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Abstract 

Techniques for obtaining rpfurn periods of extreme levels from sl^.L lecorcls are in

vestigated focusing on processes which are partly stochastic and partly deterministic. 

The physical motivation for the problem comes from the need to estin' -ie return 

periods for short sea level records which contain a deterministic component, in the 

form of a tide, and a nonstationary stochastic component associated with seasonally 

changing variance and autocorrelation. Nonstationarity was modeled by a periodic 

3utoregressive state space model which allowed for the seasonality in the autocovari-

ance structure of the surge process. State space representation was able to take the 

measurement error into account. This model was then used in the estimation of return 

periods using the exceedance probability method (Middleton and Thompson, 1986) 

and the revised joint probability method (Tawn, 1992). Extensions were made to the 

methods to allow for the nonstationarity of the surge process, which was defined in 

discrete time, and to allow for estimates of sampling variability of the return period 

estimates. 

The 50-100 year return period estimates obtained using just one year of dd,a 

using the techniques introduced in this thesis are in good agreement with standard 

estimates based on more than 50 years of data. 
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Chapter 1 

Introduction 

An understanding of the frequency of extreme environmental events is required in 

order to minimize their potentially damaging economic and social effects. The study 

of extreme sea levels is one particularly important research area due to the risk of 

flooding of coastal communities. This is further exacerbated by the global wanning 

trend and the associated potential for sea level rise. Accurate prediction of sea level 

would allow coastal infrastructure to be designed in such a way as to minimize the 

adverse consequences of extremely high or low sea levels. 

The return period of sea levels is not a well defined concept. For a purely de

terministic process, such as the tide, the return period can simply be defined as the 

time period in which the process reaches the level of concern starting from some time 

origin. However, due to the stochasticity of the surge, the definition of the return 

period of sea levels cannot be explicitly defined as an exact event but rather must 

be defined probabilistically. Different authors have defined return periods in several 

ways. However, the most widely used definition is due to Gumbel (1958) where the 

return period is defined as the reciprocal of the probability of exceedance. 

Conventional methods for estimating return periods are based on analysis of the 

maximum level observed in each year, over a period of many years. The extremal 

analysis of Gumbel (1958) has proved to be of great use in estimating return periods 

of extreme sea levels, provided that fairly long records of data are available. Pugh and 

1 
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Vassie (1980) suggested that at least twenty five years of hourly data are required by 

Gumbel's method to achieve suitable accuracy in the final return period estimates. 

Further complicating the issue is that the level of the sea at a given time and a 

particular location is dependent on many atmospheric and environmental conditions 

which are site specific. Therefore it is unlikely to have historical records for this length 

of time available at each coastal site. 

Return period estimation using the Gumbel (1958) method requires an indepen

dent set of consecutive data points. However, hourly sea levels are serially correlated 

and as a result this technique cannot be applied directly to hourly sea level data. 

However, if a large record is available and blocked iuto appropriate time periods, 

(e.g. annual), the maximum within these blocks provides an approximately indepen

dent series of data for the Gumbel analysis. 

Many authors have since designed schemes for achieving the required independent 

series. Smith (1984) considered the peak values over a prespecified threshold, to 

study the return period of wave heights. This peak over threshold method (POT) was 

originally introduced in the English Flood Studies Report (1975). In this method, 

a threshold level is selected, often arbitrarily, and the observed data are reduced 

to clusters above the threshold. The series consisting of maximum, or peak value, 

within each cluster provides an independent sequence for the Gumbel analysis. A 

key feature of this method is that the threshold level must be high enough to ensure 

that the resulting series of peak values is independent. This method requires a long 

record of data and the final return period estimates are often highly dependent on 

the arbitrarily chosen threshold. 

Pugh and Vassie (1980) pioneered the estimation of return periods from short sea 

level records. Their joint probability method (JPM) was based on separating the sea 

level into tide and surge components. They considered the tide to be deterministic 

and able to be predicted for decades into the future. The surge was considered 

as stochastic. The tide and the surge distribution were recombined to obtain the 

instantaneous probability of sea level exceedance for a given level /, denoted by Qi(l). 
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Following Gumbel's definition, the return period in years was defined as l/nQi(l), 

where n is the number of samples in one year. A correction factor was used to take 

care of the dependence between hourly pea levels. The correction factor was designed 

by Cartwright (1958) and takes care of 1-dependence. Note that for a stochastic 

process {77,-}, 1-dependence is defined such that, if |t — j \ > 1 then T/, is independent 

from j]j. 

The JPM introduced by Pugh and Vassie was an important breakthrough in the 

estimation of return periods of extreme sea levels. It provided ways of estimating 

the distribution of sea levels including unobserved levels, using the predictability of 

the tide and a surge model. One deficiency of the JPM approach is that the return 

period estimate depends on n, the numbejr of samples per year and thus the sampling 

interval. 

Motivated by Pugh and Vassie's separation of sea level into a deterministic tidal 

component and a stochastic surge component, Middleton and Thompson (1986) in

troduced the exceedance probability method (EPM) as another solution to the un

availability of long records. They demonstrated their method for the Canadian ports 

of Halifax and Victoria and showed that their method works as effectively as other 

methods which use twenty five years of data. The tidal component was considered 

deterministic whereas the stochastic surge distribution was expressed by a compound 

Gaussian model. The return period was obtained by integrating forward in time un

til the expected number of exceedances equals to one. The integration interval was 

then defined as the return period. Note that this return period does not depend on 

the sampling interval or number of samples per year thereby eliminating the defi

ciency noted in the JPM. However, the use of the EPM was limited as the sampling 

variability of the return periods were not estimated. 

Having recognized that 1-dependence is not valid for sea levels and that the JPM 

return period depends on the sampling interval, Tawn and Vassie (1989) extended the 

JPM by introducing an extremal index (Leadbetter 1983) to account for the serial 

dependence. Their revised JPM (RJPM) is also invariant with regards to the number 
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of samples per year. Later in this thesis all these return period definitions will be 

investigated in detail. 

The goal of this thesis is to design a new set of techniques to estimate return 

periods from short records, focusing attention on stochastic modeling of the surge 

component and deterministic modeling of the tidal component. Since the primary 

focus of this study is on sea level, the methods and techniques derived here will 

concentrate mainly on the nature and behavior of the sea level process. However, 

it will become clear that the techniques can easily be adapted to any other process 

of a similar nature, i.e. ones which are partly deterministic and partly stochastic. 

An example of such a process is wave-induced currents where the tidal component is 

deterministic. 

The objective of this study is to design a scheme for estimating return periods 

from a short record of data. An attempt will be made to estimate decadal long 

return periods for sea level using a single year of data. Methods are developed to 

make inferences about the estimated return periods in the form of standard errors 

and confidence intervals. The estimates are validated by comparing them with the 

estimates from conventional methods which use many years of data. 

In this chapter, a brief description of the practical problem of estimation and 

inference of return periods is given. The application of conventional methods for ob

taining return periods of sea level from short records are difficult due to the presence 

of nonstationarity and dependence in the data. These issues are discussed in detail in 

Section 1.1. The occurrence of a sea level exceeding a specific level can be considered 

as a sequence of events happening over time, or more specifically, as a point process 

of extreme events. The influence of the stochastic nature of the surge and the deter

ministic nature of the tide on these extreme events will be investigated in Section 1.2. 

For the purpose of estimation, many authors have defined return periods in different 

ways. These alternative definitions will be discussed in Section 1.3. Applications 

of the techniques and methods of estimating return periods will be investigated in 

Section 1.3. Finally, the contents of the thesis are briefly outlined in Section 1.4. 
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1.1 Sea level processes 

Sea level varies irregularly in both space and time. As the concern of this; study is 

mainly in the changes occurring over time, it is assumed hereafter that the location 

is fixed. Note that the results obtained using the observed sea level at a particular 

location are not directly applicable to the other locations, however, the techniques 

developed here can be readily adapted to sea level analysis for any location. 

The level of the sea at a particular location is measured using an instrument called 

a sea level gauge. The mechanism is described by Pugh (1987). The instrument uses 

a pen attached to a float which moves with the the vertical movements of the sea 

level. The height of the float above the sea bed is recorded as the level of the sea al 

that particular instant. Thus, the sea level is recorded in a time series comprising the 

vertical movements of the sea at a particular location. 

Any time series of sea level will have both tidal and nontidal components. In the 

last century, mainly as a result of instrument design and analysing techniques, iden

tification of the physical factors governing the tides has made considerable progress. 

These developments have enabled scientists to identify and quantify the regular pat

terns in the motion of the sea due to planetary motions. These are collectively known 

as tides. 

After removing the tide from the sec level, the remaining residual nontidal compo

nent is known as the surge. The surge results from the regular and predictable pattern 

of the tide being distorted by irregular factois such as the atmospheric forcing. Pugh 

(1987) noted that, hydrodynamically, the term surge implies a sudden movement of 

water which is quickly generated but soon dissipates. In statistical terms, the surge 

is characterized as a random or stochastic process. 

Based on the discussion above, the observed sea level at time t, J/(, can be repre

sented in the following form, 

Vt = Ht + vl + vf-

Here, rjj is the deterministic part known as the tide, rjf is the stochastic part known 
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as the surge and the part which does not change periodically (tide) or rapidly (surge) 

is categorized as the mean sea level fit. 

1.1.1 T i d e 

Extensive studies on the estimation of the tidal component have been conducted by 

oceanographers. These studies focus on the character of the variations and physical 

factors controlling these motions and have enabled the tidal component of the sea level 

to be determined with a high degree of accuracy. There are now computer programs 

available for predicting hourly tidal heights, such as that of Foreman (1977). Relying 

on these estimates, this study considers the tidal component as deterministic and 

therefore able to be predicted decades into the future. 

The two main tidal features of any sea level record are the amplitude, measured 

according to half of the height between successive high and low levels, and the period, 

the time between one high (or low) level and the next. Periodic oscillations due to 

tide are described mathematically as 

M 

T)f = ]T Hi cos(w,-t - gi) 
i=l 

where M is the number of tidal constituents, Hi is the amplitude of the ^constituent, 

u>, is the angular frequency and </,- is the phase lag relative to some time origin. For 

Halifax tide the number of constituents (M) is 69. A sample of the tidal constituents 

obtained for Halifax is given in Table 1.1. 

Of the total number of tidal constituents, three components often important for 

return period estimation are the semidiurnal tides, the spring-neap cycles and the 

nodal cycles. These are explained below for Halifax sea level; Pugh (1987) gives their 

patterns for other ports. 

The Halifax tidal cycle takes an average of twelve hours and twenty five minutes, 

so that two tidal cycles occur for each transit of the moon. Because each tidal 

cycle occupies roughly half a day, this type of tide is referred to as semidiurnal. 

Figure 1.1 illustrates the Halifax semidiurnal tide for March 1930. Semidiurnal tides 
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Halifax semidiurnal tide 

400 

Time (hours) 

Figure 1.1: Halifax tide in March 1930 showing the semidiurnal component dominat
ing the tidal level. Time (in hours) extends from 1st of March 1930 to 31st of March 
1930 

Halifax Spring-neap Cycles 

400 

Time (hours) 

Figure 1.2: Spring neap cycles for Halifax calculated as maximum peak occurring 
twice a day. (Based on Figure 1.1). Time (in hours) extends from 1st of March 1930 
to 31st of March 1930 



Halifax Nodal Cycle 

Figure 1.3: Nodal modulation at Halifax. Tide plus mean sea level vs. time (in years) 
for the period 1930 to 1950. 

have a range which typically increases and decreases cyclically over a fourteen-day 

period. The maximum amplitude of this secondary cycle are called spring tides and 

occur shortly after both the nev/ moon and full moon. The corresponding minimum 

amplitude tide is called the neap tide. These spring-neap cycles for Halifax are shown 

in Figure 1.2. The longest period over which important changes in the tidal cycle 

occurs is 18.6 years. This is called the nodal modulation and is shown in Figure 1.3 

for Halifax for the period of 1930-1940. The maximum level the tide reaches during 

each of these 18.6 year cycles is known as the nodal tidal peak. 

1.1.2 Surge 

Surge is considered as a random component whose behavior is governed solely by 

stochastic laws. The surge can be obtained from a time series by subtracting the 

pre-determined tidal component and the mean sea level from the observed sea level 

record. Figure 1.4 shows the time series plot of Halifax hourly surge during the year 
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Figure 1.4: Halifax hourly surge time series in the year 1930 during the period 1st 
January to 31st December 1930. 

1930. Note that the variations of the surge in the winter and fall are higher than that 

in the spring and summer. Middleton and Thompson (1986) fitted a sinusoidal model 

to the Halifax and Victoria monthly surge variances to explain this seasonality in the 

surge variance. The possibility that the surge variance hac seasonal cycles makes the 

stochastic surge process nonstationary in the second order. 

Another important feature apparent in Figure 1.4 is that the surges in the fall 

and the winter seasons do not decorrelate as fast as in the spring and summer. This 

suggests a seasonal autocorrelation structure in the surge series. First order nonsta

tionarity in time series models can easily be handled using the methods described 

in Box and Jenkins (1976). However, no straightforward methods are available to 

describe second order nonstationarity in time series models. 

1.1.3 Mean sea level 

Climatic variability results in a mean sea level that changes slowly with time. For 

example, since the last ice-age 10,000 years ago the sea level has increased by approx

imately 40 meters globally (Pugh, 1987). As the rate of increase over time is very low 

it can be assumed without loss of generality that the mean sea level within a period 
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Figure 1.5: Annual mean sea level for Halifax from the year 1930-1949. The calculated 
means are are marked by *-* and the solid line represents the fitted line. 

of one year is roughly constant. The annual mean sea level calculated for Halifax for 

the years 1930-1949 is plotted in Figure 1.5. Fitting a straight line to this data shows 

a linear increase of 0.53 centimeters annually. 

The effect of the above mentioned three components, tide, surge and the mean sea 

level, in influencing the overall sea level can be summarized as follows. A comparison 

of Figures 1.1 and 1.3 or 1.4 reveals that sea level processes are highly dominated 

by the tide. For instance, in Halifax the tidal variation is about 100 cm from the 

mean sea level, whereas the surge varies within only a 65 cm range. Therefore, the 

tidal variation is larger than the surge variation and it is obvious that the tide has 

a great impact on the sea level changes. However, the extreme sea levels of interest 

here usually exceed the maximum level that the tide reaches. Therefore, for the high 

level exceedances the surge must be included, even for tidally dominated sea levels. 

Many authors in the past have considered the surge process as Gaussian, however 

Middleton and Thompson (1986) modeled the surge using a contaminated normal dis

tribution with a zero mean and time dependent standard deviation. They presented 
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the contaminated normal model as the mixture of two normals. Further examination 

of the surge process reveals that it possesses a second-order nonstationarity as a result 

of the seasonally changing variance and autocorrelation structure. High storm surges 

occur mostly in winter, rather than summer, and have a correspondingly higher vari

ance and stronger autocorrelation during this time. Middleton and Thompson (1986) 

used the following model to explain the seasonally changing variance for Halifax, 

o? = 124.9(1 + 0 . 8 cos ut) 

w\ere t is in months running from July to June, of is the variance for a given month 

in cm2 and u is the frequency (co = ^ | ) . 

Based on the above discussion of the stochastic and deterministic behavior of surge 

and tide, one can describe the sea level process as follows. Sea level is nonstationary in 

the first-order as well as in the second-order. The first-order nonstationarity is caused 

by the tidal component and also by the slowly increasing mean sea level. The second-

order nonstationarity is due to the seasonally changing variance and autocorrelation 

structure of the surge. Further complications arise if the tide is also considered to be 

probabilistic. Sea level then follows the distribution of the surge with the location 

parameter following the distribution of the tide. This is a case of a doubly stochastic 

process. As scientists are presently capable of explaining the tide due to planetary 

motions, in this study the tide is considered as purely deterministic. Hence, the sea 

level follows a single stochastic model which is governed solely by the surge. 

1.2 Extreme events 

The discussion of Section 1.1 reveals certain properties of the tide and the surge 

such as the cyclic behaviour of the tide and the seasonality in the variance and 

autocorrelation of the surge. It is desirable to know how these properties effect the 

extreme events. 

The maximum sea level in each of the four seasons was extracted from Halifax sea 

level data for the period 1930-1948 and listed in Table 1.2. According to this table 
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extreme events are more likely to occur in the winter and fall than in the summer and 

spring. This tendency may be due to the higher seasonal variance of the surge in the 

winter. In the year 1940 the maximum value in the summer is higher than the other 

three seasonal maxima contradicting the pattern existing in the other years. This 

extreme event happened on September the 16th which is at the end of the summer 

and really into the fall. This anomaly could also be due to sampling variability or 

possibly a recording or timing error. 

Due to the influence of the surge on extreme sea level, it is impossible to estimate 

return periods from numerical models of tides. Therefore it is necessary to develop an 

estimation scheme based on statistical techniques to appropriately determine return 

periods. In the following illustration of various theoretical and practical estimation 

schemes, particular attention wili be paid to the statistical characteristics of the 

process. 

1.3 Return period 

The Gumbel definition of the return period T is related to the notion of a series of 

independent events happening over time, with the same probability of occurrence at 

each time. In case of sea level exceedances, this leads to a geometric distribution 

with the parameter p equal to P{qt > /]. The mean of the distribution, 1/p, is 

then defined as the return period. Following Gumbel, many authors (Pugh and 

Vassie 1980, Smith 1986 and Tawn and Vassie 1989) have used the definition of the 

return period as the reciprocal of the probability of exceedance, i.e. 1/P\r}t > ?]• 

However, use of this definition is restricted to independent and identically distributed 

processes. These methods are problematic in that sense since hourly sea levels are 

usually autocorrelated and nonstationary. Therefore, either the annual maxima, or 

peaks over a prespc, ;fied threshold have to be considered, this implies the existence 

of a long series of data. Moreover, the full nodal modulation of the tide is 18.6 years, 

even annual maxima may not be identically distributed. 
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Another definition of return period appears in the point process approach of ex-

ceedances. The point process of extremes was originally introduced by Pickands 

(1971). Smith (1989) advocated using a statistical approach, viewing exceedances of 

peaks over a specific threshold as points in a Poisson process. If N(T) is the number 

of such points in the interval [0,T] then N(T) follows a Poisson process with the 

intensity parameter A equal to the expected number of exceedances in the unit inter

val. The return period T was then defined as the time interval [0,T] such that the 

expected number of exceedances equals to one. This return period is Ctus obtained 

as the reciprocal of the intensity parameter A. As the intensity depends on an ar

bitrarily chosen threshold, so does the return period. Smith (1984) has allowed the 

intensity parameter A to vary over time to cope with the seasonality of the process. 

To estimate the time dependent intensity parameter A of a nonhoinogeneous Poisson 

process requires long records. Dependency can also be incorporated into the intensity 

parameter by using an extremal index (Leadbetter et. al. 1983) provided enough 

data are available for the estimation procedure. 

Having recognised these problems in applying the classical definitions of retu n 

periods to short records of data, Middleton and Thompson (1986) used a definition 

of the return period that accounts for both the nonstationarity and the dependence. 

Their return period was defined as the time interval T such that the integral of the 

expected number of exceedances in [t, t+dt], Qtdt, equals unity (i.e. [T : /T'*t QTdr = 

!})• 
In all three definitions discussed above, the return period was not explicitly identi

fied as a random variable. However, in practice, p in Gumbel's definition, A in Smith's 

definition and Qt in Middleton and Thompson's definition have to be replaced by their 

respective estimates, which are, in fact, random variables. This allows one to make 

further inferences on the return period estimates. 

