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Abstract

This thesis investigates assimilation of oceanographic data into limited-area coastal circu-
lation models. The approach taken analyses coastal data using simple, process-oriented
ocean dynamics which isolate the essential physics of the problem. It is first demonstrated
that oceanographic data assimilation can be treated in the framework of regression, and
its extension to the time dependent case. Commonly used techniques are reviewed in this
context. Three studies are then carried out covering a range of oceanographic data and dy-
namics: (1) A statistical-dynamical method is proposed to extract the barotropic tide from
a ship-borne acoustic Doppler current profiler (ADCP). A limited-area tidal model, posed
in the frequency domain, is fit to the time-space series of ADCP velocity using a boundary
control approach. The procedure is applied to ship ADCP data from the Western Bank
region of the Scotian Shelf. ADCP derived tides were in good agreement with those from
fixed current meters, and the tidal residual was also found to be consistent with a diagnostic
calculation of the flow. (2) An approximate Kalman filter is derived for forecasting coastal
circulation. The original ocean model is reformulated in terms of its dynamical modes, and
a reduced model is obtained using a subset of the modes preferentially excited by forcing.
This retains the dynamics necessary for model forecasts and error propagation, yet allows
the Kalman filter to be efficiently implemented. The approximate filter was demonstrated
using a prototype shallow water model of the Scotian Shelf and focused on the variability
associated with wind and boundary driven flows. (3) The estimation of circulation from den-
sity data is investigated. In particular, the consequences of including a prognostic density
equation, together with the usual set of diagnostic (thermal wind) equations, are consid-
ered. The advantage of this approach is that dynamically consistent density and velocity
estimates can be obtained from hydrographic data. A unique limit, wherein the dynamics
are treated as a strong constraint in the assimilation, is explored using an idealized coastal
model. Buoyancy fluxes across the open boundaries into the model domain are determined
from interior point observations of the density field. Numerical experiments are performed
to illustrate the issues arising in this joint estimation problem. Application of the method
to realistic ocean models is discussed.
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Chapter 1
Introduction

Studying ocean circulation proceeds through the complementary techniques of theory,
observation, and numerical modelling. In recent years, insights from statistical esti-
mation theory have been applied to the oceanographic problem of combining models
and data. The blending of these two components has come to be known as data assim-
ilation. Its goal in oceanography is to extract the maximum amount of information
from available data sets using mathematical models based on an acquired knowledge
of the underlying physical processes.

A distinguishing feature of oceanographic data are their irregular and asynchronous
distribution, as well as the diversity of data types available. Optimal interpolation
has been perhaps the most widely used analysis method for statistically mapping
irregularly spaced data (Daley 1991). The techniques of principal oscillation patterns
(Hasselmann 1988) and extended empirical orthogonal function analysis (Brillinger
1981) further offer the ability to account for temporal as well as spatial coherence
but, like optimal interpolation, are essentially empirical methods. To interpolate
and extrapolate data in a manner consistent with our knowledge of geophysical fluid
dynamics requires combining ocean dynamics and data.

Interest in oceanographic data assimilation has increased dramatically over the
last decade. New observation technologies, such as satellite altimetry and acoustic

tomography, began to offer the promise of large volumes of high quality oceanographic



data, adding to the already extensive databases of ocean hydrography. It was soon
recognized that traditional data analysis and mapping techniques were not well suited
for making circulation estimates from these data sets. At the same time, advances in
ocean modelling and increases in computer power made possible realistic models of
ocean circulation. Thus was raised the possibility of data analysis techniques based
on numerical ocean models.

Optimal control methods were developed in the 1950s and 1960s as a practical
means to combine data with models and thereby control the evolution of dynamic
systems (see Bryson and Ho 1969). These techniques provide the basis for both
oceanographic and atmospheric data assimilation. Sasaki (1970) was the first to
suggest applying these variational techniques to numerical weather prediction, but
little interest was shown at the time. LeDimet and Talagrand (1986) revisited the
idea and proposed its use for the initialization of operational weather forecasting
models. In oceanography, the pioneering study of Wunsch (1978) introduced inverse
techniques in the context of determining deep reference velocities from hydrographic
section data. Later, Thacker and Long (1988) demonstrated the practicality of these
control methods in fitting time dependent ocean models to data. Since this time,
a great deal of work has been carried out in atmospheric and oceanographic data
assimilation (for example, see the textbooks of Daley 1991 and Bennett 1992).

Although data assimilation in oceanography and meteorology bear many simi-
larities, there are also some key distinctions. The baroclinic Rossby radius in the
ocean is 10-30 km, whereas in the atmosphere it is typically 1000 km (Gill 1982,
section 7.5). Clearly, the important scales of motion which must be resolved in the
ocean are much smaller than those found in the atmosphere and in this regard the
ocean is grossly under-sampled (e.g. Ghil and Malanotte-Rizzoli 1992). Complex ge-
ometry also strongly influences ocean dynamics. Coastlines and bottom topography
have a wide range of dynamical effects on circulation. As a result, regional or basin
scale models of limited horizontal extent are frequently used with the influence of

the remainder of the ocean represented by flows across their open lateral boundaries.



Another important difference is that the development of atmospheric data assimila-
tion has been driven in large part by the operational need for weather forecasts. In
oceanography, the main emphasis to date has been on the use of data assimilation as
a research tool.

One area in oceanography currently receiving increased attention is the opera-
tional prediction of coastal circulation. Accurate estimates of circulation are required
to address such coastal zone problems as storm surge forecasting, predicting oil spill
and iceberg trajectories, and assessing the impact of point source pollutants. A
number of efforts are presently underway to develop operational nowcasting and fore-
casting systems for the coastal ocean (e.g. Heemink and Van-Stijn 1993, Griffin and
Thompson 1995, Aikman et al. 1996). These must synthesize a wide range of data
from sources including coastal tide gauges, current meters, CTDs, drifters, ship-borne
acoustic Doppler current profilers, and remotely sensed images. As a result, data as-
similation forms an integral part of these schemes. It is the operational prediction of

coastal flow fields which largely motivates the work carried out in this thesis.

1.1 Outline of Thesis

The objective of this thesis is to investigate the assimilation of data into limited-area
coastal models. A process-oriented approach is taken whereby oceanographic data
are analyzed using relatively simple models. This allows the important features of
the dynamics to be isolated and their role in the estimation problem studied in more
detail. This approach is intended to lead to practical techniques for assimilating
oceanographic data in more complex coastal circulation models.

In this regard, a notable characteristic of the coastal region that must be con-
sidered is the range of timescales over which important processes act, as well as
the variety of data sources. A complete coastal circulation model that simultane-
ously considers these timescales and data types could be used as the basis for an

assimilation exercise. Instead, we have chosen to decompose the circulation so that



the variability associated with tides (days), wind forcing (days-weeks) and buoyancy
fluxes (weeks-years) are each treated separately. Similarly, data sources have been
treated as distinct and careful consideration given to the nature and properties of
these data, as well as the appropriateness of the analysis scheme used. It is felt that
such a treatment provides a necessary first step in the synthesis of such data with
more complex coastal circulation models.

Another issue which inevitably arises when using limited-area models is the treat-
ment of the open boundaries. Important forcing occurs through these boundaries
since they must account for the effect of remotely generated disturbances propagat-
ing into the model domain. It is rare that direct observations of the boundary state
are available, and we must therefore rely on information contained in the interior
observations about these remote effects. The inference of boundary conditions from
interior data is an issue addressed throughout this thesis.

The studies which are carried out in this thesis include: extracting the tidal
signal from irregularly distributed velocity measurements; capturing the important
components of the synoptic variability due to wind and remote forcing for the purpose
of forecasting coastal circulation; and determining the quasi-steady circulation from
density data. These topics cover a range of timescales, use both linear and nonlinear
models, and consider data assimilation using discrete inverse methods, the Kalman

filter. as well as nonlinear optimization. A detailed outline of the thesis is as follows:

o Chapter 2 provides a general overview of the techniques commonly used in
oceanographic data assimilation. These are unified under the common frame-
work of regression analysis, which is extended to cover the case of time de-
pendent ocean models and observations. The chapter includes general inverse
methods, the Kalman filter and smoother as well as optimal control and repre-
senter methods. Linear theory is used to derive and demonstrate the optimal-
ity properties after which nonlinear extensions are discussed. Two appendices
are provided as complements to this chapter. Appendix A briefly covers least

squares regression, and Appendix B provides a discussion of the filtering and



smoothing problems based on a probabilistic approach.

e In Chapter 3, extraction of the barotropic tide from the time-space series of
horizontal velocity obtained by a ship mounted acoustic Doppler current profiler
(ADCP) is investigated. It is based on fitting a limited area tidal model, posed
in the frequency domain, to the ADCP record in order to obtain optimal tidal
boundary conditions. An application of the method using ship ADCP data from
the Western Bank region of the Scotian Shelf is also included.

e Chapter 4 considers the role of wind and boundary forced circulation on the
development of an operational forecasting system based on the Kalman filter.
In particular, an approximate, reduced dimension Kalman filter is proposed. It
is based on reformulating an ocean model in terms of its dynamical modes. A
subset of the modes preferentially excited by the forcing is then chosen as the
basis for a reduced ocean model. Solving the Kalman filter equations using this
reduced model retains the important components of the dynamics necessary for
model forecasts and error propagation, yet allows for a computationally efficient
means to implement this data assimilation scheme. A variety of tests are carried
out based on a prototype model of the Scotian Shelf using wind and boundary

forcing as well as fixed and moving observation arrays.

e Chapter 5 investigates the steady circulation associated with density variations,
with a focus on coastal regions. The general problem of determining circulation
from density data is reviewed and the consequences of including a prognostic
density equation together with the usual set of diagnostic equations is inves-
tigated. An inverse formulation of the problem is presented and a particular
example undertaken based on a data assimilation scheme which treats the dy-
namics, including the density equation, as a strong constraint. Experiments are
carried out for this case using an idealized, limited-area shelf model in order to

investigate the joint estimation of dynamically consistent density and velocity.

¢ Chapter 6 remarks on some important issues arising from the work of this thesis.



In particular, the need for suboptimal data assimilation methods suitable for
operational forecasting of circulation is emphasized and offered as an area for

future research.



Chapter 2

Background

Practical applications of oceanographic data assimilation are concerned with combin-
ing data and dynamics in order to produce optimal estimates of ocean circulation and
hydrography. Another purpose is to test hypotheses about the dynamical origins of
these fields. An apparently large number of approaches to this problem are available.
However, this variety arises mainly as a result of whether the estimation problem is
treated as: (i) continuous or discrete in its time-space coordinates, (ii) determinis-
tic or stochastic, (iii) linear or nonlinear, or (iv) with dynamics acting as a weak or
strong constraint. Each treatment has advantages and disadvantages in discussing
the theory, issues, and techniques of oceanographic data assimilation.

In this chapter, the basic concepts of oceanographic data assimilation are dis-
cussed in the context of regression theory and its generalization to time dependent
models. Regression is a widely used and well developed technique concerned with
fitting models to data. It provides a unifying framework for understanding the meth-
ods commonly used in oceanographic data assimilation. Being discrete in nature,
regression is both consistent with, and complementary to, the use of numerical ocean
models. It can be approached from a stochastic or deterministic standpoint and has
nonlinear extensions. The major drawback is that is does not deal explicitly with
time-stepping models but does provide a basis on which to develop the appropriate

techniques for these cases.



The major sources for the material in this chapter include the textbooks on regres-
sion (Sen and Srivastiva, 1981), control theory (Bryson and Ho 1969), filtering theory
(Jazwinski 1970), and optimal estimation (Gelb 1974). Specific to atmospheric and
oceanographic data assimilation are the books of Bennett (1992) and Daley (1991)
and the review article of Ghil and Malanotte-Rizzoli (1991).

The chapter is structured as follows. Section 2.1 discusses general inverse meth-
ods and regression in a linear framework with an emphasis on the important aspects
common to all estimation problems. Section 2.2 then turns to oceanographic data
assimilation. A general representation of time dependent ocean models and observa-
tions is introduced and the problem of blending these two sources of information is
discussed. In Section 2.3, the Kalman filter is derived in terms of regression. Optimal
(Kalman) smoothing is then developed in Section 2.4. Adjoint based smoothing and
representer techniques are also derived and discussed. Finally, Section 2.5 provides a
brief summary. Appendices A and B are also included in the thesis to complement

this chapter.

2.1 General Inverse Methods and Regression

Suppose we wish to estimate a set of unknown, or uncertain, oceanographic quantities
from data. These might, for example, take the form of model parameters, initial or
boundary conditions, or the ocean state itself. Consider the following regression

equation
z =Db +e. (2.1)

Here, the n x 1 vector z represents data. The unknown quantities to be estimated
are given by the p x 1 vector b. The n X p matrix D represents the model which
(linearly) relates the unknown b to the data z. In oceanographic data assimilation,
the matrix D includes ocean dynamics (determined from a finite difference form of
the governing equations) as well as a mapping to the observing locations. An error

term e is included to reflect the fact that the model, for a variety of reasons, will not



reproduce the observations exactly. Note that no time index has been introduced for
either the model or the data, although it could be included implicitly in the general
development of regression given here (see Section 2.4).

The goal of the assimilation procedure is to choose an estimate of the unknown
quantity b such that the model estimates Z are a ’'best-fit’ to the actual observations
z. This problem is naturally approached in the framework of regression analysis. The

general solution to the regression problem takes the form (see Appendix A)
b = D*z, (2.2)

where b is an estimate for b and D* is the generalized inverse of D.

Two desirable properties (Jackson 1972) of the generalized inverse are

1. DD" should act as I.x,. By pre-multiplying both sides of (2.2) by D, it is seen
that this condition may be interpreted as an overall measure of how well the

model predictions z fits to the data z.

2. D*D should act as I,x,. Pre-multiplying (2.1) by Dt and using (2.2), shows
that this condition provides a comparison between the estimate b and its true

value b.

These properties provide a general basis on which to construct a specific inverse and

to assess the problem of fitting models to data.

2.1.1 The Well-Posed Case

Consider the case in which the number of observations equals the number of unknowns
(n = p) and assume that the matrix D is of full rank (i.e. has no zero eigenvalues).
The unknown b are estimated such that the model predictions % match exactly the
data z. The concept of an error given in (2.1) is of little utility in this case, although
it is undoubtedly present in both the observations and the model. The solution is in

the sense of the usual definition of an inverse,

D+ = D-l
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and the properties 1) and 2) are satisfied by definition. The important issue here is
that while a unique solution has been obtained, the variance of b may prove to be
unacceptably large. This may occur if one or more of the eigenvalues of D are near
zero and/or if the error e is large. In this case, some of the techniques illustrated in
the next section may prove useful for reducing the variance of b at the expense of
introducing bias into the estimate.

The overdetermined case is encountered when the number of observations = is
greater than the number of unknowns p (we assume DTD is of full rank, where su-
perscript T’ denotes transpose). This implies that a unique solution could be obtained
with fewer observations than are available. Since the observations (and model) are

uncertain, the extra information is absorbed into the error term e. The squared error
J = eTe

= (z—Db)7(z — Db) (2.3)

is usually chosen as the appropriate measure of model fit, and the unknown b chosen
such that J is minimized. Differentiating J with respect to b and setting the result
to zero yields the inverse

D' = (DTD)"'D7.
If e ~ N(0,0%I), where I is the identity matrix and ¢? the variance. then b is the
maximum likelihood estimate of its true value b. In the more general case of a positive

definite error covariance matrix, i.e. € ~ N(0, ), the inverse is
Dt = (DT®-'D)-'DTx-L.

which leads to the generalized least squares estimates for b. Again, these satisfy
property 1) and match property 2) in the sense that they are minimum variance

unbiased estimates.
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2.1.2 The Ill-Posed Case

We now turn to the situation where the number of observations are less than the
number of unknowns and an infinity of solutions for b exists. This is the under-
determined problem of rank-deficient regression and a situation often encountered in
oceanographic data assimilation. Choosing a particular inverse D™ requires introduc-
ing additional (prior) information into the problem. Two approaches for determining
a generalized inverse are given below.

The first procedure explicitly identifies the parts of b which are resolvable for a
given D and obtains a unique solution on this basis. Singular value decomposition

allows any n x p matrix D to be expressed as
D = TA®T. (2.4)

The elements of X, ® and A are determined through generalized eigenvector analysis

of an n x p matrix (Lanczos 1961) as follows. Define

D¢, = Muv; (2.5)
DTv; = M\¢; (2.6)
or
D'Dg¢; = A\¢, j=1,....p (2.7)
DD%v; = A%y, i=1,...,n. (2.8)

The [ x | matrix A is a diagonal matrix of the non-zero A which are common to the
two sets of eigenvalues, where [ is less than or equal to the minimum of p or n. The
columns of X (n x I) and @ (p x !) are the eigenvectors v and ¢ associated with
non-zero singular values in A.

The inverse associated with the singular value decomposition is

Dt = ®A!YT, (2.9)
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which follows from the orthonormal property of X and ®. The eigenvectors v; and
¢; provide bases for the vector spaces spanned by z and b, respectively. The above
inverse has been constructed such that their associated null spaces (represented by
zero eigenvalues) are explicitly identified and then neglected from any further involve-
ment in the estimation procedure. As a result, the estimate for b has minimum norm
(bTb)/? (this is made more clear below). The inverse also provides the closest fit,
in a least squares sense, to the identity matrices in both properties 1) and 2). The
singular value decomposition may then be said to choose from the infinity of possible
solutions, a least squares inverse which yields the estimate for b which has minimum
length.

Next, we consider an alternate, but related, procedure for treating undetermined
systems based on introducing prior information, or regularization, into the problem.

A justification of this procedure is given in this quotation from Jackson (1972):

Let us examine in more detail the case of the strongly underdetermined
system. This case will include those problems (which are) the result of
discretizing a continuous relationship between a known function and an
unknown function, because we may handle only finite amounts of data,
yet we would in principle like to know an infinitude of details about the
unknown function. A wise procedure is to use more parameters to describe
the unknowns than are likely to be uniquely determined by the data. One
may then form a family of inverses, compare the tradeoff between reso-
lution and variance for this family, and select that inverse which is most

appropriate for interpreting the solution.

In oceanography, the model D being fit to data results from the discretization of
a set of governing partial differential equations. These relations, apart from initial
and boundary conditions and certain internal parameterizations, are often considered
as essentially known. To estimate the unknown (and underdetermined) parts of the
function, we can introduce prior information based on our physical understanding of

the problem in order to select a unique solution.
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Consider augmenting the cost function (2.3), which measures the squared error
of the observation/model misfit, with a regularization term accounting for prior in-
formation, for example the biasing of the solution towards smoothness. This cost

function could take the form
J=(z- Db)T(z — Db) + x2bTSh, (2.10)

where the last term on the right-hand-side constitutes the regularization term and
x? designates its relative strength. Minimizing J by differentiating with respect to b

and setting the result to zero yields
(D'D + «2S)b = D7 3. (2.11)
Solving for b leads to the inverse
D* = (DTD + «%8)"'DT7, (2.12)

whose existence depends on D7D + x2S being full rank. The philosophy behind
this approach is that by including the prior information on b, the null space (zero
eigenvalues) associated with DTD can be resolved. If S is the identity matrix, this
method corresponds to ridge regression and the problem of choosing & can be dealt
with through generalized cross validation (Craven and Wahba 1979, McIntosh and
Veronis 1993).

In the limit where x? tends to zero, the inverse obtained by the regularization
approach reduces to that found by the singular value decomposition. To demonstrate
this, let k2 = 0 in (2.10). Minimizing J leads to an equation identical to (2.11)
except that the term involving x? is now removed. The matrix D7D cannot be
inverted directly and thus D* in (2.12) is not defined. However, using the singular
value decomposition for D given in (2.4) and premultiplying (2.11) by #A 287 yields
the inverse D* found in (2.9). That is, the inverse associated with the singular
value decomposition is identical to that found by minimizing J in (2.10) when the

weight %> = 0. This demonstrates that the singular value decomposition solution
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yields a solution vector b of minimum length. Introducing prior information into the

problem biases the solution to an extent dependent on the weight «? and form S of

the regularization.

2.1.3 Comments

General inverse theory provides a framework in which to consider issues important to
oceanographic data assimilation. Inverse methods are well established in geophysics
(Backus and Gilbert 1967, 1968, Wiggins 1972) and reviewed in Tarantola (1987).
Few direct applications of these techniques are found in the oceanographic literature
(e.g. Wunsch 1978), mostly because straightforward usage of the matrix algebra
is feasible only if the dimension of the matrices are kept manageable. In practice,
this has limited oceanographic application to linear problems based on steady-state
models. For the case of nonlinear models, generalized inverses can be determined via
the minimization procedures used in nonlinear regression (Sen and Srivastiva 1990).

The generalized inverse methods outlined in this section are not ideally suited for
situations involving time dependent models and observations. The time dependent
case could be absorbed into the framework given here (see Section 2.4). However
this makes either the dimensionality of the matrix D very large, or its form quite
complicated. As a consequence, most efforts in oceanography have focused on data
assimilation procedures which take advantage of the special structure imposed on
the estimation problem by time-stepping models and these will be discussed for the
remainder of this chapter. Nonetheless, it is important to emphasize that the data
assimilation problem is still the problem of determining a generalized inverse and
Issues raised in the previous section are fundamental to the problem of fitting time

dependent models to data.



2.2 Time Dependent Estimation Problems

In this section, ocean dynamics are introduced in the context of a generic, time-
stepping numerical ocean model represented as a stochastic difference equation. Ob-
servations are related to these model variables through a measurement equation.
These two components form the basis for fitting time dependent models to data.
Geophysical fluid dynamics provides a continuous form of the governing equations
for ocean circulation (e.g. Pedlosky 1979). These have approximate counterparts in
discrete time-space. Assume that a numerically stable discrete form of these governing

equations exists and is given by
X = d(xt_l) + Gte:", (2.13)

where X, is a column vector which contains the prognostic variables of the model
defined on a spatial lattice at a given time ¢. The d operator represents a discretized
form of the dynamic equations. The system noise, or model error, is represented by
e and is assumed additive. It includes such processes as forcing, model uncertainties
resulting from neglected dynamics, and any errors in the numerical representation of
the governing partial differential equations (since it includes both forcing and model
errors it may be viewed as a mixture of deterministic and stochastic parts). This
system noise is projected on the ocean state x, using the matrix G;. The form of (2.13)
may be viewed as a general representation of a nonlinear, time-stepping, numerical
ocean model which requires initial and boundary conditions to be integrated.
Available oceanographic observations z, are related to the ocean state x; through

an observation equation given by
z; = h(x,,t) + e, (2.14)

where h represents the operator which maps from model state to the observations. It
includes a conversion from the model variables to the measured variables (for example,
velocity measurements used in a vorticity based model), and an interpolation of the

observation locations to the appropriate points on the model grid. The observation
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operator h is considered a function of time, mainly to allow for the possibility of an
observation array which changes over time. The observation error term e? accounts
for the fact that the model cannot reproduce the observations exactly. It includes
any errors in the conversion and interpolation operations contained in h, as well as
instrument noise.

In developing the theory of data assimilation in this chapter, the linear versions
of (2.13) and (2.14) are used. Suppose that a reference trajectory for the state x, =
X;, t =1,..., N has been determined for the system (2.13) by specifying best guesses
of the initial state and the forcing. The linearized versions of (2.13) and (2.14) are
then

xX: = Dixiy + Gee” (2.15)

z: = ngt-*-e?, (2.16)

where X¢,Z:, e;', and e} now represent deviations from their reference trajectory
values. The matrices D, and H, are determined through the linearization of vector
functions d and h about x7, i.e.,

ad; _ %

a._ T
Oz j Xe=x!

Dij, = (2.17)

where the subscripts 7, j represent the elements of D and H. This approximation
is valid for small deviations about the reference state. Time subscripts have been
included in D, (and H,) to allow for the fact that the reference trajectory varies over
time.

The overall goal of the data assimilation problem is to combine the model esti-
mates (2.13) with the observations (2.14) to produce a better estimate of the overall
ocean state than could be obtained with either models or data alone. Data assimi-
lation methods are commonly divided into two categories: filtering and smoothing.
Filtering methods use available information (i.e. observations and model predictions)
over an interval (0, N) to produce an estimate of the ocean state at the end of that
interval (at time ¢ = V). These methods are sequential in the sense that recursion re-

lations are available for updating the state based on the previous estimates obtained.



Smoothing methods, on the other hand, use information over an interval (0, N) to
produce estimates at any, or possibly all, intermediate times¢ = 0,..., N. Figure 2.1
presents a schematic diagram contrasting the filtering and smoothing problems.

A probabilistic framework provides, perhaps, the most complete solution to the
filtering and smoothing problems and it is worthwhile to note a few important points.
Consider the conditional probability density function p(x;|zo,...,znx). For t = N. a
complete solution to the filtering problem is provided by knowledge of this density
function. A similar statement applies for the smoothing problem for ¢ = 0,..., V.
Clearly then, the filtering problem is a special case of the smoothing problem. Elemen-
tary probability theory allows the conditional probability density function governing
the ocean state to be determined from the dynamics (2.13) and the observations
(2.14). The general solutions to the filtering and smoothing problems are outlined in
detail in Appendix B.

