network analysis
with the GAP network resulted in the solution vector quantity
{Sj}={2,3,5,8} for a total cost Cg=$47 or 94% of B=$50 (which compares
with a lower bound of $42 calculated earlier) amd a system availability
of Ag=.67297, an 8.7% error from the exact solution Ag=.7376 for this
small problem.

The solution cbtained fram marginal analysis for model P1
described in chapter 4 tock only 6 iterations from the starting lower
bound vector {S4}={1,3,4,6}. The sequence of incremental cost
allocatians by adding the wost "cost effective" item, cne at a time, is
shown in table 6.2 below and yielded the optimal solution vector
{S4}=(2,3,6,9} for a total cost Cg of $50., Ag=.7376, BO=.4264 and
individual item availabilities {Aj} = {.9197, .8571, .9665, .9682}.

Table 6.2: Marginal allocation sequence for P1 (J=4 items)

(s s A B0
1 3 4 6 36 .3918 1.3986
1 3 4 7 37 .4456 1.1607
1 3 4 8 38 .4791 1.0274
1 3 5 8 40 .5384 0.8426
1 3 5 9 41 .5593 0.7745
2 3 5 9 48 .6991 0.5103
2 3 6 9 50 .7376 0.4264

Since the total cost Cg is exactly the specified budget B of $50.
and none of the items has reached its specified mxdmm availability of
A4=0.999, the solution is the true optimal solution as confirmed by
dynamic progranming. We note that the lower bound for Cg(.) developed
in chapter 4 for marginal analysis is better than the cne developed for
the appraximate DP methodology with $C§ increments; the LB(Cg) for
marginal analysis is B - max S5, j=1,..,J or $50 - $7 = $43 (vs $14 or
$8 depending on the sequence used for DP). The Lagrange solution method
described in chapter 5 yielded the same optimal allocation vector
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{s}={2,3,6,9} in only 2 iterations.

6.2.3 Optimal solution for P2. Marginal analysis for minimizing total
systanbackordersBoinnndeleresdtedinthesameoptﬁtal

allocation vector {S}=(2,3,6,9} in 6 iterations as shown in table 6.3
below, one of which was not in the same sequence as for maxdmizing Ag
in model P1 and the Lagrange relaxation method resulted in a total
cost Cg=$44 with {S}={1,3,6,10} after 6 iteraticns.

Table 6.3: Marginal allocation sequence for P2 (J=4 items)

{s} Cg Ag BO
1 3 4 & 36 .3918 1.3986
1 3 4 7 37 .4456 1.1607
1l 3 4 8 38 .4791 1.0274
1 3 5 8 40 .5384 0.8426
1 3 5 9 41 .5593 0.7745
1 3 6 9 43 .5901 0.6906
2 3 6 9 S0 .7376 0.4264

6.3 END OF CYOE EFFECTS

6.3.1 Introduction. Example 3 described above would be valid for M=1
equipment (say a vehicle) cansisting of J=4 major assemblies, having
the following exponential failure rates {r3} = {1/20,000 xm, 1/5,000
km, 1/3333.333 km and 1/2,000 km}. If it is scheduled to operate for
10,000 kilometers during the planmning periocd, then the expected mumber
of failures is Poisson distributed with parameters 65 = M x U x 75. For
assenbly mmber one (j=1), then &; = 1 equipment x 10,000 km x 1
failure/10,000 km = 1; applying the same formula yields the following
Poisson parameter vector {65} = {1,2,3,5}.

However, the system performance measures Ag and/or BO would be
exactly the same if we had M=2 identical equipments each operating for
5,000 km during the periocd instead of M=1 equipment operating for
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10,000 km. Both situatians clearly result in the same Poisson
parameters {bj} and therefore, would also yield the same optimal
solution vector (S} = {2,3,6,9}, regardless of the method used to
optimize {S]}

This leads to the interpretation of the performance measure Ag =
0.7376 calculated for example 3 above: it means that the prabability of
not ruming out of amny spare is 0.7376, regardless of how many
equipments M were used to calculate the Poisson parameters. Canversely,
it also means that I have (1 - 0.7376) = .2624 or 26.24% chance of
ruming ocut of at least 1 type of spare, but it does not answer the
qQuestion: what is the probability of rumning cut of 2,3, .. spares ?.

So, Ag should be used if we want to measure the mission
reliability and its importance would be crucial when all M equipments
(whether M=1 or M>1) must remain operational till the end of the cycle
without requiring any spare, in order to camplete the mission
successfully. The latter has several military applications such as an
armoured squadraon (of tanks, helicopters, fighter aircrafts, ...) and
its effectiveness is seriously hampered if cne or more equipments fail
due to lack of any spares during a mission and it is deemed a missian
failure when it happens. The same implications can be found in the
retail industry when retailers do not want to nun out of any stocked
items in a specialty group (say lawnmowers, patio sets,..) advertised
in catalogs or ads during a specified time period; the same situation
can apply in the marufacturing sector when a group of umerically
cantrolled machines are required to operate successfully for an
extended period of time in order to camplete one or more orders on
time.

If the proportion of equipments still operational at the end of
the cycle (time period) or AAg is a more appropriate measure of
performance of the system, then Ag is the same as AAg when M=1 and
constitutes a conservative lower bound cn AAg when more than M=1
equipment is involved. The reason is that if an equipment (M=1) is
rumning out of any type of spares as a result of more failures than
expected before the end of the cycle, the equipment will remain in a
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failed state until the end of the period (no re-supply permitted). If
muiltiple equipments are involved, i.e M > 1, then rumning out of any
type of spare causes ane equipment to remain in a failed state and the
remaining M-1 equipments (and related assemblies) to keep operating but
the respective expected mmber of failures are reduced by 1/M, giving
rise to the erd of cycle effect.

Thus, the performance measure Ag = 0.7376 calculated earlier is
exact if the mmber of equipments M=1, and is a lower bound (albeit a
progressively worse ane as M increases) on the true proportion of
equipments still operational at the end of the cycle or AAg, when
muiltiple equipments are involved. Similarly, the total expected system
backorders BO = Z BOj j=1,..,J has an upper bound of cne when M=1 since
we carmot run out of more than 1 spare of any type j; anly one more
failure than the initial stockage vector {Sj, j=1,..3} is required to
Cause the equipment to remain in a failed state (DOWN) until the end
of the cycle; and, in general, UB(BO) = M whenever M = 1. The next
sections introduce simulation methodology to determine the effect of

part failure dependencies on remaining equipments.

6.3.2 Simulating FAg. In order to determine the effect of multiple
Operating equipments and part failure dependencies towards the end of
Cycle, a simulation program based on the GAMMA variates as the sum of
expanential variates and another based on sequential EXPCONENTIAL
variates, were first developed using GWBASIC.EXE.

The system was simulated n=5,000 times (cycles), calculating EAg
with equation (6.4) as the proportion p of the n cycles that the
equipment survived past t=10,000 km when the available stockage vector
quantity at the begimning of the period is set to {s5}={2,3,6,9}. I
other words, finding the time at which the minimm of the 3rd, 4th, 7th
and Sth failure occured during each of the n cycles. The estimate P
cbtained with simulation was 0.7330 and is consistent with the exact
System availability Ag of .7376 calculated in section 6.2 for exanple 3
when M=1.

We also can establish a 95% confidence interval for m = the true
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proportion of cycles that the time at which we ran out of any type of

spares was less (greater) than 10,000 km based on this estimate.
CI(1-a) for m = p + z(a/2) x V[p*(1-p) /n] (6.5)

.733 & 1.96xV[.733*.267/5000]

.733 + .0123

[ .7207, .7453]

the interval containing the exact value Ag=.7376 fourd earlier with

other methods. We could also conduct the usual hypothesis testing

procedure to determine the p value cbtained from the simulation as

follows:

Hy: m= .7376 (hypothesized my value)

Hp: m <> .7376
and calculate the p value for this test

p_value = 2*P(Z<zy) (6.6)
2*P(2Z<(p-mg) /V (mg* (1-mp) )

= 2*P(Z<-.735) = 2%*.2312 = .4624
and we carmot reject the rull hypothesis that n=.7376
The time distribution of the minimm of the Gamtaj variates was
also analyzed using the distribution fitting software package UNIFIT2,
version 2.0, by [Law and Vincent 1991] and BestFit, version 2.0a, by
(Palisade Corporation, NJ, 1995}, both of which use slightly different
techniques to determine maximum likelihood estimators of the
distribution parameters.
Both distribution fitting software find the Weibull distribution

(See [Hahn and Shapiro 1967]) as the best one to describe the data as
evidenced by the usual equal-probability Chi-Square, Kolmogorov-
Smimov and Andersan-Darling test statistics based an 40 intervals at
the o=.10 significance level and shown in table 6.4, as well as other
camparison measures described in [Law and Kelton 1991] such as the P-P
and Q-Q plots, model moments, etc.., which all indicate a better fit
for the Weibull.



Table 6.4: Test statistics of fitted Weibull vs Normal

Weibull | Normal
Chi.-Square 48.768 80.568 *
K-S 0.012 0.020 *
Anderson-Darling 1.084 4.437 *
Conclusian Do not |[* Reject
reject

Figure 6.1 below illustrates a typical histogram of the sampled

data for example 3 (J=4 items).

142
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6.3.3 MMM. In order to study the end of
cycle effect (part failure dependencies) when multiple equipments are
involved during the cycle (when M > 1), another simulation program
S_INVL.BAS using GWBASIC.EXE was then developed to calculate the more
appropriate measure of system performance AAg or the average proportion
of equipments that are still operaticnal (or UP) at the end of the
cycle, denoted AAg, ard defined as the average muber of equipments NOT
(or DOWN) operational at the end of the cycle divided by M, and when
subtracted from 1, becames the average proportion of equipments
operatianal (or UP) at the end of the cycle; thus AAg = 1 - (average
mmber DOWN /M)

As we shall demonstrate next, the distribution of the mmber of
equipments still operaticnal at the end of the cycle and without taking
into account part failure dependencies, given a stockage level vector
{Sy}, depends on both M and J (mmber of item types) and quickly become
analytically untractable as M and/or J increases ard we must therefore
resort to simulation to estimate AAg.

6.3.4 AAg for special case M=1. When M=1, the mmber of equipments UP
at the end of the cycle will either be 1 or 0; it will be 1 x UP (or 0

DOWN) with P(X;sS;) .P(X3sSp)...P(XysSy) = 7 A4, that is if we do noc
run out of amy type of spare item j=1,..,J; and it will be 0 x UP (or 1
DOWN) if we run out of exactly 1 type of spare j=1,..,J with

P(X1=S1+1) .P(XpsSp) .. .P(XysSy) or(+) P(X3sS;) .P(XpsSy+l)...P(XysSy)
or(+) P(X;sS;) .P(XpsS3)...P(Xy=Sy+1); applying the expected value
operator E(.) = £ x.p(x) to the expression above simply reduces to
A4, j=1,..,J and, thus the proporticn of equipments still operatianal
attheendoft:hecycleAAs=1rAj/M=1 = 7 A4. The most important and
useful canclusion for the special case M=1 is that modmizing Ag = «
A4, J=1,..,J in model P1 is also equivalent to maximizing AAg.

6.3.5 AAg for the general case M>1. For larger and more realistic

values of J and M, the distribution of the mmber of equipments
cperationalattheendofthecyclebecmefarnmecmplexandﬂAjis
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no longer a reliable (and progressively worse) estimate for AAg as M
increases; we show the derivation for AAg without part failure
deperdencies for the case J=3 and M=2 which will enable us to develop a
simple heuristic based on total expected system BO later.

For J=3 and M=2, we can have either 2, 1 or 0 equiprents UP or
cperational at the end of the cycle (2 UP is equivalent to not rurming
out of any spare, 1 UP is equivalent to rumning out of exactly 1
spare, ...), each one occuring with the following probabilities:

2 Up: P(X3sSq) .P(X3sS5) -P(X3sS3) = A Ay. A3 =T Aj j=1,2,3

1 UP: P(X7=51+1) -P(XysS5) -P(X3s53) or(+)

P(X15S1) .P(X3=Sy+1) .P(X3sS3) or(+)
P (xlssl) P (Xszz) .P (X3=S3+1)

0 UP: P(X3=S;+1) .P(X3=S+1) .P(X3sS3) or(+)
P(X1=S1+1) .P(X2sSp) .P(X3=S3+1) or(+)
P(X1sS;) .P(X3=S3+1) .P(X3=S3+1) or(+)
P(X1=S1+2) -P(X3sS5) .P(X3sS3) or(+)
P(X1sSq7) .P(X5=S5+2) -P(X3sS3) or(+)
P(X1sS;7) .P(XpsS;) .P(X3=S3+2)

The expression above can easily be reduced and calculated
analytically, although the carbinatorial nature of these expressions as
M and/or J increase (specially M, assuming J>10 which is usually the
case in practice) become far too complex and mathematically
untractable; they could not be readily calculated for say M=10 and J=20
as we would have to erumerate all possible cambinations of failures
when 10,9,..,0 equipments are UP at the end of the cycle; within each
one (say 2 UP which is equivalent to rumming out of at most 8 spares of
any type exactly), all possible probability cambinations of 8 failures
ocut of J=20 items would have to be evaluated, anly one of which would
be: P(X)=8;+5) .P(X2sS3) .. .P(Xg=Sg+1) ...P(Xg=Sg+2) . . .P(Xz0sSy0) -

We also note that the probabilities in the expressions above do
not even take into account failure dependencies; for exanple,if we run
out of a particular type of spare, one equipment will be DOWN until the
end of the cycle and only M-1 equipments are left Operating from then
a1, causing a reduction of (1/M) in expected mumber of failures for



146

each part j=1,..,J, until the end of the cycle.

For this reason, AAg calculated above will always be smaller and
thus always underestimates the true value of AAg with part failure
dependencies; for high system availability Ag > say .90, the optimized
stockage levels {Sy} will be high compared to the Poisson mean rates
{Gj} calculated based an the original M value at the begimning of the
cyclearxitheerrorbetweenthetwowillbesn'allsincenmningcnt of
spares (if any) will occur close to the end of the cycle only.

As we demonstrated above, estimating AAg with Ag for the special
case when M=1 is exact (with or without part failure dependencies since
they are both equal), but cammot be relied upon when M > 1; we shall
therefore develop better estimates for AAg with and without part
failure dependencies, based on modified system backorders BO in the
last chapter where mumerical experiments with larger scale prablems are
analyzed. The next two sections illustrete the differences using
simulation methodology, first for example 3 (J=4 items, B=$50) followed
by example 1 (J=3 items, B=$20) for which we also expand and calculate
the probability expressions developed above for camparative purposes.

6.3.6 Similating AAg for example 3 (J=4). Given the same original
failure rate parameters {Tj} and the same optimal stockage vector
quantity {Sj=2,3,6,9} for example 3 when B=$50, we know that Ag = .7376
ard is exact when M=1, as calculated in the earlier sections, and
resulted in a simulated EAg value = .7330 with the GAMMA distributicn.

In this section, we present the results for AAg with and without
dependencies, cbtained from the similation program S _INVL.RBAS, by
varying the mmber of equipments M=1,2,3,4,5,10 and 20, and the
correspading length of the period t adjusted accordingly in order to
keep the same Poisson parameters {Gj}.

Two key characteristics diffentiate both programs for simulating
EAg vs AAg (whether taking failure dependencies or not): the first cne
isthatwecannolcngerusetheGamadistributionastheneansto
simulate the system if we want to amalyze the impact of multiple
equipments and calculate the average mumber of equipments still
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operational at the end of the cycle.

The reasan is that we nust cbtain the time at which we first nn
aut of parts of amy type, therefore we must use the exponential
distribution sequentially, otherwise we would not be able to assess the
impact on the overall failure rates of items if the minimm of all
Gammay variates exceed t; in other words, we would not know how many
failures for each type of item occured before the end of the simulation
time period t.

The second reasan is that for estimating AAg when taking into
account failure dependencies, we want to keep track of the time at
which we start rumning out of spare items if it is < t in order to be
able to reduce the failure rates by 1/M from that time oanwards, until
the erd of the cycle, since 1 less equipment is operating, thereby
affecting all other types of items. This methodology enables us to
determine the effect an the overall mmber of failures for each item
type j=1,..,J for the whole simulation period t and is measured as a
proportion of the original {bj} values.

Table 6.5 below demonstrates the effect on AAg, denoted AAg (not)
and AAg(mod) respectively, for increasing values of M when NOT
modifying (without dependencies) the Poisson parameters until the end
of the cycle when we run cut of spares during the cycle or AAg(not),
and campared with AAg(mod) when we DO modify (with dependencies)
Poissan parameters by reducing each one by (1/M) every time we run out
of spares during a cycle or AAg(mod) . Since simulating ARg(not) always
urderestimates the true value of AAg(mod) to indicate dependencies, the
percentage error was calculated as (AAg(mod) - AAg(not))*100/ AAg(mod) .

The results clearly show that simulating M=1 equipment for
£=10,000 ks does not have the same effect on AAg (whether modified or
not due to part failure dependencies) as simulating M=2 equipments each
operating for t=5,000 kms; for example the average proportion of
equipments still cperaticnal at the end of the cycle was AAg(mod) =
0.7318 when M=1 vs 0.8418 when M=2. The same interpretation can be made
for higher values of M.