The return period of the level /, T/ r , can also be defined as the first passage time 

r / P = r i f f > n < / , . . . , i 7 r - i < / , » 7 T > / ( i . i ) 

where rjt is the sea level at time t, measured every hour. The above definition causes 
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numerous problems in the estimation of return period. For high level exceedances, 

the probability structure of the return period TjT is quite complicated due to the 

dependence and nonstationarity. As a result, estimation of the P[Tfr = T] for large 

T is impossible. In Chapter 2, under idealized sea levels, all these definitions will be 

compared. 

The focus of this study is primarily on the estimation of return periods of sea 

level. However the methods developed here are applicable to any other process which 

is partly stochastic and partly deterministic, which is the case for many environmental 

and chronological sets of data. Examples of such cases are current speed at ,,i given 

time and a specific location, and the wave-tide action on sediment transport where 

the tidal component is deterministic. Furthermore, the techniques developed are 

suitable for a complicated stochastic process, even one which is nonstationary in the 

second-order and highly dependent. 

1.4 Outline of the thesis 

In this chapter, the problem of accurate estimation of return periods of extreme levels, 

that has long been studied by statisticians and oceanographers using many different 

approaches, has been outlined. Estimation methods have been reviewed in the con

text of the return periods of the sea level process. Finally, problems encountered in 

applying conventional methods and techniques to nonstationary, dependent and short 

sea levels records have been addressed. 

A description and comparison of previous methods used in return period estima

tion for sea level are presented in Chapter 2. This comparison is carried out by using 

idealized processes like iid surge with no tide, and a dependent and stationary surge 

with a square-top tide. Asymptotic properties based on some classical methods are 

also included in this chapter. 

Chapter 3 describes the nonstationarity ii. the surge using a parametric model. A 

description of the parametric model fitting procedure for the surge data, diagnostic 
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tests and model validation techniques are given in Chapter 3. These methods are 

demonstrated using Halifax surge for the year 1930. 

This parametric surge model is then utilized in the estimation of return periods 

from short sea level records in Chapter 4. The estimation techniques are applied to 

Halifax sea level data. The validity of the estimates will be judged by comparing 

them with the empirical annual maxima estimates obtained from 1930-1958 sea levels 

recorded for Halifax. 

Sampling variability of the return period estimates are obtained in Chapter 5. 

Methods of obtaining the variances of the return period estimates are discussed in 

this chapter. Ninety-five percent confidence intervals are also derived. 

Finally, Chapter 6 contains a brief evaluation of the techniques and methods used 

in this study. Unresolved issues and some ideas for further investigation are included 

in this last chapter. 



16 

Name 

ZO 
SA 

SSA 
MSF 
MF 
2Q1 
SIG1 
Ql 
01 

MSM 
N01 
MM 

ALP1 
PI 

RH01 
SI 
Kl 

0 0 1 
PHI1 
2N2 

EPS2 
MU2 
N2 

NU2 
2MN6 

HI 
M2 
L2 

LDA2 
T2 
S2 
K2 

MN4 
M4 

MS4 

Frequency (Radians per hour) Amplitude (cm) 

0.00000000 
0.00011407 
0.00022816 
0.00282193 
0.00305009 
0.03570635 
0.03590872 
0.03721850 
0.03873065 
0.00130978 
0.04026860 
0.00151215 
0.03439657 
0.04155259 
0.03742087 
0.04166667 
0.04178075 
0.04483084 
0.04200891 
0.07748710 
0.07617731 
0.07768947 
0.07899925 
0.07920162 
0.24002205 
0.08039733 
0.08051140 
0.08202355 
0.08182U8 
0.08321926 
0.08333334 
0.08356149 
0.15951064 
0.16102280 
0.16384473 

82.6448 
03.8985 
00.9428 
00.4925 
00.9971 
00.2499 
00.2465 
00.4607 
04.5460 
00.8278 
00.2328 
00.9146 
00.4185 
03.3219 
00.4464 
00.7072 
09.9583 
00.4149 
00.3350 
01.6232 
00.5667 
01.8288 
14.1370 
02,7552 
00.4196 
00.3678 
63.7716 
01.8174 
00.6169 
01.1445 
14.3809 
03.7188 
01.9555 
03.6744 
01.7910 

Phase lag 

0.00 
346.76 
203.03 
190.43 
219.25 
110.40 
69.76 
26.05 
39.00 
70.89 
76.22 
38.32 

298.13 
61.91 
331.47 
235.58 
64.23 
94.68 
82.92 
189.07 
222.33 
222.60 
215.32 
216.57 
69.42 
232.86 
235.01 
267.63 
246,83 
250.09 
261.12 
264.31 
347.80 
41.98 
168.95 

Table 1.1: A sample of tidal constituents for Halifax. The thirty four largest con
stituents are listed above out of a total of 69 constituents. The phase lag is relative 
to the time origin January 1st, 1930 lam. 



Year 

1930 

1931 

1932 

1933 

1934 

1935 

1936 

1937 

1938 

1939 

1940 

1941 

1942 

1943 

1944 

1944 

1945 

1946 

1947 

1948 

Mean 

Spring 

177 
189 
188 
186 
197 
188 
206 
193 
186 
196 
229 
205 
203 
193 
205 
208 
221 
196 
199 
202 
198 

Summer 

185 
186 
194 
189 
:77 
191 
205 
183 
193 
186 
244 
193 
191 
221 
199 
194 
191 
193 
205 
202 
196 

Fall 

206 
193 
211 
229 
237 
211 
205 
226 
199 
205 
214 
211 
214 
202 
220 
238 
229 
226 
226 
214 
216 

Winter 

220 
238 
205 
250 
215 
214 
221 
212 
208 
211 
208 
214 
231 
228 
223 
205 
217 
234 
223 
205 
219 

Table 1.2: Observed seasonal maxima for Halifax during the period 1930-1948. The 
winter maxima were extracted from hourly sea levels from (January-March), the 
spring maxima were extracted from (April-June) hourly sea levels, the summer max
ima were obtained from (July-September) hourly sea levels and the the fall maxima 
were obtained from (October-December) sea levels. 



Chapter 2 

Outline and Comparison of 

Existing Methods 

The aim of this chapter is to provide a solid basis for the existing approaches to 

return period estimation. In doing so, we first define the major terms and concepts 

including exceedances, upcrossings, peaks over thresholds and maxima for a series 

of data. Important asymptotic results for extreme events are examined. Existing 

methods of return period estimation are briefly outlined. The performances of these 

existing methods are judged based on an idealized sea level with no tide and iid surge, 

and a square top wave tide with dependent surge. 

2.1 Definitions of key terms 

1. Ext reme or maximum value - The random variable Mt(n) is defined as 

the extreme value (or the maximum value) of the set of n random variables 

{VhVt+u-iVt+n-i} iff 

Mt(n) = ma,x{r}t,r)t+\,....,rit+n-i}-

2. Peak over a threshold (POT) - M%° («) i s called the peak over the 

threshold M of the t th cluster of size n iff for all positive & = 17, — u, 

18 
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i = t,t + 1, ...t + n — 1, 

M?° (") =max{Ct,C«+i,--,G+n-i}-

3. Exceedance - There is an exceedance of the level / by the process {i]t} at 

time t iff r)t > I. 

4. Upcrossing - There is an upcrossing of the level / by the discrete process 

{rjt} at time t iff {rjt-i < / < »7t}, or by the continuous process j]t iff 

{ * = ' , * > < > } . 

In the definitions (1) and (2) the subscript t can be dropped for iid {i]t}- Note also that 

extremes and POTs are random variables, whereas exceedances and upcrossings are 

events. We are interested in these latter two events {Mt(n) > 1} and {Mf_„ (u) > /} . 

In the past, all of these events have been used to calculate return periods for different 

methods. 

The difference between an upcrossing and an exceedance is that an upcrossing 

requires the process to be below the level a.tt — 1, i.e. T)t-\ < I. As far as exceedances 

are concerned r}t-\ can be below or above /. Therefore, upcrssings are rare events 

than exceedances. exceedance. 

2.1.1 Asymptotic properties of extreme events 

Note that the results stated and derived in this section are restricted to stationary 

Gaussian processes, so that the subscript t can be dropped from the notations of 

maxima and POTs. In this section, two basic theorems regarding the asymptotic 

convergence of extreme events are first stated. These two theorems verify that the 

distribution of M(n) for an m-dependent process tends to the same limit as for an 

independence process, for increasing n. First the following definition of m-dependence 

is stated. 

Definition 

A stochastic process {rjt} is said to be m-dependent if \i — j \ > m implies that tf, and 

t]j are independent. 
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Watson (1954) derived the asymptotic form of P[r]\ < /„,...,rjn < ln] for in

dependent processes. 

Theorem 1 (Watson 1954) Let {»/J be a strictly stationary stochastic process, un

bounded above and m-dependent with the property that, 

A\ : Urn/-,,*, -pj^j maX|,-_,-|<,» P[m > I, Vj > l\ = 0 

Then, if ln(a) is defined such that 

nP[t]i > ln(at)] = a 

for a fixed, then 

\\mP{M(n)<ln(a)] = e-a. (2.1) 

The results of the above theorem hold true for any stochastic process provided that 

the conditions stated in the theorem hold true. Watson further showed that the 

condition Al always holds for autocorrelated Gaussian processes. Leadbetter (1983) 

showed that these conditions are statisfied for any strong mixing Gaussian sequence. 

The following theorem provides the asymptotic distribution of M(n) in the case 

of Gaussian white noise. The asymptotic convergence of M(n) to the Type 1 ex

treme value distribution was first proved by Fisher and Tippet (1928). The extension 

identifies the normalizing constants an and bn in terms of n for iid standard nor

mal processes, which is stated below. The cumulative distribution function of the 

Type 1 extreme value distribution is defined as F(x) = exp(-exp(x)). The norming 

constants an and bn have been known for many years probably since Gnedneko (1943). 

Theorem 2 If {rjt} are standard normal iid sequences of random variables then the 

asymptotic distribution of M(n) is of Type 1. Specifically, 

P[an(M(n) - bn) < I] - • exp(-exp(-l)) 

wh ere 

and 

an = y/2\ogn 

bn = v /21ogn-(l /2^2logn)(loglogn + log47r). 
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If {nt} is iid Gaussian then the conditions for Watson's theorem are satisfied. In 

that case, a = txp(~I) and /„ = bn + l/an. Using both theorems, it can be shown 

that M(n) has the same limit distribution for dependent and independent processes 

provided that the conditions stated in Watson's theorem are sath fied. 

A more commonly used dependence restriction for stationary process was intro

duced by Rosenblatt (1956) and is called strong mixing. A process is called strong 

mixing if for any event based on the past up to time / is nearly independent of any 

event based on the future from time t + n — 1 when n becomes large. Kolmogrov and 

Rozanov (1960) showed that Gaussian autoregressive processes are strong mixing. 

Loynes (1965) argued that the condition A\ in Watson's theorem can bo relaxed by a 

strong mixing condition. Watson's result has been used in the past for sea levels and 

the probability of annual maxima exceeding an extreme level has been approximated 

by exp(-a) with a estimated from the data. This idea has been used in the joint 

probability method, which will be discussed in detail later in this chapter. 

Another useful result proved by Watson (1954) relates to the asymptotic conver

gence of upcrossings. Watson showed that, if the process {nt} is strictly stationary 

and Gaussian then for any nt and rjt+ji 

Plm>i,yw>i] = 0 
f̂ oo P[Vt+j > I] 

Let j = 1 and then it follows 

lim P[m > l\vw > 1} - 0. 
(-•oo 

Therefore, 

l im{l - -Pfo</p7 £ + , > / ] } = 0 . 
l - » 0 0 

From this result it immediately follows that 

1|m P[,t < U m >/] = L 
i-oo P[nt+1 > I] 

In other words as Ihe level increases the probability of an upcrossing tends to the 

probability of an exccedancti. 
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Leadbetter (1983, Theorem 7.3.2) showed that the expected number of upcrossings 

in the interval [t,t + At] tends to ^Xexp(—^), as At —• 0, which is the probability of 

an upcrossing derived by Rice (1954) for the continuous case, where A2 = limT_>o T"(T) 

and r"(r) is the second derivative of the autocovariance function at lag r. 

In summary the discussion of this section reveals that M(n) of a stationary, strong 

mixing process converge to the same limit as that of an independent and stationary 

process, i.e. 

P[an(M(n) - bn) < I] -> exp(-exp(-l)), 

where an and bn are normalizing constants. Moreover, as the level increases the 

probability of upcrossing tends to the same limit as the probability of exceedances 

for a stationary Gaussian process. The events of upcrossings, exceedances and 

(M(n) > I) have been used in the different methods for estimating return periods and 

are discussed in the next section. It can be shown that all these events converge in 

probability to the same limit, for Gaussian process or more generally in the domain 

of attraction of a Type 1 limit (Leadbetter, 1983). 

2.2 Outline of existing methods 

Until 1980, return periods of sea levels had been estimated using Gumbel's (1958) 

annual maxima method which is sometimes known as the extreme value method. 

This method was discussed briefly in Chapter 1 and is not particularly well suited for 

obtaining return periods of sea levels. 

This section provides a brief outline of the following methods which have been 

used more recently for return period estimation: 

1. Annual maxima method (AMM) - Gumbel (1958) 

2. Peak over threshold method (POT) - English Flood Studies Report (NERC, 

1975) and Smith, R. L. (1984) 

3. Joint probability method (JPM) - Pugh and Vassie (1980) 
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4. Exceedance probability method (EPM) - Middleton and Thompson (1986) 

5. Methods based on extreme value theory of the r-largest annual events -

Smith (1986), Tawn (1988) 

6. Revised joint probability method (RJPM) - Tawn and Vassie (1989), Tawn 

(1992) 

2.2.1 Annual maxima method 

The annual maxima method (AMM) requires a very long sketch of hourly data. The 

full length of the record is considered as a combination of blocks of length n. For 

the ith block, the maximum value Mi(n) is chosen such that the sequence of random 

variables Mi(n),i = 1,2,... are asymptotically independent. The existence of such a 

sequence was discussed in Section 2.1.1. For analysis of sea level data, the block size 

n is generally chosen as one year (n = 8766 hours) hence the name annual maxima 

method. 

The AMM assumes strict stationarity and independence among the annual max

ima, hence the subscript i can be dropped. The AMM return period of the level /, 

Tg, is defined as 

T$ = P[M(n)>lY (2<2) 

As discussed in Section 2.1.1, the probability of P{M(n) > 1} asymptotically is 

given by the extremal Type 1 distribution, provided that the process is Gaussian, 

Leadbetter (1983). In this case, 

P[an(M(n) - bn) < 1} -> exp(-exp(-l)) 

For sufficiently large /, this gives 

Tg = 1/[1 - exp(-exp(-(l - bn)an))\ 

where an and bn are normalizing constants. The relationship between / and Tg can 

then be written as 

/ = & n - / O 0 ( - l o g ( l - l / r f l ) ) / a n . 
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According to the above formula a plot of I against — log(—log(l — l/Tg)) follows a 

linear relationship and is usually called the Gumbel plot. 

The AMM is not readily applicable to this study as it requires many years of 

data. However, the AMM will be used as a baseline method for comparing the other 

methods in the estimation of return periods in Chapter 4. 

2.2.2 Peak over threshold method 

Gumbel's return period definition requires independence among adjacent data points. 

As a result, several techniques have been introduced to ensure independence among 

observations including the peak over threshold (POT) method. The POT method 

has been described in some detail in the English Flood Studies report (NERC 1975) 

and a comprehensive coverage of it was given by Smith (1984) who applied it to wave 

heights. 

The POT method is based on an independent sequence of peaks over a specific 

threshold level. A peak is defined as the maximum value above a threshold level 

achieved during any sequence of consecutive exceedances. A cluster is defined as a 

consecutive set of data points above the threshold. The threshold level is determined 

arbitrarily in most of the cases and should be chosen such that it is high enough to 

ensure approximate independence among clusters, but low enough to leave enough 

observations in the resulting series of peaks. 

Besides the threshold level, a cluster interval must be chosen as well. The cluster 

interval is necessary in order to determine which observation belongs to which cluster. 

The cluster interval should be such that all the dependent observations are within the 

interval and none outside is dependent with them. Within each caster, the maximum 

value is selected and the dependent series is reduced to a set of independent peaks 

above a high threshold. Smith (1984) proposed an empirical rule for identifying 

clusters and cluster intervals based on the mean number of clusters per unit time. 

The occurrence of peaks over a threshold can be considered as a point process of 

events. Ross (1987) considered peak values as following an exponential (/?), with the 
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number of peaks as Poisson (A). The peak value is the corresponding excess over 

the threshold. The parameters /? and A were determined using maximum likelihood 

estimates. If the random variable N(t) denotes the number of POTs within an interval 

of width t, N(t) follows a Poisson distribution with parameter At provided that the 

peaks are independent. Then, the POT return period Tpot, as discussed in Chapter 

1, is given by 1/A. Smith (1984) extended this method to cope with seasonality and 

serial dependence using nonhomogeneous Poisson processes. This technique requires 

a long series of data and thus is not of direct concern in this work. 

2.2.3 Joint probability method 

Pugh and Vassie (1980) recognized the problem of the unavailability of the long 

records of sea level data required by the existing return period estimation methods. 

They introduced the joint probability method (JPM) to take into account the nature 

of the sea level data and the lack of long records of data. 

The sea level was considered to have three components: the mean sea level fit, 

a tidal component nj, and the surge nf. The tide was considered as deterministic 

and a probability distribution was calculated numerically from 18 years of hourly 

predictions (Section 1.1.1.) The probability of a certain tidal level was calculated 

by using the number of times that the level appears in 18 years hourly predictions 

divided by the number of hourly values in 18 years. This idea of the probability of a 

predictable (or deterministic) component seems unusual. Generally we talk about the 

probability distribution of random variables (not deterministic functions) where the 

value of each random variable has an associated uncertainty expressed in terms of a 

probability distribution. For deterministic functions the magnitude of this uncertainty 

is zero. Tawn (1992) recognized this problem with the JPM and has appropriately 

incorporated the deterministic tide so that the probability of exceeding the level / by 

the se.a level at time t nt was expressed as the probability of the surge exceeding the 

gap between the tide and /. 

In the JPM, the probability density function of the sea level nt, /r /((/), where /, is 
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measured from the mean sea level, was calculated as follows 

/•oo 

/.»(*) = / fvHx - y)hf(y)dv 
Jy=-<jo 

where /„,, fvr and fvs are respectively the probability densities of the sea level, 

tide and surge. The above equation results from the convolution of two independent 

random variables nj and nf and hence the term joint probability method. 

The joint probability method was designed to estimate return periods from short 

records. Therefore, the sea level probability density function /,,,(/) was determined 

with one year of hourly data. The probability of annual maxima exceeding the level 

/, P[M(n) > I] = Qn(l), was calculated assuming independence among hourly sea 

levels Tjt as follows. Let Q\(l) = P[r}t > I] = f£l{ fr)t(x)dx. Then if hourly sea levels 

are independent, Qn(l) = 1 — [1 — Qi(l)]n. If the level is large enough to assume /„ = / 

then 

[I - Qi(l)]n = [l --}n-> exp(-a) 
n 

provided that the number of hourly observations per year n is large enough to attain 

the limit in the above formula, where a is defined as in Watson's theorem, 

nP\r}i > L(ai)} = a. 

