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Abstract

Our aim is to study X-famiiies of Hilbert spaces for X a measure space;
the ultimate goal heing the understanding of the classical (von Neumann) di-
rect integral in the context of indexed category theory. Indeed, the diagram,
/ ? : Hilb* &===Hilb : A, provides a useful summary of our goal.

We first require a good hase category of mcasure spaces and introduce, Disint,

the category of disintegrations. Disint does not have products (nor does any
“useful” category of measure spaces) so we do not have the usual Paré-Schumacher
style indexing. The diagram above cannot be interpreted as an adjunction.

We must approximate the situation as best possible and we put forth three ap-
proximations. Specilically, we propose three notions of X-family of Hilbert spaces:
1. measurable fields of Hilbert spaces on X, 2. Hilbert sheaves on X, and 3.
Hilbert families over X. We will describe each of these approaches in detail in-
cluding substitution with respect to base category morphisms and / ®. Finally,
we will discuss connections between the three ideas and list some possible future

directions for this work.
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Notation

Most of the notation we use is standard. In some cases, however, our notation
is slightly different for typographical reasons. The most notable examples are: N,
Z, G, R, and C denote, respectively, the set of natural, integral, ration-!, real,
and complex nunbers.

Categories are generally in bold face type and underlined (for example, Set de-
notes the category of (small) sets and functions; exceptions to this are MEAS(X)
and Sh(A), categories with some sort of “argumert”). Bicategories are in bold face
and doubly underlined. Indexed categories are in bold face and “under-tilded.”
Composition of morphisms is in the functional (as opposed to algebraic) way. Ar-

“.” is sometimes used for an

guments are generally written on the right and a
unspecified argument.

Definitions, remarks, and examples end in a 0. Proofs and seme th.oorem
statements (those for which no proof is supplied) end in a B All such structures,
except examples, remarks, and corollaries, are numbered according to the section
in which “hey appear. Bibliographic references generally follow some mnemonic of

the author’s name. For example, [PTJ] represents P.T. Johnstone. Other notation

is standard or defined in the text.
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Introduction

There is no doubt that decompositions are useful. For example, a semi-simple
module is, by defiaition, a sum of simple modules. In essence, then, to under-
stand semi-simple modules, it is enough to understand simple modules (a smaller
class) provided, of course the thing one is studying “commutes” with sum. The
corresponding entity in vector spaces is, in fact, a theorem; the spectral theorem.

Let us recall some basic linear alge{)ra. Suppose V is a finite dimensional C-
Hilbert space (i.e. just C"). An operator, T : V — V, is just multiplication
by a matrix A. We can compute the eigenvalues of an n x n matrix (A such that
det(A—AI) = 0 or, such that T'— A/ is not invertible). If T is normal (1T = T'T™),
then we can decompose it as T = }E A E, where the A,’s are the eigenvalues and
E; is the projection onto the null slpzz:ce N(T = AI).

In particular, if there are n distinct eigenvalues, we get a basis consisting of

eigenvectors. We can decompose the space V into one-dimensional subspaces

VaNT-MDONT =D& @ N(T - \J)

which, in itself, is not surprising since C" = é} C. More importantly, however, we
can decompose a normal operator into a sumi;% orthogonal projections. In essence,
the action of T can be “simplified;” working with a diagonal matrix is much casier
than working with a general matrix.
For the infinite dimensional case, we have the notion of spectrum:

o(T):={A € C|T — A not invertible }. We can also talk about eigenvalues; A’s
for which there exists a nonzero vector, called an eigenvector, z, with Az = 1'(x)
(the set of eigenvalues, called the point spectrum, is, in general, different from the
spectrum for consider the example of the unilateral shift operator on [#(N); 0 is

in the spectrum since this operator is not invertible but 0 is not an cigenvalue).



Furthermore, in any Hilbert space, it makes sense to talk about orthonormal bases.
For example, suppose H is a Hilbert space of countable dimension with an
orthonormal basis given by the “eigenvectors” corresponding to some operator

T € L(H) (which has a countable spectrum). Then

Mo S N@ = AT,

1=1

Now, if the spectrum is “continuous” as a subset of the complex plane, then
we need some sort of “continuous direct sum*” the direct integral: / ? H(z)dp(z).
More accurately, the direct integral of Hilbert spaces is a measurable analogue of
the direct sum. That is to say, direct sums are a special case inasmuch as finite
(or countable) counting measure is, in particular, an example of a measure.

And so, one way of iooking at the direct integral is as a tool for the above
mentioned decomposition of a normal operator for the infinite dimensional case.
This generalized reduction theory for operators was developed by von Neumann
in the late 1930’s, although he didn’t publish the results until 1949. The paper,
in which the direct integral was first introduced, may be found in the “operator
algebras” volume of his collected works, [vNeu], together with the collection of
papers with Murray in which what were to become known as von Neumann algebras
were described. At the beginning of chapter 2, we will provide a motivation for the
direct integral of Hilbert spaces from the theory of unitary group representations.

Our project is to study the direct integral as an indexed notion. It appears that
its initial construction was ad hoc (although immediately useful for the applications
at hand (and others later)). We wish to provide a firm footing on which to found
a systematic, categorical treatment of the direct integral of Hilbert spaces and
related constructions; in short, indexing by measure spaces.

Let us expand on this indexing idea somewhat. We introduced the direct

W4 ML B et 3 ot
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integral by first considering the (special) finite dimensional case. Let us introduce
the notion of indexing by specializing, as well. Let & be a field and I € Set.

We have an adjunction:

D
1
LA
I,

(k-vect)' k-vect

Our task is to understand the analogous picture:

Ix

(Hilb)¥ X

=
>

|

This amounts to understanding what X-indexed families of Hilbert spaces are
for X a measure space (a related question: how to define the “co-direct integral”,
/@, as a right adjoint to A, will not be treated in this paper). A true indexing
procedure (“true” in the sense of [P&S]) cannot be found since interesting (from
an analysis/operator theoretic point of view) categories of measure spaces dont
have products. Indeed, we won’t have a A per se. So, we must approximate the
situation as closely as possible. We shall put forth three approxime‘ztions for the
unknown elements of the abote diagram, each with its own merits, and will weigh
them and describe connections between the three.

The understanding of the construction of the ditect integral of Hilbert spaces
in the context of category theory involves three aspects: measute theory, analysis
(operator theory), and indexed category theory.

Measure theory provides the basic framework. It is, initially, in this context

that the above constructions must be understood. That is to say, the project is,



first and foremost, about measure theory in a categorical context. The next few
paragraphs provide a partially chronological history of categorical measure theory
and some related topics.

Essentially, the first application of categories to measure theory occurred in
Linton’s thesis ([FEJ]). His objective was to study Fubini’s theorem in the context
of Boolean rings and o-vings (roughly speaking, their “concrete” realization being
fields and o-fields). This study required a “solid foundation in functor theory.”
Indeed, he studied measures by looking at them in the context of linear functional
theory and used the power of Beolean algebras and the vector space of measures
(Boolean algebras and vector spaces are well treated by category theory) and was
able to give a purely Boolean proof of the Fubini theorem.

In related work, Borger ([Bor]) considered sequential Boolean algebras. His
categorical treatment of integration theory grew out of a generalization of integra-
tion in three directions: integrate over abstract Boolean algebras as opposed to
algebras of sets (akin to Linton above), admit vector-valued measures, and relax
o-additivity. His work went in a different direction than we will follow. We note
that, in this paper, we do not wish to generalize integration in any of these direc-
tions. That is to say, “external forces” (for example, operator algebras) force the
use of standard integration.

An important example in sheaf theory (developed in the 1960's) was given by
Deligne ([SGAIV]). He constructed a topos from a measure space (we outline this
example in detail in chapter 3, where we follow the work of Howlett [How]). It is
the quintessential example of a topos without points. More precisely, this topos
was constructed to provide an example of a topos with no points (assuming the
measure space has no atoms). Analysis in sheaves and, more generally, topoi, is a
rich subject and related to the work we present here. Many people have contributed

(a short list is given below). Among those who contributed at the applications of
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sheaves conference ([FMS]) was Breitsprecher. He contributed two papers one of
which ([Bre2]) has become quite important for our work here. In some sense, this
was the beginning of “measurable sheaf theory” an, as yet, vague collection of
results not coalesced into a discipline.

Probability theory is, in particular, measure theory (p(X) = 1). Indeed, it
has been said that probability theory is measure theory plus “a point of view.”
T-wo applications of category theory to probability theory come to mind: Schiopu's
master’s thesis ([Sch]) on random variables and Bogdan’s ([Bog]) application of al-
gebraic categories to probability theory. Schiopu provided a categorical foundation
of probability theory using a category whose morphisms are a continuous general-
ization of stocnastic matrices. Bogdan provided another categorical axiomatization
of probability theory using algebraic categories and set up several isomorphisms of
categories relevant tc probability spaces. These works are scmewhat distant from
our discussions here (inasmuch as our “point of view” is not that of prob.bility
theory).

In 1973, Lawvere published his paper on metric spaces and closed categories
([Law2]). This work grew out of the formal comparison of the triangle inequality

for metric spaces:

dist(a,b) + dist(b,c) > dist(a,c)

and the composition in the definition of a category:

hom(A, B) @ hom(B,C) — hom(A,C).
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There is, of course, more than just formal similarity here and Lawvere developed
a whole theory of such entities; the premise being that things with a formal hom-
like appearance can be interpreted as such. Indeed, he described metric spaces
as being enriched categories over R. One of his examples was that of the metric
space constructed from a measure space ( dist(A, B) := u(AAB) provides the
o-algebra with a pseudo-metric structu're; see chapter 1). This was explored, with
applications to convex sets (and, eventually, to stochastic programming) by Meng
([Meng]).

A new and growing field is quantum logic (see, for example, [Rum) or [R&R] ).

This is not immediately related to the material presented here. It does, however,

. make use of Hilbert space theory and, more importantly, quantales (the original

paradigm being the lattice .of closed right ideals of an arbitrary C*-algebra; a good
example of a locale being the lattice of closed ideals of a commutative C*-algebra;
these examples suggest that we may think of a quantale as a “non-commutative”
locale, see, for example, [Bor]). So, if locales (and measurable sheaves) offer a way
of understanding the direct‘ integral from a classical logical point of view (or pos-
sibly, distantly, an intuitionistic point of view), one may hope that quantales offer
a way of understanding Hilbert space methods in an alternate logic. Furthermore,
C-algebras are sometimes thought of as providing a context for non-commutative
integration ([Ped]). As we hinted above, however, the exploration of this interest-
ing notion will await other work. And so, the future seems an appropriate place
to end our historical remarks; we return to the description of the problem.

We search ffn' an appropriate category of measuie spaces. As hinted at above,
certain requirements of analysis cannot be reconciled with certain requirements of

indexed category theory. Specifically, reflecting sets of measure zero is incompatible



AN W

oy ey o em™ e p

LS

B St vt 2w e LB

P-4

RORAEAR SR K VTR e CALERR,

2w @

with finite limits. These, as yet, vague remarks will be made more precise in chapter
1. In short, the search for a “good” category of mcasure spaces is difficult. We
present three in chapter 1, but consider only one in detail. It is the “best” at hand
for our purposes.

The second aspect of the understanding of direct integrals is the analytic one.
We will be interested in operator theory (Hilbert spaces and operator algebraic
notions; for example, von Neumann algebras and C*-algebras). A small amount
of necessary background about the direct integral of Hilbert spaces will be given
at the beginning of chapter 2. However, we will be chiefly interested in categorical
analysis. We will begin to describe operator theory inside a category (topos) E. A
more complete discussion will await another paper as that would take us too far
afield for our basic applications here.

By categorical analysis, we mean an analogy to the study of functional analysis
and, in particular, Banach spaces inside a (usually Giothendieck) topos. This is
well known and has been around for some time. For a useful collection of such
results, see [FMS]; in particular, the reader is referred to the following papers rele-
vant to our discussion here: [Ban], [Bu&Mu], [Fo&Hy], [[lo& Ke], [PTJ3], [Ke&Le],
[Roul], and [Tak]. Furthermore, the reader is also referred to [M&P], [WP&Ro],
and [Rou2]. These papers provide a broad background to the subject. Operator
theory of Hilbert spaces inside a topos is not so well known, though [Rou2] does
address spectral decomposition of matrices in a topos.

A topos is to be thought of as a generalized logic. Indeed, the development of
functional analysis inside a topos went hand in hand with intuitionistic analysis
since, in general, th= logic of a topos is not Boolean. We will look at these ideas in
chapter three and explore analysis in a specific “measute theoretic” topos. It turns
out, however, that this topos has the axiom of choice and is, in fact, Boolean. In

essence, then, our logic is classical.



The final aspect is indexed category theory. In the late 1960’s, it became
increasingly clear that a generalized theory of indexing (generalized in the sense
of indexing by objects other than sets) was necessary. Lawvere suggested the need
to understand indexing via category theory. Among others, Paré and Schumacher,
[P&S] developed such a theory. Subsequent to their work, many results were found
and the general theory was applied, in a mutually self beneficial way, to enricked
category theory, [Wd1], algebras, [RRb], topology, [Lev], and coalgebras, [G&P].
Related work was done by Tavakoli, {Tav]. Indeed, he studied vector spaces in
topoi, which tied in with topos-based indexed category theory alluded to above.

Paré-Schumacher indexed category theory uses pseudo-functors. Another style
was developed by Bénabou ([Bén]) using fibrations. We employ Paré-Schumacher
and Bénabou style indexed category theory (the two being, more or less, equiva-
lent). A brief outline of Paré-Schumacher style of indexing will be given in chapter
2. We have said that this paper is about indexing by measure spaces. More
precisely, the project grows out of three “directives:” 1. Paré: understand the
direct integral as an indexed functor (index by measure spaces), 2. Breitsprecher:
understand disintegrations (of one measure space with respect to another) as a
categorical notion, and 3. Lawvere: look at the Gros and Petit aspects of cate-
gorical measure theory (construct a “sheaf-based” operator theory and compare it
to the well-known functional analysis in sheaves). We attempt to address each of
these directives.

The first directive is, of course, the main impetus of this present research. The
second directive is addressed in chapter 1 by the category Disint, a category which
scems to exhibit the self indexing of measure spaces. Finally, the third directive is
addressed in chapter 3, in which we introduce a sheaf category relevant to measure
theory.

The third trinity to be discussed in this introduction is our three approaches to
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the problem: understand (Hilb)" for X a measure space. We will approach the
problem using measurable fields of Hilbert spaces, Hilbert space objects in a sheaf

category, and Hilbert families. The following diagram provides a useful summary.

1. Mble fields |

2. Hilb Sheaves

3. Hilb Families

The essence of our present work is to describe this diagram; the three ap-
proaches and the six connections (boxes 2 and 3 are ncw approaches to box I,
although, we have inserted a great deal of category theory into box 1). That is,
the important thing is to compare the three approaches. In chapter 1, we give the
necessary measure theore;tic background and attempt to address the Breitsprecher
directive. In chapter 2, we give the necessary operator algebraic background and
describe box 1 above. In chapter 3, we describe box 2 and address the Lawvere
directive. The third approach to finding a suitable notion of mecasure indexed
categories is discussed in chapter 4. In chapter 5, we note that each of the three
approaches has merits and discuss connections (for example, some logical impli-
cations) between the three boxes above (arrows 4-9) and allude to possible future
directions of this comparison.

Finally, we spend a few paragraphs listing what is new in this paper.

The category, MP, of measure preserving functions is not a new invention.

The “base” categories, MOR and Disint, are, however, new. Disint is the best
(in the sense that it has self indexing built into it) base category. It provides a

powerful context to do measure indexed operator theory.
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Fach of the three approximations, of chapters 2, 3, and 4, contains new material.
Measurable fields of Hilbert spaces are old, of course (von Neumann). But, the
contexts of category theory and, indeed, indexed category theory are new. Box
1 represents a mostly operator theoretic approach to understanding X-families of
Hilbert spaces.

Sheaves have been around for some time (Grothendieck) and sheaves on a
mecasure space have also (Deligne). Applications to analysis, complex analysis,
functional analysis, operator algebras, etc. have been done by Mulvey, Rousseau,
Wick-Pelletier, et al (see the historical remarks above). Chapter 3 contains our
description of the theory of Hilbert spaces in a (very specific) topos. As such, this
topos on a measure space is a special case. Qur point of view, that of indexed
category theory, though, sheds a different light on these entities. The speciality
of the topos allows us to prove (which, as far as we know, has not been published
elsewhere) the existence of the completion of a preHilbert space to a Hilbert space
(a result which we will find especially useful when discussing substitution). This
is not a particularly difficult result since it is simply a (careful) translation of the
classical proof to the sheaf world (again, we must emphasize, not the general (=
possibly without the axiom of choice) sheaf world).

The material of chapter 4 (and the connections in chapter 5) is new. Box 3
is the “fibrations” approach to X-indexing. We set up an elaborate substitution
machinery (partially for future considerations, as well) involving disintegrations.
Globally, this is familiar to fibration enthusiasts. The details, however, are inter-

esting and exhibit the utility of disintegrations as alluded to above.
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Chapter 1

Categories of Measure Spaces

1.1 Introduction

This paper is, first and foremost. about measure theory and, in this chapter, we
describe this measure theoretic background.

Specifically, we begin with Mble, the category of measurable spaces and mea-
surable functions; a category not unlike Top, the category of topological spaces
and continuous functions. Mble is, in s.ome sense, the basic category. That is to
say, all theory is based upon it as a foundation. Indeed, to talk about measure
spaces, one must first understand their measurable structure,

In the introduction, we noted that the main thrust of this paper is to look
at indexing by measure spaces; to develop a theory capable of describing the di-
rect integral coherently. More importantly, there are three directives and three
approaches to solving this problem. After describing the category, Mble, we in-
troduce three “candidate” categories of measure spaces. The problem, of course,
from an indexed categorical point of view, is that none of these candidates has

A
products (specifically, the diagonal X ——X x X, which is measurable, is not

11
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necessarily in the category in question). In sections 1.3 and 1.4, we introduce two
important “background” categories of measure spaces: MP, measure preserving
functions (too restrictive to be useful), and MOR, measure zero reflecting functions
(a useful base category).

In the last section of this chapter, we describe the category Disint. It is a useful

starting point in that it seems to witness the self-indexing of measure spaces; a

disintegration has indexing by a “measure-parameter-space” built into it. Disint

is also our attempt at answering the Breitsprecher directive: understand measure

theoretic disintegrations froin a categorical perspective.

1.2 Measurable Spaces

We begin with the category of abstract measurable spaces and measurable func-
tions. An cxcellent description of this category is given in [Sch]. (etymology: she
used Bsp, for “Borel Space, ” a term often used in probability theory. We use
M ble, for “Measurable,” wishing to reserve Borel Space for its special meaning as
the o—algebra generated by the opens of a topological space.)

