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ABSTRACT 

The vertical structure in fluorescence and beam attenuation (at 660 nm) is 
related to local hydrographic features and the composition of photosynthetic pig
ments for the western North Atlantic in September. Phytoplankton and covarying 
material appear to be the major factors affecting the beam attenuation coefficient 
through changes in species composition and pigment concentration, and through 
photoadaptation. Detailed pigment analysis combined with measurements of in 
vivo phytoplankton absorption spectra showed a major regional difference in the 
specific-absorption spectra of phytoplankton which is directly linked to the struc
ture of the phytoplankton community present in the water column. The results 
indicate a strong influence of other pigments co-existing with chlorophyll-a in algal 
cells on the variabilities of the specific-absorption coefficient of phytoplankton. 

To account for an effect due to pigment composition, absorption spectra of 
several phytoplankton species were decomposed, after correction for the "particle-
size" effect, and the in vivo absorption properties of the major light-harvesting 
pigments were estimated. A Gaussian shape is suitable , theoretically and empiri
cally, to represent the absorption spectra of individual photosynthetic components. 
The Gaussian parameters agreed well with the expected pigment compositions of 
3 groups of algae, and the peak heights were linearly correlated with the concen
trations of the 4 major pigments measured in the samples. The linear relationship 
did not vary with phytoplankton species. The results give estimates of the in vivo 
specific-absorption coefficients of photosynthetic pigments which, then, are used to 
reconstruct the in vivo absorption spectrum of a multi-species samples. 

Another application of the previous results is to compute photosynthetic- pig
ment concentrations in seawater from the knowledge of the absorption coefficient 
of phytoplankton. The contributions due to detrital particles and phytoplankton 
to total light absorption are retrieved by non-linear regression on the absorption 
spectra of total particles from various oceanic regions. The model used explains 
more than 96% of the variance in the observed particle absorption spectra. The 
resulting absorption spectra of phytoplankton are then decomposed into Gaussian 
bands, following a similar procedure as the one previously described. Such a de
composition, combined with HPLC data of phytoplankton pigment concentrations, 
allows the computation of specific- absorption coefficients for chlorophylls-a, -t>, -c, 
and carotenoids. It is shown that these coefficients can be used to reconstruct the 
absorption spectra of phytoplankton at various locations and depths. Discrepancies 
that do occur at some stations are explained in terms of particle-size effect. Lastly, 
these coefficients can also be used to determine the concentrations of phytoplank
ton pigments in the water, knowing just the absorption spectrum of light by total 
particulate matter. 
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General Introduction 
L 

The modification of the path and intensity of a light beam passing through 

the ocean are determined by the absorption coefficient and the volume scattering 

function (Kirk 1983). These properties are classified as Inherent Optical Properties 

(IOP, Preisendorfer 1976) because they do not depend on the angular structure of 

the incident radiation field but rely, instead, only on the nature of the in-water 

constituents, e.g, their shape, size, and the material of which they are composed. 

Direct measurements of IOP are difficult to obtain, although a few instruments were 

designed to monitor underwater absorption (H0jerslev 1978, Spitzer and Wernand 

1981, Zaneveld et al 1988), and scattering (Tyler 1963, Petzold 1972). On the con

trary, Apparent Optical Properties (AOP) such as the diffuse attenuation coefficient 

and the reflectance of seawater, are routinely computed from the measurements of 

downwelling and upwelling irradiances (Morel and Prieur 1977, Smith and Baker 

1978), as well as from the water-leaving radiances detected from remote sensors 

(Gordon and Morel 1983). These properties depend on the angular structure of 

the radiance distribution in the water, as well as on the IOP. Since IOP are linked 

to the optically-active components in seawater, investigations on changes of these 

apparent optical properties in relation to biological variables require information on 

the contributions to absorption and scattering of light by all material present in the 

water. 

Optically-active constituents in seawater are partitioned into molecular water, 

phytoplankton, dissolved organic substances (or yellow substances), and detrital 

matter which may include mineral particles, small heterotrophs, bacteria, as well as 

algal debris. However, absorption and scattering by phytoplankton and covarying 

constituents are generally considered to be responsible for most of the variations in 
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the optical properties of case 1 waters (sensu Morel and Prieuir 1977), which repre

sent 98% of the world's oceans (Morel 1988). Knowledge of these inherent optical 

properties of phytoplankton is therefore a necessary requirement for computations 

of the fight penetration in seawater (Sathyendranath and Piatt 1988), and of the 

photosynthetically usable radiation (Morel 1978) which, in turn, is used in the deter

mination of the photosynthetic quantum yield and primary production in the ocean 

(Smith et al. 1989). They are also important variables in models of phytoplankton 

growth rate (Sakshaug et al. 1989), and even mixed-layer dynamics (Lewis et al. 