The second important result is the confirmation that NOT modifying



148

{Gj} values when we start rurming cut of spares at the end of the cycle
always underestimates the true values of AAg, as indicated by the
error (%) values; a lower stockage level vector {Sj} would also result
in smaller Ag values.

Table 6.5 AAg vs M for exanple 3 (J—4 items)

M t AAg Alg Error
(Not) (Md) (%)
1 /10,000 .7318 .7318 0.00
2 5,000 .8213 .8418 2.43
3 3,333 .8638 .8843 2.32
4 | 2,500 .8955 .9093 1.52
5 2,000 .9148 .9224 0.82
10 1,000 .9581 .9596 0.16
20 500 .9788 .9794 0.06
25 400 .9835 .9837 0.02

6.3.7 Simulating MAAg for example 1 (J=3). This section presents the
simulation results for example 1 originally derived in earlier chapters
but with the additianal calculation of the probability expressians for
AAg(not), which enables us to validate the similation program
S_INVL.BAS; the last chapter on mmerical experimentations for
randanly generated larger scale problems will rely heavily an
simulation results cbtained from this program to develop accurate
estimates of AAg(mod) when taking into account the impact caused by
part failure dependencies.

Even though the probability expressions for the distribution of
the mmber of equipments at the end of the cycle developed earlier do
not take into account part failure deperdencies, table 6.6 below
indicates the results of those calculations for eample 1 (J=3, M=1,2
and 3) and varying the budget B from $50 to $20 in intervals of $5 and
optimizing stockage levels {Sj} for each one, using marginal analysis
and correspanding exact Ag values in colums 1,2 and 3 respectively,
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which are the same for M=1,2 or 3.

Given the vectors {S]} for each budget level, simulation based an
N=10,000 cycles each of AAg(mod) thus taking into account part failure
deperdencies are shown in colum 4 followed by simulated estimated
values for AAg(not) without dependence in colum 5 and AAg(not) values
calculated using the expansion of prabability expressions in the last
column.

The interpretation of the results exhibit the same pattermns and
support the same conclusions drawn for eample 1 (J=3 items) earlier:
the average proportion of equipments AAg(mod) still operaticnal at the
end of each cycle (colum 4) increases as M increases for each given
stockage level {Sj},- since varying the available budget B downwards
fram $50 to $20 yields lower stock levels {sj} and correspandingly
lower system availability Ag, it is evident that with or without part
dependencies (colums 4,5 and 6) will also Yield progressively lower
estimates of AAg, the percentage errors between AAg (mod) and AAg (not)
becaming more significant as B (and therefore {Sj} and Ag as well)
decreases. This will be crucial for larger scale problems analyzed in
the last chapter.

What is also interesting is to campare the values in the last two
colums (5 and 6) : the simulated estimated AAg(not) value in column 5
with the AAg(not) value, shown in colum 6, using the prabability
expansion terms for the exact distributicn of AAg(not), which also doeg
not take part failure dependencies into accamt; the values in colums
Sedﬁbitverysmallpercentageerrorsascarparedtovaluesincollmn
6 across each row, regardless of M, B, {sy} or ag.



M=1 Ag | SimAAs sSimAAs  Aas
B {S] } Marginal| (Mod) (Not) expand
50 4,5,7 99081 99160 na na
45 3,5,7 97557 97330 na na
40 3,4,6 95842 95600 na na
35 2,4,6 89852 90090 na na
30 2,3,5 84509 84120 na na
25 1,3,5 67608 67340 na na
20 1,2,4 56378 56330 na na
M=2 Ag | SimAAs SimAAs = AAs
B {sj} Marginal|{ (Mod) (Not) expand
50 | 4,5,7 99081 .99535 99535 99445
45 3,5,7 97557 .98655 98535 98533
40 3,4,6 95842 97585 97575 97446
35 2,4,6 89852 93980 93700 93649
30 2,3,5 84509 80650 89825 89972
25 1,3,5 67608 80350 78720 78103
20 1,2,4 56378 72175 68370 68742
M=3 Ag Sim AAs Sim AAs AAs
B {S:J }  Marginal| (Mod) (Not) expand
50 4,5,7 99081 99700 99680 99624
45 3,5,7 97557 .99037 98953 98993
40 3,4,6 95842 98377 98073 98234
35 2,4,6 89852 95967 95737 95580
30 2,3,5 84509 93680 92863 *
25 1,3,5 67608 85903 83993 *
20 1,2,4 56378 79673 77250 *
* not calculated
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The last chapter consists of mumerical experiments with larger
scale prablems and will focus on developing reliable estimates for
AAg(mod) using simple heuristics. Before we do so, however, the next
chapter considers further important considerations and extensions to
the models.

Figure 6.2 below illustrates the typical distribution of the
muber of equipments operational at the end of the cycle for a randomly
generated problem referred to as example 2 earlier (J=10 items x M=10
equipments), and simulated for N=5,000 cycles whereby the budget has
been purposely set very low to B= $6,000. in order to have an even
lower stock level vector {Sj} than with the original B=$15,000; the
differences in measuring AAg due to end of cycle effects (with vs
without dependencies) resulted in an average mumber of equipments
operatianal at the end of the period AAg(mod) = 0.84966 vs an average
AAg(not) = .80804, or a (.84966-.80804) *100/.84966 = 4.9% difference.
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CHAPTER 7: MODEL EXTENSIONS

7.1 MILTTPIE INDENTURE SYSTRMS

7.1.1 Introduction. As discussed in chapter 2, multi-indenture systems
cansist of incorporating different carmpanent levels within the
equipment. They then becare an integral part of the analysis of optimal
stockage levels for both the equipments, its asserblies and carponents.
It appears that no papers on a priori analysis of the disaggregation
process have been published. Most studies published in the literature
regarding this topic simply lump the different carmponent levels
together without prior analysis as to the impact of individual parts’
costs and are usually based on a single operating equipment, a single
level, deterministic costs and/or availability during a fixed time
pericd. Relevant papers include [Black and Proschan 1959], [Kettelle
1962], [Goodwin and Geese 1965]) who studied a single level of indenture
and the optimal level of redundancy for each repairable part.

Since information about assemblies and their camponent levels are
usually based on best-parameter distributicn "fit" and urderlying
assumptions, the relationship between assenblies and their campanents
become difficult to analyze. The cbjective is to determine the
canditions under which we can decide whether it is worthwhile to
include lower level indenture stockage levels for cowponents (i.e.
purchase and stock companents independently fram its assembly) in a
larger scale ane (1) period inventory systems when additicnal
information concerning failure (demand) data about these camponents
becames available to the analyst. The solution procedure will use the
marginal analysis discussed earlier and is applied to a sinple example
to illustrate the concept.

7.1.2 Exanple. Suppose we had the following 1 location, 3 item system
with the following parameters: {65} = {1,5,10} and {cj} = {$1000, $300,
$200}. Specifying min Aj=0.80 and max Ay = .99999 for j=1,2,3 and with
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a budget of $9900., the last few iterations and the optimal solution
for this example cbtained via marginal analysis are shown in table 7.1:

Table 7.1: Marginal amalysis for 3 assembl ies

S S A
2,9,17 8100 .8777
3,9,17 9100 .9362
3,10,17 9400 .9538
3,10,18 9600 .9606
3,11,18 9900 .9687

Since the total costs Cg achieved is exactly the available budget
B=$9900 and we know that the allocations cbtained from marginal
analysis are undominated, then the solution vector {s*}=(3,11,18} is
optimal with Ag=.9687 = AjAxA3 = .981x.994x%.9928 = .9687 at a total
cost of Cg=(3x1000) +(11x300) + (18x200) =$9900.

Suppose we had additional information cancerning assembly 3
(63=10) that lead us to believe that 20% of its failures during the
period were caused by a compcnent within assembly 3 (denoted as
Camponent 31) and the remaining 80% by various other remaining
campanents within the assembly (denoted as camponents 32) . We can
therefore estimate 63;=2 and 635=8 since the failure process is also
Poisson (disaggregation of Poissaon process into individual Poisson
processes described in [Ross 1989 ch 5]).

We now wish to know whether it is worthwhile to purchase (or
produce) and stock component 31 independently of assembly 3 for the
next period; specifically, We want to determine an upper bound on the
cost ¢33 for which Ag will remain = .9687 for the same or lower budget
B < $9900 or correspandingly a budget of (18 x $200) = $3600 for
campanent 31 and assembly 3. We could estimate c31 (say c33=$40) and
since we already know other parts failures will be replaced by camplete
assemblies costing c33=$200 each, we can solve the entire problem with
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the following modified parameters:

Table 7.2: Modified parameters for eanple

B=$9900 Min Aj=.80 Max Aj=‘99999
61=l 62=5 631=2 632=8
C1=1000 c3=300 C31=40 C32=200

for which the solution cbtained via marginal analysis is as follows
(only the last few iterations shown) :

Table 7.3: Marginal amalysis for 4 assemblies

s B Ag
3,10,7,14 9080 .9498
3,10,7,15 9280 .9586
3,11,7,15 9580 .9666
3,11,7,16 9780 .9710
3,11,8,16 9820 .9718 *
4,11,8,16 10820 .9870

and the solution is near optimal with {S}={3,11,8,16}, B=$9820 but Ag =
.981x.994x.9998x.9963 = .9718 is greater than Ag = .9687 cbtained
earlier with the 3 original assewblies and that A31XA35 = .9998x.9963 =
-9960 is greater than Az = .9928 also cbtained from the same soluticn
earlier. We note from table 7.3 that the previous iteration with
{s}={3,11,7,16} also yields a system availability of Ag =
.981x.994x.9989x.9963 = .9710 which is still greater than .9687 at a
lower cost Cg of $9780 and that A3jxAzp = .9989x.9963 =.9952 > Ag =
.9928.

There are 2 conditions that must be met in order to be able to
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achieve a better Ag at equal or lower Cg and therefore worthwhile to
disaggregate the Poisson process into smaller caponents. These are:

1. C31$31+C32332 s C3S3 = ($200x18) = $3600 (7.1)

2. A33xA3; = A3 = .9928 (7.2)
which are satisfied for the iteration yielding Cg=$9820 as well as the
previous iteration with Cg=$9780. We can now describe a convenient way
to solve the upper bound UB for C31 using the solution above by simply
going back to the iteration in table 7.4 yielding the lowest Ag>.9687
which is .9710 and calculating the upper bourd for C31 as follows:

UB(c371)= (18-16)x$200/7 = 400/7 = $57.143 (7.3)

which is simply to calculate the savings achieved for assembly 3 i.e.
the difference between the original (S3=18) and the new cne (S33=16)
times its cost and dividing by the new stockage level (S31=7) cbtained
fram the solution; this guarantees that both canditions will be
satisfied.

There are 2 problems associated with this procedure: first, the
stock levels for other parts (S;=3 and S2=11) are not guaranteed to
stay the same which will invalidate the upper baund should they change
and secard, the entire problem would have to be solved again with the
new parameters without knowing the results beforehand (or whether it
was worthwhile). If we had several tens or hundreds of items, this
procedure would prove to be very inefficient and practically impossible
to work with.

7.1.3 Efficient solution procedure. Fortunately, the problems described

above can easily be handled as follows: due to the separability by item
of model P1, we could have simply solve the problem using marginal
analysis separately for assembly 3 with $3600 as a budget and the
following parameters: B=(18x$200)=$3600 as per the original problem,
C31=$40 (initial guess), C32=$200, 63l=2 and 532:8 ard obtain the
following solution (only the last few iteratians shown) :



7.4: is for 2
s ¢ A
7,14 3080 .9817
7,15 3280 .9910
7,16 3480 .9952
8,16 3520 .9960 *
8,17 3720 .9982
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This procedure guarantees that both conditions will be met when an

upper bourd for c3j; is calculated; first, the budget will not exceed

$3600 (marginal analysis stops when B is exceeded) and by picking the
lowest entry for which Ag=A31xA35>A3=.9928 in the original soluticn. In

table 7.4, this entry is .9952 and the upper bound UB(c37)=(18-
16)x$5200/7 = $57.143 as before. Solving the entire original problem
with the additicnal information becomes much more mathematically

tractable, and is very efficient with marginal analysis. The steps for

carpltinganupperbaanonthecostofacarpcnentaresmnanzed

below:

- solve the original problem at the assembly level
with a given budget using marginal analysis;

- with additional information about an assembly,
solve the problem separately with a best quess
about its estimated cost and a budget equal to
the stock levelsj cbtained from the original

solution;

- campute the UB for the part using the separate
solution where the lowest entry is such that Ag
(components) is greater than Ag (original assy)
and the stock levels {sjk (k=1,..)} given by the

solution.
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7.1.4 Comrents. The procedure described above using marginal analysis
is a very efficient way to include the analysis for multi-indenture
systems and separable items like model P1. It is thus possible to
quickly determine an upper bound on a campanent 's cost when additional
information becames available and disaggregation of Poisson processes
is considered without having to solve the entire problem and discover
afterwards that either the total resulting costs Cs would exceed tne
budget or that we achieve a lower system availability Ag.

Ithasalsobeenshownthateventhou@themnofthecmponents'
individual costs may exceed the cost of an asserbly, L Cjk > Cj
(k=1,..), it may be possible under same corditions, to achieve a higher
System availability Ag at a lower overall cost Cg. For our exanple,
even if the cost of component c31 is set at its upper bound $57.14, the
total costs of disaggregation c3;+C3; = $57.14 + $200 = $257.14 is
greater than the original cost of the whole asserbly c3=$200, but a
higher system availability was achieved (Ag=.9710 vs .9687) as a result
of the additional information which enabled us to disaggregate the
original Poissan process into two smaller cnes.

It is therefore possible to use a 2-phase (or multi-level phase)
approach to optimize P1 or P2; the first phase consists of maximizing
Ag subject to the budget constraint for an equipment made up of J types
of major assemblies, using any method described in earlier chapters,
which will giveussj, A.j, and the total purchasing costs for each
item, say Gy, j=1,..,J; phase 2 can then be aplliedbyusinng as the
available budget for assenbly j along with the additional information
about its sub-assemblies (cjk's and failure rates) to determine whether
it is worthwhile to disaggregate the Poisson process into smaller
processes ard still increase Ag for the same cost.

The end result is the ability to reduce a large scale problem into
separate smaller problems whereby we optimize J major assemblies first
and use the total costs cbtained for an assenbly to optimize its k
major companents while still achieving a better aggregate system
performance measure, as demonstrated above. The current military model
could well handle this type of situation since the list of items within
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an equipment submitted by a mamifacturer is supposed to follow strict
gquidelines as tothebrea}c:bwnoft:heeqtﬁpmtintocarpamtsand

must contain a code for each item identifying its relationship to the
next higher assenbly, similar to how a bill of materials is used in an

MRP system (Material Requirement Plarming) .
7.2 MILTTPIE LOCATION MODRLS

7.2.1 Introduction. The multiple location model extension to prablems
Pl (Max Ag) and/or P2 (Min BO) is of practical importance for
organizations having several identical systems (vehicles, machines, ..)
each operating in different locations and becomes essential in the
military envirorment for the initial purchase (and subsequent pericdic
budgetary process) of spares for several locations when a fixed budget
is available. The dbjective is to decide how much of the overall
available budget B should be allocated to each locatian in a
decentralized operational envirament to purchase and stock spare
assemblies/parts while optimizing a system performance measure. The
budget allocaticn vector {BA;} to each location is then used for the
determination of the optimal stock levels {Sij, i=1,..,1I j=1,..,J} for
each part j at every location i.

A muerical exanple will be introduced following the methodology
discussed below. We shall present the derivation for solving model Pib
(mexdmizing Ag) only, as the derivation for solving model P2b
(minimizing BO) follows essentially the same methodology.

Prabably the most extensive research incorporating several levels
of indentures has been in the context of multi-echelon inventory
systems for repairable parts described in chapter 2 earlier; most
optimization models are not mathematically tractable but nevertheless
enploy several techniques to cbtain stockage levels close to the "true"
optimal levels usually cbtained from simulation of the system under
study for long periods of time and/or under several assumptions and/or
restrictions. Valuable papers on the subject include [Sherbrocke 1971],
[Muckstadt 1973], and others as discussed in the literature review of
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chapter 2.

7.2.2 Terminology and notation. Adding subscript i (i=1,..I) to the
notation introduced earlier, {6i5} i=1,..T locations and j=1,..,J
items represents Poisson failure rates based an amual expected common
usage U and the mmber of identical equipments {M;} operating at each
of I locations.

For example, if each of M;j=10 identical equipments at location i
are expected to operate U=10,000 kilameters during the period and item
J is expected to fail at a constant (expanential) rate of 75 =1
£r/20,000 kilameters, then the distribution of the mmber of failures
of part j is Poisson with rate 5ij =M xUx 75 = 10 x 10,000 x
1/20,000 = 5. A second location having 20 equipments will thus double
all Poisson rates of the former location. The aggregate Poissaon process
can then be represented as:

I
64=CL 6j5 = Sum of all Poissan rates for item j
i=1 (across all locations)
J
6. =L 6j5 = Sum of all Poisson rates at loc i
j=1 (across all items)

7.2.3 Formulation model P1b (Max Ag) . The multiple item problem Pl to
maximize Ag, described in earlier chapters and solved using various
solution methods, can be similarly extended to include multiple
locations and is formilated as model Pib as follows:

I g I J Si4
Max Ag = T WA(Si{) = m 7 ( Epgsx) (P1b)
i=1 j=1 i=1 j=1 x=0
s.t.
I J
.E .E cijsij < B (7.4)
1=1 j=1

Sij 20 i=1,..,I j=1,..,d0 (7.5)
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As before, the analyst could specify practical and meaningful
lower and upper baunds vectors ({ILB(Sij)} and {uB(Sij)} i=1,..,I and
j=1,..J by sinply specifying a camon minimm availability for each
item, say {min Aij} 2 0.60 or higher for each part j at each location
which will automatically reduce the state space required to cbtain the
exact solution vector of stockage levels {Sij*} . Caution must be
exercised however, since specifying too high {LB(Sij's)} can lead to an
infeasible solution as the initial allocation may already exceed the
specified budget value B, as discussed earlier.

