

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario Is1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395 rue Wellington Ottawa (Ontario) K1A 0N4

Your file Votre rélérence

Out file Notre référence

AVIS

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

NOTICE

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout tait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canadä

THE CHEMICAL IMPLICATION OF CHARGE DENSITY DISTRIBUTION FOR HETEROCYCLIC RINGS, FND THE CONFORMATIONAL CONSEQUENCES OF THE PACKING IN XPh₄ [X= C, Si, Ge, Sn, Pb] AND RELATED CRYSTALS. CRYSTALLOGRAPHY AND MOLECULAR MODELLING. Sort BEADLISTELL.

The Constant and the state of t

ĥ

by

Bożena Borecka

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

at

Dalhousie University Halifax, Nova Scotia

August, 1992

© Copyright by Bożena Borecka, 1952

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A CN4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your file Volte rélérance

Our file Notre référence

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan. distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant Bibliothèque à la nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse disposition à la des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-80147-6

. ...

To my late teachers and friends Drs Barbara Wiktorowska and Boleslaw Wojciechowski

ł

-

11

"The universe is full of magical things, patiently waiting for our wits to grow sharper."

Eden Phillpotts

iv

Table of Contents

ł

Ĭ

મારે તરે છે. છે. છે. છે. કે છે. કે છે. કે છે. કે છે. છે. તે કારણ વ્યાય કારણ છે. તે પ્રાયમ છે. તે પ્રાયમ છે. પ્

-**1**

-! , -

List of Fig	jures .	••	••	• •	• •	•	•		•	•	•	•	•	•	•	•	x
List of Tal	bles .	• •	•••	• •	•	•	•	••	•	•	•	•	•	•	•	•	xiv
Abstract	• • • •	••	••	• •	•	•	•	••	•	•	•	د	•	•	•	Э	rviii
Abbreviatio	ons and	Symb	ols	• •	•	•	•	••	•	•	•	•	•	•	•	•	xix
Acknowledge	ements	••	••	• •	•••	•	•	••	•	•	•	•	•	•	٠	•	XXIV
1. General	Introd	uctic	on.	• •	• •	•	•	• •	•	•	•	•	•	•	•	•	1
2. Electron	n Densi	ty St	udie	es .		•	•		•	•	•	•	•	•	•	٠	6
2.1.	Introdu	ction	l .	•	•••	•	•	•••	•	•	•	•	•	•	•	•	6
2.2.	Electro	n Der	sity	y Di	ist	rit	out	ion	i 1	n 1	the	e I	Bei	nze	ene	3	
(Clathra	te of	He	ka (1	1-												
i	aziridi	nyl)c	yclo	otri	ipho	osp	oha	zen	e	•	•	•	•	•	•	•	17
:	2.2.1.	Intro	duct	tior	n.	•	•	•••	•	•	•	•	٠	•	•	•	17
:	2.2.2.	Exper	imer	ntal	L.	•	•	•••	•	•	•	•	•	•	•	٠	19
:	2.2.3.	Data	Coli	lect	tio	n a	Ind	Pr	00	es	sir	ŋg	(1	Dat	ta		
	Se	t I)	••	•	• •	•	•	•••	e	•	•	•	•	•	•	•	20
:	2.2.4.	Struc	ture	e So	olut	tic	n	(Da	ta	Se	et	I))	•	•	•	21
:	2.2.5.	HO De	for	nati	ion	De	ens	ity	M	aps	5 ((Da	ata	a S	Set	5	
	I)	• •	• •	•		•	•	• *	•	•	•	•	•	•	•	•	26

	2.2.6. Data Collection and Processing (Data	
	Set II)	27
	2.2.7. Structure Solution (Data Set II)	29
	2.2.8. HO Deformation Density Maps (Data Set	
	II)	30
	2.2.9. Multipole Deformation Maps (Data Set	
	II)	31
	2.2.10. Molecule	33
	2.2.11. Bonding in the Phosphazene Ring	35
	2.2.12. Electron Density Maps	38
	2.2.13. Summary	56
2.3.	Comparative Charge Density Studies of the	
	Phosphorus-Sulphur Bonding and of the Extent	
	of the Aromatic System in a 1,3,2-	
	Benzodithiaphosphenium Cation and the Related	
	2-Phenyl-1,3,2-Benzodithiaphosphole	58
	2.3.1. Introduction	58
	2.3.2. Experimental and Refinement	60
	2.3.3. Electron Density Maps	67
	2.3.4. Summary	74

ł.

Li P

:

•	conformational consequences of the Packing in APn ₄	
	[X=C, Si, Ge, Sn, Pb] and Related Crystals.	
	Crystallography and Molecular Modelling	75
	3.1. Introduction	75
	3.2. Previous Crystallographic Reports	81

3.3. X-ray Structure Determination	88
3.4. Molecule	98
3.5. Analysis of Thermal Motion - TLS	
Calculations	109
3.5.1. Thermal Motion of Atoms	109
3.5.2. Analysis of Thermal Motion	111
3.5.3. Effect of Thermal Vibrations on Bonds	
• • • • • • • • • • • • • • • • • • • •	113
3.5.4. TLS Calculations	114
3.6. Molecular Mechanics Calculations	126
3.6.1. Introduction	126
3.6.2. Molecular Conformations of the	
Tetraphenyls	131
3.6.3. MM3 Calculations	134
3.6.4. MM3 Calculations of TPMe and TPSi	136
3.6.5. MM3 Calculations of oTMe and oTSi	149
3.7. Summary	155
Appendix 1	158
Fractional Atomic Positional Parameters and	
Equivalent Isotropic Temperature Factors (\AA^2)	
for 2N ₃ P ₃ Az ₆ ·C ₆ H ₆ ; Data Set I; (e.s.d.s in	
parentheses)	158
Hydrogen Atom Positional Parameters for	
$2N_3P_3Az_6 \cdot C_6H_6$; Data Set I	158
Anisotropic Temperature Factors (A^2) for	

The second secon

Ĭ.

1.

2N3P3A26 C6H6; Date Set I; (e.s.d.s in	
parentheses)	159
Fractional Atomic Positional Parameters and	
Equivalent Isotropic Temperature Factors (\mathbb{A}^2)	
for 2N3P3Az; C6H6; Data Set II (hex.); (e.g.d.s	
in parentheses)	160
Hydrogen Atom Positional Parameters for	
$2N_3P_3Az_6 \cdot C_6H_6$; Data Set II (hex.).	160
Anisotropic Temperature Factors (Å ²) for	
2N3P3AZ6 C6H6; Data Set II; (hex.) (e.s.d.s in	
parentheses)	161
Interatomic Distances (Å) for $2N_3P_3Az_6 \cdot C_6H_6$	162
Interbond Angles (degrees) for $2N_3P_3Az_6 \cdot C_6H_6$	163
Multipole Population Coefficients for $2N_3P_3Az_6 \cdot C_6H_6$;	
Data Set II; (rh.) (e.s.d.s in parentheses).	164
Multipole Population Coefficients for $2N_3P_3Az_6 \cdot C_6H_6$	
(cont.); Data Set II; (rh.) (e.s.d.s in	
parentheses)	165
Appendix 2	166
Fractional Atomic Positional Parameters and	
Equivalent Isotropic Temperature Factors (\mathbb{A}^2)	
for $C_6H_4S_2P^*$ AlCl ₄ (e.s.d.'s in parentheses).	166
Hydrogen Atom Positional Parameters for $C_6 H_4 S_2 P^*$	
AlCl4	166
Anisotropic Temperature Factors (A^2) for $C_6H_4S_2P^4$	

4

٦

語り、語

「「「「「「「」」」」

.

.

AlCl ₄ (e.s.d.'s in parentheses)	167
Interatomic Distances (Å) for $C_6H_4S_2P^*$ AlCl ₄	168
Interbond Angles (degrees) for $C_6H_4S_2P^*$ AlCl ₄	168
Fractional Atomic Positional Parameters and	
Equivalent Isotropic Temperature Factors (A^2)	
for C ₁₃ H ₁₁ PS ₂ (e.s.d.s in parentheses)	169
Hydrogen A om Positional Parameters for $C_{13}H_{11}PS_2$.	170
Anisotropic Temperature Factors ($Å^2$) for $C_{13}H_{11}PS_2$	
(e.s.d.s in parentheses)	171
Interatomic Distances (Å) for $C_{13}H_{11}PS_2$	172
Interbond Angles (degrees) for $C_{13}H_{11}PS_2$	173
Appendix 3	174
Other Structures Solved	174
Appendix 4	191
Tables on Microfiches	191
References	193

,

the way

× • • • • •

- ダ・

ł

14 42 514

1

ムーム・モーション シンドリ

I

List of Figures

١

まし、ううろいますの教育、やい

X

ł

¥,

Figure 1. Molecule of the benzene clathrate of	
<pre>hexa(aziridinyl)-cyclotriphosphazene (I)</pre>	1
Figure 2. Benzodithiaphospholium cation (II)	2
Figure 3. Benzodithiaphosphole molecule (III)	3
Figure 4. Molecule of XPh ₄ , [X= C, Si, Ge, Sn, Pb]	
(IV)	4
Figure 5. <u>Cis-conformation of aziridinyl groups in</u>	
cyclophosphazene	18
Figure 6. Crystal structure of $2N_3P_3az_6 \cdot C_6H_6$ shown with	
the C_3 axis vertical; (a) ball and stick model;	
(b) space filling model	33
Figure 7. Aziridinyl group	34
Figure 8. Bonding in the phosphazenes; (a) π -bonding;	
(b) π '-bonding; (c) exocyclic π -bonding	36
Figure 9. X-X _{HO} deformation density in the benzene ring	
(Data Set I)	39
Figure 10. X-X _{HU} deformation density map in benzene	
(Data Set II)	40
Figure 11. Dynamic deformation density map in the plane	
of the benzene ring	41
Figure 12. X-X _{HO} deformation density in the plane	
bisecting C-C bond in the benzene ring; (a) Data	
Set I; (b) Data Set II)	43

Figure 13. Dynamic deformation density in the plane

bisecting two opposite C-C bonds in the benzene	
ring	44
Figure 14. X-X _{HO} deformation density in the	
three-member rings; (a) Data set I; (b) Data set	
II;	45
Figure 15. Dynamic deformation density in the	
aziridinyl rings	46
Figure 16. X-X _{HO} deformation density in the region of	
the lone-pair at N11 and N12; (a) Data Set I; (b)	
Data Set II	48
Figure 17. Dynamic multipole map in the regions of	
lone-pair electrons in the aziridinyl groups	49
Figure 18. X-X _{HO} deformation density in the phosphazene	
ring (Data Set I)	50
Figure 19. X-X _{HO} deformation density in the phosphazene	
ring (Data Set II)	51
Figure 20. Dynamic deformation density in the	
phosphazene ring (Data Set II)	52
Figure 21. Dynamic deformation maps through the planes	
bisecting the P-N bonds; (a) P1-N1 bond; (b)	
P1-N1(1+z,x,y-1) bond	54
Figure 22. Residual multipole map in the region of the	
phosphazene ring	55
Figure 23. Diagram of molecules (II) and (III)	5 9
Figure 24. Diagram showing the twist of the phenyl ring	
in the neutral molecule (III)	67

z

and the state of the state of the

1 12 " June

į

i kana

ş

۲, ۲

tear and the

a star a star water to make the service of the serv

and the second and a day sever to

Figure 25. Sulphur lone-pairs in the cation (II)	68
Figure 26. Sulphur lone-pairs in the neutral molecule	
(III)	68
Figure 27. The "quinoid" structure proposed for the	
cation (II). \ldots \ldots \ldots \ldots \ldots \ldots \ldots	69
Figure 28. Electron density in the cation (II)	70
Figure 29. X-X _{HO} deformation density in the neutral	
molecule (III)	71
Figure 30. Phosphorus lone-pair in the cation (II)	73
Figure 31. Phosphorus lone-pair in the neutral molecule	
(III)	73
Figure 32. Packing diagram of tetraphenylsilane -	
projection along c-axis	99
Figure 33. Valence angles	103
Figure 34. Relationship between the valence angles and	
X-C distances for tetraphenyls	104
Figure 35. Molecular angles, ψ and ϕ , determining the	
orientation of the phenyl ring	106
Figure 36. The typical location of the centre of	
libration in model 1 (TPSi)	118
Figure 37. View of the phenyl ring (model 1) along the	
largest libration axis (L_3) ; (a) - TPMe; (b) -	
TPSi	119
Figure 38. Libration axes for TPGe (model 1); (a) -	
room temperature structure; (b) - low temperature	
structure.	120

٤

.

.

e k

.

:

Ber ...

-

5.1

Figure 39. Libration axes (model 1) for TPSn - (a) and TPPb - (b). 121 Figure 40. Location of the centre of libration for model 2 (TPSi). 123 Figure 41. Libration axes (model 2) for (a) - TPMe; (b) - TPSi. 124 Figure 42. Libration axes (model 2) for TPGe (RT) -(a); TPGe (LT) -(b); TPSn -(c); and TPPb -(d). 125 Figure 43. Projection of the phenyl ring of TPMe on the X"Y" plane. 140 Figure 44. Projection of the phenyl ring of TPSi on the X"Y" plane. 141 Figure 45. Steric energy E as a function of the angle of driven ring (C7-X-C1-C2) for TPMe. 146 Figure 46. Steric energy E_s as a function of the angle of driven ring (C7-X-C1-C2) for TPSi. 147 Figure 47. The six diastereomeric conformations of oTMe. 150

١٠.

14

. .

List of Tables

:

-

Table 1. Electron density maps. .	12
Table 2. Physical properties and parameters for data	
collection and refinement of $2P_3N_3(NC_2H_4)_6 \cdot C_6H_6$	
(Data Set I)	22
Table 2. (cont.). Physical properties and parameters	
for data collection and refinement of	
$2P_3N_3(NC_2H_4)_6 \cdot C_6H_6$ (Data Set I)	23
Table 3. Physical properties and parameters for data	
collection and refinement of $2P_3N_3(NC_2H_4)_6 \cdot C_6H_6$	
(Data Set II)	24
Table 3. (cont.). Physical properties and parameters	
for data collection and refinement of	
$2P_3N_3(NC_2H_4)_6 \cdot C_6H_6$ (Data Set II)	25
Table 4. Physical properties and parameters for data	
collection and refinement of $C_6H_4S_2P^{+}\cdot AlCl_4^{-}$.	63
Table 4. (cont.). Physical properties and parameters	
for data collection and refinement of	
$C_6H_4S_2P^+$ AlCl ₄	64
Table 5. Physical properties and parameters for data	
collection and refinement of C ₁₃ H ₁₁ PS ₂	65
Table 5 (cont). Physical properties and parameters for	
data collection and refinement of $C_{13}H_{11}PS_2$	66
Table 6. Physical properties and parameters for data	

.

1

-

2

1 7 7

I I I T T AND A I BUT AN

「おいろいのないない」の かちにない ちょうちょうないので collection and refinement of tetraphenyls. . . . Table 6 (cont.). Physical properties and parameters for data collection and refinement of tetraphenyls. ł Table 7. Fractional atomic positional parameters and ち をおおい しんいう ひろう equivalent isotropic temperature factors (A^2) for SiPh, with e.s.d.s in parentheses. Table 8. Interatomic distances (Å) and interbond angles and the statestime of the stat Table 9. Fractional atomic positional parameters and equivalent isotropic temperature factors (A^2) for GePh, with e.s.d.'s in parentheses. Table 10. Fractional atomic positional parameters and equivalent isotropic temperature factors (A^2) for GePh₍ (LT) with e.s.d.'s in parentheses. Table 11. Interatomic distances (Å) for GePh. Table 12. Interbond angles (degrees) for GePh. Table 13. Fractional atomic positional parameters and equivalent isotropic temperature factors (A^2) for SnPh, with e.s.d.'s in parentheses. Table 14. Fractional atomic positional parameters and equivalent isotropic temperature factors (A^2) for $PbPh_{4}$ with e.s.d.'s in parentheses. Table 15. Interatomic distances (Å) and interbond angles (degrees) for SnPh₄. Table 16. Interatomic distances (Å) and interbond angles (degrees) for PbPh. *** 3 tore 1

91

92

93

93

94

94

95

95

96

96

97

97

.

.

• • • • • • •

.

.

XV

Table 17. Structural parameters for the tetraphenyls. . 100 Table 18. Structural parameters for the various 101 Table 19. Valence angles C1-X-C1' and C1-X-C1'' for tetraphenyls [X= C, Si, Ge, Sn, Pb].... 103 Table 20. The rotational displacement angles, ϕ , and the twist angles, ψ , for tetraphenyls. 107 Table 21. The angles (deg.) between the planes of 107 Table 22. TLS details for XPh₄ - whole molecule; centroid of libration at (000); l_1 , l_2 , l_3 - mean amplitudes of libration about the principal libration axes L_1 , L_2 , L_3 114 Table 23. TLS details for XPh_4 - model 1; l_1 , l_2 , l_3 mean amplitudes of librational motions about L,, 115 Table 24. TLS details for XPh_4 - model 2; l_1 , l_2 , l_3 mean amplitudes of librational motions about L₁, L₂, L₂. 116 Table 25. Interatomic distances (Å) and interbond angles (degrees) for TPMe (MM3). 137 Table 26. Interatomic distances (Å) and interbond angles (degrees) for TPSi (MM3)..... 137 Table 27. Cartesian coordinates (Å) of TPMe in the 139 Table 28. Cartesian coordinates (Å) of TPSi in the

State of the

い ちって ひろうしい お ちろち ちちろ ノイド キャ

ながあれていまった

a restriction to be a

5

•

うちょうかん ちょうちょう ちょうちょう ないのないない

X"Y"Z" system	139
Table 29. TPMe: comparison of results	from MM3 and
X-ray	142
Table 30. TPSi: comparison of results	from MM3 and
X-ray	143
Table 31. Results of MM3 calculations	with changed 1 ₀
and K_1	148
Table 32. MM3 data for oTMe	152
Table 33. MM3 data for oTSi	153

•

,

t

-

,ŧ

¢

Abstract

The work reported here examines various aspects of a study of the fine details in X-ray structure determination. It is divided into three parts:

1

Acression.

1-15770

いまてなどの言語がないで、

the state

1) Charge density studies of the benzene clathrate of hexa(aziridinyl)cyclotriphosphazene. The object of this part was to investigate the bonding electron density in the phosphazene ring and to answer, from a charge density study, the long-debated question about the nature of the phosphazene -P=N- bonds. The charge densities on the benzene ring and aziridinyl groups were also examined and are exactly as predicted. These observations are used to validate the charge density observed for the phosphazene ring which confirms that Dewar's original island delocalization model for the -P=N-P-system is essentially correct.

2) Charge density studies of a supposed aromatic 10electron $p\pi$ - $p\pi$ system. The object of this part was to see if a proposed aromatic $3p\pi$ - $3p\pi$ bonding in a hetero-bicyclic benzodithiaphospholium cation could be confirmed by an examination of the bonding electron density. The neutral nonaromatic analogue (benzodithiaphosphole) was also examined to provide the necessary comparison. While it was possible to confirm that the neutral analogue had all the expected bonding density features, disorder phenomena in the cation structure made the identification of the aromatic 10e $p\pi$ - $p\pi$ system rather tentative.

3) Precise determination of the factors influencing the observed structures of the neutral series of compounds XPh_4 [X = C, Si, Ge, Sn, Pb]. The factors which control the fine details of the molecular structure were explored and the inter-relation between the molecular shape and the crystal packing is discussed.

Abbreviations and Symbols

MW	Formula weight
Z	Number of molecules in the unit cell
a,b,c	Unit cell dimensions
a*,b*,c*	Reciprocal unit cell dimensions
α,β,γ	Angles between crystal axes
v	Volume of unit cell
μ	Linear absorption coefficient
d _c	Calculated density
θ	Bragg angle
h,k,l	Miller indices of the reflecting plane
МоКа	Radiation used
λ	Wavelength of X-radiation
e.s.d., σ	Estimated standard deviation
I	Intensity of diffracted beam
x/a,y/b,z/c	Fractional coordinates
U _{iso}	Isotropic temperature factor
U _{eq}	Equivalent temperature factor;
	$U_{eq} = (U_{11} + U_{22} + U_{33})/3$
U's	Anisotropic temperature factors
V _{ii} 's	U_{11} , U_{22} and U_{33}
υ _{ij}	U_{23} , U_{13} and U_{12}
В	Temperature factors tensor related to U by
	$B_{ij} = 8\pi^2 U_{ij}$

;

3 1

5

ł

B _{eq}	Equivalent temperature factor;
	$B_{eq} = (B_{11} + B_{22} + B_{33})/3$
TLS	Torsion/Libration/Screw
r.m.s.	Root mean square
F(000)	Number of electrons in the unit cell
Fo	Observed structure amplitude
Fc	Calculated structure factor
N _{me}	Total number of measured reflections
N _{un}	Number of unique reflections after merging
N _{ob}	Number of reflections considered observed
N _v	Number of parameters refined
R-value, P	Residual index, R-factor
R _w	Weighted R-value
R _m	Merging R-value for equivalent reflections
GOF	Goodness of fit parameter
W	Weight in minimised function
g,k	Factors in weighting scheme
ρ(Γ)	Electron density in molecule
$\Delta \rho(\mathbf{r})$	Difference electron density
r	Vector determining the point in the unit cell
k	Scale factor
$H(h_1, h_2, h_3)$	Scattering vector in the reciprocal space
F _o (H)	Amplitude of the diffracted beam in the
	direction of the scattering vector $H(h_1, h_2, h_3)$
F _c (H)	Calculated structure factor in the reciprocal
	space

:

.

.

,

xx

ρ _c	Core atomic density
ρ _ν	Valence density
Υ _{ιm} (θ, φ)	Multipolar spherical harmonic angular
	functions in real form
κ and κ "	Expansion-contraction parameters
P _c	Core population parameters
P _v	Valence population parameters
P _{lm}	Multipole population parameters
R	= N _l r ⁿ exp(- <i>k</i> ";r); Slater-type radial
	functions
Ni	Normalization factor
$\delta \rho (\mathbf{r})$	Deformation electron density
z ² _{A,B}	Mean square displacement amplitude of atom A
	in the direction of atom B
t	Temperature (°C) of measurement
LT	Low temperature
RT	Room temperature
conv. ref.	Conventional (spherical atom) refinement
mul.	Multipole
pdf	Probability density function
hex.	Hexagonal
rh.	Rhombohedral
d(C-H)	Carbon-Hydrogen distance
НО	High order
az	Aziridinyl= $-N(CH_2)_2$
Ph	Phenyl ring

ŧ

. . .

;

1

``

xxi

x	Central atom in XPh ₄ [X=C, Si, Ge, Sn, Pb]
TPMe	Tetraphenylmethane
TPSi	Tetraphenylsilane
TPGe	Tetraphenyl germanium
TPSn	Tetraphenyl tin
TPPb	Tetraphenyl lead
otme	Tetra(o-tolyl)methane
otsi	Tetra(o-tolyl)silane
φ	Angle of rotation of the tetraphenyl molecule
	about crystallographic c axis
ψ	Angle of rotation of the phenyl ring
	relative to a D _{2d} position of the ring
α ₁	Angle between the phenyl ring planes related
	by the 2-fold axis
α ₂	Angle between the phenyl ring planes related
	by the S ₄ axis
x,y,z	Fractional coordinates of atom
x _{ref} , y _{ref} , z _{ref}	Atomic coordinates from ref. 121
\mathbf{L}_1 , \mathbf{L}_2 , \mathbf{L}_3	Principal axes of libration
1,12,13	Mean amplitudes about librational motions
	about L_1 , L_2 , L_3
Es	Steric energy
E(1)	Stretching energy
κ _ι	Stretching constant
10	Standard values of bonds in MM3
Ε(Θ)	Bending energy

•

í

.

144

المركبين المعارية المعالية المحالية ا

とていていた。 しょうちかい さいな よしなな意

К _ө	Bending constant
θ	Standard values of angles in MM3
Ε(φ)	Torsional energy
E ₀	Torsional constant
E(r)	Energy of nonbonded (van der Waals)
	interactions
E(q)	Energy of electrostatic interactions
Ix,Iy,Iz	Principal axes of inertia
X',Y',Z'	Orthogonal axes in MM3
X_c, Y_c, Z_c	Orthogonal crystal axes (= a,b,c in
	tetragonal crystal system)
$\mathbf{x}_{c}, \mathbf{y}_{c}, \mathbf{z}_{c}$	Cartesian coordinates of atom C1 in crystal
	system
X",Y",Z"	Common orthogonal axes for calculated and
	experimental molecules
x",y",z"	Cartesian coordinates of atoms in the X"Y"Z"
	system
α_{m}	Angle of rotation from the MM3 X'Y'Z' system
	to the X"Y"Z" system
α _c	Angle of rotation from the crystal system to
	the X"Y"Z" system

ł

3 1

:

E

٢

î

¥,

) 1

xxiii

Acknowledgements

It gives me a great pleasure to express my gratitude to my supervisors Drs. T. S. Cameron and O. Knop for their guidance, support, encouragement, and assistance in any possible way. They have always been as helpful as any student could wish and I am very grateful.

I would also like acknowledge here the assistance of people who have contributed to the research reported in this thesis: Dr. P. R. Mallinson of the University of Glasgow, Scotland, for his hospitality, helpful discussions, and comments on the use of the multipole refinement program Molly; Dr. B. Vincent of the Molecular Structure Corporation, Texas, for collecting data for benzene clathrate of phosphazene on R-Axis II, automated X-ray Imaging System; Drs. N. Burford Royan for preparing the compounds and в. of benzodithiaphospholium tetrachloroaluminate and phenylbenzodithiaphosphole; Dr. T. B. Grindley for his assistance with the molecular mechanics calculations.

And the second

ANY A CALL NO

ì

site-

入山 ついた

and the second

Many of my co-workers have provided support and inspiration along the way. Wanda Tacreiter and Dr. Antony Linden helped me immensely, especially during my first year at Dalhousie. I also appreciate the help of Ruth Cordes,

xxiv

Dr. Margaret James, and Pradip Bakshi, who were always ready to discuss problems and to give valuable suggestions.

I would like to acknowledge financial support by the Killam Foundation and Dalhousie University in the forms of Graduate Scholarship and Teaching Assistantship, respectively.

My thanks also go to all my friends, fellow graduate students, and my family, especially to my daughter Agnieszka and my friend Grzegorz Bednarz, for their continuous understanding, encouragement, and support.

n

-1

: . .;}

1. General Introduction

While the general purpose of this project was to acquire a training in all aspects of research X-ray crystallography, the specific interest is an investigation of the finest details in the determination of a crystal structure by X-ray methods. This interest has three main strands.

1) The determination of the charge density in a phosphazene ring to locate the bonding (and non-bonding pair)

Figure 1. Structure of the benzene clathrate of hexa(aziridinyl)-cyclotriphosphazene (I).

electrons and to answer the long-debated questions about the bonding in that $ring^{1,2}$.

The benzene clathrate of hexa(1-aziridinyl)cyclotriphosphazene (I) (Figure 1) was chosen since the benzene molecule is tightly held in the lattice. The correct observations on the benzene ring and the expected observations on the three-membered aziridinyl groups all add credence to the observations on the phosphazene ring.

2) The determination of the charge density on two related molecules, a planar benzodithiaphospholium cation (II)(Figure 2) and the related benzodithiaphosphole (III)

Figure 2. Benzodithiaphospholium cation (II).

ł

*** ***

(Figure 3), where the object of the investigation was to determine the nature of the bonding on the 10 electron π system of the cation.

Figure 3. Benzodithiaphosphole molecule (III).

In this case the changes in the locations of the bonding and non-bonding pair electrons in the two similar molecules are highly significant and largely answer the questions about the bonding. However, it is possible to refine a parameter which measures the effect on the core electrons of an atom of the apparent charge on that atom. In this instance it should be possible to determine the extent of the spread of the ŀ

charge on the cation which is nominally written all on the phosphorus atom.

3) The precise determination of the factors influencing the observed structures of the neutral series of compounds XPh_4 [X = C, Si, Ge, Sn, Pb] (IV) (Figure 4).

Figure 4. Molecule of XPh₄, [X= C, Si, Ge, Sn, Pb] (IV).

The compounds form an isomorphous series and are highly symmetric in the crystal with only one unique phenyl ring. The structural examination has two aspects. One is a thorough study of all the "vibrational" factors which might influence the observed dimensions and conformations of the system (and

4

senting-un · ·

thus lead to spurious claims of structural differences or similarities between the various members of the series) and the other is the determination of the ideal conformations of an isolated molecule in this series, which leads then to a discussion on the reasons for the differences between the observed and predicted molecular arrangements.

-

د • †

* ** ****

ş

3, 4 x

14.5

77. 10.24

2. Electron Density Studies

2.1. Introduction

Electron density maps have been used for years to illustrate an arrangement of the molecules in crystals. It has always been known that such maps can also give some information about the nature of the chemical bonds^{3,4}.

However, only with the recent development of automatic data collection and processing, that enabled a correct allowance for systematic errors and better experimental accuracy, and with the advancement of computing techniques. could the electron density distribution be interpreted with a real physical significance.

a quark

1

あいたいないろんなない 多白 万方泉

internation of the second second

Electron or charge density determinations are based on the measurements of the intensity of X-ray photons elastically scattered by crystals^{4,5}. The intensity of the diffracted radiation $I(\mathbf{s})$ is proportional to the square of the scattering amplitude $F(\mathbf{s})$

 $I(S) \propto |F(S)|^2$

where **S** is the reciprocal lattice vector of magnitude $2\sin\theta/\lambda$, and θ is the angle of diffraction.

The scattering amplitude F(S) is given by

$$\mathbf{F(S)} = \int \langle \rho(\mathbf{r}) \rangle \exp(2\pi \mathbf{i} \mathbf{S} \cdot \mathbf{r}) d\mathbf{v}$$

where **r** is the vector determining the point in the unit cell.

Since the electron density in a crystal is the convolution of the density in the unit cell and a periodic lattice function, F(S) is observable only at the distinct points H in reciprocal space, representing the elastic Bragg reflections, and can be expressed by

$$\mathbf{F}(\mathbf{H}) = \int_{\mathbf{V}} \langle \rho \langle \mathbf{r} \rangle \rangle \exp(2\pi \mathbf{i} \mathbf{H} \cdot \mathbf{r}) d\mathbf{r}$$

The thermally averaged electron density is given by the inverse Fourier transform

$$< \rho(\mathbf{r}) > = 1/V \sum_{\mathbf{H}} F(\mathbf{H}) \exp(-2\pi i \mathbf{H} \cdot \mathbf{r})$$

where the integral has been replaced by a sum over all reciprocal lattice points for which $\mathbf{S} = \mathbf{H}$, and V is the volume of the crystallographic unit cell.

The structure factor amplitude is generally a complex quantity and for the calculation of $\rho(\mathbf{r})$ both magnitude and phase are required. Only the former can be measured experimentally. For the centrosymmetric structures, the phase problem reduces to a question of the sign of the structure

7

大手匠 化乙酸乙

entra da a

No. of Strategy of

ş

factor, but the difficulty in obtaining accurate structure factors increases when the phase is a continuous variable as in the non-centrosymmetric structures.

For a given model, structure factors (F_c) can be calculated and subtracted from the observed amplitudes (F_o) and the differences can be used as coefficients in the difference Fourier synthesis. Difference electron density, $\Delta \rho(\mathbf{r})$, is defined as the Fourier transform of the difference between the F_o and F_c :

$$\Delta \rho(\mathbf{r}) = 1/V \sum_{u} \left(|\mathbf{F}_{o}(\mathbf{H})| / k - |\mathbf{F}_{c}(\mathbf{H})| \right) \exp(-2\pi i \mathbf{H} \cdot \mathbf{r})$$

S---

where, k is the scale factor, $|F_o(H)|$ is the amplitude of the diffracted beam in the direction of the scattering vector $H(h_1, h_2, h_3)$.

This corresponds to a point-by-point subtraction of an F_c Fourier map from an F_o map calculated with the same phases. Thus the difference map shows peaks everywhere where the F_c model, based on the 'spherical' distribution of the electrons around the atomic centres, fails to provide the electron density implied by the F_o data and shows holes (negative difference density) where it provides too much. Hence, through the direct observation of the difference electron density maps, the bonds and their chemical significance in molecules can be studied.

Theoretical evaluations⁶ of the differences in electron

density distributions of atoms participating in chemical bonds and of the free atoms show that the calculated changes depend on the assumptions made for the wave functions of the molecules. Direct experimental information on these changes can be obtained by X-ray diffraction^{7,5} and neutron diffraction or by joint X-ray and neutron diffraction experiment^{8,5,9}.

Two methods of the determination of the experimental deformation density, based on diffraction experiments, have been used in this study.

The $X-X_{\mu 0}$ method^{4,9,10,11} is an empirical method of separating the diffraction effects of the core and valence electrons. The highly resolved X-ray data set is separated into 'high-order' $(\sin\theta/\lambda > 0.7 - 0.8 \text{Å}^{-1})$ and 'low-order' sets (with the cut-off arbitrarily chosen at a $\sin\theta/\lambda$ value of 0.7-0.8Å⁻¹). At high angles the diffraction from the bonding and lone-pair electrons is negligible and the refinement is responding to the effect of the core electrons on each of the Thus the positional and thermal parameters obtained atoms. from the high order refinement give approximate positions of the nuclei. The electron density is determined by calculating Fourier difference map (using only the 'low-order a reflections), where the difference term represents the difference between the experimental, (F_o), and 'high-order' Xray structure factors, (F_c) , calculated from the parameters obtained by a least-squares refinement in which only highangle data are used. This technique is useful in indicating

Ś

whether the more time-consuming method, outlined below, is worth pursuing.

An alternative approach^{12,13,14} is based on the concept of rigid pseudoatom^{15,16} and has become the established tool in the analysis of charge density data.

時代

The molecular charge density $\rho(\mathbf{r})$ in the crystal is described by a sum of rigid pseudoatom densities, where each pseudoatom is centred on an atomic nucleus. The pseudoatom is said to be rigid because its electron density is assumed to accompany the nucleus during thermal vibrations. Each pseudoatom has an invariant core, usually consisting of a neutral spherical Hartree-Fock atomic density, just as in conventional structure analysis. In addition, it has a series of nuclear-centred electron density terms, each with an adjustable weight (electron population parameters). These terms are intended to model the effects of the molecular and crystal environment, whereby the pseudoatom may become aspherical and carry a net charge.

The procedure, based on these ideas and modified by Hansen and Coppens⁸ (program MOLLY¹⁷), uses the expansion of spherical harmonics to describe atomic deformations. It incorporates the expansion-contraction parameter kappa¹⁸ which modifies the isolated-atom valence shell density and allows for the contraction of positively - and expansion of negatively - charged atoms, in agreement with theoretical concepts. This approach has the advantage of retaining the radial nodes of the atomic shells, allows for full treatment of extinction¹⁹, and can be used for joint X-ray and neutron diffraction data⁸, if necessary.

In a multipolar atomic density model used in MOLLY¹⁷, electron densities at each atom are described by

$$\rho(\mathbf{r}) = P_c \rho_c(\mathbf{r}) + \kappa^{\dagger 3} P_{\nu} \rho_{\nu}(\kappa^{\dagger} \mathbf{r}) + \sum_{l=0}^{3} \sum_{m=-l}^{+l} \{\kappa^{m 3} P_{lm} R_l(\kappa^{m} \mathbf{r}) y_{lm}(\theta, \phi)\}$$

where ρ_c and ρ_{ν} are spherically-averaged Hartree-Fock atomic core and valence densities, with the ρ_{ν} normalized to one electron; the $y_{lm}(\theta,\phi)$ are the multipolar spherical harmonic angular functions in real form; κ' and κ'' are expansioncontraction parameters, which can be refined together with the population parameters P_{μ} and P_{lm} . The core population P_{c} is fixed at 2 for first-row atoms. The valence-shell population parameters are constrained^{8,17} to give an electrically neutral unit cell. Slater-type radial functions $R_1 = N_1 r^n exp(-\kappa^n \zeta r)$ are used, in which N_1 is a normalization factor, n=n(1) and ζ are parameters chosen according to Reference 8. The deformation functions with $\iota \ge 1$ are defined with respect to Cartesian local to each pseudoatom, which facilitates, axes if necessary, the use of any approximate chemical symmetry in the molecule.

· + 4738 + 70x

10 AN V

1

10 m m m +

ş

1.2

14 II II

the is a substance of the inflation of a line

THE COSE + X

and a state to an other make in the a channel with the

From the multipole parameters obtained in the leastsquares refinement, the molecular properties such as dorbital populations²⁰, the electrostatic potential²¹, atomic
ELECTRON DENSITY MAPS:

DIRECT FOURIER MAPS:

 $\rho(\mathbf{r}) = 1/V \sum_{\mathbf{u}} F(\mathbf{H}) \exp(-2\pi \mathbf{i}\mathbf{H}\cdot\mathbf{r})$

DIFFERENCE FOURIER MAPS:

general expression:

ALA.

1

 $\Delta \rho(\mathbf{r}) = 1/V \sum_{\mathbf{H}} [F_1(\mathbf{H}) - F_2(\mathbf{H})] \exp(-2\pi \mathbf{i}\mathbf{H} \cdot \mathbf{r})$

(a) difference map (conventional refinement):

 $F_1(H) = F_o(H)$ $F_2(H) = F_c(H)$ (conventional ref.)

(b) X-X_{HO} deformation map

 $F_1(H) = F_o(H)$ $F_2(H) = F_{c,sph}(H)$ (parameters from HO ref.)

(c) experimental deformation map

 $F_1(H) = F_o(H)$ $F_2(H) = F_{c,sph}(H)$ (multipole ref.)

(d) dynamic deformation map

 $F_1(H) = F_{c,mul}(H)$ $F_2(H) = F_{c,sph}(H) \text{ (multipole ref.)}$

(e) static deformation map

$$\delta \rho (\mathbf{r}) = \rho_{\text{mul}} - \rho_{\text{sph}}$$

- (f) residual map

charges and dipole moments^{22,23} can be o'tained²⁴. The use of the aspherical model gives structure factors closer to the true for non-centrosymmetric crystals. This permits mapping of the deformation densities in various ways⁹ (Table 1).

The **experimental deformation map** is obtained using the calculated multipole phases with the observed structure amplitudes:

ţ

1

くちょうちょう ひょう

1. ș j

ŝ

94 × 340

4020 0

٧

Para set another of another

4

٠

1

t'

ž

、「いい」、 「 これ ちしちち

$$\delta \rho(\mathbf{r}) = 1/V \sum_{\mathrm{H}} \left[\left| \mathbf{F}_{o}(\mathbf{H}) \right| \exp(\mathrm{i}\phi_{\mathrm{mul}}) - \left| \mathbf{F}_{\mathrm{sph}}(\mathbf{H}) \right| \exp(\mathrm{i}\phi_{\mathrm{sph}}) \right] \exp(-2\pi \mathrm{i}\mathbf{H} \cdot \mathbf{r})$$

 $F_{sph}(H)$ is calculated with the atomic positions and thermal parameters obtaized from the multipole refinement.

The **dynamic deformation map**, based more directly on the experimental data, is obtained from the calculated multipole factors, which include the effect of thermal motion. The density is smeared by the molecular vibrations and therefore referred to as 'dynamic'.

 $\delta \rho(\mathbf{r}) = 1/V \sum_{u} \left[\left| F_{mul}(\mathbf{H}) \right| \exp(i\phi_{mul}) - \left| F_{sph}(\mathbf{H}) \right| \exp(i\phi_{sph}) \right] \exp(-2\pi i \mathbf{H} \cdot \mathbf{r})$

The static deformation map represents the difference between the total density, determined directly by the multipole parameters, and the total density of the same spherical-atom reference model. The multipole model allows for the deconvolution of the electron distribution from the thermal motion and hence the reference to the 'static' deformation density.

-

Walter & Space Barrier

;

如此,如此有法,不过,不是有不能,不是有不能,这些人不能,这个有多少,不是有一些有效的时候,我们就是有不能,这些人们不会,不能是有不能。"

1. 17.08 CC337 1

of states with the R C

۰ ۱

ì

1

۲

$$\delta \rho(\mathbf{r}) = \rho_{\text{mul}} - \rho_{\text{sph}}$$

Although the static density may be derived as described, and can be also calculated theoretically, it does not correspond to anything observable in nature.

The use of multipole phases makes the maps slightly model-dependent. The **residual map**, calculated with the leastsquares parameters, allows us to test the success of the fitting procedure. It contains all features not accounted for in the model and for good data it should be a flat, featureless map.

$$\delta \rho(\mathbf{r}) = 1/V \sum_{\mathbf{H}} \left[\left| \mathbf{F}_{o}(\mathbf{H}) \right| - \left| \mathbf{F}_{mul}(\mathbf{H}) \right| \exp(i\phi_{mul}) \right] \exp(-2\pi i \mathbf{H} \cdot \mathbf{r})$$

Further, independent verification of the model and the anisotropic displacement parameters can be achieved by applying **Hirshfeld's rigid bond** test^{13,25}. If the bond is to be considered as rigid, the component of the relative vibrational motion of a pair of bonded atoms vanishes in the direction of the bond (i.e. for the two atoms making the bond the components of the atomic vibration along the bond should be the same but of opposite sign).

 $\Delta_{\mathbf{A},\mathbf{B}} = \mathbf{z}_{\mathbf{A},\mathbf{B}}^2 - \mathbf{z}_{\mathbf{B},\mathbf{A}}^2 = \mathbf{0}$

where $z_{A,B}^2$ denotes the mean square displacement amplitude of atom A in the direction of atom B. If in parts of the molecule this is not fulfilled (to at least 0.001\AA^2 for nonhydrogen atoms), the structural model used is insufficient.

The requirements of accuracy of the experimental observations in charge density studies are very severe. Symmetry equivalent reflections should be measured and should agree to better than 2% in the intensities. Systematic effects such as multiple reflections, absorption of X-rays in the crystals, extinction, and thermal diffuse scattering should be considered and eliminated experimentally or corrected for in data reduction or refinement. Furthermore, it is increasingly evident that, for the study of molecular crystals data should be collected at liquid nitrogen (77K) or liquid helium (4.2K) temperatures for a number of reasons:

- collection of high-order data will lead to an increase of resolution in the electron density maps and allow a more accurate determination of the positional and thermal parameters;

- reduction in temperature will reduce the anharmonicity of the external molecular vibrations so that introduction of a more complex model in the refinement can be avoided;

- effect of thermal diffuse scattering decreases relative to the intensity of the Fragg reflections when the temperature こうしきないたとうない はかかったいになったいできょうできたいでいたいとう おうちちかいです

たちがちちょうちょうというからいろく ちいりちいりまたう ちゃんいあいがくちょうれいがく ちょうあ

มสมบัตร พ. และให้เป็นแรง เป็น รายปีสุร "รายสมพิษารณชัย

is lowered, thus one source of error in the temperature parameters is reduced.

This project involves two major studies of the deformation electron density in the benzene clathrate of hexa(1-aziridiny1)cyclotriphosphazene and comparative charge density studies of the phosphorus-sulphur bonding and of the of aromatic system in extent the a 1,3,2benzodithiaphosphenium cation and the related 2-phenyl-1,3,2benzodithiaphosphole.

re-man

ï

2.2. Electron Density Distribution in the Benzene Clathrate of Hexa(1-aziridinyl)cyclotriphosphazene

2.2.1. Introduction

é Y

ę

when in Wellington

¢

しいいます

ž

124

なうちを

Cyclophosphazenes occupy a prominent place among inorganic heterocyclic compounds^{1,2,26,27}. They contain an $[-N=PR_2-]$ repeating unit in a valence-unsaturated skeleton. The study on those compounds was initiated not only by their interesting chemical properties but also by their possible applications to serve as carriers for the medically active side groups.

Aziridinyl-substituted cyclophosphazenes have been recognized as cytostatic agents for more than 30 years²⁸. They can be described as a combination of a biologically active group (1-aziridinyl) and an electron-directing (depending on other substituents) phosphazene ring as carrier material.

The hexa(1-aziridinyl)tricyclophosphazene $N_3P_3az_6$ (az = aziridinyl = $-N(CH_2)_2$) appears to be one of the most promising of these drugs. The structural study of this compound reveals that it can exist in several forms in crystals. When it is recrystallized from CCl₄, it forms an 'anticlathrate' complex²⁹ $N_3P_3az_6 \cdot 3CCl_4$. When recrystallized from m-xylene, it yields orthorhombic unsolvated crystals, whereas crystallization from CS₂ produces monoclinic unsolvated crystals³⁰. The

conformations of the aziridinyl groups in these compounds are similar (<u>trans</u>).

いのないないであったいないとうとう

オートーレーションはないないない ちやち ひとしろい

However, when $N_3P_3az_6$ is recrystallized from benzene it forms a very stable complex $2N_3P_3az_6 \cdot C_6H_6$ with a most unusual <u>cis</u> conformation at the geminal aziridinyl groups (Figure 5). The crystal structure of this complex was determined at room temperature (288K), refined to R=0.026 and has been published³¹.

Figure 5. <u>Cis</u>-conformation of aziridinyl groups in cyclophosphazene.

The structure has been redetermined at 213 K to examine the deformation density of the phosphazene ring³².

Detailed study of the electron distribution carried out at low temperature is reported here. The molecule contains the well-known benzene ring and the three-member rings of the aziridinyl groups. The electron distribution features observed in those regions are used as an internal measure of the credibility of the electron density in the region of the P_3N_3 ring.

2.2.2. Experimental

Two independent sets of data have been used in the calculations. One set of data (set I) has been collected locally by a standard technique using the Enraf-Nonius CAD4 diffractometer. The second set (set II) has been collected for us by Bev Vincent at Molecular Structure Corporation³³, using R-Axis II, Rigaku automated X-ray Imaging System. The use of imaging plates allows accurate measurements of diffraction patterns with high dynamic range, high sensitivity, and low intrinsic background. This is the first example of using data from the X-ray Imaging System to calculate high accuracy deformation maps. The short time of data collection (6 hours as against about 3 months for the CAD-4) and the results, comparable with those obtained using the standard technique, allow us to predict that this technique can be widely used in the future.

2.2.3. Data Collection and Processing (Data Set I)

ł

1

Twe Town

ł

ハギャンシス あいわる モマセン

45

4,

An Enraf-Nonius CAD4 diffractometer $[\lambda (MOK_{-1})=0.70926Å]$ was used to measure the unit cell dimensions and to collect the data. The crystal, which was mounted in a Mark-Röhrchen glass capillary, was a near perfect octahedron with edges in the range 0.10-0.12mm. The data were collected in the rhombohedral setting at 213K which is the lowest safe temperature the crystal will endure. At 150K^a the crystal slowly (2 hours) crumbles, apparently transforming into a triclinic cell; the disintegration is slower at 170K but the crystal appears to be stable just above 200K. For reflections in the range $3^{\circ} < \theta < 25^{\circ}$ the full th, tk, tl shell was collected but for $25^{\circ} < \theta < 45^{\circ}$ only data in the range $\pm h$, $\pm k$, 1 ($h \ge k \ge 1$) were collected. While the re-collection of certain portions of the data confuses the accounting of the total number of reflections measured, ultimately about 26000 were used to provide the unique data set. The crystal and data collection parameters are listed in Table 2. The unit cell constants were obtained by least-squares analysis of the diffractometer setting angles of 25 well-centred reflections in the range 20=30°-34°. The data were processed by routine procedures³⁴.

^a 150.2 K is the temperature at which the 2 0 0 reflection of KH_2PO_4 splits. It is thus a very precise probe for the actual crystal temperature. J.C. Slater, <u>J.</u> <u>Chem. Phys. 9</u>, 16, (1943); see also <u>J. Phys C: Solid State</u> <u>Phys. 15</u>, 37, (1982).

Lorentz and polarization corrections were applied and absorption corrections were performed³⁵. Scattering factors for neutral atoms were taken from International Tables³⁶ and were corrected for the real part of anomalous dispersion.

2.2.4. Structure Solution (Data Set I)

The initial atomic parameters were taken from the original room temperature structure³¹ and these were refined with full-matrix least-squares using SHELX-76³⁷ and CRYSTALS³⁸.

The space group was confirmed as R3. Hydrogen atoms were placed in their geometrically calculated positions [d(C-H)] =The final refinements were with anisotropic 1.08Å1. temperature factors on the non-hydrogen atoms and individual isotropic temperature factors on the hydrogen atoms. The function minimised was $\Sigma w (|F_o| - |F_c|)^2$ where w is the weight (Table 2). Final R-values^b are R=0.0341 and $R_{y}=0.0370$. No correction for extinction was applied. The figures were produced with CHEMGRAF³⁹. Slant Fourier F_o maps and difference F_F maps were calculated through the benzene. cyclotriphosphazene, and aziridinyl groups planes using CRYSTALS³⁸.

^b $\mathbf{R} = \Sigma ||\mathbf{F}_{o}| - |\mathbf{F}_{c}|| / \Sigma |\mathbf{F}_{o}|;$

ころうちになるないできょう しょう かいうちがいかい いたかいちょう ひかいしん ひゃくちょう シー・シート コート・ノー

F

きょうくろい しちたち ちのむし

الایتران مرود در داراهین مهدود سورده ما مانوانی موانی بستی و مدان مرود با در مو

3401

 $R_{w} = [(\Sigma w (|F_{o}| - |F_{c}|)^{2} / \Sigma w F_{o}^{2})]^{4};$

Table 2. Physical properties and parameters for data collection and refinement of $2P_3N_3(NC_2H_4)_6 \cdot C_6H_6$ (Data Set I).

Formula	2P ₃ N ₃ (NC ₂ H ₄) ₆ · C ₆ H ₆
Molecular weight	852.71
Crystal class	Trigonal
Space group	R3 (rhombohedral) (No. 148)
Temperature (°K)	213(1)
a (Å)	10.210(1)
α (⁰)	79.18(2)
V (Å ³)	1013.9
Z	1
$d_c (g cm^{-3})$	1.396
F(000)	450
μ (cm ⁻¹)	3.07
Crystal size (mm)	.12x .12x .12
Diffractometer	CAD-4
λ (Å) (ΜΟΚα)	0.70926
hkl range	h: -20 20
	k: -20 20
	1: 0 20
θ range (°)	0-45
sinθ/λ	1.00

a set of a s

.

k

Table 2. (cont.). Physical properties and parameters for data collection and refinement of $2P_3N_3(NC_2H_4)_6$ C_6H_6 (Data Set I).

.

```
Take off angle (°)
                                           6.0
Detector width (mm):
                                           4(1.4 + \tan \theta)
variable slit:
Scan speed (° min^{-1})
                                           variable: 1.6-3.3
Scan type
                                           \omega/2\Theta
Scan width (°)
                                           1.0 + 0.35 \tan \theta
Standards (period.)
                                           555/612/361
    orientation (200 refls.)
    intensity
                                           no loss
                    (2h)
No. of meas. refls.
                                           ≈26000
No. of unique refls.
                                           5562
                                           0.0371
R
No. of obs. refls., Not
                                           2518
observed if [I>3\sigma(I)]
No. of variables, N.
                                           118
Transmission coefficients
                                           0.677-1.253
Weighting scheme
w=k/[\sigma^2(F)+gF^2]
                           k,g
                                           0.7940, 0.0092
Highest peak
in final diff. Fourier (e Å^{-3})
                                           0.42
Agreement factors:
\mathsf{R} = (\Sigma ||\mathsf{F}_{o}| - |\mathsf{F}_{c}||) / (\Sigma |\mathsf{F}_{o}|)
                                           0.0341
R_{w} = [\Sigma W(|F_{o}| - |F_{c}|)^{2}/(\Sigma W|F_{o}|)^{2}]^{1/2}
                                           0.0370
GOF = [\Sigma(|F_{o}| - |F_{c}|)^{2}/(N_{ob} - N_{v})]^{1/2}
                                           1.0708
```

n

Table 3.	Physic	cal properti	les	and parameters for data	
collecti	on and	refinement	of	$2P_3N_3(NC_2H_4)_6 \cdot C_6H_6$ (Data Set I)	I).

2P ₃ N ₃ (NC ₂ H ₄) ₆ · C ₆ H ₆
852.72
Trigonal
R3 (hexagonal) (No. 148)
213(1)
13.026(1)
20.759(1)
90.00
120.00
3050.5(2)
3
1.393
1350
3.14
.02x .02x .02
RAXIS II-c
0.71069
0-63
1.25

Table 3. (cont.). Physical properties and parameters for data collection and refinement of $2P_3N_3(NC_2H_4)_6 \cdot C_6H_6$ (Data Set II).

```
Take off angle (^{\circ})
                                                 2.8
Detector aperture (mm):
                                                 200x200
Crystal to detector dist.(mm)
                                                 59
Detector off-axis angle (°)
                                                 -28.5
                                                 6° oscillations
Scan
No. of meas. refls.
                                                 17639
No. of unique refls.
                                                 4596
                                                 0.0450
R
No. of obs. refls., N<sub>ob</sub>
                                                 3215
observed if [I>3\sigma(I)]
No. of variables, N.
                                                 118
                                                 27.25
N<sub>ob</sub>/N<sub>v</sub>
                                                 1/\sigma^2(F_{o})
Weighting scheme
Highest peak
in final diff. Fourier (e Å^{-3})
                                                 0.81
Agreement factors:
\mathsf{R} = (\Sigma | |\mathsf{F}_{o}| - |\mathsf{F}_{c}| |) / (\Sigma | \mathsf{F}_{o}|)
                                                 0.0430
R_{w} = [\Sigma W(|F_{o}| - |F_{c}|)^{2}/(\Sigma W|F_{o}|)^{2}]^{1/2}
                                                 0.0490
GOF = [\Sigma(|F_{o}| - |F_{c}|)^{2}/(N_{ob} - N_{v})]^{1/2}
                                                 1.910
```

2.2.5. HO Deformation Density Maps (Data Set I)

Once the refinement had converged, the structure was rerefined using those high-order (HO) reflections for which $25^{\circ} \le \theta \le 45^{\circ}$ (sin $\theta/\lambda > 0.6 \text{Å}^{-1}$). At these angles the diffraction from the bonding and lone-pair electrons is negligible⁴ and the refinement is responding to the effect of just the core electrons on each of the atoms. The calculations were performed using CRYSTALS³⁸ and Dunitz-Seiler weights⁴⁰. The parameters from the HO refinement were then used with the loworder data $3^{\circ} \le 0 \le 25^{\circ}$ (sin $\theta/\lambda < 0.6 \text{\AA}^{-1}$) to calculate structure factors F_c for all the reflections in the low-angle data. The low-order data are more susceptible to bonding effects concentrated in the valence electrons. Thus when the structure factors (F_c) , calculated with high-angle parameters, are subtracted from the low-angle F, data, a significant portion of the difference should represent the valence electron density. Such difference maps, which are known as $X-X_{HO}$ maps, show areas of both positive and negative electron density.

ł

Ares - Maran

n nam

ł

The experimental deformation density maps were calculated by the Slant Fourier procedure in CRYSTALS³⁸ through the benzene, aziridinyl and phosphazene planes. As a compromise between reducing experimental noise in the deformation maps and getting the maximum of information in the lone-pair region, $\sin\theta/\lambda$ was limited to 0.6\AA^{-1} . Only reflections with $I>3\sigma(I)$ were used in calculations.

The deformation densities observed show most promising features. The expected features are seen on the benzene ring and aziridinyl group. The densities in the P_3N_3 ring have a very significant arrangement which should finally settle the arguments about the nature of the bonding in this ring^{1,2}.

2.2.6. Data Collection and Processing (Data Set II)

The data were collected on an R-Axis IIc imaging plate area detector³³ mounted on an RU200 rotating anode X-ray generator equipped with a Mo anode. The area detector was fitted on a 20 stage which allows it to be moved around the ϕ axis to attain high 20 reflections. A low temperature device was installed to lower the crystal temperature to 213K. The generator was set at 50kV and 180mA to give 9kW of power. The crystal to detector distance was set at 59mm and the detector was swung out to a 20 value of -28.5°. This configuration allowed the direct beam image to be recorded on the plate while simultaneously giving full coverage out to 90° in a single positioning of the area detector.

The octahedral crystal having approximate dimensions of 0.02x0.02x0.02mm was mounted in a glass capillary and a standard xyz goniometer head was used to center the crystal in the beam. The X-ray filament was normal focus, but a 0.3mm collimator was used to reduce background on the imaging plate.

The position of the direct beam was recorded on one frame by removing the beam trap and opening the shutter for a fraction of a second.

Three 3° oscillation photographs were recorded at 0° , 45° , and 90° (in ϕ), respectively. These oscillation photographs were used by the indexing software to determine the unit cell and crystal orientation. Based on this information, it was determined that the data could be collected in frames of 6° oscillation with a minimum of reflection overlap. of (Overlapping reflections are totally rejected in the integration procedure.) A total of thirty 6° frames were collected to give a full 180° of data. Each frame was exposed for 10 minutes, so total data collection time was just over 5 hours. The crystal and data collection parameters are listed in Table 3.

Several different techniques^{41,42} were used to integrate the data and compared. The one which gave the best results used an integration box of fixed size (roughly 4.5 mm square). After the integration box shape was optimized, the thirty frames were integrated to yield 17639 reflections. Data are divided into two categories: fulls and partials. Full reflections appear completely on one frame. Partials appear on more than one consecutive frame; partials which appear on more than 2 frames are rejected. The final refined mosaic spread of 0.344° (when compared to the total oscillation range per frame) was low enough to guarantee that the vast majority à.

ŧ

بيتحقيقهم فدشمه فكمعربه لا

£

٦ţ

A Proming to

of the data (94%) were fully recorded on a single exposure.

The data were merged into one data file, brought to a common scale and averaged. Then a post-refinement procedure was undertaken which uses all data to refine the cell dimensions and camera constants (which include crystal to detector distance, 20 offset, crystal orientation, mosaic spread and the plate deformation). Based on these new parameters, the frames were reintegrated, merged, scaled and averaged to produce the final data set. A total of 4596 unique reflections were produced, with a merging R-value of 4.5%. The data were corrected for Lorentz and polarization effects. No absorption correction was applied. The data are based on the hexagonal setting of the rhombohedral cell.

2.2.7. Structure Solution (Data Set II)

The structure was solved by direct methods⁴³ and expanded using Fourier techniques⁴⁴. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically. The final cycle of full-matrix least-squares refinement^c was based on 3215 observed reflections (I>3.00 σ (I) and 20 \leq 180°) and 118 variable parameters, and converged with unweighted and weighted agreement factors of R=0.043 and

シャー

^c Least-Squares: Function minimized: $\Sigma w(|F_0| - |F_c|)^2$ where: $w = 1/\sigma^2(F_0) = 4F_0^2/\sigma^2(F_0^2)$

R_=0.049.

The standard deviation of an observation of unit weight^d was 2.50. The weighting scheme was based on counting statistics and included a factor (p=0.02) to downweight the intense reflections. Plots of $\Sigma w (|F_0| - |F_c|)^2$ versus $|F_0|$, reflection order in data collection, $\sin \theta/\lambda$, and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.81 and -0.72e/Å³, respectively. No absorption nor extinction corrections were applied.

Neutral atom scattering factors were taken from Cromer and Waber³⁶. Anomalous dispersion effects were included in F_c^{45} ; the values for $\Delta f'$ and $\Delta f''$ were those of Cromer³⁶.

All calculations were performed using the TEXSAN⁴⁶ crystallographic software package of Molecular Structure Corporation.

2.2.8. HO Deformation Density Maps (Data Set II)

Positional and thermal parameters of non-hydrogen atoms were re-refined based on high-order (HO) reflections with $\sin\theta/\lambda > 0.6 \text{Å}^{-1}$ in order to avoid bias from the aspherical

d Standard deviation of an observation of unit weight: $\Sigma w (|F_o| - |F_c|)^2 / (N_o - N_v)]^{\frac{1}{2}};$

where: $N_o =$ number of observations $N_v =$ number of variables

30

いないい

distribution of the valence electrons. The parameters from the HO refinement were then used with the low-order data $(\sin\theta/\lambda<0.6\text{Å}^{-1})$ to calculate structure factors F_c for all the reflections in the low angle data. The X-X_{HO} deformation maps were calculated for the benzene, cyclotriphosphazene, and aziridinyl groups planes.

All calculations were performed using the TEXSAN⁴⁶ crystallographic software package of Molecular Structure Corporation.

2.2.9. Multipole Deformation Maps (Data Set II)

Multipole refinement was performed using program MOLLY¹⁷. Data Set II was converted to rhombohedral setting. The aspherical atomic density expansion of Hansen and Coppens⁸ was used in calculations, as incorporated in the program MOLLY¹⁷. The valence-shell population parameters were constrained⁸ to give an electrically neutral unit cell. For phosphorus, nitrogen, carbon, and hydrogen atoms, Slater-type functions were used for the multipole deformation functions. In the subsequent refinement, the overall scale factor, κ' , κ'' , and multipole parameters, together with the positional and thermal parameters of non-hydrogen atoms were varied. Initially, hydrogen atoms were refined isotropically. Later, their coordinates were adjusted by extending along the C-H bond directions to bond length of 1.06Å for the C_{tetrahedral}-H bonds,

and 1.08Å for the C_{aromatic}-H bonds⁴⁷. Positional and thermal parameters of hydrogens were then fixed in the subsequent refinements. The multipole expansion was truncated at the octapole level for phosphorus, nitrogen, and carbon atoms and at the dipole level for hydrogen atoms. No site symmetry constraints were applied on the multipole functions since they were not required by the space group symmetry. The analysis of the agreement between model and experimental structure factors gave no indication that significant extinction was present therefore the extinction coefficient was not refined.

The multipole population parameters are listed in Appendix 1. The fractional coordinates and thermal parameters from this refinement are given on microfiches (Appendix 4).

throws when a series

1 1 1444

ź

The rigid-bond¹³ test indicated that the multipole refinement produced a relatively effective deconvolution of the mean-square atomic displacements from the valence-electron The differences between the meandensity deformations. square displacements along interatomic directions were less than 0.001\AA^{-1} for nearly all the bonded pairs of non-hydrogen atoms (Appendix 4). The exceptions were bonds N3-C1, N3-C2, and C1-C2 of one of the aziridinyl group, where the Δ_{AB} = 0.0013\AA^2 , 0.0014\AA^2 , and 0.0012\AA^2 , respectively. This fact and shape of the thermal ellipsoid, as well the as the observations of the electron density maps, suggest that the aziridinyl groups are not entirely rigid and that there is still some libration present.

The residual maps, experimental deformation maps, and dynamic deformation maps were calculated using program NF (local modification of NIELSAV 48).

2.2.10. Molecule

2

er s

11 4. 4.

the second second and a state and all

-1-Jumper

ř

The benzene clathrate of hexa(1-aziridinyl)cyclotriphosphazene crystallizes in space group $R\bar{3}$ with the threefold axis passing through the centres of the planes of both

Figure 6. Crystal structure of $2N_3P_3az_6 \cdot C_6H_6$ shown with the C_3 axis vertical; (a) ball and stick model; (b) space filling model.

(a)

the benzene and the phosphazene rings (Figure 6). The single molecule of benzene is located at the centre of symmetry between two molecules of cyclophosphazene. The planes of three rings are parallel but their planarity is not required by symmetry and in fact the phosphazene ring is very slightly puckered with P and N atoms deviated by 0.016Å from the plane. The structure thus contains two unique aziridinyl groups, a phosphazene ring, and a benzene molecule which is very firmly held in the lattice (Figure 6).

The cyclotriphosphazene ring contains two unique exocyclic and two unique endocyclic P-N bonds: exocyclic (mean): 1.675(1)Å, endocyclic (mean): 1.593(1)Å.

aziridinyl groups bonded to each P atom. The aziridinyl

The molecule has two

groups are pyramidal and Figure 7. Aziridinyl group. adopt an unusual <u>cis</u> conformation (Figure 5). Each group has a prominent electron lone-pair orbital which occupies space within the crystal lattice (Figure 7). The lone-pairs are arranged in such a way that their axes are almost parallel to the plane of P_3N_3 ring. Atomic positions, temperature factors, interatomic distances, interbond angles for both set of data are given in Appendix 1. The pertinent torsional angles are listed on microfiches (Appendix 4).

2.2.11. Bonding in the Phosphazene Ring

The problem of explaining the bonding arrangements in phosphazenes has occupied the attention of a number of investigators^{1,2,49,50}. It seems generally agreed that two electrons of nitrogen occupy an sp² lone-pair orbital in the plane of the ring (or the local P-N-P plane), with the third electron occupying the p_z orbital. The situation with phosphorus is not so clear. The σ -bonds can be considered to result from the approximate sp³ hybrids on the P atom, bonding to the p orbitals of the N from the aziridinyl groups, and sp^2 hybrid on the N in the ring. The disposition of the remaining electrons has been the subject of controversy. With the phosphorus 3s and 3p orbitals filled, there is a possibility of the involvement of 3d orbitals on P in π -bonding.

One type of out-of-plane $p_{\pi}-d_{\pi}$ bonding (π) would involve a single occupied p_{z} orbital on N and d_{xz} (heteromorphic bonding) or d_{yz} (homomorphic bonding) orbitals on P. In addition, the nitrogen sp² lone-pair can be involved in the in-plane bonding (called π ') to $d_{x^{2}.y^{2}}$ and d_{xy} orbitals on the P (Figure 8). The discussion centres on the questions whether delocalized π bonding occurs over the entire ring^{51,52}, or gives rise to a three-centre bond system⁵³ with the discontinuity of the electron cloud at each phosphorus atom.

Exocyclic

 π - bonding

Figure 8. Bonding in the phosphazenes; (a) π -bonding; (b) π '-bonding; (c) exocyclic π -bonding.

Different effects are anticipated according to the relative participation of the d_{xz} and d_{yz} orbitals in the π bonding. If only the d_{xz} orbital gives rise to the bonding, a broadly delocalised, heteromorphic, 'pseudoaromatic' π orbital could be formed. Exclusive involvement by d_{yz} would generate a homomorphic π system. On the other hand, the approximately equal contributions from the two orbitals would tend to separate π orbitals into localized three-centre islands of π character interrupted at each P atom, and a broad delocalization would not be expected.

More detailed theoretical calculations^{54,55} appear to support the delocalized model and indicate that conjugation beyond the three-center islands is of minor importance in the cyclotriphosphazene derivatives. The work of Doggett⁵⁶ suggests that the delocalized model of Craig and Paddock⁵² and the three-center model of Dewar⁵³ et al. are fundamentally very similar and differ only in the choice of parameters.

The influence of the substituents on phosphorus in the phosphazenes has been also discussed^{1,2,50,57,58}. The presence of a highly electronegative group will contract the phosphorus d orbitals and facilitate the donation of the nitrogen sp² lone-pair electron to the π '-system; whereas the electron-donating substituents can participate in the exocyclic π -bonding (Figure 8) by means of the d₂² orbital on P. However, the aziridine derivatives of phosphazenes have pyramidal exocyclic nitrogen atom configurations and relatively long

exocyclic P-N bond length and hence it is supposed that exocyclic lone-pair delocalization does not occur in these systems⁵⁵.

An additional complication to the electronic structure of cyclophosphazenes is the possibility of transannular phosphorus-phosphorus bonding⁵⁹.

Some experimental evidence^{26,55} can be adducted to support all of the above theories. Thus, thermochemical measurements⁶⁰ have been cited in support the initial 'aromatic' theory; ultraviolet spectra^{55,61} and some X-ray works^{55,62} support the view about incomplete delocalization, at least in some structures; whilst the alternation of properties with the ring size appears to support the proposal on π '-bonding⁶³.

2.2.12. Electron Density Maps

Electron density calculations were performed to examine the deformation electron density of the phosphazene ring. However, the same structure should show the expected features for the deformation density of the benzene ring. It should also show the nitrogen lone-pair electrons for the two unique aziridinyl groups and the deformation density of the two three-membered rings. The presence of these expected features should give support to the observations on the phosphazene ring.

The $X-X_{HO}$ map through the plane of the benzene ring is

おいない いちんしょう かいこうま ちょうちょうちょうちょう

A MAX MALE

ちょうちょう しなるが とうちののちょうちょう

うるしょうないない

Figure 9. $X-X_{HO}$ deformation density in the benzene ring (Data Set I).

randor de la constant de la constant

\$

;

;

1b2tx 0-25 benzene

map scale in angstroms

plane defined by three atoms: C9 C92 C95 contour interval (e/A**3): 0.04 perpendicular offset: 0.00 origin translation along x (A): 1.30 origin translation along y (A): map rotation (deg): 0. 0.70

Figure 10. $X-X_{HO}$ deformation density map in benzene (Data Set II).

او المحربات 4

٦ 4

141

ł

· · ·

ł

4 14 14

1

ì

e the mark

Figure 11. Dynamic deformation density map in the plane of the benzene ring.

shown in Figure 9 and Figure 10. The peaks of deformation density are clearly observed between the carbon atoms in the ring, and the level of density (see below) strongly indicates both σ and π bonding. This compares very favourably with the reported deformation density for naphthalene⁶⁴.

The dynamic multipole deformation density map for the benzene plane is shown in Figure 11. All maps presented for the benzene ring display similar features. The existence of the negative minima near the hydrogen atoms can be attributed to the experimental H-atom modelling. The hydrogens in the benzene ring were positioned to give 1.08Å C-H bond length and 120° C-C-H angles. Any error in the hydrogen position will produce strongly correlated errors in the hydrogen dipole population. The mean-square atomic displacement parameters are correlated with monopole populations and this can also bias the valence-shell population parameters.

Figure 12 and Figure 13 show the plane perpendicular to the benzene ring, exactly bisecting two opposite C-C bonds. Since the C-C bond in the benzene is formed with both σ and π bonds, the cross-section should be elliptical, with the long-axis perpendicular to the plane of the ring. The electron density in the bond should be squashed, by electronelectron repulsions, on the inside of the ring and somewhat elongated on the outside. All these features can be seen in Figure 12 and Figure 13.

42

1.41

11.11

Figure 12. $X-X_{HO}$ deformation density in the plane bisecting C-C bond in the benzene ring; (a) Data Set I; (b) Data Set II)

b

43

rease an state with high the state of the st

ê

1

5

~~ "S'ee

ş

山田、日

ŝ

Figure 13. Dynamic deformation density in the plane bisecting two opposite C-C bonds in the benzene ring.

Figure 14. X-A_{RO} deformation density in the three-member rings; (a) Data set I; (b) Data set II;

South Lat

및 ct

2

「「「「「「「「「「「」」」」

antes la supe

il.

The $X-X_{HO}$ maps through the plane of each of the two aziridinyl rings are presented in Figure 14. Figure 15 shows the multipole dynamic deformation density map for aziridinyl groups.

In the three-membered ring the deformation density peaks appear outside the triangle sides and can be attributed to the

'bent bond' concept, in accordance with the theoretical prediction for highly strained bonds^{65,66,67}. Both rings show the expected 'bent' σ bonds with a much lower residual density (since they have no π bonding density) than that seen for the benzene. There is also an additional feature at the nitrogen atom in Figure 14a, which is probably the tail of the lone pair. However, there is still some libration present (suggested also by the rigid-bond test) in at least one of these aziridinyl groups (with N12) and the three-membered ring density while clear and confirming is not as good as the very best seen in these systems⁶⁷.

The lone-pair electrons are clearly visible on the aziridinyl nitrogen atoms. Peaks of the deformation density in the region of non-bonding orbitals represent the part of the lone-pair density which is in excess of the spherical atomic distribution rather than their total density. Figure 16 shows the $X-X_{HO}$ maps for the planes which pass through the phosphorus atom, the appropriate nitrogen atom, and then bisect the C-C bond of the aziridinyl group. The nitrogen lone-pair electrons should be found in this plane. The multipole dynamic deformation maps are presented in Figure 17. Both groups show the deformation density maxima in exactly the predicted positions.

なるないであっていいないでいう

いいい

Figure 16. X-X_{HO} deformation density in the region of the lone-pair at N11 and N12; (a) Data Set I; (b) Data Set II.

Figure 17. Dynamic multipole map in the regions of lonepair electrons in the aziridinyl groups.

The $X-X_{HO}$ calculations for the light-atom portions of the structure show the expected features very clearly. The multipole deformation maps for the benzene and aziridinyl groups are almost an exact copy of the $X-X_{HO}$ calculations. Thus the expected deformation densities observed at those parts of the molecule support the chemical conclusions and credibility of data presented for the phosphazene ring.

49

のながらいたいのであるのですよう

Figure 18. $X-X_{HO}$ deformation density in the phosphazene ring (Data Set I).

1b2tx 0-25

į,

1

125

Į

3 s,

1

1 r

i

~~ 4 5<u>6</u>

map scale in angstroms

0

plane defined by three atoms: Pi P91 P92 contour interval (e/A**3): 0.05 perpendicular offset: 0.30 origin translation along x (A): 1.40 origin translation along y (A): 0.80 map rotation (deg): 0.

Figure 19. $X-X_{HO}$ deformation density in the phosphazene ring (Data Set II).

Figure 20. Dynamic deformation density in the phosphazene ring (Data Set II).

Ļ

Figure 18 and Figure 19 show the $X-X_{\mu\alpha}$ deformation density on the phosphazene ring. They clearly display the bonding through the nitrogen atoms with the in-plane lone pair and the Many minor changes in refinement node at phosphorus. parameters, data ranges, and distances from the plane have been performed for this ring, yet all the deformation maps show the same broad features. There is a clear reduction in the valence electron density at the phosphorus atom, and a clear increase in density at the nitrogen atom and this density appears to connect from one endocyclic P-N bond through the nitrogen atom to the second endocyclic P-N bond. This observation is also supported by the multipole dynamic deformation density of the phosphazene ring (Figure 20). The multipole parameters which are normalized in such a way that a value of unity corresponds to the transfer of one electron from the negative to positive regions of the corresponding charge deformation term also indicate this trend. The net valence charges (P_u) obtained for P1 and N1 suggest that the N1 has an excess charge of 0.55(15) while the P1 has a deficiency of charges of 0.14(30) (Appendix 1). However, it should be noticed that the magnitudes of such charge shifts are model-dependent and no quantitative conclusions can be derived.

The cross-sections through the P-N and P-N' bonds are presented in Figure 21. The electron density is elongated in the direction normal to the plane of the ring, similarly to スーン メー

and low solts

- the She was

that in the benzene, which indicates the contribution of the π -bonding into the P-N bonding. This contribution seems to be slightly larger for one P-N bond than for another. Usually, the endocyclic P-N bonds in phosphazenes are considered as equivalent. The values of the P-N bond lengths in $2N_3P_3az_6 \cdot C_6H_6$ are significantly different (1.588(1)Å and 1.598(1)Å). Such a difference would be predicted from the <u>cis</u> geometry of the aziridinyl groups which requires the two cyclic P-N bonds to be non-equivalent because of their different local environments. (In the <u>trans</u> system these two bonds should be equal.)

Contrary to the case of benzene (Figure 13), in the phosphazene ring the deformation density is squashed from

Figure 21. Dynamic deformation maps through the planes bisecting the P-N bonds; (a) Pl-N1 bond; (b) Pl-N1(1+z,x,y-1) bond.

outside the ring and elongated on the inside (Figure 21). This could indicate the contribution from the in-the-plane π '-bonding.

In the phosphazene system, the residual map through the phosphazene ring is essentially featureless (Figure 22). It shows a density range that seldom exceeds \pm 0.1e/Å³ and is never more than \pm 0.15e/Å³.

The observations of the deformation density of the phosphazene system, supported by the observation on the wellknown molecular systems as benzene and three-member rings, are the first experimental observation on the bonding density for the system and are in agreement with the delocalization models^{52,53,56} for bonding in the cyclotriphosphazene ring.

Figure 22. Residual multipole map in the region of the phosphazene ring.

2.2.13. Summary

+ 1

The study of the deformation electron density in the benzene clathrate of hexa(1-aziridinyl)cyclotriphosphazene has been undertaken to locate the bonding and non-bonding lonepair electrons in the phosphazene ring and to answer the longdebated questions about the bonding in this ring^{1,2,26,55}. The compound contains well-known molecular fragments (like benzene and three-member rings of aziridinyl groups) for which the deformation density has already been examined. The expected observations fragments add on these credence to the observations on the phosphazene ring.

Two independent sets of data have been used in the calculations. One has been collected locally by a standard technique (CAD-4), while the second has been collected for us at MSC³³, using R-Axis II, Rigaku automated X-ray Imaging imaging plates allows accurate System. The use of measurements of diffraction patterns with high dynamic range, high sensitivity, and low intrinsic background. This is the first example of using data from the X-ray Imaging System to calculate high accuracy deformation maps. The low time of data collection (6 hours as against about 3 months for the CAD-4) and the results, comparable with those obtained using standard technique, allow us to predict that this technique can be widely used in the future.

The $X-X_{HO}$ calculations for the light-atom portions of the structure show the expected features very clearly. The multipole deformation maps for the benzene and aziridinyl groups are almost an exact copy of the $X-X_{HO}$ calculations. Thus the expected deformation densities observed at those parts of the molecule support the chemical conclusions and credibility of data presented for the phosphazene ring.

The observations of the deformation density of the phosphazene system are the first experimental observation on the bonding density for the system and are in agreement with the delocalization models^{52,53,56} for bonding in the cyclotriphosphazene ring.

2.3. Comparative Charge Density Studies of the Phosphorus-Sulphur Bonding and of the Extent of the Aromatic System in a 1,3,2-Benzodithiaphosphenium Cation and the Related 5-Methyl-2-Phenyl-1,3,2-Benzodithiaphosphole.

2.3.1. Introduction

It has been suggested^{68,69,70,71} that the 1,3,2benzodithiaphosphenium cation (II) contains an extended ten electron $p\pi$ - $p\pi$ system analogous to naphthalene⁶⁴. This suggestion was based initially on the spectroscopic evidence, structural observations on the bond lengths, and the planarity of the cation⁷⁰.

A preliminary examination of the charge density from data collected at room temperature indicated⁷² that the situation might not be as simple as this since the electron density in the bonds was not distributed as evenly as might be expected.

The low-temperature deformation density studies of the cation (II) and the related neutral molecule of 5-methyl-2phenyl-1,3,2-benzodithiaphosphole (III) are reported here. The electron distribution in these molecules should be predictably different (Figure 23) and the extent to which the deformation density studies show all the expected features in the two systems can be used as a measure of the validity of the conclusions derived for the cation (II).

Figure 23. Diagram of molecules (II) and (III).

Me

If the cation (II) contains an extended 10 electron $p\pi$ $p\pi$ system, a π -electron distribution like that of naphthalene⁶⁴ is expected to appear in the deformation density map for the cation, while the neutral molecule (III), which is not planar, will show an aromatic distribution for the phenyl ring only.

Similarly, the sulphur atoms of the cation will each have a single set of lone-pair electrons in the plane of the ring. The sulphur atoms in the neutral molecule, however, will each have two sets of lone-pair electrons which, together with the S-C and S-P bonds, will make up an approximate tetrahedron (Figure 23).

The positive charge for the cation is formally written on the phosphorus atom. If the charge is predominantly on this atom^e, then the charge-density distribution will show little charge (or a charge hole) at the phosphorus atom and the single set of lone-pair electrons, which should be in the plane of the ring, may be lost in the hole.

2.3.2. Experimental and Refinement

The crystals of (II) and (III) were mounted in glass capillaries. An Enraf-Nonius CAD4 diffractometer was used to measure the unit cell dimensions and to collect the data at The crystal and data collection parameters for the 213K. phosphenium cation and the neutral molecule are listed in Table 4 and Table 5, respectively. The unit cell constants obtained by the least-squares analysis of were the diffractometer setting angles of 25 well-centred reflections in the range $2\theta = 20-30^{\circ}$. The intensities were reduced to a standard scale using routine procedures³⁴. Lorentz and polarization corrections were applied. Absorption corrections were performed³⁵. Scattering factors for neutral atoms were £

ž

.....

1

^eVarious theoretical calculations suggest that between 50-70% of the charge is on this phosphorus atom (see Reference 71 p. 39 and B.W. Royan, N. Burford, J. Waluk, & J. Michl, Organometallics, (1990), **9**, 1085).

taken from International Tables³⁶ and were corrected for the real part of the anomalous dispersion. The calculations and refinements were performed by using SHELX-76³⁷.

The space group was confirmed as P2,/c for the cation and P2,/n for the neutral molecule. The initial positions of the non-hydrogen atoms were taken from the structure determination at room temperature⁷⁰. The structure was refined by a full-matrix least-squares procedure initially with independent isotropic temperature factors on the atoms. Absorption corrections were then applied. Hydrogen atoms were placed in their geometrically calculated positions [d(C-H) =The final refinements were with anisotropic 1.08Å]. temperature factors on the non-hydrogen atoms and individual isotropic temperature factors on the hydrogen atoms. The function minimised was $\sum w(|F_c| - |F_c|)^2$ where w is the weight (Table 4 and Table 5). Final agreement factors for the cation and neutral molecule are given in Table 4 and Table 5, respectively. No correction for extinction was applied. The final difference map had no recognizable residual features. The figures were produced with CHEMGRAF³⁹. Slant Fourier F. maps and difference F_o-F_c maps were calculated through different molecular planes by using CRYSTALS³⁸. Atomic positions, temperature factors, interatomic distances, and interbond angles for the benzodithiaphosphenium cation and benzodithiaphosphole molecule are given in Appendix 2. The pertinent torsional angles for both structures are listed on LINESSE SERVICES

第第一「 死 4999、 19835

ALC: NOT

100000000000.0. TO

microfiches (Appendix 4).

The atomic positional and thermal parameters of the neutral molecule (III) were re-refined based on high-order (HO) reflections with $\sin\theta/\lambda > 0.6 \text{Å}^{-1}$. The parameters from the HO refinement were then used with the low-order data $(\sin\theta/\lambda < 0.6 \text{Å}^{-1})$ to calculate structure factors F_c for all the reflections in the low angle data. The X-X_{HO} deformation maps were calculated using the TEXSAN⁴⁶ crystallographic software package of Molecular Structure Corporation.

Although the extended data set at 213K has also been collected for the cation (II), a careful examination of these data showed that a small number of reflections were present for the class hol $1 \neq 2n$. These reflections had $I > 6\sigma(I)$ and were present for all the symmetry equivalent reflections. Refinement of the structure produced an unsatisfactory result for the anion, AlCl₄, and it seems likely that at low temperatures the space group degrades from $P2_1/c$ to $P2_1$ with the four AlCl, anions splitting into two non-equivalent groups of two each. Despite many attempts, this space group anomaly was not satisfactory resolved, and so the study was suspended until another, a more temperature-stable, derivative could be prepared. At 230K the crystal appears to be well-behaved and the difference maps are shown for the data collected at this temperature. While these maps show many intriguing features, which will be discussed, the temperature is really too high for any definite conclusions to be drawn.

Table 4	1. P	hysic	al j	properti	ies	and	parameters	for	data
collect	:ion	and	ref	inement	of	C,HS	S,P'AlCl ₄ .		

Formula	C ₆ H ₄ AlCl ₄ PB ₂
Molecular weight	339.98
Crystal class	Monoclinic
Space group	P2 ₁ /c (No. 14)
a (Å)	6.589(3)
b (Å)	23.351(5)
с (Å)	8.657(3)
3 (°)	100.25(3)
V (Å ³)	1310.7
Z	4
d _c (g cm ⁻³)	1.723
F(000)	672
μ (cm ⁻¹)	13.62
Crystal size (mm)	.05 x .35 x .50
Temperature ([°] K)	230
Diffractometer	CAD-4
λ (Å) (ΜΟΚα)	0.70926
hkl range	h: -7 7,
	k: -1 25,
	1: -9 9
6 range (°)	2-23
sin0/X	0.55

1

1

1442

4

+ 1

۲ ۲ ۲

7 ,

** *** *

朝御堂、王を望城が 、 こうべゆきょう ちょう

Γ.

Table 4. (cont.). Physical properties and parameters for data collection and refinement of $C_6H_4S_2P^4$ ·AlCl₄. Take off angle (°) 6.0 Detector width (mm): variable slit: $4(1.4 + \tan\theta)$ Scan speed ($^{\circ}$ min⁻¹) variable: 1.6-3.3 Scan type ω/2Θ Scan width (°) 1.0 + 0.35tan0 Standards (period.) 1 6 4 / -3 6 3 / -1 13 0 orientation (200 refls.) intensity no loss (2h) No. of meas. refls. 7578 No. of unique refls. 1316 R 0.0375 No. of obs. refls., Not 1265 observed if $[I>3\sigma(I)]$ No. of variables, N_v 132 Transmission coefficients 0.777-1.143 Weighting scheme $w=k/[\sigma^2(F)+gF^2]$ k,g 1.0909, 0.0003 Highest peak in final diff. Fourier (e $Å^{-3}$) -0.31 Agreement factors: $\mathsf{R} = (\Sigma | |\mathsf{F}_{o}| - |\mathsf{F}_{c}| |) / (\Sigma | \mathsf{F}_{o}|)$ 0.0326 $R_{w} = [\Sigma W(|F_{o}| - |F_{c}|)^{2} / (\Sigma W|F_{o}|)^{2}]^{1/2}$ 0.0328 $GOF = [\Sigma(|F_o| - |F_c|)^2 / (N_{ob} - N_v)]^{1/2}$ 1.4439

Ą

Formula	C ₁₃ H ₁₁ PS ₂
Molecular weight	262.32
Crystal class	Monoclinic
Space group	P2 ₁ /n (No. 14)
a (Å)	14.696(7)
b (Å)	6.244(7)
с (Å)	14.793(6)
β (°)	114.64(4)
V (Å ³)	1233.7
Z	4
d _c (g cm ⁻³)	1.412
F(000)	544
μ (cm ⁻¹)	5.11
Crystal size (mm)	.15 x .25 x .25
Temperature (°K)	210
λ (Å) (ΜοΚα)	0.70926
hkl range	h: -26 26,
	k: 0 11,
	l: -17 26
θ range (°)	2-45
$\sin\theta/\lambda$	1.0

Table 5. Physical properties and parameters for data collection and refinement of $C_{13}H_{11}PS_2$.

TARK TO A STATE TO BE STATE AND A STATE

and the second second second second second second second second

Seconda:

ł

war in a

81 E

Ŗ

ŧ,

ļ

Table 5 (cont). Physical properties and parameters for data collection and refinement of C13H11PS2. Take off angle (°) 6.0 Detector width (mm): variable slit: $4(1.4 + \tan \theta)$ Scan speed (° min^{-1}) variable: 1.6-3.3 Scan type ω/2Θ Scan width (°) $1.0 + 0.35 \tan \theta$ Standards (period.) -2 0 8 / 2 3 -6 / -9 0 5 orientation (200 refls.) intensity (2h) no loss No. of meas. refls. 17035 No. of unique refls. 7081 R 0.0334 No. of obs. refls., Nob 1915 observed if $[I > 3\sigma(I)]$ No. of variables, N. 202 Transmission coefficients 0.650 - 1.233Weighting scheme: $w=k/[\sigma^2(F)+gF^2]$ k,g 1.0503, 0.0013 Highest peak in final diff. Fourier (e $Å^{-3}$) -0.44Agreement factors: $\mathsf{R} = (\Sigma ||\mathsf{F}_{o}| - |\mathsf{F}_{c}||) / (\Sigma |\mathsf{F}_{o}|)$ 0.0466 $R_{w} = [\Sigma W(|F_{o}| - |F_{o}|)^{2}/(\Sigma W|F_{o}|)^{2}]^{1/2}$ 0.0488 $GOF = [\Sigma(|F_{o}| - |F_{c}|)^{2} / (N_{ob} - N_{v})]^{1/2}$ 1.4743

ł

£

2.3.3. Electron Density Maps

In the 10π -electron cation system, each sulphur atom should have one set of lone-pair electrons in the plane of the rings. The sulphur atoms in the neutral compound, on the other hand, should each have two sets of lone-pair electrons and these should be found in the plane bisecting the C-S-P angle and perpendicular to the C-S-S-C plane (Figure 23). However, a careful examination of the cation shows that, in fact, the ring is slightly saucer shaped, while the neutral molecule is distorted by a steric interaction which causes the whole ring to twist (Figure 24).

Figure 24. Diagram showing the twist of the phenyl ring in the neutral molecule (III).

Figure 25. Sulphur lone-pairs in the cation (II).

The diagram (Figure 25) shows the electron distribution on the planes which bisect the two C-S-P angles in the phosphenium cation and are perpendicular to the ring. Interestingly, the lone-pairs follow the surface of the saucer.

Figure 26. Sulphur lone-pairs in the neutral molecule (III).

ŕ

· 2 × 2 · 3

Krist & 1557 - 4 444

きょうしんしょう 法許

Figure 26 shows the electron density on the planes perpendicular to the rings which bisect two C-S-P angles in the benzodithiophosphole molecule. In this case, two lonepairs, clearly visible on each sulphur atom, are distorted in exactly the way that could be predicted from the twisting of the neutral molecule (Figure 24).

Thus the location of the sulphur lone-pairs supports the proposition that the cation is a 10π electron system.

While the observations of the deformation density in the cation in general terms support the proposed 10π -electron system, the fine details suggest that there is a large contribution from the "quinoid" structure (Figure 27).

Figure 27. The "quinoid" structure proposed for the cation (II).

plane defined by three atoms: Si S2 P1 contour interval (e/A**3): 0.03 perpendicular offset: 0.20 origin translation along x (A): 1.50 origin translation along y (A): -1.50 map rotation (deg): 180.

Figure 28. Difference electron density in the cation (II).

ł

plane defined by three atoms: C2 C1 C5 contour interval (e/A**3): 0.05 perpendicular offset: -0.10 origin translation along x (A): 1.00 origin translation along y (A): 1.00 map rotation (deg): 0.

Party Party

* * * ** * * * * * *

A N

"NALL' TO TO TO TO

あていたいたちとろうちゃうないろなやちゃ

Figure 29. X-X_{HO} deformation density in the neutral molecule (III).

This is reflected perhaps most clearly in the interatomic distances (Appendix 2), though it can also be seen in the variation of the deformation density along the C-S, C3-C4 and C5-C6 bonds in the cation (Figure 28). Figure 29 shows the $X-X_{\mu 0}$ deformation density map for the neutral phosphole There is a noticeable difference between the molecule. electron density distribution in both molecules. The deformation density map for the cation resembles that of naphthalene⁶⁴ with the 'aromatic' spread of the σ and π bonding density over the whole ring. However, the slight cuncentration of the deformation density along the C-S bonds, ascribed to the contribution from the "quinoid" structure, can be observed. Interestingly, there is considerably more bonding density along these bonds in the cation than in the neutral molecule. On the other hand, in the neutral molecule there is a greater concentration of the electron density in the C, ring.

If the "quinoid" type structure suggested by the ring density makes a major contribution to the bonding in the cation, then the phosphorus atom must receive a substantial portion of the positive charge. This is also supported by the deformation density observations. The phosphorus lone-pair for the cation is presented in Figure 30. The lone-pair electrons are also very clear for the neutral molecule (Figure 31).

ŝ

ŕ

のないないないないない

and the second water

Contraction and and allered

くろう 一日に ちちょうちょう

٤ ١

2

Figure 30. Phosphorus lone-pair in the cation (II).

Figure 31. Phosphorus lone-pair in the neutral molecule (III).

÷

1

2

、

المراجع والمراجع المراجع والمراجع والمحافظ والمراجع والمراجع والمراجع والمراجع والمراجع

2.3.4. Summary

1

š

ì

ジョン

٩

â

Å

\$ †

2

į

The 1,3,2-benzodithiaphospholium cation (II) is one of the examples of a novel type of compounds containing the thermodynamically stable $3p\pi - 3p\pi$ bonding between the phosphorus and sulphur⁷⁰. The observed structural features, planarity, and a general aromatic behaviour indicate a bicyclic $10-\pi$ -electron system. The related molecule of 5methyl-2-phenyl-1,3,2-benzodithiaphosphole represents the closest PS, σ -bonded analogue of (II) allowing direct structural comparison of both systems. The presence of the lone pairs on P and S atoms evident in the folded conformation of (III) and their absence in the planar cation of (II) support the delocalized $p\pi$ structure. However, there is a significant interaction between the sulphur centres and the benzo moiety in the cation, which suggest a contribution of the quinoid structure. The low-temperature deformation density studies of the cation (II) and the related neutral molecule of (III) reported here provide direct observable evidence supporting, in general, the existence of the delocalized $10-\pi$ -electron system in (II). However, the absence of really high-quality low-temperature data for (II) leaves some lingering doubt on the conclusions and this work cannot be completed until such data become available.

3. Conformational Consequences of the Packing in XPh_4 [X=C, Si, Ge, Sn, Pb] and Related Crystals. Crystallography and Molecular Modelling.

3.1. Introduction

The molecular symmetry, crystal packing and energetics of tetraaryl compounds of Group IV have been the subject of numerous investigations. The great increase of interest in these compounds has paralleled the overall growth of the whole field of organometallic chemistry⁷³. The determination of molecular and lattice structures is a fundamental problem to chemists in general. Of the various methods which may be used, X-ray crystallography is now at this stage where, for most materials, the procurement of single crystals is virtually the only obstacle in completion of highly accurate structural identification.

All the elements of Group IV form a large number of organic derivatives. The relative simplicity and the isomorphism of tetraaryl compounds of the type XAr₄, where X is a Group IV element and Ar an organic aryl group, make them useful as model compounds for more complex derivatives.

Carbon, silicon, and germanium are the non-metallic elements of Group IV (the latter two are semiconductors) while the higher homologs, tin and lead, are metals. In the ground

normal the set of the second 1440

ļi_

state, their atoms have the valence electron configuration s^2p^2 , but the sp^3 excited state, arising from the promotion of one s-electron to a p orbital, accounts for the formation of most of the compounds. The sp^3 hybrid bonds with carbon give rise to the tetrahedral structures of the XAr₄ compounds. The elements heavier than carbon, especially silicon⁷⁴, have also empty d orbitals which can interact with filled lone pair orbitals, of π symmetry relative to the σ bonds, o^{c} the groups bound to them⁷⁵. The difference in the size of the central atom can also influence the arrangement of aryl group in those compounds.

F2-11

1 1391 4

3

Prair & Sar

1001

ř

to constant in the second second

* * 556 # 5

٠

で、行

1.04 m 10 3-47

۵

4

· · · · · · · · · · · ·

when we have a set

the work

金を えいん

In the study of the stereochemistry of XPh₄ [X= C, Si, Ge, Sn, Pb] (Figure 4) and related systems the primary questions concern molecular symmetry.

considerations⁷⁶ Theoretical reveal that the superimposition of twofold rotors onto a skeleton of T_d symmetry removes all four three-fold symmetry axes. Such systems can therefore never adopt T_d symmetry but must belong to one of the seven subgroups of D_{2d}: D_{2d}, D₂, S₄, C_{2v}, C₂, C_s, and C₁. Thus the orientation of four equivalent aryl groups around central atom usually corresponds to S4 symmetry if the Ar group of XAr, is a twofold rotor (e.g. phenyl ring). In the crystalline state, for symmetrical XAr, compounds this molecular symmetry is rotained.

The existing crystallographic data on the tetraphenyl π

and pentafluorotetraphenyl^{78,79} derivatives of Group IV, as well as or salts of tetraphenylphosphonium^{80,81} and -bismuthonium⁸² ions (and in some cases of the tetraphenylarsonium^{83,84} ion) all indicate that the molecular S, symmetry is adopted in the crystal. Infrared and Raman studies of XPh^{85,86}, and also an gas-phase diffraction early electron study of tetraphenylsilane⁸⁷ (TPSi) and tetraphenyl tin⁸⁸ (TPSn) indicate S, symmetry. However, a recent gas-phase electron diffraction study of molecular structures of tetraphenylsilane, tetraphenylgermane (TPGe), and tetraphenyl tin has shown that since several models (D_{2d}, S_4, D_2) fit the experimental data equally well, only a limited amount of reliable structural information could be derived from the results⁸⁹.

The tetraphenylborate anion, however, in the presence of unsymmetrical counterions^{90,91}, has S_4 symmetry in the crystal, but with potassium, tetramethylammonium⁹² and ammonium⁹³ cations it has D_{2d} symmetry.

The packing of the XAr₄ molecules has been extensively studied on the basis of symmetry arguments⁹⁴. It has been proposed that those molecules which retain S₄ symmetry in the solid state will crystallize in the space groups $I\overline{4}$, $P4_2/n$, or $P\overline{42}_1c$. The other tetragonal space groups were considered⁹⁴ as unsuitable since they do not allow close packing of the XAr₄ molecules. In addition, it was predicted that as larger and more complex <u>para</u> substituents make the molecule less spherical, less symmetric space groups would be favoured, with an accompanying lowering of molecular symmetry.

オーンひょ

The second second

₹ f

2 ~ ~

ř

ちょうやき レント

N of the

۶ آ

24.4

APR 1233

と、 うちくちょうわれて行風

These ideas are supported by observations on the phenyl and other derivatives of the Group IV elements. All the tetraphenyls of Group IV crystallize in the noncentrosymmetric space group P42, with the central atoms in the special positions of $\overline{4}$ site symmetry. Tetra(o-tolyl)tin⁹⁵ also crystallizes in P42,c. In tetra(p-toly1)tin^{96,97}, tetra(pmethoxyphenyl)tin^{98,99}, and tetra(p-methylthiophenyl)tin⁹⁹ the space group is I4 and in each case the symmetry of molecule is S₄. On the other hand, in the structures of the pentafluorophenyl derivatives of Si⁷⁹, Ge, and Sn⁷⁸, and also in tetra(m-tolyl)tin¹⁰⁰, the molecules retain S, symmetry, while the compounds crystallize in the centrosymmetric space group I4,/a. In those compounds the close packing of molecules is not favoured because adjacent molecules are related by mirror planes⁹⁴. In tetra(o-tolyl)germanium¹⁰¹ the space group is P1, however, while the molecule still retains pseudo S_{i} symmetry. It is apparent that close packing is not a sufficient criterion for the retention of the highest molecular symmetry $(\overline{4})$ possible in the solid state. The tetra(p-methylsulphonylphenyl)tin⁹⁹ has been found to be the first fully characterized tetraaryl compound with a symmetry lower than fourfold. It crystallizes in the monoclinic space group C2/c, for which, however, I4,/a is a corresponding

minimal non-isomorphic supergroup⁷⁹. In contrast, tetra(pmethylsulphinylphenyl)tin monohydrate¹⁰², with <u>para</u> groups of similar size and complexity, crystallizes in the previously not utilized close-packed tetragonal space group P4₂/n, and the molecule retains S₄ symmetry. The importance of bulky <u>para</u> substituents is shown also by the crystal data for (p-EtOPh)₄Sn⁹⁴. However, in this case the space group (P2₁/a) is not related to any tetragonal space group and a more detailed analysis of this structure is clearly necessary.

The results of the first crude empirical force field calculations^{103,104} and also of lattice dynamic calculations^{105,106} for tetraphenylmethane (TPMe) were consistent with the crystallographic data and confirmed the molecular symmetry S_{λ} . In contrast to these earlier results, the full relaxation empirical force field calculations^{107,108} gave a ground state of D_{2d} symmetry for TPMe, but TPSi was found to have a ground state of S₄ symmetry, consistent with the symmetry found in the crystal. The energy of the calculated ground state of tetraphenylmethane was found to be approximately about 5 kcal/mol below that of a structure of S, symmetry with the same degree of twist of the phenyl ring as that reported for the molecule in the crystal. It has been suggested¹⁰⁷ that the influence of the central atom on the symmetry of the tetraphenyls is similar to that of the counterion in tetraphenylborates. However, a combined empirical force field - extended Hückel molecular orbital calculations¹⁴⁵ have found two energy minima for tetraphenylmethane. One of these has D_{2d} symmetry and corresponds to the ground state, in agreement with the previous calculations. The other corresponds to the S_4 symmetry of the molecule and lies 0.4kcal/mol above the ground state.

守1

1

Ĵ

The aim of this project is to identify factors influencing the observed structures of compounds XPh_4 [X= C, Si, Ge, Sn, Pb] and to explore the inter-relation between the molecular shape and crystal packing. As part of a general study of the geometric deformation in tetraphenyl complexes, careful redeterminations of the crystal structures of tetraphenyls by modern methods of X-ray crystallography and accurate structure calculation by molecular mechanics^{109,110} are required. Such crystal-structure redeterminations of the tetraphenyls and the results of MM3 calculations for tetraphenylmethane, silane and their o-tolyl derivatives are reported in the following. P.C.

3.2. Previous Crystallographic Reports

The first study was done in 1927 by George¹¹¹ who, from single-crystal rotation X-ray photographs, determined the cell dimensions and predicted $P\bar{4}2_1c$ as the space group for TPMe, TPSi, TPGe, TPSn, and tetraphenyl lead (TPPb).

As part of an investigation of the nature of the organometallic bonds TPSi, TPSn, and TPPb were studied by Giacomello¹¹² (1938). He noticed that the configuration of the phenyl rings retained the S_4 symmetry in all three compounds. However, the angle of rotation of the phenyl group remained undetermined.

Sumsion and McLachlan¹¹³ (1949) determined the crystal structure of TPMe from powder, rotation, and Weissenberg Xray data. Assuming, in the trial structure, that the distances between the central carbon and its nearest atoms were 1.49Å, while the C-C distances in the phenyl ring were 1.39Å, they estimated the angle of rotation of the phenyl ring about the tetragonal bonds of the central atoms (φ), and the angle of rotation of the entire molecule about the c axis (ϕ) as 55° and 7.5°, respectively. They also determined positions of carbon atoms in final structure and carbon-carbon distances as 1.47Å (C-CO) and 1.39Å for bonds in the ring.

The results obtained by Ismailzade and Zhdanov^{114,115,116} for the TPSi, TPSn, and TPPb, on the basis of Laue and Weissenberg photographs and geometrical analysis of the intermolecular

81

13. 14 to

-1.4

144 M M

* こうて * そのなからたい

distances between the hydrogen atoms, were in disagreement with previous findings¹¹². The reported φ and ϕ angles were: TPSi, 37° and 8°; TPSn, 42° and 7°; TPPb, 50° and 5.5°, respectively. The suggestion was made that the valence angles might be deformed by 4-5°. Ismailzade¹¹⁷ calculated also the crystal structure of TPGe by considering the closest approach of the phenyl hydrogens. He obtained the values of 52.5° and 6.5° for φ and ϕ angles, respectively. However, subsequent crystal structure determinations of TPGe^{118,119} and TPPb¹²⁰ have shown the geometrical analysis of those compounds to be in error.

-5

54 1-55B

The apparent deficiencies of the early two-dimensional and geometrical analyses led to reexamination of the structures and geometrical considerations for the tetraphenyls by modern crystallographic methods. The development of single-crystal diffractometry crystallographic and computational methods made possible a better refinement of the structures and a higher accuracy. In particular, there exists a reliable set of three independent structure determinations of TPMe¹²¹ with a discussion of the accuracy of the results. There are no systematic differences in the atomic positions or thermal parameters between those three groups of data. Results from this study are used here for comparison with the other structures of the tetraphenyls.

The TPSi structure has been investigated by several authors^{77,122,123} but their studies yielded only moderate R value

of about 7%. A significant deviation from a local hexagonal symmetry of phenyl rings, involving a small displacement of the carbon attached to silicon has been noted. More accurate analysis¹²⁴, recused on the determination of electron density, was undertaken in connection with the investigation of the physical properties of TPSi¹²⁵.

There have been two almost simultaneous recent structure determinations of TPGe by Chieh¹¹⁸, and by Karipides and Haller¹¹⁹. Both studies have given similar results. The former analysis concentrated on the comparison of the different techniques of data collection. Karipides and Haller¹¹⁹ reexamined the geometrical considerations of Ismailzade¹¹⁷ and found that their results from the X-ray analysis were in agreement with calculations.

The structure of TPSn has been reported several times^{103,126,77,127,95}. Earlier determinations derived from film¹⁰³ or limited diffractometer data¹²⁶ were of unsatisfactory accuracy and inappropriate for comparative purposes. The redetermination done by Engelhardt et al.¹²⁷ offered a significant improvement in precision but no discussion of conformation of the molecule. Belsky et al.⁹⁵ reported and compared the structure of TPSn with that of tetra(o-tolyl)tin.

The structure of TPPb has been determined by Busetti et al.¹²⁰ The results, obtained from the precession and Weissenberg photographs, are in disagreement with previous geometrical analysis¹¹⁷ of this compound. However, the precise
values of bond lengths as well as atomic coordinates were not reported.

As part of the general study of the geometric deformations in tetraphenyl complexes precise values of bond and angles are required. The existence of discrepancies in the results of earlier determinations of tetraphenyl derivatives of Group IV, obtained by different authors, justifies the need for a structure redetermination of tetraphenyl compounds for comparative and confirmative reasons.

The introduction of substituents into ortho or meta positions of the phenyl groups of tetraaryls can lead to a significant lowering of the symmetry of the molecule. Although the results of the conformational analysis of the substituted tetraphenyls have been extensively discussed¹⁰⁷, crystal structure data are scarce. There have been no crystallographic reports on tetra(o-toly1)methane and silane. The structures of tetra(o-tolyl)germanium¹⁰¹ and tetra(otolyl)tin⁹⁵ have been studied by Belsky et al. The tetra(otolyl)germane¹⁰¹ crystallizes in the space group P1, while the tetra(o-tolyl)tin⁹⁵ retains the molecular conformation and the packing mode of TPSn and crystallizes in the same space group, P42,c. The tetra(o-tolyl)germanium molecule has almost a C, symmetry but would closely approximate the S₄ symmetry in the absence of the substituents. The introduction of the methyl

, , , group in the <u>ortho</u> position causes a lengthening of the central C-Ge and C-Sn bonds. The steric factor also influences the geometry of the o-tolyl groups.

1

1

ł

i

ŧ

11-17

ļ

4

-

* 1

Ser. 100

Among para-methyl substituted derivatives only tetra(ptolyl)tin^{96,97} has been studied by X-ray analysis. The first study was done by Ismailzade and Zhdanov⁹⁶. The structure was determined from a two-dimensional electron density projection. The compound was found to crystallize in the space group I4. The determined values of φ and ϕ angles were 44° and 14°, respectively. Free rotation of the methyl group was absent in crystal. A later study of this compound by Karipides et al.⁹⁷ (1975) confirmed the space group and gave an accurate description of the function of the methyl group in the molecular packing and the conformation of the aryl rings. The rotation of the phenyl ring about the C-Sn bond measured from the vertical plane through the c axis (φ) was 49.3° and the rotation of the molecule about the c axis (ϕ) measured from the a axis was -14.5° . The crystal packing was found to be different from that of the TPSn owing to the extensive involvement of the methyl group in intermolecular interactions in the crystal. All three methyl hydrogens were found to take part in the close H...H interactions which require the methyl group to be rigidly oriented in the crystal lattice.

Recently, tetra(p-methoxyphenyl)tin and tetra(pmethylthiophenyl)tin have been prepared and characterized by X-ray analysis⁹⁹. Both complexes crystallize in the tetragonal

space group $I\bar{4}$ and the molecules have $\bar{4}$ molecular symmetry. It was concluded from steric considerations in an early study of the tetrakis (p-methoxyphenyl) tin⁹⁸ that the p-methoxy group must lie in a plane perpendicular to the phenyl ring. This is in variance with more recent results⁹⁹ where the CH₂O and $CH_{z}S$ groups are found to have the <u>exo</u>¹⁰⁷ conformation almost coplanar with the phenyl ring. Increasing the size of the para substituent from CH₃ to CH₃O causes a decrease of the Sn-C distance with respect to tetra(p-tolyl)tin. The φ and ϕ angles are 48.4° and 14.5° for tetra(p-methylthiophenyl)tin, 52.1° and 15.5° for tetra(p-methoxyphenyl)tin, and respectively.

Recent studies in aryltin chemistry¹⁰² have yielded the determination of crystal and molecular structures of tetra(pmethylsulphonylphenyl)tin, $[p-CH_3S(0)_2C_4H_4]_4Sn$, and tetra(pmethylsulphinylphenyl)tin monohydrate, $[p-CH_3S(0)C_4H_4]_4Sn\cdot n-$ Tetra(p-methylsulphonylphenyl)tin crystallizes in the H.O. monoclinic space group C2/c and is the first example of a tetraaryl compound with a lower than fourfold symmetry. Nevertheless, the space group C2/c is related to the tetragonal space group $I4_1/a^{79}$ and the deviation from the S₄ symmetry is Tetra (p-methylsulphinylphenyl)tin small. monohydrate, however, crystallizes in the close-packed tetragonal space group $P4_2/n$, and the molecule retains S_4 symmetry. Both structures are found to be disordered.

The crystal structure of tetra(m-tolyl)tin has been

determined by Karipides and Oertel¹⁰⁰ (1977). The compound crystallizes in the tetragonal space group I4,/a. The crystal structure consists of discrete the molecules with crystallographically imposed S₄ symmetry. Unlike in tetra(ptolyl)tin, the methyl group in the tetra(m-tolyl)tin was found to be twofold-disordered due to more flexible intermolecular environment created by the long-range, weak methyl H interactions. The angle of rotation of the phenyl ring from the C-Sn-C plane is 41°, which differs considerably from the value of 140.3° predicted by a geometrical analysis¹²⁸. The observed conformation of the molecule is exo¹⁰⁷, where the methyl groups are relatively remote from the plane through the centre of the molecule and normal to the $\overline{4}$ axis.