It follows that 

Qn(l) = 1 - exp[-nQl(l)] 

and the return period is calculated using Gumbel's definition as 

l/QJJ) = 1/(1 - exp(-nQ,(l))) « -4p 

To take care of the dependence between hourly sea levels, Cartwright's (1958) 

correction factor for 1-dependence was used. 1-dependence is a special case of in

dependence as defined in Section 2.1. Cartwright's correction factor for 1-dependence 

is given by 

Qn(t)=l-exp\-nQx(l)(l-9M) 
I Vl(«) , 
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where (^(O = P\vt > ^nt+i > I]- The JPM return period Tjpm with the correction 

for the dependence is then given by 

Tjpm = 1/{1 - exp[-nQ,(l)(l - 2*®)]}. (2.3) 
H\\>) 

Cartwright's correction factor was designed for 1-dependcnt processes. As the 

sea level process is highly dependent, the assumption of 1-dependence may cause 

problems for autoregressive processes with a large AR parameter. In the JPM method 

no allowance is made to take the nonstationarity in the surge into account. These 

deficiencies may seriously influence the return period estimates of rather small levels. 

However, as the level becomes larger the high level exceedances occur less frequently 

thus diminishing the effect of nonstationarity. 

The fundamental importance of JPM is the separation of tide and surge so that the 

predictability of the tide can be incorporated in to the predictability of the sea level 

by convolving with a surge model. This concept first introduced by Pugh and Vassie 

was used in the exceedance probability method. The fundamental problem with the 

JPM is the return period Tjpm depends on the sampling frequency n as Tjpm ?a \/nQ\. 

Recognizing this problem, Middleton and Thompson (1986) produced the exceedance 

probability method. 

2.2.4 Exceedance probability method 

Middleton and Thompson (1986) introduced the exceedance probability method (EPM) 

It takes advantage of the deterministic nature of the tide and the stochastic nature 

of the surge estimate as originally introduced in the JPM. 

For iid processes EPM return period is estimated using the reciprocal of the ex

pected number of upcrossings in the unit interval. This definition does not depend 

on the sampling frequency and thus eliminates the problem associated with the JPM. 

As outlined in Chapter 1, Rice's (1954) formula can be used to estimate the instan

taneous probability of crossing the level. This can be interpreted as the expected 

number of upcrossings in the unit interval. Rice derived the probability of a normally 
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distributed process crossing a specific level within (t,t + dt) in order to analyse the 

noise in electrical currents. It was shown that the probability of upcrossiig or the 

expected number of upcrossings in [t, t + dt], P[rjt < I < Tjt+dt] = Q(t)dt, is equivalent 

to ^ A e x p ( ^ ) . Rice's derivation is briefly outlined next. 

For continuous rjt instantaneous probability of upcrossings in [t, t + dt] is given by 

P[nt < I < T)t+dt,f)t > 0] where r}t = drjt/dt. If nt follows normal distribution with 

zero mean and a standard deviation, it can be shown that the derivative process t)t 

is independent of nt and follows the same distribution with the same mean and the 

standard deviation A, which is equal to J—r"(0), where r(h) is the autocorrelation 

at lag h. Then r"(V*.) = lim/^o d?r(h)/dh2. It follows that the joint density of nt and 

rjt is given by 

fM) = ^ exP[-(772/<T2 + fo)a/A2)/2]. 

Then the expected number of upcrossings 

f°° Qtdt = / ritf(Vt,Vt = l)dr}t-
Jfit=0 

Evaluation of the integral leads to the final result. 

The surge standard deviation a was modeled as seasonal and was assumed to 

follow <x2 = (TQ[1 -)- ecos(un)] where i was given in months and then u = 27r/12. The 

parameter estimates of ey\ and e were obtained from the least square method. The 

parameter A was estimated using the power spectrum of the surge (Middleton and 

Thompson, 1986). 

The EPM return period TT is obtained using the definition 

rT+t 
Tr = T\f[ / Q(r)dT = \. (2.4) 

In this definition TT is referred to a specific time origin which allows for a trend. The 

noteworthy feature of this method is that the seasonal variations of the tide and surges 

are taken into account. Middleton and Thompson predicted the tide using the tidal 

packages of Foreman (1977) for Halifax. The residual or the surge was then tested for 

a seasonally changing variance. The following model was then fits to Halifax monthly 
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surge variances 

<r2 = <TQ(1 -f ecosut) 

where t is in months, o\ = 124.9cm2, and e = 0.8. The autocorrelation structure, 

which is necessary to estimate A, was found to be autoregressive of order one for Hal

ifax. However, unlike the usual ARM A models, the residual error from the AR surge 

model was found to follow a contaminated normal distribution due to the asymmetry 

in the tails of distribution. The estimate for A was obtained using the estimated 

spectrum of the surge data. The EPM estimates were compared with AMM and 

JPM estimates for Halifax and Victoria sea levels and found to be in reasonably good 

agreement. 

2.2.5 Extreme value methods using r-largest annual events 

Smith (1986) extended the AMM by using r-largest annual events. The tide was 

considered to have both a trend and a periodic component. This method was further 

extended by Tawn (1988) for a more general class of extremal processes using gen

eralized extreme value distributions. The method is explained below. The r largest 

values in a year were derived from the total sea level. Here a value of r=l refers to 

the case of annual maxima. 

In the long history of extremal analysis, Type-1 extreme value distributions were 

used to describe the distribution of annual maxima. However in most applications, 

deviations from the linear Gumbel plot (see Section 2.1.5) were noted. Smith (1986) 

suggested using the generalized extreme value (GEV) distribution in place of the 

Type-1 extreme value distribution. The cumulative GEV distribution function is 

given by 

P[m < x\ii,<r,k] = exp[-(\ - fci^-^l)*] (2.5) 

on the set of x for which 1 — k(x — p,)/t7 > 0. Gumbel's Types 1, 2 and 3 are special 

cases corresponding to k = 0, k < 0 and k > 0, respectively. 

The major drawback of the AMM is that only a single observation from a year 

long record is used which reduces the precision of the final estimate. Smith suggested 
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instead using the r-largest annual values. The distribution of the r-largest iid values 

was obtained by Weissman (1978). Supposing that N years of data are available, 

estimates of the parameters like \i and a can be obtained numerically using the 

maximum likelihood method. 

Suppose that the r-largest for each of the N years of data are nXin > 7/2)„ >, . . > 7/r,„ 

for 1 < n < AT. If the year-to-year data are assumed to be iid then by taking p,n = fi, 

<rn = er and kn = k, the likelihood for the r-largest can be written as 

a-EL r(n) e x p [ _ £ ( { 1 _ k[T)rn _ Mey/k + {1/k _ ,) £ l o g [ 1 _ k{{r)jn _ / / ) / < 7 ) ] ) ] ; 

n=l j = l 

where r(n) is the rth largest in the nth year. In the presence of a trend plus seasonal 

component of period p, p,n the location parameter for the nth year was modeled as 

nn . .Inn .. 
Hn = a + p— + ( cos( + <p). 

J\ p 

The parameters a, /?, C, <t> and a were then estimated by maximum likelihood methods. 

This method was applied to sea levels in Venice. It is reasonable to consider 

fin as representing the tidal variation plus the mean sea level since all deterministic 

variations are included in the location parameter //n. If the component representation 

of the sea level is given by nt = nj + nf, then nt follows the same distribution as nf 

with the mean given by the tidal component r)f and the variance given by that of nf. 

The standard errors of the estimated pari.riders were assessed by comparing 

the observed and expected information matrices. Basically the closer they are to 

each other, more evidence to confirm that nt belongs to an exponential family of 

distributions. 

The return period was estimated from the model as follows. For a linear annual 

trend p,n = a + fln/N, the n year return value / was estimated by 

/ = d + ^ - < x l o g ( - l o g ( l - £ ) ) 

whcr e is the exceedance probability of annual maxima. In other words, the level / 

will be exceeded in the year n with probability £, where 

[l-a + alog(-log(l-s))]j. 



31 

The model and the choice of r were assessed using probability plots. This procedure 

was considered for r = 1,5,10 and it was seen that 7- = 1,5 gave better estimates 

with closer standard deviations. 

This method requires a long record of data. As a result, this method will not be 

considered further, in this thesis. 

2.2.6 Revised joint probability method 

Tawn and Vassie (1989) developed a revised joint probability method (RJPM) by 

including an extremal index to take care of the dependence of the sea level. The R.J PM 

was designed to overcome the difficulties in using Cartwright's correction factor for 

dependence. The difference is in the use of the e::tremal index 0(1) in place of the 

Cartwright's correction factor. 

The extremal index for dependent sequences was first introduced by Loynes (1964). 

Leadbetter et al (1983) further investigated the extremal index in terms of a point 

process and gave a physical interpretation as the reciprocal of the mean over topping 

time of the level /. Following Gumbel's return period definition, the RJPM estimate 

for the return period Trjpm is given by 

Trjpm = {N0[l - F(l)]}-' (2.6) 

where F(l) = P[nt < I] and is obtained by the tide and surge convolution (Section 

2.2.3) and N = 8766 for one year of hourly data. Given /, 6 can be estimated as the 

limiting value of the reciprocal of the mean over topping time as / —> oo. Note that 

TrjPm is invariant with sampling frequency. 

Tawn (1992) extended the extremal index specifically for sea levels by introducing 

two extremal indices, one for the surge and the other for the sea level. According 

to this approach, the distribution of the annual maxima hourly surge levels Ga(l) is 

given by 

Gs(l) = F.N'-{t) 
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where Fa(l) = P[nf < I] and 0S is the extremal index for the surge. Now the density, 

f m d[Ga(l)]
{N9'rl 

fs{l) = dl 

is expressed as the derivative of the distribution function. The original JPM method 

was restricted to the observed largest surge plus the tide. Use of the Gs(l) in the 

revised method allows the extrapolation to the tail of the surge distribution. 

Using the convolution concept of the JPM gives 

^ ( 0 = / h(r}S
t-x)fT(x)dx 

where F(l) is the hourly sea level cumulative probability distribution with fs and 

fr{y) are respectively the surge and tide densities. The distribution of annual maxima 

G(l) was obtained as in RJPM by 

G(i)=[F(i)r 

where 0 is the extremal index for the total sea level, 0 < 6S < 0 < 1. Once the 

probability of a level of exceedance was established the return period of that level 

was calculated using Gumbel's definition Trjpm = ^yy. 

Extremal indices 6 and 0„ were estimated for the data as follows. Both indices are 

defined as limits. The reciprocals of the indices, 0~x(x) and 6~1(x), can be obtained 

as the mean overtopping of the level x from the observed sea level and surge data. 

More details on finding independent clusters and appropriate levels are provided by 

Tawn (1992). Instead of finding an optimum value for 0-1(x) and 6~l(x), as x —> oo, 

the use of the estimate 

was suggested by Tawn, where u>i = Var{0_1(x,)}_1. 

2.3 Comparison of the methods 

Five existing techniques for return period estimation were discussed in the previous 

section. These methods will now be compared keeping in mind the particular case of 
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interest, that is estimation of return periods from short records. 

The two historical methods of estimating return periods, POT and AMM methods 

require long series of data. Smith (1984) introduced a model based approach for 

selecting the threshold and cluster interval. It was based on a hypothetical doubly-

stochastic model for the point process of high level exceedances. 

In the AMM, a single data point is chosen within the period of one year, and 

the remainder are discarded. Even though the AMM requires between 10-25 years of 

hourly data to estimate return periods, the ultimate estimate is based on only 10-25 

data points. Thus the precision of the estimate is reduced. No theoretical basis has 

been developed which leads to the proper choice of the time iuterval over which the 

maximum is defined. The final estimate is in units of the chosen range (e.g. years). 

Therefore, the precision has again been reduced in another sense. However, the AMM 

will be considered here for both comparisons and validations. 

The method based on r-largest annual events also requires a long series of data. 

This method has the same deficiencies as the annual maxima and POT method when 

short series are used. The JPM, EPM and RJPM are all specifically designed to 

obtain return periods of sea levels from short records. These three methods will be 

investigated further in Chapter 4. Finally, if the length of the record is long enough 

to identify the stochastic components of the process, a method which emphasizes 

parametric modeling of the surge might be more appropriate. This is considered in 

Chapter 3. 

2.3.1 No tide and iid surge 

The return periods obtained by the methods discussed in the previous section will be 

compared using an idealized sea level process: no tide and iid surge. If the process 

{nt} is iid then the Gumbel's definition leads to the probability of the return period 

given as 

P[vt < l}7-1 Pint > /] 
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which is a geometric density whose mean is equal to p,
1
>/,. Gumbel's return period 

estimate Tg is defined as the reciprocal of P[nt > I]. 

Define the point process of the POT as 

r , , , f 1 if Vt > I given that nt > u 
It(l,u) = < 

[ 0 otherwise. 

Then, the number of POTs exceeding the level / can be considered to follow a 

Poisson(A) distribution, where the intensity parameter A is given by 

A = P[Vt > i\m > u] = ^ 2 1 

with F(u) = P[nt < u]. The return period Tpot is then \~y»<• The threshold level u 

is selected such that the conditions for clustering and independence are met. For iid 

sea levels these conditions are met at any value of u. Choosing a threshold u such 

that 1 — F(u) = 1 leads to the case of, Tpot = 1/P[v > I] which is same as Tg. 

The EPM return period TT was originally defined for continuous time. The equiv

alent version in discrete time is defined as the minimum length of time that ensures 

the expected number of upcrossings is equal to 1, i.e. 

r r(0 = min{T:£Q f .>l} 

Qi = P[r;,_i < / < rji]. For iid sea levels, the subscript i can be dropped and then 

TT = l/.P[?7,_i < I < rji] for any time i. It was shown in Section 2.1.1, that the 

probability of an upcrossing, P[r/,_i < / < n,], and the probability of exceedance, 

P[Vi ̂  l]i tend to the same limit in which case Tr is equal to Tg. 

The other return period estimates due to the JPM and the RJPM will not be 

considered because if the process is iid, the extremal index and the Cartwright cor

rection factor will equal unity thus leading to the same return periods as the AMM. 

In summary for iid processes, all the definitions considered in this chapter leads to 

the same return period estimate. 
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2.3.2 Return periods of sea levels with a square-top tide 

and a dependent surge 

Since, in reality, the sea level process is dependent and stationary we would like to 

relax the iid assumption and investigate the behavior for a non iid process. It is almost 

guaranteed that the return periods of extreme levels will occur at or around the high 

tides. Our purpose here is to estimate return periods of extreme levels at least two or 

three surge standard deviations away from the tidal maxima. An exceedance occurs 

only when the surge exceeds the gap between the level of concern and the tide. For 

tidal cycle of length T the probability of the event 

P[m <hV2< ' ,—. ,VT-I <1,TJT < I] 

can be approximated by 

pfo-j < l,1i-j+i < f,.-,'7t- < /,-Vt-+i < l\ 

where i is the time of high tide and j the time either side of high tide that could 

provide an exceedance of the level /, i.e. the probability of exceeding the level / at 

other times in the tidal cycle are effectively zero. 

Let number of points around the ith tidal maximum be 3. The tide is then reduced 

to 3 equally spaced points. Our concern is with the surge exceeding the gap between 

the level of interest and the tide. Without loss of generality, the level of the tide can 

be considered as zero at the ith tidal peak and —oo elsewhere so that the probability 

of exceedances at points other than the maxima will be zero. This concept reduces 

the tide to a square-top of length three hours. 

Let Pooo be the probability of being below the level / (> 0) at the «th tidal square-

top, for i = 1,2,.... Here we assume independence between tides. According to 

Gumbel's definition of return p ^riod 

where PQOO = Ptyf < hvf+i < ^Vi+2 < 0 anc^ Tg is measured in tidal periods. 
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The return period of the sea level with a square-top tide will be derived for the 

AMM, POT method, JPM and EPM. Since some of the methods were derived specif

ically for extreme levels, the asymptotic behavior of return periods will also be briefly 

investigated. The return period estimate according to the Gumbel definition given 

as the reciprocal of the three dimensional probability of not being below the level / 

is considered as the baseline estimate. 

The following notation will be used in the derivations, 

1. P[r,f > I] = P, and P[r,f < I] = P0 

2. P[nf > /,nf+1 > I] = P„ , P[r,f < /,nf+1 < /] = P00 

P[vf > Uf+i < t\ = Pio, P[vf > l,vf+2 > *] = Pi-i 

3. P[nf >/,»7f+1>/,77f+2>/] = P m 

P[nf < l,nf+1 < /,nf+2 < /] = P0oo 

P[v?<l,r)f+i < / , « f + i > / ] = P0oi. 

P[v?>l,r)f+i<l,n?+2>l] = Pioi. 

Ratios of return periods from other methods with respect to the Gumbel baseline 

method will be calculated in order to see how the estimation proceeds as the level 

gets large. Each method is now considered below. 

AMM return period 

Let k be the number of tidal periods in a year. Then, 

P[annual maxima < /] = Po
fc

0O and the annual maxima return period in years is 

T - — i -
1 — M)00 

The same return period in terms of tidal periods is given by 

T = — * — 
-lomm - 1 p k 

1 — M)00 

which is an overestimate of (2.7). It can be shown that the difference is always within 

one year, i.e. \Tamm — Tg\ < 1. A comparison of Tamm and Tg reveals that the factor 
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k in Tamm results in the difference, for as k —> 1, Tamm —> Tg. This difference is due 

to the fact the maximum is taken over a year rather than over a tidal period. 

POT return period 

For a square-top tide, the level of the tide at peak times, i.e. iff = 0, can be 

considered as the threshold level. Let M(3) denote the maximum (or the peak) of 

three consecutive levels of the surge {Vt^Vt+iiVt+2}- Define the indicator variable as 

, i ( 0 f l , «MQ)Zl 
( 0, otherwise. 

Then, the number of peaks exceeding the level / in the interval [0, t], say N(t), follows 

the Poisson distribution 
~-M(At)n 

P[N(t) = n] = 
n 

where the intensity parameter A = P[/«(/) = 1]. The POT return period is given by 

TPOT = T-
A 

where 

A = P[M(3) > /]. 

Then 

TpoT 
1 — Pooo 

This is equal to the base-line estimate of Tg. Therefore, if the square-top tide is taken 

as the threshold level then the estimate Tpot is the same as Tg. 

JPM return period 

The tide and surge convolution is used to obtain the probability of exceedance at 

each hour. The probability of the tide equal to the the level of the square-top tide is 

given by 

P[vf = o] = l 
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at t equal to the peak times (say t = 1,2,3) and 

P\nJ — —oo] = for some t = 4, i + 1, ..v 
v, 

where v is period of the tide in hours. It follows that P[n« > /] = ^p-. In the JPM 

annual maxima are usually considered and we have already seen that the return period 

given by the AMM is different from the baseline estimate Tg. Therefore, hourly sea 

levels will be used in order to check the compatibility of the JPM estimate with Tg. 

If hourly sea levels are assumed to be independent, then 

Tjpm(ind) = — (in hours). 