7.2.4 DP_solution procedure. The forward/backward recursion used for
the DP solution procedure of chapter 3 can also be applied to solve
model Plb to maxdmize Ag but a 2-dimensicnal state space requires first
the specification of various amounts of budget to be allocated at each
location {BAj, i=1,..,I}, followed by optimizing stock level vector
{Sijr j=1,..,J} within each location i=1,. ., I; thus, it involves a
stage for each of the I locatiaons, and within each location (or stage),
a nunber of possible budget amounts Yi to be allocated to optimize the
selected performance measure for each of the J items. Furthermore,
budget allocations of significant amounts, possibly involving several
hundreds or thousands of dollars for items at all locations, require us
to choose appropriate increments zj of say $10, $50, $100, .. in order
to reach a solution. The recursive DP formilation procedure is as
follows:

Stage i=1,..,I = location i

State by = amount available for allocation

with i stages remaining

Decision variableg

Yi = amount allocated for {Sij} items at stage i

{Sij}= allocation stockage level vector for all

j items at location i

Return function

Aj(yj) = availability from allocating $y; stage i

Aj (Si5) = availability from {Sij} items at stage i
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=“1]r’ A;j5(Si5) =.‘1]r' (Z pjjx,6i]))
j=1 j=1
{Sij} = allocation vector of stockage levels at

location i = {Sj1,Sis,..,Si7}

Forward recursive formuila

folbg) =1

£ij.yi) = Ajlyi) £33 (5-yy) i<l,..,I

Optimal value fi* (bi) at any stage

£5°(s) = max (Aj{y;i}.£i-1 (biyi))
mn y; syjs max yj

= max {A;{Sij}.f5_1 (bifg C;38i5)
min s{Sij s max j=1
where bj = all possible available budget values in
discrete increments of z; (intervals)
Yi = all possible values to be allocated in

discrete increments of zj (intervals)

J
mny; = I Cjj (min Sj5)
j=1
I
mxyj =B - Zmin y
k=1
k<>i

The procedure is to start at stage i=1 (locaticm 1) and determine
the cptimal allocation yj from its correspanding stockage levels {Sij}
from all its possible values in the range [min y; to max y;] in
increments of zj, when bj is available with i stages remaining; once
the last stage I optimal allocation for a given budget B has been
calculated, work backward from stage I to stage 1 to determine the
optimal allocation vector {Sij} at each stage.
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7.2.5 Coments. The major problem associated with this method is that
since the possible budget allocations yi at each stage is considered a
contimuous variable, we must choose "suitable" incremental values z3
for y; and therefore, the solution cbtained can no longer guaranteed to
be optimal.

These incremental z; values at each stage for the eventual
allocation of an amount y; have a similar interpretation to the network
analysis with budget gaps whereby part of the budget up to the
incremental value may be lost from stage to stage. These values can be
specified in increments of 5 values to minimize possible budget losses
at each stage.

Secand, for each y; considered at each stage, we must find an
optimal solution involving multiple items for which the DP solution
methodology of chapter 3 for a single location may be applied, leading
to a time caonsuming procedure, rapidly increasing in complexity and
exploding the state space to unacceptable levels. This multi-
dimensicnal DP procedure for an I=3 locatians prablem can be
represented as shown in table 7.5 below; within each cell, we must find
the optimal allocation vector {Sij} given each possible allocatiacn
vi={BAj} at stage i.



Table 7.5: DP structure I1=3 locations (stages)
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Stage i=1

LB(y1) = min y1 UB{y1) = max y1

b1\y1

min y1 BA1-z1 mid y1 BA1+21 ...yl max

y1(*)

A1(®)

min b1
BA1

max b1

Stage i=2

LB(y2) = min y2 UB(y2) = max y2

b2\y2

min y2 . BA2-z22 mid y2 BA2+22 ...y2 max

y2(°®)

A2(*)

min b1+
min b2

-22
BA1 + BA2
+22

max b1+
max b2

42_'{izm: -j@_,
| A2(y21xA1*b2-y2

Stage i=3

LB(y3) = min y3 UB(y3) = max y3

b3\y3

min y3 BA3-z3 mid y3 BA3+23 ...y3max

y3(°®)

A3(*)

Budget B
I

2l = interval or Increment size

mid b1 = BA1 = (La1./1a..)*B

mid b2 = BA2 = (La2./1a..)*B

mid b3 = BA3 = (La3./la..}*B

min bi = B-Sum {minbk} k=1...1 k<>i
min b1 = B-Sum {minbk} k=2,3

B - {min b2 + min b3}
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7.2.6 Bxample (I=3 x J=5 items). The following mumerical example has
been solved for an I=3 location, J=5 items prablem, with B=$30,000.,
and {M}=(2,3,5} = mmber of identical operating systems at each of 3
locatians, each ane expected to accumilate an anmal usage of U=10, 000
miles and the given costs parameters cy and failure rates 74 for each
item which are dbviously the same regardless of the location. From
these parameters, the expected mmber of failures (Poisson parameters)
are easily derived as before using the equation éij =M;.U715 =
Mi.U.I/MI:BFj ard are indicated in table 7.6 below.

Table 7.6: Example Parameters (I=3 x J=5)

Ioc i = 1 2 3
M = 2 3 5 10
1 | 1000 20000 1 1.5 2.5 5
2 400 10000 2 3 5 10
3 200 5000 4 6 10 20
4 200 4000 5 7.5 12.5 25
5 100 2500 8 12 20 40
8; = 20 30 50 | 100

From the data shown above, it is pointed out that the Poisson
parameters {aij} at each location is simply a multiple of another
location parameter which is proporticnal to their mmber of equipments
M. For instance, for item j=4 at location i=1, the parameter 614=5 is
based on MUry = 2x10000x1/4000 = 5 while the same item j=4 at locatian
i=3 is 634 = 12.5 since it has 2 1/2 times more equipments (M3=5 vs
M)=2) than at location i=1.

To alleviate the problem of finding the possible range of
allocation amounts yj to various locatians, a heuristic initial
allocation solution methodology would be to assign the budget B in
proportion to the mmber of equipments held at each location such that
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{Ba;}={M;M) x B}, which is the same as {BA;} = {(6;./6 ) x B} for
i=1,2,..,I resulting in the following mid-range yi allocation vector
{Baj} = {BA;=$6000, BA,=$9000 and BA3=$15000} for our example, and then
solve for the optimal stockage level vector independently for each
location, using either the dynamic programming methodology of chapter
3, or other much faster solution methods such as marginal analysis or
Lagrange relaxation.

7.2.7 DP solutian (I=3 x J=5). The exanple above has been solved using
dynamic progranming methodology where each stage represents a location
i, and within each cell, marginal analysis was used to determine the
near or optimal allocation for each possible budget allocation amount
yi from its minimm IB(yj) up to its meximm UB(yj) values, whereby the
maximum values were set arbitrarily but sufficiently higher than the
proportional budget allocaticn {BA;} = {$6000, $9000, $15000}
calculated earlier to ensure undominated or optimal solutions at each
stage are fourd. The incremental values z; were therefore not constart
since they were chosen fram the results of marginal analysis performed
independently for each location. The results are indicated in table
7.7 below and are summarized as follows:

{sij} = {i=1: 1,3,7,8,13; C1g = 6500
i=2: 2,4,9,11,17; Cos = 9300
i=3: 3,7,13,16,26}; C3g = 14200
{s 3} = {6,14,29,35,56}; C_g = 30000
{Ba;} = {6500,9300,14200};

Ag = .1277 and BO = 3.4702
Due to the increasing computational difficulties as the mmber of
locations and/or items are added and for the same reasons given earlier
in chapter 3 for the single location case, the DP solution procedure
for the miltiple location models becare inpractical for several more
locations (say I = 10) and budgets involving tens or hundreds of
thousands of dollars. It is desirable to develop better and more
efficient solution methods to solve this problem.



Table 7.7: DP solution (1=3 x J=5)
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Stage i=1 LB(yl)= $6 000 UB(yl)=  $7600
byl $6000 $6200 $6400 6500 $6900  $7 900 vi() | A
$6 000 04550 |— $6000 | 0.4550
$6 200 04893 |— $6200 | 0.4893
$6 400 0,5221 |—— $6400 | 0.5221
$6 500 0.5386 |— $6500 | 0.5386
$6 500 0.5953 $6900 | 0.5953
Stage i=2 LB(y2)= $9 000 UB(y2)=___$10 500
b2y2 | $8900 $9100 $9300 $9700  $9800  $10000 $10200 $10300] v2() A2(")
$14900 | 0,2054 |— $8900 | 0.2054
$15100 | 02209 02221 |— $9 100 | 0.2221
$15300 | 02357 02388 02372 |— $9100 | 0,2388
$15700 | 02431 02629 02721  0,2665 [— $9300 | 0.2721
$15800 | 02687 02629 02807 02665 0,2737 |— $9300 | 0,2807
$16 000 |— 02906 0,2807 02865 0,2944 02861 — $9800 | 0.2944
$16 200 —_ 03103 03154 03141 03078 0,2074 — $9700 | 0.3154
$16 300 — 03154 03240 03078 02974 0,3024] $9800 | 0.3240
$16 400 03154 03240 03282 03199 0,3024§ $10000 | 0,3282
$16 500 03154 03240 03386 03199 0,3252] $10000 | 03386
$16 600 03486 03240 03388 03413 0,3252] $9700 | 03486
$16 700 — 0,3581 03388 03521 0,3470] $9800 | 0.3581
$16 800 — 03386 03521 0,3580] $10300 | 0,3580
$16 900 03743 03521 0,3580] $10000 | 03743
$17 000 — 03521 0.3580] $10300 | 0,3580
$17 100 03891  0,3580] $10200 | 0,3891
$17 200 —_ 0.3957] $10 300 | 0,3957
Stage i= LB(y3)= $13 800 UB(y3)=  $15 000
b33 ] $13500 $13600 $13800 $14200 $14400 $14500 $14700 $15000] yac) | A3()
$30000 } 01210 01218 0.1262 _ 0.1277 _ 0,1152_ 0,101 01073  0,1134] $14 200 | 0,1277
Solution y3= $14 200 A3= 0,45495
Budget allocation y2= $9300 A2= 0,52119
(DP + Marginal) yl=  $6500 At= 0,53858
8= $30 000 As="0,12771
Solution y3= $15000 A3= 0,55234
Budget atlocation y2= $9 000 A2= 0,45139
(Prop + Marginal) = $6000 A= 045503
B="_$30 000 As=" 011345
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For the initial procurement and distribution of spares in the
military enviramment, when a new capital acquisition program is
activated, the budget allocation at each location cammot be pre-
assigned since spares are individually calculated up to the same
availability level (99.8%) using the current model described in chapter
1 earlier and does not discrimate between more expensive and/or cheaper
items.

7.2.8 Marginal analysis equivalent (I=1 x J=15). Recognizing that the
multiple location multiple item model Plb is also separable by item
and by location, then marginal analysis with the natural log
transformation of the objective function terms can be used by cawbining
all 3 locations into a single cne and would result in the same optimal
solution cbtained with DP methodology. Therefore, model P1b below,
subject to (7.4) and (7.5) earlier and repeated here becares:

I J I J s5

MxXAg = T T RAj4(Si4) = w n(Zinj(x)) (P1b)
i=1 j=1 i=1 j=1 x=0

s.t.
I J
z =z CijSij s B (7.4)
i=1 j=1
{sij} =20 i=1,..,I j=1,..,0 (7.5)

upcn the log transform of the cbjective function:

I g
Max In(Ag) = £ I In{A;4(S;5)} (P1b')

i=1 j=1

I J Si4
=L I 1In ( ijij(x))

i=1 j=1 x=0
subject to (7.4) and (7.5), where each function 1ln Aij is concave as
proven earlier. The marginal increase in the dbjective function value
of model (Plb)'! as a result of adding 1 more part j at location i from
Sij to Sjj+1 therefore becomes similar to the single location case as
derived earlier:

d[ln{Aij (Sij+l) 1=1n (Aij (Sij +1))-1n (Aij (Sij) ) (7.6)
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at an additional cost of Cij and the procedure is therefore equivalent
to a model with 1 location having J=15 items that is much faster ard
sinpler to solve (a few secards anly) than DP. The only modification
to be made to validate the procedure istoensure{bij} are
proportionally adjusted to compensate for the different murber of
equipments at each location as indicated in table 7.8 below.

Table 7.8: Equivalent parameters (I=1 x J=15 items)

B=$30, 000 I=1 J=15 items
Min Aj=.001 Max Aj=.99999

O
J.

Item S5
1000
400
200
200
100
1000
400
200
200
100
1000
400
200
200
100

CRERESvwunne wmm
BB.SSHNK;\)O\NH(DUI#NH
oCULoouowmoouvmooooo

The optimal sclution using the marginal analysis procedure for
the equivalent single location model I=1 location x J=15 items
resulted, after dropping the location index i, in exactly the same
optimal allocation vector:
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{sy*} = {1,3,7,8,13,2,4,9,11,17,3,7,13,16,26}; and
tallying the results for each location:

{sij} = {i=1: 1,3,7,8,13; C1g = 6500
i=2: 2,4,9,11,17; Cyg = 9300
i=3: 3,7,13,16,26; C3g = 14200
{s.j} = {6,14,29,35,56}; C. g = 30000
{Ba;} = {6500,9300,14200}

Ag = .1277 and BO = 3.4702
and is the true optimal solutian vector {Sj, j=1,..,15} since the total
costs Cg is exactly equal to B. Each individual item availability
correspanding to the optimal allocation vector {S5*} is shown below for
information:

{r4} = {.73, .86, .95, .93, .97,

.81, .82,.92, .92, .94,
.76, .87, .86, .87, .92}.

7.2.9 FULL network analysis. As was the case for model P1 to max Ag
and model P2 to min BO analyzed earlier for single location problems,
the FULL network analysis can also be implemented for the multiple
location models Plb and P2b. The FULL network structures can be setup
usingmesan'etecrmiquesarxiwillyieldthesanetmeoptinal
solution as DP methodology (as lang as all possible budget allocation
values are emumerated) .

First, all items j=1,..,J at the first location i=1 are
cansidered, one at a time and thus make up the first J stages of the
network; then, the pattern is again repeated for the same item types
j=1,..J for each of the remaining location i=2,..,I. The final network
will therefore consist of a total of IxJ stages whose true optimal
solution can be found by applying DP sequentially in stages or a
shortest path algorithm in the network, from its origin to the
destination node N. The network structure can be used effectively to
determine the muber of rows = (N-1) total nodes and cell evaluations
within all rows = total mumber of arcs A in the network.

The properties of the single location networks for the cne



171

location problems are also applicable to the multiple locaticn netwerks
built using the same procedure, namely: the networks will be acyclic
and any path from the origin node 1 to the destination node N will be
made up of exactly one arc from each stage for a total of IxJ arcs.

Furthermore, the same techniques used to help reduce the network
size (total mumber of nodes and arcs) can be applied here as well by
processing higher cost items first within each stage and specifying
appropriate lower {IB(S;jj)} and upper baunds {UB(Sj5)}. As a result of
applying the procedure to ocur (I=3 locations x J=5 items) exanple with
the same parameters described in the previous sections, the FULL
network structure cansists of a total of N=1425 nodes, A=10087 arcs ard
M=8626 matches by processing the higher cost items within each location
first and repeating the process for each subsequent location, thus I=3
groups of J=5 items for a total of IxJ = 15 stages. (We note that the
lowest common dencminator is $100 which avoids the creation of a
substantially and unacceptably high mmber of nodes, explained by the
mmber of matching node labels M = 8626).

It is also possible to reduce the size of the network even more,
by exploiting an interesting property of the multiple location models.
Since all items j=1,..J are cansidered at each of the location
i=1,..I, it is reasanable to expect that the cost structure {cij} is
the same for any item type j, regardless of its location i.e.
C1j=C2j=---=C1j. J=1,..,J; therefore the mmber of nodes and arcs can
still be reduced by listing the higher cost item type j in I successive
(adjacent) stages eventhough they may have different Poisson
parameters.

The reason is that nodes created within any current stage j are
createdapartbyananumt=$c:j, as a result of adding cne more item
type j; if the next item type j to be listed is the same type of item
with equal costs but from a different location, then all nodes to be
createdwillalsobecxeatedemactlybyt:hesaxrearramtscj apart and
all arcs incident to them will came from nodes which were also created
$cJ- apart at the previous stage j-1. Therefore, the net result will be
to direct arcs into nodes already created at the current stage with
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budget remaining labels that "match" them and thus prevent the creation
of additional nodes or avoid possible budget ioss by directing arcs
"into a lower budget node, as described in the next secticn for the GAP
networks.