1983, Sathyendranath et al. 1991). Bio-optical models for remote sensing of phy

toplankton biomass and primary productivity in the oceans are also based on the 

optical properties of phytoplankton (Gordon and Morel 1983, Sathyendranath and 

Morel 1983, Piatt 1986, Sathyendranath and Piatt 1989). These biomass models are 

generally more sensitive to changes in the characteristics of spectral absorption than 

to changes in their scattering properties (Gordon and Morel 1983, Sathyendranath 

1986). However, in spite of its importance, the absorption coefficient of natural phy

toplankton populations has not been much studied in the past, no doubt because of 

the difficulty in recovering it from the in vivo absorption spectrum of natural parti

cle assemblages, where phytoplankton compete with o'ther material for the capture 

of photons. In this thesis, I focus on the variabilities of some optical properties 

of particulate matter in seawater, with special reference to the absorption of phy

toplankton, and the problems that are associated with the determination of the 

phytoplankton absorption coefficient. 

Unlike field work, in vivo spectral absorption of phytoplankton has been the 

subject of numerous laboratory experiments related to various subjects. A typ

ical absorption spectrum of marine algae is characterized by maxima at 440 nm 

and 675 nm which are primarily associated with chlorophyll-a, but additional con

tributions related to secondary chlorophylls, carotenoids and phycobilins are also 

present. The intracellular pigment composition varies within each algal group, such 
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that differences could occur in their absorption spectrum (Prezelin 1981). For o-

ceanographic purposes, a quantity of interest is the specific absorption coefficient of 

phytoplankton, that is, the wavelength-dependent absorption coefficient normalized 

to chlorophyll-a. Results of these studies show that this coefficient at 440 nm varies 

by a factor of 3 (Sathyendranath 1986). Using culture experiments, Bricaud et al. 

(1983) and Sathyendranath et al. (1987) demonstrated that two factors account 

for most of the variance in the absorption coefficient of algae: the size and config

uration of the cells, and the intracellular pigment composition. The former effect, 

well known as the particle effect (or package effect, or flattening effect), was orig

inally described by Duysens (1956) and describes flattening of absorption spectra 

of particles in suspension when compared with an equivalent amount of absorbing 

material in solution. Morel and Bricaud (1981) have investigated this phenomenon 

in marine algae to correct phytoplankton absorption spectra for this effect. In con

trast, the effect of pigment composition has not been significantly documented (but 

see Sathyendranath et al. 1987), probably because of the difficulty in retrieving the 

"in vivo"characteristics of spectral absorption by individual pigments. 

In this thesis, in situ bio-optical field data and modelling studies are combined 

to achieve two main goals: 

1. To assess the role of various phytoplankton pigments in controlling the 

magnitude and shape of the specific spectral absorption of light by phytoplankton. 

2. To develop a method to determine the specific absorption coefficient of 

phytoplankton, which will account for the "in vivo" absorbing characteristics of 

various photosynthetic pigments. 

In Chapter One, some bio-optical variables of water samples collected in the 

western North Atlantic are investigated in relation with local hydrographic features 

and the composition of photosynthetic pigments. Also, detailed pigment analyses 

are combined with measurements of in vivo phytoplankton absorption spectra to 
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examine the variability in the specific absorption coefficients of phytoplankton in 

relation to the pigment composition, and, hence, to changes in the structure of the 

phytoplankton community with sampling location and Jeptn. 

In Chapter Two, absorption spectra of several phytoplankton species were de

composed, after correction for the particle effect, to estimate, the in vivo absorption 

properties of the major fight-harvesting pigments in marine algae. A Gaussian ap

proximation is used to resolve the spectral absorption of four different pigments in 

the entire visible range. The reliability of this method is tested against published 

data on the optical properties of individual pigments obtained with techniques that 

reduce as much as possible the effect of separation of the pigment from its in vivo 

molecular environment. 

In Chapter Three, the contributions due to detrital particles and phytoplankton 

to total light absorption are retrieved by non-linear regression .on the absorption 

spectra of total particulate matter from various oceanic regions. The resulting 

absorption spectra of phytoplankton are then used in combination with the model 

described in Chapter Two to compute specific absorption coefficients of individual 

pigments. The appHcation of these coefficients to recover biological variables in the 

oceans are also investigated. 

