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Abstract 

/ 

i 
3s 

Our aim is to study A'-famiiies of Hilbert spaces for X a measure space; J 

the ult imate goal being the understanding of the classical (von Neumann) di- tg 
if 

rect integral in the context of indexed category theory. Indeed, the diagram, 8 
® f 

Hilb < •• •» Hilb : A, provides a useful summary of our goal. g 
Wc first require a good base category of rnrasure spaces and introduce, Disint. | 

the category of disintegrations. Disint does not have products (nor does any 

"useful" category of measure spaces) so we do not have the usual Pare-Schumacher 

style indexing. The diagram above cannot be interpreted as an adjunction. 

We must approximate the situation as best possible and we put forth three ap- 1 
if 

proximations. Specifically, we propose three notions of A-family of Hilbert spaces: I 
1 

1. measurable fields of Hilbert spaces on A', 2. Hilbert sheaves on A', and 3. | 

Hilbert families over A". We will describe each of these approaches in detail in- | 

eluding substitution with respect to base category morphisms and / . Finally, 

we will discuss connections between the three ideas and list some possible future 

directions for this work. 

P 

n 

! 
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Notation 

Most of the notation we use is standard. In some cases, however, our notation 

is slightly different for typographical reasons. The most notable examples are: N , 

Z, Q, R, and C denote, respectively, the set of natural, integral, rationJ., real, 

and complex numbers. 

Categories are generally in bold face type and underlined (for example, Set de­

notes the category of (small) sets and functions; exceptions to this are MEAS(X) 

and Sh(A), categories with some sort of "argument"). Bicategories arc in bold face 

and doubly underlined. Indexed categories are in bold face and "under-tilded." 

Composition of morphisms is in the functional (as opposed to algebraic) way. Ar­

guments are generally written on the right and a "-" is sometimes used for an 

unspecified argument. 

Definitions, remarks, and examples end in a Q. Proofs and sonic theorem 

statements (those for which no proof is supplied) end in a I. All such structures, 

except examples, remarks, and corollaries, are numbered according to the section 

in which '.hey appear. Bibliographic references generally follow some mnemonic of 

the author's name. For example, [PTJ] represents P.T. Johnstone. Other notation 

is standard or defined in the text. 
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Introduction 

There is no doubt that decompositions are useful. For example, a semi-simple 

module is, by definition, a sum of simple modules. In essence, then, to under­

stand semi-simple modules, it is enough to understand simple modules (a smaller 

class) provided, of course the thing one is studying "commutes" with sum. The 

corresponding entity in vector spaces is, in fact, a theorem; the spectral theorem. 

Let us recall some basic linear algebra. Suppose V is a finite dimensional C-

Hilbert space (i.e. just C n ) . An operator, T : V —• V, is just multiplication 

by a matrix A. We can compute the eigenvalues of an n X ?t matrix (A such that 

det(A-XI) = 0 or, such that T-XI is not invertible). If T is normal (T*T = .77'*), 
/.-

then we can decompose it as T = ^ A , E , where the A,'s are the eigenvalues and 
;=i 

E{ is the projection onto the null space M(T — A,/). 

In particular, if there are n distinct eigenvalues, we get a basis consisting of 

eigenvectors. We can decompose the space V into one-dimensional subspaces 

V ~ JV(T - Ax/) © Af(T - X21) © • • • © Af(T - XnI) 
n 

which, in itself, is not surprising since C n = (Q C. More importantly, however, we 
t=i 

can decompose a normal operator into a sum of orthogonal projections. In essence, 

the action of T can be "simplified;" working with a diagonal matrix is much easier 

than working with a general matrix. 

For the infinite dimensional case, we have the notion of spectrum: 

cr(T) := {A € C | T — XI not invertible }. We can also talk about eigenvalues; A's 

for which there exists a nonzero vector, called an eigenvector, x, with Ax = 7'(x) 

(the set of eigenvalues, called the point spectrum, is, in general, different from the 

spectrum for consider the example of the unilateral shift operator on /2(N); 0 is 

in the spectrum since this operator is not invertible but 0 is not an eigenvalue). 

1 
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Furthermore, in any Hilbert space, it makes sense to talk about orthonormal bases. 

For example, suppose H is a Hilbert space of countable dimension with an 

orthonormal basis given by the "eigenvectors" corresponding to some operator 

T € C{H) (which has a countable spectrum). Then 

oo © 

n = J2 M{T-xj). 
i = i 

Now, if the spectrum is "continuous" as a subset of the complex plane, then 

we need some sort of "continuous direct sum'" the direct integral: / H(x)dfi(x). 

More accurately, the direct integral of Hilbert spaces is a measurable analogue of 

the direct sum. That is to say, direct sums are a special case inasmuch as finite 

(or countable) counting measure is, in particular, an example of a measure. 

And so, one way of looking at the direct integral is as a tool for the above 

mentioned decomposition of a normal operator for the infinite dimensional case. 

This generalized reduction theory for operators was developed by von Neumann 

in the late 1930's, although he didn't publish the results until 1949. The paper, 

in which the direct integral was first introduced, may be found in the "operator 

algebras" volume of his collected works, [vNeu], together with the collection of 

papers with Murray in which what were to become known as von Neumann algebras 

were described. At the beginning of chapter 2, we will provide a motivation for the 

direct integral of Hilbert spaces from the theory of unitary group representations. 

Our project is to study the direct integral as an indexed notion. It appears that 

its initial construction was ad hoc (although immediately useful for the applications 

at hand (and others later)). We wish to provide a firm footing on which to found 

a systematic, categorical treatment of the direct integral of Hilbert spaces and 

related constructions; in short, indexing by measure spaces. 

Let us expand on this indexing idea somewhat. We introduced the direct 
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integral by first considering the (special) finite dimensional case. Let us introduce 

the notion of indexing by specializing, as well. Let k be a field and I 6 Set. 

We have an adjunction: 

07 

(rV-vectV Y£ A-vect 
_ „ 

Our task is to understand the analogous picture: 

rffi 
Jx 

(Hilb)v £ Hilb 

This amounts to understanding what A'-indexed families of Hilbert spaces aie 

for X a measure space (a related question: how to define the "co-direct integral", 

/ , as a right adjoint to A, will not be treated in this paper). A true indexing 

procedure ("true" in the sense of [P&S]) cannot be found since interesting (from 

an analysis/operator theoretic point of view) categories of measure spaces don't 

have products. Indeed, we won't have a A per se. So, we must approximate the 

situation as closely as possible. We shall put forth three approximations for the 

unknown elements of the abo^e diagram, each with its own merits, and will weigh 

them and describe connections between the three. 

The understanding of the construction of the direct integral of Hilbert spaces 

in the context of category theory involves three aspects: measuie theory, analysis 

(operator theory), and indexed category theory. 

Measure theory provides the basic framework. It is, initially, in this context 

that the above constructions must be understood. That is to say, the project is, 
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first and foremost, about measure theory in a categorical context. The next few 

paragraphs provide a partially chronological history of categorical measure theory 

and some related topics. 

Essentially, the first application of categories to measure theory occurred in 

Linton's thesis ([FEJ]). His objective was to study Fubini's theorem in the context 

of Boolean rings and tr-rings (roughly speaking, their "concrete" realization being 

fields and tr-fields). This study required a "solid foundation in functor theory." 

Indeed, he studied measures by looking at them in the context of linear functional 

theory and used the power of Boolean algebras and the vector space of measures 

(Boolean algebras and vector spaces are well treated by category theory) and was 

able to give a purely Boolean proof of the Fubini theorem. 

In related work, Borger ([Bor]) considered sequential Boolean algebras. His 

categorical treatment of integration theory grew out of a generalization of integra­

tion in three directions: integrate over abstract Boolean algebras as opposed to 

algebras of sets (akin to Linton above), admit vector-valued measures, and relax 

tr-additivity. His work went in a different direction than we will follow. We note 

that, in this paper, we do not wish to generalize integration in any of these direc­

tions. That is to say, "external forces" (for example, operator algebras) force the 

use of standard integration. 

An important example in sheaf theory (developed in the 1960's) was given by 

Deligne ([SGAIV]). He constructed a topos from a measure space (we outline this 

example in detail in chapter 3, where we follow the work of Howlett [How]). It is 

the quintessential example of a topos without points. More precisely, this topos 

was constructed to provide an example of a topos with no points (assuming the 

measure space has no atoms). Analysis in sheaves and, more generally, topoi, is a 

rich subject and related to the work we present here. Many people have contributed 

(a short list is given below). Among those who contributed at the applications of 
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sheaves conference ([FMS]) was Breitsprecher. He contributed two papers one of 

which ([Bre2]) has become quite important for our work here. In some sense, this 

was the beginning of "measurable sheaf theory" an, as yet, vague collection of 

results not coalesced into a discipline. 

Probability theory is, in particular, measure theory (fi(X) = 1). Indeed, it 

has been said that probability theory is measure theory plus "a point of view." 

Two applications of category theory to probability theory come to mind: Schiopu's 

master's thesis ([Sch]) on random variables and Bogdan's ([Bog]) application of al­

gebraic categories to probability theory. Schiopu provided a categorical foundation 

of probability theory using a category whose morphisms are a continuous general­

ization of stocnastic matrices. Bogdan provided another categorical axioinatization 

of probability theory using algebraic categories and set up several isomorphisms of 

categories relevant tc probability spaces. These works are somewhat distant from 

our discussions here (inasmuch as our "point of view" is not that of probability 

theory). 

In 1973, Lawvere published his paper on metric spaces and closed categories 

([Law2]). This work grew out of the formal comparison of the triangle inequality 

for metric spaces: 

dist(a,b) -f dist(b,c) > dist(a,c) 

and the composition in the definition of a category: 

hom(A, B) ® hom(B, C) —• lwm(A, C). 
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There is, of course, more than just formal similarity here and Lawvere developed 

a whole theory of such entities; the premise being that things with a formal horn­

like appearance can be interpreted as such. Indeed, he described metric spaces 

as being enriched categories over R. One of his examples was that of the metric 

space constructed from a measure space ( dist(A, B) := fi(AAB) provides the 

tr-algebra with a pseudo-metric structure; see chapter 1). This was explored, with 

applications to convex sets (and, eventually, to stochastic programming) by Meng 

([Meng]). 

A new and growing field is quantum logic (see, for example, [Rum] or [R&R] ). 

This is not immediately related to the material presented here. It does, however, 

make use of Hilbert space theory and, more importantly, quantales (the original 

paradigm being the lattice of closed right ideals of an arbitrary C*-algebra; a good 

example of a locale being the lattice of closed ideals of a commutative C*-algebra; 

these examples suggest that we may think of a quantale as a "non-commutative" 

locale, see, for example, [Bor]). So, if locales (and measurable sheaves) offer a way 

of understanding the direct integral from a classical logical point of view (or pos­

sibly, distantly, an intuitionistic point of view), one may hope that quantales offer 

a way of understanding Hilbert space methods in an alternate logic. Furthermore, 

C'-algebras are sometimes thought of as providing a context for non-commutative 

integration ([Ped]). As we hinted above, however, the exploration of this interest­

ing notion will await other work. And so, the future seems an appropriate place 

to end our historical remarks; we return to the description of the problem. 

We search for an appropriate category of measuie spaces. As hinted at above, 

certain requirements of analysis cannot be reconciled with certain requirements of 

indexed category theory. Specifically, reflecting sets of measure zero is incompatible 
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with finite limits. These, as yet, vague remarks will be made more precise in chapter 

1. In short, the search for a "good" category of measure spaces is difficult. We 

present three in chapter 1, but consider only one in detail. It is the "best" at hand 

for our purposes. 

The second aspect of the understanding of direct integrals is the analytic one. 

We will be interested in operator theory (Hilbert spaces and operator algebraic 

notions; for example, von Neumann algebras and C*-algebras). A small amount 

of necessary background about the direct integral of Hilbeit spaces will be given 

at the beginning of chapter 2. However, we will be chiefly interested in categorical 

analysis. We will begin to describe operator theory inside a category (topos) E. A 

more complete discussion will await another paper as that would take us too far 

afield for oui basic applications here. 

By categorical analysis, we mean an analogy to the study of functional analysis 

and, in particular, Banach spaces inside a (usually Grothendieck) topos. This is 

well known and has been around for some time. For a useful collection of such 

results, see [FMS]; in particular, the reader is referred to the following papers rele­

vant to our discussion here: [Ban], [Bu&Mu], [FoMIy], [IIo&Ke], [PT.I3], [Ke&Le], 

[Roul], and [Tak]. Furthermore, the reader is also referred to [M&P], [WP&Ro], 

and [Rou2]. These papers provide a broad background to the subject. Operatoi 

theory of Hilbert spaces inside a topos is not so well known, though [Rou2] does 

address spectral decomposition of matrices in a topos. 

A topos is to be thought of as a generalized logic. Indeed, the development of 

functional analysis inside a topos went hand in hand with intuitionistic analysis 

since, in general, th-? logic of a topos is not Boolean. We will look at these ideas in 

chapter three and explore analysis in a specific "measuie theoretic" topos. It turns 

out, however, that this topos has the axiom of choice and is, in fact, Boolean. In 

essence, then, our logic is classical. 
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The final aspect is indexed category theory. In the late 1960's, it became 

increasingly clear that a generalized theory of indexing (generalized in the sense 

of indexing by objects other than sets) was necessary. Lawvere suggested the need 

to understand indexing via category theory. Among others, Pare and Schumacher, 

[P&S] developed such a theory. Subsequent to their work, many results were found 

and the general theory was applied, in a mutually self beneficial way, to enriched 

category theory, [Wdl], algebras, [RRb], topology, [Lev], and coalgebras, [G&P]. 

Related work was done by Tavakoli, [Tav]. Indeed, he studied vector spaces in 

topoi, which tied in with topos-based indexed category theory alluded to above. 

Pare-Schumacher indexed category theory uses pseudo-functors. Another style 

was developed by Benabou ([Ben]) using fibrations. We employ Pare-Schumacher 

and Benabou style indexed category theory (the two being, more or less, equiva­

lent). A brief outline of Pare-Schumacher style of indexing will be given in chapter 

2. We have said that this paper is about indexing by measure spaces. More 

precisely, the project grows out of three "directives:" 1. Pare: understand the 

direct integral as an indexed functor (index by measure spaces), 2. Breitsprecher: 

understand disintegrations (of one measure space with respect to another) as a 

categorical notion, and 3. Lawvere: look at the Gros and Petit aspects of cate­

gorical measure theory (construct a "sheaf-based" operator theory and compare it 

to the well-known functional analysis in sheaves). We attempt to address each of 

these directives. 

The first directive is, of course, the main impetus of this present research. The 

second directive is addressed in chapter 1 by the category Disint . a category which 

seems to exhibit the self indexing of measure spaces. Finally, the third directive is 

addressed in chapter 3, in which we introduce a sheaf category relevant to measure 

theory. 

The third trinity to be discussed in this introduction is our three approaches to 
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the problem: understand (Hilb) for A* a measure space. We will approach the 

problem using measurable fields of Hilbert spaces, Hilbert space objects in a sheaf 

category, and Hilbert families. The following diagram provides a useful summary. 

1. Mble fields 

3. Hilb Families 

2. Hilb Sheaves 

The essence of our present work is to describe this diagram; the three ap­

proaches and the six connections (boxes 2 and 3 are nc»v approaches to box 1, 

although, we have inserted a great deal of category theory into box 1). That is, 

the important thing is to compare the three approaches. In chapter 1, we give the 

necessary measure theoretic background and attempt to address the Breitsprecher 

directive. In chapter 2, we give the necessary operator algebraic background and 

describe box 1 above. In chapter 3, we describe box 2 and address the Lawvere 

directive. The third approach to finding a suitable notion of measure indexed 

categories is discussed in chapter 4. In chapter 5, we note that each of the three 

approaches has merits and discuss connections (for example, some logical impli­

cations) between the three boxes above (arrows 4-9) and allude to possible future 

directions of this comparison. 

Finally, we spend a few paragraphs listing what is new in this paper. 

The category, M P . of measure preserving functions is not a new invention. 

The "base" categories, MOR and Disint. are, however, new. Disint is the best 

(in the sense that it has self indexing built into it) base category. It provides a 

powerful context to do measure indexed operator theory. 



10 

Each of the three approximations, of chapters 2, 3, and 4, contains new material. 

Measurable fields of Hilbert spaces are old, of course (von Neumann). But, the 

contexts of category theory and, indeed, indexed category theory are new. Box 

1 represents a mostly operator theoretic approach to understanding A'-families of 

Hilbert spaces. 

Sheaves have been around for some time (Grothendieck) and sheaves on a 

measure space have also (Deligne). Applications to analysis, complex analysis, 

functional analysis, operator algebras, etc. have been done by Mulvey, Rousseau, 

Wick-Pelletier, et al (see the historical remarks above). Chapter 3 contains our 

description of the theory of Hilbert spaces in a (very specific) topos. As such, this 

topos on a measure space is a special case. Our point of view, that of indexed 

category theory, though, sheds a different light on these entities. The speciality 

of the topos allows us to prove (which, as far as we know, has not been published 

elsewhere) the existence of the completion of a preHilbert space to a Hilbert space 

(a result which we will find especially useful when discussing substitution). This 

is not a particularly difficult result since it is simply a (careful) translation of the 

classical proof to the sheaf world (again, we must emphasize, not the general (= 

possibly without the axiom of choice) sheaf world). 

The material of chapter 4 (and the connections in chapter 5) is new. Box 3 

is the "fibrations" approach to A'-indexing. We set up an elaborate substitution 

machinery (partially for future considerations, as well) involving disintegrations. 

Globally, this is familiar to fibration enthusiasts. The details, however, are inter­

esting and exhibit the utility of disintegrations as alluded to above. 



Chapter 1 

Categories of Measure Spaces 

1.1 Introduction 

This paper is, first and foremost, about measure theory and, in this chapter, we 

describe this measure theoretic background. 

Specifically, we begin with Mble, the category of measurable spaces and mea­

surable functions; a category not unlike Top, the category of topological spaces 

and continuous functions. Mble is, in some sense, the basic category. That is to 

say, all theory is based upon it as a foundation. Indeed, to talk about measure 

spaces, one must first understand their measurable structure. 

In the introduction, we noted that the main thrust of this paper is to look 

at indexing by measure spaces; to develop a theory capable of describing the di­

rect integral coherently. More importantly, there are three directives and three 

approaches to solving this problem. After describing the category, Mble. we in­

troduce three "candidate" categories of measure spaces. The problem, of course, 

from an indexed categorical point of view, is that none of these candidates has 
A 

products (specifically, the diagonal A' >X X A', which is measurable, is not 

11 

I 
I 
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necessarily in the category in question). In sections 1.3 and 1.4, we introduce two 

important "background" categories of measure spaces: M P . measure preserving 

functions (too restrictive to be useful), and MOR. measure zero reflecting functions 

(a useful base category). 

In the last section of this chapter, we describe the category Disint. It is a useful 

starting point in that it seems to witness the self-indexing of measure spaces; a 

disintegration has indexing by a "measure-parameter-space" built into it. Disint 

is also our attempt at answering the Breitsprecher directive: understand measure 

theoretic disintegrations from a categorical perspective. 

1.2 Measurable Spaces 

We begin with the category of abstract measurable spaces and measurable func­

tions. An excellent description of this category is given in [Sch]. (etymology: she 

used Bsp, for "Borel Space, " a term often used in probability theory. We use 

iVble. for "Measurable," wishing to reserve Borel Space for its special meaning as 

the a—algebra generated by the opens of a topological space.) 

There are two ways of describing basic measure theory. The first, historically, 

and the approach most often followed in first courses in measure theory, is to take 

as basic notion measurable sets and build measurable functions. That is to say, 

to calculate the area under a curve, cut up the y-axis. Another approach is to 

take simple functions as basic and build measurable sets (see, for example [Bou]). 

While this approach lends itself well to such generalizations as vector measures, 

we shall use the (more algebraic) measurable sets approach; measure theory as 

described in [Roy], for example. We will, however, when needed, and not quite 

randomly, refer to the second style. 
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Definition 1.2.1 .4 <r-algebra on a set, X, is a collection of subsets closed under 

countable (including finite) unions and complementation and containing 0. A Mea­

surable Space is a pair (X,A) where A is a a-algebra on the set X. The elements 

of A are called Measurable Sets • 

Definition 1.2.2 A Measurable Function, (X, A) >(Y,B), is a function, 

X-UY, for which f-x{B)£AVBeB. Q 

Certainly, the identity function is measurable and the co.npo1 ition of two mea­

surable functions is a measurable function so we have a category which is denoted 

by Mble. 

The direct image of a measurable set under a measurable function need not 

be measurable. (Example: the cartesian product of [0,1] and a (line) nonmeasur-

able set in the Lebesgue plane projected onto the second factor.) One could talk 

about the category Dmble of measurable spaces and directly measurable func­

tions: f{A) 6 # , VA E A. Except in this section, for completeness of discussion, 

we will not explore Dmble in this paper. Functions that are both measurable and 

direct measurable are quite rare. 

Indeed, the axioms governing the class of subsets for a a-a!gebra and those for 

a topology are similar (other examples: convexity, [Dawl] and [Daw2], or more 

generally, paving [K&T, p. 136]). A cr-algebra and topology on a set are both 

collections of subsets closed under various operations and in the latter part of this 

section, we will explore the similarities between Mble and Top, the category of 

abstract topological spaces and continuous functions. 

For the next few paragraphs, however, let us note some of the significant dif­

ferences. The differences arise out of the arities of the operations that cr-algebras 

and topologies are to be closed under. Specifically, a topology is closed under arbi­

trary unions and finite intersections, whereas a cr-algebra is closed under countable 
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unions and intersections. Essentially, these correspond, respectively, to arbitrary 

colimits and finite limits versus countable colimits and limits. 

Topology lends itself well to categorical analysis and has been studied exten­

sively from this point of view. Its Gros aspects are described by sheaf theory and 

Petit aspects by locales. The theory of locales is a particularly rich one (that is 

not to say that sheaf theory is not). We will study a measure theoretic locale in 

chapter 3. It is, however, not the obvious one. 

By obvious, we mean in analogy to the topological case. One may form the 

interior of a subset A of a topological space, A": A° := U { ^ l ^ open and O C A}. 
( )° 

This yields a functor V(X) >fi(A') which is right adjoint to the inclusion, 

where V{X) is the power set of X and J1(A") is the locale of open subsets of 

A'. Furthermore, taking the points of a locale is left adjoint to tt(—). This basic 

framework leads to the theory of Stone spaces and Stone's Representation Theorem 

and a version of Tychonoff's theorem free of the axiom of choice (for a categorical 

treatment of this subject, see [PTJ2] ). An essential element of this theory, indeed 

the motivational paradigm for the definition of a locale, is the existence of finite 

limits = intersections and arbitrary colimits = unions and their distributivity. 

And, as such, the collection of measurable subsets of a measurable space does not 

form a locale (though, as we shall see, if we mod out by the ideal of the sets 

of measure zero, we get a locale; perhaps, the reader would consider this as the 

"obvious" locale to be constructed from a measure space after all). Furthermore, 

there is not a ' measurable interior operator" that can be interpreted as a right 

adjoint, for if it weie, the inclusion would have to preserve arbitrary unions. The 

difference between arbitrary and countable unions should not be underestimated 

and, in some sense, this paper is devoted to studying this difference in the context 

of indexed category theory. For a categorical treatment of indexing by topological 

spaces, see [Lev]. 
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The difference between Top and Mble also becomes apparent when one naively 

translates topological notions into measure theory, encountering "mistakes" of triv­

iality. For example, suppose we translate the notion of homotopy to measure theory 

by defining a "loop" as a measurable function / : ([0,1],£) — l (A'', .4) such that 

1(0) = 1(1) (here, and always, when in an obvious context, C denotes Lebcsgue 

measure) and homotopy in an obvious way. Unfortunately, this definition makes 

the "fundamental groups" of the disc and the annulus the same (=1). In essence, 

the difference between "continuous" and "measurable" is that we ar allowed to 

measurably cut a loop but not continuously cut it. 

This brings another similar example to mind. In the study of covering spaces, 

one has the nontrivial spiral over the circle example: 

If this is translated into measure theory, this example is trivial; it is simply a 

product of Z copies of the circle since we are allowed to measurably cut countably 

many times: 

Now we will explore the similarities between Top and Mble. First, note that 
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the construction of limits and colimits in Mble is analogous to that for Top. There 

is an underlying functor U : Mble —• Set = forget the measurable structure, 

and we have: 

Proposition 1.2.1 Discrete = D H U H I = Indiscreet, where D(X) = (X,V(X)) 

and I(X) = (A', {0, X}) for X € Set 

Proof: Every function out of a discrete space and every function into an indiscreet 

space is measurable. I 

Predictably, since U preserves limits and colimits, this gives us their construc­

tion in Mble. The limit of a diagram in Mble is the limit formed in Set together 

with the coarsest (fewest measurable sets) c-algebra to make the projections mea­

surable. The colimit of a diagram in Mble is the colimit taken in Set together 

with the finest (most measurable sets) a-algebra to make the injections measur­

able. For an explicit description of limits and colimits in Mble. see [Sch]. We will 

tacitly assume these descriptions. Note that, for Dmble. we have IQ -\ U -\ DQ 

and a similar construction of limits and colimits applies (here, the subscript notes 

that the functors have "different" codomain even though they are "the" indiscreet 

and discrete functors). 

Mble (and Dmble) is both complete and cocomplete. In fact, using the total 

opfibrations of [Wd2], Mble is seen to be totally cocomplete. That is, 3L such 

that L H >'", the covariant Yoneda functor: Y(X) := Mble( —. X). Mble is also 

cototally cocomplete: 3R such that Z H R, where Z(X) := MblefA', —) is the con-

travariant Yoneda functor. Furthermore, U is both continuous and cocontinuous 

(for the analogous case of Top, see [Wd2] or [Wen, pp.43-47]). 

Finally, we note that Mble. like Top is not a topos, for (X, A) >(X, B) is 

an epimorphism and a monomorphism but need not be an isomorphism (topoi are 

balanced). 
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It is, of course, important to note at this stage that the above mentioned 

similarities are essentially a consequence of the fact that the categories Mble 

and Top are both topological over Set (i.e., the forgetful functors are faithful 

bifibrations with large-complete fibres; see, for example [AHS, pp. 333- 354]). 

In each of the next three sections, we will introduce a category of measure 

spaces. Recall, 

Definition 1.2.3 A measure, /.i, on a measurable space (X,A) is a function 

fi : A —> R - ° such that /i(0) = 0 and /'(Utgiv^i) = ICieyv/'Mi) for eacn disjoint 

collection of measurable sets {A,}~j . A measure space is a triple (X,A,ft) where 

(X, A) is a measurable space and /« is a measure on it. D 

Of course, one may consider extended-real valued measures (or even measures 

with values in more exotic spaces; vector measures, for example). We will chiefly 

be concerned with finite measures (as defined above) and, to a lesser extent <r-finite 

measures (where we allow /t(A) = oo but with a countable collection of measurable 

sets each of finite measure and whose union is A) . 

Bringing measures into measure theory results in a whole new level of diffi­

culty from a categorical point of view. All the "nice" properties of Mble seem 

to disappear. The problem of major concern as far as indexed category theory is 

concerned is the disappearance of products. It turns out that, in some sense, the 

best we can hope for is a monoidal category. As we shall see, we are forced to take 

a more complex approach to indexing by measure spaces and this complexity is the 

essence of the difference between topology and measure theory or, more precisely, 

the difference between continuous families and measurable families. 
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1.3 Measure Preserving Functions 

The first category of measure spaces we shall study is M P . the category whose ob­

jects are measure spaces and whose morphisms, (A', A, /<) •(Y,5,/./), are such 

that / is measurable and measure preserving: /i(/_1f?) = v(B), VJ5 € B. Finite-

ness of measure is not an issue here, so we may have ft(X) = oo. Notice that 

MP is the conjunction of IMD (etymology: inverse measure decreasing), measur­

able functions such that ^ ( / - 1 B ) < v(B), V2? «E B and IMI (etymology: inverse 

measure increasing), measurable functions such that p(f~lB) > v(B), Vi? € B. 

Inasmuch as there are not many examples of measure preserving functions (the 

identity and / : [0,1] >[0,8]; f(x) = x + 7 being obvious examples), M P is 

not a very interesting category. Neither this category, nor IMD or IMI. have 

products, for consider the "skinny rectangle" suggested by the picture: 

9 

0 1 
proj 

with ([0,1] x [0,2], A x A) >([0,1], A) where A is Lebesgue measure. The measure 

of the rectangle is not equal to the length of one side. 

We will, however, require some terminology, to be introduced here, and some 

results about isomorphisms; an isomorphism in Mble is a function, / , which is 

one-to-one and onto and such that / and / _ 1 are measurable. 

Proposition 1.3.1 Let (X,A,p) >(?", B,v) be an isomorphism in Mble (and 

hence in Dmble]. / <E M P => / _ 1 G M P . 

Proof: „ ( / (£) ) = ft(f~lf(B)) = p(B). I 
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Proposition 1.3.2 Let (X, A, p.) >(1", B,v) be an isomorphism in Mble. 

/ € IMD and f-1 € IMI => / 6 ME-

Proof: / € IMD =» n(f~l(B)) < u(B) and / - 1 € IMI =*• p(f~l(B)) > 

v(ft\B)) = v(B). I 

Definition 1.3.1 A measure isomorphism is a measure preserving function which 

is an isomorphism in Mble. D 

1.4 Measure Zero Reflecting Functions 

1.4.1 Definitions 

The next category of measure spaces we introduce involves measure zero reflecting 

functions: 

Definition 1.4.1 A function (X,A,p) >(Y,B,v) is said to be measure zero 

reflecting if it is measurable and if u(B) — 0 => f.i(f~l B) = 0. • 

Remark: A comment to the term "reflecting". In analogy to "functor reflecting 

isomorphisms," one might consider measure zero reflecting as being u(f(A)) — 

0 => fi(A) = 0. For complete measure spaces, these two definitions arc equivalent: 

assume the former and suppose u(f(A)) = 0. Then ft(A) < [t(f~1f(A)) = 0. 

Conversely, assume the latter definition and suppose v(B) = 0. Then, since 

ff-^B) C B, v(f~lf(B)) = 0 =* n(f~\B)) as required. D 

There is a certain amount of haziness (etymological note: "fuzzy" has already 

been used) in the mathematician's practical research world. In algebra and cat­

egory theory, one often hears the phrase "up to isomorphism." In analysis, one 

hears the phrase "to within e." Now, we do not wish to give the impression that 
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mathematics is a hazy subject, nor do we make any deep philosophical statements 

about the nature of mathematical research. It is evident, however, that many the­

orems have a popular statement and a precise statement. As an example of the 

"to within e" statement for measure theory, consider Littlewood's three principles 

(see [Roy p.71]) for Lebesgue measure: every measurable set is nearly a union of 

intervals, every measurable function is nearly continuous, and every convergent 

sequence of measurable functions is nearly uniformly convergent. These may be 

"translated" as the following propositions: 

Proposition 1.4.1 [Roy p.62]: Let E be a Lebesgue measurable set. Then given 

e > 0, there is an open set O D E with m*(0 \ E) < t where m* is (Lebesgue) 

outer measure. I 

Proposition 1.4.2 [Roy p. 72]: (Lusin's Theorem): Let f : [a, 6] —• R be mea­

surable. Given e > 0, there is a continuous <f> : [a, 6] —> R such that m{x\f(x) ^ 

#x)} < e. I 

Proposition 1.4.3 [Roy p.72]: (Egoroff's Theorem): Let (fn) be a sequence of 

measurable functions which converge almost everywhere to a real-valued function 

f on a measurable set E. Then, given e > 0, 3A C E with m(A) < e such that /„ 

converges uniformly on E\ A. I 

Notice that, in the previous proposition, almost everywhere convergence arises. 

In measure theory, the caveat is often "up to a set of measure zero" or "almost 

everywhere." For example, to say / fdf.i = 0 for a positive measurable function 
JE 

is to say / = 0 almost everywhere (i.e. f.t{x\f(x) ^ 0} = 0). Measure zero sets 

must be considered. In the previous section, we noted that measure preservation is 

too stringent, a requirement for morphisms. It is our contention that measure zero 

reflecting (abbreviated M0R) is the least requirement for a reasonable category 
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of measure spaces. In chapter three, we will describe a topos and a locale to be 

constructed from a measure space. For this construction to be functorial, we will 

require MOR's. In fact, such functions are required whenever one considers the 

(Boolean) algebraic properties of A and A'', its ideal of measure zero sets(note: in 

general, we do not require our measure spaces to be complete so when we say N 

is downclosed, for example, this means N G A/", A £ A, A C N => A £ Af from 

the monotonicity of the measure). For example, we may define a metric on A/Af 

by rf([A], [B]) := p,(AAB) where A denotes the usual symmetric difference of sets 

(see [Law2] or [A&G p.31] for more on this metric). If (X,A,fi) •(V, B,v) is 

MOR, then we have a map B/M >A/JV. We see that measure zero reflecting 

is the least requirement for this map to be defined (after which, one may explore 

various properties of interest to metric space enthusiasts). 

In practice, we will be interested in finite measure spaces. The identity is 

measure zero reflecting and measure zero reflecting functions compose so: 

Definition 1.4.2 MOR is the category whose objects are finite measure spaces 

and whose morphisms are measure zero reflecting functions. D 

We will call two MOR's, f,g : (X,A,fi) —> (Y,B,u) equivalent if 

p,{x\f(x) ^ g(x)} = 0 and define MORE as MOR with morphisms equivalence 

classes of MOR's (there being, actually, fewer morphisms in MORE). We will most 

often work with MOR but mod out by sets of measure zero when necessary. 

1.4.2 Examples 

It is time for some examples. In some of the examples below, we will temporarily 

ignore the finiteness requirement. 

Example 1: Let (X, A,/t)> (Y,&, 'y) be two finite measure spaces. The projection 

(XxY,AxB,fix v)-^->(X,A,n) is a MOR for fi(A) = 0 ^ ( / / x u)(p~lA) = 
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p(A) • v(Y) = 0 since v(Y) < oo. If we use the common convention oo • 0 = 0, we 

can allow the spaces to have infinite measure. D 

At this point, it is necessary to insert some comments about products and com­

pleteness of measures. Suppose (X,A,p) and (F, B,v) are two <r-finite, complete 

measure spaces. We can use the Caratheodory procedure to construct the product 

measure. 

Start with the semi-algebra TZ of all measurable rectangles, on which there is 

a measure (// x u)(A x B) = p(A) • v(B) and form the algebra 1Z' consisting of 

finite disjoint unions of these with p x v extended in an obvious way. There is an 
oo 

outer measure induced by // x v defined by (p x u)'(E) := inf ^ ( /u x u)(Ax x Bt), 
t = i 

where the infimum is taken over all covers of E by countable families of members 

of TZ' (members of TZ is enough). Define a measurable set as an E for which 

(p x «/)*(£) = (p x v)'(A DE) + (p x v)*(A n Ec) for all A. 

This procedure yields a cr-algebra, A® B, which contains the measurable rect­

angles and a measure, p ® i>, which is complete. An important property is: 

Proposition 1.4.4 ([Roy, p. 256]): Let p be a measure on an algebra, A, p" the 

outer measure induced by p, and E any set. There is a set B € Acs (countable 

intersections of countable unions of members of A) with E C B and p*(E) = 

p'(B). I 

In the case of the product, this means that every D € A <8> B is of the form 

D = E \E with E 6 1Z<,s and F a subset of a set of measure zero. 

If p and ;/ are not complete, the Caratheodory procedure still works (provided 

A' and i ' are <r-finite) and we get a measure p x v on A x B, the smallest <r-algebra 

containing the measurable rectangles (A x B is the product in Mble since the 

rectangles are generated (as a semi-algebra) by p^(A), pJ1(J5)). (X xY,A® 

B,p ® //) is the completion cf (A' xY,Ax B,p x v) (and p x v is the restriction 
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of p ® v to A x B). We will work with (X x Y,A x B,p x v) since A x B is the 

product in Mble and since we do not require the measure spaces to be complete 

(although they may be). It should be noted however, that neither ® nor x gives 

the product in MOR. 

( C o u n t e r ) e x a m p l e 2: ([0,1], £ , A)—^->([0,1] x [0,1], £ ® £, A ® A) is not MOR. 

Any subset of the diagonal has (Lebesgue) plane measure zero but may have 

(Lebesgue) length nonzero. D 

Remark: 6[0,1] is, in fact, an TZa$ (take intersections of unions of "little squares" 

that cover the diagonal) so this is also a counterexample for £ x £ and A restricted 

to 1Z<J6 subsets of the diagonal. D 

Example 3 : Let (X,A,p) be a measure space with p(A) — 0, \M € A (i.e. 

p(X) = 0). Then any measurable function out of X is MOR. • 

Example 4: Let (Y,B,u) be a discrete space with counting measure. Then any 

measurable function into it is MOR since the only set of measure zero is the empty 

set. D 

Example 5: A terminal object of MOR is (1 ,J , *) where 1 = {*} is a one point 

set, I = {ill, {*}}, and i is the counting measure. This follows from example 3 and 

the fact that (1, J ) is a terminal object in Mble. Q 

Example 6: As another "special case" of example 3, consider the measure space, 

(N,7 ; ,(N),counting), where N is the set of natural numbers. Now, this space is not 

finite (it is cr-finite) but any measurable function into it is MOR. In fact a MOR, 

(X,A,p) >(N,7->(N), counting), is the same as a measurable partition of A; 

(/"MOW • 
Remark: From example 4, we see that, but for finiteness, we would have an 

adjunction: 

u 
Seti > MOR 

D 
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with U H D. Notice that, in example 3, we allowed an arbitrary measurable space 

structure so a left adjoint to the underlying functor does not exist. D 

Colimits in MOR seem to be more well-behaved than limits: 

Proposition 1.4.5 MOR has (a) an initial object given by (0,{0},O), (b) binary 

coproducts, and (c) these coproducts are disjoint. 

Proof: a): There is only one measurable function out of (0, {0}) and it is MOR. 

b) The coproduct of (X,A,p) and (Y,B,v) is (A' + Y,A + B,p + v); X + Y is 

the disjoint union of A* and Y, A -\- B consists of sets of the form A + B where 

A € A, B € B, and (p -f v)(A + B) := pA + vB. It is a simple matter to 

check that this does indeed define the coproduct. Notice, for example, that if 

(X,A,p) >(A' + Y,A + B,p + v) denotes the injection and (/J + v)(A+B) = 0, 

then p(A) = v(B) = 0 so p(i~x(A + B)) = 0. 

c) Consider the diagram: 

(T,V,T) 

f\ (M«M) 

(A-,A/0 

(Y,B,u) 

(X + Y,A + B,p + v) 

Now, j\y = i\\ =!.v+i'. Since coproducts are disjoint in Set, there are no maps 

/ , g satisfying jg = if (and no map (T, V, T) —* (0, {0}, 0)), if T ^ 0, and exactly 
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one map, the identity, which is MOR, if T = 0. Thus the diagram is a puUback 

square as required. I 

(Counter)example 7: Constant functions are not, in general, MOR. Even some­

thing as benign as a continuous, one-to-one function is not necessarily MOR (as 

example 6 shows). D 
M 

(Counter)example 8: The "element of" function, 1 >A, is not, in general 

MOR (unless x € A' is an atom; /«({a-'}) > 0). D 

Wre think of the category MOR as the basic category upon which to build our 

theory. In the sequel, we will describe the "fibrations" in MOR. 