For our example, by processing the higher cost items sequentially
and irrespective of their location i.e. the first 3 items costing C1l =
C21 = €31 = $1000 each, the network reduces to a total of N=831 nodes
(41.7% reduction), A=5765 arcs (42.8% reduction) and M=4898 matches
which is rather significant as a simple but highly efficient technique
to achieve more manageable network structures (or setting up DP tables)
while guatanteeing the true optimal solution to the models.

We can still achieve even further reducticn by listing the higher
cost items first, irrespective of their locations and sorting the items
having equal costs in decreasing order of their Poisson parameters i.e.
033 = 2.5 > 633 = 1.5 > 873 = 1.0; the net result is a network
structure consisting of N=787 nodes, A=5407 arcs and M=4584 matches.
Although the network size cammot be predicted, this simple technique
appears to be effective for all (albeit few) examples analyzed and
should be the subject of further analysis.

7.2.10 GAP network analysis. The GAP network analysis procedure along
with all its properties discussed in chapter 3 earlier for the single
location models P1 and P2 can also be inplemented for the multiple
locaticn models Plb and P2b treated in this chapter; thus, the
networke canstructed by using the procedure are acyclic, any path from
the origin node 1 to the destination node N is made up of exactly IxJ
arcs, ane from each stage.

For our example, listing the higher cost items Cij first within
each location and constructing the GAP network by processing the 15
items in I=3 groups (locations) of J=5 items (higher cost items listed
first within each location) resulted in a network with a total of
N=1055 nodes, A=7162 arcs and M=6090 matches.

We can still apply the error bound for the near optimal solution
cbtained as a result as was done in chapter 3; thus it follows that the
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total cost solution Cg(.) will be at least B - £ T Cij, i=1,..,I,
j=2,..,J since anly the first item j=1 at the first location i=1 will
guarantee that no budget loss occurs (the first item to be listed ard
making up the first of the IxJ=15 stages). For our example, the total
cost solution Cg(.) from the network (or DP tables) will be at least
$30,000 - $4,400 = $25,600 or a 14.7% mexdmum error from B=$30, 000 by
processing the items in I=3 groups of J=5 items.

The network reduction techniques are also applicable here but the
order in which the items make up the IxJ stages becare of much greater
significance in improving the lower bound an Cg(.); as shown earlier,
if the stages are made up by sorting the higher cost items first and
irrespective of their locations, the net result will be to improve the
lower baund Cg(.) to at least B - ¢ 5 j=2,..J, for the single location
model, since no budget loss can occur when equal cost items are listed
in adjacent stages. For the multiple location models however, the
result for Cg(.) is much closer to the total available budget B as
shown by the following important propositicn:

Proposition 7.1: The total cost solution for Cg(.) as a result of
applying the GAP network procedure and processing the higher cost items
first, regardless of their location (and assumed to have equal
purchasing costs) will have the same lower bound as the single locatian
models i.e. B - & 5. j=2,..,J.

Proof: We know from the single location model that Cg(.) will have a
lower baurd of at least B - £ C4 when listing higher cost items first
and applying the GAP network procedure since nodes created as a result
of stage j=1 have exact budget node labels ard a possible budget loss
of Cj can occur for each of the remaining stages j=2,..J.

Assuming the same items have identical costs regardless of their
location, listing all of them in adjacent stages will result in exact
budget node labels at stage i=1,..,I for the first j items (the first I
stages) since nodes (or DP rows) at the current stage are created
exactly ¢4 apart and have arcs incident to them only from nodes created
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at the preceding stage, also Cy apart; it then follows that if two
items have equal costs, no budget loss for nodes created will occur.

As a result of grouping equal cost items in adjacent stages, only
J-1 stages will have a preceding stage with a different cost item ard
the total maximum budget loss can anly be T 4 j=2,..,J, exactly the
same as the single location model and this cawpletes the proof .

The immediate consequence, however, is to significantly lower the
mexdimum relative error 8(%) of the shortest path solution Cg(.) which
then becomes much closer to the total available budget B. For our
exanple, sorting the items using this simple technique (listing all 3
items costing $1000. each as the first 3 stages) reduces the network
size to a total of N=728 nodes, A=5036 arcs and M=4272 matches, while
the total cost solution Cg(.) will be at least B - T ¢§ which becames
$30,000 - ($400+$200+$200+$100) = $29,100 or less than $900/$30,000 or
3% maximal error which compares with $25,600 or a 14.7% error above.

Furthermore, it appears that the net result of sorting equal cost
items in decreasing order of their Poissan parameters can also have a
positive effect on reducing network size. Thus, by listing higher cost
items first, irrespective of their locations and by decreasing order of
their respective Poisson parameters ‘5ij in the exanple, resulted in a
network total of N=680 nodes, A=4648 arcs and M=3932 matches; other
exanples seem to canfirm this finding but camnot be formally proven due
to the cambinatorial nature of "matching" labels which carmmot be
accurately predicted.

Table 7.9 below summarizes and campares the results of FULL and
GAP networks for our multiple locatian example (I=3 x J=5 items); each
network built using the appropriate sorting techniques presented in the
two previocus sections is cormpared in terms of its size i.e. the total
mmber of N=nodes, A=arcs and M=matches to highlight related savings
ard the last colum states the meximal error B(%) for the total cost
solution Cg(.) from the total available budget B obtained by applying a
shortest algorithm to GAP networks. We also note that the savings
achievedfmntheFULLnetworktotheGAPnetwoﬁ(structure is
significant but would be much more had we used cost data more
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representative of real world problems, unlike the $100 cammon
denaminator used for all items here.

Table 7.9: FUIL vs GAP netwark solutions (I=1 x J=15)

FULL network N A M B(%)

1. Higher cost items first within 1425 10087 8626 MNA
each location (I=3 x J=5 items)

2. Higher cost (ard equal) items 831 5765 4898 MNA
first regardless of its location
3. Higher cost (and equal) items 787 5407 4584 NA

first regardless of their location
ard in decreasing order of their
Poisson parameters

GAP network

1. Higher cost items first within 1055 7162 6090 14.7
each location (I=3 x J=5 items)

2. Higher cost (and equal) items 728 5036 4272 3.0
first regardless of its location
3. Higher cost (and equal) items 680 4648 3932 3.0

first regardless of their location
ard in decreasing order of their
Poisson parameters

7.2.11 Formulation model P2b (Min BO) . Similar to model Plb to maximize

Ag, mxdel P2 to minimize BO can also be extended to the multiple
location model P2b shown below, due to item separability and convexity
of each individual BO;j5j function:

I J

Min BO =L z mij (P2b)
i=1 j=1
I J o

= I I (x-Sij) -Pij (x)
i=1 j=1 x=Sjj+1
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I J

r z cijsij s B (7.7)
i=1 j=1

Sij =0 i=1,..,1  j=1,..,3 (7.8)

The dynamic programming method of chapter 3 earlier can also be
applied to the multiple location model P2b as well, in order to
minimize BO with a similar dynamic programming recursion of model (P2a)
described earlier except that the return function is sinply the sum of
BO functions instead of the multiplicative recursive formula involving
system availability. The complete solution methodology, including the
budget allocation problem {BAj} to each location, will therefore be
anitted since we have already shown much more efficient and Quicker
solution methodologies, described below.

Since model P2b is already separable by item and by location, the
marginal analysis procedure can also be applied directly. As described
for the backorder case, the marginal benefit of adding 1 more item type
ij from Sj5 to Sjj+1 will result in a net reductian of the mmber of
expected backorders by its complimentary cdf Pi5 (Si5)= 1-Fi5 (Sij) at an
additional cost of cjj. The results cbtained from the marginal analysis
procedure (dropping the index location i), indicate that Cg=$30,000.
was exactly the specified available budget B, and therefore is an
undominated and the optimal solution vector:

{s4} = {1.3,6,8,13,2,4,9,11,18,3,6,14,17,29}; and tallying the
results for each location:

{sij} = {i=1: 1,3,6,8,13; Cig = 6300
i=2: 2,4,9,11,18; Cpg = 9400
i=3: 3,6,14,17,29; Cig = 14300
{s.j} = {4,15,32,38,60}; C.g = 30000
{B7;} = {€300,9400, 14300}

Ag = .1241 and BO = 3.4119
which is slightly different than the solution dcbtained when maximizing
Ag, with the same procedure. Since the total costs Cg cbtained as a
result of the procedure is exactly the specified budget B=$30,000, then
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the corresponding stockage level vector {S4*} is guaranteed to be the
optimal solution for minimizing BO; that is, no other stockage levels
would have resulted in a lower expected total system backorders of BO =
3.41196 for a budget B = $30,000. The solution cbtained with marginal
analysis when maximizing Ag was slightly different (.1277 vs .1241
here) and the corresponding BO = 3.4706 which is, as expected, slightly
greater than the value BO = 3.41196 cbtained here when minimizing BO.

The FULL and GAP network analysis procedures for the single
location model P2 to minimize BO also apply for the multiple location
model P2b. The procedure to setup the network remains the same as for
model Plb discussed above except that the branches are represented by
the cumulative Poisson murber of backorders & (x-Sj)p(x) » X=Sj+1 to ®
whichisdec:reasingasthemmberofsparessj- increases. Thus, DP or
the shortest path in the network can be direcly applied to the network
to solve for the optimal spare parts stockage level vector {Sj ,
j=1,..,J}. We note that the significance of the system performance Ag
becames less meaningful as I and J increase; the multiplication of all
item availabilities Aj4j practically 0 which means that we are
practically certain to run out of at least 1 type of spare but do not
say much else; an the other hand, the total expected system backorders
gradually become wore meaningful since we can relate it directly to
another more appropriate system performance measure AAg = the average
mmber (proporticon) of equipments expected to be operaticnal at the end
of the period, by approximating AAg value with the expression 1 - BO/M,
and will be discussed when camparing several larger scale problems in
chapter 8. For our example, BO = 3.41, thus 1 - BO/M = 1 - 3.41/10 =
0.659 or 65.9% approxdimates the similated AAg = 75% ard as we shall
demonstrate, constitute a lower bound on AAg.

7.3mmmanip2vsmt.lxj's
The camparison of the 3 models for the I=3 x J=5 exanple just

described when an available budget of $30,000 is specified was measured
by the system availability performance measure tracked for all 3 models
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ard are shown in figure 7.1 below, as :indicatedbyanoptin'alAS=
0.1277 obtained from DP and marginal analysis, Ag = .1241 when min BO
and Ag = .07823 with the equal Aj's model used in the military. Even
the proportional budget allocation method {BA;} is superior to the
military model with Ag = .1134. The measure of performance Ag used to
optimize stock levels {Sij} still means the probability of not rumming
out of any spares j at any location i and, although it may be nice to
know, becomes less meaningful in the multiple location models, since a
different mmber of equipments may be operational for each location and
therefore, the impact an AAg may be more significant for locaticns
having a lesser mumber than at others. The problem of allocating budget
levels at each location also remains.
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meeffectcnthemrea;pmpriateperfomancen'easureAAsorthe
average proportion of equipments still operational at the erd of the
pericd can also be significant. The stock level vectors as a result of
solving P1, P2 ard the Equal Aj's model were simulated for each
location and N=5,000 cycles by allocating the optimal budget {Ba;*,
i=1,2,3} = {$6500,$9300 and $14200} at each location cbtained from
marginal analysis (I=1 x J=15), and by allocating the budget
proportionally {BA;} = {$6000, $9000 and $15000} or in proportion to
the mmber of equipments M=2,3 and 5 held respectively at each
location, and are presented in table 7.10 below.

Table 7.10: Simulated AAs for Pib and BEqual Aj's (I=3 x J=5)

Budget\AAs (i) AAsl AAs2 AAS3 AAs
\Loc i | M=2 M=3 M=5 M=10
- {Bai*} $6500 $9300 $14200 | $30000

- P1b (or P2b) 1.4102 2.2672 3.8900 7.5674
% operaticnal| 70.5% 75.6% 77.8% 75.7%

- Equal Aj's 1.2082 1.9896 3.5678 6.7666
% operational|{ 60.5% 66.3% 71.4% 67.6%

{BAi} prop $6000 $9000 $15000 $30000
P1b (or P2b) 1.2726 2.1548 4.1820 7.6094
% operational| 63.6% 71.8% 83.6% 76.1%
Equal Aj's 0.9216 1.8832 3.8392 6.6440
% operational| 46.1% 62.8% 76.8% 66.4%

There are 4 important conclusions to draw from the data: first,
using marginal analysis to solve model Pib (or P2b) resulted in stock
level vectors {Sij} that yield significant higher AAg values when
campared to the equal Aj's model (current military model) regardless of
the method the budget is allocated; this is not surprising since we
have just shown that model P1b is equivalent to a single location case
P1 with the same mmber of items appended I times, and marginal
analysis to optimize Ag will always be superior to the equal Aq's
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model .

Secard, there does not seem to be a significant difference between
the same model when comparing both budget allocation methods; for P1b
to maximize Ag in the example above, AAg = 75.95% using {BA;*} and
76.09% using the proporticnal {BA;} and is also evidenced by the equal
Aj's model (67.54% vs 66.44%) . This makes sense and can be explained as
follows: given a specified available budget, if the same procedure is
used at all locations to allocate items, regardless of the budget
allocated, then AAg will simply decrease at cne location if less money
is available but will be campensated at another location by having more
mney, as lang as the total available budget B for all locations remmin
the same, and the same method to cbtain stock level vectors {S} is used
across all locations. The important consequence of this is that we can
use the proportional budget allocation method easily by simply
assigning {BAj} = {Mj/M i=1,..,I} as an available budget at each
location, from which the aggregate system performance measure to be
optimized can be implemented efficiently. The disadvantage of this
budget allocation method is that we know AAg may not be optimal for
sore locatians with fewer equipments, but will be campensated by a
higher AAg at others, but the total AAg across all locations remaining
the same.

In cur example, AAg = 1.4114 + 2.2810 + 3.9028 = 7.5952 out of 10
or 75.95% equipments operaticnal for model Plb (optimal budget of
$6500, $9300 and $14200) vs AAg = 1.2726 + 2.1548 + 4.1820 = 7.6094 out
of 10 or 76.094% for Plb (proportional budget of $6000, $9000 and
$15000) ; so, the decrease in AAg at location i=1 from 1.4114 (out of
M=2 equipments) to 1.2726 due to less budget available ($6500 vs
$6000) and a slight decrease at location i=2 from 2.2810 (ocut of M=3
equipments) to 2.1548 ($9300 vs $9000) has been carpensated by an
increase in AAg at location i=3 from 3.9028 (out of M=5 equipments) to
4.1820 (914200 vs $15000) to give appraximately the same overall Apg of
7.5952 vs 7.6094 (out of M=10 equipments) at all 3 locations. All
values were the result of the same total available budget B = $30000
and using the same marginal analysis procedure in both types of budget
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allocation methods. The same analysis holds true for the equal Aj's
model .

Third, if the total budget available for all locations ($30,000
for our example) arnd using the same optimal procedure (DP or marginal),
it seems that the optimal solution vector will favor higher stock
levels to the location having less equipments rather than acne having
more, due to the proporticnally lower values of the Poisscn mean
parameters {6}, which makes sense since the impact of ruming out of
spares at a location with less equipments will be greatest. Another way
to loock at it is to use the expression 1 - BO/M as an appraximation to
the more appropriate performance measure AAg, ard will be discussed in
chapter 8.

Fourth, and probably the most important, is that it gives us a
method to allocate the budget to each locaticnm, enabling us to solve
large scale problems quickly. Thus, we could choose to allocate the
budget in proportion to the mmber of equipments held at each locatiecn,
then use topup marginal analysis at each location to (near or)
cptimally determine stock levels {Sij}, ensuring we meet the specified
budget, unlike the current military model. The result should also be
close to the AAg value for all equipments across all locations, but
will tend to give higher Abg; values for locations having more
equipments than others. We can equalize those AAg; values across all
locations by adopting a budget allocation method by solving P1b with
thetog:pnarginalanalysisbya;pe:ﬁingJitetsItimesmt at the
expense of possibly increasing the equivalent model to a point where
System Ag value become practically meaningless to interpret, and also
requiring further manipulations, such as tallying results and
carputing Ag for each location, eventhough the marginal analysis can
easily handle such large problems.

We conclude this section by solving a second mmerical exanple I=3
locatians x J=10 items, to further support the findings discussed
above. With a total budget of $16,000 and {M;} = {20, 30 and 50)
respectively, cost parameters {cij} = {$100.,..,$650} and {aij} =
{0.445 to 8.333}, we solved P1b using marginal analysis at each of the
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I=3 locations by allocating the budget proportianally {BA;} = {M;/M} vs
the optimal budget cbtained with marginal analysis for the equivalent
model (I=1 x J=30 items), stopping at B=$16,000 and tallying the
resulting {BAj} at each location. We then repeated the same procedure
for the equal Aj's model, and the simulated AAs values (N=5,000 cycles
each) cbtained as a result of this methodology are presented in table
7.11 below:

Table 7.11: Simulated AAs for P1b and Equal Aj's (I=3 x J=10)

Budget\AAs (i) | AAs1 AAs2 AAs3 AAs
\Loc i | M=20 M=30 M=50 M=100
- {Bair}) $3540 $5325 $7135 $16000

- P1b (or P2b) 18.202 27.996 46.476 92.674
% operational| 91.0% 93.3% 93.0% 92.7%
Equal Aj's 17.173  26.810 44.767 | 88.750
% operational| 85.9% 89.4% 89.5% 88.7%

{BAi} prop $3200 $4800 $8000 $16000
P1b (or P2b) 17.972  27.558 47.122 92.652
% operational| 89.9% 91.9% 94.2% 92.7%
- Equal Aj's 16.609  26.557 45.712 88.878
% operaticnal| 83.0% 88.5% 91.4% 88.9%

7.4 REVERSE MARGINAL, ANALYSIS.

An interesting cancept resulting from the miltiple location models
is the re-distribution of items either at the begimning of a pericd as
a result of purchasing {Sij} items or re-distribution at any time
during the period if the inventory positicom is known, in order to
optimize our selected performance measures. This cancept is
particularly important even for an organization that does not hold same
quantity of items at a central warehouse, otherwise, it would becore a
multi-echelon type of system that has been extensively studied under
various assumptions of lead-time distributicnms, repairable items,.. as
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stated in the literature review of chapter 3.