Finally, a synopsis of this thesis is given in a general conclusion, which briefly 

expands on further applications of this work in different domains of oceanography, 

particularly remote sensing of ocean colour. 



CHAPTER 1 

Bio-optical characteristics of coastal waters: 

absorption spectra of phytoplankton and pigment 

distribution in the western North Atlantic 

1.1. Introduction 

Direct measurements of in vivo light absorption by phytoplankton are difficult, 

considering the low concentration of algal cells in the water (when compared with 

cultures) and the competition for photons between phytoplankton and other par

ticulate material such as detritus and sediment. Recently, however, methods have 

been developed for measurement of the absorption spectra of live phytoplankton 

from natural sea-water samples (Yentsch 1957, 1962, Mitchell and Kiefer 1984, 

Kishino et al. 1985, Iturriaga and Siegel 1989). Applications of these methods 

to field samples are still sparse, particularly in coastal waters which are often of 

economic importance (but see Yentsch and Phinney 1989). 

The Gulf of Maine provides an excellent environment for investigation of the 

variability in the optical properties of phytoplankton. Several water masses of 

different regions coexist in that area during summer (Hopkins and Garfield 1979). 

Their interactions lead to strong biological gradients and an interesting system of 

particle dynamics (Spinrad 1986). 

In this chapter, the vertical structure in beam-attenuation and in vivo chloro

phyll fluorescence for the Gulf of Maine region in late summer are presented, and 

interpreted in terms of vertical stability, phytoplankton community structure and 

photoadaptation. Then, the variability in shape and amplitude if the in vivo specific 

absorption spectra are examined in relation to differences in pigment composition, 

5 
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and the implications for remote sensing and bio-optical models of primary produc

tion are discussed. 

The effect of cell size (i.e., package effect) on the absorption coefficient of algal 

cells has been fairly well studied (Morel and Bricaud 1981, Sathyendranath et al. 

1987). Yentsch and Phinney (1989) have concluded that it represents the major 

factor responsible for the variability in the specific absorption coefficient at 440 

nm in the western North Atlantic. Using simultaneous measurements of pigment 

distribution and in vivo absorption spectra, the following question is addressed: 

how the intracellular pigment composition of algal species affects the variability in 

the chlorophyll-specific absorption spectra of phytoplankton ? 

Bio-optical models of light penetration, ocean colour and primary productivity 

currently in use make little concession to changes in the optical properties of phy

toplankton associated with changes in community structure. The results presented 

here indicate clearly that such changes can be significant, and that information on 

pigment composition may contain the key necessary to determine the magnitude of 

these variations and, hence to improve the performance of bio-optical models. 

1.2. Materials and methods 

1.2.1. Data collection. Data were collected in September 1989 during a cruise of 

the R/V Cape Hatteras in the Gulf of Maine and Georges Bank region. Hydrocasts 

were performed at 20 stations (Fig. 1.1) using a sampling rosette (General Oceanic 

model 1015) equipped with eleven 5 1 Niskin bottles. Hydrographic and optical data 

were obtained simultaneously with a CTD profiler (Neil Brown Instrument System 

SMART), an in situ fluorometer (Sea Tech, Inc.) and an in situ transmissometer 

(Sea Tech., Inc.), all of which were attached to the water sampling rosette. The 

fluorometer was calibrated against pure chlorophyll a (Sigma Chem. Co.). 
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FIGURE 1.1. Study area and station locations in the western North Atlantic. 
Cruise of the RV "Cape Hatteras" in September 1989. 
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1.2.2. The beam-attenuat ion coefficient. The transmissometer was oper

ated with a light-emitting-diode (LED) light source at a wavelength of 660 nm. 

Light transmittance T measured at this wavelength was used to compute the beam-

attenuation coefficient c ( m - 1 ) using the following relationship: 

T(660) = exp[-0.25 c(660)] , (1.1) 

where 0.25 is the pathlength of the instrument in meters. 

