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Abstract

In order to investigate the photon transport in inhomogeneous clouds, a Monte Carlo cloud
model with internal variation of optical properties is developed. The data for cloud vertical
internal inhomogeneity are chosen from published observations. Parameterization of the
solar radiative properties of clouds is used in the form of the liquid water content and
the effective radius of cloud droplet. The Monte Carlo simulations shov  :t for overcast
stratocumulus clouds, the differences in reflectance between the vertica. inhomogeneous
clouds and their plane-parallel counterpart are very small (only about 1%). These differences
can be enhanced up to 10% for large solar zenith angles, when the overcast clouds are
separated into broken cloud fields. If the cloud coverage is large, the vertical inhomogeneity
of clouds can cause about 7% increase in cloud absorption, which may help to explain the
cloud absorption anomaly. Also, the parameterization of effective cloud amount for cloud
absorption is discussed.

For a vertical homogeneous plane-parallel layer with horizontal cosinusoidal periodic
variations of the extinction coefficient, the first order perturbation solution of the three
dimensional radiative transfer equation has been obtained. There exists a correspondence
between the distribution of the extinction coefficient and the distribution of the upwelling
intensity. However, under certain conditions, the distribution of the upwelling intensity is
opposite to the distribution of the extinction coefficient. If the solar zenith angle is large,
shifts in the configurations of the distribution of the upwelling intensity may appear. The
single scattering parameters can influence the distribution of the diffuse radiative intensity.
The distribution of the heating rate inside the cloud and the distribution of the extinction
coefficient are nearly coincident with each other.

The perturbation solution can be extended to second order multi-mode case. The calcu-
lations show that the perturbation solution series is convergent. The cloud albedo changes
from the unperturbed value when the second order perturbation correction is applied. The
change of albedo can be negative as well as positive. The albedo changes du. to the geo-
metric factors and scattering factors are discussed. Alse, the radiative transfer in a medium
with an internal variation other than the cosinusoidal type is investigated.

Monte Carlo simulation is used again to investigate the horizontal irradiance distribution
in clouds, to verify the results of the analytical solution. Also the impact of geometric
variation to the distribution of irradiance has been discussed.

xii
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Chapter 1

Introduction

1.1 Background

Climatic change and stabilit’ are intimately related to the Earth’s radiation bud-
get, which itself is strongly influenced by clouds. In turn, clouds are governed by
the Earth’s radiation budget and thus by climate. For example, simple energy bal-
ance conservations imply that 5% change in cloud amount will result in an estimated
change around of 2 degrees in the surface temperature. The potential importance of
this feedback has initiated a large research effort to understand the cloud-radiation
interaction. Clouds are one of the most crucial and least understood components of
the climate system. The basic lack of understanding stems from our inability both
to realistically describe the various life cycle processes of clouds and to effectively
determine the radiative properties of realistic clouds. A process that is likely to play
a central role in the evolution of clouds and clouu systems is the interaction of radia-
tion with the atmospheric environment both in and around clouds. This interaction
depends on the cloud geometric structure and cloud ‘nternal optical properties, which
are highly nonlinear. However, in present climate models the plane-parallel approxi-
mation is generally used. Plane-parallel clouds are idealized flat, homogeneous slabs
of infinite horizontal extent. The finite cloud geometry and cloud internal inhomo-

geneity are generally ignored. Such simple cloud models can hardly describe correctly



the cloud-radiation interaction. Therefore efforts are being made to improve radiative
transfer methods to account for clouds with more realistic forms..

One approach to the problem is to simulate photon transport in cloud fields using
the Monte Carlo model. In early work, Monte Carlo simulation was used to ex-
amine photon transport in homogenecus isolated clouds of definite shapes (Busygin
et al., 1973; McKee and Cox, 1974; Davies, 1978). The large scale cloud fields were
simplified to be regular arrays, in which all clouds are of the same shape and the
distance between any two neighbouring cloud centers is the same. The importance
of cloud shape and cloud field arrangement for radiative transfer process has been
investigated by several groups (Busygin et al., 1973; Aida, 1973; Welch and Wielicki,
1984). Kobayashi (1988) extended the regular array field to a cloud field composed of
various sizes of clouds in a random distribution. Recently, Barker and Davies (1992)
studied solar radiative transfer in a realistic broken cloud field with a scaling power
law, motivated by observations showing that a cloud field on mesoscopic scale exhibits
“scaling” or spatial autocorrelation structure (Cahalan and Snider, 1989).