= —— (in tidal periods). 
3 Pi 

If Cartwright's correction factor for 1-dependence is used 

Tjpm(l~dep) = ^ - 5 1 ) 

1 

3Pu? 
The use of Cartwright's correction factor for 2-dependence leads to 

Tjpm(2-dep) = SPI{1_P^_P^ + F^) 

' 1 

*{Pi-Pn-Pi.i + Piu) 
1 

3Pioo 

By comparing the estimates given by the JPM with Tg, it can be concluded that 

the two estimates are different, even after using Cartwright's correction factor. Dif

ferent return periods are not only due to the independence assumption for surges at 

the high tide limit, but also as a result of the convolution of the tide and the surge. 

EPM return period 

This method is based on the expected number of upcrossings in the unit interval, 

which is equal to 1 - P00o + Pioi, and the return period TT is given by x_p
 1

+p . Tr 
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Method 

Annual maxima method 
Peak over threshold method 

Joint probability method 
Independent case 

1-dependent 
2-dependent 

Exceedance probability method 

Baseline method 

Symbol 
T 

TpoT 

Tjpm(ind) 
Tjpm(l - dep) 
Tjpm(2 - dep) 

Tr 

T9 

Return Period 
k 

l - (Pooo)* 
1 

1 — Pnnn 

1 
3P, 

3P1 0 

3P,nn 

(I-POOO+PIOI) 
1 

1-Pnnn 

Table 2.1: Return periods (in tidal periods) for various methods for a square-top tide 
of length three hours. 

then differs from the baseline estimate Tg by a Pioi in the denominator, which tends 

to zero as the level becomes extreme. 

In general, this method provides slight overestimate of Tg for levels with a square-

top tide. The rate of overestimation increases with the length of the square-top tide. 

However, since the contribution of the extra term for extreme levels is negligible, the 

return period can be estimated as the reciprocal of the expected number of upcrossings 

in an interval of width 3. 

Summary 

The results derived in this section for a square-top tide are summarized in Table 

1. From the comparisons carried out in this section it was revealed that the return 

periods Tpot and Tg are identical. It can easily be verified as the level gets higher the 

AMM, JPM and EPM provide similar estimates for Tg. Of these methods the EPM 

provides the estimate closest to the baseline method. However, if the difference is 

considerably small compared to the magnitude of the estimated return period then 

those methods could still be used. The accuracy of return period estimates depends 

on the precision of the estimate of the probability of exceedance (e.g. 1 — Pooo)-

It can be shown that the ratios listed in Table 2.1 tends to one as the level 
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increases. According to the asymptotic results discussed in Section 2.1.1, all these 

estimates should converge to the same value with increasing level. However, the 

rate of convergence may be different from one method to the other. This will be 

investigated next. 

Rate of convergence for a Gaussian AR(1) surge with a square-top tide 

The purpose of this section is to investigate the rate of convergence of the return pe

riod estimates of each method to the baseline estimate Tg as the level increases. It was 

seen in Table 2.1 that each return period can be interpreted using Po, Pi0, Pooi Pioi5 Pioo, Pooo-

Now the problem is to obtain accurate estimates of these probabilities for a paramet-

rically specified model. 

Accurate tables are available to estimate the single dimensional probability Po for 

small values of /. For large values of / the approximation 

(Cramer, 1893) can be used. Two and three dimensional probabilities can be esti

mated using numerical subroutines such as those found in NAG or IMSL. However, it 

is observed that the accuracy decreases as / increases and, in fact, irregularities occur 

for very large values of /. The use of the following expression seems to avoid those 

irregularities, 

Pn = (Pi)2-rA(l,p) (2.8) 

where 

^-\i:^-^m^-
and p is the correlation between nf,nf+l. Further, it can be shown that 

i-pnt 

The above expression for P\\ was derived as follows. Since 

A(l,p) = P[nt>l,-!7=J2L<T]t+i<l]. 

1 - Poo = 2P10 + P n 
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then 

Since Pj0 = Po - Poo, 

Pn — 1 — Poo — 2Pio-

P „ = 2 P , + P o o - l . 

Owen (1956) showed that 

Poo = (Po)2 + 2 T ( / , l ) - 2 T /, 
!+/» 

where 

and as a result 

T^ = r«l 
1 /•« exp(-\P(i + x2)) 

l + x2 dx 

I, 
n-p 
i + p 

Pn = (Pi)2 + 2 T ( / , l ) - 2 r 

Furthermore since •v/^£ < 1 for p > 0, T /, JJI^ can be written as follows 

exp(-\l2(\+x2)) 
T I, 

ll-p 

l+/». r ( / , 1 ) - ^ f e l + x 2 -dx. 

The integral given by A(l, p) can be evaluated using the NAG subroutines subroutines 

for quadrature D01BCF and D01FBF. 

Of the various methods of computing the tri-variate normal integral the method 

due to Steck (1958) claims that most errors occur after the fourth of fifth decimal 

place. When using the approximation given by Steck, it was noticed that for extreme 

levels greater than five standard deviations away from the mean, changes in Pooo that 

occur beyond the fifth decimal place are the most important. For example, the Steck 

approximation gives for / = 5.5, P000 = .9999909 and for / = 5.0, Pooo = .9999992. 

Therefore, the estimation schemes were restricted to / < 5. 

An idealized surge of the form 

V? = Pnt\ + et 

is used, where et ~ A^(0,1) and p = 0.95. The return times as a ratio of the baseline 

estimate for different estimation methods, and using the AR(1) surge model, were 
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Level (Standard Deviation from Mean) 

Figure 2.1: The return time ratios with respect to baseline estimate. The return time 
ratio for the Gumbel estimate is marked 1, the EPM is marked 2, JPM 1-dependent 
is marked 3, JPM independent is marked 4 and the JPM 2-dependent is marked 5 
respectively. 

calculated assuming the tidal period is large enough to assume independence between 

consecutive square-top tides. Two dimensional probabilities were calculated using 

(2.8) and the expression given by Steck was used to evaluate the three dimensional 

probabilities. To calculate Pooo from P m the following equation was used 

Pooo = 1 - 3Pj + 2P n + Px.x - P m . 

Figure 2.1 shows that all the methods provide similar estimates for the return time 

as the level becomes large. However the rate of convergence varies greatly between 

the methods. As seen in Figure 2.1, the exceedance probability method gives closer 

estimates than the other methods. The use of the EPM reduces the estimation 

problem to a two dimensional probability of upcrossing. However, note that all the 
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other return period estimates do converge to Tg asymptotically. 

2.4 Summary 

The discussion carried out in this chapter reveals that the return period has been de

fined using different events such as upcrossings, exceedai. es, peaks over a threshold 

exceeding a level and annual maxima exceedances. Since these events are asymptoti

cally equivalent for iid processes, the resulting return periods are also asymptotically 

equivalent. 

All the different methods were considered for the estimation of return periods for 

a Gaussian AR(1) surge with a square-top tide. For the purposes of comparison, the 

Gumbel's definition of return period was used as a baseline. It was found that out 

of all the methods considered, only the POT method with a square-top tide acting 

as the threshold level gives the same estimate as the Gumbel method. However, this 

method causes problems with a seasonally varying tide. As described earlier, the real 

tide is a curve not a square wave in the high tide limit. In this case the exceedances 

follow a nonhomogeneous Poisson process with intensity A varying seasonally over 

time. 

It would be difficult to use the baseline estimate of Tg with a correlated surge 

as difficulties arise in calculating the higher dimensional probabilities which are re

quired. The two estimates Tjpm and TT only require the probability of exceedance and 

the probability of upcrossing. There are numerical methods and computer programs 

available to calculate these probabilities accurately. The two methods EPM and JPM 

can be used with short records of data provided that the surge process is parametri

cally specified. Both of these methods converge to Tg asymptotically. Modifications 

to the JPM are necessary for use with a deterministic tide and the EPM must be 

redefined for use with discrete time probabilities of upcrossings. 

One point of fundamental importance in using a short record of data is that 

nonstationarity in the surge be parametrically explained using seasonally varying 
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model parameters. This will be done in Chapter 3. 



Chapter 3 

A Periodic Autoregressive Surge 

Model 

A description of the model fitting procedure for hourly surges is presented in this 

chapter. Our objective is to explain the stochastic behavior of the surge by a para

metric model. Given that the important stochastic features, like autocorrelation and 

variance, have annual cycles, a year of data may be sufficient to capture all the nec

essary features in the data. On that basis, the information in the surge may be 

condensed into a small number of parameters with a known distribution. This would 

enable one to estimate the probabilities of exceedance or upcrossings required by the 

return period estimations by using only a year or so of data. This approach provides 

a means of dealing with some of the problems resulting from the unavailability of long 

records of data. 

Hourly surges are subject to systematic changes in their variance and autocor

relation structure. Observations for Halifax show that the hourly variations of the 

surge level in the winter is substantially higher than that in the summer. Further, 

the autocorrelation of the surge in the winter is stronger than in the summer. This is 

evidenced by the Halifax surge having high surge values clustering for a longer period 

in the winter than in the summer. 

The features discussed above suggest a seasonally varying autocorrelation and 

45 
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variance structure for the Halifax surge series. Nonstationarity, which usually appears 

in the mean in conventional autoregressive moving average (ARMA) models, can be 

eliminated by taking first differences of adjacent values in the series to gain first-order 

stationarity. Second-order nonstationarity, which exists in the form of seasonally 

varying autocorrelation and variance, leads to more complicated models than the 

usual ARMA models. 

The level of the surge at any time t, Tjf, was obtained by removing the level of 

the tide rff from the observed sea level n*. The tidal package of Foreman (1977) 

determines the tidal constituents from data and provides the surge after removing all 

possible deterministic tidal components. However, there still may be some uniden

tified components remaining in the surge, leading to a contaminated noise process. 

Moreover, any distortion in the surge may also be due to measurement errors in the 

observed sea level. Upon examination of time series plots of Halifax sea level, it was 

noticed that a nonsystematic change in the surge level appears. These irregularities 

may be due to recording errors. 

A useful class of models, originally designed by engineers to explain the systematic 

distortion in signals, is that of state space models. In this chapter, state space models 

with and without noise will be fitted to the surge. A model which describes well the 

stochastic behavior of the data will then be selected. As we only deal with surge, 

the superscript s will be dropped and hereafter t]t is the observed surge at time t. In 

cases where the noise is present, nt is expressed by a measurement equation (Harvey 

1981) 

tjt = xt + wt (3.1) 

where the measurement noise component Wt is assumed to be serially uncorrelated 

and normally distributed with zero mean and variance 0. 

Note that ijt cannot be filtered or standardized in a time invariant manner to 

achieve second-order stationarity due to the seasonally changing variance and auto

correlation structure. Middleton and Thompson (1986) pointed out that the surge 

variance is seasonally varying and higher in winter than in summer. In places like 
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Halifax, where extremely high surges due to storms occur only in the winter time, 

the autocorrelation and the variance of hourly surges in the winter may be different 

from that of the summer. 

A class of models which describes the second-order seasonal behavior is that of 

periodic autoregressive moving average (PARMA) models (Jones and Brelsford 1967, 

Pagano 1978, Troutman 1979, Tiao and Grupe 1980). This particular class of models 

allow the usual ARMA parameters to change over time. A periodic autoregressive 

model of order 1, PAR(l) , for xt is given by 

xt = <*(*)*«_, + (3{t)eh (3.2) 

where the innovation et is assumed to be a white noise series. The periodic AR 

parameter at time t, ct(t), is given by 

a(t) = a0 -f &i cos(ut) + a 2 sin(w£) (3.3) 

and /3(t) is assumed to follow a similar seasonal pattern 

p(t) = p0 + fix cos(ujt) + p2 sin(wi). (3.4) 

Here the frequency u is equal to 27r/8766 for hourly data and allows for leap years. The 

innovation tt a * 'Measurement noise wt, are assumed to follow normal distributions. 

The method of maximum likelihood (ML) is used to estimate the model param

eters. ML estimation of PARMA parameters was used by Vechia (1985) for stream 

flow data. The variance for this data set changed bimonthly and the autocorrelation 

was constant. It was found by Vechia that the ML method generally reduces the 

mean squared error of estimates compared to the moment estimation method. An

other possible estimation method, generally used in ARMA model fitting, is to use 

seasonal Yule-Walker equations. In PARMA, models, seasonal Yule-Walker equations 

are complicated as the autocorrelation function of lag varies over time. The estimates 

obtained by Vechia are not applicable to the surge parameters in PAR(l) model, as in 

(3.2). The model presentation in (3.2) is also different from the conventional ARMA 

models presented in Box and Jenkins (1981) in which a and p are constant. 
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The objective of the estimation procedure is to find a well fitting parametric model 

for the surge, using a single year of data. In Section 3.2, the estimation techniques 

and diagnostic checks are demonstrated using the 1930 hourly surge series for Halifax. 

The year 1930 was free from missing values, however may not be a typical year. 

Possible timing errors and errors due to horizontal and vertical shifts of the sea level 

gauge plotter are eliminated using the technique developed by Thompson and Smith 

(COWLIS report, personal communication). 

The ML method of estimating model parameters for different types of postulated 

models is outlined in Section 3.1. The covariance matrix of the ML estimates of 

the parameter vector can be approximated by the inverse of the sample information 

matrix (Bickel and Docksum,1977) and significance tests can be based on the asymp

totic normality of ML estimates. Likelihood ratio techniques will be used to test the 

significance of parameters like the measurement noise variance 0 or the AR coeffi

cients. Once a plausible model is identified, significance tests will be carried out for 

all of its parameters. Model adequacy will be checked by comparing the estimated 

seasonally varying autocorrelation and variance structure of the model with the same 

features for the observed surge. The normality assumption of the noise is checked by 

examining the residuals of the chosen surge model. 

The selected model will be utilized to explain the stochastic behavior of the Halifax 

surge in Section 3.3. Parameters are estimated using a year of data. As it is natural 

to have year-to-year sampling variability, confidence intervals for the vital statistics, 

like variance and autocorrelation, will be constructed. 

A special type of a surge parametric model is designed and fit in this chapter. One 

distinguishing feature of the surge parametric model stipulated in this study is the 

explanation of the second-order nonstationarity, appearing in the form of seasonally 

changing variance and autocorrelation, by a seasonally varying set of parameters a(t) 

and P(t). The influence of such nonstationarity in the final return period estimation 

is examined below using Halifax sea level data to motivate construction of a surge 

parametric model. 
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The return period estimates discussed in the previous chapter require the estima

tion of the probability of high level exceedances. As the tide is deterministic, this 

probability can be expressed as the probability of the surge exceeding the gap be

tween the level of concern and the tide. The most commonly used annual maxima 

return period of the level n* is the reciprocal of the probabilities of the annual max

ima exceeding n* minus the level of the tide. For simplicity in examining the seasonal 

variance, the tide will be assumed to be a delta function of height (6~) every twenty 

four hours. Then, the return period of the level n* is stated as the reciprocal of the 

probability annual maxima exceedance of f?, where £ = n* — 8. 

To examine the influence of the seasonality in the variance, the surge will be as

sumed to be a moving average of order less than twenty four hours, thus allowing for 

exceedances at the diurnal tides to be independent of one another. If intraseasonal 

variance change is assumed to be negligible, the surge variance in winter, spring, sum

mer and fall can be assumed to be 289.41, 118.70, 65.82 and 217.72 cm2 respectively. 

These values are the seasonal averages from the estimated model in Section 3.3. The 

average annual variance from the estimated model, for the whole year, is taken to be 

173.52 cm2. 

The annual maxima return period was calculated in two ways. The first estimate is 

based on the different variances for each season and thus allows the variance to change 

with season. The second estimate is based on the average variance for the whole year 

and thus assumes that the variance does not change over the year. Table 3.1 provides 

return period estimates for these two cases for the levels £ = 10,15,20,25,..., 55,60cm. 

Table 3.1 shows that as the level becomes extreme, the difference between estimated 

return periods with and without seasonal variance increases. Differences begin to 

appear around the 40 cm level which fa about three standard deviations away from 

the surge mean. The seasonal variance estimate tells us that the level of 40 cm is 

exceeded in another year or so, but the use of nonseasonal variance forecasts the same 

to be four years. If the level of exceedance is five standard deviations away from the 

mean, around 60 cm, the exceedances could occur in another 49 years time according 
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Level (cm) 

25 
30 
35 
40 
45 
50 
55 
60 

Return period in years 
with seasonal variance without seasonal variance 

1.00 
1.00 
1.00 
1.47 
2.69 
6.16 
16.45 
48.83 

1.00 
1.04 
1.58 
4.19 
16.02 
76.55 

435.32 
2881.20 

Table 3.1: Return periods from annual maxima method 

to seasonal variance estimate, whereas the nonseasonal variance estimate is 2881 

years. This enormous difference can lead to disastrous consequences in environmental 

planning. The above noted difference motivated us to look for a seasonally varying 

parameter structure for the surge model, which is presented below. 

3.1 Plausible models and likelihood functions 

Four types of models will be fitted using the combination of measurement noise and 

AR(2) coefficient as set down in the table below. 

Noise 

Absent 

Present 

AR(2) coefficients 

Absent 

Model 1 

Model 3 

Present 

Model 2 

Model 4 
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MODEL 1: PAR(l) model without noise 

The simplest model that explains the second-order nonstationarity of the surge 

is PAR(l), where the observed surge at time t, r/f is given in terms of the state, xt, 

according to 

xt = a(t)xt-i + P(t)et 

Parameter functions ct(t) and P(t) are given in equations (3.3) and (3.4) respectively. 

The likelihood function for a single year of data can be written as 

ux gfrn l eM-Y:U(m-^(i)vt-,)
2/2p2(t)) 

M«,/W- (27r)n/2 u u m 

where the parameter vectors a and P are given by a = (a0, a^a^) ' , P — (Pa,P\,fii)' 

and n — 8766 giving rfn = (n1? ?/2, •••, tyn)'- Up to an additive constant the log likelihood 

is proportional to £n 

** = - D 7 ' " ! ^ ' 1 ] 2 - 1 M/»a(*))- (3-5) 

Notice that in the above likelihood equation no was considered as zero. As explained 

by Box and Jenkins (1976) if the sample size n is considerably large an approximation 

to the conditional likelihood can be obtained by using unconditional likelihood with 

suitable starting values for parameters. The ML estimates of a and P were obtained by 

maximizing^ using a quasi-Newton optimization subroutine from NAG (E04JAF). 

This particular subroutine is simple to use and returns accurate estimates as long as 

parameters are unconstrained and unbounded. However, the representation of a(t) 

and p(t) in (3.3) and (3.4) are bounded such that - 1 < a(t) < I and P(t) > 0. 

To aid in numerical optimization all the parameters with a restricted domain were 

transformed into 7,e(—oo, oo) using the transformations given in Table 3.2. Parameter 

estimation using this iterative procedure also requires starting values and here, 7, = 0 

for i=l,2,... were used as such. The variance of the surge at time t, erf, can be written 

as 

a] = a\t)a2_x + p\t). (3.6) 
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Parameter 

7o 
7i 
72 
73 
74 
7s 
76 
77 
78 
79 

Transformation 

iog[K)/(i - «2)] 
logKfa + 2)/4)/(l - (fll + 2)/4)] 

log[(a2/27r)/(l-a2/27r)] 
log[6o] 

log[(°i)(l - &i)] 
log[(62/27r)/(l - 62/2TT)] 

log[(cg)/(l - eg)] 
log[((c, + 2)/4)/(l - (Cl + 2)/4)] 

log[(c2/27T)/(l - C2/27T)] 
log(0) 

Table 3.2: Reparameterization, The parameters, ao, ai,a2,6o,6i,62 and Co,Ci,c2 are 
expressed as a(t) = ao(l + ax cos(wt + 02)), /?(£) = 60(1 + 61 cos(ut + 62)) and X(t) = 
co(l 4- cx cos(u>£ + c2)) with w = 27r/8766. 