いいいない ちちまち あのいた いろいちち ちちちちち

1

The crystal structure investigation of the several tetrakis(pentafluorophenyl) derivatives of Group IV have been undertaken by Karipides et al.^{78,79} in order to compare the structure and packing with those of the corresponding tetraphenyl derivatives. crystal The structures of tetrakis(pentafluorophenyl)silane⁷⁹, germanium⁷⁸, and tin⁷⁸ have been determined. The compounds crystallize in the tetragonal I4,/a. The molecules have the space group crystallographically imposed molecular symmetry S_{4} . The conformation of the pentafluorophenyl ring in the molecule is specified by the rotation angle (φ) measured from the vertical plane through the c axis and unlike in the tetraphenyls seems to be independent of the central-atom size. The pentafluorophenyl rings in all the compounds are planar but deviate substantially from the ideal D_{6h} symmetry in a way consistent with the deformations of substituted benzene^{129,130}.

3.3. X-ray Structure Determination

ter ter

き ふいたらい

外外放长 矿物铁

معلى الالمحمد

the second

1

5. 4

ł

down and the second

んちちいしのもう

The crystal structures of TPSi, TPGe, TPSn, and TPPb redetermined single crystal have been by X-rav crystallography. Crystals of suitable size were mounted on glass fibres. An Enraf-Nonius CAD4 diffractometer (MoK, graphite-monochromated) was used to measure the unit cell dimensions and to collect the data at room temperature. For TPGe data were also collected at 213K. The crystal and data collection parameters are listed in Table 6. The unit cell constants were obtained by least-squares analysis of the diffractometer setting angles of 25 well-centred reflections in the range $2\theta=28-32^{\circ}$ and $2\theta=20-30^{\circ}$ for TPSi, TPSn, TPPb and for TPGe, respectively. The intensities were reduced to a standard scale using routine procedures³⁴. Lorentz and polarization corrections were applied. Absorption corrections (DIFABS)³⁵ were performed except in the case of TPSi for which the linear absorption coefficient was small (1.32 cm^{-1}) . Scattering factors for neutral atoms were taken from the International Tables³⁶ and were corrected for the real and imaginary parts of anomalous dispersion. The refinements were

performed by using SHELX-76³⁷.

All the tetraphenyls studied crystallize in the acentric space group P42,c. The initial isotropic positions of most of the atoms were taken from the previous reports. The structures were refined by a full-matrix least-squares procedure, initially with independent isotropic temperature factors on the non-hydrogen atoms. Absorption corrections were then applied. Hydrogen atoms were placed in their geometrically calculated positions [d(C-H)=1.08Å] and then refined free. Some of the C-C and C-H distances had to be constrained during refinement. The final refinements were with anisotropic temperature factors on the non-hydrogen atoms and individual isotropic temperature factors on the hydrogen The function minimised was $\Sigma w (|F_c| - |F_c|)^2$ where w is atoms. the weight. Final agreement factors are given in Table 6. No correction for extinction was applied. The final difference maps had no recognizable residual features. The figures were produced with CHEMGRAF³⁹. The best planes through phenyl rings were calculated using CRYSTALS³⁸. Thermal motion analyses were performed by using CRYSTALS³⁸ TLS routine. The TLS calculations^{131,132} were done for the whole molecule and also for two other models. In the first model the movement of the central atom and the phenyl ring was considered as rigidbody. In the second model only the phenyl ring was treated as a rigid body.

Multipole refinement was performed for TPSi and TPGe by

ういがなり行う

The start far a

インへしが もう も メ ひとんざた び

384*** \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

للوارية جاسوالامل بالمام مدارية الاستخارات الماليكورات المؤليك الأرامي والمريكي المالية والمريك المراري المريك المريك المريك المريك

using the program MOLLY¹⁷. For silicon, germanium, carbon and hydrogen atoms, Slater-type functions were used for the multipole deformation functions. Positional and thermal parameters of hydrogens were fixed during refinement. The multipole expansion was truncated at the octapolar level for carbon atoms and monopolar level for silicon and germanium The final agreement factor for TPSi was better than atoms. from the conventional refinement (R=0.0260) but for TPGe the results obtained by performing the multipole refinement (R=0.0413) did not improve with respect to conventional refinement (R=0.0326). Since the collected data did not include the high order reflections (only the low order data have been collected $\theta < 30^{\circ} - 40^{\circ}$) that are responsible for the core position of atoms, the multipole refinement served as a test rather than as a source of structural data. These results are not conclusive and are not presented here.

The crystal data for TPMe^{113,77,} given in this report for comparison, are taken from ref. 121.

The fractional coordinates of atoms, bonds and angles determined by conventional refinement for TPSi, TPGe, TPSn, and TPPb are listed in Table 7, Table 9, Table 10, Table 13, and Table 14, respectively. The atomic and thermal parameters for hydrogen atoms as well as the pertinent torsional angles are given in tables on microfiches (Appendix 4). Table 6. Physical properties and parameters for data collection and refinement of tetraphenyls.

```
1) tetraphenylsilane
C24H2081
                                                         t = 18 °C
                            MW = 336.5
                            P42,c (No. 114)
tetragonal
                                                         noncentrosymmetric
a = 11.461(2) Å
                            b = 11.461(2) Å
                                                         c = 7.054(1) Å
\alpha = 90^{\circ}
                            \beta = 90^{\circ}
                                                         \gamma = 90^{\circ}
                            \mu = 1.32 \text{ cm}^{-1}
                                                         V = 926.7 Å^{3}
F(000) = 356 e
                            d_{c} = 1.206 \text{ g/cm}^{3}
Z = 2
                                                         \lambda = 0.70926 \text{ \AA}
N_{me} = 1242
                            N_{un} = 11.2
                                                         N_{ob} = 540
obs. if I > 3\sigma(I)
                           N_{v} = 77
                                                         N_{ob}/N_{v} = 7.0
2^{\circ} < \theta < 35^{\circ}
                            R = 0.0461
                                                         R_{L} = 0.0483
```

2) Tetraphenyl germanium

MW = 380.9	t = 18 °C
P42 ₁ c (No. 114)	noncentrosymmetric
b = 11.619(2) Å	c = 6.900(2) Å
$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
$\mu = 16.21 \text{ cm}^{-1}$	$V = 931.4 \text{ Å}^3$
$d_{c} = 1.358 \text{ g/cm}^{3}$	$\lambda = 0.70926 \text{ \AA}$
$N_{un} = 1627$	$N_{ob} = 522$
$N_v = 77$	$N_{ob}/N_v = 6.8$
R = 0.0326	$R_{w} = 0.0310$
	$MW = 380.9$ $P\bar{4}2_{1}c \text{ (No. 114)}$ $b = 11.619(2) \text{ Å}$ $\beta = 90^{\circ}$ $\mu = 16.21 \text{ cm}^{-1}$ $d_{c} = 1.358 \text{ g/cm}^{3}$ $N_{un} = 1627$ $N_{v} = 77$ $R = 0.0326$

3) Tetraphenyl germanium

ric

ş

1

Table 6 (cont.). Physical properties and parameters for data collection and refinement of tetraphenyls.

4) Tetraphenyl tin t = 18 °CMW = 427.0C₂₄H₂₀Sn P42,c (No. 114) noncentrosymmetric tetragonal b = 12.063(2) Å c = 6.543(2) Åa = 12.063(2) Å $\gamma = 90^{\circ}$ $\beta = 90^{\circ}$ $\alpha = 90^{\circ}$ $\mu = 13.52 \text{ cm}^{-1}$ $V = 952.0 Å^3$ F(000) = 428 e $d_c = 1.490 \text{ g/cm}^3$ $\lambda = 0.70926 \text{ \AA}$ $\mathbf{Z} = \mathbf{2}$ $N_{me} = 2142$ $N_{un} = 965$ $N_{ob} = 696$ $N_v = 77$ obs. if $I > 3\sigma(I)$ $N_{ob}/N_{v} = 9.0$ $2^{\circ} < \theta < 30^{\circ}$ R = 0.0257 $R_{\mu} = 0.0266$

5) Tetraphenyl lead t = 18 °CMW = 515.6C₂₄H₂₀Pb P42,c (No. 114) tetragonal noncentrosymmetric a = 12.140(2) Åb = 12.140(2) Å c = 6.530(2) Å $\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$ $\mu = 86.41 \text{ cm}^{-1}$ $V = 962.8 Å^3$ F(000) = 492 e $d_c = 1.778 \text{ g/cm}^3$ $\lambda = 0.70926 \,\text{\AA}$ $\mathbf{Z} = \mathbf{2}$ $N_{me} = 1296$ $N_{un} = 1216$ $N_{ob} = 581$ obs. if $I > 3\sigma(I)$ $N_v = 77$ $N_{ob}/N_{v} = 7.5$ $2^{\circ} < \theta < 35^{\circ}$ R = 0.0270 $R_{\mu} = 0.0302$

2

Atom	x/a	у/ь	z/c	U _{eq}
Sil	0.0000(0)	0.0000(0)	0.0000(0)	0.0424
C1	0.1318(2)	-0.0162(2)	-0.1563(4)	0.0435
C2	0.1331(3)	-0.0998(2)	-0.2991(4)	0.0560
C3	0.2303(3)	-0.1148(3)	-0.4144(5)	0.0644
C4	0.3265(3)	-0.0457(3)	-0.3910(5)	0.0641
C5	0.3270(2)	0.0388(3)	-0.2534(5)	0.0632
C6	0.2309(2)	0.0531(2)	-0.1373(4)	0.0540

Table 7. Fractional atomic positional parameters and equivalent isotropic temperature factors $(Å^2)$ for SiPh₄ with e.s.d.s in parentheses.

Table 8. Interatomic distances (Å) and interbond angles (degrees) for $SiPh_4$.

Si1	-C1	1.879(3)	C1	-Sil	-C1'	108.2(1)
Si1	-C1'	1.879(3)	C1	-Sil	-C1''	110.1(1)
Sil	-C1''	1.879(3)	Si1	-C1	-C2	120.1(2)
Sil	-C1'''	1.879(3)	Si1	-C1	-C6	122.9(2)
C1	-C2	1.391(4)	C2	-C1	-C6	117.0(3)
C1	-C6	1,393(4)	C1	-C2	-C3	121.2(3)
C2	-C3	1.389(5)	C2	-C3	-C4	120.3(4)
C3	-C4	1.368(6)	C3	-C4	-C5	119.8(4)
C4	-C5	1.371(5)	C4	-C5	-C6	120.0(3)
C5	-C6	1.382(5)	C1	-C6	-C5	121.7(3)

Primed atoms have symmetry operations:

1		-	-x,	-у,	z,
1	t	-	у,	-x,	-z,
ł	11	-	-y,	x,	-z,

:

í

Atom	x/a	y/b	z/c	U _{eq}
Gel	0.0000 (0)	0.0000 (0)	0,0000 (0)	0.0429
Cl	0.1353 (2)	-0.0174 (2)	-0.1641 (5)	0.0408
C2	0.1394 (3)	-0.1018 (3)	-0,3065 (6)	0.0551
СЗ	0.2347 (4)	-0.1156 (3)	-0,4218 (5)	0.0620
C4	0.3288 (3)	-0.0445 (4)	-0.3993 (6)	0.0617
C5	0.3262 (3)	0.0399 (3)	-0.2631 (6)	0.0605
C6	0.2314 (3)	0.0539 (3)	-0.1458 (5)	0.0532

Table 9. Fractional atomic positional parameters and equivalent isotropic temperature factors $(Å^2)$ for GePh₄ with e.s.d.'s in parentheses.

Table 10. Fractional atomic positional parameters and equivalent isotropic temperature factors $(Å^2)$ for GePh₄ (LT) with e.s.d.'s in parentheses.

535

1

í

*** >

うこ ちゃ ごう・ へいたま あるもち

Atom	x/a	у/b	z/c	U _{eq}
Gel	0.0000 (0)	0.0000 (0)	0.0000 (0)	0.0325
Cl	0.1355 (2)	-0.0170 (2)	-0.1666 (5)	0.0324
C2	0.1400 (3)	-0.1030 (3)	-0.3090 (5)	0.0413
C3	0.2368 (3)	-0.1167 (3)	-0.4261 (5)	0.0462
C4	0.3301 (3)	-0.0441 (3)	-0.4027 (5)	0.0490
C5	0.3262 (2)	0.0410 (3)	-0.2660 (6)	0.0465
C6	0.2303 (3)	0.0551 (2)	-0.1479 (5)	0.0393

	288 K	213 K	<u>, , , , , , , , , , , , , , , , , , , </u>
Gel -Cl	1.948(3)	1.952(3)	
Gel -Cl'	1.948(3)	1.952(3)	
Gel -Cl''	1.948(3)	1.952(3)	
Gel -Cl'''	1.948(3)	1.952(3)	
C1 -C2	1.388(6)	1.393(5)	
C1 -C6	1.397(5)	1.394(5)	
C2 -C3	1.373(6)	1.389(6)	
C3 -C4	1.379(7)	1.387(6)	
C4 -C5	1.359(6)	1.359(6)	
C5 -C6	1.377(6)	1.385(5)	

Table 11. Interatomic distances (Å) for GePh₄.

Table 12. Interbond angles (degrees) for GePh₄.

	288 H	K 213 H	ζ
C1 -Ge1 -C1	L' 108.90)(14) 109.10)(13)
Cl -Gel -Cl	109.76	5(14) 109.65	5(13)
Gel -Cl -C2	2 120.8	(3) 120.4	(2)
Gel -Cl -Ce	5 122.1	(3) 121.8	(2)
C2 -C1 -C6	5 117.1	(3) 117.8	(3)
C1 -C2 -C3	3 121.4	(4) 120.7	(3)
C2 -C3 -C4	120.3	(4) 120.1	(4)
C3 -C4 -C5	5 119.5	(4) 119.8	(4)
C4 -C5 -C6	5 120.7	(4) 120.6	(4)
C1 -C6 -C5	5 121.1	(4) 121.0	(3)

Primed atoms have symmetry operations:

1		-	-x,	-у,	z,
•	•	-	у,	-x,	-z,
1	11	-	-у,	x,	-z,

Atom	x/a	y/b	z/c	U _{eq}
Sn1	0.0000(0)	0.0000(0)	0.0000(0)	0.0375
C1	0.1445(3)	-0.0194(2)	-0.1857(5)	0.0376
C2	0.1531(4)	-0.1047(4)	-0.3284(8)	0.0480
C3	0.2483(4)	-0.1168(4)	-0.4462(8)	0.0560
C4	0.3346(4)	-0.0409(5)	-0.4260(8)	0.0586
C5	0.3267(3)	0.0424(4)	-0.2888(7)	0.0574
C6	0.2337(3)	0.0538(3)	-0.1666(7)	0.0480

Table 13. Fractional atomic positional parameters and equivalent isotropic temperature factors $(Å^2)$ for SnPh₄ with e.s.d.'s in parentheses.

1

Table 14. Fractional atomic positional parameters and equivalent isotropic temperature factors $(Å^2)$ for PbPh₄ with e.s.d.'s in parentheses.

Atom	x/a	y/b	z/c	U _{eq}
Pb1	0.0000(0)	0.0000(0)	0.0000(0)	0.0382
C1	0.1480(7)	-0.0201(5)	-0.1917(12)	0.0357
C2	0.1567(9)	-0.1051(8)	-0.3352(18)	0.0502
C3	0.2514(10)	-0.1160(9)	-0.4538(14)	0.0567
C4	0.3360(9)	-0.0415(10)	-0.4336(18)	0.0611
C5	0.3294(8)	0.0432(8)	-0.2958(16)	0.0578
C6	0.2368(8)	0.0533(7)	-0.1770(18)	0.0489

96

しきごろうちょうないない いちちょう しんちょう しんしん しきない ちちん ちちちち

1 47

at all the still mar for all the states of a matter

.....

÷.

-

Kanar T

÷

ţ

Snl	-C1	2.137(4)	Cl	-Sn1	-C1'	110.70(13)
Cl	-C2	1.393(6)	Cl	-Sn1	-C1''	108.86(13)
C1	-C6	1.398(6)	Sn1	-C1	-C2	121.5 (3)
C2	-C3	1.390(8)	Sn1	-C1	-C6	120.5 (3)
C3	-C4	1.393(8)	Ċ2	-C1	-C6	118.0 (4)
C4	-C5	1.351(7)	C1	-C2	-C3	120.7 (5)
C5	-C6	1.385(7)	C2	-C3	-C4	119.7 (5)
			C3	-C4	-C5	119.9 (5)
			C4	-C5	-C6	121.0 (5)
			C1	-C6	-C5	120.6 (*)

Table 15. Interatomic distances (Å) and interbond angles (degrees) for SnPh₄.

Primed atoms have symmetry operations: 1 -x, --у, z, 11 у, -x, -z, 111 -y, x, -z,

_

1

1 ť

ţ

¥

1

ı t ; ------

----ł

1 ,

Table 16. Interatomic distances (Å) and interbond angles (degrees) for $PbPh_4$.

							The second s
Pb1	-C1	2.203(8)	C1	~Pb1	-C1'	110.8	(3)
C1	-C2	1.398(14)	C1	-Pbl	-C1''	108.8	(3)
Cl	-C6	ì.402(13)	Pb1	-C1	-C2	121.6	(7)
C2	-C3	1.39 (2)	Pb1	-C1	-C6	121.2	(6)
C3	-C4	1.38 (2)	C2	-C1	-C6	117.2	(8)
C4	-C5	1.37 (2)	C1	-C2	-C3	120.3	(10)
C5	-C6	1.371(15)	C2	-C3	-C4	120.0	(10)
			C3	-C4	-C5	120.9	(11)
			C4	-C5	-C6	119.2	130)
			C1	-C6	-C5	122.3	(9)

Primed atoms have symmetry operations:

•		-	-x,	-у,	z,
ł	0	-	y,	-x,	-z,
1		-	-y,	x,	-z,

3.4. Molecule

All the Group IV tetraphenyls studied crystallize in the noncentrosymmetric space group $P\bar{4}2_1c$. The molecules have S_4 symmetry with the two central atoms per unit cell in the special positions (0,0,0) and (0.5,0.5,0.5), related by a twofold screw axis, and one unique phenyl ring in the asymmetric unit. The projection of the crystal packing of molecules along the c axis is shown in Figure 32.

The distance between the central atom and C1 increases from C to Pb. For TPMe this distance (corrected for thermal motion)¹²¹ is 1.553(3)Å, for TPSi - 1.879(3)Å, for TPGe -1.950(3)Å (mean), for TPSn - 2.137(4)Å, and for TPPb -2.203(8)Å (Table 8, Table 11, Table 15, Table 16). The determined values are in good agreement with the bond lengths at the central atoms previously reported (Table 17). They also compare well with the recent electron diffraction study⁸⁹ of the gas phase of TPSi, TPGe and TPSn. A comparison of all the data is presented in Table 17.

The effect of substitution at the phenyl ring for various tetraaryls is summarised in Table 18. In the case of <u>para</u> substituents a shortening of the central bond lengths can be observed as <u>para</u> hydrogen is replaced by CH_3O and by CH_3S . This has been ascribed to an increase in intermolecular repulsions in these close-packed structures with the size of

.

Figure 32. Packing diagram of tetraphenylsilane - projection along c-axis.

pai	cam.	TPMe	TPSi	TPGe (RT)	TPGe (LT)	TPSn	TPPb
X-0	C (Å)	1.553(3) ¹²¹ _ _	1.878(2) ¹²⁴ 1.871(4) ⁸⁹ 1.879(3)	1.957(4) ¹¹⁹ 1.960(4) ⁸⁹ 1.948(3)	- - 1.952(3)	2.139(4) ⁹⁵ 2.137(5) ⁸⁹ 2.137(4)	2.19(3) ¹²⁰ 2.203(8)
θι	(°)	106.7(2) ¹²¹	$108.1(1)^{124}$ 108.2(1)	$109.0(2)^{119}$ -	- - 109.1(1)	$111.2(2)^{95}$	111.5^{120}
θ2	(°)	110.9(2) ¹²¹	$110.1(1)^{124}$		- - 109.7(1)	$108.6(1)^{95}$	108.4^{120}
α	(°)	117.5(3) ¹²¹ _ _	$\frac{117.2(2)^{124}}{118.2(4)^{89}}$ $117.3(3)$	$118.4(4)^{119} \\ 119.5(3)^{89} \\ 117.1(3)$	 117.8(3)	$117.6(4)^{95}$ $119.5(3)^{89}$ $118.0(3)$	120.0 ¹²⁰ 117.2(8)
¥	(°)	40.8 ¹²¹ _	37.67 ¹²⁴ - 37.7	35.5 ¹¹⁹ _ 35.5		31,9 ⁹⁵ 31.8	31.1 ¹²⁰ - 31.3
φ	(°)	49.2(2) ¹²¹ _ _	52.33 ¹²⁴ - 52.3	54.1 ¹¹⁹ _ 54.5	- - 54.2	58.1 ⁹⁵ 58.2	58.9 ¹²⁰
φ	(°)	7.5 ¹²¹ - -	6.97 ¹²⁴ 7.6(1)	7.2 ¹¹⁹ 7.6(1)	 7.5(1)	7.5 ⁹⁵ 7.3(1)	7.5 ¹²⁰ 7.3(1)

.

.

Table 17. Structural parameters for the tetraphenyls.

Compound	Х-С (Å)	θ ₁ (°)	θ ₂ (°)	α (°)	φ (°)	φ (°)
GePh4 (P421C)	1.948(3)	108.9(1)	109.8(1)	117.1(3)	54.5	7.6
$\frac{\text{Ge}(\text{o-}\underline{CH}_3\text{Ph})_4^{101}}{(\text{Pl})}$	1.966(3)		_	118.8		
S <u>n</u> Ph ₄ (P42 ₁ c)	2.137(4)	110.7(1)	108.9(1)	117.2(8)	58.1	7.3
$\operatorname{Sn}(o-\underline{CH}_{3}\operatorname{Ph})_{4}^{95}$ (P42 ₁ c)	2.152(5)	107.9(1)	112.6(3)	118.1(5)	53.1	11.2
$Sn(m-CH_3Ph)_4^{100}$ (14 ₁ /a)	2.150(3)	109.3	109.5	118.4(3)	40.7	37.5
$\frac{\text{Sn}(p-CH_3Ph)_4^{97}}{(14)}$	2.147(7)	114.4(3)	107.0(2)	116.4(6)	48.4	14.5
$\operatorname{Sn}(p-C\underline{H}_{3}OPh)_{4}^{99}$ (14)	2.136(4)	106.2(3)	111.1(3)	116.1(6)	52.1	15.5
$\operatorname{Sn}(p-C\underline{H}_{3}SPh)_{4}^{99}$ (14)	2.123(7)	112.5(1)	108.0(1)	116.8(3)	49.2	13.8
$Sn(p-CH_3S(0)Ph)_4^{102}$ (P4 ₂ /n)	2.136(8)	113.3(3)	107.6(3)	-		-
$Sn(p-CH_3S(O_2)Ph)_4^{102}$ (C2/c)	2.150(3) 2.134(3)	110.8(1) 106.2(3)	114.7(1) 108.9(1)	_	-	-

-

Table 18. Structural parameters for the various substituted tetraphenyls.

a - present work.

101

· /

para substituent⁹⁹. However, in the case of <u>ortho</u> and <u>meta</u> substituents an <u>increase</u> in the distance at the central atom is observed instead. This has usually been explained by the steric effects caused by the presence of substituent^{95,101}.

The distortion of the tetrahedral bond configuration at the central atom can be described by the valence angles θ_1 =C1-X-C1' (bisected by the S₄ axis) and θ_2 =C1-X-C1" (Figure 33). The central atom valence angles are listed in Table 17 and Table 19. The angle θ_1 increases while the angle θ_2 decreases as the central atom gets larger. The molecule becomes flatter, and it appears that the distortion from the ideal tetrahedron becomes smaller as the central atom changes from C to Ge then increases again. The valence angles observed for TPGe are practically tetrahedral (Table 17 and Table 19).

The experimental values of the valence angles θ_1 and θ_2 are plotted against the carbon- central atom distances in the tetraphenyls in Figure 34, together with the fitted curve obtained from the least-squares fitting procedure¹³³. The two fits, linear and parabolic, were used in analysis. The standard deviations of the linear fits are 0.37° and 0.15° for θ_1 and θ_2 , respectively. The coefficients of determination for the linear fit are 0.97 and 0.98 for θ_1 and θ_2 , respectively. A slightly better fit has been obtained using parabolic regression analysis. In this case, the coefficients of the fits are 0.29° and 0.12°, for θ_1 and θ_2 , respectively.

VALENCE ANGLES:

 $\Theta_1 = C1 - X - C1';$

 $\Theta_2 = C1-X-C1$ Primed atoms have symmetry operations: 1 -x, -y, z; . . Y, -x, -z;

Figure 33. Valence angles.

Table 19. Valence angles C1-X-C1' and C1-X-C1'' for tetraphenyls [X= C, Ši, Ge, Sn, Pb].

С	106.7(2)	110.9(2)	
Si	108.2(1)	110.1(1)	
Ge (RT)	108.9(1)	109.8(1)	
Sn	110.7(1)	108.9(1)	
Pb	110.8(3)	108.8(3)	
1			

1

ş į,

Ę

Ē

はいいわれる

いなないないないないないないないないのできないできょう ちょうちょう なんないないないないないないないないないないない うちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう しょうちょう しょうちょう しょうちょう

ware work recently a scruddyre they been we as

٠

X-C distance

The phenyl rings are planar, with the mean deviations of the central atom from the least-squares planes through the six carbon atoms of 0.011Å for $TPMe^{121}$, 0.025Å for TPSi, 0.022Å for TPGe, 0.008Å for TPSn, and 0.010Å for TPPb.

For all the tetraphenyls studied the average C-C-C angle in the phenyl ring is 120° , but the ring is slightly distorted from hexagonal symmetry; the decrease of the α angle at Cl, $\alpha = C2-C1-C6$, from 120° is compensated for by an increase of the <u>endo</u> angles at C2 and C6.

The effect on the internal geometry of a phenyl ring caused introduction of a substituent has by been comprehensively studied^{129,130,143,134}. Any primary distortion is such as to lower the symmetry of the phenyl ring from D_{6h} to approximately C_{2v} . Further lowering to C_s geometry may occur with substituents that depart strongly from axial symmetry, like the methoxy group. Deviations from the ideal D_{Ab} symmetry the electronic properties depend on of the substituent^{129,130,143,134}.

The angular distortion of monosubstituted phenyl rings is primarily characterized by the <u>ipso</u> bond angle α =C2-C1-C6^{129,130,143,134}. This angle is consistently, although only slightly, smaller than 120° in all the derivatives studied. The internal angles at C1 are equal to 117.6° for TPMe¹²¹, 117.3(3)° for TPSi, 117.1(3)° for TPGe (RT), 117.8(3)° for TPGe (LT), 118.0(4)° for TPSn, and 117.2(8)° for TPPb (Table 12, Table 15, Table 16). This direction of angular deformation generally occurs with electron-releasing substituents. A similar effect has also been observed in the substituted tetraphenyls (Table 18) with the largest deviation in α angle for <u>para</u>-substituted derivatives¹⁴³.

The mean carbon-carbon distances in the ring are: 1.393Å (corrected for riding-motion) for $TPMe^{121}$, 1.385Å for TPSi, TPSn and TPPb, and 1.382Å for TPGe. All those distances are shorter than the reported¹³⁵ value of 1.395(3)Å in the aromatic ring. Usually the C4-C5 distances are shorter than the other C-C distances in the phenyl ring (Table 8, Table 11, Table 15, Table 16).

Figure 35. Molecular angles, ψ and ϕ , determining the orientation of the phenyl ring.

able 20. lisplacen wist ang	The rotation $f(x) = \frac{1}{2} \int_{x} \frac{1}{2} $	ϕ , and th tetrapher
XPh ₄	φ	ψ
с	7.5(2)°	4C.8°
Si	7.6(1)°	37.7°
Ge (RT)	7.6(1)°	35.5°
Ge (LT)	7.5(1)°	34.8°
Sn	7.3(1)°	31.8°
Pb	7.3(1)°	31.3°

The molecular orientation of the phenyl ring can be conveniently described by the two angles ϕ and ψ (Figure 35), where ϕ is the angle between the vector joining the central atom and the projection of the centroid of the phenyl

ring on (001) plane, and the nearest tetragonal a axis; ψ is defined as the angle of rotation (twist) of the phenyl ring plane relative to D_{2d} position of the ring; for the D_{2d} conformation, the $\psi=0$. (The angles given in references 77, 103, 107, and 121 are the complements of ψ , $\psi=90^{\circ}-\varphi$).

Table	21. The	angles	(deg.)	between	the	planes	of	phenyl
rings	related	by S ₄ .				_		

XPh ₄	α ₁	a ₂	
с	111.6	74.7	
Si	114.8	80.7	
Ge (RT)	116.3	83.4	
Ge (LT)	117.2	85.1	
Sn	119.2	88.5	
Pb	119.3	91.3	

The angle ϕ measures the rotational displacement of the molecule about its S₄ axis. All the tetraphenyl molecules studied are rotated about the S₄ axis by an angle of about 7-8°. The values obtained for these angles (Table 20) are in accordance with the typical values observed previously (Table 17).

The values of ψ vary from 40.8° for TPMe to 31.3° for TPPb (Table 20).

The angles between the least-squares best planes of the phenyl rings connected by the S_4 axis are listed in Table 21. The angles α_1 and α_2 are the angles between the normal of the planes of the phenyl rings related by symmetry operations: $\alpha_1 - (x, y, z)$ and (-x, -y, z); and $\alpha_2 - (x, y, z)$ and (y, -x, -z), respectively. 上海シン

3

3.5. Analysis of Thermal Motion - TLS Calculations.

3.5.1. Thermal Motion of Atoms

A full description of the motion of atoms in the free molecule or in the crystal is not a simple matter and requires knowledge of the dynamics of the systems¹³⁶ studied. From Xray diffraction studies^{137,138,132} it is possible to obtain information about the mean atomic positions and also about the probability density function (pdf), averaged over time and over all unit cells in the crystal. The pdf describes the relative probability of finding an atom displaced by the vector **u** from its equilibrium position. The time-averaged motion of a combination of simple harmonic oscillators (in thermal equilibrium at temperature T) that corresponds to the motion of an atom in the harmonic potential in crystal, is represented by the Gaussian probability function¹³⁹ centred at the atomic position **r**

$$D(\mathbf{u}) = [(\det \mathbf{v}^{-1})/(2\pi)^3]^{1/2} \exp[(-1/2)\mathbf{u}^{T}\mathbf{P}\mathbf{u}]$$

where $P=U^{-1}$ is the inverse of the symmetric second-moment matrix $U=\langle uu^T \rangle$ of the pdf; the atomic position is defined as the mean value of this distribution. If U is positive definite, the surfaces of the set of equations

$$\mathbf{u}^{\mathsf{T}}\mathbf{U}^{-1}\mathbf{u} = \mathrm{const.}$$

are ellipsoids. Thermal ellipsoids, which are often used in graphical presentations of crystal structures, are surfaces of constant probability density, centred on the mean position of atom and usually drawn at the 50% probability level.

The Fourier transform of the corresponding pdf, often referred to as atomic 'anisotropic temperature factors', takes the form

$$T_{\mu} = \exp(-2\pi^2 \mathbf{H}^{T}\mathbf{U}\mathbf{H})$$

1

where **H** is a reciprocal-lattice vector. The mean square displacement amplitude of an atom along the direction defined by the unit vector **n** (referred to the unit vectors of the reciprocal-lattice axis) is then given by

 $\langle u^2 \rangle_n = n^T U n$

and has the dimension $(length)^2$. The surface the radius of which along **n** is proportional to **n**^TUn has a peanut shape rather than ellipsoidal^{132,136}.

The six components of **U** for each atom are measures of the mean-square displacement (of the second moments of the pdf's) and are included, together with positional parameters, in the least-squares analysis. Examination of **U** can provide

information about pdf in crystals and create a basis for a partial analysis of the overall thermal motion in terms of contributions from different sources.

3.5.2. Analysis of Thermal Motion

Generally, anisotropic thermal parameters (components of U) are treated as independent variables. The movement of the atoms is considered as independent and the actual correlations in the motion of different atoms are ignored. However, if the crystal contains rigid groups of atoms with fixed interatomic separations, the translational and librational oscillations of those groups introduce strong correlations among the U_{ii} parameters of different atoms. The full analysis of the thermal motion of the atoms in crystal requires consideration of the correlations among the motions of a large number of atoms or groups and, in general, involves dynamics of the entire crystal. In the solid state, however, where the contributions from internal vibrations are smaller than those from the translational and librational motions, the motion of rigid groups can often be approximated by simplified models of the vibrating systems.

The rigid-body model^{140,131,132} most commonly used assumes that the interatomic distances within the rigid-body group remain constant during the movement and describes the simplest correlation among the motions of all different atoms within いたいでものでもう

ŝ

¥

منه بد تديمه الدوم

Sale Lawsen

シュート

î

きょうちょう だいちょうち ちょうちん あ

ちちちちん シャット シー ショー アンド ちってい

1

シュー いまし ふたいませい

a molecule. Analysis of such motion is based on calculation of overall rigid body motion tensors T, L, and $\mathbf{S}^{140,131,132,38}$, by a least-squares fit to the individual anisotropic temperature factor components, given atomic positions and the atomic U's. The translation vector T describes the translational motion The libration tensor L depicts the of the molecule. librational motion of the molecule, and the screw correlation tensor **B** represents the correlation between the translational and librational motions of the molecule. Once the T and L tensors have been determined, they may be diagonalized to yield magnitudes and directions of their principal axes. The eigenvectors of the L tensor represent the three principal libration axes, and their eigenvalues represent the meansquares librational amplitudes about these axes. The librational axes are perpendicular to each other but do not necessarily intersect¹³¹. Pertinent transformations help to relate those axes to the internal geometry of the molecule or to the crystal coordinate system and to the intermolecular packing.

ž

·***

dex no i

The R-values' and the r.m.s. discrepancy serve to evaluate the fit of the chosen model to observed U's. However, a good least-squares fit of the parameters of the model to observed atomic displacement parameters does not necessarily mean that the molecule or its parts are rigid,

 $f \qquad R(U_{ij}) = \Sigma \Sigma U_{ijobs} - U_{ijcalc} / \Sigma \Sigma U_{ijobs};$ $R_w(U_{ij}) = [\Sigma \Sigma w (U_{ijobs} - U_{ijcalc})^2 / \Sigma \Sigma w U_{ijobs}^2]^{1/2};$

112

since these parameters can absorb some of the effect of internal motion¹⁴¹.

3.5.3. Effect of Thermal Vibrations on Bonds

The general effect of thermal motion on bond lengths estimated from diffraction measurement has been thoroughly discussed^{131,132,136,138,140,142}. The atomic coordinates obtained by X-ray analysis refer to the centroid of an electron density distribution arising from the combined effect of external and internal atomic vibrations. The separation between atomic centroids cannot be interpreted directly as interatomic distances¹⁴². Correlations between the motions of pairs of atoms, which are usually unknown, can lead to an apparent shortening in the distances determined by a crystal-structure analysis. If proper corrections are to be made the joint distribution of motions of the atoms should be known or assumed. The rigid-body motion is one of the cases where the correlations are well defined. The TLS procedure³⁸ produces also the corrected values of bond lengths for a molecular fragment in libration model. Appropriate corrections are made to every coordinate of every atom and corrected interatomic distances are calculated.

3.5.4. TLS Calculations

-17

ł

Carter o Maria

しんちず シー・ドー

the countration

Men.

* ちょうちょう

うい スキチ と

Maria maria And

In an attempt to explain the thermal motion of the molecules studied the rigid-body motion was analyzed by routine TLS³⁸ calculations. TLS calculations for TPMe are based on crystal coordinates and temperature factors from ref. 121. The fractional coordinates of atoms given in this reference are related to our set of coordinates by symmetry: $x_{ref}=-y$, $y_{ref}=x$, $z_{ref}=-z$. This corresponds to a different choice of an unique phonyl ring in the molecule.

First the rigid-body model was calculated to fit the whole molecule. For TPMe, the vibrational tensors **TLS**, calculated from the lattice-dynamics, have been reported¹⁰⁶

Table 22. TLS details for XPh_4 - whole molecule; centroid of libration at (000); l_1 , l_2 , l_3 - mean amplitudes of libration about the principal libration axes L_1 , L_2 , L_3 .

x	1,	l ₂ (°)	13	R(U _{ij}) %	R _w (U _{ij}) %	r.m.s. (Å ²)
 с	2.3	2.3	2.9	9.61	9.10	0.0032
Si	1.8	1.8	2.9	15.64	14.26	0.0059
Ge(RT)	1.4	1.4	3.0	16.66	15.29	0.0061
Ge(LT)	1.3	1.3	2.6	16.09	14.35	0.0044
Sn	1.4	1.4	2.8	13.03	12.64	0.0047
Pb	1.4	1.4	2.9	19.89	18.88	0.0071

together with the corresponding values derived from the Xray analysis¹²¹. The evaluated rigid-body model values of **TLS** tensors were higher than the values derived from the latticedynamic calculations since in the TLS model the contributions from internal vibrations are interpreted also in terms of rigid-body translation and rotation. This should also be true for the other tetraphenyl molecules.

ようてい ほどうちょう な ほう 気がる

, 1 Two other models were used in calculations. In the first

x	11	1 ₂	13	R(U _{ij}) R	_w (U _{ij})	r.m.s.	centroid
		(*)		ጜ	*	(A)	(Cryst. fractions)
c	2.1	3.6	5.1	4.00	3.85	0.0013	0.0106 0.0803 0.0470
Si	1.5	3.8	6.1	8.01	6.83	0.0028	0.0959 -0.0090 -0.0348
Ge(RT)	1.7	3.6	6.3	8.58	7.71	0.0030	0.1054 -0.0191 -0.0454
Ge(LT)	1.7	3.3	5.4	7.58	6.74	0.0020	0.1043 -0.0034 -0.0819
Sn	1.9	2.9	5.8	7.06	6.44	0.0023	0.0860 -0.0294 -0.0481
25 D	1.0	3.8	5.6	13.45	12.43	0.0046	0.0577 -0.0541 -0.1546

Table 23. TLS details for XPh_4 - model 1; l_1 , l_2 , l_3 - mean amplitudes of librational motions about L_1 , L_2 , L_3 .

model the central atom and the phenyl ring were assumed to move as a rigid body. In the second model only the phenyl ring was considered as a rigid body.

The results of the TLS calculations for all three models are given in Table 22, Table 23 and Table 24.

When the whole molecule is considered as a rigid body the centre of libration is placed in the central atom at the

x	1,	12	1,	R(U _{ij}) R	"(Ū _{ij})	r.m.s.	centroid
		(°)		9	olo Olo	Å ²	(cryst. fractions)
C	4.4	6.3	7.9	3.10	3.00	0.0011	0.0237 0.1675 0.1935
Si	5.5	6.7	9.0	4.29	3.97	0.0017	0.1979 -0.0235 -0.2302
Ge (RT)	5.4	6.6	9.0	6.19	5.48	0.0022	0.2016 -0.0254 -0.2375
Ge(LT)	4.5	5.6	7.6	5.01	4.75	0.0015	0.1960 -0.0203 -0.2449
Sn	4.7	6.5	8.5	4.98	4.54	0.0017	0.2019 -0.0246 -0.2679
Pb	4.1	6.6	9.0	10.08	9.20	0.0035	0.2018 -0.0217 -0.2620

Table 24. TLS details for XPh_4 - model 2; l_1 , l_2 , l_3 - mean amplitudes of librational motions about L_1 , L_2 , L_3 .

ł

1

1 2 .

un un 1'

2 1 2

ŕ

と 読大べ

origin (000). The axis corresponding to the largest mean librational amplitude, L_3 , coincides with the crystallographic axis c. The librational axes L_1 and L_2 are perpendicular to L_3 and to each other, and are rotated with respect to the crystallographic axes a and b. Since in tetragonal crystal system axis a is equivalent by symmetry to b and the molecules are at sites of symmetry $\overline{4}$ (S₄), the libration axes L_1 and L_2 are equivalent and the librational amplitudes about those axes are equal. The $R(U_{ij})$ values change from 9% for TPMe to almost 20% for TPPb, with r.m.s. discrepancies of 0.0032Å² to 0.0071Å² for TPMe and TPPb, respectively.

The average librational corrections based on this model are relatively small (max 0.003Å) compared to the calculated e.s.d's for the pertinent bonds. The differences in corrected and uncorrected bond lengths cannot therefore be considered as significant.

The presumption that the tetraphenyl molecules behave as rigid bodies seems to be unjustified, and in modelling of thermal motion of such molecules more flexibility should be allowed for. Not only can the molecule librate as a whole but also the phenyl groups can experience librations which can be visualized as yawing, pitching and rolling¹⁴³. Because of this motion atoms outside the ring (opposite C1) will have the highest thermal motion and the distances C3-C4, C4-C5, and C1-C2, C1-C6 will be shortened.

An assumption that the central atom and the phenyl ring

perform as a rigid body entails restricting the motion of the ring in the direction of the bond. The $R(U_{ij})$ ranges from about 7% for TPSn to 13% for TPPb and 4% for TPMe. An r.m.s. discrepancy between observed and calculated anisotropic temperature factors changes from 0.0020\AA^2 for TPGe (LT) to 0.0046\AA^2 for TPPb and is equal 0.0013\AA^2 for TPMe. As would be expected, from the two determined structures of TPGe the one collected at low temperature gives better fit with the model.

The librational movement about one of the axes is larger

いてき

ĩ

Figure 36. The typical location of the centre of libration in model 1 (TPSi).

118

ł

Figure 37. View of the phenyl ring (model 1) along the largest libration axis (L_3) ; (a) - TPMe; (b) - TPSi.

1

ł

4

the states of the

まて コヒック・

ł

rearing all the state and the set of the set

b

Figure 38. Libration axes for TPGe (model 1); (a) - room temperature structure; (b) - low temperature structure.

1

.

1 1

. ...

1 1 1

3

5

÷

٦

ļ

- ------

Figure 39. Libration axes (model 1) for TPSn - (a) and TPPb - (b).

than along the other two orthogonal axes. The rigid part of the molecule has the major libration about the axis inclined to the plane of the ring which runs through the libration centre below the ring plane between the C1 and the central atom (Figure 36). The coordinates of the libration centre are given in crystal fraction units with respect to the real crystal axes in Table 23. Figure 37, Figure 38, and Figure 39 show the view of the phenyl ring along the axis around which the largest libration occurs (L_3). This axis is perpendicular to the page and passes through the centroid. The L_1 and L_2 axes are perpendicular to L_3 and run down and across the page respectively, but do not necessarily intersect either with L_3 or with each other.

The average librational corrections based on this model increase the C-C distance in TPMe by 0.006Å, in TPSi by 0.007Å, in TPGe(RT) by 0.008Å, in TPGe(LT) by 0.006Å, in TPSn by 0.006Å, and in TPPb by 0.007Å. Similarly, the corrected X-C distances increase by 0.006Å in TPMe, by 0.006Å in TPSi, by 0.005Å in TPGe(RT), by 0.003Å in TPGe(LT), by 0.006Å in TPSn, and by 0.004Å in TPPb.

The assumption that only the phenyl ring behaves as a rigid body gives more freedom in movement of the ring. Although this model gives larger amplitudes of libration, it gives better agreement between the observed and calculated anisotropic temperature factors. The $R(U_{ij})$ values range from about 3% for TPMe to 10% for TPPb and the r.m.s. discrepancy

varies from 0.0011\AA^2 for TPMe to 0.0035\AA^2 for TPPb. Here again better results were obtained for TPGe(LT) than for TPGe(RT).

Figure 40. Location of the centre of libration for model 2 (TPSi).

Now the centre of libration is located in the plane of the ring along the line connecting central atom, C1, and C4, closer to C1 (Figure 40). The rigid phenyl ring librates about an axis running approximately along the plane of the ring (Figure 41, Figure 42). The librational movement is larger about L_3 than along the other orthogonal axes.

The average librational bond corrections based on this model increase the C-C distance by 0.013\AA for TPMe, by

123

And the second of the second second

0.020Å for TPSi, by 0.019Å for TPGe (RT), by 0.014Å for TPGe (LT), by 0.017Å for TPSn, and by 0.017Å for TPPb.

Corr.

こうしてき

ころのいちちちちちち いろう いいないやちないないないでき

スシネット

ちょうへて ちょうちんちょうないたい

Figure 41. Libration axes (model 2) for (a) - TPMe; (b) - TPSi.

а

1.

C1

PB1

C2

 \oplus

d

٠

 \oplus

Figure 42. Libration axes (model 2) for TPGe (RT) - (a); TPGe (LT) -(b); TPSn - (c); and TPPb - (d).

b

3.6. Molecular Mechanics Calculations

3.6.1. Introduction

,

ŕ

5-1-1

ş

ç

Ł

Conformational analysis involves examination of the geometric (bond lengths, valence and torsional angles, nonbonded contacts) and energetic (the relative energies of the conformers and isomers, rotational barriers etc.) characteristics of molecules. The conformers can be studied by experimental methods and by calculation.

The calculation methods for studying the conformation of molecules include semi-empirical and non-empirical quantumchemical methods, and empirical methods, which use a mechanical model of the molecule, based on atom-atom approximation (molecular mechanics, force field methods). Recently, the accessibility of all these methods has increased considerably with the significant development of computer technology.

The possibility of examining a wide range of materials and the considerable saving of computing time (compared with quantum-chemical methods) has enabled the molecular mechanics method to occupy an important position among methods used to study molecular conformations.

The molecular mechanics method uses an empirical approximation based on the Born-Oppenheimer principle, which makes possible separation and independent study of the

ļ.

motions of the electrons and the nuclei in atoms. In this model, the molecule is regarded as a system of interacting atoms. The intramolecular and non-bonded interactions are central in character. For each type of atom there are 'ideal' values of the valence angles and bond lengths, deviation from which leads to an increase in the energy of molecules. To reproduce the experimental values of the dihedral angles and the barriers of rotation about the bonds in the molecules, the model is usually supplemented by a so-called torsional component characterising the expenditure of energy due to the relative rotation about chemical bonds. Where necessary, the model also takes into account the energy of electrostatic interaction, hydrogen bonds, etc.

Thus the steric energy of a molecule can be written as

$$E_{c} = \Sigma E(1) + \Sigma E(\Theta) + \Sigma E(\varphi) + \Sigma E(r) + \Sigma E(q) \dots$$

sensition and the second states and

where the sums extend over all bonds, bond angles, torsion angles, and nonbonded interactions between all atoms not bound to each other or to a common atom.

The terms E(1) (stretching energy) and $E(\Theta)$ (bending energy) are the energies required to deform all bonds and valence angles in the molecule from the ideal values (l_0 and Θ_0) to the actual values (1 and Θ). For the small deformations usually observed with change in the conformation, Hooke's law (the harmonic approximation) is applicable:

$$E(1) = 0.5K_{1}(1-1_{0})^{2},$$

$$E(\Theta) = 0.5K_{\Theta}(\Theta-\Theta_{0})^{2},$$

where K_i and K_{θ} are the force constants of the bond and angles. For larger deformations, additional terms (cubic, quadratic) are added or a Morse potential is substituted.

The torsional energy $E(\varphi)$ is written as

 $E(\varphi) = 0.5E_0(1+\cos n\varphi)$

where E_0 is the torsional constant, φ the dihedral (torsional) angle for the k-th bond, and n the multiplicity of the barrier of rotation.

The energy E(r) of the nonbonded (van der Waals) interactions, is the sum of the paired interactions of all the atoms (atom-atom approximation), and is most frequently described by the Lennard-Jones or Buckingham potentials:

 $E(r) = -Cr^{-6} + Ar^{-12},$ $E(r) = -Cr^{-6} + Aexp(-Br),$

where r represents the interatomic distances, and A, B, and C are empirical constants, obtained from an experiment.

The energy E(q) of the electrostatic interactions is taken into account fairly infrequently, sometimes in the

dipole-dipole or, more often, in the monopole approximation:

$$E(q) = q_i q_i / \epsilon r_{ii},$$

where q_i and q_j are the charges on the ith and jth atoms (obtained from the quantum mechanics calculations) situated at a distance r_{ij} from one another, and ϵ the dielectric constant.

The geometry of an isolated (free) molecule corresponds to a conformational energy minimum. Thus the determination of the optimal molecular conformation involves the search for a minimum value of E_s . A variety of mathematical techniques of minimising of E_s , of which the steepest-descent and the Newton-Raphson methods are the most common, can be used. In the general case, the problem of determining the optimal geometry of a molecule reduces to the search for a minimum of a function of (3N-6) variables, where N is the number of atoms in the molecule. However, it is often possible to fix most of the geometric parameters of the molecule and to simplify the problem by scanning the values of E_s over several variables.

The choice of the parameters for conformational calculations (the constants in the expressions for components of E_s) is based on their variation, for a series of simple compounds of the same type, to achieve the best agreement between the calculated and experimental data or corresponding

data obtained in a non-empirical quantum-mechanics calculation.

مرح ومعتبد من أحوت برام المحتلية

--

المراجع والمراحد والمراجع والمراجع والمراجع والمراجع

ç

2

--

これ しのままでなみがなながない うちのゆきょうか ふたんしのなれたないできょう

ž

いい さんしんかいがい いかんがみ ふたいい いちのしいち どうちゅうち ちに とうちんたい

The second second

たるであ

The success of the calculations depends on the ability of the model to approximate the systems under consideration. Most molecular geometries are calculated now with an accuracy comparable to the precision of the experimental methods (0.005Å in bond lengths and 1° in angles). Thus in most cases the molecular mechanics represents the best approach to the calculation of molecular energies, even when the molecules of interest have not yet been prepared.

3.6.2. Molecular Conformations of the Tetraphenyls

The first theoretical calculations^{117,116} on tetraphenyl compounds were based on geometrical considerations of crystal packing and the closest approach of phenyl hydrogens. Although the results so obtained were not very accurate (see ref 119, 120), they all confirmed the existence of fourfold symmetry in the molecules and were in agreement with the results from X-ray determinations. The conformational analysis of molecules based only on a simple consideration of van der Waals contacts is very limited¹¹⁹. The crystal lattice (packing) energy is a more sensitive probe in predicting a probable structure.

Because of the rigid nature of the phenyl ring the structures of tetraaryl compounds of Group IV can be described in terms of two angular parameters, ϕ and φ , where ϕ is the angle of rotation of the entire molecule about the S_4 axis, and φ is defined as the angle of rotation of the phenyl ring about the central bond. The total potential energy of the all pairs of the nonbonded and bonded atoms becomes then a function of these parameters.

In the first crude calculations¹⁰³ of nonbonded potential energy of TPSn the atom-atom potential approximation⁹⁴ was used, with all conformational changes of the molecule reduced to one rotation of the phenyl ring about the tetrahedral Sn-C bonds and the packing restricted only to the experimentally

131

the set of the second

- the later to the to the

established symmetry of the space group.

ž

4

5

1

1 11 5

ž

ひょうしょうか ちょうえん しょうしん しません しまちょうない ないかない かんしょう ステレーション ひょうしょう しょうたい しょうせん しょうせん かみしんりん イット・バング ななし イ

ちんっと だいりどうしょう フィー・

で たいしょういんしょう いろうちょう

245

Ř.

Similar calculations based on the same model were also performed for all the tetraphenyls¹⁰⁴. For all the compounds studied, the energy minima corresponded to S_4 symmetry and the values of the ϕ and ϕ angles were in fair agreement with the experimental data.

With the progress in modern computational techniques, the empirical force field method (molecular mechanics) has developed into a valuable source of data on structures and energies for the compounds containing aromatic rings^{109, 110}. The study of the static¹⁰⁷ and dynamic¹⁰⁸ stereochemistry of tetraaryl derivatives of Group IV was undertaken utilizing the approach of full relaxation empirical force field calculations. A mathematical model has also been proposed'6 to represent the behaviour of the tetraaryls. The molecular mechanics force fields used included bond stretching, angle bending, torsion, and van der Waals energy interactions summarized over all bonds, bond angles, torsion angles, and nonbonded interactions between all atoms not bound to each other or to a common atom¹⁴⁴. The steric energies and geometries of structures corresponding to minima on the potential hypersurfaces for the series of tetraarylmethanes and tetraarylsilanes were calculated¹⁰⁷.

Tetraphenylmethane was found to have a ground state of D_{2d} symmetry, unlike TPSi, which appeared to have two stable conformers, one of S_4 symmetry consistent with the symmetry

found in the crystal and another of D_{2d} symmetry and of roughly equal energy.

And the second se

-

2

۹ ۲

. . .

More refined calculations¹⁴⁵ using a combined empirical force field and extended Hückel molecular orbital method have shown the existence of two energy minima for TPMe: one of D_{2d} symmetry corresponding to the ground state found previously and the other (0.4kcal/mol above the ground state) corresponding to the S₄ symmetry of the molecule. The D_{2d} conformation of TPSi was found to correspond to an energy maximum.

A search for the most favourable conformation has also been carried out for <u>ortho</u>-substituted tetraaryl derivatives^{107,108}. The results of calculations on tetra(otolyl) derivatives of carbon and silicon as well as on tetra(2,6-xylyl)methane indicated a ground state of S_4 symmetry, with all the substituents oriented <u>exo</u>, for all the molecules studied.

The results of conformational analysis confirm the preference for the S_4 symmetry for the tetraaryl compounds.

3.6.3. MM3 Calculations

Molecular Mechanics calculations were performed for TPMe and TPSi using the MM3 Allinger Force Field program^{109, 110}. Input structures for these calculations were taken from Xray determinations reported in ref. 121 and from our redeterminations, for TPMe and TPSi respectively.

Initially the block-diagonal minimisation method was employed; later the full-matrix Newton-Raphson method was used. Minimisation was continued until atomic movements (all shifts in positional coordinates) converged with the following values: average movement at 0.00113Å and maximum movement at 0.01132Å. During minimisation of TPMe and TPSi structures S_4 symmetry restraints were employed for all symmetry-equivalent carbon and hydrogen atoms in the different phenyl rings. The motion of the central atom was restricted in all directions.

Only the parameters included in the MM3 program package were used in calculations.

The MM3 driver routine was used to drive a selected angle of TPMe and TPSi through a range of values and minimise all other degrees of freedom at each point. The scanning of the torsional angle chosen (C7-X-C1-C2 or =C1-X-C7-C8 [C7=C1', C8=C2'...]) corresponded to the rotation of the phenyl ring about the central bond by this angle. The ring was rotated about the C-X bond by increments of 15°, 5° and 1° through the range of -100° to 100° . At each stage, the structure was

134

subjected to the full MM3 calculations, with the exception that the dihedral angle was held constant during energy minimisation. The steric energies of TPMe and TPSi (as a function of the angle through which a phenyl ring was driven) are depicted in Figure 45 and Figure 46, respectively.

The second

Lotter-

and the the second the second of the second

and the second

Unfortunately, the MM3 force field at present does not contain the parameters that would enable us to calculate the structures of the other tetraphenyls.

MM3 calculations were also performed to determine the structures of the o-tolyl derivatives of tetraphenylmethane and silane. The structures of tetra(o-tolyl)methane (oTMe) and tetra(o-tolyl)silane (oTSi) were calculated using MM3. The procedure employed was the same as in the case of TPMe and TPSi.

3.6.4. MM3 Calculations of TPMe and TPSi

The minimised structure of TPMe has the symmetry D_{2d} (molecular shape - prolate symmetric rotor). The final steric energy is 28.100 kcal/mol. The phenyl rings are planar, with a mean deviation of the central carbon atom from the plane through the carbon atoms of 0.093Å. The mean C-C-C angle in the phenyl ring is 120°. The angle at Cl is equal to 117.6°.

The mean carbon-carbon bond length in the ring is 1.340Å, and the distances between the central carbon and the carbons C1 are 1.530Å. The bond lengths and angles of the calculated structure are listed in Table 25.

The valence angles are 102.3° and 113.2°.

The angles between the planes of the phenyl rings related by the S_4 axis are 93.2° and 121.9°.

For TPSi the final structure obtained from MM3 calculations has the symmetry S_4 (molecular shape - prolate symmetric rotor). The final steric energy was found to be 18.975 kcal/mol.

The deviation of the silicon atom from the best phenylring plane through the carbon atoms is 0.034Å. The average C-C-C angle in the phenyl ring is 120.0° . The angle at C1 is equal to 119.2° . The average carbon-carbon bond length in the phenyl ring is 1.398Å. The Si-C1 distances are 1.865Å.

The valence angles are 108.5° and 110.0°.

The bond lengths and angles of the calculated structure

co	-C1	1.530	C1	-C0	-C1'	102.3
C1	-C2	1.407	C1	-C0	-C1''	113.2
Cl	-C6	1.406	CO	-C1	-C2	120.8
C2	-C3	1.396	CO	-C1	-C6	120.8
C3	-C4	1.395	C2	-C1	-C6	117.6
C4	-C5	1.394	Cl	-C2	-C3	121.1
C5	-C6	1.397	C2	-C3	-C4	120.1
			C3	-C4	-C5	119.6
			C4	-C5	-C6	120.2
			C1	-C6	-C5	121.7

Table 25.	Interatomic distances	(Å)	and	interbond	angles
(degrees)	for TPMe (MM3).				-

Primed atoms have symmetry operations: -x, -y, z, -y, -x, -z,-y, x, -z,

Table 26. Interatomic distances (Å) and interbond angles (degrees) for TPSi (MM3).

Sil	-C1	1.865	C1	-Sil	-C1'	108.5
Cl	-C2	1.402	C1	-Sil	-C1''	110.0
Cl	-C6	1.400	Si1	-C1	-C2	119.7
C2	-C3	1.396	Si1	-C1	-C6	121.1
C3	-C4	1.396	C2	-C1	-C6	119.2
C4	-C5	1.396	C1	-C2	-C3	120.4
C5	-C6	1.397	C2	-C3	-C4	120.1
			C3	-C4	- C5	119.8
			C4	- C5	-C6	120.1
			C1	-C6	-C5	120.4

Primed	atoms	have	symmetry	operations:
				-

1	-	-x,	-У,	z,
11	-	у,	-x,	-z,
	-	-y,	x,	-z,

N Law 1 4 1

* * * * **

8 11

the part of the

to as the here is not the apply photograph and the first to the a set of the set

٢

Ŷ

「「「ちょう」」」」」

are listed in Table 26.

The angles between the phenyl rings related by S_4 are 106.2° and 73.8°. The twist angle of the phenyl ring, ψ , is 50.4°.

After completion of the energy minimisation the program reorients the molecule so that the centre of mass is at the origin and the principal axes of inertia correspond to the Cartesian axes (Ix< Iy< Iz). Because of this transformation the crystallographic axis Z_c was interchanged with the MM3 axis X'.

In order to be able to compare the calculated structures with the structures obtained from the X-ray determinations it was necessary to bring both molecules to a common orthogonal system of coordinates.

The new orthogonal system (X",Y",Z") is related to the tetraphenyl molecule in such a way that the origin is placed at the central atom; the X" axis passes through the origin and the atom C1; the Z" axis coincides with the crystallographic axis, Z_c , and with the MM3 X' axis; and Y" is orthogonal to X" and Z". The transformation from the MM3 system, after interchanging the X' and Z" axes, is a simple rotation about Z" by an angle $\alpha_m = 72.96^\circ$ for TPMe and 37.88° for TPSi. This angle is defined by tan $\alpha_m = y_1/x_1$, where x_1 , y_1 , z_1 , are the coordinates of C1 in the MM3 system (after interchanging X' and Z").

al and the second

		X-ray (S ₄)			MM3 (D _{2d})	
Ato	om X#	У"	Z"	x"	Х"	2 ¹¹
C0	0.000	0.000	0.000	0.000	$\begin{array}{r} 0.000 \\ 0.000 \\ -1.204 \\ -1.205 \\ 0.000 \\ 1.204 \\ 1.204 \end{array}$	0.000
C1	1.244	0.000	0.925	1.191		0.959
C2	1.298	-0.917	1.982	1.687		1.492
C3	2.384	-0.967	2.834	2.711		2.441
C4	3.442	-0.101	2.665	3.234		2.909
C5	3.397	0.830	1.649	2.711		2.442
C6	2.309	0.880	0.784	1.687		1.492
H2	0.529	-1.536	2.118	1.264	-2.171	1.176
H3	2.366	-1.627	3.567	3.095	-2.161	2.835
H4	4.228	-0.142	3.247	4.037	0.000	3.665
H5	4.131	1.449	1.529	3.095	2.160	2.835
H6	2.300	1.585	0.066	1.263	2.171	1.176

Table 27. Cartesian coordinates (Å) of TPMe in the X"Y"Z" system.

Table 28. Cartesian coordinates (Å) of TPSi in the X"Y"Z" system.

41

ų

	х	-ray (S ₄)		MM3 (S ₄)			
Ato	m x"	У"	2"	×"	У"	Z"	
 Sil	0.000	0.000	0.000	0.000	0.000	0.000	
C1	1.522	0.000	1.103	1.513	0.000	1.090	
C2	1.654	-0.949	2.110	1.535	-0.789	2.248	
C3	2.780	-0.983	2.923	2.670	-0.820	3.060	
C4	3.778	-0.062	2.758	3.794	-0.067	2.720	
C5	3.665	0.900	1.789	3.781	0.717	1.566	
C6	2.552	0.927	0.969	2.636	0.748	0.752	
	0.082	-1 563	2 220	0 656	_1 204	2 5 2 0	
	0.963	-1.503	2.230	0.050	-1 442	2.523	
HJ	2.840	-1.642	3.626	2.6/9	-1.443	3.9/1	
H4	4.580	-0.061	3.252	4.692	-0.090	3.362	
H5	4.362	1.542	1.714	4.670	1.314	1.295	
H6	2.587	1.614	-0.325	2.656	1.375	-0.155	

Figure 43. Projection of the phenyl ring of TPMe on the X"Y" plane.

Similarly, the transformation from the crystal coordinates system is a rotation about $Z''=Z_c$ by an angle $\alpha_c=$ 82.60° for TPMe and 82.99° for TPSi (tan $\alpha_c=y_c/x_c$, where x_c , y_c , z_c , are the Cartesian coordinates of Cl in the crystal system). The transformed coordinates of both structures are given in Table 27 and Table 28. The projection of both phenyl rings on the X"Y" plane is shown in Figure 43 for TPMe and in Figure 44 for TPSi.

Figure 44. Projection of the phenyl ring of TPSi on the X"Y" plane.

Of particular interest is a comparison between the calculated molecular structures of TPMe and TPSi and the molecular structures found in the crystals.

The calculated structure of TPMe has the symmetry D_{2d} while the symmetry in the crystal is S_4 . The difference between the calculated and the experimental structures is clearly shown in Figure 43. Table 29 lists the results of the calculation and of the X-ray experiment for TPMe. The distances calculated by MM3 are shorter than those obtained from crystallography. The valence angles, the angles between

141

	ММЗ		X-ray	
C-C	1.340 Å	<u></u>	1.393 Å	
C0-C1	1.530 Å		1.553(3)Å	
C2-C1-C6	117.6°		117.6°	
C1-C0-C1'	102.3°		106.7(2)°	
C1-C0-C1"	113.2°		110.9(2)°	
ψ	0.0°	(D _{2d})	40.8° (S ₄)	
α ₁	93.2°		111.6°	
α ₂	121.9°		74.7°	

Table 29. TPMe: comparison of results from MM3 and X-ray.

the phenyl rings, and the twist angle of the phenyl ring are dissimilar because of the different molecular conformations. The angle C2-C1-C6 is the same in both cases. This might suggest that the distortion inside the phenyl ring has the same character for both conformations.

Ť.

ŝ

計

A possible explanation for the difference between the calculated molecular symmetry and that observed in the crystal might be provided by the analogy with tetraphenylborates, where the symmetry assumed by the anion is a function of the associated cation¹⁰⁷. The intermolecular forces dictated by crystal packing play the dominant role in determining the anion stereochemistry in potassium and tetramethylammonium⁹² tetraphenylborates. This statement is reinforced by the existing similarity of the distortions which the two systems suffer at the central atom. In the case of TPMe the intramolecular forces are apparently strong enough to overcome the energy which is needed to effect the conformational change from the symmetry in the free state to the symmetry in the crystal.

	ММЗ		X-ray			
c-c	1.398 Å		1.385 Å			
Si-Cl	1.865 Å		1.879(3)Å	1.879(3)Å		
C2-C1-C6	119.2°		117.3°			
c1-si-c1'	108.5°		108.2(1)	D		
C1-Si-C1"	110.0°		110.1(1)	0		
ψ	50.4°	(S ₄)	37.7°	(S ₄)		
α ₁	106,2°		114.8°			
α ₂	73.8°		80.7°			

Shipping a second second of

nate con a fer

Table 30. TPSi: comparison of results from MM3 and X-ray.

In the case of TPSi, the symmetry of the calculated and experimental structures is the same. The difference between these two structures is shown in Figure 44. Table 30 compares results obtained from calculation and experiment for TPSi. The principal difference is in the twist angle, ψ . This angle is larger in the calculated structure. The angles between the phenyl ring planes also differ. The average C-C distance in the ring is greater in the calculated structure but the Si-C1 distance is less than in the crystal. The valence angles have the same values in both structures but the α angle (at C1) in the phenyl ring is greater in the case of the calculated structure.

The MM3 driver routine has been used to determine that the conformations obtained for the tetraphenyls studied are located in the global minimum of the energy surface. The steric energies of TPMe and TPSi (as a function of the angle through which a phenyl ring was driven) are shown in Figure 45 and Figure 46, respectively. Because of the high symmetry of the phenyl ring only a limited range of angles needs to be considered.

7

Ę

4 9

3

ň

N

Two energy minima for TPMe in the range of angles studied $(-100^{\circ} \text{ to } 100^{\circ})$ have been found: one at about -85° and another at 85°. Both correspond to structures with D_{2d} symmetry, with the phenyl ring rotated by 180° about the C-X bond. Thus in one case, C7-X-C1-C2=85° and C7-X-C1-C6=-85°, while in another these values are inverted. There are also two 'discontinuity' (sudden energy change) regions, at 0° and at about 55°-60°. All attempts to minimise structures with these values of torsional angles led to the conformations with D_{2d} symmetry or to the transition structures with a higher energy. An explanation of the behaviour of TPMe in these angle regions would require a detailed dynamic analysis of all the transition conformations and is out of scope of this work.

In case of TPSi, the energy surface shows four minima located at -98° , -41° , 20° , and 80° in the range of angles

studied. All the conformations corresponding to these minima posses S_4 symmetry and are in fact equivalent since the values of the torsional angles C7-Si-C1-C2, C13-Si-C1-C2, C19-Si-C1-C2, C7-Si-C1-C6, C13-Si-C1-C6, and C19-Si-C1-C6 (related to C1-C6 and C1-C2) permute.

The MM3 force field does not contain the parameters which would enable us to calculate the structures of TPGe, TPSn, and TPPb. However, attempts have been made to model these structures by adjusting the existing l_0 and K_1 parameters to values observed in these compounds or given in MM3 for the $X(sp^3)-C(sp^3)$ bonds. The results of the MM3 calculations with new parameters are given in Table 31. Of course, such a treatment is unsatisfactory, because of the lack of other parameters involved in the calculations. Nonetheless, despite the deficiency of such an approach the symmetry of all the structures minimised (although C_1) turns out to be very close to S_4 observed in the crystals.

このはないというとうろう

1

ł

5.004

Ś

Ł

s

ゆう いたい だっき

Figure 45. Steric energy E_s as a function of the angle of driven ring (C7-X-C1-C2) for TPMe.

Figure 46. Steric energy E_s as a function of the angle of driven ring (C7-X-C1-C2) for TPSi.

	TPMe	TPMe	TPSi	TPSi	TPGe	TPSn	TPPb
ĸ	6.300	6.300	3.000	3.000	2.700	2.124	1.900
10	1.530	1.553	1.856	1.865	1.948	2.137	2.203
Х-С (Å)	1.557	1.578	1.878	1.886	1.966	2.152	2.219
θ _i (°)	102.5	102.7	109.0	109.0	109.2	109.4	109.5
θ ₂ (°)	113.0	112.9	109.7	109.7	109.6	109.5	109.5
α (°)	117.8	118.0	119.3	119.3	119.5	119.7	119.7
¥ (°)	0.0	0.0	36.6	36.6	36.1	35.3	35.0
φ (°)	90.0	90.0	53.4	53.4	53.9	54.7	55.0
E, (kcal/ mol)	25.8	24.2	13.3	13.2	12.3	12.1	12.3
Symm.	D _{2d}	D _{2d}	Ci	C ₁	Cı	C ₁	C ₁

Table 31. Results of MM3 calculations with changed l_0 and K_1 .

بن م

٨

ž

ł

*

s

7 4

3.6.5. MM3 Calculations of oTMe and oTSi

Introduction of substituents into <u>ortho</u> or <u>para</u> positions of the phenyl group of TPMe and TPSi can lead to further lowering of the symmetry of the molecule^{107,100,101}. The conformations of the oTMe and oTSi molecules were calculated, using MM3, to observe the effect of the substituent on the preferred geometry.

For these molecules, only six diastereomeric conformers with S_4 or pseudo- S_4 symmetry are possible (Figure 47). To distinguish the different edges of the phenyl rings in the molecule the <u>endo-exo</u> nomenclature introduced by Mislow et al. is adopted. If a molecule in an S_4 conformation is represented by a Fischer projection where the central atom lies in the reference plane (the plane perpendicular to the S_4 axis), then the edges of the aryl groups inclined toward this plane are labelled <u>endo</u> (n), while those inclined away from the plane <u>exo</u> (x). According to this description, of the six diastereomers the (xxxx) and (nnnn) forms have S_4 symmetry, the (xxnn) form has C_2 symmetry, and the other four forms are asymmetric though of pseudo- S_4 symmetry.

and and and the

The results of the MM3 calculations for oTMe and oTSi are presented in Table 32 and Table 33, respectively. Only six diastereomeric structures corresponding to energy minima were found for both oTMe and oTSi. In each case, the ground-state structure has S_4 symmetry ((xxxx) isomer) and relatively lower

149

energy than the other conformers. The <u>endo</u> (nnnn) isomer has the highest conformational energy.

The phenyl rings are planar, with a maximum deviation from the plane through the carbon atoms of 0.044Å (for carbons) for oTMe and of 0.029Å for oTSi. The deviation of the central atom from this plane varies from 0.007Å for the (nnnn) form of oTMe to 0.038Å for the (xxxx) isomer, and from

(XXXX)

(xxnx)

(xxnn)

0.007Å for the (xxxx) conformer of oTSi to 0.020Å for the (xxnn) form. The methyl carbons in both cases are also deviated from the phenyl ring plane. The maximum deviation of the methyl carbons from the ring plane is observed in the (nnnn) form (0.162Å) for oTMe, while for oTSi in the (nnxn) isomer (0.139Å). The deviation is minimal in the (xxxx) isomer of oTMe (0.048Å) and the (nnnn) form of oTSi (0.009Å).

A press

ł

.

1101

うれたい

**

おちま ちろうちょう ちょうちゅうかい かっ うちし かやちる

יינוניני גראיטאניט נוואנונו עליניניניניניניטאי מעמעניט אינונינין ארפי וני גראי עריי אין אין איניין

ないのないたのではないないのないというです。

544-10395056-175

The <u>ipso</u> α angle at Cl is smaller than 120° for all the conformers studied. However, the deformation of the phenyl ring is greater in the case of oTMe, where the values of α range from 117.1°, for the (xxxx) isomer, to 116.9° for the (nnnn) form. In oTSi the deviation of α from 120° is less and varies from 119.2°, for the (xxxx) form, to 118.2° for the (nnnn) isomer.

The mean carbon-carbon distance in the ring is 1.403Å and 1.401Å in all the conformers of oTMe and of oTSi, respectively. These distances do not differ substantially and are longer than observed in the calculated structure of TPMe and TPSi and the related structures determined by X-ray.

The mean distance between the central carbon and the carbon Cl in oTMe conformers is 1.545Å. In this case, the shortest X-C distance of 1.543Å is observed in the (nnnn) conformer. However, for oTSi this conformer has the longest Si-C distance (1.896Å) of all forms, while for the (xxxx) isomer this bond lengths is 1.877Å and is the shortest of all. The calculated distance for oTMe is longer than for TPMe, but Table 32. MM3 data for oTMe.

er er sære

1

,

3

ં.

param.	(XXXX)	(xxnx)	(xxnn)	(xnxn)	(xnnn)	(nnnn)
х-с (Å)	1.546	1.546	1.545	1.547	1.545	1.543
Ме-С (Å)	1.513	1.513	1.513	1.512	1.513	1.514
θ _i (°)	104.3	103.5	100.6	102.0	100.7	99.7
θ ₂ (°)	112.1	111.7	113.6	111.7	111.6	114.6
α (°)	117.1	117.0	116.9	116.9	116.8	116.9
¥ (°)	37.8	37.2	23.4	32.1	21.8	17.9
φ (°)	52.2	52.8	66.6	57.9	68.2	72.1
E, (kcal/ mol)	47.1	51.3	52.5	55.3	56.2	56.1
Symm.	S ₄	Cl	C ₂	C ₁	C ₁	S ₄

.

.

Table 33. MM3 data for oTSi.

param.	(xxxx)	(xxnx)	(xxnn)	(xnxn)	(xnnn)	(nnnn)
Х-С (Å)	1.877	1.880	1.880	1.882	1.881	1.896
Me-C (Å)	1.512	1.511	1.511	1.511	1.510	1.508
θ ₁ (°)	106.3	105.7	102.7	104.3	102.2	104.8
θ ₂ (°)	111.1	110.8	113.2	109.4	110.4	111.9
α (°)	119.2	118.8	118.8	118.8	118.7	118.2
ψ (°)	39.8	41.2	21.1	41.4	29.0	35.5
φ (°)	50.2	48.8	68.1	48.6	61.0	54.5
E. (kcal/ mol)	29.0	31.4	32.9	33.8	35.9	38.9
Symm.	S ₄	Ci	C ₂	Cı	Ci	S ₄

for oTSi the reverse relationship exists.

In all conformers of oTMe and oTSi, the methyl groups are bent away from the central atom by at least $4-5^{\circ}$ from the ideal value of 120° . In the system X-C-C-Me, the exocyclic angles are more, and the endocyclic angles less, than 120° .

Deformation of the central bond valence angles follows a characteristic pattern for most conformers and seems larger for oTMe than for oTSi. The θ_1 angles are smaller than the θ_2 angles in all cases. The valence angles θ_1 for the (nnnn) isomers of oTMe and oTSi are slightly smaller than the corresponding angles for the (xxxx) conformers. This is in disagreement with the observations of Mislow et al. that isomers of the highest energy (nnnn), adopt the exact reverse central angles with respect to (xxxx) isomers.

The tendency of the aryl rings to avoid positions corresponding to the most severe interactions between the adjacent methyl groups influences also the rotation angles of the aryl rings. These angles are generally smaller in the case of the (nnnn) conformers.

There exist only two X-ray structure determinations of the <u>ortho</u>-substituted derivatives of the tetraphenyls. Both compounds, tetra(o-tolyl)germanium and tetra(o-tolyl)tin, as well as tetra(m-tolyl)tin, have the more stable (xxxx) conformation of S_4 symmetry (or pseudo- S_4 in the case of tetra(o-tolyl)germanium) in crystals.

3.7. Summary

"The substantiation of a statement to the statement of th

مىسىمەت ئىرىكى بىلىغان ئولىغان مەركى سال ئىلىغان ئىلغان ئىلىغان ئەركىكى بىلىغان مەركىلىق بىلىغان ئەركىكى بىلىغ

The previous crystallographic data on the tetraaryl derivatives of Group IV have shown that the molecular S, symmetry is preferred in crystals. However, earlier structure determinations of the tetraphenyl derivatives, obtained by different authors, contain discrepancies and require more accurate structural analysis. Therefore the structures of the complete series of the tetraphenyl derivatives (with the exception of TPMe, where a structure of very high standard was already available) carefully redetermined under were standardized conditions to produce a consistent set of structural parameters. The structures of TPMe, TPSi, and their o-tolyl derivatives were then further examined with molecular mechanics calculations.

The present crystallographic results provide more precise structural parameters (eg. bond lengths, angles) and allow for detailed analyses of these structures. The structures now display rational and understandable trends in their fine details. First, the well-known tendency of tetraphenyl molecules to retain S_4 symmetry has been confirmed. Second, the general trend in the distortion of the tetrahedral bond configuration at the central atom has also been confirmed; it can be described by a parabolic relationship between the valence angles and central atom-carbon distances. In addition, the thermal motion of the molecules in the crystals
has been analyzed and described.

.....

ş

As part of a continued interest in tetraaryl compounds, the structures of some Group I tetraphenylborates have been determined by X-ray crystallography (Appendix 3). Attempts are continuing to obtain crystals of the corresponding tetraphenylaluminates.

The results of molecular mechanics calculations are, in general, consistent with the crystallographic data and confirm the molecular symmetry S_4 for all the tetraphenyls calculated, except for the tetraphenylmethane molecule, which has D_{2d} symmetry in the ground state. These results are in agreement with the previous empirical force field calculations but they indicate that in the present application this technique has been pushed to its limit.

MM3 calculations are restricted to an examination of a single molecule, uninfluenced by any neighbours. Any realistic extension of the molecular mechanics technique to crystals must simulate the crystal field by taking account of additional molecules placed according to the characteristics of the unit cell¹⁴⁶. This kind of calculation, when performed for TPMe and TPSi, could provide additional evidence of the influence of the crystal packing on the symmetry of the molecule. APPENDICES

١

武 、 、 ŧ

î

1

ŝ

ŝ

a and a first of

きなしないま へもくてき

۱,

* * * *

·

and the dissipation wanted in a set

To to an a top starting

Appendix 1	
------------	--

Fractional Atomic Positional Parameters and Equivalent Isotropic Temperature Factors ($Å^2$) for $2N_3P_3Az_6 \cdot C_6H_6$; Data Set I; (e.s.d.s in parentheses).

Atom	x/a	у/b	z/c	U _{eq}
P	0.28421(3)	0.24869(3)	0.05368(3)	0.0181
Nl	0.1432 (0)	0.3312 (1)	0.1076 (1)	0.0219
N11	0.2815 (1)	0.2312 (1)	-0.1046 (1)	0.0268
C111	0.3720 (1)	0.1185 (1)	-0.1620 (1)	0.0378
C112	0.2259 (1)	0.1167 (1)	-0.1271 (1)	0.0407
N12	0.4017 (1)	0.3494 (1)	0.0247 (1)	0.0315
C121	0.4857 (1)	0.3401 (2)	0.1290 (2)	0.0510
C122	0.5448 (1)	0.2878 (1)	0.0036 (2)	0.0492
C9	0.5716 (1)	0.5502 (1)	0.3778 (1)	0.0434

Hydrogen Atom Positional Parameters for $2N_3P_3Az_6 \cdot C_6H_6$; Data Set I.

ŧ

Atom	x/a		у/ъ		z/c		U _{iso}	
Hl	0.415	(1)	0.146	(1)	-0.261	(1)	0.067	(1)
H2	0.433	(1)	0.052	(1)	-0.100	(1)	0.056	(1)
H3	0.190	(1)	0.052	(1)	-0.045	(1)	0.057	(1)
H4	0.176	(1)	0.143	(1)	-0.197	(1)	0.065	(1)
H5	0.502	(1)	0.430	(1)	0.142	(1)	0.060	(1)
H6	0.468	(1)	0.279	(1)	0.208	(1)	0.055	(1)
H7	0.608	(1)	0.338	(1)	-0.062	(1)	0.063	(1)
H8	0.569	(1)	0.185	(1)	0.008	(1)	0.051	(1)
Н9	0.617	(1)	0.587	(1)	0.295	(1)	0.058	(1)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
P	0.0169 (1)	0.0189 (1)	0.0184 (1)	-0.0016 (1)	-0.0023 (1)	-0.0042(1)
Nl	0.0209 (4)	0.0206 (4)	0.0215 (4)	-0.0008 (3)	-0.0015 (3)	-0.0012(3)
NII	0.0297 (5)	0.0293 (5)	0.0197 (4)	-0.0038 (3)	-0.0032 (3)	-0.0012(4)
C111	0.0399 (7)	0.0433 (7)	0.0288 (6)	-0.0155 (5)	0.0001 (5)	0.0010(6)
C112	0.0425 (7)	0.0516 (8)	0.0354 (6)	-0.0201 (6)	-0.0069 (6)	-0.0123(6)
N12	0.0229 (4)	0.0285 (5)	0.0429 (6)	0.0002 (4)	-0.0046 (4)	-0.0102(4)
C121	0.0407 (7)	0.0525 (8)	0.0708 (9)	-0.0053 (7)	-0.0253 (7)	-0.0232(6)
C122	0.0204 (5)	0.0448 (8)	0.0781(10)	0.0009 (7)	-0.0035 (6)	-0.0091(5)
С9	0.0431 (7)	0.0430 (7)	0.0351 (6)	0.0027 (6)	0.0039 (6)	-0.0032(6)

Anisotropic Temperature Factors ($Å^2$) for $2N_3P_3Az_6 \cdot C_6H_6$; Data Set I; (e.s.d.s in parentheses).

159

μ

Fractional Atomic Positional Parameters and Equivalent Isotropic Temperature Factors ($Å^2$) for $2N_3P_3Az_6 \cdot C_6H_6$; Data Set II (hex.); (e.s.d.s in parentheses).

Atom x/a		x/a y/b		B _{eq}	
P	0.7553(1)	0.2780(1)	0.0289(1)	1.22(1)	
Nl	0.6155(1)	0.1959(1)	0.0274(1)	1.51(2)	
N11	0.8124(1)	0.2380(1)	-0.3070(5)	1.86(2)	
C111	0.9293(1)	0.3239(1)	-0.0572(1)	2.60(4)	
C112	0.8207(1)	0.2881(1)	-0.0949(1)	2.87(4)	
N12	0.8198(1)	0.2423(1)	0.0921(1)	2.16(3)	
C121	0.8339(2)	0.3113(2)	0.1519(1)	3.54(5)	
C122	0.9329(1)	0.3241(1)	0.1123(1)	3.47(5)	
C9	0.9281(1)	0.0503(1)	0.0001(1)	3.00(4)	

Hydrogen Atom Positional Parameters for $2N_3P_3Az_6 \cdot C_6H_6$; Data Set II (hex.).

Atom	x/a	y/b	z/c	B _{iso}
н1	0.969(2)	0.403(2)	-0.038(1)	3.5(4)
H2	0.980(2)	0.291(2)	-0.068(1)	4.0(5)
H3	0.795(2)	0.342(2)	-0.101(1)	4.1(5)
H4	0.802(2)	0.231(2)	-0.127(1)	3.4(4)
H5	0.823(2)	0.376(2)	0.151(1)	3.4(4)
H6	0.817(2)	0.268(2)	0.190(1)	4.4(5)
H7	0.980(2)	0.401(2)	0.089(1)	4.5(5)
H8	0.979(2)	0.294(2)	0.126(1)	5.1(6)
H9	0.884(2)	0.090(2)	0.002(1)	3.9(4)

160

÷

L J Anisotropic Temperature Factors ($Å^2$) for $2N_3P_3Az_6 \cdot C_6H_6$; Data Set II; (hex.) (e.s.d.s in parentheses).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃	
P	0.0134(1)	0.0137(1)	0.0201(1)	0.0076(1)	-0.0016(1)	-0.0004(1)	
Nl	0.0145(3)	0.0137(3)	0.0291(4)	0.0070(2)	-0.0003(3)	0.0005(3)	
N11	0.0201(3)	0.0217(3)	0.0309(4)	0.0119(3)	0.0032(3)	-0.0034(3)	
C111	0.0218(4)	0.0348(5)	0.0406(6)	0.0130(4)	0.0089(4)	-0.0024(5)	
C112	0.0353(6)	0.0501(7)	0.0266(5)	0.0236(6)	0.0047(4)	-0.0014(5)	
N12	0.0254(4)	0.0246(4)	0.0321(5)	0.0125(3)	-0.0106(3)	0.0021(3)	
C121	0.0573(9)	0.0466(8)	0.0289(6)	0.0246(7	-0.0182(6)	0.0032(5)	
C122	0.0307(5)	0.0368(6)	0.057(1)	0.114(5)	-0.0245(6)	0.0027(6)	
C9	0.0293(5)	0.0309(5)	0.059(1)	0.0191(4)	0.0002(5)	0.0003(5)	

Data	Set	I	II
P	-N1	1.583(1)	1.588(1)
P	-N1 '	1.597(1)	1.598(1)
P	-N11	1.665(1)	1.671(1)
P	-N12	1.673(1)	1.678(1)
N11	-C111	1.474(2)	1.472(2)
N1?	-C112	1.462(2)	1.464(2)
C111	-C112	1.470(3)	1.473(2)
N12	-C121	1.467(3)	1.470(2)
N12	-C122	1.471(2)	1.474(2)
C121	-C122	1.461(3)	1.466(3)
C9	-C9''	1.382(3)	1.386(1)
C9	-C9'''	1.382(3)	1.386(1)

Interatomic Distances (Å) for $2N_3P_3Az_6 \cdot C_6H_6$

Primed atoms have symmetry operations:

' - y, z, x
'' - -y+1, -z+1, -x+1
''' - -z+1, -x+1, -y+1
''' - z, x, y

162

The unit of the second in the state of the state of the second seco

Shind the subar

and the second second second second

THE REAL PROPERTY OF

おうかい そしやう

ł

ţ.

,

х,

Data	Set		I		II	
N1 -	Р	- N1'	116.7	(1)	116.8	(1)
N1 -	Ρ	- N11	107.6	(1)	107.7	(1)
N1 -	Р	- N12	108.7	(1)	108.7	(1)
N1' -	Р	- N11	111.8	(1)	111.6	(1)
N1' -	Ρ	- N12	111.3	(1)	111.3	(1)
N11 -	Р	- N12	99.3	(1)	99.2	(1)
P -	Nl	- P''''	123.2	(1)	123.1	(1)
P -	N11	- C111	119.1	(1)	119.2	(1)
P -	N11	- C112	118.3	(1)	118.3	(1)
c111-	N11	- C112	60.1	(1)	60.2	(1)
N11 -	C111	- C112	59.6	(1)	59.6	(1)
N11 -	C112	- C111	60.3	(1)	60.2	(1)
P -	N12	- C121	118.3	(1)	118.2	(1)
P -	N12	- C122	118.5	(1)	118.5	(1)
C121-	N12	- C122	59.6	(1)	59.7	(1)
N12 -	C121	- C122	60.3	(1)	60.3	(1)
N12 -	C122	- C121	60.0	(1)	60.0	(1)
C9''-	C9	- C9'''	120.0	(2)	120.0	(0)

Interbond Angles (degrees) for $2N_3P_3Az_6 \cdot C_6H_6$

Primed atoms have symmetry operations:

1	-	y, z, x
11	-	-y+1, -z+1, -x+1
• • •	-	-z+1, -x+1, -y+1
	• _	z, x, y

and the state of t

ł

And the second second

and see been

The the second of the

weeks Three of a

the the sum of the state

あたいはいったいしまい。 あたいまた したいないのかたいだいがい

Ą

Negati M

	_	_								
atom	Pv	P ₀₀	P ₁₁	P ₁₋₁	P ₁₀	P ₂₀	P ₂₁	P ₂₋₁	P ₂₂	P ₂₋₂
P1	4.86(30)	0.00(0)	0.21(9)	- 0.20(9)	0.16(10)	0.11(8)	0.11(7)	0.02(6)	0.09(7)	0.18(8)
N1	5.55(15)	0.00(J)	0.01(5)	0.02(5)	- 0.07(5)	- 0.01(4)	0.03(4)	0.06(4)	- 0.06(3)	0.02(4)
N2	5.46(14)	0.00(0)	- 0.09(5)	- 0.06(6)	- 0.13(6)	- 0.01(5)	0.03(4)	0.06(5)	0.07(5)	0.01(4)
N3	5.31(13)	0.00(0)	- 0.01(5)	0.09(7)	- 0.09(6)	- 0.11(5)	0.01(4)	0.12(5)	- 0.01(5)	- 0.03(4)
C1	4.80(17)	0.00(0)	0.03(9)	0.06(9)	0.09(9)	0.12(8)	- 0.06(7)	0.11(8)	- 0.15(9)	0.04(8)
C2	4.61(16)	0.00(0)	- 0.26(10)	0.15(10)	0.20(9)	0.26(10)	0.15(8)	- 0.07(8)	- 0.18(8)	0.02(9)
C3	4.52(15)	0.00(0)	0.04(8)	0.10(8)	0.04(8)	0.14(7)	- 0.01(6)	- 0.05(6)	- 0.19(6)	- 0.11(7)
C4	4.41(15)	0.00(0)	- 0.01(8)	0.01(9)	0.03(9)	0.02(8)	0.00(7)	0.13(8)	- 0.16(6)	0.08(7)
C9	4.41(10)	0.00(0)	0.00(14)	- 0.18(16)	0.07(6)	0.13(5)	- 0.13(9)	0.07(11)	0.00(4)	0.28(5)
H1	0.65(7)	0.00(0)	0.05(4)	- 0.02(4)	0.07(4)					
H2	0.52(8)	0.00(0)	- 0.13(4)	- 0.06(5)	0.06(5)					
НЗ	0.43(6)	0.00(0)	- 0.02(3)	- 0.02(4)	0.04(4)					
H4	0.52(7)	0.00(0)	0.13(4)	- 0.03(4)	0.06(4)					
H5	0.62(6)	0.00(0)	- 0.03(3)	0.03(4)	0.07(4)					
H6	0.57(6)	0.00(0)	0.06(4)	0.00(4)	0.08(4)					
H7	0.59(7)	0.00(0)	0.01(4)	- 0.11(4)	0.09(4)					
H8	0.60(6)	0.00(0)	- 0.04(3)	- 0.02(4)	0.13(4)					
H9	0.58(6)	0.00(0)	0.02(4)	0.01(4)	0.09(4)					

Multipole Population Coefficients for $2N_3P_3Az_6 \cdot C_6H_6$; Data Set II; (rh.)

.. .. .

Multipole Population Coefficients for $2N_3P_3Az_6 \cdot C_6H_6$ (cont.); Data Set II; (rh.) (e.s.d.s in parentheses).

atom	P ₃₀	P ₃₁	P ₃₋₁	P ₃₂	P ₃₋₂	P ₃₃	P ₃₋₃
P1	0.62(11)	0.09(6)	- 0.11(6)	- 0.05(6)	- 0.04(6)	- 0.11(6)	0.35(7)
N1	0.09(4)	0.07(4)	0.00(4)	- 0.04(4)	-0.11(4)	0.10(4)	0.02(3)
N2	0.12(5)	0.00(4)	- 0.10(5)	- 0.16(5)	-0.16(5)	- 0.03(4)	0.12(5)
N3	0.03(5)	0.02(4)	- 0.16(5)	- 0.07(5)	0.06(4)	- 0.05(4)	0.12(5)
C1	0.50(9)	- 0.04(8)	- 0.21(9)	0.1 3(8)	0.07(8)	- 0.03(8)	0.11(8)
C2	0.50(9)	- 0.04(8)	- 0.17(10)	0.23(8)	0.09(8)	0.25(8)	0.30(8)
C3	0.44(7)	0.09(7)	0.00(7)	0.08(6)	- 0.01(7)	- 0.11(7)	0.12(6)
C4	0.41(8)	- 0.03(7)	-0.12(9)	0.05(7)	- 0.12(7)	- 0.15(7)	0.23(7)
C9	0.41(6)	- 0.01(10)	-0.12(12)	0.05(5)	- 0.22(5)	0.13(10)	0.01 (10)

the set of the bedgess the set

بر مر

e

is at an an and the set of the se

165

هو سوک است الد

مرمعة الإن رم

Appendix 2

Fractional Atomic Positional Parameters and Equivalent Isotropic Temperature Factors $(Å^2)$ for $C_6H_4S_2P^+$ AlCl₄⁻ (e.s.d.'s in parentheses).

Atom	x/a		y/b		z/c		U _{eq}
A11	0.0326	(2)	0.1512	(1)	0.2461	(2)	0.0417
Cll	-0.0682	(2)	0.2223	(1)	0.3679	(1)	0.0584
C12	0.0669	(2)	0.0783	(1)	0.3957	(1)	0.0576
C13	-0.1813	(2)	0.1336	(1)	0.0384	(1)	0.0573
C14	0.3274	(2)	0.1701	(1)	0.1893	(1)	0.0629
S 1	0.3381	(2)	0.3155	(1)	0.2365	(2)	0.0542
S2	0.6778	(2)	0.3694	(1)	0.0898	(2)	0.0658
P1	0.5535	(2)	0.2917	(1)	0.1103	(2)	0.0619
Cl	0.3764	(6)	0.3886	(1)	0.2552	(4)	0.0443
C2	0.5326	(6)	0.4128	(1)	0.1882	(4)	0.0482
СЗ	0.5668	(7)	0.4724	(2)	0.1989	(5)	0.0689
C4	0.4413	(9)	0.5041	(2)	0.2754	(6)	0.0777
C5	0.2869	(8)	0.4794	(2)	0.3406	(6)	0.0747
C6	0.2518	(7)	0.4218	(2)	0.3334	(5)	0.0577

Hydrogen Atom Positional Parameters for $C_6H_4S_2P^+$ AlCl₄⁻

Atom	x/a		y/b		z/c		U _{iso}	
НЗ	0.679	(1)	0.489	(0)	0.151	(1)	0.074	(3)
H4	0.483	(1)	0.545	(0)	0.277	(1)	0.087	(3)
H5	0.193	(1)	0.502	(0)	0.398	(1)	0.083	(3)
H6	0.138	(1)	0.400	(0)	0.386	(1)	0.083	(3)

Anisotropic Temperature Factors $(Å^2)$ for $C_6H_4S_2P^+$ AlCl₄ (e.s.d.'s in parentheses).

300 (200

.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
All	0.0400(6)	0.0433(7)	0.0412(7)	-0.0057(6)	0.0055(5)	0.0023(5)
Cll	0.0645(7)	0.0489(7)	0.0643(7)	-0.0108(6)	0.0183(6)	0.0081(5)
C12	0.0668(7)	0.0526(7)	0.0523(6)	0.0036(5)	0.0076(5)	0.0126(6)
C13	0.0533(6)	0.0681(8)	0.0461(6)	-0.0018(6)	-0.0028(5)	-0.0056(6)
C14	0.0452(6)	0.0636(8)	0.0823(8)	-0.0111(6)	0.0183(6)	-0.0054(5)
S1	0.0545(7)	0.0507(7)	0.0579(7)	0.0050(6)	0.0115(5)	-0.0100(6)
S2	0.0619(8)	0.0818(10)	0.0576(7)	0.0059(7)	0.0214(6)	-0.0125(7)
P1	0.0662(8)	0.0631(9)	0.0569(8)	-0.0044(7)	0.0123(6)	-0.0022(7)
Cl	0.048 (2)	0.045 (2)	0.039 (2)	0.007 (2)	0.002 (2)	0.000 (2)
C2	0.054 (2)	0.052 (2)	0.034 (2)	0.008 (2)	-0.003 (2)	-0.012 (2)
С3	0.077 (3)	0.063 (3)	0.060 (3)	0.019 (2)	-0.008 (2)	-0.025 (2)
C4	0.115 (3)	0.040 (2)	0.067 (3)	0.004 (2)	-0.010 (3)	-0.001 (3)
C5	0.093 (3)	0.068 (3)	0.060 (3)	0.003 (2)	0.007 (2)	0.018 (3)
C6	0.066 (2)	0.058 (3)	0.048 (2)	0.006 (2)	0.007 (2)	0.004 (2)

7

167

• •

1

おうしてん ちょうしんかい ちしかいり

ł

1 Kee

The of the of the

5

得

Indered and a second second

ii1	P1	2.017	(2)	All -Cl1	2.134	(2)
S 1	-C1	1.728	(4)	Ail -Cl2	2.127	(2)
S2	-P1	2.010	(2)	All -Cl3	2.118	(2)
S2	-C2	1.720	(5)	All -Cl4	2.133	(2)
C1	-C2	1.389	(6)			
C1	-C6	1.391	(6)			
C2	-C3	1.40 9	(7)			
С3	-C4	1.366	(8)			
C4	-C5	1.375	(8)			
C5	-C6	1.364	(7)			

Interbond Angles (degrees) for $C_6H_4S_2P^+$ AlCl₄⁻

P1	-S1	-C1	102.6	(2)
P1	-S2	-C2	102.5	(2)
S1	-P1	-S2	97.9	(1)
S1	-C1	-C2	118.0	(3)
S1	-c1	-C6	120.5	(3)
C2	-C1	-C6	121.4	(4)
\$ 2	-C2	-C1	119.0	(3)
S2	-C2	-C3	121.2	(4)
C1	-C2	-C3	119.8	(4)
C2	-C3	-C4	117.6	(5)
C3	-C4	-C5	121.9	(5)
C4	-C5	-C6	121.7	(5)
C1	-C6	~ C5	117.6	(5)

C11	-All -Cl2	109.3	(1)	
C11	-All -Cl3	110.6	(1)	
C11	-All -Cl4	109.2	(1)	
C12	-A11 -C13	110.1	(1)	
C12	-All -Cl4	107.7	(1)	
C13	-Al1 -Cl4	109.9	(1)	

Fractional Atomic Positional Parameters and Equivalent Isotropic Temperature Factors $(Å^2)$ for $C_{13}H_{11}PS_2$ (e.s.d.s in parentheses).

4 mil + 5m 4

Atom	x/a		у/ъ		z/c		U _{eq}
P1	0.8654	(1)	0.2956	(1)	0.4908	(1)	0.0410
S 1	0.7938	(1)	0.1001	(1)	0.5579	(1)	0.0465
S2	0.7567	(1)	0.5391	(1)	0.4501	(1)	0.0409
Cl	0.7267	(2)	0.2988	(4)	0.5898	(2)	0.0361
C2	0.7081	(2)	0.4938	(4)	0.5394	(2)	0.0337
C3	0.6445	(2)	0.6421	(5)	0.5533	(2)	0.0387
C4	0.6009	(2)	0.6010	(5)	0.6184	(2)	0.0429
C13	0.5316	(3)	0.7599	(6)	0.6332	(3)	0.0618
C5	0.6230	(2)	0.4079	(6)	0.6699	(2)	0.0485
C6	0.6855	(2)	0.2596	(5)	0.6564	(2)	0.0444
C7	0.9696	(2)	0.3999	(4)	0.6000	(2)	0.0339
C8	0.9732	(2)	0.5984	(4)	0.6451	(2)	0.0418
C9	1.0569	(2)	0.6561	(5)	0.7282	(2)	0.0471
C10	1.1384	(2)	0.5196	(6)	0.7680	(2)	0.0481
C11	1.1362	(2)	0.3265	(6)	0.7232	(2)	0.0503
C12	1.0535	(2)	0.2674	(5)	0.6397	(2)	0.0454

Atom	x/a		у/Ъ		z/c		U _{iso}	
НЗ	0.632	(2)	0.785	(2)	0.514	(2)	0.044	(2)
H131	0.511	(2)	0.698	(2)	0.685	(2)	0.058	(2)
H132	0.470	(2)	0.786	(2)	0.568	(2)	0.059	(2)
H133	0.569	(2)	0.906	(2)	0.660	(2)	0.054	(2)
H134	0.464	(2)	0.711	(2)	0.616	(2)	0.045	(2)
H135	0.564	(2)	0.810	(2)	0.710	(2)	0.049	(2)
H136	0.527	(2)	0.907	(2)	0.590	(2)	0.046	(2)
H5	0.595	(2)	0.371	(2)	0.716	(2)	0.065	(2)
H6	0.700	(2)	0.115	(2)	0.696	(2)	0.053	(2)
H8	0.916	(2)	0.701	(2)	0.613	(2)	0.060	(2)
H9	1.962	(2)	0.807	(2)	0.762	(2)	0.061	(2)
H10	1.199	(2)	0.563	(2)	0.832	(2)	0.057	(2)
H11	1.195	(2)	0.222	(2)	0.749	(2)	0.078	(2)
H12	1.053	(2)	0.118	(2)	0.610	(2)	0.060	(2)

Hydrogen Atom Positional Parameters for $C_{13}H_{11}PS_2$

Anisotropic Tempe	rature Factors ((Å ²) 1	for C ₁	3H ₁₁ PS ₂ (e	e.s.d.s	in paren	theses).
-------------------	------------------	---------------------	--------------------	-------------------------------------	---------	----------	----------

`

,

. . .

Atom	U ₁₁	U ₂₂	Ü ₃₃	U ₂₃	U ₁₃	U ₁₂
P1	0.0445(4)	0.0413(4)	0.0390(4)	-0.0068(3)	0.0192(4)	0.0007(3)
S1	0.0487(5)	0.0296(4)	0.0599(5)	-0.0010(3)	0.0213(4)	-0.0021(3)
52	0.0424(4)	0.0450(4)	0.0351(4)	0.0063(3)	0.0159(3)	0.0031(3)
C1	0.0298(12)	0.0338(12)	0.0412(13)	-0.0013(11)	0.0112(11)	-0.0041(10)
C2	0.0285(12)	0.0368(12)	0.0321(12)	-0.0011(10)	0.0090(10)	-0.0043(10)
C3	0.0301(12)	0.0374(12)	0.0430(13)	-0.0039(11)	0.0097(11)	-0.0049(11)
C4	0.0313(13)	0.0488(14)	0.0486(14)	-0.0139(12)	0.0167(11)	-0.0085(11)
C13	0.0459(14)	0.0672(16)	0.0831(16)	-0.0196(14)	0.0377(13)	-0.0074(13)
C5	0.0388(13)	0.0669(16)	0.0439(13)	-0.0033(13)	0.0213(11)	-0.0139(13)
C6	0.0377(13)	0.0496(14)	0.0443(13)	0.0058(12)	0.0145(12)	-0.0094(12)
C7	0.0355(12)	0.0359(12)	0.0353(12)	0.0025(10)	0.0198(10)	0.0022(10)
C8	0.0419(13)	0.0373(13)	0.0483(13)	-0.0013(11)	0.0210(11)	0.0028(11)
C9	0.0419(13)	0.0492(13)	0.0508(14)	-0.0073(12)	0.0198(12)	-0.0075(12)
C10	0,0369(13)	0.0695(15)	0.0367(13)	0.0016(12)	0.0141(11)	-0.0069(13)
C11	0.0382(13)	0.0685(15)	0.0444(13)	0.0128(13)	0.0175(11)	0.0123(13)
C12	0.0470(13)	0.0450(13)	0.0467(13)	0.0027(12)	0.0219(12)	0.0091(12)

P1	-S1	2.112	(1)
P1	-52	2.104	(1)
P1	-C7	1.821	(3)
S1	-C1	1.767	(3)
S2	-C2	1.767	(3)
C1	-C2	1.394	(5)
Cl	-C6	1.376	(5)
C2	-C3	1.391	(5)
C 3	-C4	1.385	(5)
C4	-C13	1.503	(6)
C4	-C5	1.391	(5)
C5	-C6	1.376	(5)
C7	-C8	1.398	(5)
C7	-C12	1.395	(5)
C8	-C9	1.375	(5)
C9	-C10	1.385	(5)
C10	-C11	1.371	(5)
C1 1	-C12	1.374	(5)

Interatomic Distances (Å) for $C_{13}H_{11}PS_2$

 S1	P1	-52	94.8	(1)
S1	-P1	-C7	100.9	(1)
S2	-P1	-C7	104.7	(1)
P1	-51	-c1	99.4	(1)
P1	-S2	-C2	99.5	(1)
S 1	-C1	-C2	118.5	(3)
S1	-C1	-C6	121.8	(3)
C2	-C1	-C6	119.5	(3)
S2	-C2	-C1	119.3	(2)
S2	-C2	-C3	120.6	(2)
Cl	-C2	-C3	119.8	(3)
C2	-C3	-C4	120.9	(3)
C3	-C4	-C13	121.2	(3)
C3	-C4	-C5	118.2	(3)
C13	-C4	-C5	120.7	(3)
C4	-C5	-C6	121.4	(4)
Cl	-C6	- C5	120.2	(3)
P1	-C7	-C8	126.2	(3)
P1	-C7	-C12	115.5	(2)
C8	-C7	-C12	118.3	(3)
C7	-C8	-C9	120.0	(3)
C8	-C9	-C10	120.7	(3)
C9	-C10	-C11	119.6	(4)
C10	-c11	-C12	120.3	(4)
C7	-C12	-C11	121.0	(3)

Interbond Angles (degrees) for $C_{13}H_{11}PB_2$

andre a

, 1 4

ł

Appendix 3

```
Other Structures Solved
```

1) 1,2,3,4-dibenzo-trans-6,7-dibromo-1,3-cyclooctadiene C₁₆H₁₄Br₂ MW = 366.1t = 18 °CC222, (No. 20) orthorhombic noncentrosymmetric b = 9.179(3) Å a = 10.913(3)Å c = 27.906(3) Å $\beta = 90^{\circ}$ $\alpha = 90^{\circ}$ $\gamma = 90^{\circ}$ $F(000) = 1440 e \mu = 61.20 cm^{-1}$ $V = 2795.2 Å^3$ $d_c = 1.740 \text{ g/cm}^3$ $\lambda = 0.70926 \text{ Å}$ $\mathbf{Z} = \mathbf{8}$ $N_{me} = 4396$ $N_{un} = 1985$ $N_{ob} = 828$ $N_{ob}/N_{v} = 5.6$ obs. if $I > 2\sigma(I)$ $N_v = 178$ 2°<∉<25° $R_{u} = 0.0392$ R = 0.03572) 2p-bromophenyl-1,3-oxathiolanesulphuroxide

MW = 260.1	t = 18 °C
P2 ₁ (No. 4)	noncentrosymmetric
b = 7.418(3) Å	c = 11.240(3) Å
$\beta = 97.87(3)^{\circ}$	$\gamma = 90^{\circ}$
$\mu = 43.40 \text{ cm}^{-1}$	$V = 487.6 Å^3$
$d_c = 1.772 \text{ g/cm}^3$	$\lambda = 0.70926$ Å
N _{un} = 1064	N _{ob} = 911
$N_v = 126$	$N_{ob}/N_v = 7.2$
R = 0.0429	$R_{w} = 0.0468$
	$MW = 260.1$ $P2_{1} (No. 4)$ $b = 7.418(3) Å$ $\beta = 97.87(3)^{\circ}$ $\mu = 43.40 \text{ cm}^{-1}$ $d_{c} = 1.772 \text{ g/cm}^{3}$ $N_{un} = 1064$ $N_{v} = 126$ $R = 0.0429$

111

which we say the state of the second second second

ř

3)

C ₇₂ H ₁₃₂ Br ₄ P ₂ Pt ₂		
C ₇₂ H ₁₃₂ Br ₄ P ₂ Pt ₂	MW = 1769.4	t = 18 °C
orthorhombic	Pbca (No. 61)	centrosymmetric
a = 9.532(2) Å	b = 15.042(3) Å	c = 26.537(4) Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 3560 e	μ = 110.03 cm ⁻¹	$V = 4057.8 Å^3$
Z == 4	$d_{c} = 2.896 \text{ g/cm}^{3}$	λ = 0.70926 Å
N _{me} = 3927	N _{un} = 2815	N _{ob} = 1563
obs. if I> $3\sigma(I)$	$N_v = 196$	$N_{ob}/N_v = 8.0$
2°<θ<23°	R = 0.0489	$R_{_{W}} = 0.0545$

4)

C₂₇H₃₀N₃OPPt

C ₂₇ H ₃₀ N ₅ OPPt	MW = 638.5	t = 18 °C
monoclinic	P2 ₁ /c (No. 14)	centrosymmetric
a = 12.601(1) Å	b = 10.274(1) Å	c = 20.066(2) Å
$\alpha = 90^{\circ}$	$\beta = 106.55(1)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 1256 e	$\mu = 60.15 \text{ cm}^{-1}$	$V = 2490.2 Å^3$
$\mathbf{Z} = 4$	$d_{c} = 1.703 \text{ g/cm}^{3}$	λ = 0.70926 Å
N _{me} = 4452	$N_{un} = 4368$	N _{ob} = 2896
obs. if $I > 3\sigma(I)$	$N_v = 331$	$N_{ob}/N_v = 8.7$
2°<θ<25°	R = 0.0374	$R_{_{W}} = 0.0387$

C ₁₂ H ₁₇ NO ₃		
C ₁₂ H ₁₇ NO ₃	MW = 221.3	t = 18 °C
monoclinic	P2 ₁ /c (No. 14)	centrosymmetric
a = 7.013(2) Å	b = 18.976(3) Å	c = 9.779(4) Å
$\alpha = 90^{\circ}$	$\beta = 108.8(2)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 472 e	$\mu = 0.92 \text{ cm}^{-1}$	$V = 1232.0 \text{ Å}^3$
$\mathbf{Z} = 4$	$d_c = 1.194 \text{ g/ cm}^3$	$\lambda = 0.70926$ Å
N _{me} = 2016	N _{un} = 1704	N _{ob} = 911
obs. if I> $3\sigma(I)$	$N_v = 166$	$N_{ob}/N_v = 5.5$
2°<#<23°	R = 0.0635	$R_{\mu} = 0.0690$

6)

۰.