There are two ways of describing basic measure theory. The first, historically,
and the approach most often followed in first courses in measure theory, is to take
as basic notion measurable sets and build measurable functions. That is to say,
to calculate the area under a curve, cut up the y-axis. Another approach is to
take simple functions as basic and build measurable sets (see, for example [Boul).
While this approach lends itself well to such generalizations as vector measures,
we shall use the (more algebraic) measurable sets approach; measure theory as
described in [Roy], for example. We will, however, when needed, and not quite

randomly, refer to the second style.
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Definition 1.2.1 A4 c-algebra on a set, X, is a collection of subsets closed under
countable (including finite) unions and complementation and containing 9. A Mea-

surable Space is a pair (X, .A) where A 15 a c-algebra on the set X. The elements

of A are called Measurable Sets [0

Definition 1.2.2 A Measurable Function, (X,A)—-I—>(Y,B), is a function,
X-LY, for which f-(B)e AVBeB. O

Certainly, the identity function is measurable and the compo: ition of two mea-
surable functions is a measurable function so we have a category which is denoted
by Mble.

The direct image of a measurable set under a measurable function need not
be measurable. (Example: the cartesian product of [0,1] and a (line) nonmeasur-
able set in the Lebesgue plane projected onto the second factor.) One could talk
about the category Dmble of measurable spaces and directly measurable func-
tions: f(A) € B, VA € A. Except in this section, for completeness of discussion,
we will not explore Dmble in this paper. Functions that are both measurable and
direct measurable are quite rare.

Indeed, the axioms governing the class of subsets for a o-algebra and those for
a topology are similar (other examples: convexity, [Dawl] and [Daw2], or more
generally, paving [K&T, p. 136]). A o-algebra and topology on a set are both
collections of subsets closed under various operations and in the latter part of this
section, we will explore the similarities between Mble and Top, the category of
abstract topological spaces and continuous functions.

For the next few paragraphs, however, let us note some of the significant dif-
ferences. The differences arise out of the arities of the operations that o-algebras
and topologies are to be closed under. Specifically, a topology is closed under arbi-

trary unions and finite intersections, whereas a o-algebra is closed under countable
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unions and intersections. Essentially, these coriespond, respectively, to arbitrary
colimits and finite limits versus countable colimits and limits.

Topolrgy lends itself well to categorical analysis and has been studied exten-
sively from this point of view. Its Gros aspects are described by sheaf theory and
Petit aspects by locales. The theory of locales is a particularly rich one (that is
not to say that sheaf theory is not). We will study a measure theoretic locale in
chapter 3. It is, however, not the obvious one.

By obvious, we mean in analogy to the topological case. One may form the
interior of a subset A of a topological space, X: A° := (J{O|O open and O C A}.
This yields a functor P(Y)—(—LQ(X) which is right adjoint to the inclusion,
where P(X) is the power set of X and Q(X) is the locale of open subsets of
X. Furthermore, taking the points of a locale is left adjoint to (—). This basic
framework leads to the theory of Stone spaces and Stone’s Representation Theorem
and a version of Tychonoff’s theorem free of the axiom of choice (for a categorical
treatment of this subject, see [PTJ2] ). An essential element of this theory, indeed
the motivational paradigm for the definition of a locale, is the existence of finite
limits = intersections and arbitrary colimits = unions and their distributivity.
And, as such, the collection of measurable subsets of a measurable space does not
form a locale (though, as we shall see, if we mod out by the ideal of the sets
of measure zcro, we get a locale; perhaps, the reader would consider this as the
“obvious” locale to be constructed from a measure space after all). Furthermore,
there is not a ‘ measurable interior operator” that can be interpreted as a right
adjoint, for if it were, the inclusion would have to preserve arbitrary unions. The
difference between arbitrary and countable unions should not be underestimated
and, in some sense, this paper is devoted to studying this difference in the context
of indexed category theory. For a categorical treatment of indexing by topological

spaces, see [Lev].
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The difference between Top and Mble also becomes apparent when one naively
translates topological notions into measure theory, encountering “mistakes” of triv-
iality. For example, suppose we translate the notion of homotopy to ineasure theory
by defining a “loop” as a measurable function ! : ([0,1},£) — (X, .A) such that
1(0) = {(1) (here, and always, when in an obvious context, £ denotes Lebesgue
measure) and homotopy in an obvious way. Unfortunately, this definition makes
the “fundamental groups” of the disc and the annulus the same (=1). In essence,
the difference between “continuous” and “measurable” is that we ar allowed to
measurably cut a loop but not continuously cut it.

This brings another similar example to mind. In the study of covering spaces,

one has the nontrivial spiral over the circle example:

If this is translated into measure theory, this example is trivial; it is simply a

product of Z copies of the circle since we are allowed to measurably cut countably

many times:

O

Now we will explore the similarities between Top and Mble. First, note that



16

the construction of limits and colimits in Mble is analogous to that for Top. There

is an underlying functor U : Mble — Set = forget the measurable structure,

and we have:

Proposition 1.2.1 Discrete = D 4 U 4 I = Indiscreet, where D(X) = (X, P(X))
and I(X) = (X, {0,X}) for X € Set

Proof: Lvery function out of a discrete space and every function into an indiscreet
space is measurable.
Predictably, since U preserves limits and colimits, this gives us their construc-

tion in Mble. The limit of a diagram in Mble is the limit formed in Set together

with the coarsest (fewest measurable sets) o-algebra to make the projections mea-

surable. The colimit of a diagram in Mble is the colimit taken in Set together

with the finest (most measurable sets) o-algebra to make the injections measur-

able. For an explicit description of limits and colimits in Mble, see [Sch]. We will

tacitly assume these descriptions. Note that, for Dmble, we have Iy 4 U 4 Dy
and a similar construction of limits and colimits applies (here, the subscript notes
that the functors have “different” codomain even though they are “the” indiscreet
and discrete functors).

Mble (and Dmble) is both complete and cocomplete. In fact, using the total
opfibrations of [Wd2], Mble is seen to be totally cocomplete. That is, 3L such
that L 4 'Y, the covariant Yoneda functor: Y (X) := Mble(—, X). Mble is also
cototally cocomplete: IR such that Z 1 R, where Z(X) := Mble(X, —) is the con-
travariant Yoneda functor. Furthermore, U is both continuous and cocontinuous
(for the analogous case of Top, see [Wd2] or [Wen, pp.43-47)).

Finally, we note that Mble, like Top is not a topos, for (X, A)-——l-—->(X,B) is

an epimorphism and a monomorphism but need not be an isomorphism (topoi are

balanced).
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It is, of course, important to note at this stage that the above mentioned
similarities are essentially a consequence of the fact that the categories Mble
and Top are both topological over Set (i.e., the forgetful functors are faithful
bifibrations with large-complete fibres; see, for example [AHS, pp. 333- 354]).

In each of the next three sections, we will introduce a category of measure

spaces. Recall,

Definition 1.2.3 A measure, pt, on @ measurable space (X, A) is a function
p: A— R2° such that p(0) = 0 and p(U,enA.) = Taen #(A,) for each disjoint
collection of measurable sets {A,}.-,. A measure space 1s a triple (X, A, u) where

(X, A) is a measurable space and p 13 @ measure on it. {0

Of course, one may consider extended-real valued measures (or even measures
with values in more exotic spaces; vector measures, for example). We will chiefly
be concerned with finite measures (as defined above) and, to a lesser extent o-finite
measures (where we allow p(X) = oo but with a countable collection of measurable
sets each of finite measure and whose union is X).

Bringing measures into measure theory results in a whole new level of diffi-
culty from a categorical point of view. All the “nice” properties of Mble seem
to disappear. The problem of major concern as far as indexcd category theory is
concerned is the disappearance of products. It turns out that, in some sense, the
best we can hope for is a monoidal category. As we shall see, we are forced to take
a more complex approach to indexing by measure spaces and this complexity is the
essence of the difference between topology and measure theory or, more precisely,

the difference between continuous families and measurable families.
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1.3 Measure Preserving Functions

The first category of measure spaces we shall study is MP, the category whose ob-
jects are measure spaces and whose morphisms, (X, A, ;t)—fb(Y,B, v), are such
that f is measurable and measure preserving: u(f~'B) = v(B), VB € B. Finite-
ness of measure is not an issue here, so we may have u(X) = oo. Notice that
MP is the conjunction of IMD (etymology: inverse measure decreasing), measur-
able functions such that u(f~'B) < 1/(3), VB € B and IMI (etymology: inverse
measure increasing), measurable functions such that u(f~'B) > v(B), VB € B.

Inasmuch as there are not many examples of measure preserving functions (the
identity and f : [0,1]——][0,8]; f(x) = = + 7 being obvious examples), MP is
not a very interesting category. Neither this category, nor IMD or IMI, have
products, for consider the “skinny rectangle” suggested by the picture:

2

0 1
with ([0,1]x[0,2], A x )\)—p—m—j—>([0, 1], A) where A is Lebesgue measure. The nizasure
of the rectangle is not equal to the length of one side.
We will, however, require some terminology, to be introduced here, and some
results about isomorphisms; an isomorphism in Mble is a function, f, which is

one-to-one and onto and such that f and f~! are measurable.

Proposition 1.3.1 Let (X, A, ,u)—f-—>(Y, B,v) be an isomorphism in Mble (and
hence in Dmble). f € MP = f-! ¢ MP.

Proof: v(f(B)) = u(f~'f(B)) = n(B). 1
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Proposition 1.3.2 Let (X, A,/z)—-—vj (Y,B,v) be an isomorphism in Mble.
f<IMD and f! € IMI= f € MP.

Proof: f € IMD = u(f"Y(B)) € v(B) and f! € IMI = p(f~Y(B)) >
v(ff(B)) =v(B). B

Definition 1.3.1 A measure isomorphism s « measure preserving function which

is an isomorphism in Mble. 0O

1.4 Measure Zero Reflecting Functions

1.4.1 Definitions

The next category of measure spaces we introduce involves measure zero reflecting

functions:

. * . j r . .
Definition 1.4.1 A function (X, A, y)——(Y,B,v) is said to be measure zecro

reflecting if it is measurable and of v(B) =0 = p(f~'B)=0. 0O

Remark: A comment to the term “reflecting”. In analogy to “functor reflecting
isomorphisms,” one might consider measure zero reflecting as being v(f(A)) =
0 = p(A) = 0. For complete measure spaces, these two definitions arc equivalent:
assume the former and suppose v(f(A)) = 0. Then p(A) < p(f~'f(A)) = 0.
Conversely, assume the latter definition and suppose v(B) = 0. Then, since
fFY(B)C B, v(f1f(B)) =0= p(f'(B)) as required. [

There is a certain amount of haziness (etymological note: “fuzzy” has already
been used) in the mathematician’s practical research world. In algebra and cat-
egory theory, one often hears the phrase “up to isomorphism.” In analysis, one

hears the phrase “to within ¢.” Now, we do not wish to give the impression that
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mathematics is a hazy subject, nor do we make any deep philosophical statements
about the nature of mathematical research. It is evident, however, that many the-
orems have a popular statement and a precise statement. As an example of the
“to within €” statement for measure theory, consider Littlewood’s three principles
(see [Roy p.71]) for Lebesgue measure: every measurable set is nearly a union of
intervals, every measurable function is nearly continuous, and every convergent
sequence of measurable functions is nearly uniformly convergent. These may be

“translated” as the following propositions:

Proposition 1.4.1 [Roy p.62]: Let E be a Lebesque measurable set. Then given
€ > 0, there is an open set O D E with m*(O \ E) < ¢ where m* is (Lebesgue)

outer measure.

Proposition 1.4.2 [Roy p.72]: (Lusin’s Theorem): Let f : [a,b] — R be mea-
surable. Given € > 0, there is a continuous ¢ : [a,b] — R such that m{z|f(z) #
d(z)} <e. B

Proposition 1.4.3 [Roy p.72]: (Egoroff’s Theorem): Let (f,) be a sequence of
measurable functions which converge almost everywhere to a real-valued function
J on a measurable set E. Then, given ¢ > 0, A C E with m(A) < € such that f,

converges uniformly on E\ A. W

Notice that, in the previous proposition, almost everywhere convergence arises.
In measure theory, the caveat is often “up to a set of measure zero” or “almost
everywhere.” For example, to say /E fdu =0 for a positive measurable function
is to say f = 0 almost everywhere (i.e. p{z|f(z) # 0} = 0). Measure zero sets
must be considered. In the previous section, we noted that measure preservation is
too stringent a requirement for morphisms. It is our contention that measure zero

reflecting (abbreviated MOR) is the least requirement for a reasonable category
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of measure spaces. In chapter three, we will describe a topos and a locale to be
constructed from a measure space. For this construction to be functorial, we will
require MOR’s. In fact, such functions are required whenever one considers the
(Boolean) algebraic properties of A and N, its ideal of measure zero sets(note: in
general, we do not require our measure spaces to be complete so when we say N
is downclosed, for example, this means N € N, A€ A, ACN = A€ N from
the monotonicity of the measure). For example, we may define a metric on A/N
by d([A], [B]) := p(AAB) where A denotes the usual symmetric difference of sets
(see [Law?2] or [A&G p.31] for more on this metric). If (X,A,;z)——!—+(Y,B,u) is
MOR, then we have a map B/ M il—-».A/./\f. We see that measure zero reflecting
is the least requirement for this map to be defined (after which, onc may explore
various properties of interest to metric space enthusiasts).

In practice, we will be interested in finite measure spaces. The identity is

measure zero reflecting and measure zero reflecting functions compose so:

Definition 1.4.2 MOR s the category whose objects are finite measure spaces

and whose morphisms are measure zero reflecting functions. 01

We will call two MOR’s, f,g: (X, A, n) — (Y, B, v) equivalent if
p{z|f(z) # g(z)} = 0 and define MORE as MOR with morphisms equivalence
classes of MOR’s (there being, actually, fewer morphisms in MORE). We will most

often work with MOR but mod out by sets of measure zero when necessary.

1.4.2 Examples

It is time for some examples. In some of the examples below, we will temporarily
ignore the finiteness requirement.

Example 1: Let (X, A, ), (Y,B,r) be two finite measure spaces. The projection
(X x Y, Ax B, i x v)——(X, A, p) is a MOR for pu(A) = 0 = (4 x v)(p~'A) =
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#(A) - v(Y) = 0 since v(Y') < co. If we use the common convention co - 0 = 0, we
can allow the spaces to have infinite measure. 0O

At this point, it is necessary to insert some comments about products and com-
pleteness of measures. Suppose (X, A, u) and (Y, B, v) are two o-finite, complete
measure spaces. We can use the Carathéodory procedure to construct the product
measure.

Start with the semi-algebra R of all measurable rectangles, on which there is
a measure (¢ X v)(A x B) = p(A) - v(B) and form the algebra R’ consisting of
finite disjoint unions of these with i x v extended in an obvious way. There is an
outer measure induced by g X v defined by (¢ x v)*(E) := infi(u x v)(A, x B,),
where the infimum is taken over all covers of FE by countable tfTa.lmilies of members
of R’ (members of R is enough). Define a measurable set as an E for which
(px VY(E)=(pxv)(ANE)+ (u x v)* (AN E°) for all A.

This procedure yields a o-algebra, A ® B, which contains the measurable rect-

angles and a measure, ¢ ® v, which is complete. An important property is:

Proposition 1.4.4 ([Roy, p. 256]): Let i be a measure on an algebra, A, p* the
outer measure induced by p, and E any set. There is a set B € A,s (countable
intersections of countable unions of members of A) with E C B and p*(E) =
w(B). 1

In the case of the product, this means that every D € A ® B is of the form
D = E\ F with E € R,s and F a subset of a set of measure zero.

If ¢ and v are not complete, the Carathéodory procedure still works (provided
X and Y are o-finite) and we get a measure i x v on A x B, the smallest o-algebra
containing the measurable rectangies (A x B is the product in Mble since the
rectangles are generated (as a scmi-algebra) by py'(A), p;*(B)). (X xY,A®
B, © v) is the completion ¢f (A x Y, A x B,y x v) (and g x v is the restriction
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of p®v to A x B). We will work with (X x Y, A x B, x v) since A x B is the

product in Mble and since we do not require the measure spaces to be complete

(although they may be). It should be noted however, that neither ® nor x gives
the product in MOR.

(Counter)example 2: ([0,1], L, A)—S>([O, 1] x [0,1}, £ ® £,A® A) is not MOR.
Any subset of the diagonal has (Lebesgue) plane measure zero but may have
(Lebesgue) length nonzero. 0O

Remark: 6[0,1] is, in fact, an R,s (take intersections of unions of “little squares”
that cover the diagonal) so this is also a counterexample for £ x £ and A restricted
to R,s subsets of the diagonal. 0O

Example 3: Let (X, A, ) be a measure space with u(A) = 0, VA € A (i.c.
#(X) = 0). Then any measurable function out of X is MOR. O

Example 4: Let (Y,B,v) be a discrete space with counting measure. Then any
measurable function into it is MOR since the only sct of measure zero is the empty
set. 0O

Example 5: A terminal object of MOR is (1,Z,¢) where 1 = {*} is a one point
set, T = {0, {*}}, and ¢ is the counting measure. This follows from example 3 and
the fact that (1,7) is a terminal object in Mble. 0O

Example 6: As another “special case” of example 3, consider the measure space,
(N, P(N),counting), where N is the set of natural numbers. Now, this space is not
finite (it is o-finite) but any measurable function into it is MOR. In fact a MOR,
(X, A, u)—f—){N,’P(N), counting), is the same as a measurable partition of X;
(f(D)ien- O

Remark: From example 4, we see that, but for finiteness, we would have an
adjunction:

U
Sete——— MOR
D
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with U - D. Notice that, in example 3, we allowed an arbitrary measurable space
structure so a left adjoint to the underlying functor does not exist. DO

Colimits in MOR seem to be more well-behaved than limits:

Proposition 1.4.5 MOR has (a) an initial object given by (0, {8},0), (b) binary

coproducts, and (c) these coproducts are disjoint.

Proof: a): There is only one measurable function out of (§, {0}) and it is MOR.
b) The coproduct of (X, A4, x) and (Y,B,v)is (X +Y,A+B,u+v); X +Y is
the disjoint union of X and ¥, A + B consists of sets of the form A + B where
Ae A BeB, and (p+v)(A+ B) := pA + vB. It is a simple matter to
check that this does indeed define the coproduct. Notice, for example, that if
(X, A, y)—:-—»(X + Y, A+ B, + v) denotes the injection and (¢ +v)(A+B) = 0,
then u(A) = v(B) =0so u(z"'(A+ B)) =0.

c) Consider the diagram:

(1,D,7)
A\ 00,0 ' (¥,B,v)
'x J
(X, A, 1) ; (X+Y,A4+B,p+v)

Now, jly = ilx =!x4y. Since coproducts are disjoint in Set, there are no maps

fy g satisfying jg = if (and no map (T,D,7) — (8, {0},0)),i{ T # 0, and exactly
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one map, the identity, which is MOR, if T = . Thus the diagram is a pullback
square as required.
(Counter)example 7: Constant functions are not, in general, MOR. Even some-
thing as benign as a continuous, one-to-one function is not necessarily MOR. (as
example 6 shows). O
(Counter)example 8: The “element of” function, l——hln\', is not, in general
MOR (unless € X is an atom; u({z}) >0). O

We think of the category MOR as the basic category upon which to build our
theory. In the sequel, we will describe the “fibrations” in MOR.

Mble has products which make it into a monoidal category. The unit is a
(fixed) terminal object (1,2). Now, MOR is also a monoidal category. The unit in

this case is (1, 2, counting) and the ®@ is (X, A, 1) @(Y,B,v) = (X x Y, Ax B, pxv).

i [
Proposition 1.4.6 Suppose (X, A, t)——(Y,B,v) and (Z,C,p)—-—l-+(T, D, $)
are in MOR. Then (X x Y, A xC,pu x p)-—l—xL(Y xT,B x D,v x §) is in MOR.