The lag k autocorrelation at time t, pt(k), is given by 

pt(k) = a(t)pt(k - 1) 1t± 
crt 

where pt(k) is explicitly defined as 

Pt(k) = 
cov(r}t,Tjt-k) 

Gt°~t-k 

Consequently, the lag 1 autocorrelation at time t, pt(l), can be written as 

Pt(l) = o(0-
o~t 

Recursive substitution in (3.7) gives 

Pt{k) = f[a(t + l-i) 0~t-k 

Under the assumption of slowly varying pt(k) (i.e. if pt(k) = pt-x(k)) 

Pt(k) = ak(t)(^f. 

(3.7) 

(3.8) 

(3.9) 
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This seems like a reasonable assumption for Halifax surge. If the standard deviation 

of the surge at time t varies slowly (i.e. if o~t--\
 = ^t), which appears to be a reasonable 

assumption, then /J«(l) « oi(t). The function a(t) then represents the autocorrelation 

at lag 1 at time t. o~2(t) in (3.6) shows the variance at time t follows first order dif

ference equation with parameters a2(t) and P2(t). For a serially uncorrelatcd surge, 

(ct(t) = 0), P2(t) represents the variance of the surge process. The autocorrelation 

function (ACF) at time t, pt(k), as a function of lag k, given in (3.9), decays expo

nentially to zero as one would expect in a stationary AR(1) model. However, the rate 

of decay depends not only on the PAR parameter a(t), but also on the ^•=a. 

It was noticed that the ACF function of the observed surge decays slower than that 

of the PAR(l) model (see Figure 3.3). Since the decay pattern in (3.9) is governed 

by autoregressive parameters as well as the variance, it was thought that either the 

surge follows a higher order PARMA model or the observed surge is contaminated 

by a noise with nonunit variance, or possibly both. Therefore, the following models 

were also considered. 

M O D E L 2: PAR(2) model without noise 

The observed surge at time t, nt, can be written as 

xt = a(t)xt-i + X(t)xt-2 + P(t)ct 

r\t = xt 

with a(t) and P(t) as expressed in equation (3.3) and (3.4). X(t) also can be written 

in a similar fashion as 

A(*) = A0 + At COS(W0 + A2sin(u>/). (3.10) 

As before, up to an additive constant the log likelihood is proportional to £n 

K=_ a'""a(<)V,rA('),'"i; - 1 '°s m 
t=2 P\l> 1=1 

The autocorrelation at lag 1 for time t, Pt(l), is given by 

„ M \ a(Q<r<-i 
" ( 1 ) = ot-\{t)oU 
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If the variance changes slowly over time then pt(l) is approximately equal to ji^m, 

which is same as the autocorrelation at lag 1 for a stationary AR(2) model. The 

variance of the surge at time t, erf is given by 

a2 = a2(t)o-2_, + X2(t)af_2 + p2(t) + 2X(t)a(t)pt(\)ert_lert-2 (3.11) 

Under the assumption of slowly changing variance, i.e. if a2 = af_x = erf_2, the 

variance at any time t can be approximated by 

cr. a\t)-X2(t)-2a(t)X(t)pt(iy 

If the surge process is serially uncorrelated, the above relationship reduces to erf = 

P2(t). The ACF at lag k at time t, pt(k), is given by the recursive relationship 

pt(k) = a(t)pt-x(k - \p=± + X(t)pt.2(k - 2 ) ^ . (3.12) 
&t o~t 

In the above PAR(2) representation of the surge model, the variance function as 

well as the ACF are influenced by all three parameter functions a(t), X(t) and P(t), 

in contrast to stationary AR(2) models. Nevertheless, all the features of a stationary 

AR(2) model can be resolved by imposing the condition that erf does not change 

over time in the PAR(2) model. Therefore, the above model representations are quite 

compatible with conventional AR models, except for the second-order nonstationarity. 

If the surge component is contaminated by a noise, the next two state space models 

may represent the surge. 

MODEL 3: PAR(l ) model with noise 

In this model, the measurement equation for the observed surge nt is given by 

nt = xt + wt (3.13) 

where the measurement noise wt is assumed to be Gaussian white noise with variance 

0. The surge state xt is modeled by the PAR(l) process 

xt = a(t)xt-i + P(t)et, 
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where the innovation et is assumed to be Gaussian white noise with variance 1. 

The Kalman filter (Kalman, 1960) provides a useful device with which the likeli

hood of a PARMA model can be evaluated. Using the prediction error decomposition 

(e.g Harvey, 1981) the loglikelihood function is proportional to 

" t>? 
<. = - E [ f + lo«(/.)]- (3.H) 

t=i J* 

where vt and ft are described below, and are returned by the Kalman filter. 

Let xt\t-\ denote the one step ahead prediction of the surge state given the obser

vations {7/1,7/2, ....,7/j_i}, and xt be the one step ahead prediction of the sUtte based 

on information available at t — 1. 

Let 3^_ 1 and s2_x be the variance of s^- i and xt-X respectively and denote the 

prediction error by vt = nt — xt\t-\. The prediction and updating equations for the 

Kalman filter are: 

Prediction 

xt\t-X = a(t)xt..x. (3.15) 

This estimator is unbiased for xt and has variance 

s\t_x = a2(t)sU+P\t) (3.16) 

Updating 

h = 4_, + 0. 

^ = 4-»-%L- (3-17) 
Jt 

s2 

xt = xt\t-x +-—-vt, (3.18) 
Jt 

The term (sf\t_x/ft)vt is called the Kalman gain and is designed so that xt is the 

minimum mean square error estimator. Reduction of the variance by the Kalman 

filter is equal to stn^Jft which is the variance of the Kalman gain. 

The variance and autocorrelation structures of xt remains the same as in equations 

(3.6), (3.7) and (3.8) since the PAR structure of the surge state xt is preserved. 
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However, the measurement noise wt makes the variance and the autocorrelation of 

the surge measurement rjt different from that of surge state xt. The variance of the 

r/(, 0
2tt\, is the sum of variances of xt and the noise variance 0, i.e. 

*;(i) = erf + 0. (3.19) 

The autocorrelation at lag k, pv(t)(k), is given by 

Pn{t)(k) = Pt(k) ?*';* , (3.20) 
\lar,(tfv(t-k) 

where ert is given in (3.6) and pt(k) is given in (3.9). 

MODEL 4: PAR(2) with noise 

The measurement equation that links the observed surge to the surge state with 

noise remains the same as in equation (3.13). The transition equation takes the form 

of a PAR(2) model 

xt = a(t)xt-i + X(t)xt-2 + P(t)et 

where X(t) is given by (3.10). 

The prediction equations are 

xt]t.x = a(t)xt.x + X(t)xt-2 (3.21) 

with the corresponding prediction variance sf,t_t being 

4 - i = « 2 0 ^ - i + A2*-2 + ft + 2X(t)*(t)rt(\)stst-X (3.22) 

where xt is the MMSE estimate of xt based on past values and rt(l) is given by 

rt(l) 
<*(t)st-2 

St-i - A (^ )5 j_ 3 ' 

and the updating equations are same as for the PAR(l) representation in Model 3 
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3.2 Model selection 

The proceding four models were fit to 1930 -?urge data for Halifax by the method of 

maximum likelihood. The unknown parameters were obtained by maximizing the log 

likelihood £n. A numerical subroutine from NAG, E04JAF, was used to maximize £„ 

as described at the beginning of the last section. 

In order to select a good model to describe the second-order nonstationarity, 

diagnostic checks are carried out using likelihood ratio tests (Bickel and Docksum, 

1977). Parameter estimates are then investigated further in terms of the sample 

autocorrelation and sample variance. 

Likelihood ratio (LR) tests are used to test the significance of coefficients like the 

measurement noise variance 0 and A = (Ao, Aj, A2)'. In all four models, it was assumed 

that a(t) ^ 0 and P(t) ^ 0 as the prior knowledge of the surge suggests that it is 

serially autocorrelated with a seasonally changing variance. However once a model is 

selected, the significance of e?~h of its parameters (a, /?, A and 0) will be tested. 

Consider the LR test of the hypothesis 0^0 when A = 0 (model 1 vs. 3). The 

following test criteria will be adopted. The test statistic (TS) of a likelihood ratio 

test of the null hypothesis Ho : 0 = 0 against the alternative of Hx : 0 > 0, is given 

by —2 log Lr where Lr is the likelihood ratio 

Likelihood under Ho 

Likelihood under Hx 

This test is nonstandard as HQ assigns 0 to the boundary of the parameter space and 

the null distribution of the test statistics is 50 : 50 mixture of a Xo a n c l a X? distribution 

(Self and Liang, 1987). The Xo density function is given by f(x) = x~l exp(—x/2) 

for x > 0. 
—# 

The tests of Ho : A = 0 with 0 = 0 or 0 ^ 0 are standard, and the reference 

distribution is \\-

The results of such tests are summarized in Table 3.3. 

The likelihoods under HQ and H\ were calculated given the Halifax surge data. 

The parameter estimates of a and /? were not fixed for Ho and H\. For instance, in 
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Hypothesis 

H0: X = 0/0 = 0 
HX:X^ 0/0 = 0 
H0: X = 0/0 ^ 0 
HX:X^ 0/0^0 
H0: 0 = 0/A = 0 
HX:0^O/X = O 
Ho: 0 = 0/A ^ 0 
HX:0^O/X^O 

TS 

39.69 

39.22 

6034.87 

6034.40 

Table 3.3: Likelihood ratio test results 

the test of 0 = 0 when A = 0 (model 1 and 3) the parameter estimates of a and fi in 

model 1 are different from that of model 3. No attempt was made to address multiple 

comparisons issues. 

According to the LR test results, the reduction of deviance by 0 for one degree 

of freedom is very large compared to the reduction due to A, for three degrees of 

freedom. Approximate p-values were less than 10 -3 . Reduction of deviance due to 0 

is not influenced by the fact that A is in the model and vice-versa. Both parameters 

app?ared to be statistically significant while the parameter 0 shows signs of high 

significance, regardless of whether or not A is in the model. Therefore, models 3 and 

4 are likely to be the best models according to LR criteria, for explaining the variation 

of Halifax surge. 

Our primary objective is to obtain a model that describes well the seasonality in 

the variance and autocorrelation of the surge. To what extent this objective has been 

accomplished by each model will be investigated by visual comparisons of observed 

and estimated ACF and variance. Our second step in the model selection procedure 

is to compare the sample ACF and variance functions obtained from each model. 

The model which gives the closest functional behavior to these sample functions is 

selected. 

The sample variance for each month in Figure 3.1 was calculated assuming the 
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change of variance within each month is negligible. For example, the sample variance 

for January was calculated by, Yit=i ^ 729 , using 730 observations for 

the month January. In Figure 3.1, models 1 and 3 slightly overestimate the variance, 

whereas models 2 and 4 underestimate the variance. The degree of overestimation 

and underestimation is higher in the stormy seasons of winter and fall compared to 

the summer. The rate of overestimation has been reduced in models 3. However, 

note that these overestimation and underestimations are much smaller than the year-

to-year sampling variability shown in Figure 3.2. Overall then, as far as the change 

of variance over the months are concerned, model 3 is closer to the sample variance 

function for the year 1930 than are models 1,2 and 4 

For comparison purposes, the sample ACF function for each season as a function 

of lag was calculated separately for 1930-1934 assuming intraseasonal autocorrelation 

changes at any lag are negligible. Also the ACF from each model was calculated using 

the parameter estimates, a(t),P(t) and X(t) for a time t equal to the middle of the 

season. For example, the ACF for winter, pt(k), was calculated at t=1095. 

Figures 3.3, 3.4, 3.5 and 3.6 show the ACF functions for the four surge models. 

Models 1 and 2 clearly underestimate the ACF function. The rate of underestimation 

varies seasonally and is greater in the winter and fall seasons tcan in the summer and 

spring. However, inclusion of the second order autoregressive parameter A, in Figure 

3.4 makes the ACF of model 2 fit slightly better than model 1 in the winter and fall 

and somewhat worse in the spring and summer seasons. 

Remarkable improvement can be seen in Figures 3.5 and 3.6 which shows the ACF 

function for models 3 and 4. This suggests that the observed surge is accompanied 

by noise. However, the slight deviation, that can be seen in Figure 3.5 for summer 

and Figure 3.6 for spring are much smaller than the year-to-year sampling variability. 

On the basis of these variance and ACF comparisons, models 3 and 4 are chosen for 

further investigation. 

From the above mentioned graphical comparisons, it was revealed that the models 

3 and 4 captured much of the second-order nonstationarity in the model. Model 3 



60 

Mode! 1 Model 2 

E 
o 
•̂ -̂  CD 
o 
c 
CO 
•c 
CO 
> 

*—»fc E 
o 
*—•* CD 
u 

.52 * u . 

ca 
> 

CD 
o -CO 

o 
o 
CM 

50
 

10
0 

CD 
CD 
CO 

O 
i n 
CM 

o 
o 
CM 

O 
m 
T — 

o 
o 

CD 
i n 

' \ 
* \ 

2 

1 

2 

\ -if 

y\ / 

1 1 1 1 

4 6 8 10 

Month 

Model 3 

•> \ / 

• • • I 

4 6 8 10 

/ * 

* 

1 

12 

/ A 

• f r 

1 

12 

E 
o 
_̂** CO 
o 
c 
TO * k « 

03 
> 

—̂̂  E t>_ 

CD 
o 
c= CO 

•r~ 
CO 

> 

o 
CM 

CD 
O 
CM 

CD 
cn 

CD 
O 

O 
I D 

O 
CO 
CM 

o 
o CM 

r-t 
m 
T~* 

o o 

o m 

2 4 6 8 10 12 

Month 

Model 4 

Month 

2 4 6 8 10 12 

Month 

Figure 3.1: Annual changes in variance from the four surge models. The solid line '—' 
represents the estimated variance from the various models, '*' represents the sample 
variance from 1930 data. The month is denoted by 1-January, 2-February,...., 11-
November, 12-December. 
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Figure 3.2: Annual variation of sample variance for 1930-1934. Different lines rep
resent different years. The month is denoted by 1-January, 2-February, , 11-
November, 12-December. 
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Figure 3.3: The ACF function for four seasons from model 1. Solid line '—' represents 
the estimated ACF, whereas all five dashed and dotted lines represents sample ACF 
for the years 1930-1934. Units on the abscissa are hours. 
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Figure 3.4: The ACF function for four seasons from model 2. Solid line '—' represents 
the estimates ACF, where as all five dashed and dotted lines represents sample ACF 
for the years 1930-1934. Units on the abscissa are hours. 
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Figure 3.5: The ACF function for four seasons from model 3. Solid line '—' represents 
the estimates ACF, where as all five dashed and dotted lines represents sample ACF 
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consists of seven parameters and model 4 consists of 10 parameters. At this point it 

is worth examining the significance of each parameter individually. 

The parameter vectors of models 3 and 4 are 

(ao,ax,a2,po,p1,p2,0)' 

and 

(a0, a1,a2, PQ, P\,P2, A0, Ai, A2, 0)' 

respectively. Each parameter was estimated using the maximum likelihood method 

with 8766 data points. 

Derivations of the exact expressions for the variance and covariance of parameter 

estimates are quite complicated as the likelihood contains prediction errors which 

were calculated using an iterative procedure. Consequently, the terms like partial 

summation of the products of parameters make the task of obtaining the explicit 

expressions for second derivatives difficult. Therefore, the covariance matrix of trans

formed parameters was approximated by the inverse of the sample information matrix. 

However, since the data set is reasonably large, the sample information matrix pro

vides a reasonably good approximation of its expected value. In other words standard 

errors estimates are consistent (Bickel and Docksum, 1977). Variances of original pa-

rameters a, A, P and 0 were then obtained by the delta method. 

Table 3.4 provides ML parameter estimates and their standard errors. Significance 

tests were carried out for the transformed variables. In the table, parameter estimate? 

which are nonsignificant at 5% level are noted. The estimated correlations between 

parameter estimates were found to be small. The highest correlation observed was 

0.003 between po and p\. For an uncontaminated model, when 0 = 0, it can be shown 

that a and p are orthogonal, in the sense the covariances of the associated estimators 

are equal to zero. 

All three PAR(2) coefficients in model 4, namely A0, Aj and A2, fail the test of 

significance for the hypothesis that they are significantly different from zero at the 5% 

level of significance. However, A0 is only marginally nonsignificant at the 5% level. 
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Parameter 
«o 

Oil 

a2 

Ao 

Ai 

A2 

A> 

P\ 

h 

0 

Model 3 
0.973603 
(0.0024) 

-0.008148 
(0.0032) 

-0.003129 
(0.0036) 

2.876584 
(0.0491) 
1.606181 
(0.0575) 
0.448985 
(0.0626) 
6.99816 
(0.2246) 

Model 4 
0.965695 
(0.0066) 

-0.009038 
(0.0026) 

-0.007204 
(0.0062) 

-0.007699** 
(0.0066) 

-0.000802** 
(0.0027) 

-0.003942** 
(0.0063) 
2.87479 
(0.0313) 
1.605179 
(0.01565) 
0.448705 
(0.0367) 
6.989433 
(0.1079) 

Table 3.4: Parameter estimates and estimated standard deviations (in brackets) for 
model 3 and 4. Parameter estimates which are nonsignificant at 5% level of signifi
cance are marked by **. 

The model with Ao did make some improvements in the ACF compared to the other 

two models 1 and 2. However, as far as the annual changes in variance is concerned, 

model 3 fits the Halifax surge better than model 4. 

Nonsignificance of the second order PAR(2) coefficients reduces the model to 

PAR(l) with noise, that is model 3. All the parameters in model 3 were found 

to be significant. The parameter a2 was only marginally significant. Model 3 has 

explained the second-order nonstationarity remarkably well. Therefore, model 3 will 

be selected to represent the stochastic behavior of surge data for Halifax. 

Various assumptions were checked for the selected model 3 by examining the 
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Figure 3.8: The PACF of residuals from MODEL 3. Two horizontal lines enclose the 
acceptance region for pointwise tests of zero autocorrelation at level 0.05. 
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residuals. Figures 3.7 3.8 and 3.9 show the autocorrelation as a. function of lag (ACF), 

the partial autocorrelation function (PACF) and the normal probability plot of the 

prediction errors. The ACF and PACF plots show no sign of serial autocorrelation in 

the residuals, as 5% of the points would be expected outside the 95% limits due to 

random sampling alone. The normal quantile plot shows the assumption of normality 

is plausible. 

3.3 Stochastic behavior of surge process for Hal

ifax 

In the model fitting and selection procedures carried out in Section 3.1 and 3.2, it 

was noticed that the observed surge is contaminated by noise. The exact reason for 

the existence of such a noise is not known. It may be due to physical factors, model 

or measurement error, or a combination thereof. 

It is demonstrated next how the estimated surge model in Section 3.2 is used to 

explain the stochastic behaviour of surge. The above estimated model 3 can be used 

to explain the stochasticity of the surge series for Halifax. An important feature of 

the estimated model is that a successful effort was made to explain the second-order 

nonstationary behavior through a seasonally changing variance and autocorrelation 

structure. The efficacy of those estimated model parameters were verified as follows. 

The variance of the surge state xt was calculated using equation (3.6). To obtain 

the variance of the surge measurement, the estimated noise variance of 0 equal to 

6.998816 cm2 was added. The change in surge variance is shown in Figure 3.10. 