2-methyl-1-phenylsulfonyl-4-penten-1-one

C ₁₈ H ₁₈ O ₃ S	MW = 314.4	t = 18 °C
monoclinic	P2 ₁ /c (No. 14)	centrosymmetric
a = 10.528(2) Å	b = 13.721(3) Å	c = 12.256(2) Å
$\alpha = 90^{\circ}$	$\beta = 112.42(1)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 664 e	$\mu = 2.07 \text{ cm}^{-1}$	$V = 1636.6 A^3$
$\mathbf{Z} = 4$	$d_c = 1.276 \text{ g/cm}^3$	$\lambda = 0.70926$ Å
N _{me} = 3029	$N_{un} = 2272$	N _{ob} = 882
obs. if I> $2\sigma(I)$	N _v = 243(disorder)	$N_{ob}/N_v = 3.6$
2°<#<23°	R = 0.0432	$R_{w} = 0.0440$

-1

7) 2-(4-methylphenyl)sulfonyl-1-phenyl-1-(allyloxy)-1,4-

pentadiene		
C ²¹ H ²² O ³ B	MW = 354.5	t = 18 °C
monoclinic	C2/c (No. 15)	centrosymmetric
a = 18.759(3) Å	b = 8.036(3) Å	c = 25.533(3) Å
$\alpha = 90^{\circ}$	$\beta = 95.25(1)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 1504 e	$\mu = 1.75 \text{ cm}^{-1}$	$V = 3848.2 \text{ Å}^3$
$\mathbf{Z} = 4$	$d_{c} = 1.224 \text{ g/cm}^{3}$	λ = 0.70926 Å
N _{me} = 3597	N _{un} = 2667	N _{ob} = 1485
obs. if I> $3\sigma(I)$	N _v = 326(disorder)	$N_{ob}/N_v = 4.6$
2°<θ<23°	R = 0.0508	$R_{\rm w} = 0.0545$

8)

t

ŗ

<

2

2-(4-methylphenyl)sulfonyl-1-phenyl-4-penten-1-one

C ₁₈ H ₁₈ O ₃ S	MW = 314.4	t = 18 °C
monoclinic	Pn (No. 7)	noncentrosymmetric
a = 5.357(3) Å	b = 8.824(3)Å	c = 17.349(3) Å
$\alpha = 90^{\circ}$	$\beta = 91.47(3)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 332 e	$\mu = 1.97 \text{ cm}^{-1}$	$V = 819.8 Å^3$
$\mathbf{Z} = 2$	$d_{c} = 1.274 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
N _{me} = 1449	N _{un} = 1182	$N_{ob} = 644$
obs. if $I > 2\sigma(I)$	N _v = 234(disorder)	$N_{ob}/N_v = 2.8$
2°<0<23°	R = 0.0645	$R_{y} = 0.0651$

9) R,S(41,5n)-5-acetoxy-4-methyl-5-phenyl-4-phenylsulfonyl-1-hexene t = 18 °C MW = 372.5C21H24048 orthorhombic P2₁2₁2, (No. 19) noncentrosymmetric a = 9.18?(2) Åb = 12.320(4) Å c = 17.144(3) Å $\beta = 90^{\circ}$ $\alpha = 90^{\circ}$ $\gamma = 90^{\circ}$ $\mu = 1.80 \text{ cm}^{-1}$ $V = 1939.2 Å^3$ F(000) = 792 e $d_{c} = 1.276 \text{ g/cm}^{3}$ $\lambda = 0.70926$ Å $\mathbf{Z} = \mathbf{4}$ $N_{me} = 1969$ $N_{un} = 1855$ $N_{ob} = 1282$

 obs. if I> $2\sigma(I)$ N_v = 294 (disorder)
 N_v = 4.4

 $2^{\circ} < \theta < 23^{\circ}$ R = 0.0531
 R_v = 0.0571

10) 2,2'-bis[2N-(1,1,3,3-tetramethylguanidino)]biphenyl

dipicrate

ş

C ₂₁ H ₃₄ N ₆ · 2C ₆ H ₂ N ₃ O ₇	MW = 354.5	t = 18 °C
tetragonal	P4 ₁ 2 ₁ 2 (No. 92)	noncentrosymmetric
a = 12.372(5) Å	b = 12.372(6) Å	c = 25.370(3) Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	γ = 90 ⁰
F(000) = 1752 e	$\mu = 1.06 \text{ cm}^{-1}$	$V = 3882.9 Å^3$
Z = 4	$d_{c} = 1.435 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
$N_{me} = 3123$	N _{un} = 2694	$N_{ob} = 1083$
obs. if $I > 3\sigma(I)$	N _v = 306(disorder)	$N_{ob}/N_v = 3.5$
2°<#<23°	R = 0.0684	$R_{y} = 0.0684$

C13H21N3 MW = 219.3t = 18 °C C₁₃H₂₁N₃ $P2_{1}/c$ (No. 14) centrosymmetric monoclinic a = 11.912(2) Å b = 8.927(1) Åc = 13.506(3) Å $\alpha = 90^{\circ}$ $\beta = 112.71(1)^{\circ}$ $\gamma = 90^{\circ}$ $F(000) = 480 e \mu = 0.72 cm^{-1}$ $V = 1324.9 Å^3$ $d_{2} = 1.099 \text{ g/cm}^{3}$ $\mathbf{Z} = \mathbf{4}$ $\lambda = 0.70926 \text{ Å}$ $N_{ob} = 756$ $N_{m} = 2733$ $N_{m} = 1843$ obs. if I> $3\sigma(I)$ N_v = 185(disorder) N_v/N_v = 4.1 $2^{\circ} < \theta < 23^{\circ}$ R = 0.0684 $R_{1} = 0.0715$

12)

C28H20C12N3O0 t = 18 °CC28H20C12N300 MW = 622.4monoclinic P2,/c (No. 14) centrosymmetric a = 14.539(3) Å b = 13.685(3) Å c = 23.579(7) Å $\beta = 140.38(2)^{\circ}$ $\alpha = 90^{\circ}$ $\gamma = 90^{\circ}$ $F(000) = 1296 e \mu = 2.69 cm^{-1}$ $V = 2991.0 Å^3$ $d_{1} = 1.382 \text{ g/cm}^{3}$ Z = 4 $\lambda = 0.70926 \text{ Å}$ $N_{me} = 3016$ $N_{un} = 2774$ $N_{ob} = 1595$ obs. if I> $3\sigma(I)$ N_v = 526(disorder) N_{vb}/N_v = 3.0 2°<8<23° R = 0.0636 $R_{J} = 0.0671$

Physical Groot

triphenylantimony dichloride

C ₁₈ H ₁₅ SbCl ₂	MW = 423.9	t = 18 °C
orthorhombic	P2 ₁ 2 ₁ 2 ₁ (No. 19)	noncentrosymmetric
a = 9.163(8) Å	b = 17.085(8) Å	c = 22.173(9) Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 1664 e	$\mu = 19.09 \text{ cm}^{-1}$	V = 3470.9 Å ³
$\mathbf{Z} = 8$	$d_c = 1.622 \text{ g/cm}^3$	$\lambda = 0.70926 \text{ \AA}$
N _{me} = 3574	N _{un} = 3334	N _{ob} = 2481
obs. if I> 3c(I)	$N_{v} = 342$	$N_{ob}/N_{v} = 7.3$
2°<8<23°	R = 0.0371	$R_{_{W}} = 0.0384$

14)

bis(di-isopropylaminc)thiophosphoryl chloride

C ₁₂ H ₂₈ ClN ₂ PS	MW = 298.8	t = 18 °C
monoclinic	P2 ₁ /n (No. 14)	centrosymmetric
a = 9.740(1) Å	b = 14.206(1) Å	c = 12.693(1) Å
$\alpha = 90^{\circ}$	$\beta = 100.33(2)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 648 e	μ = 4.16 cm ⁻¹	$V = 1727.8 Å^3$
Z == 4	$d_c = 1.149 \text{ g/cm}^2$	$\lambda = 0.70926 \text{ \AA}$
N _{me} = 3197	$N_{un} = 2747$	N _{ob} = 1365
obs. if I> $3\sigma(I)$	$N_v = 207$	$N_{ob}/N_v = 6.6$
2°< <i>θ</i> <23°	R = 0.0537	$R_{w} = 0.0595$

l

лца —

٤

bis(di-isopropylamino)selenophosphoryl chloride

C ₁₂ H ₂₃ ClN ₂ P8e	MW = 345.7	t = 18 °C
monoclinic	P2 ₁ /n (No. 14)	centrosymmetric
a = 9.723(2) Å	b = 14.203(2) Å	c = 12.826(2) Å
$\alpha = 90^{\circ}$	$\beta = 99.73(2)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 720 e	$\mu = 23.57 \text{ cm}^{-1}$	$V = 1745.7 \text{ Å}^3$
$\mathbf{Z} = 4$	$d_{c} = 1.315 \text{ g/cm}^{3}$	$\lambda = 0.70926 \text{ Å}$
N _{me} = 3228	$N_{un} = 3004$	$N_{ob} = 1640$
obs. if I> $3\sigma(I)$	N _v = 179(disorder)	$N_{ob}/N_v = 9.2$
2°< <i>θ</i> <23°	R = 0.0633	$R_{w} = 0.0703$

16)

bis(di-isopropylamino)phospholiumheptachloro-dialuminate

C ₁₂ H ₂₈ N ₂ P.Al ₂ Cl ₇	MW = 533.5	t = 18 °C
monoclinic	P2 ₁ /n (No. 14)	centrosymmetric
a = 12.732(7) Å	b = 12.285(9) Å	c = 17.492(7) Å
$\alpha = 90^{\circ}$	$\beta = 103.92(4)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 1096 e	$\mu = 8.79 \text{ cm}^{-1}$	$V = 2655.6 Å^3$
$\mathbf{Z} = 4$	$d_c = 1.334 \text{ g/cm}^3$	$\lambda = 0.70926 \text{ Å}$
$N_{me} = 4032$	N _{un} = 3685	$N_{ob} = 1427$
obs. if I> $3\sigma(I)$	$N_v = 291$	$N_{ob}/N_v = 4.9$
2°< <i>θ</i> <23°	R = 0.0530	$R_{_{W}} = 0.0562$

小学 キャン・ショー

ş

its sec. . Num

.* .

ċ

いいの思い

17)

diphenylamine-trichloroaluminium

C ₁₂ H ₁₁ AlCl ₃ N	MW = 302.6	t = 18 °C
monoclinic	C2/c (No. 15)	centrosymmetric
a = 15.072(3) Å	b = 13.398(3) Å	c = 14.603(3) Å
$\alpha = 90^{\circ}$	$\beta = 102.95(2)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 1232 e	μ = 6.78 cm ⁻¹	$V = 2873.7 Å^3$
Z = 8	$d_{c} = 1.399 \text{ g/cm}^{3}$	λ = 0.70926 Å
N _{me} = 2181	N _{un} = 1985	N _{ob} = 1104
obs. if I> $3\sigma(I)$	$N_v = 166$	$N_{ob}/N_v = 6.7$
2°< <i>θ</i> <23°	R = 0.0455	$R_{w} = 0.0468$

18)

N-methylpropane-1,3-diammonium hexachlorostannate(IV)

C4N2H12SnCl6	MW = 419.5	t = 18 °C
monoclinic	P2 ₁ /n (No. 14)	centrosymmetric
a = 7.205(2) Å	b = 25.806(6) Å	c = 14.880(3) Å
$\alpha = 90^{\circ}$	$\beta = 89.47(2)^{\circ}$	γ = 90°
F(000) = 1616 e	$\mu = 29.89 \text{ cm}^{-1}$	$V = 2766.5 Å^3$
Z = 8	$d_{c} = 2.014 \text{ g/cm}^{3}$	λ = 0.70926 Å
N _{me} = 6071	$N_{un} = 4880$	N _{ob} = 3114
obs. if I> 2a (I)	$N_v = 278$	$N_{ob}/N_{v} = 11.2$
2°<8<25°	R = 0.0545	$R_{w} = 0.0555$

N,N'-dimethyl-1,2-ethane-diammonium hexachlorostannate(IV)

C ₄ N ₂ H ₁₄ SnCl ₆	MW = 421.5	t = 18 °C
monoclinic	P2 ₁ (No. 4)	noncentrosymmetric
a = 6.865(3) Å	b = 13.191(5) Å	c = 8.002(2) Å
$\alpha = 90^{\circ}$	$\beta = 100.78(3)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 408 e	$\mu = 29.05 \text{ cm}^{-1}$	V = 711.8 Å
$\mathbf{Z} = 2$	$d_{c} = 1.966 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
N _{me} = 1760	$N_{un} = 1434$	N _{ob} = 1001
obs. if $I > 2\sigma(I)$	$N_{v} = 138$	$N_{ob}/N_v = 7.3$
2°<θ<25°	R = 0.0444	$R_{w} = 0.0458$

20) N,N,N'-trimethylpropane-1,3-diammonium

hexachlorostannate(IV)

C ₆ N ₂ H ₁₈ SnCl ₆	MW = 449.5	t = 18 °C
orthorhombic	Pbcn (No. 60)	centrosymmetric
a = 7.884(2) Å	b = 14.994(2) Å	c = 25.548(4) Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 1760 e	$\mu = 25.46 \text{ cm}^{-1}$	$V = 3256.4 Å^3$
Z = 8	$d_{c} = 1.834 \text{ g/cm}^{3}$	λ = 0.70926 Å
$N_{me} = 3422$	N _{un} = 2270	$N_{ob} = 1848$
obs. if I> $2\sigma(I)$	$N_v = 167$	$N_{ob}/N_{v} = 11.1$
2°<8<23°	R = 0.0280	$R_{w} = 0.0291$

sodium tetraphenylborate

C ₂₄ H ₂₀ BNa	MW = 324.2	t = 18 °C
tetragonal	I42m (No. 121)	noncentrosymmetric
a = 11.461(2) Å	b = 11.461(2) Å	c = 7.423(1) Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 360 e	$\mu = 0.79 \text{ cm}^{-1}$	$V = 975.0 Å^3$
$\mathbf{Z} = 2$	$d_{c} = 1.656 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
$N_{me} = 1658$	$N_{un} = 446$	$N_{ob} = 244$
obs. if I> $3\sigma(I)$	$N_v = 45$	$N_{ob}/N_v = 5.4$
2°<θ<30°	R = 0.0513	$R_{w} = 0.0542$

22)

and the other stands and the second s

وسكرام محقد ومدار م

rubidium tetraphenylborate

C ₂₄ H ₂₀ BRb	MW = 404.7	t = 18 °C
tetragonal	I42m (No. 121)	noncentrosymmetric
a = 11.218(2) Å	b = 11.218(2) Å	c = 8.092(1) Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 412 e	$\mu = 23.67 \text{ cm}^{-1}$	$V = 1018.3 Å^3$
Z = 2	$d_c = 1.320 \text{ g/cm}^3$	$\lambda = 0.70926 \text{ \AA}$
N _{me} = 1291	N _{un} = 679	N _{ob} = 380
obs. if I> $3\sigma(I)$	$N_v = 45$	$N_{ob}/N_v = 8.4$
2°< <i>θ</i> <25°	R = 0.0362	$R_{W} = 0.0362$

cesium tetraphenylborate

C ₂₄ H ₂₀ BCs	MW = 452.1	t = 18 °C
tetragonal	I42m (No. 121)	noncentrosymmetric
a = 11.263(4) Å	b = 11.263(4) Å	c = 8.385(4) Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 448 e	$\mu = 17.29 \text{ cm}^{-1}$	$V = 1063.8 Å^3$
$\mathbf{Z} = 2$	$d_{c} = 1.411 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
$N_{me} = 443$	N _{un} = 240	N _{ob} = 229
obs. if I> $3\sigma(I)$	$N_v = 45$	$N_{ob}/N_v = 5.1$
2°<	R = 0.0396	$R_{w} = 0.0415$

24)

:

2-chlorocyclohcxyltellurium(IV) trichloride

C ₆ H ₁₀ TeCl ₃	MW = 351.6	t = 18 °C
monoclinic	P2 ₁ /n (No. 14)	centrosymmetric
a = 8.825(2) Å	b = 11.832(3) Å	c = 10.990(2) Å
$\alpha = 90^{\circ}$	$\beta = 105.85^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 664 e	$\mu = 36.89 \text{ cm}^{-1}$	$V = 1103.9 Å^3$
$\mathbf{Z} = 4$	$d_{c} = 2.115 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
N _{me} = 1904	N _{un} = 1532	N _{ob} = 805
obs. if $I > 2\sigma(I)$	$N_v = 103$	$N_{ob}/N_v = 7.8$
2°< <i>θ</i> <23°	R = 0.0666	$R_{\mu} = 0.0669$

:

2-methoxycyclohexyltellurium(IV) tribromide

C7H13Br3OTe	MW = 480.5	t = 18 °C
monoclinic	P2 ₁ /a (No. 14)	centrosymmetric
a = 8.488(1) Å	b = 11.294(8) Å	c = 13.073(3) Å
$\alpha = 90^{\circ}$	$\beta = 97.61(8)^{\circ}$	$\gamma = 90^{3}$
F(000) = 880 e	$\mu = 119.24 \text{ cm}^{-1}$	$V = 1242.0 Å^3$
$\mathbf{Z} = 4$	$d_c = 2.569 \text{ g/cm}^3$	$\lambda = 0.70926$ Å
N _{me} = 1891	N _{un} = 1695	$N_{ob} = 1285$
obs. if I> 3σ(I)	$N_v = 126$	$N_{ob}/N_{v} = 10.2$
2°<∂<23°	R = 0.0461	$R_{w} = 0.0520$

26)

2-ethoxycyclohexyltellurium(IV) trichloride

C ₈ H ₁₆ Cl ₃ OTe	MW = 362.2	t = 18 °C
monoclinic	P2 ₁ /c (No. 14)	centrosymmetric
a = 12.304(3) Å	b = 8.626(2) Å	c = 24.624(4) Å
$\alpha = 90^{\circ}$	$\beta = 91.28(2)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 1400 e	$\mu = 28.68 \text{ cm}^{-1}$	$V = 2612.8 Å^3$
$\mathbf{Z} = 8$	$d_{c} = 1.841 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
$N_{me} = 4017$	N _{un} = 3634	$N_{ob} = 2769$
obs. if I> $3\sigma(I)$	$N_v = 274$	$N_{ob}/N_v = 10.1$
2°<8<23°	R = 0.0675	$R_{\mu} = 0.0765$

2-m-propanoxycyclohexyltellurium(IV) trichloride

C ₉ H ₁₇ Cl ₃ OTe	MW = 375.2	t = 18 °C
monoclinic	P2 ₁ /n (No. 14)	centrosymmetric
a = 8.375(1) Å	b = 11.891(6) Å	c = 14.345(9) Å
$\alpha = 90^{\circ}$	$\beta = 94.57(2)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 728 e	$\mu = 26.35 \text{ cm}^{-1}$	$V = 1424.0 Å^3$
$\mathbf{Z} = 4$	$d_c = 1.750 \text{ g/cm}^3$	$\lambda = 0.70926$ Å
N _{me} = 2175	N _{un} = 1968	N _{ob} = 1306
obs. if $I > 3\sigma(I)$	N _v = 251(disorder)	$N_{ob}/N_v = 5.2$
2°<#<23°	R = 0.0377	$R_{w} = 0.0413$

28)

2

2

ĩ

ľ

2-isopropanoxycyclohexyltellurium(IV) tribromide

C ₉ H ₁₇ Br ₃ OTe	MW = 508.5	t = 18 °C
monoclinic	P2 ₁ /n (No. 14)	centrosymmetric
a = 8.924(2) Å	b = 14.763(7) Å	c = 11.868(4) Å
$\alpha = 90^{\circ}$	$\beta = 106.29(2)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 944 e	$\mu = 98.75 \text{ cm}^{-1}$	$V = 1500.7 Å^{3}$
$\mathbf{Z} = 4$	$d_{c} = 2.251 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
N _{me} = 2150	N _{un} = 1835	N _{ob} = 1239
obs. if $I > 3\sigma(I)$	N _v = 212(disorder)	$N_{ob}/N_v = 5.8$
2°< <i>θ</i> <23°	R = 0.0602	$R_{w} = 0.0602$

2-isopropanolcycloheptyltellurium(IV) triclloride

С ₁₀ Н ₁₂ С1 ₃ ОТе	MW = 382.2	t = 18 °C
monoclinic	P2 ₁ /n (No. 14)	centrosymmetric
a = 12.740(1) Å	b = 9.045(3) Å	c = 13.961(3) Å
$\alpha = 90^{\circ}$	$\beta = 112.41(3)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 708 e	$\mu = 25.81 \text{ cm}^{-1}$	$V = 1487.3 Å^3$
$\mathbf{Z} = 4$	$d_c = 1.707 \text{ g/cm}^3$	$\lambda = 0.70926$ Å
N _{me} = 3605	N _{un} = 2616	N _{ob} = 1611
obs. if $I > 3\sigma(I)$	$N_v = 215$	$N_{ob}/N_v = 7.5$
2°< <i>θ</i> <23°	R = 0.0393	$R_{\mu} = 0.0414$

30)

p-anisyl-2-chlorocyclohexyltellurium(IV) dichloride

С ₁₃ Н ₁₇ С1 ₃ ОТе	MW = 423.2	t = 18 °C
triclinic	PĪ (No. 2)	centrosymmetric
a = 11.780(3) Å	b = 11.847(2) Å	c = 12.062(2) Å
$\alpha = 95.03(1)^{\circ}$	$\beta = 108.48(2)^{\circ}$	$\gamma = 90.61(2)^{\circ}$
F(000) = 824 e	$\mu = 24.26 \text{ cm}^{-1}$	$V = 1589.1 Å^3$
$\mathbf{Z} = 4$	$d_c = 1.769 \text{ g/cm}^3$	$\lambda = 0.70926$ Å
N _{me} = 5148	$N_{un} = 4408$	N _{ob} = 3234
obs. if $I > 2\sigma(I)$	N _v = 368	$N_{ob}/N_{v} = 8.8$
2°< <i>θ</i> <23°	R = 0.0486	$R_{_{W}} = 0.0514$

ţ

31)

p-phenoxyphenyl-2-chlorocyclohexyltellurium(IV) dichloride

C ₁₈ H ₁₉ Cl ₃ OT e	MW = 485.3	t = 18 °C
orthorhombic	Pbca (No. 61)	centrosymmetric
a = 42.176(13) Å	b = 10.885(2) Å	c = 8.349(6) Å
$\alpha = 90^{\circ}$	$\beta = 90^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 1904 e	$\mu = 19.78 \text{ cm}^{-1}$	$V = 3832.9 Å^3$
$\mathbf{Z} = 8$	$d_c = 1.682 \text{ g/cm}^3$	$\lambda = 0.70926 \text{ \AA}$
$N_{me} = 2110$	N _{un} = 1777	N _{ob} = 912
obs. if I> $3\sigma(I)$	$N_v = 230$	$N_{ob}/N_v = 4.0$
2°< <i>θ</i> <23°	$\mathbf{R} = 0.0486$	$R_{\mu} = 0.0510$

32)

p-anisyl-2-chloro-3-methylcyclohexyltellurium(IV) dichloride

C ₁₄ H ₁₉ Cl ₃ OTe	MW = 437.3	t = 18 °C
triclinic	PĪ (No. 2)	centrosymmetric
a = 10.419(2) Å	b = 10.906(3) Å	c = 8.285(3) Å
$\alpha = 92.40(3)^{\circ}$	$\beta = 95.85(2)^{\circ}$	$\gamma = 61.71(3)^{\circ}$
F(000) = 428 e	$\mu = 23.41 \text{ cm}^{-1}$	$V = 824.6 Å^3$
$\mathbf{Z} = 2$	$d_{c} = 1.761 \text{ g/cm}^{3}$	$\lambda = 0.70926$ Å
N _{me} = 3107	N _{un} = 2885	N _{ob} = 2213
obs. if $I > 2\sigma(I)$	$N_v = 199$	$N_{ob}/N_{v} = 11.1$
2°<∉<25°	R = 0.0444	$R_{\mu} = 0.0458$

arrite maters .

T F R

> , ;

ŝ

) li

Ĵ

* *

1:1

3	3)
-	-	

p-anisyl-2-chloro-4-methylcyclohexyltellurium(IV) dichloride

с ₁₄ н ₁₉ с1 ₃ оте	MW = 437.3	t = 18 °C
triclinic	PĪ (No. 2)	centrosymmetric
a = 11.573(5) Å	b = 12.208(9) Å	c = 12.659(5) Å
$\alpha = 99.28(5)^{\circ}$	$\beta = 106.62(3)^{\circ}$	$\gamma = 90.47(5)^{\circ}$
F(000) = 856 e	$\mu = 22.35 \text{ cm}^{-1}$	$V = 1688.5 Å^3$
$\mathbf{Z} = 4$	$d_c = 1.720 \text{ g/cm}^3$	$\lambda = 0.70926$ Å
N _{me} = 3318	N _{un} = 3119	N _{ob} = 1938
obs. if $I > 3\sigma(I)$	N _v = 433(disorder)	$N_{ob}/N_v = 4.5$
2°< <i>θ</i> <20°	R = 0.0690	$R_{_{W}} = 0.0753$

34) 2',4'-dimethoxyphenyl(trans-6-oxabicyclo[3.2.1]oct-4-

yl)tellurium(IV) dichloride

C ₁₅ H ₁₉ Cl ₂ O ₃ Te	MW = 445.8	t = 18 °C
monoclinic	P2 ₁ /c (No. 14)	centrosymmetric
a = 9.626(2) Å	b = 15.768(5) Å	c = 11.176(3) Å
$\alpha = 90^{\circ}$	$\beta = 92.08(2)^{\circ}$	$\gamma = 90^{\circ}$
F(000) = 876 e	$\mu = 20.81 \text{ cm}^{-1}$	$V = 1695.2 Å^3$
$\mathbf{Z} = 4$	$d_c = 1.747 \text{ g/cm}^3$	$\lambda = 0.70926$ Å
N _{me} = 2558	$N_{un} = 2347$	N _{ob} = 1548
obs. if $I > 3\sigma(I)$	$N_v = 216$	$N_{ob}/N_v = 7.2$
2°< <i>θ</i> <23°	$\mathbf{R} = 0.0472$	$R_{w} = 0.0487$

Appendix 4

Tables on Microfiches

- 1) Fractional Atomic Positional Parameters and Anisotropic Temperature Factors ($Å^2$) from Multipole Refinement of $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set II).
- 2) Intramolecular Distances Involving the Hydrogen Atoms for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set I).
- 3) Intramolecular Distances Involving the Hydrogen Atoms for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set II).
- 4) Selected Torsional Angles for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set I).
- 5) Selected Torsional Angles for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set II).
- 6) Observed and Calculated Structure Factors for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set I).
- 7) Observed and Calculated Structure Factors for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set II).
- 8) Intramolecular Distances Involving the Hydrogen Atoms for $C_6H_4S_2P^+$ AlCl₄⁻.
- 9) Selected Torsional Angles for $C_{4}H_{4}S_{2}P^{+}AlCl_{4}^{-}$.
- 10) Observed and Calculated Structure Factors for $C_6H_4S_2P^*$ AlCl₄⁻.
- 11) Intramolecular Distances Involving the Hydrogen Atoms for $C_{13}H_{11}PS_2$.
- 12) Selected Torsional Angles for C₁₃H₁₁PS₂.
- 13) Observed and Calculated Structure Factors for C13H11PS2.
- 14) Hydrogen Atom Positional Parameters for SiPh.
- 15) Hydrogen Atom Positional Parameters for GePh₄ (RT).
- 16) Hydrogen Atom Positional Parameters for GePh, (LT).
- 17) Hydrogen Atom Positional Parameters for SnPh₄.
- 18) Hydrogen Atom Positional Parameters for PbPh₄.
- 19) Intramolecular Distances Involving the Hydrogen Atoms for SiPh₄.
- 20) Intramolecular Distances Involving the Hydrogen Atoms for GePh_{λ} (RT).
- 21) Intramolecular Distances Involving the Hydrogen Atoms for GePh_{L} (LT).
- 22) Intramolecular Distances Involving the Hydrogen Atoms for SnPh_{4} .
- 23) Intramolecular Distances Involving the Hydrogen Atoms for PbPh₄.
- 24) Selected Torsional Angles for SiPh₄.
- 25) Selected Torsional Angles for GePh, (RT).
- 26) Selected Torsional Angles for GePh₄ (LT).
- 27) Selected Torsional Angles for SnPh₄.
- 28) Selected Torsional Angles for PbPh₄.
- 29) Observed and Calculated Structure Factors for SiPh₄.
- 30) Observed and Calculated Structure Factors for $GePh_4$ (RT).
- 31) Observed and Calculated Structure Factors for GePh₄ (LT).
- 32) Observed and Calculated Structure Factors for SnPh₄.
- 33) Observed and Calculated Structure Factors for PbPh₄.

References

لميب

- S.S. Krishnamurthy, A.C. Sau, and M. Woods, Adv. Inorg. Chem. Radiochem., (1978), 21, 41-112.
- 2. R.A. Shaw, Phosphorus and Sulphur, (1979), 5, 363-369.
- 3. J.D. Dunitz, "X-Ray Analysis and the Structure of Organic Molecules", (1979), pp. 391-417, Ithaca and London, Cornell University Press.
- 4. J.D. Dunitz, Bull. Chem. Soc. Jpn., (1988), 61, 1-11.
- P. Coppens and E.D. Stevens, in: "Advances in Quantum Chemistry", Ed: P-O. Löwdin, Academic Press, New York, (1977), Vol. 10, 1-35.
- 6. K. Kurki-Suonio, Israel J. Chem., (1977), 16, 132-136.
- 7. J.D. Dunitz, W.B. Schweizer and P. Seiler, Helv. Chim. Acta, (1983), 66, 123.
- 8. N. Hansen and P. Coppens, Acta Cryst., (1978), A34, 909.
- 9. P. Coppens and M.B. Hall (Eds), "Electror Distributions and the Chemical Bond", Plenum Press, New York, (1982).
- 10. eg. E.D. Stevens and H. Hope, Acta Cryst., (1975), A31, 494.
- 11. R.F. Stewart and L.H. Jensen, Z. Kristallogr., (1969), 128, 133.
- 12. F.L. Hirshfeld, Acta Cryst., (1971), B27, 796.
- 13. F.L. Hirshfeld, Acta Cryst., (1976), A32, 239.
- 14. F.L. Hirshfeld, Israel J. Chem., (1977), 16, 168-174.
- 15. R.F. Stewart, Acta Cryst., (1976), A32, 565.

- 16. M.A. Spackman and R.F. Stewart, (1984), "Methods and Applications in Crystallographic Computing", Eds. S.R. Hall and T. Ashida, pp.302-320, Oxford, Clarendon Press.
- 17. MOLLY -program for multipole refinement, N.K. Hansen, T. Koritsanszky, and P.R. Mallinson (version Jan 1991).
- P.J. Becker and P. Coppens, Acta Cryst., (1974), **A30**, 129.
- 19. P. Coppens, T.N. Guru Row, P. Leung, E.D. Stevens, P.J. Becker, and Y.W. Yang, Acta Cryst., (1979), A35, 63-72.

- 20. eg. N. Li, P. Coppens, and J. Landrum, Inorg. Chem., (1988), 27, 452-458.
- 21. eg. Z. Su and P. Coppens, Acta Cryst., (1992), A48, 188-197.
- 22. eg. B.M. Craven, R.O. Fox Jr., and H.-P. Weber, Acta Cryst., (1982), B38, 1942-1952.
- 23. S.T. Howard, M.B. Hursthouse, C.W. Lehmann, P.R. Mallinson, and C.S. Frampton, (1992), to be published.
- 24. see also review: P.M. Zorkii and A.E. Masunov, Russian Chem. Rev., (1990), **59**, 592-606.
- 25. R.E. Roserfield Jr., K.N. Trueblood, and J.D. Dunitz, Acta Cryst., (1978), A34, 828-829.
- 26. W.G. Heal, "The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen and Phosphorus", (1980), New York,

Academic Press.

μ.,

- 27. J. C. van de Grampel, Coord. Chem. Rev, (1992), **112**, 247-271.
- 28. J.-F. Labarre, F. Sournies, G. Guerch, A. El Bakili,
 J.-P. Bonnet, P. Castera, J.-P. Faucher, and
 M. Graffeuil, Phosphorus, Sulfur and Silica, (1989),
 Vol 41, 167-179.
- 29. J. Galy, R. Enjalbert, and J.-F. Labarre, Acta Cryst., (1980), **B36**, 392-397.
- 30. T.S. Cameron, J.-F. Labarre, and M. Graffeuil, Acta Cryst., (1982), B38, 2000-2004.
- 31. T.S. Cameron, J.-F. Labarre, and M. Graffeuil, Acta Cryst., (1982), **B38**, 168.
- 32. T.S. Cameron and B. Borecka, Phosphorus, Sulfur, and Silicon, (1992), Vol. 64, 121-128.
- 33. MSC Molecular Structure Corporation, 3200A Research Forest Drive, The Woodlands, Texas 77381.
- 34. T.S. Cameron and R.E. Cordes, Acta Cryst., (1979), **B35**, 749.
- 35. N. Walker and D. Stuart, Acta Crystallogr., (1983), A39, 158.
- 36. International Tables for X-ray Crystallography, Vol IV, Kynoch Press: Birmingham, U.K. (1974).
- 37. G.M. Sheldrick, SHELX-76. Program for Crystal Structure Determination. University of Cambridge, Cambridge, U.K.

Ŀ

(1976).

- 38. J.R. Carruthers and D.J. Watkin, CRYSTALS, Issue 8, Chemical Crystallography Laboratory, Oxford, England, (1984, revised 1989).
- 39. E.K. Davies, the CHEMGRAF Suite, Chemical Crystallography Laboratory, Oxford, U.K. (1983).
- 40. J.D. Dunitz and P. Seiler, Acta Cryst., (1973), **B29**, 589-595.
- 41. A.J. Wonacott, A Suite of Programs for On-line Evaluation and Analysis cf Integrated Intensities on Small Angle Rotation/Oscillation Photographs, (1980).
- 42. M.G. Rossmann, J. Appl. Cryst., (1979), 12, 225-238.
- 43. Structure Solution Methods: SHELXS-86; G.M. Sheldrick in "Crystallographic Computing 3". Eds. G.M. Sheldrick,
 C. Kruger and R. Goddard, Oxford Univ. Press, (1985), 175-189.
- 44. P.T. Beurskens, DIRDIF: Direct Methods for Difference Structures - an automatic procedure for phase extension and refinement of difference structure factors. Technical Report 1984/1 Crystallography Lab., Toernooiveld, 6525 Ed Nijmegen, Nederlands.
- 45. J.A. Ibers and W.C. Hamilton, Acta Cryst., (1964), **17**, 781.
- 46. TEXSAN TEXRAY Structure Analysis Package, Molecular Structure Corporation (1985).

- 47. F.H. Allen, O. Kennard, D.G. Watson, L. Brammer,
 A.G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. II,
 (1987), S1.
- 48. Program NIELSAV, Jan 1986 VAX/SDP version compiled by N.K. Hansen, Dept. Chem. SUNY/BUFFALO, modified by E.D. Stevens, Dept. Chem. Univ. of New Orleans, Luisiana, modified and installed at Dalhousie Univ. (1991) as NF by R. Cordes.
- 49. D.P. Craig and N.L. Paddock, in "Nonbenzoid Aromatics", Ed. J.P. Snyder, Organic Chemistry Series, (1971), Vol 16-II, 273-360.
- 50. H.R. Allcock, Chem. Rev, (1972), **72**, 315-328, and reference therein.
- 51. D.P. Craig, J. Chem Soc., (1959), 997.
- 52. D.P. Craig and N.L. Paddock, J. Chem. Soc., (1962), 4118.
- 53. M.J.S. Dewar, E.A.C. Lucken, and M.A. Whitehead, J. Chem. Soc., (1960), 2423.
- 54. J.-P. Faucher, J.-F. Labarre, and R.A. Shaw,
 Z. Naturforsh., (1976), 31b, 677.
- 55. C.W. Allen, in: "The Chemistry of Inorganic Homo- and Heterocycles", Vol 2, (1987), 501; and refs. therein.
- 56. G. Doggett, J. Chem. Soc. Faraday Trans. II, (1972), 2075.
- 57. K.A.R. Mitchell, Chem. Rev., (1969), 69, 157-178, and

refs. therein.

し、日本の時間のないのないのないないないないでいいで

1. 1

- 58. L.S. Dake, D.R. Baer, K.F. Ferris, and D.M. Friedrich, J. Electron Spectr. and Relat. Phenom., (1990), 51, 439-457.
- 59. D.R. Armstrong, G.H. Longmuir, and P.G. Perkins, J. Chem. Soc., Chem. Comm., (1972), 464.
- 60. J.K. Jacques, M.F. Mole, and N.L. Paddock, J. Chem. Soc., (1965), 2112.
- 61. cf. R.A. Shaw, B.W. Fitzsimmons, and B.C. Smith, Chem. Rev., (1962), 62, 247-281.
- 62. N.V. Mani, F.R. Ahmed, and W.H. Barnes, Acta Cryst., (1965), **19**, 693.
- 63. R.A. Shaw, Record of Chemical Progress, (1964), Vol. 28, 243.
- 64. C.P Brock and J.D. Dunitz, Acta Crystallogr., (1982), B38, 2218.
- 65. T. Ito and T. Sakurai, Acta Cryst., (1973), B29, 1594.
- 66. P.Luger, J. Buschman, R.K. McMullan, J.R. Ruble, P. Matias, and G.A. Jeffrey, J. Am. Chem. Soc., (1986), 108, 7825.
- 67. P. Seiler, J. Belzner, U. Bunz and G. Szeimies, Helv. Chim. Acta, (1988), 71, 2100.
- 68. N. Burford, B.W. Royan, A.Linden, and T.S. Cameron, J. Chem. Soc., Chem. Commun., (1988), 842-844.
- 69. N. Burford and B.W. Royan, Phosphorus, Sulphur and

Silica, (1989), 41, 37-42.

LOTIOL.

1-1-2

- 70. N. Burford, B.W. Royan, A. Linden and T.S. Cameron, Inorg. Chem., (1989), 26, 144.
- 71. B.W. Royan, PhD Thesis, Dalhousie Univ., Halifax, N.S., (1990).
- 72. T.S. Cameron and A. Linden, Phosphorus, Sulphur and Silica, (1989), 41, 75-81.
- 73. G. Wilkinson, F.G.A. Stone, and E.W. Abel, Eds:, "Comprehensive Organometallic Chemistry", Pergamon Press, Oxford, (1982).
- 74. C. Eaborn, "Organosilicon Compounds", Butterworths, London, (1960).
- 75. A.G. MacDiarmid, Ed., "Organometallic Compounds of the Group IV Elements", Dekker, New York, (1968).
- 76. M.G. Hutchings, J.G. Nourse, and K. Mislow, Tetrahedron, (1974), **30**, 1535-1549.
- 77. P. Chieh, J.Chem. Soc., Dalton Trans., (1972), 1207-1208.
- 78. A. Karipides, C. Forman, R.H.P. Thomas, and A.T. Reed, Inorg. Chem., (1974), 13, 811-815.
- 79. A. Karipides and B. Foerst, Acta Cryst., (1978), **B34**, 3494-3496.
- 80. T.L. Khotsyanova and Y.T. Struchkov, Kristallografiya, (1956), 1, 669.
- 81. P. Goldstein, K. Seff, and K.N. Trueblood, Acta Cryst.,

(1968), **B24**, 778.

82. J. Bordner and L.D. Freedman, Phosphorus, (1973), 3, 33.

83. G.J. Palenik, Acta Cryst., (1966), 20, 471.

- 84. G.B. Brown and E.I. Stiefel, Inorg. Chem., (1973), 12, 21.40.
- 85. N.E. Schlotter and B. Hudson, J. Chem. Phys., (1982), 76, 4844-4856.
- 86. R.J.H. Clark, A.G. Davies, and R.J.Puddephatt, Inorg. Chem., (1969), 8, 457-463.
- 87. M. Yokoi, Bull. Chem. Soc. Jpn., (1957), 30, 100.
- 88. A.V. Belyakov, L.S. Khaikin, L.V. Vilkov, E.T. Bogoradovskii, and V.S. Zavgorodnii, J. Mol. Struct., (1981), 72, 233-246.
- 89. E. Csakvari, I.F. Shiskov, B.Rozsondai, and I. Hargittai, J. Mol. Struct., (1990), 239, 291-303.
- 90. M. Di Vaira and A.Bianchi Orlandini, J. Chem. Soc., Dalton Trans., (1972), 1704-1712.
- 91. C. Floriani and F. Calderazzo, J. Chem. Soc., Chem. Comm., (1973), 384-385.
- 92. K. Hoffmann and E. Weiss, J. Organomet. Chem., (1974), 67, 221.
- 93. W.J. Westerhaus, O. Knop, and M. Falk, Can. J. Chem., (1980), 58, 1355-1364.
- 94. A.I. Kitaigorodskii, "Organic Chemical Crystallography", Consultants, New York, (1961).

- 95. V.K. Belsky, A.A. Simonenko, V.O. Reikhsfeld, and I.E. Saratov, J. Organ. Chem., (1983), 244, 125-128.
- 96. I.G. Ismailzade and G.S. Zhdanov, Zh. Fiz. Khim., (1953), 27, 550.
- 97. A. Karipides and K. Wolfe, Acta Cryst., (1975), **B31**, 605-608.
- 98. I.G. Ismailzade, Kristallografiya, (1958), 3, 155.
- 99. I. Wharf and M. G. Simard, J. Organomet. Chem., (1987), 332, 85-94.
- 100. A. Karipides and M. Oertel, Acta Cryst., (1977), **B33**, 683-687.
- 101. V. Belsky, A.A. Simonenko and V.O. Reikhsfeld, J. Organomet. Chem., (1984), 265, 141-143.
- 102. I. Wharf, M.G. Simard, and H. Lamparski, Can. J. Chem., (1990), **68**, 1277-1282.
- 103. N.A. Akhmed and G.G. Aleksandrov, Zh. Strukt. Khim., (1970), **11**, 891.
- 104. N.A. Ahmed, A.I. Kitaigorodsky, and K.V. Mirskaya, Acta Cryst., (1971), **B27**, 867-870.
- 105. N.E. Schlotter and B. Hudson, J. Phys. Chem., (1986), 90, 719-721.
- 106. G. Filippini and C.M. Gramaccioli, Acta Cryst., (1986), B42, 605-609.
- 107. M.G. Hutchings, J.D. Andose, and K. Mislow, J. Am. Chem. Soc., (1975), **97**, 4553-4561.

- 108. M.G. Hutchings, J.D. Andose, and K. Mislow, J. Am. Chem. Soc., (1975), **97**, 4562-4570.
- 109. U. Burkert, N.L. Allinger, "Molecular Mechanics", (1982), ASC Monograph 177, Washington, D.C., Am. Chem. Soc.
- 110. N.L. Allinger, F. Li, L. Yan, and J.C. Tai, J. Comput. Chem, (1990), **11**, 868-895.
- 111. W.H. George, Proc. Roy. Soc, (1927), 113A, 585-93.

- 112. G. Giacomello, Gazz. Chim. Ital., (1938), 68, 422-428.
- 113. H.T. Sumsion and D. McLachlan, Acta Cryst., (1950), 3, 217-219.
- 114. G.S. Zhdanov and I.G. Ismailzade, Dokl. Akad. Nauk SSSR, (1949), **68**, 95-98.
- 115. G.S. Zhdanov and I.G. Ismailzade, Zh. Fiz. Khim. SSSR, (1950), 24, 1495-1501.
- 116. I.G. Ismailzade and G.S. Zhdanov, Zh. Fiz. Khim. SSSR, (1952), **26**, 1619-1630.
- 117. I.G. Ismailzade, Zh. Fiz. Khim. SSSR, (1952), 26, 1139-1143.
- 118. P.C. Chieh, J. Chem. Soc. A, (1971), 3241-3245.
- 119. A. Karipides and D.A. Haller, Acta Cryst., (1972), **B28**, 2889-2893.
- 120. V. Busetti, M. Mammi, A. Signor, and A. Del Pra, Inorg. Chim. Acta, (1967), 1, 424.
- 121. A. Robbins, G.A. Jeffrey, J.P. Chesik, J. Donohue,

F.A. Cotton, B.A. Frenz, and C.A. Murillo, Acta Cryst., (1975), **B31**, 2395-2399.

- 122. C. Gildewell and G.M. Sheldrick, J. Chem. Soc. A, (1971), 3127-3129.
- 123. L. Parkanyi and K. Sasvari, Period. Polytech., Chem. Eng., (1973), **17**, 271-276.
- 124. V. Gruhnert, A. Kirfel, G. Will, F. Wallrafen, and K. Recker, Z. Kristallogr., (1983), **163**, 53-60.
- 125. H.W. Newkirk, J. Organomet. Chem., (1972), 44, 263.
- 126. P.C. Chieh and J. Trotter, J. Chem. Soc. A, (1970), 911-914.
- 127. L.M. Engelhardt, W-P. Leung, C.L. Raston, and A.H. White, Aust. J. Chem., (1982), **35**, 2383-2384.
- 128. J. Maly and J. Teply, Chem. Zvesti, (1953), 7, 553-562.
- 129. A. Domenicano, A. Vaciago, and C.A. Coulson, Acta Cryst., (1975), **B31**, 221-234.
- 130. A. Domenicano, A. Vaciago, and C.A. Coulson, Acta Cryst., (1975), **B31**, 1630-1641.
- 131. V. Schomaker and K.N. Trueblood, Acta Cryst., (1968), B24, 63.
- 132. C.K. Johnson, in "Crystallographic Computing", F.R. Ahmed, S.R. Hall, and C.P. Huber, Eds., Munksgaard, Copenhagen, (1970), pp. 209-219.
- 133. M. Kurtz, "Handbook of Applied Mathematics for

Engineers and Scientists", McGraw-Hill Inc., (1991), New York.

- 134. A. Domenicano and A. Vaciago, Acta Cryst., (1979), **B35**, 1382-1388.
- 135. L.E. Sutton, ed, "Tables of Interatomic Distances and Configuration in Molecules and Ions", Supplement 1956 -1959, London, Chemical Society, (1965).
- 136. B.T.M. Willis and A.W. Pryor, "Thermal Vibrations in Crystallography", Cambridge University Press, Cambridge, (1975).
- 137. J.D. Dunitz, "X-ray Analysis and the Structure of Organic Molecules", Cornell University Press, London, (1979).
- 138. J.D. Dunitz, V. Schomaker, and K.N. Trueblood, J. Phys. Chem., (1988), 92, 856-867.
- 139. E. Prince, "Mathematical Techniques in Crystallography and Materials Science", Springer-Verlag, New York, (1982).
- 140. D.W.J. Cruickshank, Acta Cryst., (1956), 9, 754-756.
- 141. K.N. Trueblood and J.D. Dunitz, Acta Cryst, (1983), B39, 120-133.
- 142. W.R. Busing and H.A. Levy, Acta Cryst., (1964), 17, 142.
- 143. A. Domenicano, P. Murray-Rust, and A. Vaciago, Acta Cryst., (1983), B39, 457-468.

私調

いたいできましたとうない

96, 2168-2175.

- 145. D.A. Dougherty and K. Mislow, J. Am. Chem. Soc., (1979), **101**, 1401-1405.
- 146. N.L. Allinger, K. Chen, P.G. Gassman, R.C. Hoye, and L.B. Fertel, J. Mol. Str., (1989), **195**, 43-56.

Appendix 4

.

.

Tables on Microfiches

1)	Fractional Atomic Positional Parameters and Anisotropic
	Temperature Factors (A^2) from Multipole Refinement of
	$2N_3P_3Az_6 \cdot C_6H_6$ (Data Set II) M3
2)	Intramolecular Distances Involving the Hydrogen Atoms
	for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set I)
3)	Intramolecular Distances Involving the Hydrogen Atoms
	for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set II) M4
4)	Selected Torsional Angles for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set
	I)
5)	Selected Torsional Angles for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set
	II) M6
6)	Observed and Calculated Structure Factors for
	$2N_3P_3Az_6 \cdot C_6H_6$ (Data Set I) M7
7)	Observed and Calculated Structure Factors for
	$2N_3P_3Az_6 \cdot C_6H_6$ (Data Set II) M56
8)	Intramolecular Distances Involving the Hydrogen Atoms
	for $C_6H_4S_2P^+$ AlCl ₄ ⁻ M82
9)	Intramolecular Distances Involving the Hydrogen Atoms
	for C ₁₃ H ₁₁ PS ₂ M82
10)	Selected Torsional Angles for $C_6H_4S_2P^*$ AlCl ₄ M83
11)	Observed 7.nd Calculated Structure Factors for $C_6H_4S_2P^*$
	AlCl4 ⁻ M84
12)	Selected Torsional Angles for C ₁₃ H ₁₁ PS ₂ M92
13)	Observed and Calculated Structure Factors for
	C ₁₃ H ₁₁ PS ₂ M93

14)	Hydrogen Atom Positional Parameters for SnPh4 M114
15)	Hydrogen Atom Positional Parameters for PbPh4 M114
16)	Hydrogen Atom Positional Parameters for SiPh4 M115
17)	Hydrogen Atom Positional Parameters for GePh ₄ (RT) M115
18)	Hydrogen Atom Positional Parameters for $GePh_4$ (LT) M115
19)	Intramolecular Distances Involving the Hydrogen Atoms
	for SiPh ₄ M116
20)	Intramolecular Distances Involving the Hydrogen Atoms
	for GePh ₄ (RT) M116
21)	Intramolecular Distances Involving the Hydrogen Atoms
	for GePh ₄ (LT) M116
22)	Intramolecular Distances Involving the Hydrogen Atoms
	for SnPh ₄ M116
23)	Intramolecular Distances Involving the Hydrogen Atoms
	for PbPh ₄ M116
24)	Selected Torsional Angles for SiPh ₄ M117
25)	Selected Torsional Angles for GePh ₄ (RT) M118
26)	Selected Torsional Angles for GePh ₄ (LT) M119
27)	Selected Torsional Angles for SnPh ₄ M120
28)	Selected Torsional Angles for PbPh4 M121
29)	Observed and Calculated Structure Factors for $SiPh_4 M122$
30)	Observed and Calculated Structure Factors for GePh_4
	(RT)
31)	Observed and Calculated Structure Factors for GePh_4
	(LT)
32)	Observed and Calculated Structure Factors for SnPh ₄ M153
33)	Observed and Calculated Structure Factors for PbPh4 M160

Ч

÷

Fractional Atomic Positional Parameters and Anisotropic Temperature Factors (λ^2) from multipole refinement of $2N_3P_3Az_6 \cdot C_6H_6$

lb2TX molly

* Mark

		fracti	onal co-	ordinate	s		beta				
		xf	γf	zf							
P(1		0.7842	-0.4463	-0.2511		0.00271	0.00297	0.00312	-0.00001	-0.00069	0.00020
N(1		0.6430	-0.3921	-0.1684		0.00348	0.00352	0.00343	0.00059	0.00035	0.00059
N(2		0.7818	-0.6053	-0.2687		0.00513	0.00304	0.00528	-0.00042	0.00011	-0.00083
N(3		0.9019	-0.4755	-0.1502		0.00362	0.00742	0.00492	-0.00107	-0.00323	0.00106
C(1		1.0452	-0.4966	-0.2118		0.00315	0.01410	0.00794	0.00005	-0.00286	0.00098
C(2		0.9854	-0.3705	-0.1591		0.00722	0.01204	0_00918	-0.00780	-0.00792	-0.00088
C(3		0.8723	-0.6627	-0.3811		0.00657	0.00460	0.00778	0.00061	0.00163	-0.00431
C(4		0.7255	-0.6275	-0.3830		0.00726	0.00621	0.00931	-0.00133	-0.00428	-0.00680
۲)۵		0.9280	-0.8777	-0.0504		0.00699	0.00636	0.00733	0.00263	0.00010	0.00219
8(1		1.0708	-0.4894	-0.3182		5.01297	0.0000	0.00000	0.00000	0.00000	0.00000
H(2		1.1145	-0.5698	-0.1611		5.69516	0.00000	0.00000	0.00000	0.0000	0.00000
H13		0.9717	-0.2851	-0.2349		3.95416	0.0000	0.00000	0.00000	0.00000	0.00000
#(4		1.0098	-0.3589	-0.0662		4.93164	0.00000	0.00000	0.00000	0.00000	0.00000
H(5		0.9355	-0.5987	-0.4456		3.99206	0.0000	0.00000	0.00000	0.00000	0.00000
H(6		0.9156	-0.7650	-0.3570		4.47448	0.0000	0.00000	0.00000	0.00000	0.00000
8(7		0.6891	-0.5440	-0.4524		4.64029	0.00000	0.00000	0.00000	0.0000	0.00000
H(8		0.6678	-0.7071	-0.3548	•	3.91310	0.00000	0.00000	0.00000	0.00000	0.00000
H(9		0.8801	-0.7794	-0.0921		4.42395	0.00000	0.00000	0.00000	0.00000	0.00000
	bond		ler	ngth	z:2(A,B) z:2	(B,A)	delta(A,B)	(Angstro	om:2)	
P(1	-	N(1	1.	595	0.0128	0.	0133	0.0006			
P(1	-	N(2	1.	673	0.0160	0.	0161	0.0002			
P(1	-	N(3	1.	689	0.0059	0.	0063	0.0004			
N(2	-	C(3	1.	489	0.0116	0.0	0126	0.0010			
N(2	-	C(4	1.	483	0.0072	0.0	0072	0.0000			
N(3	-	C(1	1.	478	0.0254	0.0	0241	0.0013			
N(3	-	C(2	1.	471	0.0024	0.0	0038	0.0014			
C(1	-	C(2	1.	474	0.0768	0.0	0756	0.0012			
C(3	-	C(4	1.	478	0.0324	0.0	0318	0.0005			

Ļ

....

a . . .

МЗ

ALTERN OFTEN

4 .

.

Intermolecular Distances Involving the Hydrogen Atoms for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set I)

C(111)-H(1)	1.027(1)
C(111)-H(2)	1.020(1)
C(112)-H(3)	0.986(1)
C(112)-H(4)	0.937(1)
C(121)-H(5)	0.915(1)
C(121)-H(6)	1.000(1)
C(122)-H(7)	0.955(1)
C(122)-H(8)	1.017(1)
С(9) -Н(9)	0.948(1)

ž

1. S. - L.

ι

 Intramolecular Distances Involving the Hydrogen Atoms for $2N_3P_3Az_6 \cdot C_6H_6$ (Data Set II)

atom	atom	distance	atom	atom	distance
C(111)	H(1)	1.00(2)	C(121)	H(5)	0.98(2)
C(111)	H(2)	0.91(3)	C(121)	H(6)	0.98(2)
C(112)	H(3)	0.93(2)	C(122)	H(7)	0.92(2)
C(112)	H(4)	0.93(3)	C(122)	H(8)	0.94(2)
C(9)	H(9)	0.95(2)			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

「福になられる」、 アーチ

4 7 4.4.4

۰.

F.* 1. *

* The state of the second

「新社会」

N(1)	- P	-N(1)'	- P′	-3.9 (1)
N(1)'	- P	-N(1)	-P''	3.9 (1)
N(1)	- P	-N(11)	-C(111)	-156.4 (1)
N(1)	- P	-N(11)	-C(112)	-86.7 (1)
N(11)	- P	-N(1)	-P''	130.4 (1)
N(1)	- P	-N(12)	-C(121)	97.6 (1)
N(1)	- P	-N(12)	-C(122)	166.4 (1)
N(12)	- P	-N(1)	-P''	-123.0 (1)
N(1)'	- P	-N(11)	-C(111)	-27.0 (1)
N(1)'	- P	-N(11)	-C(112)	42.7 (1)
N(11)	- P	-N(1)'	- <u>P</u> ′	-128.4 (1)
N(1)'	- P	-N(12)	-C(121)	-32.3 (1)
N(1)'	- P	-N(12)	-C(122)	36.5 (1)
N(12)	-P	-N(1)'	-P'	121.6 (1)
N(11)	- P	-N(12)	-C(121)	-150.2 (1)
N(11)	- P	-N(12)	-C(122)	-81.4 (1)
N(12)	- P	-N(11)	-C(111)	90.5 (1)
N(12)	- P	-N(11)	-C(112)	160.2 (1)
Р	-N(11)	-C(111)	-C(112)	107.9 (1)
P	-N(11)	-C(112)	-C(111)	-109.1 (1)
P	-N(12)	-C(121)	-C(122)	108.2 (1)
Р	-N(12)	-C(122)	-C(121)	-107.9 (1)
C(9)'''	-C(9)	-C(9)''''	-C(9)'	0.9 (2)
C(9)''''	-C(9)	-C(9)'''	-C(9)'	-0.9 (2)

primed atoms have symmetry:

,	-	Y, Z, X,		
	-	Z, X, Y,		
	-	-Y + 1.000,	-Z + 1.000,	-X + 1.000,
	· _	-Z + 1.000	-X + 1.000	-Y + 1.000

Torsion or Conformation Angles (degrees) for $2N_3P_3Az_6.C_6H_6$ (Data Set II)

(1)	(2)	(3)	(4)	angle	(1)	(2)	(3)	(4)	angle
P(1)	N(1)	P(1)	N(1)	4.0(1)	N(1)	P(1)	N(1)	P(1)	4.0(1)
P(1)	N(1)	P(1)	N(2)	128.52(7)	N(1)	P(1)	N(2)	C(4)	86.5(1)
P(1)	N(1)	P(1)	N(3)	-121.66(7)	N(1)	P(1)	N(2)	C(3)	156.29(9)
P(1)	N(1)	P(1)	N(1)	-4.0(1)	N(1)	P(1)	N(3)	C(2)	-97.4(1)
P(1)	N(1)	P(1)	N(2)	-130.46(7)	N(1)	P(1)	N(3)	C(1)	-166.3(1)
P(1)	N(1)	P(1)	N(3)	122.93(7)	N(1)	P(1)	N(1)	P(1)	-4.0(1)
P(1)	N(2)	C(4)	C(3)	109.33(9)	N(2)	P(1)	N(3)	C(2)	150.2(1)
P(1)	N(2)	C(3)	C(4)	-107.8(1)	N(2)	P(1)	N(3)	C(1)	81.3(1)
P(1)	N(3)	C(2)	C(1)	-108.3(1)	N(3)	P(1)	N(2)	C(4)	-160.37(9)
P(1)	N(3)	C(1)	C(2)	107.8(1)	N(3)	P(1)	N(2)	C(3)	-90.5(1)

Å

The sign is positive if when looking from atom 2 to atom 3 a clockwise motion of atom 1 would superimpose it on atom 4.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

ı.

ł

1

f 2

Į

An * indicates weak reflections not used in the final refinements.

H	К	L	10Fo	10Fc	н	к	L	10Fo	10Fc	н	К	L	10Fo	10Fc
0	2	11	96	108	 0	3	11	97	·104	 0	4	11	75	-83
0	5	11	120	133	0	6	11	129	-141	0	7	10	148	-159
0	6	10	192	205	0	5	10	159	171	0	2	10	227	237
0	0	10	129	-141	0	-1	10	107	115	0	- 2	10	87	89
0	-4	10	110	-118	0	- 5	9	31	35	0	-4	9	51	- 57
0	- 3	9	64	-66	0	- 2	9	192	-196	0	0	9	60	-65
0	1	9	331	-350	0	2	9	65	63	0	3	9	104	114
0	4	9	126	-137	0	6	9	236	257	0	7	9	130	142
0	9	9	48	60	8	0	9	84	-87	0	8	8	68	-76
0	7	8	45	48	0	6	8	137	-149	0	5	8	300	- 333
0	4	8	212	-229	0	3	8	77	88	0	2	8	222	-239
0	1	8	35	-41	0	0	8	156	159	0	-1	8	34	- 28
0	- 3	8	42	48	0	-4	8	63	68	0	-б	8	194	215
0	-7	8	97	107	- 7	0	8	157	-172	-7	0	7	184	-200
0	- 5	7	29	- 32	0	-4	7	292	-330	0	- 3	7	169	183
0	-2	7	349	373	0	-1	7	172	177	0	0	7	151	151
0	1	7	163	168	0	2	7	122	125	0	3	7	67	79
0	4	7	120	133	0	5	7	45	-51	0	6	7	37	-41
7	0	9	75	-81	7	0	10	81	-85	6	0	11	93	-101
6	0	10	40	39	6	0	8	69	80	6	0	7	166	184
0	6	6	209	226	0	5	6	52	- 57	0	4	6	245	-258
0	2	6	252	283	0	1	6	56	-61	0	0	6	234	-236
0	-1	6	49	52	0	- 2	6	100	104	0	- 3	6	431	496
0	-4	6	297	-331	0	~ 5	6	105	112	- 6	0	7	212	-228
- 6	0	9	117	132	- 5	0	8	157	172	- 5	0	7	129	139
- 5	0	5	301	356	0	-4	5	165	175	0	- 3	5	261	-291
0	- 2	5	57	- 62	0	-1	5	161	168	0	0	5	284	-282
0	1	5	418	-452	0	3	5	396	448	0	4	5	108	-125
0	5	5	259	-277	5	0	6	194	221	5	0	7	181	195
5	0	8	117	-130	5	0	9	65	- 80	5	0	10	163	176
5	0	11	159	179	4	0	11	175	196	4	0	9	334	- 367
4	0	8	140	-158	4	0	7	218	236	4	0	6	224	-266
4	0	5	275	-325	0	4	4	152	162	0	3	4	178	214
0	2	4	169	-208	0	1	4	183	-190	0	0	4	78	- 56*
0	-1	4	402	423	0	-2	4	95	- 99	0	- 3	4	168	182
-4	0	4	295	325	-4	0	5	164	-185	-4	0	7	66	73
-4	0	8	45	-44	-4	0	9	34	- 38	- 3	0	10	35	40
- 3	0	8	255	-279	- 3	0	7	140	-157	- 3	0	5	98	-113
- 3	0	3	144	153	0	- 2	3	49	50	0	-1	3	132	-143
0	0	3	154	160	0	1	3	287	-296	0	2	3	186	208
0	3	3	167	-180	3	0	4	374	461	3	0	5	193	215
3	0	6	73	- 89	3	0	7	81	98	3	0	8	166	183
3	0	9	286	- 306	3	0	10	299	- 325	3	0	11	37	51
2	0	11	54	59	2	0	9	154	171	2	0	8	306	341
2	0	7	82	- 90	2	0	6	122	130	2	0	5	455	498
2	0	4	35	43	2	0	3	339	413	0	2	2	268	306

Н	K	L	10Fo	10Fc	Н	К	L	10Fo	10Fc	н	к	L	10F0	10Fc
0	1	2	553	- 596	0	0	2	261	-250	0	-1	2	142	158
-2	ō	2	550	-622	-2	Õ	3	86	-116*	-2	ō	4	85	85
-2	õ	5	244	261	-2	0	7	159	-174	-2	Ō	9	204	231
-2	õ	10	95	-108	-2	0	11	56	-61	-1	Ó	10	158	-174
-1	Õ	9	99	112	-1	0	8	334	373	-1	0	7	75	-86
-1	0	6	29	-42	-1	0	5	45	72*	-1	0	4	507	563
-1	0	3	22	- 32	-1	0	2	1162	-1362	-1	0	1	454	463
1	0	2	503	- 553	1	0	3	401	440	1	0	4	372	- 398
1	0	5	410	-462	1	0	6	220	-247	1	0	7	231	-253
1	0	8	3.08	-114	1	0	9	121	135	1	0	10	28	34
0	0	10	122	-141	0	0	9	55	-65	0	0	8	140	159
0	0	7	138	151	0	0	6	222	-236	0	0	5	266	-282
0	0	4	72	- 56*	0	0	3	142	160	0	0	2	244	-250
0	0	2	245	-250	0	0	3	147	160	0	0	4	75	- 56*
0	0	5	259	-282	0	0	6	218	-236	0	0	7	141	151
0	0	8	144	159	0	0	9	60	-65	0	0	10	123	-141
1	0	10	33	34	1	0	9	125	135	1	0	8	110	-114
1	0	7	231	-253	1	0	6	217	-247	1	0	5	425	-462
1	0	4	365	-398	1	0	3	404	440	1	0	2	514	- 553
-1	0	1	459	463	-1	0	2.	1156	-1362	-1	0	3	23	- 32
-1	0	4	506	563	-1	0	5	44	72*	-1	0	6	30	-42
-1	0	7	75	-86	-1	0	8	336	373	-1	0	9	96	112
-1	0	10	156	-174	- 2	0	11	50	-61	-2	0	10	97	-108
- 2	0	9	204	231	- 2	0	8	31	26	- 2	0	7	158	-174
- 2	0	5	241	261	- 2	0	4	80	85	-2	0	3	84	-116*
-2	0	2	559	-622	0	-1	2	147	158	0	0	2	260	-250
0	1	2	552	- 596	0	2	2	282	306	2	0	3	363	413
2	0	4	36	43	2	0	5	457	498	2	0	6	123	130
2	0	7	85	-90	2	0	8	313	341	2	0	9	155	171
2	0	11	53	59	3	0	11	40	51	3	0	10	299	-325
3	0	9	284	- 306	3	0	8	167	183	3	0	7	86	98
3	0	6	72	-89	3	0	5	200	215	3	0	4	381	461
0	3	3	169	-180	0	2	3	190	208	0	1	3	288	-296
0	0	3	156	160	0	-1	3	132	-143	0	-2	3	49	50
- 3	0	3	142	153	- 3	0	5	101	-113	-3	0	7	139	-157
- 3	0	8	250	-279	- 3	0	10	37	40	-4	0	9	44	- 38
-4	0	8	44	-44	-4	0	7	64	73	-4	0	5	165	-185
-4	0	4	298	325	0	3	4	167	182	0	-2	4	94	-99
0	-1	4	400	423	0	0	4	80	- 56*	0	1	4	183	-190
0	2	4	174	-208	0	3	4	184	214	0	4	4	154	162
4	0	5	281	-325	4	0	6	248	-266	4	0	7	219	236
4	0	8	142	-158	4	0	9	339	-367	4	0	11	179	196
5	0	11	163	179	5	0	10	167	176	5	0	9	72	-80
5	0	8	119	-130	5	0	7	178	195	5	0	6	196	221
0	5	5	263	-277	0	4	5	111	-125	0	3	5	414	448
0	1	5	426	-452	0	0	5	287	-282	0	-1	5	162	168
0	- 2	5	58	-62	0	- 3	5	262	-291	0	-4	5	166	175

Ą

.

л

M8

2

ł

-

「「ないない」のないで、「ないないないないない」ないで、ないないないないで、

Н	к	L	10Fo	10Fc	 Н	к	L	10Fo	10Fc	 Н	к	L	10Fo	10Fc
- 5	0	5	317	356	 -5	0	7	130	139	 -5	0	8	158	172
-6	0	9	117	132	-6	0	7	209	-228	-6	0	6	38	33
0	- 5	6	104	112	0	-4	6	294	- 331	0	-3	6	443	-496
0	- 2	6	98	104	0	-1	6	52	52	0	0	6	240	-236
0	1	6	57	-61	0	2	6	251	283	0	4	6	248	-258
0	5	6	48	- 57	0	6	6	216	226	6	0	7	166	184
6	0	8	74	80	6	0	10	35	39	6	0	11	95	-101
7	0	10	77	-85	7	0	9	75	-81	0	6	7	37	-41
0	5	7	48	- 51	0	4	7	121	133	0	3	7	71	79
0	2	7	123	125	0	1	7	164	168	0	0	7	153	151
0	-1	7	173	177	0	-2	7	359	373	0	- 3	7	174	1.83
0	-4	7	299	- 330	-7	0	7	181	-200	-7	0	8	156	-172
0	-7	8	96	107	0	-6	8	199	215	0	-4	8	59	68
0	- 3	8	40	48	0	-1	8	32	- 28	0	0	8	159	159
0	1	8	41	-41	0	2	8	233	-239	0	3	8	80	88
0	4	8	222	-229	0	5	8	304	-333	0	6	8	138	- 149
0	7	8	4/	48	0	8	8	66 120	- /6	8	0	9	82	-8/
0	9	9	51	60	0	1	9	130	142	0	6	9	243	257
0	4	9	127	-137	0	3	9	103	114	0	2	9	69	63
0	Ţ	9	340	- 350	0	0	9	64	-65	0	-2	9	194	- 196
0	- 3	9	6/	- 66	0	-4	9	26	- 5/	0	- 3	10	30	30
0	-6	9	3/	41	0	-4	10	113	~118	0	- 2	10	90	10
0	-1	10	107	110	0	2	10	133	-141	0	1 5	10	150	171
0	2	10	102	205	0	נ ד	10	140	.150	0	5	11	127	- 141
0	5	11	120	205	0		11		-173	0	2	11	0/	- 141
0	2	11	07	108	ñ	1	11	113	115	ň	-1	11	84	- 88
0	- 2	11	138	146	1	2	12	112	-122	1	1	12	25	- 36
1	-2	11	104	-106	1	_1	11	206	- 122	ĩ	1	11	7/	70
1	-2	11	104	-107	1	- 1	11	200	- 210	1	4	11	55	64
1	6	11	208	- 207	1	8	10	59	- 71	1	7	10	276	- 296
1	6	10	168	-185	1	5	10	55	52	ĩ	4	10	270	- 32
1	્ય	10	104	-114	1	2	10	59	67	1	1	10	145	152
1	_1	10	63	66	ī	-2	10	64	67	1	-3	10	52	55
1	-6	- 9	124	-141	ĩ	- 5	9	72	- 81	1	-4	- 9	28	-33
1	- 3	ģ	48	- 50	ĩ	1	9	128	134	1	2	9	169	186
ī	3	9	101	117	ī	4	9	38	37	1	5	9	74	84
ī	6	9	159	173	1	7	9	31	- 33	1	9	9	106	120
8	1	10	82	89	8	1	9	43	47	1	8	8	64	70
1	7	8	146	159	1	6	8	156	176	1	5	8	48	48
1	4	8	68	-86	1	3	8	144	-160	1	2	8	265	- 272
1	1	8	54	-56	1	-1	8	349	- 357	1	- 2	8	169	-176
1	- 3	8	68	70	1	-4	8	57	-61	1	- 5	8	126	-139
1	-6	8	29	23	1	- 7	8	153	170	- 7	-1	8	87	- 95
-7	-1	7	151	168	1	- 6	7	203	216	1	- 5	7	90	-105
1	-4	7	96	109	1	- 3	7	357	383	1	- 2	7	462	483
1	-1	7	165	-168	1	1	7	311	320	1	2	7	120	-133

3

ŧ.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

ł

Ł

543

* ***

٤

1. 1. 1

, ** •*,

ź

-;

Н	К	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	 Н	К	L	10Fo	10Fc
		7	265	-296	1	5	7	86	90	 1	6	7	60	-64
1	7	7	101	-106	7	ĩ	8	155	-180	7	1	, 9	37	32
7	í	10	45	-45	6	ī	11	193	- 208	6	1	8	128	-141
6	ī	7	148	-158	1	6	6	283	298	ĩ	5	6	202	212
1	4	6	70	-77	ĩ	3	6	337	- 373	1	2	6	432	475
ĩ	1	6	153	166	1	- 2	6	443	450	1	- 3	6	181	204
1	-4	6	294	- 321	1	- 5	6	35	-38	-6	-1	6	120	-134
- 6	-1	7	160	-171	-6	-1	8	157	-178	-6	-1	9	80	-94
- 5	-1	9	73	- 76	- 5	-1	7	42	55	- 5	-1	6	35	37
- 5	-1	5	32	- 37	1	- 3	5	290	-330	1	- 2	5	41	-44
1	-1	5	86	- 92	1	1	5	233	243	1	2	5	317	378
1	3	5	139	162	1	4	5	194	-218	1	5	5	100	114
5	1	6	256	293	5	1	7	104	113	5	1	8	146	-145
5	1	9	89	96	5	1	10	249	270	5	1	11	119	-132
4	1	11	211	232	4	1	10	222	243	4	1	9	32	37
4	1	8	212	-243	4	1	7	67	79	4	1	6	149	-171
4	1	5	168	-204	1	4	4	123	111	1	2	4	27	-31
1	1	4	71	- 94*	1	-1	4	65	-70	1	-2	4	25	-25
1	- 3	4	39	50	-4	-1	4	40	45	-4	-1	5	62	-75
-4	-1	6	174	191	-4	-1	7	212	239	-4	-1	8	63	81
-4	-1	10	110	123	- 3	-1	10	69	75	- 3	-1	9	54	64
- 3	-1	8	161	-190	- 3	-1	7	53	67	- 3	-1	6	214	231
- 3	-1	5	131	134	-3	-1	4	421	-456	- 3	-1	3	53	-45*
1	- 2	3	173	211	1	-1	3	111	118	1	1	3	370	412
1	2	3	759	876	1	3	3	498	- 539	3	1	4	27	-31
3	1	5	142	-164	3	1	6	409	-453	3	1	7	69	-73
3	1	9	178	-197	3	1	10	29	30	3	1	11	39	41
2	1	12	71	- 81	2	1	11	91	-99	2	1	10	80	- 89
2	1	9	61	-67	2	1	8	97	105	2	1	7	124	-132
2	1	6	119	137	2	1	5	235	273	2	1	4	119	-139
2	1	3	74	82	1	2	2	78	85	1	1	2	295	321
1	- 1	2	603	620	-2	-1	2	462	536	-2	-1	3	611	-722
- 2	-1	4	149	-184	- 2	-1	5	154	172	- 2	- 1	6	23	42
- 2	-1	7	323	-360	-2	-1	8	134	-155	-2	-1	9	77	85
- 2	- 1	10	58	74	-2	-1	11	127	-145	-1	-1	11	44	41
-1	-1	10	42	48	-1	-1	9	126	146	-1	-1	8	73	81
-1	-1	7	171	-195	-1	- 1	6	128	-136	-1	-1	5	368	429
-1	- 1	4	176	188	-1	-1	3	347	-425	-1	-1	2	257	-294
-1	1	1	393	400	1	1	2	285	321	1	1	3	353	412
1	1	4	69	- 94*	1	1	5	210	243	1	1	6	144	166
1	1	7	297	320	1	1	8	52	- 56	1	1	9	118	134
1	1	10	133	152	1	1	11	66	79	1	1	12	32	- 34
1	-1	11	192	-218	1	-1	10	59	66	1	-1	9	27	28
1	-1	8	325	- 357	1	-1	7	150	-168	1	-1	5	84	-92
1	-1	4	59	- 70	1	-1	3	104	118	1	-1	2	567	620
-1	1	1	371	400	-1	1	1	421	400	-1	1	2	171	177
-1	1	3	21	28	-1	1	4	62	75	-1	1	5	68	-75

1.1

the second and the second seco

, . ,

н	ĸ	L	10Fo	10Fc	H	ĸ	L	10Fo	10Fc	******	Н	к	L	10Fo	10Fc
-1	1	6	92	-106	-1	1	7	86	93	-	-1	1	8	160	177
-1	ī	9	188	-203	-1	1	10	182	- 202	-	-1	1	11	103	118
-2	1	10	60	-74	- 2	1	9	71	81	-	-2	1	8	95	105
-2	1	7	99	115	- 2	1	. 6	112	125	-	- 2	1	5	211	241
-2	1	4	87	101	- 2	1	. 3	95	112	-	• 2	1	2	246	253
-1	-1	2	286	-294	-1	. 1	. 2	174	177	-	-1	2	2	37	36
2	-1	3	35	-44	2	-1	. 4	129	-143		2	-1	6	92	-106
2	-1	7	396	-438	2	-1	. 8	122	-132		2	-1	9	280	305
3	-1	11	58	- 64	3	-1	. 10	124	-137		3	-1	9	83	93
3	-1	8	382	421	3	- 1	. 7	153	168		3	-1	6	108	118
3	-1	5	315	355	3	- 1	. 4	86	107		-1	3	3	423	- 505
-1	2	3	266	-313	- 1	. 1	. 3	28	28	-	-1	-1	3	375	-425
-1	- 2	3	106	114	- 3	3 1	. 3	84	89		- 3	1	4	278	- 310
- 3	1	5	227	-260	-3	3 1	. 6	40	47	•	- 3	1	7	38	39
- 3	1	8	64	-79	-3	3 1	10	80	92		-4	1	10	47	57
-4	1	9	104	-120	- 1	r 1	L 8	61	-63		-4	1	7	50	55
-4	1	6	332	- 375	- 4	•]	5	325	- 348		-4	1	4	172	188
-1	- 3	4	291	313		L -:	2 4	171	170		-1	- 1	4	196	188
-1	1	4	66	75	- :	1	2 4	170	-185		-1	3	4	36	- 34
-1	4	4	348	393	L	+ -:	L 5	159	-164		4	-1	6	28	- 26
4	-1	7	171	189	l	+ -:	L 8	63	59		4	-1	9	45	-42
4	-1	10	234	-254	4	5 - 3	L 8	60	-62		5	-1	7	109	-122
5	-1	6	179	-188	-	L	55	173	-194		-1	4	5	210	-241
-1	3	5	165	171	-	L	25	353	-371		-1	1	5	76	-75
-1	-1	5	403	429	-	L -:	25	139	-152		-1	- 3	5	175	-193
-1	-4	5	342	380		5	L 6	216	-241		- 5	1	8	198	216
- 5	1	9	95	-105	- (5	L 9	48	53		-6	1	8	232	248
-1	- 5	6	540	587	-	L -4	4 6	79	86		-1	- 3	6	227	-238
-1	-2	6	131	-146	-	L -	16	143	-136		-1	1	6	99	- 106
-1	2	6	147	151	-	L	36	55	-69		-1	4	6	61	67
-1	5	6	119	126		5 -	L 7	106	-113		6	-1	8	180	198
6	-1	9	143	154		7 -	1 10	186	-199		7	-1	8	167	173
-1	6	7	134	-146	-	1.	57	135	148		-1	4	7	393	434
-1	3	7	138	-148	-	L :	2 7	176	-182		-1	1	7	94	93
-1	-1	7	186	-195	-		2 7	91	-94		-1	- 3		169	-185
-1	-4	7	89	-98	-	L -	57	61	- 72		-1	-6	7	94	-108
-7	1	7	208	-217	-	1 -	78	68	- 76		-1	-6	8	91	-102
-1	-5	8	31	31	-	L	4 8	113	122		-1	-3	8	100	106
-1	-1	8	79	81	-	1	18	169	177		-1	2	8	182	-197
-1	3	8	317	338	-	1.	4 8	234	256		-1	5	8	41	- 53
-1	6	8	255	-2/2	-	1	/ 8	49	55		-1	8	8	36	- 31
8	-1	9	191	- 193	-	1	в 9 ⁄^	64	-70		-1	7	9	82	85
-1	5	9	358	-400	-	1 ·	49 1^	138	-151		- T	2	9	104	-112
-1	Ţ	9	205	-203	-	1 - 1	19 / ~	142	146		-1	-2	9	138	-121
-1	-3	9 10	115	-114	-	1 - 1	4 9 2 10	89	94		-1	- 5	9	18/	207
-1	-4	10	110	-119	-	1 - 1	1 10 1 10	T82	- 192		- L 1	-2	10	49	48
-1	-1	τ0	23	48	-	I.	t 10	. TAT	-202		- T	- 2	10	52	22

1-7

Н	к	L	10Fo	10Fc	Н	ĸ	L	10Fo	10Fc	 H	к	L	10Fo	10Fc
.1	3	10	56	61	-1	4	10	47	- 51	-1	6	10	180	196
_1	7	10	82	93	-1	3	11	100	104	-1	2	11	84	84
-1	í	11	112	118	-1	-1	11	39	41	-1	- 2	11	152	158
-2	2	11	105	-112	-2	4	11	116	126	-2	5	10	102	-115
-2	3	10	123	-134	-2	- 3	10	54	- 55	- 2	-4	10	74	81
-2	-4	- 9	189	200	-2	-3	9	35	34	-2	-2	9	107	-111
-2	2	9	60	67	-2	3	9	130	144	-2	5	9	85	-94
-2	6	9	148	-160	- 2	8	9	86	-96	8	-2	9	76	-86
-2	8	8	70	74	-2	7	8	85	91	-2	6	8	64	-65
-2	5	8	177	193	-2	4	8	324	345	- 2	2	8	193	-202
-2	-2	8	127	-139	- 2	- 3	8	153	156	- 2	-4	8	41	39
-2	- 5	8	288	- 307	-2	- 6	8	149	-163	-2	-7	8	59	69
-7	2	8	33	43	-7	2	7	112	121	-2	-6	7	121	130
-2	- 5	7	52	- 50	-2	- 3	7	161	174	- 2	-2	7	36	-31
-2	2	7	68	- 68	- 2	3	7	372	-396	-2	4	7	90	96
-2	5	7	265	288	-2	6	7	63	-68	-2	7	7	70	-81
7	- 2	8	199	207	7	-2	9	121	126	6	- 2	10	50	47
6	- 2	9	137	149	6	- 2	7	260	-271	- 2	6	6	67	-70
-2	5	6	162	172	- 2	4	6	267	- 302	-2	3	6	378	-418
-2	2	6	171	184	-2	- 3	6	72	80	-2	-4	6	83	88
-2	- 5	6	44	46	- 6	2	6	33	33	-6	2	7	59	71
-6	2	8	66	76	- 6	2	9	81	-93	-5	2	9	107	-125
- 5	2	7	121	134	- 5	2	6	341	-384	- 5	2	5	231	-253
-2	-4	5	118	122	-2	- 3	5	139	153	-2	2	5	50	52
-2	3	5	122	139	- 2	4	5	113	-123	-2	5	5	52	55
5	- 2	6	51	59	5	-2	7	191	-210	5	- 2	8	133	-144
5	- 2	9	30	35	5	- 2	10	77	84	4	-2	10	44	54
4	- 2	9	28	27	4	-2	8	112	119	4	- 2	7	177	191
4	- 2	6	160	169	4	-2	5	213	238	- 2	4	4	110	128
- 2	3	4	177	-203	- 2	2	4	147	-168	-2	- 2	4	296	-316
-2	- 3	4	156	168	-4	2	5	494	- 562	-4	2	6	68	80
-4	2	7	88	101	-4	2	8	59	-63	-4	2	9	75	-89
-4	2	10	174	191	- 3	2	10	111	129	- 3	2	9	52	59
- 3	2	8	163	-181	- 3	2	7	344	376	- 3	2	6	391	434
- 3	2	5	116	128	- 3	2	4	161	-178	- 2	-2	3	58	-44*
-2	2	3	239	259	- 2	3	3	322	- 373	3	-2	4	82	-88
3	- 2	6	157	-170	3	-2	7	179	-187	3	-2	9	137	146
3	- 2	11	116	130	2	-2	11	84	-93	2	-2	10	50	55
2	- 2	9	59	- 64	2	-2	8	185	-200	2	-2	7	375	-409
2	- 2	6	51	64	2	-2	5	69	-72	2	- 2	4	291	-342
2	- 2	3	319	336	- 2	2	2	285	335	-2	2	2	322	335
-2	2	3	249	259	- 2	2	4	150	-168	- 2	2	5	49	52
-2	2	6	159	184	- 2	2	7	64	-68	-2	2	8	185	-202
- 2	2	9	56	67	- 2	2	11	102	-112	- 2	-2	9	95	-111
-2	- 2	8	118	-139	- 2	- 2	7	35	-31	-2	-2	4	276	-316
-2	- 2	3	55	-44*	- 2	2	2	298	335	2	2	2	254	289
2	2	3	502	- 577	2	2	4	361	-414	2	2	5	55	-35*

!

ę

ł

Н	к	L	10Fo	10Fc	1	1	к	L	10Fo	10Fc	 н	К	L	10Fo	10Fc
2 2 2	2		352	-401)	2	10	84		 2	2	11	94	-105
3	2	12	39	50		3	2	9	49	47	3	2	8	226	246
3	2	6	80	-92		3	2	5	92	104	3	2	4	100	-120
2	3	3	401	-444		2	2	3	504	- 577	2	-2	3	337	336
- 3	-2	3	263	313	-	3	-2	4	145	-159	- 3	- 2	5	33	- 34
- 3	- 2	6	97	107	-	3	-2	7	183	212	- 3	- 2	8	87	110
- 3	- 2	10	149	162	- 4	ŧ	- 2	9	62	-68	-4	- 2	8	67	82
-4	- 2	7	64	67	- (4	-2	6	90	-113	-4	- 2	5	180	-201
2	- 3	4	86	86		2	- 2	4	314	- 342	2	2	4	364	-414
2	3	4	42	-43		2	4	4	295	312	4	2	6	74	-79
4	2	7	181	206		4	2	8	25	24	4	2	9	191	223
4	2	10	60	72		4	2	11	46	-60	5	2	11	239	-273
5	2	10	42	-49		5	2	9	79	98	5	2	8	27	48
5	2	7	97	-113		5	2	6	58	71	2	4	5	24	-28
2	3	5	98	113		2	2	5	55	-35*	2	- 2	5	71	-72
2	- 3	5	105	-117	-	5	- 2	5	51	- 59	- 5	- 2	6	156	-173
- 5	- 2	7	133	-159	-	5	- 2	9	168	-183	- 6	- 2	8	84	97
-6	- 2	7	56	66	-	6	- 2	6	84	91	2	- 5	6	140	159
2	-4	6	138	158		2	- 3	6	316	342	2	- 2	6	56	64
2	4	6	166	186		2	5	6	34	39	2	6	6	238	-264
6	2	7	287	- 327		6	2	8	90	-99	6	2	9	63	67
6	2	10	65	-72		6	2	11	78	-85	7	2	11	150	165
7	2	10	94	-100		7	2	9	81	87	7	2	8	39	38
2	7	7	56	- 56		2	6	7	55	- 53	2	5	7	25	31
2	4	7	203	236		2	3	7	113	-126	2	2	7	380	-401
2	-2	7	400	-409		2	- 3	7	139	146	2	-4	7	35	36
2	- 5	7	104	-115		2	-6	7	52	60	-7	- 2	7	106	119
-7	- 2	8	71	80		2	-7	8	38	39	2	- 6	8	146	-160
2	- 5	8	135	-147		2	-4	8	194	208	2	- 3	8	59	-69
2	- 2	8	190	-200		2	3	8	339	363	2	4	8	134	156
2	5	8	89	102		2	6	8	129	147	2	7	8	113	114
2	8	8	72	79		8	2	10	43	-40	2	9	9	42	- 50
2	8	9	66	-68		2	7	9	151	-163	2	6	9	48	- 51
2	5	9	94	-97		2	4	9	118	-135	2	3	9	39	-47
2	-2	9	60	-64		2	- 3	9	78	86	2	-4	9	47	50
2	-6	9	151	-167		2	-4	10	80	87	2	-2	10	51	55
2	2	10	93	- 99		2	3	10	56	-63	2	4	10	34	- 32
2	6	10	61	-68		2	7	10	58	- 60	2	8	10	122	129
2	7	11	211	229		2	6	11	36	-43	2	4	11	46	49
2	2	11	102	-105		2	-2	11	86	-93	2	3	12	170	184
3	3	11	47	52		3	4	11	53	56	3	5	11	53	54
3	6	11	96	105		3	7	11	112	124	3	7	10	65	74
3	6	10	122	133		3	5	10	109	122	3	4	10	97	116
3	3	10	17	-83		ک	-3	10	53	- 52	3	-4	10	30	-40
3	-5	9	183	T33		3	-4	9	59	64	3	- 3	9	89	- 94
3	3	9	60	- 64		5	4	9	100	-113	3	5	9	32	39
3	7	9	63	-66		5	8	9	157	-1/1	3	3	10	62	/1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

Н	ĸ	L	10Fo	10Fc	H	К	L	10Fo	10Fc	 н	ĸ	L	10Fo	10Fc
8	3	9	170	-179	3	8	8	39	- 34	3	7	8	30	36
3	6	8	96	-104	3	5	8	292	-319	3	4	8	152	-174
3	3	8	101	114	3	- 3	8	138	-148	3	-4	8	114	127
3	- 5	8	51	56	3	-6	8	48	- 56	-7	- 3	7	60	-66
3	- 6	7	50	- 55	3	• 5	7	161	-179	3	- 3	7	248	-260
3	3	7	204	225	3	4	7	191	222	3	5	7	26	-41
3	6	7	57	- 53	3	7	7	309	337	7	3	8	148	165
7	3	9	57	-65	7	3	10	56	-68	7	3	11	144	160
6	3	11	156	181	6	3	10	46	- 51	6	3	8	257	271
6	3	7	77	87	3	6	6	243	-257	3	3	6	93	-101
3	- 3	6	40	-41	3	-4	6	147	-157	3	- 5	6	66	69
- 6	- 3	6	133	152	-6	- 3	8	67	71	- 5	- 3	9	93	106
- 5	- 3	7	90	-97	- 5	- 3	6	70	87	- 5	-3	5	255	298
3	-4	5	84	96	3	- 3	5	63	-74	3	3	5	117	123
3	4	5	122	-136	3	5	5	222	-225	5	3	6	167	-197
5	3	7	167	-192	5	3	8	54	61	5	3	9	117	-136
5	3	10	102	-121	5	3	11	37	-44	4	3	10	111	-123
4	3	9	38	- 35	4	3	7	134	152	4	3	5	46	47
3	4	4	121	130	3	3	4	512	576	3	- 3	4	154	-167
-4	- 3	4	142	161	-4	- 3	5	59	-61	-4	- 3	6	108	-117
-4	- 3	7	208	-254	-4	- 3	9	91	- 1.04	- 3	- 3	9	50	60
- 3	- 3	8	38	45	-3	- 3	6	132	-161	-3	- 3	5	57	60
- 3	- 3	4	21	-19	- 3	3	3	296	304	3	3	3	190	-208
3	3	4	505	576	3	3	5	114	123	3	3	6	92	-101
3	3	7	196	225	3	3	8	101	114	3	3	9	57	-64
3	3	10	72	-83	3	3	11	43	52	3	- 3	10	49	- 52
3	- 3	9	83	-94	3	- 3	8	132	-148	3	- 3	7	232	-260
3	- 3	6	38	-41	3	- 3	5	59	-74	3	- 3	4	148	-167
- 3	3	3	262	304	- 3	3	3	307	304	- 3	3	4	125	-128
- 3	3	5	434	453	- 3	3	6	169	189	- 3	3	7	221	-240
- 3	3	9	51	52	- 3	3	10	94	-103	-4	3	10	35	39
-4	3	9	66	78	- 4	3	7	57	66	-4	3	6	322	340
-4	3	5	122	130	-4	3	4	80	- 83	- 3	3	4	121	-128
- 3	4	4	144	-161	4	- 3	5	213	-216	4	- 3	6	113	123
4	- 3	7	97	104	4	- 3	8	64	- 75	5	- 3	10	131	148
5	- 3	8	58	-63	5	- 3	7	123	125	5	- 3	6	334	375
-3	5	5	95	106	- 3	4	5	66	- 64	- 3	3	5	394	453
-3	- 3	5	61	60	-3	-4	5	75	- 84	-5	3	5	163	-170
- 5	5	/	89	-92	- >	3	9	66	/2	-6	3	8	76	-79
- 6	5		63	-63	- 3	- 5	6	50	50	-3	-4	6	243	-270
ز۔ د	- j r	6	14/	-101	- 3	3	6	1/3	189	-3	4	6	391	-425
- J /	2	0	60	-69	- 3	6	6	45	50	6	-3	7	185	-197
0 3	د - -	ט ד	101	-105	/	د -	9	/2	/4	/	-3	8	45	-42
ز - م	/	/	96	- 105	-3	5	/	55	-57	-3	4	7	128	-136
) o	ر د	/ 7	224	~240	- 3	-4	/	96	-105	-3	-)	/	81	90
د -	-0	/	300	310	-/	5	/	44	46	-3	-6	8	102	114
د -	- 2	8	110	- 175	- 3	-4	8	51	- 52	-3	-3	8	45	45

A - 2 6

麙

٢

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

H	К	L	10Fo	10Fc		Н	K	L	10Fo	10Fc	 н	к	L	10Fo	10Fc
-3	4	8	39	-42		3	5	8	100	113	 -3	7	8	59	62
- 3	8	8	58	66	-	3	7	9	116	129	- 3	6	9	155	169
- 3	5	9	58	65	-	3	4	9	60	65	- 3	3	9	51	52
- 3	- 3	9	56	60	-	3	-4	9	54	-66	- 3	- 5	9	75	-78
- 3	3	10	95	-103	-	3	4	10	116	-131	- 3	5	10	29	- 27
-4	4	10	62	-71	-	4	4	9	47	- 52	-4	5	9	59	-63
-4	6	9	32	37	-	4	6	8	111	-120	-4	5	8	116	-126
-4	4	8	44	47	-	4	-4	8	42	40	-4	-5	8	81	89
-4	-6	8	92	102	-	7	4	7	172	-179	-4	-6	7	72	69
-4	-5	7	80	86	-	4	4	/	51	-60	-4	5	7	117	-130
-4	6		68	- / 9		6	-4	9	31	- 32	6	-4		194	202
-4	6	6	108	11/	•	4	2	6	127	0/	-4	4	6	229	250
-4	-4	ט ד	12/	126	-	4	- 5	0	13/	140	-0	4	5	10D	-108
- 0 /	4	/	104	-130	-	5 7	4	9	145	155	-)	4	5	21 170	24 107
-4	-4	5	167	210 192	-	45	4	2	14J 05	03	-4 5	5) 0	10	-197
7	-4	10	107	-137		ر ۸	-4	a a	106	- 100 - 100	ר ג	-4	5	344	-145
4	-4	5	140	-158	_	4	-4	4	170	180	-4	-4	4	185	180
-4	-4	5	152	155	_	4	4	6	244	250	-4	4	7	53	-60
-4	4	8	44	47	-	4	4	9	42	-52	-4	4	10	65	-71
-4	-4	8	37	40	-	4	- 4	6	26	29	-4	-4	5	185	218
-4	4	4	177	180		4	4	4	176	-196	4	4	5	458	- 506
4	4	6	137	149		4	4	7	90	-102	4	4	8	361	-400
4	4	10	92	106		4	4	11	46	47	5	4	10	135	151
5	4	9	48	53		5	4	7	74	-85	5	4	6	145	150
4	4	5	468	- 506		4	-4	5	142	-158	- 5	-4	5	213	232
- 5	-4	6	163	199	-	5	-4	8	71	85	- 6	-4	8	165	-186
-6	-4	7	104	-113		4	- 5	6	113	-129	4	-4	6	370	- 395
4	4	6	140	149		4	5	6	209	231	4	6	6	258	260
6	4	7	210	234		6	4	8	30	38	6	4	10	33	-41
6	4	11	36	39		7	4	9	117	-132	7	4	8	86	-95
4	7	7	131	137		4	6	7	55	64	4	5	7	248	-271
4	4	7	92	-102		4	- 5	7	83	-92	4	-6	7	102	112
4	-6	8	34	39		4	- 5	8	64	71	4	4	8	363	-400
4	5	8	157	-175		4	6	8	73	81	4	7	8	33	-42
4	8	8	1/5	-186		8	4	10	169	1/1	4	9	9	1/0	182
4	8	9	50	-53		4		9	/2	- / 8	4	6	9	13/	148
4	5	10	205	227		4	-4	10	113	-122	4	- 2	10	100	11/
4	-4	10	120	-13/		4	4	10	90	100	4	2	10	103	114
4	/	11	08 77	-92		4 c	6 5	11	98 172	- 108	4 5	כ 2	11) 172	-02
4 E	4	10	44	4/		ך ב	2	10	177	-159	<u>ר</u> ב	D E	10	101	- 104
) 5	0 5	0 T0	203	200 703		5	0 2	т0 Т0	1//	-19/	ך ב) 0	10	701	- 100
י ב	ر ۵	7 Q	20J 52	222 58		2	5	9 10	4/	-43	2	0 5	9	40 71	31
ר ב	2 Q	9 Q	32	20		5	ر ک	Ω.	21	203	0 5	ר א	9 9	194	204
5	-6	8	42	-48		5	-6	7	44	20 48	5	ر 5۔	7	73	- 82
5	5	7	1.84	-205		5	6	7	171	-179	5	7	7	121	-124
-	-	•					-	•			-	•			

,

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

•

н	К	L	10Fo	10Fc	Н	К	L	10Fo	10Fc	H	ĸ	L	10Fo	10Fc
	 5	 8	58	 64	7	5	9	40	-45	7	5	10	36	33
6	5	11	36	-40	, 6	5	10	170	-188	6	5	8	49	55
6	5	7	197	-210	5	6	6	241	-248	5	5	6	399	430
5	-5	6	205	-219	-6	- 5	6	37	38	-5	-5	8	51	-65
-5	- 5	7	41	-42	-5	- 5	6	65	-80	-5	5	5	104	-113
5	5	5	617	657	5	5	6	404	430	5	5	7	186	- 205
5	5	8	189	204	5	5	9	200	222	5	5	10	95	-106
5	5	11	147	-159	5	- 5	7	75	- 82	5	- 5	6	190	-219
- 5	5	5	104	-113	- 5	5	5	111	-113	- 5	5	6	43	41
-5	5	7	111	117	-6	5	8	155	164	-6	5	7	60	68
- 6	5	6	205	-213	- 5	- 5	6	72	- 80	- 5	5	6	33	41
- 5	6	6	102	113	6	- 5	7	36	38	6	- 5	8	86	95
- 5	6	7	58	62	-5	5	7	111	117	- 5	-5	7	38	-42
-5	- 6	7	124	-137	- 5	- 5	8	60	-65	- 5	6	8	114	-128
-6	- 6	7	75	82	- 6	6	7	180	196	6	-6	7	99	-114
- 6	6	7	187	196	- 6	- 6	7	70	82	6	6	6	416	-430
6	6	7	70	- 79	6	6	8	129	134	6	6	9	33	-36
6	6	10	88	- 92	7	6	10	82	90	7	6	8	97	110
6	7	7	210	214	6	6	7	75	- 79	6	-6	7	110	-114
6	6	8	124	134	6	7	8	112	108	6	7	9	39	- 38
6	6	9	37	- 36	6	6	10	88	-92	6	7	10	80	85
7	7	10	45	50	7	7	9	111	-119	8	7	9	69	-77
7	8	8	253	-260	7	7	8	38	- 33	7	7	7	136	148
7	7	9	110	-119	7	7	10	47	50	8	8	8	139	-146
0	4	16	57	62	0	3	16	34	- 36	0	2	16	103	-115
0	- 3	15	77	83	0	- 2	15	66	67	0	1	15	82	90
0	2	15	34	-26	0	3	15	104	-121	0	6	15	65	-72
0	7	15	35	- 39	0	9	14	42	55	0	7	14	91	-99
0	5	14	37	44	0	4	14	82	-90	0	3	14	44	-43
0	2	14	124	134	0	1	14	111	122	0	-2	14	59	62
0	- 7	13	82	87	0	- 6	13	65	-71	0	-5	13	106	-110
0	0	13	43	-46	0	2	13	59	63	0	5	13	79	86
0	6	13	143	156	0	8	13	54	- 55	0	11	12	40	35
0	10	12	90	102	0	4	12	38	- 37	0	3	12	101	-110
0	2	12	42	-43	0	0	12	72	-75	0	-1	12	117	-125
0	- 2	12	108	-115	Û	- 3	12	88	92	0	- 5	12	87	-93
0	- 6	12	67	73	0	-7	12	138	150	0	- 8	11	123	-132
0	-7	11	38	39	0	-6	11	145	160	0	-4	11	40	41
0	- 3	11	145	150	0	6	11	126	-141	0	7	11	132	-143
0	8	11	67	- 75	0	10	11	47	- 50	10	0	14	40	-44
10	0	12	60	-67	10	0	11	77	-84	0	10	10	49	- 55
0	9	10	62	70	0	8	10	69	-78	0	-5	10	30	- 37
0	-7	10	97	-111	0	- 8	10	101	-113	-9	0	11	47	48
- 9	0	10	42	41	C	- 6	9	37	41	0	9	9	56	60
9	0	10	180	185	9	0	11	66	-73	9	0	13	38	41
9	0	14	63	70	8	0	15	40	37	8	0	14	75	81
8	0	12	70	-73	8	0	11	127	135	8	0	10	101	104

н	K	L	10Fo	10Fc		Н	к	L	10Fo	10Fc	н	К	L	10Fo	10Fc
8		 8	52			8	 0	10	83	86	 	0	12	60	_ 70
-7	ŏ	12	110	-114	-	.7	õ	11	82	- 94	-7	õ	10	64	- 7 5
-7	Ō	9	85	88		7	Ō	11	113	124	7	Õ	13	111	-118
6	0	14	60	-76		6	0	13	83	-91	6	0	11	94	-101
- 6	0	9	121	132		6	0	12	62	74	-6	0	13	71	79
- 5	0	12	36	33		5	0	12	33	- 37	5	0	13	47	58
5	0	14	39	49		4	0	15	57	63	4	0	14	120	140
4	0	13	54	-66		4	0	11	44	-40	-4	0	12	157	-172
-4	0	13	41	- 50		. 3	0	13	157	179	- 3	0	12	48	54
- 3	0	11	91	-104		3	0	13	132	-155	3	0	14	36	-48
3	0	15	64	78		2	0	16	38	43	2	0	14	104	-119
2	0	12	96	110		•2	0	12	217	243	-2	0	13	83	98
-2	0	15	39	- 52		-1	0	14	102	-126	-1	0	13	81	- 98
1	0	12	98	113		1	0	13	42	54	1	0	14	39	44
1	0	15	43	-48		1	0	16	46	48	0	0	13	40	-46
0	0	12	66	-75		0	0	12	61	-75	0	0	13	39	-46
1	0	16	34	48		1	0	14	43	44	1	0	13	43	54
1	0	12	97	113		-1	0	13	81	-98	-1	Э	14	105	-126
-2	0	15	48	- 52		- 2	0	13	84	98	- 2	0	12	214	243
2	0	12	101	110		2	0	14	103	-119	3	0	15	63	78
3	0	14	46	-48		3	0	13	134	-155	- 3	0	11	93	-104
-3	0	12	49	54		-3	0	13	154	179	-4	0	13	46	- 50
-4	0	12	151	-1/2		-4	0	11	41	-40	4	0	13	62	-66
4	0	14	122	140		4	0	15	52	63	5	0	14	3/	49
5	0	13	23	58		5	0	12	38	-37	- 5	0	12	35	33
-5	0	T3	45	-40		- 6	0	13	/1	/9	-6	0	12	66	/4
-6	0	9 1/	120	132		5	0	11	96	-101	6	0	13	27	-91
0 7	0	14	12	-/0		7	0	13	105	-118	/	0	12	3/	- 38
/	0		120	124		- /	0	10	81 105	88	-/	0	10	10	54
-/	0	10	90	- 94		-/	0	12	105	-114	- 8	0	12	100	- /9
-8	0	10	100	00 125		-0	0	0 10	21	- 20	ð o	0	10	100	104
0	0	11	120	133		0	0	17	13	-/3	0	0	14	74	27
0	0	10	סכ רדו	ے/ د 105		9	0	14	00 5/	/0	9	ں د	11	/1	-/3
9	0	10	36	100		_0	9	10	20	6U 61	. 0	-0 0	9	22	41
0	-0	10	104	112		- 7	7	10	100	4⊥ 111	- 9	5	10	40 20	40
0	- 0 Q	10	100	-115		0	- /	10	102	~111	0	10	10	50 7.7	- 57
10	0	11	21 21	- 20		10	0	12	60	.67	10	10	1/	47	- 55
10	10	11	52	- 50		0	q	11	41	- 30	10	R R	11	71	- 44
0	7	11	127	-143		ň	6	11	122	-141	ñ	_ 3	11	146	150
n n	-4	11	44	41		õ	-6	11	147	160	ñ	- 2	11	122	-132
ñ	-7	12	140	150		õ	-6	12	63	73	ñ	-5	12	87	-93
ň	_ '	12	88	92		õ	- 2	12	109	-115	ñ	. ĩ	12	120	-125
ő	Ő	12	71	- 75		õ	2	12	36	-43	õ	3	12	101	-110
ő	ŭ	12	34	- 37		õ	10	12	94	102	õ	10	13	53	53
õ	8	13	50	-55		Ō	6	13	148	156	õ	5	13	81	86
Ō	2	13	52	63		0	Ō	13	44	-46	ō	- 5	13	104	-110

_

The second second

ţ

at a sales

ž

ł

,

.