While the probabilistic approach offers a general, and conceptually straightfor-
ward, description of the data assimilation problem, it is difficult to implement in
practice. Application to realistic oceanographic problems is hampered by incomplete
knowledge of the input probability density functions as well as the computational
difficulty of transforming the full probability density functions using the ocean dy-
namics. Monte Carlo methods may offer some potential for dealing with these prob-
lems (Evensen 1994); however, it is usually argued (e.g. Jazwinski 1970) that a more
appropriate way to treat the data assimilation problem is to use statistical estimation
theory. In this case, we are primarily concerned with the first and second central
moments (mean and covariance) of the probability density functions. Instead of max-
imum likelihood estimates, we consider estimates which minimize model and obser-
vational errors while taking into account appropriate statistical information. Under
certain assumptions (notably, linear models and Gaussian noise) these are equivalent
to maximum likelihood estimates derived from the complete probability structure of

the problem.
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A) Filtering (Nowcast)

I ]
}

B) Forecasting

C) Smoothing (Hindcast)

N
}

Time

- data available

D no data available

* estimation time

Figure 2.1: Schematic diagram contrasting the nowcasting (filtering), forecasting, and
hindcasting (smoothing) problems.
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2.3 Filtering and Forecasting

Filtering methods in oceanographic data assimilation are normally viewed in the con-
text of the Kalman filter (Kalman 1960). It is a sequential scheme which is statistically
optimal for linear systems with Gaussian noise statistics. It combines a model forecast
at time ¢ with observations at that time to produce a better overall estimate of the
state. It is recursive and well suited to nowcasting and forecasting. In this section,
we develop the Kalman filter using the linear model (2.15) and observation equation

(2.16). Nonlinear extensions and application in oceanography are then reviewed.

2.3.1 The Kalman Filter

Suppose that an unbiased estimate of the ocean state x,_; is available from previous
analysis. This prior estimate is denoted by X;_; and has an error covariance given
by P,_;. It is also assumed that the system noise e[ is a zero-mean, Gaussian
process uncorrelated in time (but correlated in space) with covariance Q. Using this
information, the forecast of the state at the next time step X, is determined using
(2.15) as

X = DyXi—g. (2.18)

The stochastic nature of this estimate is made more clear by writing
X, =X+ e{, (2.19)

where x; denotes the true value of the state, and e] the forecast error. It follows that

the forecast error has zero-mean and a covariance given by
var(X; — x¢) = M, = D,P,_;DT + G,Q,GT.

Suppose that observations z, are available at time ¢ according to the linear measure-
ment relation (2.16). The filtering problem is then to find the best way to combine the
forecast (2.18) with the observations (2.16).
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Equations (2.16) and (2.19) can be combined in standard regression form (2.1) as

(2)=(%)=(2)

where the the time index has been dropped for convenience. It is assumed that the

forecast and observation errors are uncorrelated, i.e.

=(2)=(3 x);

where R represents the error covariance matrix of the observations. The fact that
the problem is now in standard regression form allows an optimal, in a least squares

sense, X to be obtained immediately as

coefarn (%00 )](2)

= PHTR !z + PM™'x, (2.20)

where P is the error covariance matrix of % and given by

e = forn (%) (%)

1

= [HTR-*H+M-1]" . (2.21)

The estimate X, is the Kalman filter estimate of the state. Its form is more

commonly expressed as follows. Substituting (2.21) into (2.20) yields
(M1 +HTR'H)x = H'R 'z+M"'x
= M'+H'R'H)X+ H'R(z - HX).
Pre-multiplying by (M~! + HTR'H)"! gives
* = X+ (M +H'R'H)'H'R"(z — HxX)
= X+PH’R"!(z - HX)

= x+K(z - H%),
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where we have defined the gain matrix K = PHTR!.

This shows that the estimate for the optimal state is calculated using the forecast
field plus a correction term based on the discrepancy between the observations and
the forecast. The weighting factor K is determined from the covariance structure of
the problem (outlined below). The associated sequential updating consisting of the
forecast, observation, and analysis procedure is known as the Kalman filter. For inter-
pretation purposes, consider the case where z and X are scalars with error covariance

o2 and o} respectively. If H = 1, then the solution is

. 1 1 -

o (1 +a§/o—%) o (1 +a%/o—3) -
This indicates that the filter estimates is just a weighted sum of observations and
model forecast. In the limit where the observations have much greater uncertainty
that the model forecast, i.e. ag/a} > 1, then the estimate  reverts to the forecast.
Similarly, when 02/0% < 1 then £ tends to the observations.

To summarize, the Kalman filter estimate of the state at time ¢ is
x: = X; + Ki(z: — H/X,), (2.22)
where the model forecast is determined through
X = Di%,—;. (2.23)

The following sequence of matrix operations determines the error covariance matrices

for X; and X, as well as the gain matrix:

var(i, - xt) = Mt = Dtpg_lDtT + GgthtT (224)
var(X, —x;) = P.= (M;!'+HIR;'H,)! (2.25)
K,= PHIR;'. (2.26)

These equations require knowledge of the initial state xo ~ WS (X0, Mp), the
system noise e;" ~ W.5(0, Q;), and the observation noise e? ~ WS(0,R,) (WS desig-

nates a ‘wide-sense’ distribution, i.e. one characterized by its mean and covariance).
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Estimates of the state are then produced sequentially. For the linear system with
Gaussian noise, the Kalman filter is optimal in the sense that it is a maximum likeli-
hood estimate of the system state.

It is useful to comment on the minimization approach which leads to the Kalman
filter estimates. At any given time step, the optimal estimate X, can be obtained by

minimizing the following cost function
Jj = (X¢ - ft)TMt_l(’Q - )_('g) + (Zt - H¢Xt)TRt—1(Zg - Htxt) (2.27)

with respect to x; (Diderrich 1985). The forecast and observation errors are com-
bined in a single scalar quantity J; which measures the squared deviations of the
model forecast and observations from the true state weighted by the inverse of their

respective covariance matrices.

2.3.2 Extensions and Applications

For a nonlinear model or observation equation, the optimality properties of the
Kalman filter no longer hold. Linear systems and Gaussian error statistics imply that
the mean and covariance offer a complete description of the probability structure of
the system. The presence of nonlinearities implies that higher order probability mo-
ments exist (see Appendix B). In addition, a host of other dynamical and estimation
issues arise in nonlinear filtering (see Jazwinski 1970).

The extended Kalman filter is a direct extension of the linear filter which is suitable
for application with nonlinear models. The extended Kalman filter uses the nonlinear
model (2.13) as the basis for the forecast equation (2.23). The nonlinear observation
equation (2.14) is used in the updating equation (2.22). The matrix equations (2.24-
2.26) retain their same form but with D, and H, being the linearized versions of
their nonlinear counterparts d and h about the current state estimate %,. Ideally, the
model is re-linearized at every time step but, in practice, this can occur less frequently

as the model state may not vary significantly over a given time interval.
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Monte Carlo methods offer a possible means to evaluate the forecast error statis-
tics. Evensen (1994) uses such an approach with a two layer nonlinear quasi-geostrophic
ocean model which proceeds as follows. An ensemble of initial states is defined which
are representative of the initial probability density. The model is then integrated
forward from these states until the first observation time, the results recorded, and
the model forecast error variance estimated. It is then updated using available obser-
vations in the same way as the usual Kalman filter. The procedure is then repeated
using a new ensemble of model states derived from the updated statistics. The re-
sults of Evensen’s application were encouraging and suggested that O(10%) model
integrations were adequate to specify the forecast error statistics in that case.

Filters of the stochastic approximation type (Gelb 1974) offer an alternative so-
lution to the nonlinear filtering problem. Hoang et al. (1994) apply such a nonlinear
adaptive filter which estimates the time evolution of gain matrix K, by minimizing
the model prediction errors z, — HX,. This minimization involves the adjoint of the
dynamical operator d, and entirely avoids the use of (2.24)-(2.26) in determining the
gain matrix.

The main advantage of the Kalman filter for oceanographic applications is that
it produces explicit error estimates and can account for model errors. Its widespread
use has been hindered by two important issues. First, the computational burden im-
posed by the large dimension of most ocean models makes implementation of the full
Kalman filter problematic (Ghil and Malanotte-Rizzoli 1991). Second, it is difficult to
accurately specify the suite of necessary input statistics, including observation errors
(instrument noise and errors in interpolating the observations to the model variables
and to the model grid) and system noise (neglected dynamics, numerical approxi-
mations, and stochastic forcing). These are often poorly known and yet important
to filter performance (Jiang and Ghil 1992, Daley 1992). It is important to note,
however, that all assimilation methods must make assumptions about these input

statistics, but often this is not done explicitly.
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2.4 Smoothing

Data assimilation methods based on filtering are suitable mainly for real time appli-
cations where nowcasts and forecasts are carried out as new data becomes available.
However, in the case where an oceanographic field experiment has been completed, or
archived data sets are available, it is hindcasts of the ocean state which are of interest.
The key feature of a hindcast is the availability of future information relative to the
analysis time. This allows inferences about the system noise process to be made, and

it is this feature that distinguishes the filtering problem from the smoothing problem.

2.4.1 Regression Solution

Consider combining the linear model (2.15) and observation equation (2.16) using
a regression approach. Following Duncan and Horn (1972) the regression model
z = Db +e corresponding to the filtering problem (hereafter assuming, for simplicity,
that G, =1) is

( %o (I 0 0 0 0 ) [ —eo )
0 _D, 0 0 0 |{ x —ep
z; 0 H, 0 0 0 X1 e}
o _|[ 0 -D I 0 o0 o | | —ef (2.98)
z) 0 0 H, 0 o e3
: : -y :
0 0 0 0 .. -Dy I [\ xv | —ep
\zv/ \ 0 0 0 ... 0 Hy)/ \ %

where Xg is a prior estimate of Xo. The generalized least squares regression solution
for (2.28) reveals that the last rows of the solution vector b associated with Xy
are equivalent to the Kalman filter estimate Xy (Duncan and Horn 1972). The
estimates X, for t < IV (denoted X;x) are not the same as the Kalman filter estimates
since future information with respect to the analysis time is available. These are

the smoothing estimates and identical to the filtering estimates only at the end of



the observation interval. (Recall that this property was immediately evident in the
probabilistic approach).

Due to the large size of the arrays in the regression equation (2.28), direct solution
using the approaches of Section 2.1 is not feasible for realistic cases. The structure of
D in (2.28) is such that it is sparse and banded in blocks, which correspond to time
steps. It is sensible to approach the smoothing problem in an optimization framework

which explicitly takes into account the temporal structure of the problem.

2.4.2 The Kalman Smoother

The regression problem given by (2.28) is equivalent to minimizing the cost function
1 751 1 & (o T-1
Jo=eiPilen+ 33 {esTR e} + e TQ; e} (2.29)
t=1

with respect to x, for ¢ = 0,...,N. The quantity J, is the sum of the squares of the
initial error, the observation error, and the model error weighted by the inverse of
their respective covariance matrices.

To minimize (2.29) one could use the chain rule and directly differentiate this
equation with respect to the x,, set the result to zero, and solve for x;. An equivalent,
but more convenient, approach is to treat the problem as a constrained optimization

problem. That is, we seek to minimize

1 . - .
Jo = E(Xo - Xo)TPo 1(Xo — Xo)+

1 N
5 2 {(z —Hox) Ry (2 — Hox) + €77 Q[ e} (2.30)
t=1
with respect to the unknown x, using the constraint
e;" =X — DtXt_.l. (2.31)

The solution to the constrained optimization problem can be found using the method

of Lagrange multipliers (e.g. Bertsekas 1982). The Lagrange function is

N
L=J,+ Z‘Y:T_l(xc — Dix¢—1 — /")
t=1
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where <, represents the unknown Lagrange multipliers. The minimum in J, is found
by differentiating L with respect to the unknowns «,, X, e® and X, and setting the

result to zero. This results in the following system of equations:

a_L =0 = X, = Dtx¢_1 + E;n (2.32)
v,
aL -
o 0 = v.= Dﬂm +H{R;\(z; — Hix,) (2.33)
t
oL _
Jer =0 = e =Q., (2.34)
oL . T -
— =0 = xg=Xp+ PoDo Yo- (230)
axo

The Kalman smoother algorithm is based on the above system of equations and

proceeds as follows:

1. The first equation describes a forward sweep through the model equations. The
initial conditions xo and e} are unknown or uncertain, but observations z,
are available. As’ demonstrated in Section 2.3.1, the optimal estimates of the
state for the forward sweep, X,, are the Kalman filter estimates. Note that the

estimates X, at the final time are equal to the smoother estimates XN|N-

2. The second equation describes a backward sweep of the Lagrange multipliers
.. starting from 45 = 0. The Lagrange multiplier equations are forced by
the discrepancy between the observations z, and the Kalman filter estimates X,

from (2.32), which take the place of x; in this equation.

3. The third equation allows estimates of the system noise e to be made using

the Lagrange multipliers.

4. The final equation updates the original estimate of the initial state xo using the
Lagrange multiplier obtained at the end of the backward integration.

Updated estimates of the state can also be obtained at any intermediate time.

Note that every Kalman filter estimate X, has an associated error covariance matrix



P.. Therefore, without loss of generality, x; and %x; could be substituted for xq and

Xo in (2.30). Estimating these using the smoother equations yields
XN = X¢ + P,D,T‘yt, (2.36)

where X, ; denotes the estimate of the analyzed field using all the information avail-
able to time N. This is the smoothing estimate, and the above equation clearly shows
that it is a further refinement on the Kalman filter estimate X,.

To summarize, the Kalman smoother requires a forward sweep through the obser-
vations (the Kalman filter) and a subsequent backward sweep which determines the
Lagrange multipliers. Future information relative to the analysis time is now used to
update the Kalman filter estimates of the state and make inferences about the system
noise (forcing). Only one forward and backward sweep is needed since an optimal
estimate of the state at the final time (Xyjny = Xx) is available to begin the forcing
of the Lagrange multipliers in the backward integration. A set of recursive relations
are also available for determining the error covariances for its state estimates of the
Kalman smoother (Bryson and Ho 1969, Section 13.2)

2.4.3 The Adjoint Method

An important subclass of smoothing problems occurs when the model state can be
parameterized in terms of a small number of unknowns such as initial or boundary
conditions or internal parameters such as friction coefficients. This implies that the
model dynamics are treated as a strong constraint and can be expressed in terms of
these unknowns. The gradient of J, with respect to these unknowns can be deter-
mined and the minimization carried out based on this information. We motivate this
approach using the Kalman smoother as illustrated below.

Suppose that Kalman filter estimates were not available for the forward sweep
in the smoothing algorithm given by (2.32)-(2.35). One could, in principle, proceed
by guessing the initial conditions Xo and the system noise e[ and integrate forward

the model (2.32). Clearly, the resulting estimates for x; would be suboptimal to a
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degree depending on the validity of these guesses. However, the Lagrange multiplier
equation (2.33) could still be integrated backwards using the estimated x,. The
updated estimates of x; from (2.36) are clearly suboptimal and imply that J, is
not at a minimum and therefore the gradient of J, with respect to e™ and xq, is
not equal to zero. Importantly, the gradient does provide information about the
direction in which the guesses for e[* and X, should be adjusted in order to achieve
a smaller value of the cost function J,. Once the e[* and xo are suitably modified
using this gradient information, the procedure can be repeated and new estimates
obtained. This iterative approach to minimizing .J, is the essence of the control
methods discussed in this section.

The number of iterations required for the above procedure to converge to a min-
imum in J, typically scales with the number of variables which must be estimated
(Gill et al. 1981). Such control methods thus prove useful in cases where the model
can be parameterized in terms of a relatively small number of unknowns, or where
suitable regularization terms exist to accelerate the rate of convergence. This fact,
together with the practical difficulty in accurately specifying the error statistics of
the system noise, has resulted in the widespread application of these adjoint based
smoothing methods in oceanographic data assimilation. To illustrate the method in
more detail we consider the special case of an initial value problem.

Now consider the case where the system noise e is negligible (or the error co-
variance of the system noise Q, goes to zero). Inspection of (2.29) reveals that the
dynamics become a strong constraint which must be satisfied exactly. Under the
above assumptions, the smoothing problem of (2.29) now seeks to minimize

1N

J = 5 > (ze — Hix)TR; (2, — H,x) (2.37)
t=1

with respect to x;, subject to the constraint
X — Dxt_.l = 0. (238)

Suppose the initial conditions Xo are taken as the unknown control variables of the
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problem. With the dynamics now describing an initial value problem, the initial con-
ditions can be adjusted in such a way that the model best matches the observations.
The goal of (2.37)-(2.38) is then to choose an estimate for xo which minimizes the
observation/model misfit as given by J. We illustrate the solution to this problem
first using regression and then using the so-called adjoint method.

Consider an alternative representation of (2.38) as a matrix equation
x = Db, (2.39)

where x = (x7,...,x%)T, D = diag(D, D?,..., DY), and b is the vector of unknown
control variables such that b = xo. The model has been parameterized in terms of
the initial conditions, whose specification is sufficient to determine (or control) all

subsequent Xx,. Given observations z = (z7,...,2%)7, the goal is to minimize

J =(z - Hx)TR"}(z — Hx),

where H = diag(Hj, ..., Hy). Substituting (2.39)into the above equation, differenti-

ating J with respect to b and setting the result to zero yvields ¢
b= (H'D’R-'DH)"'H’DTR !z

which is a generalized least-squares regression estimate b for b in terms of the obser-
vations z (see Section 2.1.1) and a solution to the constrained optimization problem
of (2.37)-(2.38). Note that the error covariance matrix for b is given by the quantity
in brackets. In the general case, the control vector b could contain not only the initial
conditions but any quantity which controls the evolution of the state. These include
the forcing and any uncertain internal parameters of the problem.

The above analysis reveals the main strength of the optimal control method: the
high dimensional state space can be projected onto a much smaller dimension control
variable space by treating a portion of the dynamics as exact. However it would be a
difficult task to express any realistic ocean model in the form of (2.39), and the array

sizes are sufficiently large to make the above matrix manipulations problematic. A
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more usual approach to (2.37)-(2.38) is to retain the time-stepping model and use a
Lagrange multiplier technique.

Following Section 2.4.2, the Lagrange function for the problem is obtained by
appending to J in (2.37) the constraint (2.38) multiplied by Lagrange multipliers v,.
Differentiating with respect to the unknowns <, and x, and setting the result to zero
yields a modified version of (2.32) and (2.33) where e[* = 0. Differentiating with

respect to the controls yields

oL aJ T
3_xo = 3—xo = —D"+,, (2.40)

which provides the required information for the minimization of J. The minimization
algorithm proceeds as follows: (i) Guess a value for X, (ii) Run the model forward
N time steps and evaluate J, (iii) Run the backward model for 4, (95 = 0), and
evaluate 3J/0%o as above, (iv) Use a gradient descent algorithm to adjust xo such
that J is decreased, and (v) Continue the procedure until |8J/d%o| < € where € is
some threshold value which designates that a minimum has been found. A linear,
conjugate gradient technique (Gill et al. 1981, section 4.8) can be shown to converge
to 2 minimum in J in m iterations where m is less than or equal to the number
of control variables p. (Note that the effective convergence rate can be accelerated
through judicious use of regularization). The computational requirements in this case
(for each iteration) are one forward integration of the model, one backward integration
of its adjoint, and the calculation of gradients. This iterative smoothing technique

has come to be known as the adjoint method of data assimilation.

2.4.4 The Representer Solution

Recall the form of the cost function given by (2.37)-(2.38) and, for simplicity, let
R, = I, implying that the observations all have equal variance. The method of

representers is based on expressing the state x, as

K

xe =Y e, (2.41)

k=1
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where c¥ are the representer functions, 3* are time invariant coefficients and K refers
to the total number of data points z = (z7,...z%)7. (Note that the usual develop-
ment of the representer method assumes a prior estimate of x; in which case the LHS
of (2.41) is interpreted as a correction term on this prior. We have chosen to ignore
this for clarity and notational simplicity).

The representer field c¥, ¢t = 1,..., N represents the influence of the kth observa-

tion on the overall model state. It satisfies the raode! equations
cf =Duct +7¢ (2.42)
with an initial condition ¢§ = 4k. The 4¥ satisfy the adjoint equations
Voo =DLv + H Ty Ak =0, (2.43)

where z{‘ is the kth observation and is obtained at time ¢, and Htk represents the
corresponding row of H,.

Consider an interpretation of the representers. Examining the adjoint equations
(2.43) reveals that for each representer, a single observation drives the adjoint equa-
tions. In this sense, ¥ may be interpreted as an influence function for that observation
on the ocean state. Since the integration of (2.43) runs backward in time from an
initial state of rest. 4/¥ will be zero at times greater than t. The ~¥ then provide a
forcing term for the forward integration of (2.42) and thus serve to define the rep-
resenter field cf associated with the kth observation. The net effect of sequentially
applying (2.43) and (2.42) is to spread the influence of a single observation over the
entire integration period. The set of ¢ may be interpreted as Green’s functions for
each of the observations.

Given that the representer functions have been obtained, an estimate for state
X requires that the weighting coefficients 8* in (2.41) be determined. Define 8 =

(B%...,8%)T and C, = (c}....,cK) whereupon (2.41) is expressed in matrix form as

xe = C.0. (2.44)
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Pre-multiplying both sides by Hf provides a model prediction of the data point z* at

time ¢, i.e.
:F = HFC,B. (2.45)

Stacking the complete set of f in the vector % transforms (2.43) to
z = HCB (2.46)

where the product HC is determined via (2.45). This provides model predictions
of the observations in terms of the coefficients 3. By replacing Z with the actual
observations z and performing the inversion we obtain the estimate for the representer

coefficients

B = (HC) 'z. (2.47)

Given ,B , and knowledge of the representer functions, the state at any time can be
estimated through (2.41). Some properties of representer functions are presented in
Bennett (1992, chapter 3).

The representer functions are determined by solving 2A" initial value problems
(an integration of the forward model (2.42) and its adjoint (2.43) are carried out
for each representer function). The representer coefficients are then obtained by a
matrix inversion involving a k£ x k matrix. These computational requirements can
be contrasted with the coupled, two point boundary value problem that governs the
adjoint method of Section 2.4.3. That technique uses an iterative solution to obtain
the minimum of the cost function, where the number of iterations varies roughly
as the number of control variables p (depending on the regularization terms). As a

result, the representer technique may prove efficient in the case where k& < D-

2.4.5 Application and Extensions

The major motivation for the use of these smoothing techniques in oceanography
has been to extract the maximum amount of information about the ocean state from

existing data sets. For practical purposes, adjoint methods, which treat the dynamics
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as a strong constraint, have generally been preferred. Such an approach allows an
ocean model to be parameterized in terms of a (relatively) small number of unknowns,
typically the initial/boundary conditions and internal parameters, thereby aiding the
optimization procedure. Ill-conditioning in the problem, usually due to the sparse
nature of the observations, is alleviated by adding regularization terms to the cost
function (see Section 2.2). These are often based on physical knowledge of the problem
at hand. The strong similarity between the forward and backward models allows
efficient, and familiar, numerical schemes to be used together with well developed
gradient descent algorithms designed for large scale problems (Navon and Legler
1987).

The optimization framework of the smoothing problem allows for a conceptually
straightforward extension to the case of nonlinear models and observation equations.
However, in practice, nonlinear optimizations can prove difficult. Nonlinearities in-
troduce the possibility of multiple minima in the cost function. Even the task of
finding a local minimum using gradient descent techniques is hindered as a result of
the non-quadratic nature of the cost function. For weakly nonlinear problems, opti-
mization methods applicable for linear systems often prove adequate. However, for
strongly nonlinear systems, techniques such as simulated annealing and Monte-Carlo

methods must be considered (e.g. Miller et al. 1994).

2.5 Summary

The primary character of oceanographic data is its irregular distribution as well as
its diversity of forms, ranging from satellite images to coastal tide gauges. Data
assimilation methods have the potential to map these data both temporally and
spatially in a manner consistent with our knowledge of ocean dynamics, as well as
test hypotheses about ocean dynamics and thermodynamics. In this chapter, we
have introduced a number of generic methods for combining ocean models with data.

However, as with any estimation problem, successful applications will rely on the
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appropriateness of the data and the model relative to the requirements of the physical
problem at hand.

Data assimilation in oceanography includes general inverse, filtering and smooth-
ing methods. General inverse methods prove useful mainly to highlight the important
elements of the data assimilation problem. Most oceanographic interest lies in assim-
ilation techniques based on time dependent models for the purpose of nowcasting
(filtering) and hindcasting (smoothing) ocean circulation. In the linear case, the op-
timal filter and smoother can be readily identified. Still, the computational burden
imposed by the large dimension of most ocean models, as well as incomplete knowl-
edge of the required error statistics, often prevents practical applications of these
methods. This points to the need for suboptimal, or approximate, data assimilation
techniques.