Mble has products which make it into a monoidal category. The unit is a 

(fixed) terminal object (1,2). Now, MOR is also a monoidal category. The unit in 

this case is (1,2, counting) and the © is (A", A, p)®(Y, B, u) — (X x Y, A x B, p x v). 

J a 
Proposition 1.4.6 Suppose (X,A,p) >(Y,B,v) and (Z,C,p) *(T,V,8) 

are in MOR. Then (X xY,Ax C, p x p) °->(Y xT,BxV,v x 8) is in MOR. 

Proof: If K = B x D is a measurable rectangle, then so is ( / x g)~l(K) = 

/ - 1(J5) x g~l(D). Since ( / x g)'1 preserves D, U, and \ , / x g is a measurable 

function and we need only check that if A' is a measurable rectangle of measure 

zero, so is ( / x <7)-1(A'). We may assume v(B) — 0 (the other case is similar). 

But, (p x p)(f-\B) x g~\D)) = p(f~l(B)) • P(g~l(D)) = 0 since / € MQR. I 

1.5 Disintegrations 

1.5.1 Introduction 

Breitspecher [Bre2] suggests that disintegrations should be studied from a categori­

cal point of view. We now construct a category whose morphisms are "disintegration­

like" (we employ the concept of disintegration in a new way). This turns out to be 
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a useful category in the sense that a disintegration is like a family of measure spaces 

indexed by a measure space and, needless to say, (see [P&S]) this is a good thing 

as far as indexed category theory is concerned. As we shall see, disintegrations 

have a forgetful functor to MOR. 

1.5.2 Naive Theory of Disintegrations 

Let (X,A,p) be a measure space and (P,V,p) be another measure space, the 

parameter space. A disintegration of p with respect to p is a collection of measures, 

pp, on A',indexed by p € P, such that V<4 € A, pP(A) is a measurable function of 

p and / p„(A)dp = p(A). 
Jp 

Example 1: Constant: Let p(P) = 1 and let pp(A) = p(A) VA G A. Then pp(A) 

is measurable (as a constant function) and / pp(A)dp = p(A) • 1 = p(A) (note: if 

p(P) ± 0, then we can take pp(A) = ^ W ) - • 

Example 2: Product: Let X = (R x R , £ x £, A x A). Let P = (R,£,A). For a 

measurable A C R x R, put (A x X)P(A) := X({y\(p,y) 6 A}). 

}(X x X)P(A) 

P 

Now, by Fubini's theorem (applied to \A), AP := {y\(p, y) G A} is a measurable 

subset of the real line, and / Xp(A)dX = (A x A)(,4). D 

Remarks: 1. In the space (A' x Y, A x B, p x v), if D G A x B then Dx € B,Vx eX 

(fix x G A', let tCx be the set of all E C X x Y such that Ex G B, then Kx contains 

the measurable rectangles and is a cr-algebra, hence <-nntains AxB, the smallest 

cr-algebra that contains the measurable rectangles). 

2. Again, we note that (R x R ,£ x £, A x A) is not the Lebesgue plane. Fubini's 

theorem says, for an A G £ ® C, Ap is measurable for almost all p G R. "Slicing" 
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by p, however, works for members of lZa$ (remark 1). The "almost all />" arises out 

of subsets of sets of measure zero (i.e. during the completion part of the process 

and not before) so (A ® X)P(A) = X(AP) would provide an "almost everywhere" 

example of a disintegration. D 

This is an important example for our purposes, as will be seen below. We will 

describe many more examples in a later section. Given two measure spaces, one 

doesn't necessarily possess a disintegration with respect to the other. The main 

thrust of research in this field is to determine conditions for the existence, of such. 

A definitive answer has not yet been given although there are some important 

existence theorems (see [T&T]). 

1.5.3 The Category Disint 

An object of Disint is a finite measuie space. We will use the projection from 

the product as suggested by example 2 above as the motivation for our notion of 

morphism. 

Definition 1.5.1 A morphism (X, A, p) —• (Y, B,v) in Disint consists of 

• f : (X, A)-^(Y.B)e Mble 

• a family (Xy,A,,,Py)yeY of finite measure spaces, where Xy := f~l(y) and 

Ay = {Af)f-\y)\AeA} 

subject to the axioms: 

axl: VA G A, the map y K-> py(A D f~l(y)) is measurable and bounded 

ax2:\/AeA, p(A) = j ' py(A n /"'(y))du(y). D 
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Remarks: 1. Ay — {ADf~1(y) \ A G .4} is a cr-algebra (this follows immediately 

from the fact that A is a cr-algebra). 

2. We call these morphisms disintegrations as well and will refer to axiom 1 as 

"measure boundedness." 

3. For boundedness, it is enough to say py(X D f~l(y)) G L°°(Y) because of 

monotonicity of measures (of course, the measurability condition for all A G A is 

still necessary). 

4. Every disintegration has a "norm" via ||/tj,(/ln /_1(i/))llco- We will not explore 

this in this paper. 

5. Each Py(Xy) < oo. Measure boundedness is a condition on the py(XyYs over 

y G Y. D 

Since the paradigm for a morphism of Disint is the product example above, 

we think of the fibres over the ifs as slicing up A: 

Notation: The fibre measurable spaces depend solely upon / . We write 

(f,(py)yev) o r (/>/'») f° r a morphism in Disint. D 

1.5.4 Category Axioms 

( U v i ) 
Identity: Define the identity in Disint as (X,A,p) >(X,A,p) where lx 

is the identity function and ix is counting measure on Ix = {AC\ l~*(x) | A G A}, 

the discrete cr-algebra on {.r}. 

Axiom 1: ,r *-* i.x(Ar\ {x}) is measurable and bounded since it is just XA and A 

is a measurable set. • 
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Axiom 2: / ix(A D {x})dp(x) = / x^dp(x) = p(A) as required. D 

Composition: Consider the diagram: 

(Y,B,u) 

(X,A,p)—-TTV^(Z,C,p) 

where 0- is defined as: 

0Z(£) := / py(E fl f~x(y))duz(y) for £ G & = {A D / " V ( - ) | /i G .4}. 

Note that vz is defined on <7-I(~) a n d /-1</_l(~) = U !~X(ll)i the union being 

disjoint and A D / ~ V (*) n / (tf) = < 
0 l)icj-\z). 

Axiom 1: We wish to show that 0Z(E) = / py(EC\f l(y))duz(y) is a mea-

surable function of z. Before we do that, however, we must determine that the 

integral makes sense. 

Proposition 1.5.1 For each z G Z and for each E G A, py(E D /-,(<y)) is a 

vz-measurable function. 

Proof: py(E D / - 1(j/)) is a {/-measurable function (by axiom 1 foi the pyi>). Let 

a G R, then B = {y G Y | py(E n / _ l(y)) < o } ? 8 and B D </_1(~) = {>/ € 

^ ( 2 ) | /i„(£ D / ^ ( y ) ) < a} G 5 , for all z e Z. I 

Proposition 1.5.2 J H I k(y)di/z{y) JS n measurable function of z for A(y) 
*'3_ ,(«) 

a non-negative u-measurable function (in particular for h(y) = /{„(£' D f~x(y))) 
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Proof: Case k = XE, E G B: Z t-* [ XE<lv:(y) = ug(EC\g 1(z)) which is 
V'(--) 

2-measurable by axiom 1 for vz. 

Case k — a simple function: Apply the above case and linearity of the integral. 

Case k = a non-negative measurable function. Let ((j>n(y)) be a sequence of sim­

ple functions increasing to k. Then z H-> / k(y)du2(y) = / \\m<f)n(y)di/z(y) 
Jg-^z) •>3-It>) 

= lim / <i>n(y)dvz(y) by the monotone convergence theorem. Each 
Jg'H*) 

z *-* I <f>n(y)dvz is 2-measurable by the above case and the limit of a sequence 
•/g-'O) 

of measurable functions is measurable. I 

Remark: The technique used in the above proposition is a very useful one. We 

will use the "build it up from simple functions" idea in many of our results. D 

Proposition 1.5.3 6Z is a measure for each z. 

Proof: tf,(0) = / py(% D f-\y))dvz(y) = / 0dvz(y) = 0. 

0.(\jA,nf-l9-l{*)) = f u»y(\J AH f-l(y))d»z(y) 

= /1/I^f1/-,(|())4(j) 

, • /3-1(«) 

= E^.n/V(:)). • 
Proposition 1.5.4 8Z is a bounded function (over z G Z). 

Proof: Certainly, ^ ( / l n / V W ) = / Hv(A n f~l(y))dvs{y) is finite for 

all 2 G Z (since py(A fl / - 1 (y)) is bounded and vz is a finite measure). Fur­

thermore, suppose v. and py are bounded by K and M respectively, say. Then 

/ py(A n f-\y))duz(y) < f Kduz(y) < M • K < oo. • 

Axiom 2: 
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Proposition 1.5.5 p(A) = f O.(AC) f~xg~x (z))dp(z) (axiom 2). 

Proof: By axiom 2 for the /itf's, we have p(A) = / py(A D f~l(y))dv(y) — (*). 

Now, fez(Anf-1g-\z))dp(z)=ff ufiy(Anf-\y))d„z(y)dp(z) = (**) 
JZ JZ Jg~l(z) 

Thus, we must show (*) = (**). We will show that / k(y)du(y) 

= I I k(y)dvz(y)dp(z) for all (positive) measurable functions k(i/). 
JzJg-l(z) 

Case k(y) = XE, E G B: I.XEdv(y) = v(E) and / / XE<lvz(y)dp(z) 

= / v,(E fl g~x(z))dp = v(E) by axiom 2 for v.. 

Case k(y) = a simple function: / = / / by linearity of Uie integral and the above 

case. 

Case k(y) = a positive measurable function: Let <f>n ] k(y) be a sequence of simple 

functions increasing to k. Then / / k(y)di/.(y)dp(z) = 
Jz Jg-^z) 

L I ,, k(y)d»z(y)dp(z) = [I \\mcj>n(y)duz(y)dp(z) 
JZJg-1(z) JZ Jg-1(z) 
= / lim / <f>n(y)duz(y)dp(z) = lim / / <f>n(y)duz(y)dp(y) = A, by 

JZ Jg-Hz) JZJg-*{z) 

repeated application of the monotone convergence theorem. Now, by the above 

case, J|b = lim / (j>n(y)dp(z) and applying the monotone convergence theorem again, 

we have & = / k(y)du. I 
J Y 

Unit laws: Consider: 
(Y,B,v) 

(X,A,p)-——Tjr(Y,B,u) 

Kow,8y(Enr1i-1(y))= I w py(Enr1(y))diy(x) = py(Enf-\y)). 

In a similar way, write ( /ol .v ,7y) = (/,/',/)o(l.*, tx). Then -yy(E (~)l~l f~l(y)) 

= / ix(E D r1(x))dpy(x) = I XE(lpy(x) = py(E n f~l(y)) as 
Jf-^y) Jf-Hy) 

required. Q 
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(Y,B,v) 

(X,A,p) 
(9f,0z) 

(hg,Pt) 
(T,V,S) 

(Z,C,P) 

To prove associativity, we must show i]t = "ft for all t G T. But, 

Vt(F) = f u0z(Fnf-l9-1(:))dPt(z) 

Jh-l(t)Jg-Hz) 

ancl7,(F) = / py(F H f-\y))d/3t(y). 

and we have: 

Proposition 1.5.6 / Hy)d0t{v) = / / k(y)d,y.(y)dpt(z) for all 
Jg-^i-^t) Jh-^^Jg-iiz) 

positive, measurable functions k(y). 

Proof: Apply the proof of proposition 1.5.5 with Y := g^h'1^), Z := A_1(*), 

v \= (3t, and p := pt. fl 

1.5.5 Examples and Basic Properties 

U,Hy) 
Proposition 1.5.7 (X,A,p) >(YB,v) G Disint => f g MOR 
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Proof: Let v(B) = 0. Then we have: 

p(f-'B) = JYpy(f-
lBnf-ly)d»(y) 

= JYpy(f-*(Bn{(y)}))dv(y) 

= JBPy(f-
1(y))du(y)=:0. I 

Remark: In view of this proposition and counterexample 6 above, we see that the 

diagonal is not in Disint. Q 

Example 1: Let (X,A,p) and (Y, B,v) be two finite measure spaces. Define 
(p,(nXt/)x) 

(A' x Y,A x B,p x u) >(X,A,p) as follows: p is the projection onto the 

first factor, p~x(x) = {x} x Y and (A x B)x = {Df\p~x (x) | D G A x B) = {x} x B 

(certainly, we have D (take D = {x} x B); conversely, for D = A x B G A x B, 
{x} x B x G A 

D C\p (x) = < both of which are in {x} x B and since {x} x B 
0 x4 A 

is a <r-algebra, we have C). So, define (p x v)x(D H p~l(x)) := v(Dx) where Dx is 
considered as an element of B. We have already noted that the slices Dx are all 

measurable. Axioms 1 and 2 follow from: 

Lemma 1.5.1 ([Roy, p. 266]): Let E be an TZ^s with (p x v)(E) < oo. Then 

the function g(x) defined by g(x) = v(Ex) is a measurable function of x and 

jg(x)dp(x) = (p x v)(E). I 

Note that g(x) is bounded by v(Y) < oo. As mentioned above, we consider 

this example as the motivating one. D 

Example 2: Let AQ be a measurable subset of X = (X,A,p). We may inter­

pret the inclusion (AQ, Ao,po) >(X,A,p), where Ao = {A C Ao\A G A) and 

Po(A) — p(A), as a disintegration. If x G A0, Zx — {A C\ i~l(x) \ A G A) = 

{0, {#}}; put pox = counting measure. If x £ A0, Ix ~ {$}; put p0x = 0. So, 
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pQx(A D 2'-1(.r)) = XAC\AQ- The proof that axioms 1 and 2 hold is exactly the same 

as that for the identity disintegration. D 

Remark: This example does not "contradict" the fact that the diagonal is not 

a disintegration. Interpreting the diagonal as a subspace of the plane would give 

(A,.4,0) >(X xX,AxA,pxp). D 

Example 3: Let (A, A,p) be such that p(A) = 0, VA G -4. Then any measurable 

function (A', A, p) *(Y, B, v) may be interpreted as a disintegration by defining 

py(A 0 f~x(y)) = 0, for all 4 G A and y G Y. D 

Example 4: A terminal object of Disint is (1,2, counting). The unique map, 

(X,A,p) >(1,2, counting) has (A'*, .4*) = (A',.4) and /<* = p. Suppose 

(X,A,p) *(l, 2,counting) is another disintegration. By axiom 2 for /?*, we 

have p(A) = Jp^Alll^•(*))rf(counting) = 0(A). Q 

Example 5: The initial object of Disint is (0, {0},O), which is a special case of 

example 2. D 

Proposition 1.5.8 Disint has (a) binary coproducts and (b) these coproducts are 

disjoint. 

Proof: a) Referring to proposition 1.4.5, the injection is a disintegration 

(X,A,p) >(X + Y,A + B,p + v), with At - {0} and pt = 0 if t G Y 

and At = {0, {t}} and pt(A D i~*(t)) = XA(') if * € X. 

b) Again, referring to the diagram of proposition 1.4.5. If T = 0, then we may 

insert the identity disintegration, T —> 0. If T ^ 0, then there is no map, T —> 0 

and no maps making the "outside" square commute. I 

Example 6: Let (A', A, p) and (Y, B, v) be two finite, discrete spaces. That is, X 

and Y are finite sets, A = 2A, B — 2Y, and p and v are counting measures. Every 

function, A" >>', is measurable. Let (X,A,p) >(K, B,v) be a disintegra­

tion. Ay = {AC\ f~x(y) \AGA} = 2f~'M for all y G Y. To satisfy axiom 2, py 
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must be counting measure. And, such will automatically satisfy axiom 1. Thus, 

every measurable function yields a unique disintegration. That is, there is a full 

functor 

Set/ >Disint. • 

At the end of section 1.4, we have described the ® for MOR: more precisely, we 

have interpreted the product of measure spaces as ® in MOR. We now consider 

the case of Disint. Let (X,A,p) —>(Y,B,v) and (Z,C,p)——-—*(T,V,8) 

be in Disint and form / ® g in MOR: 
fxg 

(X x Z,AxC,p x p) >(Y xT,B xT>,u x 8). We may make / x g into a 

disintegration as follows: (AxC)iyit) = {DC\f~i(y)xg~x(t) | D G AxC) = AyxCt 

(since A x C 0 f~x(y) x g~l(t) = A n f~l(y) x C D g~l(t) and since these are 

the generators for the cr-algebras, they are equal). So, define (p x p)iyy>t)(D) — 

(py x Pt)(D) with D considered as an element of Ay x Ct. 

Proposition 1.5.9 py x pt satisfies axioms 1 and 2. 

Proof: Axiom 1: k(y,t) = (py x pt)(D 0 f~1(y) x g~x(t)) is measurable and 

bounded: 

If D = A x C is a measurable rectangle, then k(y,t) = py(A D f~x(y)) • pt(C D 

g~x(t)) is measurable and bounded since it is a product of two such (axiom 1 for 

py and pt). Furthermore, k(y,t) < (py x pt)(X x Z\l f~x(y) x g~x(t)) < oo. That 

is, k is bounded for any D. We need only check that it is measurable. 
oo 

If D = [J At x Ci is a disjoint union of rectangles, then k(y, t) 
«'=i 

oo 

= ]T]/fj/(A; H /_ 1(y)) • pt(Ci f) g"1^)) is a sum of measurable functions so is mea-
t'=i 

surable. Now an arbitrary (countable) union can be written as a disjoint (count-
00 oo oo 

able) union (for example, for [J Ai, put £?, = A, \ (J Aj then (J Bi = (J A, and 
t'=l j<i i = l i = l 
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the fi.'s are disjoint). For finite intersections, use, for 7 a finite measure, f(Di 0 

D2) = 7 ( A ) + l(D2) ~ l(D\ U A ) - Finally, for countable intersections, use 
00 n 

7(fl Dt) = lim 7(fl A) (with 7(A) < 00). 
1=1 n °° 1=1 

Axiom 2: Again, the process is exactly as for axiom 1 (disjoint unions use addi-

tivity; increasing limits and ^ ' s pull out of integrals by the monotone convergence 

theorem). We only check the basic case, D = A x C: 

J(py x Pl)(A xCHf-^y) x g~l(t))d(u x 6)(y,t) 

= Jpy(AH f-\y))du(y) • jPt(C ng-x(t))d8(t) 

= KA)-p(C) 

= (pxp)(AxC) 

(the first equality is Fubini's theorem and the second equality is axiom 2 for py 

and pt). I 
(lXl,(»xO(x,»)) 

Certainly, in (A' x X,Ax A, p x p) >(X x X, A x A, p x p), we 

have (t x t)(x<y) = tx x iy = i(X)S). Now, suppose 

(Y,B,u) 

(X,A,p) — r - ^ ~(Z,C,P) 

and 
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(M,€,V) 

(h,8m) 

(L,V,8) 
(kh,pn) 

(Mn) 

(N,F,T) 

denote two compositions in Disint and consider: 

(Y x M,B x 6,p x i]) 

(f x h, (p x 8){y<m)) (g xk,(v x 7/)(.,)n)) 

(gxfofxh,a(Z}n)) 
(X x L,AxV,px8) ^ (Z x N,C xF,pxr) 

(gf x kh,-fz x (3n) 

where a(i)n) = (u x 7]){z<n) o (p x 8){y}Tn). We show that o(,?n) = 7. x /?„ on the 

generators of (A x X>)o,n) - Az xVn. 

ct{z<n)(A x D(~)(g x koj x h) x(z,n) 

= I, , M x 6)iv,m){A xDf\(f x h)~l(y,m))d(u x Tj)(z>n)(y,m) 
J(gxk)~l(z,n) 

= / , / , > x 8){y<m)(A xDD(fx h)-x(y,m))du2(y)dj]n(m) 
Jg-^z) Jk-l{n) 

= / py(A Pi f-l(y))dvz(y) • f 8m(D n Ir1 (m))dr,n(rn) 
Jg~l(z) Jk-i(n) 

= lz(A n rl9~\z)) • pn(D n h-lk~l(n)) 

= (72 x pn){A D f~lg-l(z) xDD / T U ^ n ) ) . 
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And so, we have shown that ® is a bifunctor. It is a straightforward matter to 

check the (1,2, counting) is the unit for this tensor. Thus, 

Proposition 1.5.10 (Disint. ®t (1.2, counting)) is a monoidal category. I 

1,5.6 Slice Categorical Examples 

Let (A', A, p) G Disint. Then Disint/X denotes the slice category of disintegra­

tions over X. We give a list of examples of objects of Disint/X and of disintegra­

tions over specific objects (these examples will be useful in chapter 4). Proofs are 

omitted since they follow from general slice categorical nonsense. 

Example 1: The terminal object of Disint/A" is (X,A,p) >(X, A, p), the 

identity. D 

Example 2: The initial object of Disint/A' is the inclusion of the empty set: 

(0, {0},O) 'A"'0l) >(X,A,p) with {0}^ = {0} and 0X = 0 for all x € X. D 

Example 3: More generally, any measurable subset A C X, with the inclusion, 

gives an object of Disint/A'. • 
proj 

Example 4: Examples 1 and 2 are special cases of X x I >A where J is a 

discrete space. D 

Proposition 1.5.11 . 

a) Disint/0 ~ 1 

b) Disint/1 ~ Disint 

c) Disint/2 ~ Disint x Disint 



39 

d) Disint/(A' + Y) ~ Disint/A x Disint/K 

e) Disint/N ~ JI Disint. • 
N 

Remarks: 1. c) is a special case of d). 

2. Strictly speaking, N ^ Disint but e) works nonetheless. D 



Chapter 2 

Measurable Fields of Hilbert 

Spaces 

2.1 Introduction 

We have given the necessary measure theoretic background. Specifically, we have 

some useful categories of measure spaces upon which to base our indexing ideas. 

In this chapter, we will begin to glue (in a non-technical sense) the three elements 

measure theory, operator theory, and indexed category theory together. Indeed, in 

this chapter, we concern ourselves with box 1 of the diagram in the introduction. 

We must, however, fill in mort background and, in the next two sections, we first 

provide a brief outline of direct integral theory (to fix notations and set definitions), 

and then a brief outline of indexed category theory. One final remark: in our 

categorical analysis, it is best to construct the direct integral in stages. That is to 

say, we will gradually introduce more and more elements of category theory into 

the construction. 

40 
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2.2 Measurable Fields 

2.2.1 Motivation 

In this section, we motivate the direct integral of Hilbert spaces. We will draw 

on some folklore about unitary group representations and the (related) decompo­

sition of a Hilbert space with respect to an algebra. "Folklore" is perhaps not a 

completely accurate term, for the results we give here are well documented in the 

literature (the principle texts to which we refer the reader for details are [Dixl], 

[Dix2], [Nai], and [Nie]). However, "folklore" may be assumed by the reader to 

accurately describe the style of the (short) exposition we give here. 

A. Unitary Group Representations 

Definition 2.2.1 Let G be a topological group and H a Hilbert space. U(H) de­

notes the group of unitary operators in H (u is unitary ifu*u = lj/ = uu*). A 

continuous unitary representation ofG on H is a continuous (in the strong topol­

ogy) function G *U(H) such that u(gh) = n(g)u(h) and u(e) = 1//. Q 

Remarks: 1. The condition u(gh) = u(g)u(h) implies u(e) = 1//. 

2. Continuous in the strong topology means: for each £ G Fl, the function g t-> 

u(g)£ is continuous with respect to the norm topology for / / and the given topology 

for G. D 

Let u be a continuous representation. The set u(G) is not linear since the sum 

of two unitaries is not necessarily a unitary. But, it is a group with respect to 

multiplication of operators. Furthermore, u(g)" = u(g)~x = u(g~l). That is, u(G) 

is self adjoint (= symmetric in the terminology of [Nai]). 

Proposition 2.2.1 Let A C L(H). A subspace M < / / is A-invariant iff M1 is 

A"-invariant. 
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Proof: =*•: Let a G A and consider a* G A" and £ G ML. Now, (a*£|7/) = {̂ (077) = 

0, for all j] G M since a is M-invariant. And so, M 1 is A'-invariant. I 

Since u(G) is self adjoint, if M < H is tt(G)-invariant, so is M x and we write 

/ ux(g) 0 \ 
H — M ® M1. So we must have «(</) = with ui(g) and 1/2(0) 

\ 0 u2(g) ) 

unitary projections onto the subspaces M and ML respectively. And so, to study 

it, it is better to study tti and u? instead. More accurately, one should look at 

representations which do not have (nontrivial) invariant subspaces. 

Definition 2.2.2 it is said to be irreducible if M < H u(G)-invariant implies 

M = 0 or M = H. D 

Proposition 2.2.2 ([Dix2, p.35]): u is irreducible iff u(G)' = C • 1H ( u(G)' 

denotes the commutant ofu(G), the set of all operators in L(H) which commute 

with everything in u(G); and C • In denotes the scalar operators on H). I 

Now, suppose G is Abelian so that u(G) C u(G)' (u(g)u(h) = u(gh) = u(hg) = 

u(h)u(g)). By the above propo:>ition, we have C • 1# = «(G)' 3 (C • 1#) ' = L(H). 

That is L(H) C C • 1// which implies H = C or "irreducible representations of an 

Abelian group are all one dimensional." 

Notation: G denotes the set of irreducible representations of the Abelian group 

G; G is called the dual group of G. D 

Example 1: Suppose G = Z. Let tt(l) = z0 G U(C) (which means |z0 | = 1). 

Then u is completely determined, for u(n) = ZQ. Thus, Z - ^ T , u i-» u(\) = z0, 

where T denotes the circle group in the complex plane. • 

Example 2: Suppose G = R. A continuous unitary representation must be of 

the form us(t) = e2mts, one for each 3 G R. So, R = R. • 

Now, suppose G = Z and H = L2(T, A), where as usual A denotes Lebesgue 

measure. Let u(n) be multiplication by zn for j f T , Specifically, u(n)(f)(z) = 
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znf(z) for / G I 2 ( T , A). Let S be an open subset of T and let M = L2(S, A). 

It is invariant under u, so it is reducible (which we also know from the fact that 

irreducible representations are one dimensional and L2(T, A) is not one dimen­

sional). We would like to break up it (which means breaking up H) into a direct 
oo 

sum of irreducible (= one dimensional) representations; ideally II — ® C. But, 
t= i 

we cannot chop up H using L2(S,A) for open subsets S (since these are not C) 

and we cannot use Z2(point) (since this is 0, not C). So, there are no points on 

which the irreducible representations are acting. To repair this, we need some 
ye 

sort of measurable direct sum (specifically, u = / . it,0(/A). That is to say, we 
J:o£T=Z 

/
e /•© 

, so that / CdX = L (T, A). To first describe this 

so-called direct integral, we must understand what a family of Hilbert spaces (not 

necessarily the constantly C family) indexed by a measure space is. 

B. Decompos i t ion With Respect to an Algebra 

Let us look at the above example again in a slightly more general context. Let 

U be a self adjoint subalgebra of L(H) and suppose that / / is finite dimensional. 

If U is reducible, there is a non-trivial subspace M < II that is [/-invariant. So, 

by proposition 2.2.1, ML is also [/-invariant. Furthermore, we have / / = AT© A/1 . 

Let UM denote the algebra of operators of U restricted to A/. If U\t is reducible, we 

can repeat this procedure. Since H is finite dimensional, this procedure terminates 

and we can write H = M\ © A^ffi- • •© A/n with each corresponding U\i, irreducible. 

If H is infinite dimensional, the above procedure may not terminate. We might 
oo 00 

expect to be able to write H = (£) M, ( formally, £f) M, consists of (norm) square 
i=r i=i 

summable sequences, the ith member of which is an element of A/,). We may, 

however, have to write H = / Mxdp (which consists of, in analogy to the above, 

(norm) square integrable families). The details of its construction follow. 
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2.2.2 Measurable Fields of Hilbert Spaces 

In the next two subsections, we outline direct integral theory as given in [Dixl]. 

Most of the proofs are omitted although a few are inserted to give the reader a bit 

of the flavour of the techniques used. 

Let (X,A,p) be a measure space. The operator theory literature gives the 

construction of the airect integral over a standard measure on a Polish space ( for 

example, a separable, compact or locally compact topological space; the paradigm 

being the spectrum of a symmetric operator as a compact subset of C) . Since, we 

wish to study indexing by measure spaces in a general (measure theoretic) setting, 

we will not assume anything about the measure space at this point. However, 

ve will feel free to add assumptions throughout this discussion. For details on 

standard measures and the "simple functions to measurable sets" approach to 

measure theory, the reader is referred to [Bou] or [Nai]. 

Definition 2.2.3 A field of complex Hilbert spaces on X is a family, (H(x))x^x, 

such that each H(x) is a C-Hilbert space. D 

Write T := J\ H(x). It is a C-vector space (with pointwise operations). An 

element of T, an a:-tuple, (f(x))x^.\, is called a field of vectors. 

Definition 2.2.4 .4 measurable field of Hilbert spaces is a family,(H(x))x^x> to­

gether with a Q C jF = J J H(x) such that: 

1. Vg G Q, , T H ||<7(.T)|| is measurable. 

2. If f G T is such that x >-> (f(x)\g(x)) is measurable for all g £ G, then f € G-

3. There exists a sequence, g\, g%,. • • in G such that Wx G A', (gn(x))1?=i forms 

a total sequence in H(x). D 

Remarks: 1. "Total," in this context, means "dense span." 
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2. Axiom 2 ensures that G is the "largest" measurable subcollection of ? in some 

sense. In practice, we use this axiom to prove that a thing is an element of G-

3. We call the elements of G measurable fields of vectors or MFV's. A sequence 

satisfying axiom 3 is called a fundamental sequence of MFV's. The whole structure 

is called an MFHS. 

4. Let g and h be MFV's. Since linear combinations of ||(</ + /t)(;r)||2, \\(g — /J)(.T)| |2 , 

||(<7 -f ih)(x)\\2, and \\(g — I7()(.T)||2 are measurable, x »-» (g(x)\h(x)) is measurable 

by the polarization identity: (g\h) = -\\g + h\\2 - -\\g - h\\2 + U\g + ih\\2 

~-\\g — ih\\2. Indeed, the (pointwise) product of an MFV with a C-valued mea­

surable function is an MFV. The limit of a sequence of MFV's, converging weakly 

for each x G A", is an MFV. 

5. Our first assumption on A' is that it is a finite measure space. Furthermore, 

we assume the sequence in Axiom 3 has each ||</n(o;)|| bounded. We get, through 

linear combinations, as in remark 4 above, a sequence of MFV's, hi, h2,..., such 

that for each x G A', (/in(a;))^_1 is dense in H(x). In particular, each H(x) is 

separable. 

6. If p' is equivalent to p (i.e. p <C p' and p' <C p) then G is also a //-measurable 

field. In essence, then, we are looking at equivalence classes of MFIIS's. • 

Example 1: Suppose A' is discrete so that every function out of it is measurable. 

The only G that can satisfy axiom 2 is G = ?• To satisfy axiom 3, we need each 

H(x) separable. • 

Example 2: Let Ha be a fixed separable Hilbert space and let H(x) — IIQ for 

all a; G A". Then MFV's are simply measurable functions X —• HQ (i.e. G — 

Mble(A, HQ). H0 with its Borel structure). D 

Example 3: If A" C X, then an A-MFHS restricts to an A"-MFHS in an obvious 

way. We may also include an A"-MFHS in an A'-MFIIS by defining H(x) = 0 for 
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x i A". D 

More examples will be given in the sequel. 

Definition 2.2.5 Let ((H(x))xeX,G) and ((H'(x))xeX,G') be two MFHS's. A 

morphism is a family (T(x))xex of linear maps, H(x) >H (x), such that for 

each g EG, x t-> T(x)g(x) EG'- • 

We reserve the term field of operators for the case when the 7"s are bounded 

linear operators. In particular, an isomorphism of G onto G' is a morphism with 

each T(x) an isomorphism. An MFHS which is isomorphic to a constant field 

(example 2) is called trivial. 

At first glance, axiom 3 seems somewhat mysterious. As we remarked above, 

it makes the //(xj's separable. It will also ensure that the Hilbert space we con­

struct in the sequel, the direct integral, is separable. Furthermore, an important 

consequence of axiom 3 is the following: 

Proposition 2.2.3 ([Dixl, p. 144]): (i) Let Xp = {x G X\dim(H(x)) = p}. 

Then each Xp, p = 0, 1, . . . ,No! sa measurable subset of X. 

(ii) There is a sequence (gi, g2,---) of MFV's such that 

a. ifd(x) — dim(H(x)) — K0, (9i(x), g2(x), • • •) is an ONB in H(x) 

b. ifd(x) < K0, (gi(x), g2(x),..., gd(x)(x)) is an ONB of H(X) andg{(x) 

= 0 when i > d(x). I 

We call the sequence above a measurable field of ONB's. 

A fundamental sequence is sufficient for axiom 2. 

Proposition 2.2.4 ([Dixl, p. 144])-' Let (<?n(s))£=i be a fundamental sequence 

of MFV's. A field of vectors (g(x))xex is measurable iff all the functions x *-* 

(g(x)\gn(x)) are measurable. I 
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Remark: Proposition 2.2.4 follows immediately from proposition 2.2.3, part (ii) 
oo ^ 

and Parseval's identity: (g(x)\h(x)) = ^2(g(x)\gi(x))(h(x)\gi(x)} for </,- an ONB. 
i=i 

We will use this idea, also, for change of base, below. • 

Finally, we note that we have a version of "local triviality." Recall, an MFHS 

is trivial if it is isomorphic to a constant field. 

2.2.3 The Direct Integral 

Definition 2.2.6 An MFV, g(x), on X is square integrable if 

I \\g(x)\\2dp < co. D 
•/A 

The collection of square integrable MFV's forms a C-vector space A'. For g 

and h in A", x •—• (<7(.T)|/i(a;)) is measurable and square integrable by the Holder 

inequality, and setting (<7|/i) := / (g(x)\h(x))dp gives a pseudo inner product on 

A'. Let H = A'/~ (as before, / ~ g iff / = g a.e.). Then H is a pre-Hilbert space. 

Theorem 2.2.1 H is a Hilbert space (i.e. is complete). 

Proof: Let (<7n)£Li be a Cauchy sequence in H. It suffices to show that a subse­

quence converges almost everywhere to an element g E H. Since (gn) is Cauchy, 

we can pick a subsequence (which, for brevity, we also denote by (#„)) such that 
oo oo 

£ Il0»+i ~ 9n\\ < oo which means ^ ||<7n+i(z) - gn(x)\\ < oo Vx $ N for some N 
n = l n = l 
with p(N) = 0. 

oo 

For x £ N, gi(x) + ^2(gn+i(x) — 9n(x)) converges in H(x) (by completeness of 
n=l 

oo 

H(x)) to an element, say g(x) G H(x). So \\g(x)\\ = \\gi(x) + J](<yn+,(,r) - gn(x))\\ 
n=l 

oo 

< IM*) | | + E \\9n+i(x) - 9n(x)\\. Put g(x) = 0 for x E N. We must show that 
n=l 

g is a square integrable MFV. 
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The field of vectois, g(x), is measurable since it is a limit (a.e.) of g\(x)+ 
V r 

^2(gn+\(^) — 9n(x)) each of which is measurable. Now, / ||<7(a;)||2d/i 
n=l J 

< / llz/^x)!!2^ + E / lltfn+il1) — ^n( x ) l | 2^ < °° (note that we have assumed 
* n= l" ' 

that p(X) < oo). This completes the proof. I 

Definition 2.2.7 H is called "the" direct integral of the H(x)'s and is denoted 

/
® . . • f® 

H(x)dp. If g is a square integrable MFV, we write / g(x)dp for its equiv­

alence class in II. D 

Remark: Suppose p' is an equivalent measure to p. Put p' = pp where p is 

a /t-measurable function of x such that 0 < p(x) < oo. Then x »-> p(x)~*g(x) 
H(x)dp onto / H(x)dp' since / ||/9(x)-5^(a;)|j2(//t' 

= / ||̂ f(a:)||2/9(a,,)~1/9(a;)<//t = / ||<7(x)||2(i/t. For fixed p and p', this isomorphism 
f® does not depend on p and we call it the canonical isomorphism of / H(x)dp onto 

J H(x)dp'. • 

Example 1: Let A' be discrete. As noted above, any field of vectors is mea­

surable. If A' is finite, with counting measure, then the direct integral is precisely 

# i © Ih © • • • ffi Hn, the usual (finite) direct sum (= cartesian product with point-

wise operations) of Hilbert spaces. If X is countable, again with counting mea-
00 

sure, then the direct integral is simply ^ H, where this is taken to mean square 
n=l 

summable sequences. • 

Example 2: For each a: G A', let H(x) = H0 be a fixed Hilbert space. Then 
f® 
/ H(x)dp = L (X, H0). We see that theorem 2.2.1 above generalizes the Reisz-

Fischer theorem. D 

Example 3: For each r G [0,1], let H(r) = L2([0,r],A). Then I H(r)dr 

~ {(/(r>-))re[o,r]| / I \f(r,x)\2dxdr < 00} which is just L2(A,X2) where A = 

{(r,.r)|0< x<r, 0 < r < 1}. 
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x 

D 

Example 3 is a special case of the following: 

Example 4: Let A be a plane measurable subset of [0,1] x [0,1]. By use of Tonelli's 

theorem and in a similar manner to example 4 above, we have L2(A, A x A) 

/

ffi 
L (Ar)dX where, as before Ar denotes the "rth slice," 

Ar:={x\(x,r)EA). D 

In view of our discussions in the motivational section (section 2.2.1), a good 

way to slice up L2(A,X x X) is as the direct integral of "points." Specifically, 

Example 5: Let H0 be C in example 2. Then L2(A, X x A) ~ / Cd(X x A). D 

In the rest of this section, we list some important properties (given in [Dixl]) 

which will be used in section 2.4. 

Proposition 2.2.5 Let (H(x))xe\ be afield of Hilbert spaces on X and let (</,) 

be a sequence of fields of vectors such that: 1. x *-* (gt(x)\gj(x)) is measurable for 

all i and j and 2. {gi(x)}fli is total in H(x) for each x. Then, there is a unique 

MFHS structure on the H(x) 's to make the g, 's MFV's. I 

Proposition 2.2.6 Let s, be an MF of ONB's for (II(x),G). Then 

i) s G H — I H(x)dp(x) iff x i—• (s(x)\s,(x)) is square integrable for all i and 
00 . 

EJ\(s{x)\st(x))\2dp{x)<oo. 
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i) Fors,tEH, (s\t)=Y,](s(x)\st(x))(t(x)\st(x))dp(x). 

Hi) t G / / is the (strong) limit oftn(x) = £^(i(x)|.s,(x)).s,(x). • 
1=1 

Definition 2.2.8 The measure space, (X,A,p), is said to be standard if 

L2(X, A, p) is separable. • 

f® Proposition 2.2.7 If(X,A,p) is standard, / H(x)dp(x) is separable. I 

Remarks: 1. Proposition 2.2.7 is really a corollary of proposition 2.2.6. 

2. Proposition 2.2.6, ii) is Parceval's identity and iii) is Fourier series expansion in 

this context. 