Figure 3.10 shows that the estimated variance in the winter is substantially higher 

than in the summer due to the fact that large storms are more likely to occur in the 

winter. The difference in the winter and summer variances is about 250 cm2. The 

sample variance for each month in the year 1930 is extremely close to the estimated 

surge measurement variance from the model, thus confirming the validity of the model. 

The autocorrelation of the surge state and surge measurement were calculated 
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Figure 3.10: Change of surge variance over time for Halifax. Sample variance for 
each month is marked '*', the solid line represents the estimated model variance, and 
dotted lines represent the upper and lower bounds of the 95% prediction interval. 
The time axis is in hours from midnight to January 1. 
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Figure 3.11: Change of surge autocorrelation over time, for Halifax. Sample autocor
relation at lag 1 for each month is marked '*', the solid line represent the estimated 
model variance, and the dotted lines represents the upper and lower bounds of the 
95% prediction interval. 
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using equations (3.20) and (3.7) for lag 1. Figure 3.11 shows the variation of the 

autocorrelation at lag 1 over the year for surge state and surge measurement. One 

noteworthy feature in the autocorrelation plot in Figure 3.11 is that the autocor

relation at lag 1 for the surge state xt shows the opposite variation over the year, 

i.e. higher autocorrelation in the summer than in the winter. The behavior of the 

surge state seems contradictory to what the sample autocorrelation structure of the 

observed surge indicates in Figure 3.11. Nevertheless, the autocorrelation structure 

of the surge measurement agrees with the sample. 

The different patterns shown in the surge measurment autocorrelation and the 

surge state autocorrelation can be explained as follows. The lag 1 autocorrelation of 

Pi)(t)(l) c a n D e written as 

n m- /»'(*) + "(*) 
Pv{t)K >~ p*(t) + 0(l-c?(t)) 

i and is equal to 
1 

l + 0/af 

Since the ratio of 0/crf is higher in the summer than in the winter, pv(t)(l) is higher 

in the winter than in the summer. 

The autocorrelation at lag 1 is higher in the winter than in the summer for the 

surge measurement. Estimated surge measurement autocorrelation from the model 

seems to agree with the sample autocorrelation except on a few occasions in the 

summer. In particular, the sample estimated pt(\) for the month of July is equal 

to 0.790173 and does not agree with the model estimate. Such deviations can be 

avoided by taking into account the year to year sampling variability. In order to make 

allowances for such deviation, 95% confidence intervals for the surge measurement 

variance a2,t, and autocorrelation at lag 1 pn(t)(l) as function of time, were calculated 

as follows. 

To calculate upper and lower bounds of the 95% confidence interval for the es

timated standard deviations, estimates of cr2,^ and pn(t){\) must be calculated. In 

this situation, it is common practice to use the delta method. In order to do so, 
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er2,t) and pv(t)(^) have to be interpreted explicitly as functions of a(t),pt and 0. For 

simplicity in the calculations, it was assumed that erf = af_x, which seems to be a 

reasonable assumption for Halifax surge according to the estimated variance function 

from equation (3.6). In this case, cr2^ and pv(t)(l) can be expressed as 

" W i - a 2 ( i ) 
<UX = ^ ^ T T T + 0 

and 
P2(t) + a(t) 

Pv{t)[) p*(t) + 0(l-a2(t))' 

The surge state variance erf and the autocorrelation Pt(\) are obtained from equations 

(3.6) and (3.7). 

As the original estimates were calculated using the ML method we find that if 

the normality assumption holds, at least asymptotically, the covariance matrix of 

such ML estimates can be approximated by the inverse of the information matrix. 

Repeated application of the delta method leads to the variances of er2,t\ and pv^)(l). 

When required, log transformations were used to express surge statistics a2,^ and 

pv(t)(\) as linear combinations of parameters oto, ai, a2, /?0, Pi, P2 and 9, so that the 

conditions of the delta method are met (Lehmann, 1983). 

Figures 3.10 and 3.11 show the pointwise 95% confidence interval for the estimates 

of erf and pt(l) from model 3 . The Halifax monthly sample variances for each month 

plotted in Figure 3.10 are within 95% confidence bounds. The confidence intervals 

for the fall and winter are wider than for summer. This is due to the greater sampling 

variability in the fall and winter seasons noted in Figure 3.2. 

Almost all the monthly autocorrelations calculated from the surge data are within 

95% confidence bounds in Figure 3.8 except in the month of August. Confidence 

intervals for the summer are wider than that of the fall and winter. This indicates 

higher sampling variability in the autocorrelation exists in the summer time than in 

the fall and winter. Even though the sampling variability (Figure 3.2) is higher in 

the fall and winter it does not reflect in the autocorrelation, but jj. the variance. 
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3.4 Summary 

In this chapter four different types of periodic autoregressive models were presented, 

two of which are state space models. It was seen that the second-order nonstationarity 

can be explained using a periodic autoregressive part a(t) and a seasonal noise vari

ance part P(t). State space representation is able to take the measurement error into 

account. ML methods of fitting these models using a short record of data were pre

sented. Model selection procedures based on statistical tests and visual comparisons 

were discussed. Diagnostic checking techniques for the selected model were described. 

These methods and techniques were demonstrated using Halifax surge data. 

It was noticed that the observed Halifax surge data are contaminated by noise. 

Therefore, the Kalman filter was used to obtain the maximum likelihood estimates of 

the PAR model. Diagnostic checks and visual comparisons suggest that the PAR,(l) 

representation fits the Halifax surge. Model parameters were estimated using one 

year of data. It was noticed that year-to-year sampling variability exists in the sam

ple variance and autocorrelation. In order to take such sampling variability into 

account, 95% confidence intervals were constructed for the estimated variance and 

autocorrelation at lag 1. It was seen that almost all the sample estimates are within 

the confidence bounds. 

It was found in Chapter 2 that two methods, JPM and EPM, can be used to esti

mate return periods using a surge parametric model. The estimated model obtained 

in this chapter will be utilized in return period estimation and inference processes in 

the following chapters. 



Chapter 4 

Estimation of Return Periods 

The purpose of this chapter is to demonstrate the estimation of return periods using 

short records and the parametric surge model derived in Chapter 3. Of various 

return period estimation techniques discussed in Chapter 2, only two methods, EPM 

and JPM, are specifically designed for use with both a parametric surge model and 

short records of data. This chapter presents a brief overview of the EPM and JPM. 

However, in the original design of these methods, the PARMA surge model was not 

used. Slight modifications to each method are therefore necessary to cope with the 

seasonally varying model parameters in the PARMA surge model. 

The EPM was originally tested on a parametric surge model fit to one year of 

hourly surge data. The seasonality that exists in the surge variance and autocorre

lation were represented by seasonally varying model parameters. These parameters 

were incorporated into the probability of an upcrossing in continuous time, based 

on the Rice (1954) formula for a stationary process, with provisions made for the 

nonstationarity. Thus the parameters used in Rice's formula are different from the 

surge parameters derived in Chapter 3. 

In this chapter, some revisions are made to the original EPM to accommodate 

the surge parametric model of Chapter 3. In particular, the discrete time probability 

of an upcrossing is numerically evaluated every hour using surge statistics such as 

the standard deviation and autocorrelation as estimated in Jhapter 3 under the 
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assumption of a Gaussian surge process. In this thesis, we are considering the surge 

process as discrete. The revised EPM (REPM) return period estimates are then 

obtained as the minimum time interval such that the expected number of upcrossing 

exceeds unity. This definition was used in Chapter 2 for an idealized surge of a 

stationary AR(1) type. This discrete time version of the return period is within one 

time step (usually one hour) of the original EPM return period defined for continuous 

time. 

The JPM is based on the probability of exceedance obtained by convolving the 

tide and surge probabilities. In this thesis, the tide is considered as deterministic 

and exceedances are viewed as the surge exceeding the gap between the predicted 

tide and the level /. The probability of this happening is then incorporated into the 

probability of the annual maxima exceeding /. In doing so, hourly surges arc assumed 

to be independent, or Cartwright's correction factor or the extremal indices are used 

to take care of the dependence. Tawn (1992) extended the extremal index idea to 

calculate return periods for extreme sea levels following a generalised extreme value 

(GEV) distribution. The tide and surge levels were combined to obtain the RJPM 

return period using the two extremal indices for the surge and the total sea level. The 

RJPM (Tawn, 1992) is used to calculate return periods and estimates arc obtained 

for Halifax sea levels using the surge parametric model in Chapter 3. 

The annual maxima return period will be used as a baseline method for compar

isons. The AMM return period will be calculated from observed sea levels using 58 

years of data. These empirical estimates are restricted to the levels observed in the 

data. This restriction is lifted by fitting a GEV distribution to annual maxima sea 

levels. This parametric model is then used to estimate return periods beyond the 

maximum level observed. 

A comprehensive coverage of return period estimates due to the EPM, JPM and 

AMM was given in Chapter 2. It was seen that the methods produce comparable 

estimates at high levels for certain stationary processes. Since the surge process is 

nonstationary, one might not get equivalent estimates from the three methods. 
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The 1930 sea level data for Halifax was chosen to estimate surge parameters in 

Chapter 3. They were free from missing values and the tidal package of Foreman 

(1977) was used to predict the tide for the fifty years beginning January 1, 1930 so 

that a full nodal modulation of approximately 18.6 years was included. 

In Section 4.1, the return periods are estimated using REPM. Necessary revisions 

for use with the surge parametric model are also given. The techniques are demon

strated for Halifax sea levels using the surge model in Chapter 3. The importance 

of the seasonally varying model parameters and the tide are also examined. The use 

of exceedances in place of upcrossings reduces the dimensionality of the probability 

to one, thus alleviating the burden of obtaining accurate higher dimensional proba

bilities. In Section 4.2, methods of obtaining return periods due to the RJPM are 

described and the use of extremal indices to take care of dependence is demonstrated. 

In Section 4.3, the empirical annual maxima return periods is obtained, based on 

observed hourly sea levels from 1930-1988. A GEV distribution is fitted to the ob

served annual maxima to obtain annual maxima return periods. The return period 

estimates obtained from REPM, RJPM and annual maxima are compared in Section 

4.4. 

4.1 Revised EPM return period estimation 

The revised exceedance probability method (REPM) definition for the return period 

using discrete data is 
T 

TT = min{T:Y,Qt>l} (4.1) 
t=i 

where the probability of an upcrossing for discrete nf, Qt, is given by 

Qt = P[v?-i<h-i,V?>h] (4.2) 

with lt = I — iff being the gap between the level / and the tide at time t. The 

discrete time approximation of TT is one time step (usually one hour) away from the 

continuous time return period definition. 
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The predicted tide iff and the sur&e model are combined to obtain the probability 

of upcrossing Qt 

tlt—\ TOO 

Qt = / _ / _ Hvf-i, V?,<TJ, tr,.,, pt)dT)?_,dV? (4.3) 

where ^ is the autocorrelation at lag 1 and <f>(nf-\irltia'ha't-iiPi) ls ^"e bivariate 

normal density of J/̂ _i, f/f. Note that Q4 is a function of the level / and surge 

parameters crt, ert-i and pt. 

For a given level /, the estimated probability of an upcrossing Qt can be approx

imated by substituting the estimates ert and pt into equation (4.3) and evaluating 

the integral using the NAG subroutines for quadrature D01BCF and D01FBF. Then 

the revised return period estimate Tr(l) can be estimated from (4.1) by summing the 

probabilities. 

We are interested in decadal long return periods associated with extremely high 

level.15. The above estimation scheme requires the evaluation of the integral Qt at each 

hour for say, 40 to 50 years. In order to avoid the computational burden of evaluating 

the two dimensional integral many times, a three dimensional lookup table was created 

as follows. 

The time dependent variables associated with Qt are lt, lt-i, o~t, at_\ and pt. A 

simpler expression for Qt can be written using standardized limits /( = lt/at and 

It = Vtlvt, as 

fit —I fOO ] 

Qt= . 7=exp[-(^-2^M«_1+^_i)/2(l-p?)]rf^^-i . (4.4) 
./JJ,_I=-OO jfj,=it 2-KJ\ - pf 

Given /, the above form reduces the time dependent variables in Qt to lt, /(_j and pt-

A three dimensional lookup table has been made for Qt with /j,/<_i, varying from 0 

to 5 in steps of 0.2 and pt varying from 0.8 to 0.99 in steps of 0.01. Accuracy of Qt for 

high / was achieved by using the results in Section 2.3.2. This produced a 26x26x20 

table for Qt. This table has been used to obtain Qt for any given values of lt, /4_| equal 

to the scaled gap between the level and the tide at time i, t — 1 respectively, and for 

any pt equal to the estimated autocorrelation of the surge at time t. The probability 
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Level (cm) 

185 
190 
195 
200 
205 
210 
215 
220 
225 
230 
235 

Return period (years) 

0.04 
0.05 
0.12 
0.19 
1.09 
2.22 
6.14 
11.96 
27.66 
71.05 
206.77 

Table 4.1: REPM return period estimated in years from January 1, 1930 for Halifax 
sea levels. 

of an upcrossing for lt, Z<_i and pt falling inside the grid of the lookup table was found 

using cubic spline interpolation (NAG subroutines E01DAF, E02DFF and E01BAF). 

Any estimate of Qt(l) for / beyond the level of 5 standard deviations from the tidal 

level was approximated by the well known asymptotic form <f>(l)/l for the probability 

of exceedance (Leadbetter et. al. 1983) where <j>(l) is the standard normal density. It 

was shown in Chapter 2 that the probability of upcrossing tends to the probability of 

exceedance, P[ijf > I], asymptotically under the assumption of normally distributed 

vf. 
The values produced by the interpolation schemes were compared with the values 

obtained by direct numerical evaluation using NAG and were found to be accurate 

to the eighth decimal place at higher levels, such as two standard deviation or more 

away from the tide. The use of a lookup table made the computation of decadal long 

return periods extremely efficient. For instance, for Halifax sea level the estimated 

return period of the level 230 cm is 71 years and the time taken to compute it was 4 

seconds on a Sun 4 workstation. 

An example of the results obtained from this approach for Halifax sea level is 
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shown in Table 4.1. It is instructive to interpret the level in terms of surge standard 

deviations away from the tide, lt, to get an idea of the location of the level in the 

normal distribution. At each tidal height the gap between / and the tide changes. 

Therefore, the location of the level in the normal distribution also changes with the 

tidal height. For Halifax the maximum level the tide reaches in 30 years is 101 cm at 

the peak of a spring-neap cycle. The es' mated mean sea level using 1930 hourly sea 

levels is 78 cm. In Table 4.1 high level exceedances mostly occur in the winter time 

and the average standard deviation during that time is 17cm. Therefore, the level 

225 cm is beyond 2.7 standard deviation away from the maximum tide plus mean sea 

level, whereas the level 235 cm is more than 3.6 standard deviations away from the 

same. 

The asymptotic behaviour of Qt as / —* oo, and the relationship with the Type 1 

extreme value distribution leading to the Gumbel plot, was discussed in Chapter 2. A 

Gumbel plot of the return period estimates given in Table 4.1 is presented in Figure 

4.1. The empirical annual maxima return periods are also plotted for comparison 

purposes. On this Gumbel plot, REPM estimates are close to the annual maxima 

return period estimates based on 58 years of observed sea level. It was noted in 

Chapter 2 that the EPM and AMM use different definitions for the return period. 

Slight deviations of the REPM from the AMM appearing at low levels in Figure 4.1 

may be a result of these differences. However, it was seen in Section 2.3 that the 

differences disappear as the level gets higher. This is evident in Figure 4.1 by having 

transformed return periods close to each other for levels greater than 215 cm. Note 

that the REPM estimates are based on the parametric surge model in Chapter 3 

fitted to only one year of data. 

Middleton and Thompson (1986) obtained EPM estimates for Halifax using 1970 

sea level data. Figure 4.2 shows the original EPM estimates with annual maxima. 

It is noted that the revised estimates (Figure 4.1) fit better than the original EPM 

estimates. The problem of overestimation noted by Middleton and Thompson (1986) 

seems to have disappeared with the revised method. This may be an indication of the 
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Gumbel Plot of REPM 
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Figure 4.1: Gumbel plot of REPM estimates for Halifax. REPM is marked by '*' 
and the empirical annual maxima is marked by '+ ' . Here the annual maxima were 
obtained as described in Section 4.3. 
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Figure 4.2: Gumbel plot of EPM estimates for Halifax, (Middleton and Thompson, 
1986). Curves marked 1 and 2 were based on EPM estimates with observed surge 
variance and adjusted surge variance. Annual maxima are marked by '+", y* is the 
level. The dashed curve shows predictions from JPM. REPM estimates arc denoted 
by '*'. 

better fit of the surge parametric model and also the use of discrete time probability 

(with the Taylor micro-time scale replaced by the seasonally varying autocorrelation 

at lag 1). Note that the annual maxima in Figure 4.2 have been extracted from a year 

beginning in July, whereas the annual maxima in Figure 4.1 are based on a calendar 

year starting the year 1970. This accounts for the slight differences in the plotted 

annual maxima. It was noticed that the observed sea levels noted in Figure 4.2 by 

Middleton and Thompson (1986) were up by 45cm compared to the hea level record 

used for REPM estimates and this was corrected by adding 45cm to the corresp_pning 

level in REPM. 
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In order to determine whether the seasonality in the variance and the autocorre

lation have a major influence on the return period estimate, REPM estimates were 

computed using the average annual surge variance and autocorrelation. The results 

are presented in Table 4.2. Seasonality of the variance, but not the autocorrelation, 

seems to be an important feature in retuvn peri ad estimation for Halifax. This sug

gest that for computational ease one could assume that the autocorrelation is constant 

throughout the year for Halifax sea levels. 

REPM estimates based on one year of tide are given in Table 4.2. The use of 

one year of predicted tide influences the return periods of extreme levels as the nodal 

modulation of 18.6 years is ignored. In this case, return period estimates depends 

strongly on the location of the predicted year in the nodal modulation. If the predicted 

year is at or near the peak of the nodal cycle fie return period will be underestimated. 

It is clear from Table 4.2 that the tidal prediction cannot be restricted to only one 

year for Halifax. At extreme levels, beyond 220 cm, the use of the 1930 tide alone 

clearly overestimates th'3 return period. 

It was shown in Section 2.1, that Qt tends to the probability of exceedance, asymp

totically. Accordingly, Qt can be approximated by the single dimensional probability 

of exceedance for extreme values of /. REPM estimates for Halifax based on ex

ceedances are also given in Table 4.2. Estimates based on exceedances are almost the 

same as estimates based on upcrossings at extreme levels. Minor discrepancies are 

likely due to the errr-r in the numerical integration when calculating Qt. At lower 

levels, where the influence of the tide is greater, return periods from upcrossings and 

exceedances are identical. 