In the case of nonlinear models, the optimality properties of the Kalman filter
and smoother no longer hold as the mean and covariance are insufficient to provide
a complete description of the ocean state. The validity of nonlinear extensions of the
filter and smoother are then questionable in many instances. Higher order filters and
smoothers, which keep track of additional moments of the probability density func-
tion, are available but computationally infeasible for most realistic problems. This
argues strongly for the use of optimization techniques for treating large scale problems
in nonlinear data assimilation. The estimation problem is treated from an optimiza-
tion perspective, i.e. minimizing a deterministic cost function. In addition to the
attendant technical and numerical difficulties, there are also a number of outstanding
issues, such as demonstrating one has found a true global minimum, and the form
and weighting given to the regularization terms.

Finally, we mention the issue of regularization, which is common to most problems
in oceanographic data assimilation (in fact to all problems if one considers that the
ocean is an infinite dimensional system). Underdetermined systems arise as a result
of insufficient data available for estimation of the unknown parameters. If one is not

prepared to change the postulated model, ill-conditioning can be alleviated either by



reformulating the problem in terms of a smaller number of parameters or by intro-
ducing prior information into the problem. Even in the apparently well posed cases,
regularization may prove necessary to achieve estimates which fall within acceptable
limits.

This overview serves as a basic primer on data assimilation. The remainder of
this thesis concerns the application of these methods to problems in coastal and
continental shelf oceanography and frequent reference to the material presented in

this chapter will be made throughout.



Chapter 3

Extraction of Tidal Streams from a

Ship-Borne ADCP

The ship-mounted acoustic Doppler current profiler (ADCP) has become an impor-
tant instrument for the study of coastal and continental shelf circulation. Its basic
measurement is a vertical profile of the horizontal current obtained at regular time
intervals along the cruise track of the ship. The flexibility of a moving observation
platform allows for flexible sampling strategies and full areal coverage of many circu-
lation features. It has been used for such diverse purposes as measuring flow around
headlands (Geyer and Signell 1990), identifying internal wave structure (Marmorino
and Trump 1992), determining the flow in a channel (Simpson et al. 1990) and as an
independent check on numerical models (Howarth and Proctor 1992).

Ready interpretation of ship-borne ADCP data in coastal and continental shelf
regions is confounded by the presence of tides in the record. For a current time series
from a fixed location, harmonic analysis (e.g. Godin 1972) is adequate to remove the
tides. However, the movement of the ship precludes a straightforward procedure for
tide extraction from the ADCP record. In such a case, tide removal must take into
account not only the periodic variation through time but also the spatially varying
amplitude and phase resulting from the progression of the tide through the region.

A number of methods have been proposed for removing tides from ADCP records.

36
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The simplest involves designing the sampling strategy so that repeat measurements
are made at fixed locations at regular time intervals. Conventional harmonic analysis
can then be used for de-tiding the series (Geyer and Signell 1990. Simpson et al.
1990). This method is not always feasible, because sampling is often dictated by other
considerations and the ship-borne ADCP is only a supplemental source of information.
Another method uses prior estimates of the tides from observations or numerical
modeling which allows the tidal signal to be removed directly from the ADCP record
(Howarth and Proctor 1992, Foreman and Freeland 1991). Clearly, this approach is
restricted to areas in which the tides are well known. A final method fits arbitrary
basis functions to the ADCP record to describe the spatially varying tidal amplitude
and phase (Candela et al. 1992). The use of these interpolation functions, which
ignore the dynamics, is problematic in regions with relatively complicated flow fields
(Foreman and Freeland 1991).

The problem of tide extraction is readily considered in the context of oceano-
graphic data assimilation. Bennett and McIntosh (1982) first treated open ocean
tidal modeling as an inverse problem. Their approach was based on the variational
analysis of fixed tide gauge and current meter time series using a shallow water model
as a weak constraint. More recently, sea level and current meter time series have been
analyzed with a tidal model, enforced as a strong constraint, for the purpose of esti-
mating various model parameters (Das and Lardner 1990, Lardner et al. 1993) and
boundary conditions (Lardner 1993). This study addresses the problem of tidal anal-
ysis of a time-space series of velocity (a ship-borne ADCP record) using simple tidal
dynamics.

In this chapter, the problem of tide extraction from the ADCP record is treated as
a discrete inverse problem as in Section 2.1. The proposed method is straightforward,
robust, and computationally efficient. These qualities make it suitable for operational
shipboard use. The focus is on limited area models with one or more open boundaries
and spatial scales of 10 to 1000 km. Tidal flows across the open boundaries of the

mode] are treated as unknown quantities and estimated from ADCP data in the
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interior. In this manner, tidal maps over the model domain are obtained directly
from the ADCP data. These can then be used for a more detailed examination of the
subtidal circulation.

The chapter is organized as follows. Section 3.1 describes the Western Bank region
of the Scotian Shelf off Canada’s east coast and presents current meter and ship-borne
ADCP data collected on the cruise of April 1992. Tidal dynamics and the tidal model
are then introduced in Section 3.2. Section 3.3 sets up the problem of tidal analysis
of ADCP data as a regression problem in the frequency domain. Finally, application
of these methods to the ADCP data collected on the Scotian Shelf is carried out in

Section 3.4. A summary and discussion follows in Section 3.5.

3.1 Observations

A ship-borne ADCP records a time-space series of the horizontal components of cur-
rent over depth. The focus of this study is on estimating the barotropic tide from
this record, and henceforth it will be assumed that each of these vertical profiles has
been depth averaged. This produces a pair of horizontal velocity components at each
observation time and location. In a typical case, observation times occur at regular
intervals but with some missing values or gaps. The observation locations correspond
to the cruise track of the ship and represent irregular, but quasi-continuous, tran-
sects through the region of interest. Clearly, these data can contain a great deal of
information on coastal circulation. In this section, we motivate the tidal extraction
procedure by examining a set of current meter data and a ship ADCP record from a
shelf region and discuss the tidal and subtidal variability contained in these records.

As part of the Ocean Production Enhancement Network’s (OPEN) cod recruit-
ment study, a number of cruises have been made recently to the Western Bank region
of the Scotian Shelf off Canada’s east coast. Figure 3.1 shows the bathymetry of this
region and details the study area of the April 1992 cruise. Overall, the physics of the

Scotian Shelf are relatively complex, particularly on the outer shelf which interacts
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strongly with the open ocean (for a review, see Smith and Schwing 1991). For the
Western Bank region, the Rossby number is less than 0.1 and a hydrographic survey
taken during the cruise (CTD stations shown in Figure 3.1) indicated that this region
is generally well mixed in the vertical down to about 70m. Some density structure be-
comes evident below this level and along the edge of the Bank (Griffin and Lochmann
1992). We now introduce current meter and ship-borne ADCP data collected on the
April 1992 Western Bank cruise.

Current data were obtained from 3 current meters deployed at the locations shown
in Figure 3.1 at the depths given in Table 3.1. The corresponding time series plots
of the horizontal components of velocity are given in Figure 3.2. Density profiles
indicated a relatively barotropic region near these moorings (Griffin and Lochmann
1992), suggesting that the measured currents reflect the depth-mean flow. The tidal
signal associated with the M, S,, K; and O, constituents was extracted from each of
the current meter time series using a least squares regression (these constituents were
separable given the length of the record). Table 3.1 indicates that the tides in this
region accounted for approximately 75% of the total variance in the current meter
records. The main purpose of this current meter data, in the present investigation,
is to provide an independent check on the ADCP tidal extraction procedure carried
out in Section 3.4.

The wind driven component of each de-tided current meter series was isolated
by expressing it as a linear combination of the wind vector (shown in Figure 3.2) at
lags 0, 16, 32 and 48 hours. This procedure is a reasonable one provided the current
meter is far from coastal boundaries (Pollard and Millard 1970). In fact, analysis of
the transfer function between the wind and the three current time series indicated a
flow to the right of the wind with a damped resonant response centered on the inertial
frequency, consistent with simple Ekman dynamics. Table 3.1 indicates the nontidal
variance was split between the wind and a residual associated with low frequency
(sub-synoptic) variability.

Ship-borne ADCP data were also available for the cruise period. The original
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Latitude (°N)
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Longitude (°W)

~ 100

Figure 3.1: (Upper panel) Coastline of Nova Scotia and the bathymetry, in meters, of
the Scotian Shelf. The rectangular box indicates the study region, and model domain,
centered on Western Bank. (Lower panel) Detail of the boxed region in the upper
panel. The locations of the three current meters (cl1, c2, c3, represented by solid dots)
deployed on the April 1992 cruise and CTD stations (triangles) are also shown.
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Figure 3.2: Tirme series plots of the east-west u and north-south v velocity components
for the three current meters (cl1, c2, ¢3, in ms~!). The time series of the wind vector
(in ms™') is also shown in the bottom panel. The series begins at 2115, April 20,

1992.
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ADCP data consisted of a time-space series of vertical profiles of the horizontal cur-
rent, bottom referenced and output every 3 minutes. Since the focus here is on
extracting the barotropic tide, the vertical profiles were depth averaged from the sur-
face to 60m (or bottom) and re-sampled at 15 minute time intervals. The end result
was a data set consisting of a pair of horizontal velocity components, each with a
corresponding observation time and location.

A time series representation of this ADCP data is shown in Figure 3.3. The time
series show strong diurnal and semi-diurnal oscillations in the velocity components.
Power spectra of the data, shown in Figure 3.4 confirm that most of the energy
in the series is contained in these bands. Figure 3.4 also indicates that the north-
south component v is dominated by the semi-diurnal oscillations, while the east-west
component u has its energy equally split between the diurnal and semi-diurnal bands.
The lower panel in Figure 3.4 shows the rotary spectrum of the complex time series
u + 2v. It indicates a clockwise sense of rotation for the current vector in both the
diurnal and semi-diurnal bands.

Due to the observation location changing over time, tidal constituents derived
from the ADCP velocity might be expected to have an amplitude and phase which
varies through time, thereby precluding application of the usual harmonic analysis
techniques. Figure 3.5 shows the results of a complex demodulation of the » compo-
nent of velocity about the M, tidal frequency and suggests that the amplitude and
phase of the tide vary within the individual tidal frequencies. Part of this variation in
amplitude might be accounted for by the spring-neap cycle, but the tidal amplitude
also strongly correlates with the water depth beneath the ship at the recording time.
The apparent phase of the M, tide also varies as a result of the movement of the
ship. One fairly extreme example is evident in Figure 3.5 at approximately 240 hours
when irregularities in the velocity signal are found with the movement of the ship over
the shelf break. The source of this phase shift is unclear; it might due to physical
processes such as internal tides contaminating the barotropic signal, or be due to the

instrument errors such as loss of bottom tracking.
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Figure 3.3: Time series plots of the east-west (u) and north-south (v) components of
the depth-averaged velocity recorded by the ship ADCP (in ms~!). The series begins

at 21:15, April 20, 1992.
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clockwise rotation, respectively.
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M; phase (radians) over time. The time series is truncated at either end as a result

of the M, filter.
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Table 3.1: Variance (cm?s~2) partitioning for the 3 current meter time series (cl, c2,
c3, with mooring depths indicated) and the depth-averaged ADCP currents. The
variance is decomposed into tides (M, S3, K1, 0,), wind, and a residual.

current meter | tides | wind | residual | total
cl (33m) 267 |29 47 341
c2 (20m) 232 (24 81 335
c3 (20m) 275 | 27 52 353
ADCP 183 | 14 116 342

To represent the spatial dimension of the ADCP data, Figure 3.6 shows vectors
of hourly ADCP data for various time windows during the cruise period. Clearly the
data are difficult to interpret in this case. The rotary nature of the current vector in
the presence of tides is evident, resulting in what appears to be a number of apparent
convergences and divergences in the flow field. A meaningful residual circulation can

only be obtained by careful removal of the tides from the record.

3.2 Tidal Model

3.2.1 Governing Equations

A model describing the spatial and temporal variation of the barotropic tide is an
integral part of our tidal extraction procedure. A suitable model for the Western

Bank region is based on the linearized, depth averaged shallow water equations

du

7 - r* ~
-é?+kau+gVn+Eu—0
an -

where t is time, #(Z,t) contains the east-west and north-south components of the
depth averaged current and n(Z,t) represents the sea surface elevation above some

undisturbed depth of water h(Z). The horizontal gradient operator is denoted V =



(305-342 hrs)

Figure 3.6: Vector plots of the observed depth averaged currents from the ADCP using
a time interval of 1 hour beginning 21:15, April 20, 1992. The contours represent the
bathymetry of the region, and the large box is the study area (model domain). The
small open squares represent the location of the ship, and the associated straight lines
are the current vectors.
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(0/0z,03/0y). The Coriolis parameter is represented by f and k is the unit vertical
vector. The remaining parameters are the acceleration of gravity g and the bottom
friction coefficient r. For simplicity, a linear friction based on the depth-averaged
velocity is used.

The shallow water equations (3.1) require initial and boundary conditions to be
properly posed. Consider the initial conditions for @ and 7. The ocean tides are
observed to be in a periodic steady state, and the model must be integrated until this
condition is satisfied. As a result, the velocity and sea level fields are independent of
the initial conditions, and they need not be considered further.

For the boundary conditions, we denote the flow normal to the boundary by @ - 7,
where 77 is the unit outward normal at the boundary of the domain. Open boundary

flows of the form

.
i-n=)Y R{axe“*} (3.2)

k=1
are postulated to describe the tidal flows across the open boundary. Here, wy is the

frequency of the kth tidal constituent, a; is its complex amplitude, ® denotes the
real part of a complex quantity and the summation is over the A tidal constituents
of interest. Although the tidal frequencies are well known, the boundary amplitudes
(lax]) and phases (arg ax) constitute a major source of uncertainty.

The flows across the open boundary for each tidal constituent are parameterized
in terms of spatial structure functions. For a north-south oriented boundary, the
spatial variation in the complex amplitude a; of the normal velocity at the boundary

is expressed as

P
ar(y) = D A bipGu(y), (3.3)

p=1
where h = h(y). The structure functions are represented by (, and their coefficients
are given by the complex constants bi,. For a typical model domain, a set of P
structure functions would be used to represent the boundary flows along each open
boundary. Note that the expansion is expressed in terms of transport since the

barotropic tidal velocities scale inversely with depth. The purpose of (3.3) is to allow
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the boundary flows to be parameterized by a smaller number of coefficients than the
number of boundary grid points.

We have assumed that the tidal flows across the open boundary are periodic in
time, with known frequency. As the shallow water equations (3.1) define a linear
system, the interior sea level and velocities are also periodic in time with the same
frequency as the boundary forcing but with a different amplitude and phase. This
fact allows the shallow water equations to be posed sensibly in the frequency domain.
If it is assumed that @, n have a time dependence of the form e, the shallow water

equations (3.1) can be written
(iw+r/h)i+ fEx@+gVn = 0
wn+ V- (ah) = 0, (3.4)

where u,n are now defined as the complex amplitudes of their respective variables.
The result is a boundary value problem which requires specification of the complex
amplitudes of the boundary flows. This transformation of the shallow water equations
intc the frequency domain allows the explicit temporal dependence to be removed

from the equations.

3.2.2 Discrete Form

Tidal dynamics are governed by the shallow water equations posed in the frequency
domain, i.e. the boundary value problem of (3.2)-(3.4). Consider the general form
for a discrete (numerical) implementation of this boundary value problem. For the

kth tidal constituent, it can be expressed as the matrix equation
D;**x = D*° by. (3.3)

The vector b contains the coefficients bx, of (3.3) which describe the tidal flows across
the open boundary. The vectors x contain the complex amplitudes of the velocity
and sea level defined on the interior model grid points. The matrices D{®S and DR=S

are derived from the shallow water dynamics (3.4).



Premultiplying both sides by the inverse of D™ and retaining only the rows

corresponding to the horizontal velocity yields
xr = Diby, (3.6)

where x; no longer contains the sea level, only horizontal velocity. The resulting
matrix Di has complex entries and represents a mapping of the model boundary to

the interior for a single tidal constituent.
To include the full set of A” tidal constituents into the above form. we stack the

equations in (3.6) as follows:

X1 Dl s 0 b]_

XK 0 DK b[\-'

where the left hand side contains the complex amplitudes of the tidal velocities at
the model grid points. The right hand side is composed of a block diagonal matrix,
the blocks being the dynamics matrix for each of the different tidal frequencies. This
matrix multiplies the set of complex amplitudes of the boundary flows parameterized
in terms of spatial structure functions. The above equation may be expressed more

concisely as

x=Db (3.7)

which represents the complete tidal system in the frequency domain and corresponds
to the time domain shallow water equations (3.1) and the boundary conditions (3.2)
with a; defined through (3.3). The dimensions of these quantities in relation to the
model grid and number of tidal constituents is summarized in Table 3.2.

Note that the dynamics matrix D can be obtained in at least two different ways.
One method involves finite differencing the shallow water equations in the frequency
domain (3.4) and writing the equations directly into the matrix form leading to (3.5).
(3.6) is then a solution to the boundary value problem. An alternative method is based

on using an existing tidal model. Suppose that a suitable time-stepping numerical
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tidal model, based on (3.1), exists for the region. The dynamics operator D may be
generated as follows. Impose periodic flows across a portion of the open boundaries
corresponding to one element of b and furthermore use suitable radiation conditions
on the remaining open boundaries. Integrate the model to a periodic steady state
and perform a harmonic analysis of the interior velocities to yield the response x
to a single element of b and therefore a column of the matrix D. By continuing
this process with respect to each element of b, the full matrix D can be sequentially
obtained. Note that the two methods are not equivalent. The latter method relies on
the use of radiation boundary conditions, while the former solves the boundary value
problem directly.

3.3 Inverse Analysis

Tidal analysis involves fitting the shallow water equations to the time-space series
of ADCP velocity using generalized least squares regression (Section 2.1). The tidal
model is treated as a strong constraint inasmuch as the velocity in the model interior
is determined exactly by specifying the boundary state and solving the dynamic
equations. As a result, the boundary conditions can be treated as the unknown
quantities to be estimated from the ADCP record.

To justify the choice of a strong constraint formalism for this case, note that the
analysis is not intended to explain the full variability of the observations, only that
part specifically due to the barotropic tide. (From the current meter data in Table
1, we might expect the tides to explain at most 75% of the variance). As a result, it
is reasonable to assume that the observation error (the tidal residual) is much larger
than the model error (the dynamical uncertainty in describing the barotropic tide)
provided that the model is a reasonable one for the region, i.e. the assumptions of
the tidal model (3.1) are satisfied.
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Table 3.2: Definition of selected matrices and their dimensions. In this table, V is the
total number of u and v points on the model grid, P is the number of spatial structure
functions needed to describe the complex amplitudes of velocity points at the model
boundaries for a single tidal constituent, A™ is the number of tidal constituents and
L is the number of u and v observations.

Matrix | Size Description

x NK x1 Complex amplitude of interior velocity at the model
grid points including all K tidal constituents.

b PK x1 Coefficients of structure functions for the
complex amplitude of velocity normal to the model
boundary for the K tidal constituents.

D NK x PK | Dynamics matrix mapping from b to x and derived from the
shallow water equations in the frequency domain.

X Nxl1 Complex amplitude of interior velocity at the model
grid points for the kth tidal constituent.

2t 1x1 Observation of a single velocity component at time ¢.

z Lx1 Vector containing [ observed horizontal velocity
components over time. s

St Nx1 Spatial interpolator to map n velocities on model grid
at time ¢ to a single measurement location.

H Lx NK Overall interpolation matrix producing model counterparts
to observations.

3.3.1 Comparing Model to Data

The tidal extraction method requires a means of comparing the model predictions,

given in the frequency domain, to ADCP data obtained in the time domain. (In the

terms of Chapter 2, this is the problem of constructing the observation operator H).

In other studies this comparison of model to data has been straightforward. McIntosh

and Bennett (1984) used a frequency domain model similar to (3.4) to analyze current

and sea level time series from fixed moorings. By performing a simple harmonic

analysis on these data, the complex amplitudes were readily obtained and directly
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comparable to the model variables. Lardner et al. (1993) used a time-stepping tidal
model to assimilate time series of tidal velocities and sea level. In the case of a
ship-borne ADCP, the comparison of model to data is more complicated.

Consider a single observation =z, measuring one velocity component at a particular

location at time ¢. The model counterpart Z; to the observation is
T &, 1
=5 > R{xie“*}. (3.8)
k=1

Here, the spatial interpolation vector s; represents a linear operator which maps from
the model grid to the observation location at time ¢. Note that, in general, this vector
changes through time, reflecting the fact that the measurement location is not fixed.
The remainder of the equation describes the conversion from the frequency domain
to the time domain.

Alternatively, one can introduce the following equivalent matrix form

X1
zo=R{sT (Tt Tent) | (3.9)

XN

where I is an identity matrix. This can be written more concisely as
3 = R{sTTx}

where T, is the temporal interpolation matrix whose form is given above.
Extending the above analysis to an observation vector z containing velocity com-

ponents measured over time gives model counterparts z to the data
z = R{STx}

R{Hx} (3.10)

where S and T are spatial and temporal interpolation matrices whose components are
derived from s;, T; and H is their product and corresponds to an overall interpolation

operator. (Note that for implementation purposes, it makes sense to evaluate H



directly using (3.8), or (3.9), rather than explicitly forming S and T). This clarifies
the process of comparing model output in the frequency domain with observations in

the time domain, when those observations include a spatial dimension.

3.3.2 Regression Solution

The regression equation that forms the basis of the inverse analysis is
. zZ=12+e,

where the error e is the tidal residual and measures the discrepancy between the
observations and the model predictions. This error is of unknown character, and its
second-order properties are described by the error covariance matrix X. Using (3.7)
and (3.10), and converting all matrices and vectors to their real forms (e.g. Brillinger

1981, section 3.7), gives the regression equation

z = Hx+e

= HDb +e. (3.11)

The first equation of (3.11) contains no dynamics and the problem of minimizing
the error would involve finding estimates of the interior tidal velocities x from the
ADCP observations z. This ignores the dynamical links between the x and the
resulting solution may have little physical meaning. The second equation of (3.11)
includes shallow water dynamics which imposes spatial structure on the interior and
reduces the number of unknowns by expressing the interior velocities in terms of the
boundary flows.

Generalized least squares regression (Section 2.1) minimizes the weighted sum of
squares of the error to yield an optimal estimate b for the unknown boundary flows

b in terms of the ADCP observations z, i.e.

b= (DTHTS'HD)"'DTHTS 2. (3.12)
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An estimate of the interior field X is then obtained using (3.7) as
% = Db, (3.13)
and the estimate for the model counterparts to the data is
z = HDb. (3.14)

Error estimates are also easily obtained as a part of the regression calculation.

The covariances of b, X and % are (e.g. Sen and Srivastiva 1990, chapter 2).
var(b —b) = o*(DTHTS-'HD)"!
var(x —x) = o’D(DTHTEZ'HD)'D7?
var(z —z) = o*HD(DTHTS'HD)'DTHT.

These quantities are used to determine confidence intervals for the estimates b, X and

Z.

3.3.3 Extensions

Suppose that a weak constraint formalism (i.e. including model errors) was required
for the problem. In this case, model errors would be added to (3.7), which would
modify the error covariance structure in (3.11). (An analogous procedure was carried
out in Section 2.3.1 in the derivation of the Kalman filter). In other words, not only
would the tidal residual need to be parameterized but so also would the dynamical
errors in modeling the barotropic tide. Given the uncertainty in this and the expected
(small) magnitude of its effect, we have chosen to remain with the strong constraint
method.

It is also straightforward to introduce into the analysis any additional regulariza-
tion terms, such as smoothing operators. They enter as prior information, or “bogus”
data (Thacker 1988), on the boundary or interior flows. Mathematically, regulariza-
tion adds another matrix (usually positive definite) to the bracketed term in (3.12),
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thereby better conditioning the required matrix inversion (see Section 2.1.2). This
technique closely resembles ridge regression in statistics, and the weight given the
regularization term can be chosen through cross validation techniques (Golub et al.
1979).

To summarize, we have posed the tidal analysis of ADCP data as a highly overde-
termined regression problem. Careful attention has been paid to reducing the number
of parameters to be estimated by writing the interior flows in terms of suitably pa-
rameterized boundary flows. The spatial structure functions of (3.3) also ensure that
the number of unknowns remains constant irrespective of grid resolution. As a result,
the need for introducing additional regularization terms (e.g. spatial smoothing) is

not anticipated.

3.4 Application

The tidal and subtidal variability of Western Bank circulation are now examined
using the ADCP data described in Section 3.1. Guided by the current meter results,
the tidal constituents chosen for the analysis were M>, S5, A and O;. The domain of
the limited area tidal model is shown in Figure 3.1. Its dimensions are approximately
120km by 120km and it is inclined so as to be roughly parallel to the shelf break. The
model had four open boundaries and used an Arakawa C-grid. The interior dimensions
of the grid includes 14 x 14 n points, 14 x 13 u points and 13 x 14 v points. The
open boundary is composed of 14 u points on the east and west boundaries and 14 v
points on the north and south boundaries. The grid spacing is 8km.