Proof: If K = B x D is a measurable rectangle, then so is (f x ¢g)"'(K) =
fY(B) x ¢g7Y(D). Since (f x g)~! preserves N, U, and \, f x ¢ is a measurable
function and we need only check that if X' is a measurable rectangle of measure
zero, so is (f x g)"'('). We may assume v(B) = 0 (the other case is similar).

But, (1 x p)(f71(B) x g7Y(D)) = u(f~'(B)) - p(¢7'(D)) = 0 since f € MOR. 1§

1.5 Disintegrations

1.5.1 Introduction

Breitspecher [Bre2] suggests that disintegrations should be studied from a categori-
cal point of view. We now construct a category whose morphisms are “disintegration-

like” (we employ the concept of disintegration in a new way). This turns out to be



26

a useful category in the sense that a disintegration is like a family of measure spaces
indexed by a measure space and, needless to say, (see [P&S]) this is a good thing
as far as indexed category theory is concerned. As we shall see, disintegrations

have a forgetful functor to MOR.

1.5.2 Naive Theory of Disintegrations

Let (X, A, ) be a measure space and (P,P,p) be another measure space, the
parameter space. A disintegration of i with respect to p is a collection of measures,
Jtp, on X indexed by p € P, such that VYA € A, u,(A) is a measurable function of
p and J{o p(A)dp = p(A).

Example 1: Constant: Let p(P) =1 and let u,(A) = p(A) VA € A. Then p,(A)

is measurable (as a constant function) and /P;c,,(A)dp = u(A)-1 = pu(A) (note: if

p(P) # 0, then we can take p,(A) = l;t((—g—))) O
Example 2: Product: Let X = (R x R,L x £,A x A). Let P = (R, L, ). For a

measurable A C R x R, put (A x A),(A4) := A{yl(p,y) € A}).

(1)

p

Now, by Fubini’s theorem (applied to x.4), 4, := {yl(p,y) € A} is a measurable
subset of the real line. and / M(A)dA = (A x A)(4). O

Remarks: 1. In the space (_Xfx Y, AxB,uxv),if D € AxBthen D, € B, Vx € X
(fix x € X, let K, be the set of all E C X x Y such that E, € B, then K, contains
the measurable rectangles and is a o-algebra, hence rontains A x B, the smallest
o-algebra that contains the measurable rectangles).

2. Again, we note that (R x R,L x £, x ) is not the Lebesgue plane. Fubini’s
theorem says, for an A € £L ® £, A, is measurable for almost all p € R. “Slicing”

o w
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by p, however, works for members of Rs (remark 1). The “almost all p” arises out
of subsets of sets of measure zero (i.e. during the completion part of the process
and not before) so (A ® A),(A) = AMA,) would provide an “almost everywhere”
example of a disintegration. [0

This is an important example for our purposes, as will be seen below. We will
describe many more examples in a later section. Given two measure spaces, one
doesn’t necessarily possess a disintegration with respect to the other. The main
thrust of research in this field is to determine conditions for the existence of such.
A definitive answer has not yet been given although there are some important

existence theorems (see [T&T]).

1.5.3 The Category Disint

An object of Disint is a finite measure space. We will use the projection from
the product as suggested by example 2 above as the motivation for our notion of

morphism.
Definition 1.5.1 A morphism (X, A, ) — (Y, B,v) in Disint consists of
o f:(X,A) — (Y,B) € Mble

o a family (X,, Ay, pt,)yey of finite measure spaces, where X, := f~'(y) end

A, ={AN0f(y) | A€ A}
subject to the azioms:

azl: VA€ A, the map y — p (AN f~1(y)) is measurable and bounded

az2: YA€ A, p(A) = /, w(AN F () du(y). O
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Remarks: 1. A, = {AN f~Yu) | A € A} is a g-algebra (this follows immediately
from the fact that A is a o-algebra).

2. We call these morphisms disintegrations as well and will refer to axiom 1 as
“measure boundedness.”

3. For boundedness, it is enough to say u,(X N f~!(y)) € L®(Y) because of
monotonicity of measures (of course, the measurability condition for all A € A is
stil! necessary).

4. Bvery disintegration has a “norm” via [|ity (AN f~1(y))|lco- We will not explore
this in this paper.

5. Bach py(X,) < 00. Measure boundedness is a condition on the u,(X,)'s over
yeY. O

Since the paradigm for a morphism of Disint is the product example above,

we think of the fibres over the y’s as slicing up A:

( 1 ()

y

Notation: The fibre measurable spaces depend solely upon f. We write

(f, (#y)yey) or (f,py) for a morphism in Disint. 0

1.5.4 Category Axioms

. . . . . . . (1xt2)
Identity: Define the identity in Disint as (.X,.A,;t)—A———»(X, A, i) where 1x

is the identity function and ¢, is counting measure on 7, = {AN17}(z) | A € A},
the discrete o-algebra on {z}.
Axiom 1: 2 — (AN {z}) is measurable and bounded since it is just x4 and A

is a measurable set. 0O
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Axiom 2: | w(AN{a})dp(z) = | xadpu(z) = p(A) as required. 0
X v

Composition: Consider the diagram:

(Y,B,v)
(f,uy)/ NV:)
(X, A, p) TIRA (Z,C,p)

where 0. is defined as:

6.(E) := / p(EN 7 y))dv(y) for E€ &, = {AN flg71(2) | A € A).

_.l(z

Note that v, is defined on g7'(z) and f~'¢™'(z) = |J /~'(y), the union being
y€g~1i(z)

ANfHy) yeg(z)

disjoint and AN f~lg7 ()N i (y) =
0 y¢97'(2).

Axiom 1: We wish to show that 0.(F) =/

g7 (z2)

1, (E N f7H{y))dr.(y) is a2 mea-
surable function of z. Before we do that, however, we must determine that the

integral makes sense.

Proposition 1.5.1 For each z € Z and for each E € A, p,(EN [~ (y)) 15 a

v,-measurable function.

Proof: u,(E N f~'(y)) is a v-measurable function (by axiom 1 for the s1,’s). Let
acR,then B={yeY |p(ENfy) <a} € Band BNng'(z) = {y €
g | p(EnfNy)<a}eB.forallze Z. &

Proposition 1.5.2 z — k(y)dv.(y) s a measurable function of z for *(y)

97z

a non-negatwe v-measurable function (in particular for k(y) = p,(EN f~1(y)))
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Proof: Case k = xg, E € B: z+ /y-x(:) xedv:(y) = v.(E N g~'(z)) which is
z-measurable by axiom 1 for v,.

Case k = a simple function: Apply the above case and linearity of the integral.
Case k = a non-negative measurable function. Let (¢.(y)} be a sequence of sim-

ple functions increasing to k. Then z — / k(y)dv.(y) = / , )lim on(y)dv.(y)
il €4

= lim / i »(y)dv.(y) by the monotone convergence theorem. Each

z / én(y)dv, is z-measurable by the above case and the limit of a sequence

97 1(2)
of measurable functions is measurable. 1

Remark: The technique used in the above proposition is a very useful one. We

will use the “build it up from simple functions” idea in many of our results. 0O

Proposition 1.5.3 0, is a measure for each z.

Proof: €.(0)= [ w0 [ W)ivlv) = [ 0dvnly) =

eJanstet@) = [ mUAn S @)dn)
= [y S AN @)des(o)
== Loy 140 T @) (0)
= Zﬂ (AN fg (=) 0

Proposition 1.5.4 6, is a bounded function (over z € Z).

Proof: Certainly, 0.(AN f~'¢71(z)) =/ ’ ),uy(Aﬂf‘l(y))dz/z(y) is finite for
9~z
all z € Z (since py (AN f~'(y)) is bounded and v, is a finite measure). Fur-

thermore, suppose v; and g, are bounded by K and M respectively, say. Then
[ S PAN ) < [ Kdvy) SM K <o
YT g~z

Axiom 2:

g

S
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Proposition 1.5.5 /0 AN f7lg7Y(z))dp(z) (axiom 2).

Proof: By axiom 2 for the y,’s, we have p(A) —/ iy(A N f~Yy))dv(y) = (%)
Now, [ 040 f7g7()dp(z) = [ [ | AN [ (1))dvs(y)dp(=) = (++)
Thus, we must show (¥) = (*x). We will show that / k(y)dv(y)

= / /-l( ) y)dv.(y)dp(z) for all (positive) measurable functions k(y).

Case k(y) = x&, E € B: /) xedv(y) = v(E) and ‘/)/ ( ),\*Eduz(y)dp(:)
gz
= /Y v:(E Ng~'(z))dp = v(E) by axiom 2 for v..
Case k(y) = a simple function: / = // by linearity of vhe integral and the above
case.

Case k(y) = a positive measurable function: Let ¢, T #(y) be a sequence of simple

functions increasing to k. Then / / (y)dv.(y)dp(z) =

//-1( )k(y )dv-(y)dp(=) // llqu,l )dv.(y)dp(=)
/hm/ én(y)dv.(y)dp(= -lnn// én(y)dv:(y)dp(y) = &, by

repeated a,pphcatlon of the monotone convelgence theorem. Now, by the above
case, & = lim/) #.(y)dp(z) and applying the monotone convergence theorem again,
we have & = /Yk(y)du. |

Unit laws: Consider:

(Y, 8,v)

(fal/ N’"u)

A meggy 8

Now, 0,(EN f17w)) = [ m(E NS (0)de(@) = (BN 7))

In a similar way, write (foly,7,) = (f,#ty)o(Llx,¢z). Then v, (EN17' f~ ()
= (EN17(2)dpy(2) = / Xedpy(z) = iy (EN f7(y)) as

1) f~H)
required. 0
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Associativity: Consider the diagram:

(Y, B, v) (hg, p1) (T, D, )

(f, 1) (hype)

(hgfv 7):)

/ (hgfv 7!)
(9f,0.)

(X A, 1) (Z,C,p)

To prove associativity, we must show 7, = v, for all t € T'. But,

wF) = [

h=1{t
H

o OE N 77 dp(2)
" /g Fﬂf—l( )dv.(y)dp:(z)
1y(F 0 f71(y))dBe(y)-

and 7,(F) = gy

J.
J

and we have:

Proposition 1.5.6 /g_”l_‘( Y)dB(y) -/ he )/ k(y)dv.(y)dp:(z) for all

positive, measurable functions k(y).
Proof: Apply the proof of proposition 1.5.5 with Y := ¢71h7}(t), Z := h71(2),

vi=p,and p:=p,. W

1.5.5 Examples and Basic Properties
(fiey)

Proposition 1.5.7 (X, A4, ) (Y,B,v) € Disint = f € MOR
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Proof: Let v(B) = 0. Then we have:

WB) = [l B S y)vly)
= [ (B {E))d)
= [ m(rw)ivy) =0. B

Remark: In view of this proposition and counterexample 6 above, we see that the

diagonal is not in Disint. 0

Example 1: Let (X, A, ) and (Y,B,v) be two finite measure spaces. Define
(Pv(uxu

(X xY,AxB,ux u)-———-———+( X, A, ) as follows: p is the projection onto the
first factor, p™!(z) = {} x Y and (Ax B), = {DNp~'(x) | D € AxB} = {z}xB
(certainly, we have D (take D = {a} x B); conversely, for D = A x B € A x B,

T} xB z€A
te) v both of which are in {2} x B and since {¢} x B
0 ¢ A

is a o-algebra, we have C). So, define (g x v),(D Np~!(z)) := v(D,) where D, is

Dnpi(z) =

considered as an element of B. We have already noted that the slices D, are all

measurable. Axioms 1 and 2 follow from:

Lemma 1.5.1 ([Roy, p. 266]): Let E be an Ros with (p x v)(E) < oo. Then
the functz'on g(z) defined by g(z) = v(E,) 1s a measurable funclion of © and
/g (z)dp(z) = (n x v)(E). W

Note that g(z) is bounded by v(Y) < co. As mentioned above, we consider
this example as the motivating one. O
Example 2: Let Ay be a measurable subset of X = (X, 4,p). We may inter-
pret the inclusion (Ao, Ao, o) ——(X, A, 1), where Ao = {A C Ay|A € A} and
pio(A) = p(A), as a disintegration. If z € Ao, I, = {AN17Yz) | A€ A} =
{0,{z}}; put por = counting measure. If z ¢ Ao, I, = {0}; put po; = 0. So,
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ptaz(ANi7Y(x)) = Xana,. The proof that axioms 1 and 2 hold is exactly the same
as that for the identity disintegration. [

Remark: This example does not “contradict” the fact that the diagonal is not
a disintegration. Interpreting the diagonal as a subspace of the plane would give
(X, 4,0)—(X x X,AxA,pxp) O

Example 3: Let (X, A, 1) be such that z(A) = 0, VA € A. Then any measurable
function (X, A, ;t)~—-f——+(Y, B, v) may be interpreted as a disintegration by defining
p(ANfYy))=0,forallAc AandyeY. 0O

Example 4: A terminal object of Disint is (1,2, counting). The unique map,
(X, A, p)——!—'\——a(l, 2, counting) has (X,,A.) = (X,A) and g, = p. Suppose
(X, A, ;z)ﬂ(l, 2, counting) is another disintegration. By axiom 2 for f,, we
have p(A) = [ﬁ*(Aﬁ!"l(*))d(counting) = fB(A). 0O

Example 5: The initial object of Disint is (0, {0},0), which is a special case ol

example 2. 0O

Proposition 1.5.8 Disint has (a) binary coproducts and (b) these coproducts are

disjoint,

Proof: a) Referring to proposition 1.4.5, the injection is a disintegration

XA ) — ) (X 4 Y, A+ B,y +v), with A, = {0} and s = 0if t € ¥

and A, = {0, {t}} and p:(AN71(t)) = xa(t) if t € X.

b) Again, referring to the diagram of proposition 1.4.5. If T = @, then we may

insert the identity disintegration, T — 0. If T # 0, then there is no map, T — 0

and no maps making the “outside” square commute. 0

Example 6: Let (X, A, 1) and (Y, B, ») be two finite, discrete spaces. That is, X

and Y are finite sets, A = 2¥, B=2Y and y and x/(jare) counting measures. Every
y

J
function, X ——Y', is measurable. Let (X, A, p)——— (Y, B, v) be a disintegra-

tion. 4, = {ANfy) | A€ A} =27"W for all y € Y. To satisfy axiom 2, p,
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must be counting measure. And, such will automatically satisfy axiom 1. Thus,
every measurable function yields a unique disintegration. That is, there is a full

functor

D
Set,—— —Disint. 0

At the end of section 1.4, we have described the ® for MOR; more preciscly, we
have interpreted the product of measure spaces as ® in MOR. We now consider
the case of Disint. Let (X,A, x)— 2 s(Y, B,v) and (Z,C, p)— sl s(T, D, )
be in Disint and form f ® ¢ in MOR:

(X x Z, A% Cpt X p)——2o(¥ x T,B x D, v x §). We may make f x g into a
disintegration as follows: (AXC)(,y = {DNfy)xg7'(t) | D € AxC} = A, xC,

(since A x C'N f~Y(y) x g7'(t) = AN f~(y) x CNg~'(t) and since these are

the generators for the o-algebras, they are equal). So, define (g x p)(, (D) =

(g x p¢)(D) with D considered as an element of A, x C,.
Proposition 1.5.9 u, X p; satisfies axioms 1 and 2.

Proof: Axiom 1: k(y,t) = (uy X p)(D 0 f~}(y) x ¢g7*(t)) is measurable and
bounded:

If D = A x C is a measurable rectangle, then k(y,t) = p,(AN f~(y)) - p.(C N
g~(t)) is measurable and bounded since it is a product of two such (axiom 1 for
pty and p;). Furthermore, k(y,t) < (i, x p)(X x ZN f~1(y) x ¢7*(t)) < oo. That
1s, k is bounded for any D. We need only check that it is measurable.

e o]
IfD= U A; x C; is a disjoint union of rectangles, then k(y, ()

i=1

o0

=Y (AN f7(y)) - pe(CiN g~ (¢)) is a sum of measurable functions so is mea-
i=1

surable. Now an arbitrary (countable) union can be written as a disjoint (count-

able) union (for example, for U A;, put B; = A;\ U A; then U B; = U A; and

=1 j<i i=1 i=1

"
3

s e et et (e SR
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the B,’s are disjoint). For finite intersections, use, for 4 a finite measure, v(D; N
D;) = y(Dy) + v(D;) — 4(Dy U D;). Finally, for countable intersections, use
() D) = fim, 7(() D2 (with 7iDy) < o0).

Axiom 2: Again, the process is exactly as for axiom 1 (disjoint unions use addi-

tivity; increasing limits and ) _'s pull out of integrals by the monotone convergence

theorem). We only check the basic case, D = A x C:

Sty x p)(AxCO ) % g7 )Y x ), 0)
= [wmAn T @)aty) - [l ngT @)ds)
= () p(C)
= (#xp)(AXC)

(the first equality is Fubini’s theorem and the second equality is axiom 2 for g,

and p;). B
. . ; R (1x1,(exe)z,q))
Certainly, in (X x X, A x A, u X pt) (X x X, A X A, pu X p), we

have (¢ X t)(zy) = tz X by = {(z,y). Now, suppose

(Y,B,v)

(fimy) (g,v:)

(X, A, 1) (2,C,p)

(9f,72)

and
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(M,E,7)
(hybm) \u\;)
(L,D,&) (kh,ﬂ,,) (N, _7-',T)

denote two compositions in Disint and consider:

(Y x M,BxE pxn)

(f xh, (1t X 8)(ym)) (9 % by (v X 9)(zim))

(gx fofx h,a(:,n))
(X x L,AxD,u xé) (ZxN,CxF,pxr)
(gf X kh,vy, x ﬂn)

where o) = (¥ X §)(zn) © (it X 8)(y;m). We show that a(.,) = 7. X f, on the
generators of (A X D)(,n) = A; X Dy.

ein)(AXx DN (gx kot xh)y(z,n)

= /(gxk)“l(zn)(,t X 8)gmy(A X D OV (F x h)™ (5, m))d(v X 7)(a.m) (5, )
/_ /_ (1t X 8)(ym)(A x DY (f x k)™ {y,m))dv.(y)dna(m)
971(z) Jk}(n)

= L‘l(z) ﬂy(A n f-l(y))d”z(y) ' A-l(n) 6771(0 n h—l(m))dnn("l)
= 'Yz(Anf—lg_l(z))'ﬂn(Dnh—lk_l(n))
= (1 X B)(AN f7g7H(z) x DA A~ k" ().



38

And so, we have shown that ® is a bifunctor. It is a straightforward matter to

check the (1,2, counting) is the unit for this tensor. Thus,

Proposition 1.5.10 (Disint, ®, (1,2, counting)) is a monoidal category. B

1.5.6 Slice Categorical Examples

Let (X, A, n) € Disint. Then Disint/X denotes the slice category of disintegra-
tions over X. We give a list of examples of objects of Disint/X and of disintegra-
tions over specific objects (these examples will be useful in chapter 4). Proofs are
omitted since they follow from general slice categorical nonsense.

