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Abstract 

In order to investigate the photon transport in inhomogeneous clouds, a Monte Carlo cloud 
model with internal variation of optical properties is developed. The data for cloud vertical 
internal inhomogeneity are chosen from published observations. Parameterization of the 
solar radiative properties of clouds is used in the form of the liquid water content and 
the effective radius of cloud droplet. The Monte Carlo simulations sho\ \t for overcast 
stratocumulus clouds, the differences in reflectance between the vertica. inhomogeneous 
clouds and their plane-parallel counterpart are very small (only about 1%). These differences 
can be enhanced up to 10% for large solar zenith angles, when the overcast clouds are 
separated into broken cloud fields. If the cloud coverage is large, the vertical inhomogeneity 
of clouds can cause about 7% increase in cloud absorption, which may help to explain the 
cloud absorption anomaly. Also, the parameterization of effective cloud amount for cloud 
absorption is discussed. 

For a vertical homogeneous plane-parallel layer with horizontal cosinusoidal periodic 
variations of the extinction coefficient, the first order perturbation solution of the three 
dimensional radiative transfer equation has been obtained. There exists a correspondence 
between the distribution of the extinction coefficient and the distribution of the upweUing 
intensity. However, under certain conditions, the distribution of the upweUing intensity is 
opposite to the distribution of the extinction coefficient. If the solar zenith angle is large, 
shifts in the configurations of the distribution of the upweUing intensity may appear. The 
single scattering parameters can influence the distribution of the diffuse radiative intensity. 
The distribution of the heating rate inside the cloud and the distribution of the extinction 
coefficient are nearly coincident with each other. 

The perturbation solution can be extended to second order multi-mode case. The calcu­
lations show that the perturbation solution series is convergent. The cloud albedo changes 
from the unperturbed value when the second order perturbation correction is appUed. The 
change of albedo can be negative as weU as positive. The albedo changes du> to the geo­
metric factors and scattering factors are discussed. Also, the radiative transfer in a medium 
with an internal variation other than the cosinusoidal type is investigated. 

Monte Carlo simulation is used again to investigate the horizontal irradiance distribution 
in clouds, to verify the results of the analytical solution. Also the impact of geometric 
variation to the distribution of irradiance has been discussed. 

xii 
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Chapter 1 

Introduction 

1.1 Background 

Climatic change and stability are intimately related to the Earth's radiation bud­

get, which itself is strongly influenced by clouds. In turn, clouds are governed by 

the Earth's radiation budget and thus by climate. For example, simple energy bal­

ance conservations imply that 5% change in cloud amount will result in an estimated 

change around of 2 degrees in the surface temperature. The potential importance of 

this feedback has initiated a large research effort to understand the cloud-radiation 

interaction. Clouds are one of the most crucial and least understood components of 

the climate system. The basic lack of understanding stems from our inability both 

to realistically describe the various life cycle processes of clouds and to effectively 

determine the radiative properties of realistic clouds. A process that is likely to play 

a central role in the evolution of clouds and clouu systems is the interaction of radia­

tion with the atmospheric environment both in and around clouds, This interaction 

depends on the cloud geometric structure and cloud mternal optical properties, which 

are highly nonUnear. However, in present climate models the plane-parallel approxi­

mation is generally used. Plane-parallel clouds are idealized flat, homogeneous slabs 

of infinite horizontal extent. The finite cloud geometry and cloud internal inhomo­

geneity are generally ignored. Such simple cloud models can hardly describe correctly 
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the cloud-radiation interaction. Therefore efforts are being made to improve radiative 

transfer methods to account for clouds with more realistic forms-

One approach to the problem is to simulate photon transport in cloud fields using 

the Monte Carlo model. In early work, Monte Carlo simulation was used to ex­

amine photon transport in homogeneous isolated clouds of definite shapes (Busygin 

et al., 1973; McKee and Cox, 1974; Davies, 1978). The large scale cloud fields were 

simplified to be regular arrays, in which all clouds are of the same shape and the 

distance between any two neighbouring cloud centers is the same. The importance 

of cloud shape and cloud field arrangement for radiative transfer process has been 

investigated by several groups (Busygin et al, 1973; Aida, 1973; Welch and Wielicki, 

1984). Kobayashi (1988) extended the regular array field to a cloud field composed of 

various sizes of clouds in a random distribution. Recently, Barker and Davies (1992) 

studied solar radiative transfer in a realistic broken cloud field with a scaling power 

law, motivated by observations showing that a cloud field on mesoscopic scale exhibits 

"scaling" or spatial autocorrelation structure (Cahalan and Snider, 1989). 