The marginal analysis procedure described for the single or
multiple location models always involves the selection at each
iteration of an item j which provides the greatest increase of the
abjective function per dollar invested when maximizing Ag or the
greatest decrease in the mmber of backorders per dollar invested. We
can thus apply the procedure in "reverse" in order to allocate in a
near or optimal way to each location i, the stock recently purchased or
to re-allocate any time during the period, given that we know the
current inventory positicon for item j at every location i.

This can be accamplished by simply carbining all quantities held
for each item j, say qj =Eian summed over the location index
i=1,..,I and applying the marginal analysis by optimizing Ag in
reverse, starting from this initial allocation quantity {Sj =4,
i=1,..,I} and reducing the "pooled" quantitie Qjj for each item to the
different locations until it reaches 0. The procedure will guarantee
that the allocation quantity vector {Sij} cbtained is the optimal
solution since at every iteration, the solution obtained is
undominated (see [Fox 1966]) . Once stock levels of each item j for all
locations have been determined, a simple redistributicn of items
between locatians can take place, assuming that transportation
(transshipment) costs are negligible, otherwise, a new model would be
required to minimize transportation costs.

7.5 INVENTORY HOIDING COSTS

In most organizations, the inventory holding costs are usually an
integral part of the accounting systems and financial statements of any
business, and are measured using a cost of capital, denoted R (either
as $/$/time wnit or as a % of the individual item value), and
eventhough its accuracy may be doubtful, they can be a significant part
of total costs in addition to the purchasing costs of the items. For a
public institution, such as the military, the cost of capital and the
inventory holding costs carmot be measured against alternative projects
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yielding a say 20% return on capital investment. Therefore, this
section will specifically deal with the additional costs incurred as a
result ofcarryingtheitetsininventozyduringthetineperiod, and
is applicable mostly for organizatians that include these costs with
appropriate accounting practices. Model P1 can thus be re-formilated as
model Plc defined below:

J J ;;'3
Max =TA; =17 ( : (X)) (P1c)
A j=lAj j=1 x=Opj
J J
s.t. T CJS] + (Sj+Sj-6j)CjR/2 s B (7.9)
=177 §=1

or, upan rearranging terms for constraint (7.9) as explained below:

J

s.t. I (CJSJ (1+R) - Ojc_jR/Z) s B (7.9a)
3=1
Sj 2 [éj] j=1,2,..,J3 (7.10)

The reason constraint (7.10) must be added is to start with an
inventory level vector {Sj, j=1,..,J} that is the smallest integer
greater or equal to the expected mmber of failures during the time
pericd (Poisson rate parameter) for each item j=1,2,..,J, and will
ensure that costs will always be positive because of the second term on
the left side of the inequality in constraint (7.9a).

The secand aggregate performance measure for such an inventory
system is to minimize the total expected mmber of backorders BO and
model P2 can be re-formulated as follows:

J J ©
Min BO=ZL (BO5) = £ I (x-S<).ps(x) (P2c)
j=1 3 j=1 x£j+1s] F]

subject to equations (7.9a) and (7.10) as for model Plc. Constraint
(7.9) or (7.9a) in both models Plc and P2c consists of the total
purchasingcost:s&zc:isj whensj items of type j are purchased at the
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begimning of the cycle ard the total inventory costs H = £ (Sj+sj'
Gj)CjR/zinaJrredcthingthepexiodgivenbytheseccmdtermonthe
left side of constraint (7.9a) which is the average inventory times the
item's cost multiplied by the interest rate factor for the pericd.

The inventory costs can be explained as follows: at the beginning
of the period, I have Sj items of type j and I expect a devarnd of 8
items during the period, therefore the Expected Net Stock E(NS) for the
peridd = Sj-éj items and the average inventory will be (Sj+Sj-6j)/2 at
a cost of C4R for each ane (see [Silver and Peterson 1985]). The
holdingcostsaret:lmsbasedonaverage invent:oryasq:posedtoerﬁj_rg
inventory.

In this context, it is assumed that the expected mmber of
backorders BO is small campared to the Expected On-Hand inventory
E(CH) so that the expected net stock E(NS) ~ E(CH). The exact
expressions for these quantities are as follows:

S
E(CH) = £ (S-x).p(x) (7.11)
x=0
[0}
BO = £ (x-S) .p(x) (7.12)
x=S+1
E(NS) = E(OH) - BO (7.13)

~ E(CH) when BO/E (OH)~0

The above appraximation is valid when sufficiently high
availability Ag is specified since it will result in higher Ay's for
individual item types, or the mmber of items J is high enough such
that individual Aj's = .90; for example, if J=20 item types ard Ag =
0.10 after the optimization, then individual Aj's will average
.20(1/20) 20 922 Then, suppose S-10, 6=6, then A;(S5=10|65=6) = 0.96
ard exact values for E(CH) and BO are 4.077 and .077 respectively and
E(NS) = 4. Therefore, BO approaches 0 as S increases and the ratio
BO/E(CH) = .077/4.077 = 0.0108 also approaches 0; thus, E(NS) = 10-6 =
4 is a close appraximation of E(CH) = 4.077 or E(NS) = 4 ~ E(CH) or
less than 2% error.
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Since E(NS) can be negative for Sy smaller than the average demand
65 and thereby resulting in negative total costs when R>0 in constraint
(7.9a), the allocation vector {Sj, j=1,..,J} is restricted to be
smallest integerztheaveragedstaniéj during the period by adding
constraint (7.10); this requirement will ensure that this situaticn
will not arise and if R=0, then this requirement can simply be dropped
since no inventory costs would be incurred.

The marginal increase in the cost of an additicnal item as a
result of applying the marginal analysis procedure for both models Plc
or P2c¢ sinmply become Cj(l+R) or cj + c4R which is the sum of purchasing
1 additional item type j at the cost ¢y and a holding cost of CyR;
thus, we only need to replace the term cj by0j(1+R) in all the models
Pl, Pla, P1b or P2, P2a, P2b to implement the marginal analysis
procedure (or others), including the topup procedure. The marginal
increase in total costs as a result of adding an additional item or
¢ (1+R) also becare a very effective and efficient way to incorporate
inventory holding costs to setup the FULL and/or GAP network structures
for all models, including the Ebeling model, since all of them use the
cumulative distribution.

Although the comparison with a public organization is irrelevant
here, we nevertheless can illustrate the possible impact of adding
irventory holding costs to the models for those organizations having
appropriate accounting practices. The end result is that for
sufficiently high Ag (depending on the murber of items J) , if
individual item availabilities Aj's, j=1,..,J are such that they are >
-90, then the small errors in appraximating E(CH) or On-Hand inventory
by E(NS) or Net Stock will be relatively accurate, when caompared with R
values traditionally in the order of 20% on an anmual basis.

Example 2 (J=10 items) illustrates the possible impact of adding
inventory holding costs during a period, figure 7.2 below shows the
marginal analysis sequence of iterations with B=$15,000 for models Plc
ard Equal Aj's each with R=0 and R=20%.
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CHAPTER 8: NUMERICAL EXPERIMENTS

8.1 TEST PROBLEMS

This chapter deals with larger scale problems by applying the
various solution methods developed in earlier chapters, in order to
confirm or validate same of the more important theoretical and
practical results cancerning the performance measures of the operating
system. To this end, we created a series of sixteen (16) randamly
generated test problems most likely to be found in practice in the
military as well as other organizations that wish to implement an
aggregate system performance measure such as min Ag and/or min BO,
covering an appropriate range of values for J = 10,20,50 and 99 items
and M = 1,5,10 and 20 muber of equipments.

For each prablem, a trial run was necessary to find a suitable
available budget value that ensured a high system availability or Ag >
-390 for both model P1 to Maximize Ag and for model P2 to Minimize BO
applied to the same data, and mostly concentrating on the marginal
analysis procedure, including the topup procedure and simuilaticn
techniques of chapter 6 for the measure of performance AAg (with part
failure dependencies incorporated). In addition, each of the 16
problems was solved at a lower value of Ag =~ 0.50 to 0.60 and for those
problems with M = 10 or 20 equipments, also solved for very low values
of Ag ~ 0.20 to 0.30 to cbtain more useful results for the
correspanding AAg values, as well as enabling us to better interpret
the averages. Thus, a total of forty (40) test problems were used to
solve models P1, P2 and Equal Aj's and simulated AAg values for Pl vs
Equal Aj's model were also compared.

For each (J x M) problem, the cost ¢y and failure rate 75 (or
canversely its MIBFy = l/Tj) for j=1,..,J within each problem were
randomly generated as follows: first, MIBFj's (measured in ks) were
abtained from a truncated exponential distribution with mean 15000 ks
with an acceptance region of between 5000 and 50000 ks, otherwise, it
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was rejected. This method ensured a proper range of MIBFs likely to be
encountered in practice for wvehicle systems, not anly in military
applicatians but in other organizations as well; the secandary
realistic effect of using the exponential is to generate most itams in
the lower range of possible extremes.

Secand, the cost parameters for each item {c:j, j=1,..,J} was
generated from a truncated exponential distribution with mean $250 with
an acceptance criterion of between $50 and $5000; for each cj, a
procedure to incorporate a correlation factor was inplemented to vary
¢ in relation to its MIBF; this ensured that most items with low MIBFs
also had low costs, and items with high MIBFs either had high or low
costs, an example of which is illustrated in figure 8.1 below for 1 of
the 40 problems (J=99, M=10). The average correlation factor was
appraximately 0.6 across all problems.

For example, if an item j generated parameter MIBF4 = 36,000 kms
andt:heammalusagerateUforanequiptmt (M=1) was expected to be
12,000 ks, then M = 10 equipments each operating an average of 12,000
kms/yr would yield an estimated mean mmber of failures = M x U X
(l/MIBFj) =10 x 12,000 x 1/36,000 ks = 3.33 failures (POISSON
distributed) as seen earlier in chapter 2. For all the problems
presented (40 test prablems) here, the anmial usage was assumed to be
12,000 kms and all Poisson means canverted to an equivalent of 15 to 30
days, reflecting the military requirement of carrying enough spares
without resupply for that period.
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All the results are presented into separate tables as described
below and start with table 8.1 giving the general parameters data for
each of the 40 prablems, such as J, M ard B, the minimm and mexdmm
S5, from which the error on the total costs Cg fram B can be readily
calculated before the marginal analysis procedure is applied; tables
8.2a presents camparative results cbtained from marginal analysis vs
tcpupwl'msolvingPltoua:dmizeAs and table 8.2b compares model P1
with the Equal Aj's model (military model) against simulated AAg
values. Table 8.3a and 8.3b repeats the same camparative data when
solving P2 to minimize BO.

Because of the amount of data involved, table 8.1 general data was
not repeated and incorporated into other tables, but can easily be
referred to when reading tables 8.2a, 8.2b, 8.3a or 8.3b as they simply
extend table 8.1 into more colums.

table 8.1 : Random test problem data varying J, M and B

table 8.2a: Marginal analysis models Pl vs Topup

table 8.2b: Simulated AAs vs P1 and Equal Aj's

table 8.3a: Marginal analysis models P2 vs Topup

table 8.3b: Simulated AAs vs P2 and Equal Aj's
Relevant averages are shown at the bottom of each appropriate colum
for convenience; since error size decreases as problems becare more
camplex, careful interpretation of each appropriate colum average
must be made. Their individual values may not be as useful or as
indicative as the increase (or decrease) between 2 colum averages.

From table 8.1 below varying J, M and B, we note the filename used
to describe the J x M data, ammotated with an appropriate symbol L =
Low Ag or V = very low Ag; so the file 1010L referred to in earlier
chapters as example 2 indicate J=10 items x M=10 equipments results in
a L = low Ag value with a budget B = $10,000. The mmber of items J amd
the mmber of equipments M became progressively higher.

Minimm and Maximum cost (least and most expensive of J=10 items
for 1010L) items are $152 and $860 respectively in colums (5) and (7)),
giving us t:hemarginoferrororalowerbamdmcs from B (as a
proportion of B) in colums (6) and (8) when topup and marginal
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analysis are applied to solve Pl or P2, as derived in chapter 4.

For file 1010, 1010L or 1010V, the total costs Cg of the solution
cbtained from marginal analysis will be within $860/$10,000 or -.086 of
B or -8.6%, meaning Cg will be > ($10,000-$860) or at least $9140,
while the topup procedure will result in Cs > ($10,000-$152) or at
least $9848. The average IB on Cg for all 40 prablems indicated at the
bottam of each colum (5) and (7) indicate a possible improvement of Cg
fram an average of -12.7% down to less than 0.7% by applying the topup
procedure following the regular marginal analysis procedure.

Finally, the last colum (9) in table 8.1 indicates the maxdmm
mmber of iterations as a result of implementing the marginal analysis
procedure; all 40 problems specified a minimum Aj = 0.00001 and maximm
Aj = 0.999999 for each of the J items. As J (and M) increases, so does
the possible mexdmum mumber of iterations (average of 356 iteratians)
fram applying the regular marginal analysis; this can be considered the
most efficient and convenient of all methods analyzed in earlier
chapter to give us the respanse curve {Ag vs Cg} for P1 and/or {BO vs
Cg} for P2.



Table 8.1: Random test problems varying J.M.B

(1) (2) (3) (4) (5) {6) {7) (8) (9)
No. No.
items Eqpts Budget Min Prop Max Prop Max
filename J M B Cj vs B Cj vs B Iter
1001 10 1 $3000 $66 -0,022 $811 -0,270 44
1001L 10 1 $1000 $66 -0,066 $811 -0,811 44
1005 10 5 $12000 $64 -0,005 $1673 -0,139 71
10050 10 5 $6000 $54 -0,009 $1673 -0,279 71
1010 10 10 $15000 $152 -0,010 $860 -0,057 87
1010L 10 10 $10000 $152 -0,015 $860 -0,086 87
1010V 10 10 $6000 $152 -0,025 $860 -0,143 87
1020 10 20 $25000 $237 -0,009 $1368 -0,055 98
1020L 10 20 $15000 $237 -0,016 $1368 -0,091 98
1020V 10 20 $11000 $237 -0,022 $1368 -0,124 98
2001 20 1 $12000 $64 -0,005 $2469 -0,206 91
2001L 20 1 $2000 $54 -0,027 $2469 -1,235 91
2005 20 5 $25000 $51 -0,002 $2946 -0,118 130
2005L 20 5 $19000 $61 -0,003 $2946 -0,155 130
2010 20 10 $25000 $75 -0,003 $1357 -0,054 186
2010L 20 10 $18000 $75 -0,004 $1357 -0,075 186
2010V 20 10 $12000 $75 -0,006 $1357 -0,113 186
2020 20 20 $70000 $120 -0,002 $3053 -0,044 227
2020L 20 20 $50000 $120 -0,002 $3053 -0,061 227
2020V 20 20 $40000 $120 -0,003 $3053 -0,076 227
5001 50 1 $35000 $54 -0,002 $3397 -0,097 226
5001L 50 1 $16000 $54 -0,003 $3397 -0,212 226
5005 50 5 $90000 $86 -0,001 $3253 -0,036 326
5005L 50 5 $60000 $86 -0,001 $3253 -0,054 326
5010 50 10 $110000 $73 -0,001 $3040 -0,028 432
5010L 50 10 $80000 $73 -0,001 $3040 -0,038 432
5010V 50 10 $65000 $73 -0,001 $3040 -0,047 432
5020 50 20 $150000 $61 0,000 $2450 -0,016 593
5020L 50 20 $120000 $61 0,000 $2450 -0,020 593
5020V 50 20 $100000 $51 -0,001 $2450 -0,025 593
9901 99 1 $80000 $62 -0,001 $3418 -0,043 448
9901L 99 1 $50G00 $62 -0,001 $3418 -0,068 448
9905 99 5 $180000 $58 0,000 $2963 -0,016 664
9905L 99 5 $120000 $68 0,000 $2963 -0,025 664
9910 99 10 $220000 $61 0,000 $2968 -0,013 863
9910L 99 10 $170000 $61 0,000 $2968 -0,017 863
8910V 99 10 $140000 $51 0,000 $2968 -0,021 863
8920 99 20 $330000 $63 0,000 $3243 -0,010 923
8920L 99 20 $250000 $53 0,000 $3243 -0,013 923
Lsﬁszov 99 20 $200000 $53 0,000 $3243 -0,016 923
Total 40 10,2 |Averages $85 -0,007 $2422 -0,125 356

194
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8.2 TAHLES 8.2a,b FOR MIEL P1

Table 8.2a below mostly represents data related to model Pl to
mexdmize Ag and compares the results of solving Pl by applying the
regular warginal analysis and the improvement as a result of applying
the topup procedure. The following gives a brief explanation of each
colum for convenience and easy reference purposes.