3. We have omitted almost all proofs in this section (they are in [Dixl]). However, 

we will refer to elements of the proofs of propositions 2.2.5 and 2.2.7. Specif­

ically, the MFHS structure G of the former consists of all those r̂'s such that 

x *-* (g(x)\st(x)) is /t-measurable for all s,(x) in an MF of ONB's. For the lat­

ter, we suppose a,(x) is a dense sequence in L2(X,A,p), then MFV's of the form 

2_]ani(x).s,(x) are dense in / H(x)dp(x). D 
1=1 •* 

2.2.4 Other Measurable Fields 

There are other fields. One direction to move is to continuous fields (roughly 

speaking: replace "measurable" by "continuous" in the above definitions) which 

leads to the theory of Hilbert bundles and, more generally, vector bundles. We 

will not explore continuous fields in this paper (for exposition on continuous fields 

of G*-algebras and Hilbert bundles, see [Dix2, pp. 211-249]). Indeed, rather 

than specializing the base category (i.e. from measurability to continuity), we 

will generalize the indexed categories. More precisely, in this section, we describe 
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other entities indexed measurably culminating in the statement of a decomposition 

theorem alluded to in section 2.2.1. Again, we present an overview of [Dixl]. 

We have already defined morphism of MFHS's. Since operators (= bounded 

linear operators = continuous linear operators) are the entities to be studied in 

operator theory, a more important notion of morphism is: 

Definition 2.2.9 Let ((H(x))xex,G) and ((H'{x))xeX,G') be two MFHS's. A 

measurable field of bounded linear maps (or MFBLM) is a family, 
T(x) 

(H(x) >II'(x))x£X> of bounded linear maps such that for each MFV, g EG, 

(T(x)g(x))x£x E G'• We use MFO, measurable field of operators, if the T(x) 's arc 

endomorphims. D 

x i-> ||2'(x)|| is measurable. In adition, (T(x))xe\ is an MFBLM iff 

(T(x)gi(x)\g'j(x)) is measurable for each </,-, g'j of two fundamental sequences of 

MFV's g{ E G-, g'j E G' (see [Dixl, p. 156] for details). 

Definition 2.2.10 An MFO (T(x))xex ^essentially bounded t/||7'(x)|| is essen­

tially bounded (i.e. there is an M such that ||T(x)|| < M a.e. ) . D 

Remarks: 1. The product of an L2-function by an Z°°-function is an 

L2-function so if (T(x))x^x »s essentially bounded then we have a bounded lin-
f® ear operator T E B(H), where H = H(x)dp. Furthermore, [|T*|| = ||I'(a;)||oo-

Conversely, if T G B(H) is induced by an essentially bounded MFO, we say T is 
/•© 

decomposable and write T = / T(x)dp. 

2. Two essentially bounded MFO's which induce the same element of B(II) arc 

equal almost everywhere. 
f® 

3. Operators of the form / T(x)dp, where T(x) is scalar for each x are called 
diagonalizable. The set D of diagonalizable operators forms a commutative von 
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Neumann algebra and D', the commutant of D, is the set of decomposable opera­

tors. D 

Definition 2.2.11 Let ((H(x))x€X,G) be an MFHS. A measurable field of von 

Neumann algebras (MFvNA) consists of a family, (A(x))xeX) such that each A(x) 

is a von Neumann algebra on H(x), together with a countable family, (Ti)t^N, of 

MFO's such that for almost all x E X, A(x) is the von Neumann algebra generated 

by the T,(x) 's. In analogy to remark 1 above, a von Neumann algebra, A C B(H), 

is called decomposable if it is induced by an MFvNA and we write 

A = I A(x)dp. U 

Definition 2.2.12 Let ((H(x))xeX,G) and ((H'(x))xeX,G') be two MFHS's and 

((A(x))xeX,(Ti),eN) and ((A'(x))x<zX,(T!),eN) be two MFvNA's (on G and G' re-

/

® f® 

A(x)dp and A = / A'(x)dp. For each x E X let 

A(x) >A'(x) be a homo morphism of von Neumann algebras. The family, 

(<p(x))X£X, is called a measurable field of homomorphisms (MFH) if for each x i-> 
r® 

T(x) E A(x), x H+ tp(x)(T(x)) E A'(x) is measurable. For T = T(x)dp E A, 
write <p(T) = J <p(x)(T(x))dp E A'. D 

The reader may note the similarities between the definitions of MFHS and 

MFvNA. The basic format is: measurable field of things = family of things indexed 

by X + measurability requirement -J- countability requirement. The last condition 

is not so universally required (it is possible to talk about measurable fields of non-

operator theoretic entities) but it is important in the operator theoretic world (e.g. 

separabilty of H). 

Of course, we are interested in the question of when a Hilbert space is decom­

posable into a direct integral, more importantly, of when an operator decomposes 

into an MFO (in analogy to the finite dimensional spectral theorem) or when a 



53 

Hilbert space decomposes with respect to a von Neumann algebra (as alluded to 

in section 2.2.1). 

Theorem 2.2.2 Let H be a separable Hilbert space and A a von Neumann algebra 

on H. There exists a compact metrizable space X, a measure p on X, an MFHS 
f® (H(x))X£X, such that each H(x) =£ 0, and an isomorphism of H onto / H(x)dp 

which takes A to the algebra of diagonalizable operators. 1 

Remark: We would like to decompose the algebra A. In order to do this, however, 

we must first know how to decompose the Hilbert space / / it is acting on. And so, 

the theory is built up as: MFHS -~+ MFvNA ~> Decomposition. D 

2.3 Categorical Indexing Concepts 

2.3.1 Introduction 

Given a category S, one may form the category Grp(S) of group objects in S (pro­

vided S has finite (including empty) products). This is done, as is well known, by 

simply translating group theory data and axioms into categorical statements about 

objects of S (for example, "multiplication" (data) is a morphism G x G >G). 

If S = Set, one gets the usual category of all (small) groups. 

One might ask about the existence of limits in Grp(S). In particular, one can 

ask whether the product Gi x G'2 can be formed. Of course, we would like to from 

such products for any pair of group objects. This amounts to asking the question: 

given a family of size 2, can we form H of this family? And similarly for "larger" 

sized families. And so, the notion of family is central to any discussion about 

completeness. 

Now, if S = Set and / G Set, we know what an /-family of sets is and we 

know how to formulate questions about /-indexed products ( = "/-sized" products) 
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in any category on S (for example, in Grp = Grp(Set)) . In categorical language, 

an /-family may be interpreted as a functor I —> Set, where I is the discrete 

category whose objects are the elements of / . 

For a general S, there is not necessarily a notion of /-family for / an object of 

S. For some significant examples, there is, however. Indeed, if S is "Set-like," for 

example, then we have a good notion of family. The paradigm for "Set-like." in 

this context, is: S a topos. If S is a topos, we can form S / / . This is, of course, 

itself a topos (the fundamental theorem of elementary toposes). We may think 

of it as the category of /-families of objects of S (in analogy to and using the 

equivalence Set7 ~ Se t / / as motivation). 

We can now talk about Grp(S) and Grp(S / / ) , the latter thought of as I-

families of group objects, and can ask about completeness relative to S (in fact, 

S / / ' • - = > S yields Grp(S//)< " > Grp(S)). A/ is a special type of substi-
n, n a 

tution. More generally, we have, for each J •/, a functor S / / >S/J 

given by pulling back along a. The categories S / / and the functors a* will be the 

central data for our notion of S-indexed category. We give these abstractly. 

Incidentally, Grp(S) is algebraic over S and so has the same sized limits as S. 

Colimits are not necessarily so well behaved, however. For example, the category of 

finite sets S e t , as a category indexed by itself, is both complete and cocomplete 

(for example, a finite product of finite sets is a finite set). The category of finite 

groups, however, is not closed under finite coproducts. 

As another example, let / G Top. We may index Top by itself as above (this 

works for any category with finite limits). We can also index Set by Top by 

considering the category of /-families of sets as the category of sheaves on / ; 

Sh(/) . Again, we get substitution functors a*, which, in this case, are the inverse 

image functors. 

One important aspect about Set is that it indexes many categories (one can 
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talk of /-families of groups, of topological spaces, of . . . ) . Top indexes fewer 

categories in some sense (for details of Top indexing, see [Lev]). In all examples of 

S-indexing, there is a (sometimes delicate) balance between the richness of the base 

category S and the quantity of categories indexed by it (although, Set-indexing 

has both). 

At this point, we should note that there are five approaches to a categori­

cal treatment of indexing by objects other than sets: 1. Lawvere style (using 

S-atlases), 2. Penon style (using locally internal categories), 3. Benabou style 

(using fibrations), 4. Pare-Schumacher style (using pseudo-functors), and 5. Betti-

Walters style (using categories enriched over a bicategory). We will follow 4. in 

our outline immediately below and, indeed, throughout the thesis. 

2.3.2 An Outline of Indexed Category Theory 

Definition 2.3.1 ([Ma&Pa], p.63): Let S be a category with finite limits. An 

S-indexed category consists of the following data: 

• for every object I ofS, a category A 

a i a' i 

• for every morphism J >I ofS, a functor A >A' 

ft a 

• for each composable pair K > J >/ G S, a natural isomorphism 

4>a<0 : /3'a" —> (a/3)' 

• for each I E S, a natural isomorphism tjjj : (1/)* —• 1,4, 

subject to the (coherence) axioms: 

7 , ft a 

1. for each composable triple L *K >J >/ in S, the following com­

mutes: 



56 

y / J V - — 7 ' M ' 

<i>ptla* ta/3,7 

(/37)-a- - T * (a/97) 

£. /or eac/i J >/ G S, ^1/)0 = a*^/ : a*!} —• a". D 

^^ rw 
Definition 2.3.2 An S-indexed functor, A >B; between two indexed cate­

gories consists of the following data: 

F> 
• for every object I ofS, a functor A >B 

• for each J >I E S, a natural isomorphism 6a : a'F —• F a* 

subject to the axiom: 

ft a 

1. for each composable pair K • J >I in S, the following commutes: 

($-a.Fi *°*F\ (apyFi 

f3'FJa" vQ0 

Ova 

F^i3'a'-jT—~FK(aP)> • 
* ?a,ft . 
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Definition 2.3.3 An S-indexed natural transformation t : F —• G between two 

indexed functors consists of a natural transformation t1: Fl —• G1 for each / G S, 

such that 

1. for every J >I, the following commutes: 

• r ; <*'t' a t 

0a 

a'G' 

FJa* 
tJa' 

GJa- D 

Remark: 1. The category A is called the category of /-indexed families of objects 

of A. The functor a" is called the substitution functor determined by a (in analogy 

to the substitution of example 1 below). D 

We have already alluded to three important examples of indexing: 

Example 1: Every category A can be Set-indexed by taking, for / G Set, 

A 7 := {(A,),€J | A, E A}, the /-fold product. For J-^I, we define A ' - ^ A 7 

by (A,),eI •—» (Ao{:))jeJ. • Q 

Example 2: S indexes itself via Sl : = S / / and for J-^->l, S/I-^-*S/J sends 

X —• / to Y —• J determined by the pull back: 

Y 'J 

a" has a left adjoint £ 0 given by composition. If S is a topos, then a" is 

logical and also has a right adjoint n o . In the case S = Set, we may think of a' 

(as in example 1) as "relabeling along a." ]T0 and n o correspond, respectively, to 

forming coproducts and products over the fibres of o (see [PTJ1, pp. 35-37]). D 
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Example 3: Top indexes Set via, for / G Top. Set7 := Sh(I). For J-^I 

a continuous map, Sh(I)-^Sh(J) is puUback. A sheaf on / may be regarded 

as a local homeomorphism X —• / . Pulling back along a yields another local 

homeomorphism which gives an element of Sh(J). a* is left exact and has a right 

adjoint a.(F)(U) = F(f~x(U)). This gives a geometric morphism (indeed, the 

paradigm) Sh(J)-^Sh(I) (see [PTJl , pp. 11-12] or chapter 3). Q 

Indexed category theory is useful for (at the very least and especially) two 

things: internal notions of smallness and limits. We will now describe these notions 

briefly. 

A category object C in S consists of a triple of objects, (C2,Ci,Co), and a 

sextup' of morphisms (^1,^2,0,do,di,id), subject to axioms that make Co = 

objc , ! v = morphisms, C% = composable pairs, ffi and X2 = projections, 0 = 

composition, do = domain, di = codomain, and id = pick the identity (see, for 

example, [PTJl, pp. 47-48] or [PfcS, p.22]). Similarly, an internal functor is a 

triple (F2,Fi,Fo) of morphisms exhibiting FQ as the "object function" and F\ as 

the "arrow function." With a suitable notion of internal natural transformation 

(a morphism from the objects of one to the morphisms of the other), we get a 

2-category, cat(S). 

For any / G S, the hom functor, S( / , —) : S •Set, preserves category ob­

jects and internal functors. Indeed, S( —, C), which takes / to the category (object 

in Set) (S(/ , C2). S ( / , Cx), S ( / , Co)) is a contravariant functor from S to cat. Now, 

an F 6 c a t - yields an S-indexed category: A7 = F(I) and a* = F(a). We call 

the S-indexed category determined by S(—, C) the externalization of C and denote 

it by [C]. Wc can formulate smallness for indexed categories: 

Definition 2.3.4 ([P&S, p.26]): Two indexed categories A and B are said to 
F ~ G r s / 

be equivalent if there are indexed functors A >B and A< B and natural 
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isomorphisms such that FG — 1 B and GF = 1A. 

>4n indexed category A is called small if it is equivalent to [C] for some category 

object C G S. D 

This notion of smallness follows the idea that if / <£ S (think: / a set which is 

necessarily small; Set being the large category consisting of all small sets), then a 

category "of size / " is to be considered small. For C a category object in S, [C] 

externalizes this object to the cat (and Set) world in which we have utile notions 

of smallness and largeness. Pare and Schumacher go on to formulate other notions 

of smallness such as local smallness and well-poweredness. 

Let D be a diagram (= a small category) in a category A. we may formulate 

the existence of lim via the existence of a right adjoint to A: 

A D - A , A 
lim 

We already know what a small category is in the S-indexed world. We must 

translate each of the other notions. 

Given two S-indexed categories A and B, we can S-index the indexed func-
fl B B a 

tors from B to A. A~ is indexed by (A~) := (A )~ and, for J • / , we get 

A •A which yields (A~) KA~) v i a composition: B >A •A 

(note: A is S-indexed via (A )J = A7* ; we denote this by A ). We have a diago-

nai, AB : A >A~, given at / by A B : A7 >(B >A7), A >—» ( B - ^ A ' ) 

where, for B E BJ, FJ(B) is constantly Aj(A); Aj : A1 >(A')J- We must 

now describe S-indexed adjunction. 

Definition 2.3.5 ([P&S, pp. 68-69]): Let U : B >A be an indexed functor. 

We say U has a indexed left adjoint if there are an indexed functor, F : A • B , 

and indexed natural transformations, e : FU —• l a and r/ : iA —• UF, such 

that eF- Fn =\F andUe • T]U = lu. • 
/\//N> ^N^rv/ rv ^S/rv f\sr\s 
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And so, we can now formulate limits in the S-indexed world. 

Definition 2.3.6 ([P&S, p.75]): Let A be an indexed category and C a category 

object in S. A has C-limits if Ac '• A >A has a right adjoint lim. • 

Remark: 1. The two concepts of smallness and completeness seem to be opposed. 

If we "enlarge" the base category, S, things have more of a chance of being small 

but less things are complete. A good example of this point is the difference between 

Sety and Set indexing. D 

2.4 MFHS's as an Indexing Notion 

2.4.1 Preamble 

We have given some operator theoretic background and some indexed category 

theoretic background. It is time to blend the two (box 1 of the diagram in the 

introduction). Specifically, we now describe some categories of measurable fields 

of Hilbert spaces. As mentioned in the introduction, we will provide, in this pa­

per, three approximations for "HilbA." These three approximations are to mix 

(the apparently opposing) elements of operator theory and indexed category the­

ory. The first technique to describe Hilb may be considered as mostly operator 

theoretic in nature. 

In this section, we introduce two categories whose objects are measurable fields 

of Hilbert spaces; MFHS(X) and BMFHS(X). MFHS(-) (the argument, here, 

is to be filled in with objects or morphisms of MOR) works well with substitu­

tion and is the translation of classical direct integral theory into categorical lan­

guage. If we try, however, to interpret the direct integral as a functor, MFHS(-) 

is not adequate so we introduce a new category, BMFHS(X). This departs 
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from the classical theory (we simply demand the morphisms of BMFIIS(X) be 

bounded over x G A and the classical MFHS(X) and, indeed, [Dixl], allow es­

sential boundedness over x G A') but the gap is not too large. We can propose 

Hilb* := MFHS(X) but it seems that Hilb* := BMFHS(X) is better. 

2.4.2 MFHS(X) 

Definition 2.4.1 Let X = (X,A,p) be a fixed measure space. The category 

MFHS(X) (etymology: measurable fields of Hilbert spaces on X) has as objects, 

MFHS's, and as morphisms, essentially bounded MFBLM's. U 

( T ( X ) ) J 6 . V 

Remarks: 1. An MFBLM, ((H(x))x£X,G) —^((H'(x))xeX,G'), is essen­

tially bounded if ||T(x)|| G L°°(X,A,p). Such compose ( ||S o T(x)|| 

< ||S'(x)||||T1(x)|| ) and the family of identities is essentially bounded so we do 

indeed have a category. 

2. Following the remarks of definition 2.2.10, we require essential boundedness 

for the direct integral to be compatible with maps (that is, multiplying an L2-

function by an Z^-function yields an X2-function). D 

And so, we have a functor, for each fixed A', 

J :BMFIIS(X) • H U b , 

/•© / •$ 

defined, in an obvious way, as / ((II(x))xeX,G) '•= / H(x)dp(x) and 

f®/ f® 
I (T(x))x€.v := / T(x)dp(x). Remark 2 above ensures functoriality. In partic-

ular, we have J lH(x)dp(x) = lj*H{x)Mx). 

Notice that if //(x) = H'(x) a.e on A', then f Il(x) = I Il'(x) (indeed, the 

two families are effectively indistinguishable at the MFHS level). We can consider 
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equivalence classes (of both objects and morphisms) but will, for now, keep such 

matters in the background. 
/•© 

The image of the functor / consists of all (A'-)decomposable Hilbert spaces 

and bounded linear maps (by definition). In fact, this image has a nice topological 

property as well. We recall a result about operators (endofunctions) from Dixmier: 

Theorem 2.4.1 ([Dix2, p.388]): 

/

© /•© 

S(x)dp(x) and T— ' T(x)dp(x) be decomposable operators on 
r® 

II = H(x)dp(x), then 

S + T = je(S(x) + T(x))dp(x) ST = j * S(x)T(x)dp(x) 

XS= f XS(x)dp(x) S*= f S(x)'dp(x) 

/

® . f® 

T,(x)dp(x) (i — 1, 2, . . . ) and T= / T(x)dp(x) be decompos­

able operators. If T, converges strongly to T (i.e. in the norm topology of H), 

then there is a subsequence (Tnk) such that (Tnk(x)) converges strongly to T(x) 

almost everywhere. If T,(x) converges strongly to T(x) almost everywhere and if 

sup ||Ti|| < +oo, then T, converges strongly to T. I 

2.4.3 Substitution 

The thesis is about A'-indexed families of Hilbert spaces for X a measure space. 

Our first proposal (box 1) for Hilb v is MFHS(X) (which we have just described). 

An essential aspect of indexed category theory is substitution. That is to say, one 

needs not only a notion of A'-family but a useful way of getting a F-family out 

of an A'-family (so that one may talk of things like indexed functors, natural 

transformations, etc., as outlined in section 2.3). In this section, we describe this 
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4> 
substitution for the "box 1 world." More precisely, suppose (V, B, v) •(A', ,4, p) 

is measurable, we will describe MHFS(X) >MFHS(Y). <f>' sends an 

((H(x))xeX,GQ£ = n^W)to( (W(j , ) ) ) ! / e K ,HC/-= fl WO/)))- Define 
xeX y€Y 

H= {hE f \y i-* (h(y)\g(<t>(y))) is measurable V</ € G}-

Remarks: 1. There is a map j j //(x) * JJ H(<f>(y)); a(e)(y) = e(<^(t/)). If 
xeA' y€V 

h is of the form a(g) for some g E Gi then t/ »-» (<7(</>(i/))|<7'(̂ (2/))) is measurable 

V9' € £ (it is the composite of x t-> (<7(x)|</'(x)) and 0). Thus, H contains a(G). 

2. If we take objects and morphisms as equivalence classes, under a.e. equality, 

of A'-MFHS's (two such equivalent entities will produce the same direct integral), 

then it is appropriate to have <f> E MOR. D 

Proposition 2.4.1 H = </)"(G) is an MFHS on Y. 

Proof: We must exhibit the three axioms and the following order seems most 

appropriate. 

3. Let (gi)ieN be a fundamental sequence in G- Then (#,(<j>(y)))ieN forms a total 

set in H(<j>(y)) for each y (i.e. a(gi) is a fundamental sequence in H). 

1. Let (gi) be a measurable field of ONB's (proposition 2.2.3). By Parccval's idea-

tity, ( % ) | % ) ) = £(%)M<M</)))(M2/)k(«K?y))>- <%)to(*(y))} '« measurable 
1=1 

by definition and (~) is measurable so y •-> ||/t(i/)|| is measurable V/t G H. 

2. Suppose y 1—> (f(y)\h(y)) is measurable V/t G H. Then, in particular, 

(f(y)\g(<f>(y))) is measurable V</ G G (<*(G) C "H). But this is precisely the criterion 

for being in H, so / E H as required. I 

Given H(x)-^H'(x), a morphism in MFHS(X), define <f>'T by 
T(<t>(y)) 

H(<f>(y)) >H'(<f>(y)). Let h EH, we must show T(<j>(y))h(y) E H. That is, 

we must show y 1—> (T((j>(y))h(y)\g'(<j)(y))) is measurable V</' G <?'. We know 

that (T(<(>(y))g(<l>(y))\g'(<f>(y))) is measurable V# G G V</' G £' (T takes r/'s to #"s 

and compose with <f>) and (/»(t/)|</(^(j/))) is measurable Vg E G (by definition of 
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H). Now, let (gi) be a measurable field of ONB's. Use the Fourier expansion, 
CO 

% ) = £ ( % ) M ^ ) ) M « H y ) ) , to get (T(<t>(y))h(y)\g'(<f>(y))) 
1=1 

CO 

= Yl(Ky)\9i{4(y)))(T{<l>{y))gi(4(y))\g'(<l>(v))) which »s measurable as required. 

If T(x) is essentially bounded over x G X, T(<f>(y)) is not necessarily essentially 

bounded over y E Y. But, if 0 G MOR. then it is. There is an M such that 

||:T(x)|| < M except on A with p(A) = 0. |TO(i/))|| < M except on ^ _ 1 (4) which 

has (/-measure zero. Thus, we have: 

Theorem 2.4.2 For <f> E MOR. MFHS(X)-^—*MFHS(Y) is a functor. I 

A special case is MFHS(l)-^MFHS(X) where A =!*, X-Ul. An MFHS 

on 1 is just a family of 1 Hilbert space. To satisfy axiom 3, the Hilbert space must 

be separable. Thus, there is a functor SepHilb——*MFHS(X) for each measure 
f® . space A'. However, A is not right adjoint to / in general (see chapter 4). 

Now, 1* = 1 (to say (/»(x)|<7(l(x))) = (h(x)\g(x)) is measurable V</ G G is to 
^ <t> 

say h E G by axiom 2). Suppose we have (Z,C,p) >(Y, B,v) >(X, A,ft) 

two morphisms in MOR and let ((//(x)) l € .Y ,£) G MFHS(X). Put i>*<f>m(G) = AC 

and (<f>4>)"(G = £ (we wish to show AC = £ in order to show that ( )* preserves 

composition in MOR). Then k E AC means z t-> (k(z)\h(ip(z))) is measurable 

V/t G H and I E C means z (-• (l(z)\g(<f>il>(z))) is measurable V<? G G-

AC C £, since «(£) C H. To get £ C AC, let (gi) be a measurable field of ONB's, 
oo 

then (k(z)\h(Hz))) = £<*(*)MW(*))>(AW*))MM*))>-
1=1 

And so, we have a functor 

M0Rop >Cat. 

where A'* = MFHS(X). We denote the "MOR-indexed category" (quotation 

marks because MOR does not have products, so is not a "real" S) by MFHS. 
' ^ » M.J A J M 1 
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p 
We call the fibration version of this MFHS •MOR. The objects of the 

category MFHS are triples (X,(H(x))xeX,G), where A" = (A',.4,/t) is in MOR 

(i.e. is a finite measure space) and ((H(x))xeX,G) is an MFHS(X). 

A morphism is a pair, (X,((H(x))xeX,G) *(Y,(K(y))yeY, AC), where 

(X,A,p) >(Y,B,v) is in MOR and T is an MFIIS(X) map, 
T 

((H(x))x€X,G) K(^*((/̂ (!/))y€V')AC). That is, T is a family of maps 
T 

(H(x) •A'(<Ka;)));reY> ( n o r m ) essentially bounded over x G A' and such that 

x i—> (Txg(x)\k(<f>(x))) is measurable V/o G A' and g E G- Finally, we note that P 

is projection onto the first factor. 

2.4.4 Indexed Direct Integral 

We have given necessary background information. In this section, we explore func-

toriality of the direct integral. More precisely, we will generalize the direct integral 

above in the box 1 world. Let (X,A,p) >(Y,B,v) be a disintegration. We 

seek a functor: 

MFHS(X) >MFHS( Y). 

It is instructive to consider two examples first. If (j> is the identity, X—*X, 
f® . * 

then / (H(x),G) should be (H(x),G)- If <f> is the unique map, X-—>1, then 

J (H(x),G) should be ( / H(x)dp(x),V = I II(x)dp(x)). We first note that 

f® 
since V is to satisfy axiom 3, we require / H(x)dp(x) to be separable. According 

to proposition 2.2.7, we could require (X,A,p) to be standard. In fact, we will 

insist upon a similar restriction on the measure spaces below. 

Even more basic than a separabilty requirement is a boundedness requirement. 
f® . f® 

We seek a functor / , taking A'-MFHS's to K-MFHS's, which generalizes / as 
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the classical direct integral (of section 2.4.2). Let J (H(x),G) = (D(y),V). With 

f® the above examples in mind, we should have D(y) = / H(x)dpy(x) = 
J<t>~1{y) 

{9 € G I / , ||5(x)||2(//i!/(x) < oo}/ ~, with g ~ </' iff /*,,{* G ^ ( y ) | flr(x) ^ 

fif'(x)} = 0. 

Now, suppose, for (II(x),G) >(H'(x),G'), \\T(x)\\ is essentially bounded 

over x E X (i.e. T E MFHS(X)). Then, the (only possible definition of the) 
S(y) . 

map D(y) >D'(y); d(y) i-+ [T(x)d(y)(x)] (an element of D(y) is an equivalence 

class d(y), which we also sometimes denote by [d(y)(x)] to emphasize that a rep­

resentative of d(y) is a function <j>~l(y) —>• (J H(x)) does not necessarily land 
r60_1(.v) 

in D'(y). We would require / \\T(x)d(y)(x)\\2dpy(x) < oo for all y. But, if 

||7'(x)|| is (/t-)essentially bounded, then this is finite for only almost all y (making 

S(y) defined for only almost all y). In short, ||T(x)|| /t-essentially bounded implies 

H^xJim-ijj,) /ty-essentially bounded for almost all y (and multiplying an essen­

tially bounded function by a square integrable function yields a square integrable 

function) but not aU y necessarily. We can surmount this problem in two ways: 

by considering as morphisms, almost everywhere defined T"s (and, subsequently, 

S"s) or by making ||r(x)ll a bounded function (||JT(X)|| bounded =*- ||r(:»;)|||0-i(j,) 

bounded for all y and square integrability is preserved). The former is cumber­

some and, indeed, some of the constructions below would not be well defined (for 

the first solution, we would have to require equivalence classes under almost ev­

erywhere equality). We choose the latter (departing from classical direct integral 

theory only slightly) and consider the subcategory: 

Definition 2.4.2 BMFHS(X) (etymology: "B" for "bounded") is the subcat-

egory of MFHS(X) whose morphisms, (H(x),G) >(H'(x),G'), have \\T(x)\\ 

bounded over x EX. D 
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Remarks: 1. We say T is norm essentially bounded or norm bounded according 

to whether T is in MFHS(X) or BMFHS(X). 

2. BMFHS(l) = MFHS(1) = SepHilb. 

3. Substitution, as described in section 2.4.3, restricts to this subcategory (if 

| |JT(I/)| | is bounded over y E Y, ||r(^>(x)|| is bounded over x G X). • 

/ • 
And so, we will describe BMFIIS(X)-^BMFHS(Y), 

(H(x),G) •—• (D(y),V), with D(y) = I II(x)dpy(x). Now, V will have to 
•/<£_1(y) 

have a fundamental sequence. Using proposition 2.2.7 as a clue, we make the: 

Assumption: There is a sequence a,- G L2(X,A,p) such that a^x)!^-!^) is total 

in each L2(Xy,Ay,py). • 

Example 1: (X, A,p) >(X,A,p). Here, L2(Xx,Ax,ix) ~ C for each x. 

We may take the family with one member cti = [1] : A' —> C. D 
V;fl) 

Example 2: (X,A,p.) >(1,2, counting) with (X,A,p) standard. Here, 

A'. = X so the total sequence for "each" L2(X,) is that for L2(X). D 

Example 3: For ([0,1] x [0,1], £ x £ , A x A) >[0,1], with p=projection 

onto the first factor, take the sequence to be A'MjxM]) aib,c,d E QH [0,1]. Every 

(square integrable) measurable function can be approximated by simple functions. 

These, in turn, can be approximated by simple functions over rational 

intervals. D 

Remarks: 1. As consequences of this assumption, we have (Xy,Ay,py) standard 
/*£r> 

for all y and, indeed, L2(X) ~ / L2(Xy)du(y). 

2. The assumption does not necessarily imply that (X,A,p) is standard as the 

second example shows. 

3. Example 3 requires a special property (density of the rationals) and, as such, 

is not a "good" example. There is a better sequence for this as the next example 

shows. • 
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(p i , (^Xl / ) i ) 

Example 4: (X x Y,A x B,p x v) >(X,A,p) with (Y,B,v) standard. Let 

6, be a total sequence in L2(Y) and put at(x,y) := X x Y—^Y—'->C Then, 

a,\p-i(r) = b, is a total sequence for each x and / ||a,(x,i/)|| d(p x u)(x,y) = 

/ / \\ax(x,y)fdp(x)dV(y) = / \\K(y)tp(X)dv(y) < oo. D 

And so, before defining the MFHS structure V, let us look at some specific 

members. Let a,(x) be an MF of ONB's for the £2(A'y)'s and let s3(x) be an 

MF of ONB's for the //(x)'s. Each a,(x)5J(x)|^-i(!/) G D(y) (since at and s3 are 

norm bounded over x (of norm < 1, in fact), they are /jy-square integrable for each 

y). By proposition 2.2.7, (ai(a')5j(;L')U-1(!/))(i!jj=(i,i) f ° r m s a total set in each D(y). 

Furthermore, y »-> (a,(x)sJ(x)\,i>-ny)\al,(x)sJ>(x)\<t>-ny)) = 

I (a,(x)s}(x)\atr(x)s:ii(x))dpy(x) is (/-measurbale (see proposition 1.5.2). And 
H~^(y) 

so, by proposition 2.2.5, there is a unique MFHS structure V, making the a .s /s 

MFV's. V consists of all (d(y)) E Jl^iv) s u c n t n a t V >-+ (d(y)\at(x)sj(x)\^,-ny)) 

is (/-measurable for all i and j . 

Next, we put ((H(x),G)^(H'(x),G')) —>((D(y),V)-^(D'(y),V) with, as 

we have already noted, (S(y)d(y))(x) := T(x)(d(y)(x)). Then S is linear and 

well defined for suppose d0 = d\ in D(y), then py{x E <t>-1(y) \ T(x)d0(y)(x) ^ 

T(x)di(y)(x)} < py{x E <l>~l(y) \ d0(y)(x) ^ di(y)(x)} = 0 (T(x) is a function for 

each x). 

Suppose \\T(x)\\ < M, then \\S(y)d(y)\\2 = f | |T(x)d(j/)(x)||2^ ! /(x) < 

A/2 / \\d(y)(x)\\2dpy(x) = M2\\d(y)\\2. So, S(y)d(y) E D'(y) for all y and 

||5(i/)|| is bounded over y E Y. 

Finally, let (d(y))yey E V. We wish to show (S(y)d(y))yeY E V. It is 

enough to show it for the "generators" of V: «»Sj|^-i(y). We must show y i-» 

(5(2/)o,5j|^-i(j/)|flA;j>J|^-i(j/)) is (/-measurable (a„ak from the same sequence, s} an 

MF of ONB's for G, s', an MF of ONB's for G'). But, this is 
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y H-+ / (r(x)ai(x)sJ(x)|afc(x)^(x))(i/(j /(x). T(x)a,(x)sj(x) G G' (T takes <J'S to 

<7/"s) and ajt(x).s{(x) G £ ' so that the function under the integral is /(-measurable. 

Thus, the function is (/-measurable (again, as in proposition 1.5.2). 
f® 

It is straightforward that / preserves composition and identity, and so, we 
Jrj, 

have a functor: 

/•e 

BMFHS(X) •— >BMFHS(Y). 

Let us revisit the two examples at the beginning of this section. For / , 

ai = [1] and SJ is an MF of ONB's for G- So, a,a; is an MF of ONB's for G 

(i.e. V, being the unique MFHS structure, is G)- For / , the totalness of aiSj is 

exactly proposition 2.2.7. These examples represent two extremes in some sense. 

There is an alternate description of T>. Let V consist of all those 

(d(y)) € J J D(y) for which there is a g E G such that g\<t,-i(y) — d(y) for all y. We 

will show that V = V by showing that V is an MFHS structure (on the D(y)}s) 

containing the a . s / s and applying the uniqueness property of V. First, we have a 

notion of "well definedness" for V: 

Proposition 2.4.2 If g'\^(y) = d(y) = g(y)\<t>-i(y) for all y, then p{x | g(x) f 

g'(x)} == 0. 

Proof: /t{x | g(x) £ g(x)} = j py{x E <f>~\y) \ g'U^(y)(x) ± g\^(y)(x)}du(y) 

0. I J Qdu(y) = 

Proposition 2.4.3 V is an MFHS structure (containing the aiSj 's). 

Proof: Axiom 1: y <—>• |K(?/)||2 = / \\g(x)\^dpy(x) is measurable as in propo-
• /* _ 1 (y) 

sition 1.5.2, so the square root is measurable. 

Axiom 3: the a,-s,-l^-i^'s form the fundamental sequence. This is immediate since, 

for any g E G, (g\<j>-Hy))yzY ET> by definition. 
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Axiom 2: Linear combinations (with coefficients measurable functions of x) of 

a,(x).sy(x)'s yield elements of G- Thus, from the a . ^ ^ - i ^ ' s , we can form a se­

quence ti(y), such that y H-+ (ti(y)\tj(y)) is (/-measurable, (<;(y)),-17 ( y" is an ONB 

of D(y) (and <,(//) = 0 if t'• > dim(D(y))), and there are functions gi(x) E G such 

that gi\^-\(y) = ti(y). 

Now, let (k(y)) E J J D(y) and suppose y t-> (k(y)\ti(y)) is (/-measurable for 
CO CO 

each i. For each y, we have k(y) = ]£(&(y)|*,-(y))*,-(y) = : J^MiO'ifo)- P u t 

1=1 i = i 

g(x) •=^2bi(<f>(x))g,(x), then this ]T] converges for each x (i.e. <7(x) G H(x)), 
i = i 

9 € G ( (Ylbi(^(x))9'(xyig\x)) = ^b'(^(x))(9'(x)\g'(x)) ls measurable for all 

g' E G since it is a sum of measurable functions), and «j(x)|^-i(y) = k(y) as required. 

1 

We will use this alternate description to discuss pseudo-functoriality. Let 

(X,A,p) >(Y,B,v) >(Z,C,p) be two disintegrations that satisfy the 

assumption and such that their composition (ip(j>, 6z) does as well (at this point, we 

do not know whether disintegrations that satisfy the assumption compose; it seems 
rr(X\ f(T) p (T\ 

to be a difficult problem). Let / / (H(x),G) = (E(z),£) and / (H(x),G) = 

(F(z),T). E(z) = {dEV\ I \\d(y)\\2dvz(x) < oo}/ ~ , and F(z) = 

{9 € G | / | | 5 ( x ) | | 2 ^ ( x ) < oo}/ ~ . We now define E(z)—^F(z) and 

F(z) >E(z). Given d E V (in E(z)), by the alternate description of V, there 

is a g E G such that <7^-i(y) = d(y). Put S(z)(d) = g. Conversely, given g G F(z), 

put T(z)(g) = (f , |^ I ( y )) G V. 

Lemma 2.4.1 d G E(z) iff g E F(z). 

Proof: / \\d(y)\\2duz(y) = / / ||^(x)||2^y(x)^(y) = 

J \\g(x)\\2d6z(x). I 
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Lemma 2.4.2 dQ ~ di in E(z) iff go ~ gi in F(z). 

Proof: 

d0 ~ rf] in E(z) 

iff v:{y£4-l(=)\d0(y)^di(y)}z=o 

iff /ty{.r G rl(y) I </o(.r) ^ y,(x)} = 0 a. a. y E </-l(z) 

iff / py{xErl(y)\9o(x)^gi(x)}du:(y) = () 

iff o:{x E r'4~l(~) I go(x) ? gi(x)} = 0 

iff <7o ~ <7i in .F(r). 1 

Lemma 2.4.3 S(z) and T(z) are linear isometrics. 

Proof: Linearity of S(z) follows from proposition 2.4.2. Linearity of l'(z) is 

just "linearity of restriction." That both are isometries follows from the chain of 

integrals of lemma 2.4.1. • 

Now, S(z)T(z) : g •-> g^-i^) *-> g and T(z)S(z) : d >-> g t-> </U-i(y) = d. And 

so, we have proved: 

Theorem 2.4.3 E(z) and F(z) are isometrically isomorphic for each z. I 

We need to show S and T respect £ and T. Let tx(z) be a MF of ONB's for 

£, then there are d, E T> such that c/,|̂ ,-i(,) = e,(z) and, furthermore, there are 

gi E G such that <7»I*-1{y) = d,(y). Let ft(z) be an MF of ONB's for T, then there 

are g\ E G such that y,'|^-i^-i(3) = fx(z). We must show that z H-* (S(z)e{(z)\fj(z)) 

and z i-> (T(z)ft(z)\e}(z)) are /^-measurable for each i and j . 

The first function is z y-> / (9t(x)\9'i(x))dOz(x). The function under the 
Jrf>—1t/'-1(;) 

integral is /(-measurable so, as usual (proposition 1.5.2), the first function is 
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/>-measurable. The second function is z •-+ / / (g\(x)\gj(x))dpy(x)dvz(y) 
Jtl>~l(z) J<t>-l(y) 

and is measurable for the same reason. 

And so, we have exhibited a pseudo-functor: 

"Disint" >Cat 

(Disint is in quotes because of the problem of composability of morphisms that 

satisfy the assumption). 



Chapter 3 

Measurable Sheaves 

3.1 Introduction 

In this chapter, we will describe two equivalent Grothendieck topoi to be con­

structed from a measure space, first invented by Deligne. For a detailed description 

of these sheaf categories, see [How] (for that matter, for a detailed description of 

topos theory, see [PTJl], or for a detailed description of Grothendieck topoi, see 

[SGAIV]). We will follow a slightly different path (looking mainly at the locale of 

subobjects of 1) than [How], but will first recall a few results from his summary. 