Note that although the model is adequate for the Western Bank case, it is a
relatively simple model and has small dimensions. The method is, however, easily
extended and computationally feasible for larger problems with complex geometry.

Consider the specification of the unknown boundary flows b. Chebyshev Type
IT polynomials were chosen for the basis set (,. Numerical experiments indicated

that only the first basis function, the mean transport across each boundary, was
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required in this application. For our case, including higher order structure functions
gave only a marginally better fit to the ADCP data and estimates in data sparse
regions. Moreover, the flows were unrealistic, having a relatively large magnitude and
small scale structure. This suggests model overfitting, since these flow features only
appear in regions unconstrained by data and only in cases where additional degrees of
freedom are introduced into the estimation. Higher order structure functions would
be expected to be important in cases where the amplitude and phase of the tide vary
significantly relative to the size of the model domain. .

The finite difference form of the frequency domain model (3.4) was determined
for the above grid and written directly as the required matrix equation (3.7). Given
the grid described above and the 4 tidal constituents, the resulting matrix dimensions
were the following: the state vector in the model interior x was 2912 x 1; the dynamics
matrix D was 2912 x 32; the data vector z was 2744 x 1; and the unknown boundary
flow vector b was 32 x 1. (See Table 3.2 for matrix dimensions). The regression
analysis of (3.12) thus involved inverting a 32 x 32 matrix.

Error estimates require that the covariance of the tidal residual ¥ be determined.
For simplicity, it was assumed that errors in the north-south v and east-west u com-
ponents of the current were independent allowing treatment of the two components of
the tidal residual separately. (In fact, their correlation coefficient was 0.16). The serial
correlation of the tidal residuals for both u and v was found to be adequately described
by a first-order autoregressive (AR(1)) process, i.e. fitting an AR(1) model resulted
in serially uncorrelated errors with a constant variance. The estimated autoregressive
coeflicients implied a decorrelation time of about 1.5 hours for the residuals. Given
this AR(1) error structure, the error covariance matrix ¥ and its inverse were easily
determined (Morrison 1967, section 8.11). Clearly, more complex statistical models
could be considered for modelling the tidal residual. However, it was decided to use
the most parsimonious model which adequately described the residual variability.

Tidal ellipses for M3, S,, K and O, estimated by this analysis are shown in Fig-

ure 3.7. (These represent the estimates x in (A)). The ellipses scale roughly inversely
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with depth, being generally larger in the shallow water and smaller in the deep water.
The M; tide is seen to dominate the region, and along with the two diurnal con-
stituents, accounts for most of the variation in the tidal signal. The sense of rotation
in all cases is clockwise, consistent with the results shown in Figure 3.4. Overall, the
ellipse maps agree with previous calculations for the Scotian Shelf region (Gregory
1988). Table 3.1 indicates that the tides accounted for about 60% of the variance in
the ADCP record. This was a lower proportion than for the current meters suggesting
that the ADCP record contained additional nontidal processes, or more background
noise, due to the ship’s movement.

To further test the ADCP tidal estimates, the results were also compared to ellipses
derived from the three current meters deployed near the center of the model domain.
Figure 3.8 shows this comparison and indicates that the current meter ellipses match
well those derived from the ADCP and in all but one case (c3, 5,) fall within the
estimated 95% confidence region. For the relatively weak flows associated with S,
and O,, Figure 3.8 suggests that the estimated ellipses were not significantly different
from zero. To further refine the estimates, ADCP data sets widely separated in time
could easily be used in the analysis of Section 3.3. Furthermore, the current meter
data itself could be included in the inverse calculation but, in this case, it has been
withheld for model validation purposes.

The estimated tidal currents along the cruise track of the ship Z are shown in
Figure 3.9 (compare with Figure 3.3). This estimated tidal time series shows a
spring-neap cycle and semidiurnal and diurnal oscillations. These periodic oscilla-
tions exhibit small discrete jumps over the length of the record, and become more
pronounced toward the end. These are a result of the changes in depth along the ship
track. The model grid further accentuates this when interpolating to the observation
locations. The approximate width of the 95% confidence intervals for the estimated
series was 0.07ms~!. However, it did vary slightly over the length of the record,
depending on the measurement location, and ranged from 0.06ms™! to 0.09ms™!.

The estimated error in the overall tidal flow field generally fell within this same



Figure 3.7: Tidal ellipse maps for M,, S,, K;,0; estimated from the ADCP data
and plotted at the model grid points. The ellipses are scaled to represent half the
tidal excursion of the M, tide. The initial phase is represented by the straight line
beginning at the center of each ellipse. The sense of rotation is clockwise.
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Figure 3.8: Comparison of M,, S2, K, 0, tidal ellipses obtained from current meters
cl, c2, and c3 (dashed lines) and those estimated from the ADCP at corresponding
locations (solid lines). The initial phase is represented by the straight line beginning
at the center of each ellipse. The shaded area represents the 95% confidence region
for the estimated ADCP tidal ellipses; u and v denote the respective east-west and

north-south components of current velocity in m s™!.
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Figure 3.9: Time series plots of the east-west (u) and north-south(v) components (in
ms~!) of the barotropic tidal velocity estimated from the ship ADCP data . The
series begins at 21:15, April 20, 1992. Gaps in the record indicate that the ship was
outside the model domain.



62

range. Its magnitude depends on the duration of the ADCP record together with the
(tidal) signal to noise ratio. The spatial variability of the error closely reflected the
data distribution; it is lower in the central region and higher in the data sparse areas
near the model boundary. The error field was also nearly identical for each of the
4 tidal constituents. Error ellipses were oriented mainly in the southwest-northeast
direction. The major axes of the tidal ellipses often fell approximately perpendicular
to this direction implying that the overall amplitude of the tidal constituent is well
captured while its orientation is subject to some uncertainty.

Figure 3.10 shows vector plots of the tidal residual series (compare these with
the vector plots of the original ADCP data in Figure 3.6). The residual currents
are generally weaker than in the original series, especially in the central region near
the crest of Western Bank. There is also some suggestion of a persistent northward
current in the western part of the region. However, this is difficult to see due to the
irregular cruise track of the ship and presence of a wind driven component to the
circulation.

To remove the wind effgct, the simple wind-driven model of Section 3.1 was fit
(using the same lagged values of the wind) to the ADCP tidal residual series. In
this case, the wind model explained only about 10% of the variability in the de-tided
ADCP record, in contrast to the nearly 30% explained for the de-tided current meter
records. Again, the transfer function between the wind and ADCP record had a broad
peak centered near the inertial frequency but the corresponding direction of the flow
was inconsistent with a simple Ekman flux to the right of the wind. Information on
the wind driven circulation appears to be buried in the multitude of other signals
recorded by the ADCP as the ship moved throughout the region.

To isolate the steady part of the circulation, the ADCP residual (tides and wind re-
moved) were averaged into 0.2° latitude/longitude blocks. The result of this is shown
in Figure 3.11 together with surface currents obtained from a diagnostic calculation
(Sheng and Thompson 1996) using density data from 177 CTD casts obtained during

the cruise (Figure 3.1). (Surface currents were used for comparison since the upper
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(267-304 hrs) (305-342 hrs)

Figure 3.10: Vector plots of the estimated tidal residuals for the hourly ADCP data
beginning 2115, April 20, 1992. Contours represent the bathymetry of the region and
the large box is the study area (model domain). The small open squares represent
the location of the ship, and the associated straight lines are the current vectors.
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30m is relatively barotropic and therefore free of the sheared flows due to horizon-
tal density gradients). The general flow patterns obtained from the two sources are
similar, both show an anticyclonic gyre centered on the crest of Western Bank and a
persistent northward flow to the west of this gyre. The existence of this gyre has been
confirmed with drifter deployments made during the cruise (Sanderson 1995). Note
that a corresponding averaging of the original ADCP data showed a series of almost
randomly oriented vectors indicating that the tides could not simply be averaged to
obtain the residual.

3.4.1 Sensitivity Analysis

A sensitivity analysis was carried out to determine the influence of grid resolution
and the possible need for additional regularization. The tidal analysis of the ADCP
data was carried out as described above for grid sizes ranging from a 14 x 14 grid
(8km resolution) through to a 20 x 20 grid (5.6km resolution) inclusive. In every
case, the horizontal extent of the model domain remained identical. The original
bathymetry data, with a resolution of about 8km, was mapped to each of the new
grids using bilinear interpolation. As a result, no formerly unresolved bathymetric
features appear as grid size is increased, and any sensitivity to grid size cannot be
attributed to this effect.

The results of this sensitivity analysis showed that the coefficient of determination
R? measuring the model fit to the ADCP data (that is, the tidal part of the series)
varied less than +1% around a value of 61% over the specified range of grid sizes.
Neither did the R? increase or decrease systematically. Typical ellipse fields for M,
for 14 x 14 and 20 x 20 grids are shown in Figure 3.12. They are not markedly different
from one another nor are the other constituents over the range of grid resolutions.
This suggests that extrapolation to data sparse areas was not adversely affected. The
discrepancies found close to the model boundaries are likely due to the the mapping
of the observations to the grid points (since a nearest neighbor approach is used, this

mapping is slightly different for each new grid). Finally, a 2828 grid (4km resolution)
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Figure 3.11: Comparison of the residual circulation on Western Bank derived from the
ADCP (open arrows) and a diagnostic calculation of the flow field (solid arrows). The
ADCP residual is prepared by binning the residual (tide and wind effects removed)
into 0.2° latitude/longitude boxes. The diagnostic calculation (Sheng and Thompson
1996) estimates the surface circulation using 177 density profiles collected during the
April 1992 cruise (Figure 3.1).
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was tested. Some small changes are evident: the R? is slightly higher than the control
(but less than 2%), and the magnitude of the ellipses is slightly larger in the data
sparse regions (but only by a maximum of 4%). Overall, we conclude that the results

are robust over a range of grid resolutions.

3.5 Summary and Discussion

A conceptually straightforward method for de-tiding the velocity series obtained from
a ship-borne ADCP has been presented. The method fits a limited area tidal model,
based on shallow water dynamics, to the ADCP observations of depth averaged ve-
locity. More generally, the method provides a means to carry out harmonic analysis
on a time-space series of velocity. This is offered as an alternative to the procedure
of Candela et al. (1992), where arbitrary spatial interpolation functions were fitted
to the ADCP velocities.

Application of the method to estimating tidal flows from ship ADCP data from the
Western Bank region of the Scotian Shelf has been successful. The estimated tidal
ellipses obtained from the ADCP record match those of the current meter records
and regional tidal maps. The weaker tidal constituents are less consistent with these
independent sources but within estimated errors limits. The residual field, after
removal of the tides and the wind-driven circulation, clearly showed a gyre centered
on Western Bank and a persistent northward flow to its west. These features are also
confirmed using other data sources obtained on the April 1992 cruise.

Some additional considerations arise in the tidal estimation of a time-space series.
One concern is the ability of the analysis to separate closely spaced frequency bands
when a spatial dimension is included in the series. Another concern is that the tides
may be aliased by the movement of the ship. To test for this possibility in the Western
Bank case, a simulated velocity time series was generated by sampling the flow field of
the diagnostic calculation in Figure 3.11 along the cruise track of the ship. Performing

the tidal analysis on this series showed no evidence of any spurious tidal signals.



M,, 14 x 14 grid

Figure 3.12: Comparison of estimated M, tidal ellipses for a 14 x 14 grid and a 20 x 20
grid. Ellipses are scaled to represent one-third of the M, tidal excursion.
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The use of generalized least squares regression has a correspondence with other
commonly used assimilation techniques. The general problem solved here is one of

minimizing the weighted squared observation/model discrepancy
J=(z—-2)TZY(z - 2). (3.15)

The model counterparts to the data z are constrained to satisfy the shallow water
equations (3.1). The condition making this applicable to tides is that the normal flows
across the open boundary are further constrained to be periodic in time with known
frequency but an unknown complex amplitude b. In this paper, the estimate b which
minimizes J is found by transforming the shallow water equations into the frequency
domain and expressing them as a discrete boundary value problem in matrix form.
The model counterparts to the data are then written in terms of the unknown b.
Differentiation of J with respect to the unknown b and setting the result equal to
zero yields an estimate for the boundary state b.

Consider another case in which it is desired to use a time stepping numerical
tidal model (e.g. Lardner 1993). To minimize J subject to such a model posed
in the time domain, optimal control/adjoint approaches can prove useful (see Sec-
tion 2.4.3). The minimum of J with respect to b can be found iteratively using
an adjoint based smoothing method (Section 2.4.3). Each iteration involves a cycle
comprising a forward integration of the model equations, a backward integration of
the adjoint equations and calculation of the gradient of J with respect to the un-
known quantities. The gradient information is used along with a descent algorithm
to converge on the minimum (see, for example, Thacker and Long 1988). We have
implemented the above variational procedure for the present problem and found it to
be quite inefficient. This is illustrated below.

The above variational procedure was applied to the tidal analysis of the ADCP
data using a fully explicit finite difference form of the shallow water equations (3.1)
on the identical model grid used for the frequency domain model. The time step,
set by the CFL condition, was 120 seconds. A forward integration of this model

required about 5 model days to reach a periodic steady state and a further 14 model
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days to produce model counterparts to the data. The adjoint equations required a
similar amount of computation time. A minimum of 20 iterations were required to
achieve convergence and the final estimates for b and x were comparable to those
found by the statistical-dynamical approach in Section 3.4. Error analysis of the
estimates would involve computing the second derivatives of J with respect to b, i.e.
the Hessian matrix. In addition to the large computational cost of this compared
to the our approach, numerical experimentation also pointed to additional concerns
related to proper radiation of wave energy in such a boundary control problem.

Other solution techniques may become necessary if the dynamical assumptions
relating to the use of the linearized, depth averaged shallow water equations for de-
scribing the barotropic tide are not satisfied. These include such processes as tidal
rectification and interactions between the barotropic and baroclinic tides. One pos-
sible approach in these cases is to retain the linear model and introduce model errors
explicitly into the analysis. Another possibility is to use a more complicated model.
For instance, to analyze the internal tides in the deep water regions surrounding
Western Bank from the current profiles would require at least a two layer model.
Similarly, including nonlinear advective terms would transform the problem into one
of nonlinear regression and suggest the use of more general variational data assimila-
tion techniques.

In summary, the method for de-tiding ADCP data appears robust. The gen-
eralized least squares regression of Section 2.1 has been applied directly by taking
advantage of the fact that the governing equations can be posed sensibly in the fre-
quency domain leading to manageable dimensions for the constituent matrices. Tidal
extraction relies solely on the ADCP data and requires no external sources of tidal
information. The dynamics provide interpolation functions and are thus preferable
to other basis functions. Realistic error estimates are also produced as an intermedi-
ate step in the regression calculation. In addition, for the application shown in this
chapter no arbitrary regularization terms, such as spatial smoothness, were required
to get well-conditioned solutions. Overall, the method should allow an ADCP tidal



residual to be obtained efficiently and be minimally contaminated by the de-tiding

procedure.



Chapter 4

Forecasting Coastal Circulation

using an Approximate Kalman

Filter

In recent years, operational prediction of coastal circulation has received increased
attention. Accurate estimates of circulation are required to address such coastal zone
problems as storm surge forecasting, predicting oil spill and iceberg trajectories, and
assessing the impact of point source pollutants. Currently, a number of efforts are
underway to develop operational nowcasting and forecasting systems for the coastal
ocean (e.g. Heemink and Van-Stijn 1993, Griffin and Thompson 1995, Aikman et al.
1996).

The under-sampled nature of coastal and continental shelf regions makes circula-
tion estimates difficult. Data from remote sensing, coastal tide gauges, and field mea-
surements, including current meters, CTDs, drifters, and ship borne acoustic Doppler
current profilers (ADCP), provide a basis on which to infer flow fields. However, to
sensibly temporally and spatially map these data it is also necessary to consider
ocean dynamics in the form of numerical models. These models of the coastal ocean
must cope with irregular coastlines, highly variable bathymetry, and extensive open

boundaries.
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As illustrated in Chapter 2, data assimilation techniques are divided into two ba-
sic categories, filtering and smoothing. The choice of a method depends on whether
one is interested in nowcasts/forecasts or hindcasts, respectively. The Kalman filter
(Kalman 1960) is potentially well suited to the problem of nowcasting and forecast-
ing circulation in the coastal ocean. Estimates of the ocean state through time are
obtained using a recursive algorithm and have the property of being maximum like-
lihood (and minimum variance) estimates in the case of linear models with Gaussian
noise. A notable example of Kalman filter application is the operational storm surge
prediction scheme implemented in the North Sea (Heemink and Kloosterhuis 1990).

Oceanographic application of the Kalman filter must address two important is-
sues. First, the computational burden imposed by the large dimension of most ocean
models makes implementation of the full Kalman filter problematic. Section 2.3.1
reveals that the Kalman filter algorithm involves multiplying and inverting matrices
with a size corresponding to the number of elements in the ocean state vector. Sec-
ond, it is difficult to accurately specify the statistics required by the Kalman filter.
Information on the measurement errors (instrument noise and errors in interpolating
the observations to the model variables and to the model grid) and system noise (ne-
glected dynamics, numerical approximations, and stochastic forcing) are often poorly
known and yet important to filter performance (Jiang and Ghil 1992, Daley 1992).

An assumption often made to reduce the computational burden of the Kalman
filter is that the system under consideration is in a statistical steady state. This
requires an observation array with fixed measuring locations and time-invariant dy-
namics, whereupon an asymptotic limit for the Kalman gain matrix may be efficiently
pre-computed (Anderson and Moore 1979, chapter 4). This approximation has been
used by Heemink and Kloosterhuis (1990) in their storm surge forecasting scheme.
Fukumori et al. (1993) also found that the approximation gave good results when
using an observation array designed to mimic the assimilation of altimetric data into

a general circulation model.
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Few general simplification schemes exist in the case where the steady state ap-
proximation is not valid. The calculation of the forecast error covariance (2.24) can
sometimes be simplified. For example, Dee (1991) presents a scheme whereby the
forecast errors are advected by the estimated flow fields. Evensen (1994) uses Monte
Carlo methods to evaluate the forecast error in what has come to be known as an en-
semble Kalman filter. Another approach is the coarse grid approximation suggested
by Fukumori and Malanotte-Rizzoli (1995) for evaluating the covariance and gain
equations (2.24)-(2.26). An alternative to Kalman filtering is found in filters of the
stochastic approximation type (Gelb 1974), such as the nonlinear adaptive filters used
by Hoang et al. (1994).

In this chapter, an approximate Kalman filter is proposed for the nowcasting and
forecasting of coastal ocean circulation. Representation of a circulation model in
terms of its dynamical modes is used to reduce the effective dimension of the model.
The main premise is that important dynamical features of the system can be captured
with a relatively small number of modes. Such a simplification greatly enhances the
computational efficiency of the Kalman filter, yet retains the aspects of the dynamics
necessary for state estimation and error propagation. Using modes may circumvent
some of the issues associated with the spatial regularity of the Kalman filter (Bennett
and Budgell 1987) and might also prove useful for nonlinear assimilation problems.

The outline of the chapter is as follows. Section 4.1 reviews the background mate-
rial on the basic linear theory of the Kalman filter in the context of coastal forecasting.
In Section 4.2, the modal representation of the dynamics and Kalman filter is derived
and interpreted. Section 4.3 addresses the issue of selecting an appropriate subset of
the modes on which to base a reduced ocean model and corresponding Kalman filter.
Controllability and observability are first discussed and a selection criterion is then
proposed to identify those modes preferentially excited by the forcing. Section 4.4 il-
lustrates the application of the approximate filter to a prototype shallow water model
of the Scotian Shelf region off the east coast of Canada. The performance of the ap-

proximate filter is assessed using wind and lateral boundary forcing with both fixed



and moving observation arrays. Discussion and conclusions follow in Section 4.5.

4.1 Background

In this section, the linear theory of the Kalman filter is briefly reviewed in the context
of coastal forecasting. Chapter 2 and Appendix B offer a more complete development
of the filtering theory and repetition has been avoided where possible.

The state space representation of a linearized, numerical coastal model takes the

form of a difference equation
it = Dtit-l -+ Gte;"_l. (4.1)

The state vector X; contains the prognostic variables defined on the model grid with
subscripts denoting time. The operator D, corresponds to the discretized governing
equations and allows the model fields to be stepped forward in time. The system
noise, or forcing, is represented by e[* and is projected onto the model state by the
matrix G,. This forcing can include both deterministic and stochastic components,
e.g.
e = p, + W,

where p, represents a time varying mean and w, is a stochastic process. Heemink
(1986) outlines the development of such a Kalman filter for storm surge prediction
where the tide is considered deterministic and the effect of the surge is assumed to be
an additive stochastic process. While p, could easily be included in the development
in this chapter, we have chosen, for simplicity, to assume that it is equal to zero.

For most oceanographic problems, the dynamics are time-invariant. The form of
the governing equations are not a function of time. A time index has been included
on D, in the linear model (4.1) to allow for the possibility of a dynamics operator
which varies through time. In oceanographic problems this occurs mainly in the case
where a nonlinear model is successively linearized about a time varying base state

(Section 2.2). In practice, the matrix D, can be determined either by writing the finite



difference form of the governing equations directly in the required matrix/vector,
or through an impulse response technique using an existing model. (The former
approach was used in Chapter 3, while the latter approach is outlined in Section 4.4).

For realistic oceanographic applications, the stochastic forcing is often serially
correlated. For example, forcing functions for limited-area coastal models include
surface wind stress and flows across the open boundaries, both of which are corre-
lated in time. Optimality of the Kalman filter can be severely compromised if serial
correlation is not properly accounted for in the specification of the system noise (Da-
ley 1992). A possible approach to this problem is to represent the stochastic process
e;" as an autoregressive, moving-average (ARMA) process. This can be represented in
the Markovian form (4.1) and driven by a purely white noise process (e.g. Anderson
and Moore 1979, chapter 2). For the simple case in which the forcing takes the form

of an auto-regressive process of order 1, we may modify (4.1) as follows:

() -(5 ) (2)
= +et, (4.2)
e™ , 0 A e™ -

.

or, more concisely,

Xt = Dix,oy + €. (4.3)

In the above, A is a matrix containing the autoregressive coefficients. The system
noise is represented by e, which is assumed zero-mean and serially uncorrelated. The
elements of e, corresponding to e® drive the AR(1) forcing; elements of e, corre-
sponding to X; account for model error.

Oceanographic measurements available for assimilation are related to the state

vector through the equation
Z: = Htx, + e;’. (4.4)

Here, H, transforms the observed variables to the prognostic variables of the model
and interpolates the observation array to the model grid. The observation error term
ef includes errors in these procedures, in addition to instrument noise. The time

dependence of H, is introduced mainly to allow for time varying observation arrays



such as the ship-borne ADCP which measures currents along the cruise track of the
ship. Note that H, operates on X;, rather than X,, and aliows for the possibility of
directly observing the forcing.

The Kalman filter combines the model (4.3) and observations (4.4) to give an
optimal nowcast of the ocean state. At time f, the Kalman filter estimate of the

ocean state X, is
f(g = fg + Kt(Zt — Hgft), (4.5)

where the model forecast X; is given by
X = Dtﬁt—b (4-6)

The model forecasts are nudged towards the observations according to the weight
given by the gain matrix K,. The gain matrix is determined in parallel with (4.5)
and (4.6) according to (2.24)-(2.26) in Section 2.3.1. These equations also determine
var(X,—x;) and var(X;—X.). k-step ahead forecasts are obtained by application of (4.6)
using the current estimate X; as the initial condition. The Kalman filter algorithm
is solved in a recursive nature, which is an important feature for its application to
operational coastal forecasting.

The information required for implementation of the Kalman filter are the mean
and covariance of the initial state (X9, Mo), the system noise (&;, Q;), and the mea-
surement noise (€7, R.). As mentioned, it can be difficult to specify Q; and R,. The
influence of the initial conditions diminishes as the system moves away from the initial
state (i.e. within a few spindown times of the model), and so the specification of M
may not be crucial in some circumstances. If it is assumed that these statistics are
known, and the processes e? and e, are Gaussian, independent of one another and
uncorrelated in time, the Kalman filter estimates are maximum likelihood estimates
of the state.

Implementation of a full Kalman filter is difficult for realistic oceanographic prob-
lems, mainly due to its computational requirements. For an ocean model, the number

of elements n in the model state vector is roughly the number of grid points in the



model multiplied by the number of prognostic variables. A relatively small coastal
model with grid size 30 x 30 with 4 levels (or spectral coefficients) in the vertical
and prognostic in horizontal velocity and sea level would require a state vector with
O(10*) elements. If we assume a grid spacing of 10 km and a maximum depth of 400
m, the time step of the model, set by the CFL condition, is about 2.5 minutes. At
every time step, model forecasts and the computationally costly matrix calculations
associated with (2.24)-(2.26) must be carried out. These facts, coupled with the un-
certainty in specifying the inpu* statistics, argues strongly for the use of approximate,

or suboptimal, filters in oceanographic data assimilation.