Table 8.2a: Marginal anmalysis far P1 vs Topup

colums (10) to (14): results of marginal analysis for P1

(10) Iter: actual mmber of iterations k to max Ag (marginal analysis)

(11) LB Cg: total costs of the optimal solutiaon vector {Sj, j=1,..,J}
(which is a lower bound IB)

(12) Prop vs B: actual difference of Cg vs B as a proportion of B.

(13) LB Ag: lower bound on Ag (last iteration k)

(14) UB Ag: upper bound on Ag (as a result of iteration k+l)

colums (15) to (19): results of topup marginal analysis for Pl

(15) Iter: actual mumber of iterations as a result of topping up the

solutiaon vector cbtained from colum (10) .

(16) LB*Cg: total cost of the improved solution vector {sj, j=1,..,J}

as a result of topping up (which is the improved lower bourd) .

(17) Prop vs B: actual difference of Cg vs B as a proportion of B.

(18) LB*Ag: improved LB an Ag as a result of topping up.

(19) Prop vs LB Ag: relative improvement (increase) in Ag as a result
of topping up from iteration k.




Table 8.2a; Marginal analysis P1 vs T.

196

(10) (11) (12) (13) (14) (15) (16) (17) (18) (19)
Marg Topup
P1 LB Prop LB us P1 LB* Prop LB* Prop vs
Iter Cs vs B As As iter Cs vs B As LB_As
8 $2845 -0,052 0,89181 0,94264] 14 $2977 -0,008 0,89367 0,002
4 $838 -0,162 0,67685 0,72017 9 $970 -0,030 0,67827 0,002
25 $11343 -0,055 0,92281 0,94756] 39 $11994 -0,001 0,92961 0,007
16 $5105 -0,149 0,52364 0,65979} 26 $5946 -0,009 0,55067 0,052
32 $14851 -0,010 0,93010 0,94852] 35 $14851 -0,010 0,93010 0,000
22 $9484 -0,052 0,62961 0,69948] 33 $9974 -0,003 0,64895 0,031
14 $5765 -0,039 0,22800 0,27056] 19 $5917 -0,014 0,23748 0,042
40 $23767 -0,049 0,92737 0,94959] 47 $24972 -0,001 0,94076 0,014
25 $14184 -0,054 0,52146 0,57969| 32 $14963 -0,002 0,55510 0,065
19 $10387 -0,056 0,25121 0,33174] 23 $10769 -0,021 0,27648 0,101
23 $11711 -0,024 0,89552 0,92059] 30 $11974 -0,002 0,89800 0,003
9 $1809 -0,096 0,53947 0,57832] 17 $1983 -0,009 0,54807 0,016
41 $24984 -0,001 0,86442 0,88874)] 46 $24984 -0,001 0,86442 0,000
36 $16556 -0,129 0,64610 0,72041 47 $18955 -0,002 0,68910 0,067
77 $24463 -0,021 0,88530 0,90789] 82 $24949 -0,002 0,89897 0,015
60 $17772 -0,013 0,62010 0,64318] 69 $17950 -0,003 0,62910 0,015
45 $11740 -0,022 0,18596 0,20829] 53 $11927 -0,006 0,19376 0,042
114  $69284 -0,010 0,92072 0,93620] 122 $69919 -0,001 0,92425 0,004
88 $48558 -0,029 0,58238 0,64041 96 $49909 -0,002 0,60765 0,043
73 $39389 -0,015 0,31994 0,35672] 79 $39880 -0,003 0,33357 0,043
66 $33287 -0,049 0,89402 0,92263] 79 $34996 0,000 0,90928 0,017
46 $15037 -0,060 0,56661 0,59234] 56 $15982 -0,001 0,58166 0,027
131 $89160 -0,009 0,91002 0,91860] 136 $89982 0,000 0,91350 0,004
93 $59377 -0,010 0,59347 0,60410f 102 $59938 -0,001 0,60095 0,013
199 $109875 -0,001 0,90742 0,91513] 204 $109998 0,000 0,90800 0,001
157  $79773 -0,003 0,57704 0,60335] 165 $79954 -0,001 0,57941 0,004
135  $64684 -0,005 0,31872 0,34743| 143 $64933 -0,001 0,32205 0,010
320 $149894 -0,001 0,80929 0,92059] 328 $149996 0,000 0,90952 0,000
260 $119835 -0,001 0,63770 0,64942] 271 $119970 0,000 0,63365 0,003
232  $99618 -0,004 0,30985 0,31916] 240 $99983 0,000 0,31471 0,016
147  $79623 -0,005 0,91512 0,91824] 154 $79963 0,000 0,91669 0,002
108  $49560 -0,009 0,57208 0,59668] 119 $49977 0,000 0,57729 0,009
315 $179426 -0,003 0,93710 0,94361| 325 $179972 0,000 0,93832 0,001
228 $118828 -0,010 0,59459 0,61109] 238 $119961 0,000 0,60668 0,020
435 $219852 -0,001 0,91027 0,91593] 441 $219959 0,000 0,91063 0,000
360 $169740 -0,002 0,61920 0,62180] 368 $169996 0,000 0,62106 0,003
301 $139752 -0,002 0,28095 0,29068] 306 $139984 0,000 0,28355 0,009
443 $329942 0,000 0,90087 0,90120f 449 $329998 0,000 0,80093 0,000
354 $249806 -0,001 0,48901 0,49226] 365 $249996 0,000 0,49028 0,003
285 $199588 -0,002 0,11669 0,12475] 292 $199981 0,000 0,11894 0,019
135 -0,030 0,64807 142 -0,003 0,65678 0,018 |




Fram the data in table 8.2a above, we can easily compare the
results of solving model Pl with marginal analysis vs the topup
procedure.

First, wenotethevalidityofthelmerbamdmcsdenlvedin
chapter 4 earlier for the marginal analysis procedure, based on the
maximum cost item; weknewthat:t:heLBmCSwillbezB-trax{Cj,
j=1,..,J} as indicated in table 8.1 earlier, that is based en the most
expensive item; on average the theoretical IB an Cs fram B was -12.5%
from the budget and the actual error was less than -3.0% (colum 12)
and improved further with the topup procedure to less than 0.3%.

Second, and probably the most important is the average 1.8%
(colum 19) relative increase in Ag to 65.678% as a result of the topup
procedure, a significant improvement in system performance, by simply
adding items after the k th iteration with lesser cost than the one
that caused the budget to be exceeded at iteration k+l, thus confirming
the validity of the procedure.

Third, the very small price to pay for this significant
improvement in system performance is an average increase of only 7
iterations (fram 135 to 142), eventhough the marginal analysis could
easily handle several thousand iterations quickly ard efficiently. The
program counts one camparisaon as an iteration eventhough no item may be
added, so in fact less than 7 items were further added as a result of
the procedure.

Although it does not guarantee the solution to be the true
optimal ane, the topup procedure shall therefore be the method closest
to the true optimal value of the System performance Ag in table 8.2 ard
BO in table 8.3; therefore, all other methods shall always be compared
against that one, denoted LB*Ag.
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The following table 8.2b compares the results of the topup
marginal analysis procedure for Pl with the Equal Aj's model ard gives
the simulated camparative AAg values cbtained as a result of solving
both models.

Table 8.2b: Simulated AAs vs P1 and Equal Aj's

(20) Sim AAs P1: simulated AAs value (N=5,000 cycles) cbtained from the
solution vector {Sj} from the topup marginal analysis for Pl to max Ag
(21) Prop vs LB*As: relative (proportional) increase of AAs vs LB*Ag
(valid when M=1 cnly)

(22) Corresp BO: corresparding BO value when solving P1 to max Ag

(23) Estimate AAs = 1 - BO/M: the value of 1-BO/M as an estimate of AAg
when compared to its simulated value

(24) Prop vs Sim AAs: relative (proportional) difference of the
estimate 1-BO/M vs AAs

colums (25) to (28): camparison Equal Aj's vs P1 and AAg.

(25) Bqual Aj's Ag: the Ag value dbtained by solving the current
military model with equal Aj's

(26) Prop LB*Ag vs Equal: relative (proportional) increase in Ag values
of LB*Ag (topup) vs Equal Aj's model

(27) Sim AAg Equal Aj's: simulated AAs value (N=5,000 cycles) cbtained
from the solution vector {Sj} from the Equal Aj's model.

(28) Prop Sim AAg* vs Sim AAg: relative (proportional) difference in
simulated AAg values of the Topup marginal analysis vs BEqual Aj's
models.
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(20) (21) (22) (23) (24) (25) (26) (27) (28)
Sim Estimate Equal Prop Sim Prop
P1 Prop vs | Corresp AAs Prop vs Aj's LB*As Equal Sim AAs*
AAs* LB*As 8O 1-BO/M  Sim AAs*| As Equal AAs  Sim Aj's
0.89280  -0,001] 0,11323] 0,88677 -0,007 |0,89187 0,002 —0.88800 0,005
0.67140 -0,010} 0,38877] 061123 -0,090 [0,58198 0,165 0,.58320 0,151
0,98516  0,060] 0,07820] 0,98436 -0,001 0908132 0.026 0,97944 0,006
0.88800 _ 0.613] 0,60601] 0,87880 -0,010 }0,33685 0,635 0,79532 0,117
0,99200 0,067 0,08472f 0,99153 0,000 [0,90469 0.028 ©0.98804 0,004
0,95004  0,464] 0,51436] 0,94856 -0,002 [0,61040 0.063 0,94416 0,006
0.84758 2569} 1,73279] 0,82672 -0,025 [0,18064 0,315 0.82558 0,027
0.99589 0,059 0,07312] 0,99634 0,000 [0,93784 0,003 0.99588 0,000
096575  0,740] 0,72035] 0,96398 -0,002 [0,51410 0,080 0,95861 0,007
0.92511 2,346} 1.58266] 0,92087 -0,005 [0,26271 0,052 0,92264 0,003
0.89780 ~ 0,000 0,10824] 0,89176 -0,007 [0,85204 ©,084 085280 0,053
0.56120 0,024} 0,60316] 0,39684 -0,293 J0,37482 0.462 0.38080 0,474
097132 0,124] 0,15757f 0,96849 -0,003 [0,79626 0,086 0.94576 0,026
092764  0,346] 0,38464] 0,92307 -0,005 [0,51780 0,331 0,85832 0,081
098786  0,099] 0,12605] 0,98740 0,000 [0,88211 ©.019 0,98364 0,004
094418  0,501] 0,55658] 0,94434 0,000 |0,49616 o0 268 0,91946 0,027
083060  3,287) 1,92353) 0,80765 -0,028 [0,08570 1.261 0,75068 0,106
099529 = 0,077} 0,09245] 0,99538 0,000 [0,87804 ©.053 0,99271 0,003
097167 0,599} 0,60028] 0,96999 -0,002 [0,48702 0.24s 0.95832 0,014
033524 _ 1,804] 1,38869] 0,93057 -0,005 [0,26912 0,239 0,92387 0,012
0,90600  -0,004] 0,09600] 0,90400 -0,002 |0,80974 ©0.733 0,8250G 0,098
057540 -0,011] 0,54405] 0,45595 -0,208 [0,46156 0 260 0,51060 0,127
0,98132  0,074] 0,09600] 0.98080 -0,001 [0,87398 0.045 0.97296 0,009
089884  0,496f 0,54792 0,89042 -0,009 fo0,51384 0,170 0,87144 0,031
098918  0,089] 0,10830 0,98917 0,000 [0,87495 0.038 0,98660 0,003
034130 0,625 0,61665| 0,93834 -0,003 |0,40287 0.438 0,90548 0,040
0.88406  1,745] 1,30090] 0,86991 -0,016 ]0,20214 0,593 0,84448 0,047
0,99441  0,093] 0,11505] 0,99425 0,000 [0,88471 0,028 0,99287 0,002
097276  0,5211 0,56864| 0,97157 -0,001 [0,57269 0,117 0,96692 0,006
0,93309 _ 1,965] 1,46546] 0,92673 -0,007 [0,18471 0,704 0,89885 0,038
0,91840  0,002] 0,08889] 0,81111 -0,008 ]0,90360 0013 0,90440 0,015
0.59060 _ 0,023] 0.55506] 0,44494 -0,247 |0,44960 0,284 0,49680 0,189
0,98640  0,051] 0,06770] 0,98646 0,000 [0,91890 0.02] 0,98204 0,004
090116 0,485/ 0,53713] 0,89257 -0,010 J0,48879 0,241 0,86524 0,042
0.98966 0,087 0,10550] 0,98945 0,000 ]0,88600 0,038 0,98574 0,004
0.94914  0,528] 0,54155] 0,94585 -0,003 [0,46606 0,333 0,91714 0,035
086994  2,068| 1,46967] 0,85303 -0,013 [0,20046 0.414 0,83888 0,037
0.99318 0,102 0,12314] 0,99384 0,001 [0,86454 0,042 0,99180 0,001
0,95974  0,958] 0,86901| 0,95655 -0,003 |0,35996 0,362 0,93930 0,022
088509 6,441] 2,60862] 0,86957 -0,018 [0,02924 3,068 0,80817 0,095
0.90641 _ 0,753] 0,60652] 0,88973 _-0,026 [0,57766 0.233 0,87382 0,049
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'meresultspresentedintables.ZbabovecatparestheAsvalues
cbtained from solving model P1 (topup) ard the equal Aj's model
(current military model) .

First, the most important conclusion to be drawn as indicated in
colum 26, the Ag values cbtained as a result of the topup marginal
analysis procedure show a 29.3% average proportional increase over the
BEqual Aj's model, by camparing Ag values in colum 25 and colum 18 of
the topup procedure in table 8.2a above; the absolute difference in
average Ag values is 0.65678 - 0.57786 = 0.07892, or a 13.7%
improvement when averaging these absolute values before camputing and
camparing the averages.

WeknewthattheequalAj'srrodelcanneverwtperfomnodelPl
(regular and topup marginal analysis) as expected, but the data also
shows that the average difference is seriocusly affected by low
available budget values and for low or very low Ag values, two
canditions likely to be encountered in practical problems and not only
restricted to the military. Such would be the case when downsizing or
restructuring occurs, when a manager decides (either by choice or
otherwise) to allocate small budget values for maintenance, or simply
because a large mmber of items J is included in the analysis resulting
in lower Ag values when multiplied together; as discussed earlier, the
respanse curve is likely to be wider at such values. Thus, the
relative increase in system performance can be significant by
implementing a model that can discriminate between cost items such as
model Pl and/or P2.

Secand, the effect an AAg (average munber /proportion of equipments
operational at the end of the cycle period) can also be significant, as
indicated in table 8.2b; as a result of solving both models P1 and
Equal Aj's, the AAg value was simulated for each stock level vector
{Sj} for N=5,000 cycles each, taking into account failure deperdencies,
and are presented in colums 20 and 27 respectively; colum 28
indicates the relative difference between the two models and shows that
model P1 outperforms the equal Aj's model by an average of 4.9% across
all 40 problems, eventlnlghthemmberofequiptentsrdgoesashighas
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20 and the differences for such problems terd to be smaller. The
average absolute difference in simulated AAg values across all 40
prablems (colums 20 and 27) is 0.90641 - 0.87382 = 0.03259. For
organizations having M < 5 equipments, the difference in AAg can be far
more serious, specially for low (or very low) values of Ag, if the
Equal Aj's model is used as opposed to model P1.

Third, because of the similarities between models P1 and P2, which
will be cammented on shortly in tables 8.3a and 8.3b next, we also
reported in table 8.2b here the corresponding BO value cbtained as a
result of solving Pl in cclum 22 and 1 - BO/M, an estimate of AAg
shown in colum 23, asaproportionalinczeasewl'mcarparedtotheAAS
simulated value, in colum 24. The reason is as follows: the ratio BO
divided by M is the sum of all BOj, j=1,..,J and when divided by M,
canstitutes an estimate of the average proportion of equipments NOT
operational at the end of the cycle; when subtracted from 1, the
expression 1 - BO/M becames an estimate of the average proportion of
equipments operatianal (or UP) at the end of the cycle. As the data
clearly shows, the estimate 1-BO/M is a close approximation of AAg for
most 40 problems except those with M=1 (lower values of M) and
underestimates AAg by an average of less than 2.6%.

Except for problems with M=1, the average estimate would be very
close to the simulated AAg value, even for low Ag values. Since Max Ag
is equivalent to Max AAg when M=1, we should compare the improved IB*Ag
cbtained from the topup procedure with the simulated values of Ahg for
anly those 8 problems where M=1 in colums 20 and 21.
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8.3 TAHLES 8.3a,b FOR MIEL P2

Table 8.3a below mostly represents data related to model P2 to
nﬁrﬁnﬁ.zemarxicmparestheresultsofsolvﬁxgmbyamlyingtle
regular marginal analysis and the improvement as a result of applying
the topup procedure. The following gives a brief explanation of each
colum for convenience and easy reference purposes.

Table 8.3a: Marginal amalysis vs Topup far P2

columns (10) to (14) : results of marginal analysis for P2

(10) Iter = actual mumber of iterations k to min BO (marginal analysis)

(11) IB Cg = total costs of the optimal solution vector {Sj, j=1,..,J}
(which is a lower bound LB)

(12) PropvsB:actualdiffermceofCSvsBasapnoportionofB.