ţ

н	к	L	10F0	10Fc	Н	К	L	10Fo	10Fc	Н	К	L	10Fo	10Fc
0	-6	13	63	- 71	0	-7	13	79	87	0	-2	14	56	62
õ	1	14	113	122	0	2	14	122	134	Ō	4	14	83	-90
0	5	14	43	44	0	7	14	87	-99	0	9	14	51	55
0	6	15	75	-72	0	3	15	106	-121	0	1	15	78	90
0	- 2	15	66	67	0	- 3	15	79	83	0	1	16	37	-33
0	2	16	105	-115	0	3	16	34	-36	0	4	16	56	62
1	4	16	81	88	1	3	16	100	108	1	- 2	15	64	-60
1	-1	15	84	-92	1	1	15	39	-43	1	2	15	109	-122
1	3	15	55	-63	1	4	15	52	60	1	6	15	37	-39
1	7	15	41	52	1	8	14	40	37	1	7	14	39	-32
1	6	14	71	-72	1	3	14	65	-70	1	1	14	36	43
1	-2	14	63	69	1	-4	14	95	95	1	- 5	14	99	108
1	- 7	13	73	-74	1	- 6	13	139	-154	1	-4	13	54	62
1	- 2	13	46	-46	1	-1	13	100	108	1	2	13	47	-49
1	4	13	45	54	1	7	13	44	- 50	1	10	13	38	- 50
1	11	13	52	- 58	1	11	12	43	-47	1	8	12	80	87
1	7	12	123	134	1	5	12	84	87	1	4	12	173	186
1	2	12	118	-122	1	1	12	38	-34	1	-2	12	129	-136
1	-4	12	47	52	1	- 5	12	94	-101	1	-6	12	91	-96
1	-7	12	39	42	1	- 8	12	58	63	1	-7	11	75	87
1	-6	11	65	67	1	- 5	11	40	41	1	-4	11	50	51
1	7	11	101	-114	1	8	11	157	171	1	9	11	58	67
1	11	11	68	. 86	11	1	12	103	104	11	1	13	51	54
10	1	14	62	-70	10	1	13	43	54	10	1	12	70	76
1	10	10	103	-112	1	9	10	87	97	1	8	10	64	-71
- 10	-1	10	59	-62	- 9	-1	10	39	-39	- 9	-1	9	87	-90
1	-7	9	37	33	1	-6	9	125	-141	9	1	10	35	38
9	1	11	188	-201	9	1	12	50	-45	8	1	14	59	68
8	1	13	58	61	8	1	12	60	-69	8	1	10	88	89
- 8	-1	9	117	-131	- 8	-1	10	80	89	- 8	-1	11	84	91
-7	-1	12	64	-74	-7	-1	10	62	67	7	1	11	54	62
7	1	14	51	65	7	1	15	48	58	-6	-1	9	76	- 94
-5	-1	14	/6	/8	- 5	-1	12	120	135	- 5	-1	11	112	123
5	1	12	113	-129	5	1	15	69	-87	4	1	16	48	- 51
4	1	14	101	116	4	1	13	47	49	4	1	12	65	- 78
-4	-1	11	63	64	-4	-1	12	166	-188	-4	-1	13	52	-51
-3	-1	15	62	-68	- 3	-1	12	190	-215	- 3	-1	11	148	-166
3	1	14	55	60	3	1	15	72	89	3	1	16	44	-48
2	1	14	/5	-91	2	1	13	63	-73	2	1	12	65	-81
- 2	-1	11	126	- 145	- 2	-1	12	56	65	-2	-1	13	124	141
-1	-1	13	56	69	1	1	15	34	-43	1	-1	15	77	-92
1	-1	13	94	108	-1	1	12	62	-74	-1	1	13	157	-180
-1	1	14	44	- 50	-1	1	15	83	103	-2	1	14	102	-120
-2	Ţ	13	105	-121	-2	1	12	93	110	2	-1	12	181	203
2	-1	13	104	125	2	-1	14	63	-70	3	-1	15	54	63
3	-1	14	96	-115	3	-1	13	34	-43	3	-1	12	114	129
- 3	T	11	5/	67	- 3	1	12	104	123	-3	1	13	78	90

H	К	L	10Fo	10Fc	Н	К	L	10Fo	10Fc	ł	I	к	L	10Fo	10Fc
	1	11	87	99	4	 -1	12	61				. 1	13	116	_133
5	-1	13	67	76	- 5	1	10	150	-166	- 9	5	1	13	83	-95
- 6	1	13	57	68	- 6	1	12	115	123	- (5	1	11	52	- 52
- 6	1	10	74	- 82	-6	1	9	47	53	(5.	-1	12	137	152
6	-1	13	87	96	6	-1	14	54	-62	-	7	-1	14	78	-86
7	-1	13	71	-76	7	-1	12	50	60	-]	7	1	9	104	113
-7	1	13	111	123	- 8	1	12	50	-53	- 8	3	1	10	38	- 37
- 8	1	9	49	- 52	8	-1	11	96	98	ł	3	-1	13	43	-41
9	-1	14	44	43	9	-1	13	50	50	()	-1	10	101	103
-1	9	9	30	- 37	-1	- 8	9	162	179	- 9	9	1	9	36	43
-9	1	10	46	- 50	-1	- 9	10	141	159	-	L	- 8	10	55	64
-1	-7	10	127	-142	-1	- 5	10	44	52	-	L	7	10	85	93
-1	9	10	103	113	10	-1	12	41	46	1	L	-1	13	108	-115
-1	10	11	86	- 99	-1	7	11	34	26	-	1	6	11	30	32
-1	-2	11	155	158	- 1	-4	11	134	-141	-	1	-6	11	36	37
-1	-/	11	118	-129	- 1	- 8	11	120	-13/	-		-8	12	81	- 86
-1	-6	12	90	103	- 1	- 3	12	/6	86	-	1	-2	12	32	39
-1	Ţ	12	10	- /4	- 1	5	12	45	4/	-	1	4	12	50	- 52
- L 1	2	12	154	- 169 77	- 1	. b	12	58 105	-/6	-	1	/	12	46	51
- L 1	11	12	/3	-	- 1	. 9	12	120	-130	-	i l	11	12	49	0Z
- L 1	11	12	57	04 79	- 1	. 10 2	13	160	0/ 17/	-	1 1	5	12	55	- 50
-1	1	13	62	-68	د - 1 _	. ບ ເ	13	78	1/4	-	⊥ 1	1	13	170	-180
-1	_1	13	67	-00	- 1	່ _ າ	13	70 44	-44	-	1	_5	13	40	-100
-1	-7	13	45	49	- 1	-4	14	60	-67	-	1	- 3	14	99	-104
-1	-2	14	42	40	-1	1	14	47	- 50	-	1	2	14	106	116
-1	3	14	48	56	-1	4	14	55	-67	-	1	5	14	67	69
-1	6	14	90	101	-1	6	15	47	- 56	-	1	4	15	33	- 29
-1	2	15	106	117	-]	1	15	89	103	-	1	- 2	15	80	87
-2	-2	15	40	- 39	- 2	2	15	53	50	-	2	4	15	34	39
- 2	6	15	34	- 37	- 2	8	14	45	39	-	2	6	14	42	49
-2	5	14	38	45	- 2	. 4	14	44	-45	-	2	3	14	38	34
-2	- 3	14	82	-86	- 2	-4	14	52	50	-	2	- 5	14	90	94
- 2	- 6	13	54	-66	- 2	2 - 4	13	97	101	-	2	-2	13	71	-76
- 2	2	13	116	-126	- 4	2 5	13	177	-192	-	2	9	13	37	-47
- 2	10	12	70	-82	- 2	2 9	12	61	-67	-	2	8	12	67	80
- 2	7	12	98	110	- 2	2 6	12	96	-106	-	2	5	12	53	-61
- 2	4	12	129	138	- 2	2 3	12	84	92	-	2	2	12	63	- 69
- 2	- 2	12	42	-38	- 2	2 - 3	12	56	58	-	2	-4	12	39	44
- 2	- 5	12	33	- 36	- 2	2 - 6	12	56	- 58	-	2	- 8	12	35	- 34
- 2	-9	11	69	77	- 2	? -7	11	42	- 50	-	2	- 5	11	52	-49
-2	-4	11	70	-70		2 - 3	11	93	-93	-	2	- 2	11	39	- 32
2	4	11	112	126		2 5	11	123	135	-	2	6	11	66	-70
-2	7	11	32	41	-	28	11	129	140	-	2	10	11	57	-62
-2	11	11	36	41	1	-2	12	81	81	1	.0	-2	13	95	101
10	-2	12	110	112	- :	2 10	10	33	- 30	-	2	9	10	61	67
-2	7	10	73	-82	- :	2 - 4	- 10	75	81	-	2	- 5	10	123	132

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

M19

Sulfigues 1

Rahili wa Abaputi

and when the

contration with rescalations of the second sectors to second

Andrea vanata andre a

į

ş

.

:

1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

H	К	L	10Fo	10Fc	Н	К	L	10Fo	10Fc	Н	ĸ	L	10Fo	10Fc
-2	-7	10	77	78	-2	- 8	10	133	146	-2	-9	10	65	74
-10	2	10	65	-61	-9	2	10	101	-106	-9	2	9	157	-162
-2	- 8	9	53	54	-2	-7	- 9	42	52	-2	-6	9	62	-74
- 2	8	9	86	-96	-2	9	9	89	- 99	9	-2	11	73	-76
9	- 2	13	43	52	8	-2	12	67	-69	8	- 2	10	48	-48
8	-2	9	82	-86	-2	-7	8	59	69	- 8	2	8	83	- 90
- 8	2	9	96	-103	- 8	2	11	70	76	-7	2	13	46	44
- 7	2	11	44	53	-7	2	10	39	44	7	- 2	10	57	- 59
7	-2	12	55	58	6	- 2	13	140	155	6	-2	11	113	-126
- 6	2	9	79	-93	-6	2	10	94	-110	- 6	2	13	55	-61
- 5	2	13	82	-88	- 5	2	11	57	70	- 5	2	10	38	32
5	- 2	11	97	-108	5	- 2	12	168	-191	5	-2	15	101	-117
4	- 2	15	54	- 59	4	- 2	14	66	74	4	-2	13	33	- 37
4	- 2	12	73	-77	-4	2	11	112	126	- 4	2	12	49	-64
-4	2	14	40	44	- 3	2	11	104	-118	3	- 2	12	87	97
3	- 2	13	45	53	3	- 2	15	53	63	2	- 2	13	40	44
- 2	2	12	59	-69	-2	2	13	106	-126	- 2	- 2	13	68	-76
- 2	- 2	12	31	-38	- 2	- 2	11	32	- 32	2	2	13	55	66
3	2	14	76	90	3	2	13	78	89	3	2	12	41	50
- 3	-2	11	74	88	- 3	- 2	12	153	-172	- 3	- 2	13	49	-60
-4	- 2	14	91	97	-4	- 2	12	40	47	-4	- 2	11	212	235
4	2	12	113	-129	4	2	15	104	-117	5	2	16	64	70
5	2	15	64	-74	5	2	14	80	-91	5	2	13	72	83
5	2	12	39	-46	- 5	- 2	10	180	-196	- 5	- 2	11	50	54
- 5	-2	12	71	85	- 5	- 2	13	40	- 45	- 6	- 2	13	59	-69
- 6	- 2	11	63	-75	-6	- 2	10	109	-120	- 6	- 2	9	53	61
6	2	12	239	256	6	2	13	59	69	6	2	14	35	-29
7	2	12	97	104	7	2	11	152	165	-7	- 2	8	73	80
-7	- 2	9	34	44	-7	- 2	11	38	35	- 8	- 2	12	78	84
- 8	- 2	10	54	-58	- 8	-2	9	68	-78	8	2	11	50	-58
8	2	12	40	-41	8	2	13	58	- 57	9	2	12	38	37
9	2	11	86	-94	9	2	10	85	- 86	2	- 6	9	148	-167
2	-7	9	53	-64	2	- 8	9	100	107	-9	- 2	10	75	-79
-9	-2	11	52	-53	2	-9	10	82	90	2	-5	10	105	116
2	9	10	58	64	2	10	10	71	- 75	10	2	11	158	169
10	2	12	88	95	11	2	13	92	- 99	2	10	11	41	-48
2	9	11	100	-62	2	8	11	215	232	2		11	222	229
2	-3	11	102	-106	2	-/	11	33	- 34	2	-7	12	84	-89
2	-6	12	1/	-86	2	-3	12	34	-44	2	-2	12	30	-26
2	3	12	1/0	184	2	4	12	70	76	2	5	12	79	-84
2	/	12	T03	112	2	9	12	127	-141	2	11	13	43	49
2	8	13	63	- / 2	2	6	13	45	- 56	2	5	13	135	-150
2	4	12	49	-52	2	3	13	77	87	2	2	13	63	66
2	-2	13	42	44	2	-3	13	72	-77	2	-4	13	54	57
2	- 2	1.2	T2A	149	2	- 6	13	38	38	2	-5	14	96	100
2	-4 r	14	40	- 34	2	- 3	14	5/	-63	2	7	15	90	95
2	b	12	26	26	2	5	12	37	31	2	4	15	72	84

Н	K	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	 H	К	L	10Fo	10Fc
2	3	15	52	53	2	3	16	51	58	 2	4	16	44	-43
2	5	16	54	-63	3	5	16	68	-71	3	4	16	59	-63
3	- 3	15	104	114	3	8	15	47	-55	3	9	15	47	-46
3	9	14	57	59	3	8	14	64	61	3	5	14	58	59
3	3	14	34	-41	3	- 3	14	33	- 39	3	-4	14	154	-163
3	- 5	14	70	- 80	3	- 6	13	102	108	3	- 5	13	68	76
3	-4	13	61	-63	3	3	13	39	- 36	3	4	13	138	-155
3	6	13	76	86	3	7	13	48	- 59	3	9	13	92	100
3	10	13	90	97	3	12	12	52	- 55	3	10	12	98	105
3	8	12	173	-192	3	5	12	115	-127	3	4	12	142	-156
3	-9	11	56	- 66	3	- 8	11	82	-91	3	- 6	11	42	- 51
3	- 5	11	56	- 57	3	-4	11	72	-74	3	7	11	117	124
3	8	11	50	- 50	3	9	11	160	-178	3	11	11	45	- 39
11	3	12	118	-131	11	3	13	44	- 54	11	3	14	69	73
10	3	11	75	77	3	- 5	10	65	69	3	- 6	10	81	91
3	-8	10	64	- 70	-10	- 3	10	72	72	-9	- 3	11	68	- 72
-9	- 3	9	69	70	9	3	10	95	101	9	3	11	79	89
9	3	12	105	109	9	3	13	50	51	9	3	14	46	43
8	3	13	57	- 58	8	3	12	109	-122	8	3	11	48	-46
3	-7	8	36	- 38	- 8	-3	11	60	-68	-7	- 3	10	61	70
-7	-3	9	58	55	-7	- 3	8	128	-141	7	3	11	144	160
7	3	12	84	-91	7	3	13	140	-159	7	3	14	38	-46
6	3	15	68	/9	6	3	14	60	-66	6	3	13	34	- 39
6	3	12	1/1	189	-6	-3	- 9	260	2/9	-6	- 3	10	68	/9
-6	-3	11	/4	- /5	-6	-3	13	50	53	-5	- 3	13	54	-60
- 5	- 3	12	45	51	- 5	- 3	11	149	-164	- 5	- 3	10	90	- 102
5	3	12	101	1/9	2	3	15	48	22	2	נ י	10	6/	80 70
4	3	10	26	/1	4	3	10	42	-40	4	ა ა	14	0C 72	- / 2
4	2	12	/0	-01	-4	-)	10	100	-100	-4	-)	12) (. 7	54
-4 2	- 3	10	4/	50	-4	- 3	11	33	29	-)	-)	15	47	11/
- 3	- 3	14	22	20	د - د	- 3	10	0Z 20	21	י ג	-) 2	10	9/	170
ר כ	- 5	12	50	- 39	د د	د- د	15	20 51	20	- 5	2	12	140	-110
- 5	2	12	53	- 56	- 5	2	11	75	- 58	-4	ر د	11	120	151
-4	2	12	60 60	- 50	-4	2	12	42	-47	4	- 2	14	123	137
4	-)	15	42	24	4	-)	15	36	- 40	4 5		14	72	1.37
4	- 2	12	50	55	5	-)	10	104	-42	5		11	50	50
5	-)	10	80	80	5	ر - ک	11	71	70	-5		14	50	78
-5	2	11	42	-52	- 6	2	- C	34	- 38	- 5	- 3	10	64	67
-0	- 3	11	78	- 32	-0	_ 7	12	بند 73	- 30	6	- 3	13	36	-42
7	- J - 's	14	55	47	7	- 3	12	60	64	7	- 3	11	72	79
, 7	-3	Q	71	74	-7	2	2	89	-93	-7	3	- 0	42	49
-7	ר ז	11	46	-46	-7	3	12	82	- 98	- 8	3	11	76	81
- 8	3	10	140	157	- 8	3	8	59	-65	-3	-7	8	71	75
8	- 3	9	39	-43	8	-3	10	61	60	8	- 3	11	83	84
9	-3	12	102	-107	9	-3	11	85	-87	9	- 3	10	42	44
- 3	8	9	64	-64	- 3	7	9	115	129	- 3	- 6	9	129	-134

.

.

ţ

* *24

į,

-

the state of the state

- Add Street In Sets

ę

a stranger

and a state of the second second and the second second second as

. . .

THAT IS I FAN A VERTIC INTER MANY

2

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

.

И	K	L	10Fo	10Fc	Н	K	L	10Fo	10Fc	Н	К	L	10Fo	10Fc
	_ 8		97 87	_ 99	-9	3	9	126	-135		3	10	38	51
-9	-0 ٦	11	91	96	-10	3	10	77	- 87	-3	-9	10	41	-44
_ 3	6	10	65	67	-3	7	10	106	-120	-3	8	10	80	-87
.3	ġ	10	51	57	10	-3	11	120	-123	11	-3	12	69	70
- 3	9	11	79	96	- 3	7	11	119	-133	-3	5	11	108	121
- 3	4	11	47	- 50	- 3	3	11	154	-170	- 3	-3	11	71	74
- 3	- 5	11	35	28	-3	- 6	11	79	86	- 3	-7	11	68	77
- 3	- 8	11	58	58	- 3	-9	11	39	45	- 3	- 5	12	87	-94
- 3	-4	12	63	- 63	- 3	- 3	12	69	68	- 3	4	12	91	103
- 3	5	12	80	88	- 3	6	12	35	-42	- 3	8	12	77	88
- 3	9	12	66	71	- 3	10	12	38	33	- 3	7	13	56	-62
- 3	4	13	40	39	- 3	3	13	55	54	- 3	- 3	13	56	55
- 3	- 4	13	55	58	- 3	- 5	13	78	-86	- 3	~6	13	61	- 59
- 3	-4	14	48	52	- 3	- 3	14	38	35	- 3	4	14	64	-66
- 3	7	14	106	-119	- 3	8	14	38	-40	- 3	5	15	82	89
- 3	3	15	58	- 58	-4	6	14	65	66	-4	4	14	57	-57
-4	-4	13	40	- 52	- 4	4	13	71	69	-4	6	13	127	140
-4	7	13	82	91	-4	10	12	50	59	-4	8	12	51	- 59
-4	5	12	34	33	-4	-4	12	37	-41	-4	- 5	12	37	42
-4	- 6	12	104	110	-4	-6	11	53	50	-4	- 5	11	66	74
-4	- 4	11	53	- 54	-4	4	11	83	- 94	-4	7	11	87	-102
-4	8	11	66	- 73	10	-4	12	100	-104	-4	10	10	45	50
-4	8	10	55	- 66	-4	7	10	56	65	-4	6	10	107	117
-4	5	10	73	- 80	-4	4	10	70	-71	-4	-4	10	74	-76
-4	- 6	10	98	-102	-4	-7	10	84	- 86	- 9	4	10	115	120
-4	-7	9	37	40	-4	6	9	33	37	-4	7	9	157	168
-4	8	9	44	43	9	-4	10	119	123	9	-4	11	69	71
9	-4	12	64	- 65	8	-4	12	69	75	8	-4	11	134	140
8	-4	9	75	-81	-4	8	8	46	38	-4	-6	8	93	102
-4	-7	8	55	59	- 8	4	8	38	- 39	-8	4	9	114	116
- 8	4	10	60	70	- 8	4	11	111	-132	- 8	4	12	76	-87
- 7	4	11	114	-135	-7	4	9	32	36	- 7	4	8	67	-75
/	-4	9	53	- 62	7	-4	10	164	-173	. 7	-4	11	38	-37
1	-4	12	45	38	1	-4	13	36	-43	6	-4	14	80	-92
6	-4	.9	34	- 32	~6	4	9	/0	82	-6	4	12	74	89
- 6	4	13	52	65	-5	4	10	38	48	5	-4	10	34	36
2	-4	11	/4	86	5	-4	12	80	90	5	-4	14	46	46
4	-4	12	57	65	4	-4	11	56	68	4	-4	10	122	-137
-4	4	10	60	-/1	-4	4	11	80	-94	-4	4	13	58	69
-4	4	14	49	- 5/	-4	-4	13	47	- 52	-4	-4	12	39	-41
-4	-4	11	52	- 54	-4	-4	10	68	- /6	4	4	12	69	-78
4	4	14	5/	47	5	4	13	38	49	5	4	12	94	110
- >	-4	10	141	153	-5	-4	10	69	81	-6	-4	13	64	65
- 6	-4	10	12/	1/6	-6	-4	8	169	-186	6	4	13	125	-140
6	4	15	54	61	6	4	16	60	-72	7	4	14	48	61
1	4	13	69	-81	7	4	12	197	-220	-7	-4	8	157	-175
- /	-4	9	112	-126	-7	-4	11	76	84	-7	-4	12	84	-86
.

.

.

۲

H	K	L	10Fo	10Fc	Н	ĸ	L	10Fo	10Fc	Н	К	L	10Fo	10Fc
- 8	-4	9	68	-68	-8	-4	8	42	41	4		8	78	87
8	4	n	40	- 38	8	4	13	89	100	8	4	14	100	116
9	4	15	41	- 52	9	4	14	47	- 50	- 9	4	13	57	54
9	4	12	68	76	9	4	10	92	99	4	- 6	- 9	109	122
4	- 8	-9	39	41	-9	-4	9	40	47	-9	-4	11	40	39
4	-9	10	39	-49	h	- 8	10	100	-117	4	- 5	10	103	-118
4	-4	10	127	-137	4	10	10	103	-111	10	4	12	49	- 59
11	4	14	61	68	4	10	11	68	73	4	8	11	65	-72
4	7	11	75	- 82	4	-4	11	61	68	4	- 5	11	82	-85
4	-7	11	86	99	4	-9	11	64	-76	4	- 8	12	105	119
4	-7	12	61	72	4	-4	12	58	65	4	4	12	64	-78
4	6	12	42	49	4	7	12	50	- 56	4	8	12	103	-109
4	9	12	106	116	4	10	12	74	82	4	11	12	49	- 39
12	4	13	91	101	4	11	13	84	- 98	4	9	13	143	154
4	8	13	63	72	4	7	13	80	- 84	4	6	13	114	123
4	5	13	126	142	4	- 6	13	51	- 56	4	- 5	14	62	-64
4	4	14	37	47	4	5	14	111	123	4	8	14	69	70
4	9	14	38	- 27	4	10	14	112	-122	4	11	14	69	-80
4	6	15	91	-106	4	5	15	77	-82	5	6	16	62	69
5	5	15	45	-41	5	7	15	98	110	5	8	15	53	50
5	11	14	69	77	5	10	14	71	-77	5	9	14	79	-83
5	7	14	48	- 56	5	6	14	124	-135	5	- 5	14	42	50
5	- 5	13	60	64	5	5	13	38	39	5	7	13	93	-97
5	8	13	51	50	5	10	13	110	-121	5	11	13	54	-69
5	9	12	60	69	5	7	12	53	64	5	6	12	76	85
5	- 6	12	72	-79	5	-7	12	58	- 60	5	- 8	11	72	82
5	-7	11	98	108	5	- 5	11	35	- 22	5	6	11	141	-156
5	7	11	111	126	5	8	11	38	48	5	9	11	39	- 37
5	11	11	60	66	11	5	12	37	38	5	10	10	101	-112
5	9	10	52	- 56	5	8	10	158	165	5	- 5	10	72	-76
5	-6	10	31	31	5	- 8	10	67	- 72	5	- 7	9	109	-126
5	-6	9	75	-85	5	- 5	9	53	- 60	9	5	10	130	-140
9	5	11	103	-113	9	5	14	128	-140	8	5	15	102	-115
8	5	13	116	132	8	5	12	39	44	8	5	10	156	169
5	-6	8	47	-48	5	-7	8	105	119	- 8	- 5	8	155	166
- 8	- 5	10	46	- 52	- 8	-5	11	80	82	- 7	- 5	12	55	- 58
-7	- 5	9	136	-156	-7	-5	8	44	57	- /	- 5	/	221	244
7	5	11	65	74	7	5	12	55	-61	7	5	13	81	96
7	5	14	120	139	6	5	13	64	- 74	6	5	12	74	-//
6	5	11	36	-40	-6	-5	8	139	-155	-6	-5	9	91	- 107
-6	- 5	12	43	-44	- 5	-5	13	34	38	- 5	- 5	12	72	89
- 5	- 5	10	57	62	-5	- 5	9	45	48	5	5	13	38	39
5	5	15	36	-41	5	-5	14	35	50	5	-5	13	53	64
5	- 5	10	72	-76	5	-5	9	52	-60	- 5	5	9	36	- 34
-5	5	10	36	-31	- 5	2	13	103	-115	-6	2	13	55	- 70
-6	2	12	86	95	-6	2	11	70	82	-6	2	8	128	164
6	- 5	9	99	103	6	- 2	10	12	82	6	- 2	11	55	- 27

Н	K	L	10Fo	10Fc	н	ĸ	L	10Fo	10Fc	Н	К	L	10F0	10Fc
	 c	12		75	 7		11	106	_ 117		_ 5	10	100	-100
0 7	- 5	0 T2	168	182	7	- 5	8	87	-117	-7	-5	7	76	- 10 9
7	- 5	8	100 35	38	-7	- 5	9	37	29	-7	5	10	104	-115
- 7	5	11	35	31	-7	5	12	142	157	- 8	5	ĩĩ	89	-100
- /	5	10	74	-76	-5	7	8	140	-153	- 5	8	8	64	72
8	- 5	ġ	38	- 39	8	-5	10	143	-147	8	-5	12	43	40
q	-5	12	79	83	9	- 5	11	111	113	9	-5	10	56	50
- 5	9	- 9	84	-90	- 5	7	9	34	-41	- 5	6	9	153	-168
- 5	5	9	29	- 34	- 5	- 5	9	47	48	- 5	-7	9	112	119
- 5	- 8	9	41	50	- 5	- 8	10	64	71	- 5	-6	10	47	- 53
- 5	- 5	10	54	62	- 5	6	10	70	76	- 5	7	10	75	83
10	- 5	11	42	50	- 5	10	11	47	- 53	- 5	9	11	35	-44
- 5	5	11	36	36	- 5	- 6	11	91.	- 93	- 5	-7	11	104	-109
- 5	- 7	12	41	- 36	- 5	- 5	12	85	89	- 5	6	12	91	-104
- 5	9	12	70	-81	- 5	7	13	100	113	- 5	5	13	110	-115
- 6	6	13	129	-144	- 6	8	12	51	54	- 6	7	12	57	-61
- 6	6	12	91	-101	-6	- 6	12	52	- 54	- 6	- 8	11	58	61
- 6	- 6	11	73	-73	-6	6	11	52	62	- 6	8	11	73	79
-6	9	11	67	75	- 6	9	10	34	41	- 6	-6	10	34	26
- 6	- 7	10	78	85	-6	- 9	10	62	- 67	- 9	6	9	86	- 88
- 6	- 8	9	60	-66	-6	-7	9	61	66	-6	6	9	57	-65
- 6	7	9	78	- 88	-6	9	9	65	- 79	9	-6	10	50	- 54
8	- 6	11	73	- 78	8	- 6	10	71	-74	8	-6	9	59	63
-6	8	8	63	74	-6	7	8	50	- 54	-6	6	8	63	70
-6	-6	8	58	60	-6	-1	8	39	-43	-8	6	8	85	-91
-/	6	12	53	50	-/	6	ŢŢ	82	92	-/	6	8	/8	83
•0	- 0	/	//	82	-0-7		10	30	- 38	1	-6	8	60	- 70
	- 6	10	207	225		-0	10	70	83	6	-0	13	00	/2
0	-0	10	147	109	0	-0	9	20	-20	6	-0	11	211	-237
-0	0 2	10	ده ۲۹	101	-0	0 2	12	120	-05	-6	D C	11	44	62 E(
-0	6	11	07 40	-101	-0	0 2	1.2	52	- 144 20	-6	-0	12	4/	- 54
-0	-0 -6	11	87	101	-0	-0	12	01	105	-0	-0	15	72	0Z 47
7	6	13	37	62	ט ר	6	11	71	76	-7	- 6	7	76	۵/ ۵/
, .7	-6	8	126	142	-7	- 6	11	58	50	, -/	-0	2 2	131	04 177
- /	- 7	g	146	-162	- /	-6	8	216	-237	-0 8	6	11	104	_111
8	- /	14	92	-102	8	-0	15	210 //7	- 54	9	6	15	65	-111
Q	6	14	51	- 64	Q Q	6	12	47 65	- 54	9	6	11	51	.55
9	6	10	119	-130	6	-7	9	180	-205	6	- 8		52	-59
.9	- 6	10	75	- 82	6	- 9	10	58	67	6	-0	10	52	- J J / R
6	-6	10	152	169	6	8	10	109	118	6	9	10	71	- 74
10	6	11	103	117	10	6	12	44	41	10	6	13	49	-55
6	11	11	89	102	6	10	11	79	88		9	11	100	-107
6	8	11	53	-61	6	7	11	207	214	6	6	11	92	101
6	- 7	12	63	-72	6	6	12	95	105	6	7	12	45	52
6	8	12	116	-130	6	10	12	44	35	6	12	12	59	-62
12	6	13	44	- 51	6	8	13	44	- 56	6	7	13	102	-111

.

Н	K	L	10Fo	10Fc	н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc
6	-6	13	68	72	6	7	14	50	56	6	8	14	41	35
6	7	15	61	68	6	6	15	66	67	7	7	14	50	47
7	7	13	59	-66	7	8	13	48	53	7	9	13	82	93
7	11	12	61	-68	7	8	12	102	-111	7	7	12	131	-147
7	8	11	86	-96	7	10	11	59	72	11	7	12	107	-119
10	7	14	50	52	10	7	12	38	- 36	10	7	11	47	44
7	8	10	67	72	7	7	10	50	50	7	-7	10	56	66
7	- 8	10	47	-49	- 9	-7	9	53	56	7	9	9	54	52
9	7	12	72	69	9	7	14	60	57	8	7	13	46	52
8	7	11	55	- 64	8	7	9	69	-77	7	-7	8	149	-166
- 8	-7	8	77	-85	- 8	- 7	10	40	-46	- 7	-7	8	42	-44
-7	7	7	45	-47	7	7	10	48	50	7	7	11	38	38
7	7	12	128	-147	7	7	13	61	-66	7	-7	10	61	66
7	-7	8	147	-166	-7	7	7	45	-47	-7	7	7	39	-47
-7	7	9	51	57	-7	7	10	43	-42	- 8	7	10	60	63
- 8	7	9	86	96	- 8	7	8	57	- 59	-7	- 7	8	39	-44
-7	7	8	46	51	-7	8	8	63	69	8	- 7	9	78	83
8	-7	11	33	28	9	-7	10	41	37	-7	9	9	47	- 55
-7	8	9	35	38	- 7	7	9	51	57	-7	- 8	9	69	-81
-7	- 8	10	49	- 50	- 7	-7	10	43	42	-7	7	10	41	-42
-7	8	10	114	-125	- 8	8	10	64	- 73	-9	8	9	66	67
- 8	8	9	71	82	8	- 8	10	32	- 50	- 8	8	8	47	51
- 8	8	8	53	51	- 8	8	9	74	82	- 8	8	10	71	- 73
- 8	8	8	39	51	8	8	9	125	137	8	8	10	90	93
8	8	12	78	83	8	8	13	104	123	9	8	12	69	80
9	8	10	39	-37	8	9	9	152	166	8	8	9	129	137
- 9	- 8	9	38	40	8	- 8	10	49	- 50	8	8	10	85	93
8	10	10	72	- 78	11	8	13	62	63	8	11	11	54	-62
8	10	11	45	- 53	8	8	12	79	83	8	9	12	75	78
8	12	12	71	81	8	10	13	62	- 72	8	8	13	106	123
9	9	13	103	-119	9	10	13	98	-106	9	10	12	55	- 51
9	11	11	60	71	11	9	12	86	91	10	9	11	60	72
9	10	10	53	-62	9	9	10	85	- 96	9	9	10	85	-96
9	9	13	106	-119	10	10	10	109	118	10	10	11	118	131
11	10	12	52	- 50	10	10	11	122	131	10	10	12	43	- 39
10	11	12	61	- 59	11	11	11	184	-199	0	-2	19	36	- 30
0	2	19	49	- 55	0	6	18	41	-44	0	~1	10	35	36
0	-6	1/	55	- 55	0	0	1/	43	4/	0	3	1/	56	60
0	11	1/	46	-51	0	/	10	30	43	0	4	10	52	62
0	3	10	39	- 36	0	2	10	104	-115	0	1	10	5/	- 55
0	-1	16	/2	- / 5	0	-2	16	23	-21	0	-/	15	55	51
0	-6	12	53	49	0	12	15	38	50	0	14	14	39	-45
0	11	14	42	- 55	0	-6	14	36	-4/	0	-9	14	53	- 54
0	-11	13	54	63	0	12	13	58	-71	13	0	15	62	-72
12	0	16	44	-49	12	0	14	101	104	0	-9	12	50	- 59
0	- 10	12	50	60	- 12	0	12	42	-42	11	0	18	40	45
10	0	14	37	-44	-9	0	14	49	50	9	0	16	41	- 38

ţ

Ą

8 0 18 45 48 -8 0 15 42 -36 -8 0 16 71 -76 -7 0 15 41 -41 7 0 18 49 57 7 0 19 53 64 -4 0 17 53 58 -3 0 17 47 52 3 0 19 39 36 0 0 18 51 -57 -2 0 18 55 -63 1 0 16 43 48 0 16 42 48 -2 0 18 56 -63 -2 0 16 41 47 2 0 18 49 -57 -7 0 17 36 36 -17 7 0 19 50 64 50 19 14 48 50 11 10 11 40 -36 -11 0 12 36 371 10 12 13	н	К	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	18	45	48	- 8	0	15	42	- 36	-8	0	16	71	-76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-7	ŏ	15	41	-41	7	Ō	18	49	57	7	ŏ	19	53	64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	0	17	53	58	- 3	0	17	47	52	3	0	19	39	36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	18	51	- 57	- 2	0	18	55	-63	1	0	16	43	48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	18	45	45	0	0	17	43	47	0	0	17	37	47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	16	42	48	- 2	0	18	56	-63	-2	0	16	41	47
5 0 18 42 -50 6 0 17 36 -37 7 0 19 50 64 7 0 18 46 48 9 0 16 42 -38 -9 0 14 48 50 10 0 14 52 -44 -11 0 11 40 -36 -11 0 12 33 -31 12 0 14 88 104 13 0 15 58 -72 0 12 13 63 -71 0 11 14 38 -55 0 12 15 46 50 0 -6 14 44 -47 0 11 14 38 -55 0 -1 16 64 -36 36 -36 <t< td=""><td>2</td><td>0</td><td>18</td><td>49</td><td>- 57</td><td>- 3</td><td>0</td><td>17</td><td>41</td><td>52</td><td>-4</td><td>0</td><td>17</td><td>53</td><td>58</td></t<>	2	0	18	49	- 57	- 3	0	17	41	52	-4	0	17	53	58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0	18	42	- 50	6	0	17	36	- 37	7	0	19	50	64
8 0 18 46 48 9 0 16 42 $\cdot 38$ $\cdot 9$ 0 14 48 50 10 0 14 52 $\cdot 44$ -11 0 11 40 $\cdot 36$ -11 0 12 33 -63 -71 12 0 14 88 104 13 0 15 58 -72 0 12 13 63 -71 0 11 14 38 $\cdot 55$ 0 12 15 46 50 0 -6 14 44 -47 0 11 14 38 $\cdot 55$ 0 12 15 -66 54 -11 66 -75 0 1 16 60 62 0 11 17 38 -51 0 3 17 66 -75 0 1 18 36 36 -66 -75 1 18 36 -66 -776 1 66 51	7	0	18	39	57	- 7	0	17	39	45	- 8	0	16	66	-76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	0	18	46	48	9	0	16	42	- 38	-9	0	14	48	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0	14	52	-44	-11	0	11	40	- 36	-11	<u></u> 0	12	39	-31
12 0 14 88 104 13 0 15 58 -72 0 12 13 63 -71 0 -11 13 49 63 0 -9 14 51 -54 0 -6 14 44 -47 0 11 14 38 -55 0 12 15 46 50 C -6 14 44 -47 0 -7 15 45 51 0 -2 16 48 -51 0 3 16 40 -36 0 4 16 60 62 0 11 17 38 -51 0 3 16 40 -36 0 0 18 44 45 0 7 18 46 -45 1 -5 17 38 5 1 5 17 78 -86 1 5 17 78 -86 1 13 17 78 -54 1 12 15	-12	0	12	41	-42	0	-10	12	53	60	0	-9	12	51	- 59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0	14	88	104	13	0	15	58	-72	0	12	13	63	-71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	-11	13	49	63	0	- 9	14	51	- 54	0	-6	14	44	-47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1 1	14	38	- 55	0	12	15	46	50	C	-6	15	48	49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	- 7	15	45	51	0	- 2	16	48	- 51	0	-1	16	64	-75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	16	35	- 33	0	2	16	106	-115	0	3	16	40	-36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	16	60	62	0	11	17	38	-51	0	3	17	60	60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	17	41	47	0	-6	17	49	- 55	0	-1	18	36	36
1 7 18 45 7* 1 4 18 52 -45 1 -5 17 39 42 1 3 17 54 60 1 4 17 44 -40 1 5 17 78 -86 1 8 17 48 -52 1 7 16 72 76 1 6 16 51 55 14 1 15 44 -46 1 -8 15 45 45 1 -10 13 47 -54 12 1 15 46 -56 1 -11 12 44 48 -10 -1 11 36 -31 19 -1 15 71 75 9 1 15 65 -75 9 1 17 74 43 8 1 19 54 -66 -8 -1 16 36 -36 -5 -1 15 50 -68 33 31 <td>0</td> <td>0</td> <td>18</td> <td>44</td> <td>45</td> <td>0</td> <td>7</td> <td>18</td> <td>46</td> <td>-45</td> <td>0</td> <td>2</td> <td>19</td> <td>38</td> <td>- 55</td>	0	0	18	44	45	0	7	18	46	-45	0	2	19	38	- 55
1 3 17 54 60 1 4 17 44 -40 1 5 17 78 -86 1 8 17 48 -52 1 7 16 72 76 1 6 16 51 55 1 -6 16 44 -46 1 -8 15 45 45 1 12 15 54 50 14 15 44 44 1 10 13 47 -54 12 1 15 46 -56 1 -11 12 44 48 -10 -1 11 36 -31 -9 -1 15 71 75 9 1 15 65 -75 9 1 17 74 43 8 1 19 54 -66 -8 -1 16 36 -36 -5 -1 15 50 -68 3 1 18 38 56 3 1 <td>1</td> <td>7</td> <td>18</td> <td>45</td> <td>7*</td> <td>1</td> <td>4</td> <td>18</td> <td>52</td> <td>-45</td> <td>1</td> <td>- 5</td> <td>17</td> <td>39</td> <td>42</td>	1	7	18	45	7*	1	4	18	52	-45	1	- 5	17	39	42
1 8 17 48 -52 1 7 16 72 76 1 6 16 51 55 1 -6 16 44 -46 1 -8 15 45 45 1 12 15 44 50 14 1 15 44 44 1 -10 13 47 -54 12 1 15 46 -56 1 -11 12 44 48 -10 -11 36 -31 -9 -1 15 71 75 9 1 15 65 -75 9 1 17 47 43 8 1 19 54 -66 -8 -1 14 38 36 -8 -1 16 34 -29 6 1 18 38 56 3 1 19 38 43 -1 -1 7 43 -44 1 18 36 -45	1	3	17	54	60	1	4	17	44	-40	1	5	17	78	-86
1 -6 16 44 -46 1 -8 15 45 45 1 12 15 44 50 14 1 15 44 44 1 -10 14 39 -45 1 -10 13 47 -54 12 1 15 46 -56 1 -11 12 44 48 -10 -1 11 36 -31 -9 -1 15 71 75 9 1 15 65 -75 9 1 17 47 43 8 1 19 47 48 -5 -1 16 36 -36 -5 -1 15 37 50 -4 -1 16 48 -59 -3 -1 17 50 55 -3 -1 15 50 -68 3 1 18 38 38 -2 1 17 50 -55 -3 -1 16 58 72 -1	1	8	17	48	- 52	1	7	16	72	76	1	6	16	51	55
1411544441 -10 1439 -45 1 -10 1347 -54 1211546 -56 1 -11 124448 -10 -1 1136 -31 -9 -1 157175911565 -75 91174743811954 -66 -8 -1 143836 -8 -1 1634 -29 61194748 -5 -1 1636 -36 -5 -1 153750-4 -1 1648 -59 -3 -1 175055 -3 -1 1743 -44 -1 118385631193843 -1 -1 1743 -44 -1 1183838 -2 11750 -59 2 -1 165872 -3 11836 -45 4 -1 183331 5 -1 1760735 -1 165675 -6 11540 -26 -6 11439 -43 6 -1 1657 7 1173940 -8 11553 -52 -7 116 <td< td=""><td>1</td><td>-6</td><td>16</td><td>44</td><td>-46</td><td>1</td><td>- 8</td><td>15</td><td>45</td><td>45</td><td>1</td><td>12</td><td>15</td><td>44</td><td>50</td></td<>	1	-6	16	44	-46	1	- 8	15	45	45	1	12	15	44	50
1211546-561-11124448-10-11136-31-9-1157175911565-7591174743811954-66-8-1143836-8-11634-2961194748-5-11636-36-5-1153750-4-11648-59-3-1175055-3-11750-683118385631193843-1-11743-44-11183838-211750-592-1165872-311836-454-11833315-11760735-1165675-611540-26-611439-436-11637376-11880-927-11746-60-71165155-71173940-811553-52-911347-4810-11451-55111 <td>14</td> <td>1</td> <td>15</td> <td>44</td> <td>44</td> <td>1</td> <td>-10</td> <td>14</td> <td>39</td> <td>-45</td> <td>1</td> <td>-10</td> <td>13</td> <td>47</td> <td>- 54</td>	14	1	15	44	44	1	-10	14	39	-45	1	-10	13	47	- 54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1	15	46	- 56	1	-11	12	44	48	-10	-1	11	36	-31
811954-66-8-1143836-8-11634-2961194748-5-11636-36-5-1153750-4-11648-59-3-1175055-3-11550-683118385631193843-1-11743-44-11183838-211750-592-1165872-311836-454-11833315-11760735-1165675-611540-26-611439-436-1165155-71173940-811553-52-911347-4810-11451-5511-11553-52-911347-48-10-11451-5511-11553-51-111134248-1211251-5212-11357-5912-114677812-115687013	-9	-1	15	71	75	9	1	15	65	- 75	9	1	17	47	43
61194748-5-11636-36-5-1153750-4-11648-59-3-1175055-3-11550-683118385631193843-1-11743-44-11183838-211750-592-1165872-311836-454-11833315-11760735-1165675-611540-26-611439-436-1165155-71173940-811553-52-911347-4810-11451-5511-115535611-11468-7211-113107-115-11111155-51-111134248-1211251-5212-11357-5912-114677812-115687013-1145467-111135664-1-7135549-1 <td>8</td> <td>1</td> <td>19</td> <td>54</td> <td>-66</td> <td>-8</td> <td>-1</td> <td>14</td> <td>38</td> <td>36</td> <td>-8</td> <td>-1</td> <td>16</td> <td>34</td> <td>- 29</td>	8	1	19	54	-66	-8	-1	14	38	36	-8	-1	16	34	- 29
-4 -1 16 48 -59 -3 -1 17 50 55 -3 -1 15 50 -68 311838 56 31 19 38 43 -1 -1 17 43 -44 -1 118 38 38 -2 1 17 50 -59 2 -1 16 58 72 -3 1 18 36 -45 4 -1 18 33 31 5 -1 16 58 72 -3 1 16 56 75 -6 1 15 40 -26 -6 1 14 39 -43 6 -1 16 57 -6 1 15 40 -26 -6 1 14 39 -43 6 -1 16 57 5 -7 1 17 39 40 -8 1 15 53 -52 -9 1 13 47 -48 10 -1 14 51 -55 11 -1 15 53 -52 -9 1 13 47 -48 10 -1 14 51 -55 11 -11 15 53 -56 11 -1 13 47 -48 -12 1 12 51 -52 12 -1 13 57 -59 12 -1	6	1	19	4/	48	- 5	-1	16	36	- 36	-5	-1	15	3/	50
3 1 18 38 56 3 1 19 38 43 -1 -1 17 43 -44 -1 1 18 38 38 -2 1 17 50 -59 2 -1 16 58 72 -3 1 18 36 -45 4 -1 18 33 31 5 -1 16 58 72 -3 1 16 56 75 -6 1 15 40 -26 -6 1 14 39 -43 6 -1 16 37 37 6 -1 18 80 -92 7 -1 17 46 -60 -7 1 16 51 55 -7 1 17 39 40 -8 1 15 53 -52 -9 1 13 47 -48 -12 12 51	-4	-1	16	48	- 59	- 5	-1	1/	50	55	- 3	-1	15	50	-68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	10	38	26	3	1	19	38	43	-1	-1	1/	43	-44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	1	18	38	38	-2	L 1	1/	50	- 59	2	-1	16	58	72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	L N	18	30	-45	4	-1	18	33	31	5	-1	1/	60	/3
6 -1 16 37 37 6 -1 18 80 -92 7 -1 17 46 -60 -7 1 16 51 55 -7 1 17 39 40 -8 1 15 53 -52 -9 1 13 47 -48 10 -1 14 51 -55 11 -1 15 53 56 11 -1 46 -72 11 -1 13 107 -115 -11 1 11 55 -51 -11 1 3 42 48 -12 1 251 -52 12 -1 13 57 -59 12 -1 46 -78 12 -1 55 49 -1 -8 14 41 -37 -1 13 56 64 -1 -7 13 56 41	2	- 1	10	20	/5	-6	1	10	40	-26	-6	1	14	39	-43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 7	-1	10	5/	3/	0	- L 1	17	80	-92	/	-1	1/	46	-60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-/	1	10	7	22	-/	1	1/	59	40	-8	1	15	53	- 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-9	1	17	4/	-48	10	-1	14	107	- 22	11	-1	11	23	56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	-1 1	14	00	- / 2	11	-1	10	107	-115	~11	L	11	55	-51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11	1	13	42	48	-12	1	12	21	- 52	12	-1	13	5/	- 59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	-1 11	12	0/ E/	/ Ö	12	-1	13	00 55	/0	13	-1	14	54	6/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-⊥ 1	11	13 17	0C / 2	04 7.0	-1	- /	15	22 27	49	-1	- ð	14	41	-3/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 1	- /	14 15	43	-48	-1	-4	12	/ ۲ مد	-/5	1-	- 6	10	4L	45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- L 1	-0 1	12	20 77	-43	-1	-/	10	20	49	-1	-0	10	42	44
-1 2 18 41 47 -1 7 19 49 -49 -1 3 19 38 $-45-1 1 19 43 46 -2 6 19 30 28 -2 6 18 50 50$	-1	10	10 17	44 £3	33 44	- L 1	2	10	עכ רנ	-00	-1	د ٦	10	44	-21
	-1	10	19	65	00 /.7	-1	-1 7	10	۲C. ۵۸	-44	1- 1	1 2	10 10	4ð 20	38 / E
	-1	1	19	43	41	-1	, د	10	47 20	-47 90	-1	د ۲	10	20	-47

i.

н	ĸ	L	10Fo	10Fc	Н	ĸ	L	10Fo	10Fc	н	к	L	10Fo	10Fc
-2		17	40	35	-2	3	17	34	36		5	17	54	-48
-2	8	17	52	- 58	-2	10	17	48	51	-2	9	16	74	- 81
-2	4	16	47	51	-2	-7	15	62	-65	-2	- 3	15	51	- 54
-2	13	15	42	- 57	-2	9	14	52	59	-2	- 5	14	90	94
-2	- 8	14	46	47	-2	- 9	14	46	58	- 2	-11	13	32	- 25
- 2	-10	13	37	- 35	- 2	- 8	13	40	45	12	- 2	13	95	- 94
-11	2	12	44	44	11	- 2	14	102	-105	11	- 2	17	49	-44
-9	2	13	66	-68	9	- 2	17	45	53	6	- 2	17	59	65
- 6	2	14	74	-85	- 6	2	17	46	-43	- 5	2	15	42	56
5	- 2	17	58	75	5	- 2	18	43	45	4	- 2	16	82	- 97
- 2	- 2	15	34	- 39	-4	- 2	15	33	38	4	2	17	49	5 8
4	2	19	48	- 59	- 5	- 2	15	46	54	- 6	- 2	14	61	-67
9	2	16	43	46	- 9	- 2	13	40	- 35	- 9	- 2	14	55	~ 50
-10	- 2	15	47	-49	-10	- 2	14	56	- 60	10	2	15	41	50
11	2	17	44	-40	2	-10	11	50	51	-11	- 2	13	52	54
12	2	13	59	-65	2	-10	13	36	-45	2	- 9	14	52	62
2	- 6	14	97	104	2	12	14	57	66	2	13	15	47	- 53
2	-4	15	76	-81	2	- 5	15	43	-49	2	- 8	15	37	-41
2	8	16	78	- 84	2	9	16	48	-45	2	12	16	57	- 59
2	10	17	42	57	2	6	17	42	38	2	4	17	114	-126
2	3	18	40	-43	2	5	18	51	64	2	6	18	54	59
3	10	18	58	-63	3	5	12	/4	/9	3	4	18	40	48
3	- 3	18	54	20	3	2	17	98	105	3	10	1/	62	69 60
<u>ງ</u>	10	1/	5/	26	3	13	1/	41 40	41	3	13	10	23	53
3	10	10	20	43	د د	/	10	42	- 20	3	-4	10	4/	72
2	-/	10	73	40	2	- 0 0	1/	20	- 30	נ מ	-)	12	34	-/3
2	14	12	43	-45	נ ר	-0 12	12	04 7.0	-00	נ 10	- 7	1/		45
2	-0	12	55 //1	- 40	.12	72	12	40 54	- 60			13	30	.51
11	- 2	12	30	-40	-12	-)	1/	54 70	-00-73	-12	ر - د	17	57	- 51
10	- 7	15	57 61	~0 - 10	-10	_ 3	10	25	75 27	-10	_ 3	13	70	-07
.7	_ 3	13	73	78	610	- J - J	17	56	-63	-10		14	57	-69
- /	- 3	19	41	35	-4	ر ۲	16	43	-03	- / - / - / - / - / - / - / - / - / - /	- J 1	15	52	- 54
4	-3	15	75	85	4	- 3	16	45	-53	4	- 3	17	48	- 58
	-3	16	47	-64		- 3	15	41	-42		- 3	17	38	- 50
7	- 3	15	42	47	- 8	3	14	57	55	Ř	- 3	16	38	-40
9	- 3	17	52	56	10	-3	13	81	84	11	- 3	13	61	64
11	-3	12	72	70	-3	-11	12	42	42	-3	-10	13	41	-48
-3	- 8	14	50	55	-3		14	46	-40	- 3	9	14	34	35
-3	13	14	49	68	- 3	12	15	42	48	- 3	9	15	54	53
-3	8	15	52	66	- 3	5	15	85	89	- 3	- 5	16	58	-61
-3	4	16	62	71	- 3	7	16	47	41	- 3	8	16	53	66
- 3	10	16	49	-61	- 3	9	17	55	- 59	- 3	-4	18	37	40
- 3	5	18	38	-29	- 4	7	18	39	-40	- 4	- 5	17	48	- 55
-4	8	16	63	65	-4	- 5	16	40	- 39	- 4	- 6	15	65	65
-4	4	15	67	-67	-4	9	15	49	58	- 4	11	14	38	- 55
-4	8	14	93	-104	-4	7	14	43	-49	- 4	-11	13	42	48

* * * * * * *

,

ł

.

H	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	H	К	L	10Fo	10Fc
-4	-9	13	44	-48	- 4	12	13	52	-61	-4	10	12	50	59
-11	ú	12	51	-58	10	-4	13	38	-36	10	-4	12	99	-104
-9	4	13	52	60	9	-4	13	52	- 58	9	-4	16	51	- 50
8	-4	15	43	54	8	-4	14	54	49	- 8	4	12	76	-87
- 8	4	15	43	- 53	-7	4	13	64	73	4	-4	16	43	51
4	-4	15	56	65	-4	4	15	59	- 67	-4	-4	14	35	- 33
5	4	17	68	- 84	-6	-4	14	49	51	- 6	-4	13	60	65
6	4	16	65	-72	7	4	18	59	70	7	4	17	40	45
-7	-4	14	64	66	- 8	-4	13	67	-72	- 8	-4	12	65	-67
9	4	15	50	- 52	-10	- 4	14	38	34	11	4	14	66	68
-11	-4	12	55	- 54	-11	-4	13	56	- 57	-12	-4	13	38	-44
4	-11	12	49	60	4	- 8	12	103	119	12	4	15	58	-62
13	4	14	46	- 55	4	-7	13	48	- 54	4	-12	13	47	66
4	11	14	72	- 80	4	11	15	53	55	4	-4	15	56	65
4	- 7	15	48	53	4	-7	16	33	25	4	-4	16	51	51
4	8	16	64	63	4	9	16	40	37	4	14	17	44	- 54
4	4	18	37	39	4	6	18	73	- 75	4	10	18	46	-49
4	6	19	39	-41	4	7	20	50	54	5	7	19	48	54
5	11	18	53	58	5	- 5	18	34	23	5	12	16	56	-69
5	7	16	38	44	5	6	16	61	69	5	-6	16	37	-45
5	11	15	67	79	5	12	14	70	81	5	11	14	70	77
5	- 5	14	47	50	5	-6	14	40	44	5	-11	14	47	- 58
5	- 1,1	13	50	- 57	5	-10	13	51	- 59	5	-7	13	84	- 91
12	5	15	50	-47	12	5	14	54	-48	-12	-5	12	65	68
10	5	16	55	63	10	5	15	55	63	- 9	- 5	12	71	73
8	5	19	48	-48	- 8	- 5	13	49	- 56	-7	-5	13	61	-68
-7	- 5	12	55	- 58	7	5	17	47	51	6	5	17	61	64
- 5	- 5	15	47	47	5	- 5	14	41	50	- 6	5	14	43	-46
6	- 5	17	37	41	7	- 5	14	77	- 87	- 8	5	16	41	46
- 8	5	14	54	-49	8	- 5	13	35	- 29	9	- 5	12	77	83
- 9	5	11	44	- 51	-10	5	12	49	53	-10	5	11	49	53
- 5	-9	11	40	43	-11	5	11	39	-41	-5	· 11	12	41	- 52
- 5	9	12	75	-81	12	- 5	15	40	38	- 5	11	13	42	48
- 5	- 5	13	42	38	- 5	6	14	83	84	- 5	7	14	72	89
- 5	12	14	35	-43	- 5	8	15	55	-61	- 5	7	15	41	-42
- 5	- 5	15	45	47	~ 5	-7	15	42	-46	- 5	-6	16	65	66
- 5	6	17	38	43	-6	-7	15	59	- 59	-6	-6	15	52	-63
- 6	- 8	14	50	59	-6	6	13	129	-144	-6	11	13	34	37
12	- 6	14	39	-41	-6	10	12	46	- 52	-6	8	12	46	54
- 6	- 6	12	50	- 54	-11	6	12	58	52	- 6	- 8	11	55	61
- 6	10	11	43	-51	- 6	11	11	53	- 56	10	-6	14	41	40
10	- 6	13	45	49	-10	6	11	65	62	-9	6	12	50	- 54
8	- 6	13	43	-45	- 8	6	12	43	43	7	-6	13	44	48
6	-6	16	32	- 25	6	- 6	14	35	44	6	-6	13	60	72
- 6	6	13	119	-144	-6	-6	15	50	-63	- 6	-6	14	39	-47
- 6	- 6	12	50	- 54	- 8	-6	12	66	72	9	6	19	46	64
9	6	16	61	65	9	6	15	67	79	-9	-6	11	49	- 55

22

,

,

,

1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

н	к	L	10Fo	10Fc	н	к	L	10Fo	10Fc	н	к	L	10F0	10Fc
-9	-6	14	37	- 36	10	6	15	86	101	10	6	17	67	-71
11	6	16	45	- 60	6	-10	11	34	35	6	- 8	12	46	-49
12	6	13	49	- 51	6	- 6	13	63	72	6	-9	13	37	39
6	-11	13	39	-48	6	-10	14	57	62	6	- 9	14	33	35
6	-6	14	44	44	6	11	14	78	87	6	12	15	69	- 80
6	7	16	54	- 56	6	8	16	56	-62	6	11	16	52	-64
7	13	16	57	75	7	7	16	46	-46	7	- 9	15	49	- 56
7	8	15	46	-46	7	11	15	48	- 37	7	- 7	13	59	61
7	-9	12	31	- 30	7	-9	11	50	- 59	7	- 8	11	33	-44
11	7	15	46	- 38	10	7	16	57	-59	7	- 9	10	45	52
-10	- 7	10	. 52	56	-9	-7	14	33	-18	- 9	- 7	11	37	-42
9	7	15	51	50	-7	-7	14	73	78	-7	-7	13	42	41
7	-7	13	50	61	- 8	7	13	41	44	9	- 7	13	55	-65
-9	7	10	89	97	-9	7	12	43	-48	-7	- 9	10	55	- 58
- 7	10	10	48	54	10	-7	12	46	-49	11	- 7	13	58	58
-7	10	11	33	42	- 7	9	11	81	89	-7	-7	11	38	40
- 7	11	12	31	-40	-7	-7	13	48	41	-7	- 8	13	61	- 59
-7	- 9	13	51	- 62	- 7	- 9	14	35	- 52	-7	-7	14	75	78
-7	9	15	33	35	- 8	8	15	46	-45	- 8	- 8	14	50	- 50
- 8	-10	13	45	57	- 8	- 8	13	62	- 58	- 8	11	13	37	34
- 8	- 9	12	72	75	- 8	8	11	59	-70	10	- 8	12	39	- 37
- 8	9	10	52	-60	-9	8	11	40	-37	- 9	8	9	68	67
9	- 8	11	52	55	8	- 8	12	56	65	- 8	8	11	60	-70
- 8	- 8	14	47	- 50	- 8	- 8	13	53	- 58	- 9	- 8	9	37	40
- 9	- 8	10	43	48	8	-9	10	49	-57	10	8	15	45	-43
11	8	17	70	76	8	- 9	11	40	- 50	8	- 8	12	55	65
12	8	13	79	75	13	8	14	47	-53	8	12	16	52	46
8	9	18	51	-44	9	10	15	59	59	9	10	14	42	52
11	9	13	43	58	-9	-9	13	42	45	-10	9	11	43	43
-9	~10	11	55	-62	-11	. 9	12	35	35	-11	10	11	43	55
10	10	14	51	66	11	10	12	49	- 50	10	11	12	46	- 59
10	11	13	60	62	10	10	14	58	66	10	11	16	47	- 54
11	12	16	49	58	11	11	13	50	28	11	11	12	56	-62
12	12	12	/1	80	0	0	11	25	- 22*	1	0	11	25	21*
0	- 5	1	26	- 32	1	-1	9	23	28	2	-1	11	25	- 34*
5	-1	10	28	28*	- 5		5	25	36*	-1	6	9	22	- 8*
-1	2	10	25	33*	- 1	. 4	11	23	8*	-2	-4	1	2/	39*
3	2		23	29*	-4	-2	10	24	26*	2	3	6	19	-23*
-6	- 3		21	- 22*	- :	<u>د</u> - ۱	4	23	- 19	- 5	- 3	/	25	35*
-4	-4	9	20	-28*	- 6		6	22	- 2 / *	0	8 10	10	27	-23*
6	11	12	29	- J J *		/ . r	11	28	- 33	0	10	11	31	23
0	11	11	20	- ين≯ ١٥ــ			11	29	- 23×	U 7	9	11	30	۲۲ - ۲۵
U c	11	12	20	10*	- 6		9 1 <i>2</i>	29	2/× 2/×	/	0	10	ר זר	- 30 - 1-1
- 5	0	12 12	2C 20	-40	3		10	29	- 34 * 27.2	-1	0	12	20	51× 71
2	0	10	27	43	2 C		10	20	- J4* 214	9	U E	11 1		41 95-2
7	0 0	13	29	- 20~			1/	20	- 20 4 - 714	0	נ- ר	14	20	- 2.)*
U	7	1.7	71	JU^		, -)	14		- 274	U U		т.)		

Н	К	L	10Fo	10Fc	Н	К	L	10Fo	10Fc	Н	К	L	10Fo	10Fc
0	5	15	28	16*	0	2	15	31	-26	-7	-1	9	24	18*
5	1	13	27	22*	2	1	15	27	- 8*	-4	1	12	31	-29*
6	-1	11	25	- 34*	- 8	1	11	32	-40*	- 8	1	8	31	26*
8	-1	12	32	-12*	- 1	8	11	28	26*	-1	-4	12	32	31*
-1	- 6	13	29	33*	-1	8	14	27	- 29*	- 2	6	13	26	- 32*
9	- 2	10	32	44*	8	- 2	13	33	- 33*	-4	2	13	31	45*
2	- 2	12	26	-26	-4	- 2	13	30	- 35*	- 8	-2	8	23	13*
8	2	15	30	- 37*	9	2	14	31	-16*	2	- 8	10	29	39*
2	-6	10	26	13*	2	11	11	33	44*	2	- 5	11	27	-24*
2	9	15	32	-41*	2	6	16	30	25*	3	6	12	29	33*
3	- 3	12	29	31	3	-7	10	28	- 34*	- 8	- 3	8	27	-23*
5	3	15	28	30*	- 3	- 3	14	27	35	- 3	- 3	10	23	23*
3	3	13	31	- 36	3	3	14	28	-41	-4	3	14	29	31*
- 6	3	13	29	- 31*	- 3	- 7	10	31	-28*	- 3	- 3	10	27	23*
10	- 3	12	31	- 37*	- 3	6	11	25	-26*	- 3	-4	11	30	- 30*
- 3	3	14	30	- 33*	-4	6	12	26	- 32*	-4	10	11	26	22*
-4	- 8	10	30	- 36*	-9	4	11	31	35*	4	-4	13	25	-23*
6	4	12	29	-40*	9	4	11	29	-13*	5	10	11	34	26*
10	5	14	34	- 37*	9	5	15	38	-47*	7	5	15	31	-36*
- 5	5	11	29	36	- 5	8	10	25	26*	-5	-6	12	32	38*
1	6	15	33	-42*	10	6	14	35	36*	6	11	12	32	-28*
6 7	6	14	29	- 20*	/	11	13	33	32*	8	/	10	31	-28*
- /	ð	11	20	- 24*	- /	/	11	25	- 32*	- 8	9	. 9	28	- 35*
8 0	8 11	11	32	- 7 / *	ð	9	11	31	- 32×	8 10	8 10	11	30	-2/*
0	11	17	22	- 32*	9	2	17	3/	- 24*	10	10	12	40	- 39
0	- /	1/	37	- 2 / *	11	- 2	10	2/	- 29*	14	0	10	32	28*
10	- /	14	30	- 2 7 *	~11	0	17	34 33	- 21	11	0	10	22	4/ * / 0.4
10	0	10	20	- 39*	-/	0	1/	22	45	0	0	17	31	42*
ך 1	0	17	30	- 20	- 2	0	10	3Z 21	4/	1	0	17	20	43*
1	0	17	30	43*	- 2	0	1/	20	- 24× 204	2	0	16	32	-28*
2	0	15	30	-41^	-0	0	14	20	20× 20×	-/	0	10	34	-41
-0	0	15	30	- 30*	- 7	0	10	29	-3/*	- LU 10	0	16	28	-25*
10	14	14	36	- 45	11	- 5	16	30	4J - 694	12	0	10	20	-49
õ	-4	17	30	28*	0	10	18	32	- 37*	0	6	10	20	20*
1	11	18	36	28*	1	1	18	31	- 37*	1	2	17	22	-)/~ /1+
ī	9	16	36	-41*	1	13	15	31	-29*	12	1	1/	25	-73*
10	1	16	34	42*	-10	-1	14	35	-41*	-8	-1	15	29	-45*
-7	-1	14	30	- 35*	- 5	-1	17	28	- 24*	5	1	16	3/	- 20*
2	1	19	33	39*	1	1	18	20	- 37*	5	_1	17	24	304
6	-1	17	27	-11*	-7	î	14	33	19*	-1	-11	12	20	-26+
-1	12	14	35	- 38*	- 1	13	15	29	- 32*	_1	- 3	15	20	6*
-1	-3	16	34	40*	-1	5	16	34	-43*	-1	51	16	22	41 *
•1	6	17	36	38*	-1	6	18	35	37*	-2	ġ	18	22	91¥
~2	4	18	33	- 35*	-2	2	18	35	42*	-2	- 3	18	36	-70 *
-2	-4	18	32	- 36*	-2	9	17	30	-46*	-2	Ř	16	30	.16*
- 2	3	16	28	25*	- 2	-4	15	33	- 32*	-2	- 2	15	31	- 39

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

н	K	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	н	к	L	10Fo	10Fc
-2	8	15	30	42*	-2	- 9	12	32	-34*	-10		11	35	-29*
-10	2	13	37	-43*	-10	2	14	33	-42*	8	-2	15	29	- 37*
7	- 2	18	29	-33*	-5	2	18	35	41*	- 3	2	17	30	- 34*
- 3	2	16	29	- 38*	-2	2	18	31	42*	2	2	19	31	29*
5	2	17	36	53*	7	2	16	35	-35*	2	-9	13	28	32*
?	-11	14	25	-19*	2	13	17	33	20*	2	9	17	40	46*
2	-4	18	32	-45*	3	7	18	38	- 39*	3	3	18	36	-40*
3	11	17	40	-48*	3	8	16	36	- 39*	3	9	15	36	-46
3	- 6	14	28	22*	3	-11	13	29	31*	3	-10	11	28	29*
- 9	- 3	14	31	- 38*	-6	- 3	14	34	-41*	- 6	- 3	15	33	- 32*
5	3	18	35	- 29*	- 3	- 3	16	29	16*	6	- 3	16	31	-17*
9	- 3	15	31	- 38*	-9	3	16	36	- 31*	-10	3	12	34	- 38*
- 3	- 9	12	32	-42*	- 3	11	13	27	-40*	- 3	-7	13	35	33*
- 3	-11	13	26	19*	- 3	-10	14	33	-42*	- 3	3	17	34	28*
- 3	-4	17	36	44*	-3	-6	17	33	-40*	-4	9	16	34	44*
-4	7	15	31	-47*	-4	11	12	33	46*	-4	-10	12	33	51*
-11	4	11	35	- 39*	7	-4	14	28	-28*	-4	-4	16	28	- 33*
-4	-4	15	30	-22*	- /	-4	16	26	-24*	8	4	1/	35	30*
9	4	18	37	-46*	-9	-4	11	32	39	11	4	1/	35	32*
12	4	14	38	30*	4	-11	14	26	-15*	4	14	14	32	- 21*
4	10	1/	36	- 38*	4	/	1/	34	- 32*	4	5	19	35	-46*
5	9	16	32	- 32*	5	8	16	33	- 3*	5	9	15	31	- 20*
5	14	15	36	39*	14	5	15	42	52*	5	-9	14	30	3/*
13	2	14	40	- 50*	5	-10	12	28	-21*	- 10	-)	10	29	-23*
9	2	19	24	39*	ð	2	18	22	- 5 5*	-0	- 5	11	20	3.2m 70x
-0 -	- 2	10	20	20* 20*	9	- 2	12	27	×در ۲۰۰۰	- 5	-10	11	29	×/נ-
- 5	11	1/	20	20*	- 5	11	17	29	-1/* 10+	- 5	~ O 0	14	20	- 34× 0/.4
- 5	10	14	20	23*	-)	11	14	29	-19*	ر - ۲	-0	15	20	- 24^
-0	0	1/	20	20^	-0 2	-0 7	1/	31	2/*	-0	6	14	23	- 47
-0	_ 7	13	29	33 * 71×	-0	12	13	20	20*	-0	-0	13	35	-4/
11	- /	15	30	- 30*	-0	12	1/	25	- 30*	6	-0	16	30	22+
- 8	-0	15	31	26*	-10	- 6	12	20	- 24*	-10	- 6	11	3/	- 36*
-0	_10	12	27	_ 25*	-10	-0	17	27	-24**	-10	-0	15	24 40	- 30#
6	- 10	14	31	30*	14	6	16	37	-47*	15	6	16	36	-36*
6	13	17	39	54*	7	7	19	37	-4/* -14*	7	10	18	41	- 44*
7	7	17	34	-25*	, 7	12	17	42	50*	7	12	14	37	-46*
7	-10	14	27	29*	, 7	13	13	35	34*	11	7	18	36	44*
10	7	17	36	-44*	-10	-7	12	29	-21*	-9	-7	10	27	31*
7	7	16	37	-46	-10	, 7	13	29	-38*	-7	7	12	26	- 37*
-7	8	14	26	- 35*	-8	12	12	27	29*	- 8	-10	12	30	36*
- 8	-10	11	33	- 36*	10	- 8	13	29	-42*	8	- 8	15	30	39*
8	13	17	36	-44*	-0	10	16	35	0*	14	9	15	42	40*
12	9	17	42	- 53*	12	9	13	37	-26*	- 9	12	12	40	55*
	-9	12	30	34*	11	9	18	39	- 36*	10	9	14	36	-10*
9	-9	10	28	-28*	-9	9	9	35	-30*	-9	-9	13	31	45
-10	10	10	26	25*	10	10	16	39	- 50*	14	10	16	41	- 30*

ンド市に見た

1

;

111

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

1

.

ŋ

H	K	L	10Fo	10Fc	Н	К	L	10Fo	10Fc	н	к	L	10Fo	10Fc
11	11	12	41	-62	0	1	10	19	19	0	5	9	17	19*
-4	0	6	18	14+	1	- 2	9	16	-26*	3	1	8	21	27*
1	-1	6	15	21*	2	-1	10	17	25*	-6	1	6	22	-19*
- 2	3	8	16	-23*	- 2	- 2	6	15	11*	3	- 2	8	20	-13*
3	- 2	10	21	28*	6	3	9	18	- 30*	- 3	- 3	10	21	23*
- 3	6	7	17	-25*	- 3	6	8	19	21*	-6	4	8	25	-20*
- 5	4	8	22	26*	4	-4	7	16	26*	4	4	9	21	21*
6	5	9	23	- 34*	0	8	15	24	29*	0	6	14	20	- 32*
0	- 4	14	27	- 29*	0	-1	13	22	21*	0	1	12	23	2*
0	- 9	10	22	31*	9	0	12	20	- 38*	5	0	15	19	-9*
4	0	16	24	0*	-1	0	15	20	23*	- 5	0	14	24	11*
- 10	0	10	20	-23*	0	6	12	19	6*	0	7	12	20	20*
0	11	13	28	- 34*	0	- 3	13	21	-21*	0	-1	15	24	-28*
1	- 3	15	18	-12*	1	3	13	21	30*	10	1	11	28	-28*
- 9	-1	11	28	41*	8	1	15	28	3*	-7	-1	13	27	- 36*
6	1	15	24	20*	6	1	13	24	23*	5	1	16	21	-29*
-4	-1	14	21	26*	1	1	12	24	- 34	-1	5	11	20	25*
- 1	- 5	14	20	36*	- 2	- 3	13	19	-19*	-2	-7	12	26	-41*
6	- 2	12	18	18*	- 6	2	11	26	-14*	2	2	16	25	24*
- 7	- 2	10	24	- 32*	-7	-2	12	25	42*	- 8	-2	11	24	29*
9	2	13	28	- 31*	2	-4	11	22	-23*	2	-9	11	21	28*
2	11	12	25	- 3*	2	-2	14	20	-17*	2	5	14	21	-7*
3	11	14	24	-25*	3	9	10	23	-13*	3	- /	9	20	-13*
- /	- 3	12	25	20*	- /	- 3	11	24	- 32*	-6	-3	12	19	-18*
0	- 3	13	20	- 38*	8	- 3	14	27	38*	- 3	.9		18	-2/*
- 3	-/	9 15	25	- 22*	- 3	-4	10	21	20*	- 3	10	10	23	- 32*
- 3	4	10	23	_>× _	-4		12	23	10×	-4	- 8	9	22	25*
0	-4	12	20	2*	-/	-4	10	18	25*	4	-/	9	18	22*
-9	-4	10	26	34*	4	10	13	29	- 35*	4	4	13	24	32*
4	- 2	10	20	- 20×	4	-4	14	20	- 10*	4	6	14	21	- 25*
- 9	-)	10	17	- 30*	9	2	12	24	26 4 77¥	5	2	10	23	- <u>3</u> 3 *
ر ۵	-)	11	2/	21 ~ 1 / +	-)	5	10	24	- 20*	7	- 5	13	22	- 3 3*
- 6	- 5	11	24	- 25*	- 5	- 6	10	23	- 21 er	- /	6	10	22	×∪ز ⊾رو
- 0 8	-0	12	21	- 41*	- /	-0	11	23	0/.∻	-0	-0	11	24	- JT~ 134
6	q	13	2.5	-41*	7	- /	15	21	- 41*	5	-0	14	21	-13× 27+
7	á	10	20	- J2 2*	á	7	13	30	30*	, 8	10	10	20	- 27 ~
-7	.7	11	20	40	-7	-7	73	20	-20*	-7	-7	11	20	- 34^
10	8	12	29	- 44*	0	, 8	19	20	33*	-,	11	18	24	- 3/4
0	7	18	29	-45	0	r,	18	27	-14*	0	-3	16	27	- 244
õ	- 5	16	29	-42*	0	- 6	16	24	-16*	0	- 5	16	23 17	204 204
Ő	12	14	27	- 35*	-10	õ	15	30	33*	_ 9	- /	15	27	304
9	<u> </u>	15	22	-35*	6	õ	18	20 27	-48*	- 5	n N	1/	22	ጋደት
-6	0	16	25	13*	- 3	Ő	16	22	34*	- J	ñ	1 8	22	204
-4	õ	16	24	-9*	5	õ	17	27	-16*	6	ñ	19	20	インチ
, 7	Ő	17	23	-26*	8	Õ	15	24	37	-10	ñ	14	24	747
11	0	14	30	34*	Ō	13	13	22	20*	0	8	15	22	29*

.

1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET 1)

н	К	L	10Fo	10Fc	н	К	L	10Fo	10Fc	н	K	L	10Fo	10Fc
0	6	18	30	- 44	0	8	19	29	33*	0	1	19	 71	
ĩ	8	19	24	32*	ĩ	5	18	25	-29*	1	11	15	29	31*
1	- 8	14	25	33*	1	13	13	25	28*	13	1	15	30	-37*
-11	-1	14	25	- 33*	-7	-1	13	27	-36*	-6	-1	14	26	-26*
-6	-1	17	23	-19*	4	1	20	25	-35*	3	1	20	20	- 3*
2	1	17	23	- 30*	- 2	-1	16	24	31*	1	-1	17	25	42*
-2	1	18	23	- 34*	- 3	1	16	24	27*	-4	1	16	26	35*
- 6	1	16	30	35*	7	-1	19	23	30*	10	-1	18	28	-27*
11	-1	17	28	- 33*	-11	1	12	30	27*	-1	-10	13	23	29*
14	-1	15	25	-14*	-1	-7	15	29	-29*	-1	- 6	17	26	-22*
-1	- 5	18	20	-18*	-1	- 2	18	24	18*	-1	5	19	22	24*
- 2	7	18	25	39*	- 2	12	16	24	-6*	- 2	10	16	25	-14*
- 2	- 8	15	27	- 30*	12	- 2	14	29	-21*	- 2	-11	12	21	-18*
-10	2	15	27	21*	- 7	2	16	27	26*	-4	2	17	22	-9*
2	- 2	16	23	35*	- 2	2	17	26	-12*	- 2	2	19	22	34*
2	2	17	21	30*	3	2	17	27	19*	5	2	20	24	31*
6	2	16	23	25*	6	2	18	28	-19*	7	2	17	23	- 31*
- 8	-2	15	24	36*	8	2	16	22	-23*	10	2	16	31	39*
13	2	16	29	38*	2	12	13	28	20*	2	11	15	27	20*
2	-6	15	20	- 5*	2	- 7	15	22	- 33*	2	5	1.7	30	- 34*
2	-4	17	23	-10*	2	-7	17	21	20*	2	- 5	18	22	-28*
2	2	18	22	30*	2	2	19	22	29*	2	- 3	19	25	33*
3	- 3	16	25	20*	13	3	14	23	-20*	-11	- 3	13	26	32*
11	3	18	28	42*	10	3	16	31	- 39*	8	3	18	26	38*
-/	-3	15	21	-23*	6	3	18	30	- 39*	- 3	3	1/	25	28*
-9	3	13	29	- 22*	-10	3	11	26	19*	12	- 3	16	29	-33*
- 3	-8	13	26	28*	- 3	- 6	14	29	-20*	- 3	TO	15	23	- 35*
- 3	-10	10	19	6×	- 3	6	17	28	- 22*	- 5	- 3	18	22	- 30*
-4	10	10	21	- 9*	-4	4	1/	23	21*	-4	-0	10	25	2/*
-4	12	15	21	4J× 204	-4	9	14	20	-70*	-4	10	10	20	42*
11	-4	12	21	20^	12	-4	14	20		-4	-11	17	25	20*
11	-4	12	22	334	7	-4	12	24	- / *	0	-4	10	27	- 20-+
-/	4	15	20	.25*	1	-4	10	22	20*	ر - ۸	10	10	23	- 24*
	14	15	23	-2J^	4	- 9	14	23	- 22*	4	12	14	25	14×
4	10	16	24	<u> </u>	4 //	11	16	24	164	4	/ 5	17	25	4.2 *
4	10	10	30	41×	4	11	10	20	20+ TOv		12	10	21	2/* 40+
4	, ,	10	52 97	20*		5	20	20		4 15	12	16	20	90+
4	_ 9	12	27	- 40 *	13	5	16	20	1^ /5*	- 0 T C	ر ح	14	26	- 2.7 *
ر ۵	-0	11	20	-42,*	0 T.2	5	15	25	- 47+	- 3	- 5	15	20	-20*
- 7		14	22	- 6*	י ד	ר ג	10	20	-4/~	-0 5	ر - ح	17	23	-00÷
-7		15	21	44*	, _7	ר ג	17	20	- JJA - 25*	D D	ر ء۔	16	25	- 22*
_10	5	10	29	-14*	-,	-5	15	27	-2Jn -25*	0 11		1/	25	_ 18+
-10	12	12	21	- 244	_5	-6	13	21	- 2 J =	-5	ر - ء _	14	20	- 204
	- 5	16	22 97	27 *	- 5	2 U R	16	24	.13*	- J - 5	-0	17	24	- U^ - 20*
- 5	5	18	27	9*	-6	7	15	21	30*		11	15	21	- 30*
-6	7	13	26	-33*	- 6	, 11	12	23	-23*	9	-6	14	20	24*

1

-

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

Н	ĸ	L	10F0	10Fc	Н	К	L	10Fo	10Fc	н	К	L	10Fo	10Fc
 8		14	27	-44*		- 6	15	22	-26*	7	-6	17	18	3*
-6	-6	13	19	16*	12	6	16	30	1*	6	12	16	32	-46*
6	12	17	26	34*	6	7	17	31	- 35*	6	-6	17	21	31*
7	8	18	33	46*	7	- 7	16	22	28*	7	-7	14	20	17*
-11	- 7	11	27	26*	7	-10	11	22	10*	-7	-7	15	20	25*
- 9	7	15	26	10*	-11	7	12	22	19*	-7	-10	12	28	42*
-7	- 8	14	25	24*	-7	10	15	21	30*	-7	-7	15	28	25*
- 7	8	16	21	20*	-10	- 8	12	20	-12*	11	8	15	32	-28*
13	8	17	29	- 32*	8	13	13	31	-7*	8	- 8	13	22	26*
8	10	14	32	-27*	8	13	14	30	- 29*	8	13	16	28	15*
8	10	17	34	-41*	8	10	18	32	- 22*	9	11	14	29	53*
9	9	14	31	- 34*	9	13	13	25	-46*	12	9	14	26	-27*
9	9	14	30	- 34*	- 9	9	9	20	- 30*	- 9	-9	12	21	22*
- 9	9	12	20	-4*	-9	10	12	22	- 31*	- 9	10	13	17	-23*
- 10	10	12	20	- 33*	11	10	15	32	-47*	11	10	13	25	4*
10	10	13	27	28*	10	15	15	33	- 37*	10	11	15	33	- 53*
10	11	17	26	12*	12	12	14	27	-28*	13	12	14	33	-25*
12	12	14	29	-28*	12	13	14	29	-28*	0	4	10	3	-11*
0	3	10	14	36	0	- 3	10	3	-11*	0	-6	9	16	41
0	- 1	9	3	13*	0	8	9	4	-7*	0	- 2	8	3	13*
0	- 5	8	15	20*	0	- 6	7	4	32*	0	7	7	6	-16*
7	0	8	13	-26*	6	0	9	9	9*	0	3	6	9	-12*
- 6	0	6	16	33	-6	0	8	14	-16*	- 5	0	9	7	14*
- 5	0	6	3	-4*	0	2	5	8	-23*	4	0	10	19	- 7*
-4	0	6	22	14*	-4	0	10	4	-21*	- 3	0	9	22	- 30*
- 3	0	6	3	4*	- 3	0	4	14	-29*	2	0	10	12	-22*
- 2	0	6	14	23*	-2	0	8	4	26	-1	0	11	4	-12*
1	0	11	4	21*	0	0	11	4	-22*	-1	0	11	15	-12*
~ 2	0	6	14	23*	2	0	10	11	-22*	- 3	0	4	14	-29*
- 3	0	6	3	4*	-3	0	9	17	- 30*	-4	0	10	12	-21*
4	0	10	4	- /*	0	2	5	2	-23*	- 5	0	6	4	-4*
- 5	0	9	15	14*	-6	0	8	4	-16*	0	3	6	11	-12*
6	0	9	4	9*	/	0	8	18	-26*	0	7	7	3	-16*
0	-6	/	3	32*	0	- 5	8	10	20*	0	-2	8	3	13*
0	8	9	14	- /*	0	5	9	3	19*	0	-1	9	3	13*
0	- 3	10	14	-11*	0	4	10	3	-11*	0	0	11	4	-22*
1	3	12	4	- 20*	1	5	11	4	16*	1	-4	10	11	3*
Ţ	8	9	12	4*	Ţ	4		3	-11*	6	1	10	21	-29*
6	Ļ	9	3	- 10*	L ,	- 1	6	14	21*	-5	-1	8	11	-14*
1	-4	2	2	-10*	1	3	4	13	/*	-4	-1	9	11	9*
ე ო	1	12	30 10	12*	-2	1	11	4	- 5*	2	-1	5	2	4*
- j -	1 V	9 0	10	-12*	4	- T	11	4	-23*	5	-1	11	18	-29*
כ י	-1	9 C	∠⊥ 1 c	- 72*	- 5	1	10	12	25*	-6	Ţ	/	3	28*
- 1 7	0 7	0 7	72	-4*	6	- T	10	10	- 29*	7	-1	9	12	-2*
-1	2	/	د ء	8× 0-	-/	L C	ð	4	*ز - ۱۲۰۰	-1	-2	8	3	1*
- L - D	כ ר	9 11	ر ۱۲	0× 	-1	-0	9 10	ر 11	- 10*	-1	2	11	51	25*
- 2	J	T T	10	-44	- 2	0	τU	<u> </u>	3*	- Z	4	111	.5	1.0*

A. C.

Station of the

STA De

\$ H 0 1

÷...

1 1

.

a set of the set of

i

,

÷

н	к	L	10Fo	10Fc	н	к	L	10Fo	10Fc	н	к	L	10Fo	10Fc
-2	2	10	3	-27*	-2	- 2	10	14	-25*	-2	- 5	9	3	2*
-2	4		4	4*	-2	7	9	8	7*	6	- 2	8	21	- 32*
- 5	2	8	24	-18*	-2	- 2	5	2	- 3*	4	- 2	11	14	22*
-4	2	4	2	-19*	-3	2	3	2	17*	3	-2	5	3	12*
-2	2	10	15	-27*	-2	- 2	10	4	-25*	-2	- 2	6	3	11*
-2	-2	5	2	- 3*	2	2	6	11	-25*	2	2	8	3	-20*
2	2	9	19	1*	2	2	12	4	-4*	3	2	11	16	16*
3	2	10	11	38*	-3	- 2	9	3	8*	- 4	- 2	4	10	7*
4	2	5	14	8*	2	5	5	3	-10*	2.	-4	5	30	4*
- 5	- 2	8	17	31*	2	2	6	3	-25*	2	2	8	14	- 20*
8	2	9	4	4*	2	2	9	13	1*	2	- 5	9	3	-6*
2	- 3	10	14	-14*	2	5	10	13	-1*	2	5	11	4	-24*
2	3	11	20	8*	2	2	12	18	-4*	3	3	12	4	7*
3	8	10	23	37*	3	6	9	3	-16*	3	9	9	4	-1*
3	-4	7	20	- 8*	3	5	6	6	-15*	3	4	6	3	22*
- 5	- 3	8	20	23*	4	3	11	4	- 8*	4	3	8	10	4*
4	3	6	4	1*	-4	- 3	8	13	2*	- 3	- 3	7	19	35*
3	3	12	4	7*	- 3	3	8	3	8*	-4	3	8	3	-26*
4	- 3	9	4	- 8*	4	- 3	10	17	-4*	5	- 3	9	13	-22*
- 5	3	6	3	-15*	- 5	3	8	21	5*	- 6	3	6	3	3*
6	- 3	9	16	- 6*	- 3	3	8	3	*8	- 3	- 3	10	19	23*
-4	-4	9	16	-28*	- 4	7	8	4	18*	-4	-4	7	10	-25*
-4	7	7	18	-16*	7	-4	8	22	-16*	6	-4	8	13	-4*
- 5	4	7	12	23*	- 5	4	6	3	-16*	5	-4	6	3	-19*
4	-4	8	9	3*	4	-4	7	13	26*	-4	-4	7	19	-25*
4	4	9	3	21*	5	4	11	21	- 2*	5	- 4	8	3	4*
4	5	5	3	2*	- 5	-4	7	3	-16*	- 6	-4	6	3	-26*
6	4	9	15	-13*	7	4	10	4	-13*	- 7	-4	7	4	11*
4	-4	8	3	3*	8	4	9	13	4*	4	6	10	33	-9*
4	8	10	24	22*	5	7	10	9	- 32*	5	7	9	21	-26*
5	7	8	4	-9*	5	- 5	8	15	-4*	- 6	- 5	7	19	18*
5	- 5	8	17	-4*	- 5	5	8	7	16*	- 5	7	7	10	22*
- 5	5	8	15	16*	- 6	6	6	10	-27*	- 6	6	6	7	-27*
7	6	9	9	3*	8	6	9	4	8*	6	8	9	4	-20*
7	8	9	4	15*	0	1	16	4	- 33	0	-1	15	4	-28*
0	0	15	4	-2*	0	4	15	32	3*	0	5	15	5	16*
0	10	14	5	- 3*	0	8	14	5	- 20*	0	0	14	4	-12*
0	-1	14	4	-15*	0	- 3	14	22	-14*	0	- 5	14	17	-29*
0	-4	13	4	7*	0	- 3	13	4	-21*	0	- 2	13	19	-21*
0	1	13	4	11*	0	3	13	4	- 6*	0	4	13	4	5*
0	7	13	4	24*	0	9	13	23	36*	0	12	12	5	1*
0	9	12	13	-6*	0	8	12	17	18*	0	7	12	11	20*
0	6	12	13	6*	0	5	12	4	-14*	0	-4	12	4	1*
0	- 8	12	26	16*	0	- 9	11	24	-14*	11	0	12	36	8*
11	0	13	5	26*	10	0	13	5	-1*	0	- 6	10	4	-16*
-10	0	10	57	-23*	- 9	0	9	4	10*	0	- 8	9	23	36
0	-7	9	23	- 29*	8	0	13	5	-2*	- 8	0	11	4	- 3*

ş

医子宫上下部 医骨 化化铁 医结子反应药酸医子子检查医子管检

the 2 standard

אייריאנגע נויין אי אמאנטאינטאינט אנעמטאט ו אדומאון

in a statement

, . . .

.

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

H	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc
	0	13	5	15*	7	0	14	18	-19*	7	0	15	15	36*
6	õ	15	5	14*	. 6	õ	12	23	-12*	-6	Õ	10	22	13*
- 6	õ	11	4	-19*	- 5	Õ	14	5	11*	- 5	0	11	18	6*
- 5	0	10	4	1*	4	Ó	12	11	-6*	-4	0	14	21	12*
- 3	0	15	27	-33*	- 3	0	14	4	11*	3	0	12	4	1*
2	0	15	16	10*	2	0	13	18	-15*	- 2	0	14	4	-15*
- 1	0	12	22	31*	0	0	15	4	-2*	0	0	14	10	-12*
0	0	14	4	-12*	0	0	15	4	-2*	1	0	15	26	-48
-1	0	15	6	23*	-2	0	14	4	-15*	2	0	13	4	-15*
2	0	15	4	10*	3	0	12	4	1*	- 3	0	14	36	11*
- 3	0	15	21	- 33*	-4	0	14	4	12*	4	0	12	16	-6*
4	0	16	5	0*	5	0	15	5	-9*	- 5	0	10	4	1*
- 5	0	11	4	6*	- 6	0	11	23	-19*	- 6	0	10	7	13*
6	0	12	15	-12*	6	0	15	5	14*	7	0	15	11	36*
7	0	14	5	-19*	-7	0	13	5	15*	- 8	0	11	18	- 3*
- 8	0	9	10	27*	8	0	13	15	-2*	0	-7	9	16	-29*
- 9	0	9	23	10*	0	-6	10	4	-16*	10	0	13	25	-1*
11	0	13	5	26*	11	0	12	5	8*	0	11	11	16	18*
0	-7	11	4	39	0	-9	11	4	-14*	0	-8	12	4	16*
0	-4	12	4	1*	0	1	12	12	2*	0	5	12	14	-14*
0	8	12	23	18*	0	9	12	4	-6*	0	11	12	22	35
0	12	12	14	1*	0	7	13	13	24*	0	4	13	21	5*
0	3	13	4	- 6*	0	1	13	4	11*	0	-1	13	19	21*
0	- 2	13	4	-21*	0	-4	13	4	7*	0	-4	14	6	-29*
0	- 3	14	5	-14*	0	-1	14	23	-15*	0	0	14	4	-12*
0	3	14	23	-43	0	6	14	8	- 32*	0	8	14	5	-20*
0	10	14	5	- 3*	0	8	15	11	29*	0	4	15	7	3*
0	0	15	4	- 2*	1	5	16	5	-9*	1	2	16	22	-29*
1	1	16	5	19*	1	5	15	24	3*	1	8	15	9	41*
1	10	14	23	-38*	1	9	14	24	28*	1	5	14	4	-6*
1	4	14	23	- 3*	1	2	14	1/	-5*	1	-1	14	12	14*
1	- 3	14	19	18*	1	- 5	13	1/	-28*	l	-3	13	21	-22*
1	1	13	4	2/*	1	5	13	32	- 3*	1	6	13	4	- 9*
1	8	13	14	-22*	1	9	13	23	-12*	1	12	12	46	10*
1	10	12	5	-10*	1	9	12	2	- 5*	1	6	12	4	-19*
T 1	5	12	15	-20*	1	-1	12	20	-16*	L 1	-3	12	19	1*
, T	-9	11	9	-)*	1	-8	11	21	29*	1	- 3	11	8	2/*
1	10	11	5	- 8*	1	- 2	10	12	1/*	1	-6	10	4	14*
1	-/	10	4	- 9*	1	- 8	10	4	19*	1	-9	10	4	- 3*
L O	- ð		8	31*	9	1	13	27	- 8*	9	1	14	18	- 34*
ð	1	11	4	- 29*	-8	-1	8	4	/*	-8	-1	12	24	21*
-1 r	-1	11	4	20*		1	12	12	30*	1	1	13	16	25*
6 2	1	14	18	-20*	6	1	12	11	- 36*	-6	-1	10	4	-21*
- O -	- L 1	12	4	-20× 13-	-0	- 1	10	45	×8	-6	-1	13	19	- 19*
- J /	-1	15	4	- 10+ - 10+	- 5	-⊥ 1	10	10	22*	5	1	14	25	-25*
4 7	1	10	12	-4U* 194	- J 2	-1 1	12	V T0	۲۵× ۲۵۰	- 3	-1	10	35	2*
ر	T	* 2	T.2	127	5	T	тЭ	- 4	- 10×	2	L	тρ	12	8*

ł

,

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

н	к	L	10Fo	10Fc	н	К	L	10Fo	10Fc	H	к	L	10Fo	10Fc
- 2	-1	14	24	44*	- 2	-1	15	4	-16*	-1	-1	15	15	9*
-1	-1	14	8	17*	-1	-1	12	12	7*	1	1	13	4	27*
1	1	14	4	43	1	1	16	14	19*	1	-1	14	4	14*
1	-1	12	8	-16*	- 2	1	15	17	21*	2	-1	15	19	- 3*
- 3	1	14	4	-24*	- 3	1	15	24	-25*	-4	1	14	4	- 3*
-4	1	13	4	15*	4	-1	14	8	5*	4	-1	15	17	- 30*
5	-1	15	4	-18*	5	-1	14	10	16*	5	-1	12	4	28*
5	-1	11	10	-29*	- 5	1	11	9	-23*	- 5	1	12	18	-10*
- 5	1	14	18	- 59*	6	-1	15	23	-1*	7	-1	15	5	- 3*
7	-1	11	16	24*	-7	1	10	17	-42*	-7	1	11	4	-26*
-7	1	12	4	9*	8	-1	10	4	-17*	8	-1	14	5	-4*
9	-1	12	17	17*	9	-1	11	21	-17*	-1	-6	9	16	-16*
-1	- 7	9	20	23*	- 9	1	11	14	- 5*	-10	1	10	28	-42*
-1	- 6	10	4	- 5*	-1	8	10	4	17*	-1	10	10	22	-33*
10	-1	11	5	-1*	10	-1	13	12	-19*	11	-1	12	27	-28*
-1	11	11	24	28*	-1	9	11	4	-43*	-1	- 3	11	18	15*
-1	- 5	11	23	6*	-1	- 9	11	18	26*	-1	- 7	12	4	20*
-1	- 5	12	4	13*	-1	-1	12	4	7*	-1	2	12	4	- 3*
-1	10	12	5	6*	-1	12	12	21	9*	-1	9	13	5	-19*
-1	2	13	4	-21*	-1	- 2	13	4	- 8*	-1	-4	13	25	13*
-1	-1	14	4	17*	-1	7	14	19	-17*	-1	9	14	5	17*
-1	7	15	25	- 33*	-1	5	15	5	19*	-1	3	15	15	-35*
-1	-1	15	4	9*	-1	- 3	15	18	6*	- 2	3	15	16	11*
-2	5	15	6	41*	- 2	7	14	19	28*	- 2	2	14	4	-15*
-2	- 2	14	25	- 3*	- 2	-7	13	26	5*	-2	- 5	13	13	14*
~ 2	3	13	4	11*	- 2	4	13	15	-23*	- 2	7	13	22	- 2*
-2	8	13	14	-19*	- 2	10	13	5	3*	- 2	11	12	37	-16*
-2	- 8	11	4	-18*	-2	- 6	11	23	-25*	-2	9	11	20	45*
10	- 2	11	5	-14*	- 2	8	10	4	-13*	- 2	- 6	10	22	17*
-9	2	11	4	28*	9	- 2	12	19	-10*	8	- 2	14	23	-27*
8	-2	11	12	21*	- 8	2	10	4	21*	- 8	2	12	4	31*
-7	2	12	10	27*	- 7	2	9	4	23*	-7	2	8	8	43
7	-2	11	4	-10*	7	- 2	13	18	31*	7	- 2	14	5	9*
6	- 2	15	9	3*	6	- 2	14	23	13*	- 6	2	12	14	16*
- 5	2	14	24	12*	- 5	2	12	4	-1*	5	- 2	13	37	2*
5	-2	14	17	28*	4	- 2	11	4	22*	- 3	2	15	4	-13*
- 3	2	14	4	-17*	- 3	2	13	5	20*	- 3	2	12	4	-27*
3	- 2	14	4	26*	2	- 2	15	17	-12*	2	- 2	14	16	-17*
-2	2	14	34	-15*	- 2	2	15	4	50	- 2	- 2	15	25	- 39
-2	- 2	14	8	- 3*	2	2	12	11	-4*	2	2	14	16	4*
2	2	15	21	-1*	3	2	16	10	- 32*	3	2	15	21	16*
- 3	-2	14	4	-22*	-4	- 2	10	18	26*	4	2	13	4	12*
4	2	14	17	- 39*	4	2	16	5	-1*	- 5	- 2	14	31	6*
-6	-2	12	4	20*	6	2	15	15	29*	6	2	16	11	25*
7	2	15	6	22*	7	2	14	18	-12*	7	2	13	6	41*
-7	- 2	13	24	15*	2	- 7	8	21	39	8	2	14	18	-2*
9	2	15	5	-4*	-9	- 2	9	13	- 7*	-10	- 2	10	4	-4*

Н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	н	ĸ	L	10Fo	10Fc
2	-7	10	23	 7 *	10	2	13	9	13*	10	2	14	24	-27*
11	2	12	22	-45*	2	- 6	11	4	-14*	2	- 8	11	4	-3*
2	- 8	12	4	3*	2	- 5	12	4	6*	2	-4	12	4	-22*
2	2	12	4	-4*	2	6	12	5	-15*	2	8	12	4	-14*
2	10	12	15	0*	2	12	12	27	-47*	12	2	13	25	-65
2	12	13	5	20*	2	10	13	6	9*	2	9	13	5	-14*
2	7	13	13	-28*	2	-7	13	19	-46*	2	2	14	4	4*
2	3	14	17	31*	2	4	14	4	1*	2	6	14	24	-28*
2	7	14	42	- 6*	2	8	14	38	26*	2	9	14	5	-19*
2	10	14	15	22*	2	8	15	5	- 7*	2	2	15	24	-1*
2	- 2	15	5	-12*	2	- 3	15	12	-23*	2	2	16	5	24*
3	6	16	5	-17*	3	3	16	17	-25*	3	3	15	25	18*
3	4	15	25	35*	3	5	15	5	16*	3	6	15	13	-27*
3	1	15	5	2*	3	10	14	5	13*	3	/	14	18	8*
3	6	14	1/	21*	3	4	14	4	- 8*	3	-/	13	19	30*
3	-3	13	21	-26*	3	5	13	8	- 29*	3	8	13	33	-16*
5	11	13	5	6*	3	12	13	2	- j* 10+	12	3	13	6	2/*
ر د	11	12	2	- 12*	3	9	12	2	~ 19 *	3		12	4	18*
2	s c	12	22	/× 254	د د	-4	12	9 /	-21*	3	- 2	12	4	9× 004
נ ר	-0	11	10	20× 17÷	2	- /	11	4	20*	2	-0	11	10	×22 × ۲. ا
10	- /	14	19	-1/~	10	-)	13	11	20^ 	10	л ТО	12	12	264
10	10	10	2	_ 17¥	10	0	10	11	- 22+	10	2	10	۲. ۲.2	- 20^
ר ר	-8	10	22	-1/~ 27*	2	- 7	10	4 8	20~	- 9		15	17	154
8	-0 3	15	5	5*	8	- 0 - 2	14	23	17*	- 8	-3	4	1/ 2	-12*
- 8	-1	10	4	-15*	- 8	- 3	12	15	-15*	-0	- 7	15	17	-12"
6	ž	16	5	0*	- 5	3	14	19	- 39*	, 4	3	13	23	- 36*
-4	- 3	14	ŭ	6*	3	ž	12	4	7*	3	2	15	23	18*
3	3	16	15	-25*	3	-3	13	11	-26*	3	-3	11	4	20*
- 3	3	12	12	-18*	-3	3	14	22	- 33*	-5	3	12	4	_25*
- 5	3	13	4	-6*	- 6	ž	12	4	-15*	-6	3	10	4	-18*
6	- 3	14	21	- 34*	7	-3	13	12	34*	7	-3	10	23	- 24*
-7	3	10	18	18*	- 7	3	13	4	- 30*	- 8	3	12	29	-49*
- 8	3	9	4	8*	8	- 3	12	13	-21*	9	-3	13	5	-10*
- 3	- 8	10	5	19*	- 3	-6	10	10	9*	- 3	-5	10	15	28*
- 3	11	11	4	- 5*	- 3	10	11	7	-15*	- 3	8	11	16	17*
- 3	- 8	12	45	-13*	- 3	-7	12	17	21*	- 3	-6	12	14	6*
- 3	3	12	4	-18*	- 3	7	12	4	10*	- 3	11	12	5	-4*
- 3	9	13	4	4*	- 3	8	13	27	- 55*	- 3	6	13	4	-11*
- 3	5	13	17	-29*	- 3	5	14	24	9*	- 3	6	14	4	-14*
-4	5	14	4	8*	-4	- 6	13	14	24*	-4	- 5	13	26	-40*
- 4	5	13	4	6*	-4	8	13	23	-21*	-4	9	12	18	-27*
-4	4	12	22	- 33*	-4	- 7	12	18	34*	-4	-9	11	17	18*
-4	- 8	11	4	-2*	-4	-7	11	7	-13*	-4	5	11	14	-1*
-4	6	11	4	14*	-4	9	11	16	-24*	-4	11	11	8	9*
10	-4	11	13	-45*	-4	9	10	24	32*	-4	- 5	10	4	- 20*
-4	- 9	10	4	- 32*	-10	4	10	15	11*	-9	4	9	4	20*

ţ

ł

н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	н	К	L	10Fo	10Fc
-4	-6	9	4	-30*	-4	-5	9	3	8*	-4	9	9	4	- 32*
8	-4	13	5	-19*	8	-4	10	4	-12*	-7	4	12	4	-18*
-7	4	10	27	-49*	6	-4	13	15	-22*	6	-4	11	4	-28*
6	-4	10	4	0*	- 6	4	10	4	-10*	- 6	4	11	4	2*
- 5	4	14	5	13*	- 5	4	13	4	1*	- 5	4	12	40	5*
- 5	4	11	21	-16*	5	-4	13	4	23*	4	-4	14	4	-16*
-4	4	12	19	- 33*	4	4	13	12	32*	4	4	15	19	-4*
4	4	16	26	5*	5	4	16	14	- 3*	5	4	15	5	35*
5	4	14	19	36*	- 5	-4	11	10	-18*	- 5	-4	12	4	-17*
- 5	-4	13	8	21*	-6	-4	12	4	-22*	- 6	-4	11	4	8*
- 6	-4	9	4	4*	6	4	14	16	-23*	7	4	15	6	35*
7	4	11	4	-7*	- 8	-4	11	12	5*	-8	-4	10	4	7*
8	4	12	8	- 2*	8	4	15	5	- 24*	- 10	-4	10	23	9*
4	-/	10	4	-14*	4	-0	10	10	- 3*	4	9 ,	10	1/	18*
11	4	12	23	- <u>-</u>	10	4	12	20	- 29* 10*	10	11	14	L/ 5	-25*
11	4	11	10	 10↓	11	4	11	20	-13^	4	TT	11) 17	-13* 124
4	-6	12	22	- 1 7*	4	-0	12	14	-/* 24*	4	-0	12	0 17	13*
- /	12	12	22	- <u>52</u> 21*	4	12	13	<u> </u>	-1*	4	-4	13	21	_23*
4	7	14	5	- 34*	4	- 9	15	49	-15*	4	8	15	21	-4*
4	7	15	12	-10*	4	4	15	5	-4*	4	4	16	37	5*
4	5	16	5	-19*	4	6	16	23	34*	5	5	16	5	-20*
5	6	15	5	-17*	5	9	15	6	-20*	5	8	14	5	15*
5	5	14	5	9*	5	- 6	13	21	-43*	5	6	13	5	- 5*
5	9	13	7	-12*	5	12	13	18	21*	12	5	13	6	5*
5	12	12	21	30*	5	11	12	5	- 5*	5	10	12	14	16*
5	8	12	13	-4*	5	5	12	23	19*	5	- 5	12	4	21*
5	- 6	11	7	-10*	11	5	13	5	6*	11	5	14	6	11*
10	5	13	24	- 35*	10	5	12	28	48*	10	5	11	5	10*
5	-7	10	11	-12*	5	- 9	10	31	-1*	- 9	- 5	9	16	- 3*
5	- 8	9	13	8*	9	5	13	5	-13*	8	5	14	5	-24*
8	5	11	4	-13*	- 8	- 5	9	15	10*	-7	- 5	11	24	33*
-7	- 5	10	19	-23*	6	5	15	5	9*	6	5	14	5	0*
-6	- 5	10	20	6*	-6	- 5	11	4	8*	- 5	- 5	11	18	-28*
5	5	12	18	19*	5	5	14	12	9*	5	5	16	26	-20*
5	-5	11	4	- 22	-5	5	14	12	- 14*	-6	5	10	22	-11*
-6	5	9	15	35*	6	- 5	12	18	40*	/	- > 	12	4	-13*
- 8	5	9	4	- <u>1</u> *	-8	2	8	15	T*	- 5	-1	8	4	-19*
- 2	-6 5	ð A	15	- <u>1</u> *	0	Ö c	9	16	-4 ×	-)	-0	9	4	10 ×
- 9	כ ר	10	15	- <u>1</u> 0* 11+	-9	2	10	10	-20× 1+	- 5	-9	10	10	אכ 1-∔
- 2	-/ 0	10	4	10 4	- 5	צ ר	11	4	⊥* 7+	- 5	70	11	4 21	مرر م <i>د</i> ر/
- 5	0 _ 5	11	4	_08*	-5	/ ج	11	20	/* _1*	- 5	5	12	21	4* _ 76+
	 7	12	4 4	14*		ט- ג	12	20	^) 7*	- J _ S	2	13	21 K	- 201
- 5	.5	13		38	- 5	5	14	2 L	-14*	-6	.7	11	5 6	.5*
-6	- 5	11	4	-19*	-6	10	10	4	17*	-6	8	10	4	-10*
-6	7	10	10	14*	-6	6	10	4	-5*	-6	- 8	10	26	39*
~	,			.	v		÷	-4	-	•				

,

,

",

:

4

2

Н	ĸ	L	10Fo	10Fc	н	ĸ	L	10F0	10Fc	н	ĸ	L	10F0	10Fc
.9	6	10	24	23*	-6	- 6	9	24	-25*	- 6	8	9	38	-26*
9	-6	11	5	0*	8	-6	12	15	-9*	- 8	6	9	26	-14*
- 8	6	10	25	23*	- 8	6	11	21	30*	-7	6	10	4	- 8*
- 7	6	9	4	- 7*	7	- 6	11	4	-15*	7	-6	12	21	24*
6	- 6	12	33	-27*	6	- 6	11	4	-11*	- 6	6	10	25	- 5*
- 6	- 6	10	15	26	6	6	13	38	0*	6	6	14	5	- 20*
7	6	14	5	33*	7	6	12	19	22*	-7	-6	10	18	-23*
- 8	-6	11	3	23*	- 8	- 6	9	4	15*	8	6	10	4	-12*
8	6	13	5	-2*	9	6	13	5	-33*	6	9	9	25	- 33*
6	-6	9	4	-28	-9	- 6	9	4	33*	6	- 8	10	4	11*
6	10	10	18	-18*	11	6	13	31	-49*	11	6	12	5	-25*
6	-6	11	4	-11*	6	- 6	12	4	-27*	6	9	12	18	-17*
6	12	13	21	42*	6	11	13	5	18*	6	10	13	5	- 5*
6	6	13	17	0*	6	9	14	5	19*	6	10	14	19	46*
6	9	15	7	-12*	6	8	15	40	- 20*	7	8	15	21	-46
7	9	14	10	-10*	7	8	14	5	34*	7	10	13	21	45*
7	12	12	5	-26*	/	10	12	12	38*	/	9	12	17	39*
/	-/	11	18	1*	/	/	11	16	38	/	9	11	25	6*
/	11	11	24	-11*	11	/	13	6	-2/*	10		13	20	- 29*
/	10	10	11	19*	/	- ŏ -	10	9	9 ×	/	- /	11	18	- 31*
6	87	9 15	4	10×	9	7	10	20)⊼ 11⊥	У 0	7	11	22	(*
0 7	7	10	42	4 * 70	0 7	7	14	29	20 4	-0 7	- /	9 1/	20	-0× /7
- /	יי ר	15	40 25	42	- / - / - /	- /	11		-204	7	, 7	1.4	23	47
.7	7	2	25	-41^	-7	- /	11		-32*	8	- /	10	20	- 31^
_9	7	q	14	24*	-7	á	10	11	- 32*	-8	- /	10	4	-12*
8	- 8	ģ	4	- 3*	-8	- 8	q	21	-12*	-0-8	-0	14	5	-12"
9	8	14	20	 2*	q	8	13	5	2*	g	8	11	25	-42*
8	- 8	9	9	- 3*	8	9	10	5	-14*	10	8	11	2J 5	-15*
10	8	13	5	-14*	11	8	12	5	-19*		10	12	5	3*
8	11	12	5	-27*	8	ģ	13	5	-1*	8	-8	14	5	-23*
8	-9	14	55	-61*	9	9	14	26	- 34*	9	11	12	6	1*
9	9	12	25	7*	9	9	11	5	-33*	. 9	10	11	29	43*
10	9	13	29	- 30*	10	9	12	7	-20*	9	9	9	48	- 8*
9	9	11	17	- 33*	9	9	12	5	7*	10	11	11	6	2*
0	-1	19	12	- 30*	0	0	19	19	-5*	0	1	19	18	-9*
0	3	19	18	-22*	0	4	19	22	17*	0	5	19	5	5*
0	6	19	27	- 37*	0	7	19	41	-21*	0	10	18	43	- 37*
0	9	18	5	18*	0	8	18	6	-7*	0	4	18	5	0*
0	3	18	5	-18*	0	2	18	12	10*	0	1	18	5	14*
0	0	18	24	45	0	- 2	18	7	1*	0	- 3	18	29	7*
0	-4	18	12	21*	0	- 5	18	4	30*	0	- 5	17	5	-11*
0	-4	17	9	28*	0	- 3	17	25	- 5*	0	-1	17	10	6*
0	1	17	16	1*	0	2	17	5	-10*	0	4	17	20	45*
0	5	17	19	23*	0	6	17	5	21*	0	7	17	5	22*
0	8	17	5	12*	0	9	17	25	4*	0	10	17	33	-9*
0	12	17	2,6	-23*	0	14	16	5	4*	0	13	16	9	13*