(1"1')
Example 1: The terminal object of Disint/X is (X, A, u)———— (X, A, pt), the

identity. 0O

Example 2: The initial object of Disint/X is the inclusion of the empty set:
(0, {(0},0)—~(—!—xloi)——>(/\', A, p) with {0} = {0} and 0. =0forallz € X. O
Example 3: More generally, any measurable subset A C X, with the inclusion,
gives an object of Disint/X. 0O

Example 4: Examples 1 and 2 are special cases of X x [ ——pi-rX where I is a

discrete space. 0O

Proposition 1.5.11 .
a) Disint/0 ~ 1

b) Disint/1 ~ Disint

¢) Disint/2 ~ Disint x Disint
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d) Disint/(X + Y") ~ Disint/X x Disint/}’

e) Disint/N ~ [[ Disint. ®
N

Remarks: 1. ¢) is a special case of d).

2. Strictly speaking, N ¢ Disint but e) works nonetheless.
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Chapter 2

Measurable Fields of Hilbert

Spaces

2.1 Introduction

We have given the necessary measure theoretic background. Specifically, we have
some useful categories of measure spaces upon which to base our indexing ideas.
In this chapter, we will begin to glue (in a non-technical sense) the three elements
measure theory, operator theory, and indexed category theory together. Indeed, in
this chapter, we concern ourselves with box 1 of the diagram in the introduction.

We must, however, fill in mor: background and, in the next two sections, we first
provide a brief outline of direct integral theory (to fix notations and set definitions),
and then a brief outline of indexed category theory. One final remark: in our
categorical analysis, it is best to construct the direct integral in stages. That is to
say, we will gradually introduce more and more elements of category theory into

the construction.

40
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2.2 Measurable Fields

2.2.1 Motivation

In this section, we motivate the direct integral of Hilbert spaces. We will draw
on some folklore about unitary group representations and the (related) decompo-
sition of a Hilbert space with respect to an algebra. “Folklore” is perhaps not a
completely accurate term, for the results we give here are well documented in the
literature (the principle texts to which we refer the reader for details are [Dixl],
[Dix2], [Nai], and [Nie]). However, “folklore” may be assumed by the reader to
accurately describe the style of the (short) exposition we give here.

A. Unitary Group Representations

Definition 2.2.1 Let G be a topological group and H a Hilbert space. U(H) de-
notes the group of unitary operators in H (u is unitary if v*u = ly = uu*). A
continuous unitary representation of G on H is a continuous (in the strong topol-

ogy) function G——U(H) such that u(gh) = u(g)u(h) and u(e) =1y. 0O

Remarks: 1. The condition u(gh) = u(g)u(h) implies u(e) = 14.
2. Continuous in the strong topology means: for each £ € H, the function g —
u(g)¢ is continuous with respect to the norm topology for H and the given topology
for G. O

Let u be a continuous representation. The set u(G) is not linear since the sum
of two unitaries is not necessarily a unitary. But, it is a group with respect to
multiplication of operators. Furthermore, u(g)* = u(g)™" =u(¢g™"). That is, u(G)

is self adjoint (= symmetric in the terminology of [Nail).

Proposition 2.2.1 Let A C L(H). A subspace M < H is A-invariant iff M* is

A*-invariant.

PR 1]

L
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Proof: =: Let ¢« € A and consider a* € A* and £ € M*. Now, (a*¢|p) = (Elan) =
0, for all € M since a is M-invariant. And so, M+ is A*invariant. B

Since u(@) is self adjoint, if M < H is u(G)-invariant, so is M* and we write
ui(g) 0

0 ug)
unitary projections onto the subspaces M and M* respectively. And so, to study

H =M & M*. So we must have u(g) = ( with u;(g) and us(g)

u, it is better to study w; and u, instead. More accurately, one should look at

representations which do not have (nontrivial) invariant subspaces.

Definition 2.2.2 u is said to be irreducible if M < H u(G)-invariant implies
M=0orM=H. U

Proposition 2.2.2 ([Diz2, p.35]): u is irreducible iff w(G) = C -1y ( u(G)
denotes the commutant of u(G), the set of all operators in L(H) which commute

with everything in u(G); and C - 1y denotes the scalar operators on H). B

Now, suppose G is Abelian so that u(G) -Q u(G) (u(g)u(h) = u(gh) = u(hg) =
u(h)u(g)). By the above proposition, we have C -1y = w(G)' 2 (C-1y) = L(H).
That is L(H) C C - 15 which implies H = C or “irreducible representations of an
Abelian group are all one dimensional.”

Notation: G denotes the set of irreducible representations of the Abelian group
G; G is called the dual group of G. O

Example 1: Suppose G = Z. Let u(l) = 2o € U(C) (which means |zo| = 1).
Then u is completely determined, for u(n) = 23. Thus, Z-5T, u — u(1) = 2o,
where T denotes the circle group in the complex plane. O

Example 2: Suppose G = R. A continuous unitary representation must be of
the form w,(t) = 2™, one for each s € R. So, R=R. 0O

Now, suppose G = Z and H = LT, )\), where as usual A denotes Lebesgue
measure. Let u(n) be multiplication by =™ for 2 € T. Specifically, u(n)(f)(z) =
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z"f(z) for f € L*(T,\). Let S be an open subset of T and let M = LS, \).
It is invariant under u, so u is reducible (which we also know from the fact that
irreducible representations are one dimensional and L*(T, ) is not one dimen-
sional). We would like to break up u (which means breaking up H) into a direct
sum of irreducible (= one dimensional) representations; ideally H = éC. But,
we cannot chop up H using L*(S, ) for open subsets S (since thcsetz:'e not C)
and we cannot use L?(point) (since this is 0, not C). So, there are no points on

which the irreducible representations are acting. To repair this, we need some

&
sort of measurable direct sum (specifically, u = / _ Uz dA). That is to say, we
€T =

need to construct an entity /@, so that /:) Cd) = L*(T, A). To first describe this
so-called direct integral, we must understand what a family of Hilbert spaces (not
necessarily the constantly C family) indexed by a measure space is.
B. Decomposition With Respect to an Algebra

Let us look at the above example again in a slightly more gencral context. Let
U be a self adjoint subalgebra of L(H) and suppose that H is finite dimensional.
If U is reducible, there is a non-trivial subspace M < H that is U-invariant. So,
by proposition 2.2.1, M* is also U-invariant. Furthermore, we have H = M@ M*.
Let Ups denote the algebra of operators of U restricted to M. If Upy is reducible, we
can repeat this procedure. Since H is finite dimensional, this procedure terminates
and we can write H = My ®M,®- - -® M, with each corresponding Uy, irreducible.
If H is infinite dimensional, the above procedure may not terminate. We might
expect to be able to write H = é M, ( formally, é M, consists of (norm) square
summable sequences, the ith n;:;nber of which ils=]an element of M,). We may,
however, have to write H = /GB M_dyu (which consists of, in analogy to the above,

(norm) square integrable families). The details of its construction follow.

[

e
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2.2.2 Measurable Fields of Hilbert Spaces

In the next two subsections, we outline direct integral theory as given in [Dix1].
Most of the proofs are omitted although a few are inserted to give the reader a bit
of the flavour of the techniques used.

Let (X, A, p) be a measure space. The operator theory literature gives the
construction of the airect integral over a standard measure on a Polish space ( for
example, a separable, compact or locally compact topological space; the paradigm
being the spectrum of a symmetric operator as a compact subset of C). Since, we
wish to study indexing by measure spaces in a general (measure theoretic) setting,
we will not assume anything about the measure space at this point. However,
ye will feel free to add assumptions throughout this discussion. For details on
standard measures and the “simple functions to measurable sets” approach to

measure theory, the reader is referred to [Bou] or [Naij.

Definition 2.2.3 A field of complex Hilbert spaces on X is a family, (H(x))zex,
such that each H(z) is a C-Hilbert space. 0O

Write F := H H(z). It is a C-vector space (with pointwise operations). An

r€X
element of F, an z-tuple, (f(2)):ex, is called a field of vectors.
Definition 2.2.4 A measurable field of Hilbert spaces is a family,(H(z))zex, to-
gether with a G C F = H H(x) such that:
$€¢Y

1. Vg €@, v |g(x)]| is measurable.
2. If f € F is such that z — (f(2)|g(z)) is measurable for all g € G, then f € G.
3. There exists a sequence, g1, ga,... in G such that Vz € X, (gn(z)), forms

a total sequence in H(z). 0O

Remarks: 1. “Total,” in this context, means “dense span.”
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2. Axiom 2 ensures that G is the “largest” measurable subcollection of F in some
sense. In practice, we use this axiom to prove that a thing is an element of G.

3. We call the elements of G measurable fields of vectors or MFV's. A sequence
satisfying axiom 3 is called a fundamental sequence of MFV's. The whole structure
is called an MFHS.

4. Let g and h be MFV’s. Since linear combinations of ||(g+ k) ()|, |(g—h)(2)]}?,
ll(g + th)(z)||?, and ||(g — ih)(2)||* are measurable, z +» {9(x)]h(x)) is measurable

by the polarization identity: (g|h) = %Hg + h||* - zling — k||? + illg + th||?

'2”9 — th||%. Indeed, the (pointwise) product of an MFV with a C-valued mea-
surable function is an MFV. The limit of a sequeuce of MFV’s, converging weakly
for each 2 € X, i1s an MFV.

5. Our first assumption on X is that it is a finite measure space. Furthermore,
we assume the sequence in Axiom 3 has each ||g.(z)|| bounded. We get, through
linear combinations, as in remark 4 above, a sequence of MFV’s, hy, by, ..., such
that for each z € X, (hn(z))pe, is dense in H(z). In particular, cach H(z) is
separable.

6. If ¢’ is equivalent to p (i.e. p <« g’ and p’ < p) then G is also a p'-measurable
field. In essence, then, we are looking at equivalence classes of MFIIS’s. 1[I
Example 1: Suppose X is discrete so that every function out of it is measurable.
The only G that can satisfy axiom 2 is G = F. To satisly axiom 3, we nced each
H(z) separable. 0O

Example 2: Let Hyp be a fixed separable Hilbert space and let If(z) = Hp for
all z € X. Then MFV’s are simply measurable functions X — Hy (i.e. G =
Mble(X, Hy). Hp with its Borel structure). 0O

Example 3: If X’ C X, then an X-MFHS restricts to an X’-MFHS in an obvious
way. We may also include an X’-MFHS in an X-MFHUS by defining H(z) = 0 for
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z¢ X'. 0
More examples will be given in the sequel.
Definition 2.2.5 Let ((H(x))sex,G) and ((H'(z))zex,G’) be two MFHS’s. A
T(z
morphism is a family (T(z))sex of linear maps, H(z‘)—(-)—>H'(:L'), such that for
eachg€ G,z T(z)g(z)€G. O

We reserve the term field of operators for the case when the T’s are bounded
linear operators. In particular, an ison-wrphism of G onto G’ is a morphism with
each T'(z) an isomorphism. An MFHS which is isomorphic to a constant field
(example 2) is called trivial.

At first glance, axiom 3 seems somewhat mysterious. As we remarked above,
it makes the H(x)’s separable. It will also ensure that the Hilbert space we con-
struct in the sequel, the direcl integral, is separable. Furthermore, an important

consequence of axiom 3 is the following:

Proposition 2.2.83 ([Dizl, p. 144]): (i) Let X, = {z € X|dim(H(z)) = p}.
Then each X,, p=0, 1, ...,Ro is a measurable subset of X.

(i) There is a sequence (gi, 92,--.) of MFV’s such that

a. if d(z) = dim(H(z)) = Ro, (9:1(2), g2(),...) is an ONB in H(z)

b. if d(z) < No, (a1(2), g2(2),..., gi=)(z)) is an ONB of H(X) and gi(z)
=0 when ¢ > d(z). 8

We call the sequence above a measurable field of ONB'’s.

A fundamental sequence is sufficient for axiom 2.

Proposition 2.2.4 ([Dizl, p. 144]): Let (gn(2))3, be a fundamental sequence
of MFV’s. A field of vectors (g(z)).ex is measurable iff all the functions z —

(9(x)|gn(z)) are measurable. B
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Remark: Propositicn 2.2.4 follows immediately from proposition 2.2.3, part (ii)
and Parseval’s identity: (g(z)|h(z)) = i(g(m)lg,(m))mﬁ for g; an ONB.
We will use this idea, also, for change oi':i)ase, below. 0O

Finally, we note that we have a version of “local triviality.” Recall, an MFHS

is trivial if it is isomorphic to a constant field.

2.2.3 The Direct Integral .

Definition 2.2.6 An MFV, g(z), on X is square integrable if
J lo@)itdn < 0. T

The collection of square integrable MFV’s forms a C-vector space K. For ¢
and h in K, x — (g(z)|h(z)) is measurable and square integrable by the Holder
inequality, and setting (g|h) := A(g(.’c)lh(m))d;t gives a pseudo inner product on
K. Let H = K/~ (as before, f ~ g iff f = ¢ a.e.). Then H is a pre-Hilbert space.

Theorem 2.2.1 H is a Hilbert space (i.e. is complete).

Proof: Let (¢,)52, be a Cauchy sequence in H. It suffices to show that a subse-
quence converges almost everywhere to an element ¢ € H. Since (g,) is Cauchy,
we can pick a subsequence (which, for brevity, we also denote by (g,)) such that
i lgn+1 — gnll < 0o which means f: llgn+1(x) — ga(2)|| < 00 Yz ¢ N for some N
nw=1;h #(N)=0. "

Forz ¢ N, gi(z) + f:(gnﬂ(:c) — gu(z)) converges in H(z) (by completeness of

n=1

H(z)) to an element, say g(z) € H(z). So[lg(z)|| = llg: (=) + i(!/w(l‘) = gn(2))l

n=1
< lgr@)l + D Ngns1(z) = ga(x)]l- Put g(z) = 0 for x € N. We must show that
n=1
g 1s a square integrable MFV.
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The field of vectors, g(z), is measurable since it is a limit (a.e.) of ¢;(z)+

P
)" (gn+1(x) — gn()) each of which is measurable. Now, /Hg(a:)"zdu

n=1

< /||gl(:v)||2d;z + Z/||yn+1(:v) — gn(z)||?dp < 0o (note that we have assumed
n=1

that p(X) < 0o). This completes the proof. §

Definition 2.2.7 H 1s called “the” direct integral of the H(z)’s and is denoted
& ®
by/ H(z)dp. If g is a square integrable MFV, we write / g(z)dp for its equiv-

alence class in H. 0O

Remark: Suppose p’ is an equivalent measure to g. Put p' = pp where p is
a p-measurable function of & such that 0 < p(z) < co. Then z +— p(.z')‘%g(m)
induces an isomorphism of /ea H(z)dp onto /9 H(z)dy' since / ||p(a:)“%g(a:)|i2d/z'
= /||g(m)||2p(m)'lp(a:)d;t = /llg(z)|l2du. For fixed p and p', this isomorphism
does not depend on p and we call it the canonical isomorphism of /e H(z)dp onto
/6 H(2)dy'. O

Example 1: Let X be discrete. As noted above, any field of vectors is mea-
surable. If X’ is finite, with counting measure, then the direct integral is precisely
H®H, & - @ H,, the usual (finite) direct sum (= cartesian product with point-
wise operations) of Hilbert spaces. If X is countable, again with counting mea-
sure, then the direct integral is simply é H, where this is taken to mean square
summable sequences. 0O "=

Example 2: For each z € X, let H(z) = Hp be a fixed Hilbert space. Then
/ ? H(x)dp = L*(X, Hy). We see that theorem 2.2.1 above generalizes the Reisz-
Fischer theorem. 0O

5:]
Example 3: For each r € [0, 1], let H(r) = L*([0, 7], ). Then / H(r)dr

1 r
= {(f(r, =))reon] /0 /O |f(r,2)[2dzdr < co} which is just L2(A,A?) where A =
{(na)0<a2<r, 0<r<1}.
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Picture:

Example 3 is a special case of the following:
Example 4: Let A be a plane measurable subset of [0, 1] x [0, 1]. By use of Tonelli’s
theorem and in a similar manner to example 4 above, we have L?(A, A x )
~ / L*(A,)d) where, as before A, denotes the “rth slice,”
A, = {z|(x,r) € A}. O

In view of our discussions in the motivational section (section 2.2.1), a good
way to slice up L?(A, X x A) is as the direct integral of “points.” Specifically,
Example 5: Let Hy be C in example 2. Then L%(A, A x ) ~ /:B Cd(A xA). O

In the rest of this section, we list some important propertieé (given in [Dix1])

which will be used in section 2.4.

Proposition 2.2.5 Let (H(a:))ze.\' be a field of Hilbert spaces on X and let (g,)
be a sequence of fields of vectors such that: 1. a — (g,(z)|g,(z)) is measurable for

all i and j and 2. {gi(z)}.2, is total in H(z) for each x. Then, there is a unique
MFHS structure on the H(z)’s to make the g,’s MFV’s. W

Proposition 2.2.6 Let s, be an MF of ONB’s for (H(z),G). Then

D
i) se H= / H(z)dp(z) iff  — (s(z)|s.(z)) is square integrable for all i and

Z [ ls(@ls. () Pdu(z) < co.
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it) For s,t € I, (s|t) = i/(s(z)ls,(a:))(t(m)|s,(m))dp(:1:)

=1

iti) t € H is the (strong) limit of t,(z) = i(t(z)ls,(m))s‘(m) i

t=1
Definition 2.2.8 The measure space, (X, A, i), is said to be standard if
L3(X, A, 1) is separable. O

D
Proposition 2.2.7 If (X, A, ) is standard, / H(z)du(z) is separable. W

Remarks: |. Proposition 2.2.7 is really a corollary of proposition 2.2.6.

2. Proposition 2.2.6, ii) is Parceval’s identity and iii) is Fourier series expansion in
this context.

3. We have omitted almost all proofs in this section (they are in [Dix1]). However,
we will refer to elements of the proofs of propositions 2.2.5 and 2.2.7. Specif-
ically, the MFHS structure G of the former consists of all those g¢’s such that
x + (g(z)|s,(z)) is p-measurable for all s,(z) in an MF of ONB’s. For the lat-
ter, we suppose a,(z) is a dense sequence in L?(X, A, 1), then MFV’s of the form
ian,(m)s.(a‘) are dense in’/e) H(z)du(z). O

1=x]

2.2.4 Other Measurable Fields

There are other fields. One direction to move is to continuous fields (roughly
speaking: replace “measurable” by “continuous” in the above definitions) which
leads to the theory of Hilbert bundles and, more generally, vector bundles. We
will not explore continuous fields in this paper (for exposition on continuous fields
of C™-algebras and Hilbert bundles, see [Dix2, pp. 211-249]). Indeed, rather
than specializing the base category (i.e. from measurability to continuity), we

will generalize the indexed categories. More precisely, in this section, we describe
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other entities indexed measurably culminating in the statement of a decomposition
theorem alluded to in section 2.2.1. Again, we present an overview of [Dix1].