Therefore, some simplifications can be made for calculating return periods using 

Halifax sea levels so that autocorrelation is constant and Qi is approximated by the 

probability of exceedances. This may not be the case for other ports. Note, however 

that the general techniques developed in this study are applicable to any port. 
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Level (cm) 

185 
190 
195 
200 
205 
210 
215 
220 
225 

Return period (years) 

fT 

0.04 
0.05 
0.12 
0.19 
1.09 
2.22 
6.14 
11.96 
27.66 

Constant ert 

0.05 
0.12 
0.29 
1.09 
2.31 
7.28 
15.96 
65.38 

269.85 

Constant pt 

0.04 
0.05 
0.12 
0.19 
1.02 
2.22 
6.15 
11.96 
27.67 

One year tide 

0.04 
0.05 
0.12 
0.19 
1.04 
1.12 
5.73 
13.11 
31.10 

Exceedances 

0.04 
0.04 
0.12 
0.16 
1.09 
2.22 
5.78 
10.87 
27.93 

Table 4.2: REPM return period for Halifax. The fr is based on PAR(l) model with 
18.6 years of predicted tide, the REPM with constant o~t is calculated with the average 
annual variance, the REPM with constant pt is calculated using the average annual 
autocorrelation, REPM estimated using only one year of tide is listed under one year 
tide and the REPM based on exceedances are listed under exceedances. 

4.2 RJPM return period estimates 

The RJPM presented here is identical to that of Tawn (1992) except for the use of the 

surge parametric model of Chapter 3 in place of the generalised extreme value distri

bution. The generalised extreme value distribution was fitted to extreme surge data 

for Halifax and there was very little evidence in favor of it describing the distribution 

for the extreme surges of Halifax. 

The RJPM return period is estimated as the reciprocal of the estimated prob

ability of the annual maxima exceeding the level. This annual maxima exceedance 

probability is estimated using extremal indices for the surge and the sea level. The 

extremal index for the surge 9S is defined as the reciprocal of the limit of the mean 

overtopping time for the surge in each independent excursion above the level, / as 

/ —• oo. For a given extreme level /, the mean overtopping time 0~l(l) and the vari

ance w can be calculated using one year of surge data. The limiting extremal index 
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Figure 4.3: Estimates of mean over topping time for Halifax surge estimated using 
the method by Tawn (1992) and applied to 1930 Halifax surge data. 

0'1 can be obtained using the formula of Tawn (1992) 

The 0s~^(li) estimates for various /, Halifax are plotted in Figure 4.3 and were obtained 

using 1930 Halifax surge data. As the level increases the mean overtopping time 

decreases. However, for extremely high levels, such as 3 or more standard deviations 

away from the mean surge (typically zero), the mean overtopping time for Halifax 

converges to a value of three. This may be a result of the higi. autocorrelation existing 

in the rare Halifax surges exceeding such high levels in 1930. 

The extremal index for the sea level 0 was calculated similarly using 1930 sea level 

data for Halifax. This is shown in Figure 4.4. As the sea level gets higher, the mean 

overtopping time for the total level converges to a value of one hour. 
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Figure 4.4: Estimates of mean over topping time for Halifax sea level estimated using 
the method by Tawn (1992) and applied to 1930 Halifax sea level data. 
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The estimated extremal index of 0~A and f?"1 for Halifax Gurge and sea level aie 

3.03 and 1.772, respectively. These estimates are incorporated into the probability 

of exceedance as follows. By the definition of the extremal index (Leadbetter et. al. 

1983), the probability of the annual maximum hourly surge being below the extreme 

level / can be written as 

^[annual maxima surge < /] = [P(T/,* < l)]N9' (4.5) 

where N=8766 hours per year. However, due to the nonstationarity of the surge 

P(ili < 0 changes every hour. No allowance is made in the JPM for seasonality in 

the variance and autocorrelation of the surge. Therefore, some modifications to the 

JPM are introduced in order to account for the seasonality in the surge variance. 

Following Watson (1954) in Section 2.1.1 (Theorem 1), the probability of an annual 

maximum of a strictly stationary sequence of N observations being below an extreme 

level 1^ can be approximated by exp[—NP(i]i > IN)]. Combining this reci'lt with 

(4.5), an approximation for a nonstationary surge can be obtained as 

N 

P(Vi < U) « exp(-J2P(li > U)/N9.) for i = 1,2,...,/V (4.6) 

This generalisation of extremal index for nonstationary sequences was also used by 

Tawn (1992). The extension of extremal index to nonstationaiy sequences were shown 

by Husler (1986). 

Now, the probability of annual maximum sea level exceeding the level / can be 

written as 

P[annual maximum sea level > I] = 1 — P[r)\ < I — iff, ....,i]% < / — nl
N] (4.7) 

= i-UP[vt<i-v!]0. 

Substituting the approximation (4.6) where l{ = I — iff in (4.7) gives the annual 

maxima hourly sea level exceedance probability as 1 — exp[—j- J2iLi P(jl* > I — rlJ)]i 

the reciprocal of which is defined as the RJPM return period. 
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The surge parametric mode! of Chapter 3 can be used to estimate 

T,iL\ Fijli > l ~ vl) f o r N = 8766. An example of the modified RJPM return period 

estimates obtained for Halifax is «;iven in Table 4.3. The Gumbel plot of return 

periods from Table 4.3 is shown in Figure 4.5. The empirical annual maxima return 

periods are also included for comparison. RJPM estimates at higher levels are very 

close to annual maxima olotted on the Gumbel plot. The annual maxima estimated 

for Halifax are c!ot.5r to RJPM estimates than EPM estimates. The return period 

definition used in the RJPM is the same as that of the annual maxima. Therefore, 

by definition, RJPM estimates should be closer to annual maxima than any other 

estimates. An important point however is that the estimates are based on one year 

of data. The estimates were shown to be close to empirical annual maxima return 

periods. This confirms the validity and the strength of the return period estimation 

scheme introduced in this thesis work. 

In order to investigate whether the seasonality in the variance has a rr ajor influ

ence on the RJPM estimates, return periods were computed using the average annual 

surge variance. The Gumbel plot of RJPM with and without seasonal variance are 

shown in Figure 4.5. Seasonality in the variance seems to be an important feature in 

the RJPM return period estimation for Halifax. The estimates without seasonal vari

ance are much larger than both annual maxima and RJPM estimates with seasonal 

variance for higher levels. For example at / = 235 the RJPM estimate with seasonal 

variance is 99.6 years whereas the estimate without seasonal variance is 348 years. 

At lower levels the RJPM without seasonal variance underestimates the return pe

riod, compared to RJPM with seasonal variance and annual maxima. This trend was 

also noticed by P^iddleton and Thompson (1986) in Figure 4.2. Seasonally varying pt 

would have impact on the overtopping time. This would be an interesting feature in 

future work of extreme sea level analysis. 

I 
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Gumbel plot of RJPM 

-log(-log(1-1/T)) 

Figure 4.5: Gumbel plot of RJPM estimates for Halifax based on the surge model in 
Chapter 3. The RJPM is marked by V and annual maxima is marked by '4-'. The 
RJPM without seasonal variance is marked by '='. 
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Level (cm) 

200 
205 
210 
215 
220 
225 
230 
235 

Return period (years) 

1.01 
1.12 
1.57 
2.75 
5.78 
13.71 
35.46 
99.60 

Table 4.3: The modified RJPM return periods from January 1, 1930 for Halifax sea 
levels. 

4.3 AMM return periods 

Annual maxima return periods were calculated empirically based on the 1930-1987 

Halifax sea level data obtained from the Marine Environmental Data Service 

(Ottawa). The annual maximum for each year for the period 1930-1987 was obtained 

ignoring the missing values. A time series plot of the annual maxima showed an 

upward linear trend of 0.375 cm per year. This trend may be due to global warming 

or subsidence of the tide gauge, neither of which are included in the predicted tide. In 

order to raake comparisons feasible, the time trend of 0.375 cm per year was removed 

from the observed annual maxima so that the 58 observed annual maxima sea levels 

are identically distributed around the mean. 

The probability of exceedance for an observed level / was calculated using 

1 — [number of annual maxima < /]/58. The empirical annual maximum return pe

riod, calculated as the reciprocal of the probability of exceeding the level /, is also 

plotted on the Gumbel plots in Figures 4.1, 4.5 and 4.6. The empirical annual max

ima return periods for Halifax are listed in Table 4.4. Note that the level 235cm was 

not observed during the 58 year period from 1930-1987. In order to obtain return 

periods of levels beyond the observed annua) maxima a parametric model was fitted 

to the annual maxima sea levels. 

r-l I n 
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Level (cm) 

185 
190 
195 
200 
205 
210 
215 
220 
225 
230 
235 

Return period (years) | 

Empirical 

1.05 
1.13 
1.26 
1.71 
2.32 
3.41 
6.44 
9.66 
14.50 
58.00 
NA 

GEV 

1.05 
1.10 
1.19 
1.35 
1.63 
2.11 
3.04 
5.1,2 
10.18 
29.81 

226.16 

Table 4.4: AMM return period for Halifax. Ti . j annual maxima estimates based on 
the fitted GEV distribution are listed under GEV and the empirical annual maxima 
are listed under empirical, 

Tawn (1992) showed that the GEV distribution fits the tail of the sea level distri

bution better than the extremal Type 1 distribution. The GEV distribution function 

is given by 

P[Mi < x\n,cr,k) = exp[-(\ - k^'^fy 
er 

on the set of x for which 1 — k(x — p)/a > 0. The annual maximum for the ith year 

is Mi, and p, er are location and dispersion parameters. 

The GEV extreme value distribution was fitted to 58 annual maxima sea levels 

for Halifax. The parameter estimates, p, a and k were found to be 204.4cm, 13.8cm 

and 0.4, respectively. The return period estimates based on the estimated GEV 

distribution are also given in Table 4.4. The return periods from the GEV distribution 

are plotted in Figure 4.6 and are very close to the empirical annual maxima return 

periods. It is again emphasized that the advantage of using a parametric model for 

the annual maxima sea levels is the possibility of obtaining return periods for the 

unobserved levels like 235cm. 

\ 
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4.4 Summary 

The REPM estimates based on one year of data are in good agreement with the 

empirical annual maxima return periods obtained from Halifax sea level over the 

period 1930-1987. The Halifax semidiurnal tidal cycle reaches a maximum over in 

a 15 day spring-neap cycle. At high /, the Qt at other than the peak times of the 

spring-neap cycles are negligible. However, at low /, the Qt at other than the peak 

times of the spring-neap cycles are not negligible. Thus the influence of the tide at 

low levels of / is greater than at high levels /. 

The return period scales with the dominant tide. As a result, the low level return 

periods fail to satisfy the requirements of the Gumbel plot. The differences noted 

in the REPM estimates at lower levels could be due to this factor. In theory, the 

AMM and the REPM give identical estimates when the process is independent and 

identically distributed (see Chapter 2). At higher levels the possible exceedances 

occur further apart fulfilling the requirements of an iid process. 

The return period estimates from the RJPM are greater than one year by defini

tion. Therefore, the return periods of lower levels are overestimated by the RJPM 

compared to the REPM. For higher levels, RJPM estimates are lower than REPM 

estimates. The difference between REPM estimates and RJPM estimates increases 

as the le/el becomes extreme. However, if the level is very high, so that the possible 

exceedances occur only at the peak of the nodal cycle, it is reasonable to consider 

return periods of extremely high levels in terms of the nodal cycles of 18.6 years. In 

this case the estimates of extreme levels, like 235cm for Halifax, from two approaches 

are within one nodal cycle, thus confirming the asymptotic arguments given in Chap

ter 2. Slight underestimation noticed in RJPM could be due to the exclusion of the 

full nodal cycle in the estimation. 

At lower levels, the RJPM estimates are closer to AMM return periods than REPM 

estimates. However, at the extreme level / = 235cm the RJPM underestimates the 

return period compared to the REPM and the annual maxima based on the GEV 

distribution. At higher levels such as 235cm, annual maxima estimates based on the 

I 
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Gumbel plot of return periods for Halifax 
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Figure 4.6: Gumbel plot of return peviod estimates for Halifax. The RJPM is marked 
by V, the REPM is marked by '*' and the empirical annual maxima is marked by 
'4 '. Annual maxima estimates based on the GEV distribution is marked by '1 ' . 

GEV distribution are within one nodal cycle of the REPM. Use of extremal indices 

at these levels where the independence is achieved,, causes this underestimation. The 

RJPM estimate for the level / = 235cm assuming independence, was 170 years, which 

is within two nodal cycles of the other estimates. A summary of the return period 

estimates from all three methods is shown in the Gumbel plot of Figure 4.6. 

Overall, the parametric model determined in Chapter 3 seems to perform well in 

all of the return period estimation schemes considered in this chapter. Middleton and 

Thompson (1986) noted some discrepancies in Halifax EPM estimates possibly due 

to inadequate representation of the surge. These discrepancies seem to have been 

resolved by proper modeling of the surge. Revised estimates seem to be closer to the 

empirical annual maxima estimates than the original EPM estimates. At lower levels 
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the RJPM estimates are closer to annual maxima estimates than the REPM due to 

the fact that the same definition of return period is used in the RJPM and AMM and 

is different from the REPM. At higher levels such as / = 235cm the REPM and AMM 

estimates are within one nodal cycle of each other. Underestimation noted by RJPM 

at the level 235c;?i is caused by the extremal index. When the level is extremely 

high the mean over topping times 9a and 0 both tend to one. Use of values greater 

than one have resulted in serious underestimation in the RJPM at / = 235cm. If the 

return period estimates at extreme levels are measured in periods of 18.6 years then 

the estimates from all three methods are close, thus confirming the asymptotic results 

discussed in Chapter 2. Estimation schemes presented in this chapter are extremely 

fast. 



Chapter 5 

Sampling Variability 

The purpose of this chapter is to develop statistical techniques to assess the sampling 

variability of the return period estimates obtained in Chapter 4. The return periods 

obtained in Chapter 4 were based on one year of surge data. In this thesis work, the 

question arises regarding the Magnitude of the standard errors of the surge statistics 

(at and pt) and how these deviations affect the return period estimates. It was evident 

in Chapter 3 (Figures 0.1 and 3.2) that year to year sampling variability exists. The 

aim of this chapter is to estimate the standard errors and confidence intervals of the 

return period estimates so that year to year sampling variability in the sea levels is 

taken into account. 

The standard errors of the REPM return period is related to the variability of 

the surge parameter estimates obtained using one year of surge data. The standard 

errors of surge parameters represent the year to year sampling variability in the surge 

process. In the p-esence of a nonstationary surge and time dependent tide, the EPM 

return period cannot be explicitly defined as a function of surge parameter estimates. 

Hence, it is impossible to find explicit expressions for the standard errors based on 

conventional statistics like the mean square error. In such a situation, it is common 

practice to use methods such as the delta method (Lehmann 1983) and the bootstrap 

technique (Efron and Tibshirani 1977, Kunsch 1989). 

The delta method will be used in Section 5.1 to obtain an approximate expression 

96 
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for the variance of the return period estimate. Reffimpling techniques will be used to 

validate the delta method. Parametric bootstrap estimates of return time variability 

will be obtained and the efficiency and accuracy of both methods will be discussed. 

The RJPM return period was explicitly defined as the reciprocal of the probability 

of the annual maxima exceeding the level / and is a function of the surge parameters. 

The delta method will again be used to obtain an approximation of the variance of 

the RJPM return period estimate. 

Confidence intervals are of obvious practical significance as they assess the chance 

(or risk) involved in using short records of surge data. For instance, a 95% confidence 

interval provides a range for the return periods such that out of 100 independent 

year long surge records, 95 of them will have parameter estimates leading to return 

periods within the interval. Estimated REPM and RJPM return periods and standard 

errors will be used to obtain confidence intervals in Section 5.1 and 5.2. Confidence 

intervals with an approximate coverage probability of 0.95 will be derived for various 

exceedance levels. Estimated confidence intervals will be validated by examining the 

empirical annual maxima return periods based on 1930-1988 Halifax sea level data 

and the observed return periods obtained using the sea level data provided by Marine 

Environmental Data Service (Ottawa) for Halifax. 

5.1 Confidence intervals for the R E P M 

The REPM return period Tr is a function of Qt, which is itself a function of the gap 

between / and the tide, and the surge parameter vector 

T = (ao,aha<2,Po,Pi,p2,0)'. 

As Qt varies with the tide, there is no explicit expression for Tr in terms of the surge 

parameters. This prevents us from using standard techniques to obtain the variance 

of the estimated return period Tr. Approximations to the REPM return time variance 

are based on the delta method and the parametric bootstrap technique. The model 

a 
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parameters were transformed as in Chapter 3, and in what follows, T denotes the 

reparameterized vector. 

In this section we discuss one approach, based on standard asymptotic distribution 

theory, to the problem of finding interval estimates for Tr. 

A difficulty arises due to the fact that Tr is integer valued and therefore not 

differentiable with respect to time. We define a continuous version of TT which we 

denote by Tc, as 

Tc = mm{t: f Qa(T)ds = 1} 
Js=0 

where Qa(T) = Qi(T), t < s < t -f 1 for any integer t. In this case 

/ Qa(T)ds = T Qt(T), for all integer t* 
Js=o t=0 

and for any real t' 

tt' [''+1! ,[t'+i] 
I Qa(T)ds=^Qt(r)- Qs(T)ds (5.1) 

Js=0 t=0 Jt' 

where [i'-f-1] denotes the integral part of t' + l. Note that Js
l
=oQa(^)ds is a continuous 

function of t' which is differentiable for (almost) all t' and that Tc is within one time 

unit of Tr. 

We show below how a confidence interval can be constructed for Tc, and this leads 

to a slightly conservative interval for %. 

5.1.1 Sampling variability of Tr 

As discussed in Chapter 3, the maximum likelihood estimator T converges in distri

bution to T. i.e. 

Vn(f - r) -+L N(0, 3?) 

where S is the approximate covariance matrix of f. It follows that if / is a real valued 

function defined in a neighborhood of T and (df(T)/dr) ^ 0, then 

v^[/(r) - f(T)] ^ N A^HV) 
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For example see Theorem 5.1.9 of Lehmann (1983). In the above equation —>L denotes 

the convergence in law. 

Consider the function of T given by 

rTc(r) 

/[re(r),r]= / Q,(r)«*-i = o. 
Js=Q 

An application of Leibnitz' Rule gives 

df -n r n ^ ( r ) , fT^dQs(T), 

Leibnitz' rule follows by the conditions tha,t the functions QS(T) and TC(T) are both 

continuous functions of T. As df/dT = 0 it follows that 

^-C^^r, ( 5„ 
Defining Tc as Tc(r) this implies that 

p 'cVD 

V(TC) = 

where 

It follows that 

with 

and 

D° = I 
Js=0 

QUV 

™ dQa(T) 

dT 

rT«(r>rri . ai. 

ds. 

Fi(s) = <f>(la)*(ya) 

dya 

Jy,=—oo Ox 

Note d/dY is the derivative with respect to the vector T. The standardized limits 

are /s = l3-X/cra_u ys = (/s - PsVa/^s)/^ - P2< The notation <f>(.) and $(.) denote 

the standard normal probability density function and the complementary distribution 

function respectively. pa and <xs are as in Chapter 3. 
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The above discussion implies that in large samples the distribution of Tc can be 

approximated by a Gaussian distribution with mean Tc and variance 

P^Pn 
V(TC) = %%p.. (5.3) 

This is estimated by replacing the unknown T with the consistent estimate P. This 

procedure leads to confidence intervals for Tc and slightly conservative intervals for 

TT. 

In order to calculate the variance approximation given in (5.3), one has to calculate 

P0 which requires an integration over time. This will cause practical difficulties. We 

show below how Po can be approximated by 

£ [ W ) ^ + F2(t)] 
t=i Ul 

which is easy to compute. 

We define the continuous function 

r°<r\ dQa{T) 

Gs(?) = - f l T " 
and the discrete function Gd(T) as 

Gd(T) = GC
S(T) for all integer t. 

