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ABSTRACT

The vertical structure in fluorescence and beam attenuation (at 660 nm) is
related to local hydrographic features and the composition of photosynthetic pig-
ments for the western North Atlantic in September. Phytoplankton and covarying
material appear to be the major factors affecting the beam attenuation coefficient
through changes in species composition and pigment concentration, and through
photoadaptation. Detailed pigment analysis combined with measurements of in
vivo phytoplankton absorption spectra showed a major regional difference in the
specific-absorption spectra of phytoplankton which is directly linked to the struc-
ture of the phytoplankton community present in the water column. Thz results
indicate a strong influence of other pigments co-existing with chlorophyll-a in algal
cells on the variabilities of the specific-absorption coefficient of phytoplankton.

To account for an effect due to pigment composition, absorption spectra of
several phytoplankton species were decomposed, after correction for the “particle-
size” effect, and the in wvivo absorption properties of the major light-harvesting
pigments were estimated. A Gaussian shape is suitakle , theoretically and empiri-
cally, to represent the absorption spectra of individual photosynthetic components.
The Gaussian parameters agreed well with the expected pigment compositions of
3 groups of algae, and the peak heights were linearly correlated with the concen-
trations of the 4 major pigments measured in the samples. The linear relationskip
did not vary with phytoplankton species. The results give estimates of the in vivo
specific-absorption coefficients of photosynthetic pigments which, then, are used to
reconstruct the in vivo absorption spectrum of a multi-species samples.

Another application of the previous results is to compute photosynthetic- pig-
ment concentrations in seawater from the knowledge of the absorption coefficient
of phytoplankton. The contributions due to detrital particles and phytoplankton
to total light absorption are retrieved by non-linear regression on the absorption
spectra of total particles from various oceanic regions. The model used explains
more than 96% of the variance in the observed particle absorption spectra. The
resulting absorption spectra of phytoplankton are then decomposed into Gaussian
bands, following a similar procedure as the one previously described. Such a de-
composition, combined with HPLC data of phytoplankton pigment concentrations,
allows the computation of specific- absorption coeflicients for chlorophylls-a, -b, -c,
and carotenoids. It is shown that these coefficients can be used to reconstruct the
absorption spectra of phytoplankton at various locations and depths. Discrepancies
that do occur at some stations are explained in terms of particle-size effect. Lastly,
these coefficients can also be used to determine the concentrations of phytoplank-
ton pigments in the water, knowing just the absorption spectrum of light by total
particulate matter.
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General Introduction

The modification of the path and intensity of a light beam passing through
the ocean are determined by the absorption coefficient and the volume scattering
function (Kirk 1983). These properties are classified as Inherent Optical Properties
(IOP, Preisendorfer 1976) because they do not depend on the angular structure of
the incident radiation field but rely, instead, only on the nature of the in-water
constituents, e.g, their shape, size, and the material of which they are composed.
Direct measurements of IQP are difficult to obtain, although a few instruments were
designed to monitor underwater absorption (Hgjerslev 1978, Spitzer and Wernand
1981, Zaneveld et al. 1988), and scattering (Tyler 1963, Petzold 1972). On the con-
trary, Apparent Optical Properties (AOP) such as the diffuse attenuation coefficient
and the reflectance of seawater, are routinely computed from the measurements of
downwelling and upwelling irradiances (Morel and Prieur 1977, Smith and Baker
1978), as well as from the water-leaving radiances detected from remote sensors
(Gordon and Morel 1983). These properties depend on the angular structure of
the radiance distribution in the water, as well as on the IOP. Since IOP are linked
to the optically-active components in seawater, investigations on changes of these
apparent optical properties in relation to biological variables require information cn
the contributions to absorption and scattering of light by all material present in the

water.