This chapter essentially follows the "Lawvere directive," as described in the 

introduction: understand the gros and petit aspects of categorical measure theory. 

We proceed to attempt that understanding here. More accurately, we will describe 

tvvc topoi and the locale of subobjects of 1. Strictly speaking, we will explore 

only petit aspects (sheaves on a single measure space and subobjects of 1 in that 

topos). The Gros topos of a topological space uses as "site" open maps into the 

space; the philosophy being that this constructs a topos out of topological spaces 

(in the plural). Exploration of such Gros aspects in the case of measure theory will 

73 
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await future work. 

We begin with the basic, background material; the construction of the two sheaf 

categories in the next section. In section 3.3, we describe the locale of subobjects 

of I in detail. It turns out that this object is, in fact, a complete Boolean algebra. 

In section 3.4, we describe some of the logic of the sheaf category. This category 

satisfies SS, supports split. In fact, a stronger property holds, the category has 

AC, the axiom of choice. This implies Booleanness and we see that our logic is 

essentially classical. 

Of course, the important aspect of this chapter is its description of one of 

the approaches to categorical measure indexing. The idea, then, is to understand 

Hilbert spaces in the sheaf category. In the last section, we discuss such entities. 

3.2 Sheaves on a M e a s u r e Space 

3.2.1 Definitions 

Let (X,A,p) be a measure space. Though not immediately necessary, we will 

assume that p(X) < oo. We can make (A, C), considered as a poset category, into 

a site. A countable family {An E A}^ will be a cover of A E A if An C A, Vn G N 
CO 

and p(A \ [J An) = 0. 
n=l 

Proposition 3.2.1 These coverings define a pretopology on (A, C). 

We require a lemma from basic set theory: 

Lemma 3.2.1 /. C C B C A => A \ C = (A \ B) U (B \ C) and 

2. Bn C An =» (IJ An) \ ((J Bn) C \J(An \Bn). I 
n , n n 

Proof: (of proposition 3.2.1): We must show the constant family is a cover and 

covers are stable under subcovers and pullback. 



75 

{A}ECov(A): p(A\A)=0. 

subcovers: Let {.4n} G Cov(A) and {.4nm} G Cov(An) for each u. Then 

p(A \ [J An) = 0 and p(An \ [J Anm) = 0 for each n. Put A*„ := An \ [J Anm, then 
n m >n 

/ t ( ^ \ U ^ - ) ^ / ' ( ( ^ \ U ^ ) u U A ' n ) < E / ' ( ^ \ U ^ . ) + E/t(/v'«) = 0 ' t h e 

n,m n n n FI n 

first inequality by the lemma. 

pullback: Let {An} E Cov(A) and A' —• A G (A, C) (which means A' C /I). 

Consider the pullback: 
A' xA An • Aa 

A' -A 

Now, in a poset, pullback is intersection and p(A' \ [J(A' fl An)) 

= /t(/i'\/i /n((jA„))</t(/i\ lJ/irl) = o. • 
n n 

Recall, 

F 
Definition 3.2.1 A presheaf is a functor (A, Q)op >Set. A sheaf is a presheaf, 

F, such that for all covers {An} of A, 

F(A)—>Y[F(An)=4l[F(AnnAm) 
n nin 

is an equalizer. U 

Notation: " IV denotes, F(A' C A), the restriction to A' C A. We also write, 

when required, p\, : F(A) —• F(A'). D 

The sheaf condition says that if we have elements xn G F(An) which are ccm-

patible (i.e. xn\Anr\Am = xm\Anr\Am Vn, m), then we can "extend" to a unique 

x G F(A). 
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Notation: PSh(A) denotes the (functor) category of presheaves on this site. 

Sh(A) denotes the full subcategory whose objects are sheaves. I 

Sh(A) is an example of a topos with no points (if p{x] = 0 Vx G X); see [How, 

p.47]. In general, representables are not sheaves, for consider the example: 

(Counter)example 1: ([How, p.27]):Let A, A' E A, A C A', A ^ A', and 

p(A' \ A) = 0. Then A(A', A) = 0 and A(A, A) = 1. Now {A'} is a cover of A, so 

if A( —, A) were a sheaf, we would have A(A', A) = A(A, A). D 

The associated sheaf of A(—,A) is ([How, p.27]): 

a(A(-,A))(A') 
{ 1 p(A'\A) = 0 

0 else 
u/t(A' \ A) — 0," in the above, suggests an alternate site and an alternate sheaf 

category. We begin with the cr—algebra A, and mod out by the ideal j\f of mea­

sure zero sets. Modding out means, in this case, with respect to the equivalence 

relation A ~ A' iff /t(y4AA') = 0 where AAA' = (A \ A') U (A' \ A) denotes the 

symmetric difference. A/Af is made into a site by giving A —• B iff there are two 

representatives, AQ of A and B0 of B, such that A0 C Bo. Given A —• B —> C, 

with A0 C Bo and Bx C Cu we get 4 —>C by A0 fl Bt C B0 f~l Bi C d (note: 

Bo ~ Bi and /l0 C J30 =» A0 = /40 n J50 ~ /40 fl Bx). We say (An'}^ is a cover 

of A if [J j4n = A (note: we may define (J An = [J Aon where Aon is any choice of 
n n n 

representatives; since the countable union of measure zero sets has measure zero, 

this is well defined). We get two new categories PSh(A/J\f) and Sh(A/J\f). 

Proposition 3.2.2 Sh(A) ~ Sh(A/jV) 

Proof: LIse the axiom of choice to pick a particular representative r(A) of each 

equivalence class A E A/Af'. The equivalence is given by: 



it 

( r 
Sh{A)< =t Sh(A/AT) 

( ) . 

For F E Sh(A), put F^A) = F(r(A)) and for G E Sh(A/.\f), put G*(A) 

= G(A). I 

Notation: Because we will work with Sh(A) extensively, and think of it as de­

pending on A" and as "the" category of sheaves on a measure space, we write 

MEAS(X) := Sh(A) and L(X) for its'locale of subobjects of 1. D 

3.2.2 Examples 

We now give an extensive list of objects of MEAS(X). More (operator theoretic) 

examples will be described in the last section. VVe have already noted that: 

f 1 p(A'\A) = 0 
Example 1: a(A(—,A))(A) := < is a sheaf. Representables 

0 else 

are not sheaves, in general (but they are in Sh(A/N")). VVe think of a(A( —, A)) 

as the "representable," however. • 

The empty family is a cover of 0 G A. So, if F is a sheaf, we have: 

*w->n=i=»n=i 
which implies that F(0) = 1. 

In general, "constant" presheaves (which means F(A) = K if A / 0 and F($) — 

1) are not sheaves. Suppose F is a sheaf with F(A) = A', \/A E A. Suppose, 

further, that Ax ( J J 4 2 = A with At nonempty (A is "disconnected"). Then {Ai <—• 

A, Ai «-> A} is a cover of A and the sheaf condition 

F(A) —> F(Ai) x F(A2) =* F(Ai) x F(0) x F(0) x F(A2) 

which is 
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F(A) —+ F(Ai) x F(A2)=4F(Ai) x F(A2) 

implies F( A) = F(Ai) x F(A2) (or the diagonal from A' to K x K is an isomor­

phism, so K = 0 or K — 1). If A' = 1, we have 

Example 2: The constantly 1 sheaf: define 1(A) := 1, VA G A. Then 1 G 

MEAS(X). This is a terminal object of MEAS(X). We shall return to this sheaf 

in section 3.3. D 

And, if K = 0, the other "constant" sheaf is: 

f 1 p(A) = 0 
Example 3: 0(A) := < ' is a sheaf. It is an initial object of 

[ 0 else 
MEAS(X). Notice that this is a(A(-, 0)). D 

Example 4: Let (Y,B) be a fixed measurable space. Define Mbley(A) 

:={(A0,f)\AoEA, AoCA, p(A \ A0) = 0, (A0,A\Ao)-U(Y,B) 

e Mble}/ ~, with (A0,f) ~ (A'Q,f) iff p{x EAoilA'0\ f(x) ? f'(x)} = 0. 

Remarks: 1. If / and / ' are measurable, then {x | f(x) ^ f'(x)} is measurable. 

2. The (Ao,/)'s seem somewhat cumbersome but they are necessary for if we 

simply try M(A) = MblefA, Y)/ ~, say, then for p(A) = 0, A ^ 0, and F = 0, 

there are no maps in M(A) and we want there to be one. However, this is the only 

problem and, if Y ^ 0, we may use Mbley(-) = M(-). D 

Proposition 3.2.3 Mbley(-) is a presheaf. 

Proof: Suppose A' C .4 and let (i40,/) G Mbley(A). Then, we claim, (A0 fl 

A',f\AonA')EMbley(A'). 

p(A' \ (A' fl A0)) < p(A \ A0) = 0 and the restriction of a measurable function 

is measurable. Now, suppose (A0,f) ~ (A'0,f) in Mbley(A). Then p{x E (A0f) 

A') fl (A0 n A') | f(x) i- f'(x)} = p{x E Ao fl A'0 n A' | f(x) ^ f'(x)} < p{x G 

^ o n A o | / ( x ) ^ / ' ( x ) } = 0. B 
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Proposit ion 3.2.4 Mbley(A) is a sheaf. 

Proof: Let {An}^Lj be a cover of A and let Aon, fn) be the representatives of a 

compatible family in the A/6/ey(A)'s. Now, by lemma 3.2.1, A \ [J A0n 

= (A\\jA-;)U(\jAn\\jAon)C(A\\jAn)u[J(An\Aon). So"/t(A\(jA0 l l) 
n n n n n « 

< p(A \ | J An) + £ V(A* \ ^o„) = 0. Next, let Cn = A0n \ \J Aoi. Then the 
n n / < n 

Cn 's are pairwise disjoint Nan ( JC„ = [J A0n. Define F : [JCn —• Y as follows: 
n n n 

x G \JCn =» x is in a unique C„; put f(x) = fn(x). Then / | c „ = /„|c„ by con-
n 

struction and / is measurable for if B E B, then / - 1 ( J3 ) = [_J/,7l(/?) ^ Cn) G A. 
n 

We need only show that this definition of / respects ~ (which will also show 

uniqueness of the extension). Suppose (Ao„,/n) ~ (Ain,gn), n = 1, 2, 3 , . . . Then 

(Cn,fn\cn) ~ (Dn,gn\Dn) where Dn = AUl \ [j A,,, for p{x E Cn fl Dn \ /„ / 
t<n 

5n} < /*{« € A0„ D A l n | /„ 4- gn) - 0. 
We claim \JCnJ) ~ ([J A,,</)- Let x G | J C „ 0 U A . and /( .r) = / n o (x) , 

n n n n 

/^(^) = 9m(x). Then / (x ) ^ </(x) => /„ , (x) ^ ^„,(x) or /„0(x) ^ /„ , (x) . Each of 

the latter two occurs on a set of measure zero and taking the union over rto,ni = 

1, 2, 3 , . . . , we get / ~ g as claimed. I 

As special cases of this, we have 

Example 5: R(—) := Mblen(—) where (R, £,A) is the (Lebesgue) real line. • 

Example 6: C(—) := Mblec(-) where ( C , £ ® £ , A® A) is the (Lebesgue) complex 

plane. D 

In the last section of this chapter, we will see that R(—) is the object of 

(Dedekind) reals in MEAS(X) and C ( - ) will be a complex numbers object (and 

a Hilbert space object, the "one dimensional" space over itself). Obvious measure 

theoretic constructions may not always be interpreted as sheaves, however: 

(Counter)example 7: L2(-) defined by L2(A) := {A0-^->C|A0 E A, A0Q A, 

p(A\ A0) = 0, I \f\2dp < o o } / ~ , is not a sheaf. Let X := [0,1], A := (0,1) 
J A 

i 
i 
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with cover An :— ( , - ) (all with Lebesgue measure). Let An >C, I H - . 
n -f 1 n x 

Then, on each piece, / \fn\
2dp < oo, but extending to (the only possible function) 

JA 
1 fl 

f(x) = - on (0,1), we see that / \f\2dp jt oo. 
x Jo 

Of course, this example works for any V space (p > 1). L2(X, C) is a Hilbert 

space in real life, so we see the difficulty in studying Hilbert space objects in 

MEAS(X). 

L2(—) is a presheaf, however (restricting a square integrable function to a 

smaller set yields a square integrable function), and it is easy to compute its 

associated sheaf. L2(—) C C( —) as presheaves =>• (aL2)(—) C (aC)(—) = C(—) 

(a preserves monomorphisms and C(—) is already a sheaf). In fact, 

Proposition 3.2.5 C( —) is the associated sheaf of L2( — ) . 

Proof: Let A >C be measurable. We must exhibit a cover of A such that 

/ G L on each piece. Let An := {x||/(x)| < n}. Then each An is measurable 

and A = (J An and / \f(x)\2dp < / n2dp = n2p(An) < oo ( p(X) < oo is our 
n = l "'/*»• An 

standing assumption). I 

In a similar manner, C(—) is the associated sheaf of all the Lp(—) presheaves. 

We may think of C(—) as acting the role of all Lp spaces simultaneously in 

MEAS(X). D 

Example 4 suggests another example. 

Example 8: M0R(A,Y) := {A 0 -^F |A 0 G A, A0 C A, p(A \ A0) = 0, 

/ G M 0 R } / ~ is a sheaf. U 

There is an interesting function from M0R(A, Y) to A/6/eR,(A) which is con­

structed using the Radon-Nikodym theorem. Recall, 

Theorem 3.2.1 [Roy, p.238]: (Radon-Nikodym): Let (X,A,p) be a a-finite 

measure space and v a measure defined on A such that (/•</« (i.e. p(A) = 0 
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=> (/(A) = 0). Then there exists a nonnegative function f, such that \/E E A, 

v(E) = / fdp. f is unique in the sense that if g is any other function with this 
JE 

property, then g = f a.e. p. I 

Let A >Y E MOR(A,Y). We get another measure on (Y,B) by a(B) := 

p(f~x(B)). Evidently, a < p since / G MOR so, by the Radon-Nikodym 

theorem, there is a Y >R such that a(E) = / g(y)du. Composing, we get, 
/ 9 . . 

A >F >R. That is, we have a function 

M0R(A,Y) *Mbleji(A), f*-*gof. Unfortunately, this map is not natural 

in A as the following example shows (we thank Ian Putnam for suggesting this 

example). Consider: 
M0R(A, Y) - ^ - Mble(A, R) 

P% 

M0R(A', Y) - — Mble(A', R) 

40,1], Let X = A = [0, l ] 2 and Y = [0,1] with Lebesgue measure. Let [0, l]2— 

(x, y) i—»• x be the first projection, so that TA O C~A, is [1] for any A'. Suppose 
h 

[0,1] *[0>1] is a continuous function and let A' be the set under h: 

Then rA< o pA,(x,y) = h(x) ^ aj, o rA(x,y). 

If we try to interpret the collection of disintegrations from A to Y as a sheaf, 

the same problem as with L2(—) arises. 

(Counter)example 9: Disint(A,Y) := {(/ ,MU0)B ,( />U0)y) : ^o —• Y | 

/ G D i s i n t } / ~ is not a sheaf. 
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For two disintegrations, (X,A,p) >(Y, B,u) and 
(g,Vy) 

(X,A,p) >(Y, B,v), we say / ~ g if two conditions hold. The first is 
p{x | f(x) ^ g(x)} = 0. Let G = {x \ f(x) = g(x)} be the "good" set for / and g. 

U\a,fty) 
We can restrict / and g to G to get disintegrations, (G, A\GP\G) *(Y, B, v) 

and (G,A\G,P\G) ^ ' ^ >(Y,B,v). On G, f = g, so / ^ ( y J n G = g-l(y)f\Gfor 

all y E Y. The second condition we demand for ~ is that the measure structures 

are equal: (3y = ay for all y E Y. Furthermore, we say (Ao,/) ~ (A\,f) in 

Disint(A,Y) if/t(A0AAi) = 0 and f\A0nAi ~ f'\A0r\Ai as disintegrations. 

We have shown (in chapter 1) that restriction of a disintegration to a subspace 

yields a disintegration. Thus, Disint(~, Y) is a presheaf (on A). Furthermore, for 

the sheaf condition, this allows us to choose as representatives for a compatible 

family, (C„, (/„,(/(\cn)y) with the C„'s disjoint (C„ = A0n \ IJ A0i as in example 
i < n 

4 above). Define / : (JC„ —> ^(^luc^y) as follows: Let x E Cn (unique n) and 
n 

put f(x) = fn(x). Then / is measurable as in example 4. 

Lemma 3.2.2 (p\ucn)y is a measure for each y and y i-—> (p\uc„)y is u-measurable. 

Proof: OilucJ^ n (jCn n tf(y)) = 5 > k ) , ( 0 n Cn n ^ ( y ) ) = £ 0 = 0. 
n 

(/*|ucn),(U n IJ cn n r 1 (y)) = £ 5>luc)»(A'.- n cn n /^(v)) = £ £ 
I n n t t n 

= E(Huc)v(A'.nUcnn/-1(»))-
i n 

Since (/t|uc„)y is a sum of nonnegative immeasurable functions (the latter is axiom 

1 for the (/'|c\,)j/'s), it is nonnegative and y-measurable. I 

Remark: If the (/(|c„)y's are bounded, there is no guarantee that these are 

bounded over n. Thus, Disi7it(—,Y) is not a sheaf (this is essentially the same 

problem as with /,*(—)). But, it almost is; everything works except boundedness 

(the extension respects ~ and even axiom 2 holds). D 

Lemma 3.2.3 Axiom 2 holds for (/(|uc„V 
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Proof: 

/>|ucJy(AnUcnn/-%))<My) 

= Z LWcn),(Ar)Cnntf(y))dV(y) (MCT) 

= £(Hcn(AnC'n)) (Axiom 2) 
n 

= p\ucn(An\JCn) (p a measure). I 
n 

Finally, suppose (C n , /n) ~ (Dn,gn) and let Gn be the good set for /„ and gn. 

Then G = [jGn is the good set for / and g, so (G, f\o) = (G,g\c)-

3.3 T h e Locale L(X) 

3.3.1 Subobjects of 1 

As we noted above, the constantly 1 sheaf is terminal in MEAS(X). Write 

L(X) = Sub(l). A subpresheaf, F <-> G, means F(A) C G(A), VA E A (lim­

its in MEAS(X) = Sh(A) are as in PSh(A); in particular, monomorphisms are 

the same). So, U a subpresheaf (= subfunctor) of 1 means that U(A) C 1, V/l G 4̂ 

which implies U(A) = 1 or U(A) = 0. We consider U as a "characteristic function," 

put S := {A|[/(A) = 1}, and translate U E Sub(l) in terms of S. 

Subpresheaf: 

A U(A') • 1(A') = 1 

A' t/(A) • 1(A) = 1 
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If A' G S, (i.e. U(A') = 1), then we must have U(A) = 1 which means A G 5; i.e. 

<S is downclosed. 

Sheaf condition: Let {An}^l! G Cov(A), then 

CO oo 

U(A) — n u(An) =» n if(A*n ^m) 
n=l n,m=l 

is an equalizer. If any U(A„B) = 0 then IJE/(A„) = ® an<* I I U(An H Am) = 0 (in 

particular, tV(Ano fl Ano) = 0) so we have 

/ / (A)—+ 0 = * 0 

which implies 17(A) = 0. If all the U(An) = 1 (i.e. An E S Vn), then n U(An) = 1 

and n * 7 ^ n '4m) = 1 ( s i n c e U(An) = 1 —> C/(A„ n Ara) => £/(A„ n Am) ^ 0). 

So, the sheaf condition says 

U(A) — > l = f c l 

is an equalizer which implies U(A) = 1 (i.e. A G <S). And so, S is closed under 

countable unions and sets of measure zero. 

T h e o r e m 3.3.1 The elements of L(X) form a set of generators for MEAS(X) 

(i.e. MEAS(X) satisfies (SG) of [PTJl,p. 1J5]). 

We first require an obvious but important lemma. 

L e m m a J .3.1 Let A' C A, p(A \ A') = 0. Then p% : F(A) —• F(A') is an 

isomorphism. 

Proof: A' covers A so 

F(A) -^ F(A')=t F(A' D A') 



85 

being an equalizer implies F(A) —• F(A') is an isomorphism. I 

Remark: Not only are F(A) and F(A') isomorphic, they are canonically isomor­

phic. D 

Proof: (of theorem 3.3.1): Let a,/3 : F —• G E MEAS(X) with a ^ /?. Then 

there is an Ao and an x G F(Ao) such that «40(x) ^ PA0(
X)- Let UA0(A) 

1 if u(A \ Ac) = 0 IM 
V ' be in L( X). We define [/^ (A) >F(A) as follows: If 

0 else 
UA0(A) = 0, define i]A as the unique map. If UA0(A) = 1, consider the composite: 

F(Ao)-
(PlnAJ-1 PAr\AB \fAflAQl 

>F(A n Ao) >F(A) 

(note: p.(A \ (A n A0)) = 0 and A fl A0 C A; apply lemma 3.3.1). Define T]A(*) •= 

(pAAaA0)-"PA°nA0(
x)-

i]A is natural: Let A' C A and consider: 

UAM) F(A) 

UAM') F(A') 

If UAo(A) = 0, then both composites are the unique map to F(A') so the square 

commutes. If UAli(A) = 1, then UAo(A') = 1 (p(A \ A0) = 0 => p(A' \ A0) = 

0) and we have • ^ (pjnAo)~
lpi^x) >-> P%(pA

AnAo)~lPAXAQ(X) ™ the top right 

composite and *»-> + >-> (pArnAo)~
l pA°nAn(x) as the left bottom composite. Now, 
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F(AQ)
 P-™O • F[A n Ao) {f,*nA°]~! F(A) 

oA° PA'nAo 
nAnA0 
PA'nAo 

F(A'DAo) 

PA> 

F(A') 
(PA'nAo) 

commutes by functoriality of F (the triangle commutes and the trapezoid with­

out inverses commute by functoriality of F, so the trapezoid with the inverses 

commutes). 
VAg O/t0 

n separates a and /3: UAQ(A) >F(A0) >G(AQ) is 

* ~ (PA0nAo) PAonA0(
x) = x " «*,(*) and UAo(A0) >F(A0) >G(A0) is 

* H I H PA0(
X) ¥" aA0(x) as required. I 

3.3.2 L(X) as a Locale 

We saw that L(X) = {S C A \ S downclosed, S contains measure zeroes, S closed 

under countable unions }. Explicitly, these mean: 

1. downclosed: AEA3SE S(A C S) => A G S 

2. measure zeroes: A G A, p(A) = 0 => A E S 

oo 

3. unions: St E S =>• [J 5,- E S 

t= i 

L(A) is the locale of subobjects of 1 in the (localic) topos MEAS(X). It is a 

poset under C. In the next section, we shall show that L(X) is a quotient and a 

complete Boolean algebra. It is instructive, however, to study it as a locale first. 

We will continue, in the next few paragraphs, to describe various operations on 

L(X) and then discuss functoriality. 

Join: S\/T = {S U T | 5 G S, TET] 
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S U T is not closed under binary unions for pick S E S \T, T E T \ S 

then S U T is not in 5 U T. So, we must "close up" 5 U T under binary unions 

to produce the larger S V T. Since S C S U T C S V T, we see that the latter 

contains the measure zero sets. Furthermore, suppose K C A'x U A'2 G 5 U T, then 

A' = (A'i n K) U (A'2 n A') and K D Kj E S U T since each is downclosed. 
oo 

More generally, \ / Si = { U Ki I A'i G U £}• W e h a v e SxQT^i<^\J S, C T. 
•€/ J = I »'e/ «"€/ 

oo 

Suppose Si C T Vt and let (J A'; G \ / 5,. Then A',- G 5,-, C T Vj so (J Kj E T 
j=l .'€/ 

since T is closed under countable unions. The converse is trivial since Si C \J 5, Vi. 
D 

Meet: S A T = <S n T, more generally, A <£ = f l 5<-
ie/ «€/ 

Both 5 and T contain the measure zeroes, so S A T does. Next, suppose A C 

A' G S A T. Then A C K E S => A E S and similarly with T whence AES AT. 
oo oo 

Finally, let A,; G S A T then A, G S =* (J A, G S and A, G T =J> J A,- G T =* 
i=i i=i 

CO 

[JAiESAT. 
i=i 

Now, suppose 7c C 5 f l T then TZ C S and 7£ C 7". Conversely, suppose 11 C S 

and 7?. C T then H C S C\T (and similarly for arbitrary infima). D 

The above shows that £(A") is a complete lattice with the following definitions 

of top and bottom. 

Top: 1A- := A U 

Bottom: 0.Y := Af := {A E A \ p(A) = 0}. D 

Locale: We must show S A \J % = \ / ( 5 A 7j). 
>'e/ ie/ 

Let A G V/ s A ̂  then A = I J / v J ' A ' i € U ^ n Ti = S n U % so A ' i G 5 and 

i€ / J=l i€/ i€ / 
Kj E I J7; whence Kj E S A\JT, and so A E S A\JT,. Conversely, let A G SA 

oo 

V 7J then A G 5 and A G \ / ^ o r ̂  = U A ' j , A',- G IJ 7J. Now, each A'j G t j S 0 Ti 
J=l <€/ 
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so AE\/ SAT D 

Implies: The above shows that 5 A — is cocontin ous, which, of course, is true in 

any locale, so the adjoint functor theorem gives its right adjoint as: 

S-*T = \J{H€L(X)\SMICT}. Q 

Not: Recall that in a Heyting Algebra (in particular, a locale) H, ->o := a —• 0. 

So, in L(X), - 5 = 5 ^ O.Y = \f{K E L(X) \SMl = 0.Y}. Q 

Remark: There are better descriptions of implies and not. Let A E A and put 

UA = {A' E A | p(A' \ A) = 0} = the smallest element of L(X) which contains A 

(in section 3.3.4, we will study this in detail and will denote it by A). Then 

A G (5 —> 7) <* UA C S —-> T 

& UiASCT 

& VSES, p(S\A) = 0=> SET 

and 

AG ^S <S> AES —• 0 

<3> V5 G S, p(S \ A) = 0 =» p(S) = 0. D 

Next, we look at the action of L on MOR morphisms. Suppose 

(X, A, p) >(Y, B, (/) GMOR. We have the direct image of a geometric mor­

phism MEAS(X)-^MEAS(Y) given by (f.F)(B) := /•"'(/-'(£)) for F E 

MEAS(X) and 5 G 5. 

L(X) is the locale of subobjects of 1 G MEAS(X). To each 5 G Z(A), there 

. i \U~1(B)ES 
corresponds a sheaf Us E MEAS(X) defined by Us = \ 

0 else. 
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Now, f.Us(B) = Usf-
x(B)=. 

1 if /-»(£) GS 
So, this suggests a function 

0 else. 
L(X)-?->L(Y); S>->{BEB\ f~l(B) E S) =: AC. 

Proposition 3.3.1 K E L(Y) 

Proof: The three axioms: 

1. downclosed: Suppose B' C B E AC. Then f~l(B') C f~\B) E S but 5 is 

downclosed so f~l(B') E S, whence B' E AC. 

2. measure zeroes: Suppose u(B) = 0. Then p(f~x(B)) = 0 since / G MOR. So, 

f~l(B) E S since S contains measure zeroes, whence /? G AC. 
CO o o 

3. countable unions: Suppose B, E AC. Then / - 1 ( | J B,) = [J f~l(B,) E S since S 
1=1 1=1 

CO 

is closed under countable unions. So [J 5, G AC. I 
1=1 

Proposition 3.3.2 ty = IL(.V) c-nd fg = fg. 

Proof: ix(S) = {B E B | 1X'(B) G S} = S. 
i 9 

Consider L(X, A, p) >L(Y, B, v) >L(Z,C, p) 

gJ(S) = {CEC\ flg-l(C) E 5} and g(f(S)) = g{B E B | f~\B) E S} = 

{CEC\ g~\C) E AC} = {C E C | f-lg~l(C) E S) as required. • 

Proposition 3.3.3 If f,g : A' —• V* are measurable and agree except on a set of 

measure zero, then f = g. 

Proof: Let D = {x E X \ f(x) ? g(x)} and let f(S) = {B E B \ f~l(B) E S} 

=: AC and g(S) = {B E B \ g~\B) E S) =: £. 

We will prove AC C £, the other direction being similar. 

Let B G AC. NOW, B C (B \ D) U D and y ' ( £ ) C ( y ! ( £ \ D)) U f 1 ^ ) . But 

g~x(B\D) E S s incey 1 (5 \D) = f^(B\D) G 5 and y ^ D ) G 5 since 5 GMOR 

and S contains the measure zeroes. And so g~*(B) E S, whence AC C C. I 
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Thus, / corresponds to an equivalence class, although we won't explicitly con­

sider it as such. In the examples below, we shall see that, in general, / = <) fi f ~ 

g, but it often does. 

Proposition 3.3.4 / has a left adjoint, f, i.e. f(T) C S iff T C f(S) for 

S E L(X), T E L(Y). 

Proof: By the adjoint functor theorem for posets, we need only show / preserves 

order and infima; in which case f(T) — f\{S E L(X) j T C f(S)} 

= n{5 G L(X) IT C f(S)}. 

order: Let S C S' and let B E f(S). Then f~l(B) 6 5 4 f~x(B) G 5' 

4 B E f(S'). 

infima: f(f]Si) = {B E B | f~\B) E f]Si) = [B E B \ f~l(B) E Si Vi}. On the 

other hard, f)fS, = f]{B E B \ f~*(B) E 5,-} = {fl G B \ /"'(fl) € 5.- V/}. • 

Remark: 1. If (X, A, p) >(Y, B, v) is in MOR, then f~l is a morphism of sites 

(i.e. preserves covers; see [B&W, p.233]) and so yields a geometric morphism 

r 
MEAS(X)*=iMEAS(Y). And, thus, we could have gotten / by considering 

/*, f\G)(A) := a(co\\mAcj-i{B)G(B)). D 

Before checking the left exactness of / , we give another description, indeed a 

working definition. 

Definition 3.3.1 f(T) := {A E A \ 3fl G T such that ,i(A \ f~l(B)) = 0 } . D 

Lemma 3.3.2 f(T) E L(X). 

Proof: measure zeroes: Put fl = 0. Then f~\B) = 0 and p(A\f~x(B)) = //(A). 

If p(A) = 0 then A G f(T). 
downclosed: If A' C A and p(A \ f~l(B)) = 0, then p(A' \ /" ' (f l)) = 0. 
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countable unions: Let Ai E f(T) then 3fl, such that p(A\f ' (fl,)) = 0. We claim 
CO CO 

that | J Bi is the "B" for A = Q * • Mil * \ / ' ' ( ( J * . ) ) < S > ( * \ / " ' ( I J ^ ) ) 
,= i <=i 

= 5 > M ; \ ( J / - I ( f l »)) ^ E M ' 4 ' \ r J ( 5 , ) ) = 5^0 = 0 as required (the last in­

equality follows from lemma 3.2.1). I 

Lemma 3.3.3 / H / 

Proof: We wish to show f(T) C 5 iff 7 C /(S) or {A G A | 3fl G T 

p(A \ /" ' (A)) = 0} C 5 iff 7 C {fl G B j /" ' ( f l ) G 5} . 

=>: Let T 6 T . /((/"'(fl) \ /" ' (f l)) = 0 so f~l(T) G / ( 7 ) and so 

f~l(T) E S, whence T E f(S). 

4=: Let A G f(T). Then, 3fl G T with /i(A \ /" '(fl)) = 0. Now, fl G T =• 

/ - ' ( f l ) G 5 and A C (A \ /" '(fl)) U /" ' ( f l ) . But, A \ / " ' (B) G S since it has 

measure 0 and /" ' ( f l ) 6 5 so A 6 5 since S is closed under binary unions and is 

downclosed. I 

Lemma 3.3.4 / is order preserving. I 

Lemma 3.3.5 / is left exact. 

Proof: We must show that / sends ly to lx and preserves finite, nonempty infima. 

Top: f(B) = {A G A I 3fl G B, p(A \ /" ' (f l)) =0} . Let A G A. Then A C X so 

/t(A \ /-»(*')) = 0 (and Y E B ) so A G / (£ ) whence /(B) = A 

D : / ( T n U) = {A E A I 30 G T D U, p(A \ /" ' (f l)) = 0} = {A G -4 | 3fl G 

Tandf lGW, / t (A\ / - ' ( f l ) ) = 0} 

On the other hand, f(T) C\ f(U) = {A E A | 3fl' G 7 /((A \ /" ' (f l ' )) = 0} (1 {A G 

A | 3 f l " G T , / t (A\/- ' ( f l")) = 0} 

Now, f(TnU) C f(T)f)f(U), for the fl works as both a fl' and a fl". Conversely, 

let A G f(T)f)f(U) and let fl = A'nfl". Note that fl G 7nW and /t(A\fl'nfl") = 

p(A \ fl' U A \ fl") < p(A \ fl') + /((A \ fl") = 0 + 0 = 0 as required. I 
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Remarks: 1. The above proof is easily extended to show that / preserves count­

able (but not arbitrary) infima. 

2. Since / is a right adjoint, it preserves 0 but \vc car. prove this directly: 

/(Ov) = O.v : / (0 V ) = {A E A | 3fl G 0, , p(A \ f\B)) = 0} 

C: Let A G / (0 V ) . Since fl G Qy and / is MOR. p(f~l(D)) = 0 so A C A \ 

/ - 1 ( y 5 ) U / - ' ( B ) ^ / 1 ( y l ) < / ^ \ / - 1 ( £ ) ) + M / - | ( f i ) ) = 0 + 0 = 0. 

D: Take fl = 0 G 0y D 

In view of the above lemata, we have proved the following: 

Theorem 3.3.2 / is the inverse image of a continuous inorphi.sm (etymology: 

[PTJ2, p. 39]) L{X) -f L(Y) which preserves countable limits. • 

And so, we have a functor: MOR »Loc. Recall that if / ~ g, then 

/ = g and adjoints are unique (up to isomorphism, which is = in case the 2-cells 
L(-) 

are C ). So, we have a functor MORE • L o c . 

3.3.3 Examples 

Above, we implicitly referred to an example of an L(X). It is time for some more 

detailed examples. 

Example 1: L(0, {0},O) = 1 is initial Loc. Let L E Loc. Define H > L by 

t.(0) = 1 G L, i'(l) = 0 for all I E L. D 

Example 2: L(l,2, counting) = 2 = {0,1} is terminal in Loc. For L E Loc, 

0 l^\ r 
define I * = ? 2 as <*(0) = 0, /,*(1) = 1, and *.(/) = < 

t. 
D 

1 / = !. 
Example 3: Examples 1 and 2 are special cases of (A', V(X), counting). In partic­

ular, L(N,V(N),counting) = {V(A) | A C N} (since N is countable). Although 

this is not a finite measure space, we will study it in some detail. 'P(N) •Z'(N); 
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A *-• V(A), is an isomorphism of locales (w preserves \J, D. 0/v = {0}, and 

l/v = 7>(N)). 

Let N—>N be a function (every function is measurable and MOR ). There is 

a nice description of f(T). 

Lemma 3.3.6 f(T) = {A G A | 3fl G 7 , AC /" ' (f l)} m iAts ense. 

Proof: For the counting measure, p(C) = 0 =» C = 0. I 

Furthermore, we have a "fullness" of L( —): 

a 

Theorem 3.3.3 Let L(N)< /-(N) preserve binary A = 0, Oyv, IN, and 

countable \J. Then a = / /or some N >N. 

Proof: Elements of L(N) are ^ (A)^ so let a(P(x)) =: T^A*) for x G N. 

The Ax's are disjoint for 

V(Ax)nV(A}!) = a(P(; t ) )no(P(j)) 

= a(P(x)DP(y)) 

= a(7>«*} n {»})) 

a(V(x)), x = y 
= < 

cv(0), x ^ y 

f P(Ar), x = y 

Furthermore, the AT's partition N: P(N) = a(P(N)) = a(P( \f x)) 
xeN 

= o( V P(x)) = V cv(P(x)) = V/ V(A*)- So, if y E N, 3x such that y E Ax 
x&N xe/V xgN . 

for, if not, then \JP(AX) ± P(N). Define N >N by f(y) = x \i y E Ax. 

Then / = a. We need only check that f(P(x)) = «(-P(x)) = P(AX) Vx G N 

/(T>(.r)) = {A G ,4 | 3fl G P(x), A C /" ' (f l)} 
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C: Let A G f(P(x)). The only fl's are fl = % and fl = {.r}. If A C /~'(0) then 

A = 0 = > A C A E = > A G P(AX). If A C /" ' (x) then A C Ax ^ AE P(AX). 

D: Suppose A C Ar. Then /(A) C /(Aj;) = {x} and A C / " ' / (A) 

= /-'(^/ie/(P(4 • 
Remarks: 

1. This proof may be modified to prove / = g -=> f ~ g (which means / = g) for 

f,g :N->N. 

2. It turn? out that L(N)«-^—L(N) is f(P(A)) = P(VjA)) since / ' ' ( f l ) C A ifr 

fl C V/A by definition. D 

It is not true, in general, that / = < / = > / ~ < / a s the following counterexample 

shows. 
/ 

(Counter)example 4: Let X \ Y with Y indiscreet. If e(V') ^ 0 then / 
a 

and g are both in MOR. Now, / = g says f(S) = g(S), VS which says {fl G 

5|/~'(fl) G 5} = {fl G B\g~\B) E 5} . For any functions / and g we have 

/" ' (0) = 0 = y! (0 ) and /" '(>') = A' = y^V"), so / = </. But, there are many 

pairs for which / •/* g (if |F | > 2). D 

Example 5: Countable cocountable Space: Again, this is a "pathological" exam­

ple and it isn't of finite measure. 

Let X be an uncountable set and let A consist of all subsets which are either 

countable or cocountable, the complement of a countable set. This is a o--algebra. 

0 A countable 

oo A cocountable. 
Let S E L(X). One possible S is the collection of all countable subsets (it is 

Ox ). Now, suppose AES with X \ A countable. Then X = A U (X \ A) G S so 

S = A. Thus, L(X) has only two members, O.v and 1*. In particular, L(—) is not 

1-1 in the sense that we may have L(X) = L(Y) for A" ̂  V; viz. examples 2 and 

5. D 

Define p(A) = < 
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In section 3.3.5. we will look at another example, the Lebesgue unit interval, 

in some detail. 

3.3.4 L(X) is Boolean 

In this section, ws will show that the locale L(X) is a complete Boolean Algebrc. 

That is, L(X) satisfies ->->S = S V5 G L(X) (recall: a locale is, in particular, a 

Heytv. g algebra, and a Hey ting algebra H is a Boolean algebra iff ->-*a = a, Va G H 

[PTJ2, p.9]). In fact, we will show that L[X) is simply the quotient, A/Af, where 

Af is the collection of sets of measure zero in X. To do this, we consider the 

function ( _ ) : A >L(X); A := {A0 G A | p(A0 \ A) = 0}. A is to be thought 

of as a downclosure of A C A, a ''best approximation" of A in L(X). We first 

check that ( ) is well defined. 

Lemma 3.3.7 A G /(A), VA G A. 

Proof: 1. measure zero: if fl is of measure zero, then p(B \ A) = 0, so fl G A. 

2. downclosed: Let A0 G A and fl C A0 Then p(B \ A) < p(A0 \ A) = 0, whence 

BE A. 

3. countable unions: Let {A,}^, be a countable family of elements of A. Then 

/(((J A,) \ A) = /t(U(A, \ A)) < £ > ( A , \ A) - 0, whence UA, G A. I 

Two important examples are: 

Proposition 3.3.5 X = 1* = A and 0 = O.v = Af. 