A number of works have focused on the parameterization of Monte Carlo calcula­

tion results (Harshvardhan and Weinman, 1982; Weinman and Harshvardhan, 1982; 

flarshvardhan and Thomas, 1984; Schmetz, 1984; Welch and Wielicki, 1985; Breon, 

1992). In order to describe more accurately radiative transfer processes in climate 

models by incorporating the Monte Carlo simulation findings, a successful parameter­

ization is necessary, since a direct Monte Carlo simulation is not practical in climate 

models. 

Realistic photon transport processes are simulated in Monte Carlo methods and 

computation of irradiance is fairly easy for any specified cloud geometry. However, 

since the number density of incoming photons (number per square meter) used in 

Monte Carlo simulations is much smaller than that of the real solar beam, the dis­

tribution of radiance is hard to be obtained using a Monte Carlo method. Also, the 

Monte Carlo simulation requires an excessive computer time. 
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Another approach to the radiative transfer problem is to solve the multi­

dimensional radiative transfer equation. Davies (1978), Brandley (1981), Preisendor-

fer and Stephens (1984), and Stephens and Preisendorfer (1984) have derived solutions 

that describe the radiance fields of an isolated homogeneous cub«dal cloud. For more 

complicated geometric cloud shapes, such a method is generally not applicable. 

For both of the above approaches, the study of radiative transfer has been mostly 

restricted to the effect of cloud geometry with the cloud still taken as internally ho­

mogeneous. However, in addition to having complicated geometric structures, clouds 

generally have internal inhomogeneity. For example, in cumulus clouds the liquid 

water content (LWC) and the effective radius increase with height. Such an increase 

of LWC with height is not observed in cirrus clouds. Horizontally the clouds are 

also inhomogeneous; the central core regions (updraft regions) in cumulus cloud have 

larger LWC and the boundary regions (downdraft regions) have smaller LWC. The 

impact of the internal inhomogeneity on the radiative transfer process has seldom 

been investigated either by Monte Carlo simulation or by any analytical method. 

Recently Kabayashi (1991) and Evans (1993) have considered photon transport in 

internally inhomogeneous clouds using a numerical model (space grid method). Just 

as in the Monte Carlo simulations, such numerical models are generally very time 

consuming. However, since the direct solar beam term has been treated very approx­

imately in their works, these works did not observe all of the physical phenomena 

shown in the following chapters. 

1.2 Purpose and outline of study 

The purpose of this thesis is to explore the impact of the cloud internal inhomogeneity 

on the radiative transfer process in clouds and our attention has been concentrated 

on this cloud internal inhomogeneity. An analytical method for solving the three 

dimensional radiative transfer equation and the Monte Carlo simulation method are 

both used in the study. 
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In the second chapter the cloud internal vertical inhomogeneity is investigated. 

In order to deal with the cloud internal variations, we develop a new Monte Carlo 

simulation scheme in which the cloud internal optical properties can be taken into 

account. There exist observations of the vertical variation of the LWC and droplet 

effective radius and all the observations show that the vertical variation of LWC is 

quite similar for cumulus (stratocumulus) clouds. Therefore, in calculations we can 

take the cloud vertical variation from observations and use a parameterization to 

obtain the internal optical properties from the observed liquid water content (LWC) 

and effective radius. Flat clouds and broken clouds are investigated. Cloud absorption 

was seldom considered before in Monte Carlo models, but cloud absorption is an 

important aspect in our study. 

We find that an analytical solution can be obtained for radiative transfer in a 

medium with internal inhomogeneity using a peiturbation method. In chapter 3, 

the first order perturbation solution of radiative transfer in a cloud with internal 

cosinusoidal periodic variation is obtained. The distribution of the upweUing intensity 

and cloud internal heating rate are discussed. 

In chapter 4, the analytical solution is extended to the multi-mode case and to 

second order perturbation expansion. An arbitrary form of cloud internal inhomo­

geneity can then be investigated. When the second order perturbation is considered, 

a change in cloud albedo results due to inhomogeneity, which will be extensively 

studied in that chapter. 

The Monte Carlo simulation is used again in chapter 5 to explore radiative transfer 

in clouds with internal horizontal variation. One purpose of this study is to verify 

numerically results obtained in chapter 3 and 4. 

Physical explanations for the phenomena explored are always emphasized in fol­

lowing chapters. 



Chapter 2 

Solar Radiative Transfer In 

Clouds With Vertical Internal 

Inhomogeneity 

In the last twenty years Monte Carlo simulation of solar photon transport in cloud 

fields has been extensively investigated. Although most of t^e reported Monte Carlo 

simulation works have improved on the plane-parallel assumption by considering cloud 

(cloud field) geometry structures, the improvements are more qualitative than quan­

titative. In most of these Monte Carlo simulations, the attention has only been paid 

to cloud geometry. The internal variations of cloud optical properties have not been 

considered and the clouds are taken as internally homogeneous. 