We have already defined morphism of MFHS’s. Since operators (= bounded
linear operators = continuous linear operators) are the entities to be studied in

operator theory, a more important notion of morphism is:

Definition 2.2.9 Let ((H(%))cex,9) and ((H'(z))sex,G') be two MFHS’s. A
measurable field of bounded linear ma‘;‘)s (or MFBLM) is a family,
(H(:v)—ﬂib"(:v))rex, of bounded linear maps such that for each MFV, g € G,
(T(z)g(x))rex € G'. We use MFO, measurable field of operators, if the T'(z)’s are

endomorphims. [

« — ||T'(x)| is measurable. In adition, (T'(z)),ex is an MFBLM iff

(T'(x)gi(z)|gi(x)) is measurable for each g;, g} of two fundamental scquences of

MFV’s g; € G, g} € ' (see [Dixl, p. 156] for details).

Definition 2.2.10 An MFO (T(z))sex is essentially bounded if || T'(z)|| is essen-
tially bounded (i.e. there is an M such that |T(z)|| £ M a.e. ). O

Remarks: 1. The product of an L?-function by an L*®-function is an
L?-function so if (T(x))sex is essentially bounded then we have a bounded lin-
ear operator T € B(H), where H = /@ H(z)dp. Furthermore, |T|| = ||T'(z)]|co-
Conversely, if T € B(H) is induced by an essentially bounded MFO, we say T is
decomposable and write T' = /@ T(z)dp.

2. Two essentially bounded MFQ’s which induce the same element of B(H) are
equal almost everywhere.

3. Operators of the form / ? T(z)dp, where T(z) is scalar for each = are called

diagonalizable. The set D of diagonalizable operators forms a commutative von
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Neumann algebra and D', the commutant of D, is the set of decomposable opera-

tors. 0O

Definition 2.2.11 Let ((H(z))zex,G) be an MFHS. A measurable field of von
Neumann algebras (MFuNA) consists of a family, (A(x))zex, such that each A(x)
is a von Neumann algebra on H(z), together with a countable family, (T;).en, of
MFQ’s such that for almost all z € X, A(z) is the von Neumann algebra generated
by the T,(z)’s. In analogy to remark 1 ;zbove, a von Neumann algebra, A C B(H),
is called decomposable if it is induced by an MFvNA and we write

A= /@ A(z)dp. O

Definition 2.2.12 Let ((H(%))zex,G) and ((H'(z))zex,G') be two MFHS’s and
((A(z))zex, (Ti)ien) and ((A'(2))zex, (T!)ien) be two MFuNA’s (on G and G' re-
spectively). Write A = GaA(:zr)d/L and A' = /e A'(z)dp. For each x € X let
A(m)—ﬂi)—-»A'(m) be a homomorphism of von Neumann algebras. The family,

(plx))zex, is called a measurable field of homomorphisms (MFH) if for each z
D
T(z) € A(z), x — ¢(2)(T(z)) € A'(z) is measurable. For T =/ T(z)dp € A,

write o(T) = /$ e(@)(T(z))dp e A. O

The reader may note the similarities between the definitions of MFHS and
MFvNA. The basic format is: measurable field of things = family of things indexed
by X 4+ measurability requirement + countability requirement. The last condition
is not so universally required (it is possible to talk about measurable fields of non-
operator theoretic entities) but it is important in the operator theoretic world (e.g.
separabilty of H).

Of course, we are interested in the question of when a Hilbert space is decom-
posable into a direct integral, more importantly, of when an operator decomposes

into an MFO (in analogy to the finite dimensional spectral theorem) or when a
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Hilbert space decomposes with respect to a von Neumann algebra (as alluded to

in section 2.2.1).

Theorem 2.2.2 Let H be a separable Huilbert space and A a von Neumann algebra
on H. There exists a compact metrizable space X, a measure p on X, an MFIS
(H(z))zex, such that each H(z) # 0, and an isomorphism of H onto /(B H(z)dp
which takes A to the algebra of diagonalizable operators. 1B

Remark: We would like to decompose the algebra A. In order to do this, however,
we must first know how to decompose the Hilbert space H it is acting on. Aud so,

the theory is built up as: MFHS ~ MFvNA ~» Decomposition. 0O

2.3 Categorical Indexing Concepts

2.3.1 Introduction

Given a category 8, one may form the category Grp(8) of group objects in 8 (pro-
vided 8 has finite (including empty) products). This is done, as is well known, by
simply translating group theory data and axioms into categorical statements about
objects of S (for example, “multiplication” (data) is a morphism G x G———‘:—>G').
If S = Set, one gets the usual category of all (small) groups.

One might ask about the existence of limits in Grp(S). In particular, one can
ask whether the product Gy x G, can be formed. Of course, we would like to from
such products for any pair of group objects. This amounts to asking the question:
given a family of size 2, can we form II of this family? And similarly for “larger”
sized families. And so, the notion of family is central to any discussion about
completeness.

Now, if S = Set and I € Set, we know what an [-family of sets is and we

know how to formulate questions about I-indexed products (=“/I-sized” products)
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in any category on S (for example, in Grp = Grp(Set)). In categorical language,

an [-family may be interpreted as a functor I — Set, where I is the discrete
category whose objects are the elements of I.

For a general S, there is not necessarily a notion of I-family for I an object of
S. For some significant examples, there is, however. Indeed, if 8 is “Set-like,” for
example, then we have a good notion of family. The paradigm for “Set-like,” in
this context, is: S a topos. If S is a topos, we can form S/I. This is, of course,
itself a topos (the fundamental theorem of elementary toposes). We may think
of it as the category of I-families of objects of S (in analogy to and using the
equivalence Set’ ~ Set/I as motivation).

We can now talk about Grp(S) and Grp(S/I), the latter thought of as I-
families of group objects, and can ask about completeness relative to S (in fact,
_S_/I%§ yields 9&}3(_8_/1)% Grp(8)). A is a special type of substi-
tution. More generally, we have, for each J I , a functor S/I —i——-@ [J
given by pulling back along a. The categories S/I and the functors a* will be the
central data for our notion of S-indexed category. We give these abstractly.

Incidentally, Grp(S) is algebraic over S and so has the same sized limits as S.
Colimits are not necessarily so well behaved, however. For example, the category of
finite sets Se t pasa category indexed by itself, is both complete and cocomplete
(for example, a finite product of finite sets is a finite set). The category of finite
groups, however, is not closed under finite coproducts.

As another example, let I € Top. We may index Top by itself as above (this
works for any category with finite limits). We can also index Set by Top by
considering the category of I-families of sets as the category of sheaves on I;
Sh(J). Again, we get substitution functors a*, which, in this case, are the inverse
image functors.

One important aspect about Set is that it indexes many categories (one can
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talk of I-families of groups, of topological spaces, of ...). Top indexes fewer
categories in some sense (for details of Top indexing, see [Lev]). In all examples of
S-indexing, there is a (sometimes delicate) balance between the richness of the base

category S and the quantity of categories indexed by it (although, Set-indexing
has both).

At this point, we should note that there are five approaches to a categori-
cal treatment of indexing by objects other than sets: 1. Lawvere style (using
S-atlases), 2. Penon style (using locally internal categories), 3. Bénabou style
(using fibrations), 4. Paré-Schumacher style (using pseudo-functors), and 5. Betti-
Walters style (using categories enriched over a bicategory). We will follow 4. in

our outline immediately below and, indeed, throughout the thesis.

2.3.2 An Outline of Indexed Category Theory

Definition 2.3.1 ([MaéiPa], p.63): Let S be a category with finite limits. An

S-indexed category consists of the following data:

o for every object I of S, a category A’
e for every morphism J—0 of S, a functor A’—a——nA"

B . .
e for each composable pair K——J—sl€ S, a natural isomorphism

$o,p: 70" — (af)
o for each I € S, a natural isomorphism 3y : (1;)" — 14,

subject to the (coherence) azioms:

- B ‘
1. for each composable triple L N v J—sT in S, the following com-

mutes:
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L1 RS 4 ‘¢0, » =
v Brar 2225 4 (aB)
¢ﬂna‘ ¢aﬁn’

(By)a” S (aBy)*

2. for each J—.I¢ S, h1,0= TR a1} —a*. 0O

F
Definition 2.3.2 An S-indexed functor, é———»g, between two indexed cate-

gories consists of the following data:
. 1 FUoar
o for every object I of S, a functor A'——B
e for each J—] € S, a natural isomorphism 4, : o Fl — Fla*

subject to the aziom:

B o
1. for each composable pair K———J——-=1 in 8§, the following commutes:

oo F!
prarFt 2228 oy p

[

,B'FJC!' oaﬂ
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Definition 2.3.3 An S-indexed natural transformation ¢ : F' — G between two
indered functors consists of a natural transformation t’ : F! — G for each 1 € 8,

such that

1. for every J—a—-+], the following commutes:

a*t!

a F!

aG!

0. 0,

FJO‘ t_]a. GJCY. D

Remark: 1. The category A’ is called the category of I-indexed families of objects
of A. The functor o~ is called the substitution functor determined by « (in analogy
to the substitution of example 1 below). 0O

We have already alluded to three important examples of indexing:
Example 1: Every category A can be Set-indexed by taking, for I € Set,
Al = {(A).c; | A. € A}, the I-fold product. For J-=51, we define _A_’—(—';A_J
by (A)er — (Aa)yesr O
Example 2: S indexes itself via 8’ :=S// and for J-21, _S_/I-Z.—»,S_/J sends
X — I to Y — J determined by the pullback:

Y J

X——1

" has a left adjoint Y, given by composition. If § is a topos, then o® is
logical and also has a right adjoint I1,. In the case S = Set, we may think of a*
(as in example 1) as “relabeling along a.” ¥, and Il, correspond, respectively, to

forming coproducts and products over the fibres of @ (see [PTJI, pp. 35-37})). 0O
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Example 3: Top indexes Set via, for I € Top, Set’ := Sh(I). For J-5I
a continuous map, Sh(I)25Sk(J) is pullback. A sheaf on I may be regarded
as a local homeomorphism X — I. Pulling back along a yields another local
homeomorphism which gives an element of Sh{J). o is left exact and has a right
adjoint a.(F)(U) = F(f~Y(U)). This gives a geometric morphism (indeed, the
paradigm) Sh(J)-=+Sh(I) (see [PTJ1, pp. 11-12] or chapter 3). 0O

Indexed category theory is useful for (at the very least and especially) two
things: internal notions of smallness and limits. We will now describe these notions
briefly.

A category object C in S consists of a triple of objects, (Cs,Cy,Co), and a
sextup! of morphisms (my, 72, 0,do,d;,id), subject to axioms that make Cp =
obje ,: . = morphisms, C; = composable pairs, 7; and 7, = projections, 0 =
composition, dy = domain, d; = codomain, and i¢d = pick the identity (see, for
example, [PTJ1, pp. 47-48] or [P&S, p.22]). Similarly, an internal functor is a
triple (F3, Fy, Fo) of morphisms exhibiting Fy as the “object function” and F; as
the “arrow function.” With a suitable notion of internal natural transformation
(a morphism from the objects of one to the morphisms of the other), we get a
2-category, cat(8S).

For any I € 8, the hom functor, 8(I,—) : S~——Set, preserves category ob-
jects and internal functors. Indeed, S(—, C), which takes I to the category (object
in Set) (S(1, C,),8(1,C,),S8(1,Cy)) is a contravariant functor from S to cat. Now,
an F € cat3” yields an S-indexed category: A! = F(I) and a* = F(a). We call
the S-indexed category determined by S(—, C) the externalization of C and denote

it by [C]. We can formulate smallness for indexed categories:

Definition 2.3.4 ([P&S, p.26]): Two indered categories A and B are said to
F ~ G ~

be equivalent «f there are indexed functors A——B and A——B and naturd
~ ~ ~ ~
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isomorphisms such that FG=1p and GF =1,.
An indexed category A is called small if it is equivalent to [C] for some category
object C€S. O

This notion of smallness follows the idea that if I < S (think: I a set which is
necessarily small; Set being the large category corsisting of all small sets), then a
category “of size I” is to be considered small. For C a category object in S, [C]
externalizes this object to the cat (and Set) world in which we have utile notions
of smallness and largeness. Paré and Schumacher go on to formulate other notions
of smallness such as local smallness and well-poweredness.

Let D be a diagram (= a small category) in a category A. we may formulate

the existence of lirlr)l via the existence of a right adjoint to A:

-—

A
APe=———sp
lim

We already know what a small category is in the S-indexed world. We must
translate each of the other notions.

Given two S-indexed categories é and Q, we can S-index the indexed func-
tors from B to A. éz is indexed by (ég)l = (él)g and, for J——i—-ﬂ, we get
_A_’—f.—-»A__" which yields (ég)l(’—.»(ég)J via composition: B—»é’LéJ
(note: A!isS-indexed via (A_l)" = A", we denote this by él) We have a‘diago—
nal, Ag : A-————»é'g, given at [ by Ag : Ql——>(§—~—>él), Ar— (Q—-L—u’y)
where, for B € B’, FJ(B) is constantly Aj(A); Ay : A_'——»(_A_’)". We must,

now describe S-indexed adjunction.

Definition 2.3.5 ([P&S, pp. 68-69]): Let U : B——A be an indezed functor.
We say U has a indexed left adjoint if there are an indexed functor, F:A—-B,
and indezed natural transformations, € : FU — lp and 7 : 1, — UL, such

tllatf,E'EQ:].f andQ,g'lQ=lg- 0
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And so, we can now formulate limits in the S-indexed world.

Definition 2.3.6 ([PES, p.75]): Let A be an indezed category and C a category
object in S. A has C-limits if Ac: é——-——»éc has a right adjoint 1i3_n. 0

Remark: 1. The two concepts of smallness and completeness seem to be opposed.

If we “enlarge” the base category, S, things have more of a chance of being small

=)

but less things are complete. A good example of this point is the difference between

Set, and Set indexing. 0

2.4 MFHS’s as an Indexing Notion

2.4.1 Preamble

We have given some operator theoretic background and some indexed category
theoretic background. It is time to blend the two (box 1 of the diagram in the
introduction). Specifically, we now describe some categories of measurable fields
of Hilbert spaces. As mentioned in the introduction, we will provide, in this pa-
per, three approximations for “Hilb”*.” These three approximations are to mix
(the apparently opposing) elements of operator theory and indexed category the-
ory. The first technique to describe Hilb* may be considered as mostly operator
theoretic in nature.

In this section, we introduce two categories whose objects are measurable fields
of Hilbert spaces; ATFHS(X) and BMFHS(X). MFHS(—) (the argument, here,

is to be filled in with objects or morphisms of MOR) works well with substitu-

tion and is the translation of classical direct integral theory into categorical lan-
guage. If we try, however, to interpret the direct integral as a functor, MFHS(-)
is not adequate so we introduce a new category, BMFHS(X). This departs
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from the classical theory (we simply demand the morphisms of BMFHS(X) be
bounded over z € X and the classical M FHS(X) and, indeed, [Dixl], allow es-
sential boundedness over 2 € X)) but the gap is not too large. We can propose

Hilb* := MFHS(X) but it seems that Hilb" := BMFHS(X) is better.

2.4.2 MFHS(X)

Definition 2.4.1 Let X = (X, A, n) be a fixed measure space. The category
MFHS(X) (etymology: measurable fields of Hilbert spaces on X ) has as objects,
MFHS's, and as morphisms, essentially bounded MFBLAM’s. O

(T“”))J X
Remarks: 1. An MFBLM, ((H(m))l.e_\»,g)—————e‘—»((H'(m))xe_\-,g’), is essen-

tially bounded if ||T'(x)|| € L=(X, A, i). Such compose ( |5 o T'(z)||
< ||S(@)[IT(x)|] ) and the family of identities is essentially bounded so we do
indeed have a category.

2. Following the remarks of definition 2.2.10, we require essential boundedness
for the direct integral to be compatible with maps (that is, multiplying an L?*-
function by an L*-function yields an L%-function). 0O

And so, we have a functor, for each fixed X,

&
J. : BMFHS(X)—Hilb,

® &
defined, in an obvious way, as / ((H())zex,G) = / H(x)dp(z) and

X

& &
/X (T(z))zex :=/ T'(z)dp(z). Remark 2 above ensures functoriality. In partic-
&
ular, we have / lyydp(z) = lf@ H(e)du(z)’ .
&

Notice that if H(z) = H'(z) a.c on X, then / H(z) = / H'(z) (indecd, the

two families are effectively indistinguishable at the MFHS level). We can consider
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equivalence classes (of both objects and morphisms) but will, for now, keep such
matters in the background.

The image of the functor / ? consists of all (X-)decomposable Hilbert spaces
and bounded linear maps (by definition). In fact, this image has a nice topological

property as well. We recall a result about operators (endofunctions) from Dixmier:

Theorem 2.4.1 ([Diz2, p.388)):
@ &
(a) Let S =/ S(x)dp(z) and T = / T(z)du(x) be decomposable operators on

@
" =/ H(z)du(z), then

S+T= /@(S(a:) + T(x))dp(x) ST = / z)T(z)dp(x)

A5 = [*A8(@)du(z) 5= / ® S(z)du(=)

(b) Let T, = / )dp(z) (=1, 2,...) and T = /ea T(x)dp(z) be decompos-
able operators. If T, converges strongly to T (i.e. in the norm topology of H),
then there is a subsequence (T,,) such that (T, (x)) converges strongly to T(z)
almost everywhere. If T,(z) converges strongly to T(z) almost everywhere and if

sup || T|| < +oo, then T, converges strongly to T. B

2.4.3 Substitution

The thesis is about X-indexed families of Hilbert spaces for X a measure space.

Our first proposal (box 1) for Hilb" is M FHS(X) (which we have just described).

An essential aspect of indexed category theory is substitution. That is to say, one
needs not only a notion of X-family but a useful way of getting a Y-family out
of an X-family (so that one may talk of things like indexed functors, natural

transformations, etc., as outlined in section 2.3). In this section, we describe this
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$
substitution for the “box 1 world.” More preciaely, suppose (Y, B, v)—— (X, A, p)
is measurable, we will describe M HF S( \’)———-»MFH S(Y). ¢° sends an

((H(@)eex,6 € & = TL (@) to (H(6)er H € F = TT H(o(3). Defne
reX yeY
H={heF|y— (h(y)lg(¢(y))) is measurable Vg € G}.

Remarks: 1. There is a map [] H('v)-—(:—-» IT H(é(w)); ale)y) = e(d(y)). I
reX

h is of the form a(g) for some g € G, then y :f‘(g(¢(y))|g'(¢(y))> is measurable
Vg¢' € G (it is the composite of z +— (g(i‘)lg'(x)) and ¢). Thus, H contains a(G).

2. If we take objects and morphisms as equivalence classes, under a.c. equality,
of X-MFHS’s (two such equivalent entities will produce the same direct integral),

then it is appropriate to have ¢ € MOR. 0O
Proposition 2.4.1 H = ¢*(G) is an MFHS on Y.

Proof: We must exhibit the three axioms and the following order seems most
appropriate.

3. Let (gi)ien be a fundamental sequence in G. Then (gi{(¢(y)))ien forms a total
set in H(¢(y)) for each y (i.e. a(g;) is a fundamental sequence in H).

1. Let (g;) be a measurable field of ONB’s (proposition 2.2.3). By Parceval’s iden-

tity, (h(y)|h(y)) = Z(h (Wlg: () (h(y)lgi(8(y))). (h(y)lgi((y))) is measurable
i=1

by definition and (7) is measurable so y — ||h(y)]|| is measurable Yh € H.