1.2.3. P igment analysis. Algal pigments were separated and quantified using 

a reverse-phase, high-performance liquid-chromatography (HPLC) technique with 

some modifications to the general procedure described by Mantoura and Llewelyn 

(1983). Samples of 0.3 1 to 1.5 1 were filtered onto Whatman G F / F filters (2.5 cm in 

diameter), frozen immediately at liquid N2 temperature and stored at —70°C prior 

to analysis. Gieskes and Kraay (1983a) have shown that storage of filters in this 

manner for several months does not significantly affect the pigment composition 

of the filtered material. The filters were then immersed in 1 ml of 100% acetone 

and crushed vigorously using a tissue grinder. The pigments were extracted in 

the dark for several hours at 5°C. Just before HPLC injection, the samples were 

centrifuged and diluted with deionized water at a ratio of 2:1 (sample:water) to 

prevent band-spreading in the first eluted peaks (Welschmeyer and Hoepffner, in 

press). 

The instrumentation for HPLC consisted of a Beckman "System Gold" appara

tus, including a dual-pump solvent module (Model 126) and a scanning absorbance 

detector (Model 167). Both the modules and the chromatogram analysis were pro

grammed using an IBM PC loaded with the Beckman "System Gold" software pack

age. Pigments were separated on a short (4.6 mm x 7.0 cm) Ultrasphere XL-ODS 

column (Beckman), filled with 3 /an (in diameter) packing material. The solvents 
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were a mixture of methanol and 0.5M ammonium acetate (80:20, v:v) as solvent 

A, and a mixture of methanol and ethylacetate (70:30, v:v) as solvent B. A linear 

gradient from 100% solvent A to 100% solvent B was set up from 1 to 16 min of a 23 

minute chromatographic run. A pause of few minutes between each sample allowed 

the baseline to stabilize with 100% solvent A. The pigments were monitored at 440 

nm ^nd identified by comparing their retention times and absorption characteristics 

with quantitative standards. All standards were provided by Dr. R.R. Bidigare as 

part of an HPLC pigment intercalibration study (SCOR Working Group, 1989). 

Pigments quantified by the present method were chl-a, -b, -(ci + C2), peri-

dinin, fucoxanthin, 19'- butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, al-

loxanthin, prasinoxanthin, diadinoxanthin, zeaxanthin and /3-carotene. The method 

was not capable of separating either zeaxanthin from lutein, or chl-(ci + C2) from 

Mg 2,4- divinylphaeoporphyrin a5 monomethyl ester. Zeaxanthin, however, was as

sumed to be dominant over lutein, as suggested by other field observations (Gieskee 

and Kraay 1986, Everitt et al. 1990). On the other hand, the distribution of Mg 2,4-

D-like pigment in sea water is poorly known (Hooks et al. 1988), so that the peak, 

hereafter referred to as chl-(ci + C2), should be interpreted with caution. The abun

dances of chl-C3, diatoxanthin and a-carotene were determined qualitatively since no 

standards were available to quantify these pigments. These three peaks were identi

fied by comparison with chromatograms of unialgal species of known pigment com

position: Emiliana huxleyi for chl-C3 (see Jeffrey and Wright 1987), Isochrysis gal-

bana grown in culture at high light intensity for diatoxanthin (see Welschmeyer and 

Hoepffner, in press), and marine "prochlorophytes" for a-caro';ene (see Chisholm 

et al. 1988). For several samples, particularly those collected in oligotrophic wa

ters, the acetone extract was acidified with IN HC1 to note the presence of divinyl 

phaeophytin-like pigment which characterizes the group Prochlorophyceae, recently 

discovered in oceanic waters (Chisholm et al. 1988). 
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1.2.4. Absorpt ion spectra. Light absorption by marine particles was determined 

after concentration of the particles on glass-fiber filters, using the method originally 

described by Yentsch (1957) and modified later by Kishino et al. (1985) to dis

criminate between absorption by pigmented and non-pigmented particles. Water 

samples of 0.25 to 1.5 1 were filtered onto Whatman G F / F filters (2.5 cm in di

ameter) with a nominal pore size of 0.7 /xm. Optical densities of total particles 

on filters were measured between 400 and 750 nm, using a UV-visible single-beam 

spectrophotometer (Philips, model PU-8600) equipped with tungsten-halogen and 

deuterium arc sources. The instrument displays absorbances up to 3.0 OD unit with 

an accuracy of ± 0.002. A special apparatus was designed to hold the filter normal 

to the fight beam and very close to the detector, to allow all transmitted and most 

of the forward- scattered light to be collected by the detector. Before each scan, the 

filters were placed on one drop of filtered seawater to ensure complete saturation 

(Mitchell and Kiefer 1984). A blank filter, wetted with filtered sea water, was used 

as reference. Optical densities of total particles, ODt{\), were then converted to 

absorption coefficient, o«(A) in m - 1 , ufing the following relation: 

at(\) = 2.3 ODt{\) S/V , (1.2) 

where S is the clearance area of the filter and V the volume of filtered sea water. 