Proof: A = {Ao | p(A0 \ X) = 0}. But, p(A0 \ X) = 0, VA„ G A. 

0 = {An | p(A0 \ 0) = 0} = {Ao | /t(Ao) = 0} = Ox. I 

To prove L(X) is Boolean, we will proceed in two steps: 1. the collection of A's 

is a Boolean Algebra in the operations inherited from L(X) and 2. every S E L(X) 

is an A for some A G A. 

r n 
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Proposition 3.3.6 /. AUfl = A V f l £ . A fl fl == A A fl 

Proof: 

1. AU~fl = {Co | p(C0 \ (A U fl)) = 0} and A V fl = {A0 | p(A0 \ A) = 0} 

V{flo |/*(flo\fl) = 0}. 

C: let p(C0 \ (A U fl)) = 0. Now, A U f l G A V f l so C 0 G A V f l since A V fl is 

closed under extension by a measure zero set. 

D: let, C EAVB. Then C = C, U C2, C, EA and C2 G fl. So /t(C \ (A U fl)) 

< /t(Ci \ (A U fl)) + p(C2 \ (A U fl)). Now, Ck G A U fl so p(Ck \ (A U fl)) = 0 

(i.e. Ck is an Ao or a fl0 and A C A U fl, fl C A U fl; subtracting off a la- ;er set 

is smaller) And so, p(C \ (A U fl)) = 0. 

2. AlTB = {Co ! fi(C0 \ (A n fl)) = 0} and A A fl = {D0 | /t(D0 \ A) = 0 

= MA>\fl)}. 
C: p(C0 \ A n fl) = /t((C0 \ A) U (Co \ fl)) < p(C0 \ A) + ^i(C0 \ B) = 0 + 0 = 0. 

D: A n fl C fl => D0 \ A C D0 \ (A n fl) so p(D0 \ A n fl) - 0 =» //(D0 \ A) = 0. 

Similarly, with /((Do \ fl)- 1 

Corollary (to 2.): A A fl = 0.Y iff /((A n fl) = 0. I 

Lemma 3.3.8 1. For S E L(X), S = \J C and 
_ _ c&s 

2. A C f l iffp(A\B) = 0 

Proof: 1. C: Let C ^ 5 . NOW, C € Z7 so C € V i ^ I C G 5} . 
oo 

D: Let C0 G \ /{C | C G 5}. Then C0 = IJ C\., Cfc G \J{C \ C E S}. S is closed 
jt=i _ 

under countable unions so we need only show Ck E S Vfc. But, Ck E C for some 

C G S (in particular, for example, C\. E Ck) so p(Ck\C) = 0 and C G S => C\ E S. 

2. =•: ( A G A => A G fl) =̂> /J(A \ fl) = 0. 

<=: Suppose p(A \ fl) = 0 and A0 G A. Now, A0 \ fl C (A0 \ A) U (A \ fl) so 

p(A0 \ fl) < p(AQ \ A) 4- /i(A \ fl) = 0 + 0 = 0. I 
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Proposition 3.3.7 i. A -> fl = Ac U fl, 2. A «-> fl = X \ (AAfl), and 

3.-fA = T* 

Proof: 

1. A--»2? = V f«Se£ ( A ' ) | 4ASCB} 

= \/{C I A A C C fl}' since S = \f V and L(A) is a locale. 
ces 

= \/{C I An~C C fl} by proposition 3.3.6 above. 

= \J{C I P(A n C \ fl) = 0} by lemma 3.3.8 above. 

Now, Ac U fl = {D0 | p(D0 \ Ac U fl) = 0}. But, A n C \ f l = C \ A c U f l s o 

p(A n C \ fl) = 0 iff p(C \ Ac U fl) = 0 and this completes the proof. 

A ^ f l = (A -* fl) A (fl -> A) 

= (Ac U fl) fl (flc U A) 

= (AcUfl)n(BcUA) 

= ((AcUfl)nflc)U((AcUP/~iA) 

= (Ac n flc) u (fl n flc) u (Ac n A) u (fl n A) 

= (A cnf l c)u(f lnA) 

= x \ AAfl 

3. ^A = A-* Ox = \/{C\A A C = O.v} = V{^l/*(c n A) = °Jf}- 0 n t h e o t h e r 

hand, Tc = {C\p(C \ Ac) = 0}. But, C \ Ac = C D A so C G Ac iff C G -A. I 

Corollary (to 1.): -,$ = V { # H # n A) = 0 VA G 5}. I 

Corollary (to 3.): ->-<A = A. 

Proof: ->-A = -̂ (A7) = / F = A. I 
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In view of this corollary, we need only show thr t each 5 G L(X) is an A for 

some A G A. Let a = sup p(A). This supremum exists since A" is a finite measure 
Aes 

space. 

Lemma 3.3.9 S attains its supremum. a. 

Proof: We wish to find an A G S with p(A) = a. Now, a — sup p(A) so for each n, 
A€S 

i oo 

there is an An G S such that /((An) > a . Let A = [j A„ then /t(A) > /t(A„) 

for all n. Taking limits, we have p(A) > a. But, o is the supremum so a > p(A), 

whence p(A) = a as required. I 

Proposit ion 3.3.8 S = A /or some A G <S. 

Proof: Let A and a be as above. Let fl G S and consider fl \ A. If p(B \ A) > 0, 

then /t(A U (fl \ A)) = p(A) + p(B \ A) > a. But, A U (fl \ A) G 5 (since AES 

and fl G S and fl \ A C fl =» fl \ A G 5 =» AU (fl \ A) G 5) which contradicts 

the maximality of a. I 

Theorem 3.3.4 jC(Ar) is a complete Boolean algebra. 

Proof: L(X) ~ ^/A/*. Let, S G I(A") and let S = A as in proposition 3.3.8. Put 

5 i—> [A] G .A/A/-. This is well defined since any other such set is within measure 

zero of A. Conversely, send [A] in A/Af to A. Again, if [A] = [A'], then 

A = A7. I 

Finally, we note that we may interpret the a of lemma 3.3.9 as left Kan exten­

sion: 

(R*°,<) 
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where a = p(S) :— sup p(A). D 
AeS 

3.3.5 Consequences of ( ) 

In this section, we explore some of the consequences of the ( ) operation. In short, 

calculations are made easier by the fact that every 5 G L(X) is an A for some A 

and Boolean operations behave well with respect to ( ) (for example, Ac = ~>A). 

Our first application is in giving a counterexample to show L does not, in 

general, preserve products. Recall, [PTJ2, p.61], for Â  a topological space, Cl(X) 

denotes the locale of open subsets of A' and if X is locally compact, ft(X) Xjr,oc 

fi(V') ~ tt(X x Y). In general, however, this is not true (a counterexample, [PTJ2, 

p. 61]: fi(Q) X£,0Cfi(Q) is not spatial where Q is topologized as a subspace of R) . 

As with 17, L(X x Y) is not necessarily the product (in Loc) of L(X) and 

L(Y). We use the ( ) operation to describe a counterexample (the "diagonal," in 

fact). Suppose L(X x Y) ~ L(X) XLOC L(Y) and consider the diagram: 

p\ 
X x Y >A induces pi H p\: px(U) = {A E A\Pr(A) E U) = {A G A\A xY E 

U) and p,(S) = {D E A x fl|3A G S, (p x v)(D\fixA) = 0} = {D E A x fl|3A G 

S, (/t x e)(.D \ A x Y) = 0}. We begin by giving an alternate description of pi. 

L e m m a 3.3.10 For X >}' G MOR. / ( f l ) = / - ' ( f l ) . 
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Proof: f(T) = {A E A\3B E 7 , p(A \ /" ' (f l)) = 0} so 

/(fl) = {AE A\3B0 E {BoHBo \ A) = 0}, p(A \ /"'(flo)) = 0} and /^Hfl) = 

{A>EA\p(A'\f-*(B)) = 0}. 

D: Let A' G / " ' ( f l ) and let fl0 = fl G fl. Then A' G /(fl). 

C: Let A G /(fl) . Then there is a fl0 with v(B0 \ fl) = 0 and 

/i(A \ /_1(flo)) = 0. We must show p(A \ /" ' ( f l ) ) = 0. Now, t/(fl0 \ fl) = 0 => 

/((/"'(flo \ fl)) = 0, since / G MOR. so /((/"'(fl0) \ /" ' ( f l )) = 0. Furthermore, 

A\ / - 1 ( f l ) = ( (A\ / - ' ( f l 0 ) ) \ / - ' ( f l ) )U(An( / - ' ( f l 0 ) \ / - ' ( f l ) ) ) so / t (A\ / - ' ( f l ) )< 

p((A \ f-\B0)) \ /" ' (f l))) + /((A n (/- '(fl0) \ /" ' (f l))) = 0 + 0 = 0. I 

Corollary: p*i(A) = AxY. I 

In the diagram above, we require the triangles to commute for the universal 

property. In particular, we must have 

a* (A) = a>'i(A) = a'(A~x~Y) 

and 

' b"(B) = a(X x fl) 

Lemma 3.3.11 AxY A X x B = A x fl. 

Proof: By proposition 3.3.6, # 2, A x 1' n X x fl = y txV ' f lA 'x fl 

= AlTfl. I 

o;*, being left exact, must preserve — A —, so we must have: 

a (AxB) = a'(A) A b*(B) 

Recall, lemma 3.3.8 says S = \J{C \C E S). For the product space, measur­

able rectangles are enough: 
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Lemma 3.3.12 ForU E L(X xY), U = \/{A xB\AxBEU}. 

Proof: C: Let D E U be an %as (recall from section 1.4 that every D E A x B 

is within measure zero of an 1Zcs
 and elements of the locales, here, are closed 

oo 

under extension by sets of measure zero). But, if D = ("") /),-, A,- G 1ZV, then, 
«=i 

in particular, D C Di and \J is downclosed so it is enough to show D E V,a, 
00 

D EU => D G V- Let A = (J A, x fl,. Since A, x fl, G A; x fl, and \ / is closed 
«=i 

under countable unions, D E\j• 
oo 

3 : Let D E \J. Then £> = J flfc, £>fc G U { ^ ~ * ^ | A x fl G W} =» flt G 1 x 5 
A : = l 

for some A and fl. Now, Dk Q (Dk \ A x B)l) (A x B) E U, so Dk EU for all k. 

Thus, fl G U as required. 1 

And so, a", being a left adjoint, must preserve suprema. Thus, we must have 

a'(U) = cr*(\/{A x fl | A x fl G W}) = \'{a'(A) A b'(B) \AXBEU). 

Now, consider the special case: 

L(X) 

L(X) 
Pi 

L(X x X) 
Pi 

L(X) 

with A' = [0,1]. Let C and D be the subsets of the plane: 

c 

/ 

/ 

/ 

/ 

/ 

D 

file:///AxBeU
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a*(C) = \J{A A fl | A x fl G C} = \ /{^7r f l | A x fl G C}. But, if A x fl P C, 

then A n fl ~ 0 (since (a,b) E C =» o > 6), so Q*(C) = V W =0- By a similar 

argument, a*(D) = 0. And so, a'(C)Va'(D) = 0. But, CVfl = 1 so o*(CV/)) = 

1, which is a contradiction. 

Remark: We do not know if there is some condition, in analogy to local compact­

ness, for example, that ensures L(X) Xioc L(Y) ~ L(X x Y). D 

We next look at some preservation properties of / and / for / G MOR. 

Proposition 3.3.9 / preserves ->. 

Proof: /(-A) = f(B~c) = F W ) = (f~l(E)Y = - F W = -/(£)• I 
Combining this with the remarks about / preserving finite infima, we see that 

we have a functor: 

M0Rop • BAlg 

X L(X) 

1' - I ' 
Y £(>') 

In fact, as we noted above, / preserves countable infima (of course, / is a 

morphism of cr-frames; see, for example [B&G]). 
- p 

In general, / does hot preserve -i. Consider L(X x Y) *L(X) a s above. 

For U E L(X x Y), p(U) = {A E .A|p-'(A) G U) = {A E A\A xY EU). Let 

U = D: 

p(D) = Ox for many fl's (for A x Y E D in the above picture, for example, 

then p(A) should be zero) and p(- ,fl) = p(Dc) will be mostly 0*, as well, so 
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As another argument, f(0x) = {fl G B\p(f '(fl)) = 0}, there may be many 

fl's for which (/(fl) 7̂  0 and /((/"'(fl)) = 0. However, we can characterize when 

/(0) = 0. 

Proposition 3.3.10 / preserves 0 iff / / ( f l ) = fl, Vfl G B. 

Proof: <*=: / / (0 ) = 0 and /(0) = 0 since / is a left adjoint. 

=$>: First, we require a lemma (which is an exercise in [PTJ2, p.40]). Suppose A 
/ 

and fl are Heyting algebras and fl<- ) A with / H </. Then / preserves — A — iff 
9 

g(fa -* b) = a -* gb. 

faAfb 

fa<fb 

a < g(fb 

a<b-> 

aAb< 

<c 

—• c 

- c ) 

0C 

gc 

c < g(fa 

fc<fa 

fcAfa 

f(cAa) 

cAa< 

- * ) 

- • 6 

< 6 

< 6 

gb 

f(a A 6) < c c < a —* gb 

In our case, " / "= / and "<7"= / and A = L(Y), B = 1(A) so 

/ ( / ( f l ) —• A) = fl —+ /(A). If A = 0, then / ( / ( f l ) —> 0) = fl —• /(0) = 

fl —^ 0 = -f l . On the other hand, / ( / ( f l ) —^ 0) = / ( - / ( f l ) ) = f(f(--B)). We 

have actually shown //(->fl)) = ->fl but every C is ->B for some fl (take 

fl = Cc). I 

Remark: / / ( f l ) = fl says / is fully faithful. D 

The next consequence of the ( ) operation we look at is its application to the 

Lebesgue unit interval. 

Example 6: Let f,g : X —• [0,1] G MOR and suppose / = g. Since elements of 

fl([0,1]) are fl, for measurable fl, and /(fl) = f~l(B), this means 

/t(/-'(J3)A(T'(fl)) = 0 for all measurable fl. 
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Let D = {x E X\f(x) ? g(x)} and Dn = {x E X\\f(x) - g(x)\ > i } . then 
oo 

D = ( J Dn- Suppose p(D) > 0, then p(Dn) > 0 for some n. Write [0,1] = / 
1 = 1 

n k — 1 k 
= I ) Ik, where lk = [ , - ] and put Ak = f~l(h), A'k = g~l(h) so, in partic-

k=i " " 
ular, Ak ~ A'fc. 

n n TI 

Now, ( J Ajt = A' — (J A[. so (J (Ak n fl„) = fl„ and so there is a k with p(Ak D 
fc=l i = l A = l 

fl„) > 0. Ak n £)„ n AJ. = 0 since x E Dn implies that / and g are more than — 
n 

apart. Thus, p(Ak \ A'k) > p((Ak C\ Dn) \ A'k) = p(Ak 0 Dn) > 0 which contradicts 

the fact that Ak ~ A'k and so we must have /((fl) = 0, whence / ~ g. D 

3.4 MEAS(X) Revisited 

3.4.1 MEAS(X) has SS 

Definition 3.4.1 [PTJl, p.141]-' We say that a topos £ satisfies (SS), or supports 

split, if every subobject of 1 is projective in £. 

Definition 3.4.2 [Mac, p.114]: An object, P, is projective if every P >C 
g 

factors through every epimorphism B >C: 

We first show that epimorphisms in MEAS(X) (i.e. locally onto natural trans­

formations) are coordinatewise onto. 
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Proposition 3.4.1 F *G locally onto implies F(A) *G(A) is onto for 

each A E A. 

Proof: Locally onto means for all y E G(A) there is a cover, {A,} of A and 

x,- G F(Ai) such that rjAi(xf) = p^(y). Now, we may take the cover to be disjoint 

for define fl; := A,; \ (At U • • • U A,-_i) and define x\ E F(Bf) as x\ = a^xf) (here 

a is the restriction for F). 

Since the A;'s are disjoint, the family {xf\ is compatible, so 3!x G F(A) with 

a\ (x) = x; and i)A sends this x to y E G(A) and so i]A is onto. I 

Proposition 3.4.2 MEAS(X) has (SS) 

Proof: Let // G Sub(l). We wish to exhibit an a to make 

U 

(7(A) Consider first, the situation at AQ. U(AQ) = 1 = 

commute, where 7r and ?/ are given. Since U E Sub(l), there is an A0 such that 

1 if/t(A\Ao) = 0 

0 else. 

{*}. Let TCA0(+) = yo E C(AO). Since I)A0 is onto, there is an xo G F(Ao) such that 

VAo(xo) = ,'/o- Now, for A G A with U(A) = 1, p(A\A0) = 0, so {AnA0 «-» A} is a 

cover, so define a A (*) to be the unique x G F(A) such that pAr^Ao(x) = PAnAa(
xo) 

(here, p denotes the restriction for F and we use the sheaf property for F). 

We only show that a is natural (the proof that the triangle commutes uses 

similar ideas (naturality and functoriality)). Let A' C A and consider: 
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U(A) —^i__ E(A) 

<*% PA> 

U(A') ~^r* F(A') 

If U(A) = 0 then both composites are the unique map to F(A'). If U(A) — 1 

then U(A') — 1 and the left-bottom composite is + i—> • t—» (unique x' such 

that pArnAo(x') = />.4?n.40(
a:o))- ^he top-right composite is + i-> (uniqvre x such 

that f>inAo(x) = p'A0nAo(
xo)) ^ PA>(X)- We must show p%(x) = x'. That is, we 

must show pi',nAopi,(x) = PA>nA0(
x°)- N o w ' w e k n o w ' ^!n,t0(x) = PA°nA0(

xo), s o 

P%nA0P%{x) = PA'nAM) = fijfi&PinAoi*) = PV&P&MW = PA?nA0(
xo) " 

required. I 

3.4.2 MEAS(X) as a Topos over Set 

MEAS(X) is a Grothendieck topos over Set. In this section, we will give an 

explicit description of 

MEAS(X)t=*Set. 
r 

T(F) := F(X) and for K E Set, we define A(/v)(A) := {(fl,/)|/x(AAfl) = 0, 

fl,—^/v, /(fl) countable , /" '( i t) G .4VA* G A'}/~ , where (fl , /) ~ (fl',/ ') iff 

p(BAB') = 0 and /t{x G fl n fl'|/(x) ^ f'(x)} = 0. 

T is made into a functor by (F *G) •-• (/^(A') •6'(A')). It is easy to see 

that A is a presheaf, for suppose that A' C A, then we have A(A) >A(A'), 

(fl , /) i—> (fl n A',f\BnA')- Furthermore, A is a sheaf in exactly the same way as 

Mbley(-) is (see proposition 3.2.4; indeed, for {A,} a cover of A and (A;,/,) G 
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A(/\ )(A,), we can extend to (Ufl,,/) where f(x) = /,(x) with i the smallest index 

for which x E fl,. Then /(Ufl,) C U/,(fl.) so is countable and f~*(k) = U/,_1(&)). 
t 

Finally, we noie that we make A into a functor as follows: let K >L be a 
PA S t 

function; define A(A')(A) >A(fl)(A) by 0A(B,f) := fl >K >L (note: 

/(fl) countable implies t(f(B)) countable). 

Next, we look at the adjunction. Consider: 

A A >F 

U <\> fr 0 

K >F(X) 

a\ , f*l 
Given a, we know A(K)(X) yF(X). In particular, X >/V is an element 

of A(A')(A). Define t(k) = 4>(a)(k) := ax\k]. 

Given t, t(k) G F(X). Let fl—^->A G A(A')(A). Since /(fl) is countable, 

{/_1( '̂)}<.e/(J3) is a disjoint cover of A. Put A^ := f~1(k) (we assume A/. ^ 0 

for all k's) and consider F(A') >F(Ak), i(fc) i-> t/t. Since the cover is disjoint, 

the family {yk} is compatible, so, by the sheaf condition, 3\y E F(A) such that 

PAk(v) = Vk **• Define a = 0(z)(A)(fl,/) = y. 

We have an extensive list of things to check: 0 is well defined (with respect to 

(f l , / ) ~ (fl ' , / ' )) , 0(/) is natural in A, 0 and 0 are natural in K and F , 00 = 1, 

and 00 = 1. 

Lemma 3.4.1 / / ( f l , / ) ~ (fl ' ,/ ') in A(K)(A), then 0(*)(A)(fl,/) = 

0(i)(A)(fl',/'). 

Proof: Let C C fl n fl' be the "good" set (i.e. C = {x G fl n fl'|/(x) = f'(x)}. 

On C, Ajt = A'k, so, on C, yk = t/£. By uniqueness (sheaf property), yk and y[. 
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both extend to the same y E F(C). But C D A is a cover of A (p(A AC) = 0) so 

this extends to a unique y E F(A) as required. 1 

Lemma 3.4.2 ip(t) is natural in A. 

Proof: Let A' C A and consider: 

A(K){A)i^M F{A) 

a% PA' 

The top right-composite is ( f l , / ) •-> y •—• ^-( i / ) and the left-bottom composite is 

( f l , / ) H^ (fl n A' , / |B r b t ; ) i-+ ?/' where y' is unique such that p'\', (y') - px
A\ (t(k)). 

We must show pA> p'%(y) = pA> • B>.t, 

F(A) *F(Ak) 

F(>4') • 7 (Ai ) 

commutes, by functoriality, so pA
A[p%(xj) - pA

A[pAk(y) = PA^PAM10)) - /»*;('(*)) 

as required. B 

Lemma 3.4.3 0 ts natural in F. 

p 
Proof: Let F >F' be natural. We must show 
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MEAS(AK, F) i££^Set(A',r(F)) 

MEAS(AKJ) Set(A',r(/?)) 

MEAS(AK,F') 
0/C :F> 

Set(A',r(7')) 

*x\k-\ 
commutes. The top-right composite is (AA' >F) i-> (A' >F(X)) 

"X f * l 
(A'_J—>F(A) >F'(A)) (i.e. it sends (f l , / ) to the map that sends 

Of 

k >-* f3x(ax\k])). The left- bottom composite is (AA' >F) i-» 

( A / v - ^ - v F — - ^ F ' ) »-> (K lF'(X) = (K 'F'(X)) as required. 

Lemma 3.4.4 00 = 1 

Proof: 0(0(/.))(M = 0(O(A')fA-ol. Now \k0](k) = < 
A if k = fr0 

, so A,'o is 
0 else 

mapped to the unique y E F(X) such that px(y) = px(t(ko)) and so y = £(fro) as 

required. I 

Lemma 3.4.5 00 = 1. 

Proof: 0(0(a))( A)(fl, / ) = y where y is unique such that pAk{y) = ^ fc(^(Q)(^)) = 

p;)u(o.v [A;]) for all fr. Now, on Ak = f~l(k), f is constantly fr so a A evaluated at 

/ is equal to ax \k] restricted to Ak by the naturality of o, so p ^ a ^ f l , / ) ) -

pAk(ctx \k~\) as required. I 

Lemma 3.4.6 0 is natural in K and F. 

Proof: This follows immediately from the three previous lemmas. I 

We may ask whether A is logical or has a left adjoint. These questions are 

related and the answer for MEAS(X) is negative. Recall [B&D], 
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Theorem 3.4.1 Let £ be a Grothendieck topos (with A H T). Then the following 

are equivalent: 

(i) £ is the category of sheaves for an atomic site, 

(ii) A is logical, 

(Hi) the subobject lattice of every object of £ is a complete atomic Boolean 

algebra. I 

Theorem 3.4.2 Let (A,T) : £ >5 be a geometric morphism between toposes. 

Then A is logical iff there is an object function A : £ *S such that for any 

E E £ the partially ordered set objects r(£lE) and QAE of fl are isomorphic. In 

that case, A can be extended to a functor ''ft adjoint to A. I 

MEAS(X) is not atomic (if, for example, A' has no atoms). From condition 

(i) and (ii), we see immediately that A is not logical. Furthermore, by the second 

theorem, this means that, in general, A does not have a left adjoint. 

3.4.3 MEAS(X) has AC 

In section 3.4.1, we showed that MEAS(X) satisfies "supports split." In fact, 

a stronger result is true. We have collected up all the material to prove that 

MEAS(X) satisfies the axiom of choice (which, of course, implies (SS)). Recall, 

Definition 3.4.3 [PTJl, p. 141]: A topos, E, satisfies (AC), the axiom of choice, 

if supports split in £/X for every X E £ (equivalently, every object of £ is projective 

or every epimorphism in £ splits). D 
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(AC) can be characterized as: 

r 
Theorem 3.4.3 [PTJl, p. 151]: Let E •Set be a topos over Set (for which 

we assume the axiom of choice). Then the following conditions are equivalent: 

(i) £ satisfies (AC) 

(it) £ is Boolean and satisfies (SG) 

(iii) There exists a complete Boolean algebra B such that A ~ Shc(B) where C 

is the canonical topology on fl. I 

In section 3.3.1, we showed that MEAS(X) satisfies (SG) and, in section 3.3.4, 

we showed that MEAS(X) is Boolean. Furthermore, in section 3.4.2, we showed 

that MEAS(X) is a topos over Set. Finally, we note that our remarks about 

Sh(A) and Sh{A/Af) in section 3.2.1 amount to condition (iii) above. 

3.5 Hilbert Sheaves 

3.5.1 Analysis in MEAS(X); Preamble 

The next bit of background that we must fill in is about analysis in MEAS(X) 

(more generally, in a topos, £). Bits and pieces of this will show up throughout 

the rest of the chapter. The purpose of this section is to set up notation and recall 

a few basic results from the literature. Details will be given later, if and when 

required. 

We assume notation of the Mitchell-Benabou language (see, for example, [PTJl , 

pp. 152-161] for details). Since we are working in a topos with the axiom of choice 



112 

(hence Boolean), our logic is much "easier'' than intuitionistic logic. Most impor­

tantly, we have the logical principle of the excluded middle. In fact, in MEAS(X), 

logic is essentially pointwise with the caveat: almost everywhere. 

3.5.2 Number Systems in MEAS(X) 

In this section, we describe number systems in MEAS(X). Specifically, wc define 

N, Z, Q, R, and C, the objects, respectively, of natural, integral, rational, real, 

and complex numbers (see also section 3.2.2 for R and C). If necessary, we will 

use the notation, N.Y to distinguish this from the ordinary natural numbers N. 

When the context is clear, however, we will omit the subscript. 

Definition 3.5.1 Let £ be a topos. A Natural numbers object (NNO) 11 £ con-
0 s 

sists of a triple 1 >N* N which is initial among all such triples (i.e. for 
Z r ! l 

all 1 >X* A in £, 3!A' K\ such that 

N^1—N 

0 / 
1 t t 

*\1 
X ^ - X 

commutes). 0 

In MEAS(X), the NNO is given by NA-(A) = A/WeN(A) with N discrete. The 

0 is the function that sends * G 1(A) to the constantly 0 function. The successor 

s is the function that sends k(x) E N(A) to k(x) 4- 1 G N(A). The existence and 

uniqueness of t is as in the proof of A H V (see section 3.4.2) for N(A) = A(N)(A). 

We construct Zx as (N x N ) / ~ , where we identify (a, b) and (a + c,b-\- c), so 

Z,Y is the coequalizer of 
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(+X+)o((pi,p3)x(pi,P2) 
N x N x N I N x N , 

(P1.P2) 

where the top arrow is (a, b, c) H-> (a + c, 6 + c) and the bottom arrow is (a, b, c) H-» 

(a,b). In our case, Zx(A) = Mblez(A) with Z discrete. 

For Ox, we want —'s where m G Zx and n G N + ; we want a morphism 
" 11 

777 771 D 
Z x N + *Q, (m,n) i-> — and we must identify — ~ - iff mq = np. We take 

n n q 
the equalizer: 

(PI,P4) -IZxN+ 
fl »Z x N + x Z x N + = * Z x N+ >Z 

(P2.P3) 

where the top arrow is (m,n,p,q) 1—• 777*7 ana* the bottom arrow is (m,n ,p ,9) 1—• rip. 

This gives two maps fl = * Z x N + , and we take their coequalizer to get Q. As 

might be expected, in our case, Q .Y(A) = MbleQ(A) with Q discrete. Since Q is 

countable, this is the same as equivalence classes of (almost everywhere defined) 

locally constant Q-valued measurable functions (Q in Sh(X), for A' a topological 

space, consists of locally constant continuous functions into the discrete Q); [PTJl , 

p. 213]. 

R e m a r k : Arithmetic is pointwise. For example, for p, q E Q, q ^ 0 (which 
p p(x) 

means q(x) ^ 0 for almost all x), -(x) = —7—r. • 
q q(x) 

Next, we look at real numbers. 

Definition 3.5.2 ([PTJl, p.211]): Let £ be a topos with NNO. A Dedekind real 

number in £ is an ordered pair, r = (L,U) of subobjects of Q satisfying: 

Dl \/q(q EL* 3q'(q' E L A q' > q)) 

D2 Va(o EU * 3q'(q' E U A q' < q)) 
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D3 Vqtq'(q E L A q' E U - • q < q') 

D4\/n3q3q'(qELAq'EU An(q'-q)<\) D 

Example: The object of Dedekind reals in MEAS(X) is R.\-(A) 

(see [PTJl , p. 213]). D 

Remarks: 1. We will often write, simply, / G Mblen(A) and tacitly assume the 

domain Ao-

2. There are two other good notions of real numbers object in a topos with NNO: 

the MacNeille reals R m (see [M&P]), and the Cauchy reals R c (see [PTJl , p.218]). 

In general, these are not the same (though we do have R c <-+ R,/ <-> R m ) . However, 

in MEAS(X), R c = Rd ([PTJl, p.220]) and, furthermore, in any Boolean topos, 

R m ~ R d ([PTJ3, p. 483]). We will use R = Rd. Various properties of R 

(order relations, for example) will be described when needed. The interested reader 

is referred to [M&P], [PTJl] , [PTJ3], and [Roul] for further discussion on real 

numbers. D 

We will devote the rest of this section to a study of the algebraic properties of 

C(—) := Mblec(-), the complex numbers object. 

Remark: Taking the real or imaginary part of a complex-valued, measurable 

function yields a real-valued, measurable function and we have C( —) C R( —) x 

R(—). In [Roul], Rousseau notes that a suitable object of complex numbers is one 

for which C ~ R x R (suitable in any topos for which Kc is complete). She goes 

on to give axioms for C which work in a more general setting. We will exhibit all 

her axioms (suffice it to say that our C will have "all" the properties appropriate 

for complex numbers). D 

In section 3.2.2, we showed that C ( - ) was a sheaf. We have operations on 

C(A): 
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[0] : 1 >C; \0]A(a) := 0 for all a E A 

fl] : 1 >C; fl]A(o) = 1 for all a E A 

More generally, for c a complex number, 

\c] : 1 >C; fcj,t(«) = c for all a E A 

_ : C >C; -(Ao,/) = (Ao,-/) 

("):C >C;(Ao7T) = (AoJ) 

+ : c x C vC; (Ao,/) + (A,,j) = (A0n A l t / +5) 

. . c x C —+C; (Ao,/) • (Altg) = (A0 n A,,/ • g) 

These operations are compatible with ~ (for example, if / = / ' except on D 

and g = g' except on fl, with u(D) — p(E) — 0, then / + g = f' + g' except 

possibly on fl U fl) and make C(A) an involutive commutative ring. Thus, C(-) 

is also since this involves only finite limits and equations (for sheaves, finite limits 

are computed pointwise). In fact, C(-) is a field. 

Recall, [Tav], [Mul], [PTJl] for E a topos and A' a commutative ring, 

Definition 3.5.3 A' satisfies the axiom of nontriviality if 



116 

0 - 1 

m 
1-foTA' 

is a pullback diagram. D 

Definition 3.5.4 The group of units, U, of K, is definzd by the following diagram: 

U *1 

A' x A' —r— A' 

which is to be a pxdlback diagram. • 

Definition 3.5.5 Suppose K satisfies the axiom of nontriviahty and U is the group 

of units for K. We say K is 

• a geometric field if K ~ U -f [0] 

• a field of fractions if -> [0] C(7 

e a field of quotients if ->U C [0]. • 

Proposit ion 3.5.1 ([Mull]): / / E is Boolean, then these three, notions of field 

agree. I 

We proceed to show that C(—) is a geometric field (in which case, it will be a 

field in the other two senses also in view of the Booleanness of MEAS(X)). 
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Proposition 3.5.2 C( —) satisfies the axiom of nontriviality. 

Proof: Since pullbacks in MEAS(X) are computed pointwise, we need only show 

0(A) -1(A) 

m 
1 ( / 1 ) _ C ( A ) 

is a pullback for each A E A. There are two cases to consider, 

case p(A) 7̂  0: 

If T(A) = 0, there are two maps a and b and a unique map T(A) >0. If 

T(A) ^ 0, there are no maps a and b and no map T(A) >0. 

case p(A) = 0: 
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In this case, everything collapses to the unique map into 1. I 

In a similar manner, we may compute the group of units of C\ —) as: 

U(A) = {(A0 , / )GC(A)|3(A1 , t /)GC(A), ( A 0 , / ) - ( A „ y ) ~ [ l l } 

= {(Ao, / ) G C(A) | p{x E Ao | /(*) = 0} = 0} 

Proposition 3.5.3 C(—) is a geometric field. 

Proof: We must show that 1—>C *— U is a coproduct diagram. Specifically, 

we must show V/ G C(A), there is a cover {A, <—> A} such that f\At E U(A;) or 

/k ~ o. 
Consider the two sets A, = {a E A0 | f(a) = 0} and A„ = {a E A0 | /(«) 4" 0} 

both sets being measurable. In fact, {A,, A,,} forms a cover of A. Furthermore, 

f\Az = 0. We next show that /|A„ G U(An). We claim that — is measurable on 

An (this will be the required g). 

Write f = a + ib, then — = --—— :—— i. If a and b arc measurable real 
/ a2 + b2 «2 + o2 

functions, then — will be also, provided that / is measurable and real implies — 

measurable. But, for / real, we have 

{x 
f(x) 

> a] 

{ . r | I > / ( x ) > 0 } , a > 0 

{x | f(x) > 0}, a = 0 

{x | I < / ( . , ) <0} , o < 0 . 

And, in each of these cases, we get a measurable set. I 

We will explore the topological properties of C( - ) (as a normed algebra over 

itself) and like objects (Hilbert space objects) in section 3.5.4. 
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3.5.3 A Sheaf From a Measurable Field 

In this section, we describe a sheaf, G, ..o be constructed from a measurable field 

of Hilbert spaces, (H(x)j:eX,Q). Inasmuch as this is a connection (between boxes 

1 and 2), the material here belongs in chapter 5. We insert it here, however, since 

we will use the sheaves G and C as motivating examples for Hilbert space objects 

in MEAS(X) (= Hilbert sheaves). 

Definition 3.5.6 G(A) := {g E Q\g(x) = 0 Vz £ A} /~ . 

Proposition 3.5.4 G(-) : (A,C)op —> Set is a presheaf. 

Proof: The proof of this is similar to that for converges proposition 3.2.3. Suppose 

A' C A. We have a restriction given by 

G(A) — G(A% (g(x)Ux ~ (g'(x)Ux, g'(x) = * (*} * € * 
[ 0 else. 

Certainly g'(x) = 0 for a: £ A'. We must check that g' E Q and the restriction 

is well defined with respect to ~. 

g' E Q: (x *-* (h(x)\g'(x))) = (x i-» (h(x)\g(x)) • XA1) which is measurable for all 

h E Q, whence, by axiom 2, g' E Q. 

Well defined: Suppose h(x) — g(x) except on fl with p(B) = 0. Then h'(x) = g'(x) 

except on fl D A' and p(B 0 A') = 0. I 

Proposition 3.5.5 G(-) is a sheaf. 

Proof: Again, this proof is similar to that for proposition 3.2.4. The only question 

is whether g, the unique extension of a compatible family {<7,} on a cover {A,} 

of ,4 is in Q. As in the above, we use axiom 2 for an MFHS and note that 

x *-* (h(x)\g,(x)) is measurable for each g, and for all h E Q (each g, is in Q). • 
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We can make each G(A) into a C(A)-module by defining operations pointwise 

(for example, (g + h)(x) := g(x) + h(x) and if g ~ g' and h ~ h', then g+g' ~ h + h' 

as before). Now, since C is a field, we have: 

Proposit ion 3.5.6 G is a C-vector space. I 

In fact, G can be made into a normed vector space. The sheaf of nonnegative 

reals is given by R Y = Mblen>o\ 

R>°(A) = {/ : A >R^° measurable}/ ~ 

For each A, there is a function G(A) >R-°(A) given by g i—> \\g\\ 

where ||oi|(a:) = ||<7(a0||//(x) Vx G A. .T i-> ||</(.r)||w(i) is measurable by axiom 1 for 

an MFHS and g •-» \\g\\ is well defined since if g = g' except on fl with p(B) = 0, 

then ||<7|| = ||^'|| except on fl as well. Furthermore, ||-|| is a natural transformation. 

Suppose A' C A and consider: 

G(A)~*R^°(A) 

G(A')-~ R^0(A') 

The top-right composite is g K-> \\g\\ t-» II^HI^', the left-bottom composite is «/1—> 

9\A' I_> llfl'U'll a n ( i these two are equal. And so, we have a map G >R-° 

in MflA5(A"). The norm axioms follow from those for the / / (x) ' s (modding out 

by a.e. equivalence ensures \\g\\ = 0 => g = 0). We will describe other topological 

properties of G in the sequel. 
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3.5.4 Hilbert Sheaves (Definitions and Topology) 

We use the above discussion (about G, C, norm, etc.) as motivation for our notion 

of Hilbert space object in MEAS(X). In this section, we define such and discuss 

topological notions (for example, completeness). 

Definition 3.5.7 A Hilbert Space Object (= Hilbert Sheaf) in MEAS(X) is a 

Cauchy complete inner product space over C . D 

M 
Such an H E MEAS(X) has as part of its data, natural maps 1 •/ / , 

H • / / , H x H •// , C x H • / / . These operations make H into a C-

vector space. 

In ordinary functional analysis, there are two equivalent ways to describe dis­

tance in a Hilbert space. One is to give an inner product, (—|—), which yields 

a norm (via || • || = v/(-|-)) that satisfies the parallelogram law, | | / + <jr||2 4-

11/ _ g\\2 — 2 | | / | | 2 + 2||#||2. Another way is to give a norm that satisfies the 

parallelogram law and define an inner product using the polarization identity, 

</l<7) = \\\f + g\\2 -\\\f- 9\\2 + J l l / + igf - l\\f - i9\\
2. In our case, we have: 

1. a natural transformation (—|—) : H x H >C 

2. a natural transformation || • || : H •R- 0 as in the previous section 

These are to satisfy the obvious axioms (the classical ones translated as equa­

tions for morphisms). As a simple, example, positive definiteness may be regarded 

as the existence of a factorization of H *H x H >C through R - ° consid­

ered as a subsheaf of C. 
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An inner product yields a norm and a norm yields an inner product as in the 

classical case. 

Given (-|—) : H x H >C, we get || • || : H >R-° as follows: positive 

definiteness of (—|—) ensures the image of H >// x / / >C is contained in 

R^°; we take ||-|| : H >R^° as / / >/?«(<—1—> o A ) - ^ > R ^ ° . To check that 

this works, we need only check that R - ° •R- 0 is natural (everything else 

is as in classical functional analysis). But, certainly, for a nonnegative measurable 

function, t(x), \Jt(x) is also. Furthermore, the square root of the restriction of / 

is equal to the restriction of the square root of t. Finally, we note that if t = I' 

except on a set A with p(A) = 0, then \/i = \ft' except on A. 