Optically-active constituents in seawater are partitioned into molecular water,
phytoplankton, dissolved organic substances (or yellow substances), and detrital
matter which may include mineral particles, small heterotrophs, bacteria, as well as
algal debris. However, absorption and scattering by phytoplankton and covarying

constituents are generally considered to be responsible for most of the variations in
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the optical properties of case 1 waters (sensu Morel and Prieus 1977), which repre-
sent 98% of the world’s oceans (Morel 1988). Knowledge of these inherent optical
properties of phytoplankton is therefore a necessary requirement for computations
of the light penetration in seawater (Sathyendranath and Platt 1988), and of the
photosynthetically usable radiatior. (Morel 1978) which, in turn, is used in the deter-
mination of the photosynthetic quantum yield and primary production in the ocean
(Stmitk et al. 1989). They are also important variables in models of phytoplankton
growth rate (Sakshaug et a!. 1989), and even mixed-layer dynamics (Lewis et al.
1983, Sathyendranath et al. 1991). Bio-optical models for remote sensing of phy-
toplankton biomass and primary productivity in the oceans are also based on the
optical properties of phytoplankten (Gordon and Morel 1983, Sathyendranath and
Morel 1983, Platt 1986, Sathyendranath and Platt 1989). These biomass models are
generally more sensitive to changes in the characteristics of spectral absorption than
to changes in their scattering properties (Gordon and Morel 1983, Sathyendranath
1986). However, in spite cf its importance, the absorption coefficient of natural phy-
toplankton populations has not been much studied in the past, no doubt because of
the difficulty in recovering it from the in vivo absorption spectrum of natural parti-
cle assemblages, where phytoplankton compete with other material for the capture
of photons. In this thesis, I focus on the variabilities of some optical properties
of particulate matter in seawater, with special reference to the absorption of phy-
toplankton, and the problems that are associated with the determination of the

phytoplankton absorption coefficient.

Unlike field work, in vivo spectral absorption of phytoplankton has been the
subject of numerous laboratory experiments related to various subjects. A typ-
ical absorption spectrum of marine algae is characterized by maxima at 440 nm
and 675 nm which are primarily associated with chlorophyll-a, but additional con-
tributions related to secondary chlorophylls, carotenoids and phycobilins are also

present. The intracellular pigment composition varies within each algal group, such
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that differences could occur in their absorption spectrum (Prézelin 1981). For o-
ceanographic purposes, a quantity of interest is the specific absorption coefficient of
phytoplankton, that is, the wavelength-dependent absorption coefficient normalized
to chlorophyll-a. Results of these studies show that this coefficient at 440 nm varies
by a factor of 3 (Sathyendranath 1986). Using culture experiments, Bricaud et al.
(1983) and Sathyendranath et al. (1987) demonstrated that two factors account
for most of the variance in the absorption coefficient of algae: the size and config-
uration of the cells, and the intracellular pigment composition. The former effect,
well known as the particle effect (or package effect, or flattening effect), was orig-
inally described by Duysens (1956) and describes flattening of absorption spectra
of particles in suspension when compared with an equivalent amount of absorbing
material in solution. Morel and Bricaud (1981) have investigated this phenomenon
in marine algae to correct phytoplankton absorption spectra for this effect. In con-
trast, the effect of pigment composition has not been signiﬁcantl)_' documented (but
see Sathyendranath et al. 1987), probably because of the difficulty in retrieving the

“in vivo”characteristics of spectral absorption by individual pigments.

In this thesis, in situ bio-optical field data and modelling studies are combined

to achieve two main goals:

1. To assess the role of various phytoplankton pigments in controlling the

magnitude and shape of the specific spectral absorption of light by phytoplankton.

2. To develop a method to determine the specific absorption coefficient of
phytoplankton, which will account for the “in vivo” absorbing characteristics of

various photosynthetic pigments.

In Chapter One, some bio-optical variables of water samples collected in the
western North Atlantic are investigated in relation with local hydrographic features
and the composition of photosynthetic pigments. Also, detailed pigment analyses

are combined with measurements of in v:wo phytoplankton absorption spectra to
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examine the variability in the specific absorption coefficients of phytoplankton in
relation to the pigment composition, and, hence, to changes in the structure of the

phytoplankton community with sampling location and deptn.