Ail samples were taken in duplicate. One set of filters was then extracted with 90% 

acetone whereas the other set was extracted with a mixture of 90% acetone and 

DMSO at a ratio of 6:4 (v:v). The solvents were allowed to flow passively through 

the filter, which required an extracting period of 25 to 30 minutes. The extracted 

filters were soaked again in filtered sea water and scanned from 400 to 750 nm to 

measure the absorption coefficient of the particles without their pigments, aj(A). 

The absorption of light by just phytoplankton, «p/i(A), was obtained by subtracting 

ad(X) from at(X). A comparative study between both extracting methods showed 
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that a mixture of 90% acetone and DMSO was more efficient than just 90% acetone 

for extraction of photosynthetic pigments, as the latter solvent always left a slight 

absorption at 675 nm due to chl-a. 

The absorption spectra are corrected for the path-length amplification due to 

filters (Mitchell and Kiefer 1984). To obtain the correction factors, the absorption 

coefficient of equivalent amounts of algal cultures was measured in suspension,X*, 

(using a scattered transmission accessory similar to that in Sathyendranath et al. 

1987), and on a filter, X?'. An empirical relationship was established between 

the two measurements using a series of dilutions made from each culture. The 

data for all wavelengths were smoothly scattered along the following second order 

polynomial, 

Xs = 0.31 (Xf) + 0.57 (X ' ) 2 (1.3) 

In order to maintain the same protocol to measure the absorption by cells in cul

ture and natural sea water, all filter samples were frozen (—70°C) immediately after 

collection, and thawed immediately before measurement of absorption. These pre

cautions minimised some of the potential problems associated with this method 

(Stramski, 1990). 

1.3. Results 

1.3.1. Biophysical structure of the water column The physical environment 

affects to a large extent the distribution of particles in the Gulf of Maine (Spinrad 

1986). It also controls, over a wide range of time and space scales, the physiol

ogy of phytoplankton, by modifying their light and nutrient conditions (Yentsch 

and Garfield 1981). The vertical profiles of temperature, fluorescence and light 

transmission are shown in Figure 1.2 for some representative stations. 
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FIGURE 1.2. Profiles of fluorescence (dotted line), beam-attenuation coefficient 
at 660 nm (solid line), and temperature (dashed line) for selected 
stations in the western North Atlantic. The depth of the euphotic 
zone (1% light level) is indicated by an horizontal dashed line. 
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Vertical temperature structure. A distinct progression from stratified to completely-

mixed water column was observed from the stations further offshore (e.g. Station 

D) to the shallowest area over Georges Bank (e.g. Station H). The depth of the 

thermocline, present at most of the stations, varied from 75 m within the clearest 

deep-ocean waters at Stations 3 and D, to less than 5 m at coastal stations charac

terized by a water column shallower than 100 m. Station C is an intermediate case 

with the thermocline at 30 m. However, at several stations, a more complicated 

structure was recorded in the temperature profile. For example, two distinct ther-

moclines can be seen at Station 10, the shallower one occurring at 15-20 m and the 

second one at around 45 m. A similar structure was also observed by Townsend et 

al. (1984) during the same period of the year along the northern edge of Georges 

Bank. At Station I, the thermocline is less sharply defined. Instead, a staircase

like structure may be observed from 10 m down to about 50 m.' At Station 1, the 

stratification is very shallow, and also has several staircase-like features along the 

thermocline. 

Such variations in the temperature profile are not uncommon, particularly in 

this region where the vertical structure of the water column is strongly affected by 

tidal currents and the depth of the water column (Garrett et al. 1978, Yentsch 

and Garfield 1981). Note the change in the vertical structure of the water column 

between Stations B and H which, in fact, represent the same location sampled on 

different days. It is well known that a tidal front develops around Georges Bank 

during the spring- fall period between the well-mixed waters over Georges Bank 

and the surrounding stratified waters (Garrett et al. 1978, Home et al. 1990). The 

variations in stratification between Stations H and B reflect the dynamic nature of 

this front whose position varies with the local tidal excursion. 

Euphotic depth. At Stations 1 to 11, the euphotic zone, Z e , defined as the 1% light 

level, was estimated using the Secchi disk and the following relations (Kirk 1983): 