4.2 Modal Representation

In this section, a reduced dimension Kalman filter is proposed for operational coastal
data assimilation. In the case of a finite difference ocean model, significant reduction
in the model dimension is not usually possible by direct means. The grid resolution
of the model is chosen to resolve the scales of interest, and the model time step is
then set by stability considerations. The coarse grid approximation of Fukumori and
Malanotte-Rizzoli (1995) for the variance and gain calculations (2.24)-(2.26) offers one
possible simplification. In their case, a model of an idealized Gulf Stream. which is
linearized about the mean jet trajectory, is used to test their approach, and encourag-
ing results were achieved. An alternative method of scale truncation (and consequent
dimension reduction) is offered based on a suitable subset of the eigenvectors (modes)

of D;. An approximate Kalman filter can then be based on these modes.

4.2.1 Dynamics

To describe the approach, we make the simplifying assumption that D, and G, in (4.1)
are time-invariant and drop their subscripts. The next step is to define a new basis
for the vector space that contains the model state %,. Suppose that an alternative

basis set, represented by the columns of @ exists. Furthermore, assume that these
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basis sets are related by the linear transformation
% = Pé,. (4.7)

where &, represents the coordinates in the new basis.

Suppose we choose the columns ¢ of ® to be the right-hand eigenvectors of D, i.e

® = PA, (4.8)

w]]

where A is a diagonal matrix of its eigenvalues A. Substituting (4.7) into (4.1) yields
P&, = Dda,, + Ge™,.

Using (4.8) and pre-multiplying by é-1 gives an equation for the evolution of the

modal coefficients
&= A + D 'Ge? . (4.9)

This is an alternative description of the model dynamics in (4.1). In fact, (4.9) is
identical to the original system since only a change in coordinate systems has occurred.

This modal decomposition represents a diagonalization of the dynamics matrix
D, ie.

®7'D® = A.

This similarity transformation is possible provided that the eigenvalues of D are dis-
tinct, which implies that the eigenvectors are linearly independent and é-! exists
(Noble and Daniel 1977, Theorem 8.2). However, distinct eigenvalues are not guar-
anteed for a general n x n matrix, such as the non-symmetric D associated with the
discretized dynamics. If D has repeated eigenvalues, the Jordan canonical form of a
matrix allows for transformation of D into a block diagonal matrix, and the existence
of a modal evolution equation of the form (4.9) (Barnett 1990, section 8.1). The main
difference is that modes, or generalized eigenvectors, associated with each repeated
eigenvalue are coupled (hence a block diagonal structure for A). In this chapter we
assume, for simplicity, that the eigenvalues of D are distinct, but recognize that a

slightly modified development is necessary if repeated eigenvalues are present.



4.2.2 Interpretation of the Modes

The eigenvalue-eigenvector pairs (/\,43) represent the dynamic modes, or principal
oscillation patterns (Hasselmann 1988), of the model (4.1). For a typical coastal
ocean model, the dynamics matrix D is obtained by finite differencing of the govern-
ing partial differential equations. It has real-valued elements and is non-symmetric.
This form is typical of models with multiple variables and/or more than one spatial
dimension. In this case, the eigenvalues and eigenvectors are both real and complex
(in which case they occur in conjugate pairs). The free modes considered here are
time-evolving patterns supported by a numerical circulation model and depend on the
discretized governing equations as well as coastal and open boundary conditions. For
simple dynamics, analytic modes can often be derived. These would be comparable
to dynamical modes derived from a numerical model provided that the model is a
good approximation of the (continuous) system. Gallagher et al. (1991) provides a
detailed review of modal properties, some of which are described below.

To illustrate some properties of the dynamical modes, consider the evolution of

the one component of & in (4.9) in the absence of any forcing, i.e
Qy = /\ag_]_. (4.10)

Furthermore, assume that cg = 1 which describes an initial value problem with unit

forcing at the initial time. In this case,
ap = ’\‘7

and the modal behaviour depends on whether the eigen-pairs are real or complex.
For real eigen-pairs, the contribution of a single mode to the state is then given

by
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Therefore, real modes represent spatial patterns in the prognostic variables (described
by the eigenvectors) which (¢) persist if |A\| = 1, or (#) decay if [A| < 1, with an e-
folding timescale 7 = —A¢/In(|A|) (where At is the time step of the model).

For complex modes, the set of (e, A, q;b) occur in conjugate pairs. The contribution

to the state by a mode is given by

X = o+ [l

= 2|\|[3{} cos(6t) + R{P} sin(6t)]

where * represents complex conjugation and

e [S(A)
§ = tan (W))

Complex modes therefore represent patterns which oscillate smoothly between the

real and imaginary parts of ¢ in the following order
.= R{P} = —S{} = —R{P} - {P} > R{P} — .. ..

such that a complete cycle is completed in a period given by T = 27/ and the decay
rate is determined by [A|. (As an example, consider the mode shown in Figure 4.2)

We now briefly examine the spectral properties of the modes. The spectrum of a
single modal coefficient a is determined, using (4.9), as

fw
Fa(w)_ F( )

= m, (4.11)

where a time-step of unity is assumed. Here, I'® represents the spectral density of the
modal coefficient and I'/ is the spectral density of the corresponding element in the
forcing vector #-1Ge. If the forcing is white (I'y(w) = 1, for all w), the spectrum
has a maximum value of (1 — [A])~2 at w = 6, the resonant frequency. The width of
the spectrum is controlled by |A| indicating that increased damping (decay) of a mode
results in a broader spectrum. The overall implication is that the spectral properties

of the forcing can preferentially excite certain modes.
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One final point to note is the relationship between the eigenvectors and eigenvalues
of D of the original model (4.1), and D in the augmented model (4.3). The eigen-

equation for the augmented system

D¢ = A

BN e
0 AJ\ ¢ b;

This reduces to the system of equations

takes the form

D¢ +Go, = I (4.13)

A, = A\, (4.14)

()

satisfies (4.13)-(4.14) and therefore is an eigenvector of D. Note that it is also an

By inspection, we see that

eigenvector of D augmented with a zero vector. The number of eigenvectors of this
form corresponds to the number of rows (or columns) of D. Therefore, carrying out an
analysis of the modal properties in terms of either the original or augmented models
proves to be equivalent. The remaining eigenvectors are associated with the model

forcing.

4.2.3 Kalman Filter Equations

It is straightforward to use the Kalman filter with the modal representation given by
(4.9). As a first step, following (4.3), we augment (4.9) with the AR(1) forcing which

& A &G &
= + e;. (4.15)
e™ , 0 A e™ -

.

gives
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This is represented more concisely as
a,=Aa;_; +e,. (4.16)

To determine the Kalman filter equations, the original model in (4.3) is replaced
with (4.16). The observation operator (4.4) and Kalman gain are modified accord-
ingly. The Kalman filter equations given in Section 2.3.1 then becomes

& = @, + K¢ (z, — H®, &, ) (4.17)
where
@ = Avbryy (4.18)
with
var(a@; —a;) = M2 = AP AT + Q¢ (4.19)
var(é, — o) = Pr= (Me !+ ®THTR;'H,®)! (4.20)
K= P*®THIR; . (4.21)

The use of complex numbers (characterizing modal coefficients) as elements of the
state vector in the Kalman filter presents no conceptual difficulty (Peterson 1968).
In addition, the derivation of the Kalman filter in terms of generalized least squares
regression given in Chapter 2 holds for the complex case (see Brillinger 1981, section
3.7 for the details of converting the real-valued matrices in the regression equation to

their complex counterparts).

4.3 Selection of the Modes

The following properties of the modal representation (4.9) are useful for designing an

approximate, or reduced dimension, Kalman filter:

1. The modal coefficients &, evolve independently since A is diagonal. The evo-
lution of each mode satisfies both the governing equations and the boundary

conditions as well as being dynamically uncoupled from other modes.
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2. Each modal coefficient in &, describes a spatial pattern with the resolution of
the original model (4.1).

3. The model time step now depends on the time scale on which the significant
variation in the forcing occurs and the spindown time (decay scale) associated
with the modes. It is no longer a direct consequence of stability considerations,
such as the CFL condition, which limit the time step in the original model.

Larger time steps may be possible.

Each of these properties offer advantages for designing and implementing an approx-
imate Kalman filter. The first property allows for a straightforward reduction in the
model based on choosing a subset of the modes. That is, any modes deemed unim-
portant can simply be neglected in (4.9) by truncating é&, and A. In a finite difference
implementation this would not be possible. The second property implies that trun-
cating the model maintains the spatial resolution. Finally, the third property offers
the possibility of increased computational efficiency in the numerical integration of
the model through time.

To be more specific about model reduction, suppose that the modes (eigenvalues
and eigenvectors) are divided into 2 sets, denoted (A, ®;) and (A, ®,). If the first
set is chosen as a basis for a reduced dimension ocean model, then the truncated
second set comprises the unresolvable modes of the system and defines the null space
of the reduced ocean model. The uncoupled equations for &, and &; implies that any
energy present in the truncated subspace remains there. This satisfies the criteria for
system reduction put forth by Fukumori and Malanotte-Rizzoli (1995).

The key property of this modal subset (A,,®,) is that it should describe both
the ocean state at a given time, as well as its temporal evolution. In the remainder
of this section, we present a means for choosing a suitable subset of the modes based
on preserving these properties. First, the ability to observe and control the modes is
discussed. Second, the partitioning of the energy from the forcing amongst the modes
is considered. These considerations allow modes preferentially excited by the forcing

to be identified, and an approximate dynamical model to be constructed.
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4.3.1 Observability and Controllability

As a first step in choosing a subset of the modes, we eliminate from our consideration
any modes that cannot be observed or controlled. Observability and controllability
are important properties of any data assimilation problem and take on a particularly
simple form when using a modal representation of the dynamics. They are introduced
and discussed below.

The ability to observe the dynamic system (4.1) using a given observational array
can be assessed on a quantitative basis. If ¢ is an eigenvector of D with a non-zero
eigenvalue, then that mode is said to be observable if H¢ # 0. (Here, H is that
portion of the H in (4.4) which corresponds to %X,;). This states that to observe a
mode, it must have a non-zero projection on the observation space. In other words,
the nodes of a mode must not coincide with the observing locations.

The ability of the forcing to drive the dynamic system (4.1) to an arbitrary state
is referred to as the controllability of the system. This is stated as follows. Suppose
that ¢° is an eigenvector of DT with a non-zero eigenvalue. If GT¢? # 0, the mode
is controllable. If all the modes are controllable, so is the overall system. To further
interpret the controllability condition we consider below the problem of controlling the
model forcing such that the system is driven to a state which best fits the observations.

Recall the control problem of Section 2.4.3. Define a cost function J which mea-
sures the squared error of the observation/model misfit and treat the model (4.1) as

a strong constraint. This leads to the Lagrange function
L=J+3 vL,(% — D&, — Ge)). (4.22)
t

Differentiating L with respect to X; yields the adjoint model

~ aJ
Y1 = DT‘Yt - 3_5(¢ (4.23)

and differentiating with respect to e}* gives the gradient in terms of the «,_,, i.e.

aJ
ﬁ = GT‘Yt. (4’24)
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In the control problem this gradient information is used to adjust e[ such that J is
made a minimum.

Now, the ¢ are modes of the adjoint operator DT and provide an alternative basis
for the space spanned by «,, in exactly the same way that ¢ does for %;. Suppose
that only a single mode ¢° of the adjoint operator is excited by dJ/d%, (the forcing
for the adjoint model and representing the observation/model misfit). In this case,
the gradient (4.24) becomes

% = GT¢%a®, (4.25)
where a® represents the coeficient of the adjoint mode. Now if GT¢® = 0, the
gradient (4.25) is zero and there is no way to adjust the controls such that J is made
smaller. However, an observation/model misfit, represented in §J/9%,, clearly exists
and ¢® defines a null space in the adjoint model. The system cannot be controlled, in
the sense of adjusting the model to rectify the misfit to observations, with an adjoint
mode having no projection on the forcing.

In summary, elimination of the modes that cannot be controlled or observed cor-
responds to neglecting modes that are in the null space of the observations or forcing,
respectively. All remaining modes describe some potentially important part of the
overall dynamics and cannot be eliminated without further a priori assumptions. The

next section discusses a selection procedure in which the modes are ordered based on

an energy criterion.

4.3.2 Energetics

For conventional limited-area coastal models, surface wind or lateral boundary forcing
is prescribed based on data, climatology and regional knowledge. We assume that the
dominant source of randomness in the model (4.1) or (4.9) is related to the stochastic
nature of this forcing e{®. In other words, the system described by the coastal model
is primarily driven by wind or boundary forcing. This does not imply that other
model error processes are zero (they should, in fact, be included in the specification

of Q:), but rather that it is convenient to neglect them for the purposes of modal
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selection. Qutlined below is a procedure for choosing the modes preferentially excited
by this forcing.

Suppose that we are given, or have approximated, the stochastic forcing as an
ARMA, or a general linear, process. The cross-covariance of the forcing is then known
and the power spectrum is determined by taking its Fourier transform. Denote the
spectral matrix of the forcing e® by I'/(w) with w being the frequency. The spectral
matrix of the modal coefficients I'*(w) is determined through (4.9) to be

I'*(w) = CT¥(w)CT, (4.26)

where
C=(Ie¥ - A)'d'G.
The diagonal elements ['§;(w) reflect the partitioning of the spectral density (energy)
contained in the forcing amongst the dynamical modes at frequency w. Note that
(4.26) is simply a multivariate generalization of the auto-spectrum given in (4.11).
Given that a statistical description of the forcing (i.e. I'/ (w)) is known, we propose
a criterion for selecting a subset of the modes based on the total energy contained in
each mode. Define
si =) [iwj), (4.27)
2

where s; designates the sum over all frequencies of the spectral density of the ith
mode, and measures the total variance (energy) contained in that mode. Sorting the
s; in descending order allows the modes preferentially excited by the forcing to be
identified. By specifying a cutoff (either in terms of number of modes, or cumulative
energy), a suitable subset of modes can chosen. This selection criterion is further

discussed in the application of Section 4.5.

4.4 Application

A simple shelf circulation model for the Scotian Shelf off the east coast of Canada was

used to test the reduced dimension Kalman filter. The overall goal was to assess its
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suitability for an operational nowcasting/forecasting scheme. Figure 4.1 shows a map
of the Scotian Shelf region. The area has an irregular coastline, and numerous offshore
basins and banks. The overall physics of the Scotian Shelf is relatively complex
and reviewed in Smith and Schwing (1991). We note that linear dynamics have
proven adequate for describing the subtidal variability associated with the wind and
boundary driven circulation (Thompson and Sheng 1996). As a result, we use a linear
model on which to test the approximate Kalman filter.

The model was based on the linearized, depth-averaged shallow water equations

ou ~ r ol

bt i = —qVn— it 4+ ——

at+fk><u gVn hu+poh
dn oy

where ¢ is time, @ contains the components of the depth averaged current and 7
represents the sea surface elevation. With the exception of the surface wind stress 7
and the reference density pg, the remainder of the notation is defined in Section 3.2.
The value of the friction coefficient was r = 0.001ms™!.

The model domain is also shown in Figure 4.1. The shallow water equations
(4.28) were finite differenced following Heaps (1969) based on an Arakawa C-grid
with a spacing between adjacent 7 points of 25 km. The model was implemented on a
rectangular domain, and points falling on the land were assigned shallow depths (1m).
This approximately satisfies the coastal boundary condition is no normal transport.
The remaining boundaries are open with a simple gravity wave radiation condition.
The model is subject to forcing by surface wind stress and inflows normal to the
north-eastern open boundary

The resulting model state vector is of dimension 661. Its elements correspond to
velocity components and sea levels defined on the model grid. Clearly, the overall size
of this problem is relatively small but is adequate both to illustrate and to provide
a preliminary test of the approximate Kalman filter. Extension to larger problems is
straightforward.

Using the finite difference form of the numerical model, the dynamics matrix D
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Figure 4.1: Coastline of Nova Scotia and the bathymetry, in meters, of the Scotian
Shelf. The rectangular box (dashed) indicates the model domain. Also shown are

the locations of the fixed (CASP) observation array ( triangles) and the moving (ship
ADCP) array (solid line).
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was determined using the following algorithm: (i) Set the ith element of the state
vector equal to one and all other elements to zero. (ii) Run the model forward one
time step from this initial state (with zero forcng) and record the response. This
gives the ith column of D. (iii) Repeat this procedure for all i thereby building up
D column by column. This algorithm corresponds to determining a series of impulse
response functions for each of the prognostic variables at each of the grid points of
the model.

The resulting dynamics matrix D is real-valued and non-symmetric. Some of
the eigenvalues and eigenvectors of D are real and others are complex. There are
60 modes where |A\| < 10~® There are 25 real-valued modes (standing patterns),
8 of which have decay scales less than 10 hours, with the rest being greater than
50 hours. The remaining 576 modes are complex and occur in conjugate pairs. An
example of one of these propagating modes for the Scotian Shelf is shown in Figure 4.2.
This pattern oscillates between its real and imaginary parts as given in Section 4.2.
Figure 4.3 shows a scatter plot of the decay time versus the oscillation period for all
propagating modes and indicates that these span 3-4 orders of magnitude and appear
to cluster into two groups, with small and large decay-oscillation periods, respectively.
It was also found that long oscillation periods were associated with spatially smooth
patterns.

It is notable that the dynamical modes, as derived from a numerical model. are
not easily interpreted in terms of analytic modes, such as continental shelf waves. The
dynamical modes generally had complex spatial structure, and frequencies that were
higher than would be expected from simple theory based on idealized systems. This
result is likely due to complex bathymetry and coastlines, as well as the relatively
coarse resolution of the model.

We experimented with two types of forcings important on the Scotian Shelf: (i)
flows across the open boundary at the northeastern end of the model domain, and
(ii) a spatially uniform surface wind stress. Data from the Canadian Atlantic Storms

Program (CASP) (Lively, 1988) was used to determine the appropriate statistical
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Figure 4.2: The flow field associated with one example of a propagating mode of the
Scotian Shelf model. This mode was found to be important for both the wind and
boundary forced cases. It has a decay time of 484 hours and an oscillation period of
84 hours.
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Figure 4.3: Scatter plot of the decay time versus oscillation period for the propagat-
ing (complex) modes. For completeness, the modes that would fall outside of the
indicated range are shown at the limits of the plot.
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form for these forcings. The temporal evolution of the flows across the northeastern
boundary was diagnosed from the coastal sea level record at Louisbourg (location in
Figure 4.1). We assume a sea level decay to an offshore value of zero. The cross-shelf
shape of the sea level profile is defined so that a spatially uniform transport normal
to this boundary can be obtained geostrophically (Thompson and Sheng 1996). The
hourly Louisbourg sea-level record during CASP (Figure 4.4) was represented well
as an autoregressive process of first-order with coefficient ¢ = 0.9922. Similarly,
the wind record at Sable Island was used as a proxy for a spatially uniform wind
stress over the shelf (location in Figure 4.1, time series in Figure 4.4). The temporal
evolution of the east-west (z) and north-south (y) components of hourly wind stress
were found to evolve according to a multivariate AR(1) process with coefficients
a; = 0.9903,a, = 0.9819 and cross terms near zero (< 1073). The high values of
the autoregressive coefficients for the wind and sea level are indicative of the high
correlation of the values between adjacent hours.

Both fixed and moving observation arrays (Figure 1) were used to test the approx-
imate Kalman filter in a series of identical twin experiments. The fixed observation
array was based on the CASP array and consisted of three coastal sea level stations,
and a cross-shelf array of three moorings, each measuring bottom pressure (sea level)
and the two components of the depth averaged flow. The moving observation array
was designed to mimic the sampling of currents on the shelf by a ship-borne acous-
tic Doppler current profiler (ADCP). It simulates a ship traveling at about 12 knots
following (and repeating) the transect shown in Figure 1. The fixed array had an
observation operator constant in time, while the moving array had one which changes
through time.

Controllability and observability conditions are shown in Figure 4.5. For both
wind and boundary forcing, the system was found to be controllable for all modes,
with the possible exception of those near-zero modes in which |A| < 10~8. The system
was found to be observable using the fixed array, again excluding those modes with

|A| < 107%. For the moving array, the assessment of observability is more difficult.
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Figure 4.4: (Upper Panel) Time series of Louisbourg sea level (meters) recorded
during CASP. (Lower Panel) Time series of the wind stress vector (Pa) recorded at
Sable Island during CASP. Both series have been low pass filtered with a cutoff of 2
cycles per day and begin at 16:00, November 24, 1985.
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H, in this case describes a point measurement of velocity whose location changes over
time. The observability condition for some typical values of H, suggested that they
were being satisfied for most modes with [A| > 107%. A more general statement about
observability cannot be made for this case.

Mode selection was carried out separately for both the wind and boundary forcing.
The AR(1) representation of the forcing determined from the CASP data were used to
specify I'/(w). Based on this, the energy (variance) in each of the propagating modes
was calculated and the results are shown in Figure 4.6. Modes were selected such
that greater than 99% of the total energy was accounted for by those modes chosen.
Selecting the real modes proved to be mecre problematic as many have eigenvalues
nearly indistinguishable from one (likely associated with the coastal grid points). This
implies that any energy present at zero frequency would cause these modes to resonate
and dominate the energy spectrum. Due to this difficulty, the effect of adding the real
modes was tested by comparing the output from the reduced model, with certain of
the real modes included, and the full model (for various realizations of the forcings).
It was found that only a relatively small number of real modes were required. The
resulting selection procedure chose 46 modes (4 real) for the boundary forcing, and
44 modes (4 real) for the wind forcing. An example of one of the modes included
in both subsets is shown in Figure 4.2. These modes form the basis for the reduced
ocean model and the approximate Kalman filter.

Synthetic data were generated using the full model for both the fixed and moving
observation arrays. The forcing was prescribed based on a single realization for both
the stochastic wind and boundary forcing. A zero-mean, serially uncorrelated, Gaus-
sian white noise with a standard deviation equal to the signal was then added to these
synthetic velocity and sea level series. This serves to specify the observation error
covariance matrix R. The synthetic data for these four cases, provided the basis for
the numerical experiments testing the approximate Kalman filter based on dynamical
modes.

To satisfy the assumption of serially uncorrelated system noise, we followed (4.3)
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Figure 4.5: Controllability |C| and observability |O| indices for the various experi-
ments. Here, C = GT¢, and O = H¢ (see Section 3). Subscripts b,w on C refer to
boundary and wind forcing, respectively. O is based on the fixed (CASP) array. The
mode index is sorted in terms of frequency, starting with the zero frequency (real)
modes.
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Figure 4.6: The normalized selection criteria s for the propagating (complex) modes.
This measures the relative energy (variance) in each mode. (Note that only one of
each complex conjugate pair is plotted in each case). The subscripts b, w on s refer to
the boundary and wind forced cases, respectively. The modal index is sorted on the
basis of frequency, starting with the low frequency modes. The dashed line indicates
the cutoff for inclusion of the modes in the reduced model.



and augmented the reduced ocean model to include the AR(1) forcing,

( (s 3} ) _ ( A1 {Q"IG}I ) ( (s 3} ) + e, (4.29)
e™ . 0 A e™ -

where the subscript 1 denotes the reduced model and when applied to $-'G it
describes the extraction of the appropriate rows of this matrix. Asin (4.3), A contains
the auto-regressive coefficients and e, represents the system noise. The elements of
e, driving e® were assumed Gaussian with a variance determined so that var(e;®)
matched that of the CASP data shown in Figure 4.4. The elements of e, associated
with a; were chosen to be an independent, zero-mean Gaussian white noise process
with variance equal to that of the observations. This assumes that both the model and
observations are considered to have a similar level of uncertainty. These assumptions
fully specify the model error covariance Q.

The approximate Kalman filter was implemented based on the reduced model
(4.29) for a fixed and moving observation array using both wind and boundary forc-
ing. The specification of R and Q is outlined above, and for simplicity, the initial
covariance Mg was set equal to Q. Based on these input statistics, the filter was not
unduly biased towards either the model or the observations.