(13) UB BO = upper bound on BO (last iteraticn k)

(14) 1B BO = lower bound on BO (as a result of iteration k+1)

colums (15) to (19): results of topup marginal analysis for P2

(15) Iter = actual mmber of iterations as a result of topping up the
solution vector cbtained fram colum (10) .

(16) UB*Cg = total cost of the improved soluticon vector {Sj, j=1,..,3}
as a result of topping up (which is the improved upper bound) .

(17) Prop vs B = actual difference of Cg vs B as a proportion of B.
(18) UB*BO = improved UB on BO as a result of topping up.

(19) Prop vs UB BO = relative inprovement (decrease) in BO as a result
of topping up from iteration k.




Table 8.3a: Marginal analysis P2 vs T

{(10) {11) (12) {13) (14) (15) (16) {17) (18) (19)
Marg Topup
P2 LB Prop us LB P2 us* Prop us* Prop vs
iter Cs vs B BO 80 iter Cs vs B BO Us BO
8 $2845 -0,052 0,11536 0,05995 14 $2977 -0,008 0,11323 -0,018
4 $838 -0,162 0,39090 0,32891 9 $970 -0,030 0,38877 -0,005
26 $11644 -0,030 0,08023 0,05175] 39 $11994 -0,001 0,07820 -0,025
16 $5105 -0,149 0,66488 0,58594] 26 $5946 -0,009 0,60601 -0,089
32 $14851 -0,010 0,08472 0,06209] 34 $14851 -0,010 0,08472 0,000
22 $9484 -0,052 0,55071 0,43045] 33 $9974 -0,003 0,51436 -0,066
14 $5657 -0,057 1,81509 1,55665] 21 $5995 -0,001 1,74260 -0,040
40 $23767 -0,049 0,09120 0,06362] 47 $24972 -0,001 0,07311 -0,198
26 $14489 -0,034 0,75533 0,63441 239 $14871 -0,009 0,70595 -0,065
20 $10769 -0,021 1,58266 1,25144] 24 $10769 -0,021 1,58266 0,000
23 $11711 -0,024 0,11106 0,08345] 30 $11974 -0,002 0,10824 -0,025
9 $1809 -0,096 0,61965 0,55018] 17 $1983 -0,009 0,60316 -0,027
41 $24984 -0,001 0,15757 0,12767] 46 $24984 -0,001 0,15757 0,000
36 $16556 -0,129 0,45465 0,34601 46 $18955 -0,002 0,38464 -0,154
78 $24764 -0,009 0,13232 0,10287] 86 $24998 0,000 0,12717 -0,039
60 $17772 -0,013 0,57451 0,52690] 68 $17950 -0,003 0,55658 -0,031
46 $11274 -0,061 2,10102 1,79176} 57 $11984 -0,001 1,90800 -0,092
116  $69919 -0,001 0,09245 0,08496] 121 $69919 -0,001 0,09245 0,000
90 $49080 -0,018 0,63057 0,52262] 98 $49991 0,000 0,59909 -0,050
73 $37346 -0,066 1,70723 1,31134] 79 $39803 -0,002 1,40265 -0,178
66 $33287 -0,049 0,11345 0,08196] 79 $34996 0,000 0,09601 -0,154
46 $15037 -0,060 0,57138 0,52546] 56 $15982 -0,001 0,54405 -0,048
131 $89160 -0,009 0,10010 0,09029] 140 $89952 -0,001 0,09607 -0,040
94 $59690 -0,005 0,55302 0,53417] 101 $59938 -0,001 0,54792 -0,009
199 $109875 -0,001 0,10910 0,10697] 205 $109998 0,000 O,10830 -0,007
157  $78403 -0,020 0,66232 0,61340] 165 $79935 -0,001 0,61673 -0,069
135  $64684 -0,005 1,31417 1,28253] 143 $64933 -0,001 1,30089 -0,010
322 $149978 0,000 0,11438 0,10981] 325 $149978 0,000 0,11438 0,000
266 $119781 -0,002 0,57022 0,49735] 272 $119998 0,000 0,56501 -0,009
235  $99498 -0,005 1,48677 1,43236] 243 $99968 0,000 1,45933 -0,018
147  $79623 -0,005 0,09064 0,08715] 154 $79863 0,000 0,08889 -0,019
108  $49560 -0,009 0,56438 0,52229] 119 $49977 0,000 0,55506 -0,017
316 $179972 0,000 0,06765 0,06046] 327 $179972 0,000 0,06765 0,000
228 $119588 -0,003 0,54327 0,53258] 236 $1i19944 0,000 0,53739 -0,011
435 $219852 -0,001 0,10598 0,10481] 440 $219959 0,000 0,10552 -0,004
362 $169647 -0,002 0,54625 0,52515] 375 $169971 0,000 0,54181 -0,008
304 $139370 -0,005 1,49313 1,45262] 318 $139999 0,000 1,46602 -0,018
444 $329530 -0,001 0,12461 0,12231] 456 $329986 0,000 0,12325 -0,011
361 $248810 -0,005 0,88825 0,85977] 375 $249987 0,000 0,86476 -0,026
292 $199413 -0,003 2,62388 2,54061] 303 $199950 0,000 2,59578 -0,011
136 -0,031 0,63388 0,56388] 144 -0,003 0,60560 -0,040




204

The results of solving P2 to minimize BO presented in table 8.3a
above are entirely consistent with those presented earlier for model
P1; in fact, the next table (table 8.3b) will show that 23 out of the
40 problems yielded the exact same solution vectors {sy} as far 1.

First, because of the similarities between both models P1 and P2,
it is hardly surprising that the actual mmber of iterations were
practically the same for both models and for both the regular and the
topup marginal analysis procedure. The theoretical error on Cg based an
the most expensive item for the regular procedure and based on the
least expensive item for the topup procedure were the same as for model
Pl. The actual relative differences (as a proportion of B) were also
practically the same as for model P1, as shown in colums 11 ard 12
(regular) and colums 16 and 17 (topup), showing an error from an
average of less than 3.1% (regular) to less than .3% (topup) , which is
Quite an improvement when using the topup procedure, eventhough the
pmceduredoesnotguaxanteethatthelastpointontherespcmsecuzve
{BO, Cg} is undominated.

Secard, we also note a significant average 4.0% further decrease
in BO (last colum 19) by following up the regular procedure with the
topup procedure, which will also help us in obtaining estimates for AAg
with the expression 1 - BO/M and 1 - TEO/M, to be discussed in the next
table 8.3b.
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ThefollwingtableB.Bbcmparestheresutsoftletcpup
naxginalanalysispzooedu:efor?ZwiththeEqualAj'snodelarﬁgives
the similated comparative AAg values cbtained as a result of solving
both models.

Table 8.3b: Similated AAs vs P1 and Equal Aj's

(20) Sim AAs P2: simulated AAs value (N=5,000 cycles) cbtained from the
solution vector {S]} from the topup marginal analysis for P2 to min BO
(21) Prop vs Sim AAg*: relative difference vs Sim AAg* value cbtained
from topup marginal analysis when solving P1 to max Ag

(22) Corresp Ag: correspanding Ag value when solving P2 to min BO

(23) Prop vs LB*As: relative difference of Ag vs LB*Ag

(24) Estimate AAs = 1 - BO/M: the value of 1-BO/M as an estimate of AAg
when compared to the simulated AAg value when solving P1 to max Ag

(25) Prop vs Sim AAg*: relative difference of 1-BO/M vs AAs

colums (26) to (29): camparison heuristic TBO vs simulated Ahg.
(26) TBO : "Better" estimate for actual BO when summing up to Sj+M

(27) Estimate 1-TBO/M: estimate of AAg with 1 - TBOM

(28) Prop vs sim AAg*: relative difference between the estimate and
the simuilated AAg* value fram topup marginal analysis when solving P1
(29) TBO vs Sim AAg*: relative difference when 1-TBO/M is campared to
the AAg estimated values from simulation, except when M=1, since Max Ag
is equivalent to Max AAg ard is exact for those problems.
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(20) (21) (22) (23) (24) (25) (26) (27} (28) (29)
Sim Prop vs "Estimate Prop vs Estimate Prop vs | T8O vs |
P2 Sim Corresp | Prop vs AAs Sim AAs Sim Sim
AAs AAs*® As LB*As 1-80/Mt AAs*® TBO 1-TBO/M  AAs* AAs*®
same 0,000 0,89367] 0,000 | 0.,88677 -0.007§ 0,05995 0,94005 0,053
same 0,000 0,67827) 0,000 ] 0,61123 -0,090] 0,32890 0,67110 0,000
same 0,000 0,92961] 0,000 | 0,98436 -0,001] 0,05818 0,98836 0,003 0,003
same 0,000 0,55067f 0.000 } 0.87880 -0,010f 0,43593 0,91281 0,028 0,028
same 0,000 0,93010f 0,000 | 0,99153 0,000|] 0,06209 0,99379 0,002 0,002
same 0,000 0.64895] 0,000 | 0,94856 -0,002| 0,43048 0,95695 0,007 0,007
0.84522} -0,003 | 0,22057] -0.071 | 0.82574 -0,023} 1,55664 0,84434 -0,001 -0,001
same 0,000 0,94076] 0,000 | 0,99634 0,000] 0,06362 0,99682 0,001 0,001
0,96526 | -0,001 0,55804] 0,005 | 0,96470 -0,001] 0,67641 0.96618 0,001 0,001
same 0,000 0,27648] 0,000 }§ 0,92087 -0,005| 1,38769 0,93062 0,006 0,006
same 0,000 0,89800] 0,000 | 0,89176 -0,007| 0,08345 0,91655 0,021
same 0,000 0,54807] 0,000 } 0,39684 -0,293] 0,55018 0,44982 -0,198
same 0,000 0,86442] 0,000 | 0,96849 -0,003] 0,15757 0,96849 -0,003 | -0,003
same 0.000 ) 0.68910] 0,000 | 0.92307 -0,005| 0,38464 0,92307 -0,005 | -0,005
0,98776§ 0,000 0,89771] -0,001 ] 0,98728 0,000] 0,115602 0,98850 0,001 0,001
same 0,000 0,62910} 0,000 | 0,94434 0,000 0,52689 0,94731 0,003 0,003
0,83558] 0,006 0,18398] -0,050 | 0.80920 -0,032] 1,82763 0,81724 -0,022 | -0,022
same 0,000 0,92425] 0,000 ] 0,99538 0,000f 0,07875 0,99606 0,001 0,001
0,97149} 0,000 0,60582) -0,003 | 0,97005 -0,001| 0,54670 0,97267 0,001 0,001
0,93365] -0,002 | 0.29855] -0,106 | 0,92987 -0,004] 1,31132 0,93443 0,001 0,001
same 0,000 | 0,90928{ 0,000 | 0,90389 -0,002] 0,08196 0,91804 0,013
same 0,000 0,681664 0,000 § 0,45595 -0,208] 0,52546 0,47454 -0,175
0,98100| 0,000 0,91334] 0,000 ] 0,98079  0,000] 0,09029 0,98184 0,001 0,001
same 0,000 0.60095] 0.000 | 0,89042 -0,009] 0,54347 0,89131 -0,008 | -0,008
same 0,000 0,90800} 0,000 | 0,98917 0,000 0,09971 0,99003 0,001 0,001
0.94164| 0,000 | 0,57828] -0,002 | 0,93833 -0,004] 0,57242 0,94276 0,001 0,001
same 0,000 0.32205]§ 0.000 | 0.86991 -0,016§ 1,21659 0,87834 -0,006 | -0,006
0,894221 0,000 0,90936] 0,000 | 0,99428 0,000f 0,10141 0,99493 0,001 0,001
0,97267] 0,000 | 0,63494| -0,007 | 0,97175 -0,001} 0,54996 0,97250 0,000 0,000
0,93267}| 0,000 0,31058} -0.013 | 0,92703 -0,006] 1,45051 0,92747 -0,006 | -0,006
same 0,000 0,91669) 0,000 | 0,91111 -0,008] 0,08715 0,91285 -0,006
same 0,000 0,57729] 0,000 | 0,44494 -0,247| 0,52228 0,47772 -0,191
same 0.000 | 0,93832} 0,000 ] 0,98647 0,000 0,06189 0,98762 0,001 0,001
0.898081 -0.003 | 0,60663] 0.000 | 0,89252 -0,006] 0.53006 0,89399 -0,005 | -0,005
same 0,000 } 0,91063] 0,000 | 0,98845 0,000] 0,09915 0,99009 0,000 0,000
0,94822] -0,001 0,61936| -0.003 | 0,94582 -0,003] 0,54032 0,94597 -0,002 | -0.002
0.86980] 0.000 | 0,28177] -0.006 | 0.,85340 -0,019] 1,44075 0,85593 -0,016 | -0,016
0,99348 | 0,000 0.90066} 0,000 | 0,99384 0,000} 0,12273 0,99386 0,000 0,000
0,95837] -0,001 0,48607} -0,009 } 0,95676 -0,002] 0,86237 0,95688 -0,002 | -0,002
0.88192] -0,004 | 0,11710] -0,015 | 0,87021 -0,013] 2,55210 0,87240 -0,011 -0,011
23/40 0,000 | 0,65473] -0,007 | 0.88978 -0,026] 0,56732 0,89936 -0,013 -0,001
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First, and probably the most important conclusion from the results
presented in table 8.3b above when solving P2 to min BO is that 23 cut
of 40 problems yielded the exact same solution vector {Sj}, even for
larger scale problems up to J=99 items ard even after the topup
marginal analysis procedure is applied, where differences are more
likely to occur; for these 23 problems, we used the same similated AAg*
values obtained for P1.

For problems that gave different solution vectors, the differences
were very small when campared to model Pl system performance measures
Ag, correspanding BO and sinulated AAg values. For example, the
correspanding Ag value cbtained from solving P2 to min BO shown in
colum 22 were an average of less than -.7% (colum 23) from the Ag
value cbtained from solving P1 to max Ag. The most differences occured
at lower Ag values where just an item or two difference will have the
most impact, as previously discussed, when stock level vectors are not
yet past their mean Poisson mean parameter values {6j}.

Secand, a most interesting and important conclusion to be drawn
here is that we can use the UB*BO (colum 18 in previocus table 8.3a)
as an accurate and much more reliable estimate of the proportion of
equipments still operational at the end of the cycle or AAg, than using
Ag when M>1 and when Ag is high or > 0.90, even when taking into
account part failure dependencies!. The estimate 1-BO/M is shown in
colum 24 and compared with the simulated AAg value of colum 20 and
the proportional differences in colum 25 shown an average of less than
2.4% difference and most differences occur when M=1. If M=5, then all
estimates 1-BO/M underestimate AAg by less than 3.2% (highest
difference) .

The reason is as follows: the ratio BO divided by M is the sum of
all B0y, j=1,..,J and when divided by M, constitutes an estimate of the
average proportion of equipments NOT operational at the end of the
cycle; when subtracted from 1, the expression 1 - BO/M becares an
estimate of the average proportion of equipments operational (or UP) at
the end of the cycle. For exanple, if we expect to run out of a total
of say 2.5 items (of all types, as calculated by the backorders for all
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items) and we have M=10 equipments at the begimming of the cycle, we
would expect to have 2.5/10 or 25% of equipments NOT operational (and
canversely ARg = 75% operational) at the end of the cycle.

Third, colums 26 and 27 indicate the estimate of AAg with the
expression 1-TBO/M when canpared to the simulated AAg value in colum
20; the relative differences of less than an average of 1.3% are shown
in colum 28 ard clearly establish the validity of using TBO as a
better estimate for calculating UB*EO by summing the terms from S4+1 to
S4+M instead of up to infinity; we therefore count less BO, as we
should, and most differences occur for low values of M, specially when
M=1 in colum 27 and 28.

We have seen in chapter 6 that the proporticon of equipments still
operational at the end of the cycle without taking into account part
failure dependencies, was essentially a combinatorial type of problem
where the prabability expressions became far too camplex as the values
of J and/or M (specially M) increase; taking into account part failure
deperdencies become even more complex and simulation methodology must
be used. Using the expression 1-BO/M or better still 1-TBO/M thus
provides us with a valuable estimate of AAg when M>1. When M=1, we have
alreadyshownearlierthatnbdelPlshchldbeusedinsteadsinceMaxAs
is equivalent to Max AAg ard thus gives the exact value of AAg with ar
without part failure dependencies.

However, the estimate of 1 - BO/M becomes a progressively worse
estimate of AAg as the system availability Ag decreases (having lower
budgets yield lower {Sj} and therefore lower Ag), as we shall see in
table 8.4 next; the reason is that the estimate can theoretically
became negative since we count too many backorders.

As an example, suppose J=3 and M=2; then the probability

0
expression for each of the By = L (x-Sj) .p(x)
x=Sj+1
= l.p(x£j+1) + 2.p(x—4;j+2) + ...
and goes to infinity; however, it is impossible to run cut of more
than 2 spares of any type (or any combination) since we have only M=2
equipments; the first time we run out of any type of spare, the first
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equipment remains DOWN (failed state) and once we nm out of a second
spare, theseccrxiequipnentrexainsmmmeaﬁofthecycle.