}

•

Н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	н	к	L	10Fo	10Fc
0	12	16	5	-1*	0	11	16	5	22*	0	10	16	5	
Ő	9	16	11	- 3*	Ő	8	16	38	38*	Õ	6	16	24	1*
0	5	16	10	13*	0	0	16	5	-11*	0	-4	16	5	5*
0	- 8	16	4	12*	0	- 9	16	14	-7*	0	-10	15	4	5*
0	- 9	15	16	- 8*	0	- 8	15	4	15*	0	- 5	15	5	6*
0	-4	15	5	10*	0	8	15	5	29*	0	9	15	38	11*
0	10	15	18	-15*	0	11	15	5	1*	0	13	15	5	6*
0	14	15	11	17*	0	15	15	23	13*	14	0	15	6	-10*
0	13	14	7	17*	0	10	14	5	- 3*	0	- 8	14	4	-21*
0	-10	14	15	-20*	0	-11	14	33	11*	0	-12	13	12	14*
0	-10	13	4	10*	0	- 9	13	4	-15*	0	- 8	13	4	20*
0	13	13	15	20*	13	0	14	20	1*	13	0	16	5	-24*
12	0	17	5	4*	12	0	15	22	-1*	12	0	13	6	18*
0	-11	12	4	7*	-12	0	13	12	-19*	-11	0	14	38	-13*
-11	0	13	3	- 3*	-11	0	11	18	- 36	0	-10	11	4	18*
11	0	14	5	34*	11	0	16	25	-12*	11	0	17	21	- 3*
10	0	18	5	11*	10	0	1/	5	3*	10	0	16	5	-2*
- 10	0	11	26	-25*	-10	0	12	19	23*	-10	0	13	5	22*
- 10	0	14	10	10x	-9	0	10	22	- 3/*	-9	0	13	5	05.4
- 9	0	12	15	۲/× ۲۶۰۰	9	0	17	2 ()	9 * 5*	9	0	18	2	-25*
o o	0	19	- 10 T0	-1/*	0 0	0	12	42	224 X	0	0	10	20	- 29*
0 7	0	12	20	رد ۲۰	-0 7	0	1/	21	×رر۔ 15-	-0 7	0	14	5	11+
- /	0	17	5	۲۰ ۲۰	- /	0	17	10	1.37	6	0	10	0	24 TTv
- 6	0	15	10	-20*	6	0	17	13	- 37	- 5	0	10	3 22	-) -
-0	0	17	25	-11*	-0	0	16	5	-42*	- 5	ň	10	<u>د د</u>	- 2 *
- 5	ň	16	5	17*		õ	17	11	-16*	- 5	0	10	18	- 1 1 4
5	õ	10	5	0*	5	õ	1.8	5	21*	5	õ	17	5	- 244
4	õ	16	5	0*	-4	õ	15	26	-38*	- 4	Ő	16	5	-9*
- 4	õ	18	13	12*	- 3	ŏ	18		-17*	3	ŏ	16	5	- 34*
3	õ	17	26	-41*	3	õ	18	5	0*	2	ŏ	19	5	-4*
2	Ō	17	23	-28*	2	0	16	25	43	-2	Ō	17	21	- 34*
-2	Ō	19	24	-4*	-1	0	19		0*	-1	0	18	5	-6*
-1	Ō	17	5	-11*	-1	0	16	5	- 6*	1	0	18	5	-20*
1	0	19	22	-19*	0	0	19	5	- 5*	0	0	16	8	-11*
0	0	16	19	-11*	0	0	19	31	- 5*	1	0	19	8	-19*
1	0	18	18	-20*	-1	0	16	5	-6*	-1	0	17	5	-11*
-1	0	18	5	-6*	-1	0	19	10	0*	- 2	0	19	4	-4*
2	0	16	25	43	2	0	19	18	-4*	3	0	19	15	36
3	0	18	21	0*	3	0	16	5	- 34*	- 3	0	16	20	34*
- 3	0	18	5	-17*	- 4	0	18	4	12*	-4	0	15	18	- 38*
4	0	16	5	0*	4	0	17	12	3*	4	0	18	17	21*
4	0	19	16	9*	5	0	19	19	-24*	5	0	16	5	17*
- 5	0	15	5	-11*	- 5	0	16	25	-42*	- 5	0	17	5	-11*
- 5	0	18	4	-2*	-6	0	17	5	10*	-6	0	16	17	13*
- 6	0	15	5	19*	6	0	16	16	- 5*	6	0	18	6	-48*
7	0	16	22	11*	- 7	0	14	5	15*	- 7	0	16	26	1*

÷

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

•1

,

Н	к	L	10F0	10Fc	н	к	L	10 Fo	10Fc	н	к	L	10Fo	10Fc
		14		 21+		0	13	21		۶	0	16	5	
-о д	0	17	40	5*	-0 8	õ	19	5	-17*	9	õ	18	16	-25*
q	0	17	47 5	9*	q	õ	15	15	- 35*	-9	ŏ	12	5	27*
_ q	õ	13	19	0*	-9	Ő	15	5	32*	-10	ŏ	15	24	33*
-10	ñ	13	5	0∴ 22*	-10	õ	12	12	23*	10	ŏ	16	5	-2*
10	õ	17	5	3*	10	õ	18	13	11*	11	ŏ	17	5	-3*
11	Ő	16	12	-12*	11	Ő	15	30	47*	0	-10	11	4	18*
-11	Ő	13	16	- 3*	-11	Ō	14	5	-13*	-12	Ō	13	16	-19*
0	-11	12	4	- 7*	12	0	13	5	18*	12	0	15	29	-1*
12	0	17	26	4*	13	0	16	18	-24*	13	0	14	6	1*
0	- 8	13	4	20*	0	- 9	13	4	-15*	0	-10	13	24	10*
0	-12	13	8	14*	0	-11	14	21	11*	0	-10	14	4	-20*
0	- 8	14	17	-21*	0	- 7	14	22	- 25*	0	10	14	5	- 3*
0	12	14	5	- 35*	0	13	14	7	17*	14	0	15	6	-10*
14	0	16	25	28*	0	15	15	17	13*	0	14	15	22	17*
0	13	15	5	6*	0	11	15	50	1*	0	10	15	15	-15*
0	9	15	17	11*	0	-4	15	8	10*	0	- 5	15	18	6*
0	- 8	15	24	15*	0	-9	15	33	- 8*	0	-10	15	20	5*
0	- 9	16	19	- 7*	0	- 8	16	4	12*	0	-7	16	13	29*
0	-6	16	5	-16*	0	-4	16	22	5*	0	- 3	16	5	26*
0	0	16	38	-11*	0	5	16	5	13*	0	6	16	19	1*
0	7	16	5	43	0	9	16	5	- 3*	0	10	16	7	2*
0	11	16	5	22*	0	12	16	5	-1*	0	13	16	24	13*
0	14	16	18	4*	0	12	17	16	-23*	0	10	17	25	- 9*
0	9	17	23	4*	0	8	17	7	12*	0	7	17	5	22*
0	6	17	5	21*	0	5	17	19	23*	0	4	17	27	45*
0	2	17	5	-10*	0	1	17	25	1*	0	-1	17	27	6*
0	- 2	17	5	- 29*	0	- 3	17	37	-5*	0	- 5	17	5	-11*
0	- 7	17	18	-27*	0	- 5	18	13	30*	0	-4	18	16	21*
0	- 3	18	5	7*	0	- 2	18	5	1*	0	1	18	5	14*
0	2	18	16	10*	0	3	18	15	- 18*	0	4	18	5	0*
0	5	18	5	-14*	0	8	18	5	- 7*	0	9	18	40	18*
0	11	18	20	- 34*	0	7	19	5	-21*	0	5	19	24	5*
0	4	19	5	17*	0	3	19	5	-22*	0	0	19	5	- 5*
0	-1	19	17	- 30*	0	-2	19	24	- 30	1	5	20	22	-25*
1	4	20	5	- 5*	1	3	20	25	32*	1	2	20	6	14*
1	- 3	19	13	-16*	1	- 2	19	20	- 5*	1	-1	19	5	0*
1	1	19	26	-24*	1	2	19	5	-4*	1	3	19	5	29*
1	4	19	5	24*	1	5	19	27	5*	1	6	19	11	13*
1	7	19	11	31*	1	9	19	40	-11*	1	10	18	43	-2*
1	9	18	5	15*	1	8	18	5	11*	1	6	18	5	0*
1	3	18	21	-6*	1	2	18	5	-6*	1	-1	18	5	23*
1	-2	18	5	11*	1	- 3	18	5	- 30*	1	-4	18	4	-20*
1	- 5	18	4	31*	1	-7	17	4	-18*	1	-6	17	4	-4*
1	-4	1/	25	16*	1	- 3	17	5	-17*	1	-2	17	5	6*
1	-1	1/	21	42*	1	1	17	14	-27*	1	6	17	21	-28*
L L	1	17	5	-25*	1	9	17	18	- 25*	1	10	17	19	5*

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET 1)

Н	к	L	10Fo	10Fc	н	к	L	10Fo	10Fc	Н	к	L	10Fo	10 Fc
1	11	17	10		1	12	17	42	-6*	1	13	17	5	
ī	14	16	22	-9*	1	13	16	5	-29*	1	12	16	16	-28*
1	11	16	5	19*	1	10	16	5	-6*	1	8	16	26	7*
1	5	16	37	-9*	1	-1	16	4	12*	1	- 2	16	18	-27*
1	- 3	16	13	-10*	1	-4	16	5	5*	1	- 5	16	14	-18*
1	-7	16	12	-23*	1	- 8	16	4	-8*	1	-9	16	15	- 8*
1	-10	15	11	- 5*	1	-9	15	4	21*	1	-7	15	5	0*
1	-6	15	5	17*	1	-5	15	20	2*	1	-4	15	4	-15*
1	9	15	44	-15*	1	10	15	5	-19*	1	14	15	5	5*
1	10	10	5	18×	14	10	10	10	44*	1	14	14	49 E	-22*
1	13	14	40	۰×/۲	1	12	14	21	40*	1	11	14) 15	- 22*
1	-0	14	4	- 9×	1	-12	13	4	^ 22 *	1	-9	14	12	16+
1	-11	14	4	- 10~	1	- 12	13	18	22*	1	12	13	4 5	10*
13	- 5	16	21	38*	13	1	17	5	39*	12	1	17	5	9*
12	1	16	26	-25*	12	ī	14	6	9*	12	î	13	43	-23*
1	-9	12	4	-3*	1	-10	12	21	16*	-12	-1	12	5	17*
-12	-1	13	5	17*	-11	-1	13	11	1*	-11	-1	12	5	-11*
-11	-1	11	5	-6*	1	-10	11	18	29*	11	1	14	7	-15*
11	1	15	5	14*	11	1	16	5	- 9*	11	1	17	7	-10*
11	1	18	5	1*	10	1	18	8	13*	10	1	17	21	30*
10	1	15	26	-28*	-10	-1	12	41	-18*	-10	-1	13	18	-33*
-10	-1	15	16	4*	- 9	-1	16	16	26*	- 9	- 1	14	17	15*
- 9	-1	13	5	-11*	- 9	-1	12	12	17*	9	1	16	5	- 3*
9	1	18	23	-19*	9	1	19	5	-14*	8	1	18	5	3*
8	1	17	25	- 5*	8	1	16	5	- 32*	- 8	-1	13	16	-18*
-7	-1	17	5	-10*	-7	-1	16	6	-16*	-7	-1	15	12	-14*
7	1	16	5	0*	7	1	17	5	- 8*	7	1	18	27	38*
7	1	19	19	0*	6	1	18	5	19*	6	1	17	31	2*
6	1	16	11	8*	-6	-1	15	5	29*	-6	-1	16	32	21*
-5	-1	18	12	10*	5	1	1/	5	6*	5	1	18	16	- 2*
5	1	19	5	-12*	5	1	20	5	-10*	4	1	19) 1/	-29*
4	1	17	9	29×	4	1	10	5	-/* 17*	-4	-1	10	1.4	-12*
-4	-1 1	16	14	4^ 10÷	-4	- L 1	10	5	13+	נ- ס	-1	20	5	- 6 *
2	-1	18	5	_1*	-2	_1	17	5	12*	-2	-1	18	14	-0*
-2	-1	19	18	23*	-1	-1	19	5	-12*	-1	-1	18	5	-4*
-1	-1	16	5	-11*	1	ĩ	17	22	-27*	1	ĩ	19	12	-24*
ī	-1	19	17	0*	1	-1	18		23*	1	-1	16	5	12*
-1	1	16	22	35	-1	1	17	17	-27*	-1	1	19	5	46
-2	1	19	23	42*	-2	1	16	29	31*	2	-1	17	5	8*
2	-1	18	25	-25*	2	-1	19	12	-12*	3	-1	19	21	-18*
3	-1	18	23	-25*	3	-1	17	5	-26*	3	-1	16	5	-27*
- 3	1	17	27	- 36*	- 3	1	19	8	-1*	-4	1	18	23	7*
-4	1	17	5	23*	-4	1	15	5	29*	4	-1	16	18	1*
4	-1	19	5	- 9*	5	-1	19	5	-28*	5	-1	18	5	-9*
- 5	1	15	15	- 3*	- 5	1	16	5	5*	- 5	1	17	5	- 8*

•

Н	к	L	10Fo	10Гс	Н	ĸ	L	10Fo	10Fc	Н	K	L	10Fo	10Fc
5	1	18	6		-6	1	17	26	-35*	6	-1	19	5	-9*
7	-1	18	5	-11*	7	-1	16	5	6*	7	-1	15	29	- 3*
-7	1	15	5	-19*	- 8	1	16	45	-4*	- 8	1	14	5	6*
- 8	1	13	5	-11*	8	-1	15	19	15*	8	-1	16	5	3*
8	-1	17	38	- 5*	8	-1	18	28	51*	8	-1	19	5	17*
9	-1	18	23	-28*	9	-1	17	7	12*	9	-1	16	13	-2*
9	-1	15	5	31*	- 9	1	12	5	9*	- 9	1	14	5	-22*
- 9	1	15	5	-19*	- 9	1	16	40	-24*	-10	1	15	6	3*
-10	1	14	23	- 2*	-10	1	13	17	31*	-10	1	12	21	49*
-10	1	11	5	6*	10	-1	15	24	- <u>1</u> *	10	-1	16	5	22*
10	-1	17	5	-40*	11	-1	16	6	3*	-1	-10	11	4	37*
-11	1	14	5	1*	-12	1	13	5	1*	-1	-10	12	19	26*
-1	-9	12	18	-24*	-1	12	12	5	9*	12	-1	16	33	-24*
12	-1	17	5	2*	13	-1	16	5	-20*	13	-1	15	46	-10*
-1	13	13	21	27*	-1	12	13	5	-11*	-1	- 8	13	4	30*
-1	- 9	13	22	7*	-1	-11	13	4	5*	-1	-12	13	13	-26*
-1	-11	14	4	8*	-1	-10	14	4	20*	-1	- 9	14	24	17*
-1	- 6	14	23	- 7*	-1	10	14	16	1*	-1	11	14	21	-29*
-1	13	14	20	-1*	-1	14	14	26	-37*	-1	14	15	5	12*
-1	12	15	9	- 6*	-1	11	15	22	-13*	-1	10	15	5	-23*
-1	9	15	25	12*	-1	8	15	5	10*	-1	7	15	5	-33*
- 1	- 5	15	23	7*	-1	- 9	15	16	-11*	-1	-10	15	4	9*
-1	- 9	16	4	0*	-1	- 8	16	15	9*	-1	- 5	16	21	-18*
-1	-4	16	16	- 7*	-1	- 2	16	18	18*	-1	-1	16	5	-11*
- 1	4	16	21	-13*	-1	6	16	27	-35*	-1	7	16	26	-26*
-1	8	16	5	-10*	-1	9	16	5	-23*	-1	10	16	28	34*
-1	12	16	38	-4*	-1	13	16	17	13*	-1	12	17	22	-36*
-1	11	17	5	-10*	-1	9	17	27	39*	-1	8	17	5	-9*
- 1	/	1/	18	23*	-1	5	17	5	12*	-1	4	17	5	-12*
- 1	3	17	5	6*	-1	2	17	21	2*	-1	1	17	17	-27*
-1	- 2	1/	26	- 30*	-1	- 3	17	5	-2*	-1	-4	17	25	-4*
- T	- 5	1/	10	- 9*	-1	-/	1/	16	13*	-1	-4	18	9	-20*
- L	- 5	18	5	-1*	-1	-1	18	5	-4*	-1	3	18	7	-9*
- L	4	18	5	-10*	-1	5	18	28	44*	-1	1	18	25	-24*
- L	8	18	5	-28*	-1	9	18	13	38*	-1	10	18	5	- 3*
- L	8 0	19	2	-14*	-1	6	19	5	- 8*	-1	4	19	5	-9*
-1	2	19	12	- /*	-1	-1	19	6	-12*	-1	-2	19	5	38*
- 2	2	19	5	34*	-2	5	19	46	- 6*	-2	4	19	34	-8*
- 2	2	19	2	8*	-2	8	18	5	-14*	-2	5	18	5	0*
- 2	د ح	10	21	6 *	-2	-2	18	2	6*	-2	-/	1/	15	25*
- 2	-0	17		9×	- 2	-4	17	46	38*	-2	- 3	1/	15	-13*
- 2	- 2	17	2	کہ ∧∩	-2	2	17	2	-12*	-2	4	17	5	-22*
- 2	ס נו	14	5 11		- 2	11	1/	20	1/× //×	-2	11	1/	26	42*
- 2	7. 7.2	10	10	- 20×	- 2	ء ۲۲	10	27	40×	-2	/	10	5	6*
- 2	0	14	73	- JO* 174	- 2	כ י	10	21 E	- 30×	-2	Ž	10	12	11*
- 2	- 2	16	10	エ/* _ つユ	- 2	- 3	10) 5	14× 0-1	-2	-4	10	21	6*
- 4	-)	TO	14	- 2 -	- 2	- 0	TO	2	0*	- 2	-/	τo	τ9	T0*

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

1

Н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	Н	ĸ	L	10Fo	10Fc
- 2	- 8	16	4	-23*	- 2	-10	15	4	9*	-2	-9	15	4	11*
-2	- 6	15	12	3*	- 2	- 5	15	5	17*	- 2	6	15	5	- 37
- 2	7	15	16	-1*	-2	9	15	28	-1*	-2	10	15	19	- 38*
- 2	11	15	5	-8*	- 2	12	15	16	4*	- 2	14	15	5	-29*
14	- 2	15	16	-2*	- 2	14	14	5	- 26*	- 2	13	14	18	28*
- 2	12	14	5	24*	- 2	11	14	5	15*	- 2	10	14	24	13*
- 2	- 6	14	22	-25*	- 2	- 7	14	4	- 22*	- 2	-10	14	4	- 3*
- 2	-11	14	20	-12*	- 2	-12	13	33	-15*	- 2	-9	13	20	18*
- 2	- 7	13	4	5*	- 2	11	13	5	14*	- 2	12	13	5	1*
- 2	13	13	14	18*	13	- 2	14	29	31*	13	- 2	15	5	9*
13	- 2	16	5	17*	12	- 2	16	5	-2*	12	- 2	15	5	23*
- 2	12	12	11	-12*	- 2	-10	12	18	30*	-12	2	12	5	14*
-12	2	13	15	26*	-11	2	14	5	-18*	-11	2	13	24	40*
-11	2	11	5	-7*	- 2	-10	11	12	1*	11	-2	13	5	-24*
11	- 2	15	22	6*	11	- 2	16	35	22*	10	- 2	17	25	-12*
10	- 2	16	20	52*	10	- 2	15	15	-13*	10	- 2	14	22	-21*
-10	2	12	28	31*	- 9	2	16	5	3*	- 9	2	15	18	21*
-9	2	14	28	-26*	-9	2	12	5	-2*	9	- 2	14	5	8*
9	- 2	15	5	-22*	9	- 2	16	5	17*	9	- 2	18	5	-15*
8	- 2	18	16	30*	8	- 2	17	19	0*	8	- 2	16	9	-11*
- 8	2	13	15	6*	- 8	2	14	12	44*	- 8	2	15	5	26*
- 8	2	16	25	10*	-7	2	17	10	- 32*	- 7	2	15	5	- 3*
-7	2	14	5	-13*	7	- 2	15	5	-13*	7	- 2	16	5	10*
7	-2	17	10	-32*	6	- 2	19	12	- 7*	6	- 2	18	5	- 20*
6	- 2	16	21	36*	6	- 2	15	5	3*	- 6	2	15	5	-4*
-6	2	16	5	3*	- 5	2	17	15	- 5*	- 5	2	16	5	11*
5	- 2	16	39	-11*	5	- 2	19	16	-11*	4	- 2	19	5	-26*
4	- 2	18	19	28*	4	- 2	17	5	-19*	-4	2	15	23	31*
-4	2	16	21	-23*	-4	2	18	26	9*	- 3	2	19	5	-7*
-3	2	18	5	8*	3	- 2	16	6	- 33*	3	-2	17	5	-13*
3	-2	18	23	4*	3	-2	19	22	- 8*	2	-2	19	10	26*
2	-2	18	32	14*	2	- 2	17	5	21*	-2	2	16	5	11*
-2	-2	18	12	6*	-2	-2	1/	12	0*	-2	-2	16	13	17*
2	2	18	12	30*	2	2	20	5	11*	3	2	20	5	-21*
3	2	19	5	-32*	3	2	18	5	- 1*	-3	-2	15	13	-26*
-3	-2	16	13	-31*	- 3	-2	1/	5	- /*	- 3	-2	18	5	-11*
-4	-2	18	5	-4*	-4	-2	1/	1	-14*	-4	-2	16	16	-31*
4	2	18	19	- 5*	4	2	20	30	- 20*	5	2	19	25	-4*
5	2	18	2	4*	- 5	-2	14	5	6×	- 5	-2	16	5	4*
-5	-2	1/	5	-14*	-6	-2	17	10	-6*	-6	-2	10	14	25*
-6	-2	12	21	104	5	2	1/	2	5*	6	2	19	5	13*
b ,⊸	2	20	3/	1.6.4	/	2	19	2	- 54*	/	2	10	5	-15*
- /	-2	13	5	1.0*	-/-	-2	14	5	-15*	-/	-2	12	5	-12*
-/	- 2	10	14	14*	-/	-2	12	1/	2×	- 8	-2	10	12	11*
- 8	-2	14	2	יר <i>נ</i> . ירני	-8	-2	10	JU -	1,0 * ⊃1	8	2	1/	ر بر	** مەن
8	2	10	2	-/×	8	2	17	2	- J L	9	2	15	24	28*
9	2	τō	20	~1/ *	9	2	T/	2	41*	9	2	13	2	-4*

"The set

あってきろう したまちょうが ダイント ひとうちまんかい ちちまち ち

in the new parts

the second second

Put 1

24

こうちょうちょう ちょうしょう ひょうちょうしょう

「あの」には日本

SWO BILLY

「日本にない」ないで、日本になってい

こうち なぼう していつてい

;

;

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

۶ť

. ____

н	к	L	10Fo	10Fc	Н	К	L	10Fo	10Fc	Н	к	L	10Fo	10Fc
_ 9		12	11	17*			15	5	7*	-10	-2	13	37	10*
- 10	-2	12	5	8*	-10	-2	11	5	-17*	10	2	17	5	-14*
10	2	18	25	-27*	10	2	19	11	23*	11	2	18	5	-10*
11	2	16	22	- 7*	11	2	15	6	32*	11	2	14	43	-13*
-11	-2	11	25	15*	-11	-2	12	5	26*	-11	-2	14	5	23*
- 1.2	- 2	13	6	17*	-12	- 2	12	5	- 20*	2	-11	12	4	- 8*
2	-10	12	4	-18*	2	- 9	12	19	-27*	12	2	14	6	5*
12	2	15	6	-20*	12	2	16	6	12*	12	2	17	14	26*
12	2	18	35	5*	13	2	17	6	8*	13	2	15	6	8*
13	2	14	23	-15*	2	13	13	7	45*	2	- 8	13	39	- 5*
2	~11	13	11	- 31*	2	-12	13	15	-14*	2	-10	14	4	14*
2	- 8	14	4	16*	2	-7	14	4	-24*	2	11	14	28	45*
2	13	14	5	13*	2	14	14	22	-19*	14	2	15	2.4	29*
14	2	16	6	- 8*	2	15	15	5	3*	2	14	15	27	18*
2	12	15	12	-7*	2	10	15	21	-14*	2	9	15	43	-41*
2	-9	15	18	20*	2	-10	15	20	16*	2	-9	16	15	2*
2	- 8	16	4	-24*	2	-7	16	10	-17*	2	-6	16	5	2*
2	- 5	16	5	-13*	2	-4	16	12	27*	2	- 3	16	23	32*
2	-2	16	5	35*	2	6	16	5	25*	2	7	16	5	-14*
2	10	16	6	15*	2	11	16	35	-1*	2	13	16	6	-4*
2	14	16	28	24*	2	12	1/	22	- 8*	2	11	17	6	-14*
2	8	17	32	-14*	. 2	1	1/	20	- 22*	2	3	1/	2/	- 38*
. Z	2	17	2	30*	2	-2	17	5	21*	2	- 3	1/	26	- 10*
2	- 2	1/	25	23*	2	-0	1/	10	25*	2	- 5	18	2	- 2*
2	- 2	10	2.5	14× 0.5	2	4	10	23	-10×	2	10	10	2	8*
2	11	10	15	ンナ O×	2	10	10	10	01 20x	2	10	10	0	E-r Tx
2	11	10	6	× 	2	12	10	20	-2*	2	10	19	23	-) *
2	7	10	23	- 2 2 *	2	0 5	10	24	-)~ 	2		10	0	- 9× /
2	2	10	25	14*	2	ר ר	10	24 5	240	2	4	73) 5	4 ^ 1 ነ ታ
2	2	20	5	-10*	2	-2	20	5	_20*	2	۲ ۲	20		10.4
2	6	20	5	- 6*	2 3	6	20	5	-25*	2	5	20	5	-13+
3	4	20	7	- 8*	3	ર	20	5	-10*	ר ז	-3	19	5	25
3	3	19	5	-25*	3	4	19	14	26*	3	- 5	19	25	- 0*
3	6	19	30	-48*	3	7	19	29	-26*	3	8	19	6	10*
3	9	19	8	-13*	3	10	19	6	-9*	3	12	18	6	3*
3	11	18	20	- 34*	3	-9	18	6	6*	3		18	20	5×
3	6	18	5	-18*	3	-4	18	5	- 6*	3	-5	18	5	- 28*
3	-7	17	22	16*	3	-6	17	5	-1*	3	-5	17	11	2*
3	-4	17	19	8*	3	- 3	17	5	-19*	3	3	17		-29*
3	4	17	13	12*	3	7	17	6	- 7*	3	8	17	6	25*
3	10	17	6	2*	3	12	17	47	25*	3	15	16	7	-12*
3	14	16	6	27*	3	12	16	25	-6*	3	11	16	6	3*
3	9	16	6	27*	3	6	16	22	-17*	3	- 5	16	15	
3	- 6	16	5	-1*	3	- 9	16	19	- 3*	3	- 9	16	15	-18*
3	-10	15	24	19*	3	-9	15	18	-29*	3	-7	15	5	9*
3	- 6	15	20	28*	3	-4	15	5	4*	3	10	15	25	-20*

HOP TAL FOR "

ŝ

٠

ţ

. .

и 5

ななななななななななない、 みまっちん かぶんかん ざいたい だいたん たいしょう たいしょう ひんしょう ひんかい ひんない ふしした ニー・ストレー

18 - 1 - 18 HOURS

Н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc
	11	15	18		3	12	15	6	-13*	3	13	15		
3	14	15	21	15*	3	15	15	6	-10*	15	3	16	6	-20*
14	3	16	6	-13*	14	3	15	6	0*		13	14	22	-44*
3	12	14	10	-10*	3	11	14	22	-25*	3	-7	14	6	-11*
3	-9	14	21	0*	3	-10	14	18	27*	3	-11	14	20	3*
3	-12	13	12	4*	3	-10	13	4	28*	3	-7	13	4	30*
3	12	13	18	- 3*	13	3	15	6	-12*	13	3	16	6	3*
13	3	17	6	- 9*	12	3	18	8	19*	12	3	17	29	34*
12	3	16	6	- 2*	12	3	15	6	-10*	12	3	13	30	27*
3	-10	12	4	- 9*	3	-11	12	4	-12*	-11	- 3	14	25	49*
-11	- 3	11	12	2*	11	3	15	30	*5ر	11	3	16	6	- 35*
11	3	17	6	-24*	10	3	19	12	15*	10	3	18	6	-17*
-10	- 3	11	5	4*	-10	- 3	14	5	25*	- 10	- 3	15	5	-28*
- 9	- 3	15	24	-29*	- 9	- 3	13	5	15*	-9	- 3	12	24	-25*
9	3	15	5	15*	9	3	16	6	13*	9	3	17	1.9	-4*
9	3	18	17	-24*	9	3	19	5	28*	8	3	19	5	7*
8	3	17	5	25*	8	3	16	5	21*	- 8	- 3	12	5	-15*
- 8	- 3	13	5	10*	- 8	- 3	14	5	4*	- 8	- 3	15	5	-9*
- 8	- 3	16	19	-9*	-7	- 3	16	5	-4*	- 7	- 3	14	17	24*
7	3	16	41	- 31*	7	3	17	5	-17*	7	3	18	5	19*
7	3	19	5	7*	6	3	20	5	-13*	6	3	19	19	1.6*
6	3	16	5	0*	-6	- 3	16	23	26*	- 6	- 3	17	8	4*
- 5	- 3	17	5	2*	- 5	- 3	16	5	6*	- 5	- 3	15	19	-12*
5	3	1/	5	- 33*	5	3	19	5	27*	5	3	20	20	38*
4	3	20	22	22*	4	3	19	14	10*	4	3	18	5	- /*
4	3	1/	13	33*	-4	-3	15	40	39*	-4	- 3	16	12	12*
-4	-3	1/	5	6*	-4	-3	18	20	21*	- 3	-3	18	24	- 30*
- 3	- 3	1/	5	/*	<u>د</u> -	- 3	15	5	20*	3	3	1/	6	-29*
3	3	18	20	-40*	3	3	19	5	-25*	3	3	20	15	-12*
3	- 3	18	5	20	3	- 3	1/	14	-19*	3	- 3	16	5	20*
- 3	3	10	2	- 6×	- 3	2	10	2	12*	- 3	2	19	6 17	0*
-4	3	10	5	-4*	-4	ز د	1/	2	8*	4	ز - م	18	14	8*
4	- 3	15	2	- /×	2	- 5	10	23	25*	5	- 5	11	14	- 29*
- 5	ა ი	10	29	×/ز ۱۱۰		נ י	10	01 01	×10× 1⊥	- 5	נ ר	10) E	ст ТОж
- 5	נ 2	15	0 5	× ۲۱ ۲۱×	-0	נ י	1/	17	11.u	- 6	נ 2	10	C 24)× (+
-0	נ 2	10	26	24× 12-	ס- ר	ر د	10	11	11^ 7.	0	-)	17	24 E	-0^ 1/
0 7		16	20	10× 10×	י ר	-) 2	10	11	20+	7	ر۔ د	1/	נ ר	-14*
-7	- 2	15	5	20-	י - ר	ر د	12	5	- JU- 11-	- /	2	17	/ 5	-13-4
-/	2	16	25	- 20 ^	- /	2	10	5	-11^ 1+	- /	2	12	ך 21	- 1 2 4
-0	2	14	25	- 20+	-0-0	_ 3	15	5	-1^ .10+	-0		17	21	244
o Q	- 2	19	5	20~ 20*	0 Q	- 3	16	18	-33+	0		14	25	- 244
0 _ 0	- J 2	12	ر 21	22° 214	2	د- د	17	10	+02 +02	ر ۵_	د . ر	14	14	20 4
- 10	2	15	10	 	_10	2	14	20	_7 4	-9	2	17	20	<u>د ۲</u>
10	ر ج	14	4	22 ° 28*	10	ر د ـ	15	15	-/* _19*	10	د د_	16	15	36*
10	- 3	17	23	36*	11	_ 7 _ 7	17	5	-19*	11	- 2	16	1.J 5	21*
11	-3	15	6	-4*	11	- 3	14	14	- 3*	- 3	-10	11	ر د	1*
***	-		•	-	~ *			- *		3		**	-	• · ·

1

4

Н	K	L	10Fo	10Fc	Н	K	L	10F0	10Fc	н	ĸ	L	10Fo	10Fc
-11	3	11	5	-14*	-11	3	12	5	6*	-11	3	13	5	-23*
-11	3	14	5	-8*	-12	3	13	19	6*	-12	3	12	5	27*
- 3	-10	12	23	3*	- 3	- 8	12	4	-13*	- 3	11	12	5	-4*
- 3	12	12	9	- 5*	12	- 3	13	47	- 30*	12	- 3	14	6	-20*
12	- 3	15	27	-13*	13	- 3	15	6	-41*	13	- 3	14	18	10*
- 3	13	13	5	2*	- 3	12	13	20	-40*	- 3	10	13	5	-6*
- 3	-9	13	29	-40*	- 3	-12	13	4	5*	- 3	-11	14	20	-9*
- 3	~ 9	14	23	13*	- 3	- 7	14	19	23*	- 3	- 5	14	37	1*
- 3	10	14	5	15*	- 3	11	14	5	-6*	- 3	12	14	25	43*
- 3	14	14	5	-12*	- 3	13	15	5	- 8*	- 3	11	15	5	- 3*
- 3	7	15	17	1*	- 3	6	15	5	-15*	- 3	4	15	15	5*
- 3	- 3	15	9	20*	- 3	-4	15	5	11*	- 3	- 5	15	5	5*
- 3	- 6	15	25	8*	- 3	-7	15	5	-1*	- 3	- 8	15	5	6*
- 3	-9	15	6	22*	- 3	- 8	16	4	-19*	-3	-7	16	5	-4*
- 3	-6	16	25	-23*	- 3	-4	16	5	9*	-3	- 3	16	5	16*
- 3	3	16	5	-6*	- 3	5	16	21	18*	-3	6	16	11	-6*
- 3	9	16	23	-33*	- 3	11	10	5	*()	- 3	12	16	5	-13*
- 3	11	1/	5	8× 10-		10	17	20	-13*	- 3	8	17	5	-4*
- 5	2	1./	4 c	18*	- 3	2	1/	9	- 33* 1.4	- 3	4	1/	26	11*
د- د	- 3	1/ 10) 5	/★ 11₊	-)	- 5	10	20	× 	- 3	נ ד	10	23	12*
-)	4 5	10	16	-11*		6	10	29	-21*	-)	2	10	ZZ 5	0 * 10*
 /.	0 6	10	10	. 20+	- 5	4 5	19	2	10+	- 5	ر ۱/	17	16	24
-4	5	17	13	-20*	-4	6	17	ン 5	1.4	-4	-4	17	10	Z^ 1∳
-4	8	17	15	6* T2*	-4	q	17	5	1*	-4	10	17	5	_1*
-4	11	16	16	8*	-4 -4	10	16	6	-4*	-4	7	16	5	0*
-4	6	16	29	- 2*	-4	5	16	5	6*	-4	4	16	5	0 7*
- 4	-4	16	21	- 33*	-4	-7	16	4	34*	-4	- 8	16	4	-9*
-4	- 9	15	4	4*	-4	- 8	15	23	-1*	-4	-7	15	19	14*
-4	- 5	15	25	15*	-4	-4	15		-22*	-4	5	15	5	10*
-4	6	15	5	-24*	-4	8	15	38	-14*	-4	10	15	8	6*
-4	11	15	17	-13*	-4	13	15	33	19*	-4	14	14	4	-2*
-4	13	14	5	33*	-4	12	14	. 24	-27*	-4	10	14	23	-6*
-4	-4	14	41	-33	-4	- 5	14	19	-28*	-4	- 6	14	5	-13*
-4	- 7	14	5	4*	-4	- 8	14	4	-20*	-4	- 9	14	27	-16*
-4	-10	14	25	-19*	-4	-11	14	37	4*	-4	-12	13	4	-1*
-4	-10	13	16	20*	-4	- B	13	28	-40*	-4	-7	13	14	-1*
-4	- 6	13	20	24*	-4	9	13	10	-10*	-4	11	13	6	-13*
-4	13	13	16	- 3*	13	-4	14	21	30*	13	-4	15	5	-7*
12	- 4	13	18	-6*	-4	12	12	5	27*	-4	- 8	12	10	-33*
-4	- 9	12	4	-19*	-12	4	12	5	-17*	-12	4	13	15	12*
-11	4	14	5	-1*	-11	4	13	23	-11*	-4	-10	11	8	- 8*
-4	- 9	11	18	18*	11	-4	12	6	-17*	11	-4	14	28	4*
11	-4	15	13	19*	11	-4	16	16	20*	10	-4	17	5	19*
10	-4	16	5	- 5*	10	-4	15	5	-28*	10	-4	14	5	2*
-10	4	11	5	14*	-10	4	12	5	-1*	-10	4	13	5	17*
-10	4	14	5	23*	-10	4	15	5	-6*	- 9	4	15	22	<u>~</u> 30*

* · *

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET 1)

н	к	L	10Fo	10Fc	Н	K	L	10Fo	10Fc	н	К	L	10Fo	10Fc
-9	4	14	5	23*	- 9	4	12	19	-18*	9	-4	14	16	15*
9	-4	17	5	6*	8	-4	16	11	-4*	- 8	4	13	13	9*
- 8	4	14	5	- 8*	- 8	4	16	28	2*	-7	4	17	5	19*
- 7	4	15	5	-16*	- 7	4	14	19	-34*	7	-4	15	26	46*
7	-4	17	13	-14*	7	-4	18	16	-7*	6	-4	18	24	-26*
6	-4	17	15	- 5*	6	-4	16	10	- 3*	6	-4	15	5	-5*
- 6	4	14	45	25*	- 6	4	15	26	16*	- 6	4	1.6	5	7*
- 6	4	17	30	- 6*	- 5	4	17	11	1*	- 5	÷	16	5	-19*
5	-4	15	19	27*	5	-4	16	5	5*	5	- 4	17	23	-32*
5	-4	18	20	-14*	4	-4	18	5	15*	4	- 4	17	5	-25*
-4	4	16	5	7*	- 4	4	17	5	21*	- 4	4	18	9	-9*
- 4	-4	17	20	2*	4	4	17	5	19*	4	4	18	5	39
4	4	19	5	24*	4	4	20	5	11*	5	4	20	5	-4*
5	4	19	5	5*	5	4	18	5	-10*	- 5	-4	14	5	-25*
- 5	-4	15	5	-18*	- 5	-4	16	5	- 3*	- 5	-4	17	21	-21*
- 6	-4	17	11	4*	- 6	-4	16	5	2*	- 6	-4	15	25	-12*
6	4	17	5	-28*	6	4	18	5	18*	6	4	19	5	17*
6	4	20	20	- 38*	7	4	20	4	-15*	7	4	19	S	-6*
7	4	16	23	-28*	-7	-4	13	5	1*	- 7	-4	15	5	-14*
- 8	-4	16	14	- 33*	- 8	-4	15	5	20*	- 8	-4	14	3	10*
8	4	16	5	13*	8	4	18	5	10*	8	4	19	7	-43*
9	4	19	5	-4*	9	4	17	5	0*	9	4	16	13	-33*
- 9	-4	12	41	16*	-9	-4	13	5	-4*	- 9	-4	14	37	22*
- 9	-4	15	18	15*	-10	-4	13	5	20*	-10	-4	12	5	-11*
-10	-4	11	10	23*	10	4	15	7	-10*	10	4	16	5	- 22*
10	4	17	6	-12*	10	4	18	5	22*	10	4	19	27	17*
11	4	18	29	53*	11	4	16	6	- 20*	11	4	15	15	-10*
L,	- 10	11	19	-15*	-11	-4	11	5	- 7*	-11	-4	14	16	2*
-12	- '+	12	5	17*	4	-10	12	8	-14*	4	-9	12	4	3*
12	4	16	6	-18*	12	4	17	20	37*	12	4	18	10	- 22*
13	4	17	29	-2*	13	4	16	6	23*	13	4	15	26	-29*
4	13	13	6	29*	4	- 8	13	13	1*	4	-9	13	8	- 3*
4	-10	13	23	-25*	4	-11	13	17	32*	4	- 10	14	23	-25*
4	- 8	14	24	-27*	4	-7	14	4	-18*	4	-6	14	10	-15*
4	13	14	24	- 30*	14	4	15	23	35*	14	4	16	6	18*
14	4	1/	5	-1*	15	4	16	20	2*	4	15	15	14	14*
4	13	15	18	- 3*	4	12	15	6	24*	4	10	15	29	-27*
4	9	15	21	-15*	4	- 5	15	24	-25*	4	-6	15	5	4*
4	-8	15	20	19*	4	-9	15	4	-19*	4	-10	15	14	-1*
4	- 8	16	23	37*	4	-6	16	17	-11*	4	- 5	16	5	4*
4	12	16	6	5*	4	13	16	13	15*	4	14	16	6	-9*
4	15	16	5	-21*	4	13	17	22	-17*	4	12	17	6	22*
4	11	17	8	-23*	4	9	17	23	-10*	4	8	17	6	7*
4	6	17	19	-21*	4	4	17	9	19*	4	-4	17	5	-25*
4	- 5	17	13	14*	4	-6	17	4	- 30*	4	-7	17	4	-23*
4	-5	18	4	12*	4	-4	18	5	15*	4	5	18	26	-11*
4	7	18	21	-16*	4	8	18	6	13*	4	10	19	6	12*

..

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

٠

.

1

,

1

الأرب بي من من من من من

H	к	L	10Fo	10Fc	н	К	L	10Fo	10Fc	Н	к	L	10Fo	10Fc
	 Q	19	7		4	8	19	29	27*	4	7	19	12	26*
4	í.	20	13	11*	4	5	20	5	-6*	4	6	20	24	37*
5	7	20	5	9*	5	6	20	15	37*	5	5	19	23	-26*
5	6	1.9	10	28*	5	8	19	22	4*	5	9	19	10	-21*
5	10	19	27	33*	5	12	18	6	15*	5	10	18	11	20*
5	9	18	39	- 6*	5	8	18	6	2*	5	7	18	22	18*
5	6	18	5	-20*	5	5	18	17	-25*	5	-7	17	22	-35*
5	- 6	17	34	- 5*	5	- 5	17	8	15*	5	5	17	15	-22*
5	6	17	5	-12*	5	7	17	6	- 3*	5	8	17	6	-24*
5	9	17	21	-15*	5	10	17	25	-1*	5	11	17	6	-14*
5	12	17	6	-4*	5	13	17	6	-11*	5	14	17	25	-12*
5	15	16	16	-21*	5	14	16	6	-10*	5	13	16	25	-24*
5	11	16	30	-23*	5	10	15	6	24*	5	- 5	16	5	16*
5	-7	16	4	-17*	5	- 8	16	4	10*	5	-9	15	21	13*
5	- 8	15	24	17*	5	-7	15	5	16*	5	-6	15	5	- 8*
5	- 5	15	12	-14*	5	10	15	27	34*	5	12	15	6	-9*
5	13	15	6	-18*	5	15	15	6	6*	14	5	17	25	-25*
14	5	16	6	-4*	5	14	14	30	19*	5	13	14	6	1*
5	-/	14	12	21*	5	- 8	14	4	10*	5	-10	14	29	11*
5	-12	13	4	31*	5	-9	13	8	19*	5	12	13	5	21*
5	13	13	6	-18*	13	2	12	6	17.4	13	2	1/	10	-16*
12	2	12	29	-42*	12	2	1/	26	1/*	12	2	10	6	3× 104
17) 11	10	6	יאכ 1 דיג	2	- 8 c	12	4 c	40× วาษ	11	- 9	12	10	12*
11	- 11	11	4 5	1/*	-11	- 5	11	5	-22*	-11	-)	11	12	- <u>)</u> ★ 2/.u
-11	-)	14	20	11~	11	-10	15	4	/^ 124	ر 11	- 9	14	15	× 24
11	5	17	20	11*	11	5	19	20	10 4	10	2	10	42	×ر س.ب
10	5	19	20	18*	10	ך ב	17	15	- 4*	- 10	.5	10	20	24^
_10	-5	11	5	- 30*	.10	-5	12	23	-40	-10	-5	14	1/ 5	- 224
- 10	- 5	15	12	20*	-10	- 5	12	25	- J. 11*	-10	- 5	16	20	- 2 2 *
q	5	17	6	12*	-) Q	- 5	18	30	-45*	2 2	5	17	29	40 ²
8	5	16	5	6*	- 8	-5	14	27		-7	-5	16	16	-16*
-7	-5	15	5	1*	-0	- 5	16	5	- J.*	- / 7	- 5	10	5	-10~
7	5	20	5	-2*	6	5	20	5	-20*	6	5	19	43	17*
6	5	18	5	33*	6	5	16	16	-33*	-6	-5	14		10*
- 6	- 5	15	19	-5*	-6	-5	16	5	31*	-5	-5	17	18	-22*
- 5	- 5	16	17	27*	- 5	-5	14	20	-1*	-5	-5	13	18	38
5	5	18	23	-25*	5	5	19	23	-26*	5	5	20	13	1*
5	- 5	18	22	23	5	- 5	17	5	15*	5	- 5	16	-5	- 16*
5	- 5	15	5	-14*	- 5	5	14	12	-14*	- 5	5	15	14	-7*
- 5	5	16	5	-22*	-5	5	17	20	15*	- 5	5	18	5	9 *
- 6	5	17	5	-35*	-6	5	16	17	-26*	6	- 5	14	13	-9*
6	- 5	15	5	-21*	6	- 5	16	5	1.0*	7	- 5	17	8	8*
7	- 5	16	5	30*	7	- 5	15	18	-24*	-7	5	13	27	39*
- 7	5	14	28	-35*	-7	5	15	23	25*	-7	5	16	24	34*
- 8	5	15	17	9*	- 8	5	13	5	19*	-8	5	12	4	6*
8	- 5	14	21	-10*	8	- 5	15	5	27*	8	- 5	17	25	-17*

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

Н	к	L	10Fo	10Fc	н	К	L	10Fo	10Fc	н	к	L	10Fo	10Fc
9	- 5	16	12	-20*	9	- 5	15	5	23*	9	- 5	13	13	-4*
-9	5	12	15	- 7*	-9	5	13	5	-12*	-9	5	14	5	-23*
-9	5	15	11	-21*	-10	5	14	5	- 3*	-10	5	13	26	33*
10	- 5	12	5	-24*	10	- 5	13	5	4*	10	- 5	14	6	-6*
10	- 5	16	5	-9*	11	- 5	15	48	-7*	11	- 5	13	5	-18*
11	- 5	12	25	0*	- 5	11	11	19	-14*	-11	5	12	5	9*
-11	5	13	5	9*	-11	5	14	4	-12*	-12	5	13	4	2*
-12	5	12	5	-26*	- 5	-10	12	26	17*	- 5	- 9	12	25	41*
- 5	- 8	12	24	3*	- 5	-7	12	23	- 36	- 5	10	12	18	-28*
12	- 5	13	19	-26*	12	- 5	14	37	-7*	13	- 5	14	5	22*
- 5	13	13	4	-21*	- 5	10	13	21	24*	- 5	9	13	5	-18*
- 5	8	13	18	47*	- 5	-7	13	17	- 7*	- 5	- 8	13	21	-19*
- 5	-9	13	13	29*	- 5	-10	13	4	29*	- 5	-11	13	4	13*
- 5	-10	14	4	4*	- 5	- 9	14	4	18*	- 5	-7	14	5	-48*
- 5	- 5	14	5	-1*	- 5	5	14	4	-14*	- 5	8	14	17	6*
- 5	9	14	5	-11*	- 5	13	14	4	- 3*	- 5	12	15	4	10*
- 5	11	15	11	-22*	- 5	10	15	5	- 5*	- 5	9	15	29	-14*
- 5	6	15	17	- 5*	- 5	5	15	5	-7*	- 5	- 6	15	5	9*
- 5	-9	15	14	12*	- 5	-7	16	4	8*	- 5	5	16	5	-22*
- 5	6	16	14	-20*	- 5	7	16	7	-22*	- 5	9	16	5	10*
- 5	10	16	8	4*	- 5	8	17	5	2*	- 5	7	17	12	17*
- 5	5	17	5	15*	- 6	6	17	5	- 8*	- 6	9	16	32	-13*
- 6	8	16	4	4*	- 6	7	16	35	- 20*	-6	6	16	16	- 21*
- 6	-6	16	4	9*	-6	8	15	5	-6*	-6	9	15	4	9*
-6	10	15	16	- 8*	- 6	12	14	4	- 5*	-6	11	14	4	18*
- 6	10	14	16	29*	-6	9	14	5	12*	- 6	6	14	5	9*
-6	-7	14	27	28*	- 6	- 9	14	19	12*	- 6	-10	14	24	-16*
- 6	-11	13	4	- 8*	- 6	-10	13	14	-16*	-6	- 9	13	14	- 18*
- 6	- 8	13	17	31*	- 6	- 6	13	10	16*	- 6	8	13	5	15*
-6	9	13	23	-21*	- 6	10	13	12	-18*	-6	13	13	4	-2*
12	-6	13	5	-21*	- 6	12	12	25	45*	-6	9	12	23	8*
-6	-7	12	47	-34*	- 6	- 8	12	10	8*	-6	- 9	12	4	7*
-6	-10	12	13	-31*	- 6	-11	12	9	- 35*	-12	6	12	16	-4*
-11	6	13	10	8*	-11	6	11	23	28*	-6	- 10	11	4	-21*
-6	-9	11	10	12*	11	-6	12	5	-1*	11	-6	14	19	-31*
10	-6	15	18	-6*	10	-6	12	5	1/*	10	-6	11	23	- 10*
-10	6	10	43	-29*	- 10	6	12	19	/*	- 10	6	13	4	- 30*
-10	6	14	13	-10*	-9	6	15	13	11*	-9	6	14	12	()*
-9	6	13	25	- 30*	-9	6	11	20	0*	9	-6	12	14	8*
9	-6	13	5	-4*	9	-6	15	32	21*	9	-6	16	5	-10*
8	-6	16	6	- 3*	8	- 6	15	25	-6*	8	- 5	12	33	-9*
- 8	6	13	20	12*	- 8	6	14	17	14*	-8	6	15	5	16*
- 8	6	16	4	22*	-7	6	16	5	-16*	-7	6	15	29	31*
-7	6	13	4	-19*	7	- 6	14	10	-17*	7	-6	16	5	6*
6	-6	17	16	31*	6	- 6	15	12	-16*	-6	6	14	5	9*
-6	6	15	5	31*	-6	6	16	30	-21*	-6	6	17	5	-8*
- 6	-6	16	4	9*	6	6	17	5	29*	6	6	18	5	3*

.

.

ł

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

Н	к	L	10Fo	10Fc	н	к	L	10 Fo	10Fc	H	ĸ	L	10Fo	10Fc
	6	19	5	30*	6	6	20	5	-13*	7	6	19	17	- 37*
7	6	18	8	-21*	7	6	17	18	- 32*	7	6	16	7	-5*
-7	- 6	12	21	-13*	- 7	- 6	13	5	0*	-7	- 6	14	5	10*
-7	- 6	15	8	-28*	- 8	- 6	14	5	1*	- 8	- 6	13	12	28*
- 8	- 6	11	17	23*	8	6	16	24	34*	8	6	17	31	-1*
8	6	18	9	-21*	8	6	19	22	6*	9	6	18	24	- 7*
9	6	17	6	0*	- 9	- 6	12	5	24*	- 9	- 6	13	23	12*
-10	- 6	14	6	-1*	-10	- 6	13	5	22*	-10	- 6	10	5	20*
10	6	16	17	18*	10	6	18	6	11*	10	6	19	19	-1*
11	6	1.8	6	6*	11	6	17	6	-26*	11	6	15	7	17*
11	6	14	27	8*	6	- 9	11	10	6*	-11	- 6	11	12	10*
- 11	- 6	12	5	4*	-11	- 6	13	5	17*	-12	- 6	12	5	3*
6	-11	12	10	-6*	6	- 9	12	15	-24*	12	6	14	23	-16*
12	6	5	11	- 8*	12	6	17	6	14*	12	6	18	13	-2*
13	6	14	6	19*	13	6	14	6	15*	6	13	13	13	3*
6	12	13	6	42*	6	- 7	13	4	-1*	6	- 8	13	4	-13*
6	-10	13	22	15*	6	- 8	14	23	-1.7*	6	12	14	6	24*
6	13	14	27	-15*	6	14	14	15	18*	14	6	15	9	27*
1.4	6	17	28	-22*	6	15	15	8	-30*	6	14	15	17	25*
6	13	15	21	-33*	6	11	15	6	- 8*	6	10	15	6	23*
6	9	15	16	-12*	6	-6	15	5	-16*	6	-7	15	5	-7*
6	- 8	15	16	-23*	6	-9	15	20	-26*	6	- 8	16	4	-13*
6	-7	16	35	-19*	6	-6	16	13	-25	6	6	16	16	23*
6	9	16	6	-4*	6	10	16	6	22*	6	13	16	54	27*
6	14	16	15	21*	6	15	16	6	-1/*	6	14	17	27	11*
6	11	1/	14	-11*	6	10	1/	28	6*	6	9	1/	23	33*
6	8	1/	6	-21*	6	6	1/	17	29*	6	6	18	5	3*
6	10	18	6	- 5×	0	8 11	10	6	14*	6	10	18	54	28*
6	10	10	0	۲.⊾ ۲.⊾	0	11	10	6	-4*	6	12	18	27	-12*
0	10	10	25	/* 10s	0 2	9	10	15	- 9*	0	0 6	19	32	- 8 * 1 3-4
ט ר	0	19	25	10*	0	0	19	15	30× 17+	ס	10	20	14	-T2x
7	10	19	24	-) ^	י ד	11	19	0 4	-1/*	/ 7	10	19	10	-⊺1×
ו 7	12	10	10	-) ^ 1 2 J	י ר	11	17	0	-Tox	/ 7	9	17	19	- J* 37-
/ ר	10	17	20	73 4 72*	י ר	0 11	17	10	ידע ×⊺כ	י ר	12	17	21	174 174
י ר	10	16	25	-234	י ר	14	14	19	- 2 *	י ר	10	14	6	1/# /)~
י ר	11	16	30	-16+	י ד	10	16	0	~ر بده	י ר	12	10	6	41× 264
י ר	2 1 1	16	50	-10^	7	- 8	15	11	- 22+	י ד	י ר	10	10	20* 12+
7	0	15	6	-14+	7	10	15	47	- 7 7 ~	, 7	-/	15	20	1.)~ //
7	12	15	6	-14*	י ר	14	15	41	20 4	/	15	15	20 10	-44× 07±
15	7	16	6	17*	, 14	7	16	47	- 30+	14	7	15	10	-2/~
7	14	14	23	-6*	7	13	14	11	- 25*		11	14	6	- 13+
, 7	- X	14	19	- 30*	, 7	-9	14	10	-204	י ד	.11	13	0 	-10* 10*
7	-10	13	4	15*	7	_ 9	13	16	- J1+ 24*	י ר	- 7 7	12	4 4	12^ 7+
, 7	12	13	18	36*	13	7	14	4	14*	12	-0	15	4 A	/ ^ በታ
13	7	16	3	0*	13	, 7	17	26	-21*	12	, 7	18	25	5*
12	7	17	28	43*	12	7	16	17	16*	12	, 7	15	6	-21*
						•					•		~	

, Ø

1

ł

¥

ſ

٢

ł

5.7 .E

ŝ

÷

, ,

•

. ,

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

н	к	L	10Fo	10Fc	Н	к	L	10Fo	10Fc	н	К	L	10Fo	10Fc
12	7	14	19	42*	12	7	13	6	24*	7	-7	12	40	23*
7	- 8	12	24	-4*	7	-10	12	4	-11*	7	-11	12	13	13*
-12	-7	12	13	- 3*	-11	-7	12	5	-22*	11	7	14	6	1*
11	7	16	23	-55*	11	7	17	19	50*	10	7	19	5	-29*
10	7	18	6	23*	10	7	15	6	8*	-10	-7	11	5	- 3*
-10	-7	13	13	19*	-9	-7	13	5	5*	- 9	-7	12	15	-26*
9	7	16	6	0*	9	7	17	17	-25*	9	7	18	30	-9*
9	7	19	6	14*	8	7	19	6	25*	8	7	18	28	18*
8	7	17	6	30*	8	7	16	15	8*	8	7	15	6	4*
- 8	- 7	11	19	- 36*	- 8	-7	12	5	-11*	- 8	-7	13	9	-21*
- 8	-7	14	18	7*	- 7	-7	12	5	0*	- 7	- 7	11	17	40
7	7	17	23	-25*	7	7	18	6	13*	7	7	19	6	-14*
7	-7	16	33	28*	7	-7	15	19	13*	7	-7	14	5	17*
7	-7	12	8	23*	-7	7	12	24	- 37*	-7	7	13	5	- 25*
-7	7	14	5	-16*	-7	7	15	5	- 2*	-7	7	16	15	-14*
- 8	7	15	6	-16*	- 8	7	14	5	13*	- 8	7	12	17	8*
- 8	7	11	4	- 33*	8	-7	12	6	12*	8	-7	13	5	0*
8	-7	14	5	-10*	8	- 7	15	5	14*	8	-7	16	4	8*
9	- 7	15	5	2*	9	- 7	14	20	-15*	9	-7	12	5	-43*
9	-7	11	20	-19*	- 9	/	11	25	-12*	-9	7	13	5	12*
-9	7	14	22	45*	-10	/	14	4	4*	-10	/	12	28	-41*
- 10	/	11	16	10*	-10	/	10	20	6×	10	- /	11	2	4× 10-
10	-/-	13	9	0.5m TOx	10	-/	14	5	30×	10	- /	10	21	* 17 ×
11	-/	14	0C /	۰۳ ×۲۷	11	- /	11	5	۰۲0×	-/-	10	11	0	×رر ⊷ +1
-/	-0 7	11	10	2^ 20+5	- /	- 7	13	4	14-	-/	-10	12	15	-1~
-11	11	12	19	.1.+	- 11	_ 0	12	4	-14^	-12	_ 8	12	13	. 73+
- /	-11	12	4 5	-1-	- 7	- 9	12	9 1	20 4	- /	- U Q	12	15	- 2 J n 0 7 +
- / - 7	-/	12	, ,	-14*	- 7	12	12	18	22× 0+	-/	-7	12	24	.7*
- 7	12	13	21	- 22*	- 7	11	13	15	7*	.7	10	13	24 /	- / * . 20 *
- /	12	13	18	-10+	- 7	ТТ	13	13	- 0+	-7	7	12	4 5	- 20*
- /	_10	13	10	10*	-7	7	14	5	-)^ - 16*	-7	ģ	14	4	-2.5*
-7	10	14	21	23*	-7	11	14	4	3*	-7	ด์	15	4	0*
- 7	7	15	4	-2*	-7	7	16	4	-14*	- 8	10	14	4	8*
- 8	, 9	14	10	- 37*	- 8	8	14	35	-23*	- 8	-9	13	23	12*
- 8	8	13	30	31*	- 8	9	13	15	-18*	- 8	10	13	21	-2*
- 8	iī	12	4	17*	- 8	10	12	19	0*	- 8	9	12	9	22*
- 8	8	12	4	30*	- 8	- 8	12	21	- 7*	- 8	-11	12	4	- 32*
-11	8	12	4	4*	-11	8	11	6	- 34*	- 8	-9	11	4	15*
- 8	- 8	11	24	- 8*	- 8	9	11	10	2*	- 8	10	11	4	15*
- 8	11	11	4	4*	11	- 8	12	5	- 7*	11	- 8	13	12	12*
10	- 8	14	4	- 3*	10	- 8	11	5	19*	- 8	10	10	11	24*
- 8	- 8	10	4	-1*	- 8	- 9	10	25	13*	-10	8	10	4	-13*
-10	8	11	4	8*	-10	8	12	18	- 8*	-10	8	13	18	5*
-9	8	14	23	28*	-9	8	13	8	35*	-9	8	12	20	9*
-9	8	10	4	31*	9	- 8	10	12	-2*	9	- 8	12	22	28*
9	- 8	13	22	- 30*	9	- 8	14	33	1*	8	- 8	15	11	39*

N.

.

1

ł

j

n A

Service of

とれたいないないとうないないでいないないない

ALAS AND AND

within ,

:

18 P - V

ŀ

1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

!

H	к	L	10Fo	10Fc	Н	К	L	1.0Fo	10Fc	Н	ĸ	L	10Fo	10Fc
8	- 8	14	20	- 5*	8	- 8	13	18	26*	8	- 8	11	22	10*
- 8	8	12	4	30*	- 8	8	13	19	31*	- 8	8	14	4	-23*
- 8	8	15	20	-45	- 8	- 8	12	13	-7*	- 8	- 8	11	36	- 8*
~ 8	- 8	10	4	-1*	8	8	15	6	-21*	8	8	16	6	-1*
8	8	17	6	27*	8	8	18	6	-4*	8	8	19	6	0*
9	8	19	23	-17*	9	8	18	27	-24*	9	8	17	22	-27*
9	8	16	19	-14*	9	8	15	44	-23*	-9	- 8	11	25	15*
- 9	- 8	12	10	28*	- 9	- 8	13	30	14*	-10	- 8	13	4	12*
-10	- 8	11	5	10*	-10	~ 8	10	5	14*	10	8	14	25	-26*
10	8	16	6	-14*	10	8	17	17	25*	10	8	18	27	30*
11	8	18	21	1*	11	8	16	16	22*	11	8	14	6	-1*
8	- 8	11	19	10*	8	-10	11	4	-6*	-11	- 8	11	16	17*
-11	- 8	12	5	- 3*	8	-11	12	5	16*	8	-10	12	14	-23*
8	- 9	12	4	6*	12	8	14	6	6*	12	8	15	6	-24*
12	8	16	60	53*	12	8	17	44	-1*	13	8	16	6	14*
13	8	15	6	-1*	8	12	13	6	8*	8	-9	13	16	8*
8	-10	13	4	-13*	8	-9	14	8	-25*	8	- 8	14	5	- 5*
8	11	14	46	0 *	8	12	14	19	-19*	8	14	14	6	-27*
14	8	15	6	17*	14	8	16	6	3*	8	15	15	6	- 2*
8	14	15	6	1/*	8	13	15	22	13*	8	12	15	44	21*
8	11	15	31	18*	8	10	15	6	50*	8	9	15	6	11*
8	8	15	6	-21*	8	8	16	6	- [*	8	9	16	14	19*
8	10	16	46	14*	8	11	10	14	22*	8	14	16	41	- 38*
8	12	1/	26)*)*	ð o	11	10	6	-2*	ð o	- 9	1/	6	-13*
ð 0	8	1/	19	2/*	ð o	8	18	5	-4*	8	11	18	6	21*
8	10	19	20	- T *	8	8	19		0*	9	11	12	34	32*
9	10	10	2/	×/۲ ۱۱۰	9	9 11	10	0	- 2*	9	10	17	19	-20*
9	10	17	35	- T T *	9	11	1/	0 11	×_	9	12	1/	6	- 10*
9	10	14	10	- 2 3 ×	9	11	10	23	-24* 254	9	13	10	0	-1/* 10-4
9 0	12	15	20	- 20^	9	11	10	40	-23*	9	10	10	24	10*
2	12	15	10	2.3~	7	1/	15	6	12~	9	15	15	0	-14*
14	0	16	6	- <u>_</u> ~	9	14	1/	6	20*	9	13	14	23	- 10*
9	12	14	6	-15*	9	_ Q	14	4	6* 21*	9	.10	13	4	- / *
ģ	-9	13	16	19*	9	11	13	6	2/1*	0	12	13	4	-4*
13	á	14	20	-31*	13	ā	15	21	43*	13	0	16	6	- /
13	ģ	17	6	-18*	12	á	16	6	20*	12	9	15	12	- 8*
9	-10	12	6	- 3*	9	-11	12	4	-9*	-11	_9	11	22	-0*
ģ	-10	11	10	-10*	9		11	10	- J*	11	- 9	14	33	8*
11	<u>1</u> 0	15	6	-1*	11	ģ	16	6	-1* 2*	11	0	17	2	2 4 0*
10	9	18	6	28*	10	ģ	17	6	2	10	9 Q	16	20	∠ * 7★
10	ģ	15	6	20*	-10	_ q	10	5	_16*	_10	_0	11	<u>ک</u> ع ج	_ 22*
-10	- 9	12	19	-18*	_ Q	_9	12	14	- <u>-</u>	- 10	_0	11	, ,	-22*
-9	-9	10	19	-19*	_9	ģ	- 9	4	- 30*	- - 9 Q		15	4 6	/ "
9	9	16	6	18*	ģ	ģ	17	25	- 20*	q	9	18	6	- 0*
9	-9	14	22	9*	9	-9	13	10	19*	á	-9	12	9	34*
9	- 9	11	18	-1*	9	-9	10	32	-28*	-9	9	10	15	1*

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR PHOSPHAZENE CLATHRATE (DATA SET I)

;

.

н	к	L	10Fo	10Fc	н	К	L	10Fo	10Fc	н	к	L	10Fo	10Fc
-9	9	11	4	4*	-9	9	12	8	-4*	-9	9	13	4	-6*
-9	9	14	27	-13*	-10	9	13	4	1*	-10	9	12	4	19*
- 10	9	10	4	1*	~ 9	- 9	10	23	-19*	- 9	9	10	4	1*
-9	10	10	4	20*	10	- 9	11	5	12*	10	-9	12	5	4*
10	- 9	13	4	-12*	11	-9	12	5	-10*	- 9	11	11	12	-26*
-9	10	11	4	-24*	- 9	9	11	4	4*	- 9	-9	11	4	-17*
-11	9	11	11	10*	- 9	-10	12	16	-33*	- 9	11	12	4	-6*
-9	9	13	11	-6*	- 9	9	14	16	-13*	-10	10	12	18	- 33*
-10	-10	11	4	- 2*	-10	10	11	35	29*	-10	11	11	4	-28*
10	-10	12	4	1*	10	-10	11	21	20*	-10	10	10	21	25*
-10	10	11	18	29*	-10	-10	11	4	-2*	-10	10	10	10	25*
10	10	13	22	28*	10	10	15	23	8*	10	10	17	20	10*
10	10	18	6	21*	11	10	17	6	-12*	11	10	16	6	-28*
11	10	14	6	13*	10	-10	11	21	20*	-11	-10	11	11	15*
10	-10	12	4	1*	10	12	12	21	-43*	12	10	13	6	-28*
12	10	14	19	-10*	12	10	15	6	-9*	12	10	16	18	16*
12	10	17	6	-15*	13	10	16	6	-6*	13	10	15	19	34*
13	10	14	31	12*	10	13	13	6	7*	10	12	13	6	-5*
10	11	14	6	14*	10	12	14	43	-16*	10	13	14	17	1.7*
10	14	14	30	39*	14	10	15	7	-11*	10	14	15	12	2*
10	13	15	6	25*	10	12	15	6	-25*	10	10	15	6	8*
10	10	16	6	- 50*	10	12	16	6	2*	10	13	16	7	25*
10	14	16	6	-10*	10	12	17	6	19*	10	10	17	8	10*
10	10	18	32	21*	11	11	17	18	24*	11	13	16	58	16*
11	11	16	22	20*	11	11	15	6	-33*	11	12	15	19	11*
11	13	15	20	26*	11	14	15	6	-14*	14	11	15	54	- 39*
11	14	14	7	- 3*	11	13	14	6	- 8*	11	12	14	7	-1*
11	11	14	24	-7*	11	12	13	32	37*	11	13	13	9	8*
13	11	14	26	-7*	13	11	15	12	7*	13	11	16	30	-24*
12	11	16	10	36*	12	11	15	24	16*	12	11	14	7	-10*
12	11	13	23	37*	11	12	12	20	39*	11	11	13	6	28
11	11	14	6	-7*	11	11	15	33	-33*	11	11	16	7	20*
11	11	17	14	24*	12	12	13	6	7*	12	12	15	26	17*
12	12	16	34	17*	13	12	15	31	0*	12	13	13	33	-43*
12	12	13	33	7*	1.2	14	14	33	8*	12	13	15	22	20*
12	12	15	35	17*	12	12	16	7	17*	13	13	15	7	24*
13	14	14	6	47*	13	13	14	7	18*	13	13	13	27	- 52*
13	13	14	7	18*	13	13	15	7	24*					

,	1	P	Γ-	oi - F	1.	٦	Fo	Fo	ciaF	ام	1	Fo	Fe	aigF
ĸ	1	FO	rc	sigr	ĸ	T	ro	rC	sigr	ĸ	T	ro	rc	sigr
~ ~ ^ ^	~ ~ ^	h =	0 ^^^	~~~~	-1	- 9	139	121	5	- 2	-10	369	338	12
					-1	6	279	245	9	- 2	-7	101	100	10
0	6	886	875	13	-1	9	375	352	11	- 2	-4	957	913	20
0	9	671	633	17	-1	12	172	164	7	- 2	5	1362	1252	18
0	12	615	584	29	-1	15	457	450	5	- 2	8	107	92	6
0	15	1861	1955	19	-1	18	612	619	8	- 2	11	37	29	4
0	18	1262	1240	14	-1	21	301	303	8	- 2	14	586	604	20
0	21	419	422	7	-1	24	225	219	7	- 2	17	668	689	11
0	24	421	410	8	-1	27	114	118	11	- 2	20	195	193	7
0	30	335	346	8	-1	30	209	209	5	- 2	23	34	25	7*
0	33	579	570	10	-1	33	124	141	14	- 2	26	50	18	13*
0	36	188	221	10	-1	36	94	100	9	-2	29	60	42	10*
					0	- 37	85	18	19*	- 2	32	261	267	13
^ ^ ^ ^	~ ~ ^	h =	1 ^^^	~ ~ ~ ^	0	- 34	110	121	12	- 2	35	82	79	19*
					0	- 31	206	201	6	-1	-29	150	156	6
0	- 38	123	115	12	0	-28	227	224	8	-1	-26	64	5	18*
0	- 35	107	111	9	0	-25	158	151	8	-1	-23	62	60	11*
Ō	- 32	72	3	12*	0	- 22	81	73	12	-1	-20	34	22	8*
0	-29	171	177	11	0	-19	358	366	8	-1	-17	181	201	3
0	-26	462	476	7	0	-16	778	782	11	-1	-14	96	39	31*
Ō	-23	747	760	15	0	-13	682	662	23	-1	-11	82	73	7
Ō	-20	607	632	10	Õ	-10	1014	946	32	-1	- 8	42	36	9*
Ő	-17	751	755	14	Ó	-7	1810	1630	18	-1	- 5	665	660	22
Õ	-14	60	17	17*	Ő	-4	956	919	13	-1	-2	565	550	11
Õ	-11	399	367	13	Õ	- 1	1271	1197	13	-1	ī	453	479	7
õ	- 8	1335	1321	38	Ő	2	764	759		-1	ā	1385	1345	34
ŏ	- 5	259	254	7	ŏ	5	1291	1236	27	-1	7	446	417	12
õ	ĩ	640	643	9	ŏ	8	1359	1233	35	-1	10	342	314	13
õ	ū	994	972	25	Õ	11	393	355	15	-1	13	30	6	
Õ	10	1865	1728	21	ŏ	14	451	459	8	-1	16	225	250	5
ŏ	13	1475	1523	15	ŏ	17	589	607	12	- î	19	164	168	6
õ	16	1228	1270	17	ŏ	20	391	402	8	-1	22	35	16	9*
ŏ	19	227	231	-1	ň	23	340	349	7	-1	25	66	80	9
ŏ	22	101	91	15	ŏ	26	281	274	7	-1	28	117	120	10
ŏ	25	394	391	7	õ	29	82	93	8	-1	31	71	61	14*
ŏ	28	271	268	ģ	ň	32	110	113	12	-1	37	108	28	13
ŏ	31	375	367	7	ŏ	35	80	76	- 9	ō	-36	75	20	17*
ŏ	34	183	165	13	ň	38	49	78	24*	ň	- 33	144	154	11
v	34	105	105	13	v	50		/0	2-4	ň	- 30	194	181	8
~ ^ ^ ^	~ ^ ^	h ==	2	~~~~	~~~/	~ ^ ^ ^	h =	3 ^^^	~ ~ ~ ~	ŏ	- 27	60	53	12*
			-				••	2		ň	-24	82	98	<u> </u>
- 1	- 36	104	101	15	- 2	- 37	57	2	18*	õ	-24	77	74	ģ
_1	. 22	156	166	Ŕ	_2	-34	170	178	8	ň	-21	413	406	8
_1	.30	118	194	11	2	21	15%	156	10	0	-15	730	760	14
- <u>-</u> _ 1	- 30	£1	70	114	- 2	- 25	1.04 Q.A	00 700	10	0	-10	20	20/ 20	۲ 4
- <u>_</u> 1	-21	80 01	59	5	2	- 20	04 202	27 20%	12	0	- 12	1.20	220	12
-1	- 24	30%	305	Q Q	- <u>-</u>	- 20	114	110	/ 0	0	- 7	420	222	17
-1 _1	-21	504	500	6	- 2	- 44	710	27	0 114	0	-0 2	110	100/	۲ <i>۱</i>
-⊥ .1	-10	273	524	Q Q	- 2	-17	ره ۲0 ۲	010	10	0		117	102	10
-1	-10	649	00Z /.10	1/	- 2	- TO	201	010	±2 7	0	2	700	002	10
- 1	- 17	414	410	74	- 2	-13	-04	ōU	1	0	3	409	4/3	7

紁

,

10|F|o vs 10|F|c for Phosphazene Clathrate (Data Set II) page 1

k	1	Fo	Fc	sieF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
	_		20.0	10			- 1 /							
0	6	257	302	10	-2		514	490	18	0	19	644	657	11
0	9	205	123	.9	-2	12	286	252	12	0	22	268	268	4
0	12	337	312	15	-2	15	554	5/9	8	0	25	109	115	7
0	15	307	322	4	-2	18	103	100	6	0	28	251	251	7
0	18	61/	623	9	- 2	21	133	134	6	0	31	342	343	6
0	21	98	98	11	-2	27	51	22	1/*	0	34	185	186	11
0	24	132	138	6	- 2	30	129	129	8	0	37	124	88	12
0	27	/6	/9	1.9*	-2	33	1/4	160					- ^^^	
0	30	52	16	17.	-2	36	98	28	13			h	5	
U	33	89	85	1/*	- 1	- 34	/1	24	10×	,	20	0.5	150	1.5.4
		,	,	~ ~ ^ ^	-1	- 31	91	/1	12	-4	- 36	85	152	12*
		n =	4		-1	-28	209	208	b	-4	- 33	149	154	8
2	25	70	27	1	- 1	-25	209	217	6	-4	-27	320	317	5
- 3	- 35	8/	34	12×	-1	- 22	157	146	5	-4	- 24	63/	631	12
- 3	- 32	292	302		-1	- 19	132	130		-4	-21	586	583	9
-3	-29	226	228	9	- 1	-16	1//	160	4	-4	-18	656	6/8	9
-3	-26	281	280	10	- 1	-13	92	102	5	-4	-15	522	529	/
- 3	-23	259	255	6	- 1	- 10	666	6/0	1/	-4	-12	380	374	12
- 3	-20	136	138	1	- 1	- /	651	659	19	-4	-9	1465	1460	40
-3	-1/	496	513	1	-1	-4	982	966	24	-4	- 6	1398	1367	37
- 3	- 14	636	6//	19	-1	- 1		/69	12	-4	- 3	1801	1/06	23
- 3	-11	41	10	10*	-1	2	444	440	~ /	-4	5	1162	1032	36
- 3	- 8	1154	1151	2/	-1	2	1269	1225	27	-4	6	309	341	12
- 3	- 5	612	592	12	- 1	8 11	849	828	20	-4	10	994	997	12
- 3	-2	1 (0 0	104	9 17	-1	11	2/6	2/5	12	-4	12	883	890	22
- 3	Ļ	1620	1630	1/	-1	14	449	45/	10.	-4	15	1004	968	30
- 3	4	115	132	3	- 1	1/	44	22	10*	-4	18	488	485	/
- 3	10	1415	1421	41	- 1	20	89	108	ð	-4	24	438	422	8
- 3	10	592	607	18	-1	23	2/0	261	2	-4	27	344	348	6
- 3	13	216	217	9	- 1	26	187	188	2	-4	30	335	340	9
- 3	16	255	266	4	-1	29	231	234	5	-4	- 33	206	214	. 9
-3	19	2/2	284	6	-1	32	123	8/	12	-4	36	119	86	12
-3	22	237	230	5	0	- 35	132	129	8	-3	- 34	150	148	11
- 3	25	3/1	3/2	8	0	- 32	221	233	10	د -	- 31	212	205	.9
- 3	28	123	125	13	0	-29	/0	34	12*	- 5	-28	107	112	1/
-3	31	/2	4/	14*	0	-26	62	53	12*	- 5	-25	182	188	8
-3	34	/0	81	20*	0	-23	148	156	5	- 3	-22	5/	82	/
- 3	3/	55	34	20*	0	-20	54/	55/	8	- 3	-19	440	446	8
- 2	- 33	69	72	16*	0	-1/	980	1013	12	-3	-16	967	960	1/
~2	- 30	66	13	12*	0	-14	/99	/98	26	- 3	-13	/0/	/12	23
-2	-24	345	341	8	0	-11	353	354	. 9	- 3	-10		. 1140	27
-2	-21	/1	/8	12	0	- 8	509	490	8	-3	- /	35	68	13*
-2	-18	229	233	5	0	-5	1629	1515	43	- 3	-4	228	247	8
-2	-15	115	115	.7	0	- 2	1031	1030	22	- 3	- 1	. 295	347	8
-2	-12	589	571	17	Ő	1	1275	1284	27	- 3	2	607	634	12
-2	-9	485	472	19	Ŭ	4	268	196	8	-3	5	454	416	13
-2	- 6	624	641	18	0	7	804	737	27	- 3	8	698	647	19
-2	- 3	78	79	4	0	10	64	73	8	-3	11	. 543	521	. 20
-2	3	372	355	8	0	13	659	673	9	- 3	14	341	345	13
- 2	6	140	153	6	0	16	1154	1208	16	- 3	17	′ 801	. 813	11

10|F|o vs 10|F|c for Phosphazene Clathrate (Data Set II) page 2

	_		_				-	-	• -		-		-	
k	1	Fo	Fc	sigh	' k	1	FO	FC	sigf	ĸ	1	FO	FC 5	sigr
- 3	20	374	387	5	-1	27	93	95	6	- 5	26	49	35	7
- 3	23	507	503	6	-1	30	66	5	13*	-5	29	62	70 1	10
- 3	26	135	156	10	-1	36	119	136	10	- 5	32	67	63 1	14*
-3	29	110	112	7	0	-31	66	70	9	- 5	35	165	156	9
- 3	32	181	178	11	0	-28	297	296	8	-4	-35	76	36 3	16*
- 3	35	84	71	14	0	-25	333	322	9	-4	-32	65	71 :	15*
- 2	- 32	71	94	25*	0	- 22	548	544	9	-4	-29	259	270	7
- 2	- 29	98	111	11	0	-19	109	98	7	-4	-26	386	383	6
- 2	-26	309	312	6	0	-16	185	176	7	-4	-23	379	378	6
- 2	-23	514	501	10	0	-13	947	907	29	-4	-20	68	30	10
- 2	-20	246	240	4	0	-10	886	865	21	-4	-17	113	123	5
- 2	-17	313	318	5	0	-7	1183	1176	12	-4	-14	445	451	6
- 2	-14	67	81	9	0	-4	1138	1158	29	-4	-11	905	901	20
- 2	-11	228	228	12	0	-1	216	137	/	-4	- 8	829	848	18
- 2	-8	1370	1366	23	0	2	664	567	1/	-4	- 5	244	224	9
- 2	- 5	5/6	5/5	15	0	2	923	868	25	-4	-2	291	246	5
- 2	-2	358	342	12	0	8	516	516	1/	-4	1 L	189	146	2
-2	1	164	152	2	0		1195	1216	10	-4	4 7	10/8	1047	28
- 2	4	209	211	1	0	14	310	324	9	-4	10	1068	10/5	11
-2	10	1593	1527	40	0	1/	69	18	9	-4	10	824	810	18
-2	10	1448	13/9	34	0	20	330	332	6	-4	13	358	334	12
-2	13	616	61/	22	0	23	305	303	2	-4	10	309	303	13
- 2	16	1//	190	4	0	20	443	440	ð	-4	19	109	198	/
-2	19	47	43	0	0	29	320	349	9	-4	22	213	208	8 7
-2	22	99	22	/ c	0	32	/1	92	17.	-4	25	3.35	331	/
- 2	25	347	331	2	0	30	85	18	T/*	-4	28	102	110	9 104
- 2	28	192	190	9 17-1			h .	c		-4	37	94	/0	167 182
-2	37	67 20	22	164			11 -	0		-4	34	53	4.2	10^ 214
- 2	.34	03 QQ	22 Q1	10~	5	. 37	137	151	12	ر - د	- 30	122	121	21^ 19
-1	- 33	60	19	0 15-	- 5	-3/	154	160	15	2	- 30	57	51	104
-1	- 30	195	107	7)" T)"	- 5	- 34	165	160	5		-21	100	130	10~
- 1	- 30	267	265	7	-5	- 28	150	156	7		- 24	264	274	9 1.
-1	-24	156	167	8	- 5	-25	155	158	6		- 21	68	52	10
.1	_ 21	1/9	152	7	-5	-22	489	480	8 8	_3	-15	200	308	7
_1	-18	107	109	7	-5	-19	344	342	7	_3	-12	46	34	, 8*
_1	-15	162	147	7	-5	-16	316	324	7	_3	_9	40	37	6
_1	-12	657	631	21	- 5	-13	1135	1129	12		-6	1188	1166	21
_1	- 12	366	371	21	- 5	-10	424	414	13	3	-0	200	212	10
-1	-6	106	74	7	-5	- 7	184	174	6	-3	0	537	498	12
-1	- 3	829	806	24	- 5	-4	156	212	6	-3	3 3	88	70	7
-1	õ	375	364	7	- 5	-1	551	584	12	- 3	6	41	4	11*
-1	3	1332	1307	34	-5	2	968	971	24	- 3	ğ	253	279	8
-1	6	1463	1417	36	-5	5	253	270	4	-3	12	226	232	8
-1	ğ	420	422	8	-5	2 8	548	517	9	- 3	15	133	152	6
-1	12	102	97	7	-5	11	682	683	14	-3	18	85	97	ÿ
-1	15	35	27	8*	-5	14	490	478	īi	-3	21	51	35	7
-1	18	156	158	4	- 5	17	128	109	5	- 3	24	58	39	8
-1	21	565	558	10	-5	20	543	538	7	-3	27	221	217	6
-1	24	219	219	5	- 5	23	290	289	8	- 3	30	66	75	13*

M58
10	Flo	vs 1	0 F c	for	Phos	phaz	ene Cl	athrat	e (Da	ita	Set	II)	pag	ge 4
k	1	Fo	Fc	sigl	Fk	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
- 3	36	66	19	19*	0	- 30	189	182	7	- 5	-27	170	163	4
-2	- 34	85	52	9	0	-27	194	196	9	- 5	-24	179	185	5
- 2	-31	98	101	7	0	-24	338	338	6	- 5	-21	317	322	6
-2	-28	102	101	16	0	-21	60	9	12*	- 5	-18	350	361	5
-2	-25	102	108	8	0	-18	254	246	11	-5	-15	399	413	6
-2	-22	55	65	10*	0	-15	336	328	.9	~5	-12	490	496	6
-2	-19	190	199	4	0	-12	/03	699	18	- 5	-9	398	3//	12
-2	-10	430	455	14	0	-9	282	394	/ 5	- 5	- 6	301	319	9
- 2	-13	202	200	20	0	-0	1002	307	14	-)	د.	800	811	21
- 2	- 10	561	520	13	0		1067	900	21	- 5	บ ว	306	1417	20
-2	- /	528	507	15	ñ	3 3	1369	1333	28	- 5	5	200	255	12*
-2		289	280	7	õ	6	751	736	23	- 5	q	74	67	4 9
-2	2	335	299	10	Õ	9	1010	999	21	-5	12	610	592	12
-2	ŝ	287	283	- 8	Ő	12	54	57	5	- 5	15	438	428	12
- 2	8	421	381	12	0	15	188	195	6	- 5	1.8	264	260	11
- 2	11	230	217	10	0	18	316	314	6	- 5	21	220	220	7
- 2	14	73	72	4	0	21	474	472	8	- 5	24	61	39	6
- 2	17	399	423	6	0	24	318	315	7	- 5	27	139	142	10
- 2	20	128	126	6	0	27	179	189	5	- 5	30	153	144	6
-2	23	234	230	6	0	30	112	74	22*	- 5	33	150	126	8
-2	26	108	122	17	0	33	63	70	14*	-4	- 34	86	50	9
-2	29	94	91	9	~ ~ ^ .			- ~~~	~ ~ ~ ~	-4	- 31	84	85	6
-2	32	92	80	25*			n =	/		-4	- 28	83	90	6
- 2	35	74	20	10¥	- 6	_ 35	83	1	16+	-4	- 22	242	240	0 6
-1	-32	85	101	16*	-0	-32	94	33	11	-4	-19	318	302	6
-1	-29	74	88	7	-6	-29	107	95	11	-4	-13	238	261	7
-1	-26	79	72	ģ	-6	-26	328	333	5	-4	-10	266	276	8
-1	-23	63	52	10	-6	-23	261	260	4	-4	- 7	515	480	12
-1	-20	516	517	9	-6	- 20	182	190	5	-4	-4	764	772	26
-1	-17	370	350	12	-6	-17	335	364	7	-4	- 1	41	72	8*
-1	-14	207	197	6	- 6	-14	133	150	5	-4	2	141	159	3
-1	-11	182	185	4	-6	-11	836	834	12	-4	5	233	224	5
-1	- 8	734	762	9	-6	- 8	523	515	9	-4	8	389	369	11
-1	- 5	635	623	11	-6	- 5	101	116	5	-4	11	751	740	12
-1	-2	36	58	16*	· -6	-2	5/3	533	13	-4	14	489	443	16
-1	L	618	519	15	- 6	1	510	490	13	-4	1/	224	207	/ c
-1	4 7	229	707	10	-0	4 7	219	232	<i>'</i>	-4	20	19/	202	2
- L 1	10	111	/04	14	-0	10	741	592	9	-4	23	124	177	
-⊥ 1	13	761	423	10	-6	13	563	571	14	-4	20	163	150	· ·
-1	16	125	112		-6	16	533	554	15	-4	35	105	68	22*
-1	19	460	463	8	-6	22	312	315	9	- 3	- 35	65	63	16*
-1	22	107	114	5	-6	25	144	159	9	- 3	- 32	54	39	12*
-1	25	82	66	7	- 6	28	107	113	9	- 3	- 26	204	207	4
-1	28	149	150	7	- 6	31	155	151	6	- 3	- 23	218	216	6
-1	31	111	10	12	- 6	34	56	39	14*	- 3	- 20	221	226	i 5
-1	34	53	57	14*	-5	- 33	124	148	19	- 3	-17	150	163	5
0	-33	113	102	18	- 5	- 30	83	35	15*	- 3	-14	161	151	. 12

.

.

ł

1

10	F 0	vs	10 F c	for	Phos	phaz	ene Cl	athrat	e (Da	ata	Set	11)	pag	ge 5
k	1	Fo	Fc	sigl	Fk	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
- 3	-11	409	397	11	-1	2	486	464	14	-7	15	51	81	10*
- 3	- 8	202	238	9	-1	5	151	154	6	-7	18	140	136	9
- 3	- 5	163	146	7	-1	8	814	795	26	-7	21	276	269	12
-3	-2	1006	965	26	-1	11	319	330	5	-7	24	232	231	6
- 3	Ļ	590	1 5/C	12	-1	14	16/	150	1	-6	- 31	49	38	15*
- 3	4	132	120	4	- 1	1/	2/0	3/3	от С	-0	- 20	88	93	12*
	10	202	300	12	-1	20	270	236	10	-0	-25	290	299	12
- 3	13	293	755	14	-1	25	121	128	15	-6	- 22	173	167	4
- 3	16	269	289	6	-1	29	75	41	10	-6	-16	104	102	5
- 3	19	150	150	5	-1	32	52	70	17*	-6	-13	340	356	6
- 3	22	64	32	12*	ō	- 32	86	10	14	-6	-10	744	750	9
- 3	25	133	133	7	0	-29	95	96	12	-6	-7	294	293	9
- 3	28	75	5 100	14*	0	-26	80	60	6	-6	-4	79	84	25*
- 3	31	152	149	7	0	-23	49	47	10*	-6	-1	485	433	14
- 3	34	97	82	21*	0	-20	166	156	9	-6	2	70	19	49*
- 2	-33	170) 132	16	0	-17	221	220	7	- 6	5	215	229	5
-2	- 30	93	54	12	0	-14	98	53	11	- 6	8	526	535	6
- 2	-27	78	3 43	13*	0	- 8	181	179	4	-6	11	372	392	9
-2	-24	39	45	10*	0	- 5	499	535	6	-6	14	238	243	9
-2	-21	93		11	0	-2	88	69	5	- 6	1/	115	107	9
- 2	-10	507	504	14	0	L L	4/	14	1/	-0	20	120	120	10
- 2	-10	154	5 343	14	0	4	493	440	14 0	-0	25	175	18/	10
-2	- 12	210) 204	י ג	ň	10	177	172	5	-6	20	72	13	q
-2	-6	410) <u>204</u>) <u>4</u> 25	13	ŏ	16	261	271	5	- 6	35	66	2	18*
- 2	- 3	546	5 537	14	õ	19	139	144	6	- 5	- 35	77	65	15*
-2	Õ	1025	5 965	17	Ŏ	22	59	54	11*	- 5	- 32	83	6	13
-2	3	195	5 183	9	0	25	60	2	11*	- 5	-26	167	160	9
- 2	6	72	2 78	10	0	28	146	141	5	- 5	-23	178	179	7
- 2	9	289	9 274	10	0	31	80	66	6	- 5	- 20	321	327	7
- 2	12	93	3 83	8	0	34	68	49	14*	- 5	-17	40	2	19*
- 2	15	658	8 686	9				• • • •		- 5	-14	130	121	5
- 2	18	338	3 366	7			h =	8 ^ ^ ^	~~~~	- 5	-11	280	276	13
-2	21	108	3 115	10	-		1.0.0	1.0.0		- 5	-8	600	585	17
-2	24	190		5	- /	-30	122	128	12	- 5	-5	398	390	12
-2	27	1		. 9	-/	-2/	1/0	1/6	9 10-1	- 5	- 2	308	3/4	10
-2	30	10	/ 1/1	. 10	-/	- 24	50	22	10*	- 5	1	13/	121	. Ö
- 2	33	T 20	J 124	· / 1/	- /	-21	20	140	ð 2	-)	4	550	5/7	15
-1	- 34	0. 12(2 / L N 120	. 14^ 11	- /	-10	166	182	5	- 5	10	595	596	11
-1	- 25	240	D 120	, <u>1</u>	-7	-12	555	571	2 R	- 5	13	413	404	10
-1	-22	6) <u>4</u> 9	, , , , , , , , , , , , , , , , , , ,	-7	-9	142	138	10	- 5	16	49	21	9*
-1	-19	21	1 204	10	- 7	-6	262	276	4	- 5	19	331	311	15
-ĩ	-16	50	7 484	12	-7	- 3	97	125	5	- 5	22	153	153	8
-1	-13	11	B 121	. 7	- 7	Ő	123	118	4	- 5	25	240	233	3 7
-1	-10	384	4 395	5 5	- 7	3	522	505	10	- 5	28	97	101	. 9
-1	- 7	37	7 383	5	- 7	6	683	678	14	- 5	31	. 107	25	5 12
-1	-4	41	6 390) 7	-7	9	160	177	3	- 5	34	. 79	64	11
-1	-1	54	1 540) 14	- 7	12	351	355	6	-4	- 33	92	111	21*

■ 麗子が説にいっ、「ないったった」ではないた。 いたい いいい いい いい いい いい しょうしょう しょうしょう しょうしょうしょう しょうしょう しょうしょう しょうしょう ひょうしょう ひょうしょう ひょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

J

5-20 1000 100, 20

大部 ふざみん ひょう あままん いった ふまん ない ごうざいし さいんしょうはなない ひょうしょう あいしん かんしょうせい ゲービー たいちょう かん

ř.

8

: ||

10) F o	VS	10 F c	for	Phos	phaz	ene	Ciathra	te ()	Data	Set	II)	pa	ge 6
k	1	Fo	Fc	sigH	F k	1	Fo	Fc	sig	Fk	1	Fo	Fc	sigF
-4	- 30	146	135	12	- 2	-14	46	6 454	9	0	2	28	43	6*
-4	-27	60	43	12*	- 2	-11	45	1 460	6	0	5	617	615	11
-4	-24	337	330	7	- 2	- 8	88	4 922	9	0	8	507	520	8
-4	-21	380	377	6	- 2	- 5	141	6 1429	23	0	11	425	434	7
-4	-18	206	205	7	-2	-2	8	4 49	2/*	0	14	308	312	4
-4	-15	251	253	/	-2	Ļ	63	4 624	16	0	1/	168	164	8
-4	-12	/48	/26	22	-2	4	33	9 30/	11	0	20	247	241	2
-4	- 9	4/5	463	14	-2	10	32	D D D D D D D D D D D D D D D D D D D	19	0	23	127	122	12
-4	-0	209	180	10	- 2	10	104	0 1003	10	0	20	105	120	8
-4	- 3	1001	1014	22	- 2	14	20	C 000	. 11	0	29	125	120	10
-4	2	1031	1014	20	- 2	10	12	0 223		U	22	11	/	10
-4	2	1034	1040	20	- 2	73	10	Z 125 9 105	9		~ ~ ^ ^	h _	0	~ ~ ~ ~
-4	0	564	533	15		22	20	6 123 6 207	9			11 -	9	
-4	10	.00	722	15	- 2	25	29	0 257	10	- 8	- 28	10/	108	5
-4	15	400 200	400	10	-2	20	14	2 137	8	-0	-20	426	418	6
-4	18	215	216	5	-2	34	7	3 36	19*	- 8	-23	420	410	10
-4	21	495	484	6	-1	-33	6	3 41	16*	- 8	-19	483	491	10
-4	27	33	47	14*	-1	-27	14	0 120	9	- 8	-16	49	30	6
-4	30	105	106	12	-1	- 21	19	1 186	11	- 8	-13	194	200	4
-4	33	64	111	20*	-1	-18	3	8 23	9*	- 8	-10	1101	1124	25
- 3	- 34	174	128	11	-1	-15	14	2 132	5	- 8	-7	1132	1186	16
- 3	- 31	256	253	6	-1	-12	43	6 463	7	- 8	-4	1165	1146	14
- 3	-28	365	360	8	-1	-9	52	9 536	9	- 8	-1	359	328	7
- 3	-25	348	350	5	-1	-6	22	8 214	. 4	-8	2	220	192	5
- 3	-22	163	155	9	-1	- 3	25	9 255	5	- 8	5	484	497	9
- 3	-19	184	182	8	-1	0	49	0 475	9	- 8	8	1141	1198	16
- 3	-16	538	530	14	-1	3	45	5 457	11	- 8	11	833	857	9
- 3	-13	1030	1019	26	-1	6	54	9 542	8	- 8	14	532	538	6
- 3	-10	1303	1352	16	-1	9	37	4 359	6	- 8	17	277	274	5
- 3	-7	1280	1318	22	-1	12	22	7 214	. 8	- 8	20	119	111	5
- 3	-4	404	414	10	-1	15	11	8 112	6	- 8	23	554	544	11
- 3	-1	609	598	14	-1	18	3	7 20) 7*	- 8	26	416	404	10
- 3	2	942	909	22	-1	21	33	6 339	9	- 8	29	306	308	9
- 3	5	1446	1402	26	-1	24	23	3 229	6	- 8	32	137	149	11
- 3	8	1369	1372	19	-1	27	8	6 98	14	-7	- 35	128	122	11
- 3	11	552	550	23	-1	30	6	1 8	16*	-7	- 32	90	78	10
- 3	14	125	124	7	-1	33	7	0 42	13*	-7	-29	69	59	10
-3	17	147	152	11	0	- 34	6	1 52	11*	· -7	-26	168	165	5
- 3	20	551	564	12	0	-31	4	8 56	19*	-7	-23	383	380	7
-3	23	6/6	66/	9	0	-28	6	0 69	14*	-7	-20	395	391	6
-3	26	402	396	9	0	-25	12	5 130) 6	-7	-17	150	150	7
- 1	29	171	182	1	Ŭ	- 22	51 2	D 225	19	- 1	- 14	359	359	6
-3	32	/8	25	15*	Ŭ,	- 19	37	2 378	5 6	-7	-11	230	213	6
-3	35	104	68	12	0	-16	23	9 244	5	-7	- 8	550	560	7
-2	- 32	96	/2	τ3	Ŭ,	-13	5	/ 30	8	- /	- 5	_ 40	539	/
-2	- 29	207	203	9	Ŭ	- 10	22	/ 23]	. 5	-7	- 2	774	741	23
-2	-23	245	532	8	U	-/	34	5 356	0 6	- 1	1	655	627	12
• 2	- 20	423	399	Τ0	U V	-4	61	L 593	12	- /	4	301	301	
- Z	-1/	103	103	8	U	-1	21	.4 208	5 /	- 7	- 7	384	399	6

,')

٧,

10	F o	vs	10 F c	for	Phos	phaz	ene Cl	athrat	e (Da	ita	Set	II)	pag	e 7
k	1	Fo	Fc	sigl	Fk	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
-7	10	644	672	9	- 5	20	518	514	9	-2	- 34	107	95	11
-7	13	609	625	9	- 5	23	378	380	7	-2	- 31	230	236	9
-7	16	238	242	8	- 5	26	153	159	5	-2	-28	290	294	6
-7	19	271	274	4	- 5	29	121	113	12	-2	-25	290	316	30
-7	22	285	282	9	-4	- 32	92	32	24*	- 2	- 22	199	201	6
-7	25	132	119	13	-4	- 29	220	228	9	-2	-19	221	223	7
-7	28	87	105	17*	-4	- 26	457	466	11	-2	-16	437	437	6
-7	31	131	137	16	-4	-23	583	590	8	-2	-13	836	845	13
-7	34	108	112	15	-4	- 20	725	716	11	-2	-10	859	894	10
-6	- 33	98	24	11	-4	-17	594	590	20	-2	-7	1324	1340	17
-6	- 30	64	28	11*	-4	-14	72	74	14*	-2	-4	400	411	9
-6	- 27	50	40	13*	-4	-11	788	797	14	-2	-1	406	374	7
-6	-24	261	259	7	-4	- 8	1210	1229	12	- 2	2	796	747	17
-6	-21	102	106	16	-4	- 5	1338	1381	19	- 2	5	1155	1166	12
-6	-18	81	79	7	-4	-2	1108	1092	21	- 2	8	1116	1116	22
-6	-15	72	85	4	-4	1	598	562	14	- 2	11	516	530	7
-6	-12	350	348	7	-4	4	645	658	12	- 2	14	98	107	12
-6	- 9	613	616	19	-4	7	1303	1295	27	- 2	17	181	189	7
-6	-6	343	366	9	-4	10	1312	1322	21	- 2	20	548	555	8
-6	- 3	34	15	7*	-4	13	1143	1147	18	- 2	23	421	425	9
-6	0	220	223	4	-4	16	836	843	13	- 2	26	440	425	10
-6	3	35	6	5	-4	19	261	260	7	- 2	29	143	156	15
-6	6	134	123	6	-4	22	278	278	7	- 2	35	60	75	19*
- 6	9	589	605	7	-4	25	318	302	8	-1	-26	59	40	13*
-6	12	184	187	5	-4	28	423	419	8	-1	- 23	140	145	7
- 6	15	41	26	5	-4	31	305	298	10	-1	-20	304	302	6
-6	18	146	140	7	-4	34	139	155	18	-1	-17	62	9	11*
-6	21	186	184	3	- 3	- 33	229	235	8	-1	-14	189	179	4
-6	24	350	336	/	-3	- 30	250	238	10	-1	-11	224	225	6
-6	27	84	86	10	-3	-27	108	113	15	- 1	- 8	200	204	4
-6	30	/8	29	12	-3	-24	46	4/	8*	-1	- 5	490	492	6
-6	33	/4	24	14*	- 3	-21	691	/06	10	- 1	-2	248	255	1
-5	- 34	68	42		- 3	-18	929	915	25	-1	I,	250	261	8
- 5	-31	80	5/	14*	- 3	-10	802	/9/	19	- 1	4	806	304	2
- 5	-28	249	Z49		- 3	-12	152	100	2	- 1	10	90	94	22*
- 5	-25	220	22/	2	- 3	-9	309	304	10	- 1	10	431	415	8
- 2	- 22	50) DL	10*		-0	284	1200	10	- 1	10	200	2/9	4
- 5	-19	142	138	10		- 3	1//9	1/92	3/	- 1	10	00	43	4
- 5	-10	1/8	1/0 1 1/0	10	- 5	0	1553	1198	25	- 1	. 19	20/	252	b c
- 2	-13	43/	430	20	-)	د د	1500	1505	34	- 1	. 22	. 101 70	100) 174
- 2	- 10	1082	1068	29	- 3	0	1020	1020	30	- 1	. 20	40	105	1/*
- 2	-/	201	. 220	0	-)	10	424	413	10	- 1	. 20) LD/	125	12
- 2	-4	121	. 138 500	0 17	- 5	12	2/2 קובר	9/0	1/	- 1		. /ጋ	24	0 12
- 2	-1	601	. 599	1/ 6-1		10	20/	/21	10	0	- 33) 7/ 00	20	17 17
- 7	2	30	/ 54 \ 1110	. 0× 10	- 5	20	032 527	042 527	10	0	טכ- י <u>ו</u> רמ	00 00	00 144	14
- 7	2	211	, TTTO	10	-)	21	707	200	0 7	0	-21	120	104	ע ה
- 2	0 11	001		0 T)	- 3	24	244	- 233 00	10	0	- 24	5 T20	25/	ץ 2
- 3	1 L 1 A	200) 10/ 1 260	0		2/	101	220	14	0	-21	. 544	104	7
ر - ء	17	110	2J2	7	- 2	22	230	174	12	0	1 G	105	107	4
- 0	L/) TOD				T/J	. T\0	L J	. U	TC	, TOD	101	0

* . ٠

•

ī.

10	Fļo	vs 1	L0 F c	for	Phos	phaz	ene (Clathra	te (Data	Set	II)	pa	ge 8
k	1	Fo	Fc	sigF	k	1	Fo	Fc	siį	gF k	1	Fo	Fc	sigF
0 -	12	249	251	5	- 8	- 3	183	3 217	4	-6	19	195	197	8
0	-9	139	143	7	- 8	0	328	8 363	8	-6	22	126	118	6
0	-6	629	649	8	- 8	3	91:	5 956	17	-6	25	154	155	8
0	-3	693	701	10	- 8	6	1248	B 1271	. 18	-6	28	77	69	11
0	0	533	540	12	- 8	9	392	2 387	'7	-6	31	65	40	12*
0	3	133	100	5	- 8	12	96	5 99	6	- 5	-33	177	196	16
0	6	272	255	8	- 8	18	332	2 331	. 5	- 5	- 30	124	105	20
0	9	209	206	7	- 8	21	638	8 635	8	-5	-27	78	83	11
0	12	498	490	8	- 8	24	28	/ 289	8	5	-24	83	33	11
0	15	339	330	6	- 8	2/	103	A T2A	0	- 3	-21	347	350	1
0	19	4/	101	8 7	-0	20	91 77	9 03 1. 1.C	10	-) 	-10	703	51.2	14
0	21	90	101	11	-0	- 34	74	+ 40 5 7/	165	J 5	-10	555	J4J 475	11
0	24	202	210	11	- 7	- 24	160	יין 170 בי	· 10·	· - J - S	-12	407 56	475	8
0	30	143	142	11	- 7	-25	111	3 99	6	- 5	-6	1213	1211	27
Ő	33	105	80	11	-7	-22	25	6 262	6	- 5	-3	1177	1203	37
Ŭ		105			-7	-19	26	7 268	5	- 5	ō	1127	1144	29
*****	^^ ł	1 - 3	LO ^^^'	~~~	- 7	-16	200	208	4	- 5	3	1037	1037	14
					- 7	-13	9(0 105	53	- 5	6	489	477	15
-9 -	29	178	179	6	- 7	-10	340	0 344	⊧ 5	- 5	9	47	49	7
-9 -	26	65	47	17*	- 7	-7	308	8 320) 7	- 5	12	133	125	8
-9 -	23	387	384	6	- 7	-4	483	3 505	; 7	- 5	15	587	558	17
-9 -	20	488	490	6	-7	-1	62	7 616	5 16	- 5	18	678	650	23
-9 -	17	586	590	9	-7	2	19:	3 200) 5	- 5	21	328	321	9
-9 -	14	354	348	7	-7	5	52	8 516	5 13	- 5	24	172	177	6
-9 -	11	75	61	7	-7	8	310	6 320) 7	- 5	27	161	160	6
-9	- 8	349	352	5	-7	11	44	5 444		- 5	30	199	198	6
-9	-5	45/	48/	1 5	-/	14	4/	/ 485	b 10	-5	33	1/0	180	10
-9	-2	701	971	12	-/	1/	25	D 201	. 0	-4	- 34	148	133	11
-9	L	394	300	10	-/	20	10	4 100	1 12	-4	-21	2.00	233	11
-9	4 7	701	/50	12	- /	25	104	4 107 7 67	0	-4 5 /	-20 95	220	204	11
- 9 - 9	10	631	6/13	10	-7	20	20	7 20/	+ 10-	~ -4 _4	-20	2.74	300	, 144
_9	13	664	667	7	-7	32	15/	/ 204 4 142	12	-4	_10	366	354	11
-9	16	602	617	7	-6	-29	6	5 69	5 10	-4	-16	630	635	ġ
-9	19	577	585	13	-6	-26	20	9 219	5 6	-4	-13	1286	1281	26
- 9	22	96	83	9	-6	-23	19	0 191	6	- 4	-10	1102	1099	23
- 9	25	129	144	14	-6	- 20	5	2 45	5 7	-4	-7	781	769	14
-9	28	84	81	12	-6	-17	4	0 46	5 16	* -4	-4	245	245	9
- 9	31	178	167	11	- 6	-14	4	8 31	L 9:	* -4	-1	93	103	8
- 8 -	33	101	107	12	-6	-11	1	9 13	3 8	* -4	- 2	1037	1061	11
- 8 -	30	154	186	17	-6	- 8	66	3 651	L 18	-4	. 5	1225	1205	33
-8 -	27	349	343	8	-6	- 5	11	9 124	44	- 4	. ძ	645	623	18
- 8 -	24	84	82	10	-6	- 2	3	0 37	7 6	* -4	11	291	284	12
- 8 -	21	88	89	5	-6	1	9	7 121	L 6	-4	. 14	49	6	13*
-8 -	18	235	232	6	-6	4	49	8 506	5 7	-4	17	436	425	9
- 8 -	15	290	290	.7	-6	7	85	4 830) 13	-4	20	815	803	16
-8 -	12	141	/50	11	-6	10	37	6 <u>38</u>]	L 5	-4	23	1,86	489	12
- 8	• 9	661	645	ΤĻ.	-0	13	. 7	Z 46	5 7	-4	26	352	353	6
- 8	- 6	94	/6	4	- 6	16	11	1 122	26	-4	- 29	158	142	11

a

ł

ı

-

ı

1

a berry subserved

7, T

ì

1

ň

1

31 1

ĩ

5.27

and the former second

The state of the second second

S - Farmer

1 a. .