Figure 4.7 shows results from the application of the approximate Kalman filter
to the fixed observing array using both wind and boundary forcing. In these cases,
the filter estimates were within +1% of their true values and indistinguishable from
one another on the plots of Figure 4.7. The Kalman gain matrix converged to a
steady state value in about 12 hours (Figure 4.8). Similarly, Figure 4.9 shows the
application of the approximate Kalman filter for the moving array. The estimates of
the velocity along the simulated ship track, from both the wind and boundary forcing,
were again within +1% their true values. The estimated rms error determined from
P, for u,v at the observation locations was about 5 cm/s for both the fixed and
moving observation arrays. The noisy observations, together with the knowledge
that the stochastic character of the forcing is AR(1) with known coeflicients, appears

sufficient to recover the model state at the observation locations.
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Figure 4.7: Results from the approximate Kalman filter at mooring 1 for the fixed
observation array. u,v are the horizontal components of velocity in ms™! and p
represents the sea level in m. The dots indicate the observations and the solid line
represents the Kalman filter estimates at that location (which coincide with true
values). The upper three panels corresponding to boundary forcing, and the lower
three to wind forcing.
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Figure 4.8: Convergence of the Kalman gain matrix beginning at the start of the
assimilation period. Here, |AK'| denotes the (summed) absolute value of the difference
between corresponding elements of Kalman gain matrices at successive time steps
(scaled by its initial value). The subscripts b and w refer to the boundary and wind
forced cases, respectively.
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Figure 4.9: Results from the approximate Kalman filter for the moving observation
array (ship ADCP). u,v are the horizontal components of velocity in ms™! at the
observing locations at the given time. The dots indicate the observations and the
solid line represents the Kalman filter estimates at that location (which coincide with
true values). The upper two panels corresponding to boundary forcing, and the lower
two to wind forcing.
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Figure 4.10 shows a typical snapshot of the flow field for an intermediate time in
the assimilation using the fixed array and wind forcing and compares this to its true
value. In this case, the important features of the actual flow field were recovered by
the approximate filter which suggests a reasonable ability to extrapolate to locations
other than those observed. Detailed examination confirms this conclusion for the fixed
array, excepting the region in the northeast quarter of the model domain. There, the
large distance from the observation locations as well as the irregular bathymetry,
which results in shelf wave scattering, combine to give poor estimates of the actual
flow field. The moving observation array provided good estimates of the actual flow
field near the observation locations but had much less ability to extrapolate into data
poor regions.

The recovery of the actual wind and boundary forcing by the Kalman filter is
shown in Figure 4.11. The fixed observing array was able to estimate fairly well the
important low frequency components of both the wind and boundary forcing. Again,
the moving observation array does a poor job in recovering the forcing functions,
suggesting that the model is overfitting to compensate for the sparse data provided

by the ship ADCP at a given time.

4.5 Discussion and Conclusions

In this chapter, we have proposed an approximate, or reduced dimension, Kalman
filter and tested its suitability for use in a prototype coastal circulation model. Reduc-
tion in the dimension of the state vector necessary to describe the ocean was achieved
by a representation in terms of the dynamical modes supported by the numerical
model. Given the statistical properties of the model forcing, the important modes
can be identified and a suitable subset chosen. These modes then provide a basis
for a reduced ocean model. If this subset is relatively small, a Kalman filter based
on these modes will have greatly enhanced computational efficiency and no stability

restrictions on its time step.
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Figure 4.10: A comparison of the actual (upper panel) versus estimated (lower panel)
flow field at ninety hours into the assimilation period. These flow fields correspond
to the wind forced case and are based on the fixed observation array.
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Figure 4.11: A comparison of the actual versus estimated forcing. The upper panel
corresponds to the boundary forced case with 7 being the coastal sea level (m) at the
upstream boundary. The middle and lower panels correspond to the wind forced case,
with 7., 7, being the east-west and north-south components of the spatially uniform
wind stress (Pa). In each panel, (a) is the actual forcing, (b) is the estimate (offset)
using the fixed array, and (c) is the estimate (offset) using the moving array. The
offset used is 0.5m for n and 0.25 Pa for 7.
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Our application to a prototype circulation model of the Scotian Shelf proved
to be encouraging. Using both wind and upstream boundary forcing, the model
dimension n was reduced to less than 1/10 its value for the original finite difference
implementation. With the computational burden of the Kalman filter varying as n®
(Gelb 1974), this implies a computational reduction of a factor of 1000. In all cases
tested, the approximate Kalman filter proved capable of recovering the true model
state at the observation locations to within +1% using the information in the noisy
measurements and knowledge of the statistical character of the forcing. The filter
was able to recover the entire flow field (extrapolation) and the forcing functions in
the case of the fixed observations array. However, the extrapolation ability proved
poor for the moving observation array. This suggests, not surprisingly, that the fixed
array contains more information relevant for the estimation of flow fields than does
the moving array. The increased spatial coverage of the moving array is not enough
to compensate for its ability to measure only velocity at a single point at any given
time.

The controllability and observability conditions are important diagnostics for any
assimilation problem, and straightforward to determine using a modal representation.
To observe the system, the observation locations must not coincide with nodal points
of the modes. To control the system, the modes of the adjoint operator are used to
assess the ability of the forcing to drive the system to an arbitrary state (for instance.
a state which best matches the observations). This suggests the possibility that a
modal representation of the model, or its adjoint, may allow for efficient variational
data assimilation schemes. Since controllability and observability are addressed on
a mode by mode basis, ordering of the modes in terms of energy facilitates a prac-
tical assessment of whether or not these conditions are satisfied, i.e. if a mode is
unimportant, the ability to control or observe it is of little interest.

The selection criterion based on the energy contained in each mode is not without
its drawbacks. The modes ¢ provide a non-orthogonal basis for the vector space

spanned by X. The variance explained by a particular subset of the modes cannot
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then be simply assessed without taking into account the off-diagonal terms of '*(w).
This contrasts with the basis provided by (complex) empirical orthogonal functions
(e.g. Brillinger 1981) which are orthogonal and have a natural ordering in terms of
variance based on their eigenvalues, but no dynamical meaning. On balance, it is felt
that the ordering of the modes based on energy is a straightforward and reasonable
basis on which to select the modes. However, the general question of mode selection
remains an area for future research.

A major premise of this work is that the important dynamical and statistical
properties of the model are preserved with a relatively small number of modes. This
is also a key assumption when using principal oscillation patterns which are, in fact,
identical to our modal decomposition. This technique is, however, usually applied
to data (Latif and Flugel 1991) or model output (von Storch et al. 1988), with the
'dynamics’ matrix being derived empirically. Our application uses a dynamics matrix
equivalent to a finite difference implementation of the model. It can be determined
either through the impulse response technique used in Section 4.4, or a finite difference
form of the model written directly into matrix form.

The added cost associated with the approximate Kalman filter lies in the deter-
mination of the dynamics matrix D, calculation of its eigenvalues and eigenvectors,
and the selection of a suitable subset of modes. The important computational savings
result from simplification of the calculation of the gain and error covariance matrices
in (2.24)-(2.26), as well as the possibility of longer time steps. For a linear model in
which the form of the dynamic equations do not vary in time, the eigen-pairs can be
determined and the important modes selected prior to any data assimilation exercise.
In this case, the dimension of the full model is of little significance in an operational
system based on the approximate filter. For nonlinear systems, or ones with time
varying dynamics, this is not the case.

The extended Kalman filter is a direct extension of the linear filter which is suit-
able for application with nonlinear models. The extended Kalman filter uses the
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nonlinear model in the forecast equation (2.23). The remainder of the equations re-
tain their form but with the dynamics matrix D, now being a linearization of the
nonlinear model about the current state estimate X, (we ignore nonlinear measure-
ment operators). Ideally, the model is re-linearized at every time step, but in practice
this can occur less often as the model state may not vary significantly over a given
time interval.

To directly apply the extended Kalman filter using the method of this chapter,
the eigenvalues and eigenvectors of D, would have to be calculated every time the
model was linearized. (There is no means to pre-compute D, or its eigenpairs, since
they are a function of the current estimate). Once a suitable subset of modes has
been chosen, the approximation could be applied to the gain and error covariance
calculation (2.24)-(2.26). Note that the full nonlinear model would be retained for
the forecast equation (see Fukumori and Malanotte-Rizzoli, 1995). The usefulness in
this case rests on whether the computational savings in the gain calculation justifies
the additional computational cost. This cost depends mainly on the dimension of the
model and the interval over which the linearization is valid. Allowing for interacting
modes, i.e. a non-diagonal A, may allow the length of this interval to be extended.

These speculations lead to the possibility that an important application of dy-
namic modes might lie in their ability to facilitate suboptimal, yet robust, data as-
similation schemes for nonlinear models. As is evident from Chapter 2, many data
assimilation methods rely on essentially linear methods. For the filtering problem,
consider the local linearization of the dynamics for the purpose of error propaga-
tion. This linearization might be carried out efficiently, say, based on analysis of the
principal oscillation patterns of certain of the model output. If one could empiri-
cally identify the important dynamic patterns, an efficient Kalman filter could be
constructed. Similarly, for smoothing methods, identification of approximate adjoint
operators might follow an analogous procedure.

In summary, the synthesis of data and ocean models through data assimilation
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involves complex algorithms. For operational schemes, approximate yet robust meth-
ods are desirable. Our reduced dimension Kalman filter is one such method directly
suitable for linear coastal circulation models and potentially extensible to more com-
plex models. Its important feature is an approximate dynamical operator suitable
for error propagation and determination of time varying gain matrices. In this way,
the important physics of the model is retained while data synthesis is simplified. It
is felt that many practical data assimilation schemes might benefit using ideas and

approaches of this kind.



Chapter 5

Determining Dynamically

Counsistent Density and Velocity

Inferring ocean circulation from temperature and salinity data is a well studied prob-
lem in oceanography. Hydrographic fields are less affected by energetic small scale
motions than are point measurements of velocity or transport. Asa result, they con-
tain ubeful information on large scale circulation features. In fact, much of our general
picture of ocean circulation has been obtained by tracing the temperature-salinity (T-
S) characteristics of water masses (e.g. Wust 1935). A quantitative description of
these water mass tracing techniques is be found in modern tracer inverse methods
(Martel and Wunsch 1993, Schlitzer 1993). Another approach uses large-scale dy-
namic balances to relate observed T-S (or density) to velocity or transport. These
dynamic methods are useful for generating and testing hypotheses about the physical
origins of circulation, and ultimately seek a detailed and accurate picture of the gen-
eral circulation. It is these dynamic methods, and their application to coastal regions,
which provides the focus for this chapter.

While dynamic methods are potentially useful tools, their application frequently
proves difficult. Hydrographic data consists mainly of depth profiles which are char-
acterized by their asynchronous and irregular distribution. It is often argued (e.g.

108



109

Ghil and Malanotte-Rizzoli 1991) that the ocean is grossly under-sampled with re-
spect to important time and space scales. Archived data have been used to produce
statistical maps of hydrography (e.g. Levitus 1982). These seasonally averaged and
spatially smoothed fields reflect the important climatological features found in the
ocean. However, errors resulting from excessive smoothing make it difficult to obtain
dynamically consistent circulation from climatogical fields.

A number of methods are available to relate circulation to ocean hydrography.
Perhaps the most commonly used assumption is that the measured or mapped density
field provides an accurate representation of its true value. In this case, knowledge of
the spatial variations in the density field implies a fixed, time-invariant (baroclinic)
pressure gradient from which flow fields may be diagnosed. These diagnostic methods
have a long history in physical oceanography (see Defant 1961 for a review) and
modern diagnostic methods have become quite sophisticated incorporating vertical
mixing, turbulence closure and a variety of boundary conditions (e.g. Lynch et al.
1992, deYoung et al. 1993). Of particular importance when applying these methods is
proper treatment of the bottom torque generated by the misalignment of the density
field and bathymetry (Sarkisyan and Ivanov 1971, Holland and Hirschman 1972,
Huthnance 1984, Mertz and Wright 1992). The numerical calculation of these terms
based on smoothed density fields frequently results in unrealistic circulation features
(Rattray 1982).

A more realistic approach is to recognize explicitly that the observed density field
is only an approximation of its true value and inevitably will contain unresolved
variability over a range of time and space scales. Therefore it is more appropriate
to treat demsity as a random variable, rather than a fixed input quantity. (-spiral
techniques (Stommel and Schott 1978, Olbers et al. 1985) adopt this assumption to
estimate deep reference velocities from observed density and tracer data. Similarly,
the section method of Wunsch (1978) determines reference velocities using an inverse
approach. Robust diagnostic approaches (Ezer and Mellor 1994, Sarmiento and Bryan
1982) also alter diagnostic results by allowing the input density field to partially adjust
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to the circulation.

Although these approaches allow for errors in the observed density they do not
ensure dynamically balanced density and velocity fields. (Roughly speaking, dynamic
balance here refers to the density and velocity fields simultaneously satisfying both
the equations for advection of density and thermal wind). Clearly, to satisfy this
condition, the evolution equation governing the density distribution must be explic-
itly taken into account. Wunsch (1994) and Bogden et al. (1993) are notable in
recognizing this need. Both of these studies focus on North Atlantic circulation and
enforce conservation of density along streamlines (interpreted as a minimum mixing
of density) as a weak constraint in order to select the appropriate barotropic mode.

The goal of this chapter is to investigate the issues surrounding the determination
of dynamically consistent density and velocity fields from hydrographic data, with
an emphasis on coastal regions. In contrast to other methods, the focus is mainly
on the consequences of treating the density equation as a strong constraint. The
development is pedagogical and intended both to illustrate problems associated with
the diagnostic method, as well as demonstrate the need to include the density equation
when determining circulation from density data.

The chapter is outlined as follows. Section 5.1 discusses some dynamical issues in
estimating circulation from density data. Section 5.2 treats the estimation problem
in an optimization framework and reviews some common approaches in this context.
Section 5.3 then illustrates the joint estimation of density and velocity with a specific
example: a simple, depth-averaged steady-state model applicable to coastal regions
is proposed which includes the advection of density as well as the interaction of the
density field and the bathymetry. An estimation technique is then outlined for this
boundary value problem whereby the buoyancy fluxes across the open boundaries
into the model domain are determined from interior point observations of the density
field. Numerical experiments are carried out to illustrate the method and explore

some generic problems. Discussion and conclusions follow in Section 5.4.
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5.1 Dynamics

In this section, we discuss some of the dynamical issues involved in determining
ocean circulation from the density field. The implication of diagnosing transport from
density is first addressed for a case which does not make use of an evolution equation
for density. The consequences of adding the density equation are then investigated.
Dynamical equations are considered which describe the steady-state balance of
a hydrostatic, incompressible, Boussinesq fluid. The area of interest is coastal and
continental shelf regions which are well-mixed in the vertical due to bottom friction.

The governing equations are given by the following:

fl..xu-{——VP—iﬁ:O (3.1)
Po po 9z
oP -
V-u+ ow =0 (5.3)
0z
2
u-Vp+ w—a— — KV — Ixug £ . (5.4)

Here, @ and w represent the horizontal and vertical components of velocity, respec-
tively. The density is given by p, with po being a spatially invariant reference value.
Pressure is denoted by P. frictional stresses by ¥. Horizontal mixing of density pa-
rameterized by K, with K, being its vertical counterpart. The remainder of the
notation is standard and given in Section 3.2. The horizontal momentum balance is
described by (5.1). If 7 is negligible (a reasonable assumption away from boundary
layers) it reduces to the familiar geostrophic relation. The hydrostatic balance in the
vertical is given by (5.2) and the incompressibility condition implies (5.3). Finally,
(5.4) governs the density distribution and includes both advection and diffusion.
Some important simplifications in (5.1)-(5.4) include the following. First, ad-
vective nonlinearities in momentum are neglected in (5.1). Scaling arguments (e.g.

Pedlosky 1979) show this to be a valid assumption provided the Rossby number
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R, = u/fL < 1, where u and L are horizontal velocity and length scales, respec-
tively. We consider a mid-latitude system (f ~ 10~4s~!) with typical current speeds
of less than 0.lms~! and horizontal dimensions greater than 100km. This implies a
R, of 1072 and justifies neglect of the advective terms. Second, we have chosen in
(5.4) to use density as a state variable rather than explicitly resolving its constituent
elements: temperature and salinity (which would require separate tracer equations
for each of these elements as well as a nonlinear equation of state to relate them to
density). This is a reasonable assumption in regions provided the T-S properties of
the water remain stable (e.g. Gill 1982, Section 4.10).

We now consider some properties of (5.1)-(5.3) with a focus on the estimation of
transport from density. Let p = po(1 + &) where ¢ represents the density anomaly
about the fixed reference value po. Integrating the hydrostatic relation (5.2) with
respect to depth gives

P@p:ﬂm+mm[%1+swa (5.5)

where the pressure at any depth z is seen to be a sum of the atmospheric pressure
P.._ and that imposed by the overlying water column. If P, is assumed constant.

the horizontal pressure gradient as a function of depth is determined from (5.5) to be
0
VP = pogVn + Pog/: Vedz (5.6)

where the sea level is represented by 1. (The usual approximation has been used
to set the limits on the integration e.g. Csanady (1979)). The pressure gradient is
composed of a barotropic component due to the sea level gradient, and a baroclinic
component due to the horizontally variable density field.

Consider the inviscid version of (5.1). Ignoring the terms involving 7, the geostrophic
limit of the momentum equations is obtained. The total velocity can be decomposed
as

= iy + i, (5.7)

where the velocity components satisfy
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fExd = —gVn (5.8)

- 4]
fixd, = —g / Vedz. (5.9)

This decomposition serves to isolate the influence of each of the two terms in the
horizontal pressure gradient in (5.6) on the overall low. The pressure gradient in
(5.8) due to sea level is independent of depth and drives the barotropic flow . In
(5.9), the velocity field is related to the horizontal density gradient and is a statement

of the thermal wind relation, i.e.

g—’z‘ = %E x Ve. (5.10)

The barotropic transport is defined as
- 0
b, = /hﬁbdz (5.11)

where h = h(Z) is the bottom depth. Using (5.8), it is found that U is related to sea

level according to
Ty = "—;’E x Vn. (5.12)

Suppose that the barotropic transport satisfies the continuity equation V - U, = 0.
(The continuity condition is obtained by vertically integrating the incompressibility
condition (5.3) and applying kinematic boundary conditions (e.g. Pedlosky 1979)).
This leads to the well-known property

0, -V (%) =0 (5.13)

which indicates that in a geostrophically balanced flow the barotropic component
follows contours of f/h.
The baroclinic transport U, associated with (5.9) is defined analogously to (5.11).

This component of transport satisfies

e [ 103
7, = ka/_h 1+ ) Ved=. (5.14)
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If U, satisfies the continuity equation V - U, = 0, it follows that

g,-v (%) = g/_°h ok {Vs x V (%)}dz. (5.15)

This demonstrates that the sheared flows associated with the horizontally variable
density field can drive transport across f/h contours. Specifically, it is the mis-
alignment of the density field and the bathymetry which forces this cross-isobath
transport. This is the so-called JEBAR (joint effect of baroclinicity and bottom re-
lief) effect (Huthnance 1984, Mertz and Wright 1992). It has important dynamic
consequences in coastal and continental shelf regions which exhibit strong variations
in bottom topography, and is explored in more detail in Section 3.3.

An important element of the estimation problem can now be highlighted. Suppose

the density field ¢ is known and the total transport,
U=0U+0, (5.16)

as given by (5.11) and (5.14), is to be determined. The total transport satisfies the
continuity condition
v.U=0. (5.17)

Given that ¢ is specified, our governing equations (3.16)-(5.17) constitute a linear
system of three equations in the three unknowns: U and 1. According to the general
inverse methods of Section 2.1, a solution is possible provided that no null space
exists.

However, examining (3.11) reveals that density contains no information on the
barotropic transport and a null space does indeed exist. This indeterminacy is a
statement of the so-called "level of no motion” problem which is directly evident from
the thermal wind relation (5.10). That is, using only the geostrophic, hydrostatic and
incompressibility conditions implies that sea level is in no way related to the density
field and the baroclinic and barotropic modes are uncoupled. It is clear that to
obtain the complete transport field additional information on U, is required. Indeed,

specifying U, x V(f/h) at a single point along each of the f/h contours removes the



indeterminacy (i.e. U, is then known at all points on the f/h isoline). Note that this
procedure is equivalent to specifying lateral boundary conditions on either U, or 7 in
the case where no closed f/h contours exist.

Another more practical problem in determining even the resolvable baroclinic
component of transport U, is that, in reality, the input density field is only imperfectly
known. Estimated density fields are generally obtained from irregularly distributed
observations and statistically mapped into what is assumed to be a representative
(climatological) description of the density field. Errors arise due to smoothing of
features in the mapping procedure as well as the neglect of any temporal variability.
According to (5.14), this estimated density field must be differentiated in order to
obtain the baroclinic pressure gradient, a procedure which tends to amplify any small
scale errors. The dynamical consequence of this is evident from (5.15): apparent
misalignments in the density field and bathymetry will drive spurious flows across
f/h contours.

Including the Density Equation

Thus far we have used only the geostrophic, hydrostatic and incompressibility
conditions to relate density to transport. In doing so, a null space has been identified
associated with the barotropic transport. Consider the density equation (3.4). Scal-
ing arguments indicate that we can neglect this equation only when the barotropic
pressure gradient dominates over the baroclinic one (5| > |ts|), in other words in
cases where density acts as a passive tracer. Otherwise density serves as a dynami-
cally active tracer which couples the evolution of the density and velocity fields and
results in a nonlinear system. This fact also implies that density can no longer be
directly obtained from observations since mapped fields will not, in general, satisfy
the governing equations. Clearly, adding a prognostic density equation has important
consequences for both the dynamics and the estimation problem. These are examined
in more detail below.

Anticipating the model used in Section 5.3, we assume, for simplicity, that density
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does not vary vertically, only horizontally, i.e.
e =¢&(%).

Furthermore, consider the density equation in the limit that mixing is negligible

(K, K, = 0). In terms of the density anomaly ¢, (5.4) now takes the form
7Z-Ve=0 (5.18)

and is a statement of conservation of density along streamlines. It is seen that density
is advected by the total flow field and hence depends on the barotropic component of
the flow. To show this more explicitly, expand @ as in (5.7) and vertically integrate
(5.18) from the bottom z = —h to the surface z = 0. This yields

— 0 0
Ub-/hVedz+h/hz'i,~\75dz= . (5.19)

Now, &, can be expressed entirely in terms of the density field ¢ using (5.9) giving

/_ohﬁb-Valz = gfﬁ/_oh{i‘:'(vexfzovedz)}dz/

= 0. (5.20)

The integrand on the LHS describes the advection of the density field by the barotropic
flow. On the RHS, the integrand represents the advection of density by the sheared
flow associated with thermal wind. This is manifested as a measure of the misalign-
ment of the density field at any level with its integral throughout the overlying water
column. This term is zero in our case since we have assumed that ¢ = £(Z). The
equation demonstates that (75 can, indeed, be related to information contained in the
density field.

However, a null space still exists in the determination of barotropic transport from
density. Consider the case where € = &(f/h). Then any barotropic transport of the
form U, = ﬁb( f/h) satisfies (5.20) and lies in the null space. However, it might be

argued that this constitutes, in some sense, a weaker condition than for the previous
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case. There, a null space associated with barotropic transport existed for any density
fields.

It is seen that adding the density equation (5.20) to the previous geostrophic
system (5.16)-(5.17) results in four governing equations in four unknowns: U, n, and
¢. Density is a prognostic variable and is now treated as an unknown since, in general,
observed density is inconsistent with the model equations. That is, measurements can
only provide guidance for the solution in the sense that the model equations are solved
in such a way that predicted density is chosen as a best fit to the observations. This
approach leads to dynamically balanced density and circulation fields and provides

the essence of the joint estimation problem considered in this chapter.

5.2 Estimation

The estimation problem associated with determining circulation from density data can

be approached from the perspective of data assimilation. Consider the cost function
J= /V kole — eqps}? + F1{ 5.1, 5.2, 5.3 2 + ko{ 5.4} dV. (5.21)

Here, J is a scalar quantity measuring the squared observation and model errors,
integrated over the volume V of interest (the model domain). The first term in
the integrand measures the squared deviations of the observed density anomaly £pg
from its true value e and is weighted by k,. (A continuous representation of the
measurements has been used here for convenience, although their discrete nature is
recognized. If observations are mapped to a grid, or expanded in terms of structure
functions, the above form provides a reasonable representation). The second term
measures the squared errors in the governing equations (5.1)-(5.3) or, in other words,
the extent to which the equality is satisfied for each of these relations. Similarly,
the final term represents the extent to which the density equation (5.4) is satisfied.
These latter two terms are weighted by x; and kg, respectively. Note that in the

cost function the dynamics (5.1)-(5.3) have been considered separately from (5.4).
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This split was used in the previous section and provides a means of distinguishing
the methods reviewed in this section.

A data assimilative approach to combining density data with the governing equa-
tions chooses density and velocity fields such that J is made a (global) minimum.
The form of J has already been defined and it remains only to specify the weighting
functions k., K1, and sp. Ideally, these weights are the inverse of the appropriate
covariance functions, but in practice usually reflect subjective belief in the validity of
each of the equations. Following Tziperman et al. (1992) and Thacker (1992) some
existing methods of combining hydrographic data with dynamics are now reviewed

in the context of the cost function J.
Diagnostic Calculations

In the diagnostic limit, observed density is treated as a fixed input field (k, — 00).
The momentum, incompressibility and hydrostatic equations are considered exact
(k1 — 00) and the advection of density is ignored (k2 = 0). It is clear from the results
of Section 5.1 that by using these equations and prescribing the baroclinic pressure
gradient, the barotropic mode remains undetermined. Additional information must
be imposed externally, either as a deep reference velocity or as flows across the open
lateral boundaries of the model domain. An important advantage of the diagnostic
case is that a linear calculation often suffices to determine the baroclinic transport.