A number of works have focused on the parameterization of Monte Carlo calcula-
tion results (Harshvardhan and Weinman, 1982; Weinman and Harshvardhan, 1982;
Harshvardhan and Thomas, 1984; Schmetz, 1984; Welch and Wielicki, 1985; Breon,
1992). In order to describe more accurately radiative transfer processes in climate
models by incorporating the Monte Carlo simulation findings, a successful parameter-
ization is necessary, since a direct Monte Carlo simulation is not practical in climate
models.

Realistic photon transport processes are simulated in Monte Carlo methods and
computation of irradiance is fairly easy for any specified cloud geometry. However,
since the number density of incoming photons (number per square meter) used in
Monte Carlo simulations is much smaller than that of the real solar beam, the dis-
tribution of radiance is hard to be obtained using a Monte Carlo method. Also, the

Monte Carlo simulatica requires an excessive computer time.



Another approach to the radiative transfer problem is to solve the multi-
dimensional radiative transfer equation. Davies (1978), Brandley (1981), Preisendor-
fer and Stephens (1984), and Stephens and Preisendorfer (1984) have derived solutions
that describe the radiance fields of an isolated homogeneous cubwidal cloud. For more
complicated geometric cloud shapes, such a method is generally not applicable.

For both of the above approaches, the study of radiative transfer has been mostly
restricted to the effect of cloud geometry with the cloud still taken as internally ho-
mogeneous. However, in addition to having complicated geometric structures, clouds
generally have internal inhomogeneity. For example, in cumulus clouds the liquid
water content (LWC) and the effective rarius increase with height. Such an increase
of LWC with height is not observed in cirrus clouds. Horizontally the clouds are
also inhomogeneous; the central core regions (updraft regions) in cumulus cloud have
larger LWC and the boundary regions (downdraft regions) have smaller LWC. The
impact of the internal inhomogeneity on the radiative transfer process has seldom
been investigated either by Monte Carlo simulation or by any analytical method.

Recently Kabayashi (1991) and Evans (1993) have considered photon transport in
internally inhomogeneous clouds using a numerical model (space grid method). Just
as in the Monte Carlo simulations, such numerical models are generally very time
consuming. However, since the direct solar beam term has been treated very approx-
imately in their works, these works did not observe all of the physical phenomena

shown in the following chapters.

1.2 Purpose and outline of study

The purpose of this thesis is to explore the impact of the cloud internal inhomogeneity
on the radiative transfer process in clouds and our attention has been concentrated
on this cloud internal inhomogeneity. An analytical method for solving the three
dimensional radiative transfer equation and the Monte Carlo simulation method are
both used in the study.



In the second chapter the cloud internal vertical inhomogeneity is investigated.
In order to deal with the cloud internal variations, we develop a new Monte Carlo
simulation scheme in which the cloud internal optical properties can be taken into
account. There exist observations of the vertical variation of the LWC and droplet
effective radius and all the observations show that the vertical variation of LWC is
quite similar for cumulus (strat:)cumulus) clouds. Therefore, in calculations we can
take the cloud vertical variation from observations and use a parameterization to
obtain the internal optical properties from the observed liquid water content (LWC)
and effective radius. Flat clouds and broken clouds are investigated. Cloud absorption
was seldom considered before in Monte Carlo models, but cloud absorption is an
important aspect in our study.

We find that an analytical solution can be obtained for radiative transfer in a
medium with internal inhomogeneity using a peiturbation method. In chapter 3,
the first order perturbation solution of radiative transfer in a cloud with internal
cosinusoidal periodic variation is obtained. The distribution of the upwelling intensity
and cloud internal heating rate are discussed.

In chapter 4, the analytical solution is extended to the multi-mode case and to
second order perturbation expansion. An arbitrary form of cloud internal inhomo-
geneity can then be investigated. When the second order perturbation is considered,
a change in cloud albedo results due to inhomogeneity, which will be extensively
studied in that chapter.