Conversely, given a norm satisfying the parallelogram law, we define ( —|—) 

by the polarization identity. In a similar way, we see that (—|—) is natural and 

well defined. Indeed, addition, subtraction, and scalar multiplication in / / are all 

natural (this gives / -f g, f — ig, etc), taking the norm in C, squaring in C, and 

addition, subtraction, scalar multiplication of complex numbeis are all natural and 

well defined as well (this gives - | | / + <7||2, - | | / + ig\\2, etc.). Thus, we have: 

Proposit ion 3.5.7 A natural inner product, (—\—):Hx II >C yields a 

natural norm || • || : H •R- 0 satisfying polarization and the parallelogram 

law and conversely. 1 

So far, we have described preHilbert space objects in MEAS(X). A morphism 
TA 

of such is a natural transformation H(A) >A'(A), which is linear (rA(f +//(/!) 

g) = TA(/) -ri<(A) TA(g)) and bounded (theie is a 6 G R | ° such that Vn G 

Hi \\T(n)\\i< — 6||^l|//> it is enough to have TX bounded). Note that, if r is bounded, 

we can find a 6 > 1 (b bounded away from zero) such that | |T( / I ) | | < b\\h\\. Fur­

thermore, 'he restrictions pA, are linear and bounded (by 1). We get a category 

which we denote by PreHilb(MflA5'(A)). 
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s 
A sequence in H is, by definition, a map Nx >H. Now, in a Grothendieck 

topos, NA- = ]T] 1*5 so, in our case, a sequence is simply a(n ordinary) sequence 
neN , 

of global elements: N yII(X) (for convenience, we will often start sequences 

off at 77 = 1). We may formulate convergence and Cauchyness using this fact. 

(*n) 

Definition 3.5.8 The sequence N *H(X) l s sa*d t° oe convergent if 3s E 

II(X)(Vk E Nt- 3 a cover {A,}~x of X and 3Nh i = 1, 2, 3 , . . . , such that 

Vn > Nh \\sn - s\\ < - on A,). D 

On) 

Definition 3.5.9 The sequence N *H(X) is said to be Cauchy if \/k E 

Nx, 3 a cover {A,}^_j of X and 3Ni, i = 1, 2, 3 , . . . , such that \/n,m > A,-

hn -sm\\ < j on A{. D 

Remarks: 1. ||.sn — s\\ < - on A, means ||.sn — ^^.(.r) < 77-r for 
k k{x) 

almost all x E A,. 

2. We may also define, for A E A, A-convergent and A-Cauchy as the above with 

X replaced by A. 

3. If X — 1, these are the usual notions in Hilb. 

4. For f,g E R.\*(A), / < g iff f(x) < g(x) for almost all .-r G A. < is an 

internal order. That is, R x R ~ R + [<] + [>] (let (f,g) G (R x R)(A), then 

A, = {x I f(x) = g(x)}, A2 = {x I f(x) < g(x)}, and A3 = {x \ f(x) > g(x)} 

forms a cover of A). 0 

Definition 3.5.10 H(X) is said to be complete if every Cauchy sequence in H 

converges in H. D 

Proposition 3.5.8 R.\- is complete. 

Remarks: 1. Strictly speaking, R,\- is not a Hilbert space (over C). But, conver­

gent, Cauchy, and complete can all be formulated in an obvious way. 
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2. The classical proof that R is Cauchy complete involves a sequence of steps: 

Cauchy => bounded; sequence =£> 3 monotone subsequence; monotone sequence + 

bounded =^ convergent; Cauchy + convergent subsequence =$> convergant. This 

does not translate to our case. For example, if /„ —• / pointwise, then we do not 

necessarily have a subsequence that increases to / . 0 

Proof: (of proposition 3.5.8): Our proof requires only two steps: /„ Cauchy 

=>• 3 / , fn —> / pointwise and /„ —• / pointwise =>• fn —» / . Let {sn} be 

a Cauchy sequence. Then Vfc G Nx, there is a cover {A,} and A,-, such that 

Vn,m> Ni, \\sn(x) — sm(x)\\ < — on A,. In particular, sn(x) is a(n ordinary) 
A J 

Cauchy sequence for almost all x E X (can choose k = [A']). Since R is complete, 

there is an s(x) such that sn(x) —» iifa:). Since 5 is the pointwise limit of measur­

able functions, it is measurable and there is an N such that||5(a:) — syv(aOH < [1] 

so, since ||s/y(a:)|| < oo a.e. (SN E R.Y)> IMa')ll < 1 + ||s/v(:c)|| < °° a.e. so s E RX. 

We must show sn —> s. W.L.O.G. we may assume sn(x) —> s(x) point-

wise everywhere. Let k E Njf and assume first that k = \kf\ is constant. Let 
1 °° 1 

Gn = { * | \\sn(x) - s(x)\\ < -=^} and fl,- =f)Gn = {x\ \\sn(x) - s(x)\\ < — 
Vn > i}. Suppose x E A, then since sn(x) —> s(x), there is an Af such that 

||sn(ff) — s(x)\\ < jpr, Vn > N. That is, a: G flyv for some A. Thus, the fl.'s cover 
| A; | 

1 
A. Put Nt = i and we have found our cover and the Nt for which ||s„ — s|| < jrrr. 

\k\ 

Finally, suppose k E Nj^' ' s n ° t necessarily constant. It is locally constant. 

By considering A3 = {x | k(x) = j} and applying the above special case, we get 

Sn~* S. I 

Remark: If we try to remove the "existence of cover" requirement from the defini­

tions of convergence and Cauchy, we get for example, Wk E NX3N E NV77, m > N 

\\sn~ -SmlU' < 7TT- This definition would yield an s(x) (sn(x) would still be 
k(x) 

Cauchy for a.a. x). However, there would be no way to track the rates of conver-

file:////sn~
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gence of sn(x) to s(x) for various rr's. D 

In a similar manner, we have, 

Proposition 3.5.9 Let G be the preHilbert sheaf constructed from an 

MFHS, ((H(x))X£X,G), then G is complete. 

Proof: The proof is exactly as above. The only thing at stake is whether 

s(x) — lim sn(x) (pointwise limit) is in Q. But Vg E Q, x i-> (s(x)\g(x)) 

= lim (x H-+ (sn(x)\g(x)), being the limit of measurable functions, is measurable. 

Whence, by axiom 2 for an MFHS, 5 G Q as required. I 

Corollary: C(—) is complete. I 

We end this section with a discussion about the completion of a preHilbert space 

object. We will prove a lengthy list of lemmas (many of the proofs mimic classical 

ones but require some translation to the sheaf case) culminating in a theorem 

about the existence and basic properties of the completion. We will exhibit a 

functor PreHilb(MflA5(A)) — >m\h(MEAS(X)). 

For / / G PreHUb(A/flA5(A')), let c(H)(A) as the set of equivalence classes of 

A-Cauchy sequences N >H(A), with {sn} = {tn} iff lim ||s„ — tn\\ — 0 (this 

latter limit taken in R--°(A)). 

Lemma 3.5.1 = is an equivalence relation. 

Proof: Certainly, = is reflexive and symmetric ( — (sn — tn) = (tn — sn) and 

||(-1)/.|| = || - l\\\\h\\ = ||ft||). Now suppose \\sn - *„|| -> 0 and \\tn - uB|| -> 0 in 

R*°(A). Let jb G N^. There is a cover {A,} of A and 3Ar,Vn > N{\\sn - tn\\ < ji-r 
\2\k 

on A,- and there is a cover {A-} of A and 3il/,V77 > M,\\in — uu\\ < -p-=-j- on A\. Let 
|2|fc 

Pi = max{M„ Nt} and fl,- = A.-D A|. Then {fl,} is a cover of A (A \ (J(A,- D A-) = 

(A \ (J A,) fl (A \\JA'A) and ||sn - «n|| = ||sB - tn + tn - «„|| < ||aB - tw|| + 
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Remark: This is one "translation" alluded to in our opening paragraph. The 

transitivity part of the proof above exhibits an "--proof" in this context. D 

Lemma 3.5.2 c(//)( — ) is a presheaf. 

Proof: Suppose A' Q A and {sn} E c(H)(A). We get a sequence in H(A') by 

restriction (in the sheaf H): {sn} i—• {sn 

k E Nj(A') . Put k E NJ(A) as k(x) = < 

A'}. Now suppose {sn} =A {in} and let 

k(x) x E A' 
. Then there is a cover, 

1 x£A' 
{A,}, of A and 3N,\/n > N,\\sn - tn\\^ < on A,. But, the same N, will work 

k(x) 
for the cover of A' given by A, D A' and so {sn} =A> {<„}. I 

Lemma 3.5.3 c(H)( — ) is a sheaf. 

Proof: Suppose {Ap}°lj coveis A and let {sp, } ^ = l be a compatible family of 

elements of H(AP) (p = 1, 2, 3,. . .) . Since / / ( - ) is a sheaf, we get ?, unique 

extension sr E H(A) (r = 1, 2, 3,. . .) . We must show {sT} E c(H)(A) and 

{spr} =Ap {tpr}, p = 1, 2, 3 , . . . implies {6r} =A {*>•}• We will show the second 

(the first being similar). 

Let k E Njt'. For each p there is a cover Api of Av and Npt such that 

Vn > Npi\\spn - tpn\\ < j on Ap,. But {Apjj^'j^j,,) forms a cover of A and 

Vn > Npi\\sn\Api - f n U J U p , = \\sPn -iPn\\AP, < T f° r «•«• x € Apt and so \\sn -

i„|| —> 0 in Rjf (A) as required. I 

There are operations on c(H)(A) defined pointwise: 0 = { 0 } ^ , , —{sn} = 

{sn}, {sn} + {tn} = {sn + tn}, a {sn} - {a • sn}. these operat;ons are well 

defined with respect to =. Foi example, suppose {.sn) = {.ŝ } and {tn} = {/'„}, 

then ||(aB + tn) - (s'n + t'n)\\ < \\sn - < | | + \\tn ~ Cll —> 0 as in the -proof of 

lemma 3.5.1. We define a norm on c(H)(A) by ||{s„}|| = lim ||.sn||. Before, we 

show that this is well defined, we require some basic properties of limits. 
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Lemma 3.5.4 In Kx, 

1. a —* a. 

2. If an —* a, an positive, then a is nonnegative. 

3. If an — bn —• 0 and an —• a, then bn —* a. 

4- If an —> a and bn —> 6, J/te/t <zn — 6„ —• a — 6. 

5. //" a7l —• a, 6n —» b, and if an < 6nVn, //ten a < b. 

6. / / R — > R is bounded and an —» a, £ne77 r (a n ) —> r ( a ) . 

Proof: 1. The cover of A is {A} and put N\ — 1 for any choice of fc G Nj^. 

2. Suppose a is not nonnegative. Then there is a set fl of positive measure for 

which a(x) < 0V.r G fl. There is a t E N with A( = {a; | a(x) < — [ - ]} of positive 

measure (if not, then p(B) = 0). Since an —* a, there is a cover {A,} of A and 

A", such that V?? > Ni, \\an — a\\ < f-| on A,. Since {A,} covers A, there is an i 

such that ||a„ — a|| < [-] on A,-D At and p(A,C\At) > 0 whence an < 0 on A , n A t 

which is a contradiction. 

3. and 4. are "--proofs" as in lemma 3.5.1; ||6n — a|| = ||6B — an + an — a\\ < 

\\K - a»|| + ||an - a|| -» 0 and ||(aB - bn) - (a - b)\\ < \\an - a\\ + ||6 - 6„|| -» 0. 

5. follows immediately from 2. and 4. 

6. Let b E NA' be a bound for r and let k E Nx. Choose a cover {A,} of A and 

natural numbers N, such that ||a„ — a|| < — on A, for n > Ni. Then, for this 
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cover and N,, | |r(an) — r(a)|| 

= | | r ( a B - a ) | | < 6 | | a n - a | | < i . I 

Lemma 3.5.5 || • || is well defined. 

Proof: Since {sn} is a Cauchy sequence and || | |sn | | - ||.sm|||| < \\s„ - am||, {||sn||} 

is a Cauchy sequence in R^°. But RY° is complete, so lim ||.*n|| exists. Now, 

suppose {sn} = {«'„}, then by lemma 3.5.4, lim ||.sn|| = lim ||sn | | . I 

Lemma 3.5.6 || • || is a norm on c(H)(A). 

Proof: | |a{S n}| | = Jim \\asn\\ = Jim ||a||||5n | | = ||a|| Jim \\sn\\ by lemma 3.5.4 # 

6, since ||a|| • — is a bounded linear transformation. 

I I M + {Mil = U N + «»}|| = Jim ||*B + <n|| < Jim ||*n|| + ||/„|| = Jim ||a„|| + 

lim ||<n||- The inequality follows fiom # 5 the proof of the last equality is essen­

tially the same as that for # 4. 

Finally, that ||{a„}|| > 0 follows from # 2. Suppose that ||{a»}|| = 0, then 

l i m | | S n - 0 | | = 0 s o { 5 n } = {0}. 1 
n—»oo " " v ' 

Lemma 3.5.7 Let HC(A) consist of equivalence classes of constant sequences. 

Then HC(A) is isometric to H(A) and cl(Hc(A)) = c(H)(A). 

Proof: HC(A) = {{s}~=l I s E H(A)}/ = The isometry is H(A) >HC(A), 

s i—> {5} (note: by lemma 3.5.4 above, if {s} = {t} then s = t and, furthermore, 

||{S}||=Jim||.|| = |H|). 

Next we show, for any {sn} E c(H)(A), there is a sequence of points of IIC(A) c-

converging to it. To fix notation, put s" = N } ^ G c(H)(A) and let s"p = {sp}^ 

E HC(A) be the constantly sp family. We claim sp* —• s" in c(H)(A). Now, 

||s* — 5*|| = lim \\sp — sn\\. {sn} is Cauchy, so VA; G Nx there is a cover {A,} of A 
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and Ni such that Vp,n > Ni\\sp - sn\\ < j^rr- By lemma 3.5.4, | |sp - sB|| < •=-=--
\2\k \z\k 

implies lim ||sp — sn | | < y-r-r < T. And so, we have found our cover and A',- for 
n—oo r |2|fc k 

\K-*!<{> • 
Lemma 3.5.8 Cauchy sequences in HC(A) converge in c(H)(A). 

Proof: Let {s* } be a Cauchy sequence in HC(A) with sn — [{sn, s„, sB , . . .}]. Then 

Vfc G N j , there is a cover {A,-} and Ni, such that \/n,m > Ni, \\{sn} — {5^)11 < r , 

so {sn} is Cauchy in //(A), whence there is an s G H(A) to which it converges. 

And so sn —> s' = [{s,s,s,. . .}]. • 

Lemma 3.5.9 Cauchy sequences in c(H)(A) converge in c(H)(A). 

Proof: Let sn — {snm} (n = 1, 2, 3,...) be a Cauchy sequence in c(H)(A). By 

lemma 3.5.7, there is a sequence spn = {sp,sp,sp, ...}—> s*. 

s*n is Cauchy: Choose a cover (intersect if necessary) and Ni so that ||s*B — s*m|| 

= IK„ - < + <- Kn + < - S^W Z Kn ~ <W + IK - ««ll + IK ~ S'pjl 
1 1 1 1 

< [31A;+ \S]k+ \3]k " k' 
Since 6*n is Cauchy and by lemma 3.5.8, s*n —• s*. Now, choose a cover and 

Ni so that | |< - ,*|| < | K - S;j + \\s;n - s'\\ < - ^ + j ~ . Thus, < - s* as 

required. I 

And so, we only need to prove the uniqueness part of the following theorem. 

Theorem 3.5.1 flo?- H a preHilbert sheaf, there is a Hilbert sheaf, c(H), which 

contains a dense, isometric copy of H. Furthermore, if K is another Hilbert sheaf 

ivith this property, then K is isometric to c(H). 

Proof: Suppose / / ~ Hc C c(H) and H ~ H' C K with Hc >HZ an isometric 

isomorphism. The isometry between c(H) and K is defined as follows: 
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Given {hn} E c(H), put k = lim <f>(h„). Since {hn} is Cauchy and <f> is an isometry, 

{<f>(hn)} is Cauchy and so converges in A'. That A- is a well defined element of A' 

follows from lemma 3.5.4 #6 . 

Conversely, given k E K, let hn —» A; with h„ E Hz. We get {<f>~x(hn)} E c.(H). If 

h'n is another sequence tending to k, then {</>-1(nn)} = {<f>~l(h'„)} f°r ll^-1(ftn) — 

<f>-l(h'n)\\ = ||/t„ - h'n\\ -+ k - k = 0. That {(j>~\hn)} is Cauchy is the usual: 

\\f\K) - <f>~\hm)\\ = \\hn - hm\\ < \\hn - k\\ + \\k - hm\\ < J L + -J- | 

Definition 3.5.11 c(H) is called the Completion of H. D 

Theorem 3.5.1 gives us an idea of how to make c( ) functorial. Suppose 
T c(T) 

H >/v G PreHUb(MflA5(A)). Define c(H)-—^c(K) byc(r){s„} = {T(s„)}. 

As in the theorem, {sn} Cauchy implies {T(sn)} Cauchy and {sn} = {tn} implies 

{T(sn)} = {T(tn)}. And so, there is a functor 

PreHilb(A/flA5(A))-^—>Hilb(MflA5(A,) . 

This is left adjoint to the forgetful functor U. Consider 

c(H) >K 

H >U(K) 

with H E PreHilb(MflA5(A)), A' G HWUMEASLX)). Given S, we define 

T{hn} = lim S(hn) and conversely, given T, define S(h) = T({h}). 

3.5.5 Hilbert Sheaves as an Indexing Notion 

We begin by describing the direct integral of a Hilbert sheaf. Let 

H E Hilb(MflA5(A)), define 

/ H = {s : 1 -> H(X) | / \\s\\2
xdp < oo for any choice of j|s||} 

file:////f/K
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Remarks: 1. For an s E H(X), \\s\\ is actually an equivalence class of a measur­

able functions from X to R-° also denoted by ||.s||. We require the integral to be 

finite for any choice of representative (see also the discussion for the definition of 

/ below). 
J<t> 
2. We may replace "for any choice" by "for some choice." • 

/® 

We have arithmetic operations on / H inherited from those on H. For exam­

ple, s + t := s +H(X) t- For almost all x, we have ||s +1\\2 < 22(||s||2 + ||<||2), so if 

s and t are square-integrable, so is s +1. 

Put a norm on / / / b y defining the inner product (s\t)2 := I (s\t)xdp. The 

resulting norm is called the || • ||2 norm. 
/•© 

Theorem 3.5.2 / H is complete. 

Proof: The proof is similar to that for theorem 2.2.1. Let sn be a 2-Cauchy 

sequence in / H. We can choose a subsequence, also called sn, such that 
oo 

£ | |*n+l -«n| |a <oo. 
n=l 

N 

1 
We claim that t^ = si + ^ ( s „ + i — s„) converges to a t E H and t = lim sn E 

n = l 

H. We must show that t^ is a Cauchy sequence. That is, for each k E N j , 

we must find a cover and an Ni for the sequence i/v. 
oo 

Suppose A; = \k] is constant. Since Y |K+i — sn||2 < oo, we have 
n = l 

oo 
]T ll-Sn+i - sn\\(x) < oo for almost all x E X. Put AM,k = {x \ £ ||sn+i - «n||(*) 
n=l n = M 

< j } . Then { A A / , * } ^ * forms a cover of A' and \\tp — tg\\ < -r for all p,q > M. 
k ~ k 

For a general k, put Aj = {x \ k(x) = j}. Then AMJ f*1 Aj is the required cover 

and M is the required "A," of definition 3.5.9. 
00 

Since H is complete, t^ -* t = Si + ^ ( s „ + i — sn). ||ijv — t\\2 
n = l 
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^ X* \\sn+i ~ sn\\2 —* 0 as N —> oo so tN —*2 t as well. Furthermore, | | tj |2 

n=N 
* — > y ® 

^ ll5i||2 + 2 ^ IK+i — $n||2 < co so that t E / fl as required. I 
n = l # ^ 

Remark: tf.iv and < are special in the above theorem. In general, u„ —• u does 

not imply itn —>2 « (if \\UN, — u\\(x) < T on A,, then we do not necessarily have 

||it;v — 7i||2 < e, say, on all of A'; the A,'s may increase (over i) without bound). 

In order to ensure 2-convergence, we would require some uniformity (a common 
y® 

bound) of the A,'s. However, if itn —> u and tt„,it E H, then it,, —>2 « iff 

ll^nlb ~* ||i^||2 (for the case of ordinary functions in Lp, see [Roy, p. 118]). D 

Now, suppose H >-A' is a bounded (by b E Rjf say) linear transformation 

and let 5 G / H. Then / ||r(s)||2va
>/< < / ||^||2Y||-s||2v(//t. There is, however, no 

guarantee that this second integral is finite. So, bounded linear transformations 
y® 

are not adequate to make / functorial. We need stronger conditions on the 

bound. 

Definition 3.5.12 Let the objects of the following two categories be Hilbert sheaves 

on X. 
T 

CBHilb(MflA5(A')) has as morphisms linear H >K, for which there is a 

constant b E R - ° such that V/t G H, ||r(/t)||A- < [&"||W|//. 

L2HUb(MflAS(X)) has b E L2(X; R^°). D 

Remarks: 1. etymology: "CBHilb" = constantly bounded = bounded by a 

constant function; "L2Hilb"= bounded by an L2 function. 

2. CBHilb C L2Hilb. 

3. The bound can be chosen to be "well away" from 0. • 

Theorem 3.5.3 On both the categories CBHUb(MflA5'( A)) and 
-Ox 

L2HUb(MflA5(A)) , J is functorial. I 
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y® 
In fact, we get a Hilbert space, / / / , for each A € A, by considering square-

J A 

integrable sections of H(A). And so, we get an element of U.AeAH(A). This 

,4-family is not arbitrary though, in view of the fact that the restrictions pA, are 

bounded (indeed, constantly bounded) linear transformations. 

We next look at substitution and will consider the special case of A first. Recall 

from section 3.4.2, for K E set, A(A')(A) = {(fl,/) | p(AAB) = 0, fl >K, 

/(fl) countable, /_1(A:) G -4VA: G K}/ ~ gives a sheaf in MEAS(X). 

Now, A(1)(A) = 1 = 1(A) since / =! (indeed, A(A') = A(l) + • • • + A(l)). 

Furthermore, A(/v x L) = A(A) x A(L). Given fl >K xLE A(K X L)(A), 

we get a pair, (B-^->K,B-^L) E A(K)(A) x A(L)(A) where / = ( / i , /2) . 

Conversely, given (fli,/i) and (A2 , /2), we get (flx n A 2 , ( / i , / 2 ) ) . 

Suppose H E Hilb. We have operations on A(H)(A) defined in an obvious way: 

0 G A(H)(A) = A-^H; - ( f l , / ) = ( f l , - / ) ; ( f l , / ) + (fl ' , / ' ) = ( f l n f l ' , / + / ' ) . 

These make A(//)(A) into an additive group. 

For a E Cx and (fl, / ) G A(//)(A), a(x) • f(x) does not necessarily have a 

countable image. Thus, A(H) is not a C^-vector space. However, if we consider 

the geometric field, C;c = A(C), of equivalence classes of locally constant C-valued 

functions (the proof that C/c is a geometric field is the same as that for Cjr; see 

proposition 3.5.3), then A(H) is a C/c-vector space. 

We have a "norm" (satisfies positive definiteness and the triangle inequality) 

given by | | (A,/) | | = (fl, | |/| |) C A(R) C Rx. As one might expect, this is not 

complete but the last containment is dense in the following sense: 

Proposition 3.5.10 Every f E C.y is the pointwise limit of some sequence in 

A(C)(A). 

Proof: This is exactly the statement that a measurable function is the limit 

of "step" functions (not quite step functions but functions with countable image). 
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/ G Cx can be written as / = g+ih, where g, h E R.Y and g and h are each the dif­

ference of two nonnegative functions. Thus, let f(x) > 0 a.a. x. Consider A„ = {x \ 

n - 1 < f(x) < n} (n = 1, 2, 3,...), An , = {x E A„ | —^ < f(x) _ (,, - l) < i } 
N I\ i 

(k = 1, 2, 3,...) and put /,vA-(a:) = £ D ( » " 1) + r T T ^ ' W - T h e u / * * - f 
n=l fc=l *' + l 

pointwise. I 

We note that A(Hilbert) ^ Hilbert is not entirely surprising since, as we saw in 

section 3.4.2, A is not logical. It does preserve finite products but not necessarily 

(logically) more complicated entities like C. 

We saw in example 3 of section 2.3.2 that Sh(I) realizes the Top-indexing of 

Set. For a continuous a : J —> / , we get a* by regarding an element of Sh(I) 

as a local homeomorphism over / and pulling back along a yields a local homeo­

morphism over J which we may regard as a J-sheaf. As we noted in section 1.2, 

simply translating topological notions (like local homeomorphism) into the mea­

sure theory world leads to problems of triviality. The pulling back idea does not 

work. 

For (X,A,p) >(Y,B,u) in M O R . we get substi tution 
<t>' 

MEAS(X)i MEAS(Y). Indeed, <j> * is a morphism of sites, so we have a 

geometric morphism 4>* ^ ^»i where <f>*(G)(A) = a(colimi,ic^,-i(s)G,(fl)) for G E 

MEAS(Y), A E A, and a is the associated sheaf functor, and (j),(F)(B) = 

F((j)-l(B)) for F E MEAS(X) and fl G B (see also the remark after proposi­

tion 3.3.4). As we have noted, <f>" does not preserve Hilbert space objects. However, 

the proof of proposition 3.5.10 actually gives: 

Proposition 3.5.11 cA^C = C.v (the completion of the sheaf of locally constant 

functions is the sheaf of all measurable functions). I 

This gives a clue that we should complete. And so, we will describe our sub­

stitution, 
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0# 
-HilUMEAS(Y)), HilU ME AS(X))< 

where tjfiG = c(j>*G. 

<j>* preserves finite limits so it preserves Abelian group objects. In addition, we 

have a commutative diagram, 

MEAS(X) MEAS(Y) 

Set 

In particular, <£*AyC = <f>*CYii.c. = AAC = CA',/.C.. Thus, <j>* lifts to 

C/.c.-modules: 

CLCMod(MEAS(X))* 
</>* 

-CLCMod(MEAS(Y)). 

We next discuss the norm. More precisely, we shall show how a norm on 

G E CLCMod(MEAS(Y)) yields a pseudo-norm on <j>*G. This will become a 

norm on <f>*G after completion. A norm on <j>"G would be 

<j>'G- >o >R$ 

G- -»*.R$°. 
>>0/ 

G(B) 

There is a map G(B) —> <f>»Rx (fl) the composite 

Rp°( f l )—^R|°(^- l ( f l ) ) . We define || • \\" to be the transpose of this 

composite. Two comments are necessary: 

Remarks: 1. \\S\\B is an equivalence class. But if, for two representatives, 

\\4B ~y | |S| |B, then ||s| |B o <f> ~x \\S\\'B o <f>, since (j> E MOR. 
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2. The converse of MOR does not necessarily hold (that is, p(f~x(B)) = 0 fi 

v(B) — 0). As a consequence, \\S\\B o<f> = 0fis = Q and we cannot expect || • ||* 

to be anything more than a pseudo-norm. • 

We will find an equivalent definition of || • ||* more useful. Let t be the transpose: 

y A * » > 0 

<p Jrtp -
+R >o 

R>° I ! !__^ .R>0 . 

Then || • ||* is the composite <f>*G >^"Rp° •R*0- ^ e must exhibit the 

triangle inequality and homogeneity for || • ||*. 

Triangle Inequality: G >Rp° satisfies the triangle inequality iff there is a 7 

to make the following triangle commute: 

G x G - ^ > R f x R f 

(Pr,+) 

Rf° x R£° 

> 0 
where a is G x G >G >Rf and 8 is G x G l ^ R p o x R^— •Rf > 0 

This is simply a translation of the statement ||5-t-s'|| < ||«||-}-||-s'}| into diagrammatic 

form. For example, the monomorphism (pi, +) expresses what it means for a non-

negative real to be less than or equal to another non-negative real. We must exhibit 

the above for || • ||*. That is, we must show there is a 7' such that 
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pG x fG{^Rx
0 x Rj° 

(9i, +) 

R*° x Rl° 

commutes. Take <f>m of the triangle for G and augment to get: 

(tfatpP) 

rG x rG il^m rR>o x , . R >o __L2LL 

(Ti,P+) 

>>o 

SQl 

»>o 

R?xR? 

(?i,+) 

> 0 w T 5 > 0 <j>"Ry x <j}*Ry J-^-J—- Rx x Rjf 

We need /(̂ *cv to be "the a"' for <j>*G, t<j>*8 to be "the /?'," and SQl to commute; 

in which case (t x t) o 0*7 will be the required 7'. Now, for a', 

^ G x <£*G >^G >^Rf° tog (which is tfa) is the a' (note: 

^*IHI°< = II -\\')- For £', we have 

rG x , . G (^•11x^111 ^.R>o x ^.R>o ?(+) , r R > 0 

II • II* x II • f t X t 

»>0 w r>>0 R Y x Rjf 

So <<£*/? will be the 8' provided SQ2 commutes. 

SQ5 

+ X 

) 
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To show SQl commutes, it is enough to show that the composite with each 

projection, Ti,r2 : R^0 x RA'° —> Rs'°i commutes. Composing with the first pro­

jection commutes trivially. Composing with the second projection yields 

<f>'R >o 

P+ 

>>0 w j»r>>0 

Rx° 

+ 

>0 . , r»>0 
^*Rf.u x <f>'RY" j^f R f x Rx 

This is precisely SQ2. To show that this commutes, we "detran^posc" to get 

— O (j) 

+ 

tf.R? 

R y X R p 

f-r 

»>o 
( - 0 ^ ) X ( - 0 ^ ) 

^.Rf x <j>.Rx 
>0 

which commutes because addition in R^0 is defined pointwise. 

Scalars: Homogeneity for G means that 

Cr,,.c. xG' — G 

x II • II 

D 

Rf° X Rf R >o 

commutes. Again, we apply d>" and augment. We must show that the following 

diagram commutes: 
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CXj.c. X <f>"Cy,i.c. • ^"Cy./.c. X <f>*G «- (j)"G 
\ 

n-w 

cj>*Rf 

R$° x Ri 

The top square is (j)' of the square for G, so commutes. The bottom square 

is similar to SQ2 above. That is , to show that it commutes, "detranspose" and 

use the fact that multiplication is pointwise. The left triangle is the product of 

two triangles. The second factor commutes by definition of || • ||*. The first factor 

commutes, since 

>X,l.c. — <j>"CY, I.e. 

R.Y "—7 <^*Rp 

commutes because its transpose does. And so, we have shown that <f>* lifts to 

pseudo-normed C;.c.-modules: 

PNCLCMod(MEAS(X))< 
4>' 

-PNCLCMod(MEAS(Y)). 
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Remark: The foregoing discussion is interesting in that we have lifted <f>* without 

ever explicitly describing it (being the associated sheaf of a colimit, it is difficult 

to calculate except in certain special cases). The lifting uses functoriality, lexness, 

and adjointness. D 

Now, complete (as PNCLC-Modules) to get <f>#. But, we have: 

Proposit ion 3.5.12 Let G be normed with Cic.-homogeneity and suppose it is 

complete in this norm. Then G can be made into a normed C-module with C-

homogeneity and it is complete. In short, 

•>\.c. x G >G 

C x G >G 

Proof: f|- is free. For Jj. and a(y) E C, let an(y) —• a(y) with an locally constant. 

Put (a(y)) • g := lim (an(y)) • g. This limit exists since the sequence is Cauchy in 

G. I 

As we have already noted, completing a pseudo-norm yields a norm (this is 

precisely as in the classical sense). The completion is functorial (we have shown 

this for preHilbert spaces, but the same works here). It preserves products. A 

sequence in H x K, say, is just a pair of sequences, convergence and Cauchy is 

just convergence and Cauchy in each coordinate (here, the norm on H x K is 

the Euclidean norm, J||/»||2 + ||A-'||2). Indeed, all this works for preHilbert spaces 

(satisfying the parallelogram law is just equational). And so, we have a functor: 

Hilb(MflAS(A))< U'llU MEAS(Y)). 

More precisely, d>* may be defined as the triple composite: 
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H(X) 
<t># 

H(Y) 

P(X) • ^ P(Y) 

with "H" for Hilbert and "P" for preHilbert. In this event, pseudo-functoriality 

follows from the pasting together: 

H(X) —4-— H(Y) • ^ H(Z) 

u 

P(X) 
f 

P(Y) r P(Z) 

W = {MY 
Indeed, the top equality (between #'s) follows from the bottom equality and 

uc= 1. Furthermore, 1* = 1 and so, we have a pseudo-functorial substitution: 

MORop- >BooleanGrTopos. 

Let (X,A,p) >(Y,B,v) be a disintegration and H E Hilb(MflAS(A:)). 

Put ( / e H)(B) = {s E H(<j>-l(B)) | / \\s\\2(x)dpy(x) < oo a.a. y for any 
J<t> «/̂ -,(!/) 

choice of | |s| |}. We have already described the nature of this choice above. Let 

us expand on those remarks. For A E A, the norm is a map H(A) >R-°(A). 

For s G H(A), \\s\\ is an equivalence class in R-°(A). The definition requires 
/ ||s||2(.r)(i/t!/(.T) < oo for any choice of representative (also denoted by ||s||). 

J<t>~l{y) 

Since we will study / ||s||2(.T)d/ty(.T) as a function of y, a useful result is: 
JA~llu) 
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Proposition 3.5.13 If fi(x) ~A' h(x) then 

I ,, fl{*W»(*)~Y I w f2(X)dpy(x). 
J<t>-*(y) >/</>-1(y) 

Proof: Let fs(x) = min{/i(x),/2(x)} so that /3(a:) < fi(x) is a measurable 

function and / 3 ~A' / I -

L L „ J3(x)dpy(x)du(y) = I f3(x)dp(x) = fi(x)dp(x) 
JY J<p~l(y) J\ J\ 

= L L ,, Ji(x)dlly(x)dHy) so / / (/i - f3)(x)dpy(x)dv(y) = 0. Since 
JY J^iy) J\ J<t>-l(y) 

(fi — fs)(x) >®, (fi — f3)(x)chly(x) = 0 for almost all y so that 

I fi(x)duJx) ~v / f3[x)dpu(x). In a similar manner, we have 

/ , Mx)dpy(x) ~y / /3(i)rf/itf(a?). • 
•/^~1(y) J<t>~Hy) 

As a consequence of this proposition, we may replace "for any choice" in the 

definition by "for some choice." If the integral is finite almost everywhere for some 

choice, then it is finite almost everywhere for any choice. Another property that 

we will find useful is: 
y® 

Proposition 3.5.14 Given s E ( H)(B), there is a choice of \\s\\ such that 

j \\s\\2(x)dpy(x) is finite for all jy G fl. 

Proof: Let s E (I H)(B) and let ||s|| be some choice of the norm for which the 

integral is finite almost everywhere. Let G C V be the measurable set where the 

integral is finite. Define ||5||'(a;) = X0-i(G)||s||(x). Then / ||s||' (x)dpy(x) < oo 
•" /> _ 1 ( t / ) 

for all y and ||s||' ~A' ||s|| since <j> E MOR. I 

y® 
Proposition 3.5.15 ( / //)( — ) is a sheaf. 

J<t> ><t> 

Proof: H(<f>~^(—)) is a sheaf (it is, in fact, (<j>.H)(—)) and the finiteness condition 

is on the points y, independent of covers. So, if each Si satisfies the condition, the 

unique extension s, will as well. I 



143 

y® 

We next look at the algebraic properties of / . [0], —, and + are as in 

H((f>-X(B)) (note: because || • ||,i is a norm, we have ||s + s'||2(x) < 22(||s||2(x) + 

||s'||2(x)) as in the ordinary sense (see [B&N])). 

For scalar multiplication, suppose 8 E C(fl). We can compose with <j> to get 

8 o (f> E C(<j>~l(B)). For sE(f H)(B), define 8 • s = (8 o <f>) ^.i(B) 5. Now, 
I \\(8o<j>). s\\2dpy(x) = / \\8 o <j>(x)\\2\\s\\\x)dpy(x) = 

ll/%)l|2 / ||̂ ||2(.T)rfA«y(̂ ) < °°- Furthermore, if 8 ~y 8', then 8 0 <j> ~ x 8' 0 <f> 

because p{x \ 8 o <j>(x) ± 8' o ^(x)} = p(4>~l{v I /?(j/) 7̂  P'(y)}) = 0, since 

^ G MOR. 

We may put a norm on ( / fl)(fl) by \\s\\2
2(y) = [ / ||s||2(x)d/tj,(x)]. As 

usual, [—] denotes equivalence class (in this case, in Mble(fl ,R-0)/ ~ ) . This is 

indeed a norm. For example, suppose / ||s||2(x)<//i!/(x) = 0. Then 
/0 - 1 (y ) 

/ ||s||2(x)<//t(x) = / / ||5||2(.r)(//ty(x)^(j/) = 0 which implies s = 0. 
./A* JY J<i>~1{y) 

Completeness of this norm seems to be difficult in general (all of the exam­

ples below, however, are complete). Indeed, finding a subsequence such that 
00 

Yl Ikn+i — sn||2(j/) < 00 for almost all y, a step crucial to theorem 3.5.2, is not 
n=l 

y® 

easy. We avoid the issue as to whether / is complete for general <f> by defin-

ing new I = c(old I ) . This is good, since we have all the machinery for the 
J <p J <p 

completion (for example, functoriality). 

Example 1: Identity: In this case, ( / H)(A) = {s E H(A) \ f \\s\\2(t)dtx(t) 

< 00 for any choice of ||s||} = H(A); the finiteness condition says ||s||2(x) < 00 

which is always true (norms are real-valued not extended-real-valued). • 

Example 2: Terminal Object: Let (f> be the unique disintegration, 

(A, A,p)-^(l, 2, counting). Then ( / * H)(B) = {s E H(\-\B)) \ 

I \\s\\2dp(x) < oo a.a. x for any choice of ||s||}. If fl = {*}, this is the ordinary 
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direct integral as described above. D 

Example 3: Finite Sets: If X = (1,2,counting), MEAS(n) = Sh(2n) ~ Set". 

Here, L(n) = 2U and 2n is equipped with the "topology of unions," a set is covered 

by a family if the union of the family equals the set. In this case, every set is 

covered by the collection of its points. 

An H E m\b(MEAS(n)) corresponds to ( f l„ / / 2 , . . . ,//„) G HUb(5el"). 

Such is H(A) — Y[ H(i). In particular, C(A) = JJ C and the norm is 

H(A) — R(A),,€(l),-6.4 — (\\hi\\)ieA-

Now, suppose, 77 >m is a disintegration (as we noted in chapter 1, such is 

just a function from n to m). ( / H)(B) = H(<f>-\B)) = J ] H(i). Opera-

tions are coordinatewise and the norm is the Euclidean norm: 

II H(i) — R, (A,-) —• I £ ||/t,||2. Q 

Now, suppose we have H—^H' in CBHUb( A/flAS(Ar)). For a G ( / H)(B), 

/ ||Ts||2(x)d/jB(x) <b2 ||.s||2(x)d/jj,(x) < oo for almost all y. And so, we 
j ^ - i ( s ) •A/>-1(y) 

have a functor: 

I® 
CBHi\b( ME AS (X)) >CBHilb(MflA5(V), 

for each <j>. 