2. Suppose y — (f(y)|h(y)) is measurable Yh € H. Then, in particular,
(f(¥)lg(#(y)))} is measurable Vg € G (a(G) C H). But this is precisely the criterion
for being in H, so f € H as required. W

(=
Given H(z )—)>H( ), @ morphism in MFHS(X), define ¢*1' by

®
H(¢(y))L-(22H (¢(y)). Let h € H, we must show T'(¢(y))h(y) € H'. That is,
we must show y — (T(é(y))h(y)|g'(¢(y))) is measurable V¢’ € G'. We know
that (T'(é(y))g(é(y))lg'(¢(y))) is measurable Vg € G V¢' € G' (T takes ¢’s to ¢'’s

and compose with ¢) and (h(y)|g(é(y))) is measurable Vg € G (by definition of
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H). Now, let (g;) be a measurable field of ONB’s. Use the Fourier expansion,

h(y) =Y _(h(y)lgi(6(y)))gi((v)), to get (T(4(y))h(y)lg'($(y)))

i=1
= S ()l #3)) (T(8(3))g:(8(4))1g'($(s)) which is measurable as required.
'Ttl' T(z) is essentially bounded over z € X, T(¢(y)) is not necessarily essentially
bounded over y € Y. But, if ¢ € MOR, then it is. There is an M such that
IT(z)]l < M except on A with p(A) = 0. ||T(¢(y))|| £ M except on ¢~!(A) which

has v-measure zero. Thus, we have:
¢.
Theorem 2.4.2 For ¢ € MOR, MFHS(X)——MFHS(Y) is a functor. 1

A special case is MFHS(1)—— MFHS(X) where A =!*, X—1. An MFHS
on 1 is just a family of 1 Hilbert space. To satisfy axiom 3, the Hilbert space must
be separable. Thus, there is a functor SepHilb-—ﬁf—»M FHS(X) for each measure
space .X. However, A is not right adjoint to / ? in general (see chapter 4).

Now, 1™ =1 (to say (h(z)|g(1(z))) = (h(z)|g(z)) is measurable Vg € G is to
say h € G by axiom 2). Suppose we have (Z,C,p)—t{—-)(Y,B,I/)—;LD(X, A, )
two morphisms in MOR and let ((H(z))zex,G) € MFHS(X). Put ¢*¢*(G) =K
and (¢¢)*(G = L (we wish to show X = £ in order to show that ( )* preserves
composition in MOR). Then k& € X means z — (k(z)|h(¢(z))) is measurable
Vh € H and | € £ means z — (I(z)|g(¢%(z))) is measurable Vg € G.

K C L, since a(G) Qm'H. To get £ C K, let (g;) be a measurable field of ONB’s,

then (k(z)[h((2))) = D _(k(=)lgi(88())) (R ($())lgi( #9(2))).
And so, we have a ﬁ:llxctor

()
MOR®————Cat,

where X* = MFHS(X). We denote the “MOR-indexed category” (quotation
marks because MOR does not have products, so is not a “real” S) by MFHS.



__.MOR. The objects of the

We call the fibration version of this MFHS MOR
category MEFHS are triples (X, (H(2))zex,6), where X = (X, A, ) is in MOR
(i.e. is a finite measure space) and ((H(z))zex,G) is an MFHS(X).

A morphism is a pair, (X, ((}I(w))re_y,g)&()", (K(¥))yer,KX), where
(X, A4, u)-——L(Y,B, v)is in MOR and T is an M FHS(X) map,

((H(a:)),e,\-,g)-—T—>¢'((I\’(y))yey,K). That is, T is a family of maps

T:
(H(z)——K(¢(2))),cy, (norm) essentially bounded over & € X and such that
& — (Tyg(x)|k(¢(x))) is measurable Vk € K and g € G. Finally, we note that P

is projection onto the first factor.

2.4.4 Indexed Direct Integral

We have given necessary background information. In this section, we explore func-
toriality of the direct integral. More precisely, we will generalize the direct integral
. . (CNTY . .. )
above in the box 1 world. Let (A,A,u)—%(}',b’, v) be a disintegration. We

seek a functor:

]

/.
MFHS(X)—2— sMFHS(Y).

It is instructive to consider two examples first. If ¢ is the identity, XX,

(5:] '
then /¢ (H(z),G) should be (H(z),G). If ¢ is the unique map, X'—1, then
(¢:] 2] B
/¢ (H(z),G) should be (/ H(z)du(z),D :/ H(z)dp(z)). We first note that

@
since D is to satisfy axiom 3, we require/ H(z)dp(z) to be separable. According
to proposition 2.2.7, we could require (X, A4, ) to be standard. In fact, we will
insist upon a similar restriction on the measure spaces below.

Even more basic than a separabilty requirement is a boundedness requirement.

2] 1]
We seek a functor / , taking X-MFHS’s to Y-MFHS’s, which generalizes / as
¢ !

Bt T 0 v e
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(¢
the classical direct integral (of section 2.4.2). Let /¢ (H(z),G) = (D(y), D). With

®
the above examples in mind, we should have D(y) = -[/:"(y) H(z)dp,(z) =

{9l /45-*(y) lg()Pdpy(z) < 00}/ ~, with g ~ ¢" iff py{z € ¢7'(y) | g(z) #
g(z)} =0

Now, suppose, for (H(:r),g)—(-T—(r—)l(H'(x),g'), |T(z)|| is essentially bounded
over z € X (i.e. T € MFHS(X)). Then, the (only possible definition of the)
map D(y)jﬁ—»D'(y); d(y) — [T(z)d(y)(z)] (an element of D(y) is an equivalence
class d(y), which we also sometimes denote by [d(y)(x)] to emphasize that a rep-

resentative of d(y) is a function ¢™'(y) — |J H(z)) does not necessarily land
r€d~(v)

in D'(y). We would require /¢_l‘y) |IT(z)d(y)(z)||’dy (z) < oo for all y. But, if
IT(2)|| is (p-)essentially bounded, then this is finite for only almost all y (making
S(y) defined for only almost all y). In short, ||T(z)| x-essentially bounded implies
I T(2)|||s-1(y) #y-essentially bounded for almost all y (and multiplying an essen-
tially bounded function by a square integrable function yields a square integrable
function) but not all y necessarily. We can surmount this problem in two ways:
by considering as morphisms, almost everywhere defined T’s (and, subsequently,
S’s) or by making ||T(z)|| a bounded function (||T(z)|| bounded = ||T(z)}}|s-1(4)
bounded for all y and square integrability is preserved). The former is cumber-
some and, indeed, some of the constructions below would not be well defined (for
the first solution, we would have to require equivalence classes under almost ev-
erywhere equality). We choose the latter (departing from classical direct integral

theory only slightly) and consider the subcategory:

Definition 2.4.2 BMFHS(X) (etymology: “B” for “bounded”) is the subcat-

T(x)
egory of MFHS(X) whose morphisms, (H(a'),g)u—l(H'(:c),g’), have | T(z)||

bounded overxr € X. 0O



Remarks: 1. We say T is norm essentially bounded or norm bounded according
to whether T is in MFHS(X) or BMFHS(X).

2. BMFHS(1) = MFHS(1) = Sepiilb.

3. Substitution, as described in section 2.4.3, restricts to this subcategory (if

|7 (y)|| is bounded over y € Y, ||T(¢(x)}} is bounded over z € X). 0O
@

And so, we will describe BMFHS(X)—fL—)BMFHS(Y),
(H(2),G) — (D(y), D), with D(y) = /af‘(y) H(2)dp,(z). Now, D will have to
have a fundamental sequence. Using proposition 2.2.7 as a clue, we make the:
Assumption: There is a sequence a; € L*(X, A4, i) such that a,(z)|4-1,) is total
in each L3(X,, A,,p,). O
Example 1: (X,A,,u)—(—mi)—a(_‘(,A,/t). Here, L*(X,, A; tz) =~ C for each u.
We may take the family with one membera, = [1}: X — C. [
Example 2: (X, A, ;1,)——(21——»(1,2, counting) with (X, A, u) standard. Here,
X. = X so the total sequence for “each” L?(X,) is that for L}(X). O
Example 3: For ([0,1] x [0,1],£ x £, X x /\)M[O, 1], with p=projection
onto the first factor, take the sequence to be X[ pjx[c.d)y @, b,¢,d € QNI0,1]. Every
(square integrable) measurable function can be approximated by simple functions.
These, in turn, can be approximated by simple functions over rational
intervals. 0O
Remarks: 1. As consequences of this assumption, we have (X, 4,, ;i) standard
for all y and, indeed, L*(X) ~ /65 L3(X,)dv(y).
2. The assumption does not necessarily imply that (X, A, u) is standard as the
second example shows.
3. Example 3 requires a special property (density of the rationals) and, as such,

is not a “good” example. There is a better sequence for this as the next example

shows. 0
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(pl '(MXV)z)

Example 4: (X x Y, A x B, p x v)———(X, A, p) with (Y, B,v) standard. Let
b, be a total sequence in L*(Y) and put a,(z,y):= X x Y2y, Then,
@],=1(z) = b, is a total sequence for each z and /XxY lla(z, v)|I*d(g x v)(z,y) =
[, [ etz n)Pdu@idv@) = [ Ib)Iu(X)dv(y) < oo. O

And so, before defining the MFHS structure D, let us look at some specific
members. Let a,(z) be an MF of ONB’s for the L?(X,)’s and let s,(z) be an
MF of ONB’s for the H(z)’s. Each a,(z)s,(z)|4-1¢,) € D(y) (since @, and s, are
norm bounded over z (of norm < 1, in fact), they are p,-square integrable for each

y). By proposition 2.2.7, (a,(z)s ](.1:)|¢-:(y))51°3’)°:%1") forms a total set in each D(y).
Furthermore, y = (a,(2)s,(2)|s-1(y)|a(2)s,(2)]s-1(y)) =
/ . )(a (2)s,(z)|av(2)s,(2))dp, () is v-measurbale (see proposition 1.5.2). And
so, by proposition 2.2.5, there is a unique MFHS structure D, making the a,s,’s
MFV’s. D consists of all {d(y)) € [] D(y) such that y — (d(y)a.(z)s,(2)|g-1))
is v-measurable for all ¢ and ;.

Next, we put ((H(z),G)—(H'(2),G")) — ((D(y), D)=(D'(y), D’) with, as
we have already noted, (S(y)d(y))(z) := T'(z)(d(y)(z)). Then S is linear and
well defined for suppose dy = d; in D(y), then p,{z € ¢™1(y) | T(z)do(y)(z) #
T(@)i(y)(2)} < syl € $7(0) | dolw)(x) # h(y)(@)} = 0 (T(2) is a function for
each z).

Suppose [7(2)] < M, then IS = [ | IT)d(o)(a) () <
M [ )@ Pd() = MO So, S(u)d(s) € D(y) for al y and
IIS(y || is bounded overy €Y.

Finally, let (d(y))yey € D. We wish to show (S(y)d(y))yeyr € D'. It is
enough to show it for the “generators” of D: a,s,|4~1(y). We must show y
(S(y)as,lo-1y)|arsile=1(y)) is v-measurable (a,,ax from the same sequence, s, an

MF of ONB’s for G, s; an MF of ONB’s for G’). But, this is



A eheahl N

69

Y /d’_l(y)(T(x)a;(a‘.)sj(m)|ak(m)s;(w))duy(m). T(x)ai(z)s;(z) € G’ (T takes ¢’s to
g"’s) and ax(z)s](x) € G’ so that the function under the integral is u-measurable.
Thus, the function is v-measurable (again, as in proposition 1.5.2).

It is straightforward that / @ preserves composition and identity, and so, we
have a functor: ’

®
BMFHS(X)-——’fi———aBMFHS(Y).

Let us revisit the two examples at the beginning of this section. For / G),
a; = [1] and s; is an MF of ONB’s for G. So, a;s; is an MF of ONB’s forl g
(i.e. D, being the unique MFHS structure, is G). For [@, the totalness of a;s; is
exactly proposition 2.2.7. These examples represent two extremes in some sense.

There is an alternate description of D. Let D consist of all those
(d(y)) € [] D(y) for which there is a g € G such that g|g-1(,) = d(y) for all y. We
will show that D = D by showing that D is an MFHS structure (on the D(y)’s)
containing the a;s;’s and applying the uniqueness property of D. First, we have a

potion of “well definedness” for D:

t

Proposition 2.4.2 If ¢'|s-1(y) = d(y) = g(y)l¢-1(y) for al y, then p{z | g() #
g'(z)} =0.

Proof: u{z | g(z) # ¢'(2)} = /) pele € 7' (Y) [ Il (@) # glpmr) () }dr(y)

= [ odv() =0. ®

Proposition 2.4.3 D is an MFHS structure (containing the a;s;’s).

Proof: Axiom 1: y — ||d(y)||* = / y )||g(:c)||2cluy(w) is measurable as in propo-
o~y

sition 1.5.2, so the square root is measurable.

Axiom 3: the a;s;|4-1(,)’s form the fundamental sequence. This is immediate since,

for any g € G, (gly~1(y))vev € D by definition.
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Axiom 2: Linear combinations (with coefficients measurable functions of z) of
a;(z)sj(z)’s yield elements of G. Thus, from the a,s,|4-1(,)’s, we can form a se-
quence t;(y), such that y — (t;(y)|¢;(y)) is v-measurable, (t;(y)):i";lw(y)) is an ONB
of D(y) (and t;(y) = 0if i > dim(D(y))), and there are functions g;(z) € G such
that gils-1y) = ti(y).

Now, let (k(y)) € [] D(y) and suppose y — (L(y)|t( )) is v-measurable for

each 7. For each y, we have k(y) = Z(k(y) Z b,(y . Put

1=1

Zb , then this > converges for each z (i.e. g(z) € H(z)),
geg ( Z bi(d(x))g.(2)lg'(2)) = Y bi(6(2)){g:(2)|g(z)) is measurable for all

g' € G sinceit is a sum of measurable functlons) and g( ) s-1(5) = k(y) as required.

|
We will use this alternate description to discuss pseudo-functoriality. Let
(Pusy) (Yw:)
(X,.A,;t)—‘y—ﬂ( Y, B, V)———-»(Z C, p) be two disintegrations that satisfy the

assumption and such that their composition (9, 0.) does as well (at this point, we

do not, know whether disintegrations that satisfy the assumption compose; it seems
& [0

to be a difficult problem). Let/ / (H(z),G) = and/

(FLF). B = e D] [ Ndw)IPdve(e) < oo}/ ~, and F(z) =

{9€gG| llg(2)|*d6. (:L) < o0}/ ~. We now define E(z )—-—»F( ) and

T{ ¥ 13)
F(z)——E(z). Given d € D (in E(z)), by the alternate description of D, there

is a g € G such that g|s-1(y) = d(y). Put S(z)(d) = g. Conversely, given g ¢ F(z),
put T(z)(g) = (gls-1(y)) € D.

Lemma 2.4.1 d € E(z) iff g € F(z)

Proof: [ d@Pds)= [ [ llo(@)ldu(z)dvi(y) =

[, @0 (@).
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Lemma 2.4.2 dy ~ d; in E(z) iff go ~ g1 in F(z).

Proof:

do ~ dy in E(z)
iff vy € ¥='(z) | do(y) # di(y)} =0
it py{r € 67 (W) [go(x) # qr(x)} =00 a. y € p7'(3)
i T )| gola () v (y) =
it [ el € 670 Lanle) # ()} dvs(y) = 0
iff 0-{x € 747 (2) | go(x) # r(x)} =0
iff go~giinF(z). B

Lemma 2.4.3 S(z) and T(z) are linear 1sometries.

Proof: Linearity of S(z) follows from proposition 2.4.2. Lincarity of 7'(z) is
just “linearity of restriction.” That both are isometries follows from the chain of
integrals of lemma 2.4.1. B

Now, S(z)T(z) : g = gly-1(y) — g and T'(2)S(z) : d = g+ g|p-1(,) = d. And

so, we have proved:
Theorem 2.4.3 E(z) and F(z) are isomelrically isomorphic for each z. 1

We need to show S and T respect £ and F. Let e;(z) be a MI" of ONB’s for
&, then there are d, € D such that d,|y-1(;) = e,(z) and, furthermore, there are

gi € G such thal g,|4-1(,) = di(y). Let fi(z) be an MT of ONB’s for F, then there
are g € G such that g/|s-1y-1() = fi(z). We must show that z — (S(z)ei(2)|f;(2))
and z — (T(2)f.(z)|e,(2)) are p-measurable for each ¢ and j.

The first function is z / o {g.(z)lgi{2))dO,(z). The function under the
p1y=1(z)

integral is y-measurable so, as usual (proposition 1.5.2), the first function is
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p-measurable. The second function is z o—-»/ l / 1 )(gf(:z)Igj(:z:))dpy(:z:)duz(y)
vl(z) JeHy
and is measurable for the same reason.

And so, we have exhibited a pseudo-functor:

®

“Disint” ———Cat

(Disint is in quotes because of the problem of composability of morphisms that

satisfy the assumption).
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Chapter 3

Measurable Sheaves

3.1 Introduction

In this chapter, we will describe two equivalent Grothendieck topoi to be con-
structed from a measure space, first invented by Deligne. For a detailed description
of these sheaf categories, see [How| (for that matter, for a detailed description of
topos theory, see [PTJ1], or for a detailed description of Grothendieck topoi, sec
[SGAIV]). We will follow a slightly different path (looking mainly at the locale of
subobjects of 1) than [How], but will first recall a few results from his summary.
This chapter essentially follows the “Lawvere directive,” as described in the
introduction: understand the gros and petit aspects of categorical measure theory.
We proceed to attempt that understanding here. More accurately, we will describe
twe topoi and the locale of subobjects of 1. Strictly speaking, we will exglore
only petit aspects (sheaves on a single measure space and subchjects of 1 in that
topos). The Gros topos of a topological space uses as “site” open maps into the
space; the philosophy being that this constructs a topos out of topological spaces

in the plural). Exploration of such Gros aspects in the case of measure theory will
p P



74

await future work.

We begin with the basic, background material; the construction of the two sheaf
categories in the next section. In section 3.3, we describe the locale of subobjects
of 1 in detail. It turns out that this object is, in fact, a complete Boolean algebra.
In section 3.4, we describe some of the logic of the sheaf category. This category
satisfies SS, supports split. In fact, a stronger property holds, the category has
AC, the axiom of choice. This implies Booleanness and we see that our logic is

essentially classical.
Of course, the important aspect of this chapter is its description of one of
the approaches to categorical measure indexing. The idea, then, is to understand

Hilbert spaces in the sheaf category. In the last section, we discuss such entities.