The Monte Carlo simulation is used again in chapter 5 to explore radiative transfer
in clouds with internal horizontal variation. One purpose of this study is to verify
numerically results obtained in chapter 3 and 4.

Physical explanations for the phenomena explored are always emphasized in fol-

lowing chapters.



Chapter 2

Solar Radiative Transfer In
Clouds With Vertical Internal

Inhomogeneity

In the last twenty years Monte Carlo simulation of solar photon trans_.ort in cloud
fields has been extensively investigated. Although most of the reported Monte Carlo
simulation works have improved on the plane-parallel assumption by considering cloud
(cloud field) geometry structures, the improvements are more qualitative than quan-
titative. In most of these Monte Carlo simulations, the attention has only been paid
to cloud geometry. The internal variations of cloud optical properties have not been
considered and the clouds are taken as internally homogeueous.

It is established from observations that a cumulus (stratocumulus) cloud is inho-
mogeneous in both horizontal and vertical direction. (Mason, 1971; Paltridge, 1974;
Platt, 1976; Slingo et al.,, 1982a; Slingo et al., 1982b; Noonkester, 1984). For in-
stance, inside a cumulus (stratocumulus) cloud the liquid water content (LWC) and
the cloud droplet size distribution vary with height (Mason, 1971), which leads to
the single scattering properties of cloud droplets being variable in the vertical direc-
tion. Therefore, the radiative transfer in a cloud would be influenced by the cloud

inhomogeneity.



To what degree can the inhomogeneity of clouds affect the Monte Carlo simula-
tion of radiative transfer in broken clouds? By consideration of the vertical internal
inhomogeneity, will the cloud albedo differenc> between a broken cloud and its plane-
parallel counterpart be enhanced or red.1ced? What is the influence on the cloud solar
absorption? These questions are important for both the study of radiative transfer
in the realistic cloud field itself and the parameterization of Monte Carlo results in
climate modeling.

In order to study the internal inhomogeneity of clouds, the sp tial variation of
cloud optical properties has to be considered in a Monte Carlo cloud model. In this
model the length scales of homogeneous cells constituting a cloud will be taken to be
small, close to the mean free path of photons in the cloud. Consequently on average,
a photon will scatter only once as it passes through each cell. The -patial variation
is taken into account properly in the photon transport process. In this chapter, the

cloud vertical internal inhomogeneity will be investigated first.

2.1 Vertical profiles of LWC and r. in stratocu-
mulus clouds

In the last 40 years, there have been a lot of aircraft observations of the droplet distri-
bution in cumulus (stratocumulus) clouds (Mason, 1971; Paltridge, 1974; Platt, 1976;
Slingo et al., 1982a; Slingo et al., 1982b; Noonkester, 1984). All the observational
results showed that inside a cumulus (stratocumulus) cloud, the LWC and the droplet
radius increase with height above the cloud base. This phenomenon is attributed to
the water vapor condensation process.

In the following, we use the observational results of Noonkester (1984). In his
observations, besides the vertical profile of LV/C, the vertical distribution of cross
sectional areas of droplets are also presented. Fig.2.1a and 2.1b show the profiles
of LWC and cross sectional area of the droplet in stratocumulus clouds measured

for actual marine clouds. The two curves 1epresent the two aircraft observational
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results of August 18 (A18) and May 29 (M29) near San Diego in 1981. The droplet
spectrometer probes are used in rneasurements. The vertical profiles of LWC and
cross sectional area are calculated from droplet spectrum in different height. The
clouds of A18 and M29 are pure water clouds.

From the cloud base to tkL: positions near the cloud top (200 m on A18, 280 m on
M29), the LWC increases almost linearly. Noonkester gave the approximate formulae

for the vertical variations of LWC in these regions from the observation results
Al8: W =0.0074 + 0.0016z (g m™?), (2.1)

M29 : W = 0.019 + 0.0012z (g m™?) , (2.2)

where z is the height in meters from the cloud base. Noonkester also presented the

approximate formulae for droplet cross sectional areas in these regions,
Al8: A =54 4192 (em™*m™?) (2.3)
M29 : A =50 + 1.3z (em™*m™?) (2.4)

Above these linear regions to the tops of clouds, LWC increases slowly (on M29) or
decreases (on A18), which is due to the turret structures in the top of stratocumulus
clouds. Above a cloud top the LWC decreases sharply.