It is established from observations that a cumulus (stratocumulus) cloud is inho­

mogeneous in both horizontal and vertical direction* (Mason, 1971; Paltridge, 1974; 

Piatt, 1976; Slingo et al, 1982a; Slingo et al, 1982b; Noonkester, 1984). For in­

stance, inside a cumulus (stratocumulus) cloud the liquid water content (LWC) and 

the cloud droplet size distribution vary with height (Mason, 1971), which leads to 

the single scattering properties of cloud droplets being variable in the vertical direc­

tion. Therefore, the radiative transfer in a cloud would be influenced by the cloud 

inhomogeneity. 

5 
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To what degree can the inhomogeneity of clouds affect the Monte Carlo simula­

tion of radiative transfer in broken clouds? By consideration of the vertical internal 

inhomogeneity, will the cloud albedo difference between a broken cloud and its plane-

parallel counterpart be enhanced or redaced? What is the influence on the cloud solar 

absorption? These questions are important for both the study of radiative transfer 

in the realistic cloud field itself and the parameterization of Monte Carlo results in 

climate modeling. 

In order to study the internal inhomogeneity of clouds, the sp lial variation of 

cloud optical properties has to be considered in a Monte Carlo cloud model. In this 

model the length scales of homogeneous cells constituting a cloud will be taken to be 

small, close to the mean free path of photons in the cloud. Consequently on average, 

a photon will scatter only once as it passes through each cell. The -patial variation 

is taken into account properly in the photon transport process. In this chapter, the 

cloud vertical internal inhomogeneity will be investigated first. 

2.1 Vertical profiles of LWC and re in stratocu­

mulus clouds 

In the last 40 years, there have been a lot of aircraft observations of the droplet distri­

bution in cumulus (stratocumulus) clouds (Mason, 1971; Paltridge, 1974; Piatt, 1976; 

Slingo et a/., 1982a; Slingo et al, 1982b; Noonkester, 1984). All the observational 

results showed that inside a cumulus (stratocumulus) cloud, the LWC and the droplet 

radius increase with height above the cloud base. This phenomenon is attributed to 

the water vapor condensation process. 

In the following, we use the observational results of Noonkester (1984). In his 

observations, besides the vertical profile of LV/C, the vertical distribution of cross 

sectional areas of droplets are also presented. Fig.2.1a and 2.1b show the profiles 

of LWC and cross sectional area of the droplet in stratocumulus clouds measured 

for actual marine clouds. The two curves lepresent the two aircraft observational 
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results of August 18 (A18) and May 29 (M29) near San Diego in 1981. The droplet 

spectrometer probes are used in measurements. The vertical profiles of LWC and 

cross sectional area are calculated from droplet spectrum in different height. The 

clouds of A18 and M29 are pure water clouds. 

From the c)oud base to thj positions near the cloud top (200 m on A18, 280 m on 

M29), the LWC increases almost linearly. Noonkester gave the approximate formulae 

for the vertical variations of LWC in these regions from the observation results 

A18 : W = 0.0074 + 0.0016* (5 m - 3 ) , (2.1) 

M29 : W = 0.019 + 0.0012* (g m - 3 ) , (2.2) 

where z is the height in meters from the cloud base. Noonkester also presented the 

approximate formulae for droplet cross sectional areas in these regions, 

Al8 : A = 54 + 1.9* {cm-2m-3) (2.3) 

M29 : A = 50 + 1.3* {cm^m^) (2.4) 

Above these linear regions to the tops of clouds, LWC increases slowly (on M29) or 

decreases (on A18), which is due to the turret structures in the top of stratocumulus 

clouds. Above a cloud top the LWC decreases sharply. 

The cloud effective radius can be obtained by given liquid water content and 

droplet cress section 
3 W 

re = — 10lo(/m>) , (2-5) 

where p(gm~3) is the liquid wa!,er density. Fig.l (c) shows the vertical profiles of 

re for clouds of A18 and M29. In radiative transfer processes, the LWC and rf are 

the most important integrated quantities derived from the micro-physical structure 

of clouds, since LWC and re are associated with the cloud internal optical properties. 

2.2 Monte Carlo models 

We consider the Monte Carlo method because the solutions of the radiative transfer 

equation in non-planar inhomogeneous clouds through analytical methods are very 
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Figure 2.1: (a) and (b) the vertical profiles of LWC and droplet cross section area for 
clouds of A18 and M29 obtained from aircraft observations (after Noonkester(1984)), 
(c) the vertical profiles of corresponding re. 
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cumbersome and also limited in their applicability. The Monte Carlo simulation of 

photon transport offers a different quantitative approach for studying the radiative 

transfer process in realistic clouds. In Monte Carlo simulations, the irradiances can 

be computed fairly easily for general cloud shape and internal inhomogeneity. 