In Chapter Two, absorption spectra of several phytoplankton species were de-
composed, after correction for the particle effect, to estimate, the in vivo abuurption
properties of the major light-harvesting pigments in marine algae. A Gaussian ap-
proximation is used to resolve the spectral absorption of four different pigments in
the entire visible range. The reliability of this method is tested against published
data on the optical properties of individual pigments obtained with techniques that
reduce as much as possible the effect of separation of the pigment from its in vive

molecular environment.

In Chapter Three, the contributions due to detrital particles and phytoplankton
to total light absorption are retrieved by non-linear regression.on the absorption
spectra of total particulate matter from various oceanic regions. The resulting
absorption spectra of phytoplankton are then used in combination with the model
described in Chapter Two to compute specific absorption coefficients of individual
pigments. The application of these coefficients to recover biological variables in the

oceans are also investigated.

Finally, a synopsis of this thesis is given in a general conclusion, which briefly
expande on further applications of this work in different domains of oceanography,

particularly remote sensing of ocean colour.



CHAPTER 1

Bio-optical characteristics of coastal waters:
absorption spectra of phytoplankton and pigment
distribution in the western North Atlantic

1.1. Introduction

Direct measurements of in vivo light absorption by phytopla:nkton are difficult,
considering the low concentration of algal cells in the water (when compared with
cultures) and the competition for photons between phytoplankton and other par-
ticulate material such as detritus and sediment. Recently, however, methods have
been developed for measurement of the absorption spectra of live phytoplankton
from natural sea-water samples (Yentsch 1957, 1962, Mitchell and Kiefer 1984,
Kishino et al. 1985, Iturriaga and Siegel 1989). Applications of these methods
to field samples are still sparse, particularly in coastal waters which are often of

economic importance (but see Yentsch and Phinney 1989).

The Gulf of Maine provides an excellent environment for investigation of the
variability in the optical properties of phytoplankton. Several water masses of
different regions coexist in that area during summer (Hopkins and Garfield 1979).
Their interactions lead to strong biological gradients and an interesting system of

particle dynamics (Spinrad 1986).

In this chapter, the vertical structure in beam-attenuation and in vive chloro-
phyll fluorescence for the Gulf of Maine region in late summer are presented, and
interpreted in terms of vertical stability, phytoplankton community structure and
photoadaptation. Then, the variability in shape and amplitude if the in vivo specific

absorption spectra are examined in relation to differences in pigment composition,

5



6

and the implications for remote sensing and bio-optical models of primary produc-

tion are discussed.

The effect of cell size (i.e., package effect) on the absorption coefficient of algal
cells has been fairly well studied (Morel and Bricaud 1981, Sathyendranath et al.
1987). Yentsch and Phinney (1989) have concluded that it represents the major
factor responsible for the variability in the specific absorption coefficient at 440
nm in the western North Atlantic. Using simultaneous measurements of pigment
distribution and in vivo absorption spectra, the following question is addressed:
how the intracellular pigment composition of algal species affects the variability in

the chlorophyll-specific absorption spectra of phytoplankton ?

Bio-optical models of light penetration, ocean colour and primary productivity
currently in uze make little concession to changes in the optical properties of phy-
toplankton associated with changes in community structure. The results presented
here indicate clearly that such changes can be significant, and that information on
pigment composition may contain the key necessary to determine the magnitude of

these variations and, hence to improve the performance of bio-optical models.