Then 
fTc W J 
/ Gc

s(T)ds = ^2Gd
t(r) + R(Tc) Ja=° t=o 

and [Tc] denotes the integral part of Tc. The function Gf(F) represents the derivative 

of the probability of an upcrossing with respect to T, which is bounded and it varies 

slowly with t. In which case, if Gf+1(T) « Gd(T) then R(TC) « 0. This results in 

[Tc] tr ft, 

E ^ ( r ) = E [ ^ ( 0 ^ + ^ ) ] 
t=0 t=l Ul 

providing an approximation to 

Ga(r)ds = Y,Gd
t(r), 

s = 0 t=0 
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where 
[Tc] T r oT 

t=0 t=l U l 

One drawback of the delta method variance approximation is the dependence on 

the denominator Qrr, which is the probability of an upcrossing at TT. This depen

dence causes serious problems as the tidal process contains significant periodic cycles 

(spring-neap cycles). If the return period Tr happens to be at the peak of a spring-

neap cycle, QTT is large and the variance estimate tends to be smaller than when TT 

is at the trough of the spring-neap cycle. For high levels having large return periods, 

the resulting variances may be smaller if Tr happens to be at the peak of the spring-

neap cycle. We expect, as the level increases, that both the return period and the 

corresponding variance will increase, irrespective of where in the tidal cycle Tr falls. 

It is thus reasonable to define a smoothed estimator, which for discrete time may 

be written as 

rs = min{j/:£<?u(r)>l} (5.4) 

where Qu(^) is the average exceedance probability for year u. Ts defined as (5.4) is 

integer valued and not differentiable. We define a continuous version of Ta as 

Tc
s = xmn{w : / Qv{V)dv = 1} 

./I/=:0 

with 

Q„(T) = - I" 1 Qv,s{T)ds, 
71 Ja=G 

where n = 8766. Note that this <3i/(r) is within one hour of QU(T). A similar 

argument as in (5.1) will lead to the result that Ts
c is within one year of T„. Moreover, 

Ta
c is differentiable and suggests that the distribution of y/n[Ta(T) — TS(T)] can be 

approximated by 

N 0J9T!(T)\ ^JdT^ry H dY ) \ OT 

According to the discussion above, in large samples the distribution of T5
C can be 



102 

approximated by a Gaussian distribution with mean Ts° and variance 

V(tt) = g g (5.5) 
where 

Po = f' dQv(r),'dr. 
Ji/=0 

This will lead to confidence intervals for Ta which provide approximate confidence 

intervals for Ta. 

In Ta, taking the average over a year seems reasonable as the tide-surge variability 

has annual cycles (Middleton and Thompson, 1986). In places where the tide-surge 

variability has cycles longer (or shorter) than a year the average can be taken over 

a longer (or shorter) period. For an idealized process with iid {//«}, iid surge and no 

tide it can be verified that V(fr) = V(fs). 

At high levels of /, Qt approaches the probability of exceedance. The use of 

exceedances for Qt in the REPM estimate reduces the variance approximation of Tc 

to a much simpler form for V(TC) with 

p0=£;/i/*?M/*.)|p 
which immediately follows from Po = fflx dQt(T)/dr and 

/•oo 

dQt/dr = d j(x)dx/dr. 
Jx=l 

The variance approximations given by V(Tr) in equation (5.3) and for the smoothed 

estimator were determined for the levels / = 185, ...,235 cm as obtained for Halifax 

in Chapter 4. The results are summarized in Table (5.1). The standard error ap

proximation (5.3) gives small values compared to the smoothed estimator and does 

not steadily increase with the increasing level. For example, when the level increases 

from 220cm to 225cm the standard error decreases from 1.54cm to 1.38cm. However, 

the standard error estimates in (5.5) increase consistently with increasing levels as 

one would expect. The standard error approximations in (5.5) are quite large as one 

would expect for return periods of several decades (e.g. 71 years) and especially for 

the return periods of two centuries (e.g. 206 years). The accuracy of these standard 

error estimates is not yet clear and we turn to the bootstrap method for verification. 
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5.1.2 A parametric bootstrap variance estimate 

A parametric bootstrap simulation (Efron and Tibishirani 1986) has been developed 

whereby simulation batches of REPM return times were generated. Samples of f 

were generated from the multivariate normal distribution with mean vector T and 

covariance matrix 3 as obtained in Chapter 3. These parameters were then used to 

obtain realizations of ert and pt used for the estimation of Qt. These were used to 

generate m sets of REPM estimates for each level /( T^i, i = 1,2, ...m). The bootstrap 

REPM return periods T,,/ were combined to form their bootstrapped mean T and the 

sample variance, Y^x ^ - i • 

It was noted that the sample mean and the variance are also quite sensitive to 

the number of bootstrap samples of m. If m is small, the bootstrap return periods 

tend to be around the same spring-neap cycle thus underestimating the return period 

variance. If m is too large, it takes substantial computing time to calculate return 

times, and so the technique is not particularly efficient. 

Table 5.1 illustrates the REPM return period estimates discussed in Section 5.1 

and the standard errors obtained for V(Tr), V(Ta) and the bootstrap method. Note 

that the bootstrap estimates in Table 5.1 are based on m = 500 bootstrap replicates. 

Up to a level of 215 cm, the bootstrap standard errors are within one year of the 

approximation given by (5.5). Beyond the level of 220 cm the delta method variance 

is within two years of the bootstrap estimate. This suggests that the asymptotic 

theory leading to (5.5) may be reasonable. 

The slight discrepancies that exist at extremely high levels may be due to vari

ability in the bootstrap samples. Sampling variability can be decreased by increasing 

the number of bootstrap samples. To generate many bootstrap samples for higher 

levels with longer return periods such as 10 years or greater takes much more com

puting time than is taken when using (5.5). In this sense, the delta method variance 

approximation is more efficient than the bootstrap method. 

The theory of the previous section is now utilized to obtain confidence intervals. 

Confidence intervals are often associated with year to year sampling variability in the 
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Level 

£(cm) 

185 
190 
195 
200 
205 
210 
215 
220 
225 
230 
235 

Estimate (years) 

t 
0.04 

0.05 

0.12 

0.19 

1.09 

2.22 

6.14 

11.96 
27.66 

71.05 

206.77 

Standard error (yrs) 

vV(Tr) 
0.0023 

0.0039 

0.0083 

0.0806 
0.0601 

0.3644 

0.4926 

1.5430 

1.3864 

19.042 

37.569 

Mt) 
0.0206 

0.0251 

0.1092 

0.2136 

1.6452 

3.2875 

5.9915 

11.4617 
12.1194 

22.1723 

72.9347 

Bootstrap 

0.0008 

0.0023 

0.0690 

0.1033 
0.3084 

2.4694 

4.3668 

8.9302 

10.74 

20.16 

71.18 

Table 5.1: The standard errors of REPM return period estimates, the bootstrap 
standard errors are based on 500 REPM bootstrap replicates. 

data. For instance, a 95% confidence interval for a given level means that, on average, 

95 uut of 100 year long surge records will lead to estimates within the confidence 

bounds. Unlike the point estimate, the interval estimate accounts for the sampling 

variability in the surge, and will give a clearer picture of the effect of using short data 

records. 

Figure 5.1 shows that almost all the REPM estimates for lower levels like / = 

215,220cm are within the 95% confidence intervals. This is not the case at higher 

levels. At / = 225cm 1 estimate out of 28 estimates is out of confidence bounds 

whereas for / = 230cm and for / = 235cm 3 and 5 out of 28 are out of the bounds. 

In theory 2 out of 28 estimates are expected to be outside the confidence intervals. 

However, without analysing many years of data a definite conclusion can not be 

reached as to whether the R3PM overestimate the standard error at lower levels. 

Due to the missing values in the observed data set it was not possible to analyse 

more than 28 years of data for Halifax. 
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9 5 % confidence intervals for Halifax 

? -

I § 
8. 

Figure 5.1: 95% confidence intervals of REPM for Halifax. The REPM estimates for 
28 years, 1930-1955, 1959-1960 are marked by '*'. Two lines represent the upper and 
lower bounds of the 95% confidence intervals for REPM. 
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95% confidence intervals for REPM 
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Figure 5.2: 95% confidence intervals of REPM for Halifax. The REPM estimates 
from Chapter 4 are marked by '*', empirical annual maxima estimates are marked by 
'+'. The vertical bars are 95% confidence intervals for REPM. 

In general, the confidence intervals become wider as the level gets higher. Note 

that at / = 225cm the confidence interval is narrower than the same at / = 220cm. 

The return period estimate at / = 225cm is 27.66 years from the year 1930. According 

to the Figure 1.3, since the nodal modulation occurs every 18.6 years, the year 1958 

falls on the peak of the nodal cycle, giving a higher value for QT%. This will make the 

standard error estimate (5.5) relatively small, resulting narrower confidence intervals. 

The 95% confidence intervals for REPM estimates in Table 5.1 are plotted in 

Figure 5.2. For comparison purposes, annual maxima return periods are also included. 

Figure 5.2 shows that the empirical annual maxima return periods are mostly within 

the 95% confidence limits. The empirical AMM return periods for higher levels are 

on the lower bound of the 95% confidence interval. This may be due to error in the 



107 

estimation of the empirical annual maxima, as very few annual maxima exceedances 

of levels beyond 220 cm were observed in the 59 year period from 1930-1958. Almost 

all the observed return periods for Halifax are within the confidence interval. This 

could also be an indication of the year 1930 is not a typical year to obtain surge 

parameter estimates. 

5.2 Confidence intervals for R J P M estimates 

The RJPM return period estimates obtained in Chapter 4 are also a function of the 

surge parameters in T. Therefore, the variance estimate of RJPM reflects the sampling 

variability in T. A similar approach based on the standard asymptotic theory can be 

applied to approximate the variance of the RJPM defined as 

1 
Trjpm ~ W)' 

where 

Qn = l-expdY/P(r)°>l-T1?)] 

is the estimated annual maxima probability of exceedance described in Chapter 4. 

Accordingly, in large samples the distribution of TTjpm can be approximated by a 

normal distribution with mean Trjpm and variance V(TTjpm) equal to 

\2n n /r\i2 o ° ( W [ l - Qn(?)? Qi(r)' 

where 0 and 0S are extremal indices defined in Chapter 4 with Po = Y%=i dQi(T)/dT, 

for Q,(V) being the probability of exceedance at the ith hour. 

According to the asymptotic theory stated in Chapter 2, for iid {nt} both the 

REPM and RJPM lead to the same estimate for the return period. It can be verified 

that, as the level becomes extreme the standard errors of REPM and RJPM based 

on asymptotic arguments get closer to each other. 
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95% confidence intervals for RJPM 
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Figure 5.3: The 95% confidence intervals of RJPM for Halifax. The RJPM estimates 
from Chapter 4 are marked by 'o', empirical annual maxima estimates are marked by 
'+' . The vertical bar represents the 95% confidence interval for RJPM. For lineariza
tion the return periods are transformed using —log(—log(l — \/T)). 

Confidence intervals can be derived based on the asymptotic normality of return 

periods using the standard errors calculated as above. The 95% confidence inter

vals for the RJPM return period estimates are showr in Figure 5.3. Almost all the 

empirical annual maxima return periods are within the 95% confidence bounds. 

-n'l 

5.3 Summary 

In this chapter, the return period estimation schemes discussed in Chapter 4 were 

further extended to account for the sampling variability that exists in the surge data. 

Techniques were developed to obtain standard errors based on the standard asymp

totic distribution theory. Validation techniques were also discussed. It was found that 
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the standard error is comparable with the bootstrap standard deviation confirming 

the asymptotic theory. However, the asymptotic theory b^sed standard errors are 

much easier to calculate than that of bootstrap. The techniques developed in this 

chapter provided the upper and lower bounds such that 95 out of ICO year long surge 

records will lead to estimates within these bounds. In the derivation of the surge 

parameters only a year of data was used. The influence of the year to year sam

pling variability in the surge data is accounted for by the interval estimates. It was 

found that almost all the empirical annual maxima return periods are within the 95% 

confidence bounds. 

Tawn (1992) had extended the RJPM method to estimate the return level for a 

given period of time. The estimation techniques presented in this chapter can easily 

be extended to obtain the return level. The delta method can also be extended to 

obtain the standard error of the estimated return level. 



Chapter 6 

Summary and Conclusions 

This thesis has presented a set of techniques for obtaining return periods of extreme 

events from short records. In particular its focus is en situations where the process is 

partly deterministic and partly stochastic. The stochastic part may be complicated 

with such features as second-order nonstationarity in the form of a seasonally varying 

autocorrelation and variance structure. The physical context of the problem arose in 

the estimation of return periods from sh rt sea level records. Mere, the surge process 

is stochastic and nonstationary in the second-order whereas the tidal process is purely 

deterministic. 

In Chapter 2 existing methods such as AMM, POT, JPM, EPM, RJPM and 

also the method based on r-largest annual events of estimating return periods were 

described and then compared for a Gaussian surge process. It was found that all the 

return period estimation schemes give similar results for iid processes, equal to the 

mean of the first passage time Tjr. The first passage time Tjr was defined as 

r / r = Tiff nx <l,...,nT-X <l,TjT>l. 

All the return period estimates were then compared to a baseline estimate of TjT 

for additional idealized sea level processes. For an idealized sea level process with 

an AR(1) surge and a square-top tide, the EPM method gave the closest estimate 

to the baseline value. However, the methods like the Gumbel annual maxima and 
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the POT method require a long series of data and were thus considered beyond the 

scope of this thesis. As a result, the EPM and JPM were considered for the estima

tion and inference of return periods. These methods require the estimation of the 

single dimensional probability of exceedance and the two dimensional probability of 

upcrossing to be calculated using a parametric surge model. Briefly, in Chapter 2, it 

was proved that the various return period estimates converges to the same value as 

the level becomes extreme. This seems to be an important derivation from a prac

tical point of view since users want to know the accurate return period estimate of 

high levels, regardless of what definitions and events are being used in the estimation 

procedure. The results proved in Chapter 2 should convince users of the stochastic 

equivalence. Another interesting result found in Chapter 2 was that the determin

istic component of the tide can be considered as a threshold in P O T analysis, thus 

eliminating the problem of the arbitrary chosen threshold level on P O T return pe

riod estimates. Since the tide changes over time, modifications to the conventional 

POT method have to be introduced to cope with the time variant threshold in P O T 

analysis. Numerical schemes of approximating higher dimensional probabilities, also 

discussed in Chapter 2, are correct to the 8th decimal place for extremely high levels 

and are useful in the numerical evaluation of these probabilities. 

In Chapter 3, several different parametric models were fit to surge data using 

maximum likelihood techniques. Two special cases of state space models were also 

included to account for the measurement errors that are usually present in the data. 

Diagnostic checking techniques were presented and applied to Halifax surge data. 

Estimates were extended to obtain confidence intervals for the seasonally varying 

autocorrelation and variance structure. The point and interval estimates are in good 

agreement with actual values for Halifax. 

The PAR state space surge modeling approach used in thesis is original. The 

notable feature of the PAR surge model produced in this thesis is the representation 

of the seasonally changing autoregressive and variance components using a functional 

forms like a(t) and P(t) so that seasonal behaviour of the process is captured by 
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relatively few parameters. This form allows fitting a complex surge model to a short 

record of data. The form of the model presented in this thesis, can be extended 

to include seasonally varying moving average parameters if necessary. The state 

space representation can allow the measurement error variance to change seasonally 

(or functionally) over time to account for seasonally varying error structure. The 

techniques developed in this thesis also allow the year-to-year sampling variability 

in the data to be included in the estimated model statistics like crt and pt. These 

estimates can even be extended to other types of sea level data analysis. 

The parametric model was successfully utilized in the estimation of return periods 

in Chapter 4. The two methods, REPM and RJPM, were slightly modified to use the 

parametric surge model. Estimates from the revised EPM and JPM using one year 

of data were compared with annual maxima return periods obtained using several 

decades of data. The surge model worked well and the estimates were compatible 

with the empirical annual maxima return periods obtained using 59 years of data for 

Halifax. 

The noteworthy feature of the numerical techniques introduced in this chapter is 

that particular attention was paid to reducing computer time taken for the estimation 

of the decadal long return periods without sacrificing accuracy in the final result. 

For example, ideas like the construction of the three dimensional lookup table and 

interpolation schemes were designed for computational convenience. The techniques 

presented in this chapter were also found to be extremely fast and accurate. 

In Chapter 5, the return period estimation schemes were further extended to 

include the year to year sampling variability in the surge data. The variance estimates 

were obtained for REPM and RJPM estimates based on the standard asymptotic 

results. It was found that the standard deviation estimates were comparable with 

the bootstrap estimate thus confirming the asymptotic results. The 95% confidence 

interval estimates were also obtained based on these asymptotic results. 

Another important issue in this work is that a great deal of attention was paid 

to incorporating the effect of sampling variability into the return period estimates. 
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This has often been ignored in previous estimation studies. The variance formulae 

presented in this thesis for the REPM and RJPM estimates perform well and can be 

extended to any form of parametric presentation of the surge. 

A final comment is that the estimation and inference methods were restricted to 

Gaussian models. If the Gaussian assumption is relaxed, return period estimation 

schemes can still be carried out provided that the explicit functional form of the 

distribution is known. These can then be incorporated into the numerical integration 

schemes. It should be pointed out however, that the asymptotic convergence of 

different return period estimates may no longer be valid. 

6.1 Future work 

Throughout this thesis work, we relied on the tidal prediction program of Foreman 

(1977). However, if statistical based regression techniques are used then the estimated 

tide is given by 
M 

vf = P-t + Yl H< cos(u;,-2 - gi), 
t= i 

The mean sea level is denoted by pt
 a"d the tidal components were explained in 

Chapter 1. In this case the estimated tide 

M 

t'=l 

is random and described by the random variables //,•,&,• and c},-. The surge process also 

follows a state space model representation as discussed in Chapter 3 with a stochastic 

mean iff. This leads to the problem of return period estimation of a double stochastic 

process. 

It was noted in Chapter 2 that the POT return periods can be obtained by con

sidering the square-top tide as the threshold level. In general, the return periods 

of the peak over the tide are of interest. In the case of a tide with seasonal cycles, 

the intensity parameter is a function of time, A = A*, leading to a nonhomogeneous 

Poisson process. This intensity parameter will also influence of the nonstationarity of 
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the surge. Methods of estimating At would be of interest. The revised POT return 

period for a nonstationary process could then be defined as the the time T such that 

Ef=iA* = l. 

One last question that arose in this work is how to eAtend the return period 

estimation schemes for short records to a multivariate problem such that the surge 

and tidal components are vectors of dimension greater than one. An example of a 

two dimensional problem of estimating return periods would be for current having 

components in two directions. 

Extreme value analysis has been widely used in air quality analysis (Singpurwalla 

1972, Horowitz 1980, Smith 1989) for studying air pollution problems. In these type 

of problems people are primarily interested in the frequency of exceedances which is 

expressed as the reciprocal of the return period. Most environmental time series are 

short and serially correlated with seasonal variances and long term trends. The state 

space model presentation in Chapter 3 can be extended to include the many different 

physical models. The diagnostic checking techniques and validation methods are also 

directly extendable. 

The additional complications which arise due to missing values in the short series 

of data were completely ignored. Smith (1989) proposes a broader approach to deal 

with missing values emphasizing the point-process viewpoint of high level exceedances. 
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