10 F o vs	10 F c for	Phosphazene	Clathrate	(Data	Set	II)	page	9
				(/	F-0-	

k	1	Fo	Fc	sigF	k	1	Fu	Fc	sigF	k	1	Fo	Fc	sigF
-4	32	54	51	20*	-1	-13	296	299	5	-10	0	812	851	14
-3	- 32	53	28	19*	-1	-10	65	84	11	-10	3	620	642	$\overline{12}$
- 3	-29	232	239	7	-1	- 7	216	221	9	-10	6	692	718	11
-3	-26	290	294	11	-1	-4	156	159	5	-10	9	666	673	11
- 3	-23	422	435	12	-1	-1	889	887	15	-10	12	135	131	4
- 3	-20	532	537	12	-1	2	577	578	11	-10	15	276	276	6
- 3	-17	504	508	8	-1	5	25	2	12*	- 10	18	324	322	7
- 3	-14	58	1.1	11*	-1	8	47	53	8*	- 10	21	268	259	8
- 3	-11	602	612	8	-1	11	124	109	7	- 10	24	345	335	6
- 3	- 8	411	420	5	-1	14	340	323	10	- 10	27	211	203	9
- 3	- 5	1103	1088	25	-1	17	165	158	7	-9	- 31	72	63	14*
- 3	- 2	793	797	20	-1	20	116	124	10	-9	-28	110	131	8
- 3	1	283	291	7	-1	23	113	114	9	-9	- 25	333	331	8
- 3	4	603	602	9	-1	26	43	21	13*	-9	-22	188	186	5
-3	7	544	549	8	-1	29	90	18	14	-9	-19	159	161	4
-3	10	991	9/8	12	0	- 32	52	65	19*	-9	-16	60	66	9
-3	13	1054	1034	11	0	- 29	164	182	9	-9	-13	351	353	6
-3	10	/50	/31	13	0	-26	131	146	8	-9	-10	636	650	10
- 3	19	139	110	1	0	- 23	264	265	8	-9	- /	/29	/50	15
- 3	22	130	118	3	0	-20	1//	101	10	-9	-4	595	612	4
- 5	20	182	180	ð	0	-1/	111	113	12	-9	-1	254	231	/
- 3	20	348	340	104	0	- 14	227	233	2	-9	2	209	291	ð
- 2	24	50	120	734	0	-11	222	270	0	- 7	0	404	41J 600	0
- 2	- 30	20 73	52	201	0	-0	366	370	5	-9	11	546	520	0
-2	- 30	75	44	14~	0	20	300 07	100	5		14	240	- JZ9 - 602	6
-2	-24	55	4	13*	ŏ	-2	87	104	ģ	-9	17	48	37	10*
-2	-21	209	207	7	ŏ	- L	435	452	6	- 9	20	217	240	7
-2	-18	221	237	5	õ	7	473	481	7	- 9	23	227	240	11
-2	-15	271	265	6	õ	10	444	454	8	- 9	26	297	309	8
-2	-12	206	209	4	õ	13	255	254	6	- 9	29	235	231	8
-2	-9	195	192	7	õ	16	54	20	12*	- 8	- 32	102	105	10
-2	-6	819	817	9	õ	19	120	114		- 8	-23	65	54	8
-2	- 3	530	538	10	ŏ	22	154	147	5	- 8	-20	477	473	7
-2	Ō	280	267	8	Ō	25	124	121	7	- 8	-17	604	599	8
-2	3	583	591	12	Ō	28	70	71	11	- 8	-14	335	337	6
-2	6	34	25	5	Ō	31	95	76	9	- 8	-11	177	182	5
-2	9	99	93	5						- 8	- 8	246	256	4
-2	12	50	54	5	~ ~ ~ ~	~ ^ ^ ^	h = 11	***	~ ^ ^ ^	- 8	- 5	894	906	11
-2	15	109	119	4						- 8	- 2	759	763	8
-2	18	400	400	12	-10	- 30	113	108	13	- 8	1	572	560	10
-2	21	157	161	6	-10	-27	214	215	4	- 8	4	228	209	4
-2	24	72	67	8	-10	-24	267	270	5	- 8	7	72	87	5
-2	27	120	117	5	-10	-21	49	15	9*	- 8	10	184	194	6
-2	30	108	104	10	-10	-18	279	283	6	- 8	13	467	476	7
-2	33	78	74	13	-10	-15	407	396	12	- 8	16	636	638	8
-1	-31	118	96	7	-10	-12	371	369	6	- 8	19	424	423	10
-1	-28	53	7	16*	-10	- 9	590	576	10	- 8	22	149	144	10
-1	-19	223	221	6	-10	- 6	302	282	4	- 8	25	87	48	10
- 1	-16	229	226	7	-10	- 3	329	362	6	- 8	28	241	230	6

10	F 0	VS	10 F c	for	Phos	phaz	ene C	lathrat	te (Data	Set	II)	page 10
k	1	Fo	Fc	sigl	Fk	1	Fo	Fc	sig	gF k	1	Fo	Fc sigF
- 8	31	209	195	9	- 5	-2	783	782	25	- 3	26	80	104 14*
- 7	- 33	68	3 18	18*	- 5	1	359	359	8	- 3	32	78	3 23*
-7	- 30	115	i 101	16	- 5	4	361	367	6	- 2	- 32	71	8 15*
-7	-27	81	16	11	- 5	7	200	211	5	- 2	-29	59	32 9
-7	-24	53	3 31	11*	- 5	10	491	477	13	-2	-26	155	159 7
-7	-21	173	177	5	- 5	13	835	827	13	-2	-23	52	56 16*
-7	-18	281	. 277	7	- 5	16	603	577	17	-2	-20	124	130 5
-7	-15	255	5 269	6	-5	19	110	120	9	-2	-17	50	57 11*
-7	-12	202	2 203	6	- 5	22	132	134	6	-2	-14	69	31 9
- /	-9	220	230	5	~)	28	101	102	0 7	- 2	-11	43	×6 8⊂
	-6	231	249	4	- 2	31	199	193	10	-2	-0	429	433 /
- /	- 3	23/	243	4	-4	- 33	210	173	10	- 2		105	07 0 \$67 5
-/	2	141 500	L 13/	11	-4	- 30	1	27	174	+ _2	- 2	115	107 5
-/	2	220) 15	11 74	-4	-27	272	268	2/1	· - 1 - 2		355	3/1 8
-7	0	246	5 251	5	-4	-18	430	435	9	-2	7	648	645 9
-7	12	107	116	ے م	-4	-15	626	620	ģ	-2	10	207	202 4
-7	15	74	96	13*	-4	-12	296	298	6	- 2	13	210	211 6
-7	18	392	400	8	-4	-9	153	145	6	-2	16	65	44 17*
-7	21	209	205	7	-4	-6	203	208	6	- 2	19	50	32 20*
-7	24	128	3 110	13	-4	- 3	1253	1234	23	- 2	22	128	122 9
-6	-31	76	5 76	15*	-4	0	1911	1915	36	- 2	25	196	188 8
- 6	-25	181	186	7	-4	3	1050	1064	13	-1	- 30	144	139 11
-6	-22	71	81	11	-4	6	219	212	8	-1	-27	98	65 12
-6	-19	71	61	11	-4	9	222	220	9	-1	-24	175	157 8
-6	-16	433	3 428	9	-4	12	460	447	18	-1	-21	152	152 6
-6	-13	172	2 168	7	-4	15	630	615	14	-1	-18	370	366 8
-6	-10	456	5 461	13	-4	18	398	391	9	-1	-15	305	304 5
-6	-7	588	595	13	-4	21	205	206	4	-1	-12	189	198 4
-6	-4	184	185	4	-4	24	149	138	4	-1	-9	242	248 6
-6	-1	10) 1/	/	-4	27	94	15/		-1	-6	145	139 /
-6	Z	124	+ 133	9	-4	30	133	104	0	- 1	- 3	4/9	490 5
-0	2	124	2 114 5 700	11	-4	22	210	220	10	۲- ۲	3	536	510 C
-6	11	470	2 76	Q 11		- 28	101	74	11	1	6	550	486 7
-6	14	100) 94	6	-3	.19	244	241	Ξ <u>ς</u>	.1	ğ	372	381 7
-6	17	320) 334	5	- 3	-16	298	299	7	-1	12	69	73 8
- 6	20	61	98	15*	- 3	-13	516	515	Ŕ	-1	15	272	271 9
-6	23	18:		8	- 3	-10	352	362	5	.1	18	304	278 9
- 6	26	140	136	6	-3	-7	187	198	4	-1	21	226	229 8
- 5	- 32	71	i 71	13*	- 3	-4	57	54	3	-1	24	130	111 7
- 5	-29	107	7 87	9	- 3	-1	143	137	6	-1	27	102	101 10
- 5	-26	179	9 183	7	- 3	2	309	313	4	-1	30	88	111 12
- 5	-23	208	3 223	13	- 3	5	141	142	7	Ō	-31	140	136 12
- 5	-20	41	5 422	6	- 3	8	63	74	8	0	-28	136	144 7
- 5	-17	460	6 462	8	- 3	11	62	69	11°	* 0	-25	55	41 18*
- 5	-14	9:	2 104	12	- 3	14	160	172	7	0	-22	73	56 10
- 5	-11	21	87	19*	- 3	17	242	244	6	0	-19	93	106 11
- 5	-8	41	5 41	11*	- 3	20	274	263	7	0	-16	319	328 10
- 5	-5	31:	2 316	8	- 3	23	210	206	9	0	-13	210	210 6

H.

10	Fo	vs 10	F c	for	Phos	phaz	ene Cla	thrat	e (Da	ata	Set	11)	page 11
k	1	Fo	Fc	sigH	k	1	Fo	Fc	sigF	k	1	Fo	Fc sigF
0	-10	43	40	16*	10	16	147	154	7	- 7	- 2	461	459 7
0	-7	360	371	7	-10	19	99	63	9	- 7	1	440	449 10
0	-4	252	271	4	-10	22	234	232	5	-7	4	394	389 7
0	-1	84	83	5	-10	25	182	178	11	-7	7	417	409 9
0	2	145	135	5	- 9	- 30	98	78	15	-7	10	41	18 15*
0	5	361	372	8	- 9	-27	150	135	6	-7	13	274	277 5
0	8	154	150	5	-9	-24	95	92	15	-7	16	90	99 14
0	11	74	72	6	- 9	-18	160	163	5	-7	19	136	134 5
0	14	113	116	6	-9	-15	356	355	7	-7	22	211	204 7
0	17	213	224	6	-9	-12	2/5	269	/	- /	25	59	48 12*
0	20	135	133	11	- 9	-9	246	244	4	-/	28	137	123 7
0	23	50	22	13*	-9	-6	86	105	5	-1	31	84	62 21*
0	26	8/	68	5	- 9	- 3	237	23/	10	-0	- 30	143	128 6
0	29	93	93		-9	2	491	222	10	- 0 2	- 27	142	145 8 91 13±
~~~~		h _ 12	~~~	~ ~ ~ ~	- 9	5 6	200	300	10	- 6	- 24	163	01 13*
		11 - 12	•		- 9	ä	290	314	5	- 6	18	50	27 16 <del>4</del>
-11	-28	65	41	9	-9	12	62	27	7	- 6	-15	50 77	74 13*
-11	-25	65	59	8	- 9	15	180	187	Ś	- 6	-12	58	51 7
-11	-22	118	114	5	-9	18	308	316	6	- 6	-9	165	157 9
-11	-19	97	102	12	-9	21	71	115	10	- 6	- 6	214	201 6
-11	-16	162	166	10	-9	24	175	174	12	- 6	- 3	92	82 8
-11	-13	72	7	13*	- 9	30	65	36	19*	- 6	0	119	109 12
-11	-10	56	33	10*	- 8	-31	114	48	13	- 6	3	341	348 8
-11	-7	240	249	5	- 8	-28	205	204	9	- 6	6	703	693 22
-11	-4	49	32	8*	- 8	-25	46	10	17*	- 6	9	305	303 7
-11	-1	31	17	6*	- 8	-22	112	95	13	- 6	12	179	177 5
-11	2	73	62	8	- 8	-19	40	10	8*	- 6	15	69	99 16*
-11	5	155	156	5	- 8	-16	115	115	8	-6	18	56	43 6
-11	8	120	124	1	-8	-13	361	350	/	- 6	21	82	16 1
-11		49	49	12*	- 8	-10	80	80	15.4	- 0 c	30	8/	66 9 70 10 m
-11	14	140	14/	11	- 8	-/	40	1/7	10×	- )	- 21	/4 59	48 18× 50 17±
-11	1/	135	140	134	-0	-4	165	147	5	- 5	- 20	50 66	20 1/* 67 15¥
- 11	20	86	2	16*	-0	2	308	301	10	- 5	-23	93	62 10
-11	29	57	51	10*	- 8	5	612	596	17	- 5	-19	77	61 11
-10	-26	117	112	10	- 8	11	67	66	6	- 5	-16	106	109 6
-10	-23	68	55	- 7	- 8	14	149	151	6	- 5	-13	374	386 5
-10	-20	65	7	10	- 8	17	74	79	17*	- 5	-10	216	213 8
-10	-17	75	90	5	- 8	20	249	235	6	- 5	- 7	85	80 13
-10	-14	140	132	9	- 8	23	46	33	13*	- 5	-4	454	455 15
-10	-11	404	397	8	- 8	26	76	80	14*	- 5	-1	54	61 6
-10	- 8	367	365	7	- 8	29	118	108	14	- 5	2	101	<del>9</del> 9 7
-10	- 5	210	218	4	- 7	- 32	73	5	16*	- 5	5	215	203 6
-10	- 2	257	267	6	-7	-29	129	112	6	- 5	8	302	291 9
-10	1	337	332	7	-7	-26	190	176	9	- 5	11	112	97 6
-10	4	96	107	5	-7	-17	58	53	18*	- 5	- 14	71	/4 8
-10	10	2/8	2/8	5	-/	-11	443	439	<b>b</b>	- >	17	124	124 8
-10	10	52 727	27 E	. ⊤T×	-/-	- 0 -	777 773	100	4		20	/0 05	13 1
~ 10	13	231	243	· )	~/	- 3	201	T 20	)	- )	20	. 00	23 IU

Ŋ

ו ז ו

ŕ

~ ~ ~ ~

4 4

te unterfit

are o to serve of a

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
- 5	29	111	109	6	- 2	-1	300	302	8	0	27	67	72	19*
-5	32	48	15	20*	-2	2	145	130	5					
-4	- 29	45	17	18*	- 2	5	386	383	5	~ ^ ^ ^	~~~	h = 13	~ ~ ^ /	~~~~
-4	-26	72	73	11	- 2	8	297	290	5					
-4	-23	48	40	16*	- 2`	11	753	736	12	-12	-29	111	65	15
-4	-20	53	58	13*	- 2	14	362	354	6	-12	-26	104	83	29*
-4	-17	89	91	7	- 2	17	50	31	14*	-12	-23	211	206	5
-4	-14	55	13	9*	- 2	20	137	134	9	-12	-20	192	17Ŷ	õ
-4	-11	199	214	6	- 2	23	100	99	6	-12	-14	50	41	8
-4	- 8	160	154	4	- 2	26	223	232	6	-12	-11	99	97	8
-4	- 5	338	320	12	- 2	29	154	156	11	-12	- 8	494	495	9
-4	- 2	134	123	6	- 2	32	54	63	18*	-12	- 5	571	564	12
-4	1	243	241	5	-1	- 29	55	39	16*	-12	- 2	357	355	5
-4	- 4	202	231	4	-1	- 26	108	102	8	-12	1	288	287	7
-4	7	178	176	6	-1	-23	117	109	13	-12	4	75	71	5
-4	10	175	175	4	-1	- 20	320	325	6	-12	7	404	400	7
-4	13	206	209	4	-1	-17	235	217	10	-12	10	283	296	8
-4	16	36	26	11*	-1	-14	215	218	4	-12	13	266	271	8
-4	19	70	66	8	-1	-11	70	62	8	-12	16	138	141	7
-4	22	105	92	12	-1	- 8	200	204	5	-12	19	68	39	9
-4	25	36	12	18*	-1	-5	724	726	10	-12	22	83	94	8
-4	28	100	43	10	-1	-2	2/2	269	/	-12	28	148	120	16
-4	31	70	36	19*	-1	ļ	187	168	2	-11	-27	85	/3	14*
-3	- 30	1/3	39	16*	-1	4 7	105	10/	2	- 11	-24	247	231	5
- 5	-2/	148	139	10	-1	1	165	1/0	4	-11	-21	275	2/6	5
- 5	-24	1/0	165	9	-1	10	307	292	2	-11	-18	231	234	4
	-16	10	00	0	-1	15	300	202	ĉ	-11	-10	215	277	/ 5
- )	-10	202	200	כ ר	-1	10	232	200	11	-11	-12	205	203	2
- )	°12	/15	116	5	<u>_</u> 1	72	153	1/5	11	-11	- 9	200	204	5
- )	- 9	41J 71	410	2	-1	22	20	140	0 11	-11	-0	200	242	5
- 2	-0	/1	10	0 10-	1	20	07	211	11	-11		239	234	2
- 5		101	166	2	-1	20	213	211	204	11	2	411	202	10
- 3	2	425	414	6	ň	-21	48	2	201	-11	2	411	373	10
_3	6	214	202	6	ñ	-24	102	00	201	-11	a	325	320	7
- 3	q	218	202	5	õ	-18	112	114	11	_11	12	209	215	
_3	12	95	210	5	õ	-15	94	77	10	_11	15	197	213	7
-3	15	47	3	9*	õ	-12	133	118	8	-11	18	263	261	8
-3	18	167	161	7	õ	.9	74	86	13*	-11	21	161	156	ğ
- 3	21	309	301	Ŕ	ŏ	-6	90	90	6	-11	24	81	89	17*
-3	24	261	257	ğ	õ	-3	160	148	5	-10	-28	77	105	18*
-3	27	82	81	22*	ŏ	Ő	144	146	ž	-10	-25	69	53	8
-2	-28	216	204	14	ŏ	3	198	199	6	-10	- 22	121	107	11
-2	-25	174	178	12	ō	6	59	73	12*	-10	-19	36	6	16*
-2	-22	332	334	6	ō	9	147	138	5	-10	-10	39	17	6
-2	-19	138	143	8	Õ	12	264	262	8	-10	-7	145	150	12
-2	-13	423	427	6	Ō	15	96	97	11	-10	-4	53	34	5
-2	-10	395	399	7	0	18	69	9	12*	-10	-1	103	109	4
-2	-7	387	383	9	0	21	58	63	19*	-10	2	72	70	6
- 2	-4	570	563	8	0	24	55	20	10*	-10	5	385	391	9

.

.

1 .

.

ı ,

.

.

10|F|o vs 10|F|c for Phosphazene Clathrate (Data Set II)

page 12

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc sigF
-10	8	40	4	7*	-7	-7	286	297	4	- 5	30	62	5 20*
-10	11	101	106	7	-7	-4	725	723	8	-4	-28	89	65 17 <b>*</b>
-10	14	83	84	10	-7	-1	759	764	8	-4	-25	115	120 8
-10	20	91	59	9	-7	2	723	716	9	-4	-22	113	1.14 9
-10	26	53	52	12*	-7	5	502	488	15	-4	-19	256	256 7
۰9	-26	182	190	6	-7	8	219	216	6	-4	-16	136	151 5
- 9	-23	195	194	5	-7	14	369	359	10	-4	-13	242	228 5
-9	-20	82	25	11	-7	17	491	500	9	-4	-10	211	199 5
-9	-14	166	160	6	-7	20	405	380	8	-4	-7	87	77 6
-9	-11	381	381	6	- /	23	218	218	8	-4	-4	222	213 8
-9	-8	310	316	6	-/	29	129	131	/	-4	-1	465	449 11
-9	- 5	122	121	2	- 6	- 29	140	133	ć	-4	2	121	113 6
-9	-2	24	58	5	-0	-20	120	120	0	-4	2 0	170	189 3
-9	1	176	230	2	-0 2	-25	101	70	9	-4	11	217	1// /
-9	4	1/0	700 TOO	0	-0	-20	227	262	9 1	-4	14	21/	JL4 0 771 0
-9	10	2.04 2.07	2.30 7.00	o Q	-6	-1/	436	745	10	-4	17	4JI 221	441 <del>7</del> 917 /
- 7 . 0	13	407 218	400	5	-0	-11	430	440	10	-4	20	221	86 5
- 9	16	210 //Q	3/	J 15*	-6	- 11	263	255	8	-4	20	90	95 17*
-9	19	74	24	12	-6	- 5	71	56	Ř	- 4	26	79	93 15*
-9	22	130	137	8	- 6	-2	84	97	6	-4	29	102	95 10
.9	25	231	230	8	- 6	ĩ	93	98	10	- 3	- 26	103	68 12
.9	28	116	96	8	- 6	4	457	459	6	- 3	-23	167	168 8
- 8	- 27	135	120	11	-6	7	158	153	4	- 3	-20	456	453 9
- 8	-24	325	310	9	- 6	10	177	161	9	- 3	-17	470	459 8
- 8	-21	230	234	6	- 6	13	78	59	10	- 3	-14	358	405 6
- 8	-18	277	284	6	- 6	16	91	96	6	- 3	-11	129	130 5
- 8	-15	176	180	6	- 6	19	296	301	6	- 3	- 8	40	45 7*
- 8	-12	47	9	8*	- 6	22	193	205	6	- 3	- 5	469	457 6
- 8	-9	427	429	8	- 6	25	102	116	6	- 3	- 2	1088	1064 22
- 8	-6	390	390	5	- 6	28	85	37	11	- 3	1	1041	1045 12
- 8	-3	581	573	11	- 5	- 27	69	44	15*	- 3	4	310	305 7
- 8	0	592	580	9	- 5	- 24	98	94	7	- 3	7	37	28 10*
- 8	3	204	196	8	- 5	-21	183	184	8	- 3	10	378	362 6
- 8	6	187	187	4	- 5	-18	168	166	5	- 3	13	698	687 11
- 8	9	408	401	7	- 5	-15	242	245	6	- 3	16	520	507 14
- 8	12	488	489	6	- 5	-12	83	91	. 8	- 3	19	380	378 12
- 8	15	408	408	10	- 5	-9	183	180	5	- 3	22	238	235 4
- 8	18	196	181	9	- 5	-6	28	24	. 9*	-3	25	57	4 19*
-8	24	124	112	6	- 2	- 3	231	225	. /	- 3	28	154	149 10
- 8	27	14/	153	9 11	- 5	0	328	3/1		- 3	31	84 150	1/3 10*
- 8	30	112	109	11	- 5	5	/3	117	10	-2	-21	100	10 12
- /	- 31	123	128	164	- 5	0	130	L1/	12	- 2	- 24	102	110 15
- /	-20	10/ 50	05	14⊼ 15∿	- 3	צי	00 777	3 C ۱.۱.۱	222	- 2	- 21	49	23 14* 138 5
- /	-20	23 01	32	10× 7	- 5	15	40Z 979	- 440 224	22	- 2	-10	134 977	130 J 970 7
-/-7	- 22	203	510	12		10	242	200	, / a	- 2	-10	556	217 1 550 0
- /	-17	567	273	<u>ک</u> ر		21	727	17/	, 17★	- 2	-14	615	426 7
-7	-13	404	615	q	-5	24	56	70 70	) <u>8</u>	-2	-6	230	237 6
-7	-10	353	347	8	-5	27	82	68	9	- 2	- 3	245	237 8
,				-	-		~-		-	-	-	- • •	· · •

í

1

page 13

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
- 2	0	419	401	10						-11	13	602	595	9
- 2	3	695	681	1J	-13	- 24	64	52	10	-11	16	269	267	5
-2	6	662	646	11	-13	-21	179	190	5	-11	19	54	22	10*
- 2	9	494	487	8	-13	-18	416	422	8	-11	22	97	69	12
- 2	12	46	40	10*	-13	-15	431	426	11	-11	25	127	114	11
- 2	15	49	48	5	-13	-12	342	337	11	-11	28	176	182	11
- 2	18	201	193	7	-13	-9	221	234	7	- 10	- 30	61	41	18*
-2	21	384	386	6	-13	- 6	309	310	7	-10	- 27	61	20	17*
- 2	24	275	273	7	-13	- 3	596	591	8	-10	-24	97	87	13
- 2	27	115	83	13	-13	0	553	534	9	-10	-21	45	6	18*
-1	-28	88	113	9	-13	3	555	541	9	-10	-18	304	302	6
-1	-25	253	233	7	-13	6	286	285	5	-10	-15	284	286	7
-1	-22	193	197	5	-13	9	257	251	4	-10	·12	229	234	4
-1	-19	203	202	6	-13	12	143	141	7	-10	-9	229	227	6
-1	-16	202	201	6	-13	15	418	427	8	-10	-6	86	80	8
-1	-13	144	135	7	-13	18	418	423	9	-10	- 3	259	257	5
-1	-10	514	513	9	-13	21	270	274	9	-10	0	324	324	7
-1	- 7	680	673	13	-13	24	212	201	8	-10	3	184	212	27
-1	-4	468	461	7	-13	27	67	6	14*	-10	6	123	114	8
-1	-1	293	299	9	-12	-28	244	247	8	-10	9	198	206	6
-1	2	217	230	6	-12	-25	353	355	9	-10	12	44	2	16*
- 1	5	194	133	5	-12	- 22	154	159	7	-10	15	240	271	11
-1	8	545	537	7	-12	-19	206	209	4	-10	18	229	228	7
-1	11	424	-411	9	-12	-16	469	460	8	-10	21	163	166	6
-1	14	182	173	7	-12	-13	629	616	9	-10	24	140	151	9
-1	17	316	315	6	-12	-10	860	840	12	-10	27	50	45	22*
-1	20	45	48	11*	-12	-7	582	579	8	-9	-28	77	83	14*
-1	23	237	244	6	-12	-4	100	88	7	- 9	-25	69	53	14*
-1	26	264	274	11	-12	-1	372	376	6	-9	-22	125	127	10
-1	29	105	103	9	-12	2	654	646	8	- 9	-19	147	143	10
0	-26	82	69	8	-12	5	833	843	13	-9	-16	231	229	4
0	-23	60	32	13*	-12	8	815	820	11	-9	-13	314	309	7
0	- 20	141	146	8	-12	14	39	26	18*	-9	-10	429	409	7
0	-17	120	118	7	-12	20	369	377	10	-9	-7	201	202	3
0	-14	93	111	8	-12	23	397	390	13	-9	-4	54	37	5
0	-11	260	256	7	-12	26	349	346	10	-9	-1	609	615	9
0	- 8	144	138	7	-11	-29	75	45	14*	-9	2	403	404	8
0	- 5	285	294	8	-11	-26	220	223	5	-9	5	188	187	5
0	-2	226	232	9	-11	-23	213	211	5	-9	8	258	259	5
0	1	96	101	8	-11	-20	206	198	4	-9	11	123	124	7
0	4	/5	/6	15*	-11	-1/	145	14/	7	-9	14	292	285	9
0	/	121	116	9	-11	-14	/9	70	12	-9	17	185	193	9
Ű	10	51	23	11*	-11	-11	386	380	8	-9	20	135	134	8
0 0	13	172	169	1	-11	- 8	357	348	5	-9	23	247	242	8
Ŭ	10	163	154	5	-11	- 5	406	406	6	-9	26	82	94	16*
Ŭ	19	61	11	14*	-11	-2	646	640	10	- 8	-29	168	180	8
U A	22	/ 9	88	10×	-11	1	254	243	4	- 8	-26	280	271	ΤĻ
U	23	88	64	ő	- 1 1	4	10	41	9×	- 8	-23	1/5	1/0	6
		h., 1	,	~ ~ ~ ~	-11	1	720 TOU	T29	0	- 8	-20	113	113	9
		n = 1	4		-11	10	3/9	364	1	- 8	-1/	188	198	4

10|F|o vs 10|F|c for Phosphazene Clathrate (Data Set II) page 14

M69

1

ŝ

ŝ i

:

. : ¥

!

page 15

k	1	Fo	Fc sig	gF k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
- 8	-14	461	460 10	-6	26	101	73	12	- 3	8	517	509	12
- 8	-11	569	565 11	- 5	- 29	46	8	21*	- 3	11	463	453	9
- 8	- 8	663	652 8	- 5	-23	189	182	9	- 3	14	423	419	9
- 8	- 5	364	361 5	- 5	-20	171	162	8	- 3	17	169	159	6
- 8	-2	47	<u>~4</u> 6	- 5	-17	369	375	7	- 3	20	140	138	6
- 8	1	564	5/9 8	- 5	-14	61	91	7	- 3	23	242	236	7
- 8	4	559	540 15	- 5	-11	266	272	4	- 3	26	184	202	6
. 8	7	686	681 9	- 5	- 8	244	248	4	- 3	29	218	232	9
- 8	10	448	454 6	- 5	- 5	273	263	6	-2	-26	122	116	6
- 8	13	174	164 5	- 5	- 2	398	408	ڻ ۲	-2	-23	232	218	5
-8	19	259	255 7	- 5	1	347	346	5	-2	- 20	285	271	8
- 8	22	261	263 5	- 5	4	121	116	5	-2	-17	319	325	7
- 8	25	239	238 8	- 5	1	38	2	14*	-2	-14	229	229	7
- 8	28	130	122 10	- 5	10	369	361	4	-2	-11	146	148	4
-7	-30	48	6 213	* - ) -	13	330	320	, /	- 2	-8	239	237	4
- /	-27	156	142 11	- 5	16	468	451	11	-2	- 5	2/1	264	6
- /	-24			- 5	19	132	160	10	-2	-2	341	341	5
- /	-18	607	591 9	- 3	22	107	110	9 12	- 2	I,	263	262	6
- /	-15	18/	210 18		20	127	110	13	- 2	4	282	287	/
- /	-12	103	110 0		20	94	100	10	- 2	10	50	49	/
-/	-9	110	110 0	-4	- 21	121	102	164	- 2	10	405	390	8
- /	-0	410	4L/ 0	-4	- 24	01	12	10*	- 2	10	380	368	12
- /		042	042 II 272 G	-4	-21	260	1 C 1 2 C	11	- 2	10	414	409	10
- /	2	000	6/3 0	-4	- 10	200	204	7	- 2	73	200	302	. 10 
- /	2 2	20	01 10 07 12	-4 -4	-13	207	433	5	- 2	22	23 11/	11	. D
- /	0	0C 100	126 6	~ -4 //	-12	109	112	) /	- 2	20	114	111	10
- /	10	501	503 8	-4		76	75	4 8	- 2	20	76	54	164
- 7	15	636	661 10	-4		151	146	8	-1	-27	67	51	10
-7	18	325	315 0	-4	0	557	551	ğ	-1	-15	106	110	10
-7	27	153	145 8	-4	िय	710	708	14	-1	-15	197	189	6
_7	30	218	210 0	-1	6	406	200	7	- 1	-6	102	100	5
-6	-28	70	50 16	* -4	, u	76	88	ģ	-1	- 3	48	100	11*
-6	-25	78	55 11	- 4	12	103	102	ģ	-1	0	40	29	8*
-6	-22	64	64 14	* -4	15	148	144	5	-1	š	67	60	7
-6	-19	261	247 8	- 4	18	485	479	12	-1	6	335	326	6
- 6	-16	364	346 8	-4	21	285	283		-1	ÿ	138	130	7
-6	-13	413	410 5	-4	24	77	76	21*	-1	12	78	76	9
-6	-10	213	237 18	- [	30	73	29	14*	-1	15	162	160	5
-6	-7	265	253 7	- 3	-28	153	162		-1	21	105	105	11
- 6	-4	261	256 5		3 - 25	163	178	15	-1	24	116	108	8
- 6	-1	720	733 11	- 3	3 - 22	227	220	5	-1	27		30	14
- 6	2	723	737 8		3 -19	216	223	8	ō	-25	84	92	16*
-6	5	252	255 7	- 3	3 -12	222	221	7	Ő	-16	176	172	2 6
- ó	8	309	294 12	- 3	3 -10	553	572	11	Ó	-13	315	319	) 6
- 6	11	81	79 8	-	3 -7	563	560	10	Ó	-10	282	27	57
- 6	14	248	257 10	- 1	3 -4	616	612	2 13	0	- 7	171	167	7
- 6	17	251	247 7	- 3	3 -1	389	384	7	0	-4	228	22	74
- 6	20	233	241 5	- (	3 2	32	2	. 7*	0	-1	143	180	5 24
- 6	23	187	181 7	-	3 5	429	413	9	0	2	267	27	8

ę, k

1

12	) F o	<b>vs</b> 10	Fc	for	Fhos	phaz	ene Cl.	athrate	e (Da	ita	Set	II)	page 16
k	1	Fo	Fc	sigl	F k	1	Fo	Fc s	sigF	k	1	Fo	Fc sigF
6	5	265	269	5	-12	- 6	232	217	6	-9	-18	235	238 8
Õ	8	138	135	7	-12	-3	688	680	9	-9	-15	90	73 10
0	11	252	248	5	-12	0	984	984 1	L2	-9	-12	63	60 9
0	14	49	35	10*	-12	3	606	597	7	- 9	-9	438	437 7
0	17	148	149	9	-12	6	387	411 1	L6	-9	-6	607	583 7
0	20	94	87	8	-12	9	82	93 1	LO	- 9	- 3	460	459 7
0	23	114	109	12	-12	12	377	388	9	-9	0	348	333 5
					-12	15	473	480	9	-9	3	143	137 5
~~~~	1000	h = 15			-12	21	323	341 1	LÕ	-9	9	412	410 8
		1.0.0		1.0	-12	24	243	235	1	-9	12	2/4	2/9 8
-14	-25	135	161	13	-12	27	105	0 107	9	-9	10	268	280 9
-14	-22	141	135	10	-11	-28	100	120 1	9 11	- 9	10	110	102 11
-14	- 19	104	105	9	- L L 1 1	-25	150	10 1	LL 114	-9	21	121	19 14*
~ 14	- 10 13	772	212	2	-11	-16	185	178	0	- 9	24	132	142 7
-14	-13	510	445	0 8	.11	-13	436	429	9	- 9 - R	-28	140	154 9
-14	-10	640	631	8	-11	-10	435	425	6	-8	-22	144	133 10
.14	-4	129	125	ŭ	-11	-7	134	132	4	- 8	-19	345	335 11
-14	-1	295	288	4	-11	-4	73	79 1	10	- 8	-16	672	653 10
-14	2	364	375	8	-11	-1	210	205	4	- 8	-13	326	339 4
-14	5	521	516	6	-11	2	502	490	6	- 8	-10	167	159 8
-14	8	601	599	11	-11	5	292	290	6	- 8	- 7	115	110 5
-14	11	243	219	18	-11	8	284	292	8	- 8	-4	169	166 6
-14	14	185	189	7	-11	11	283	279	3	- 8	-1	577	583 9
-14	17	156	153	8	-11	14	126	1,30 1	11	- 8	2	578	572 6
-14	20	237	244	6	-11	20	177	175	7	- 8	5	587	576 23
-14	23	332	327	9	-11	23	170	183 1	14	- 8	8	239	238 7
-13	-23	419	434	10	-11	26	155	148	13	- 8	11	235	241 6
-13	-20	370	378	10	-10	-29	29	20	10*	- 8	14	401	386 10
-13	-1/	100	96	10	-10	- 20	201	106	L/* 5	- 0	1/	243	532 8 080 7
-13	-14	373	1/1	10	-10	- 23	201	236	2	-0	20	200	202 /
-13	-11	243 769	756	10	-10	-1/	234	200	124	-0	23	10	10 194
-13	-5	840	831	11	-10	-11	75	83 1	14*	-7	-20	204	189 10
-13	-2	357	351	5	-10	-8	356	347	7	-7	-26	126	135 7
-13	1	51	g	7	-10	-5	51	5	8	-7	-23	100	96 17
-13	4	191	194	9	-10	-2	305	319	5	-7	- 20	77	56 12
-13	7	568	567	9	-10	1	274	271	8	-7	-17	115	108 13
-13	10	782	797	11	-10	4	119	118	5	-7	-14	299	302 7
-13	16	252	248	5	-10	7	441	433	9	-7	-11	313	314 6
-13	19	127	131	7	-10	10	272	272	6	-7	- 8	300	297 7
-13	22	77	86	8	-10	13	97	85 3	10	-7	- 5	319	323 6
-13	25	269	272	7	-10	16	217	215	6	-7	1	360	371 6
-12	-27	93	63	20*	-10	19	110	104	8	-7	4	487	484 9
-12	-24	110	111	9	- 10	22	145	142	8	-7	7	404	393 13
-12	-21	292	294	8	-10	25	130	135	9	-7	10	243	252 11
- 12	- 18	398	404	7	- 10	28	55	30	15.	-7	13	183	187 7
-12	-10	594 1.20	391	6	-9	-2/	69	42	10*	- /	16	58	6 15*
-12	- 12	420	413	9	- 7	- 24	200 201	200	0 TO	-/	19	104	210 5
- 14	- 7	200	7.20	O D	- 7	- 21	~~1	240	7	-/	<u> </u>	TOO	114 227

î

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
-7	25	99	103	13	- 3	-18	253	245	8	0	6	248	248	R
. 7	28	102	135	11	- 3	-15	252	251	6	õ	ğ	282	277	š
- 6	-27	54	19	18*	- 3	-12	292	287	7	ŏ	12	70	56	11
-6	-15	132	132	15	-3	-9	224	230	6	ŏ	15	58	6	6
- 6	-9	165	161	7	- 3	-6	134	135	9	õ	18	67	72	3
- 6	-6	125	197	6	-3	-3	226	216	5	ŏ	21	92	114	11
-6	_ 3	137	135	6	_ 3	õ	503	484	8	ŏ	24	102	1 1	0
-6	0	258	261	5	_ 3	ž	457	455	10	v	2.7	102		2
-6	š	137	141	Ă	- 3	6	508	497	8	~ ~ ^ ^	~ ~ ~	h = 16	~ ~ ~ /	~ ~ ~ ~
- 6	6	80	67	ż	-3	9	328	318	8			10		
-6	9	80	75	6	-3	12	161	161	14	-15	-23	106	153	15
- 6	12	99	95	7	- 3	15	262	253	8	-15	-20	148	156	10
-6	15	113	116	6	-3	18	272	259	5	-15	-17	130	125	8
-5	-28	88	63	15*	-3	21	168	170	7	-15	-14	110	97	9
-5	-25	62	47	8	-3	24	171	178	6	-15	-11	157	153	7
- 5	-22	83	56	8	- 3	27	137	131	10	-15	- 8	221	217	6
- 5	-19	58	65	13*	-2	-25	150	131	10	-15	- 5	182	185	8
-5	-16	74	30	12	-2	-22	93	48	11	-15	- 2	82	64	8
- 5	-10	100	107	13	-2	-19	130	1.16	10	-15	1	43	24	12*
- 5	- 7	278	290	8	-2	-16	79	85	10	-15	4	105	111	5
- 5	-4	330	329	8	-2	-13	85	92	8	-15	7	330	316	6
- 5	-1	238	241	7	-2	-10	318	317	7	-15	10	297	299	9
- 5	2	59	55	5	-2	- 7	296	290	7	-15	16	203	190	27
- 5	5	133	134	8	- 2	-4	47	54	6	-15	19	72	70	21*
- 5	8	176	179	6	- 2	-1	110	109	3	-15	22	116	102	10
- 5	11	151	154	4	- 2	2	101	99	6	-14	-24	75	61	12
- 5	14	170	180	8	- 2	5	249	237	6	-14	-21	193	208	12
- 5	17	19	28	9*	- 2	8	297	297	6	-14	-18	395	409	11
- 5	26	118	108	9	- 2	11	50	59	5	-14	-15	367	368	10
- 5	29	112	126	11	- 2	14	45	42	9*	-14	-12	54	41	9*
-4	-26	45	1	23*	- 2	20	163	163	8	-14	- 9	57	3	6
-4	-20	168	160	12	- 2	23	197	197	11	-14	- 6	168	166	9
-4	-17	310	302	8	-1	-17	82	86	11	-14	- 3	603	595	9
-4	-14	345	348	8	-1	-11	90	89	8	-14	0	661	641	9
-4	-11	267	273	7	-1	- 8	196	185	8	-14	3	561	563	8
-4	- 8	129	127	11	-1	- 5	165	157	6	-14	6	544	528	7
-4	- 5	254	260	6	-1	-2	35	33	13*	-14	9	129	112	9
4	-2	263	256	/	-1	1	81	75	8	-14	12	270	265	7
-4	1 /	244	242	/	-1	4	115	112	4	-14	15	410	402	8
-4	4	1/0	181	/	-1	10	208	201	1	- 14	18	368	368	6
-4	1	161	123	8	- 1	10	/3	12	10	-14	21	223	21/	6
-4	10	46	14	13×	-1	13	101	170		- 14	24	90	68	12
-4	13	140	14/	8	- 1	16	181	1/6	5	-13	-25	219	220	10
-4	10	369	396	5	-1	22	30	62	1.5*	-13	-22	113	13/	12
-4	19	216	216	10	0	-18	/0	35	13*	-13	-19	11/	125	10
-4	22	10/	103	10	0	-12	2/3	282	9	-13	- 10	405	412	11
-4	28	61 152	171	14× 0	0	- 6	1/3	162	4	-13	-13	424	415	
-)	- Z1 01.	110	101	0 11	0	- 3	700	99	9 2	-13 12	- 10	038 675	0.30 2171	11
-)	- 24 01	112	101	11 11	0	U 2	200	230	0 2	-13	-/	102	0/1	
- 3	- 21	/ 2	10	ΤT	U	S	212	201	. ว	- 13	-4	172	7.20) <u>(</u>

Ţ

page 17

1	0 F o	VS	10 F c	for	Phos	sphaz	ene Cla	thrat	ce (D	ata	Set	II)	pag	ge 18
k	1	Fo	Fc	sigl	Fk	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
-13	-1	273	277	5	-10	17	102	128	11	-7	17	80	90	9
-13	2	449	441	9	-10	23	98	113	14	-7	20	46	1	13*
-13	5	56ï	575	9	-10	26	83	7	17*	- 7	23	83	42	12
-13	8	719	727	10	- 9	-26	155	176	17	-7	26	97	21	15
-13	11	264	280	8	-9	-23	144	144	11	-6	-26	47	4	20*
-13	17	248	227	9	- 9	- 20	210	194	6	- 6	-23	89	51	6
-13	20	2.89	289	8	- 9	-17	199	169	9	- 6	-20	110	129	16
-13	23	371	. 364	7	- 9	-14	117	131	10	- 6	-17	239	232	8
-12	-26	196	199	12	- 9	-11	197	193	6	- 6	-14	80	113	11
-12	-23	295	299	10	- 9	- 8	235	242	4	-6	-11	125	132	4
-12	- 20	219	212	9	- 9	- 5	285	282	5	- 6	- 8	36	36	17*
-12	-17	127	123	5	-9	- 2	318	314	5	- 6	- 5	179	179	4
-12	-14	74	53	6	- 9	1	33	30	6*	- 6	-2	332	330	7
-12	-11	315	305	8	- 9	4	225	229	6	-6	1	77	77	6
-12	- 8	607	615	14	-9	7	327	323	5	- 6	4	50	51	9*
-12	- 5	441	. 425	7	-9	10	300	298	7	- 6	7	152	149	7
-12	- 2	419	423	6	- 9	13	314	323	9	- 6	10	79	81	10
-12	1	192	192	5	- 9	16	136	150	8	- 6	13	87	98	10
-12	4	153	146	7	- 9	19	64	36	16*	- 6	16	281	268	7
-12	7	465	451	8	- 9	22	79	45	23*	-6	19	91	54	12
-12	13	398	397	9	-9	25	124	132	17	-6	25	70	28	18*
-12	16	256	260	9	- 8	-27	93	84	17*	- 5	-24	81	71	8
-12	22	72	70	16*	- 8	-24	127	129	11	- 5	-21	213	205	9
-12	25	198	189	11	- 8	-21	107	110	11	- 5	-18	191	186	8
-11	-24	54	. 99	17*	- 8	-18	160	161	5	- 5	-15	67	69	11
-11	-21	83	47	27*	- 8	-12	116	122	9	- 5	-9	89	31	10
-11	-18	103	97	6	- 8	-9	285	283	5	- 5	-6	126	128	5
-11	-15	97	114	12	- 8	-6	377	385	9	- 5	-3	231	232	6
-11	-12	81	. 80	7	- 8	-3	402	395	6	- 5	Ō	179	184	5
-11	-9	106	102	8	- 8	0	190	183	5	- 5	3	48	16	10*
-11	-3	68	57	11	- 8	3	127	113	8	-5	6	100	102	8
-11	Õ	135	133	7	- 8	6	52	45	4	- 5	9	191	189	8

- 5

- 5

- 5

- 5 21

-4

-4

-4

-4

-4

-4

-4

-4

-4

-4 -22

-4 -19

-4 -16

-4 -13

-4 -10

-7

-4

-1

2 5

8

11

14

17

12

15

18

282

95

108

73

50

48

59

51

108

151

98

58

46

31

89

54

231

224

279

92 9

106 12

57 15*

44 18*

18 15*

29 31*

23 10*

103 5

150 6

90 3

58 10*

26 6

8 15*

79 8

64 11*

229 8

222 8

6

201

225

180 9

104 1'+

148 9

105 10

113 8

103

119

65

95 8

32 11

71 13

87 13*

84 11*

89 12

7

5

5

35 21*

9 17*

-11

-11

-11

-11

-11

-11

-10 -25 -10 -19 -10 -16

-10 -13

-10 -10

-10

-10

-10

-10

-10

-10

-10

3

6

9

12

15

18

- 7

-4

-1

2

5

8

11

56

68

116

200

107

137

93

96

155

195

231

82

51

88

55

56

66

79

64 18*

79 15*

111 8

200 8

124 11

85 14

67 10

239 5

89 10

49 14*

50 10*

14 11*

86 10

7

8

7

7

127

156

193

73

45 7 - 3

- 8

- 8

- 8

- 8

- 8 27

-7

- 7

-7

- 7

-7

- 7

- 7

-7

-7 -25

-7 -19

-7 -16

-7 -13

- 7

-4

-1 2

5

8

11

14

9

12

15

18

24

203

231

187

47

109

170

55

100

87

129

94

77

97

118

83

99

64

84

٦,

10|F|o vs 10|F|c for Phosphazene Clathrate (Data Set II)

page 19

M74

ŧ

;

PA SANDARY PROPERTY

no marine or a to a second

2 . 4. . . .

5

ł

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc sigF
-4	23	59	25	12*	0	4	150	150	6	-13	- 3	260	261 4
-4	26	100	70	12	0	7	204	203	6	-13	0	232	248 12
- 3	-23	56	58	16*	0	13	50	28	16*	-13	3	243	245 8
- 3	-17	77	97	12	0	16	53	35	10*	-13	6	70	23 11
- 3	-14	54	68	18*	0	19	76	102	8	-13	9	168	183 22
- 3	-11	69	48	9						-13	15	196	135 11
-3	- 8	45	24	11*	^ ^ ^ ^	^^^ h	= 17	~~~~	~ ^ ^	-13	18	194	205 10
-3	-2	165	162	6						-13	$\overline{21}$	77	94 15*
-3	ī	42	27	10*	-16	-18	63	2	11*	-12	-22	60	85 18*
-3	4	186	179	5	-16	-15	56	22	17*	-12	-16	51	37 7
-3	7	129	118	3	-16	-12	80	66	8	-12	-13	70	53 9
-3	10	93	76	16*	-16	-9	85	89	7	-12	-10	57	49 6
-3	13	262	257	10	-16	-6	159	150	6	-12	-7	132	130 7
-3	16	66	3	7	-16	- 3	74	70	7	-12	-4	78	78 10
-3	19	105	123	14	-16	Ō	56	30	7	-12	-1	124	127 3
-3	25	77	21	īi	-16	3	77	94	15*	-12	2	37	37 14*
-2	-24	85	83	20*	-16	15	44	35	20*	-12	5	152	143 5
-2	-21	137	143	_ <u>9</u>	-15	-19	95	38	13	-12	8	61	33 10
-2	-18	219	215	8	-15	-16	141	130	14	-12	11	68	48 7
-2	-15	173	161	9	-15	-13	196	196	7	-12	14	58	52 7
-2	-12	75	35	9	-15	-10	115	107	ġ	-12	17	74	70 10
-2	-9	191	204	7	-15	-7	134	126	9	-12	20	64	65 12*
-2	-6	331	327	7	-15	-4	201	197	6	-11	-20	152	152 13
-2	ŏ	357	375	11	-15	-1	66	26	10	-11	-17	144	139 10
-2	š	102	99	8	-15	2	98	82	8	-11	-14	116	119 10
-2	6	161	162	ŭ	-15	ã	49	45	16*	-11	-11	162	165 5
-2	ğ	167	156	6	-15	11	58	26	15*	-11	-8	36	37 10*
-2	12	224	221	7	-15	17	90	92	10	-11	- 5	79	68 13
-2	15	319	330	18	-15	20	96	92	10	-11	-2	256	251 5
-2	18	156	151	10	-14	-23	141	157	20	-11	1	278	289 5
-2	21	67	42	18*	-14	-20	202	211	10	-11	ã	86	88 14*
-1	-22	131	145	8	-14	-17	225	237	8	-11	13	158	154 9
_1 _1	-19	160	156	ğ	-14	-14	87	82	14		16	162	159 8
_1	-13	142	153	10	-14	.11	49	31	23*	-11	19	125	131 20
-1	-10	135	143	10	-14	-8	180	177	7	-11	22	78	77 20*
_1	-4	233	234	Ĩĝ	-14	-5	302	298	8	-11	25	94	76 11
_1	_1	176	100	g	-14		270	273	7	-10	-21	131	116 14
_1	-1	273	275	12	-14	- 2	84	275	á	-10	- 21	136	134 14
_1	5	273	275	5	-14	7	211	218	10	_10	-15	238	230 14
_1	2	233	250	17*	-14	10	235	210	8	-10	-12	168	185 5
_1	11	145	149	15	-14	13	200	240	7	-10	- 12	187	188 7
-1	1/	07	102	17*	- 14	16	309	307	, 8	-10	_ 3	226	225 5
-1	17	177	171	7	-14	19	132	131	10	-10	- 0	474	475 G
-1	20	06	104	13	-14	22	17	1.51	18+	-10	2	307	388 8
- 1	.20	50	104	17*	-13	-24	110	100	14	-10	5	136	131 6
ň	- 20	127	201	11	-13	-24	124	155	11	_10	0 0	20	25 124
0	- 1 /	200	1 20	11	-12	-41	176	176	<u>۲</u>	-10	10	02	25 12* 77 9
ň	-0	200	707 707	10	-13	-10	g/.	1/0	11	-10	10	74 171	176 10
۰ ۲	-)	04 192	107	11	-12	- 12	183	191	1 1	_10	21	111	120 12
0 0	- 2	116	110	11	-10	- 7	203	101	4	-10	21 01/	LLL C1	11 00±
U	Ť	TTO	110	7	-13	-0	504	208	0	- 10	24	DT	11 ZZ*

10) F 0	vs	10 F c	for	Phos	phaze	ene	Cla	athr	at	e (D	ata	Set	II)		pag	ge 20
k	1	Fo	Fc	sigI	k	1	F	D	Fc		sigF	k	1		Fo	F	⁷ c	sigF
- 9	- 22	108	105	11	- 6	-4	:	27	3	1	15*	- 3	20		140	1	50	13
- 9	-19	111	134	11	-6	-1	1	76	18	4	5	- 3	23		124	1	.02	13
-9	-13	262	251	7	-6	2	5	10	51	.5	12	-2	-20		69		51	13*
-9	- 10	20	6 86 55	2	- 6	2	2	19	20	0	10	-2	-1/		203	2	90	10
-9	-/		155	10*	· 0	11	20	00 35	20	4	0	-2	-0		242 256	2)/Q	7
-9	-4	83 770	66 J	2	-0	14	2	38	14	4	20*	- 2	-2		250	2	36	/ 12*
-9	-1	111	117	10	-6	17	2	11	21	8	7	-2	-2		196	1	89	5
-9	5	48	27	12*	-6	20	2	59	26	5	10	-2	- Ā		342	2	347	7
-9	8	188	194	5	- 6	23	1	10	12	5	9	-2	7		374	3	370	6
- 9	11	103	94	6	- 5	- 23	14	45	12	9	8	-2	10		403	3	383	7
-9	14	70	87	13*	- 5	- 20	1	14	11	8	10	- 2	13		240	2	244	14
- 9	17	123	126	6	- 5	-17	(55	6	3	11*	-2	16		50		47	14*
-9	20	64	54	11*	- 5	-14		79	5	3	11	- 2	19		124		99	11
- 8	-23	65	41	9	• 5	-11	20	16	21	.4		-2	22		1//	2	206	8
-8 0	-11	107	21	14×	- 5	-8	4.	20	41	.U 5	0 7	-1	-21		220		222	/
~0 . Q	- 0	161	200	0	-5	- 2	4.	29 19	41	ן. בי	, 7	1	-10		1J1 275	2	130 122	2
-0	-2	203	199	4	-5	-2	20	τ <u>ς</u>	29	15	7	-1	-0		350	2	347	6
- 8	1	132	131	5	-5	â	1	34	13	9	8	-1	3		163	1	64	6
- 8	4	24	29	9*	- 5	7	34	40	33	8	7	-1	6		223	2	221	5
- 8	7	60	54	9	- 5	10	2:	21	21	.2	5	-1	9		324	3	319	5
- 8	10	59	30	13*	- 5	13	2	26	21	.6	7	-1	12		292	3	314	12
- 8	13	90	81	10	- 5	16	23	24	21	.7	9	-1	15		246	2	271	19
- 8	16	137	143	11	- 5	19	13	20		9	12	-1	18		152	1	L55	11
- 8	25	68	20	14*	-5	22		65	6	0	17*	0	-19		127]	L28	10
-7	- 24	47	83	21*	-5	25	10	02	6	4	10	0	-13		210]	199	10
-/	-21	140 707		10	-4	-24		22	1	5 L	10×	0	- 10		138	1	131	10
-/	-10	44/ 510	419	7	-4	-21		92 95	0	12	17	0	- /		202		90 970	12*
-7	-12	110	125	11	-4	-12		79 79	ĥ		0	0	-1		205	4	270	5
-7	-9	52	12	13*	-4	- 12	1	18	11	í	ś	ŏ	5		194		193	5
-7	-6	57	57	4	-4	š	-	83	ģ	95	7	ŏ	8		120	1	132	5
-7	- 3	364	361	6	-4	6		62	4	16	13*	Ō	11		157		156	11
-7	0	664	654	10	-4	9		70	2	25	9	0	14		56		40	7
-7	3	398	393	6	-4	12		66	6	54	11*	0	17		149	-	180	11
-7	6	244	247	5	-4	15		75	4	+2	14*	0	20		80		136	10
-7	9	48	23	8*	-4	24		71		5	12*							
-7	12	226	229	6	-3	-19	1	59	14	-9	9	~~~	~ ~ ~ ~ ~	h	- 1	18 '	~ ^ ^	~~~~
-/	15	514	496	13	-3	-16	2	89	29	8	8		10				•••	
-/	10	412	412	14	- 5	-13	3	03	29	14	9	-1/	- 16		60		39	11*
-/	21 24	144		704 TT	- 5	- 10	L 1	30 73	10	2 20	ć	-1/	-13		00 T00		118	24*
-6	-25	115	190	14		-4 -1	ג ד	75 19	21	0	7	-17	-10		00 21		70 02	0 11
-6	-22	65	6	16*	- 3	2	3	06	31	3	6	-17	-4		174		175	10
-6	-19	145	137	9	- 3	5	1	36	13	33	7	-17	2		235		231	7
-6	-16	329	322	8	-3	8	-	50	-4	4	9×	-17	8		133		152	10
- 6	-13	379	369	5	- 3	11		59	5	56	14*	-17	11		48		3	13*
-6	-10	295	295	6	- 3	14	2	24	21	9	5	-17	17		63		7	17*
-6	-7	176	172	6	-3	17	2	57	26	51	8	-16	-17		79		103	8

ひちん ちょうちょうちょう

ł

ţ.

i)

1

and the second state

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
-16	-14	168	172	8	-12	- 3	68	78	15*	-9	18	61	20	16*
-16	-11	258	254	9	-12	0	206	215	5	-9	21	70	38	18*
-16	-8	364	382	12	-12	3	269	253	7	- 8	-22	108	61	12
-16	- 5	245	235	12	-12	6	444	432	10	- 8	-19	71	13	13*
-16	- 2	104	90	8	-12	9	413	400	9	- 8	-16	242	231	6
-16	1	120	117	8	-12	12	92	93	17*	- 8	-13	438	428	7
-16	4	111	111	7	-12	15	131	128	10	- 8	-10	347	336	8
-16	7	204	213	8	-12	18	188	186	9	- 8	-7	179	172	7
-16	10	189	189	9	-12	21	140	136	10	- 8	-4	82	85	8
-16	16	86	69	13	-11	-22	147	132	11	- 8	-1	155	156	6
-16	19	92	72	13	-11	-19	50	107	18*	- 8	2	431	425	7
-15	-21	72	74	28*	-11	-13	119	113	9	- 8	5	306	312	5
-15	-18	75	16	16*	-11	-10	310	319	6	- 8	8	317	319	8
-15	-15	108	106	10	-11	- 7	455	459	13	- 8	11	280	281	8
-15	-12	129	120	6	-11	-4	346	342	7	- 8	14	81	63	13
-15	-9	98	97	4	-11	- 7'	352	334	6	- 8	17	167	153	8
-15	-6	180	1/9	6	-11	5	263	268	5	- 8	20	129	126	9
-15	-3	/6	/0	13*	-11	8	353	3/2	8	- 8	23	219	218	8
-15	0	348	327	8	-11	11	2//	282	12	- /	-23	308	289	7
-15	3	204	199	/	- 11	14	256	2/0	5	- /	-20	251	238	8
-12	6	111	124	9	-11	1/	84	92	10	- /	-1/	191	180	.9
-15	10	202	107	6	-11	20	94	78	13	- /	- [4	263	93	11
-12	12	92	21	9 17.	-11	23	110	20	10.4	-/	-11	543	348	9
-15	10	40	21	1/×	-10	- 23	0/	100	10*	-/	-0 c	201	490	ŏ
-14	-22	49	0	× ۲ کے 1 ک	-10	-20	210	122	/	-/	-)	500	5/3	
-14	-10	05	43	13*	-10	-1/	201	203	9	- /	-2	226	220	9
-14	-10	60 62	90 //	5	-10	-14	201	203	0 194	- /	1	204	1/5	0 2
-14	-10	53	44	114	-10	-0	101	40	10~	- /	47	251	251	Q Q
-14	-/	46	72	17*	-10	- 2	302	304	5	-7	10	567	551	12
-14	-4	122	128	6	-10	1	302	323	7	-7	12	597	506	12 Q
-14	20	43	13	17*	-10	<u> </u>	135	135	10	-7	16	301	296	11
-13	-20	56	47	18*	-10	7	35	68	18*	- 6	-21	187	185	7
-13	-17	107	97	7	-10	10	89	118	7	-6	-18	377	373	ģ
-13	-11	49	23	8	-10	13	214	230	9	- 6	-15	379	403	8
-13	- 8	133	143	10	-10	16	337	337	9	- 6	-12	369	371	6
-13	- 5	43	25	13*	-10	19	167	159	11	- 6	-9	112	117	7
-13	- 2	134	141	6	-10	22	72	32	18*	- 6	- 6	253	258	7
-13	1	64	62	10	-9	-18	81	60	13	- 6	- 3	489	492	7
-13	4	171	171	8	- 9	- 15	49	36	15*	-6	0	525	525	10
-13	7	260	263	6	-9	-12	67	2	11	- 6	3	459	468	7
-13	13	90	97	11	- 9	-9	36	52	15*	- 6	6	260	263	7
-13	16	92	108	12	-9	-6	178	198	12	- 6	9	104	1.04	8
-13	19	65	48	16*	-9	- 3	133	141	. 5	- 6	12	104	117	9
-13	22	67	65	19*	-9	0	71	42	13*	-6	15	426	414	7
-12	-18	175	187	10	- 9	3	66	70	5	- 6	18	342	346	12
-12	-15	206	210	9	-9	6	118	123	5	- 6	21	264	264	8
-12	-12	148	152	4	-9	9	93	93	7	- 5	-22	109	130	20*
-12	-9	351	348	5	- 9	12	104	102	5	- 5	-19	79	94	16*
-12	- 6	265	269	6	-9	15	176	169	6	- 5	-13	203	214	7

10|F|o vs 10|F|c for Phosphazene Clathrate (Data Set II) page 21

k 1 Fo Fc sigF k 1 Fo Fc	10) F o	VS	10 F c	for	Phos	sphaz	zene	Clat	hrat	ce (Data	Set	II)	pa	ge 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k	1	Fo	Fc	sigl	? k	1	Fo)	Fc	sig	;Fk	1	Fo	Fc	sigF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	-10	333	334	6	-1	- 8	26	50	256	9	-16	5	317	319	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	-7	278	274	7	-1	- 5	18	35	195	7	-16	8	208	203	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	-4	66	69	8	-1	-2	6	57	27	18*	-16	14	163	166	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	-1	80) 77	7	-1	1	14	+3	150	4	-16	17	181	189	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	2	176	179	6	-1	4	15	54	151	5	-15	- 20	55	36	22*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	5	381	. 377	7	-1	7	18	34	194	6	-15	-17	72	41	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	8	409	399	10	-1	10	20)7	203	5	-15	-14	102	96	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	11	356	350	7	-1	13		18	60	11*	-15	-11	136	143	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5	14	92	/4	12	-1	16		8	29	104	-15	8- 2	2//	304	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	1/	110		9 17-1	-1	19	1 1)T	100	11	- 13 15		204	Z/J.	104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~) 5	20	120	101	1/*	0	-12	1	20	122	10	- 15	- 2	107	106	1/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	23	200 200	2 L/9	9 164	0	- 7	1/	2	154	20	-1J 15	4	/0 259	257	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	-1/	205	201	10	0	- 5	10	1/1 1/1	205	6	-15	16	107	207	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	-14	127	114	10	ő	3	1 2	16	141	6	.14	-21	55	35	18*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	-8	89	95	7	ŏ	6	13	51 51	128	ő	-14	-18	139	137	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	- 2	137	129	7	Ō	9	e	55	82	5	-14	-15	149	145	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	ī	295	289	5	0	12	-	7	63	6	-14	-12	98	118	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	4	234	225	6	0	15	14	₽ 7	173	6	-14	- 9	41	42	15*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	7	156	152	5	0	18	14	•2	175	11	-14	-6	71	74	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	10	129	117	10							-14	- 3	155	161	7
-41611012217-1431201258-4191109212-18-14485015*-1464989*-422126759-18-119011815-141290839-3-18888512-18-181541478-141515217110-3-15433117*-18-51079417-141811811910-3-92432336-18-21171218-13-19708213*-3-63283317-181555714*-13-16602115*-30474414*-1872051898-13-1310011210-33453411*-181010910811-13-102182267-36394711*-17-1810314915-13-727929920-392432515-17-12664915*-13-11211167-3123137-17-121816-13-1	-4	13	53	39	11*	~~~/	~ ~ ^ ^	h =	19	~~~/	~~~^	-14	0	286	265	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	16	110	122	17				_			-14	3	120	125	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	19	110	92	12	-18	-14	2	-8	50	15*	-14	6	49	8	9*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	22	126	75	9	-18	-11		90	118	15	-14	12	90	83	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3	-18	88	85	12	-18	-8	1:	94	14/	8	- 14	15	152	171	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	-15	43	16 31	1/*	-18	- 5	10)/	94	1/	- 14	10	118	119	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	-9	243	233	0 7	-10	-2	L.	L/ : e	121	0 1/.4	-13 12	-19	/0	82	154
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	-0	320 7.7	, 22T	1/4	-10 19	1 7	20)))5	100	14^	-13	-10	100	110	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	3	47	3/	11*	-18	10	10	0	109	11	-13	-10	218	226	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	6	30	67	11*	-17	-18	10	13	149	15	-13	-10	210	220	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3	ğ	243	251	5	-17	-15	10)2	138	16	-13	-4	272	276	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	12	312	313	7	-17	-12	-	56	49	15*	-13	-1	121	116	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	15	83	97	5	-17	-9	12	29	139	4	-13	2	60	35	11*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	21	62	2	12*	-17	-6	23	38	274	23	-13	5	185	184	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	-19	166	178	9	-17	- 3	2	59	252	9	-13	8	302	314	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	-16	198	186	5	-17	0	22	25	234	7	-13	11	283	274	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	-10	287	280	9	-17	3	1	L8	94	9	-13	17	59	34	9
-2 -1 419 426 6 -17 9 213 224 7 -12 -20 185 175 10 -2 2423 418 6 -17 12 205 211 10 -12 -17 251 263 9 -2 5 317 324 13 -16 -19 178 178 11 -12 -14 200 202 8 -2 8 174 183 9 -16 -16 227 225 7 -12 -14 200 202 8 -2 8 174 183 9 -16 -16 227 225 7 -12 -14 200 202 8 -2 11 41 20 $8*$ -16 -13 116 128 13 -12 -8 260 261 7 -2 14 193 197 11 -16 -10 75 40 $16*$ -12 -5 435 435 8 -2 17 151 153 8 -16 -7 67 25 11 -12 -2 319 335 6 -2 20 143 213 10 -16 -4 184 208 5 -12 1 293 294 7 -1 -17 72 89 $16*$ -16 1 341 335 9 -12 4	- 2	-7	111	. 96	19*	-17	6	1	51	128	15	-13	20	90	22	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	-1	419	426	6	-17	9	23	L3	224	7	-12	-20	185	175	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	2	423	418	6	-17	12	20)5	211	10	-12	-17	251	263	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	5	317	324	13	-16	-19	1	/8	178	11	-12	-14	200	202	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	8	174	183	9	-16	-16	22	27	225	7	-12	-11	67	50	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	11	41	. 20	אא יי	-10	-13	1	10	128	13	-12	- 8	260	261	7
-2 20 143 213 10 -16 -4 184 208 5 -12 1 293 294 7 -1 -17 72 89 16* -16 -1 341 335 9 -12 4 127 129 6 -1 -11 218 224 9 -16 2 319 319 8 -12 7 118 109 9	-2	17	121	150	1	-10	- 10		() ()	40	107	· - 12	- 2	433	455	ŏ
-1 -17 72 89 16* -16 -1 341 335 9 -12 4 127 129 6 -1 -11 218 224 9 -16 2 319 319 8 -12 7 118 109 9	-2	20	173	. 100 1010	10	-10	-/	1	2/	23	77	-12	-2	212	232	07
-1 -11 218 224 9 -16 2 319 319 8 -12 7 118 109 9	-1	-17	70	213 80	16*	-16	-4	3/)4 11	200	2	-12	۲ ۲	273 197	274	، ۲
	-1	-11	218	224	-9	-16	2	3	19	319	8	-12	7	118	109	9

ł.

, ;

à • 5

, ,

۲ •

`__]}

۱

, ې بې ۲ M77

ξ)

١

10	F 0	vs 1	L0 F c	for	Phos	phaz	ene	Clat	chrat	e (D	ata	Set	11)		pag	e 23
k	1	Fo	Fc	sigI	Fk	1	Fo)	Fc	sigF	k	1	Fo	F	'c	sigF
-12	10	237	228	5	- 8	6	16	3	159	8	-4	-4	70	6	21	8
-12	13	257	260	5	- 8	9	15	1	147	6	-4	-1	3	7	5	13*
-12	16	313	324	10	- 8	12	30	00	298	8	-4	2	88	B	79	8
-12	19	198	196	13	- 8	15	22	1	230	10	-4	5	250	8 2	.64	7
- 1 1	-10	241	243	9 6	-0	21	20	1	230	11	-4	0 11	144	4 1 7	.42	127 TO
-11	-12	215	203	7	-0	_19	11	0	50	12	-4	14	6		45	164
-11	-6	58	28	11*	-7	-16	33	ñ	530	8	-4	17	7	6	80	21*
-11	-3	56	16	12*	-7	-13	54	1	529	8	-4	20	10	2	98	10
-11	Ō	133	144	13	- 7	-7	50)3	499	8	- 3	-17	10	8	73	10
-11	3	345	335	6	- 7	-4	19	9	199	7	- 3	-14	7	3	97	18*
-11	6	340	337	8	-7	-1	27	19	283	5	-3	-11	27	02	264	9
-11	9	269	267	9	- 7	2	50)5	509	6	- 3	- 8	38	1 3	371	8
-11	12	138	160	8	-7	5	56	51	559	9	- 3	- 5	23	9 2	255	7
-11	15	88	34	11	-/	11	50)/	5//	12	- 3	1	13		126	9
-11	18	101	169		- /	14	30	02 51	3/3	0 124	- 5	4 7	22	9 1 0 1	223	4
-11	-22	65	63	17*	-7	17	10	16	197	10		10		0 2	202	14
-10	-13	38	50	18*	-6	-20	22	25	216	9	- 3	13	11	1 1	101	7
-10	-10	114	114	ŷ	- 6	-17		78	26	24*	- 3	19		0 I	90	17*
-10	- 7	100	92	9	-6	-14	11	L4	123	9	- 2	-15	6	0	45	14*
-10	-4	136	142	б	-6	-11	18	34	17 9	6	- 2	-12	4	7	7	20*
-10	-1	148	149	6	-6	- 8	36	65	372	7	- 2	-9	11	5 3	119	12
-10	2	41	8	13*	-6	- 5	4	54	458	8	- 2	- 6	23	2 2	226	7
-10	5	63	1	12*	-6	-2	1	57	156	4	- 2	-3	23	2 2	240	7
-10	8 11	91	210		-6	1	2	1 1	82	ბ 11.ა.	-2	0	13	1.	13/	6
-10	17	200	184	0	-0	4	24	52 61	263	7	- 2	2	10	6 ·	95	12
-10	- 20	160	150	6	-6	10	40)2	399	á	-2	12	15	.0. .6. `	155	5
-9	-17	86	94	21*	-6	13	21	87	295	6	-2	15	13	4	110	11
-9	-11	238	242		-6	16		52	62	12*	-2	18	11	6	85	19
-9	- 8	359	367	7	-6	19	10	06	73	14	-1	-13	5	8	52	17*
-9	- 5	288	288	7	- 5	-15	!	57	48	14*	-1	-10	4	8	15	19*
- 9	- 2	187	190	5	- 5	-12	14	47	136	9	-1	-7	7	1	56	11
-9	1	117	119	8	- 5	- 9	10	07	111	8	-1	-1	12	5	129	9
-9	4	115	103	7	- 5	-6	1	80	87	8	-1	2	13	7	137	5
-9	10	333	333	/	- 5	- 3	1	25	118	5	-1	5	10)5 . 7	107	10.4
-9	10	406	413	4		2	2.	14 /.1	220	8 5	-1	0 17	4	5	40	12*
- 9	16	230	241	5	- 5	6	1	+⊥ 1 3	116	17	-1	17	11	2	149	10
_9	19	90	67	7	-5	9	1	14	108	7	0	-11	13	3	83	10
-9	22	122	123	13	- 5	12	-	67	56	24*	ŏ	-8	7	4	80	ĩĩ
- 8	-21	253	244	10	- 5	15	1	34	120	6	Ō	1	5	9	69	10*
- 8	-18	156	163	10	- 5	18		74	39	24*	0	7	10)2	93	8
- 8	-15	311	307	7	- 5	21	10	05	112	11	0	10	10	8	63	19*
- 8	-12	266	269	8	-4	-19		95	88	13	0	13	4	+2	6	17*
- 8	-9	82	67	9	-4	-16		52	79	16*						~ ~ ~ ~
- 8	-3	399	393	6	-4	-13		/5	85	11			h ∾	20		
-0	U c	500 500	503 503	0	-4	- 10 7	L.	51 02	123	10	10	10	-	. ^	20	154
- 0	ر	502	202	0		- /		<u> </u>	23	7	- 7 3	- T Z			20	134

k	1	Fo	Fc	sigH	F k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
-19	- 9	38	47	17*	-14	13	218	236	5	-9	-13	190	182	9
-19	-6	97	73	9	-14	16	176	163	11	-9	-10	283	279	7
-19	- 3	94	50	7	-13	-18	67	37	15*	-9	-7	187	184	8
-19	0	52	3	13*	-13	-15	143	158	6	- 9	-4	107	101	ő
_10	้า	68	45	11	-13	-12	201	212	Ř	_ 9	_1	171	171	5
.18	_ 13	180	225	- R	-13	-12	154	167	11	_9	2	55	52	9*
.18	-10	105	122	6	-13	- 6	48	5/	Å.	_ 0	5	250	247	7
-10	- 10	114	123	154	-13	- 3	71	82	8	_0	2	170	172	12
-10	- /	207	203	170	-13		222	202	0 0	- 9	11	70	1/2	12
-10	-4	207	203	5	-13	2	222	202	7	_0	1/	76	96	10
-10	-1	273	273	2	-13	6	207	200	5	. 0	20	191	191	11
-10	2	2/0	292	9 11	-13	0	233	1/0	10	- 7	20	161	150	<u> </u>
-10	14	100	200	10	-13	10	1.14	147	12	-0	-1/ 1/	103	172	204
~ 1 /	-14	1/2	200	10	-13	12	0Z 57	2 J	124	- C 0	-14	19	120	20^
-1/	-11	105	231	20	-13	10	7/	00	1/	-0	-11	221	200	0
-1/	-8	100	211	/	-13	10	120	70	14	-0	-0	221	220	07
-1/	- 5	103	104	2	-12	-19	101	121	11	-0	- 5	368	3/1	
-1/	Ţ	148	144	10	-12	-16	101	32	12	- 8	-2	224	228	4
-1/	4	204	21/	8	-12	-13	142	138	8	- 8	Ţ	97	97	ΤŦ
-1/	1	214	21/	8	-12	-10	313	319	8	-8	4	59	62	9
-17	10	173	195	8	-12	-7	483	4/6	8	- 8	7	300	287	8
-17	13	120	110	14	-12	-4	293	300	8	- 8	10	386	400	7
-16	-18	147	161	17	-12	-1	147	152	7	- 8	13	266	275	7
-16	-15	136	145	18	-12	5	246	246	7	- 8	16	175	193	10
-16	- 9	165	197	6	-12	8	455	456	11	- 8	19	121	114	13
-16	- 6	202	255	18	-12	11	348	343	8	- 7	-18	239	232	10
- 16	- 3	308	296	6	-12	14	132	158	14	-7	-15	128	130	10
-16	0	269	265	7	-12	17	106	92	20*	-7	-12	70	59	12*
-16	3	122	126	9	-11	-14	63	94	11*	- 7	- 6	119	135	8
-16	6	66	79	16*	-11	-11	51	46	13*	-7	- 3	339	339	6
-16	12	251	253	9	-11	- 8	145	170	13	-7	0	296	286	5
-16	15	250	252	10	-11	- 5	195	202	4	- 7	3	325	330	6
-15	-16	106	131	22*	-11	- 2	182	180	9	-7	6	336	344	11
-15	-13	119	136	19	-11	4	119	111	6	-7	9	93	31	10
-15	-10	70'	47	11,	-11	7	80	88	8	-7	12	182	190	5
-15	-7	81	114	17*	-11	10	213	212	10	-7	15	193	193	9
-15	-4	42	56	13*	-11	13	150	160	13	-7	18	205	213	6
-15	-1	52	53	12*	-11	16	81	66	15*	-6	-16	127	120	18
-15	2	155	150	8	-11	19	88	101	13	-6	-13	106	89	10
-15	5	128	132	14	-10	-18	58	- 5	17*	- 6	-10	155	159	8
-15	8	99	14	11	-10	-15	55	22	16*	-6	-7	188	192	6
-15	17	127	88	13	-10	-12	94	92	10	- 6	-4	61	44	10
-14	-17	105	108	15	-10	-9	117	113	8	-6	-1	182	175	ŝ
-14	-14	76	91	7	-10	-6	120	119	5	- 6	2	114	110	Ř
-14	-8	111	106	Ŕ	-10	3	58	33	ğ	-6	5	193	180	7
.14	- 5	126	120	7	-10	6	41	23	0*	-6	2	176	174	5
.14	.2	320	320	10	-10	Q	100	112	8	- 0	1/	100	1/4	ר ר
_14	1	285	223	ρ	_10	12	£1	113	134		17	50	100	/ १८५५
- 14	- <u>-</u>	54	204	0 1/.⊈	_10	15	102	50	10	-0	1/ 1/	70	20	174
.14	47	140	12/	т и	-10	10	103	10	167 1	-) -	* 14 0	/0	22	17×
-14	10	100	10/	Ö F	- 10	10	/1	13	10×	- 2	- 2	62	/0	у 1 с.
- 14	10	TA8	184	2	- 9	- 13	80		14×	- 2	1	48	- 46	16*

M7 9

source out

A TRUE LINE A SAFE A SAFE A

.

· . .

· · · ·

•

10	Fo	vs	10 F c	for	Phos	phaz	ene Cl	athrat	e (D	ata	Set	II)	pag	,e 25
k	1	Fo	Fc	sigH	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
- 5	4	39	20	9*	-17	-13	159	234	9	-11	-16	104	87	16
-4	-15	80) 72	23*	-17	-4	82	90	11	-11	-13	84	59	8
-4	-12	116	5 122	11	-17	-1	290	298	7	-11	-4	63	36	13*
-4	-6	124	4 118	11	-17	2	285	296	10	-11	- 1	107	97	9
-4	-3	182	2 178	7	-17	5	150	141	9	-11	2	89	108	11
-4	0	14() 137	5	-17	8	60	38	15*	-11	5	98	105	8
-4	5	14:	5 L33	4	-10	-14	107	91	10	-11	8	126	115	8
-4	0	110	2 24	12+	-16	-11	107	114	10	-11	14	64 46	20	17+
-4	15	80.	9 68	13	-16	- 5	69	48	10	-10	-17	40 81	73	13
-4	18	9	1 54	15*	-16	-2	61	36	11*	-10	-14	165	175	7
-3	-13	7	7 79	18*	-16	1	94	70	7	-10	-11	138	137	7
- 3	-4	43	1 56	12*	-16	4	132	121	8	-10	- 8	55	56	11*
- 3	-1	67	7 15	10	-16	7	1.3	136	14	-10	- 5	79	13	10
- 3	2	4:	2 12	18*	-16	10	121	111	9	-10	1	120	77	15
- 3	5	5(0 72	9*	-16	13	109	102	12	-10	7	61	20	6
- 3	8	50	6 63	7	-15	-9	103	75	10	-10	13	60	16	15*
- 3	14	50	J 22	10	-15	- b 2	112	140	19*	-10	1.0	100	127	8
- 2	- 5	01 61	0 42 6 97	124	-15	- 3	50 70	04	0	-9	-12	120	12/	0 17.
- 2	1 /	יס 7	0 24 1. 55	12*	-15	् २	105	94	o Q	-9	-9	130	133	T/~
- 2	7	6	+ JJ 1 19	11*	-15	6	45	24	9.8	- 9	-0	132	118	7
-1	-6	7	0 57	14*	-15	ğ	111	95	10	-9	ő	144	147	9
-1	- 3	11	2 96	10	-14	-16	87	27	12	-9	3	227	239	8
-1	0	13	9 140	10	-14	-13	75	45	14*	- 9	6	99	112	6
-1	3	15	2 147	8	-14	-10	127	102	9	- 9	9	113	102	9
-1	6	4	5 62	15*	-14	-4	37	71	14*	- 9	12	124	118	10
-1	9	5	7 38	13*	-14	-1	62	68	11*	- 9	15	40	14	18*
-1	12	8	8 51	10	-14	2	48	13	15*	- 8	-16	143	122	10
0	-/	6	4 /5	13*	-14	5	59	55	9	- 8	-13	121	123	16
0	-4	10	/ 28	13*	-14	۲. ۲.	5L 20	40	104	۲- م	-10	111	/4	10
0	-1	10	J 1/9 5 105	7	-14	14	29	43	10*	- 0 0	- /	/ 2	00	0 1/
Ő	5	14	5 195 5 196	13	-13	-14	0J 85	74	12	-0	-4	117	27 29	14^ Q
ŏ	8	8	8 133	19*	-13	-11	62	17	14*	- 8	5	50	71	15*
•	-	•			-13	-5	104	126	10	- 8	8	85	13	10
^ ^ ^ ^	~~~	h =	21 ^^^	****	-13	- 2	60	56	9	- 8	14	74	33	15*
					-13	1	89	62	10	- 8	17	47	100	21*
-20	-4	4	1 27	19*	-13	4	112	126	9	- 7	-14	72	62	14*
- 20	-1	6	3 42	11*	-13	10	173	164	10	- 7	-11	72	49	13*
-19	- 8	7	3 26	12	-13	13	162	116	10	- 7	- 5	86	50	9
-19	L V	12	D 116	10	-13	16	131	100	11	- 7	- 2	41	100	20*
-19	10	μ	J 112	15-	-12	-15	59	/5	10*	- /	1	130	138	2
-10	-12	2	ο 10 Ο 14	°⊥⊃* 10	-12	-12	/) 5 0	73 / 1	13	- /	4	120	113	ע 10-2
-10	- 7	7	0 1.+ 9 1.95	16¥	-12		10/	41	10	-1	10	71	70 61	12"
-18	-3	26	5 975	10	-12	2	204	205	4	- /	13	42	55	17*
-18	õ	22	4 228	7	-12	6	168	154	10	-6	-15	151	141	10
-18	3		4 96	14*	-12	9	69	7	14*	-6	-9	210	216	9
-18	6	6	0 13	14*	-12	12	93	84	10	- 6	- 6	220	222	6

10	F 0	vs 1.0	Fc	for	Phos	phaz	ene Cla	athrat	:e (D	ata	Set	11)	pag	ge 26
k	1	Fo	Fc	sigH	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
-6	- 3	64	32	10	-15	1	124	119	8	- 8	9	53	1	14*
-6	0	171	177	5	-15	7	93	89	8	-7	-10	127	114	10
-6	3	181	186	8	-15	10	147	167	11	- 7	-7	237	220	9
-6	6	181	195	9	-14	-9	113	76	10	- 7	-4	145	161	12
-6	9 ,	216	195	8	-14	-6	90	86	11	-7	2	112	76	16
-6	12	91	63	10	-14	6	99	57	10	-7	5	157	153	9
- 5	-13	117	120	10	-14	9	77	80	14*	-7	8	216	213	9
- 5	-7	246	251	7	-14	12	124	68	11	-6	- 8	64	25	14*
- 5	-4	190	154	22	-13	-10	90	15	12	-6	- 2	166	168	20
-5	-1	88	8/	21*	-13	-1	92	/5	11	- 6	-2	181	212	12
- 5	2	114	110	9	-13	2	64 50	29	12×	-0	4	104	100	10
- 2	11	101	180	9	-13	2	29	30	9 15-1	-10	1 C	119	123	10
- 2	LT 0	101	707	10	-10	11	80	112	10	-)	-0	90 54	110	174
-4	-0	95		12	-12	-11	101	181	0	- 5		194	100	- C
-4	- 2	171	168	8	-12	-0	213	198	ģ	-5	રં	190	222	q
-4	1	155	163	10	-12	-2	76	93	12	-4	-7	78	88	12
-4	â	65	90	12*	-12	ū	100	75	11	-4	-4	109	128	- <u>9</u>
-4	10	54	71	14*	-12	7	164	180	7	-4	-1	90	126	10
- 3	-9	81	37	12	-12	10	102	101	15		-			
- 3	0	77	80	12	-11	-15	78	111	16*	~~~	~ ~ ^ ^	h = 23	~ ~ ~ ^ /	~~~~
- 3	6	83	39	11	-11	-12	55	59	16*					
-2	-7	128	151	9	-11	-9	205	223	23	-17	4	97	20	11
- 2	-4	69	4	12*	-11	-6	296	276	9	-16	3	164	234	10
-2	-1	116	129	7	-11	- 3	190	194	9	-15	8	172	248	10
-2	2	181	200	20	-11	3	49	62	15*	-14	- 5	183	209	9
- 2	5	202	277	16	-11	6	130	131	9	-14	-2	138	133	10
-2	8	223	259	9	-11	9	265	272	9	-14	1	136	104	10
-1	-2	210	254	9	-11	12	181	206	.9	-14	7	118	104	10
-1	4	93	38	10	-10	-13	114	100	11	-13	-3	82	94	12
	· · · · ·	- 11	~~~	~ ~ ~ ~	-10	-10	00 100	3/	15	~13	0	10	105	10
	1	n == 22			-10	- /	102	94 197	10	-12	-4	1/0	122	10
.10	- 4	54	64	15*	-10	-4	217	207	10	-12	- L 2	149	205	2
-18	- 4	68	04	26*	-10	2	217	207	à	-12	5	225	106	9
-18	-2	76	40	24	-10	5	185	174	ģ	-11	-5	195	175	ŭ
-18	1	73	46	12*	-10	8	72	62	12	-11	-2	96	118	11
-18	â	126	103	9	-10	11	63	40	14*	-11	L L	229	225	9
-17	- 3	51	13	18*	-9	-11	204	195	7	-10	- 3	179	181	9
-17	ŏ	48	-9	16*	- 9	-8	242	248	5	-10	3	75	42	12
-17	3	43	24	20*	-9	-5	162	162	7	-9	-1	82	73	12
-16	-7	54	58	15*	- 9	- 2	64	29	14*	- 9	2	125	116	10
-16	-1	51	69	13*	- 9	1	112	104	16					
-16	2	59	50	9	- 9	4	66	51	13*					
-16	5	89	44	19*	-9	7	140	129	9					
-16	8	88	103	11	-9	10	136	131	9					
-15	-11	139	148	9	- 8	-12	51	61	18*					
-15	- 8	162	176	14	- 8	- 3	54	56	16*					
-15	-5	102	145	10	- 8	3	64	30	13*					
- 12	- 2	159	148	9	- 8	5	44	- 58	17*					

.

M82

Intramolecular Distances Involving the Hydrogen Atoms for $\rm C_6H_4S_2P^+$ $\rm AlCl_4^-$

atom	atom	distance	atom	atom	distance
C3	Н3	1.074	C5	H5	1.092
C4	H4	1.072	C6	H6	1.072

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

Intramolecular Distances Involving the Hydrogen Atoms for $C_{13}H_{11}PS_2$

atom	atom	distance	atom	atom	distance
C3	Н3	0.93(3)	C11	H11	0.91(4)
C5	Н5	0.93(4)	C12	H12	0.95(4)
C6	Н6	1.01(4)	C13	H131	1.01(6)
C8	Н8	0.90(4)	C13	H132	0.94(6)
C9	Н9	1.05(4)	C13	H133	0.96(5)
C10	H10	0.99(4)			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

P(1)	-S(1)	-C(1)	-C(2)	-0.7 (4)
P(1)	-S(1)	-C(1)	-C(6)	178.4 (3)
C(1)	-S(1)	-P(1)	-S(2)	0.7 (2)
P(1)	-S(2)	-C(2)	-C(1)	0.2 (4)
P(1)	-S(2)	-C(2)	-C(3)	-178.5 (4)
C(2)	-S(2)	-P(1)	-S(1)	-0.5 (2)
S(1)	-C(1)	-C(2)	-S(2)	0.4 (4)
S(1)	-C(1)	-C(2)	-C(3)	179.1 (3)
S(1)	-C(1)	-C(6)	-C(5)	-178.4 (3)
C(2)	-C(1)	-C(6)	-C(5)	0.7 (6)
C(6)	-C(1)	-C(2)	-S(2)	-178.8 (3)
C(6)	-C(1)	-C(2)	-C(3)	-0.1 (6)
S(2)	-C(2)	-C(3)	-C(4)	178.3 (4)
C(1)	-C(2)	-C(3)	-C(4)	-0.4 (6)
C(2)	-C(3)	-C(4)	-C(5)	0.2 (7)
C(3)	-C(4)	-C(5)	-C(6)	0.5 (7)
C(4)	-C(5)	-C(6)	-C(1)	-1.0 (6)

•

÷

Observed and Calculated Structure Factors for $C_{6}H_{4}S_{2}P^{*}$ AlCl_{4}^{-}