Therefore, all the prabability expressions inmvolving more than M=2
spares camnot occur; the terms 3.p(x=8j+3) + ... camnot be counted in
the BO functions, j=1,..,J when estimating AAg. Thus, using the
estinatel-m/MwillbadlymﬁeresthratethetmvalueofAAssince
it counts too many BO; it is an acceptable estimate for AAg for high
values of Ag since high stock levels {84, 3=1,..,J} will yield very
small probabilities when calculating BOy's beyond the value S§ +Min
the summation terms.

In order to estimate all the prabability expressions exparded for
Ahg earlier in chapter 6 which dealt with end of cycle effects, we can
use the following estimate 1 - TBO/M for AAg (instead of 1 - BO/M),
where TBO = "truer" measure of system BO which will count BOj only up
to 5§ + M, instead of up to infinity, ard will be further analyzed in
table 8.4 for problems with small values of M.

In sumary, when Ag > 0.90 (HIGH), AAg can be estimated (exactly)
by Ag when M = 1 and estimated by 1 - BO/M when M > 1; in fact, for
lower values of Ag or < 0.90 and M = 1, Ag should be used to estimate
AASwithorwitlmtfailurepartdependenciessinoeAs=AAswhenM=
1. When M > 1, however, then 1 - BO/M can only be relied upon to
accurately estimate AAg when Ag > 0.90 or 1 - TBO/M for progressively
lower Ag values as M increases; for lower values of Ag or < 0.70, it
becames progressively unacceptable and significantly underestimates the
true value of AAg, and simulation should be used for these cases. This
canstitutes the most important conclusions for the Ahg measure of
system performance.
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8.4 TAHIE 8.4 KR AAs

8.4.1 Introduction. Table 8.4 below (7 pages) deals mostly with a
selection of same randomly generated test problems to analyze the
performence measure AAg. Since the estimate 1 - BO/M performed very
well for high system availability Ag (Ag > .90) and became
progressively worse for lower Ag values, the budget B was purposely
lowered for each test problem in decremental steps to yield lower
optimal stockage levels {Sy} and therefore lower Ag values. We then
applied the marginal analysis with the top-up procedure by minimizing
BO as opposed to max Ag since AAg becomes more a function of system
backorders as defined earlier, rather than using Ag which yields very
poor estimates of AAg when M > 1.

We shall present the results of using 1 - TBO/M to estimate Axg
taking into accaunt part failure dependencies and carpare its accuracy
with similation results. The following briefly explains the different
colum headings used in table 8.4; only page 1 is needed as subsequent
pages repeat the same data but is extended to include additional
problems. The first 3 problems j3 1, j3_2 and j3_3 summarize earlier
results for example 1 (J=3 items) arnd example 3 (J=4 items) referred to
in chapter 6 of the thesis.

Table 8.4: Estmate 1 - TBO/M vs AAs

colums (1) to (4): general parameters

(1) File = filename used (T x M).

(2) b1, b2,.. = budget decreased to yield lower optimal {Sj} as a
result of min BO using the marginal analysis top-up procedure.

(3) B = available budget.

(4) Ag = correspanding system availability as a result of min BO for
each file for the specified budget.
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colums (5) to (7): related to BQ

(5) BO = system backorders cbtained as a result of the top-up marginal
analysis.

(6) 1-BOM = estimate of AAg

(7) %diff vs sim = % difference between 1-BO/M vs simulated AAg value
shown in colum (11).

15 8) to (10): ated T80

(8) TBO up to M = "Truer" method of calculating BO, where TBO cnly sums
backorder terms from S4+1 up to M instead of up to infinity.

(9) 1-TBOM = more accurate estimate of AAg taking account part failure
deperdencies.

(10) %diff 1-TBO/M vs sim = % difference between 1-TBO/M vs simulated
Ahg value shown in colum (11).

colums (11) to (14): related to simulated Ahg value

(11) AAg = simulated AAg value or the proportion of equipments still
operaticnal at the end of the cycle, cbtained from the program
S_INVL.BAS which takes into account part failure dependencies. All
problems were simulated N=5,000 cycles for Ms5 and N=1,000 cycles for
M>5.

(12) Sim again 10,000 = a second simulation with N=10,000 cycles to
canfirm only those initial simulation results close to + 1%.

(13) %diff = recalculated % differences between the estimate 1-TBO/M
ard the second simulated AAg value with N=10,000 cycles if applicable.
(14) Ag = category used for Ag, either High when Ag > .90, Medium when
-60 < Ag < .90 or Low when Ag < .60).

Note: All values of Ag lower than .60 in colum (4) and % differences
in colums (7), (10) and (13) are boldfaced to highlight unsatisfactory
results, i.e the % differences that do not satisfy the criterion of +
1% between the estimates used for AAg and its simulated value.
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8.4.2 Estimates of AAg using Ag (M=1). As we have already seen, the
System availability Ag should be the performance measure used when
estimating the proporticn of equipments still operational at the end of
the cycle AAg, and will be exact with or without part failure
deperdencies since they are the same when M=1. This will be exact for
any value of the optimized value Ag in model Pl1, therefore
irrespective of the available budget B and the stock level {Sj,
j=1,..,J} cbtained as a result.

We have also proved earlier that maximizing Ag is equivalent to
mexdimizing AAg when M=1. Since table 8.1 for model P1 has clearly
demonstrated the accuracy and reliability of this measure of
performance, the special case M=1 has been solved and will not be
discussed further.

8.4.3 Estimates of AAg using BO (M>1). Table 8.3b has also previously
demonstrated that the estimate 1 - BO/M can also be used as an accurate
estimate of AAg, with or without part failure dependencies, when M > 1
but for high Ag values or > 0.90 anly, even if the total expected
system BO = £ B0y, j=1,..,J counts too mary backorders; the reason is
that the terms in the summaticon quickly become negligible for the
extreme right tails of the Poisson distribution and, therefore, do not
significantly affect the accuracy of the estimate 1 - BOM.

Table 8.4 clearly shows the progressively worsening results for
lower Ag values indicated by the % differences shown in colum (7) as
stock levels {Sj} are deliberately set lower. One inportant conclusion
though, is that, as J and M increase, 1 - BO/M progressively becares a
better estimate and for J 2 10 and M = 5, a high proportion of all
those problems indicate an error of less than 1% from AAg even for
medium to some low Ag values!. For example, the last five 5 problems
with M=20 shows that all estimates 1 - BO/M Vs AAg are within 1% when
Ag is > 0.60 (Medium) and could be considered acceptable even for same
low values of Ag < 0.60.

8.4.4 Estimates of AAg using TBO (M>1). As explained in earlier
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sections, the expression 1 - TBOM can be used instead of 1 - BOM to
estimate AAg with part failure deperdencies, for lower values of Ag.
Nurerical experiments have shown that this simple heuristics
significantly improves the estimate of AAg to within 1% for a fairly
wide range of J x M value carbinations and for medium values of Ag.

Sincel-Tm/MisnnstsensitiveforsnallvaluesofMazﬁlarge
values of J, table 8.4 was constructed using problems with parameters
in appropriate range of interest, specially with M=2,3,4. The results
clearly show the dramatic improvement of the estimate for AAg for small
M s 5 and essentially show lesser inprovement as M = 10; the reascn is
that for smaller values of M, the mmber of backorders BO counted is
cansiderably reduced, as it should, and improves the estimate for Ahg
by reducing the % error by half; as M increases, the summation terms
for BO beyond the value oij + M quickly became negligible and TBO
terds towards BO.

The estimate 1 - TBO/M also shows values that are cansistently
lower than the simulated AAg values; underestimating AAg is an
important property since it errs on the conservative side of the true
value for AAg, in that it is better to underestimate than to
overestimate this important measure of system performance.

As an example, the % differences between 1 - BO/M ard 1 - TRO/M vs
AAg (mod) simulated values improves by several orders of magnitude for
low Ag values (ex: j10_2b,c and d) and improves to a lesser degree as M
increases to M=3 (ex: j10_3b,c ard d) and are about the same for higher
M values (ex: prablems at the end with M=20). Further study would be
required to analyze and improve the reliability or accuracy of other
estimates for AAg possibly based on the ratio J/M.

From table 8.4, it is clear that the estimate 1 - TBO/M
significantly improves the 1 - BO/M estimate for ARg across a whole
range of Ag values, even taking into account the part failure
deperdency problem defined earlier. Other than being within + 1% for
all J x M corbinations for all Ag values > 0.90, it also met that
criterian for all problems whose Ag > 0.70 except for anly j20 Sa with
Ag = 0.77113 and underestiamted AAg by at most 3.05% for all those
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cases where Ag > 0.60.
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CHAPTER 9: (CONCLIDING REMARKS

Thisthesishasanalyzedthespar:ingnodelmrrmtlyusedbythe
military Land Forces for the initial provisioning and determination of
inventory levels for first line unit organizations required to carry
the equivalent of 15 days worth of spare items, which is based on a
modified Poisson formula to sequentially spare every individual item j,
j=1,..,J up to a specified 99.8% confidence level at every location i,
i=1,..,I, irrespective of their costs. The problem is campounded
further when only a fixed budget is available, with the ensuing adhoc
procedures to lower stock levels when it is exceeded. Recommendations
to change the current model and adopt the straight Poissan cumilative
distribution or Equal Aj's model, specially for microcomputer use, has
been made for the past 25 years (see Vincent 1982, DesRochers 1984a and
1984b and Hebert 1995) but have not yet been acted upon.

In the thesis, it has been shown that linking items together with
practical aggregate system performance measures to be optimized for
either of two models: model P1 to maximize system availability Ag
and/or model P2 to minimize total expected system backorders BO; both
subject to a specified available fixed budget B consisting of total
purchasing costs, would significantly improve the performance when
compared with the equal Aj's model, or conversely, that significant
dollar savings would be achieved to attain a specified system
performance measure. Empirical results for 40 randomly generated test
problems with parameters in the range of interest, indicate an average
relative increase in Ag of 29.3% over the current model, and even more
for low Ag values.

It has also been shown that adopting either model P1 and/or P2
would also significantly increase the average mmber (and proportion)
of equipments AAg still operational at the end of the pericd, which may
be considered a more appropriate measure of system performance when
multiple identical equipments (M > 1) are operating during the pericd.
Simulation of stock levels cbtained as a result of optimizing P1
and/or P2 across the same 40 test problems show an average relative
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increase in AAg of 4.9% over the current model, which can be considered
significant since the average Ag value is 65.7% and M averages 10.2
equipments across the 40 problems.

The measure of system performance AAg is affected by the attriticn
of equipments M and the mumber of items J involved; the derivation of
its exact theoretical distribution is shown to be essentially a
carbinatorial type of problem and mathematically intractable even for
moderate values of J x M. For the special case M-1, however, it has
been proved that solving model P1 when mexdmizing Ag also mexdimizes
ARg, regardless of the available budget, resulting in stock levels and
Ag values that can be quite low.

For M > 1, the estimate 1 - BO/M proves to be a particularly
effective and reliable (all less than 1.0% from AAg) for all praoblems
where Ag z 0.90, including more than 80 other test problems not
reported an here. For lower Ag values s 0.90, the expression 1 - TBO/M
significantly improves the estimate 1 - BOM for the true value of AAg,
bysmmxingtheBOftmctimuptosjminsteadopr to infinity, since
with M equipments, no backorders can occur past Sy+M. For the 32 test
problems where M 2 5, 1 - TBO/M cbtained as a result of solving P1 or
P2 differed by an average of less thano.l%whmccnparedtoAAS
similated values (2.8% the highest); most differences tend to occur for
problems where the mmber of equipments is small (M < 5) and lower Ag
values (Ag < 0.30).

From the solution methods studied to determine optimal inventory
stock level vectors {Sj, j=1,..,J3}, and possible implementation on
(personal) micro-computers, the dynamic progranming (DP) approach
presents serious computational difficulties and the appraximate DP
strategy with incremental budget values at each stage, is considered
impractical and unpredictable in calculating error size. We have also
shown that this non-linear integer optimizaticon prablem can be
represented by equivalent FULL (optimal) and GAP (near optimal) network
Structures and how they can be effectively used to determine the size
of the DP prablem by its total mmber of nodes N equals the total DP
TOws - 1andthetotalmnrberofarcsAeq1alsthetotalavailability
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calculations in DP rows.

The highly efficient, much more versatile and faster marginal
analysis procedure gives a sequence of undominated points spaced by not
rmrethanthecostoftheunstempensiveofalla‘itats, ard a response
curve {Ag vs Cg} for model P1 and/or the response curve {BO vs Cg} for
mdelPthichwillalwaysdmﬁnatetherespcnseo;rvesgenezatedby
the equal Aj's model. Furthermore, the optimal (or near optimal)
solution generated by this procedure can be extremely useful for
uanagerstodecidethelevelofsparesrequiredaswe_llasakeyfactor
for its inplementation on microcomputers, even an a large scale basis
involving hundreds of items or more, fram which organizational units
can also budget spares for different time periods as required. Finally,
the solution vector {Sj} abtained from this method, demonstrates that
it allocates items optimally by stocking more of the most reliable and
least expensive items and less of least reliable ard expensive items,
as would be expected when adopting a system performance measure such as
Ag or BO, as opposed to the current military model indiscriminate
method.

In cases where near optimal solutions are cbtained from the
regular marginal analysis procedure, we introduced the topup marginal
analysis procedure, which does not seem to be part of the literature,
ard has also been shown to further improve related performance measures
such as increasing Ag by an average of 1.8% and decreasing BO by an
average 4.0% across the 40 test problems. The relative percentage
difference can easily become more than 5% in cases where limited
budgets are available (causing lower Ag values) as a result of
restructuring, downsizing or implementing cost reducticn measures not
anly applicable to the military but to other organizations as well.
Although the last and closest solution point to the available budget
cbtained as a result of topping up is not guaranteed to be undominated,
it guarantees to dominate the last iteration point cbtained from the
regular marginal analysis, and its total costs Cg will be within the
least expensive of all J items.

The Lagrange relaxation method applied to both models P1 ard P2
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and an accurate initial estimate for the optimal multiplier derived
here, can also be used to dbtain the optimal (or near) solution vectors
{Sj} even faster than the regular marginal analysis by skipping over
several iterations at a time, when a bisection search procedure is
implemented; tests problems conducted for model P1 indicated an
approximate 5 to 10 times faster execution time to cbtain the exact
same solution vectors.

The faster execution speed of this procedure would be a
definitive advantage over the marginal analysis procedure for
calculating optimal stock levels an large scale problems and/or when
multiple locations are involved, but gives fewer iterative points an
the response curve of interest. It can also be used to quickly evaluate
total costs for these fewer points and provide valuable information to
program managers, if an arbitrarily large budget value is assigned.
This advantage will quickly disappear if more points cn the curve are
desired and a different search technique is used to give more
undominated points, since it will tend towards an order of magnitude
similar to the marginal analysis procedure.

The same soluticon methods described for the single location model
have been extended to multiple indentured and multiple location models
P1b to meximize Ag and/or model P2b to minimize BO, the aggregate
performance measures calculated for these models. For multiple
indentured systems, it has been shown that, under certain canditions,
it may be possible to achieve a higher System availability Ag at a
lower overall cost Cg when additional failure information about
individual components of an assembly is available, even though the sum
of the components' costs exceed the cost of the whole assembly. A
method to derive upper bounds for camponents' costs and a multi-phase
approach to optimize system performance measures is included.

The multiple location models P1b to maximize Ag ard P2b to
minimize BO with I locations and J items is shown to be equivalent to a
single location model with (I x J) items, which means that optimal
stock level vectors {Sijr i=1,..,I j=1,..,J}, can also be solved using
the procedures described for the single location model.
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Due to increased computational difficulties, the additional
problem of allocating budget levels at each location i, i=1,..,1
curulates or compourds the calculation of all measures of system
performance achieved as a result of implementing model Pib, P2b and the
equal Aj's model. Comparisans between the models show a marked
inmprovement in AAg across all locatiaons by adopting P1 and/or P2 over
the equal Aj's model; it also appears that the proportional budget
allocation method to allocate budget amounts in proportiaon to the
mmber of equipments held at each location yields the same overall
results for AAg as if they were optimally allocated, and locations with
higher mmber of equipments tend to have higher AAg values.

Sumarizing the above discussion, we conclude:

1. a system performance measure linking items together such as models
Pl (meximize Ag) or model P2 (minimize BO) is clearly superior to the
current model;

2. the marginal analysis solution procedure caplemented by the topup
additianal procedure to either meximize Ag and/or minimize BO, could
benefitially be considered for implementation cn a system wide basis,
both for initial calculation of first (and possibly secord line units)
provisioning of parts given a maximum available budget to be allocated;
it would ensure that stockage levels at every location would be
optimized and budget levels not exceeded, thus avoiding the otherwise
necessary manipulation of end results;

3. the standard lockup tables to determine entitlements of stock levels
on an individual item basis (up to 99.8% canfidence level currently)
and based on the mmber of equipments M held at each unit, could be
replaced by a standard microcamputer program (compiled BASIC version
or other Windows based program) to be distributed to every unit
receiving the equipments and related spares; this would ensure that
each location could determine its own optimal stock levels for any
cycle pericd as required by the budget plamning process, based on the
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sanecostandfailuzeratepazazreterdataestablishedthmughthew

system.

The end result would be a far more effective and efficient system
for determinig optimal spares levels on a national basis for budgeting
initial provisioning of spares to every first line unit and a most
efficient way for individual units to determine their own stockage
levels for any usage pericd as required.
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