3.2 Sheaves on a Measure Space

3.2.1 Definitions

Let (X, A, ) be a measure space. Though not immediately necessary, we will
assume that p(X) < co. We can make (A, C), considered as a poset category, into

asite. A countable family {4, € A}, willbea coverof A € Aif A, C A, Vn€ N
and p(A\ |J An) =0.

n=1

Proposition 3.2.1 These coverings define a pretopology on (A, C).
We require a lemma from basic set theory:

Lemma 3.2.1 . CCBC A= A\C=(A\B)U(B\C) and
2 B C Av= (UA\ UBY CUiA\B.). 8

Proof: (of proposition 3.2.1): We must show the constant family is a cover and

covers are stable under subcovers and pullback.
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{A} € Cov(A): p(A\ A) =0.
subcovers: Let {A,} € Cov(A) and {A,,,} € Cov(A,) for each n. Then
p(A\ UA,, = 0 and p(A, \ UA,‘,,‘) = 0 for each n. Put i, := A, \ UA,.,,., then

m

;LA\UA,,,,, < A\UA UUI\,I <Z”A\UA" +Z[£ K,) =0, the

first mequallty by the lemma
pullback: Let {A,} € Cov(A) and A’ — A € (A,C) (which means A’ C A).
Consider the pullback:

L
A X4 A,l

A,

A A

Now, in a poset, pullback is intersection and p(A’\ [ J(A'N A,))
=p(A\A'N(JA) S u(A\JA,) =0 1
Recall, " "

n

F
Definition 3.2.1 A presheaf is a functor (A, C)?-——Set. A sheafl is a presheaf,
F, such that for all covers {A,} of A,

A) — [[F(4.) = [[ F(4. N A,)

nm

is an equalizer. 0O

Notation: “|4" denotes, F/(A' C A), the restriction to A’ C A. We also write,
when required, p4, : F(A) — F(A"). O
The sheaf condition says that if we have elements x,, € F'(A,) which are ccrm-

patible (i.e. Zn|la,nan = Tmla,na, Yn, m), then we can “extend” to a unique

z € F(A).
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Notation: PSh(A) denotes the (functor) category of presheaves on this site.
Sh(A) denotes the full subcategory whose objects are sheaves. R

Sh(A) is an example of a topos with no poiats (if p{z} = 0 Vz € X); see [How,
p-47). In general, representables are not sheaves, for consider the example:
(Counter)example 1: ([How, p.27]):Let A, A’ € A, AC A, A # A, and
#t(A'\ A) = 0. Then A(A’, A) = 0 and A(A, A) = 1. Now {A'} is a cover of A, so
if A(—, A) were a sheaf, we would have A(A', A) = A(A,A). O
The associated sheaf of A(—, A) is ([How, p.27}):

(A=, A))(A) = { LA A=
0 else

“u(A’\ A) = 0,” in the above, suggests an alternate site and an alternate sheaf
category. We begin with the o —algebra A, and mod out by the ideal N of mea-
sure zero sets. Modding out means, in this case, with respect to the equivalence
relation A ~ A’ iff 4(AAA’) = 0 where ALA' = (A\ A’) U(A’\ A) denctes the
symmetric difference. A/A is made into a site by giving A — B iff there are two
representatives, Aq of A an)d By of B, such that Ag C By. Given A — B — C,
with Ay C By and B, C C;, we get A — C by AgN B, € By N B; C C; (note:
By ~ By and Ag C By = Ao = Ao N Ba ~ Ao N By). We say {A,}o-, is a cover
of Aif UA_,, = A (note: we may define UZ: = D—/-{; where Ay, is any choice of
represer;‘tatives; since the countable union of measure zero sets has measure zero,

this is well defined). We get two new categories PSh(A/N) and Sh(A/N).
Proposition 3.2.2 Sh(A) ~ Sh(A/N)

Proof: Use the axiom of choice to pick a particular representative r(A4) of each

equivalence class A € A/N. The equivalence is given by:



-1
-]

()
Sh(A)t=———= Sh(A/N)
{ )

For F € Sh(A), put F.(4) = F(r(A)) and for G € Sh(A/N), put G*(A)
=G(A). &
Notation: Because we will work with Sh(A) extensively, and think of it as de-

pending on X and as “the” category of sheaves on a measure space, we write

MEAS(X) := Sh(A) and L(X) for its locale of subobjects of 1. O

3.2.2 Examples

We now give an extensive list of objects of M EAS(X). More (operator theoretic)

examples will be described in the last section. We have already noted that:

, 1 p(A'\A)y=0
Example 1: a(A(—, A))(A') := is a sheaf. Representables
) clse

are not sheaves, in general (but they are in Sh(A/N)). We think of a(A(—, A)) ¢
as the “representable,” however. O

The empty family is a cover of § € A. So, if F is a sheaf, we have:

F(@)——»H:lZ':kH:l
] (]

which implies that F(8) = 1.

In general, “constant” presheaves (which means F'(A4) = K if A # () and FF() =
1) are not sheaves. Suppose F is a sheaf with F(A) = K, VA € A. Suppose,
further, that A, UAg = A with A, nonempiy (A 1s “disconnected”). Then {A; —

A, Ay — A} is a cover of A and the sheaf condition

F(A) = F(A;) x F(A)) =3 F(A;) x F(0) x F(0) x F(A,)

which is

. S
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F(A) — F(A)) x F(A;) =3 F(A;) x F(A2)

implies F(A) 2 F(A,) x F(A;) (or the diagonal from K to K x K is an isomor-
phism,so K =0 or K =1). If K =1, we have

Example 2: The constantly 1 sheaf: define 1(A) := 1, VA € A. Then 1 €
MEAS(X). This is a terminal object of M EAS(X). We shall return to this sheaf

in section 3.3. 0O

And, if K = 0, the other “constant” sheaf is:

1 ou(A)=0 o
Example 3: 0(A) := is a sheaf. It is an initial object of

0 else
MEAS(X). Notice that this is e(A(—,0)). 0O

Example 4: Let (Y, B) be a fixed measurable space. Define Mbley(A)

= {(A0, ) | Ao € A, Ao C A, W(A\ Ao) = 0, (Ao, A1) ——(Y; B)

€ Mble}/ ~, with (Ao, f) ~ (A, ') iff u{a € AoN A} | f(z) # f'(&)} =0
Remarks: 1. If f and f’ are measurable, then {z | f(z) # f'(x)} is measurable.
2. The (Ay, f)’s seem somewhat cumbersome but they are necessary for if we
simply try M(A) = Mble(A,Y)/ ~, say, then for u(A) =0, A#0,and Y = §,
there are no maps in M(A) and we want there Lo be one. However, this is the only

problem and, if ¥ # 0, we may use Mbley(~-) = M(-). O
Proposition 3.2.3 Mbley(~) is a presheaf.

Proof: Suppose A’ C A and let (Ao, f) € Mbley{A). Then, we claim, (Ag N
A, flagnar) € Mbley(A').

p(A"\ (A" N Ag)) < (A \ Ap) = 0 and the restriction of a measurable function
is measurable. Now, suppose (Ao, f) ~ (Ag, f') in Mbley(A). Then u{z € (Ao N
AV (A0 A) | flo) # (@)} = ple € AN AYN A | f(2) # F(2)} < plz €
AN Ay | f(2) # fi(e)} =0. B



Proposition 3.2.4 Mbley(A) is a sheaf.

Proof: Let { A,,}:C':l be a cover of 4 and let Ag,, f.) be the representatives of a
compatible family in the Mbley-(A)'s. Now, by lemma 3.2.1, A\ U Aon

A\UA U UA,,\UAOn)C A\UA,,)UU(A,.\AO,.) bo m 4\UA0,.
< u(A\ UA )+ Z;L(Aﬂ \ Ao.) = 0. Ne\t let Cn = Aon \ U Ao lhen the

I<n

C,'s are pairwise clls_|omt Nan UC U Aon. Define F . UC,. — Y as follows:
T € UC = z is in a unique C,,, put f( ) = fu(a ) I‘hcn flew = fale, by con-
structlon and f is measurable for if B € B, then f™! Uf" (BYNC,) € A

We need only show that this definition of f respects ~ (wluch will also show
uniqueness of the extension). Suppose (Ao, fu) ~ (A, gn), n =1, 2, 3,... Then
(Cus falca) ~ (Dnygnlp,) where D = A\ | Au, for p{z € Cun Dy | fo #
) Sp{e € AonN Awn | fu £ gu} =0.

We claim UC f) ~ UDn,J Let x € UC" ﬂUDn and f(2) = fu, (),

9(2) = gny (). Then f(2) % g(2) = fur(¥) # guy (2) O fug(®) # fu, (2). Bach of

the latter two occurs on a set of measure zero and taking the union over ng,n, =
1, 2, 3,..., we get f~gasclaimed. 1§

As special cases of this, we have
Example 5: R(—) := Mbleg(—) where (R, L, A) is the (Lebesgue) real line. [
Example 6: C(-) := Mblec(—) where (C,LQL, A@)) is the (Lebesgue) complex
plane. 0O

In the last section of this chapter, we will see that R(—) is the object of
(Dedekind) reals in MEAS(X) and C(—) will be a complex numbers object (and
a Hilbert space object, the “one dimensional” space over itself). Obvious measure
theoretic constructions may not always be interpreted as sheaves, however:
(Counter)example 7: L*(=) defined by L2(A) := {Ay—15C| Ao € A, Ao C A,
(A \ Ag) =0, /A|f|2dp < 0}/~, is not a sheaf. Let X := [0,1], A := (0,1)

e, s b
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. 1 1 . In 1
with cover A, := (——, —) (all with Lebesgue measure). Let A,——C, z+— —,
n+ln z

Then, on each piece, / |fa]*dp < 00, but extending to (the only possible function)
A

f(z) = % on (0,1), we see that /0l |f|?dp &£ oc.

Of course, this example works for any LP space (p > 1). L%(X,C) is a Hilbert
space in real life, so we see the difficulty in studying Hilbert space objects in
MEAS(X).

L*(-) is a presheaf, however (rest'ricting a square integrable function to a
smaller set yields a square integrable function), and it is easy to compute its
associated sheaf. L?*(—) C C(—) as presheaves = (aL?)(—) C (aC)(-) = C(-)

(a preserves monomorphisms and C(—) is already a sheaf). In fact,
Proposition 3.2.5 C(—) is the associated sheaf of L*(-).

Proof: Let A—-j——->C be measurable. We must exhibit a cover of A such that
[ € L? on each piece. Let A, := {z||f(z)] < n}. Then each A, is measurable
and A = n(_jl A, and -/An |f(2)]Pdp < -/A.. n’dp = n*u(A,) < oo ( u(X) < oo is our
standing assumption). H§

In a similar manner, C(‘-) is the associated sheaf of all the LP(—) presheaves.
We may think of C(—) as acting the role of all L” spaces simultaneously in
MEAS(X). O

Example 4 suggests another example.

Example 8: MOR(A,Y) := {Ag—5Y| 4o € A, Ao C A, u(A\ Ao) =0,
f € MOR}/~ is a sheaf. O
There is an interesting function from MOR(A,Y) to Mbler(A) which is con-

structed using the Radon-Nikodym theorem. Recall,

Theorem 3.2.1 [Roy, p.238]: (Radon-Nikodym): Let (X,A,u) be a o—finite

measure space and v a measure defined on A such that v < p (i.e. p(A) =0
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= v(A) =0). Then there exists a nonnegative function f, such that VE € A,
v(E) = /Efdu. [ is unique in the sense that if g is any other function with this
property, then g = fae. pu. B

Let A—{——rY € MOR(A,Y). We get another measure on (Y, B) by a(B) :=
p(f~Y(B)). Evidently, @ <« pu since f € MOR so, by the Radon-Nikodym
theorem, there is a Y—20R such that o E) =j g(y)dv. Composing, we get
A—{-—->Y———€———+R. That is, we have a function :
ll/IOR(A,Y)———E——-»]\‘IbleR(A), f— go f. Unfortunately, this map is not natural

in A as the following example shows (we thank Ian Putnam for suggesting this

example). Consider:

MOR(A,Y) -2+ Mble(A,R)

ot ot

MOR(A,Y) ~—= Mble(A', R)

!
Let X = A =[0,1)? and ¥ = [0, 1] with Lebesgue measure. Let [0, 1]*———[0, 1],
(z,y) — = be the first projection, so that 74 0 ¢4, is [1] for any A’. Suppose

h
[0,1]——[0,1] is a continuous function and let A’ be the set under h:

h

/)

Then 74 0 p4/(z,y) = h(z) # 04 0 Ta(z,y).

If we try to interpret the collection of disintegrations from A to Y as a sheaf,
the same problem as with L2(~) arises.
(Counter)example 9: Disint(A,Y) := {(f,(A|a)y (#46)y) : Ao — Y|
f € Disint}/~ is not a sheaf.
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(fisy)
For two disintegrations, (X,A,u)—i—»(Y,B,u) and

(X, A, ;t)——(—gfL(Y,B,V), we say f ~ g if two conditions hold. The first is

iw{z | f(z) # g(2)} = 0. Let G = {z | f(z) = g(z)} be the “good” set for f and g.
(flG.By)
We can restrict f and g to G to get disintegrations, (G, Alaulc)ﬂ-—(;—y——*(Y, B,v)
(9lGray) \
and (G, Alg, ul6)————(¥,B,v). On G, f = g,50 7' (y)NG = g™ (4y)NG for

all y € Y. The second condition we demand for ~ is that the measure structures

are equal: f, = a, for all y € Y. Furthermore, we say (Ao, f) ~ (A1, f') in
Disint(A,Y) if u(AoAA;) =0 and f|agna, ~ f'|aona, as disintegrations.

We have shown (in chapter 1) that restriction of a disintegration to a subspace
yields a disintegration. Thus, Disint(—,Y) is a presheaf (on A). Furthermore, for
the sheaf condition, this allows us to choose as representatives for a compatible

family, (Ca, (fa, (#lc, )y) with the Cy’s disjoint (Cn = Aon \ | Aor as in example

1<n
4 above). Define f :| JCn — Y, (tluc,)y) as follows: Let z € C, (unique n) and

put f(z) = fu(e). Then f is measurable as in example 4.

Lemma 3.2.2 (plue, )y is a measure for each y and y — (ptluc, )y s v-measurable.

Proof: (p!uc,),(0 N U Ca N 71 w)) = Y (e )y(@NCon £ (y)) = 30 =0.
HUC)(UNUC 0 F1(3) = - S (tluca)o(Ki NG £ (3) = 30

n o
= (#luc.)y (K nJCa 0 f7H(y))-

Sinc'e (tluc,)y 1s a smfllm of nonnegative y-measurable functions (the latter is axiom
1 for the (p|c,),’s), it is nonnegative and y-measurable. 1

Remark: If the (|c,),’s are bounded, there is no guarantee that these are
bounded over n. Thus, Disint(—,Y) is not a sheaf (this is essentially the same
problem as with L%*(—)). But, it almost is; everything works except boundedness

(the extension respects ~ and even axiom 2 holds). O

Lemma 3.2.3 Ariom 2 holds for (¢|uc, ),
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Proof:

[ (oAU Can 17 )dr(o)
= % [(tle (4N Cun 71 @))dv(y)  (MCT)
= Z(II‘C,,(A NC,)) (Axiom 2)

n

#luc.(ANJCy) (g a measure). W

Finally, suppose (Chn, fn) ~ (Da,9.) and let G, be the good sct for f, and g,.
Then G = | J G, is the good set for f and g, so (G, flg) = (G, glc)

3.3 The Locale L(X)

3.3.1 Subobjects of 1

As we noted above, the constantly 1 sheaf is terminal in MEAS(X). Write
L(X) = Sub(l). A subpresheaf, F — G, means F(A) C G(A), VA € A (lim-
its in MEAS(X) = Sh(A) are as in PSh(A); in particular, monomorphisms are
the same). So, U a subpresheaf (= subfunctor) of 1 means that U(A) C 1, VA€ A
which implies U(A) = 1 or U(A) = 0. We consider U as a “characteristic function,”
put S := {A|U(A) = 1}, and translate I/ € Sub(1) in terms of S.

Subpresheaf:



N e ]

S

If A€ S, (i.e. U(A") = 1), then we must have U(A) = 1 which means 4 € S; i.e.
S is downclosed.

Shieaf condition: Let {A,}32, € Cov(A), then

U(4) — TLU(A) = T U(AsN An)

n=1 n,m=1

is an equalizer. If any U(A,,) = 0 then [JU(A,) =0 and [JU(A. N A,.) =0 (in
particular, U(A,, N A, ) = 0) so we have

UA) — =10

which implies U{A) = 0. If all the U(A,) =1 (i.e. A, € SVn), then H U(A,) =1
and H:U(A,1 N An) =1 (since U(An) =1 — U(A. 0 Ap) = U(A. N A,) # §).

So, the sheaf condition says

U(A) —1=31

is an equalizer which implies U(A) = 1 (i.e. A € §). And so, S is closed under

countable unions and sets of measure zero.

Theorem 3.3.1 The elements of L(X) form a set of generators for MEAS(X)
(i.e. MEAS(X) satisfies (SG) of [PTJ1,p.145]).

We first require an obvious but important lemma.

Lemma:.3.1 Let A’ C A, p(A\ A') = 0. Then p} : F(A) — F(A)) is an

isomorphism.

Proof: A’ covers A so

F(A) — F(A) == F(A'n A')
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being an equalizer implies F(A) — F(A') is an isomorphism. B

Remark: Not only are F(A) and F(A’) isomorphic, they are canonically isomor-
phic. 0O

Proof: (of theorem 3.3.1): Let a,8: F — G € MEAS(X) with a # 8. Then

there is an Ag and an z € F(Ag) such that oy, (x) # B4, (). Let Usy(A)

1 ifpu(A\A¢) =0
= i (A o) be in L(X). We define UAO(A)——":‘—»F(A) as follows: If

) else
Ua,(A) = 0, define 54 as the unique map. If Uy, (A) = 1, consider the composite:

A -
. (pﬁnAo) !

Pl — ™ F(AN Ag)—"_, F(4)

(note: (A \ (AN Ag)) =0 and AN Ap C A4; apply lemma 3.3.1). Define na(x) :=

(pﬁﬂAo )_1p‘::?’l.40 (.’U).

N4 is natural: Let A’ C A and consider:

UAo(A) F{A)

Uas(4)

F(A)

If Uso(A) = 0, then both composites are the unique map to F(A’) so the square
commutes. If Uy (A) = 1, then Ug(A) = 1 (0(A\ Ao) = 0 = p(A'\ Ao) =
0) and we have + 1+ (o) i () = P (finse) ol (2) a5 the top right

composite and * > * (pj:n‘%)"’pﬁ?n_,,n(x) as the left bottom composite. Now,

S e S G R

S TR W W T VR Y T 5.

R

IR AR B R

o

Gl

P
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Ao A -1
F(Ao) p.ﬂlﬂ.‘lo F':;A N AO) (/’Aﬂ.“a) F(A)
/
Pjs’mo Pfxpﬁffo P
F(A'N Ao) F(A")

(p:“:ﬂ.‘io )-'.1

commutes by functoriality of F' (the triangle commmutes and the trapezoid with-
out inverses commute by functoriality of F, so the trapezoid with the inverses
commutes).

7 separates a and 3: Uy, (A) o »F(Ap) T »G(Aop) is

Ao ~1 A . N4y Bag .
* = (pAoﬁAo) pAonAo(m) =T 0"‘to(m) a‘nd [’IAD(AO) ;F(AO) }G(AO) 18

*x o T f40(2) # aay(2) as required. R

3.3.2 L(X) as a Locale

We saw that L(X) = {S C A| S downclosed, $ contains measure zeroes, S closed

under countable unions }. Explicitly, these mean:
1. downclosed: A€ 43S€S(ACS)=> A€ S
2. measure zeroes: A€ A, u(A)=0=A€S

3. unions: 5, €S = US,' €S

i=1
L(X) is the locale of subobjects of 1 in the (localic) topos MEAS(X). It is a
poset under C. In the next section, we shall show that L(X) is a quotient and a
complete Boolean algebra. It is instructive, however, to study it as a locale first.
We will continue, in the next few paragraphs, to describe various operations on
L(X) and then discuss functoriality.
Join: SVT ={SUT|SeS, TeT}
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S U T is not closed under binary unions for pick $ € S\T, T € T\ S
then SUT is not in SUT. So, we must “close up” § U7 under binary unions
to produce the larger SV T. SinceS C SUT C SV T, we see that the latter
contains the measure zero sets. Furthermore, suppose K C K, U K; € SU T, then

K=K nK)U(K;nK)and KN K; € SUT since each is downclosed.