Early applications of the diagnostic method which included topographic effects
identified the interaction of the density field and the bathymetry as an important
dynamic effect (Sarkisyan and Ivanov, 1971; Holland and Hirschman, 1972). As
discussed previously, these JEBAR terms are, in practice, often difficult to evaluate.
Errors in the observed density result in apparent misalignments of the bottom density
field with the topography leading to erroneous circulation features. Applications of
the diagnostic method have dealt extensively with this problem. One early approach
was to cast the governing equations in a form such that the JEBAR terms need not
be calculated explicitly (Mellor et al. 1982, Rattray 1982). An alternative (Sheng and
Thompson 1996) is to avoid using gridded density fields and instead determine steric
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height directly from density profiles (the rationale being that gridding these leads
to a less noisy baroclinic pressure gradient). Such approaches have eliminated many
of the problems associated with using a fixed input density field in the diagnostic
calculation.

B-Spiral Methods

The B-Spiral method was first introduced by Stommel and Schott (1977). It
provides velocity fields from hydrographic data based on identifying unknown deep
reference velocities. (This is a solution to the "level of no motion” problem outlined
in Section 5.1 and, in some sense, an alternative to explicitly considering the dynamic
influence of bottom topography). The governing equations of the B-spiral are based on
geostrophy, tracer conservation, and conservation of potential vorticity. The method
is so named because the gradient 3 of planetary vorticity constrains the horizontal
velocity to spiral with depth (Bryden 1980). The 3-spiral method provides a closed
form expression for velocity at any depth in terms of the local properties of the
density (tracer) distribution. These velocities can be related to an underlying deep
reference flow through the thermal wind relation (5.10). Application of the method
uses observations of density at each level to provide an estimate for the reference
velocities. A unique value is then chosen from this set of estimates in a least-squares
sense (taking into account the spatial covariance structure of the estimates (Olbers
et al. 1985).

In the framework of the cost function J, the observed density field is treated as
a random variable (k, is finite). The geostrophic, hydrostatic, and incompressibility
conditions are used to reconstruct the total flow field from the estimated reference
velocities (x; — o). The density equation is used to obtain the reference velocities,
but no attempt is made to update the density field or to ensure a dynamic balance
with the recovered velocity (k. is finite). The important simplification of the method
results from using the governing equations to express the unknown reference velocities

in terms of the density field. This results in a linear estimation problem and drastically
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reduces the number of unknowns. Wunsch (1994) offers an extension of the (3-spiral

approach which updates density and ensures it is in dynamic balance with velocity.

Robust Diagnostic Approach

The robust diagnostic method uses existing ocean models to determine circulation
estimates from hydrographic data while avoiding the inverse formalism. The impor-
tant feature is that the observed density field is allowed to vary (&, is finite). Since
an ocean model with fairly complete physics is used, the form of J in (5.21) is not
strictly applicable (temperature and salinity equations are included). However, the
essence of the approach is that errors are permitted in the density specification (k3 1s
finite) while the remainder of the dynamics are satisfied exactly (k; — oc). Note that
these weights are identical to that of the B-spiral, but the approach is quite distinct.

Applications of the robust diagnostic method are not widespread. The method was
first introduced by Sarmiento and Bryan (1982). Their approach was to adjust the
model predicted temperature and salinity fields towards climatology by allowing for
artificial heat and salt sources. More recently, Ezer and Mellor (1994) use an approach
whereby they carry out a diagnostic calculation using observed hydrography, followed
by prognostic calculation in which those density and velocity fields are allowed to
dynamically adjust to one another. The adjustment procedure is not carried out to
completion so the resultant fields match neither the purely diagnostic nor the purely
prognostic case.

The main advantage of these methods for analyzing hydrographic data is that
they are straightforward modifications on existing (and validated) ocean circulation
models. However, as is clear from the above examples, the methodology is varied
(gridded climatological fields are arbitrarily introduced into the calculations) and
errors are difficult to quantify.

Inverse Methods

Inverse methods are able to take into account the stochastic nature of the data and

errors in the dynamics. By interpreting the diagnostic, robust diagnostic and 3-spiral
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methods in the context of a cost function J, it is clear that all these techniques may
be viewed as inverse methods whose solution may be approached via an optimization
framework. A pioneering application of inverse methods is that of Wunsch (1978) who
estimates deep reference velocities from data. It is distinct from the (3-spiral method
mainly in that it utilizes section data in a singular value decomposition technique
(Section 2.1.2) to determine a unique value for the absolute velocity field. Wunsch’s
section method illustrates an important strength of inverse techniques, the ability to
obtain error estimates.

None of the techniques outlined thus far have explicitly addressed the joint es-
timation of both density and velocity from hydrographic data in order to obtain
dynamically balanced fields. A few inverse techniques have, however, considered the
issue. The ambitious study of Tziperman et al. (1992) attempts to fit a primitive
equation model to hydrography, buoyancy fluxes, and eddy mixing parameters to
both update these inputs as well as estimate ocean circulation. The results illustrate
mainly the difficulty in obtaining a solution (poor conditioning, existence of local
minima) in such a large-scale nonlinear inverse problem. Wunsch (1994) and Bogden
et al. (1993) adjust the input density fields to better satisfy the condition of conserva-
tion of density along streamlines (minimum mixing of density) in order to provide for
a dynamic balance with the circulation and choose a unique value for the barotropic
mode. The study of Bogden et al. (1993) is notable since it takes careful account of
the influence of bathymetry on circulation. Both of these studies also consider the

limit where ko, k2 are finite and x; — oo.

5.2.1 Summary

A number of issues have been discussed thus far pertaining to the estimation of
circulation from hydrographic data. In a system based only on the geostrophic,
hydrostatic and incompressibility conditions, a dynamical null space exists in the
sense that the barotropic component of the flow cannot be determined from density

information alone. As a result, diagnostic calculations which prescribe the baroclinic
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pressure gradient are incomplete. A further problem is that they may also produce
unrealistic flow features due to numerical evaluation of JEBAR terms from density
data. The root cause of both these defects is the inability of the diagnostic method
to allow the density field to adjust to the flow field.

Introducing the equation governing the distribution of density modifies the prob-
lem substantially. The nonlinear model couples the density and velocity fields, provid-
ing a relation between the barotropic flow and the density field. The dynamic balance
between these variables also eliminates potential problems with non-representative
JEBAR terms. Density observations must now be integrated into the model using an
estimation procedure, since density is now a prognostic variable. (-spiral and robust
diagnostic techniques, as well as the inverse methods of Wunsch (1994) and Bogden
et al. (1993), all treat the density equation as a weak constraint yet implement the

techniques in very different ways.

5.3 A Strong Constraint Approach

In this section, we consider a particular limit for the estimation problem in which
the dynamics, including the density equation, are treated as a strong constraint.
A specific example is used to explore the consequences of this approximation and
compare and contrast it to the more usual diagnostic approach.

Coastal and continental shelf regions are characterized by strong topographic vari-
ations and extensive open boundaries. The governing equations used in this example
provide a simple description of the physics governing the co-evolution of density and
velocity in coastal regions, including both JEBAR effects and the advection of den-
sity. A boundary control approach is taken whereby the buoyancy fluxes across the
open lateral boundaries of the model domain control the density and velocity in the
interior (buoyancy fluxes across the air-sea interface are neglected). The assimilation
method fits point measurements of density to the model predicted values by adjusting

the boundary inflows while satisfying the governing equations exactly.
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The model is based on the depth integrated versions of (5.1)-(5.4). The major
simplification lies in the use of a vertically well mixed water column in which density
is assumed to vary only in the horizontal. Hendershott and Rizzoli (1976) use this
assumption in modelling the circulation of the Adriatic Sea where convective processes
act to maintain the vertical homogeneity. We instead consider a relatively shallow
system where the water column is well mixed due to frictional, or turbulent, processes.
While this is recognized as an idealization, it greatly simplifies the problem and yet
does not unduly compromise the essential physics. (The physics of the adjustment to
steady state are somewhat unrealistic, but are not considered here). The remaining
simplifications are that the Coriolis parameter is constant (f-plane), wind stress is

neglected, and bottom friction is parameterized in terms of transport.

5.3.1 Model Formulation

Assuming a vertically homogeneous water column and retaining the stress terms in
(5.1) implies that the total transport takes the form

U= -"_;L-E x {Vr] + gVe - p—;ﬁ(?’ - *")} , (5.22)
where the baroclinic pressure gradient follows from (5.14). Surface and bottom
stresses are denoted by 7, and 75, respectively.

Consider these stress terms. The surface stress 7, is due to the momentum transfer
from the wind to the water column and is neglected here for simplicity. Bottom stress
can be parameterized in terms of the depth-mean velocity in cases where internal
friction is high, such as in a well-mixed water column. Following Csanady (1979) we

adopt the formula
& _.Y
Po h’
which assumes that bottom friction varies linearly with the depth averaged velocity.

(5.23)

To further simplify the governing equations, the transport streamfunction is in-

troduced, and defined as
ov v ovr

="V 5=V (5.24)
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Substituting the transport streamfunction in (5.22) and taking the curl of the resulting

equations yields the vorticity equation

LARAE AT (_V_‘E) - 5.95
J (‘Il, . + 2J(»;,h) +rV. ) = 0 (5.25)
where J denotes the Jacobian operator

a5y 2498 _ 0408

)= 9z 8y Oy Oz’
The first term in (5.25) represents vortex stretching associated with flow across iso-
baths. The second term is the JEBAR term and describes the vorticity generated by
bottom torque associated with a misalignment of the density field and the bathymetry.
The final term represents the dissipative effects of bottom friction.

To allow the density field to co-evolve with the transport, the density equation
(5.4) is required. Vertically integrating this equation under the assumption of a
depth-independent density anomaly yields

J(e, ¥) — RE'VZ = 0. (5.26)

Here, the first term represents the advection of density and the second term represents
horizontal mixing. )
As a result of these manipulations, our governing equations now consist of a vortic-
ity equation for the transport (5.25) and a tracer equation for density (5.26). These
compose a system of nonlinear, elliptic partial differential equations in two spatial
dimensions and require boundary conditions on ¥ and &. This may be contrasted
to the inviscid limit of (5.1)-(5.4) which give hyperbolic equations, whose properties
were explored in Section 5.1. The conclusions of that section will be expected to hold
in an approximate sense, provided that the frictional and dissipation terms do not

dominant the system.

5.3.2 Assimilation

The data assimilation procedure used here matches point observations of density to

the model predictions. The adjustable parameters (control variables) are chosen to be
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the values of ¥ and ¢ at inflow boundaries of the model. These define buoyancy fluxes
across the open boundaries into the model interior. The goal is then to minimize the
cost function K«
7= (b —ck) (5.27)
k=1
with respect to the controls while satisfying the governing equations (5.25) and (5.26)
exactly. In the above, € X, represents the kth observation and ¢f , is its model counter-
part. In the context of (5.21), we have allowed &, to remain finite while &, Kz = oo.
This limit is distinct from any of the methods surveyed in Section 5.2.

The optimization associated with (5.27) is carried out in a discrete vector space
and, for clarity, we discuss our assimilation method in this context. Suppose estimates
for the unknown ¥, at the inflow boundaries are given, and appropriate conditions
are specified at the outflow and solid boundaries. Interior values of ¥, ¢ can then be

determined through a discrete version of the system (5.25)~(5.26) given by
x =d(b). (5.28)

Here, the vector x contains the values of ¥,e at the n model interior points and b
contains parameters which define ¥, ¢ at the inflow boundary points. The nonlinear
operator d contains the discretized dynamics of the boundary value problem given by
(5.25)- (5.26). In other words, it represents a numerical model which serves to map
from the boundary state to the interior.
To compare point observations of the density field, contained in the k x 1 vector
z, to the values at the model grid points we introduce the k x n interpolation matrix
H such that
z = Hx + e, (5.29)

where e represents the observation error. The interpolation scheme is assumed linear
since, in this case, a model variable (density) is observed directly. Substituting from

(5.28) into (5.29) yields the regression equation

z = Hd(b) + e, (5.30)
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where the first term on the right hand side is a nonlinear operator which now includes
both the dynamics and the spatial interpolation scheme and relates the unknown b
to the observations z.

The overall goal of the estimation is to choose b such that the squared error
J=eTe

is minimized. Once the optimal boundary inflows are determined, the interior values
x may be obtained using (5.28). Overall, the problem outlined is one of nonlinear

regression.

5.3.3 Application

Numerical solution of the system of nonlinear partial differential equations (5.25)-
(5.26), or equivalently the evaluation of d(b), was based on the algorithm of Melgaard
and Sinovec (1981). It uses the method of lines technique (Madsen and Sinovec 1974)
in which the partial differential equations are mapped into a set of ordinary differen-
tial equations and solved using a standard ODE integrator. Dirichlet, Neumann and
mixed boundary conditions are supported and the algorithm solves the time depen-
dent initial-boundary value problem in two dimensions. To obtain the steady-state
solution appropriate for (5.25)-(5.26), artificial time derivative terms were introduced
and the model integrated forward from a zero initial state until these terms effectively
vanished. This is analogous to the method of successive over-relaxation (e.g. Press
et al. 1989).

The governing equations (5.25)-(5.26) were scaled both to facilitate interpreta-
tion of the results, as well as allow efficient implementation of the PDE solver and

optimization routines. The scaling is carried out as follows:
(z,y,h,¥,e) =(Lz", Ly, Rhh*, URLE™, E€™),

where the * superscripts denote the scaled variables. The scaling factors were the

horizontal length scale L = 250km which is the east-west dimension of the model
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domain, the vertical scale % = 100m representing a maximum depth, a horizontal

density variation £ = 1073, and a typical velocity U = 0.lms™ ..

The remaining
parameters in the problem are gravity g = 10ms~2, a typical mid-latitude value
of the Coriolis parameter f = 107*s~!, a friction coefficient r = 103ms™!, and
horizontal diffusivity A = 10?m2s~!. The bathymetry in Figure 1 and all results
shown hereafter are scaled based on these values. Given this scaling, the dissipation
terms in (5.25) and (5.26) are about one-tenth the values of the other terms in their
respective equations. For the remainder of the chapter, we drop the * notation but
the above scaling is to be understood.

The model geometry was designed to mimic a limited-area coastal model and is
shown in Figure 5.1. The bathymetry reflects an idealized shelf with a central gully.
bounded by one coastal and three open boundaries. The northern boundary is chosen
as the inflow boundary and ¥(z) and £(z) are specified there. (The rationale for this
placement of the inflow boundary is that in the northern hemisphere long shelf waves
propagate both phase and energy with shallow water to their right). The coastal
boundary to the west has a no flow condition and the streamfunction is constant.
The corresponding condition on density is ¢/dz = 0 allowing for density variations
to occur along the coast. At the offshore boundary to the east, the streamfunction and
density are fixed at specified deep ocean values. The remaining southern boundary
is an outfow boundary and 9¥/dy = d¢/dy = 0 there. The model is based on a
20 x 10 grid with uniform spacing.

The buoyancy fluxes across the northern boundary into the model domain consti-
tute the control variables of the problem. In keeping with our philosophy of maximum
simplicity, we assume a linear slope in ¥ and ¢ from coastal values of zero to specified
offshore values. (To account for the condition d¢/dz = 0 at the coast, a zero-slope re-
gion, comprising one-tenth the east-west dimension, is added piecewise to the sloped

region of £.) The streamfunction and density at the northern boundary are given by
¥ = b\px, E= be:l:

and only the slopes by, b, need to be specified, thereby reducing the number of control
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d¥/dy=0
de/dy=0

Figure 5.1: Geometry of the idealized coastal model. The contours represent the
bottom topography and are scaled by a depth of 100m. The thick solid line is the
coastal boundary and dashed lines represent open boundaries. The solid dots indicate
measurement locations and are identified by their associated numbers. The bound-
ary conditions used in the model are indicated adjacent to each boundary and the
coordinate axes are shown.
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variables to two.
The northern boundary is an inflow boundary. The streamfunction along this
boundary is given by
U = Uy + Upe

where the subscripts bc and bt on ¥ are the baroclinic and barotropic contributions
to the total streamfunction, respectively. the total streamfunction ¥ is governed by
by, which is constrained to be greater then one in order to ensure an inflow into
the model domain. Specifying the density gradient through b, then designates the
relative strength of the baroclinic and barotropic components of the flow. We consider
cases where b, is greater than zero, which corresponds to fresher water near the coast.
Recall the relation between transport and the baroclinic pressure gradient as given
by (5.22). If the frictional stress terms and sea level gradients are neglected, the
baroclinic component of the transport streamfunction (denoted by the s subscript)
in terms of the scaled variables is given by

0T ghg | ,,0z

te (s
With the chosen values for the scale parameters, the value of the square bracketed
term is 1/5. Based on this result, we consider two cases by which to illustrate the
joint estimation of transport and denmsity: (i) a case dominated by the barotropic
pressure gradient (by = 0.3,b. = 0.1), and (ii) a case dominated by the baroclinic
pressure gradient (by = 0.1,b. = 0.5). These both correspond to inflows into the
model domain, due to the barotropic pressure gradient associated with the sea level
gradient.

In the barotropically dominated case, shown in Figure 5.2, the density field is gov-
erned by b, = 0.1 which, according to the above relation, implies that the baroclinic
portion of by has a value of only 0.02. The actual value of by used for this case is 0.5
and thus the baroclinic pressure gradient is much smaller than the barotropic pres-
sure gradient. As a result, the transport streamlines roughly follow isobaths. There is

some evidence of cross-isobath transport due to bottom friction but the requirement
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of conservation of mass (fixed coastal and offshore streamfunction values) minimizes
this effect. Examining the vorticity equation (5.25) reveals that it is dominated by the
stretching term. The density field effectively acts as a passive tracer and is advected
so that it reflects the pattern found in the streamlines, while satisfying the necessary
boundary conditions. Note that the offshore boundary condition results in a diffusive
flux of density into the model domain. This weakens the cross-shelf density gradient
in the southern part of the domain.

The baroclinically dominated case, shown in Figure 5.3, is distinctly different. The
inflow boundary conditions indicate an approximate balance between the transport
and the baroclinic pressure gradient. This corresponds to a flux of freshwater at the
coast which is advected downstream while at the same time its cross-shelf gradient is
gradually eroded by the diffusive flux of density from offshore. The JEBAR termis a
significant component of the overall vorticity balance and misalignments in the density
field and the bathymetry drive a variety of gyres in regions of steep topography. The
gyre in the southern portion of the model domain is a combination of the JEBAR
effect and a return flow required to satisfy conservation of mass. Note that the
density is only minimally affected by these small scale circulation features. Moreover,
the cross-shelf density gradient is eroded as we move downstream due to advective
and diffusive fluxes of buoyancy, and the system gradually becomes more dominated
by the barotropic pressure gradient.

A diagnostic calculation is now illustrated in which a prescribed density field is
used to determine the baroclinic pressure gradient which, in turn, drives the transport.
Note that by fixing the density field ¢, we eliminate (5.26), and treat the JEBAR terms
as a known forcing in (5.25). In practice, this input density field would be obtained
from available profiles of density. To mimic this procedure, density measurements
were extracted from the baroclinically dominated situation at the 15 observation
locations shown in Figure 5.1. (The barotropic case is of little interest here due to
the inability of density to capture the barotropic part of the flow). These error-

free measurements were statistically mapped to the grid points of the model using
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A. Density (b=0.1) B. Streamfunction (by=0.5)
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Figure 5.2: Baseline results for the barotropically dominated case. Panel A shows
the density anomaly and Panel B shows the transport streamfunction. The control
parameters governing the problem are indicated above each panel. Results are scaled

as indicated in the text.
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| BAROCLINIC CASE .

A. Density (b.=0.5) B. Streamfunction (by=0.1)

Figure 5.3: Baseline results for the baroclinically dominated case. Panel A shows
the density anomaly and Panel B shows the transport streamfunction. The control
parameters governing the problem are indicated above each panel. Results are scaled
as indicated in the text.
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Barne’s algorithm (Daley 1991, section 3.6) and the result is shown in Figure 5.4.
This recovered density field resembles that of Figure 5.3 and is reasonably accurate
in the region where the observations are located.

The streamfunction associated with the diagnostic calculation is shown in Panel
B of Figure 5.4. Its pattern is very different from the actual streamfunction value
(Figure 5.3, Panel B), particularly with regard to the strong gyre present over the
gully region. To isolate the source of this spurious gyral circulation, the actual and
diagnostic JEBAR forcing was calculated and the results are shown in Figure 5.5. The
actual JEBAR associated with the balanced density field is of much smaller magnitude
than its diagnostic counterpart and has its largest values widely distributed over the
regions of steep bottom topography. The diagnostic JEBAR forcing is very large in
the gully region and matches the gyral circulation pattern. The erroneous circulation
in the diagnostic calculation results entirely from what appears to be a rather slight
misalignment of the input density field and the bathymetry over this region of rapidly
varying topography. This example clearly illustrates the sensitivity of the diagnostic
method to JEBAR and motivates the need for dynamically balanced density and
transport.

This joint estimation of density and transport was investigated using a series
of numerical experiments based on both the barotropic and baroclinic cases. The
nonlinear regression technique outlined in Section 5.3.2 provided the basis for the
assimilation scheme with b = (by,b,) and d(b) given by (5.25) and (5.26). The
observation array is shown in Figure 5.1 and the interpolation matrix H in (5.30)
is defined on this basis. It serves simply to pick the appropriate values of predicted

Te

density from the model grid. The squared observation/model discrepancy J = e
is minimized using a nonlinear optimization based on NAG routine EQ4FCF which
is outlined in Gill et al. (1981, Section 4.7.3). This algorithm corresponds to the
iterative Gauss-Newton procedure for nonlinear regression given in Sen and Srivastiva
(1990, Appendix C). It is based on a series of linear regressions which, starting from an

initial guess, converges on the optimal value of the unknown b. Due to the nonlinear
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| DIAGNOSTIC CASE .

A. Input Density B. Streamfunction
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Figure 5.4: Sample diagnostic calculation. Panel A represents the input density
field derived from analysis of the 15 density observations in the baroclinic case using
Barne’s algorithm. Panel B shows the transport streamfunction derived from this
density field using the diagnostic method. Results are scaled as indicated in the text.
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A. Actual JEBAR B. Diagnostic JEBAR
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Figure 5.5: Panel A. Actual JEBAR forcing calculated from the dynamically balanced
density field in the baroclinic case. Panel B. JEBAR forcing as determined from the
input density field used in the diagnostic calculation. In both cases, the results have
been normalized by the maximum value of the actual JEBAR forcing. The region
adjacent to the boundary is blank since the spatial derivatives of € and ¥ required to
calculate JEBAR are not defined there.
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model, J is non-quadratic and therefore local minima are possible.

Assimilation experiments for the barotropic and baroclinic situations used both
exact and noisy point measurements of density as shown in Figure 5.6. The noisy ob-
servations were obtained by adding normally distributed random noise of a magnitude
indicated in the plots and which sets the signal to noise ratio. These are intended
to test the robustness of the minimization in the presence of observation error. The
ability of the assimilation to recover the true values of buoyancy fluxes at the inflow
boundary (by, b.) is outlined below for the barotropic and baroclinic cases, with and

without noise.
(i) Barotropic Case

Performance diagnostics for the assimilation based on the barotropic case are
shown in Figure 5.7. Using exact observations of density, the true inflow boundary
conditions were successfully recovered. It can be seen that the squared error and
the magnitude of the gradient of the cost function decrease somewhat erratically,
reflecting the fact that the assimilation first adjusted b. to near its optimal value,
then more slowly converged towards by in the remaining iterations.

For noisy measurements, the assimilation recovered the actual value of b,, but
failed to determine by. Figure 5.7 shows that the squared error asymptotes at about
10~2 while the gradient of the cost function decreases as it attempts to adjust by
to further minimize J, but with little effect. The final value of by obtained by the
assimilation is greater than the baroclinic contribution to the flow, but less than
the value of by which gave rise to the observed density field. The use of density
information for recovering both the streamfunction and density fields appears to be
very sensitive to noise in the observations.

Examining the cost function in the vicinity of the minimum further illustrates the
sensitivity of the assimilation to noise. Panels A and B in Figure 5.8 show contour
plots of the cost function for the barotropic case. For exact observations, the cost
function shows a distinct minimum at by = 0.5, b, = 0.1. However, it also reveals the

insensitivity of the cost function to changes in by at regions outside 0.08 < b, < 0.12.
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Figure 5.6: Point observations of density at the observing locations shown in Fig-
ure 5.1 for both the barotropic and baroclinic cases. Solid dots refer to the actual
values, and triangles represent those same observations with random noise added.
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Figure 5.7: Performance diagnostics for the joint estimation problem in the barotropic
case for both exact and noisy density observations. Here, by and b, refer to values
of the control variables, J is the sum of squares of the errors and |3.J/db| refers to
its gradient. Iteration number corresponds the the minimization associated with the
nonlinear regression.
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(This provides a rationale for the convergence path of the minimization). For noisy
observations, the minimum of the cost function is indistinct, being found near b, = 0.1
but ranging over by. Clearly, the cost function is insensitive to changes in by in the
presence of noise, at least in this region of parameter space.