Example 1 above shows that / = 1 . Let (A, A, p) *(Y, B, v) >(Z,C, P) 

be two disintegrations and let (%j)^,0z) denotes their composition. For 

H E Hi!b(A/flAS(A)), ( / H)(C) = {s E / / ( f V-,(G)) I / h\\2(x) 
Jllirj) J<j,-l4i-l(z) 

y® r© 
dOz(x) < oo a.a. z for any choice of ||s||} and ( / / H)(C) = 

Jib J(f> 

{tE(T H)(^-\C)) | / \\t\\2(y)dvz(y) < oo a.a. z for any choice of ||/.||) 

{t E H(<t>-\-\C)) | / \\t\\2(x)dpy(x) < oo a.a. y and 
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/ / \\m2(x)dpy(x)di/z(y) < oo a.a. z for any choice of ||fj|}. Note that the 

two choices are "absorbed" into one choice. We claim that these two sets are equal. 

Certainly, we have D since, as we noted for composition, / / = / . For C, 

thee is a choice of ||s|| to make / ||s||2(a;)c?^2(x) < oo for all z. Thus, 

/ / \\s\\2(x)dpy(x)dt/z(y) < oo for all z which implies the inside integral 

is finite for a.a. y. We have already noted that if the integral is finite for some 
/•© , 

choice, then it is finite for any choice. And so, / is also pseudo-functorial. 



Chapter 4 

Hilbert Families 

4.1 Introduction 

A fundamental fact in the indexing of sets by sets is the equivalence of categories: 

Set// —>Set / 

for / G Set. This is the genesis of the indexing idea. Immediately, one may 

construct a utile and rich theory of indexing by the objects of a topos, which is to 

be thought of, in this context, as a generalized set theory, since E/7 makes sense 

for a topos E and an object / (and is, in fact, a topos). Looking at Hilbert spaces 

in the special topos MEAS(X), exhibited one way of attacking the problem at 

hand. This was the approach of the previous chapter. 

On a much more basic level, however, is the notion that /-family of sets is 

equivalent to a function into I. In this chapter, we explore a similar idea appro­

priately translated into our measure theoretic context as our third approach to 

the problem of understanding indexing by measure spaces We simply take as a 

basic notion of "family," a measure space over X (etymology: we use / G Set and 

146 
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X E Meas. whatever the latter may be). More accurately, we will use the power 

of the built-in indexing in disintegrations as our measure spaces over X. 

It is disintegrations that we consider as "fibrations." In this chapter, the basic 

premise is that an object of Disint/A^ (some examples of which are given in sec­

tion 1.5.6) represents the notion of A-family. An important aspect of any theory 

of indexing must be the notion of substitution. In sections 4.2-4.4, we describe 

substitution and its adjoint, composition. 

Finally, we note that it is operator theory that we hope to study. To that end, 

we describe "Hilbert families" in section 4.5. Using the substitution machinery 

developed earlier, we introduce and describe two new categories (of Hilbert families 

over A"). 

4.2 Substitution Along a MOR 

4.2.1 Definitions 

In this section, we explore substitution (the "pullback") of a disintegration along 

a MOR. Consider the diagram: 

(Z,C,p)—r—(Y,B,v) 

(g-rPx') (/.".) 

(A'M',/t ') — (X,A,p) 

with <j> E MOR. (f,vx) E Disint. We will slowly construct the elements of this 

diagram. 

Notation: Z :- ]T Y^x>), where Y^x>) := /-1(<^(x')). In general, Tk denotes the 
x'eX' 

fibre over k. A typical element of Z is (y, x'), where x' G A" and y E Y^x>). • 
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Z is the pullback of <f> and / in set. g and r are the projections: g(y,x') = 

x' and r(y,x') = y. Thus g~l(x') = Y^x.) x {x'} = J'̂ (r.) and, for A' G A', 

g~l(A') = V A'x<, where Kx> = I * x ' . For r~*(y), suppose y E Yx 

x'€A" [ 0, x'$A' 

(i.e. f(y) = x) then r_1(jy) = {j/} x <£_1(x). Furthermore, r~l(B) = {(y,x')|jy G 

fl and /(y) = 0(x')} = {(y,x')\y G fl and ry G Z"1 (#*'))} = {(v,x')\v € A n 

/ - H ^ ' ) ) } . Thus, (r-Mfl))*' = Bnf-\4,(x')). 

Let C be the cr-algebra generated by ^"'(A'), 7 ,-,(fl) for A' G A' and .fl G fl. 

Lemma 4.2.1 Every C EC is E Cx> :- E C n f ' ( i ' ) im'//i Cx> E #*(*')• 
x'e.v r'e.v 

Proof: As noted above, g_1(A') = E A'x< and Kx> is either Y^x') or 0 s o /Vi' € 
x'e.V 

B^r.) for all x'. r-'(B) = E (fl D / " ' M * ' ) ) and fl n / ' ' M * ' ) ) € #*(*<)• 
i '€A'' 

We next show that sets of the form of the statement form a cr-algebra: 0 = >] 0; 
x'ex' 

oo , oo 

z = E *V»; ( £ <?*<)c = E <£; U E ^ , = E U c*. This 
x'£X' x 'e.V x'€-\" i=lx'GA'' x'6.V'i=l 

completes the proof since C is generated by g~l(A'), r~x(B). I 

And so, we have Cx> = {CDg~1(x') | C G C} C B^x-) x {x'} for each x' G A". 

The other containment holds as well: 

Lemma 4.2.2 B^x>) x {x'} C Cx>. 

Proof: Let fl n f-'(<t>(x')) € fl*(V)- Then ( B n / " 1 W ( i ' ) ) ) x {x'} = r~ ' ( f l )n 

<T V ) G C r , I 

Define />( E C*') : = / , "*(*')(C»')V (h e ,e, we identify BC\ f~x(<t>(x')) x {x'} 
x'6-V " '* ' 

with fl n f~x((j>(x')) to take i^(x/) of it). 

Lemma 4.2.3 For C E C, x t-+ i^(r')(C'x') zs (measurable and) integrable (i.e. p 

"makes sense"). 
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Proof: We first show the statement holds in the case of a "measurable rectangle," 

C = g-\A') n r- ' ( f l) . V4(x>)((g~\A' n r-\B))x.) = uHxl)(B n /~ W ) ) • XA>. 

The second factor is integrable (since p'(A') < oo). The first factor is integrable 

since it is the composite of vx(B 0 / - 1 ( x ) ) and <j>(x'). 

Now, for C - Z, /^(x')(Zx') = v^^Y n / _ 1 (^ (x ' ) ) • x x ' is integrable. Any 

C C Z has Cx» C Zx> so ftf(X')(Cx/) < ^(x ')(^i ' ) for all x'. Thus, we need only 

show measurability. We do this in stages. 

Disjoint unions: Let C = (J C,. Then ^( r ' ) ( ( IJ )x,Ci) = ^( x ' ) ( ( J ^'*') 
«ew ieN ieN 

= E ^(x'jfCiv) is measurable, since it is a sum of measurable functions. 

Arbitrary (countable) unions: We can write such as a disjoint union and apply the 

above case. 

Finite intersections: Let C = Ci <~) C2. Then f0(x')(CX') = /^,(x')(Cix' fl C2 l ' ) = 

v+{x>)(C\x>) -f t/0(x')(C
,2r') — '/</>(x')(Cix' U C*^') is measurable. 

oo N 

Countable intersections: Let C = f] C, and consider CN = f] Ci. Then ^ ( ^ ( C * ' ) 
«=i 1=1 

= Jj^^(x')(CW)- B 

Lemma 4.2.4 p is a finite measure on C. 

Proof: Finiteness follows from lemma 4.2.3. p > 0, since the integral of a non-

negative function is nonnegative. p(%) = / i/^(x»)(0)c//t'(x') = 0. 

HUE c*) = KE U^'.) 
ieNx'eX' x'eA'igN 

= / v4>(x')( U Cx>i)dp'(x') 

= / E *,*(x»)(C*'0''/i'(ar')» since i/ (̂x») 
•/-v' i€/V 

= E /. "*(*') (Gr'.MV) by the MCT 

eN 

'"* is a measure 
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= E/>(<?.)• • 
ieN 

Notation: We will make use of two notations, (J and E> f°r coproducts in Set. 

We use E m a "categorical context" and [J in a "measure theoretical context." 

D 

Now, certainly, r and g are measurable by construction. Recall, g~l(x') = 

Yt(x') x {x1} and Cx> = fl^(x») x {x'}. Put px>(Cx>) := v^Ti)(Cx>) (again, identify 

B^x> x {x'} with fl^(x'). 

Lemma 4.2.5 (g,px>) is a disintegration. 

Proof: We have already shown above that px< is measurable and bounded (each 

CCZ). 

Axiom 2: p( E Cx>) = [ uHxl)(Cx.)dp'(x') = f px>(Cx,)dp'(x'). I 
x'gA'' Jx' JX' 

And so, we have proved: 

Theorem 4.2.1 Given f E Disint and <j> E MOR then 

(Z,C, p) (9'Px' >(A', A', p') E Disint. I 

Remark: Z resembles the pullback. It is not universal, however. • 

4.2.2 Examples 

Example 1: Product: 

(Z,C,p) —L-*(Y, B,u) 

(g,px>) Pi-.") 

( A " , y l V ) - _ ( l , J , t ) 
!v , 
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Here, of course, (1,X, t) is "the" one point measure space. In this case, 

z = E Y* = E Y = Y x X'- Also> 9~X(A') = E Kx> = E Y - Y x A\ 
x'eX' x'eA" x'€A" x'6>i' 

r -^f l ) = {(y,x')|j/ G BDly-^lxix'))} S fl x A", and C S fl x .A'. 

Let C G fl x .4', then by Tonelli's theorem, Cx< = C fl {(y.Ols/ G K, * = x'} G fl 

and / (t/(Cx, )<//*'(*') = (" x p)(C). 

Note that p( E Cx') = / v<x,(x')(Cx-)dp'(x') = u(Cx>)dp'(x'). For example, 
x'e.v ^A'' A ' 

there are two ways of viewing Z: as g'^(X') or as /""'(V). Now, 

P(g-\X')) = / v , i W > ( A ' * W ( * ' ) = /Y , *( W ( * ' ) = i/(K) • p'(X') 

= („ x p')(Z) and p(r~\Y)) = ^^^(Ynly'^Mx'^dp^x') 

= j v(Y)dp'x') = (vx p')(Z). D 

Example 2: Terminal object: 

(ZAP) 

(g,px-) 

(1,1,0 

(i,0 

(X',A',p')-^(1,1,1) 
•X' 

Here, r =\z, g~\A') = E A'x' = E 1 - ^ N o t i c e t h a t Z = E 1 = A" so 
x'eA' x'e.4' x'eX' 

that C =* A' and, furthermore, p( E 1) = / i(Ax')d//(x') = / i(l)dp'(x') 
x'eA> Jx' JA' 

= t(l) • p'(A') = p'(A') and so p = /t'. In this example, Cx> = {0, {x'}} and px> = 

the counting measure. Thus, (g,px>) is the identity (up to isomorphism). • 

Example 3: Identity disintegration: 
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(Z,C,p)-±-~(X,A,p) 

(y,Px>) (i,/<*) 

( A ' , A ' , / t ' ) ^ - ( A , A , / t ) 

Here, Ax = {0, {x}} and px is the counting measure. Z = E ^H*') 
r'e.v 

= E <t>(x') - E 1 - X' and 9~\A') - E <KX>) - A'- We see that C - A>-
Also* r~\B) = X(y,x')\y G ^ 0 1 " ' ^ ) } = {(l',*')lw € fl fl *(*')}. Now, if 

tf(s') G fl then fl D 4>(x') = (>(x')} and if cj>(x') £ B then fl fl <f>(x') = 0 so 

r- J(f l ) S ^"Hfl). Furthermore, />(A') = />( E #* ' ) ) = / M*')(<K*')W{*') 
r'6.4' •/'1' 

= / Up'(x') = //A'. D 

Example 4: Identity MOR: 

f Z , C , / > ) — ^ ( r . B . j O 

(</,/>*') (/»"*) 

( A , A , / t ) - — ( X , A , / * ) 

In this case, Z=*£YX = Y, g~l(A) = E A * = E ** = / ~ ' M ) , and 

r-J(fl) = {(y,*)bJ e fln/'Hi^))} = {5'̂ )|y e flrVv)} <= fl. Thus, c = fl. 
/»(#) = ? ( E B*) = / ^(Bx)dp(x) = / vx(Bnf-\x))dp(x) = i/(fl) since 

(/, ^x) is a disintegration. D 

Example 5: Intersection: Let Ao and Ai be two measurable subsets of (X,A,p). 
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(Z,C,p)-^-~(AQ,A0,po) 

(g-.Px1) (io, Pox) 

(AuAupi)-r^(X,A,p) 
' i 

Now, Z = E A)u(x) = E hH*) ~ A i n 4>, ^ ( A f l Aa) = E «o1(«) 
xe/ii x6̂ 4i xeyin^i 

S A n A,, and r - ^ A H A o ) = {(?/, x)\y E (A fl A0) D iol(ii(x))} * A D A0. Thus, 

C = ^U,n>io ( s ome "rectangles" will be (A fl Ax) fl (A fl A0) = A fl (Ai fl Ao)). 

We have p(A C\ Ax) = pi(A (~\ At) = p(A fl AO and p(A fl A0) = /t0(A fl A0) = 

/t(AflAo). D 

so we 

4.2.3 r is MOR 

In this section, we will show that r G MOR. Let fl G fl have v(B) = 0. We wish 

to show that p(r~1(B)) = 0. 

Recall, p(r- ,(fl))= / / ^ ( f l fl / " ^ W O O = / > ( « K * W ( A 

where *B(a:) = t/x(fl D /_1(x)). Now, 0 = v(B) = / i/r(fl fl /_1(x))(//i(x), 
*/A 

need only show the following: 

Proposition 4.2.1 If X' •A—^-+R> 0, with <f> E MOR. then 

j t(x)dp(x) = 0 implies I (t o <f>)(x')dp'(x') = 0. 
*/A J A 

Proof: As usual, we proceed in steps: 

1 <f>(x')EA 
> = < 

1 x'E^-^A) 

0 x$<j>-x(A) 
Case * = X4, P(A) = 0: <(^(a:')) = 

' 0 <f>(x')<£A 

I t^[x'))dp.'(x') _. / Idp'(x') ~ p($~xA) = 0 (this last equality since <f> E 
J X' J(j>~x(A) 

MOR). 
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Case t = axA> + &A% with A, fl A2 = 0: / t(<j>(x'))dp'(x') = / adp'(x') 
JX' J<i>~x(A\) 

+ / bdp'(x') = 0 + 0 = 0. 

Case t is a nonnegative measurable function: Let sn | t be a sequence of 

simple functions increasing to t. Then / t<f>(x') = / lim.?,,(/> = lim / sn(f> = limO 

= 0. • 

4.2.4 Functoriality 

Notation: We write <£*(/) for (g,px>). • 

In this section, we shall show that ( —)* is a pseudo-functor; it preserves identity 

and composition up to isomorphism. 

We have already shown that 1* = 1 in example 4 above. Now, consider the 

diagram: 

(W,£,V) 

(V,fl,«0 

(/,"«) 

(A"", A", /t") -j (A", A', ;i') - ^ (X, A, p) 

Lemma 4.2.6 g~x(*l>(x")) = Y^(x») 

Proof: g-\4>(x")) = E A'*' = E >«*') = W ' ) - • 
x'€A" x'e{^(x")} 
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In the above diagram, T = E ^ ( x " » = E ^""'(VK3-'"))- And s o ' by t n e 

x"€A'" x"€A" 
lemma, T = E YHM*")) = E ^W(x")- On the other hand, 

x"eY" x'eA'' 
W = E ^.y-iy')- Thus, VK = T" as sets (which, of course, makes sense, since in 

x"eA'" 
Set these are just pullbacks and pullbacks compose by the pullback lemma). 

We will have use of the explicit form of the isomorphism a and its inverse 6: 

W = {(y,x")\Hix") = f(y)}, T = {(z,x"M(x") = x' = g(y,x')} 

= {((?/,x'),x")|./>(x") = x' and ${x') = f(y)}, so define W-^T as (y,x") *-* 

(y,^(x"),x") and T-^W as (j/,x',x") •-• (ty,x"). 

We have ab(y,x',x") = a(y,x") = (?y,V>(x"),x") = (j/,x', x"), since this is in T 

(i.e. for (//, x', x") G T, we must have ip(x") = x') and ia(i', x") = b(y, rl'(x"), x") = 

(y,x"). VVe must show that a is a measurable equivalence (recall from section 1.3 

this means a and a~l = b are measurable and a is measure preserving). We will 

require the following equalities (which we shall prove by chasing elements, even 

though some are consequences of "pullback-ness"): 

Lemm"' - •. ' (a) ha = k, (b) rsa = n, and (c) gs = iph. 

Proof: a) ha(y,x") = %,»/ ' (x") ,x") = x" = k(y.x"). 

b) rsa(y,x") = rs(yMx"),x") = r(y,u!,(x")) = y = u(y,x"). 

c) gs(y, x', x") = g(y, x') = x' and il>h(y, x', x") = ip{x") = x'. • 

a 

Lemma 4.2.8 (W,£) *(T,V) is measurable. 

Proof: Let D EV. We will check cases. 

Case D = lrl(A"): a^h'^A") = k~l(A") E E. 

Case D = s~xC: This breaks down into subcases: 

subcase C = r~x(B): a-ls~lr-l{B) = u~l(B) E S. 

subcase C = g-x(A')\ a^s^g'^A') = a"1/*" V - 1 M ' ) = J f e - ^ " 1 ^ ' ) - N o w > 

4>-\A') E A" so k-^'-^A") E £ as required. 
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subcase C - g~l(A') fl r~x(B): a~x(g-x(A') fl r~x(B)) 

= a-1g-1(A')C)a-1r-l(B)E£. 

subcase C = [j g'^A',) fl r'l(B,): a - ' j ^ t f j ) = \Ja~ls-1 E £. 
ieN 

subcase C = f] C„ C, E Tla: a - V ^ f ) ) = f j a " 1 ^ 1 G £. 

CaseD = /i-HA'Ofls-^C): © T ^ M " ^ - 1 ^ ) ) = a~x h~x (A")f\a~x s~x (C) G 5. 

Case D = (J h~x(A") fl s^fC): a " 1 ^ ) = (Ja" 1 G £. 

Casefl>= f| A , A € ^ : a_ 1(f |) = f > _ 1 e £• • 

Lemma 4.2.9 a is direct measurable (i.e. b is mea*uiable). 

Proof: We wish to show b~x(E) E V, Vfl G £• Again, there are cases to check. 

We prove only the two "basic" cases. 

Case E = k~x(A"): b-xk~x(A") = b~x a~x h~x (A") = h~l(A") G V. 

Case E = u~x(B): b-xu~x(B) = b^a^s^r-^B) = s~xr-x(B) E V. I 

The next thing we must prove is that a and b preserve the measures 7/ and 8, 

respectively. 

Lemma 4.2.10 n(a~x(D)) = 8(D), Vfl G V and 8(h~x(E)) = y(E), for each 

EE£. 

Proof: By the remarks on measuie equivalences in chapter 1, it is enough to show 

only one. We will prove the (easier) one, that for b. 

Case E = k~x(A"): n(k~x(A")) - j Pw(*")(YM(x")) • XA"dp" a n d 

«/A 

8(b-xk~x(A")) = 8(b-xa-xlrx(A")) = 8(h-x(A")) = IjUA^iZiix"))) • XA»dp" 
J A 

= / p<t>^(x")(Y<t,^(xii)) • x.V'dp" = n(k~x(A")) (the second last by lemma 4.2.G). 
•/ A 

Case E = u~x(B): i /fiT1^)) = J PH.(x»)(B fl f-x(^(x")))dp" and 

6(b-xu-x(B)) = 6(b-xa-xs-xr-x(B)) = S(s-xr~l{B)) 

= / pHx-')(r-\B)r\g-\^(x")))dp". Now.r-'(fl) = {(y,x')\y E Bf\f-X(4>(x'))} 
J A 

t 

j 

V 
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and <r'(V>(*")) = {(»,*')!*' = Hx") and y E Y^} = {(y,x')|x' = 0(x") and y E 

f-x(<t>(x'))). And so, r~x(B) H g-xW(x")) = {(j/,x')|x' = ^(x"), y E flfl 

/-«(#(*"))}• Thus, / ^ ( r - ^ f l j n j r ^ O O ) ) = /^<x-)(fl n r W ( * ' ' ) ) ) 
as required. 

Case fl = ib-^A") fl u-'(fl): / /(^ '(A") fl ti_1(B)) 

= Jr>Pu(x")(Bfl f~x(H(x"))) • XA»dp" and 

6(&(jr'(A") n ir](fl))) = 6(b-xk-x(A") n r ^ - ^ f l ) ) 

= 6(h-l(A") fl .-^•-•(fl)) = / ^(3.»,(r-l(fl) nflf-1^^"))) • rf 
•̂  A 

= /A.„ /***(x»)(^ n f~H<t>Hx"))) • XA-dp". 

Case fl = |J A'-'A;'!! tt-'fl,: »/(J = ET/ a n d ^ U = 6U6 _ 1 = E**_1-
i€/V 

Arbitrary (countable) union and the complement can be written as a disjoint union. 

I 

Thus, we have proved the following: 

Theorem 4.2.2 ( )* is a pseudo functor MOR •Cat with object function 

X h+ Disint/A. I 

Moreover, for a fixed <j>;. X' —> X, <j>* is a functor Disint/A —• Disint/A' 

with 

(}"',fl>') {k,U'y) .(Y,B,u) (Z',C',p') {nhP'x) • (Z,C,p) 

(/', K t>x) 

(A',.4,/0 

( / l ^ x 0 \ /(g,px>) 

(X\A',p') 

Where Z = {(y,x')\f(y) = <j>(x')}, Z' = {(„',x')\f'(y') = <f>(x')} and m(y',x') = 

(% ' ) ,< ) so m~x(y,x') = k~x(y) x {x'}. C[y<xt) := fl^ x {x'} and for C" = £ CyS 
3/'eK' 
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put //(!/I,j(C'flm x(y,x')) := v'y( E Cy<). It is a simple matter to check that 
y'e*-'(y) 

this makes <j>* into a functor. 

We denote the "indexed category" determined by the pseudo-functor above 

by D i s i n t (note: we actually have two indexed categories, Disint indexed by 

MOR and indexed by Disint; we will not have reason to (notationally) distinguish 

between the two at this point). 

4.3 Substitution Along a Disintegration 

4.3.1 A Characterization 

We glibly described g~x(A') fl r _ 1 ( f l ) , above, as a "measurable rectangle" in 

(Z,C,o). In this section, we will consider the case where (j> E Disint (the "pull-

back" of a disintegration along a disintegration). Our ultimate goal is to prove that 

r E Disint and a symmetry result: if <j> E Disint, we can form /*(<£) as well as 

(j>*(f); these are measurably equivalent. We begin by giving a characterization of 

p using measurable rectangles. More accurately, fibrewisc p looks like the product 

measure. Consider: 

(Z,C,P) (Y,B,u) 

(g,px') l/>0 

(X',A',p')-

(4>g,ox) 
MM 

7r-(X,A,p) 
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with (<f>, p'x) E Disint. Here, of course, 6X is the composition of p'x and px> with 

0X(C f)g~x(f>~x(x)) = / px>(C 0 g~x(x'))dp'x(x'). Before we give our new de-
y^-'(x) 

scription of p, we require a little "fibre-optics." As usual: 

Notation: Yx := f~x(x); X'x := <j>~x(x). D 

Lemma 4.3.1 . 

a) g~x<i>-x(x) = Yx x X'x 

b) g-
x(A') n r-l(fl) n YX x x'x = (fl n >;) x (A'n A;) 

c) g-l(A'n<f>-x(x)) = Yxx(A'nX'x) 

Proof: a) g-l^x(x) = {(y,x')\f(y) = <t>(x') and x' G f1^)} = f~Hx) * <f>~1(x)-

b) < r V ) nr-Ufl) n Yx x X'x = {(y,x')\x' E A', y E fl, f(y) = # r ' ) = x} = 

(flfiyx) x(A'flA;). 

c) g-x(A'ncf>-x(x)) = {G/,x')|/(j/) = «i(x'), x' G A ' f l ^ W } = >x x (A'n X'x). 

Of course, c) is a special case of b). I 

Proposition 4.3.1 For C G C, />(C) = / (vx x p'x)(C fl Kx x X'x)dp(x) = * 
*/A 

Proof: Since 0X is a disintegration, p(C) — / 0X(C D g~x<f>~x(x))dp(x) 

= [ f PAC fl 5-1(x'))t//4(x')<//t(x) = * We must show * = * . 
./A' J^ - 1(x) 

Case C = g~x(A'): px,(C fl < r V ) ) = '^(x')(>W))" X.4-- So 

* = / / , ^(x')(>0(x-)) • \' /i'<//ix(a--')d/ i(ar) 
7A' J<f>~'{x) 

= 11 t'x(Yx) • XA-dp'x(x')dp(x) 
JX J<t>~1(x) 

= I fxO'x) / , XA'dp'x(x')dp(x) 
JX J(j>~'(x) 

= J Vr(Yx)p'x(A' fl rl(x))dp{x) = 9 



On the other hand, 

* = [(vxXpx)(g-l(A')n(YxxX£))dp(x) 
J A 

= /vKx/t;)(yrx(A'nA;))(i/t(x) 

= f»r(Yx)-px(A'nxx)dp(x) 
•* A 

= JxVx(Yx)-px(AT\<f>-x(x))dp(x) 

= 9 as required. 

Case C = r~x(B): pAr~l(B) fl g~x(x')) = vHr>)(B f) f-x(<f>(x'))). 

* = / v / . ^(x')(Bnf-x(<i>(x')))dp'x(x')dp(x) 
J.\ J(ji~l(x) 

= LL llMBnrx(x))dp'x(x')dp(x) 
J A J<t>~'[x) 

= [»x(Bnf-x(x))f dp'x(x')dp(x) 

= I vx(Bnf-x(x)-p'x(r
l(x))dp(x) 

J A 

= l^x(Bnf-x(x)).p'x(X'x)dp(x) = 0 

On the other hand, 

* = [r(»xxpx)(r-x(B)n(YxxXx))dp(x) 
J A 

= Jx("x * lO((Yx D B) x X'x)dp(x) 

= [ „x(YxnB)-px(Xx)dp(x) 
•/A 

= f^(Bnf-x(x))-p'x(X'x)dp(x) 
•/A 

= 0 as required. 
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CaseC = g-x(A')f\r-x(B): pAg-x(A')nr-
x(B)ng-x(x')) = ^ ( f l f l / - 1 ^ ' ) ) ) -

XA>, SO 

* = / / V4,(x>)(Bnf-x(<t>(x')))-XA>dpx(x')dp(x) 
JX Jr(i-1(x) 

= I Vx(BC\f~x(x)) j XA'dp'x(x')dp(x) 
JX J<j>~l(x) 

= f vx(B fl fx(x)) •p'M' fl <j>-x(x))dp(x) = 9 9 
•/A 

On the other hand, 

* = / > , x p'x)(g-X(A') fl r~x(B) fl ( i ; x X'x))dp(x) 
•/A 

= / ("* x p'x)((B fl Vx) x (A' fl A;))d/t(x) 
•/A 

= jxvx(BC\Yx)-p'x(AT\Xx)dp(x) 

= I VX(B n rx(x)) • ^ fi r1(x))rfAt(x) 
J A 

= 9 9 as required. 

For disjoint unions of g~x(A') fl r_1(fl)'s use the fact that px< is a measure to get 

p({J) = E P anc* P u " t n e s u m o u t °f t n e t w o integrals in 4k using the monotone 
ieN ieN 

convergence theorem. Finally, apply the above case. For arbitrary (countable) 

unions, we have already noted that such can be written as a disjoint union. 

The rest of the proof is similar to lemma 4.2.3. For finite intersection, use 

p(Ci fl C2) = p(Ci) -f p(Ci) — p(Ci U C2) and linearity of the integral. For count-
00 N 

able intersections, use continuity of measures (/>((")) = lim /?((")); this requires 
1=1 i = i 

measure finiteness of p(Ci), which we have) and apply the monotone convergence 

theorem to pull limits out of the integrals. I 
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4.3.2 r is a Disintegration 

Next, we will show that r is a disintegration and 

(Z,C,P)^r^L(Y,B,„) 

(g,Px>) 

(X',A',p') 

(/,"*) U>,7x) 

MM 
7V*(X,A,p) 

(tor A ) 

commutes, Cy := {y} x A'j,y\ (see example 1 of section 1.5.5). We define py 

using p'fly) in analogy to px.. py(C fl r~x(y)) := p'J(y)(C fl <f>~x(f(y)) ( or bet­

ter: Py(g-x(A')nr-x(y)) := p'f{y)(A' fl fM/O/)) and ^ ( r - ' ( f l ) fl r">(tf)) := 

p'jiy\(<f>~X(f(y)) • A'B )• Again, that py is a bounded measurable function of y is ex­

actly the same as for px<. It remains to show Axiom 2: p(C) = / py(C C\r~x(y))dv(y). 

Lemma 4.3.2 / / p'J{y)(C fl </>-'( f(y))dvx(y)dp(x) 

= jYp's(y)(Cr\<j>-\f(y))du(y). 

Proof: see proposition 1.5.5. I 

Proposition 4.3.2 I py(Cf\r~x(y))du{y) = p(C) (axiom 2). 

Proof: see lemma 4.2.5 and lemma 4.3.2 . I 

4.3.3 Symmetry 

Consider the diagram: 



163 

(T,V,8) 

(p,8x,)\ (Z,C,p) {r,Py) • (Y,B,v) 

(g,Px>) ( / , "x ) 

(X',Af,p')-r—rr(X,A,p) 

where Z := f(f) and T := /* M)- That is, Z = E Y*(x>) = {(V, x')\f(y) = <t>(x')} 

and T = E */(„) = {(*',»)!*(*') = /(»)}• 
y€i' 

The map s (etymology: switch), defined as -s(x',/y) := (y,x'), is a measure 

equivalence for it is a measurable isomorphism and, furthermore, by the charac­

terization above: 

p(C) = f:(ux x p'x)(C fl Yx x X'x)dp(x) VC G C 
JA 

and 

8(D) = I (p'x x vx)(D fl X'x x Yx)dp(x) Vfl G V. 
J A 

Thus, 8(s~x(C)) = p(C) and />(s(A)) = 8(D). D 

4.4 Composition 

4.4.1 Definitions 

U(X',A',p')-
(4>A) 

-+(X,A,p) E Disint. we have a composition functor 
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Disint/A •Disint/-V, given by 

(T,V,8) 

(h,Szr) 

(T,V,8) 

(X',A',p') ~ (X',A',p') 

(A,A,/t) 

OM,) 
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YI4, is not, in general, left adjoint to <f>*. <j>"Yi^ sends Y' —• A" in Disint/A' 

to Y' —> X'-^X to Z —• A'. Let <j> =! : A' —> 1 and V —> A' = X'-^X'. 

Then Z = X' x A": (example 1 of section 4.2.2). 

Remark: Since <j>* is the pullback in Mble, we have Yi<j, ^ <£* >n 

Mble/A Mble/ A" 

4.4.2 Composition and colimits 

Proposition 4.4.1 Y^^(initial) — initial 

Proof: The initial object of Disint/A' is (0, {0, }0)-

posing with (<j>,Ax,p'x), we have (0, {0},O) '• 

object of Disint/A'. I 

mcl=' %r 
>(X',A',p'). Corn-

(X,A,p) which is the initial 

Proposition 4.4.2 ^ preserves countable coproducts 

Proof: We will only prove that £^ preserves binary coproducts. The proof con­

sists mainly of fixing notation, after which, the calculations are straightforward. 
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Let (T,V,8) <MT,) >(X',A',p') and (5,C,7) ( ' ' ^ > >(X',A',p') be in Disint/A". 

The coproduct of S and T in Disint/A" is given by: 

(S + T,C + X>,7 + £) 

(a+fc,(-K+«)x<) 

(A"MV) 

(7 + *)(C IJ fl) := l(C) + 8(D). We define (g + h)(t, i) := < 

withS-fr:=S|J:r, C + I>:={C|JD|CGC, flGZ>}and 

5(0, *' = 1 

/t(0, ^ = 2 

making (g + /0_1(a'') = g~X(x')Uh~\x')- Finally, we note that (C + V)x. = Cx/ + 

Pxi and define (7 + 8)x> := 7X- + 8X>. 

Composing with (<fi, p'x), we have: 

(X,A,p) 

where QX(E fl (g~x<p-x(x)\jlrx<j>-x(x)) 

Jrb 
h + 8)AEr)(9-x(x')\Jh-x(x'))dpx(x'). 

0-'(x) 

On the other hand, composing first then forming the coproduct, we get 

(S,C,i) >(X,A,p) and (T,V,8) >(X, A,p) which gives: 

(S + TX + V^ + S) 

{<t>g+<j>h,-yx+Sx) 

(X,A,p) 

Certainly, <f>(g + h) = <f>g + </>/?. We must show the measures are the same. 
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Let E = S\jT E £x, then 0r(£nfo-V~1(*)Uft~V"1(3O) 

= L u ll + 6)AEn(g-x(x')\Jh-x(x')))dpx(x') 
J<p »(x) 

= / u h + 8)A(S[JT)n(g-x(x')\Jh-x(x'))dp'x(x') 

= I i 7x'(5fl5-1(x')H/t;(x')+/ 8ATnh-x(x'))dhx(x') 

= 7x(5nff-V-1(.r)) + M7 1 n/ rV- 1 ^) ) 

= (7 + 8)X(S\JTC) (<j>(g + h))~x(x)) as required. I 

As can be expected, J2<j> does not behave well with limits. For example, 

X^(terrciinal) ^ terminal (i.e. A" •A" is terminal in Disint/A' but 

X' >X' >X is not terminal in Disint/A unless <f> is the identity). 

4.4.3 Beck Condition 

In this section, we will prove the Beck condition for £ . Specifically, given a diagram 

of the form: 

h 

f 

> 

with <f> E MOR and / , h E Disint. we will show <j>'(Ef(h)) = Tr^(/)(r*(h)) where 

= is interpreted as measure equivalence. Let us clarify this statement by expanding 

and labeling the diagram: 
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(VAl) 

(gk,px>) 

(g, Px>) 

(T,V,8) 

(My) 

(Z,C,p)—r-(Y,B,v) (fh,Ox) 

(/, v*) 

(X',A',p')~(X,A,p) 

All squares are to be instances of (—)* and all long (down) arrows are compo­

sitions. That is, g = <j>*(f), k = r*(h), so gk = £^ ( / )(r*(/t)) and / = <f>*(Ef(h))-

We would like to show that p and q form a measurable isomorphism which respects 

Qx'i "rix1, 7x', and Ar' (which implies p and q respect 7 and n oince these are disin­

tegrations). By "respects," we mean, for each x' G A'', Bxi(q~x(G) fl k~xg~x(x')) = 

7x'((j fl / - 1 ( .T ' ) ) and the corresponding equality for p. 

We first note that p and q already respect (V, Q) and (W,£) (as before, enu­

merate cases). Explicitly, W = {(t,z)\h(t) = r(z)} = {(t,y,x')\h(t) = r(y,x') = 

V, <t>(x')=f(y)}, V = {(t,x')\<f>(x') = fh(t)}, p(t,x') = (t,h(t),x'),mdq(t,y,x') 

= (t,x'). Now, fix x'G A". 

Lemma 4.4.1 8x,(q-x(G) fl k-lg-x(x')) = lx.(G fl l~x(x')) 
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Proof: For brevity, we will only check the case when G is a "measurable rectangle," 

i.e. G = l~x(A') f) u~x(D). The other calculations are similar. 

3Aq-\rx(A')n u~x(D)) n / v - W ) ) 

= BAq-'l-^A') fl q-xu~x(D) fl k-xg-x(x')) 

= I nz(k-xg-x(A'),r\s-x(D)nk-xg-x(x'))dpA~) 

= / , *r<,)(0nA-V(-OK,-v')rfM~) 
Jg-'ix') 
Jg-Hx') 

4k 

7x.(r
1(A')nir1(fl)nr1(.r')) = ^ ( D n / r 1 / - 1 ^ ' ) ) ) - ^ 

= / 8y(Dr\h-x(y)du,tlUr)(,j).XA 
7/-i(0(x')) 

= * 

If we put a(y) := 8y(D fl /? *(</)), we see that * = / o(xj)du^T,)(y) • XA> 

and 4k = / a ( r (~)) • Xs-'U'W/'x't-)- As usual, we build up the proof by look-

ing at characteristic functions, simple functions, and increasing limits of simple 

functions. 

Case a(y) = XB, fl G fl: 4 = / XB^(x')(j/) • XA> 
Jf-1{<t>(->-')) 

= ^(x')(fl n f-x(<j>(x')) • XA' and a(r(z)) = A'r-i(fi) 

so * = J Xr-HB) • Xg-HA')dpA=) = Px>(9~\A') n ' - ' ( f l ) fl g~l (x1)) 

= v<Kx>)(Bnf-x(4>(x')))'XA> = * 

Case a(y) = simple function: this follows from the linearity of the integrals in 4k 

and 4k-

Case a(y) = limit of an increasing sequence of simple functions: Let tn(y) T a(y)-

We first recall some basic facts: 
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1. t(y) simple => t(r(z)) simple (proof: t(y) = E t o . => t(r(z)) = E6«'Xr-'(B.) 
i = l i = l 

)• 

2. <„(»/) T a(y) =̂  '»( r(2)) T a ( r ( 2 ) ) (proof: that the limit works is obvious; 

for increasing, suppose a(y) > tn(y) a.a. y, then a(r(z)) > tn(r(z)) a.a. z, since 

r G MOR). 

With these facts in mind and using the monotone convergence theorem, 

* = / ]-imtn(y)du^(xr)(y)-XA' 

= lim / tn(y)d^(x')(y) • XA> 
Jf-l(4>(x')) 

= l im/ t("(r(z)) • Xg-HA')dpx'(z) 
Jg'Hx') 

= j \\mt(n(r(z)) • xg-HA')dpA=) 
Jg-i(x') 

= I ,, , "(r(=))' \g-HA')dpx'(z) 

= 4k. I 

And so, we have proved the following: 

Theorem 4.4.1 £ satisfies the Beck condition. I 

4.4.4 Spans 

The preceding results provide an immediate application to bicategories. More 

accurately, we have two bicategories. Essentially, the Beck condition tells us that 

we can vertically paste squares: 
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and (pseudo) functoriality tells us that we can horizontally paste squares: 

o <> o 

(here• • denotes disintegration). More importantly, we have two bicat­

egories of spans: 

Span has as objects, measure spaces, and as 1—cells, spans: 

(all arrows point downward) with composition given by "pulling back": 

Pseudo functoriality and Beck (pasting in either direction) gives 

pseudo-associativity: 

where, as usual, = is interpreted as measure equivalence. 2—cells in Span are 
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disintegrations which make the small triangles commute: 

Span is the same as Span except that 1—cells have two disintegrations: 

Recall, from section 4.3, that "pulling back" a disintegration along a disinte­

gration makes both legs disintegrations. 