1.2. Materials and methods

1.2.1. Data collection. Data were collected in September 198§ during a cruise of
the R/V Cape Hatteras in the Gulf of Maine and Georges Bank region. Hydrocasts
were performed at 20 stations (Fig. 1.1) using a sampling rosette (General Oceanic
model 1015) equipped with eleven 5 1 Niskin bottles. Hydrographic and optical data
were obtained simultaneously with a CTD profiler (Neil Brown Instrument System
SMART), an in situ fluorometer (Sea Tech, Inc.) and an in situ transmissometer
(Sea Tech., Inc.), all of which were attached to the water sampling rosette. The
fluorometer was calibrated agairst pure chlorophyll a (Sigma Chem. Co.).
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FIGURE 1.1. Study area and station locations in the western North Atlantic.
Cruise of the RV “Cape Hatteras” in September 1989.
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1.2.2. The beam-attenuation coefficient. The transmissometer was oper-
ated with a light-emitting-diode (LED) light source at a wavelength of 660 nm.
Light transmittance T measured at this wavelength was used to compute the beam-

attenuation coefficient ¢ (m™!) using the following relationship:

T(660) = exp[—0.25 c(660)] , (1.1)

where 0.25 is the pathlength of the instrument in meters.

1.2.3. Pigment analysis. Algal pigments were separated and quantified using
a reverse-phase, high-performance liquid-chromatography (HPLC) technique with
some modifications to the general procedure described by Mantoura and Llewelyn
(1983). Samples of 0.3 1to 1.5 1 were filtered onto Whatman GF/F filters (2.5 cm in
diameter), frozen immediately at liquid N, temperature and stored at —70°C prior
to analysis. Gieskes and Kraay (1983a) have shown that storage of filters in this
manner for several months does not significantly affect the pigment composition
of the filtered material. The filters were then immersed in 1 ml of 100% acetone
and crushed vigorously using a tissue grinder. The pigments were extracted in
the dark for several hours at 5°C. Just before HPLC injection, the samples were
centrifuged and diluted with deionized water at a ratio of 2:1 (sample:water) to
prevent band-spreading in the first eluted peaks (Welschmeyer and Hoepfner, in

press).

The instrumentation for HPLC consisted of a Beckman “System Gold” appara-
tus, including a dual-pump soivent module (Model 126) and a scanning absorbance
detector (Model 167). Both the modules and the chromatogram analysis were pro-
grammed using an IBM PC loaded with the Beckman “System Gold™ software pack-
age. Pigments were separated on a short (4.6 mm x 7.0 cm) Ulitasphere XL-ODS

colurn (Beckman), filled with 3 pm (in diameter) packing material. The solvents
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were a mixture of methanol and 0.5M ammonium aceiate (80:20, v:v) as solvent
A, and a mixture of methanol and ethylacetate (70:30, v:v) as solvent B. A linear
gradient from 100% solvent A to 100% solvent B was set up from 1 to 16 min of a 23
minute chromatographic run. A pause of few minutes between each sample allowed
the baseline to stabilize with 100% solvent A. The pigments were monitored at 440
nm cnd identified by comparing their retention times and absorption characteristics
with quantitative standards. All standards were provided by Dr. R.R. Bidigare as
part of an HPLC pigment intercalibration study (SCOR Working Group, 1989).

Pigments quantified by the present method were chl-a, -b, -(¢1 + ¢;), peri-
dinin, fucoxanthin, 19’- butanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin, al-
loxanthin, prasinoxanthin, diadinoxanthin, zeaxanthin and 3-carotene. The method
was not capable of separating either zeaxanthin from lutein, or chl-(¢; + ¢z) from
Mg 2,4- divinylphaeoporphyrin a5 monomethyl ester. Zeaxanthin, however, was as-
sumed to be dominant over lutein, as suggested by other field observations (Gieskes
and Kraay 1986, Everitt et al. 1990). On the other hand, the distributic.a of Mg 2,4~
D-like pigment in sea water is poorly known (Hooks et al. 1988), so that the peak,
hereaiter referred to as chl-(c; + ¢2), should be interpreted with caution. The abun-
dances of chl-c;, diatoxanthin and a-carotene were determined qualitatively since no
standards were available to quantify these pigments. These three peaks were identi-
fied by comparison with chromatograms of unialgal species of known pigment com-
position: Emiliana huzleyi for chl-cs (see Jeffrey and Wright 1987), Isochrysis gal-
bana grown in culture at high light intensity for diatoxanthin (see Welschmeyer and
Hoepflner, in press), and marine “prochlorophytes” for a-caro‘ene (see Chisholm
et al. 1988). For several samgles, particularly those collected in oligotrophic wa-
ters, the acetone extract was acidified with 1N HCI to note the presence of divinyl
phaeophytin-like pigment which characterizes the group Prochlox"ophyceae, recently