The failure of the assimilation to recover the minimum in by in the presence of
noise appears to be related to the null space associated with the barotropic com-
ponent of transport. This assertion was examined in more detail. Define D as the
matrix associated with the linearization of d(b) in (5.30) about the optimal b. The
eigenvalues and eigenvectors of D7D give us information on the conditioning of this
linear regression problem and is locally valid near the minimum (see Section 2.1). It
was found that the eigenvector associated with the by direction has a near-zero eigen-
value, confirming the existence of an null space associated with by (in the vicinity of
the minimum) in the presence of noise.

It is concluded that the strong barotropic component coupled with the errors in
the data creates an indeterminacy in the estimation problem. Density in this case is
only weakly related to the barotropic transport and, in effect, acts as a passive tracer.
For a successful assimilation, either exact information on the tracer distribution is
required or additional information on the transport streamfunction would need to be

introduced to the problem.
() Baroclinic Case

The assimilation of limited density observations in the baroclinic case appears to
be more robust than its barotropic counterpart. The performance diagnostics for the
assimilation, shown in Figure 5.9, indicate that it converges efficiently to the actual
values of by and b, for both exact observations. For the noisy observations, b, is
recovered almost exactly, while by is over-estimated somewhat but consistent with
the density errors. The cost function and its gradient with respect to the controls
decrease rapidly. Like the barotropic case, the assimilation first adjusts density to
near its optimal value and then adjusts the streamfunction, a strategy that arises due
to the fact that only density is being observed.
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Figure 5.8: Contour plots of the cost function (base 10) in control variable space for
the various test cases.
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Figure 5.9: Performance diagnostics for the joint estimation problem in the baroclinic
case for both exact and noisy density observations. Here, by and b, refer to values
of the control variables, J is the sum of squares of the errors and |8.J/8b| refers to its
gradient. Iteration number corresponds the the minimization procedure associated
with the nonlinear regression.
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Panels C and D of Figure 5.8 show the shape of the cost function in the vicinity of
the minimum for the baroclinic case. For exact observations, a sharp minimum in the
cost function is found. But when noise is added to the observations, the minimum
becomes less distinct. However, an important feature is revealed by the shape of
J. The major axis is tilted with respect to by and b, implying that J is sensitive
to variations in both by and b.. The eigenvectors of DTD confirm this tilt of 75
degrees, and it is notable that the associated eigenvalues differ only by a single order
of magnitude.

The influence of each of the individual observations on the baroclinic assimila-
tion was also examined. Density measurements which occurred over regions of steep
topography were found to be the most important in the estimation of by. This is sen-
sible since they are of primary importance in accurately determining the JEBAR part
of the overall vorticity balance. It is concluded that the joint estimation of density
and transport for the baroclinically dominated case appears to be well conditioned
even in the presence of noise. The reason is that density acts as a dynamically active

tracer and thus has a strong dynamic link to transport.

5.4 Discussion and Conclusions

In this chapter, we have investigated the problem of estimating circulation from den-
sity data. Using the geostrophic, hydrostatic, and incompressibility relations, the
well known indeterminacy in obtaining the barotropic mode from density data was
demonstrated. To determine an absolute velocity field in this case, external infor-
mation is required on the barotropic flow or sea level gradient. An alternative is to
include the density equation explicitly into the analysis thereby dynamically linking
the density to the flow. The result is a system of nonlinear governing equations giving
balanced density and velocity fields. An estimation procedure is required since, with
density a prognostic variable, the model must be fit to the density data.

The general problem of determining circulation from density can be approached
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in the framework of variational data assimilation. A general cost function was pro-
posed and existing estimation procedures were examined in this context. An example
was then provided to investigate the particular limit where the dynamics. including
the density equation, were considered a strong constraint. This example focused on
coastal regions and was based on an idealized model which included JEBAR and
the advection of density. A boundary control approach was used whereby the buoy-
ancy fluxes across the inflow boundaries of the model domain were estimated from
point observations of density in the interior. This simple model demonstrated that
in a barotropically dominated case, the transport was very sensitive to noise in the
density field. Density in this case acted as a passive tracer of which accurate mea-
surements were required to recover transport. For the baroclinically dominated case,
density was dynamically active and thus contained additional useful information on
the flow. As a result, the assimilation was robust in the presence of observational
noise.

The idealized example given in Section 5.3 not only illustrates the issues involved
in the joint estimation of density and transport, it also serves to identify the fea-
tures which must bc considered for any practical application. Methods based on
the approach outlined here might provide a possible alternative to diagnostic calcu-
lations commonly carried out in shelf regions. Importantly, these methods produce
dynamically balanced density and flow fields which take into account the coupling
between the barotropic and baroclinic components of the flow. This allows more
accurate determination of the bottom torques associated with JEBAR. Below, we
further speculate on issues arising in more practical applications.

The model given by (5.25)-(5.26) has a number of unrealistic assumptions. The
most important of these is the use of a vertically homogeneous density field. While
this assumption is rarely satisfied in practice, it has allowed us to obtain a very simple
model with which to investigate the joint estimation problem. A number of dynamic
factors must be considered to account for depth dependence in density. Examining

(5.14) indicates that we must depth integrate over the vertically varying horizontal
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density gradient in order to obtain the baroclinic transport. The advection of density
given by (5.19) also reveals that the interaction between the vertical profiles of density
and the sheared velocity associated with thermal wind must be taken into account.

Allowing for vertical variations in density introduces complicated three-dimensional
structure to the density and velocity fields. While implementing such a model may
be tedious, its application presents no conceptual difficulty for numerical methods.
Clearly, the same conclusion also applies to the addition of surface wind stress and
buoyancy fluxes, relaxing the f-plane assumption, and adding realistic coastlines and
bottom topography. In this regard, the work of Salmon (1994) is notable in that it
formulates a relatively simple, generalized two-layer model which is able to account
for the important physics associated with horizontally and vertically variable density.

We have chosen to use a boundary control approach as the basis for the assimila-
tion problem. This implies that the model equations are treated as strong constraints
and can be parameterized in terms of the boundary conditions. In Section 5.3, ad-
vection of density across the lateral open boundaries was assumed to control the
distribution of density and velocity in the model interior. In realistic cases, buoy-
ancy fluxes may also occur through the surface boundary (heat transfer and evap-
oration/precipitation) and the coastal boundary (freshwater input from rivers and
runoff). If these sources are deemed significant, they must either be prescribed, or
estimated, as part of the overall modelling and assimilation procedure.

One area in which the boundary control procedure may not be suitable is for cases
where the steady state assumption breaks down. Advection of density in the governing
nonlinear equations offers the possibility of (baroclinic) instabilities. This was evident
in the successive over-relaxation procedure used to achieve a steady state. When the
density gradients were large, a steady state could not be achieved (or achieved in only
a statistical sense) due to what appeared to be an instability process. This implies
some limits for the relevant range of by and b,. It also suggests some problems with
extending the approach to the boundary control of time dependent models with a

prognostic density equation. If the model generates internal instabilities which are
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only weakly linked to the boundary conditions, boundary control will prove difficult.
An approach which updates the entire field (such as the Kalman filter) may therefore
be more suitable.

In spite of these issues, a simple application using a realistic nonlinear ocean
model might be feasible. The key issue is keeping the number of unknowns small, so
that a minimization without explicit gradient information could be carried out (the
numerical evaluation of gradients is only feasible for a small number of unknowns).
Consider a semi-enclosed basin where the circulation is controlled by buoyancy fluxes
from a small number of well defined locations (including rivers), and where surface
buoyancy fluxes were small. With a good first guess of the circulation and buoyancy
inputs (e.g. from a diagnostic calculation using climatological density), the boundary
control method might provide a means to refine these initial density and velocity fields
in a dynamically consistent manner. If the number of unknowns is large, gradient
information, say from an adjoint model, would be needed to faciliate the minimization.

In summary, we suggest that some of the shortcomings of the commonly used
diagnostic method can be overcome by explicitly considering the evolution equation
for density. In practice this will likely involve assimilating hydrographic data into
contemporary ocean models based on a fairly complete set of dynamic and thermo-
dynamic equations. A simple boundary control approach based on such models might
prove to be a useful first step. However, identifying a workable approach to assimilat-
ing data into a complex, nonlinear ocean with a prognostic density equation remains

as an area for future research.



Chapter 6
Concluding Remarks

In this thesis, some aspects of assimilating data into coastal models have been investi-
gated. The approach was based on isolating the essential physical processes involved
in each of the assimilation problems examined. This facilitates a detailed exploration
of the dynamical and estimation issues involved in analyzing data using simple mod-
els. Specific conclusions for each of the studies carried out in this thesis are given
at the end of their respective chapters, and will not be repeated here. Instead, the

following general remarks are offered:

1. Data analysis techniques based on simple dynamics offer a viable alternative to
more generic statistical schemes such as optimal interpolation. Both the tidal
analysis of the time-space series of velocity from a ship-ADCP (Chapter 3), as
well as the inversion of point observations of density for transport in Chapter 5,
are suggestive of the diverse array of data types and models which can be treated

with such assimilation methods.

2. Process-oriented approaches that isolate the essential physics are a useful pre-
cursor to the development of more complete data assimilation schemes. Their
role is to isolate specific dynamic properties and examine these in the context of
available observations and estimation schemes. This highlights elements of the

problem likely to be important in applications based on more complex models.
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This feature was particularly evident in Chapter 5 where a detailed examination
of the dynamics governing the density and transport fields provided considerable

insight into the joint estimation of these quantities.

3. The identification of inflow boundary conditions using interior data is possible
using data assimilation techniques. This is an outstanding issue in regional mod-
elling studies and assimilation methods provide an alternative to the commonly
used practice of specifying inflow boundaries based on climatology. Estimation
of boundary conditions has been a common theme throughout this work and
has been examined in the context of both weak and strong constraint methods

and using a variety of dynamics.

4. Straightforward, but effective, data assimilation schemes are needed for prac-
tical applications. Optimal schemes are desirable but often prove difficult to
implement, particularly in the case of operational systems which require near
real-time data acquisition and assimilation. This provided the motivation for

the approximate Kalman filter in Chapter 4.

For the remainder of this chapter, we examine the implications of this final point

with regard to assimilating data into realistic ocean models using suboptimal schemes.

6.1 Suboptimal Data Assimilation

This thesis, having a data assimilation perspective, argues that analysis of oceano-
graphic data is best organized around a numerical circulation model. It is evident
that suitable data (i.e. in terms of its quantity, quality, type, and distribution) pro-
vides one important component of any successful estimation scheme. It also seems
sensible that a realistic ocean model should be used to assimilate these data for a
detailed and accurate picture of circulation to be obtained. For coastal regions a

number of models with fairly complete physics are presently available (see Haidvogel
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and Beckmann 1996). These models are nonlinear and support a variety of complex
dynamics including, for example, baroclinic instabilities.

In principle, it is possible to use any ocean model with the methods which were out-
lined in Chapter 2. Of these, the extended Kalman filter and adjoint-based smoothing
are perhaps the most widely used nonlinear data assimilation techniques. However,
a number of outstanding issues arise when using these techniques to assimilate data

into complex, nonlinear ocean models. These include:

e Computational load. Filtering and smoothing algorithms often have formidable
computational requirements. For instance, the extended Kalman filter requires, at
every time step, the model to be linearized and matrices of dimension comparable
to the ocean state vector to be multiplied and inverted. Similarly, adjoint-based
smoothing methods require multiple integrations of the model and its adjoint over the
interval of interest. The required number of integrations can vary widely depending

on the conditioning of the estimation problem.

¢ Optimality. As demonstrated in Chapter 2 and Appendix A, the optimality prop-
erties of the Kalman filter and smoother, such as maximum likelihood, no longer hold
for nonlinear models. Nonlinear dynamics generate higher order probability moments
which often prove significant for atmospheric and oceanic systems (Miller et al. 1994).
These moments are not accounted for in the commonly used nonlinear extensions of

the filtering and smoothing algorithms.

e Input Statistics. For practical application of any assimilation algorithm, the un-
certainty associated with the observations and model must be specified. While this
is often possible for the observation errors, it is not clear how to obtain the complex
error fields associated with realistic ocean models. While this fact is made explicit
in the extended Kalman filter it is, in fact, equivalent to specifying the form and

strength of the regularization terms used in adjoint based smoothing.

e Matrix or Operator Representation. In practice, ocean models are implemented
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based on discretized dynamics, while assimilation methods are introduced using op-
erator notation or vector functions. As a result, difficulties in implementing some
techniques are often not entirely obvious. For instance, constructing, implementing
and verifying the adjoint code associated with the discretized equations of a complex

nonlinear ocean model is not a trivial task.

For practical purposes, it is evident that a trade-off exists between the complexity
of the model used, and the sophistication of the assimilation scheme. Computational
requirements of the extended Kalman filter and, to a-lesser extent, adjoint-based
smoothing, are prohibitive for forecasting systems based on contemporary ocean mod-
els operating in near real-time. Moreover, these schemes cannot be justified on the
basis of statistical optimality due to nonlinearities and incomplete prior information.
It is clear that the practical difficulties and expertise required to both apply and
maintain such schemes may detract somewhat from their theoretical advantages (e.g.
Thacker 1992). These considerations argue strongly for robust and efficient subopti-

mal data assimilation schemes for use with existing nonlinear ocean models.

6.2 Future Directions

Based on the issues outlined in the previous discussion, I will speculate briefly on
some possible approaches to assimilating data into nonlinear ocean models. First,
since the focus here lies mainly in operational prediction, I restrict myself to con-
sidering filtering algorithms based on sequential estimation schemes. Second, let it
be assumed that adjoint code, and associated gradient information, is unavailable.
Clearly, adjoint code is extremely valuable. It provides the basis for filtering tech-
niques such as optimal nudging (Zou et al. 1992, Stauffer and Bao 1993), nonlinear
adaptive filters (Hoang et al. 1994), and stochastic optimal control (Heemink and
Metzelaar 1995). In addition, the sequential variational methods of Pires it et al.
(1996) offers an extension of adjoint-based smoothing to what is, in fact, a filtering

problem. Therefore, while this second assumption may appear rather restrictive, it is
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justified in many cases due the difficulty of deriving adjoint code from existing ocean
models. Below, three approaches are suggested which might hold some promise in
the development of efficient, yet effective, operational schemes.

Recently, the suboptimal technique of nudging has received renewed attention
(Oschlies and Willebrand 1996, Fischer and Latif 1995, Ezer and Mellor 1994). While
this a relatively unsophisticated data assimilation method, it has been reconsidered
in light of the difficulties encountered in implementing the more optimal techniques,
not a small part of which is their computational burden. The study of Oschlies
and Willebrand (1996) is particularly notable in that it recognizes that while the
dynamically consistent nudging matrices provided by the (extended) Kalman filter are
desirable, they are hard to obtain for realistic ocean models. As an alternative, they
construct an approximate nudging matrix which ensures that data are introduced
into the model integration in a dynamically balanced manner, taking into account
the relative uncertainties. They demonstrate that this nudging procedure eliminates
spurious adjustment processes and improves the overall model estimates. I feel that
such intelligent nudging approaches, built on a foundation of ocean dynamics, are
extremely useful and may allow the present generation of ocean models to be used
for data assimilation with a minimum of effort.

A probabilistic framework might also prove to be valuable in developing practi-
cal data assimilation schemes. Appendix A demonstrates that integrating an ocean
model may be viewed as a transformation on the input probability density function
describing the ocean state. Motivated by this fact, Evensen (1994) has proposed a
Monte Carlo method to evaluate this transitional density function in the context of
the Kalman filter (referred to as the ensemble Kalman filter). This approach allows
for error growth associated with the nonlinear dynamics and accounts for the exis-
tence of higher order probability moments. It also eliminates the direct calculation of
the forecast error variance, the most computationally demanding and difficult step in
the extended Kalman filter. Evensen suggests that that this ensemble Kalman filter

may be computationally feasible for realistic problems and therefore may prove useful
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in nonlinear data assimilation.

Finally, the reduction of complex dynamical systems is considered as a means to
efficiently implement data assimilation using existing ocean models. This approach is
based on constructing approximate dynamical models with greatly reduced dimension
and therefore enhanced computational efficiency (see Chapter 4). These reduced
dynamics might allow suboptimal nudging matrices or approximate adjoint operators
to be obtained. Hasselmann (1988) presents some intriguing ideas about nonlinear
system reduction. The basic idea is that a small set of patterns can often be identified
which account for the important components of the spatial and temporal evolution of
the system. These notions might be extended to the reduction of a complex, nonlinear
ocean model. Based on the observation that the realized degrees of freedom in an
ocean model are much smaller than the actual degrees of freedom, such a system
reduction might be possible.

To conclude, the increased availability of oceanographic data and advances in
numerical ocean modelling have brought us to a stage where a realistic description
of the ocean circulation is feasible. The development of data assimilation has also
moved beyond the research stage to a point where operational circulation models
can now be considered. Without a doubt, a large number of outstanding issues still
remain. Many of these are fundamental questions on nonlinear systems theory and
statistical estimation. and difficult to address even in simple models. However, given
the experience gained thus far, it is felt that a reasonable path is to begin developing
workable (suboptimal) data assimilation schemes which can be implemented with
contemporary ocean models. It is hoped that the simple, process-oriented models of

this thesis provide an initial step in that direction.



Appendix A

Least-Squares Regression

The classic regression equation is given by

z=Db+e
where
Zz — n X1 vector of observations
D — n xp matrix representing the model
b — px1 vector of unknown parameters
e — nx1 vector of errors.

The goal is to choose the unknown b such that the model is a best fit to the data.

If it is assumed that the error e ~ N(0,0%I), the probability density function of
eis

1 { 1 eTe}
o™ (2m)n/2 P17 %02 |

Now, since e is determined by the observations (which are known) and the unknown

p(e) =

parameters b, we may view p(e) as a function of b. The maximum value of p(e) is,
in some sense, the most likely value. It is determined by specifying b such that the

quantity in brackets, the squared error, is minimized.
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Least squares regression then minimizes the sum of squares of the error
J=eTe

to yield an estimate for b in terms of the data z. Under the distributional assumptions
given above, this corresponds to minimizing the error variance. Differentiating J with

respect to b and setting the result to zero yields
b =(D'D)"'D’z

where b is the estimate for b which minimizes J. An estimate of the observations %
is then obtained as
% = Db.
Error estimates are also easily obtained as a part of the regression calculation.

The error covariances of b and % are (e.g. Sen and Srivastiva 1990)
var(b —b) = ¢%(DTD)™!
var(z —z) = o’D(DTD)'D?

These quantities can be used to determine confidence intervals for the estimates b
and 2.
Generalized least squares regression assumes e ~ N (0, X) which leads to different

estimates than those given above. The principles are, however, identical.



Appendix B
Probabilistic Approach

This appendix outlines a probabilistic derivation of the general solution to the fil-
tering and smoothing problems. The approach clearly illustrates how the dynamics
and measurement processes alter the probability density function which describes the
ocean state. In doing so, it suggests some of the important issues in estimation prob-
lems involving nonlinear and non-Gaussian systems which are not entirely obvious

from an optimization perspective.

B.1 Filtering

A complete description of the state x at time t = N based on observations up to and

including time V is contained in the conditional probability density function (pdf)
p(xn|Zn) (B.1)

where Zy = {Zo,...,Zy} represents the set of observations in the interval (0, N).
Suppose Zy and p(xy|Zy) are known. The model dynamics (2.13) allow this pdf
to be stepped forward in time. This model forecast is referred to as the prediction
process. If observations then become available at the forecast time, a measurement

process combines this additional information with the estimate from the prediction
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process. The measurement and prediction processes together yield the general filtering

solution.

B.1.1 The Prediction Process

The prediction process determines the conditional probability density function p(Xx+1]Zx)-

Expressing p(Xy+1|Zn) in terms of the marginal density function we have
plxvlZy) = [ pleweslxn, Zn)p(xnlZy)dxn

= [ pxwsilxn)p(xen|Zn)dxy (B.2)

where the Markov property of the dynamics has been used in the second equality.
The prediction equation (B.2) gives the updated density function p(xy+:|Zx) in terms
of a transition density p(Xy+i[Xn) and the known prior density function p(xxy|Zy).
The prediction process given here yields the best estimate of the system state before

measurement.

B.1.2 The Measurement Process

Suppose that a new observation zx;; becomes available. This additional information
can be used to produce an updated estimate of the state. This new estimate is
summarized by the conditional density function p(Xn41|Zn+1,Zy). For notational
convenience let

P(XN+1]ZN41, ZN) = p(XN41 ZNg1)-
Now, using Bayes’ theorem

Y/ YA
p(xXni1|Znst) = p(ZN41|XN 41 N)P(XN41] N) (B.3)
p(ZN41|ZN)

p(zZn41|XN1)p(XN41|ZN)
p(zn+1|ZN) ' (B-4)

Examination of this result shows that the desired quantity p(xy.,1|Zn+1) can be ex-

pressed in terms of the pdf of the prediction process p(xy41|Zx) multiplied by a
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transfer function which depends on the properties of the observations. The measure-

ment process gives the best estimate of the system state after measurement.

B.1.3 The Genreral Filtering Solution

The general solution of the filtering problem is obtained using the results from the
prediction and measurement processes. Substituting for p(Xn+1|Zn+1) in (B.4), using
(B.2), gives

p(znq1|Xne1) [ (XN Ixn)p(xn|ZN Jdx N
p(zn41|ZN)

p(XN+1|ZNy1) =

S (2N 41 [XN+1) (XN 41 [XN)P(XN | Z N ) dX N .
p(zZn+1|ZN)

The denominator in this equation can be rewritten as
p(zn+1|Zy) = /P(ZN+1|XN+1, ZN)p(xN+1|ZN)dXN 41
= / / P(ZN+1[XN41)P(XN 41 XN, ZN)p(XN|Z N ) dX ndX N 41

= / / P(ZN41[XN41)P(XN41 XN )p(XN|Z N ) dX NvdX N 41

and the equation becomes

J P(ZNn 1| XN ) P(X N1 XN ) P(XN | Z N )dX (B.5)
IS P(ZN+1|XN+1)P(XN+IIXN )P(XN|ZN )dedXN+1

p(XN+1|ZNgr) =

The equation (B.5) provides a general solution to the filtering problem. It specifies
a recursive relation which governs the temporal evolution of the conditional proba-
bility density function describing the state for a Markov process with measurement.
This updating involves the transitional pdf p(xy+;|xn), which is based on the dy-
namics, as well as information on the pdf of the observations. The general solution
to the filtering problem can be difficult to solve (Kitagawa 1987). For linear models
with Gaussian noise processes, the mean and covariance of the governing pdfs are
adequate to completely specify the filtering problem, which reduces to the Kalman
filter of Section 2.3.1



B.2 Smoothing

The smoothing problem is governed by the conditional pdf p(Xo,...,X~|Zy). Using

Bayes’ theorem, this conditional density function can be represented,

o(Xor. . xn|Zw) = p(Zn|Xo, ... xN)p(Xo, - . . XN (B.6)
p(ZN)

For an interpretation of (B.6) in terms of the model (2.13) and measurement (2.14)

equations, note the following:

1. In p(Zn|Xo,...Xn), the sequence {Xo, ..., Xn} is given. A measurement relation
of the form (2.14) then implies that the z; are independent if € is a white noise

process. This gives

o

P(Zn[xo,...xn) = p(e])p(e3)...p(e})

N
= [In(e?
t=1

2. Expanding p(xg,...,Xnx) and applying the Markov property of the model (2.13)

yields

p(Xo,....Xn) = p(XNIXN=1;---+X0)P(XN=1,---,Xo)
= P(lexN—l)P(xN—lv e axO)
= p(xl\flxz\/’—l)P(xt\f—llxN—2’ sevy XO)p(x‘V_g, ) xO)

= p(xn[xn-1)P(xy-1]xn-2)...p(x1]%0)p(x0)
N
= p(xo) Ep(xt|xt—1)-
The final expression in this equation shows that the joint density function is
the product of the initial density function and some transition density function.
Note that the transition density function p(xn|Xn-1) is equivalent to the system
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noise term GeZ_, of (2.13) in view of the fact that xy_, is given and e} is a

white noise process.

Using the results above, eqn. (B.6) can be rewritten as

N p(Ge™) T, p(e? _
P(xo, . 3xN|ZN) — p(x()) Hx-l pp((zi;)) H:_ p(ex) (B.l)

This gives the probability density of the complete state {xXo,...,Xy} conditioned on
the complete set of observations {Zy} as a function of the dynamic and measure-
ment equations. It illustrates that P(xo,...,Xy|Zn) involves information on the
initial conditions and the probability distributions of the model and observation er-
rors. A linear, Gaussian system reduces the maximum likelihood estimate associated
with (B.7) to the minimization problem (2.29) which governs the Kalman smoother.
Clearly, both nonlinear and non-Gaussian systems lead to complex expressions for

the pdf governing any filtering or smoothing problem.
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