More generally, \/ S; = {|J I; | K; € |JSi}. WehaveS, CTVie \/S; CT.

i€l =1 i€l i€l

0o .
Suppose 8; € T Vi and let | J K; € \/Si. Then K; € S;, CT Vjso|JK; €T
Jj=1 i€l
since 7T is closed under countable unions. The coiiverse is trivial since §; C \/ S; Vi

icl
g
Meet: S AT = SN T, more generally, /\ Si= ﬂ Si.

i€l i€l
Both § and 7 contain the measure zeroes, so S A T does. Next, suppose A C

KeSANT. Then ACKeS=> AESand similarly w1thTwhenceA€S/\T
Finally, let A; € S/\’TthenAES=>UA € S and A; €T=>UA eT =

i=1 i=1
U A, eSAT.

i=1
Now, suppose R C SNT then R € S and R C 7". Conversely, suppose R C S

and R C T then R € SN T (and similarly for arbitrary infima). 0O
The above shows that L{X) is a complete lattice with the following definitions
of top and bottom.
Top: Ix :=A O
Bottom: Oy := N :={A€ A|u(A)=0}. O

Locale: We must show SA\/ T; = \/(SAT).
iel el
Let A € \/S/\’I}thenA: U K;, K; € U507§=Sﬂ U’I},sol\'j € S and
i€l Jj=1 il i€l
K; e U'T; whence N; € S A \/7: and so A€ S A \/7:. Conversely, let A € SA

\/']}then A€ Sand A€ \/7} or A= U K;, K; € U']}. Now, each K; € USﬂ’]}

1=1 134

R R AR

a5

A S D R S I P SR TR e

>

peeisgd

B e T S B e e e R B S R S B R T YR VR R e

Sl
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soAe\/SAT O

]
Implies: The above shows that S A — is cocontin ous, which, of course, is true in

~

any .ocale, so the adjoint functor theorem gives its right adjoint as:
SoT=\{ReLX)|SARCT}. O

Not: Recall that in a Heyting Algebra (iu particulai, a locale) H, ~a := a — 0.
So, in L(X), -8 =8 = 0y = \/{R € L(X) | ENR =0x}. O

Remark: There are better descriptions of implies and not. Let A € A and put

¢

- e etk AN T Lo S o g i)
o e gt e e o, A e AR e S AR

-

Uy = {A € A| A"\ A) = 0} = the smallest element of L(.X') which contains A

(in section 3.3.4, we will study this in detail and will denote it by A). Then

Ae(§—T) & ULCS—T

& L{\/\SQT

g TR SO e a0

& VSES, pu(S\A)=0=SeT

i and

Ae-S & AeS—0

& VSeS, w(S\A)=0=p(S)=0. O

A

et o
»;5_{.‘:‘"; }*y?&;*r'g?h.ﬂt T

Next, we look at the action of L on MOR morphisms. Suppose

e

e W BE, £ T
35, Bre By p e BT SR

o

EEE

(X, A, ,u)——-—f——r(Y, B,v) €MOR. We have the direct image of a geometric mor-
phism IVIEAS(X)——{.——»MEAS(Y) given by (f.F)(B) := F(f~'(B)) for I' €
MEAS(X) and B € B.

L(X) is the locale of subobjects of 1 € MEAS(X). To each § € L(X), there
if ffY(B)eS

else.

1
corresponds a sheaf Us € M EAS(X) defined by Us = {

SEASET,

el s L
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L if f7Y(B)eS
(B So, this suggests a function

Now, f.Us(B) = Usf~'(B) = {

0 else.

L(X)— = L(Y); S = {BeB]| f-'(B) € §) =: K.
Proposition 3.3.1 K € L(Y)

Proof: The three axioms:

1. downclosed: Suppose B’ C B € K. Then f}(B') C f~(B) € S but § is
downclosed so f~!(B’) € S, whence B’ € K.

2. measure zeroes: Suppose ¥(B) = 0. Then p(f~'(B)) = 0 since f € MOR. So,
J~Y(B) € S since S contains measure zeroes, whence B € X.

3. countable unions: Suppose B, € K. Then f~(|J B.) = |J f"(B.) € S since S
=1

=1

(o]
is closed under countable unions. So U Bek. 8

1=1

Proposition 3.3.2 1y = 1y cnd fo= 3.

Proof: ix(S)={Be B|1y(B)e S} =S.
Consider L(X, A, ) —— L(Y, B, v)——L(2,C, p)

gf(S)={CeC|fg7}(C) € S} and §(f(S)) = §{B € B| f(B) €S} =
{CeC|lg(C)eK}={CeC]|f1gYC)€ S} as required. 1

Proposition 3.3.3 If f,g: X — Y are measurable and agree except on a set of

a

measure zero, then f = g.

Proof: Let D = {xr € X' | f(z) # g(x)} and let f(S) = {B € B| f~(B) € §}
=:K and §(S)={Be B| g7 (B) €S} =: L.

We will prove X' C L, the other direction being similar.

Let B € X. Now, BC (B\D)UD and ¢7}(B) C (¢"Y(B\ D)) Ug™*(D). But
g~ (B\D) € S since g"!(B\ D) = f~Y(B\D) € S and g7*(D) € S since g EMOR

and § contains the measure zeroes. And so g~'(B) € S, whence K C L. 1

O T BTt @ e
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Thus, f corresponds to an equivalence class, although we won’t explicitly con-
sider it as such. In the examples below, we shall see that, in general, f =g#H f~

g, but it often does.

Proposition 3.3.4 f has a left adjoint, f, i.e. f(T) C S iff T C f(8) for
S e L(X), T € L(Y).

Proof: By the adjoint functor theorem for posets, we need only show f preserves
order and infima; in which case f(T) = A{S € L(X) | T C f(S)}
=n{S e L(X)| T C f(5)}.
order: Let S C 8’ and let B € f(S). Then f~Y(B)e S = [ (B) e &
= B e f(S).
infima: f(S:)={BeB|f(B)e(\S:}={BeB|['(B)e S Vi}]. On the
other hard, N fS, =N{BeB|f'(B)eS}={BeB|[ ' (B)eS Vi I
Remark: 1. If (X, A, ) ——(¥, B, v) is in MOR, then f~" is a morphism of sites
(i.e. preserves covers; see [B&W, p.233]) and so yields a gcometric morphism
MEAS(X)e== MEAS(Y). And, thus, we could have gotten f by considering
., F(G)(A) = a(colimacy-1p)G(B)). O

Before checking the left exactness of f, we give another description, indeed a

working definition.
Definition 3.3.1 f(T):= {A€ A|3B €T such that p(A\ f~*(B)) =0}. O
Lemma 3.3.2 f(T) € L(X).

Proof: measure zeroes: Put B = 0. Then f~'(B) = 0 and p(A\ f~'(B)) = u(A).
If u(A) = C then A € f(T).
downclosed: If A’ C A and u(A\ f~!(B)) =0, then p(A’\ f~'(B)) =0.

y

e
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countuble unions: Let A; € f(T )then 3B; such that u(A;\f~'(B;)) = 0. We claim
that U B, is the “B” for A = U A UA \ S UBY) < A\ (U BY))
-Zu AUSB )<ZuA \ f71(B.)) = )_0 =0 as required (the last in-

equality follows from lemma 3.2.1). B
Lemma 3.3.3 f - f

Proof: We wish to show f(T)CSif 7 C f(S)or {A€ A|3IBET

WA\ [Y(B)) =0} CSif T C{BeB|f'(B)eS}).

=:Let TeT. u(f~(B)\ f7Y(B))=0so0 f(T) € f(T) and so

J~NT) € S, whence T € f(S).

«<: Let A € f(T). Then, 3B € T with u(A\ f}(B)) =0. Now, B€ T =
fY(B)eSand AC (A\ fSYB))U fY(B). But, A\ f~}(B) € S since it has
measure 0 and f~!'(B) € § so A € S since § is closed under binary unions and is

downclosed. W
Lemma 3.3.4 [ is order preserving. B
Lemma 3.3.5 f is left ezact.

Proof: We must show that f sends ly to 1y and preserves finite, nonempty infima.
Top: f(B)={A€ A|3IBeB, p(A\ f~}(B)) =0}. Let A€ A Then AC X so
(AN f~H(Y)) =0 (and Y € B ) so A € f(B) whence f(B) =

N: fiTNU)={A€ A|IBeTnU, n(A\f'(B) =0} ={A€ A|3B¢
T and Be U, p(A\ f7Y(B)) =0}

On the other hand, f(T)N fU) ={Ae A|IB' €T p(A\ fY(B))=0}n{Ac
A|3B" €T, u(A\ f(B") = 0)

Now, f(TNU) C f(T)N f(UU), for the B works as both a B’ and a B”. Conversely,
let A € f(T)Nf(U)andlet B = B'NB". Note that B € TN and u(A\B'NB") =
A\ B'UA\ B") < p(A\ B')+ u(A\ B”) =0+ 0 = 0 as required. N
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Remarks: 1. The above proof is easily extended to show that f preserves count-

able (but not arbitrary) infima.

2. Since f is a right ad;oint, it preserves 0 but we can prove this directly:
fOy)=0x: f(0y)={Ae A|IB€ 0y, p(A\ f'{B)) =0}

C: Let A € f(Oy). Since B € 0y and f is MOR, p(f~'(B)) = 0s0 A C A\
fTUBYV fTUB) = u(A) < p(A\ f7H(B)) + p(f(B)) =0+0=0.

D:Take B=0€0y O

In view of the above iemata, we have proved the following:

Theorem 3.3.2 f is the inverse 1mage of a continuous morphism (etymology:

[PTJ2, p. 39]) L(X) — L(Y) which preserves countable limits. 8

L(-)
And so, we have a functor: MOR—————Loc. Recall that if f ~ ¢, then

f = ¢ and adjoints are unique (up to isomorphism, which is = in case the 2-cells

L(-)
are C ). So, we have a functor MORE —— Loc.

3.3.3 Examples

Above, we implicitly referred to an example of an L(X). It is time for some more

detailed examples. ‘
Example 1: L(0,{0},0) = 1 is initial Loc. Let L € Loc. Define lit:.-;[, by
i.0)=1€L, *(l)=0forallle L. O "’
Example 2: L(1,2,counting) = 2 = {0,1} is terminal in Loc. Tor L € Loc,
define L:=.s2 as t*(0) =0, t*(1) = 1, and t.({) = (1) II # 11 0

Example 3: Examples 1 and 2 are special cases of (X, P(X), counting). In partic-

ular, L(N,P(N), counting) = {P(A) | A C N} (since N is countable). Although

. . . - . \d
this is not a finite measure space, we will study it in some detail. P(N)—— L(N);
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A+ P(A), is an isomorphism of locales (i preserves \/, N. Oy = {0}, and
In = P(N)).

Let N3N be a Yunction (every function is measurable and MOR ). There is

a nice description of f(T).
Lemma 3.3.6 f(T)={A€ A|3Be T, AC f~'(B)} in this case.

Proof: For the counting measure, p(C) =0=C =0. 1

Furthermore, we have a “fullness” of L(-):

Theorem 3.3.3 lLe! L(N) L(N) preserve binary A = N, Oy, Iy, and

< !
countable \/ Then a = f for some N——N.

Proof: Elements of L(N) are P(A)’s so let a(P(z)) =: P(A;) for € N.

The A.’s are disjoint for

P(A:)NP(A,) = oP(z))Na(P(y))
= «a 7—"(1:) NP(y))

= ofP({z}N {¥}))
_ {a(m), z=y
a(0) t#y

_ A, z=y

- { 0), c#v.
Furthermore, the A,’s partition N: P(N) = a(P(N)) = a(P(\/ )
=a(V P@) = V a(P(x) = \ P(4,). So,ify € N, 2o such that y € A,
for, if mot, then \;VP )£ P(N). Define NN by fw) = zify € A

Then f = a. We need only check that f(P(z)) = a(P(z)) = P(A;) Vr € N
[(P@)) ={A€ A|3BeP(x), AC f(B)



A

C: Let A € f(P(2)). The ouly B's are B = and B = {«}. If A C f~1(0) then
A=0=>ACA, =>AcP(A;) HAC [~ (z) then AC A, = A € P(A,).
2: Suppose A C A;. Then f(A) C f(A,;) = {z} and A C f7'f(A)
= [7'(@) = A€ J(P@). W
Remarks:
1. This proof may be modified to prove f =g = f ~ g (which means f = g¢) for
fig: N = N. )
2. It turns out that L(N)*——{—L(N) is f(P(A)) = P(V[A)) siuce {~1(B) C Aiff
B C V;A by definition. O

It is not true, in general, that f = § = [ ~ ¢ as the following counterexample
shows.
(Counter)example 4: Let X=——!——k Y with Y indiscreet. If v(Y) # 0 then f
and g are both in MOR. Now, fgz g says f(S) = §!S), VS which says {B €
B|f~Y(B) € S8} = {B € Blg~'(B) € S}. For any functions f and g we have
f10) =0 =g'(0) and 1Y) = X = g"}(¥), so f = §. But, there are many
pairs for which f £ ¢ (if Y] >2). O
Example 5: Countable cocountable Space: Again, this is a “pathological” exam-
ple and it isn’t of finite measure.

Let X be an uncountable set and let A consist of all subsets which are cither

countable or cocountable, the complement of a countable set. This is a o-algebra.

0 A tabl
Define u(A) = countable

oo A cocountable.
Let § € L(X). One possible S is the collection of all countable subsets (it is

0x j. Now, suppose A € S with X \ A countable. Then X = AU (X \ A) € S so0
S = A. Thus, L(X) has only two members, 0y and ly. In particular, L(—) is not
1-1 in the sense that we may have L(X) = L(Y) for X # Y, viz. examples 2 and
5 0O
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In section 3.3.5. we will look at another example, the Lebesgue unit interval,

in some detail.

3.3.4 L(X) is Boolean

In this section, w2 will show that the locale L(X) is a complete Boolean Algebre.
That is, L(X) satisfies -=§ = § VS € L(X) (recall: a locale is, in particular, a
Heyt.: g algebra, and a Heyting algebra H is a Boolean algebraiff ~—a = a, Ya € H
[PTJ2, p.9]). In fact, we will show that LX) is simply the quotient, A/N, where
N is the collection of sets of measure zero in X. To do this, we consider the
function () : A——L(X); A:= {A; € A| (Ao \ A) = 0}. A is to be thought
of as a downclosure of A € A, a “best approximation” of A in L(X). We first

check that () is well defined.
Lemma 3.3.7 A€ [(X), VA€ A.

Proof: 1. measure zero: if B is of measure zero, then u(2\ A) =0, so B € 4.

2. downclosed: Let Ay € A and B C Ay Then p(B\ A) < u(Ao \ A) = 0, whence
BeA.

3. countable unions: Let {4,}%, be a countable family of elements of A. Then
#((UAINA) = p(J(A\ A) <D (A \ A) =0, whence UA, € 4. B

Two important examples are:
Proposition 3.3.5 X =1y = A and 0 =0y = N.

Proof: X = {Ag | u(Ag\ X) = 0}. But, u(Ag\ X) =0, VA, € A.
0= {As (A0 \ ) = 0} = {Ao| u(A0) = 0} =0x. N
To prove L(X) is Boolean, we will proceed in two steps: 1. the collection of A's

is a Boolean Algebra in the operations inherited from L(X) and 2. every S € L(X)

is an A for some A € A.
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Proposition 3.3.6 |. AUB=AV
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Proof:

1. AUB = {Co | p(Co \ (AU B)) =0} and AV B = {4 | p(Ay \ A) = 0}

V{Bo | n{Do \ B) = 0}.

C:let u(Co\ (AUB)) =0. Now, AUB € AV B so Cy€ AV B since AV B is
closed under extension by a measure zero set.

Dilet C € AVE. Then C=C,UCs, Ci € Aand Gy € B. So u(C\ (AU B))
< (G \ (AU B)) + u(C2 \ (AU B)). Now, C € AUB so u(Ci \ (AU B)) =0
(i.e. Cris an Agora By and A C AU B, B C AU B; subtracting off a la- er set
is smaller) And so, p(C \ (AU B)) = 0.

2. ANB = {Co | (Co\(ANB)) =0} and AANB = {Do | i(Dy\ A) =0

= (Do \ B}}.

C: p(Co\ AN B) = u((Co\ A)U(Co\ B)) < u(Co\ A) + u(Co\ B) = 040 =0.
2: ANBC B= Do \AC Do\ (AN B)sopu(Dog\ANB)=0= pu(Do\ A)=0.
Similarly, with (Do \ B). B8

Corollary {i02.): AANB =0y if y(ANB)=0. &

Lemma 3.3.8 1. ForS€ L(X), S=\/ C and
ceS
2. ACBiff yl(A\B)=0

Proof: 1. C: Let C € S. Now,C € Cs0 C € \/{C | C ¢ S}.

D: Let Co € \/{C | C € §}. Then Co = G Cr, CL e YT |C € S}. Sis closed
under countable unions so we need only :l?:)w Ci € S Vk. But, Ci, € C for some
C € S (in particular, for example, Cy, € Ci)so u(Ci\C)=0and C € S = CL €S,
2. >:(A€A=> A€ B)= u(A\B)=0.

<: Suppose p(A\ B) = 0 and Ay € A. Now, Ag\ B C (Ao \ A)U(A\ B) so
p(Ao\ B) < p(Ac\A) + p(A\B)=0+0=0. &



97

Proposition 3.3.7 ;. A= B=A°UB, 2. A~ B= X\ (AAB), and
9. A=A

Proof:

1. A-B = \/{SeL(X)|ANS C B}

S—

= \{C|AAC C B} since § = \/ C and L(X) is a locale.

ces
= \/{C | AN C C B} by proposition 3.3.6 above.

= V{C| (AN C\ B) =0} by lemma 3.3.8 above.

Now, AsUB = {Dy | p(Do \ A*U B) = 0}. But, ANC\ B =C\A°UB so
w(ANC\ B) =0 iff u(C\ A°U B) = 0 and this completes the proof.

i

b

(

(AU B)N(BcU A)
(A°UB)N (B°U 4)
(
(

it

(AU B)N Be) U ((AcU F, N A)
AN B Y)U(BNB)U (AN A)U(BNA)

(AN B9 U (BN 4)
X\ AAB

3. “A=A-0y=\{C|AANC =0y} =\/{Clu(CNA)=0x}. On the other
hand, A° = {C|(C\ A% =0}. But, C\A*=CNAsoCecAiffCe-A 1
Corollary (to 1.): =S = \/{Bjpy(BNA)=0VA€ S}. B

Corollary (10 3.): ~—A = 4.

Proof: ~—A=-(A)=A<=4. 1
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