10	DIFIO	vs 1	0]F]d	e for	br13	35						page 1
k	1	Fo	Fc	sigF	k	1	Fo	Fc sig	Fk	1	Fo	Fc sigF
~~~~/	^^^ h	= -7	· · · ·	~ ^ ^ ^	1	1	349	357 8	-7	-4	161	140 11
					1	7	191	171 9	- 5	- 5	110	126 16
-1	2	345	358	8	2	5	136	130 12	- 5	-4	321	315 9
0	0	160	153	10	3	1	351	349 8	- 3	- 5	178	158 11
0	4	232	223	8	3	4	303	304 8	-2	-2	394	380 8
6	2	116	91	12	4	5	472	466 9	-1	-6	164	148 12
					5	-1	159	160 11	-1	-4	330	310 8
~ ~ ~ ^ /	^^^ h	-6	~ ^ ^ ^	~~~~	5	1	171	156 10	-1	3	234	239 7
					5	5	147	121 11	0	- 6	189	186 11
- 9	-2	100	98	16	6	-4	120	126 15	0	-4	188	181 11
-6	- 3	108	109	16	6	- 2	104	79 16	0	2	375	376 7
-4	-2	102	108	16	6	4	157	159 11	1	- 5	201	194 11
- 3	- 3	125	122	14	7	- 3	308	295 8	1	- Ľ	265	261 8
- 3	-1	136	154	12	7	0	294	288 ⁹	1	- 2	276	277 8
-1	-1	114	94	13	8	0	221	222 9	2	- 5	293	301 9
0	-2	170	172	11	9	-1	177	200 10	2	3	310	315 7
0	0	246	259	8	9	0	307	306 8	2	6	261	270 <b>B</b>
2	-2	214	203	9	9	4	279	280 8	2	7	173	153 10
2	6	150	158	11	9	6	314	312 8	3	-1	214	212 7
3	5	177	176	10	10	-1	247	253 8	3	0	336	344 7
4	0	334	341	8	10	0	120	124 13	4	- 6	251	240 10
7	-3	190	189	10	10	2	107	106 14	4	- 2	141	159 11
8	-2	181	180	10	10	3	332	320 8	4	-1	426	426 8
8	-1	169	150	10	11	-1	242	256 8	4	5	118	111 13
8	2	315	320	8	11	0	235	237 8	4	6	390	390 8
9	-1	152	154	12	11	4	107	119 15	4	8	211	217 10
9	1	155	137	10	11	6	135	117 11	5	- 3	394	379 8
10	0	122	132	13	12	-1	127	92 11	5	1	467	467 8
10	5	176	169	10	12	0	172	159 10	5	3	484	482 9
11	4	133	131	12	12	2	139	157 11	5	6	170	156 10
12	2	287	294	8	13	-1	104	104 14	6	- 3	149	140 12
13	1	210	201	9	13	0	182	180 9	6	-1	486	489 9
13	3	176	167	10	13	4	287	281 8	6	2	284	288 7
14	2	157	169	10	13	6	112	100 12	6	7	128	111 12
					14	3	109	110 14	7	-1	503	513 9
^ ^ ^ ^	^^^ ł	1 = -5	, ^^^	^^^^	15	0	109	120 14	7	0	528	537 10
	-				15	1	266	259 8	7	2	377	383 7
-16	-1	120	128	13	15	4	230	234 9	8	-1	395	401 8
-11	-2	102	140	16	17	0	151	180 11	8	2	293	307 7
-9	-2	155	122	11	18	ĩ	109	97 13	8	4	285	288 8
-5	-4	134	135	14	20	-	207	<i></i>	9	-4	239	228 9
-4	-1	183	180	10	^ ^ ^ ^	~ ^ ^	h = -k	4 ^^^^^	ģ	-1	347	346 8
_ 3	_ 3	255	249	Q Q			••	•	ģ	ō	267	274 8
- 5	-5	271	242	á	-20	_1	100	92 15	á	ĥ	130	144 11
- 2 _ 1	- J 0	274	204	Q 2	_15	- 2	21.8	212 0	10	-1	419	421 R
_1	2	240	272	. 0 . 8	-12	- 2	300	304 9	10	ñ	179	176 9
<b>⊺</b>	_2 _2	240	233	2 2	.11	_ 5	202	275 0	10	2	310	311 7
ň	~~~	205	211	. U	-10	- 5	100	202 12	10	4	140	129 12
0	<i>.</i>	500	203	11	~ <u>7</u> 0	- 5	106	181 11	11	_ 2	162	165 11
1	4 _5	160	173	12	- 7	- 5	176	189 12	11	0	232	226 8
L		107	أسالك		- 1					~		~~v v

i

Observed and Calculated Structure Factors for  $C_6H_4S_2P^+$  AlCl₄⁻

1

1 5 ţ

3

.

ć

à

ţ

ņ

友祥

-3 -1

-2 -2

-1 -5

258

651

189

253 6

645 11

195 11

92

96

10 -5

142

224

201

143 8 -18 -3

227 9 -14 -2

187 11 -11 -7

145

495

182

145 13

504 9

170 12

1	0 F ¢	ovs 1	.0 F c	for	br1	35							pa	age 2
k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
11	3	178	159	10	-1	-4	105	93	15	10	- 3	470	499	9
11	5	443	424	9	-1	-1	671	660	11	10	-2	343	338	7
12	-4	106	245	10	-1	6	363	368	8	10	-1	192	207	8
12	-2	119	119	14	0	- 6	322	321	9	10	0	206	199	7
12	-1	153	143	11	0	-4	137	139	12	10	1	655	659	11
12	2	180	184	9	0	- 2	724	717	12	10	5	195	187	9
12	4	200	211	9	0	0	894	917	14	10	6	121	117	13
13	- 3	165	155	10	0	2	1053	1043	16	11	-4	271	276	9
13	-1	237	240	8	0	6	332	335	8	11	-3	236	235	9
13	0	240	241	8	1	3	99	75	9	11	-1	284	274	7
13	1	228	240	9	1	8	144	144	12	11	0	448	454	8
13	2	267	255	8	2	0	422	414	8	11	2	117	110	10
13	4	145	141	11	2	3	456	452	8	12	- 5	114	113	18
14	- 3	148	142	12	2	5	480	477	8	12	0	369	369	8
14	- 2	195	183	9	3	- 2	175	186	7	12	2	276	264	7
14	0	232	241	9	3	0	698	719	11	13	-4	157	189	11
14	2	214	237	9	3	1	338	316	6	13	-1	137	142	12
15	- 2	136	118	12	3	2	96	95	8	13	1	133	130	11
16	0	141	154	12	3	3	439	454	8	13	2	120	102	12
16	2	101	94	14	3	4	536	549	10	14	-2	115	104	15
17	2	114	132	14	3	8	315	317	8	14	0	262	264	8
17	3	124	126	13	4	- 6	368	384	10	14	2	129	130	12
17	5	152	147	11	4	-2	332	328	7	15	-4	155	152	13
18	-2	148	119	12	4	-1	599	587	10	15	-3	155	156	12
20	3	165	154	10	4	0	394	377	7	15	2	304	299	8
					4	1	405	397	7	15	5	178	189	10
^^^^	<u>^ 1</u>	h = -3	3 ^^``		4	5	173	169	9	15	6	112	123	1a
					5	- 5	187	196	12	15	7	99	95	14
- 22	-2	142	147	12	5	1	209	223	6	17	0	230	250	9
-19	-2	102	79	15	5	8	305	297	8	17	1	363	359	8
-17	-1	225	249	9	6	- 3	428	414	8	17	2	131	128	13
-15	-2	192	182	10	6	-1	324	320	6	18	- 3	169	188	11
-14	- 5	233	243	10	6	1	122	125	8	18	-2	147	129	12
-14	-1	354	343	8	6	5	243	235	8	18	-1	359	372	9
-12	-4	175	155	12	6	6	109	116	14	18	0	104	125	16
-12	- 3	371	374	9	7	-4	182	171	11	18	2	179	174	10
-12	-1	413	394	8	7	0	1/8	166	6	19	-1	238	271	9
-11	- 5	196	195	11	7	1	429	427	8	19	1	193	165	9
- 8	- 5	157	157	14	7	2	187	195	6	20	-1	250	251	9
-7	- 6	225	224	10	7	6	199	206	9	20	0	149	149	11
-7	-1	276	288	6	8	-4	428	427	9	21	-2	153	156	12
-6	-5	167	154	13	8	-2	170	180	8					
- 5	-2	188	203	7	8	0	318	333	6	~~~~		h = -2	2 ^^^	~~~~
-5	-1	616	623	11	8	1	256	262	6		-	_	_	
-4	- 5	445	434	9	8	3	732	734	12	-21	-2	154	140	11
- 3	- 6	368	372	9	8	6	237	230	8	-20	-2	202	191	9
- 3	-4	270	247	8	9	-4	158	139	13	-19	-1	164	164	11

2

Observed and Calculated Structure Factors for  $C_6H_4S_2P^+$  AlCl₄⁻

10|F|o vs 10|F|c for br135

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
- 9	-7	211	212	11	7	- 5	152	130	14	16	-2	268	256	9
-9	- 6	190	178	11	7	-4	241	231	9	17	-4	465	445	9
- 9	-2	654	641	11	7	-1	454	445	8	17	1	114	161	15
-7	-7	112	101	17	7	1	505	512	9	17	2	101	68	16
-6	-7	130	131	15	7	2	104	99	8	18	-4	118	123	17
- 5	-4	190	196	9	7	9	259	265	8	18	1	207	202	10
- 5	- 2	173	171	7	8	- 8	185	189	12	18	2	259	244	9
-4	- 5	152	146	12	8	- 6	139	122	16	21	3	236	239	9
-3	-2	325	325	6	8	-4	482	479	9	22	- 3	237	215	9
- 2	- 7	270	272	9	8	- 3	161	153	9	22	0	138	140	13
- 2	- 6	362	363	8	8	- 2	909	948	15	23	- 1	102	87	17
- 2	-4	619	616	11	8	0	210	215	6	23	0	215	212	10
- 2	- 2	138	144	7	8	1	246	240	6					
-1	- 7	187	175	11	8	3	470	460	9	^^^^	^ ^ ^	h = -	1 ^^^	^ ^ ^ ^
-1	-6	233	229	10	8	5	441	451	8					
-1	-4	491	466	9	8	8	189	184	9	-22	- 3	155	141	12
-1	- 3	646	614	11	9	1	364	375	7	-21	- 2	308	322	9
0	- 8	273	278	10	9	2	350	357	7	- 20	-4	156	144	12
0	- 6	113	93	17	9	5	134	111	10	-15	- 6	216	223	10
0	-4	212	210	7	10	- 7	137	146	16	-14	- 5	194	189	11
0	0	282	274	5	10	- 3	364	366	8	-13	-1	608	606	11
0	2	98	112	7	10	0	197	182	6	-12	-7	121	132	16
0	8	222	231	9	10	2	500	506	9	-12	-4	336	352	8
1	0	625	609	10	11	- 3	156	149	12	-10	- 2	447	442	8
1	2	920	960	14	11	- 2	279	273	7	-10	-1	363	359	7
1	4	354	343	6	11	-1	426	416	8	- 9	-2	388	389	7
2	- 5	216	214	9	11	1	517	524	9	- 7	- 5	103	106	15
2	-1	522	506	9	11	2	240	239	6	- 7	-1	205	226	6
3	- 5	251	246	9	11	3	471	483	9	- 6	-6	109	60	16
3	-4	798	799	14	11	5	232	233	8	- 5	- 5	238	238	7
3	3	857	842	14	12	- 6	275	313	10	- 5	-1	264	262	6
3	6	228	229	8	12	- 3	169	182	12	-4	- 8	117	101	15
3	7	269	273	9	12	-1	251	257	7	-4	-6	153	121	. 11
3	9	134	133	13	12	1	381	386	7	-4	-4	853	852	14
4	- 3	623	619	11	13	-6	110	173	16	- 3	- 8	209	218	10
4	- 2	100	101	9	13	- 2	357	379	8	- 3	-2	264	257	6
4	0	713	688	11	13	-1	155	146	9	- 2	-6	106	118	15
4	1	165	148	5	13	0	233	227	7	- 2	-4	571	581	. 10
4	2	878	880	14	13	1	317	307	7	- 2	-2	985	996	15
4	3	441	451	8	13	3	473	483	9	-1	- 5	320	323	7
5	- 7	187	190	11	14	- 3	240	246	10	-1	- 2	2469	2462	2 37
5	-6	277	265	10	14	-1	311	314	8	-1	-1	98	74	÷ 6
5	1	398	393	7	14	0	511	518	9	-1	2	164	154	⊧ 5
5	4	313	298	6	14	4	230	230	8	-1	7	230	244	+ 9
5	6	186	178	9	15	- 5	227	228	11	-1	8	124	141	14
6	- 3	157	154	9	15	-1	218	202	9	0	- 8	224	211	10
6	-2	83	93	12	15	2	339	338	8	0	-4	502	518	39
6	-1	371	354	- 7	15	5	104	100	15	0	-2	1431	1426	5 22
6	0	605	630	10	16	- 6	148	129	13	0	0	307	317	/ 5
6	6	267	279	8	16	- 5	144	150	14	0	- 4	951	963	3 15

page 3

:

;

;

ŕ

ł

ŗ

÷.

2

î

Observed and Calculated Structure Factors for  $C_6H_4S_2P^+\ \text{AlCl}_4^-$ 

10|F|o vs 10|F|c for br135

3

 $\leq$ 

1

,

ł

ţ

1 5

۱. ۱

°,

	• •															
k	1	Fo	Fc	sigF	k	1		Fo		Fc	sig	Fk	1	Fo	Fc	sigF
0	8	189	175	9	11	-4		139		149	13	-16	-4	222	213	10
1	-6	315	313	8	11	- 3		410		398	8	-14	-7	360	359	9
1	3	435	439	8	11	- 2		122		105	11	-14	-6	150	159	13
2	-7	304	366	9	11	-1		104		97	11	-14	-4	393	405	8
2	-3	461	462	8	11	0		568		563	10	-13	-1	184	200	8
2	Õ	129	128	4	11	2		128		127	8	-12	-7	179	194	11
2	5	472	480	9	12	- 6		363		413	9	-12	- 3	275	269	7
3	- 5	208	202	8	12	- 5		134		93	15	-11	- 8	120	109	15
3	-4	344	347	7	12	- 3		129		129	12	-11	- 2	389	380	7
3	-1	139	109	6	12	-1		176		180	8	-9	-1	472	481	8
3	0	68	84	7	12	0		222		212	7	- 8	-1	355	367	6
3	1	671	664	11	12	2		384		383	7	-7	- 8	119	125	15
3	4	336	328	6	12	8		97		116	15	-7	- 5	111	120	12
3	9	127	98	14	13	- 6		276		334	9	- 6	- 9	141	138	12
4	-2	385	385	7	13	- 2		210		209	8	- 6	-7	140	103	12
4	0	357	357	6	13	0	]	L <b>008</b>		996	16	- 5	- 7	140	126	12
4	3	125	138	6	13	8		96		71	15	- 5	-1	199	186	5
4	5	421	413	8	14	- 3		158		172	13	-4	- 5	227	224	7
4	6	226	216	8	14	0		600		595	10	-4	-1	412	397	7
5	-4	302	296	7	14	5		417		410	8	- 3	- 8	166	165	11
5	- 3	88	<u>58</u>	12	15	-4		222		210	11	- 3	- 3	373	367	7
5	- 2	405	422	7	15	-2		155		197	14	- 2	-4	89	80	10
5	0	143	134	6	15	0		206		202	8	- 2	- 3	169	165	6
5	6	182	187	9	15	1		129		141	11	-1	- 9	176	183	12
6	- 5	260	268	8	15	3		128		130	13	-1	- 2	597	590	10
6	- 3	397	387	7	15	6		166		160	10	-1	1	307	309	5
6	- 2	236	241	6	15	7		194		180	9	-1	4	79	65	11
6	-1	702	678	11	16	- 6		168		150	12	-1	6	477	464	9
6	0	815	800	13	16	- 2		415		402	9	0	- 8	256	271	9
6	2	300	288	6	16	-1		190		197	10	0	- 6	544	550	10
6	5	601	599	11	16	1		433		439	8	0	-4	252	248	6
5	7	321	328	8	17	-4		122		144	16	0	2	1281	1240	19
6	9	109	89	14	17	1		210		224	9	1	- 8	118	137	15
7	- 6	187	192	11	18	- 2		342		346	10	1	3	254	261	5
7	-4	256	263	7	18	-1		169		139	12	1	5	594	595	11
7	0	974	961	15	18	3		193		178	10	2	- 9	161	153	12
7	1	828	820	13	19	- 5		270		283	10	2	- 8	190	195	11
8	-4	313	309	7	20	2		169		170	11	2	- 5	144	147	9
8	- 2	282	272	6	21	-1		216		201	10	2	- 2	133	128	6
8	0	204	204	6	22	- 2		114		98	16	2	6	146	150	10
8	6	202	195	9	23	2		172		166	11	2	7	175	171	11
8	7	194	198	10	24	- 2		133		140	13	3	-9	145	157	14
9	-1	499	489	9								3	-6	234	235	8
9	0	1067	1025	17	****	~ ~ ~ ~	h	-	0	~ ~ ~ ~	~ ~ ^ /	` 3	- 5	601	588	11
9	1	191	178	6								3	-1	248	244	4
9	8	105	110	15	-22	- 3		131		134	13	4	- 6	360	362	8
10	- 6	135	119	15	-20	-4		258		266	9	4	-4	564	561	10
10	-4	458	443	9	-20	-1		142		184	14	4	- 2	197	242	5
10	1	149	159	7	-18	- 6		123		93	15	4	0	1083	1109	16
11	- 5	205	192	11	-18	- 2		215		191	9	4	3	505	510	9

page 4

Observed and Calculated Structure Factors for  $C_6H_4S_2P^+\ AlCl_4^-$ 

10|F|o vs 10|F|c for br135

1

) . .

,

٤

**

.

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
4	7	452	446	9	15	- 5	189	192	11	-1	- 9	208	229	10
5	-4	177	179	7	15	- 3	243	253	9	-1	- 6	356	360	8
5	- 2	1272	1342	19	15	- 2	398	398	8	-1	-4	366	370	7
5	6	96	74	15	15	7	122	107	13	-1	-1	54	61	7
6	-6	140	156	12	16	-7	134	136	14	-1	0	90	96	4
6	- 5	386	407	7	16	- 6	105	97	17	-1	3	97	90	9
6	-2	871	824	14	16	- 5	358	348	9	-1	8	176	191	11
6	-1	234	237	6	16	2	175	168	10	0	- 2	118	114	6
6	0	686	699	11	17	-4	169	152	12	1	4	507	507	9
6	3	348	361	6	17	- 3	162	186	13	2	-7	388	385	9
6	4	869	895	14	17	1	182	188	10	2	- 6	250	237	8
7	-1	1173	1178	18	18	- 5	234	212	10	2	-4	192	253	6
7	2	460	441	8	18	0	173	157	11	2	- 3	944	1057	15
7	3	455	449	8	18	1	150	148	12	2	-1	1359	1323	21
7	4	498	500	9	18	3	380	382	9	2	1	1577	1532	24
7	9	125	140	13	19	- 2	172	158	12	2	5	243	252	7
8	- 8	131	67	13	20	- 3	260	245	9	3	-7	168	151	11
8	- 5	358	363	7	20	0	426	409	9	3	- 6	165	158	10
8	- 3	626	597	11	21	- 5	171	192	12	3	- 5	560	541	10
8	- 2	625	612	11	21	- 2	125	92	14	3	- 2	357	354	6
8	4	185	164	7	21	1	147	147	13	4	- 7	274	277	9
9	- 5	149	143	11	22	0	190	181	11	4	- 2	552	553	9
9	-4	542	527	10	24	- 2	135	139	14	4	-1	79	15	8
9	- 2	486	456	9	25	- 2	206	198	10	4	1	535	528	9
9	3	581	591	10						4	3	325	333	6
10	- 5	186	174	9	~ ~ ~ ~	~ ~ ^	h =	1 ^^^	^ ^ ^ ^	4	7	177	183	11
10	-4	352	340	7						5	- 9	148	154	12
10	- 3	332	330	7	-24	- 3	157	173	12	5	-7	212	212	10
10	-2	153	147	8	-22	- 3	418	419	9	5	- 5	335	333	7
10	0	277	248	6	-22	-2	145	137	12	5	-4	161	148	7
10	1	239	240	6	-21	- 5	101	79	16	5	- 2	1490	1538	23
10	7	201	199	9	-20	- 5	136	131	13	5	7	308	293	8
11	-7	113	100	15	-18	-2	309	312	8	6	- 8	120	134	15
11	- 6	166	178	12	-17	- 3	266	272	9	6	-4	110	112	9
11	- 5	179	168	10	-16	-7	107	104	16	6	4	766	767	13
11	-4	350	342	8	-16	-6	188	199	11	7	- 5	400	399	8
11	- 3	532	526	10	-16	- 3	224	231	. 9	7	- 3	213	211	6
11	1	106	119	10	-13	- 2	207	226	7	7	- 2	367	369	7
12	- 5	252	263	9	-13	-1	231	238	7	7	2	230	226	6
12	-4	235	232	9	-11	-1	357	355	7	7	3	231	228	6
12	1	909	917	15	- 9	-7	212	205	9	7	7	160	157	11
12	2	659	686	12	- 9	- 3	136	124	- 7	8	- 5	398	405	8
13	- 5	301	278	9	- 9	- 2	642	658	11	8	-4	128	142	9
13	-4	567	567	10	-7	-6	145	147	11	8	- 3	509	510	9
13	2	154	163	8	-6	- 3	353	354	6	8	-2	618	633	10
13	7	147	152	11	- 5	-1	186	183	5	8	-1	330	388	6
14	-2	414	400	8	-4	-9	122	148	15	8	1	510	492	9
14	-1	514	605	9	-4	-4	250	247	6	8	3	799	793	13
14	0	676	653	12	- 3	-3	429	419	8	8	5	487	472	9
15	-6	130	127	14	-2	-2	324	314	F 6	8	6	362	352	8

page 5

10|F|o vs 10|F|c for br135

k	1	Fo	Fc	sig	Fk	1		Fo		Fc	sigF	k	1	Fo	Fc	sigF
9	-6	225	234	9	^ ^ ^ ^	~ ^ ^	h	Ras	2	~~~/	~~~	5	5	156	138	12
9	-4	219	207	7								6	-7	292	294	9
9	5	166	161	11	-21	-2		335		323	9	6	-4	729	709	12
10	-7	119	107	15	-21	-1		297		316	8	6	- 3	118	118	8
10	- 6	309	311	8	-20	-1		163		178	11	6	- 2	201	211	5
10	- 5	255	265	8	-17	- 3		144		146	12	7	-6	218	221	9
10	-4	108	130	12	-16	-6		109		102	15	7	- 5	688	728	12
10	- 3	428	429	8	-16	-1		428		420	8	7	-4	258	256	6
10	-2	413	396	7	-15	-1		110		78	12	7	0	398	408	7
10	0	709	707	12	-14	- 2		144		136	10	7	2	447	457	8
10	5	527	499	9	-13	-4		118		118	13	7	3	200	207	8
10	8	156	160	11	-13	- 2		199		192	8	8	-4	140	144	8
11	- 7	363	363	9	-12	- 8		143		151	12	8	- 2	240	244	6
11	-4	200	189	8	-12	- 3		247		252	7	8	7	188	181	10
11	- 3	119	132	10	-11	-4		107		111	13	9	-7	159	147	11
12	-4	188	181	9	-9	- 3		385		387	7	9	- 6	108	101	12
12	- 3	328	334	7	-7	- 3		816		825	13	9	-4	495	481	9
12	-1	340	346	7	- 6	-1		520		522	9	9	3	359	365	8
13	-7	104	124	15	- 5	- 8		101		101	15	10	- 5	201	210	9
13	- 6	199	212	10	- 5	- 5		641		663	11	10	-4	320	313	7
13	- 5	465	451	9	- 5	-2		446		423	8	10	- 3	344	348	7
13	-4	210	212	9	-4	-4		381		387	7	10	2	174	174	8
13	3	473	476	9	- 3	-4		170		174	6	10	4	280	271	9
14	- 6	213	231	10	-2	- 8		108		124	15	10	5	259	246	10
14	-2	606	594	11	-2	-6		397	_	402	8	11	-6	224	207	9
14	1	239	246	7	- 2	-1		1416		1456	22	11	5	130	128	15
14	4	132	142	15	-1	-9		113		113	15	12	-7	271	270	9
15	-5	118	146	16	-1	-6		165		156	10	12	-4	171	153	10
15	-2	652	630	12	-1	1		635		621	10	12	-2	400	414	7
15	1	322	315	8	0	-6		665		670	12	12	2	651	658	12
15	3	213	202	10	0	-4		248		237	6	13	-5	115	99	15
15	/	229	220	.9	0	2		534		537	9	14	-6	219	227	9
16	-5	130	140	14	1	-/		335		330	8	14	-5	191	186	10
16	-4	259	260	9	1	-1		554		540	9	14	4	121	104	16
16	0	332	33/	8	2	- /		5/0		563	10	15	-6	320	326	9
10	3	200	196	11	2	د -		182		19/	6	15	-4	407	393	9
17	-/	132	142	14	2	-2		233		238	У 7	15	- 3	424	423	9
17	- 2	209	214	10	2	0		399		110	1	15	0	414	401	8
10	- 2	221	229	10	2	Ö		123		110	14	15	2	233	23/	9
10	4	772	121	70	2	- 5		239		220	10	10	- 5	239	23/	9
10	- 3	237	210	9	2	-1		292		292	10	10	1	219	500	9
10	-1	102	1/5	15	2	2		701		761	12	10	1	149	140	12
73	0	120	105	12	2	د ہ		112		101	14	1/ 10	U E	125	142	10
20 20	-4	410	413 20%	7 11	) /	Ō		713		725	14 7	10 10	- ) 1	171 171	723	10
20	ر. ۲-	120	204	10	4 1	- 3		202		157	10	10 10	د- ء	233	23/	10 10
20 22	<u>د</u> ۱	720 720	210	0 10	4 7	4		1/2		150	10	10	-0	100	170	14 10
26	-4	196	10/	, 15	4	0 _ 2		105		115	۵ ۲۲	10	- 2	701 720	7/0	0 TO
25	۰ ۱	117	124	15	ر ۲	د - م		232		221	a	10	-2	22T 270	567 265	0
e J	v	TT/	166	10	ר 2	2		510		500	0	20 17	_^	210	200	7
					J	J		775		203	7	20	-4	201	102	TO

page 6

ł

South Haras

and the second

indiale van D

Broken , anderska inde

~ ~

- marchen rock-

the states

-

ŗ.

£

10|F|o vs 10|F|c for br135

STATES -

đ

10	Fo	vs 10	) F c	for	br139	5								pag	ge 7
k	1	Fo	Fc	sigF	k	1	Fo	Fc		sig	Fk	1	Fo	Fc	sigF
20	-2	125	126	14	5	0	529	53	2	9	-16	- 3	332	310	8
20	0	153	175	13	5	4	104	15	2	10	-15	-3	175	157	10
20	4	176	169	12	6	- 8	126	12	2	14	-14	- 6	175	176	10
21	0	149	162	13	6	-4	522	51	5	- 9	-14	-4	170	244	9
21	4	135	157	15	6	-3	1046	104	.0	17	-14	-3	211	209	ģ
22	1	224	212	10	6	-2	558	55	2	10	-13	-3	147	151	11
23	-1	252	246	g	6	ō	579	57	1	10	-12	-1	213	201	9
	-			•	6	2	696	70	$\overline{2}$	12	-11	-2	103	99	14
~ ^ ^ ^	~~~	h = 1	3 ^^^/	~ ^ ^ ^	7	-7	159	16	2	11	-10	-1	363	375	8
			-		7	- 5	224	23	5		-9	-5	240	233	8
-23	-1	116	130	13	7	-4	362	35	55	7	- 9	-1	309	318	7
- 21	-2	125	112	13	7	2	121	11	.7	10	- 8	- 8	173	185	10
-16	- 3	241	242	9	8	-7	154	13	15	11	- 8	-1	155	144	9
-15	- 3	244	245	8	8	-4	213	21	.2	8	-7	- 7	107	110	14
-15	-1	201	206	9	8	3	257	25	58	8	-7	-4	102	108	14
-14	- 5	100	99	15	8	7	119	10	8	16	-7	- 3	182	174	8
-14	-1	506	516	9	9	- 8	178	16	59	11	-7	-1	526	523	9
-13	-7	195	219	10	9	-7	132	14	•9	13	- 6	-4	101	70	13
-13	-6	157	175	11	9	- 5	107	ç	96	15	-6	- 3	108	100	12
-13	- 3	122	106	12	9	2	96		75	13	- 5	-7	299	303	8
-12	-7	327	343	8	9	6	179	18	37	12	-4	-1	121	125	9
-12	-1	270	278	7	10	.7	252	25	51	9	- 3	-7	161	171	11
-11	-1	524	523	9	10	4	143	12	21	14	- 3	- 2	135	130	8
-9	- 3	206	207	7	11	-6	242	23	31	9	- 3	-1	137	141	8
-9	-1	492	494	9	11	- 5	241	23	37	9	- 2	- 5	149	150	11
- 8	-2	529	524	10	11	- 3	267	26	56	7	- 2	- 2	721	739	12
-7	- 3	532	553	10	12	- 5	121	12	26	14	- 2	-1	153	163	7
- 5	-4	331	328	7	12	- 3	299	30	)0	7	-1	- 5	143	139	11
-4	-9	128	135	13	12	2	117	8	30	13	-1	-4	339	319	8
-4	-6	209	203	9	13	- 5	315	29	<del>9</del> 9	8	-1	-2	277	289	6
-4	-2	602	605	10	13	-4	145	15	52	12	0	- 8	158	138	11
- 3	- 5	381	368	8	13	2	222	19	98	9	0	-6	296	298	8
-2	-4	253	258	6	14	-4	240	25	52	9	0	-4	430	436	8
-1	0	209	204	5	15	0	113	10	)1	15	0	0	122	124	9
-1	3	434	426	8	15	1	341	33	37	8	0	2	320	327	7
0	- 8	362	364	8	16	- 2	114	10	)3	14	1	-1	291	290	6
1	- 5	213	212	8	16	5	110	9	96	17	1	0	665	670	11
1	-4	869	819	14	17	-4	268	20	51	9	1	1	191	203	7
1	- 2	81	73	10	17	4	171	18	31	12	2	0	143	151	8
2	- 2	285	285	6	18	- 5	321	31	L0	9	2	1	409	424	7
2	-1	174	166	6	19	0	157	10	58	11	2	3	135	114	11
2	1	94	110	10	20	- 5	252	24	48	9	3	- 5	153	139	11
2	3	276	264	7	20	-4	215	20	)6	10	4	-2	454	459	8
2	4	308	287	8				-			4	3	328	342	8
2	5	184	178	10	~~^^	~~^	h =	4 ^'	~ ^ .	~~ ^ ^	5	-4	413	412	8
3	3	226	217	7					_		5	- 2	204	207	7
4	- 3	322	319	7	-19	- 3	369	36	56	8	5	0	336	341	7
4	3	221	212	7	-18	-2	297	29	<del>7</del> 2	8	5	1	332	350	7
5	- 3	154	166	7	-18	-1	154	12	27	11	5	2	273	277	8
5	- 2	752	745	12	-16	-6	249	24	48	8	6	- 5	134	132	13

a,, 

Observed and Calculated Structure Factors for  $C_6H_4S_2P^+$  AlCl₄⁻

10	F o	vs 10	F c	for	br135	6								pag	çe 8	3
k	1	Fo	Fc	sigH	k	1	Fo	Fc	sigF	k	1	Fo		Fc	sigH	F
6	-1	270	273	7	5	0	128	135	12	11	- 3	153		156	10	
6	2	143	160	11	6	-6	129	122	13		-					
6	6	179	174	10	6	-5	126	145	13 '	~ <b>^ ^ ^</b>	^^^ 1	h =	7	^^^/	~~~	
7	2	418	427	8	6	-1	318	329	8		-		•			
9	-4	464	456	9	6	3	351	336	8	- 3	-1	123		137	11	
9	-3	122	139	12	6	5	145	151	12	-1	-4	103		112	13	
9	-2	146	135	9	7	-4	104	106	14	-1	-1	167		170	9	
9	6	130	121	14	7	1	143	126	11	5	-2	145		149	10	
10	- 5	228	242	9	8	- 3	114	108	13							
10	2	103	63	15	8	-1	287	274	8							
11	-6	112	125	14	8	2	338	357	8							
12	-6	167	169	11	8	3	229	225	9							
13	- 5	198	175	9	10	-1	166	156	9							
13	5	160	157	12	12	-6	132	98	12							
14	- 5	100	77	15	12	2	177	189	9							
14	1	184	196	10	14	3	151	155	12							
15	- 5	144	115	12	15	-2	324	337	8							
16	-4	110	119	14	16	-1	114	85	13							
16	2	275	266	9	17	-2	153	146	10							
16	3	173	165	11	17	-1	217	215	8							
16	4	138	136	13												
17	0	188	188	10	~~~~	`^^ h	i = 6	~~~	~ ^ ^ ^							
18	-3	147	107	10												
					-7	- 5	233	251	9							
~ ^ ^ ^	^^^ ł	າ 5	~~~	~ ^ ^ ^	-7	-4	215	199	9							
					- 6	-2	173	160	9							
-13	-2	180	184	10	- 3	-2	214	207	8							
-12	-5	126	129	12	-2	- 5	101	74	14							
-9	-7	187	173	9	-2	-4	218	224	8							
- 8	-4	215	208	8	- 2	- 3	147	151	10							
- 8	- 2	280	285	8	- 2	-1	176	182	9							
- 7	- 6	135	128	12	-1	-6	265	250	8							
- 7	-2	193	163	9	-1	-4	111	100	13							
-4	-6	125	123	12	-1	- 2	435	435	8							
- 3	-7	198	190	10	-1	0	149	151	10							
- 2	-7	97	89	16	0	- 6	188	185	10							
- 2	- 2	162	160	9	0	-4	286	272	8							
-1	2	227	219	8	2	0	127	135	12							
1	4	197	189	9	2	1	147	159	10							
2	-6	109	115	16	3	-4	171	174	10							
3	-6	229	222	9	3	- 3	311	290	8							
3	- 5	191	178	10	3	0	125	110	11							
3	- 3	139	125	11	4	- 3	112	107	13							
3	0	528	524	10	5	-6	234	253	9							
3	5	238	241	9	5	- 3	245	266	8							
4	-7	111	130	15	5	-2	241	237	8							
4	-4	367	362	8	6	0	382	392	8							
4	-1	193	191	9	7	1	191	183	9							
5	-6	169	187	11	8	-4	167	168	9							
5	-2	293	297	8	8	-1	202	101	8							

-----

-----

ł

i

ŧ

-----

S(1)	-P(1)	-S(2)	-C(2)	24.4	(1)
s(2)	-P(1)	-S(1)	-C(1)	-25.6	àí.
S(1)	-P(1)	-C(7)	-C(8)	-97.5	(3)
S(1)	-P(1)	-C(7)	-C(12)	83.8	(3)
C(7)	-P(1)	-S(1)	-C(1)	80.4	(2)
S(2)	-P(1)	-C(7)	-C(8)	0.5	(3)
S(2)	-P(1)	-C(7)	-C(12)	-178.2	(2)
C(7)	-P(1)	-S(2)	-C(2)	-78,1	(2)
P(1)	-S(1)	-C(1)	-C(2)	21.0	(3)
P(1)	-S(1)	-C(1)	-C(6)	-164.6	(3)
P(1)	-S(2)	-C(2)	-C(1)	-17.2	(3)
P(1)	-S(2)	-C(2)	-C(3)	168.6	(3)
S(1)	-C(1)	-C(2)	-S(2)	-2.7	(3)
S(1)	-C(1)	-C(2)	-C(3)	171.5	(2)
S(1)	-C(1)	-C(6)	-C(5)	-171.6	(3)
C(2)	-C(1)	-C(6)	-C(5)	2.8	(5)
C(6)	-C(1)	-C(2)	-S(2)	-177.3	(2)
C(6)	-C(1)	-C(2)	-C(3)	-3.1	(4)
S(2)	-C(2)	-C(3)	-C(4)	175.7	(2)
C(1)	-C(2)	-C(3)	-C(4)	1.5	(4)
C(2)	-C(3)	-C(4)	-C(13)	-179.6	(3)
C(2)	-C(3)	-C(4)	-C(5)	0.3	(4)
C(3)	-C(4)	-C(5)	-C(6)	-0.6	(5)
C(13)	-C(4)	-C(5)	-C(6)	179.3	(3)
C(4)	-C(5)	-C(6)	-C(1)	-1.0	(5)
P(1)	-C(7)	-C(8)	-C(9)	179.5	(2)
P(1)	-C(7)	-C(12)	-C(11)	-178.8	(3)
C(8)	-C(7)	-C(12)	-C(11)	2.4	(5)
C(12)	-C(7)	-C(8)	-C(9)	-1.9	(4)
C(7)	-C(8)	-C(9)	-C(10)	0.1	(5)
C(8)	-C(9)	-C(10)	-C(11)	1.1	(5)
C(9)	-C(10)	-C(11)	-C(12)	-0.5	(5)
C(10)	-C(11)	-C(12)	-C(7)	-1.3	(5)

4

.

۴

1

10	]F]0	o vs 10	F c	£or	brn	С1эн	11PS2						page	1
k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
****	^ ^ ^	h 27	~ ~ ~ /	~ ^ ^ ^	1	17	48	35	13*	5	14	40	3	14*
					2	14	64	46	9	5	23	13	5	3*
1	6	33	12	8*	2	17	49	62	14*	6	16	35	28	18*
3	14	28	31	8*	4	10	55	55	11*	7	1	18	19	7*
	<b>~</b> 1	20		•	4	14	38	52	16*	7	5	39	35	11*
****	~ ^ ^	h = -26	***	* * * *	Å	16	54	65	11*	7	14	40	3	11*
		20			4	18	53	28	13*	7	17	25	29	 7*
0	18	47	60	10*	5	6	48	43	9*	'		2.5	27	•
1	4	30	7	13*	5	10	43	43	12*	^ ^ ^ ^	~ ^ ^	h = -20		~ ~ ^ ^
1	14	60	43	8		10			***				5	
1 1	17	40	4J 25	14*	~~~/		h = -22	~~~	~~~~	٥	ß	152	170	5
1 2	1/	40	25	114			11 22			ň	10	120	117	5
2	17	40	20	1/4	0		70	02	9	٥ ٥	10	120	105	ר ר
2	17	37 00	21	11.	0	4	/U 02	03	0 7	0	12	91	102	/
3	1/	29	2	11×	1	Ö	83	9/	11.4	1	20	70	60	8 11.5
2	1	/	T	Jх	Ţ		44	43	11.	1 1	10	50	52	11*
					L	11	41	49	14*	1	11	//	/3	
		h = -25			1	20	85	80	8	1	12	77	83	7
			• •	<b>.</b>	2	18	52	38	13*	1	14	66	64	9
0	11	40	26	14*	3	4	75	74	6	2	1	49	83	9*
0	13	43	32	12*	3	12	57	43	10*	2	2	72	88	6
1	11	43	12	13*	3	14	58	67	11*	2	10	42	34	12*
1	15	36	53	16*	3	16	63	56	11*	2	14	78	96	8
1	16	41	13	14*	4	7	59	62	9	3	3	45	31	10*
2	6	45	38	10*	4	11	36	33	16*	3	- 4	81	81	6
2	17	45	15	15*	4	17	38	47	16*	3	6	77	77	7
3	5	49	22	9*	5	9	47	53	12*	3	8	36	7	14*
4	1	10	2	3*	5	13	44	27	13*	3	10	82	69	7
4	14	46	30	12*	6	19	21	34	7*	3	11	56	55	10*
6	6	2	20	0*						3	12	87	99	7
					~~~	~~~~	h = -21	~~~	~ ~ ^ ^	4	1	41	46	9*
****	^ ^ ^	h = -24	~~~	~ ^ ^ ^						4	3	37	42	12*
		•- ···			0	3	63	57	8	4	5	50	40	9*
0	8	64	72	9	Ō	11	44	48	13*	4	6	58	67	9
0	16	70	72	8	Ő	19	80	73	7	4	14	55	48	11*
Ő	20	36	39	12*	ĩ	4	88	97	6	5	9	51	62	11*
ň	22	52	33	8	ĩ	ר א	57	67	10*	5	11	37	37	15*
Ň	24	14	22	7*	1	10	08	106	6	6	20	31	57	1.25
1		51	43	,∾ 11₩	1	11	90	103	7	7	13	1.6	2/	144
・ ユ	0	51 61	4J 50	124	1	10	04 70	102	0	0	2	40	19	104
2	0	41 27	11	10.4	1 1	12	/0	00	0	o	0	32	12	10*
2	10	54	11	10*	2	4	55	42	0				~ ^^^	
3	10	21	63	12*	2	12	61	11	10			h ≈ -1	9	
3	21	32	6	11*	2	19	69	68	10	•				-
5	3	29	6	6*	3	1	33	50	12*	0	1	64	86	7
					3	20	49	60	13*	0	3	52	72	9*
		h = -23			4	6	64	86	9	0	7	80	92	7
					4	8	86	92	7	0	25	52	40	8
0	11	68	50	8	4	9	45	24	12*	1	2	105	120	5
0	15	50	78	12*	4	10	39	60	15*	1	4	57	67	8
1	12	71	68	9	4	11	72	72	8	1	10	136	140	5
1	14	76	79	9	5	6	41	37	13*	1	11	65	62	8

服うちんちょうちょうちょうちょうちょうちょう

ł

in an oracle

2

"" " " " """, ni

「ない」の

やちまたがい、こういいちもちょうがないないいいちにないないで、このないないない

いまるない いい いいいいいい いいい しょうしょう しょうない

A

ころうない かいちょうかいちょうかい しちちょうかい たいしょうかい

10	Flo	vs 10	Fc	for t	orn	C ₁₃ H ₁	1PS2						page	e 2
k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
1	12	117	114	5	5	6	45	36	11*	3	4	43	34	9*
2	1	57	65	7	5	10	66	58	8	3	5	126	125	4
2	3	42	59	10*	5	11	41	31	13*	3	6	56	54	8
2	4	56	75	8	5	13	51	51	10*	3	8	32	52	14*
2	5	61	64	7	5	14	44	49	12*	3	9	72	76	7
2	11	136	150	5	6	11	74	78	7	3	10	62	61	7
2	13	120	131	6	6	13	71	73	8	3	12	84	79	6
3	5	35	39	12*	6	15	55	67	11*	3	14	159	158	5
3	8	54	32	8	7	12	56	67	10*	4	1	72	78	6
3	10	94	100	6	7	18	36	14	14*	4	2	43	47	9*
3	12	79	77	7	8	1	31	28	13*	4	6	31	11	13*
3	14	127	126	6	Ř	- Q	42	11	11*	à	q	57	69	8
4	1	121	137	5	g	11	61	41	10	4	11	101	107	5
4	1	50	1.57	0	0	12	35	17	17+	4	10	101	100	5
4		110	110	5	0	16	20		124	4	14	70	75	2
4	5	110	71	7	o v	14	20	, J	1.74	2	20	50	5	104
4	~~ ~~	11	11	1 1 1	0	17	40	43	9x (4 c	20	30	04	10*
4	23	41	2/	11*	0	ء ۲۱	22	22	10.4) c	2	04 105	11	0
2	5	4/	38	10*	y	2	24	55	10×	2	ь 0	105	20	2
5	10	51	51	10*	~~~~			~~~	****	2	8	70	18	1
5	12	60	50	9			n = -1/			5	9	6/	66	ļ
6	9	45	55	12*						6	1	/9	90	6
7	9	49	40	11*	0	3	100	109	5	6	6	74	- 74	1
7	13	52	60	10*	0	5	193	214	4	6	8	78	84	7
7	18	45	24	8*	0	9	76	66	6	6	10	94	99	6
8	9	37	5	15*	0	11	99	89	6	6	11	44	43	12*
					0	13	89	92	7	6	12	69	67	8
****	~~~	h = -18	} ^^^	~ ~ ^ ^	0	23	88	111	7	7	5	71	72	8
					0	25	68	84	8	7	7	65	60	8
1	1	55	70	8	1	2	186	204	4	8	6	48	33	11*
1	3	78	96	6	1	4	182	181	4	8	12	52	52	9*
1	4	91	104	5	1	7	196	208	4	8	16	55	38	8
1	8	162	176	4	1	8	110	123	5	9	2	26	7	11*
1	10	121	120	5	1	9	103	111	5					
1	12	70	86	8	1	10	116	129	5	~~~	~~~	h = -16	^^^	****
1	13	98	95	6	1	11	127	135	5					
2	3	89	106	5	1	12	133	137	5	0	2	146	147	4
2	4	45	61	10*	ĩ	13	71	- 68	7	ō	4	96	96	5
ົ້	8	24	102	6	1	14	72	80	7	ő	6	105	112	5
2	14	46	67	19*	1	24	67	60	à	ň	12	261	254	5
2	14 7	107	147	12	÷	24	20 20	95	, , , ,	ň	14	1/2	160	5
د د	2	12/	144	4	2	2	100	115		1	14	140	107	
2	4	11	00	0	2	3	106	113	4	1	1	19	12	
3	2	94	99	5	2	4	00	9/	2	1	2	240	200	4
3	8	11	86 60	6	2	5	63	12		1	5	70	50	6
3	9	62	58	/	2	8	183	192	4	1	5	T33	202	4
4	3	83	106	6	2	10	64	53	7	1	8	73	- 74	6
4	4	62	79	8	2	11	84	88	6	1	9	113	120) 4
4	5	66	63	7	2	13	133	133	5	1	11	84	91	. 6
4	6	41	60	11*	2	14	101	109	6	2	3	122	122	4
4	23	69	55	10	3	1	73	85	5	2	4	104	84	+ 4
4	25	39	49	5	3	3	87	97	1 5	2	6	220	213	4

M94

٠٠٠٠، ٢ ٩٠٥ عن ٤٤ ٩٠، ٩٠ مودية ٩٠٠ (٨٠ ليد ٩٠٠٠ المعمولية ٢٠٠٠ مع مومينة الموجد معلى لامياه المراجد المرجد المرجعة المحافظة المحافظة الم

11 mar 14

ちょうか つち た ちかり しちす

シーシン シートー ちょ

the second

atten miles

* ひんんちょう ちる す あんなく 部から ほうたいのか

.
10	F 0	vs 1	0 F c	for	brn	C13H1	1PS2						pa	ge 3
k	1	Fo	Fc	sigF	r k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
2	7	189	185	4	1	2	217	221	4	6	11	57	55	8
2	8	150	145	4	1	3	85	83	5	6	12	76	77	7
2	9	52	62	8	1	4	65	59	6	6	15	54	49	9
2	10	124	120	4	1	8	197	200	4	7	5	85	78	6
2	12	50	43	9*	1	9	110	111	4	/	6	88	/5	6
2	13	134	134	4	1	10	123	119	4	/	/	59	60	9
2	14	52	52	10*	1	11	122	129	4	/	8	53	53	10*
3	5	103	1/2	4 7	1	12	125	120	4	7	10	/1	04 20	0-7- \
5	07	23	157	1	1	1/	105	117	4	/ 0	10	27	50	9*
נ י	0	10/	177	4	2	14	123	191	5	0	10	.e	52	7 114
່ງ າ	0	100	147	4	2	1 2	7/	101	4 5	0 0	17	40	22	134
ა ა	10	90	102	5	2	2	176	170	5	0	20	50 14	40	13^
ر	10	133	74	4	2	1	173	153	4	0 0	20	40	42	124
4	2	72 29	19	13*	2	5	218	213	4	ģ	14	34	-41	11*
4	5	53	51	8	2	6	101	95	4		*-4	54	*	TT
4	8	32	21	13*	2	7	208	199	4	~~~~	~~~	h = -14	~~~	~ ~ ^ ^
4	11	67	70	7	2	9	143	139	4					
5	2	53	54	8	2	10	85	70	5	0	2	112	108	4
5	3	71	63	6	2	12	54	66	8	0	4	586	575	9
5	5	53	37	8	2	23	75	58	9	0	6	72	76	6
5	8	55	45	8	3	2	117	112	4	0	8	68	66	6
5	9	163	151	4	3	3	90	93	4	0	14	120	124	5
5	11	99	91	5	3	4	166	164	4	1	1	214	218	4
5	12	67	66	7	3	6	168	158	4	1	2	121	130	4
5	13	86	93	6	3	8	147	137	4	1	3	39	32	9*
5	15	65	86	9	3	10	62	55	7	1	4	195	196	4
5	19	39	53	14*	3	11	136	122	4	1	5	98	96	4
6	1	91	92	5	3	23	38	11	17*	1	6	34	36	10*
6	2	67	76	7	4	2	88	89	5	1	7	101	103	4
6	8	82	80	6	4	6	74	70	5	1	8	82	84	5
6	12	4/	57	10*	4	9	/0	68	6	1	9	120	119	4
/	4	6/	45	/	4	11	83	104	6	1	10	42	/2	9*
/ -	1/	6/	13	ð	4	14	85 71	86	0 10-4	1	10	172	182	4
0	14	00	04	07	4	24	41 27	1	11.4	1	1/	1/1	150	4
o Q	11	00 51	37	104	ר כ	L 5	57	40	0 TTV	1	14	72	100	4 7
g	16	37	38	1/1	5	6	72	50 61	6	2	2	80	00	1
ğ	5	53	47	12*	5	q	49	58	9*	2	2	221	208	4
10	ĩ	2	16	1*	5	10	51	51	9*	2	4	68	51	5
10	12	5	25	1*	5	11	72	80	7	2	5	318	298	5
10			25	-	5	12	151	151	4	2	6	90	80	4
****	^ ^ ^	h = -1	5 ^^^	~ ~ ~ ^	5	13	40	20	12*	2	7	235	225	4
		-			5	14	118	117	5	2	. 8	86	84	4
0	3	161	160	4	5	15	68	56	8	2	9	102	98	4
0	5	182	186	4	6	2	102	112	5	2	12	101	109	5
0	9	157	158	4	6	6	84	85	6	2	23	77	79	9
0	11	158	144	4	6	8	131	132	4	3	1	71	68	5
0	13	360	350	6	6	9	53	69	9*	3	3	51	61	7
0	25	50	30	11*	6	10	106	106	5	3	6	75	64	5
											-			

ling and a strate

t t

×

ちょう もっちょうちょう し

۲ • •

ه بدستران والمشور د.

المراسم المستقلين والمساحر والمحالية المساعد والمراحد المالالية المراح المحالية والمراحية المحالية والمحالية والمحا

キャレート しょう ちょうちょう ちんちょう しょうちょう

	10	Flo	vs 10	F c f	for b	rn (C ₁₃ H ₁₁	PS ₂						ра	ge 4
	k	1	Fo	Fc s	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
	3	7	110	104	4	0	5	465	459	8	4	12	100	94	5
	3	8	166	158	4	0	7	496	483	8	4	14	58	45	8
	3	10	269	254	5	0	9	283	268	5	5	1	77	73	5
	3	11	61	49	7	0	11	351	334	6	5	2	96	98	5
	3	12	100	105	5	0	13	314	300	5	5	3	65	88	6
	3	13	101	104	5	0	15	377	378	6	5	4	153	161	4
	3	23	51	38	12*	1	1	248	249	4	5	6	71	71	6
	4	2	58	60	6	1	3	274	277	5	5	7	103	96	4
	4	5	97	94	4	1	4	135	133	3	5	9	78	80	5
	4	8	125	114	4	1	5	119	126	3	5	10	54	59	7
	4	9	165	146	4	1	6	139	133	3	5	12	125	130	4
	4	10	172	167	4	1	7	57	42	6	5	13	67	69	7
	4	11	199	198	4	1	10	170	180	4	5	14	143	154	4
	4	12	77	82	6	1	11	123	130	4	5	15	38	59	13*
	5	1	176	174	4	1	12	113	110	4	6	2	188	184	4
	5	2	92	97	5	1	13	61	62	7	6	3	73	82	6
	5	3	133	131	4	1	14	104	106	5	6	5	123	121	4
	5	4	56	64	8	1	15	109	115	5	6	8	72	79	6
	5	11	97	86	5	1	16	93	90	6	6	10	35	42	11*
	5	12	47	40	10*	2	1	162	153	3	6	20	52	58	11*
	5	14	49	41	10*	2	2	82	76	4	7	8	83	89	6
	5	15	39	9	12*	2	3	261	250	4	7	10	58	52	8
	6	1	109	116	5	2	5	173	161	3	7	12	40	12	11*
	6	3	75	68	6	2	7	154	150	3	8	5	58	42	9
	6	6	77	68	6	2	8	66	59	5	8	7	56	49	8
	6	8	80	84	6	2	9	105	104	4	8	10	86	87	6
	6	11	60	61	7	2	10	117	113	4	8	12	69	67	6
	7	4	63	66	8	2	12	179	186	4	9	14	34	26	13*
	7	6	85	78	6	2	13	153	152	4	11	6	6	20	2*
	7	8	94	99	5	2	14	69	73	7					
	7	9	69	56	7	2	25	49	71	13*			h = -12	2	
	/	14	87	93	6	3	1	109	103	4	•	~	050		
	/	18	33	29	14*	3	2	211	210	4	0	2	253	252	4
	/	19	43	38	11*	3	3	28	/9	4	0	4	341	341	6
	ð	0	33	12	12x	ງ ງ	4	107	104	4	0	0	328	340	6
	0	10	20	22	0 10-1	د د	2	170	/0	4	0	10	100	110	4
	0	10	0C	24	104	2	0 7	105	101) /	0	10	100	100	4
	0	10	42	21	1/3	2		276	2// 6	4	0	14	166	166	4
	0	10	24	44	1247	2	10	3/0	126	0	0	24	100	0 J D D	4 0
	7	10	30	50	104	2	10	251	770	4	1	24	107	101	2
	9	17	20	5/	1/4	2	12	201	242	4	1	2	125	171	
	10	14 2	35	20	114	ر ،	12	10/	111	4	1	ר ג	90 97.9	20	, 4,
	10	2	21	14	1/4	4	2	166	170	4	1	4 5	242	243) 4) /
	10	ر م	3¢ 2T	37 70	104	4	2 1.	100 177	170	4	1	2	207 207	203	, 4 ,
	TO	o	رر	54	10.	4	4	176	107	4 /	1	7	207	211	. 4) 4
^	~~~	~~~	$h = -1^{1}$	2 ^ ^ ^ ^		4	0 7	τ <u>,</u> 120	171	4 6	1	, 0	275	203	, J , K
			= -1.			4	0	150	100	И	1	7	11/	105	, J ; /,
	٥	1	125	129	4	4	0	102	173	4	1	11	202	200	, 4) /
	0	ר ד	243	251	4	4	7	102	72 194	4	1	15	202 g2	205	, 4 , 6
			ムマノ	<i></i>			10	بلا منه مذ			-	<u> </u>		U U	, ,

10	Flo	vs	10 F c	for	brn	C ₁₃ H	11PS ₂						pa	.ge 5
k	1,	Fo	Fc	sigH	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
1	16	61	56	8	6	11	69	73	6	2	15	188	183	4
2	2	112	115	3	6	21	56	62	10*	3	1	350	323	6
2	3	111	. 105	3	7	2	99	91	5	3	2	95	91	4
2	4	65	61	5	7	4	120	117	5	3	3	72	68	4
2	5	145	141	3	7	6	105	108	5	3	4	117	122	3
2	6	112	107	3	7	9	76	78	5	3	5	310	299	5
2	7	117	125	3	7	10	68	75	6	3	7	351	329	6
2	9	151	. 146	3	7	11	103	108	5	3	8	58	57	5
2	10	126		4	/	13	87	84	6	3	9	191	178	4
2	11	/1	. /1) 10-1	/	20	38	20	13*	ა ა	10	199	190	4
2	12	42	40	10*	0	10	20	40	13*	2	12	102	10/	4
2	17	200	202	4	0 8	12	67	56	7	2	13	153	152	4
2	15	109	1245	5	9	6	65	71	8	3	14	235	235	4
3	1	174	169	4	9	10	35	33	11*	3	25	65	63	9
3	3	101	94	4	9	18	32	15	5	4	2	56	50	6
3	5	134	127	3	11	6	14	25	5*	4	4	68	76	5
3	7	32	14	9*						4	5	91	86	4
3	9	103	94	4	~ ~ ~ ~		h = -11	~~~	~ ~ ^ ^	4	6	112	102	3
3	10	113	117	4						4	7	204	188	4
3	11	53	54	7	0	1	648	655	10	4	8	86	72	4
3	13	148	145	4	0	3	575	583	9	4	10	92	82	4
3	14	74	102	7	0	5	479	487	8	4	11	77	72	5
4	1	161	. 153	4	0	7	455	442	8	4	12	107	119	4
4	2	124	123	4	0	9	352	336	6	4	14	188	182	4
4	3	229	232	4	0	11	185	182	4	5	2	/8	93	5
4	4 E	74	· /2	2	0	13	102	12/	4 5	2	4	382	390	6
4	2	120	241	4 २	0	17	64	07	2	5	5	288	255	7
4	7	00	9 83	4	ĩ	1	129	127	3	5	7	990	91	4
4	8	257	233	4	1	2	157	159	3	5	Ŕ	143	131	3
4	9	36	41	10*	1	3	114	117	3	5	9	145	141	3
4	10	125	118	4	ī	4	113	115	3	5	11	65	68	6
4	11	132	125	4	ī	5	79	75	4	5	12	77	69	6
4	12	111	. 112	4	1	7	144	149	3	6	1	111	111	5
4	13	228	235	4	1	8	239	250	4	6	2	100	84	5
4	24	45	40	13*	1	9	200	208	4	6	3	96	86	5
4	26	31	. 55	10*	1	10	99	97	4	6	5	67	75	6
5	1	201	. 190	4	1	11	132	137	4	6	8	79	85	5
5	2	106	121	4	1	13	199	203	4	6	9	31	22	11*
5	3	197	199	4	1	15	121	111	5	6	10	113	111	4
5	4	75	i 92	5	1	16	101	126	6	6	11	72	64	6
5	5	121	. 140	4	2	2	58	49	5	6	13	51	47	9* r
) F	10	99	96	4	2	3	201	191	3	6	14	92	84	5
2	12	132) 130	4	2	8	/8	101	4	6	21	51	59	11*
5	14 15	00	, 64 , 00	5	2	9 10	101 120	101	נ 2	6 7	25	10	18	>>* <
2	Т.)	50) 70) 60) 2	2	11	117	114	с /	1	2	90	50 1/	0 12±
6	Q	72	, UZ 5 52	0.* 0	2	12	140	170	4	י ר	כ 15	27	14 27	- T3×
6	10	80) 82	5	2	13	301	300	5	8	2	61	51	9

- - - -

4 - 4

്ച്

3

{

with a press

V. 264

• • •

* ~ * *

١.

the and have all

ĵ

M97

10	F o	vs 10	F c	for b	orn	C ₁₃ H ₁₁	PS ₂						pa	ge 6
k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
8	5	60	53	7	3	8	158	157	3	8	9	53	66	7
8	6	72	69	6	3	9	180	173	3	9	2	70	61	9
8	8	103	103	4	3	10	40	46	8*	9	4	74	83	7
8	10	98	107	5	3	11	64	70	6	10	8	54	57	6
8	13	37	1	10*	3	12	173	178	4	11	2	34	7	11*
8	16	47	36	10*	3	14	118	126	5	11	10	13	10	4*
9	8	32	37	12*	3	15	131	137	5					
10	1	59	26	14*	4	1	267	249	4		<u> </u>	n. -9		~~~
11	7	17	15	7*	4	3	368	362	6	_	-			
11	9	13	4	4*	4	4	158	161	3	0	1	272	283	5
					4	5	485	428	8	0	3	484	505	8
	1	h = -10			4	6	91	/8	4	0	5	825	/89	13
•	,	107	1 2 0	2	4	/	336	314	6	0	1	296	281	5
0	4	136	138	3	4	0 10	40	52		0	11	8/	83	4
0	0	1/9	100	5	4	11	121	120	4	0	15	108	100	4
0	0 10	20 07	40	6	4	12	50 50	49	7	0	17	48	23	9 *
0	12	0/ 179	177	4	4	14	128	0C 102	1	1	1/ 2	5	01 55	0 /
ő	2/	88	97	4 7	-4 5	1	89	82	4	1	2	166	180	4
õ	24	57	95	ģ	5	2	150	164	4	1	4	199	203	2
1	1	254	254	, ,	5	3	64	60	5	1	5	305	203	5
1	2	298	298	5	5	4	145	153	3	1	6	205	221	3
1	3	153	151	3	5	6	110	101	3	1	7	291	313	5
1	4	187	198	3	5	7	247	224	4	1	8	184	196	3
1	5	280	2.84	5	5	8	70	67	5	ī	9	368	391	6
1	6	399	425	7	5	9	134	129	4	1	10	154	158	3
1	7	480	503	8	5	12	145	142	4	1	11	406	407	7
1	8	286	299	5	5	13	40	54	12*	1	12	66	70	6
1	9	352	383	6	5	14	155	149	4	1	14	98	98	5
1	11	107	129	4	5	15	84	66	6	1	15	70	76	7
1	12	44	42	9*	6	2	50	49	7	2	1	139	130	3
1	14	155	145	4	6	5	86	76	4	2	2	87	91	3
1	15	180	179	4	6	6	106	108	4	2	3	211	214	4
1	16	147	152	4	6	7	106	105	4	2	4	185	171	3
1	17	144	155	5	6	8	98	102	4	2	5	234	220	4
1	25	50	84	13*	6	10	67	75	6	2	6	79	79	3
2	1	179	163	3	6	11	86	85	5	2	7	51	58	5
2	3	1.31	128	3	6	13	145	151	4	2	10	376	377	6
2	5	114,	118	3	6	15	139	126	4	2	11	232	228	4
2	6	179	185	3	6	23	32	23	14*	2	12	178	169	4
2	7	91	96	3	7	1	94	71	6	2	13	280	2/3	5
2	8	314	318	5	7	2	102	101	5	2	15	252	242	5
2	9	229	223	4	7	3	54	51	ð r	3	1	2/6	245	2
2	11	282	2/2	;) ,	/	4	8/	94	5 0.4	ز م	2	95	150	ر د
2	15 15	107	100	4	/	b 10	44	4/	8× ⊑	ز 1	5	104	127	5 1
2	12	177 177	00 773	4 C	7	10	90 160	91 177	ך ג	נ ר	4 7	140	21/	4
2	10	73 190	90 100	0	/ 7	12	120 21	144 2 c	4 15-5	נ מ	/ 0	100	0C1 07	ג ו
л С	<u>۸</u>	120	110	2	י ר	14	21 07	20	5	د ۲	Q	226	70 21 ~	
3	6	282	261	. 5	8	4	30	6	14*	3	10	229	233	4

M98

k1FoFcsigFk1FoFcsigFk1FoFcsigFk1FoFcsigF3111351304829288621062062410312186175483381911*211152152431317617948691964212133114443151931964895137721480856316145150581543121512213255421741923816425912*3110085344555818506310*33878634455581810*3317343329229546304262595513101361361014481110912355913*3932932854630877313131013613610133<	10	F o	vs 1	L0 F c	for	brn	C ₁₃ H ₁	1PS2						pa	ge 7
3 11 135 130 4 8 2 92 88 6 2 10 620 624 10 3 12 186 175 4 8 3 38 19 11* 2 11 152 152 152 14 4 3 13 176 179 4 8 6 91 96 4 2 12 13 151 149 4 3 16 145 150 8 15 43 12 15 122 15 122 152 5 4 2 174 192 3 8 16 42 59 12* 3 1 100 85 3 4 5 72 76 4 9 2 105 87 6 3 6 175 74 3 16 153 300 275 5 4 4 173 313 310 134 313 310 134 313 <t< td=""><td>k</td><td>1</td><td>Fo</td><td>Fc</td><td>sigH</td><td>Fk</td><td>1</td><td>Fo</td><td>Fc</td><td>sigf</td><td>k</td><td>1</td><td>Fo</td><td>Fc</td><td>sigF</td></t<>	k	1	Fo	Fc	sigH	Fk	1	Fo	Fc	sigf	k	1	Fo	Fc	sigF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	11	135	130	4	8	2	92	88	6	2	10	620	624	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	12	186	175	4	8	3	38	19	11*	2	11	152	152	4
3 14 238 243 4 8 8 57 58 7 2 13 151 149 4 3 15 193 196 4 8 9 51 37 7 2 14 80 85 6 4 2 174 192 3 8 16 42 59 12* 3 1 100 85 3 4 3 49 55 5 8 18 50 63 10* 3 3 87 86 3 4 5 72 76 4 9 2 105 87 6 3 6 175 170 3 4 6 304 262 5 9 55 5 133 10 13* 10 13* 10 13* 10 13* 10 13* 10 13* 10 13* 10 13* 10 13* 10 13* 10 13* 10 13* <td>3</td> <td>13</td> <td>176</td> <td>179</td> <td>4</td> <td>8</td> <td>6</td> <td>91</td> <td>96</td> <td>4</td> <td>2</td> <td>12</td> <td>133</td> <td>144</td> <td>4</td>	3	13	176	179	4	8	6	91	96	4	2	12	133	144	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	14	238	243	4	8	8	57	58	7	2	13	151	149	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	15	193	196	4	8	9	51	37	7	2	14	80	85	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	16	145	150	5	8	15	43	12	11*	2	15	122	132	5
4 3 49 55 5 8 18 50 63 10* 3 3 87 86 3 4 5 52 4 9 1 64 47 10 3 4 53 54 4 4 5 72 76 4 9 20 55 9 5 36 29 10* 3 7 343 329 6 4 6 304 262 5 9 5 59 13* 3 10 136 139 4 4 12 37 51 11* 1 9 22 29 6* 3 13 82 88 6 4 13 58 71 8 7 50 2 24 9* 3 11 199 14 452 24 9* 3 16 124 133 5 5 2 242 20 6 3 15 3 16 124 133 <td>4</td> <td>2</td> <td>174</td> <td>192</td> <td>3</td> <td>8</td> <td>16</td> <td>42</td> <td>59</td> <td>12*</td> <td>3</td> <td>1</td> <td>100</td> <td>85</td> <td>3</td>	4	2	174	192	3	8	16	42	59	12*	3	1	100	85	3
4 4 5 52 4 9 1 64 47 10 3 4 53 54 4 4 5 72 76 4 9 2 105 87 6 3 5 300 267 5 4 6 304 262 5 9 3 7 343 329 6 4 107 3 9 12 35 59 13 3 9 329 328 5 4 12 37 51 11* 11 9 12 25 59 13* 3 10 136 139 44 12 37 51 11* 11 9 22 29 6* 3 11 199 195 4 4 12 37 51 11* 11 9 22 29 6* 3 13 16 124 133 5 5 2 242 20 4 40	4	3	49	55	5	8	18	50	63	10*	3	3	87	86	3
4 5 72 76 4 9 2 105 87 6 3 5 300 267 5 4 6 304 262 5 9 5 36 29 10* 3 7 343 329 6 4 7 160 152 3 9 12 35 59 13* 3 9 329 328 5 4 9 203 203 4 9 13 31 30 13* 3 9 329 328 5 4 11 39 40 10* 9 14 45 24 9* 3 11 199 195 4 4 12 37 51 11* 11 9 22 29 6* 3 18 16 124 133 5 5 242 270 4 40 452 7 4 3 16 124 133 5 5 5 5 5	4	4	58	52	4	9	1	64	47	10	3	4	53	54	4
4 6 304 262 5 9 5 36 29 10* 3 7 7 343 329 6 4 7 160 152 3 9 10 59 48 6 3 8 175 170 3 4 12 37 51 174 3 9 329 328 5 4 12 37 51 11* 1 9 22 29 6* 3 13 82 88 6 5 1 134 131 4 6 74 3 16 124 133 5 5 2 242 270 4 4 159 61 5 5 3 68 73 5 0 2 280 308 5 4 2147 166 3 3 16 124 133 5 5 3 7 74 66 40 10 114 106 3 4 <	4	5	72	76	4	9	2	105	87	6	3	5	300	267	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	304	262	5	9	5	36	29	10*	3	7	343	329	6
4 8 124 107 3 9 12 35 59 13* 3 9 329 328 5 4 9 203 203 4 9 13 31 30 13* 3 10 136 139 4 4 11 39 40 10* 9 14 45 24 9* 3 11 199 195 4 4 12 37 51 11* 11 9 22 29 6* 3 13 82 88 6 5 1 134 131 4	4	7	160	152	3	9	10	59	48	6	3	8	175	170	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	8	124	107	3	9	12	35	59	13*	3	9	329	328	5
4 11 39 40 10* 9 14 45 24 9* 3 11 199 195 4 4 12 37 51 11* 11 9 22 29 6* 3 13 82 88 6 4 13 58 71 8 ************************************	4	9	203	203	4	9	13	31	30	13*	3	10	136	139	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	11	39	40	10*	9	14	45	24	9*	3	11	199	195	4
4 13 58 71 8 3 14 66 48 8 5 1 134 131 4 2222 270 4 3 16 124 133 5 5 2 242 270 4 4 1 59 61 5 5 3 68 73 5 0 2 280 308 5 4 2 147 166 3 5 4 229 232 4 0 4 440 452 7 4 3 276 286 5 5 8 27 7 4 0 6 381 369 6 4 5 141 123 3 5 6 220 203 4 0 12 98 104 4 8 101 101 4 10 101 101 101 101 101 101 101 101 101 101 101 101 101	4	12	37	51	11*	11	9	22	29	6*	3	13	82	88	6
5 1 131 4 131 4 131 4 131 4 131 4 131 4 131 5 3 16 124 133 5 5 2 242 270 4 4 1 59 61 5 5 3 68 73 5 0 2 280 308 5 4 21 147 166 3 5 4 229 232 4 0 4 440 452 7 4 3 276 286 5 5 8 7 74 0 6 381 369 6 4 5 141 123 3 5 6 200 203 4 0 14 72 78 5 4 9 57 60 6 5 13 39 43 12* 1 1 326 309 5 4 11 139 143 4 5 5	4	13	58	71	8						3	14	66	48	8
52242270444561553687350228030854214716635422923240444045274327628655582774063813696451411233562202034082252244465334888577466401011410634716315035888984012981044481011014591201134016194204441087935513394312*11326309541113914345246851101333831754121211264525351412*1428406*4131051065631091114151211312414124128564131132<	5	1	134	131	4	~~~	~~~~	h ≈ -8	3 100	~~~~	3	16	124	133	5
5 3 68 73 5 0 2 280 308 5 4 2 147 166 3 5 4 229 232 4 0 4 440 452 7 4 3 276 286 5 5 5 82 77 4 0 6 381 369 6 4 5 141 123 3 5 6 220 203 4 0 8 225 224 4 4 6 533 488 8 5 7 74 66 4 0 12 98 104 4 4 8 101 101 4 5 14 12 143 4 143 4 143 4 14 143 4 14 124 128 143 145 121 131 132 14 14 124 128 5 6 3 105 106 5 5 141 129 125	5	2	242	270	4						4	1	59	61	5
5 4 229 232 4 0 4 440 452 7 4 3 276 286 5 5 5 82 77 4 0 6 381 369 6 4 5 141 123 3 5 6 220 203 4 0 8 225 224 4 4 6 533 488 8 5 7 74 66 4 0 10 114 106 3 4 7 163 150 3 5 8 88 98 4 0 12 98 104 4 4 8 101 101 4 5 9 120 113 4 0 16 194 204 4 10 87 93 5 5 13 39 43 12* 1 1 326 309 5 4 11 139 143 4 4 12 121 <	5	3	68	73	5	0	2	280	308	5	4	2	147	166	3
5 5 82 77 4 0 6 381 369 6 4 5 141 123 3 5 6 220 203 4 0 8 225 224 4 4 6 533 488 8 5 7 74 66 4 0 10 114 106 3 4 7 163 150 3 5 8 89 4 0 12 98 104 4 4 8 101 101 4 5 9 120 113 4 0 16 194 204 4 4 10 87 93 5 5 13 39 43 12* 1 126 309 5 4 11 139 143 4 5 24 68 51 10 1 3 338 317 5 4 121 121 131 2 4 14 128 5	5	4	229	232	4	0	4	440	452	7	4	3	276	286	5
5 6 220 203 4 0 8 225 224 4 4 6 533 488 8 5 7 74 66 4 0 10 114 106 3 4 7 163 150 3 5 8 88 98 4 0 12 98 104 4 8 101 101 4 5 9 120 113 4 0 16 194 204 4 4 10 87 93 5 5 13 39 43 12* 1 1 326 309 5 4 11 139 143 4 5 24 68 51 10 1 3 338 317 5 4 12 121 126 4 14 124 128 5 1 144 141 128 5 1 144 141 131 14 141 141 141 131 14	5	5	82	77	4	0	6	381	369	6	4	5	141	123	3
5 7 74 66 4 0 10 114 106 3 4 7 163 150 3 5 8 88 98 4 0 12 98 104 4 4 8 101 101 4 5 9 120 113 4 0 14 72 78 5 4 9 57 60 6 5 11 115 119 4 0 16 194 204 4 4 10 87 93 5 5 13 39 43 12* 1 1 326 309 5 4 11 139 143 4 5 25 35 14 12* 1 4 28 40 6* 4 13 105 106 5 6 3 109 111 4 1 5 121 131 2 4 144 141 3 6 1311	5	6	220	203	4	0	8	225	224	4	4	6	533	488	8
5 8 88 98 4 0 12 98 104 4 4 8 101 101 4 5 9 120 113 4 0 14 72 78 5 4 9 57 60 6 5 11 115 119 4 0 16 194 204 4 4 10 87 93 5 5 13 39 43 12* 1 1 326 309 5 4 11 139 143 4 5 24 68 51 10 1 3 338 317 5 4 12 121 126 4 5 35 14 12* 1 4 28 40 6* 4 13 105 106 5 6 3 109 111 4 1 5 121 131 22 4 14 144 141 3 13* 6	5	7	74	66	4	0	10	114	106	3	4	7	163	150	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	8	88	98	4	0	12	98	104	4	4	8	101	101	4
5 11 115 119 4 0 16 194 204 4 4 10 87 93 5 5 13 39 43 12* 1 1 326 309 5 4 11 139 143 4 5 24 68 51 10 1 3 338 317 5 4 12 121 126 4 5 25 35 14 12* 1 4 28 40 6* 4 13 105 106 5 6 4 131 132 3 1 6 104 110 3 4 25 40 53 13* 6 5 55 49 5 1 7 218 232 4 5 1 144 141 3 6 242 260 4 1 9 375 386 6 5 4 229 224 4 6 125	5	9	120	113	4	0	14	72	78	5	4	9	57	60	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	11	115	119	4	0	16	194	204	4	4	10	8/	93	5
5 24 68 51 10 1 3 338 317 5 4 12 121 126 4 5 25 35 14 $12*$ 1 4 28 40 $6*$ 4 13 105 106 5 6 3 109 111 4 1 5 121 131 2 4 14 124 128 5 6 4 131 132 3 1 6 104 110 3 4 25 40 53 $13*$ 6 5 55 49 5 1 7 218 232 4 5 1 144 141 3 6 6 242 230 4 1 8 167 174 3 5 3 250 261 4 6 8 242 260 4 1 9 375 386 6 5 4 229 224 4 6 9 91 92 4 1 10 164 163 3 5 5 190 166 3 6 10 125 119 4 1 11 67 76 5 6 182 157 3 6 11 124 118 4 1 15 226 215 45 7 140 119 3 6 12 59 52 7 <t< td=""><td>5</td><td>13</td><td>39</td><td>43</td><td>12*</td><td>1</td><td>Ţ</td><td>326</td><td>309</td><td>5</td><td>4</td><td>11</td><td>139</td><td>143</td><td>4</td></t<>	5	13	39	43	12*	1	Ţ	326	309	5	4	11	139	143	4
525351412*1428406*41510510656310911141512113124141241285641311323161041103425405313*65554951721823245114414136624223041816717435325026146824226041937538665422922446991924110164163355190166361012511941116776556182157361112411841152262154571401193612595271162012014587877561353649*117217218559215229472562581254535141231235 <t< td=""><td>2</td><td>24</td><td>58</td><td>11</td><td>10</td><td>1</td><td>3</td><td>338</td><td>317</td><td>2</td><td>4</td><td>12</td><td>121</td><td>126</td><td>4</td></t<>	2	24	58	11	10	1	3	338	317	2	4	12	121	126	4
6 3 109 111 4 1 5 121 131 2 4 14 124 128 5 6 4 131 132 3 1 6 104 110 3 4 25 40 53 13* 6 5 55 49 5 1 7 218 232 4 5 1 144 141 3 6 6 242 230 4 1 8 167 174 3 5 3 250 261 4 6 8 242 260 4 1 9 375 386 6 5 4 229 224 4 6 9 91 92 4 1 10 164 163 3 5 5 190 166 3 6 10 125 119 4 1 15 226 215 4 5 7 140 119 3 6 12	2	25	35	14	12*	Ţ	4	28	40	0*	4	17	105	106	5
6 4 131 132 3 1 6 104 110 3 4 25 40 53 13* 6 5 55 49 5 1 7 218 232 4 5 1 144 141 3 6 6 242 230 4 1 8 167 174 3 5 3 250 261 4 6 9 91 92 4 1 0 164 163 3 5 5 190 166 3 6 10 125 119 4 1 15 226 215 4 5 7 140 119 3 6 12 59 52 7 1 16 201 201 4 5 8 78 77 5 6 13 53 64 9* 1 17 217 218 5 5 9 215 229 4 7 <	0	3	109	111	4	Ţ	2	121	131	2	4	14	124	128	5
65554951721823245114414136624223041816717435325026146824226041937538665422922446991924110164163355190166361012511941116776556182157361112411841152262154571401193612595271162012014587877561353649*11721721855921522947256258125453514*5111121124736659621602532 \mathfrak{S} 514123123574636062243541675157469776475272339939865244139	6	4 c	131	132	ز ح	1	5 7	104	110	5	4	25	40	23	13*
66 242 230 418 167 174 355 250 261 468 242 260 419 375 386 654 229 224 46991924110 164 163 355190 166 36101251194111 67 76 556 182 157 36111241184115 226 215 457 140 119 3612595271 16 201 201 458 78 77 561353 64 9*1 17 217 218 59 215 229 472562581 25 45 35 $14*$ 511 112 112 4 736659621 602 532 5 14 123 123 5 746360622 435 416 7 5 15 74 69 7 7647 52 723 399 398 6 5 24 41 39 $17*$ 76657 </td <td>0</td> <td>5</td> <td>22</td> <td>49</td> <td>2</td> <td>1</td> <td>1</td> <td>218</td> <td>232</td> <td>4</td> <td>2</td> <td>2</td> <td>144</td> <td>141</td> <td>. 3</td>	0	5	22	49	2	1	1	218	232	4	2	2	144	141	. 3
68 242 260 419 375 386 654 229 224 4699192411016416335519016636101251194111677655618215736111241184115 226 215 4571401193612595271162012014587877561353649*1172172185921522947256258125453514*5111121124736659621602532 5 1412312357463606224354167515746977647527233993986524413917*7761625242212124624736778515372519719636379894	6	6	242	230	4	L 1	8	10/	1/4	3	2	3	250	261	. 4
6 9 91 92 4 1 10 184 165 5 5 5 190 186 3 6 10 125 119 4 1 11 67 76 5 5 6 182 157 3 6 11 124 118 4 1 15 226 215 4 5 7 140 119 3 6 12 59 52 7 1 16 201 201 4 5 8 77 5 6 13 53 64 9* 1 17 217 218 5 5 9 215 229 4 7 2 56 25 8 1 25 45 35 14* 5 11 112 112 4 7 3 66 59 6 2 1 602 532 9 14 123 123 5 7 6 47	6	ð	242	200	4	1	10	3/3	300	0	2	4	229	224	- 4 - 2
6 10 123 119 4 1 11 67 76 5 5 6 182 157 3 6 11 124 118 4 1 15 226 215 4 5 7 140 119 3 6 12 59 52 7 1 16 201 201 4 5 8 78 77 5 6 13 53 64 9* 1 17 217 218 5 5 9 215 229 4 7 2 56 25 8 1 25 45 35 14* 5 11 112 112 4 7 3 66 59 6 2 1 602 532 $9 5 14 123 123 5 7 4 63 60 6 2 2 435 416 7 5 15 74 69 7 7 <$	o c	10	91	92	4	1	10	104	103	5	2	2	100	157	2
6 11 124 118 4 1 13 226 213 4 5 7 140 119 3 6 12 59 52 7 1 16 201 201 4 5 8 78 77 5 6 13 53 64 9* 1 17 217 218 5 5 9 215 229 4 7 2 56 25 8 1 25 45 35 14* 5 11 112 112 4 7 3 66 59 6 2 1 602 532 5 14 123 123 5 7 4 63 60 6 2 2 435 416 7 5 15 74 69 7 7 6 47 52 7 2 3 399 398 6 5 24 41 39 17* 7 61	٥ ۲	10	125	110	4	1	15	226	215	5	ر ء	7	140	110	2
6 12 33 32 7 1 16 201 201 4 3 6 77 3 6 13 53 64 9* 1 17 217 218 5 5 9 215 229 4 7 2 56 25 8 1 25 45 35 14* 5 11 112 112 4 7 3 66 59 6 2 1 602 532 \mathcal{S} 5 14 123 123 5 7 4 63 60 6 2 2 435 416 7 5 15 74 69 7 7 6 47 52 7 2 3 399 398 6 5 24 41 39 17* 7 61 62 5 2 4 221 212 4 6 2 47 36 7 7 8 51	0 4	12	124	110	4 7	1	10	220	210	4	5	0	140	119	5
7 2 56 25 8 1 25 45 35 $14*$ 5 11 112 112 4123 123 229 44 7 2 56 25 8 1 25 45 35 $14*$ 5 11 112 112 4 7 3 66 59 6 2 1 602 532 5 14 123 123 57 7 63 60 6 2 2 435 416 7 5 15 74 69 7 7 6 47 52 7 2 3 399 398 6 5 24 41 39 $17*$ 7 61 62 5 2 4 221 212 4 6 2 47 36 7 7 8 51 53 7 2 5	6	13	53	56	0.4	1	17	201	201	4	2	0	215	220	
7 2 30 23 6 1 23 43 33 14* 3 11 112 112 4 7 3 66 59 6 2 1 602 532 \S 5 14 123 123 5 7 4 63 60 6 2 2 435 416 7 5 15 74 69 7 7 6 47 52 7 2 3 399 398 6 5 24 41 39 17* 7 61 62 5 2 4 221 212 4 6 2 47 36 7 7 8 51 53 7 2 5 197 196 3 6 3 79 89 4 7 10 48 46 8* 2 6 177 187 3 6 4 91 90 4 7 13 58	7	23	56	24	9	1	25	21/	210	 1./↓	5	11	110	112	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	2	66	50	6	2	25	602	530	С Те‡.,	5	14	123	122	5
7 6 47 52 7 2 3 399 398 6 5 24 41 39 17* 7 6 47 52 7 2 3 399 398 6 5 24 41 39 17* 7 61 62 5 2 4 221 212 4 6 2 47 36 7 7 61 62 5 2 4 221 212 4 6 2 47 36 7 7 8 51 53 7 2 5 197 196 3 6 3 79 89 4 7 10 48 46 8* 2 6 177 187 3 6 4 91 90 4 7 13 58 52 8 2 7 185 181 3 6 5 108 108 3 7 18 38 46	7	4	63	60	6	2	2	435	416	7	5	15	7/	123	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	4	63 147	50	7	2	2	200	305	6	2	24	/+ /,1	10	17+
7 8 51 53 7 2 5 197 196 3 6 3 79 89 4 7 10 48 46 8* 2 6 177 187 3 6 4 91 90 4 7 13 58 52 8 2 7 185 181 3 6 5 108 108 3 7 18 38 46 15* 2 8 348 353 6 6 115 116 3 7 19 42 40 13* 2 9 266 273 4 6 7 109 110 4	7	7	41 61	52	י ק	2	J /	399 301	- 370 - 210	л Л	2	24	ዓይ ለ7	25	1/" 7
7 10 48 46 8* 2 6 177 187 3 6 4 91 90 4 7 13 58 52 8 2 7 185 181 3 6 5 108 108 3 7 18 38 46 15* 2 8 348 353 6 6 115 116 3 7 19 42 40 13* 2 9 266 273 4 6 7 109 110 4	7	ģ	51	52	ר	2	4 5	107	104	4	2	2	41 70	20	
7 13 58 52 8 2 7 185 181 3 6 5 108 108 3 7 13 58 52 8 2 7 185 181 3 6 5 108 108 3 7 18 38 46 15* 2 8 348 353 6 6 115 116 3 7 19 42 40 13* 2 9 266 273 4 6 7 109 110 4	7	10	78	55	۶* ۱	2	2	177	187	2	ں ہ		01	02	4
7 18 38 46 15* 2 8 348 353 6 6 115 116 3 7 18 38 46 15* 2 8 348 353 6 6 115 116 3 7 19 42 40 13* 2 9 266 273 4 6 7 109 110 4	7	13	40 5 R	40 50	2 2	2	7	185	181	2	0 ۲	+ ~	109	109	, ,
7 19 42 40 13* 2 9 266 273 4 6 7 109 110 4	7	18	28	52 46	15*	2	י פ	348	223	6	0 ۲	ر ۲	115	114	2
	7	19	42	40	13×	2	9	266	273	4	6	7	109	110	4

ĉ

M1	0	0
----	---	---

10	F o	vs 10	F c	for t	orn	C ₁₃ H ₇₁	PS ₂						pa	ge 8
k	1	Fo	Fc	sigF	k	1	Fo	Fc s	sigF	k	1	Fo	Fc	sigF
6	8	87	93	4	1	14	171	162	4	5	14	51	52	10*
6	12	72	60	6	1	15	136	137	5	6	1	184	184	4
6	13	80	72	6	1	16	99	87	6	6	3	122	123	3
6	14	116	107	5	1	17	98	95	6	6	4	131	128	3
6	15	93	98	6	2	1	351	339	6	6	6	163	169	3
7	2	220	209	4	2	2	181	177	3	6	7	73	74	5
7	4	106	105	4	2	3	485	467	7	6	8	254	272	4
7	5	40	42	8*	2	4	248	244	4	6	9	90	97	5
7	6	50	60	6	2	5	643	636 1	10	6	10	227	219	4
7	7	49	43	7	2	6	87	78	3	6	11	88	75	5
7	8	46	46	8*	2	8	182	180	3	6	12	94	81	5
7	9	88	82	5	2	9	117	130	3	7	1	83	78	6
7	10	109	109	4	2	11	49	51	8	7	2	120	115	4
1	11	76	65	6	2	12	408	412	7		3	65	75	5
/	12	183	174	4	2	14	237	243	4	/	4	/8	90	4
4	13	6/	51	8	2	15	115	113	2		5	82	89	4
/	14	41 5/	57	12*	2	10	152	150	5	7	9 11	170	109	4
8	3	24	50	0 0.L	2	1	210	206	4	7	10	1/0	1/0	4
0	0 7	23	30	0× 7	נ י	2	202	390	0 د	7	12	26) () (ĉ
0		50	E0 20	7	2	5	200	275	5	0	1	04 01	70	0 4
9	4	52	20	/ /	2	4 5	200	275	ر د	0	L /.	02 50	50	6
9	10	44 61	53	6	2	2	250	250	7	2	4	72	70	0 7+
q	12	45	48	10*	3	7	238	230	4	8	14	82	85	7
ģ	13	38	51	12*	ž	8	111	101	3	g	2	96	93	6
ģ	18	26	37	12*	3	ğ	116	113	ŭ	9	4	73	77	5
10	8	63	81	5	3	10	142	149	4	9	5	57	68	6
	·	•••	•-	•	3	11	65	65	6	9	7	64	62	5
~ ~ ^ ^	^^^	h = -	7 ^^^	~ ~ ^ ^	3	14	50	61	10*	10	11	33	17	10*
			-		3	15	174	162	4	10	15	29	25	9*
0	1	218	227	4	3	23	69	49	10	11	2	47	36	11*
0	3	339	354	6	4	1	220	213	4	11	10	29	41	6*
0	5	111	104	3	4	2	217	240	4	12	3	3	10	1*
0	7	126	121	3	4	3	231	230	4					
0	9	377	368	6	4	4	185	176	3	~ ^ ^ ^	~ ~ ^	h = -6	5 ^^^	^ ^ ^ ^
0	11	556	559	9	4	5	48	37	5					
0	13	281	283	5	4	7	192	187	3	0	2	389	405	6
0	15	88	86	5	4	8	121	122	3	0	4	287	282	5
1	1	56	41	3	4	9	223	232	4	0	6	55	40	4
1	2	57	63	3	4	10	37	63	11*	0	8	140	135	3
1	3	186	187	3	4	13	58	53	8	0	10	297	293	5
1	4	143	150	3	5	3	118	118	3	0	12	146	146	3
1	5	43	53	3	5	4	111	113	3	0	14	100	111	4
1	6	346	357	6	5	5	123	111	3	0	16	101	101	5
1	7	533	565	8	5	٦	96	99	4	0	24	78	99	8
1	8	129	140	3	5	8	113	111	4	1	1	556	500	9
1	9	277	281	5	5	3	190	190	4	1	2	509	504	8
1	11	127	139	4	5	10	229	219	4	1	3	183	192	3
1	12	59	52	7	5	11	49	53	9*	1	4	302	322	5
1	13	123	115	4	5	12	163	167	4	1	5	488	504	8

M101

10	F 0	vs 10) F c	for	brn	C ₁₃ H ₁	1PS2						pa	ige 9
k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
1	6	506	541	8	4	9	179	172	4	10	17	6	8	2*
1	7	543	554	8	4	10	95	97	5	11	5	27	39	10*
1.	8	481	499	8	4	11	377	384	6					
1	9	144	148	3	4	12	95	101	6	^^^^	~~~	h = -5	5 ^ ^ ^ /	~~~~
1	10	180	195	4	4	13	217	219	4	0	-	144	15/	2
1	11	115	109	4	4	14	99 20	90 70	b c	0	1	144	104	3
1	12	103	101	4 5	יב ק	2	39	40	6	0	5	196	198	ר ג
1	14	65	77	8	5	4	199	188	3	Ő	7	82	60	3
1	15	129	123	5	5	5	188	174	3	ō	9	282	295	5
1	16	97	110	6	5	6	129	130	3	0	11	499	495	8
1	17	152	151	5	5	7	36	27	9*	0	13	438	444	7
1	24	55	69	12*	5	8	100	94	4	0	15	290	290	5
2	1	617	576	9	5	11	62	76	7	0	17	55	40	8
2	2	612	605	9	5	13	52	58	10*	1	1	386	373	6
2	3	634	615	10	5	14	51	32	10*	1	2	98	102	2
2	4	38	23	4	6	1	153	157	4	1,	3	107	106	2
2	5	85 212	95	2	6 6	2	104	100	3	1	4	144 00	143	2
2	0 7	335	290	5	6	د ۱	177	170	ר ג	1	5	00 700	90 733	2 11
2	8	163	167	3	6	5	221	224	4	1	7	574	574	9
2	3	181	181	3	6	6	112	101	3	1	8	345	337	6
2	10	377	388	6	6	7	188	199	4	1	10	87	85	4
2	11	199	202	4	6	9	167	178	4	1	11	56	72	7
2	12	235	236	4	6	11	172	149	4	1	12	261	258	4
2	13	100	100	5	6	12	83	78	7	1	13	79	87	6
2	15	183	190	4	6	14	77	65	7	1	14	295	283	5
2	16	86	101	7	6	15	40	44	14*	1	15	218	213	4
3	1	232	230	4	/	2	24/	260	4	i	16	2/5	266	5
5	2	267	283	4	/	4	165	1/4	ر د	2	T	388	3/4	6
ר ג	2	20	20	5 /.	7	2	69	02 69	5	2	2	202	202	2
ר ז	4 5	62	59	4	7	10	58	42	7	2	5	104	133	ב ד
3	6	158	159	3	7	14	58	67	ģ	2	5	293	298	5
3	7	270	259	5	. 8	1	114	109	5	2	6	458	464	7
3	8	296	290	5	8	4	44	62	7	2	7	335	347	6
3	9	297	310	5	8	7	40	38	9*	2	10	185	184	4
3	10	118	117	4	8	13	97	97	6	2	11	73	81	6
3	11	296	294	5	8	15	114	116	6	2	12	206	207	4
3	12	326	332	5	8	17	79	65	7	2	13	140	137	4
3	13	92	83	6	9	1	45	32	12*	2	14	121	121	5
3	14	162	164	4	9	3	63	66	5	2	16	51	58	11*
3	16	148	144	5	9	5	17	83	5	2	23	55	51	13*
4	2	252	289	4	9	8	66	63	б 1/-н	2	25	64	67	10
4)	52 252	4/ 126	4	9 0	9 10	29	19	14× 7	3 2	L L	28T 201	269) /
4	4 5	233 17	220	4	9	10	00 45	12	/ 11¥	2	2	221	243	4
4	6	198	194	3	9	14	4J 56	6/	- C - T ~	ר ר	כ /י	301	240 283	4 5
4	7	126	116	3	9	19	20	13	6*	3	5	367	371	6
4	8	327	322	5	10	12	38	12	9×	3	6	196	186	3

1 .

10	F o	vs 10	F c	for 1	brn	C ₁₃ H ₁	PS ₂						pag	,e 10
k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
3	7	400	399	7	8	2	71	79	4	2	11	94	99	5
3	9	131	137	4	8	4	114	127	3	2	13	57	63	9
3	10	121	125	4	8	6	138	131	4	2	14	128	134	5
3	11	100	101	5	8	8	76	86	6	2	15	77	89	7
3	12	103	113	5	8	12	48	29	10*	2	16	122	114	5
3	13	75	79	7	8	13	63	48	9	2	25	53	33	11*
3	14	151	146	4	8	14	39	5	14*	3	1	500	534	8
3	25	37	8	14*	8	15	50	57	12*	3	2	132	130	2
4	1	367	386	6	8	21	19	17	7*	3	3	545	538	8
4	2	53	58	4	9	2	81	90	4	3	4	448	442	7
4	3	170	163	3	9	4	63	71	5	3	5	301	282	5
4	4	82	74	3	9	8	50	55	8	3	6	243	241	4
4	5	49	51	5	9	10	40	35	11*	3	7	90	77	4
4	6	197	201	4	9	19	15	25	6*	3	8	250	252	4
4	7	58	47	6	10	9	51	57	8	3	9	130	129	4
4	8	217	212	4	10	17	4	22	2*	3	10	217	221	4
4	9	139	137	4						3	11	211	217	4
4	10	226	226	4	~~~~		h = -4	+ ^^^	~~~~	3	12	140	141	4
4	12	246	240	4		_				3	14	332	342	6
4	13	88	99	6	0	2	567	586	9	3	23	48	29	15×
4	14	98	104	6	0	4	772	754	12	4	1	237	272	4
5	1	246	258	4	0	6	524	528	8	4	2	85	88	2
5	2	/5	90	3	0	10	/39	/31	11	4	3		108	3
5	4	39	36	6	0	10	463	4/4	/	4	4	314	325	5
5	6	283	281	5	0	12	282	589	9	4	5	8/	86	4
5	/	23	50	/	1	14	299	29/	5	4	6 0	315	307	5
2	8	29/	297	с ,	1 1	2 T	272	100	2	4	0	210	214	4
5	10	105	109	4	1	2	247	201	4 7	4	9 10	00	0/	ר ב
5	11	100	102	4	1	د ۱	440	403	10	4	11	90 07	104	2
5	10	105	105	4	1	4	547	570	. TO	4	10	0/	0/	ט 7
2	1	101	100	4	1	ر ۲	109	110	2	4	12	212	220	/ 5
0 2	2 1	191	199	ン 2	1	7	100	110	ני ד	4	1/	213	230	2
6	2 /	6/	1.54	5	1	2 2	477 234	977		4 5	1	80	20 21	2
6	7	56	70	7	1	q	185	185	. . .	5	2	139	542	વ
6	8	68	64	6	1	10	142	144	3	5	3	71	65	3
6	14	82	73	7	1	11	154	156	4	5	ŭ	73	78	4
6	24	22	, 3	, 6*	ĩ	12	212	215	4	5	5	104	103	4
7	1	130	133	4	1	16	84	76	7	5	6	165	168	4
7	2	63	79	4	1	17	44	43	13*	5	7	237	243	4
7	3	253	259	4	1	24	70	63	9	5	9	296	302	5
7	4	61	63	5	2	1	292	287	5	5	11	266	268	5
7	5	100	124	4	2	2	747	712	11	5	13	225	207	5
7	6	31	35	11*	2	3	511	470	8 (5	14	110	104	6
7	7	34	37	11*	2	4	512	519	8	6	2	125	130	3
7	9	149	140	4	2	5	89	96	3	6	3	130	128	3
7	10	47	48	9*	2	6	239	241	. 4	6	4	187	205	3
7	12	72	68	7	2	7	430	413	7	6	5	196	199	4
7	13	110	108	5	2	8	197	186	5 4	6	6	84	66	5
7	14	114	98	6	2	10	208	209) 4	6	7	144	149	4

.

.

ł

:

}

10|F|o vs 10|F|c for brn $C_{13}H_{11}PS_2$

Dage	-11
r~6°	**

k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF	' k	1	Fo	Fc	sigF
6	8	67	72	6	1	4	929	942	14	5	1	270	285	5
6	9	70	59	6	1	5	60	62	3	5	2	76	69	3
6	10	59	59	8	1	6	387	403	6	5	3	178	177	3
6	11	36	5	12*	1	7	88	96	3	5	7	115	118	4
6	12	79	67	7	1	8	424	437	7	5	9	87	92	5
ĥ	14	81	71	7	1	9	238	237	4	5	11	92	92	6
ĥ	23	40	57	, 12*	1	10	80	71	5	5	13	137	129	5
7	1	86	27	12	1	11	313	315	5	6	ĩ	121	122	3
, 7	2	107	118	- - 2	1	12	148	1/0	1	6	2	137	125	3
7	2	80	80	5	1	12	291	27/	5	6	2	56	57	5
7	5	65	21 21	5	1	14	201	214	1	6	5	70	20	5
7	4 5	10/	121		1	15	141	100	4	ć	4 E	13	03 67	ر ۲۰۵
7	ר. ר	124	71	4	L 1	10	141	201	4 5	ć	s c	44		104
7		/0	/1) 104	1 L	10	211	201	2	0	0 7	41	04	10*
/	10	42	40	10*	2	T	/9	10	2	0	/	197	212	4
/	10	99	88	5	2	2	433	421	/	6	8	89	90	2
/	11	4/	32	10*	2	3	155	156	3	6	13	64	58	8
/	13	/2	/0	8	2	4	6/5	685	10	6	15	57	62	10*
7	17	6/	45	9	2	5	232	218	4	7	1	203	209	3
7	22	32	34	9*	2	6	43	47	5	7	2	100	107	3
8	4	59	59	6	2	8	145	151	3	7	3	146	173	3
8	5	146	148	4	2	9	242	247	4	7	4	127	139	4
8	6	65	56	6	2	10	272	280	5	7	5	100	115	4
8	7	197	185	4	2	11	93	97	5	7	6	113	120	4
8	8	42	28	10*	2	12	110	110	5	7	8	83	70	5
8	9	101	89	5	2	13	98	107	6	7	9	122	106	4
8	11	99	93	5	2	15	52	11	11*	7	10	42	53	11*
8	13	59	69	10	2	16	78	80	8	7	11	149	145	4
8	15	62	64	10	3	1	213	211	4	7	17	91	81	8
9	1	76	89	5	3	2	30	29	4	7	19	51	54	13*
9	3	89	103	4	3	3	595	608	9	8	1	55	66	5
9	5	85	85	5	3	4	204	181	3	8	2	117	136	3
9	10	66	64	7	3	5	121	122	3	8	3	42	46	8*
9	12	54	50	9*	3	6	79	64	4	8	4	128	130	4
9	16	47	23	14*	3	7	216	216	4	8	5	81	81	5
11	9	34	15	8*	3	8	207	207	4	8	6	117	113	4
11	13	7	16	2*	3	9	291	301	5	8	7	102	94	5
					3	10	79	75	5	8	15	52	54	12*
^ ^ ^ ^	^ ^ ^	h == -	3 ^^^′	~~~~	3	12	127	128	4	9	4	31	39	11*
					3	15	138	148	5	9	11	68	70	8
0	1	76	76	2	4	1	24	35	7*	10	9	34	21	11*
0	3	1339	1359	21	4	2	167	163	3					
0	5	61	50	3	4	5	323	310	5	****	~~^	h = -	2 ^^^	~ ^ ^ ^
0	7	119	126	2	4	6	181	183	3					
0	9	119	116	3	4	7	281	286	5	0	2	457	458	7
0	11	84	78	4	4	8	465	461	8	0	4	951	979	14
0	13	67	71	6	4	9	106	112	4	Ō	6	393	396	6
0	17	48	24	9*	4	10	341	336	6	Ō	8	1079	1081	16
1	1	167	160	3	4	12	206	220	4	Ō	10	681	677	11
1	2	311	317	5	4	13	136	139	5	Ō	12	286	284	5
1	3	651	688	10	4	14	172	179	5	0	14	217	213	4
										-				-

and the second second to a second

The second second

•

vs l	0 F c	for l	orn	C ₁₃ H ₁₁	PS ₂						pa	ge 12
Fo	Fc	sigF	k	1	Fo	Fc	sigF	k	1	Fo	Fc	sigF
602	545	9	4	8	115	106	4					
220	223	4	4	9	167	175	4	0	3	588	586	9
386	397	6	4	11	71	77	7	0	5	461	483	7
371	378	6	4	14	50	61	12*	0	7	50	5 8	4
295	313	5	5	1	430	407	7	0	9	510	492	8
114	114	3	5	2	161	163	3	0	11	231	227	4
256	270	4	5	3	206	196	4	0	13	165	157	4
131	137	3	5	4	133	12/	3	0	15	105	105	5
335	335	6	5	2	. 138	141	4	0	23	/0	11	8
231	229	4	2	5	154	122	4	1	T	814	/62	12
C0 C10	25	5) 5	0	120	151	4	1	2	138	131	2
243	233	4	2	0	262	21.6	5	1	5 /	713	700	11
107	115	4	5	10	245	240	4	1	4 5	/40 67	/0/ 01	11
216	210	5	ר ר	11	170	179	ر ۲	1	5	434	02 767	4 7
675	654	10	5	12	99	95	4	1	7	434	407	,
5/19	513	8	5	13	134	125	5	1	, 8	385	404	4
81	91	3	5	14	135	124	5	ī	11	252	249	4
165	172	3	6	2	68	60	4	1	12	146	147	4
233	245	4	6	3	71	74	5	ĩ	14	160	164	4 4
215	217	4	6	4	238	249	4	1	15	60	68	9
136	136	4	6	5	116	117	4	1	16	114	117	6
197	208	4	6	6	106	113	4	2	2	495	460	8
84	79	6	6	8	106	113	4	2	4	144	137	3
339	348	6	6	9	87	92	5	2	5	252	24 8	4
119	119	5	6	11	173	161	4	2	6	207	221	4
45	21	13*	6	13	139	128	5	2	7	79	78	4
153	167	5	6	15	161	153	5	2	8	197	219	4
39	42	16*	7	6	102	89	4	2	9	259	266	4
503	478	8	7	8	123	114	. 4	2	10	386	393	6
307	311	5	7	9	57	44	. 8	2	11	198	201	4
250	245	4	7	15	65	67	10	2	12	325	331	5
655	619	10	7	17	59	43	11*	2	13	200	206	4
182	168	3	8	1	33	43	8*	2	14	52	63	11*
775	754	12	8	3	153	160) 4	2	15	142	140	5
64	65	5	8	4	46	44	. 7	3	1	309	291	5
413	411		8	5	199	208	4	3	2	94	77	3
170	176	4	8	6	42	44	9*	3	3	131	115	3
18/	195	4	8	/	132	138	4	3	4	60	44	4
T 7 7 7	201	4	8	8	44	35	10*	3	5	1/1	157	3
/0	86	1	8	9	121	113	4	3	6	225	214	. 4
57	63	9	- 8	13	56	55	10*	- 3	- 7	222	220	4

8 15

h = -1

3 13

3 11

3 12

66 11*

9*

52 16*

88 4

43 6

47 10*

29 10*

8 1*

M104

10|F|o

k

1 10

1 11

1 13

1 14

2 3

2 15

2 16

2 24

3 10

3 11

3 12

3 13

177 5

76 8

270 5

$10|F|o vs 10|F|c for brn C_{13}H_{11}PS_2$

10,113

1.5 € +14¹20

1.

1

あるちちちちちも

ちょう なちょう かんちょう ひとうない ひとう ちょうちょう しょうしょう

~~~)

ŧ

そう ちまん ひらう あんちょうか い

ولاقه بوالتدامانين

| k | 1  | Fo  | Fc  | sigF | k    | 1     | Fo   | Fc    | sigF    | k | 1  | Fo  | Fc  | sigF |
|---|----|-----|-----|------|------|-------|------|-------|---------|---|----|-----|-----|------|
| 4 | 2  | 558 | 523 | 9    | 9    | 18    | 18   | 16    | 5*      | 4 | 1  | 95  | 94  | 4    |
| 4 | 3  | 432 | 394 | 7    |      |       |      |       |         | 4 | 2  | 67  | 53  | 5    |
| 4 | 4  | 97  | 107 | 4    | ^^^^ | ~ ^ ^ | h =  | 0 ^^^ | ~ ~ ~ ^ | 4 | 3  | 50  | 48  | 7    |
| 4 | 5  | 412 | 376 | 7    |      |       |      |       |         | 4 | 4  | 133 | 125 | 4    |
| 4 | 7  | 245 | 237 | 4    | 0    | 2     | 973  | 950   | 15      | 4 | 5  | 181 | 178 | 4    |
| 4 | 10 | 174 | 190 | 4    | 0    | 4     | 148  | 154   | 3       | 4 | 6  | 239 | 236 | 4    |
| 4 | 12 | 138 | 149 | 5    | 0    | 6     | 129  | 124   | 3       | 4 | 7  | 231 | 238 | 4    |
| 4 | 13 | 160 | 178 | 5    | 0    | 10    | 434  | 420   | 7       | 4 | 8  | 155 | 157 | 4    |
| 4 | 14 | 39  | 43  | 15*  | 0    | 12    | 113  | 113   | 4       | 4 | 9  | 106 | 126 | 5    |
| 4 | 23 | 56  | 66  | 11*  | 0    | 14    | 69   | 78    | 6       | 4 | 11 | 117 | 110 | 5    |
| 5 | 1  | 60  | 63  | 5    | 0    | 16    | 53   | 56    | 9       | 4 | 13 | 83  | 77  | 7    |
| 5 | 3  | 92  | 86  | 4    | 1    | 1     | 1061 | 1034  | 16      | 4 | 23 | 41  | 39  | 13*  |
| 5 | 8  | 99  | 97  | 5    | 1    | 2     | 437  | 447   | 7       | 5 | 1  | 463 | 459 | 8    |
| 5 | 9  | 134 | 136 | 4    | 1    | 3     | 40   | 13    | 5       | 5 | 2  | 223 | 211 | 4    |
| 5 | 10 | 141 | 140 | 4    | 1    | 4     | 70   | 78    | 4       | 5 | 3  | 442 | 417 | 7    |
| 5 | 11 | 143 | 148 | 4    | 1    | 6     | 110  | 124   | 3       | 5 | 4  | 178 | 176 | 4    |
| 5 | 12 | 102 | 102 | 6    | 1    | 7     | 117  | 126   | 3       | 5 | 5  | 164 | 157 | 4    |
| 5 | 14 | 118 | 101 | 6    | 1    | 8     | 105  | 94    | 4       | 5 | 6  | 204 | 206 | 4    |
| 6 | 1  | 63  | 69  | 5    | 1    | 9     | 74   | 65    | 5       | 5 | 7  | 103 | 115 | 4    |
| 6 | 2  | 100 | 104 | 4    | 1    | 10    | 276  | 278   | 5       | 5 | 8  | 125 | 129 | 4    |
| 6 | 5  | 147 | 152 | 4    | 1    | 11    | 145  | 133   | 4       | 5 | 9  | 90  | 103 | 5    |
| 6 | 7  | 55  | 54  | 7    | 1    | 12    | 191  | 190   | 4       | 5 | 12 | 118 | 109 | 5    |
| 6 | 8  | 71  | 80  | 6    | 1    | 13    | 136  | 137   | 5       | 5 | 13 | 50  | 66  | 12*  |
| 6 | 9  | 48  | 47  | 9*   | 1    | 14    | 82   | 60    | 7       | 5 | 14 | 64  | 65  | 10   |
| 6 | 10 | 94  | 87  | 6    | 1    | 15    | 88   | 91    | 7       | 6 | 1  | 132 | 153 | 3    |
| 6 | 11 | 75  | 67  | 7    | 2    | 1     | 161  | 135   | 3       | 6 | 2  | 62  | 64  | 5    |
| 7 | 1  | 189 | 212 | 3    | 2    | 2     | 221  | 208   | 4       | 6 | 3  | 271 | 270 | 4    |
| 7 | 2  | 117 | 136 | 3    | 2    | 3     | 258  | 258   | 4       | 6 | 4  | 214 | 219 | 4    |
| 7 | 3  | 119 | 141 | 4    | 2    | 4     | 93   | 87    | 3       | 6 | 5  | 185 | 191 | 4    |
| 7 | 4  | 116 | 123 | 3    | 2    | 5     | 236  | 239   | 4       | 6 | 7  | 101 | 97  | 5    |
| 7 | 6  | 165 | 186 | 4    | 2    | 6     | 388  | 418   | 6       | 6 | 11 | 140 | 129 | 5    |
| 7 | 7  | 207 | 182 | 4    | 2    | 7     | 91   | 107   | 4       | 6 | 13 | 180 | 169 | 5    |
| 7 | 8  | 156 | 138 | 4    | 2    | 8     | 501  | 538   | 8       | 6 | 15 | 136 | 127 | 6    |
| 7 | 9  | 195 | 177 | 4    | 2    | 9     | 147  | 158   | 4       | 7 | 1  | 51  | 68  | 6    |
| 7 | 10 | 93  | 85  | 6    | 2    | 10    | 392  | 399   | 7       | 7 | 5  | 54  | 62  | 7    |
| 7 | 11 | 80  | 78  | 7    | 2    | 12    | 291  | 297   | 5       | 7 | 6  | 47  | 27  | 8*   |
| 7 | 17 | 44  | 60  | 16*  | 2    | 13    | 117  | 118   | 5       | 7 | 7  | 161 | 149 | 4    |
| 7 | 18 | 50  | 5   | 13*  | 2    | 14    | 218  | 219   | 5       | 7 | 9  | 106 | 101 | 5    |
| 8 | 1  | 68  | 70  | 4    | 3    | 1     | 89   | 92    | 3       | 7 | 10 | 53  | 33  | 10*  |
| 8 | 3  | 99  | 100 | 3    | 3    | 2     | 237  | 221   | 4       | 7 | 11 | 102 | 96  | 6    |
| 8 | 5  | 126 | 125 | 4    | 3    | 3     | 238  | 193   | 4       | 7 | 13 | 62  | 53  | 10   |
| 8 | 7  | 122 | 117 | 4    | 3    | 4     | 556  | 510   | 9       | 7 | 14 | 39  | 48  | 16*  |
| 8 | 9  | 89  | 83  | 6    | 3    | 5     | 218  | 225   | 4       | 8 | 3  | 115 | 130 | 3    |
| 8 | 10 | 65  | 55  | 8    | 3    | 6     | 512  | 536   | 8       | 8 | 4  | 66  | 62  | 5    |
| 8 | 12 | 59  | 51  | 10×  | 3    | 7     | 162  | 169   | 4       | 8 | 5  | 120 | 130 | 4    |
| 9 | 1  | 96  | 126 | 3    | 3    | 8     | 117  | 123   | 4       | 8 | 7  | 124 | 113 | 4    |
| 9 | 3  | 43  | 63  | 6    | 3    | 9     | 439  | 466   | 7       | 8 | 9  | 54  | 39  | 9*   |
| 9 | 7  | 75  | 79  | 5    | 3    | 11    | 189  | 196   | 4       | 8 | 10 | 58  | 69  | 9    |
| 9 | 9  | 59  | 60  | 8    | 3    | 13    | 251  | 255   | 5       | 8 | 11 | 46  | 35  | 12*  |
| 9 | 13 | 40  | 2   | 14*  | 3    | 14    | 76   | 92    | 8       | 8 | 13 | 84  | 80  | 8    |

page 13

| 10      | Fo       | vs 1     | 0 F c    | for     | brn      | C <sub>13</sub> H <sub>1</sub> | 1PS2     |     |               |        |        |           | pa     | ge 14            |
|---------|----------|----------|----------|---------|----------|--------------------------------|----------|-----|---------------|--------|--------|-----------|--------|------------------|
| k       | 1        | Fo       | Fc       | sigF    | k        | 1                              | Fo       | Fc  | sigF          | k      | 1      | Fo        | Fc     | sigF             |
| 8       | 15       | 70       | 43       | 9       | 3        | 5                              | 359      | 371 | 6             | 8      | 2      | 47        | 51     | 8*               |
| 9       | 2        | 24       | 14       | 9*      | 3        | 6                              | 51       | 59  | 7             | 8      | 4      | 54        | 57     | 7                |
| ģ       | 3        | 37       | 39       | 7*      | 3        | 7                              | 160      | 171 | 4             | 8      | 6      | 99        | 92     | 5                |
| ó       | 7        | 02       | 04       | 5       | 2        | ģ                              | 166      | 170 | 4             | Q      | 7      | 00        | 9/     | 5                |
| 2       | <i>'</i> | 50       | 50       | 0       | ר<br>כ   | 11                             | 100      | 101 | 4             | 0      | 0      | 00<br>60  | 74     | 0                |
| 9       | y<br>11  | 20       | 60       | 0       | 2        | 11                             | CO<br>01 | 101 | 0             | 0      | 0      | 103       | 10     | 0                |
| 9       | 11       | 12       | 65       | 8       | 3        | 13                             | 81       | 65  | 8             | 9      | 1      | 127       | 127    | 4                |
| 9       | 16       | 32       | 15       | 15*     | 3        | 14                             | 94       | 83  | /             | 9      | 3      | 61        | 87     | 6                |
| 10      | 0        | 59       | 93       | 3       | 4        | 1                              | 187      | 180 | 4             | 9      | 10     | 58        | 44     | 9                |
| 10      | 2        | 42       | 69       | 4       | 4        | 2                              | 572      | 509 | 9             | 10     | 1      | 77        | 82     | 5                |
|         |          |          |          |         | 4        | 3                              | 204      | 188 | 4             |        |        |           |        |                  |
| ~ ^ ^ ^ | ^^^ 1    | h =      | 1 ^^^^   | ~ ^ ^ ^ | 4        | 4                              | 214      | 196 | 4             | ****   | ~ ^ ^  | h =       | 2 ^^^^ | ~ ~ ^ ^          |
|         |          |          |          |         | - 4      | 5                              | 247      | 241 | 4             |        |        |           |        |                  |
| 0       | 3        | 1121     | 1124     | 17      | 4        | 8                              | 141      | 141 | 4             | 0      | 2      | 1743      | 1760   | 27               |
| 0       | 5        | 153      | 142      | 3       | 4        | 11                             | 167      | 170 | 4             | 0      | 4      | 433       | 432    | 7                |
| Õ       | 7        | 128      | 122      | 3       | 4        | 12                             | 71       | 83  | 8             | 0      | 6      | 134       | 142    | 3                |
| ñ       | 11       | 125      | 121      | 3       | 4        | 13                             | 98       | 110 | 6             | Õ      | 8      | 414       | 413    | 7                |
| ň       | 12       | 146      | 145      | 4       | 4        | 14                             | 79       | 81  | Ř             | Ő      | 10     | 152       | 152    | ,<br>2           |
| ñ       | 23       | 50       | 73       | ā       |          | 20                             | 50       | 76  | 16*           | 1      | 1      | 780       | 788    | 10               |
| 0       | 20       | 02       | /J<br>53 | 5       | 4<br>5   | 20                             | 1/0      | 1/1 | 104           | 1      | -<br>- | 1260      | 1272   | 12               |
| U<br>1  | 25       | 23       | 22       | 9×      | ر<br>-   | 1                              | 140      | 100 | 4             | 1      | 2      | 1203      | 13/3   | 21               |
| 1       | Ţ        | 3/5      | 370      | 0       | 2        | 2                              | 224      | 190 | 4             | 1      | د      | 544       | 200    | 9                |
| 1       | 2        | 383      | 404      | 6       | 5        | 3                              | 94       | 81  | 5             | 1      | 4      | 605       | 630    | 9                |
| 1       | 3        | 200      | 198      | 3       | 5        | 4                              | 354      | 347 | 6             | 1      | 5      | 481       | 495    | 8                |
| 1       | 4        | 456      | 484      | 7       | 5        | 5                              | 51       | 50  | 8             | 1      | 6      | 213       | 216    | 4                |
| 1       | 5        | 192      | 205      | 3       | 5        | 6                              | 179      | 177 | 4             | 1      | 7      | 63        | 76     | 6                |
| 1       | 6        | 482      | 507      | 8       | 5        | 7                              | 122      | 121 | 4             | 1      | 8      | 196       | 194    | 4                |
| 1       | 7        | 260      | 283      | 4       | 5        | 11                             | 83       | 96  | 7             | 1      | 10     | 113       | 112    | 5                |
| 1       | 9        | 40       | 63       | 10*     | 5        | 12                             | 81       | 69  | 7             | 1      | 11     | 163       | 165    | 4                |
| 1       | 10       | 143      | 136      | 4       | 5        | 13                             | 97       | 91  | 7             | 1      | 12     | 102       | 89     | 5                |
| 1       | 11       | 253      | 247      | 4       | 6        | 1                              | 183      | 193 | 4             | 1      | 13     | 172       | 179    | 5                |
| 1       | 12       | 249      | 240      | 5       | 6        | 2                              | 114      | 115 | 4             | 1      | 14     | 59        | 29     | 9                |
| î       | 13       | 324      | 305      | 5       | 6        | 3                              | 111      | 107 | · /           | 1      | 23     | 46        | 59     | 11*              |
| 1       | 16       | 224      | 202      | 5       | 2        |                                | 111      | 10/ | 4             | 2      | 2.5    | 1/7       | 150    | 2                |
| 1       | 14       | 237      | 200      | ך<br>ב  | 0        | 4                              | 111      | 104 | · 4           | 2      | 1<br>1 | 147       | 100    | ר<br>ר           |
| 1       | 12       | 141      | 122      | 2       | 0        | 0                              | 70       | 00  |               | 2      | 3      | 0/        | 89     | 2                |
| 2       | 1        | 285      | 282      | 5       | 6        | 9                              | 58       | 51  | . 9           | 2      | 4      | 210       | 203    | 4                |
| 2       | 2        | 345      | 308      | 6       | 6        | 10                             | 141      | 124 | 5             | 2      | 5      | 126       | 103    | 3                |
| 2       | 3        | 328      | 322      | 5       | 6        | 11                             | 88       | 81  | . 7           | 2      | 6      | 174       | 189    | 4                |
| 2       | 4        | 125      | 114      | 3       | 6        | 12                             | 202      | 185 | 5             | 2      | 7      | 139       | 156    | 4                |
| 2       | 5        | 360      | 366      | 6       | 6        | 13                             | 50       | 51  | . 12*         | 2      | 8      | 205       | 216    | 4                |
| 2       | 6        | 411      | 434      | 7       | 6        | 17                             | 46       | 1   | . 15*         | 2      | 9      | 324       | 338    | 5                |
| 2       | 7        | 85       | 99       | 5       | 6        | 19                             | 80       | 68  | 9             | 2      | 10     | 434       | 446    | 8                |
| 2       | 8        | 489      | 514      | 8       | 7        | 0                              | 77       | 77  | 9             | 2      | 11     | 121       | 119    | 5                |
| 2       | 9        | 124      | 125      | 4       | 7        | ' 1                            | 106      | 124 | F 2           | 2      | 12     | 214       | 208    | 5                |
| 2       | 10       | 335      | 346      | 6       | 7        | 2                              | 56       | 70  | 8             | 2      | 14     | 153       | 166    | 5                |
| 2       | 11       | 135      | 138      | 5       | .7       | <u> </u>                       | 75       | 83  | 5             | 3      | 1      | 187       | 192    | 4                |
| · 2     | 12       | 210      | 211      | Å       | 7        | , T                            | 63       | 69  | 7             | 2      | 2      | 155       | 151    | 4                |
| 2       | 17       | 70       | 211      | 10≠     | י<br>ר י |                                | 35       | 1.2 | 1 1 24        | 2      | 2      | 222       | 23     | 6                |
| 2       | 15       | 47<br>05 | 00       | LZ^     | 7        | ט ד                            | 1/0      | 43  | ) <u>14</u> 4 | 2      | נ<br>ג |           | 00     | 0-               |
| 2       | 10       | 170      | 1/0      | 0       |          | /<br>/                         | 142      | 112 | 7 4<br>\ 0    | נ<br>ר | 4      | 40        | 70     | - 7 <sup>*</sup> |
| 5       | Z        | 1/0      | 149      | ڙ<br>-  | /        | 8                              | 59       | 40  | <i>i</i> 10   | 5      | 5      | 50<br>200 | 90     |                  |
| 3       | 3        | 354      | 323      | 6       | 7        | 9                              | 190      | 178 | 5 5           | 3      | 7      | 208       | 225    | 4                |
| 3       | - 4      | 347      | 338      | 6       | 7        | ' 11                           | 164      | 152 | ! 5           | 3      | 8      | 73        | 84     | 7                |

۱

•

| М    | 107 |
|------|-----|
| page | 15  |

## 10|F|o vs 10|F|c for brn C<sub>13</sub>H<sub>11</sub>PS<sub>2</sub>

くたん しん

きょうちょう

ź

allant and a

| k      | 1        | Fo  | Fc       | sigF      | k      | 1       | Fo           | Fc        | sigF      | k      | 1      | Fo  | Fc       | sigF     |
|--------|----------|-----|----------|-----------|--------|---------|--------------|-----------|-----------|--------|--------|-----|----------|----------|
| 3      | 9        | 239 | 241      | 4         | 9      | 6       | 32           | 16        | 14*       | 4      | 3      | 71  | 82       | 7        |
| 3      | 10       | 112 | 140      | 5         | 9      | 7       | 43           | 48        | 11*       | 4      | 4      | 122 | 109      | 4        |
| 3      | 11       | 269 | 273      | 5         | 11     | 4       | 32           | 47        | 11*       | 4      | 5      | 240 | 237      | 4        |
| 3      | 12       | 292 | 308      | 5         | 11     | 7       | 30           | 27        | 11*       | 4      | 6      | 260 | 278      | 5        |
| 3      | 13       | 120 | 114      | 6         |        |         |              |           |           | 4      | 8      | 160 | 175      | 4        |
| 3      | 14       | 209 | 194      | 5         | ****   | ^^^ }   | n <b>–</b> 3 | 3 * ^ ^ / | ~~~       | 4      | 9      | 144 | 153      | 5        |
| 4      | 1        | 304 | 334      | 5         |        |         |              |           |           | 4      | 10     | 106 | 113      | 6        |
| 4      | 2        | 78  | 88       | 6         | 0      | 1       | 164          | 174       | 3         | 4      | 11     | 175 | 195      | 5        |
| 4      | 3        | 262 | 248      | 5         | 0      | 3       | 405          | 416       | 6         | 4      | 20     | 52  | 44       | 14*      |
| 4      | 4        | 156 | 144      | 4         | Õ      | 5       | 460          | 432       | 7         | 5      | 2      | 480 | 462      | 8        |
| 4      | 5        | 214 | 211      | 4         | 0      | 7       | 126          | 125       | 3         | 5      | 3      | 181 | 182      | 4        |
| 4      | 7        | 86  | 81       | 5         | Ō      | 9       | 90           | 91        | 4         | 5      | 4      | 237 | 239      | 4        |
| 4      | 8        | 161 | 165      | 4         | Ő      | 11      | 95           | 93        | 4         | 5      | 6      | 66  | 69       | 8        |
| 4      | 9        | 146 | 169      | 4         | Ő      | 13      | 155          | 146       | 4         | 5      | 7      | 85  | 87       | 6        |
| 4      | 19       | 62  | 48       | 12*       | 1      | 1       | 352          | 346       | 6         | 5      | 8      | 64  | 56       | 8        |
| 5      | 1        | 428 | 430      | 7         | 1      | 2       | 969          | 950       | 15        | 5      | 9      | 154 | 163      | 4        |
| 5      | 2        | 122 | 110      | 5         | 1      | 3       | 233          | 240       | 4         | 5      | 11     | 35  | 8        | 16*      |
| 5      | 4        | 236 | 224      | ŭ         | 1      | ŭ       | 118          | 122       | 3         | 5      | 12     | 81  | 81       | 8        |
| Ś      | 5        | 102 | 102      | 5         | 1      | 5       | 757          | 751       | 12        | 5      | 13     | 49  | 42       | 13*      |
| 5      | 6        | 177 | 141      | Ĩ.        | 1      | 6       | 154          | 149       | 3         | ۔<br>ج | 14     | 103 | 94       | 7        |
| 5      | 7        | 118 | 132      | 5         | 1      | 7       | 85           | 86        | 5         | 5      | 18     | 54  | 24<br>77 | ,<br>1/* |
| 5      | 8        | 182 | 192      | 4         | 1      | 10      | 212          | 208       | 4         | 6      | 2      | 156 | 141      | 5        |
| Ś      | 13       | 102 | 71       | 8         | ī      | 12      | 222          | 219       | 5         | 6      | 2      | 217 | 211      | 5        |
| 5      | 14       | 44  | 55       | 15*       | 1      | 13      | 170          | 170       | 5         | 6      | 4      | 144 | 140      | 5        |
| 6      | 1        | 170 | 171      | 5         | 1      | 14      | 232          | 224       | 5         | 6      | 6      | 102 | 105      | 6        |
| 6      | <b>२</b> | 414 | 300      | 7         | 2      | 1       | 496          | 476       | 8         | 6      | 7      | 69  | 203      | 8        |
| 6      | 4        | 50  | 53       | 10*       | 2      | 2       | 174          | 186       | ă         | 6      | 8      | 42  | 35       | 12*      |
| 6      | 5        | 361 | 369      | 6         | 2      | 2       | 430          | 419       | 7         | 6      | å      | 128 | 116      | 5        |
| 6      | 6        | 177 | 186      | 4         | 2      | 5       | 457          | 35        | 7         | 6      | 10     | 66  | 62       | 0        |
| 6      | 7        | 22/ | 200      | 4         | 2      | -7<br>5 | 222          | 346       | 6         | 6      | 11     | 151 | 121      | 5        |
| 6      | 2<br>2   | 70  | 220      | 4         | 2      | 2       | 01           | 106       | 5         | 6      | 10     | 01  | 101      | 7        |
| 6      | 10       | 50  | 45       | 114       | 2      | 7       | 250          | 260       |           | 6      | 12     | 02  | 96       | 0        |
| 7      | 10       | 71  | 4.5      | 0         | 2      | ,<br>0  | 235          | 200       | 4<br>/    | 2      | 10     | 51  | 00       | 0<br>154 |
| י<br>ר | 2        | 11  | 22       | 0<br>7    | 2      | 0       | 200          | 241       | 4         | 0<br>7 | 19     | 21  | 22       | 10%      |
| 7      | 4        | 152 | 125      | 1         | 2      | 10      | 292          | 106       | ر<br>۲    | 7      | 1      | 44  | 22       | T0×      |
| 7      | 0        | 172 | 22<br>22 | 4         | 2      | 17      | 100          | 100       | 0<br>15-1 | 7      | 2<br>1 | 100 | 204      | 5        |
| 7      | 0        | 45  | 27       | 12*       | 2      | 14      | 41<br>10/    | 40        | 7.2×      | 7      | 2      | 102 | 9.5      | 5        |
| 7      | 10       | 20  | 22       | 0         | ່<br>ວ | L<br>0  | 104          | 194       | 4         | 7      | 4      | 102 | 100      | )<br>5   |
| 7      | 12       | 20  | 62       | 0<br>17-1 | ່<br>າ | 2       | 204          | 204       | 4         | -      | כ<br>ר | 107 | 100      | 2        |
| 7      | 15       | 38  | 40       | 11.4      | 3      | 3       | 101          | 12/       | 4         | /      | /      | 107 | 18       | 2        |
| /      | To       | 61  | 56       | 11×       | 3      | 4       | 251          | 259       | 4         | /      |        | 130 | 110      | 2        |
| 8      | Ţ        | 96  | 69       |           | 3      | 2       | 21           | 39        | 9*        | /      | 11     | 96  | 90       |          |
| 8      | 5        | 88  | /5       | 6         | 3      | 6       | 380          | 390       | 6         | 8      | Ţ      | 64  | 51       | 11*      |
| 8      | 2        | 106 | 104      | 5         | 3      | 1       | 118          | 126       | 5         | 8      | 6      | 73  | 63       | 7        |
| 8      | 8        | 33  | 20       | 15*       | 3      | 8       | 130          | 128       | 4         | 8      | 10     | 38  | 43       | 16*      |
| 8      | 9        | 99  | 87       | 6         | 3      | 9       | 74           | 52        | 7         | 9      | 0      | 106 | 74       | 9        |
| 8      | 11       | 77  | 73       | 8         | 3      | 10      | 194          | 202       | 5         | 9      | 1      | 39  | 17       | 18*      |
| 8      | 13       | 65  | 61       | 10        | 3      | 11      | 130          | 132       | 5         | 9      | 2      | 56  | 38       | 11*      |
| 8      | 15       | 47  | 55       | 14*       | 3      | 13      | 151          | 151       | 5         | 9      | 8      | 58  | 69       | 10*      |
| 9      | 1        | 84  | 61       | 8         | 3      | 14      | 67           | 59        | 10        | 9      | 9      | 57  | 40       | 10*      |
| 9      | 2        | 75  | 75       | 7         | 4      | 2       | 89           | 92        | 6         |        |        |     |          |          |