discovered in oceanic waters (Chisholm et al. 1988).
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1.2.4. Absorption spectra. Light absorption by marine particles was determined
after concentration of the particles on glass-fiber filters, using the method originally
described by Yentsch (1957) and modified later by Kishino et al. (1985) to dis-
criminate between absorption by pigmented and non-pigmented particles. Water
samples of 0.25 to 1.5 1 were filtered onto Whatman GF/F filters (2.5 c¢m in di-
ameter) with a nominal pore size of 0.7 um. Optical densities of total particles
on filters were measured between 400 and 750 nm, using a UV-visible single-beam
spectrophotometer (Philips, model PU-8600) equipped with tungsten-halogen and
deuterium arc sources. The instrument displays absorbances up to 3.0 OD unit with
an accuracy of + 0.002. A special apparatus was designed to hold the filter normal
to the light beam and very close to the detector, to allow all transmitted and most
of the forward- scattered light to be collected by the detector. Before each scan, the
filters were placed on one drop of filtered seawater to ensure complete saturation
(Mitrhell and Kiefer 1984). A blank filter, wetted with filtered sea water, was used
as reference. Optical densities of total oarticles, OD;()), were then converted to

1

absorption coefficient, a;()) in m™!, urirg the following relation:

ay()) = 2.3 OD,(\)S/V , (1.2)

where § is the clearance area of the filter and V' the volume of filtered sea water.
All samples were taken in duplicate. One set of filters was then extracied with 90%
acetone whereas the other set was extracted with a mixture of 90% acetone and
DMSO at a ratio of 6:4 (v:v). The solvents were allowed to flow passively through
the filter, which required an extracting period of 25 to 30 minutes. The extracted
filters were soaked again in filtered sea water and scanned from 400 to 750 nm to
measure the absorption coefficient of the particles without their pigments, aq4()).
The absorption of light by just phytoplankton, a,,()), was obtained by subtracting

aq()) from ay()). A comparative study between both extracting methods showed
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that a mixture of 90% acetone and DMSO was more efficient thau just 90% aceione
for extraction of photosynthetic pigments, as the latter solvent always left a slight

absorption at 675 nm due to chl-a.

The absorption spectra are corrected for the path-length amplification due to
filters (Mitchell and Kiefer 1984). To obtain the correction factors, the absorption
coefficient of equivalent amounts of aigal cultures was measured in suspension,X*,
(using a scattered transmission accessory similar to that in Sathyendranath et ai.
1987), and on a filter, X/. An empirical relationship was established between
the two measurements using a series of dilutions made from each culture. The
data for all wavelengths were smoothly scattered along the following second order

polynomial,

X" =031 (X7)+0.57 (X7)? (1.3)

In order to maintain the same protocol to measure the absorption by cells in cul-
ture and natural sea water, all filter samples were frozen (—70°C) immediately after
collection, and thawed immediately before measurement of absorption. These pre-
cautions minimised some of the potential problems associated with this method

(Stramski, 1990).

1.3. Results

1.3.1. Biophysical structure of the water column The physical environment
affects to a large extent the distribution of particles in the Gulf of Maine (Spinrad
1986). It also controls, over a wide range of time and space scales, the physiol-
ogy of phytoplankton, by modifying their light and nutrient conditions (Yentsch
and Garfield 1961). The vertical profiles of temperature, fluorescence and light

transmission are shown in Figure 1.2 for some representative stations.
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FIGURE 1.2. Profiles of fluorescence (dotted line), beam-attenuation coefficient
at 660 nm (sclid line), and temperature (dashed line) for selected
stations in the western North Atlantic. The depth of the euphotic

zone (1% light level) is indicated by an horizontal dashed line.
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