The cloud effective radius can be obtained by given liquid water content and

droplet crcss section

_3W
re = LA 10" (pm) , (2.5)

where p(gm~3) is the liquid wa'er density. Fig.l (c) shows the vertical profiles of
re for clouds of A18 and M29. In radiative transfer processes, the LWC and. r, are
the most important integrated quantities derived from the micro-physical structure

of clouds, since LWC and r. are associated with the cloud internal optical properties.

2.2 Monte Carlo models

We consider the Monte Carlo method because the solutions of the radiative transfer

equation in non-planar inhomogeneous clouds through analytical methods are very
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Figure 2.1: (a) and (b) the vertical profiles of LWC and droplet cross section area for
clouds of A18 and M29 obtained from aircraft observations (after Noonkester(1984)),
(c) the vertical profiles of corresponding r..



cumbersome and also limited in their applicability. The Monte Carlo simulation of
photon transport offers a different quantitative approach for studying the radiative
transfer process in realistic clouds. In Monte Carlo simulations, the irradiances can

be computed fairly easily for general cloud shape and internal inhomogeneity.

2.2.1 Physical principle of Monte Carlo simulations

The fundamental blocks of the Monte Carlo mcdel are homogeneous cubes filled with
scattering and absorbing particles. All particles are assumed to be spherical cloud
droplets. A cloud or cloud field is simulated by a chosen number of elemental cubes of
geometric size I, I, and [/, in z, y and z Cartesian coordinates. Each cube is assigned
a volume extinction coefficient k(l,m,n), where the [, m and n indices, specify the
cell.

To establish the Monte Carlo algorithm, it is convenient to simulate the distance
travelled by a photon between successive collisions. In accordance with Beer’s law,
the probability that a photon has travelled an optical pathlength r between successive
collisions is taken to be the fraction of radiation transmitted through that pathlength,
that is

Pr[r]=¢€" (2.6)

Choose a random number RN€(0,1) to represent Pr[r] in Eq.(2.6). If in the process
the photon has passed through N cells with optical depth 7/ (7' < 7),

N
RN <™ = exp[-}_ filk(l,m,n)];] (2.7)

i=1
where f; and [k(l,m,n)]; are the geometric pathlength through and the associated
extinction coefficient of the j** cell traversed by the photon, respectively. The updated

position of the pk-ton is

N
XN+1 = Xo + 8 E fi (2.8)

j=1
where X, is the initial position of the photon and 8 is the unit vector in the direction

of the photon path.
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Assume the residual pathlength which remains before scattering or absorption is

—In(RN) - Z?Ll filk(l,m,n)],
[k(la m, n)]N-H

where [k(l, m,n)]n41 is the extinction coefficient of the cell containing the photon. If

fres = (2.9)

the number of the cell containing Xn4; equals the number of the cell containing

X = XN41 + §fres (2.10)

there is a scattering or absorption event at x for the required optical pathlength has
ther been obtained. If this condition is not satisfied, then f,., is discarded and the
updating process is again repeated.

If xn41 is within the correct cell, then either a scattering or absorption event takes
place. Assume the single scattering albedo of droplet is w. At each events, before the
scattering angles are determined, a uniform random number RN€(0,1) is generated.
If RN> w the photon is taken to be absorbed and its trajectory is terminated. If RN
< w, a scattering event takes place.

When a scattering events occurs, the scattering angle, 6,, is computed in the
Monte Carlo code by solving

1

1
RN = 3 ) P(p)dp , (2.11)

where P(u) is the phase function. For simplicity the Henyey-Greenstein phase func-
tion Pyg(p) is used. It is given as
1-¢°

[1+g% —2gupr?”’ (2.12)

Pug(p) =

where g is the asymmetry factor. By Egs.(2.11) and (2.12) the scattering angle, 0,,

can be determined. The azimuthal angle of scattering is to be
s = 27(RN) , (2.13)

Once 6, and ¢, are obtained then the new photon traverse direction is known.