4.5 HF/X 

4.5.1 Preamble 

We have set up substitution machinery for Disint. It is time to apply this to 

operator theory. We now introduce a category HF/X of (measurable) Hilbert 

families over an X E Disint. In essence, we wish to interpret an MFHS(X) as 

the collection of "global sections" of a measurable Y *X. That is, each fibre Yx 

is to be a Hilbert space (we think of Yx as H(x)) and global sections are measurable 

But, we wish to be more "abstract" (avoiding reference to all the axioms for Q 

in (H(x),Q) at this point). Before we give the axioms for an HF/X, let us look 
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at the complex numbers. These will provide an important example. 

Let (A', A, p) E Disint be fixed. The category Mble/.Y has as objects 

(Y,B) 

I ' 
(X,A,p) 

and, as morphisms, measurable (Y, fl)— • (V, fl') which make the evident trian­

gle commute. 

A particular object of Mble/.Y is: 

C x X 

V2 

A 

and we have a measurable operation 

given by x i—> (0, x) and other operations (defined over A'): 

» [11 : A >C x X; x H—» (l,.x) 

• -f : (C x A) x.v (C x A) >C x A; ((c,x),(c',x) i—• (c + c',x) 

• • : (C x A) x.v (C x A) >C x A; ((c,x),(c',x)) H-+ (cc',x) 

• - : C x X >C x A; (c,x) i—> (~c,x) 

• (-) : C x X >C x X; (c,x) .—• (c,x). 
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With these operations, C x A' >X is a *-algebra (scalar multiplication is 

the same as multiplication). It is commutative and satisfies the axiom of non-

triviality. In fact, it is a geometric field (a statement which still makes sense in a 

"non-topos" like Mble/A). Here, U = C \ {0} x X *X and [01 = {0} x X 

and U + 0 = (C \ {0} x A) + ( { 0 } x A ' ) ~ C x X (over A") via ((c, or), 1) •—• (c, x) 

and ((0,x),2) i—• (0,x). Thus, C x X is a geometric field in Mble/A\ 

4.5.2 H F / X 

An object of HF/X is (Y, fl) *(X, A, p) E Mble/A" subject to three axioms. 

Axiom a) Yx = f~x(x) is a separable Hilbert space for each x G X. D 

Notation: x as a subscript will denote an entity of the xth fibre space, Yx. Ele­

ments of Y are y E Y. If it is necessary to emphasize that y is in a particular Yx, 

we will write yx E Yx or (y,x) E Y. 0 

Part of the data for axiom a) provides us with maps of algebra and topology like 

those for C x A\ In more precise terms, we have maps, defined over X: X—>Y, 

\0](x) = 0XE Yx; F^Ur, -(yx) = -xyx; Y xx Y-^Y, +(y,y',x) = y +x y'; 

(C x A) x.v Y—+Y, -((c,x),yx) = c-xyx; and Y x.v Y{±}c x X, (-\-)(y,y',x) 

= ((y\y')x,x). These make Y into a C x A'-vector space with an R-° x A"-valued 

norm satisfying the parallelogram law. 

Axiom b) These maps are all measurable. That is, (Y, fl) is a (C x A, Borel x .4)-

inner product space in Mble/A". • 

VVe have completeness in each of the fibres but will require some form of "global" 

completeness (in fact, we will require a stability condition as well). 

Definition 4.5.1 A sequence in Y is a measurable map over X, N x X >Y. 

D 
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s 

Now, N x A' >Y over A" is a(n ordinary) sequence of measurable maps, 

A' •!', over A", an e G R > 0 x X is a measurable X >R>0, and a natural 
N 

number is a measurable X >N. 

Definition 4.5.2 A sequence, sn, is said to converge if there is an s E Y (which 

means a measurable section s : X —• Y) such that Vt(:r) G R > 0 X A, 3N(x) E 

N x A such that Vn(x) > N(x), \\sn{r) - s\\(x) < e(x). U 

Remarks: 1. < and < are interpreted as being everywhere as opposed to almost 

everywhere. 

2. A Cauchy sequence is defined in a similar manner. Likewise, completeness of V' 

has an obvious definition. D 

Completeness of i* is not enough to make substitution work. We will need 

stability under pullbacks. 

Axiom c) Y is stably complete. D 

This means, for all 

(Y,B) 

f 

(X',A',p')^(X,A,p) 

and for all ^-sequences (i.e. measurable s's such that 

N x A" • Y 

P2 f 
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commutes) f Cauchy (i.e. Vc(x') G R>0 x A', 3N(x') E N x A" such that 

Vn(x'),m(x') > N(x'), ||-sn(x')--srn(x')||(0(x')) < c(x')) implies ^-convergent (which 

has a similar definition). Note: || • || is a measurable Y —• R x X, over A; for 

each section, A'—S~*Y, \\s\\ is a measurable function A' —• R. 

As we shall see below stable completeness implies that each "pullback," (Z,C) 

is complete. In particular, along <j> = 1, so (V',fl) is complete. 

A morphism of HF/X is 

measurable such that each Tx : Yx *YX is a bounded linear map. Since we will 

eventually want to construct the direct integral, we will require: 

Axiom: ||rx||yt is bounded over x G A'. D 

Remark: We actually have three categories: preHilb/X, Complete/X and 

HF/X = StablyComplete/X. D 

A result which we will find useful is: 

Lemma 4.5.1 Let II be a complete metric space with dense sequence {hi}. Then 

the cr-algebra of Borel sets is generated by the open balls of rational radius about 

thelu's. 

Proof: We must show that every open set is a countable union of such open balls. 

Let U be open and let AC be the collection of such open balls contained in U. This 

is a countable collection and we claim that U = (J{/v | K E /C}. 

Certainly, we have D since each K C U. For the other direction, suppose 

x G U. Since U is open, there is an open ball, 0, of radius c, about x entirely 
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contained in U. Let /t,0 be of distance less than - to x and r be a rational such 

c 2e 
that - < r < —. Then x G fl(/t,0,r) C 0 C fl as required. I 

a o 

Let us consider the special case HF/l first. Specifically, we will describe an 

adjunction 

SepHilb* HF/l. 

Define 1(H) = (H, Borel) >(1,2, counting). Axioms a and b arc satisfied 

(note: the relevant maps are all continuous so are all Borel measurable). VVe 

proceed to show axiom c holds. Let 

be a !-sequence (here, <f> is always !) and suppose that it is !-Cauchy. We claim 

that sn(x) is pointwise Cauchy for each x. Fix x0 and let e > 0 be given. Put 

e(x) = [el, then there is an N(x) such that Vn(x),m(77t) > /V(x), ||*„(x) —-»m(x)|| < 

e. Now, let N = N(x0) and p,q > N. If we set p(x) — max{\p\, N(x)} and 

q(x) = max{[gl, N(X)}, then p(x) and q(x) are measurable, p(x),q(x) > N(x), 

P(XQ) = p, and q[Xo) = q, so \\sp — sq\\ < e. And so, 5„(xo) is indeed Cauchy. 

Since H is (ordinary) complete, there is an s(x) such that sn(x) —> s(x) for 

each x. In addition, ||.s„(x)|| —> ||s(x)|| since, in particular, R is (ordinary) com­

plete and || • || is continuous. The pointwise limit (in R) of measurable functions 

yields a measurable function That is, ||-s(x)|| is measurable. But, as a consequence 

of lemma 4.5.1, s(x) is measurable as well (each s~l(B(0,r)) = s~x{h E H | 
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||/t|| < r ) = {x G A | ||s(x)|| < r) E A since ||s(x)|| is measurable; then use the 

measurable translation to get other open balls). 

To exhibit I-completeness of H —> 1, we need only show sn(x) —*p.w. s(x) => 

*n —*x s (the latter denotes convergence in the sense of this chapter). 

Let e(x) be given. Suppose, first, that it is constantly e. For each x, there 

is an N such that ||s„(x) - s(x)|| < e for all n > N. Put N(x) = min{A | 

||.s„(x) — s,„(x)|| < eV/t > N}. All we-need to show is that N(x) is measurable. 
oo 

But N~x(k) = Ak \ Ak-i where Ak = ( J{x | ||sn(x),,(x)|| < e} is measurable. 

A general e(x) can be approximated below by simple functions. We may apply 

the above case repeatedly to arrive at the inequality for a simple function and 

hence the inequality for a general e. And so, we have shown that axiom c holds. 

Remark: In essence, for 1(H) E HF/l, we have complete iff stably complete, 

(we actually have shown one direction for Cauchy and the other direction for 

convergence but the rest is similar). It is important to note that this does not 

generalize to HF/X, however. That is, fibrewise completeness ^> stable complete­

ness; neither direction holds (for FC to SC, we cannot assume 5 is measurable in 

general (lemma 4.5.1 is special); for SC to FC, we cannot take a sequence Cauchy 

in one, fixed fibre and produce a global Cauchy sequence since the fibres "are of 

s„(x0), x = XQ 
global measure zero", for example sn(x) — < is essentially the 

0 else 

0 function; of course, if xo is an atom, this works). For this reason, we impose 

both completeness conditions. Both together are strictly stronger than either one 

separately. D 

A morphism, / / >/\ G SepHilb, yields a morphism 
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(fl, Borel) T (A, Borel) 

(1,2, counting) 

(note: T is continuous so it is Borel measurable). Furthermore, a 

(H,B) (K,C) 

(1,2, counting) 

is, in particular, a bounded linear transformation (forget measurability) from // 

to K. Thus, the functor, / is full. 

Axiom b for (fl, fl) >(1,2, counting) says, in particular, ||-|| and translation 

are measurable with respect to fl. And so, as in the lemma, fl must contain the 

Borels. Thus, forgetting the measurable structure on (H,B) provides a left adjoint 

F to /, i.e. 

(H,8)- >( A, Borel) 

(fl, Borel) - •(A', Borel). 

Suppose we are given (X',A',p') >(A", A,/t) in MOR. we get: 

(ZA L ~(Y,B) 

f 

(X',A',p') j—(X,A,p) 
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with Zxr — g~x(x') — Y^(xi) a Hilbert space. The operations of arithmetic and the 
roi 

inner product are measurable when "pulled back" along <f>. For example, X' >Z 

is x' i—> 0X< = 0̂ ,(x») which is just the composition of Oy and <j>. For addition, the 

relevant picture is: 

ZxZ ~YxY 

Z = E Y<t>{x') a"d the measurable -fy yields a measurable +2 given by (y, x') + 
x'6-V 

(y',x') = (y+<Hx>)i/,x')-
g> 

We must show (Z,C) >(X'A',p') is ^-complete for all 4>: X" —> X'. Let 
r 

X" 

be a t/>-sequnce in Z. Compose with r to get 0^-sequnce in Y, tn = rsn. Let 

e(x") E R>QxX" be given. Then | | ^ n ( x » ) - r 5 m ( x » ) | | v ( ^^" ) ) < <x") iff | | s n ( x„,-

Sm{x»)\\z(4'(x")) < t(x") since Zx> = V x̂<) so, in particular, Z^r>,) = Y^x") and 

the two norms mean the same thing. Thus, sn is V'-Cauchy iff tn is (̂ 7/>-Cauchy 

and similarly for convergence. Since Y is ^'-complete for all 4', Z is ^-complete 

for all t/\ 
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Remark: It is this with which we rationalize the term stable completeness. It 

means "complete and complete stably under pullbacks." D 

Pulling back a Y^—*Y' E HF/X yields a Z-^Z' in HF/X'. Pseudo-

functorial substitution restricts to Hilbert families. 

Example: This discussion provides us with an important example. For each 

H E SepHilb, AI(H) = (H x A, Borel x A) >(A', A,/t) is an object of 

HF/X. These are to be thought of as the constant A-families. D 

4.5.3 Direct Integral and HF/X 

We next construct the direct integral: 

HF/X >Hilb. 

/

© /•© / 
Y = / (Y, fl) >(A, A,p) := {s : X —• Y | 5 measurable, 

fs = l x , and / ||s(x)||2d/t < oo}/ ~ , with s ~ s' iff /t{x | s(x) ^ s'(x)} = 0. 

Furthermore, define: [01 (x) = 0X, (—s)(x) = —T$(x), (s + s')(x) — s(x) + x s'(x), 

and (o • s)(x) = o -x s(x). With these definitions, / Y is a C-vector space. 

Remarks: 1 If a(x) E L°°(X,C), then modifying scalar multiplication to (a • 

s)(x) = a(x) -xs(x) makes / Y into an /,°°(A,C)-module. 

2. That s(x) + s'(x) is square integrable follows from the usual proof for \? (see, 

for example, [B&N]). D 

We define an inner product on / Y as (s\s') = / (s(x)\s'(x))xdp which gives a 

norm ||5| |2 = / | |s(x)|| rJ/t (note: since we have modded out by a.e. equality, || • ||2 

is indeed a norm). 

/•© 
Theorem 4.5.1 / Y is complete. 

Proof: see theorem 2.2.1. • 
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/•© 
Remark: We actually get an object of HF/l, (/ Y, Borel). D 

For 

in HF/X, define J® T : /® Y > /® Y"; s •—» Ts; Ts(x) = Txs(x). Now, 

T(s + s')(x) = Tx5(x) + x TV(x) = Ts(x) + Ts'(x) and T(as)(x) = Txa -x s(x) = 

a-xTxs(x) = a-T(s)(x). Since ||TX||X is bounded (across x), we have / ||T5(x)||xrf/t 

= J \\Txs(x)\\2
xdp < J \\Tx\\

2
x\\s(x)\\2

xdp < k J \\s(x)\\2
xdu < oo. And so, we have a 

functor: / : HF/X >Hilb. 

/

© /•© p 2 

AH = I H x X >X = {s : X —> H x X \ s measurable, 

P2S = 1, and / ||s(x)||2d/t < 00} = L2(X;H) (here we abuse notation and call 

A/ / = AIH). 

Let us expand on this remark. L2(X;H) is functorial in / / . Given a bounded 
L2(X;F) 

linear map F : H >//', we get a map, L2(X; H) >L (X; If), 

/ 1—> f{x) = Ff(x). Since F is continuous, Ff(x) is measurable and 

j\\Ff(x)\\2dp<J\\T\\2\\f(x)\\2dp<oc. 

We have a map H >L2(X; H) h 1—> \K\ (recall, p(X) < 00) which is 

linear and bounded ( \\Th\\ = (J \\hfdp)2 = \\h\\p(X)* so | |r | | = /i(A)*). Fur­

thermore, it is natural in H, for consider 

file:////hfdp)2
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H T" >L2(X,H) 

P(X,F) 

fl' 
TH> 

L2(X,H') 

The top-right composite is /* i—̂  \h] H-» F\h] and the left-bottom composite 

is h i-> F(h) *-> \F(h)] and these are equal. This natural transformation is, in 

general, not an isomorphism (unless X = 1). D 

We next look at the preservation properties of A and the relationship between 
/•© 

A and / . 

Proposition 4.5.1 A(fl 0 A') = A(fl x K) = A(H) x A(K). 

Proof: We must show 

H x K - HxKx X K x X 

is a product diagram. Consider 

H x X • HxKx X • K x X 

Let y E Y and set a(y) = (h,x), b(y) = (k,x) (same x). Put t(y) = (h,k,x). I 



183 

Proposit ion 4.5.2 A(l) = 1. 

Proof: A( l ) = 1 x A - ^ A ~ A—l—*X. 

In view of the fact that 0 = 1 in Hilb (both are the 1 point Hilbert space) and 

0 ^ 1 in HF/X (0 is 0 «-• X and 1 is A —> A) , we have: 

Corollary 1: A does not preserve 0. 1 

Corollary 2: A does not have a right adjoint. • 

Note that / is not left adjoint to A. The unit would be 

( / e A) x A 

/•© 
h E Hx gets sent to the function (in / H) that sends I H / I and everything else 

to 0. In the case A is a finite set with counting measure, everything works. But, if 

points have measure zero in A', then the function so described is the 0 map (after 

modding out by a.e. equality) and so there is no "injection." 

Also, the counit would be a map fl2(A'; H) >// and given an fl2-function, 

there seems to be no canonical way of getting an element of H (we would need 

some sort of "indefinite" integral h = I f(x)dp and a square integrable function 

is not necessarily integrable). 

Now, suppose (X',A',p') >(X, A,p) is a disintegration. For 

(T,V)—h-^(X',A',p'), put ( / (T,V))X := {s : <f>~x(x) —• T | s a measurable 

^-section, / \\s(x')\\2dp'x(x') < o o } / ~ where s ~ s' iff p'x{x' E <f>~x(x) \ s(x') ^ 

s'(x')} = 0. Equivalently, we could take global measurable sections, s : X —> T, 

with the same ~ . Next, take the coproduct to get E ( / ( ^^O)* = : Y yX 
x€X ^ 

with p the evident projection. 
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There is no obvious way to put a cr-algebra structure, B, on Y (exceptions: 

/ (T,T>) = (T,V) and / (T,V) = (i T, Borel)). Indeed, this is an interesting 

open problem. Let us briefly discuss this. 

One idea is to take simply the Borels in each fibre (note: each ( / (T,V))x 

is a Hilbert space). This would be the cr-algebra of the infinite coproduct (= 

disjoint union). The problem is that this provides no compatibility across the 

fibres. Consider the example suggested-by the picture: 

In each fibre space, we have a Borel set. However, these may "slide back and 

forth" in a random (non-measurable) way to produce a globally non-measurable set 

(in the constant family special case, HxX, this essentially means that a measurable 

set in the plane is not arrived at by arbitrarily gluing togetner slices; of course, the 

converse is problematic as well: slicing a Borel set does not necessarily produce a 

Borel set). 

These are, in some sense, function spaces (a special case is L2(X) which works 

(take the Borels) except for the caveat about slicing a Borel just mentioned). A 

related question (and another idea), then, is how to put a useful cr-algebra structure 

on a function space. Obvious things such as the "infinite product" structure or the 

"measurable-measurable" a-algebra (in analogy to the compact-open topology) do 

not seem to work. These lead to the problems of triviality alluded to in chapter 1 

(we need, for example, a more appropriate translation of "compact set"). 

"• *• -0^cliWt«?»3«n«*»V***»!**^»fW^^ 9>SW* [TSS,^\t»-4-'Sfi^*ff «f WO=»n»? "veftiqi X«A^tfsfc^tt^«=>.w>-fll*t*'rtpf 
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Our feeling is that disintegrations provide the answer. We need to make sense of 

"A = / Ayd^y),"" in the same sense as we have made sen?e of "/t = / pydv(xj),v 

in a way that does not conflict with square-integrability. We note that, given 

a measure, we may possibly disintegrate along slices. But, the converse, given 

slice spaces and gluing them together requires some sort of global compatibility 

conditions. It is possible that this is related to the unsolved "existence of (ordinary) 

disintegration" problem alluded to in chapter 1. 

Finally, we make an important observation. All this works in Set/X (substi­

tution, direct integral, pseudo-functoriality (provided we use the special disinte­

grations of chapter 2)). For this reason, we believe this is the "correct" notion 

of direct integral in the box 3 world. The difficult part is putting a measurable 

structure on. 



Chapter 5 

Conclusions 

5.1 Introduction 

In this chapter, we provide concluding remarks. The main purpose is to summa­

rize our approaches and to provide connections between them. This is done in 

sections 5.2 and 5.3 respectively. We also provide a brief discussion of the merits 

of each. It is too early in this research, however, to provide definitive claims as to 

which approach is better. This will await future work. This last point and a list 

of other future possible directions are given in the last section. 

5.2 Goals and Approaches 

Our aim is to study direct integral decompositions in the context of indexed cate­

gory theory.; more precisely, measure indexed category theor}'. This is, perhaps, a 

bit too ambitious a project for one paper. Fortunately, "direct integration," as a 

theory, is built up in stages. That is to say, the spectral theorem of von Neumann 

and the direct integral of von Neumann algebras, of operators, of representations, 

etc. presuppose the direct integral of Hilbert spaces (to decompose A C B(H), 
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one must first decompose fl). And so, in this paper, we study the latter as a 

measure-indexed notion. 

Recall, our task is to understand the picture: 

8 ^ 
— • — • ' » 

(Hilb)* ^ Hilb 

in analogy to ©/ H A/ in the case of /-indexed families of A;-vector spaces (/ a 

set). The main point, then, is to arrive at a good notion of A'-families of Hilbert 

spaces for X a measure space. We also need a good notion of substitution (along 

morphisms of a suitable base category). A is to be a special type of substitution 

and we would like to extend (interpret) / to an indexed functor. 

Thus, the first priority is to establish a good base category. Good, in the sense 

of Pare-Schumacher, means a category S with finite limits (more specially, in the 

Penon style, a topos). We have supplied a suitable category. It does not have 

products. This is an artifact of the fact that the operator theoretic and the sheaf 

theoretic world requires us to consider measure zero reflecting as important. In­

deed, in precisely that sense, no suitable category will be "good" in the sense of 

Pare-Schumacher (much less, in the sense of Penon; although it would be inter­

esting to explore the topos-like properties of the category Disint; this will await 

future work). The indexed category theory we develop here is more general. It 

represents a balance between the classical indexing which works well and a desire 

to understand the (very real) examples in operator theory. 

And so, with the feeling that we cannot "exactly" describe the diagram above 

(interpret the direct integral as an adjunction, that is, as an indexed limit or, 

simply as an entity with a tractable universal property), we must approximate the 
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situation as best possible. Hilb. of course, is the cp'/igory of Hilbert spaces and 

bounded linear maps. We have put forth three approximations for Hilb . Recall 

the diagram of the introduction. 

1. Mble fields 

4. 5. 

3. Hilb Families 

2. Hilb Sheaves 

Box 1: VVe begin by simply translating classical direct integral theory into categor­

ical (indeed, indexed categorical) language. This gives MFHS(X) whose objects 

are measurable fields of Hilbert spaces (subsets of the product of an AT-family of 

Hilbert spaces satisfying three axioms) and whose morphisms are norm essentially 

bounded (over the index x G A'). It is a good approach to presenting measur­

able indexing of Hilbert spaces. Substitution, along a MOR works well by simply 
<t> ' (T{x)) 

putting, for (Y,B,u) >(A, A,p), 4>'((H(x),g) >(H'(x),Q')) 
(T{<Hy))) 

— (H(<f>(y)),H) >(//'(ci(j/)),'^') where Ti is the inner product closure of the 

<7(c4(i/))'s for g E Q- Operator theory works as well, in this instance. As already 

noted, this is simply the classical material. 

Indexing the direct integral, however, does not work for merely <j> E MOR. 

We require that c6 be a disintegration to get a handle on the fibre spaces (dis­

integrations are very useful for this). We also need to make two assumptions: 

(T(x)) is norm bounded, instead of merely essentially bounded (we work with the 

category BMFHS(X)), and L2(Y) ~ / I2(Yx)dp(x). The former assumption 

represents a slight deviation from the classical theory but is contained in it in the 
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sense that bounded functions are amoung the essentially bounded functions. The 

second assumption is a structural (in this case, separability) requirement. This is 

necessary for axiom 3 of an MFHS (the "separability" condition) to be consistent 

with indexing of the direct integral. 

A'ld so, in the box 1 world, we propose Hilb* = BMFHS(X). Substitution 
( ) * 

may be interpreted as a pseudo-functor, MOR0'' >Cat. The direct integral 

may almost be interpreted as a pseudo-functor, Disint •Cat. The caveat 

is that the special disintegrations (that satisfy the second assumption above) must 

compose. 

Finally, we note that this is not an indexed adjunction. Indeed, the special 
/"© 

case of A and (ordinary) / is not an adjunction. It is possible that the (indexed) 

direct integral may have some utile universal property but such is not forthcoming; 

it is not easily discernible. D 

Box 2: Here, we consider Hilbert spaces in Sheaves. We decide that the appro­

priate sheaf category for measure indexing is MEAS(X). This may alternately be 

described as sheaves on the site A with covers countable families of subsets whose 

union almost cover or as sheaves on the locale A/N' where Af denotes the ideal of 

measure zero sets with cover = countable union. The locale is, in fact, a complete 

Boolean algebra. Moreover, we have the axiom of choice (which, of course, unplies 

Booleanness) in this topos so our logic is essentially classical. 

In the box 2 world, we, more or less, put Hilb = H\\b(M EAS(X)). We say 

"more or less" since some care must be taken as to what the appropriate morphisms 

are. As was noted in the box 1 world, boundedness, as opposed to essential bound­

edness, is appropriate. And so, we really put Hilb* = CBHilb(A/flA5'(A /)); 

"CB" means constantly bounded linear natural transformation. 

To desinbe Hilbert sheaves, we must first understand basic arithmetic. 

MEAS(X) has the usual objects of numbers. For example, Nx, Rx, and Cx, 
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at A G A are equivalence classes of measurable functions into, respectively, N , 

R, and C. Cx is a geometric field (and hence a field of quotients and a field 

of fractions since the topos is Boolean). We can talk of Cx-vector spaces. An 

inner product may be defined in an obvious manner (a natural transformation, 

11(A) x 11(A)-—>C(A), satisfying equations). An object of Hjlb(MflAS(A)) 

is to be, in particular, a C^'-inner product space (i.e. a preHilbert sheaf). We 

require, of course, H to be complete in.the language of MEAS(X). 

This classical logic allows us to construct a useful completion for preHilbert 

spaces. We use this to describe substitution and / . A <f> E MOR, induces a 

geometric morphism, <f>" H <f>. : MEAS(X) *MEAS(Y). <j>" lifts to pseudo-

norined C/.c-modules. Completing this produces a pseudo-functorial substitution, 

one for each <f>, Hilb(MEAS(X))^—Hi\h( ME AS (Y)). For (<f>^iy(x)) a disin-

tegration, put ( / / / ) ( - ) as the completion of {s E H(<j> (—)) | 
Jif> 

I ||.s||2(x)r///j,(x) < oo a.a. y for any choice of | | s | |} . Again, this is pseudo-
J<t>~l(y) 
functorial and, again, an obvious universal property for it is not discernible. • 

Box 3: This is the slice categorical world. If box 1 represents the mostly operator 

theory world and box 2 represents the mostly category theory one, box 3 represents 

the mostly indexed category theory approach. Here we put an A'-family of Hilbert 

spaces as a measurable Y over X subject to some axioms (paraphrased below). 

Mble/A" is not a topos but it is almost as good. Importantly, there is a useful, 

pseudo-functorial substitution (indeed, this is developed for Dis int /A in hopes of 

understanding more general direct integral constructions in the future) which, to­

gether with composition, satisfies the Beck condition (this works in Dis int /A even 

though substitution is not universal (we still get commutativity of a "canonical" 

map); in Mble/A". this is just pullback so works as in the usual topos world). 

In box 3, Hilb* is defined as HF/X (an object of HF/X is a Y —> X in 
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Mble/A"" such that the fibres are Hilbert spaces, the induced global operations of 

arithmetic and inner product are measurable, and Y is stably complete (it and all 

its pullbacks are complete in the "language" of Mble/A")). Fibrewise completeness 

and stable (global) completeness are not equivalent so we impose both conditions. 

We have noted that "local homeomorphism" ooes not translate (naively) into the 

Mble world. However, with this particular approach, we provide an account of 

how local homeomorphism-like indexing may be applied. In short, all is not lost. 

There is some useful information to be gained. 

This approximation is open-ended. That is to say, substitution restricts to 

Hilbert families. The direct integral, defined as the collection of square-intcgrable 

sections, works in Set/A". It works in Mble/A' for some important special exarn-

/

© f-S y© 

= / , the classical direct integral, and / = 1 ) . However, lifting all this 

to Mble/A' for a general <j> seems to be a difficult and interesting problem. It is 

perhaps related to the existence of disintegration of measures problem in (usual) 

disintegration theory. 

We have provided three approaches to understanding H|]bx from an indexed 
/ffi . 

categorical point of view. The philosophy is that / is "fixed", or better, "has a 
J(f) 

y© 
forced and obvious definition," in each world (indeed, the basic direct integral, / , 

is the same in each and is the usual one studied by operator algebraists). The point, 

then, is to describe a universal property for this fixed direct integral. Failing that, 

we could also describe a pseudo-functorial substitution which is almost as good. 

Fach approximation has its merits and drawbacks. Which of the three is most 

useful depends, perhaps, on the context of the applications. As we have noted, 

the three blend, to varying proportions, operator theory, categoiy theory, and 

indexed category theory. And, each of the three has elements of measure theory 

incorporated. In the next section, we provide a list of connections between the 
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approaches. 

It is, of course, highly possible, that there are other approaches combining these 

aspects more subtly. A true comparison will require much work. Furthermore, the 

interesting thing is to apply this material. We are attempting, after all, to set up 

a categorical framework to do direct integration. 

5.3 Connections 

5.3.1 MFHS and Sheaf 

In this section, we provide a list of some functors between the three worlds. We 

begin with MFHS and Sheaves. Recall, from section 3.5.3, we get an A-Hilbert 

sheaf from an MFHS(X) by 

G(A) = {gEQ\ g(x) = OVx £ A}/ ~ . 

This construction is functorial. Suppose we have, 

((H(x))x€X,Q) t-+((H'(x))xeX,g'), a morphism in MFHS(X). We define 
T ' 

G(A) >G'(A) by (rg)(x) = T(x)g(x). Now, rg E Q' (by definition of morphism 

in MFHS(X)) and since T(x) is linear, r(x)(0) = 0 so rg E G'(A). Also, since 

each T(x) is linear, r is linear (in the operations of G and G'). Finally, we suppose 

that A' C A and consider: 

G(A) TA 

Pi' 

G'(A) 

P'% 

G(A')—rjr-G'(A>) 
TA 
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The top-right composite is g *-* (x (-> T(x)g(x), x E A) H-» (X H-> T(x)g(x), x E 

A'). The left-bottom composite is jy i—• g\A, i-» (x •-» T(x)g(x), x E A') so these 

are equ?,l and r is natural. Thus, we have a functor 

MFHS(X)-
( ) 

>Hi\b( ME AS(X)). 

Remark: We do not require boundedness of ||T(x)||, over x E X, but this restricts 

to a functor BMFHS(X) —• CBUilbi M E AS (X)). U 

The diagram: 

BMFHS(X) () CBHilbfAJflA5(A)) 

BMFHS(Y) 
() 

CBHilbl ME AS(Y)) 

commutes. Suppose (H(x),Q) is an object of BMFHS(X). Before completion, 

the top-right composite at fl is {s E G((jTx(B)) \ I \\s\\2(x)dpy(x) < oo a.a. y 
J<t>~Hy) 

for any choice of ||s||} - {s E Q \ I ||5(x)||2c//tj,(x) < oo a.a. y and .s(x) = 0 for 
J<t>~l(y) 

all x £ <f>~x(B)}/ ~ . Likewise, '.he left-bottom composite at B is {d E V \ d(y) = 0 

for all y £ B} with / (H(x),Q) = (D(y),V) (notation as in chapter 2). 

Suppose s E TR. Then there is a choice of ||.s|| to make the integral finite 

for all y, in which case, [•s|̂ )-i(!/)] G D(y) for all y. Let y E Bc (we wish to show 

d(y) := [sU-Hy)] = 0), then <f>-\y) C <t>~x(B<) = (<f>~x(B)y. So, for all x G <f>~'(?/), 

s(x) = 0 which implies [•s^-i(y)] = 0. 

Conversely, suppose d E LB. 3y the "alternate description" of V, there 

is a g E Q such that [<y|0-i(y)] = d(y) for all y. Now, certainly g(x) satis-

! 
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fres the finiteness condition since [c/|̂ -!(j,)] = d(y) E D(y) (recall, if the in­

tegral is finite for some choice, then it is finite for any choice). In addition, 

p{x G 4~X(BC) I g(x) ± 0} = JBcpy{x E f\y) | g(x) ± o}du(y) = Jgeodu(y) = 0 

Thus, g(x) - 0 for almost all x E <p~x(B). Replaceg(x) by g'(x) = XG9(X) where G 

i& the set of x's for which g(x) ^ 0. Then g ~x </' and / ||c/(x)||2c//i!,fx) < oo 

a.a. if fsince / / = / = 0 =*• the inside integral is finite a.e.). The com-

posites are the same after completion (constant sequences are dense in Cauchy 

sequences). 

The other square, with <f>#, is probably difficult inasmuch as there is not yet 

a nice, explicit description of </># (in the general Grothendieck topos world, ci* is 

given as a double colimit or with one of the colimits the associated sheaf functor 

(as was our description in chapter 3); these are quite complicated). That is to 

say, one direction of commutativity is free (follows from the adjunction). Indeed, 

consider the diagr.t.a: 

MFHS(X) 

r 

MFHS(Y) 

( ) + 

PreHilbfA/flASm) 

(V 

<(>' 

PreHilb(AfflA5(ri) 

Let (G(y), Q) be an object of MFHS(Y). The left-top composite sends this to 

L with L(A) = {h EH\ h(x) = 0 for all x g A } / ~ with H the "inner product 

closure" of the g(<p(y)fs (again, notation as in chapter 2). 

On the other hand, (G(y),Q)+(B) = {g G Q \ g(y) = 0 for all y $ fl}/~. By 

the adjunction, 
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PK >L 

K »f>.L = L(cf>-x ((-))• 

There is an obvious map, K(B) —> L(<f>-X(B)). It is g(y) i—> g((f>(x)). This 

is precisely the map, a, of remark 1 of section 2.4.3. 

Of course, there is no functor in the other direction, from sheaves to fields. 

Such would require, in particular, the fibre spaces which could only be the stalks, 

Hx = colimie.4.fl(A), with G interpreted as a.e containment of {x}. If x is not an 

atom, then x is in any measure zero set, in particular 0, the initial object of A. 

Thus, the colimit is fl(0) = 1. 

This brings an observation to mind. We have noted many times that the three 

worlds blend, to varying proportions, the aspects expected in the construction of 

the indexed diiect integral. Theie is also a "fibre and global" mixture. That is to 

say, we have two other ingredients to vary, fibrewise structuie and global structure. 

MFHS's and HF's retain the fibrewise Hilbert space structure, HF's have more of 

a global structure (represented by what we call stable completeness), and Hilbert 

sheaves have an entirely global structure. 

5.3.2 Hilbert Family and Sheaf 

Let (Y, fl) >(A", A, /<) be an IIF/X. We wish to construct a sheaf. Put 

S(Y)(A) = {s : (A,-4|^i) —• (Y,B) | s measurable, fs — IUCIA}/~ where, as 

usual, s ~ s' iff p\A{x G A | s(x) ^ s'(x)} = 0. Equivalently, S(Y)(A) = 

{s : X —• Y | s measuiable, fs = l } / ~ . 

This is a subsheaf of Mble(~, V ) / ~ . Arithmetic operations are defined from 

those in Y —^ X. For example, + : S(Y)(A) x S(Y)(A) —» S(Y)(A), (s,s') —+ 

[x )-> s(x) +x s'(x)]. Scalar multiplication, by elements of C(A), is pointwise as 

well: a • s = [x i-+ a(x) -x s(x)} (that these are well-defined is the usual proof). 
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And so, S(Y)(-) E PreHilb(MflA5(A)). But, completeness is the same in 

both as well. That is, suppose sn is Cauchy in S(Y)(A) so that Vfc G )SX, 3 a 

cover, Ai, and N, such that Vn,m > A,-, ||sn — sm|| < 77-r on A,-. This implies 
fc(x) 

s„ is id-Cauchy in Y (for e(x), pick 77-r < e(x); the cover simply codifies the 
K(X) 

locally constant n(x), m(x), and N(x); that || • || < 77—r a.e. on A,-, and we require 
K[ X J 

"everywhere" for id- Cauchy is taken care of by ~; more precisely, for the x's 

for which ||sn(x) — sm(x)|| > 77—r, put sn(x) = sm(x) = 0 to arrive at a new, 
k(x) 

equivalent sequence which is icZ-Cauchy). In a similar way, tc/-convergent implies 

convergent in sheaves (here, c(x) — 77-r is a special case). Thus, 5(y)(—) G 

Hi\b(MEAS(X)). Now, given 

Y 

TA 
in HF/X, put S(Y)(A) >S(Y')(A), s y—* [x ^ Txs(x)}. It is straightforward 

to check that r is well defined, natural, linear, and bounded. For example, 

S(Y)(A) TA 

PA1 

S(Y')(A) 

Si. 

S(Y)(A') _ S(Y>)(A>) 
TA 

The top-right composite is 5 1—> [x H-> txs(x)] 1—> [x 1-̂  Txs(x);x E A']. The 

left-bottom composite is s 1—> s\A> 1—> [x i-> Txs\A<(x);x E A'] and these are the 

same. 
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And so, we have a functor: 

HF/X >mib(MEAS(X)). 

Whether this commutes with either substitution or direct integral will await fu­

ture work (we do not yet have explicit descriptions of substitution for Hi]b(MflAS(A")) 

nor A for HF/X). 

5.3.3 MFHS and Hilbert Family 

Let (V, fl) >(X,A,p) be a Hilbert family over A'. We wish to make the col­

lection of measurable sections into an MFHS structure on the (Yx)xeX. Since || • || 

is measurable, x t-> ||s(x)|| is measurable for any measurable section, s, of Y, so 

axiom 1 for an MFHS holds. However, axioms 2 and 3 do not hold in general. We 

must restrict our Hilbert families: 

Definition 5.3.1 The full subcategory, SIIF/X (etymology: "S'' for "separable"), 

of HF/X has as objects, Hilbert families, Y >X, with the additional axioms: 

Axiom d: If, for the section 

Y 

/ f 

x . . A, 

x i-» (t(x)\s(x)) is measurable for all measurable sections, s, then t is a measurable 

section. D 

Axiom e: There is a sequence, st, of measurable sections, such that {•Si(x)}^, 

forms a tvtal set in Yx for each x. D 
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This, of course, is just axioms 2 and 3 for an MFHS and provides us with a 

functor: 

SHF/X >MFHS(X) 

with #(K,fl) = ((Yx)xeX,S = {s : X —• Y \ s measurable and fs = 1}) and, for 

T : Y —> Y', in SHF/X, we get a morphism, (Yx)-^—^(Y^, of MFHS(X) (note: 

if g is a fl-section, then, since T and g are measurable, g' = Tg is a fl'-section). 

Again, we must note that the other direction is difficult. It is similar to 

as discussed in chapter 4. That is, given an MHFS, (H(x),Q), we can put 
J 6 

V = (J H(x). The problem is to put an appropriate cr-algebra on 1' (appropriate 
x6A' 

means, in particular, make the (/'s measurable sections and make the arithmetic 

measurable). Again, the immediately obvious "just make all the <z's measurable" 

does not work (indeed, in the 1-family case, this is not the Borels which it should 

be). 

5.4 Future Considerations 

Here is list a few interesting open problems (which have been described at various 

locations). We cannot speculate as to their relative level of difficulty; some may 

be quite easy, some may be quite hard. 

-Do the special disintegrations introduced in chapter 2 compose? 

-For H a Hilbert sheaf, is / / / complete, in the language of MEAS(X), for a 
J $ 

general ci? 
y® 

-What is an appropriate measurable structure on / (Y,B) for Hilbert families? 

-Is there a functor, MFHS(X) vHF/X'l 

-If so, what is the relationship between $ and V»?? 
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-Is there a Beck condition for substitution and the direct integral even though they 

are not adjoint? 

-Are there other approaches chat blend the aspects in a better, more subtle way? 

Finally, we note that, in this work, we have provided a categorical footing upon 

which to describe the direct integral of Hilbert spaces. We would like to generalize 

this to operators, to von Neumann algebras (to arrive at an indexed version of Von 

Neumann's decomposition theorem perhaps), to C'-algebras, and a whole host of 

other interesting direct integral-like construction. There seems to be a very large 

possibility for application. 
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