2.2.1 Physical principle of Monte Carlo simulations 

The fundamental blocks of the Monte Carlo mcdel are homogeneous cubes filled with 

scattering and absorbing particles. All particles are assumed to be spherical cloud 

droplets. A cloud or cloud field is simulated by a chosen number of elemental cubes of 

geometric size lx, ly and lz in x, y and z Cartesian coordinates. Each cube is assigned 

a volume extinction coefficient k(l, m, n), where the /, m and n indices, specify the 

cell. 

To establish the Monte Carlo algorithm, it is convenient to simulate the distance 

travelled by a photon between successive collisions. In accordance with Beer's law, 

the probability that a photon has travelled an optical pathlength r between successive 

colUsions is taken to be the fraction of radiation transmitted through that pathlength, 

that is 

Pr[r] = e-T (2.6) 

Choose a random number RNe(0,l) to represent Pr[r] in Eq.(2.6). If in the process 

the photon has passed through N cells with optical depth T' (T' < T) , 

RN < e"T' = exp[- £ /,-[*(/, m, n)],-] (2.7) 
i=i 

where / , and [k(I,m,n)]j are the geometric pathlength through and the associated 

extinction coefficient of the j t h cell traversed by the photon, respectively. The updated 

position of the ph /ton is 
N 

x N + i = X o 4 - § £ / ; (2.8) 

where Xo is the initial position of the photon and § is the unit vector in the direction 

of the photon path. 
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Assume the residual pathlength which remains before scattering or absorption is 

_ - l n ( R N ) - E ^ / , • [ < : ( / , mTn)], 
/ r M - [*(',m,n)]N+I ^> 

where [k(l, m, n)]N+i is the extinction coefficient of the cell containing the photon. If 

the number of the cell containing XN+I equals the number of the cell containing 

x = XN+I + s/ r e s , (2.10) 

there is a scattering or absorption event at x for the required optical pathlength has 

then been obtained. If this condition is not satisfied, then frea is discarded and the 

updating process is again repeated. 

If XN+I is within the correct cell, then either a scattering or absorption event takes 

place. Assume the single scattering albedo of droplet is w. At each events, before the 

scattering angles are determined, a uniform random number RNe(0,l) is generated. 

If RN> w the photon is taken to be absorbed and its trajectory is terminated. If RN 

< w, a scattering event takes place. 

When a scattering events occurs, the scattering angle, 0.,, is computed in the 

Monte Carlo code by solving 

RN = i / X PfoOd/1, (2.11) 

where P(/J) is the phase function. For simplicity the Henyey-Greenstein phase func­

tion PHG(M) is used. It is given as 

^w-p+^fe^' (2-I2) 

where g is the asymmetry factor. By Eqs.(2.11) and (2.12) the scattering angle, 0„ 

can be determined. The azimuthal angle of scattering is to be 

V?8 = 2TT(RN) , (2.13) 

Once 6„ and tpa are obtained then the new photon traverse direction is known. 
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2.2.2 Monte Carlo Cloud model with internal variation of 

optical properties 

As we have pointed out, most of Monte Carlo models used so far have focused on 

cloud geometric shape and cloud field arrangement. The internal variations of cloud 

optical properties have not been considered. In these models the size of spatial cells 

in cloud fields generally has a length scale of about 1 km. If we take account of cloud 

internal inhomogeneity on the radiative transfer process, the spatial cells of clouds 

must be much smaller. The photon mean free path length in a typical stratocumulus 

cloud is about 20 m (for an extinction coefficient of 50A:m~1). Therefore, the spatial 

extent of cells in the cloud field should be chosen with a size length of about 20 m 

or less. In previous Monte Carlo models, the asymmetry factor and single scattering 

albedo have been taken to be constant for all cells. This must be improved in order 

to show the spatial correlation of the three optical parameters. 

The Monte Carlo cloud models with cells of this size can be used in practical simu­

lations of isolated clouds with internal variation of optical properties. The calculations 

can also be extended to an overcast cloud field (planar cloud with an infinite horizon­

tal extent) or a cloud field with a regular array, since the computational requirements 

of such cloud fields can be much reduced by the cyclic boundary conditions. However, 

the mesoscale studies are not feasible in the present model, since at least 1010 spatial 

cells are needed to describe the mesoscale cloud field, and such sizes are too large. 

The radiative transfer processes in a cloud-are not directly associated with cloud 

LWC and re, but are related to the cloud droplet single scattering properties, which 

are the extinction coefficient, single scattering albedo and asymmetry factor. By a 

suitable parameterization of 3olar radiative properties of water cloud (Slingo, 1989), 

the relation between the LWC and re and the single scattering properties of cloud 

droplets are established. 

We choose the 4 band parameterization scheme developed by Slingo (1989). For 

a given spectral interval i, the single scattering properties of cloud droplets are pa­

rameterized in terms of the liquid water path (LWP) and the effective radius of the 