ì

, z

というなない

| 10      | F 0     | vs ]     | LOIFIC   | for     | brn | C <sub>13</sub> H <sub>1</sub> | 1PS2     |     |        |     |        |            | pa  | ge 17  |
|---------|---------|----------|----------|---------|-----|--------------------------------|----------|-----|--------|-----|--------|------------|-----|--------|
| k       | 1       | Fo       | Fc       | sigH    | 7 k | 1                              | Fo       | Fc  | sigF   | k   | 1      | Fo         | Fc  | sigF   |
| 6       | 6       | 142      | 118      | 5       | 2   | 7                              | 185      | 177 | 4      | 8   | 8      | 74         | 66  | 8      |
| 6       | 7       | 92       | 88       | 7       | 2   | 9                              | 191      | 192 | 5      | 8   | 10     | 66         | 69  | 10     |
| 6       | 8       | 79       | 74       | 8       | 2   | 18                             | 71       | 76  | 10     | 8   | 13     | 45         | 15  | 12*    |
| 6       | 9       | 85       | 77       | 7       | 3   | 1                              | 218      | 236 | 4      | 9   | 0      | 44         | 26  | 16*    |
| 6       | 11      | 76       | 70       | 8       | 3   | 2                              | 282      | 293 | 5      | 9   | 4      | 59         | 52  | 11*    |
| 6       | 13      | 68       | 65       | 10      | 3   | 3                              | 242      | 265 | 4      | 9   | 6      | 66         | 62  | 9      |
| 6       | 15      | 41       | 30       | 17*     | 3   | 4                              | 154      | 139 | 4      | 9   | 8      | 65         | 68  | 10     |
| 6       | 18      | 46       | 57       | 16*     | 3   | 5                              | 149      | 149 | 4      | 10  | 9      | 31         | 2   | 14*    |
| 7       | 1       | 95       | 77       | 7       | 3   | 6                              | 183      | 179 | 4      | 11  | 3      | 37         | 19  | 13*    |
| 7       | 3       | 86       | 63       | 8       | 3   | 7                              | 77       | 91  | 8      | 11  | 8      | 9          | 18  | 2*     |
| 7       | 5       | 130      | 107      | 6       | 3   | 8                              | 94       | 91  | 6      |     | ~~~    |            |     |        |
| 7       | 7       | /5       | 64       | 8       | 3   | 14                             | 52       | 22  | 13*    |     |        | h = l      |     |        |
| 8       | 2       | 110      | 92       | 12.4    | 4   | 1                              | 125      | L2/ | 2      | ^   | -      | 122        | 305 | 2      |
| 8       | 5<br>1/ | 44       | 40       | 10-     | 4   | 2                              | 409      | 100 | Ö<br>C | 0   | 2      | 122        | 120 | נ<br>ר |
| 0       | 14      | 00       | יר<br>גר | 0       | 4   | נ<br>ג                         | 150      | 165 | 5      | 0   | ר<br>ב | 444        | 403 | 7      |
| 9       | 3       | 90<br>73 | 56       | 9       | 4   | 4<br>5                         | 208      | 200 | 5      | 0   | 7      | 4JZ<br>561 | 556 | ,<br>0 |
| 0       | 5       | 75       | 81       | ģ       | 4   | 7                              | 200      | 202 | 5      | õ   | ģ      | 617        | 600 | 7      |
| 11      | 0       | 52       | 31       | 17*     | 4   | ģ                              | 166      | 176 | 5      | õ   | 11     | 171        | 161 | 4      |
| 11      | 8       | 18       | 38       | 4*      | 4   | 10                             | 92       | 87  | 7      | õ   | 13     | 34         | 52  | 14*    |
| 11      | 9       | 5        | 7        | 2*      | 4   | 11                             | 132      | 120 | 6      | 1   | 1      | 72         | 72  | 4      |
|         | •       | -        | ·        |         | 4   | 12                             | 149      | 140 | 5      | ī   | 2      | 271        | 255 | 5      |
| ^ ^ ^ ^ | ~ ^ ^   | h =      | 6 ^^^    | ~ ~ ~ ~ | 4   | 14                             | 44       | 48  | 15*    | 1   | 3      | 190        | 177 | 4      |
|         |         |          |          |         | 5   | 2                              | 98       | 106 | 6      | 1   | 4      | 357        | 319 | 6      |
| 0       | 4       | 265      | 271      | 4       | 5   | 5                              | 267      | 277 | 5      | 1   | 8      | 160        | 147 | 4      |
| 0       | 6       | 345      | 338      | 6       | 5   | 6                              | 91       | 88  | 7      | 2   | 1      | 191        | 200 | 4      |
| 0       | 8       | 228      | 227      | 4       | 5   | 7                              | 150      | 152 | 5      | 2   | 2      | 140        | 144 | 4      |
| 0       | 10      | 63       | 60       | 6       | 5   | 9                              | 82       | 73  | 8      | 2   | 4      | 243        | 235 | 5      |
| 0       | 12      | 187      | 186      | 4       | 5   | 10                             | 65       | 56  | 9      | 2   | 5      | 149        | 140 | 5      |
| 0       | 14      | 74       | 62       | 7       | 5   | 14                             | 59       | 57  | 11*    | 2   | 6      | 294        | 304 | 5      |
| 1       | 1       | 113      | 118      | 3       | 6   | 1                              | 53       | 17  | 11*    | 2   | 8      | 147        | 144 | 5      |
| 1       | 2       | 289      | 263      | 5       | 6   | 2                              | 91       | 108 | 7      | 2   | 11     | 104        | 107 | 6      |
| 1       | 3       | 364      | 336      | 6       | 6   | 4                              | 69       | /9  | 9      | 2   | 13     | 189        | 185 | 5      |
| 1       | 4<br>5  | 120      | 112      | 4       | 6   | 5                              | 60       | 20  | 9      | 3   | 7<br>T | 440        | 458 | /      |
| 1       | 5       | 207      | 200      | ך<br>ג  | 0   | 0                              | 92       | 70  | 15.4   | 2   | 2      | 220        | 2/5 | 0<br>4 |
| 1       | 8       | 142      | 126      | 4<br>5  | 6   | 0                              | 40<br>80 | 50  | 5      | 2   |        | 117        | 112 | 5      |
| 1       | ğ       | 165      | 141      | 4       | 6   | 10                             | 56       | 33  | 11*    | 3   | 6      | 57         | 59  | 10*    |
| 1       | 10      | 114      | 100      | 5       | 6   | 11                             | 79       | 67  | 9      | 3   | 10     | 102        | 118 | 7      |
| ī       | 11      | 231      | 214      | 5       | 6   | 14                             | 42       | 1   | 16*    | 3   | 11     | 161        | 146 | 5      |
| 1       | 12      | 89       | 74       | 7       | 7   | 0                              | 200      | 162 | 5      | 3   | 12     | 125        | 119 | 6      |
| 1       | 13      | 170      | 167      | 5       | 7   | 2                              | 118      | 91  | 6      | 3   | 14     | 111        | 121 | 7      |
| 1       | 14      | 76       | 77       | 8       | 7   | 4                              | 48       | 53  | 13*    | 4   | 1      | 296        | 310 | 5      |
| 1       | 22      | 37       | 2        | 9*      | 7   | 6                              | 125      | 114 | 6      | 4   | 2      | 201        | 216 | 4      |
| 2       | 1       | 496      | 514      | 8       | 7   | 8                              | 115      | 112 | 6      | 4   | 3      | 191        | 190 | 4      |
| 2       | 2       | 32       | 34       | 12*     | 7   | 9                              | 80       | 80  | 8      | 4   | 5      | 75         | 88  | 8      |
| 2       | 3       | 157      | 157      | 4       | 7   | 11                             | 72       | 69  | 9      | 4   | 6      | 74         | 55  | 8      |
| 2       | 4       | 223      | 217      | 4       | 8   | 1                              | 132      | 113 | 6      | 4   | 8      | 77         | 85  | 8      |
| 2       | 5       | 214      | 210      | 4       | 8   | 3                              | 86       | 75  | 8      | 4   | 9      | 48         | 52  | 14*    |
| 2       | 6       | 360      | 349      | 6       | 8   | 5                              | 72       | 57  | 9      | - 4 | 10     | 48         | 25  | 13*    |

10.0

į,

4

Ā

--, M109

E....

| 10      | Fo      | vs 1 | L0 F c   | for       | brn        | C <sub>13</sub> H <sub>1</sub> | 1PS2      |     |           |      |         |     | ра          | ge 18   |
|---------|---------|------|----------|-----------|------------|--------------------------------|-----------|-----|-----------|------|---------|-----|-------------|---------|
| k       | 1       | Fo   | Fc       | sig       | Fk         | 1                              | Fo        | Fc  | sigF      | k    | 1       | Fo  | Fc          | sigF    |
| 4       | 12      | 88   | 70       | 8         | 1          | 3                              | 567       | 532 | 9         | 8    | 0       | 109 | 93          | 6       |
| 4       | 14      | 53   | 36       | 13*       | 1          | 4                              | 171       | 156 | 4         | 8    | 1       | 67  | 54          | 9       |
| 5       | 1       | 172  | 186      | 4         | 1          | 5                              | 93        | 83  | 6         | 8    | 2       | 82  | 78          | 9       |
| 5       | 3       | 91   | 92       | 7         | 1          | 8                              | 230       | 210 | 5         | 8    | 4       | 42  | 52          | 15*     |
| 5       | 4       | 219  | 227      | 5         | 1          | 9                              | 190       | 172 | 4         | 9    | 3       | 69  | 53          | 9       |
| 5       | 5       | 92   | 103      | 7         | 1          | 10                             | 122       | 109 | 5         | 9    | 6       | 43  | 44          | 13*     |
| 5       | 6       | 218  | 224      | 5         | 1          | 11                             | 71        | 70  | 9         | 10   | 5       | 53  | 9           | 11*     |
| 5       | 8       | 212  | 190      | 5         | 1          | 12                             | 90        | 75  | 7         |      |         |     |             |         |
| 5       | 9       | 89   | 84       | 8         | 1          | 13                             | 85        | 84  | 7         | ~~~^ | ~ ~ ~ · | h 🗕 | 9 ^^^′      | ~ ~ ~ ~ |
| 5       | 10      | 110  | 99       | 6         | 1          | 21                             | 29        | 14  | 8*        |      |         |     |             |         |
| 5       | 11      | 77   | 79       | 9         | 2          | 1                              | 146       | 149 | 4         | 0    | 1       | 75  | 72          | 4       |
| 5       | 13      | 61   | 74       | 12*       | 2          | 3                              | 181       | 178 | 4         | 0    | 3       | 72  | 78          | 5       |
| 5       | 15      | 47   | 17       | 14*       | 2          | 4                              | 162       | 160 | 4         | 0    | 5       | 363 | 360         | 6       |
| 6       | 0       | 77   | 68       | 7         | 2          | 5                              | 186       | 186 | 4         | 0    | 7       | 285 | 275         | 5       |
| 6       | 2       | 93   | 99       | 7         | 2          | 7                              | 212       | 217 | 5         | 0    | 9       | 262 | 258         | 5       |
| 6       | 3       | 45   | 45       | 13*       | 2          | 9                              | 68        | 70  | 9         | 0    | 13      | 42  | 63          | 12*     |
| 6       | 4       | 136  | 131      | 5         | 2          | 10                             | 69        | 79  | 9         | 1    | 2       | 44  | 54          | 10*     |
| 6       | 6       | 88   | 84       | 7         | 2          | 11                             | 74        | 80  | 9         | 1    | 3       | 230 | 218         | 4       |
| 6       | 10      | 104  | 94       | /         | 2          | 12                             | 113       | 100 | 6         | 1    | 6       | 84  | 70          | 7       |
| 6       | 12      | 82   | 83       | 9         | 2          | 1/                             | /5        | 62  | 9         | 1    | /       | 149 | 142         | 5       |
| /       | 0       | 119  | 103      | )<br>17.4 | 3          | 1                              | 8/        | 109 | 6         | 1    | 8       | 99  | 9/          | 6       |
| 7       | 1<br>1  | 44   | 43       | 14*       | د<br>د     | 2                              | 1/4<br>0/ | 1/5 | 4         | 1    | 10      | 192 | 1//         | 2       |
| 7       | 2       | 0/   | 60       | 0         | د<br>د     | 5<br>/                         | 94        | 100 | 0<br>4    | 1    | 11      | 02  | 20          | 9       |
| 7       | 5<br>// | 30   | 50<br>20 | 0<br>16+  | 2          | 4 7                            | 57        | 90  | 0<br>11.4 | 2    | 11      | 212 | 207         | 5       |
| 0       | 4       | 10/  | 22       | 10~       | 2          | 0                              | 120       | 15/ | 11~       | 2    | 2       | 120 | 125         | 4       |
| 0<br>0  | 2       | 124  | 27       | 7         | ר<br>ר     | 11                             | 129       | 154 | 10        | 2    | ר<br>ג  | 100 | 03<br>707   | 4 7     |
| Q<br>Q  | 2       | 139  | 102      | 6         | 2          | 1/                             | 76        | 76  | 0         | 2    | 4<br>5  | 221 | 330         | 6       |
| 0<br>8  | 4<br>2  | 47   | 51       | 13*       |            | 14<br>9                        | 1/3       | 152 | 5         | 2    | 6       | 531 | 220         | 10      |
| ۵<br>۵  | 10      | 97   | 87       | 7         | 4          | े <u>२</u><br>२                | 183       | 201 | 5         | 2    | 7       | 130 | 154         | 5       |
| 8       | 11      | 52   | 33       | 12*       | - 4        |                                | 303       | 326 | 5         | 2    | ,<br>א  | 87  | 2.74<br>8.8 | 7       |
| 8       | 14      | 42   | 2        | 11*       | - <u> </u> | 5                              | 155       | 164 | 5         | 2    | 10      | 40  | 35          | 16*     |
| 9       | 10      | 111  | 98       | 7         | 4          | 6                              | 133       | 129 | 5         | 2    | 13      | 99  | 104         | 7       |
| 9       | 2       | 83   | 59       | 8         | 4          | . 7                            | 271       | 295 | 5         | 3    | 1       | 358 | 377         | 6       |
| 9       | 6       | 39   | 28       | 15*       | 4          | . 9                            | 168       | 164 | 5         | 3    | 2       | 137 | 144         | 5       |
| 9       | 8       | 53   | 25       | 11*       | 4          | 12                             | 63        | 59  | 11*       | 3    | 3       | 458 | 473         | 8       |
| 10      | 7       | 38   | 17       | 14*       | 5          | 1                              | 106       | 95  | 5         | 3    | 4       | 238 | 246         | 5       |
| 11      | 0       | 60   | 52       | 12*       | 5          | 3                              | 60        | 46  | 10        | 3    | 5       | 198 | 197         | 5       |
| 11      | 4       | 28   | 11       | 9*        | 5          | 4                              | 129       | 126 | 5         | 3    | 6       | 187 | 198         | 5       |
| 11      | 6       | 16   | 33       | 5*        | · 5        | 6                              | 128       | 110 | 6         | 3    | 8       | 108 | 118         | 6       |
| 11      | 7       | 7    | 4        | 3*        | · 5        | 9                              | 70        | 58  | 9         | 3    | 9       | 74  | 61          | 9       |
|         |         |      |          |           | 5          | 11                             | 69        | 69  | 10        | 3    | 11      | 74  | 69          | 9       |
| ~ ~ ^ ^ | ~ ^ ^   | h =  | 8 ^^^    | ^ ^ ^ ^   | 6          | 0                              | 91        | 95  | 6         | 3    | 14      | 110 | 108         | 7       |
|         |         |      |          |           | 6          | 3                              | 48        | 43  | 1.2*      | 3    | 16      | 40  | 51          | 17*     |
| 0       | 2       | 364  | 354      | 6         | 7          | 0                              | 204       | 160 | 5         | 3    | 18      | 46  | 55          | 15*     |
| 0       | 4       | 235  | 233      | 4         | 7          | 1                              | 169       | 144 | 5         | 4    | 1       | 137 | 151         | 5       |
| 0       | 10      | 78   | 74       | 6         | 7          | 3                              | 133       | 112 | 5         | 4    | 2       | 200 | 221         | 5       |
| G       | 12      | 65   | 78       | 7         | 7          | 5                              | 86        | 67  | 7         | 4    | 3       | 91  | 92          | 7       |
| 1       | 1       | 635  | 606      | 10        | 7          | 6                              | 86        | 86  | 7         | 4    | 4       | 147 | 156         | 5       |
| 1       | 2       | 259  | 240      | ) 4       | 7          | ' 8                            | 53        | 48  | 12*       | 4    | 6       | 76  | 88          | 9       |

0]

Į

ł

ı

1

1

5

|    |      |   |    |    |    | M11    | 1 |
|----|------|---|----|----|----|--------|---|
|    |      |   |    |    | pa | ige 19 | 1 |
| c  | sigF | k | 1  | Fo | Fc | sigF   |   |
| 18 | 7    | 2 | 14 | 39 | 66 | 17*    |   |
| 12 | 5    | 2 | 16 | 44 | 39 | 13*    |   |

| k       | 1     | Fo     | Fc      | sigF | k    | 1     | Fo     | Fc      | sigF    | k    | 1     | Fo     | Fc    | sigF    |
|---------|-------|--------|---------|------|------|-------|--------|---------|---------|------|-------|--------|-------|---------|
| 4       | 8     | 61     | 53      | 11*  | 3    | 5     | 103    | 118     | 7       | 2    | 14    | 39     | 66    | 17*     |
| 4       | 11    | 52     | 49      | 12*  | 3    | 6     | 198    | 212     | 5       | 2    | 16    | 44     | 39    | 13*     |
| 5       | 2     | 113    | 132     | 5    | 3    | 8     | 56     | 33      | 11*     | 3    | 1     | 142    | 154   | 4       |
| 5       | 4     | 120    | 127     | 5    | 3    | 10    | 105    | 109     | 7       | 3    | 2     | 74     | 95    | 8       |
| 5       | 6     | 115    | 113     | 6    | 4    | 2     | 189    | 208     | 4       | 3    | 3     | 163    | 187   | 5       |
| 5       | 8     | 115    | 98      | 6    | 4    | 4     | 80     | 92      | 8       | 3    | 4     | 250    | 255   | 5       |
| 5       | 9     | 84     | 71      | 8    | 4    | 9     | 91     | 93      | 7       | 3    | 5     | 112    | 124   | 6       |
| 6       | 1     | 96     | 82      | 6    | 4    | 15    | 42     | 56      | 16*     | 3    | 6     | 256    | 241   | 5       |
| 6       | 2     | 41     | 30      | 13*  | 5    | 4     | 79     | 89      | 8       | 3    | 8     | 202    | 199   | 5       |
| 6       | 7     | 103    | 85      | 6    | 5    | 5     | 72     | 73      | 9       | 3    | 9     | 143    | 145   | 6       |
| 6       | 8     | 103    | 76      | 6    | 5    | 6     | 112    | 107     | 6       | 4    | 1     | 97     | 103   | 5       |
| 6       | 10    | 91     | 84      | 8    | 5    | 8     | 98     | 93      | 7       | 4    | 3     | 40     | 48    | 14*     |
| 6       | 12    | 64     | 86      | 10   | 5    | 9     | 95     | 96      | 7       | 4    | 4     | 105    | 127   | 6       |
| 7       | 2     | 62     | 20      | 9    | 5    | 11    | 71     | 75      | 9       | 4    | 6     | 58     | 44    | 10*     |
| 7       | 3     | 59     | 55      | 10*  | 6    | 0     | 157    | 123     | 4       | 4    | 9     | 94     | 100   | 7       |
| 7       | 5     | 39     | 43      | 16*  | 6    | 2     | 83     | 74      | 7       | 5    | 1     | 73     | 98    | 7       |
| 7       | 7     | 44     | 47      | 14*  | 6    | 3     | 63     | 41      | 9       | 5    | 3     | 55     | 63    | 10*     |
| 8       | 0     | 172    | 163     | 5    | 6    | 5     | 104    | 99      | 6       | 5    | 6     | 68     | 50    | 8       |
| 8       | 2     | 175    | 159     | 5    | 6    | 7     | 121    | 110     | 6       | 5    | 10    | 43     | 14    | 14*     |
| 8       | 4     | 49     | 68      | 13*  | 6    | 9     | 46     | 29      | 13*     | 6    | 0     | 165    | 146   | 4       |
| 8       | 8     | 49     | 41      | 12*  | 6    | 14    | 54     | 25      | 12*     | 6    | 2     | 110    | 91    | 5       |
| 8       | 9     | 44     | 0       | 12*  | 7    | 0     | 58     | 63      | 9       | 6    | 3     | 109    | 95    | 6       |
| 9       | 0     | 58     | 47      | 10*  | 7    | 1     | 76     | 72      | 7       | 6    | 11    | 41     | 7     | 14*     |
| 11      | 3     | 17     | 1       | 6*   | 7    | 3     | 65     | 54      | 9       | 6    | 12    | 66     | 60    | 8       |
|         |       |        |         |      | 7    | 5     | 40     | 42      | 15*     | 7    | 0     | 82     | 68    | 7       |
| ~ ^ ^ ^ | ^^^ ł | n = 10 | ~ ~ ~ / | **** | 7    | 6     | 144    | 140     | 5       | 7    | 2     | 70     | 67    | 8       |
|         |       |        |         |      | 7    | 14    | 35     | 17      | 10*     | 7    | 6     | 83     | 89    | 7       |
| 0       | 2     | 80     | 70      | 4    | 8    | 2     | 75     | 79      | 8       | 8    | 0     | 83     | 89    | 6       |
| 0       | 4     | 297    | 297     | 5    | 8    | 3     | 53     | 60      | 11*     | 8    | 2     | 90     | 93    | 6       |
| 0       | 6     | 132    | 131     | 4    | 9    | 8     | 38     | 3       | 13*     | 8    | 8     | 42     | 44    | 11*     |
| 0       | 8     | 133    | 122     | 4    |      |       |        |         |         | 9    | 6     | 50     | 44    | 10*     |
| 0       | 12    | 44     | 53      | 12*  | **** | ^ ^ ^ | h = 11 | ~ ~ ~ / | ~ ~ ~ ^ | 9    | 9     | 19     | 7     | 9*      |
| 1       | 1     | 404    | 388     | 7    |      |       |        |         |         | 11   | 1     | 10     | 9     | 3*      |
| 1       | 2     | 171    | 164     | 4    | 0    | 1     | 61     | 60      | 6       |      |       |        |       |         |
| 1       | 3     | 270    | 249     | 5    | 0    | 3     | 232    | 228     | 4       | **** | ^ ^ ^ | h = 12 | ~ ~ ^ | ~ ^ ^ ^ |
| 1       | 5     | 193    | 180     | 4    | 0    | 13    | 79     | 87      | 8       |      |       |        |       |         |
| 1       | 8     | 51     | 23      | 11*  | 0    | 15    | 70     | 87      | 8       | 0    | 2     | 70     | 64    | 6       |
| 1       | 10    | 71     | 50      | 9    | 0    | 17    | 43     | 68      | 12*     | 0    | 4     | 115    | 104   | 4       |
| 1       | 11    | 94     | 95      | 7    | 1    | 1     | 233    | 218     | 4       | 0    | 6     | 70     | 82    | 6       |
| 2       | 1     | 48     | 35      | 9*   | 1    | 2     | 143    | 126     | 4       | 0    | 12    | 62     | 60    | 9       |
| 2       | 2     | 81     | 82      | 7    | 1    | 3     | 120    | 99      | 5       | 1    | 1     | 242    | 244   | 4       |
| 2       | 3     | 295    | 293     | 5    | 1    | 10    | 60     | 58      | 10      | 1    | 3     | 140    | 122   | 5       |
| 2       | 5     | 124    | 111     | 5    | 1    | 11    | 60     | 70      | 10*     | 1    | 4     | 133    | 121   | 5       |
| 2       | 7     | 122    | 114     | 6    | 1    | 13    | 59     | 84      | 11*     | 1    | 6     | 122    | 125   | 5       |
| 2       | 10    | 121    | 111     | 6    | 1    | 18    | 40     | 49      | 11*     | 1    | 8     | 74     | 69    | 8       |
| 2       | 13    | 43     | 56      | 16*  | 2    | 1     | 134    | 132     | 4       | 1    | 11    | 65     | 93    | 10      |
| 2       | 14    | 46     | 75      | 15*  | 2    | 3     | 197    | 190     | 5       | 2    | 1     | 54     | 48    | 9       |
| 3       | 1     | 53     | 70      | 9*   | 2    | 5     | 371    | 368     | 6       | 2    | 2     | 131    | 119   | 5       |
| 3       | 3     | 40     | 49      | 15*  | 2    | 6     | 92     | 89      | 8       | 2    | 3     | 183    | 172   | 5       |
| 3       | 4     | 78     | 76      | 8    | 2    | 7     | 213    | 229     | 5       | 2    | 4     | 72     | 83    | 9       |

10|F|o vs 10|F|c for brn  $C_{13}H_{11}PS_2$ 

Further strong " at

۱ ۲

r u Priz

1.5 1

またい ひょう ひょう しょうしん おん ひょうちょう ちゅうちょう かんしょう かんぱんないかん しょう しゅう なん か

a service of the States of

" ne scharte.

and the state

ź ł

; n \*

\$ ł

TYPE Pres

| 10     | Fo     | vs 10     | Fc  | for 1       | brn     | C <sub>13</sub> H | 11PS2     |           |             |          |            |            | pa         | ge 20    |
|--------|--------|-----------|-----|-------------|---------|-------------------|-----------|-----------|-------------|----------|------------|------------|------------|----------|
| k      | 1      | Fo        | Fc  | sigF        | k       | 1                 | Fo        | Fc        | sigF        | k        | 1          | Fo         | Fc         | sigF     |
| 2      | 5      | 238       | 238 | 5           | 3       | 8                 | 60        | 61        | 10*         | 6        | 1          | 89         | 98         | 6        |
| 2      | 8      | 95        | 90  | 8           | 3       | 9                 | 86        | 93        | 8           | 6        | 3          | 64         | 64         | 8        |
| 3      | 1      | 54        | 35  | 9           | 3       | 10                | 76        | 90        | 9           | 6        | 6          | 59         | 59         | 9        |
| 3      | 2      | 180       | 189 | 4           | 3       | 11                | 81        | 88        | 8           | 8        | 9          | 15         | 25         | 4*       |
| 3      | 4      | 83        | 86  | 7           | 4       | 1                 | 97        | 107       | 6           | 9        | 0          | 34         | 27         | 9*       |
| 3      | 5      | 42        | 44  | 15*         | 4       | 10                | 72        | 98        | 9           | 9        | 2          | 33         | 46         | 11*      |
| 3      | 8      | 42        | 6   | 15*         | 4       | 12                | 52        | 64        | 12*         |          |            |            |            |          |
| 4      | 1      | 69        | 50  | 7           | 5       | 1                 | 43        | 69        | 12*         | ~ ^ ^ ^  | ~ ~ ^      | h = 15     |            |          |
| 4      | 5      | 48        | 38  | 12*         | 5       | 2                 | 105       | 104       | 6           |          |            |            |            |          |
| 4      | 6      | 96        | 94  | 7           | 5       | 3                 | 81        | 79        | 7           | 0        | 1          | 145        | 154        | 4        |
| 4      | 8      | 91        | 102 | 7           | 5       | 4                 | 112       | 100       | 6           | 0        | 3          | 201        | 216        | 4        |
| 4      | 15     | 36        | 28  | 17*         | 6       | 0                 | 134       | 130       | 4           | 0        | 5          | 137        | 160        | 4        |
| 4      | 16     | 35        | 24  | 10*         | 6       | 2                 | 121       | 130       | 5           | 1        | 2          | 77         | 78         | 7        |
| 5      | 0      | 84        | 71  | 6           | 7       | 2                 | 62        | 56        | 8           | 1        | 4          | 92         | 94         | 7        |
| 5      | 1      | 89        | 93  | 6           | 7       | 3                 | 54        | 58        | 9*          | 1        | 7          | 42         | 4          | 13*      |
| 5      | 3      | 99        | 89  | 6           | 8       | 0                 | 33        | 49        | 14*         | 1        | 8          | 114        | 119        | 6        |
| 5      | 6      | 83        | 70  | 7           | 9       | 3                 | 30        | 24        | 14*         | 1        | 10         | 72         | 88         | 8        |
| 6      | 0      | 55        | 60  | 9           | 9       | 4                 | 35        | 34        | 11*         | 2        | 1          | 167        | 160        | 4        |
| 6      | 3      | 37        | 26  | 14*         |         |                   |           |           |             | 2        | 2          | 95         | 94         | 6        |
| 6      | 7      | 71        | 75  | 8           | ^^^     | ~ ^ ^ ^           | h = 14    | ~~~       | ~ ^ ^ ^     | 2        | 4          | 89         | 80         | 7        |
| 6      | 9      | 60        | 61  | 9           |         |                   |           |           |             | 3        | 1          | 66         | 79         | 8        |
| 7      | 2      | 74        | 68  | 7           | 0       | 2                 | 37        | 46        | 11*         | 3        | 3          | 54         | 42         | 10*      |
| 7      | 6      | 37        | 50  | 15*         | 0       | 10                | 70        | 64        | 8           | 3        | 12         | 35         | 3          | 13*      |
| 7      | 8      | 44        | 52  | 12*         | Ō       | 12                | 43        | 37        | 12*         | 4        | 2          | 100        | 100        | 6        |
| 8      | 10     | 30        | 21  | 9*          | 0       | 14                | 47        | 58        | 11*         | 4        | 4          | 105        | 101        | 6        |
| 8      | 12     | 3         | 10  | 1*          | 1       | 1                 | 59        | 59        | - 9         | 4        | 11         | 40         | 61         | 12*      |
| 10     |        | 49        | 57  | -<br>9*     | 1       | 2                 | 148       | 144       | 5           | 5        | 0          | 159        | 152        | 4        |
|        | •      |           |     | -           | 1       | 4                 | 93        | 85        | 7           | 5        | 1          | 78         | 84         | 6        |
| ****   | ~ ^ ^  | h = 13    | ~~~ | ^ ^ ^ ^     | 1       | 5                 | 68        | 54        | 9           | 5        | 2          | 93         | 90         | 6        |
|        |        |           |     |             | 1       | 7                 | 53        | 55        | 11*         | 5        | 4          | 53         | 66         | 10*      |
| 0      | 1      | 85        | 94  | 5           | 1       | 8                 | 54        | 52        | 11*         | 5        | 6          | 50         | 45         | 10*      |
| 0      | 3      | 237       | 242 | 4           | 1       | 17                | 8         | 19        | 4.4         | 5        | 13         | 15         | 33         | -6*      |
| Ő      | 5      | 130       | 134 | 4           | 2       | 2                 | 160       | 158       | 5           | 6        | 0          | 96         | 108        | 6        |
| Õ      | 7      | 118       | 129 | 5           | 2       | 3                 | 67        | 63        | 9           | Ř        | 4          | 38         | 15         | 10*      |
| 1      | 1      | 198       | 197 | ŭ           | 2       | 5                 | 109       | 91        | 6           | Ŭ        | •          |            |            |          |
| 1      | 2      | 83        | 73  | 6           | 2       | 14                | 37        | 1         | 17*         | ****     | ~~~        | h = 16     | ~~~        | ~ ^ ^ ^  |
| 1      | จิ     | 88        | 80  | 6           | 2       | 17                | ц<br>Ц    | 3         | 1*          |          |            | 11 - 10    |            |          |
| 1      | 5      | 63        | 45  | a           | 2       | 1                 | 121       | 136       | 5           | ٥        | 0          | 30         | 64         | 10*      |
| 1      | 7      | 106       | 105 | 6           | 2       | 2                 | 25        | 100       | 15+         | 0        | 2          | 110        | 11/        | 5        |
| 1      | 2<br>2 | 101       | 103 | 6           | 2       | 5                 | 0/        | 76        | ירד<br>ע    | 0        | 2<br>1.    | 145        | 151        | 5        |
| 1      | 10     | 25        | 100 | 174         | נ<br>יי | <br>              | 74        | 20        | 7           | 1        | - +<br>- 2 | 14J<br>77  | 171        | 7        |
| 1      | 16     | 25        | 72  | 12-         | 4       | . 0               | 105       | 102       | 5           | 1        | 2          | 77         | 54         | 0        |
| 1      | 10     | رد<br>ح   | 4/  | 77~         | 4       | · L               | 105       | T03       | ່ງ<br>10-ມ  | 1        | נ<br>ג     | 72         | סכ<br>או׳  | 07       |
| 1<br>2 | 10     | / / 7     | 34  | ^ر \<br>11ـ | 4       | )<br>             | 29        | 52<br>72  | 0           | 1        | 4          | 13         | 10         | 104      |
| 2      | 2      | 4/        | 40  | ⊥⊥*<br>7    | 4       | . )<br>2          | 00<br>/.7 | 20        | 10-         | 1        | <u>כ</u>   | 40         | 24<br>1.1. | 167      |
| 2      | כ<br>ב | 0U<br>100 | 101 | L 1         | 4       | . 0<br>0          | 4/        | 30<br>100 | · 14*       | 1<br>1   | 2          | 0C         | 44         | 1/4      |
| 2      | ر<br>م | 150       | 144 | . 0         | 4<br>E  | . 0               | 00<br>111 | 110       | . /<br>     | נ<br>י   | 0          | 45         | 00         | 14×      |
| 2      | 0      | 104       | 140 | )<br>c      | 2       | 1                 |           | 112       | , )<br>11.0 | <u>ר</u> | 0          | 20         | 00         | 0<br>12- |
| 3      | L<br>L | T20       | 144 | . <u>)</u>  | 2       | 0<br>10           | 4/        | 22        | 11×         | ز<br>ر   | 10         | 22         | 4/         | ×C1      |
| ე<br>ე | 4      | 150       | 100 | 9<br>. E    | 2       | 13                | 54        | 8<br>     | 9×          | 4        | 0          | 00         | 98         | 0        |
| 3      | 6      | T2A       | 100 | כי          | 6       | ) U               | / )       | /6        |             | - 4      | 1          | <u>8</u> 7 |            | 0        |

1

144

ł

ALL THE STREET

ater a Polantin

「「「「「「

e uses represent a substances

artarates a reart a statistic statistic existing existing a substatistic rearts in the substatistic rearts and the substatistic re

| 10     | Flo    | vs 10    | F c      | for h    | orn C   | : <sub>13</sub> H <sub>1</sub> | 1 <b>P</b> S | 5 <sub>2</sub> |          |           |   |   |    | pa | ge 21 |
|--------|--------|----------|----------|----------|---------|--------------------------------|--------------|----------------|----------|-----------|---|---|----|----|-------|
| k      | 1      | Fo       | Fc       | sigH     | Fk      | 1                              |              | Fo             | Fc       | sigF      | k | 1 | Fo | Fc | sigF  |
| 4      | 3      | 57       | 73       | 10*      | 0       | 3                              |              | 68             | 81       | 7         |   |   |    |    |       |
| 5      | 0      | 59       | 63       | 8        | 1       | 3                              |              | 59             | 59       | 9         |   |   |    |    |       |
| 5      | 2      | 43       | 47       | 11*      | 1       | 6                              |              | 42             | 37       | 12*       |   |   |    |    |       |
| 6      | 1      | 60       | 80       | 7        | 2       | 3                              |              | 52             | 20       | 10*       |   |   |    |    |       |
| 6      | 8      | 31       | 15       | 14*      | 3       | 5                              |              | 33             | 31       | 15*       |   |   |    |    |       |
| 8      | 0      | 28       | 20       | 11*      | 3       | 8                              |              | 42             | 35       | 11*       |   |   |    |    |       |
| 8      | 6      | 16       | 14       | 5*       | 4       | 8                              |              | 25             | 11       | 12*       |   |   |    |    |       |
| 9      | 0      | 22       | 9        | 5.L      | 5       | 2                              |              | 32             | 22       | 13*       |   |   |    |    |       |
| 9      | 2      | 11       | 25       | Э×       | 5       | 0<br>7                         |              | 20             | 22       | y×<br>o↓  |   |   |    |    |       |
| ~~~~   | ~ ~ ^  | h - 17   | ~ ~ ~    | ~ ~ ^ ^  | 7       | 1                              |              | 25             | 24<br>53 | 11*       |   |   |    |    |       |
|        |        |          |          |          | 8       | 1                              |              | 20             | 0        | 4*        |   |   |    |    |       |
| 0      | 1      | 50       | 59       | 9*       | Ŭ       | -                              |              |                | v        | 7         |   |   |    |    |       |
| 0      | 5      | 70       | 69       | 7        | ^ ^ ^ ^ | ^ ^ ^                          | h            | = 20           | ^^^/     | ~~~^      |   |   |    |    |       |
| 0      | 11     | 47       | 84       | 10*      |         |                                |              |                |          |           |   |   |    |    |       |
| 1      | 1      | 111      | 108      | 5        | 0       | 2                              |              | 67             | 78       | 7         |   |   |    |    |       |
| 1      | 2      | 63       | 69       | 9        | 0       | 10                             |              | 15             | 45       | 7*        |   |   |    |    |       |
| 1      | 3      | 47       | 56       | 12*      | 1       | 10                             |              | 13             | 19       | 5*        |   |   |    |    |       |
| 1      | 5      | 58       | 71       | 10*      | 2       | 2                              |              | 35             | 26       | 15*       |   |   |    |    |       |
| 1      | 8      | 60       | 73       | 9        | 2       | 7                              |              | 42             | 17       | 12*       |   |   |    |    |       |
| 2      | 3      | 55       | 37       | 10*      |         |                                | ۱.           | 0.1            | ~~~/     |           |   |   |    |    |       |
| 2      | 4      | 39       | 41       | 1.2*     |         |                                | n            | = 21           |          |           |   |   |    |    |       |
| د<br>۸ | Ö<br>Ö | 41       | 41<br>20 | 10+      | 1       | Q                              |              | 24             | 0        | 74        |   |   |    |    |       |
| 4      | 1      | 4J<br>61 | 62       | 8        | 2       | 6                              |              | 24<br>41       | 11       | /^<br>10* |   |   |    |    |       |
| 4      | 2      | 99       | 120      | 6        | 4       | 3                              |              | 33             | 6        | 13*       |   |   |    |    |       |
| 4      | 4      | 75       | 95       | 7        | 5       | 3                              |              | 28             | 8        | 9*        |   |   |    |    |       |
| 4      | 6      | 70       | 81       | 8        | 7       | 1                              |              | 7              | 18       | 2*        |   |   |    |    |       |
| 4      | 10     | 34       | 14       | 13*      |         |                                |              |                |          |           |   |   |    |    |       |
| 6      | 7      | 34       | 23       | 11*      | ^ ^ ^ ^ | ^^^                            | h            | = 22           | ^^^/     | ~~~       |   |   |    |    |       |
| 7      | 0      | 30       | 38       | 12*      |         |                                |              |                |          |           |   |   |    |    |       |
| 8      | 0      | 29       | 36       | 11*      | 0       | 8                              |              | 7              | 24       | 1*        |   |   |    |    |       |
|        |        |          |          |          | 2       | 5                              |              | 29             | 3        | 11*       |   |   |    |    |       |
|        |        | h = 18   |          | A A A A  | ~~~~    |                                |              |                |          |           |   |   |    |    |       |
| 0      | 0      | 1/7      | 170      | ,        |         |                                | h            | = 23           |          |           |   |   |    |    |       |
| 0      | 0      | 14/      | 1/0      | 4        | E       | 0                              |              | 10             | 10       | 0.1       |   |   |    |    |       |
| 0      | 2<br>1 | 107      | 120      | כ<br>ד   | 5       | 0                              |              | 19             | 10       | 8*        |   |   |    |    |       |
| õ      | 10     | 47       | 57       | /<br>12* |         |                                | h            | - 24           |          | ~ ~ ^ ^   |   |   |    |    |       |
| ĩ      | 12     | 22       | 5        | 7*       |         |                                |              | - 24           |          |           |   |   |    |    |       |
| 3      | 0      | 89       | 96       | 6        | 3       | 1                              |              | 25             | 49       | 8*        |   |   |    |    |       |
| 3      | 4      | 42       | 35       | 13*      | 3       | 2                              |              | 15             | 42       | -<br>6*   |   |   |    |    |       |
| 3      | 9      | 30       | 27       | 13*      |         |                                |              | -              |          | -         |   |   |    |    |       |
| 4      | 3      | 56       | 47       | 8        | ^ ^ ^ ^ | ~~~                            | h            | <b>-</b> 26    | · · · ·  | ~ ~ ^ ^   |   |   |    |    |       |
| 4      | 8      | 44       | 6        | 11*      |         |                                |              |                |          |           |   |   |    |    |       |
| 7      | 5      | 18       | 31       | 7*       | D       | 0                              |              | 11             | 37       | 4*        |   |   |    |    |       |
| 9      | 0      | 3        | 8        | 1*       |         |                                |              |                |          |           |   |   |    |    |       |

^^^^ h = 19 ^^^

M113

; ; ; ; ;

ę

1

; 5

i

+ •

1 ) -2

\* 4

c

,

,

•

| ATOM | x/a       | у/Ъ        | z/c         | U(iso)     |
|------|-----------|------------|-------------|------------|
| Н2   | 0.089 (6) | -0.152 (5) | -0.339 (9)  | 0.099 (21) |
| нз   | 0.253 (5) | -0.168 (5) | -0.554 (10) | 0.095 (20) |
| H4   | 0.399 (4) | -0.048 (4) | -0.501 (7)  | 0.071 (14) |
| Н5   | 0.389 (3) | 0.091 (3)  | -0.279 (9)  | 0.086 (18) |
| Н6   | 0.229 (3) | 0.120 (3)  | -0.098 (7)  | 0.033 (10) |
|      |           |            |             |            |

Table . Hydrogen atom positional parameters for  $(\,C_6H_6\,)_4\text{Sn}$ 

Table . Hydrogen atom positional parameters for  $(C_6H_5)_4Pb$ 

| ATOM | x/a       | y/b        | z/c        | U(iso)    |
|------|-----------|------------|------------|-----------|
|      |           |            |            |           |
| H2   | 0.083 (3) | -0.133 (5) | -0.346 (7) | 0.064 (7) |
| Н3   | 0.247 (5) | -0.170 (3) | -0.559 (5) | 0.047 (7) |
| Н4   | 0.400 (5) | -0.051 (6) | -0.515 (6) | 0.067 (7) |
| Н5   | 0.391 (5) | 0.084 (5)  | -0.288 (7) | 0.072 (7) |
| Н6   | 0.223 (6) | 0.113 (5)  | -0.084 (7) | 0.069 (7) |
|      |           |            |            |           |

| ATOM  | x/a           | у/Ъ                | z/c                           | U(iso)     |
|-------|---------------|--------------------|-------------------------------|------------|
| Н2    | 0.068 (3)     | -0.146 (3)         | -0.326 (5)                    | 0.048 (7)  |
| Н3    | 0.228 (3)     | -0.172 (3)         | -0.514 (6)                    | 0.055 (8)  |
| H4    | 0.396 (3)     | -0.054 (3)         | -0.461 (5)                    | 0.067 (10) |
| Н5    | 0 394 (2)     | 0.087 (2)          | -0.243 (7)                    | 0.076 (10) |
| H6    | 0.241 (3)     | 0.112 (3)          | -0.046 (5)                    | 0.051 (8)  |
| Table | . Hydrogen at | om positional para | ameters for GePh <sub>4</sub> |            |
| ATOM  | x/a           | y/b                | z/c                           | U(iso)     |
| Н2    | 0.071 (3)     | -0.151 (3)         | -0.328 (3)                    | 0.084 (3)  |
| H3    | 0.239 (3)     | -0.168 (2)         | -0.511 (3)                    | 0.079 (3)  |
| H4    | 0.399 (2)     | -0.056 (2)         | -0.476 (3)                    | 0.072 (3)  |
| Н5    | 0.391 (2)     | 0.086 (2)          | -0.248 (3)                    | 0.070 (3)  |
| H6    | 0.236 (3)     | 0.116 (2)          | -0.052 (3)                    | 0.064 (3)  |
| Table | . Hydrogen at | om positional para | ameters for GePh <sub>4</sub> | (lt)       |
| ATOM  | x/a           | у/ъ                | z/c                           | U(iso)     |
| H2    | 0.068 (2)     | -0.157 (2)         | -0.326 (3)                    | 0.062 (3)  |
| H3    | 0.246 (3)     | -0.170 (2)         | -0.522 (3)                    | 0.072 (3)  |
| H4    | 0.391 (2)     | -0.056 (2)         | -0.482 (3)                    | 0.084 (3)  |
| Н5    | 0.390 (2)     | 0.088 (2)          | -0.251 (3)                    | 0.073 (3)  |
| Н6    | 0.236 (2)     | 0.119 (2)          | -0.054 (3)                    | 0.042 (3)  |
|       |               |                    |                               |            |

Table . Hydrogen atom positional parameters for  $(C_6H_5)_4Si$ 

ł

ļ

J

Intermolecular Distances (Å) Involving the Hydrogen Atoms for SiPh<sub>4</sub>

| C(2) | -H(2) | 0.93 | ( | 3) |
|------|-------|------|---|----|
| C(3) | -H(3) | 0.97 | ( | 3) |
| C(4) | -H(4) | 0.94 | ( | 4) |
| C(5) | -H(5) | 0.95 | ( | 3) |
| C(6) | -H(6) | 0,94 | ( | 3) |
|      |       |      |   |    |

Intramolecular Distances (Å) Involving the Hydrogen Atoms for GePh<sub>4</sub> (RT)

| C(2) | -H(2) | 0.99 | ( | 3) |
|------|-------|------|---|----|
| C(3) | -H(3) | 0.86 | ( | 3) |
| C(4) | -H(4) | 0.98 | ( | 3) |
| C(5) | -H(5) | 0.92 | ( | 3) |
| C(6) | -H(6) | 0.97 | ( | 3) |
|      |       |      |   |    |

Intramolecular Distances (Å) Involving the Hydrogen Atoms for  $GePh_4$  (LT)

| C(2) | -H(2) | 1.06 | ( | 3) |
|------|-------|------|---|----|
| C(3) | -H(3) | 0.91 | ( | 3) |
| C(4) | -H(4) | 0.91 | ( | 3) |
| C(5) | -H(5) | 0 93 | ( | 2) |
| C(6) | -H(6) | 0 98 | ( | 2) |
|      |       |      |   |    |

Intramolecular Distances (Å) Involving the Hydrogen Atoms for SnPh<sub>4</sub>

| C(2) | -H(2) | 096  | ( | 7) |
|------|-------|------|---|----|
| C(3) | -H(3) | 0.94 | ( | 6) |
| C(4) | -H(4) | 0.92 | ( | 5) |
| C(5) | -H(5) | 0.95 | ( | 4) |
| C(6) | -H(6) | 0.92 | ( | 4) |

Intermolecular Distances (Å) Involving the Hydrogen Atoms for PbPh4

| C(2) | -H(2) | 0.96 | ( | 5) |
|------|-------|------|---|----|
| C(3) | -H(3) | 0.95 | ( | 5) |
| C(4) | -H(4) | 0.94 | ( | 6) |
| C(5) | -H(5) | 0.90 | ( | 6) |
| C(6) | -H(6) | 0.96 | ( | 6) |

Table Torsional Angles (degrees) for  $(C_6H_5)_4Si$ 

| C(1)   | -SI(1) | -C'(1)  | -C'(2)   | -52.1  | (3) |
|--------|--------|---------|----------|--------|-----|
| C(1)   | -SI(1) | -C'(1)  | -C'(6)   | 127.6  | (3) |
| C(1)   | -SI(1) | -C''(1) | -C''(2)  | 172.5  | (2) |
| C(1)   | -SI(1) | -C''(1) | -C''(6)  | -7.2   | (3) |
| C''(1) | -SI(1) | -C(1)   | -C(2)    | 68.3   | (3) |
| C''(1) | -SI(1) | -C(1)   | -C(6)    | -112.0 | (3) |
| SI(1)  | -C(1)  | -C(2)   | -C(3)    | -178.9 | (3) |
| C(2)   | -C(1)  | -SI(1)  | -C'''(1) | -172.5 | (2) |
| SI(1)  | -C(1)  | -C(6)   | -C(5)    | 179.6  | (2) |
| C(6)   | -C(1)  | -SI(1)  | -C'''(1) | 7.2    | (2) |
| C(2)   | -C(1)  | -C(6)   | -C(5)    | -0.7   | (4) |
| C(6)   | -C(1)  | -C(2)   | -C(3)    | 1.4    | (4) |
| C(1)   | -C(2)  | -C(3)   | -C(4)    | -1.0   | (5) |
| C(2)   | -C(3)  | -C(4)   | -C(5)    | -0.1   | (5) |
| C(3)   | -C(4)  | -C(5)   | -C(6)    | 0.8    | (5) |
| C(4)   | -C(5)  | -C(6)   | -C(1)    | -0.3   | (4) |

Primed atoms have symmetry operation:

- ' -x,-y,z
- '' y,-x,-z
- ··· -y,x,-z

r • ,

,

(大学く しょ

Table

Torsional Angles (degrees) for GEPH4 (RT)

| C(1) - GE(1) - C'(1) - C'(2) | -54.1 ( 3) |
|------------------------------|------------|
| C(1) -GE(1) -C'(1) -C'(6)    | 125.4 ( 3) |
| C(1) -GE(1) -C''(1) -C''(2)  | 174.3 ( 3) |
| C(1) -GE(1) -C''(1) -C''(6)  | -5.2 (3)   |
| C''(1) -GE(1) -C(1) -C(2)    | 66.1 ( 3)  |
| C''(1) -GE(1) -C(1) -C(6)    | -114.4 (3) |
| GE(1) -C(1) -C(2) -C(3)      | -179.4 (3) |
| C(2) -C(1) -GE(1) -C'''(1)   | -174.3 (2) |
| GE(1) -C(1) -C(6) -C(5)      | 179.9 ( 3) |
| C(6) -C(1) -GE(1) -C'''(1)   | 5.2 (3)    |
| C(2) -C(1) -C(6) -C(5)       | -0.6 ( 5)  |
| C(6) -C(1) -C(2) -C(3)       | 1.1 ( 5)   |
| C(1) -C(2) -C(3) -C(4)       | -0.6 ( 6)  |
| C(2) -C(3) -C(4) -C(5)       | -05(6)     |
| C(3) -C(4) -C(5) -C(6)       | 1.0 ( 6)   |
| C(4) -C(5) -C(6) -C(1)       | -04(5)     |

Primed atoms have symmetry operations:

| ,  | - | -X + 0.000 | -Y + 0.000 | Z + 0.000  |
|----|---|------------|------------|------------|
| ,, | - | Y + 0.000  | -X + 0.000 | -Z + 0.000 |
|    | - | -Y + 0.000 | X + 0.000  | -Z + 0,000 |

k

ł

4

ł

٤

v ł

\*\*\*\* \* \* \* \*

۵

۴

i t

۲

ž

ł

> \$ !

Torsional Angles (degrees) for GePh<sub>4</sub> (LT)

| C(1) -GE(1) | -C'(1) -C'(2)   | -55.3 (3)  |
|-------------|-----------------|------------|
| C(1) -GE(1) | -C'(1) -C'(6)   | 125.0 (3)  |
| C(1) -GE(1) | -C''(1) -C''(2) | 175.4 (3)  |
| C(1) -GE(1) | -C''(1) -C''(6) | -4.8 (3)   |
| C''(1) -GE( | (1) -C(1) -C(2) | 64.9 (3)   |
| C''(1) -GE( | (1) -C(1) -C(6) | -114.9 (3) |
| GE(1) -C(1) | -C(2) -C(3)     | -179.1 (3) |
| C(2) -C(1)  | -GE(1) -C'''(1) | -175.4 (2) |
| GE(1) -C(1) | -C(6) -C(5)     | 179.3 (3)  |
| C(6) -C(1)  | -GE(1) -C'''(1) | 4.8 (2)    |
| C(2) -C(1)  | -C(6) -C(5)     | -0.5 (4)   |
| C(6) -C(1)  | -C(2) -C(3)     | 0.7 (5)    |
| C(1) -C(2)  | -C(3) -C(4)     | -0.2 (5)   |
| C(2) -C(3)  | -C(4) -C(5)     | -0.6 (5)   |
| C(3) -C(4)  | -C(5) -C(6)     | 0.9 (5)    |
| C(4) -C(5)  | -C(6) -C(1)     | -0.3 (5)   |

Primed atoms have symmetry operations:

| ,  | - | -X + 0.000 | -Y + 0.000 | Z + 0.000  |
|----|---|------------|------------|------------|
| •• | - | Y + 0.000  | -X + 0.000 | -Z + 0.000 |
|    | - | -Y + 0.000 | X + 0.000  | -Z + 0.000 |

· · · · ·

Table

Torsional Angles (degrees) for  $(C_6H_5)_4Sn$ 

| C(1)   | -SN(1) | -C(1)'  | -C(2)'   | -57.9 (4)  |
|--------|--------|---------|----------|------------|
| C(1)   | -SN(1) | -C(1)'  | -C(6)'   | 122.3 (3)  |
| C(1)   | -SN(1) | -C(1)'' | -C(2)''  | 177.5 (3)  |
| C(1)   | -SN(1) | -C(1)'' | -C(6)''  | -2.6 (4)   |
| C(1)'' | -SN(1) | -C(1)   | -C(2)    | 61.7 (4)   |
| C(1)'' | -SN(1) | -C(1)   | -C(6)    | -118.1 (3) |
| SN(1)  | -C(1)  | -C(2)   | -C(3)    | -179.3 (4) |
| C(2)   | -C(1)  | -SN(1)  | -C(1)''' | -177.5 (3) |
| SN(1)  | -C(1)  | -C(6)   | -C(5)    | -179.0 (3) |
| C(6)   | -C(1)  | -SN(1)  | -C(1)''' | 2.6 (3)    |
| C(2)   | -C(1)  | -C(6)   | -C(5)    | 1.1 (6)    |
| C(6)   | -C(1)  | -C(2)   | -C(3)    | 0.6 (6)    |
| C(1)   | -C(2)  | -C(3)   | -C(4)    | -1.9 (7)   |
| C(2)   | -C(3)  | -C(4)   | -C(5)    | 1.6 (7)    |
| C(3)   | -C(4)  | -C(5)   | -C(6)    | 0.1 (6)    |
| C(4)   | -C(5)  | -C(6)   | -C(1)    | -1.5 (6)   |

Primed atoms have symmetry operation:

•

•

| ' -     | -x,-y,z |
|---------|---------|
| ·· _    | y,-x,-z |
| · · · - | -y,x,-z |

Table

الا الله المالية المالية

r resta

مريعة الارمية معادم الارتية المراد المواحية والمراد المراد المراد المراد المراجع والمراجع والمراجع والمراد المراد

いってん ひとうないしょう うちちょう ちょうしょう

4

. . . . . . . . . .

e

1 4 - 1 - Mars

- - - - - - 135

Torsional Angles (degrees) for C24H2OPB P4-2121

| C(1)   | -PB(1) | -C'(1)   | -C'(2)   | - 57.9 | (8)  |
|--------|--------|----------|----------|--------|------|
| C(1)   | -PB(1) | -C'(1)   | -C'(6)   | 121.0  | (7)  |
| C(1)   | -PB(1) | -C''(1)  | -C''(2)  | 177.5  | (7)  |
| C(1)   | -PB(1) | -C''(1)  | -C''(6)  | -1.4   | (8)  |
| C''(1) | - PB(1 | L) -C(1) | -C(2)    | 61.7   | (8)  |
| C''(l) | - PB(] | .) -C(1) | -C(6)    | -119.4 | (7)  |
| PB(1)  | -C(1)  | -C(2)    | -C(3)    | -179.8 | (8)  |
| C(2)   | -C(1)  | -PB(1)   | -C'''(1) | -177.5 | (6)  |
| PB(1)  | -C(1)  | -C(6)    | -C(5)    | -179.4 | (8)  |
| C(6)   | -C(1)  | -PB(1)   | -C'''(1) | 1.4    | (6)  |
| C(2)   | -C(1)  | -C(6)    | -C(5)    | -0.4   | (13) |
| C(6)   | -C(1)  | -C(2)    | -C(3)    | 1.2    | (13) |
| C(1)   | -C(2)  | -C(3)    | -C(4)    | -1.5   | (14) |
| C(2)   | -C(3)  | -C(4)    | -C(5)    | 0.9    | (15) |
| C(3)   | -C(4)  | -C(5)    | -C(6)    | -0.1   | (14) |
| C(4)   | -C(5)  | -C(6)    | -C(1)    | -0.2   | (13) |

Primed atoms have symmetry operation:

| ' -            | -x,-y,z |
|----------------|---------|
| ·· _           | y,-x,-z |
| · · · <u>-</u> | -y,x,-z |

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $({\tt C_6H_5})_4{\tt Si}$ 

An \* indicates weak or extinct reflections not used in the final refinements.

| н   | K  | L      | 10Fo     | 10Fc      | Н        | ĸ  | L      | 10Fo     | 10Fc         | н      | к   | L      | 10Fo | 10Fc         |
|-----|----|--------|----------|-----------|----------|----|--------|----------|--------------|--------|-----|--------|------|--------------|
| 1   | 1  | 0      | 434      | 442       | 0        | 2  | 0      | 369      | 375          | 1      | 2   | 0      | 79   | 79           |
| 2   | 2  | Õ      | 455      | 448       | 1        | 3  | Õ      | 130      | 135          | 2      | 3   | Ő      | 109  | 107          |
| 3   | 3  | 0      | 429      | 419       | 0        | 4  | 0      | 41       | 41           | 1      | 4   | 0      | 5    | 3*           |
| 2   | 4  | 0      | 49       | 48        | 3        | 4  | 0      | 156      | 153          | 4      | 4   | 0      | 91   | 85           |
| 1   | 5  | 0      | 18       | 18        | 2        | 5  | 0      | 67       | 59           | 3      | 5   | 0      | 91   | 100          |
| 4   | 5  | 0      | 173      | 164       | 5        | 5  | 0      | 7        | 18*          | 0      | 6   | 0      | 134  | 129          |
| 1   | 6  | 0      | 99       | 100       | 2        | 6  | 0      | 298      | 296          | 3      | 6   | 0      | 218  | 211          |
| 4   | 6  | 0      | 165      | 175       | 5        | 6  | 0      | 7        | 14*          | 6      | 6   | 0      | 157  | 158          |
| 1   | 7  | 0      | 162      | 163       | 2        | 7  | 0      | 7        | 7×           | 3      | 7   | 0      | 92   | 92           |
| 4   | 7  | 0      | 25       | 24        | 5        | 7  | 0      | 107      | 105          | 6      | 7   | 0      | 49   | 47           |
| 7   | 7  | 0      | 108      | 115       | 0        | 8  | 0      | 188      | 192          | 1      | 8   | 0      | 50   | 46           |
| 2   | 8  | 0      | 155      | 157       | 3        | 8  | 0      | 7        | 12*          | 4      | 8   | 0      | 26   | 30           |
| 5   | 8  | 0      | 66       | 70        | 6        | 8  | 0      | 60       | 64           | 7      | 8   | 0      | 13   | 21*          |
| 8   | 8  | 0      | 127      | 137       | 1        | 9  | 0      | 295      | 302          | 2      | 9   | 0      | 10   | 10*          |
| 3   | 9  | 0      | 64       | 66        | 4        | 9  | 0      | 33       | 34           | 5      | 9   | 0      | 70   | 71           |
| 6   | 9  | 0      | /        | 11*       | 1        | 9  | 0      | 85       | 88           | 8      | 9   | 0      | 14   | 11*          |
| 9   | 9  | 0      | 10       | 18*       | 0        | 10 | 0      | 19       | 20           | 1      | 10  | 0      | 22   | 20           |
| 2   | 10 | 0      | 62       | 63        | 3        | 10 | 0      | 16       | 1.8*         | 4      | 10  | 0      | 9    | 16*          |
| 5   | 10 | 0      | 10       | 13*       | 6        | 10 | 0      | 44       | 44           | /      | 10  | 0      | 9    | 4*           |
| 8   | 10 | 0      | 72       | 72        | 9        | 10 | 0      | 3        | 16×          | 10     | 10  | 0      | 8    | 1,2 %        |
| 1   | 11 | 0      | 29       | 32        | 2        | 11 | 0      | 48       | 49           | 3      | 11  | 0      | 36   | 36           |
| 4 7 | 11 | 0      | 29       | 41        | С<br>0   | 11 | 0      | 49       | 47           | 0      | 11  | 0      | 27   | 20           |
| 10  | 11 | 0      | 00       | 04<br>17% | 0        | 11 | 0      | 12       | 12^          | 9      | 12  | 0      | 20   | 15×<br>15×   |
| 10  | 12 | 0      | 22<br>60 | 1/^<br>62 | 2<br>T T | 10 | 0      | 0V<br>2T | 54<br>05     | 2      | 12  | 0      | 20   | 20           |
| 1   | 12 | 0      | 35       | 21        | <u>۲</u> | 12 | 0      | 94<br>97 | 20           | 5      | 12  | 0      | 22   | - Jr<br>- 17 |
| 4   | 12 | 0      | 72       | 51        | 2        | 12 | 0      | 27       | 23           | 0<br>0 | 12  | 0      | 20   | 29           |
| 10  | 12 | n<br>N | 42       | 40        | 11       | 12 | 0      | 14       | 2.J*<br>1.5* | 12     | 12  | 0      | 10   | 6*           |
| 10  | 13 | 0      | 64       | 64<br>64  | 2        | 13 | 0<br>0 | 57       | 60           |        | 13  | 0<br>0 | 24   | 26           |
| 4   | 13 | Ő      | Q<br>Q   | 1*        | 5        | 13 | 0<br>0 | 12       | 20*          | 6      | 13  | õ      | 10   | 15*          |
| 7   | 13 | ñ      | 24       | 28        | 8        | 13 | ñ      | 23       | 10           | 9      | 13  | Ő      | 16   | 2*           |
| 10  | 13 | Ő      | 36       | 31        | 11       | 13 | Ő      | 23       | 17*          | 12     | 13  | Õ      | 12   | 3*           |
| 13  | 13 | õ      | 14       | 6*        | 0        | 14 | Õ      | 10       | 1*           | 1      | 14  | Õ      | 28   | 28           |
| 2   | 14 | õ      | 39       | 37        | 3        | 14 | Ō      | 30       | 25           | 4      | 14  | Ō      | 31   | 24           |
| 5   | 14 | 0      | 20       | 6*        | 6        | 14 | 0      | 18       | 27*          | 7      | 14  | 0      | 14   | 4*           |
| 8   | 14 | 0      | 26       | 28        | 9        | 14 | 0      | 20       | 20*          | 10     | 14  | 0      | 37   | 31           |
| 11  | 14 | 0      | 12       | 5*        | 12       | 14 | 0      | 9        | 13*          | 1      | 15  | 0      | 51   | 48           |
| 2   | 15 | 0      | 9        | 17*       | 3        | 15 | 0      | 47       | 42           | 4      | 15  | 0      | 11   | 1*           |
| 5   | 15 | 0      | 46       | 42        | 6        | 15 | 0      | 11       | 8*           | 7      | 15  | 0      | 15   | 21*          |
| 8   | 15 | 0      | 12       | 1*        | 9        | 15 | 0      | 12       | 16*          | 10     | 15  | 0      | 12   | 5*           |
| 0   | 16 | 0      | 35       | 28        | 1        | 16 | 0      | 29       | 3*           | 2      | 16  | 0      | 12   | 23*          |
| 3   | 16 | 0      | 7        | 3*        | 4        | 16 | 0      | 40       | 33           | 5      | 1.6 | 0      | 1.2  | 11*          |
| 6   | 16 | 0      | 5        | 11*       | 7        | 16 | 0      | 16       | 7*           | 8      | 1.6 | 0      | 1.2  | 11*          |
| 9   | 16 | 0      | 12       | 3*        | 1        | 17 | 0      | 12       | 9*           | 2      | 17  | 0      | 8    | 2*           |
| 3   | 17 | 0      | 15       | 8*        | 4        | 17 | 0      | 12       | 9*           | 5      | 17  | 0      | 16   | 16*          |
| 6   | 17 | 0      | 12       | 7*        | 7        | 17 | 0      | 8        | 6*           | 0      | 18  | 0      | 28   | 20           |
| 1   | 18 | 0      | 13       | 4*        | 2        | 18 | 0      | 12       | 8*           | 3      | 18  | 0      | 12   | 2*           |

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $(C_6H_5)_4$ Si

| Н      | к          | L | 10Fo | 10Fc               | Н                 | к        | L | 10Fo     | 10Fc      | Н      | K       | L      | 10Fo      | 10Fc        |
|--------|------------|---|------|--------------------|-------------------|----------|---|----------|-----------|--------|---------|--------|-----------|-------------|
|        | 18         | 0 | 13   | 17*                | 0                 | 1        | 1 | 253      | 232       | 0      | 2       | 1      | 966       | 1023        |
| 1      | 2          | ĩ | 519  | 505                | 0                 | 3        | 1 | 218      | 212       | 1      | 3       | ī      | 449       | 439         |
| 2      | 3          | ī | 320  | 305                | 0                 | 4        | 1 | 224      | 211       | 1      | 4       | 1      | 306       | 300         |
| 2      | 4          | 1 | 120  | 115                | 3                 | 4        | 1 | 109      | 108       | 0      | 5       | 1      | 307       | 293         |
| 1      | 5          | 1 | 93   | 87                 | 2                 | 5        | 1 | 141      | 146       | 3      | 5       | 1      | 172       | 154         |
| 4      | 5          | 1 | 145  | 146                | 0                 | 6        | 1 | 127      | 125       | 1      | 6       | 1      | 195       | 194         |
| 2      | 6          | 1 | 158  | 150                | 3                 | 6        | 1 | 36       | 40        | 4      | 6       | 1      | 97        | 97          |
| 5      | 6          | 1 | 108  | 110                | 0                 | 7        | 1 | 156      | 164       | 1      | 7       | 1      | 19        | 23          |
| 2      | 7          | 1 | 150  | 155                | 3                 | 7        | 1 | 42       | 40        | 4      | 7       | 1      | 47        | 52          |
| 5      | 7          | 1 | 24   | 25                 | 6                 | 7        | 1 | 146      | 153       | 0      | 8       | 1      | 46        | 47          |
| 1      | 8          | 1 | 148  | 153                | 2                 | 8        | 1 | 7        | 2*        | 3      | 8       | 1      | 187       | 187         |
| 4      | 8          | 1 | 58   | 59                 | 5                 | 8        | 1 | 86       | 88        | 6      | 8       | 1      | 38        | 40          |
| /      | 8          | 1 | 105  | 108                | 0                 | 9        | 1 | 50       | 52        | 1      | 9       | 1      | 65        | 69          |
| 2      | 9          | 1 | 133  | 136                | 3                 | 9        | 1 | 125      | 127       | 4      | 9       | 1      | 48        | 51          |
| 5      | 9          | 1 | 11   | 2/*                | 6                 | 10       | 1 | 100      | 102       | 1      | 10      | L<br>1 | 57        | 57<br>C0    |
| Ö<br>0 | 10         | 1 | 11   | 2.3*               | 2                 | 10       | 1 | 43<br>90 | 47        | L<br>A | 10      | 1      | 00<br>//C | 00          |
| 5      | 10         | 1 | 36   | 0Z<br>37           | 5                 | 10       | 1 | 20       | 18        | 4 7    | 10      | 1      | 40        | 40<br>75    |
| ر<br>و | 10         | 1 | 37   | 73                 | 0                 | 10       | 1 | 22<br>10 | 40        | ,<br>0 | 11      | 1      | 66        | 60          |
| 1      | 11         | 1 | 127  | 126                | 2                 | 11       | 1 | 74       | 78        | 0<br>3 | 11      | 1      | 9         | 5*          |
| 4      | 11         | 1 | 127  | 14*                | 5                 | 11       | 1 | 21       | 27*       | 6      | 11      | 1      | 45        | 49          |
| 7      | 11         | 1 | 21   | 26*                | 8                 | 11       | ĩ | 31       | 28        | 9      | 11      | ī      | 10        | 15*         |
| 10     | 11         | ī | 45   | 39                 | 0                 | 12       | 1 | 18       | 26*       | 1      | 12      | ī      | 49        | 47          |
| 2      | 12         | ī | 26   | 25                 | 3                 | 12       | 1 | 34       | 31        | 4      | 12      | 1      | 36        | 32          |
| 5      | 12         | 1 | 32   | 25                 | 6                 | 12       | 1 | 9        | 10*       | 7      | 12      | 1      | 17        | 29*         |
| 8      | 12         | 1 | 22   | 25*                | 9                 | 12       | 1 | 35       | 36        | 10     | 12      | 1      | 19        | 19*         |
| 11     | 12         | 1 | 10   | 15*                | 0                 | 13       | 1 | 60       | 56        | 1      | 13      | 1      | 22        | 18          |
| 2      | 13         | 1 | 40   | 37                 | 3                 | 13       | 1 | 10       | 9*        | 4      | 13      | 1      | 52        | 49          |
| 5      | 13         | 1 | 23   | 16                 | 6                 | 13       | 1 | 42       | 42        | 7      | 13      | 1      | 20        | 19*         |
| 8      | 13         | 1 | 8    | 19*                | 9                 | 13       | 1 | 11       | 10*       | 10     | 13      | 1      | 10        | 12*         |
| 11     | 13         | 1 | 12   | 12*                | 12                | 13       | 1 | 24       | 21*       | 0      | 14      | 1      | 32        | 15×         |
| 1      | 14         | 1 | 51   | 48                 | 2                 | 14       | 1 | 8        | 22*       | 3      | 14      | 1      | 43        | 39          |
| 4      | 14         | 1 | 15   | 12*                | 5                 | 14       | 1 | 41       | 38        | 6      | 14      | 1      | 11        | 9*          |
| 7      | 14         | 1 | 27   | 25                 | 8                 | 14       | 1 | 11       | 14*       | 9      | 14      | 1      | 21        | <u>2</u> 0* |
| 10     | 14         | 1 | 12   | 14*                | 11                | 14       | 1 | 12       | 8*        | 0      | 15      | 1      | 31        | 29          |
| 1      | 15         | 1 | 31   | 33                 | 2                 | 15       | 1 | 23       | 22*       | 3      | 15      | 1      | 20        | 17*         |
| 4      | 15         | 1 | 9    | 22*                | 5                 | 15       | 1 | 8        | 2*        | 6      | 15      | 1      | 21        | 26*         |
| 7      | 15         | 1 | 12   | 13*                | 8                 | 15       | 1 | 22       | 26*       | 9      | 15      | 1      | 12        | 12*         |
| 10     | 15         | 1 | 19   | 16*                | 0                 | 16       | 1 | 30       | 13*       | 1      | 16      | 1      | 10        | 23*         |
| 2      | 16         | Ţ | 11   | 11*                | 3                 | 16       | 1 | 20       | 21*       | 4      | 16      | 1      | 12        | *8          |
| د<br>ہ | 10         | 1 | 13   | 20*                | 5                 | 16       | 1 | 10       | 6×        | /      | 10      | 1      | 12        | 20*         |
| 0<br>1 | 10         | 1 | 12   | 0.v                | <del>ر</del><br>د | 10       | 1 | 12       | 14*       | 0      | 1/      | 1      | 14        | 21*         |
| 7<br>7 | 17         | 1 | 10   | ५×<br>१७७          | ۲<br>د            | 17       | 1 | 20       | 22        | 3      | 17      | 1      | 12        | ۲×<br>۱۱.۰  |
| 7      | 17         | 1 | 10   | <u>ጽ</u> ተ<br>፲/ ኃ | <u>ہ</u>          | 10       | 1 | 10       | 7×<br>∩∿  | 0      | 10      | 1      | 10        | 100         |
| 2      | 18         | 1 | 10   | 8*<br>0^           | บ<br>ว            | 10<br>19 | 1 | 12       | ۶.۴<br>۸۸ | 1      | U<br>T0 | 1<br>2 | 204       | עע<br>272   |
| ō      | 1          | 2 | 160  | 153                | 1                 | 1        | 2 | 468      | ፈለፍ       | 0      | 2       | 2      | 230       | 279<br>28   |
| ĩ      | 2          | 2 | 278  | 230                | -<br>2            | 2        | 2 | 354      | 227       | 0      | 2       | 2      | 70<br>202 | 20          |
| *      | <b>4</b> - | ~ | 240  | 200                | 2                 | 4        | 4 | 554      |           | U      | J       | 2      | 371       | 500         |

ł

Ş,

1007

1

4

•

| H      | К  | L | 10Fo     | 10Fc      | н       | K   | L   | 10Fo     | 10Fc      | н      | К    | L | 10Fo | 10Fc     |
|--------|----|---|----------|-----------|---------|-----|-----|----------|-----------|--------|------|---|------|----------|
| 1      | 3  | 2 | 302      | 293       | 2       | 3   | 2   | 154      | 149       | 3      | 3    | 2 | 307  | 287      |
| 0      | 4  | 2 | 317      | 304       | 1       | 4   | 2   | 148      | 128       | 2      | 4    | 2 | 336  | 321      |
| 3      | 4  | 2 | 190      | 181       | 4       | 4   | 2   | 32       | 35        | 0      | 5    | 2 | 118  | 110      |
| 1      | 5  | 2 | 309      | 295       | 2       | 5   | 2   | 170      | 167       | 3      | 5    | 2 | 106  | 105      |
| 4      | 5  | 2 | 83       | 86        | 5       | 5   | 2   | 93       | 96        | 0      | 6    | 2 | 26   | 31       |
| 1      | 6  | 2 | 135      | 127       | 2       | 6   | 2   | 93       | 97        | 3      | 6    | 2 | 50   | 46       |
| 4      | 6  | 2 | 108      | 112       | 5       | 6   | 2   | 52       | 53        | 6      | 6    | 2 | 107  | 1.08     |
| 0      | 7  | 2 | 8        | 11*       | 1       | 7   | 2   | 70       | 75        | 2      | 7    | 2 | 46   | 49       |
| 3      | 7  | 2 | 119      | 125       | 4       | 7   | 2   | 109      | 110       | 5      | 7    | 2 | 130  | 129      |
| 6      | 7  | 2 | 65       | 64        | 7       | 7   | 2   | 83       | 89        | 0      | 8    | 2 | 84   | 86       |
| 1      | 8  | 2 | 97       | 100       | 2       | 8   | 2   | 136      | 138       | 3      | 8    | 2 | 70   | 71       |
| 4      | 8  | 2 | 124      | 128       | 5       | 8   | 2   | 112      | 112       | 6      | 8    | 2 | 68   | 69       |
| 7      | 8  | 2 | 43       | 46        | 8       | 8   | 2   | 57       | 56        | 0      | 9    | 2 | 20   | 23       |
| 1      | 9  | 2 | 22       | 24        | 2       | 9   | 2   | 40       | 43        | 3      | 9    | 2 | 63   | 66       |
| 4      | 9  | 2 | 86       | 92        | 5       | 9   | 2   | 66       | 67        | 6      | 9    | 2 | 37   | 37       |
| 7      | 9  | 2 | 29       | 33        | 8       | 9   | 2   | 9        | 13*       | 9      | 9    | 2 | 66   | 65       |
| 0      | 10 | 2 | 80       | 84        | L       | 10  | 2   | 8        | 2*        | 2      | 10   | 2 | 71   | 69       |
| 3      | 10 | 2 | 46       | 50        | 4       | 10  | 2   | 104      | 106       | 5      | 10   | 2 | 16   | 19*      |
| 6      | 10 | 2 | 56       | 59        | /       | 10  | 2   | 1/       | 22*       | 8      | 10   | 2 | 39   | 36       |
| 9      | 10 | 2 | 19       | 22*       | 10      | 10  | 2   | 3/       | 38        | 0      | 11   | 2 | 10   | 3%       |
| 1      | 11 | 2 | /5       | /8        | 2       | 11  | 2   | 31       | 33        | 5      | 11   | 2 | 102  | 10Z      |
| 4      | 11 | 2 | 21       | 25*       | 5       | 11  | 2   | 51       | 49        | 6      | 11   | 2 | 50   | 52       |
| 10     | 11 | 2 | 29       | 25        | 0<br>11 | 11  | 2   | 10       | 16*       | 9      | 11   | 2 | 40   | 30       |
| 10     | 10 | 2 | 11       | 1*        | 11      | 11  | 2   | 29       | 20        | 0      | 12   | 2 | 40   | 47       |
| L<br>A | 10 | 2 | 20       | 27        | 2       | 12  | 2   | 20       | 22        | د<br>۲ | 10   | 2 | 33   | 25       |
| 4      | 12 | 2 | 12       | 39<br>16  | ر<br>ہ  | 12  | 2   | 3U<br>22 | 2C<br>2C* | 0      | 10   | 2 | 27   | «٥<br>در |
| 10     | 12 | 2 | 21       | 10^       | 11      | 12  | 2   | 23       | 20^       | 10     | 12   | 2 | 20   | 24<br>26 |
| 10     | 12 | 2 | 13       | )1<br>1/4 | 1       | 12  | 2   | 50       | · · · ·   | 21     | 12   | 2 | 52   | 20       |
| 2      | 12 | 2 | LD<br>61 | 14^       | 1<br>/  | 13  | 2   | 16       | 47        | ۲<br>۲ | 13   | 2 | 28   | 30       |
| 5      | 13 | 2 | 41       | 45        |         | 13  | 2   | 40       | 2 2 2 2   | 8      | 13   | 2 | 20   | 15*      |
| 0<br>0 | 13 | 2 | 26       | 26        | 10      | 13  | 2   | 10       | 15*       | 11     | 13   | 2 | 19   | 1.5      |
| 12     | 13 | 2 | 12       | 20<br>1*  | 10      | 14  | 2   | 44       | 29        | 1      | 14   | 2 | 23   | 23       |
| 2      | 1/ | 2 | 30       | 33        | 3       | 14  | 2   | 11       | 22        | 4      | 14   | 2 | 2.2  | 24       |
| 5      | 14 | 2 | 20       | 13*       | 6       | 14  | 2   | 22       | 22.0      | 7      | 14   | 2 | 11   | 8*       |
| 8      | 14 | 2 | 15       | 19*       | q       | 14  | 2   | 12       | 7*        | 10     | 14   | 2 |      | 11*      |
| 11     | 14 | 2 | 12       | 6*        | 0       | 15  | 2   | 17       | 16*       | 10     | 15   | 2 | 24   | 26       |
| 2      | 15 | 2 | 11       | 2*        | 3       | 15  | 2   | 11       | 14*       | 4      | 15   | 2 | 6    | 10*      |
| 5      | 15 | 2 | 14       | 13*       | 6       | 15  | . 2 | 5        | 12*       | 7      | 15   | 2 | 15   | 19*      |
| 8      | 15 | 2 | 12       | 8*        | g       | 15  | 2   | 11       | 13*       | 10     | 15   | 2 | 1.8  | 12*      |
| õ      | 16 | 2 | 12       | 21*       | 1       | 16  | 2   | 4        | 5*        | 2      | 16   | 2 | 19   | 18*      |
| 3      | 16 | 2 | 14       | 7*        | 4       | 16  | 2   | 20       | 12*       | 5      | 16   | 2 | 20   | 10*      |
| 6      | 16 | 2 | 12       | 17*       | 7       | 16  | 2   |          | <br>9*    | 8      | 16   | 2 | 19   | 11*      |
| 0      | 17 | 2 | 14       | 8*        | 1       | 17  | 2   | 25       | 24*       | 2      | 17   | 2 | 12   | 10*      |
| 3      | 17 | 2 | 17       | 16*       | - 4     | 17  | 2   | 12       | 4*        | 5      | 17   | 2 | 10   | 11*      |
| 6      | 17 | 2 | 10       | 2*        | C       | 18  | 2   | 12       | 11*       | 1      | . 18 | 2 | 13   | 3*       |
| 2      | 18 | 2 | 24       | 10*       | Ċ       | 1   | 3   | 54       | 59        | (      | ) 2  | 3 | 229  | 208      |
| 1      | 2  | 3 | 133      | 130       | Ċ       | ) 3 | 3   | 111      | 107       | 1      | . 3  | 3 | 124  | 110      |

•,

t

٤

1

2

3

। र्

a

| Н        | K      | L | 10Fo | 10Fc      | н      | K      | L   | 10Fo | 10Fc     | Н  | к      | L | 10Fo     | 10Fc      |
|----------|--------|---|------|-----------|--------|--------|-----|------|----------|----|--------|---|----------|-----------|
|          | 3      | 3 | 348  | 329       | 0      | 4      | 3   | 177  | 170      | 1  | 4      | 3 | 107      | 99        |
| 2        | 4      | 3 | 27   | 29        | 3      | 4      | 3   | 290  | 282      | 0  | 5      | 3 | 52       | 44        |
| 1        | 5      | 3 | 67   | 67        | 2      | 5      | 3   | 138  | 142      | 3  | 5      | 3 | 73       | 75        |
| 4        | 5      | 3 | 209  | 216       | 0      | 6      | 3   | 72   | 65       | 1  | 6      | 3 | 116      | 116       |
| 2        | 6      | 3 | 90   | 89        | 3      | 6      | 3   | 197  | 200      | 4  | 6      | 3 | 74       | 76        |
| 5        | 6      | 3 | 181  | 187       | 0      | 7      | 3   | 83   | 85       | 1  | 7      | 3 | 64       | 59        |
| 2        | 7      | 3 | 54   | 55        | 3      | 7      | 3   | 64   | 66       | 4  | 7      | 3 | 157      | 157       |
| 5        | 7      | 3 | 61   | 64        | 6      | 7      | 3   | 14   | 16*      | 0  | 8      | 3 | 8        | 13*       |
| 1        | 8      | 3 | 28   | 25        | 2      | 8      | 3   | 51   | 54       | 3  | 8      | 3 | 21       | 22        |
| 4        | 8      | 3 | 46   | 46        | 5      | 8      | 3   | 75   | 79       | 6  | 8      | 3 | 86       | 85        |
| 7        | 8      | 3 | 34   | 33        | 0      | 9      | 3   | 80   | 78       | 1  | 9      | 3 | 38       | 41        |
| 2        | 9      | 3 | 42   | 45        | 3      | 9      | 3   | 45   | 47       | 4  | 9      | 3 | 79       | 79        |
| 5        | 9      | 3 | 35   | 39        | 6      | 9      | 3   | 36   | 36       | 7  | 9      | 3 | 31       | 33        |
| 8        | 9      | 3 | 59   | 58        | 0      | 10     | 3   | 10   | 8*       | 1  | 10     | 3 | 81       | 83        |
| 2        | 10     | 3 | 52   | 53        | 3      | 10     | 3   | 55   | 58       | 4  | 10     | 3 | 16       | 22*       |
| 5        | 10     | 3 | 76   | 78        | 6      | 10     | 3   | 5    | 20*      | 7  | 10     | 3 | 44       | 43        |
| 8        | 10     | 3 | 10   | 10*       | 9      | 10     | 3   | 38   | 38       | 0  | 11     | 3 | 77       | 78        |
| 1        | 11     | 3 | 9    | 17*       | 2      | 11     | 3   | 64   | 65       | 3  | 11     | 3 | 14       | 14*       |
| 4        | 11     | 3 | 84   | 83        | 5      | 11     | 3   | 5    | 19*      | 6  | 11     | 3 | 45       | 43        |
| 7        | 11     | 3 | 24   | 21        | 8      | 11     | 3   | 46   | 42       | 9  | 11     | 3 | 11       | 8*        |
| 10       | 11     | 3 | 12   | 17*       | 0      | 12     | 3   | 13   | 14*      | 1  | 12     | 3 | 61       | 60        |
| 2        | 12     | 3 | 19   | 18*       | 3      | 12     | 3   | 59   | 60       | 4  | 12     | 3 | 15       | 15*       |
| 5        | 12     | 3 | 62   | 60        | 6      | 12     | 3   | 14   | 21*      | 7  | 12     | 3 | 38       | 35        |
| 8        | 12     | 3 | 11   | 2*        | 9      | 12     | 3   | 22   | 24*      | 10 | 12     | 3 | 19       | 17*       |
| 11       | 12     | 3 | 12   | 16*       | 0      | 13     | 3   | 10   | 17*      | 1  | 13     | 3 | 10       | 20*       |
| 2        | 13     | 3 | 29   | 31        | 3      | 13     | 3   | 10   | 5*       | 4  | 13     | 3 | 44       | 41        |
| 5        | 13     | 3 | 18   | 12*       | 6      | 13     | 3   | 34   | 30       | 7  | 13     | 3 | 11       | 16*       |
| 8        | 13     | 3 | 34   | 26        | 9      | 13     | 3   | 27   | 17       | 10 | 13     | 3 | 3        | 20*       |
| 11       | 13     | 3 | 12   | 6*        | 12     | 13     | 3   | 12   | 12*      | 0  | 14     | 3 | 11       | 1*        |
| 1        | 14     | 3 | 7    | 14*       | 2      | 14     | 3   | 16   | 11*      | 3  | 14     | 3 | 13       | 17*       |
| 4        | 14     | 3 | 18   | 17*       | 5      | 14     | 3   | 22   | 18*      | 6  | 14     | 3 | 9        | 7*        |
| /        | 14     | 3 | 27   | 21        | 8      | 14     | 3   | 14   | 6*       | 9  | 14     | 3 | 12       | 12*       |
| TO       | 14     | 3 | 12   | 13*       | 11     | 14     | 3   | 9    | 13*      | 0  | 15     | 3 | 15       | 16*       |
| 1        | 15     | 3 | 20   | 21*       | 2      | 15     | 3   | 14   | 22*      | 3  | 15     | 3 | 5        | 4*        |
| 4        | 15     | 3 | 20   | 19*       | 5      | 15     | 3   | 12   | 9*       | 6  | 15     | 3 | 13       | 10*       |
| /        | 15     | 3 | 12   | 3*<br>101 | 8      | 15     | 3   | 12   | 2*       | 9  | 15     | 3 | 13       | 10*       |
| 0        | 10     | 3 | 12   | 10*       | Ļ      | 10     | 3   | /    | 11*      | 2  | 16     | 3 | 16       | 13*       |
| 5        | 10     | 3 | 10   | 16*       | 4 7    | 10     | 3   | 12   | 6*<br>0. | 5  | 16     | 3 | 5        | 11*       |
| 0        | 10     | 3 | 12   | 12*       | /      | 10     | 5   | 12   | 9*       | 0  | 1/     | 3 | 14       | ×د<br>۱۰  |
| L<br>L   | 17     | 3 | 14   | 11*       | 2      | 1/     | 3   | 12   | 11*      | 3  | 1/     | 3 |          | 4*        |
| 4        | 1      | 5 | 115  | 9×        | 2      | 1/     | 3   | 13   | 13*      | 0  | 0      | 4 | 119      | 118       |
| 1        | 2<br>1 | 4 | 104  | 107       | 1      | 1      | 4   | 43   | 4/       | 0  | 2      | 4 | 118      | 110       |
| 1<br>1   | 2      | 4 | 124  | 120       | 2      | 2      | 4   | 200  | 257      | 0  | 5      | 4 | 6/       | 63        |
| U<br>T   | У      | 4 | 11   | 10-       | 2      | 2      | 4   | /1   | / 3      | 3  | د ز    | 4 | 235      | 226       |
| บ<br>ว   | 4      | 4 | 11   | 10×       | 1      | 4      | 4   | 20   | 20       | 2  | 4<br>E | 4 | 90       | 88        |
| ر<br>۱   | 4<br>5 | 4 | 40   | 40<br>63  | 4      | 4      | 4   | 200  | 204      | 0  | 2      | 4 | 0<br>170 | 9×<br>1=0 |
| <u>۲</u> | ר<br>ג | 4 | 153  | 150       | ۲<br>د | ך<br>ב | 4   | 11.1 | 47       | 2  | 5      | 4 | 11/      | 117       |
| ••       | J      |   | 700  | 100       | J      | ر<br>ر | - 4 | 144  | 144      | 0  | 0      | 4 | 114      | 114       |

M126 SF, 5

•

7

\* \* \* \*

1 1 5

1

4

ì

ないできょう そうしょう ちょうちょう ないかい くんちょう ちょうしょう ちょうしょう しょうてき しょうしょう かいせん ちょうしょう ないないない ちょうしょう

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR ( $C_6H_5$ ) $_4Si$ 

| H      | К      | L      | 10Fo     | 10Fc       | Н      | 1      | к      | L      | 10Fo    | 10Fc               | н      | К           | L      | 10F0      | 10Fc               |
|--------|--------|--------|----------|------------|--------|--------|--------|--------|---------|--------------------|--------|-------------|--------|-----------|--------------------|
| 1      | 6      | 4      | 53       | 57         | 2      | ,      | 6      | 4      | 97      | 94                 | 3      | 6           | 4      | 99        | 101                |
| 4      | 6      | 4      | 119      | 121        | 5      |        | 6      | 4      | 66      | 66                 | 6      | 6           | 4      | 109       | 110                |
| 0      | 7      | 4      | 35       | 40         | 1      |        | 7      | 4      | 76      | 78                 | 2      | 7           | 4      | 57        | 56                 |
| 3      | 7      | 4      | 94       | 98         | 4      |        | 7      | 4      | 77      | 78                 | 5      | 7           | 4      | 61        | 61                 |
| 6      | 7      | 4      | 100      | 105        | 7      |        | 7      | 4      | 21      | 17                 | 0      | 8           | 4      | 30        | 29                 |
| 1      | 8      | 4      | 38       | 38         | 2      |        | 8      | 4      | 25      | 23                 | 3      | 8           | 4      | 59        | 62                 |
| 4      | 8      | 4      | 51       | 49         | 5      |        | 8      | 4      | 56      | 58                 | 6      | 8           | 4      | 33        | 34                 |
| 7      | 8      | 4      | 34       | 32         | 8      |        | 8      | 4      | 38      | 38                 | 0      | 9           | 4      | 31        | 32                 |
| 1      | 9      | 4      | 30       | 32         | 2      |        | 9      | 4      | 19      | 24*                | 3      | 9           | 4      | 40        | 44                 |
| 4      | 9      | 4      | 30       | 35         | 5      |        | 9      | 4      | 65      | 64                 | 6      | 9           | 4      | 15        | 12*                |
| 7      | 9      | 4      | 37       | 32         | 8      |        | y<br>o | 4      | 10      | 12*                | 9      | 9           | 4      | 48        | 47                 |
| 0      | 10     | 4      | 78       | 78         | 1      | 1      | 0      | 4      | 26      | 28                 | 2      | 10          | 4      | 56        | 55                 |
| 3      | 10     | 4      | 20       | 23*        | 4      | · 1    | 0      | 4      | 65      | 65                 | 5      | 10          | 4      | 31        | 35                 |
| 6      | 10     | 4      | 28       | 31         | 10     | 1      | 0      | 4      | 21      | 20*                | 8      | 10          | 4      | 34        | 32                 |
| 9      | 10     | 4      |          | 11*        | 10     | 1      | 1      | 4      | 27      | 35                 | 0      | 11          | 4      | 10        | 4x<br>51           |
| 1      | 11     | 4      | 10       | 69<br>224  | 2      |        | 1      | 4      | 50      | 50                 | د<br>۲ | 11          | 4      | 57<br>10  | 104<br>104         |
| 4 7    | 11     | 4      | 14       | 22^<br>16* | ۔<br>و | 1      | 1      | 4      | 11      | JI<br>7%           | 0<br>0 | 11          | 4      | 19        | 28                 |
| 10     | 11     | 4      | 11       | 15*        | 11     | · 1    | 1      | 4      | 11      | /^<br>11*          | 0      | 12          | 4      | 50        | 48                 |
| 1      | 12     | 4      | 15       | 20*        | 11     | 1      | 2      | 4      | 27      | 31                 | 3      | 12          | 4      | 13        | 12*                |
| 1      | 12     | 4      | 57       | 59         | 2      | 1      | 2      | 4      | 27<br>9 | 13*                | 6      | 12          | 4      | 29        | 26                 |
| 7      | 12     | 4      | 31       | 19         | -      | 1      | 2      | 4      | 32      | 29                 | 9      | 12          | 4      | - 3       | 13*                |
| 10     | 12     | 4      | 18       | 16*        | 11     | 1      | 2      | 4      | 12      | 3*                 | 12     | 12          | 4      | 9         | 15*                |
| 0      | 13     | 4      | 14       | 13*        |        | 1      | .3     | 4      | 8       | 18*                | 2      | 13          | 4      | 9         | 4*                 |
| 3      | 13     | 4      | 28       | 27         | Ĺ      | 1      | .3     | 4      | 25      | 21                 | 5      | 13          | 4      | 33        | 35                 |
| 6      | 13     | 4      | 9        | 14*        | -      | 1      | 3      | 4      | 6       | 19*                | 8      | 13          | 4      | 9         | 4*                 |
| 9      | 13     | 4      | 17       | 19*        | 10     | ) 1    | .3     | 4      | 12      | 6*                 | 11     | 13          | 4      | 24        | 14*                |
| 0      | 14     | 4      | 11       | 11*        | 1      | . 1    | .4     | 4      | 10      | 11*                | 2      | 14          | 4      | 11        | 17*                |
| 3      | 14     | 4      | 7        | 14*        | L      | + 1    | 4      | 4      | 27      | 21                 | 5      | 14          | 4      | 11        | 19*                |
| 6      | 14     | 4      | 24       | 14*        | -      | ' 1    | .4     | 4      | 12      | 7*                 | 8      | 14          | 4      | 12        | 13*                |
| 9      | 14     | 4      | 12       | 16*        | 10     | ) 1    | 4      | 4      | 13      | 9*                 | C      | 15          | 4      | 12        | 7×                 |
| 1      | 15     | 4      | 16       | 18*        |        | 2 1    | 5      | 4      | 16      | 18*                | 3      | 15          | 4      | 20        | 16*                |
| 4      | 15     | 4      | 21       | 16*        | 1      | 5 1    | .5     | 4      | 12      | 13*                | 6      | 15          | 4      | 12        | 6*                 |
| 7      | 15     | 4      | 31       | 7*         | 1      | 3 1    | .5     | 4      | 12      | 4*                 | C      | 16          | 4      | 12        | 6*                 |
| 1      | 16     | 4      | 12       | 2*         |        | 2 1    | 16     | 4      | 16      | 17*                | 1      | 16          | 4      | 12        | 10*                |
| 4      | 16     | 4      | 14       | 6*         |        | 5 1    | -6     | 4      | 20      | 16*                | 6      | 16          | 4      | 21        | 6*                 |
| 0      | 17     | 4      | 16       | 3*         |        | []     | L7     | 4      | 12      | 7*                 | 2      | 17          | 4      | 12        | 9*<br>55           |
| 3      | 17     | 4      | 17       | 9*         | 0      | )      | 1      | 5      | 70      | 70                 | (      | 2           | 5      | 57        | 55                 |
| 1      | 2      | 5      | 45       | 44         | 1      | )      | 3      | 5      | 160     | 162                | J      | . 3         | 5      | 149       | 146                |
| 2      | 3      | 5      | 135      | 136        | (      | )      | 4      | 5      | 74      | 76                 | 1      | 4           | 5      | 126       | 125                |
| 2      | 4      | 5      | 44       | 45         |        | 3      | 4      | 5      | 88      | 89                 | (      | 5           | 2      | 89        | 88<br>57           |
| 1      | 5      | 5      | 23       | 25         |        | 2      | 5      | 5      | 102     | 99                 | -      | · )         | 2      | 102       | 24<br>1 0 0        |
| 4      | 5      | 5      | 3/       | 38         | (      | ן<br>ר | 6      | 5      | 49      | 51                 | 1      | . 6         | )<br>1 | 103       | 100<br>21          |
| 2      | 6      | 5      | 42       | 42         |        | 5      | ט<br>ד | 2      | 66      | 65<br>/ E          | 1      | + 6<br>-7   | )<br>ב | 23        | 21<br>21           |
| ל<br>ה | 6<br>7 | 2      | 106      | τυq        | 1      | J      | /<br>7 | 2      | 45      | 40                 |        | . /         | 5      | 06<br>TO  | ረዓ <u>ኛ</u><br>103 |
| Z      | /<br>7 | )<br>E | /כ<br>רד | در<br>70   |        | ງ<br>ເ | /<br>7 | 2      | 1/      | ረ <b>4</b> *<br>ናስ |        | י א<br>ס ר  | )<br>5 | 30<br>117 | 50                 |
| כ<br>1 | /<br>2 | ר<br>ק | 12       | 50         |        | 2      | ,<br>8 | ך<br>ב | 47      | 50                 |        | , 0<br>1, 8 | 5      | 37        | 34                 |
| T.     | 0      | J      | -+0      | 20         |        | ~      | 9      | 2      | -+0     |                    | -      |             | 5      |           | ~ ~                |

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR ( $\rm C_{6}H_{5})_{4}Si$ 

-

;

7

,

| H  | К   | L | 10Fo | 10Fc | ł | ł | к  | L | 10Fo | 10Fc | Н  | ĸ  | L   | 10Fo | 10Fc |
|----|-----|---|------|------|---|---|----|---|------|------|----|----|-----|------|------|
| 4  | 8   | 5 | 73   | 77   |   | 5 | 8  | 5 | 85   | 84   | 6  | 8  | 5   | 10   | 25*  |
| 7  | 8   | 5 | 38   | 37   | ( | ) | 9  | 5 | 52   | 59   | 1  | 9  | 5   | 34   | 36   |
| 2  | 9   | 5 | 38   | 38   |   | } | 9  | 5 | 8    | 18*  | 4  | 9  | 5   | 73   | 72   |
| 5  | 9   | 5 | 32   | 32   | e | 5 | 9  | 5 | 9    | 16*  | 7  | 9  | 5   | 28   | 28   |
| 8  | 9   | 5 | 37   | 36   | ( | ) | 10 | 5 | 10   | 13*  | 1  | 10 | 5   | 40   | 40   |
| 2  | 1.0 | 5 | 25   | 29   | - | 3 | 10 | 5 | 31   | 33   | 4  | 10 | 5   | 21   | 24*  |
| 5  | 10  | 5 | 42   | 43   | e | 5 | 10 | 5 | 31   | 26   | 7  | 10 | 5   | 16   | 20*  |
| 8  | 10  | 5 | 23   | 23*  | 9 | ) | 10 | 5 | 29   | 26   | 0  | 11 | 5   | 20   | 13*  |
| 1  | 11  | 5 | 24   | 21   | 2 | 2 | 11 | 5 | 34   | 31   | 3  | 11 | 5   | 17   | 16*  |
| 4  | 11  | 5 | 40   | 39   | - | 5 | 11 | 5 | 9    | 13*  | 6  | 11 | 5   | 4    | 14*  |
| 7  | 11  | 5 | 10   | 15*  | 8 | 3 | 11 | 5 | 22   | 19*  | 9  | 11 | 5   | 12   | 2*   |
| 10 | 11  | 5 | 10   | 21*  | ( | ) | 12 | 5 | 27   | 24   | 1  | 12 | 5   | 45   | 42   |
| 2  | 12  | 5 | 17   | 16*  |   | 3 | 12 | 5 | 26   | 28   | 4  | 12 | 5   | 6    | 11*  |
| 5  | 12  | 5 | 11   | 17*  | e | 5 | 12 | 5 | 18   | 21*  | 7  | 12 | 5   | 14   | 15*  |
| 8  | 12  | 5 | 10   | 5*   | 9 | ) | 12 | 5 | 17   | 10*  | 10 | 12 | 5   | 12   | 3*   |
| 11 | 12  | 5 | 11   | 15*  | ( | ) | 13 | 5 | 11   | 16*  | 1  | 13 | 5   | 11   | 15*  |
| 2  | 13  | 5 | 31   | 31   |   | 3 | 13 | 5 | 14   | 12*  | 4  | 13 | 5   | 7    | 10*  |
| 5  | 13  | 5 | 10   | 4*   | 6 | 5 | 13 | 5 | 24   | 15*  | 7  | 13 | 5   | 17   | 6*   |
| 8  | 13  | 5 | 16   | 16*  | 9 | } | 13 | 5 | 12   | 6*   | 10 | 13 | 5   | 23   | 14*  |
| 0  | 14  | 5 | 11   | 5*   | 1 | L | 14 | 5 | 18   | 17*  | 2  | 14 | 5   | 22   | 18*  |
| 3  | 14  | 5 | 13   | 16*  | L | ŧ | 14 | 5 | 12   | 9*   | 5  | 14 | 5   | 30   | 24   |
| 6  | 14  | 5 | 14   | 3*   | - | 7 | 14 | 5 | 31   | 27   | 8  | 14 | 5   | 12   | 8*   |
| 0  | 15  | 5 | 23   | 19*  | 1 | L | 15 | 5 | 12   | 5*   | 2  | 15 | 5   | 24   | 20*  |
| 3  | 15  | 5 | 11   | 9*   | L | Ļ | 15 | 5 | 27   | 18   | 5  | 15 | 5   | 12   | 4*   |
| 6  | 15  | 5 | 18   | 16*  | - | 7 | 15 | 5 | 13   | 7☆   | 0  | 16 | 5   | 12   | 0*   |
| 1  | 16  | 5 | 16   | 17*  | 2 | 2 | 16 | 5 | 12   | 7*   | 3  | 16 | 5   | 18   | 13*  |
| 4  | 16  | 5 | 12   | 2*   | ( | ) | 0  | 6 | 28   | 29   | 0  | 1  | 6   | 5    | 3*   |
| 1  | 1   | 6 | 161  | 169  | ( | ) | 2  | 6 | 112  | 113  | 1  | 2  | 6   | 51   | 50   |
| 2  | 2   | 6 | 119  | 117  | ( | ) | 3  | 6 | 75   | 77   | 1  | 3  | 6   | 30   | 30   |
| 2  | 3   | 6 | 50   | 51   |   | 3 | 3  | 6 | 95   | 97   | 0  | 4  | 6   | 58   | 59   |
| 1  | 4   | 6 | 18   | 16*  |   | 2 | 4  | 6 | 30   | 27   | 3  | 4  | 6   | 29   | 26   |
| 4  | 4   | 6 | 72   | 70   | ( | 0 | 5  | 6 | 16   | 18*  | 1  | 5  | 6   | 90   | 90   |
| 2  | 5   | 6 | 49   | 47   |   | 3 | 5  | 6 | 40   | 42   | 4  | 5  | 6   | 29   | 31   |
| 5  | 5   | 6 | 55   | 52   | ( | ) | 6  | 6 | 59   | 60   | 1  | 6  | 6   | 42   | 45   |
| 2  | 6   | 6 | 32   | 33   |   | 3 | 6  | 6 | 35   | 42   | 4  | 6  | 6   | 32   | 29   |
| 5  | 6   | 6 | 10   | 1*   |   | 6 | 6  | 6 | 38   | 37   | 0  | 7  | 6   | 20   | 26*  |
| 1  | 7   | 6 | 89   | 89   |   | 2 | 7  | 6 | 9    | 3*   | 3  | 7  | 6   | 62   | 58   |
| 4  | 7   | 6 | 8    | 12*  |   | 5 | 7  | 6 | 18   | 22*  | 6  | 7  | 6   | 10   | 12*  |
| 7  | 7   | 6 | 61   | 63   | ( | 0 | 8  | 6 | 84   | 83   | 1  | 8  | 6   | 25   | 31   |
| 2  | 8   | 6 | 86   | 91   |   | 3 | 8  | 6 | 17   | 17*  | 4  | 8  | 6   | 32   | 37   |
| 5  | 8   | 6 | 6    | 13*  |   | 6 | 8  | 6 | 61   | 61   | 7  | 8  | 6   | 25   | 20   |
| 8  | 8   | 6 | 19   | 19*  | 1 | 0 | 9  | 6 | 10   | 5*   | 1  | 9  | 6   | 16   | 22*  |
| 2  | 9   | 6 | 10   | 4*   |   | 3 | 9  | 6 | 44   | 44   | 4  | 9  | 6   | 23   | 30   |
| 5  | 9   | 6 | 8    | 13*  |   | 6 | 9  | 6 | 25   | 29   | 7  | 9  | 6   | 41   | 40   |
| 8  | 9   | 6 | 6    | 6*   |   | 9 | 9  | 6 | 14   | 16*  | 0  | 10 | 6   | 33   | 28   |
| 1  | 10  | 6 | 16   | 15*  |   | 2 | 10 | 6 | 31   | 25   | 3  | 10 | 6   | 23   | 16*  |
| 4  | 10  | 6 | 13   | 16*  |   | 5 | 10 | 6 | 13   | 30*  | 6  | 10 | 6   | 45   | 42   |
| 7  | 10  | 6 | 12   | 15*  |   | 8 | 10 | 6 | 11   | 15*  | g  | 10 | ) 6 | 12   | 5*   |

M127<sub>SF.6</sub>

.

## OBSERVED AND CALCULATED STRUCTURE FACTORS FOR $({\tt C_6{\tt H_5}})_4{\tt Si}$

| Н      | K      | L | 10Fo | 10Fc      | ł | 1          | K      | L      | 10Fo     | 10Fc       | н      |        | к  | Լ      | 1.0Fo        | 10Fc         |
|--------|--------|---|------|-----------|---|------------|--------|--------|----------|------------|--------|--------|----|--------|--------------|--------------|
| 10     | 10     | 6 | 9    | 14*       | ( | )          | 11     | 6      | 30       | 28         | 1      |        | 11 | 6      | 30           | 30           |
| 2      | 11     | 6 | 11   | 16*       |   | 3          | 11     | 6      | 26       | 20         | 4      |        | 11 | 6      | 20           | 18*          |
| 5      | 11     | 6 | 11   | 5*        | e | 5          | 11     | 6      | 7        | 15*        | 7      |        | 11 | 6      | 12           | 16*          |
| 8      | 11     | 6 | 12   | 6*        | ç | )          | 11     | 6      | 12       | 15*        | 10     |        | 11 | 6      | 12           | 6*           |
| 11     | 11     | 6 | 12   | 6*        | ( | )          | 12     | 6      | 8        | 15*        | 1      |        | 12 | 6      | 7            | 18*          |
| 2      | 12     | 6 | 28   | 19        |   | 3          | 12     | 6      | 11       | 7*         | 4      |        | 12 | 6      | 7            | 2*           |
| 5      | 12     | 6 | ly   | 15*       | ( | 5          | 12     | 6      | 12       | 17*        | 7      |        | 12 | 6      | 5            | 3*           |
| 8      | 12     | 6 | 12   | 11*       | 0 | )          | 12     | 6      | 12       | 8*         | 10     | ł      | 12 | 6      | 6            | 3*           |
| 0      | 13     | 6 | 17   | 5*        |   | L          | 13     | 6      | 10       | 16*        | 2      |        | 13 | 6      | 1,2          | 14*          |
| 3      | 13     | 6 | 2    | 19*       | 4 | ί <b>+</b> | 13     | 6      | 12       | 5*         | 5      | )      | 13 | 6      | 17           | 17*          |
| 6      | 13     | 6 | 9    | 6*        |   | 7          | 13     | 6      | 15       | 11*        | 8      | 5      | 13 | 6      | 9            | 4*           |
| 0      | 14     | 6 | 39   | 34        | • | l          | 14     | 6      | 15       | 19*        | 2      |        | 14 | 6      | 3            | 20*          |
| 3      | 14     | 6 | 8    | 10*       |   | 4          | 14     | 6      | 14       | 21*        | c.<br> | ;<br>; | 14 | 6      | 12           | 3*           |
| 6      | 14     | 6 | 16   | 11*       |   | 7          | 14     | 6      | 13       | 0*         | (      | )      | 15 | 6      | 12           | 0*           |
| 1      | 15     | 6 | 9    | 12*       |   | 2          | 15     | 6      | 12       | 9*         |        | }      | 15 | 6      | 16           | 12*          |
| 4      | 15     | 6 | 13   | 5*        |   | 0          | 1      | 7      | 163      | 159        | (      | )      | 2  | 7      | 63           | 60           |
| 1      | 2      | 7 | 30   | 30        |   | 0          | 3      | 7      | 12       | 17*        | ]      | Ļ      | 3  | 7      | 70           | 70           |
| 2      | 3      | 7 | 42   | 43        |   | 0          | 4      | 7      | 20       | 25*        | _      | L      | 4  | 7      | 42           | 43           |
| 2      | 4      | 7 | 18   | 21*       |   | 3          | 4      | 7      | 36       | 34         | (      | )      | 5  | 7      | 14           | 20*          |
| 1      | 5      | 7 | 9    | 13*       |   | 2          | 5      | 7      | 47       | 47         | -      | 3      | 5  | 7      | 4]           | 44           |
| 4      | 5      | 7 | 18   | 21*       |   | 0          | 6      | 7      | 22       | 18         |        | L      | 6  | 7      | 2.7          | 25           |
| 2      | 6      | 7 | 14   | 17*       |   | 3          | 6      | 7      | 38       | 39         | l      | +      | 6  | 7      | 36           | 36           |
| 5      | 6      | 7 | 34   | 30        |   | 0          | 7      | 7      | 46       | 45         |        | L      | 7  | 7      | 30           | 37           |
| 2      | 7      | 7 | 50   | 48        |   | 3          | 7      | 7      | 24       | 24         |        | +      | 7  | 7      | 27           | 26           |
| 5      | 7      | 7 | 24   | 16        |   | 6          | 7      | 7      | 41       | 40         | (      | )      | 8  | 7      | 10           | 15*          |
| 1      | 8      | / | 65   | 65        |   | 2          | 8      | /      | 15       | 26*        |        | 5      | 8  | /      | 27           | 24           |
| 4      | 8      | / | 18   | 24*       |   | 5          | 8      | /      | 25       | 15         |        | 5      | 8  | /      | 15           | 21*          |
| /      | 8      | / | 35   | 31        |   | 0          | 9      | /      | 63       | 62         |        | L<br>, | 9  | /      | 14           | 21×          |
| 2      | 9      | / | 3/   | 3/        |   | 5          | 9      | /      | 16       | 13*        |        | 4<br>~ | 9  | /      | 8            | LOX          |
| 5      | 9      | / | 12   | 9*        |   | 6          | 9      | /      | 23       | 21*        |        | /      | 9  | /      | 9            | 4*           |
| 8      | 10     | / | 26   | 25        |   | 0          | 10     | /      | 13       | 20*        |        | L<br>, | 10 | /      | 20           | 1.0.4        |
| 2      | 10     |   | 1/   | 10*       |   | 5          | 10     | /      | 11       | 13*        |        | 4      | 10 | /      | 12           | 13%          |
| 5      | 10     | / | 22   | 11*       |   | 6          | 10     | /      | 16       | 12*        |        | /      | 10 | /      | 24           | 22*          |
| 8      | 10     |   | 8    | 4*        |   | 9          | 10     | /      | 12       | 9*         |        | 0      | 11 | /      | 1. L.<br>1 1 | 0×           |
| 1      | 11     | / | 11   | 15*       |   | 2          | 11     | /      | 11       | 8*         |        | 3      | 11 | /      | 11           | 5*           |
| 4      | 11     | / | 12   | 3*        |   | 5          | 11     | /      | 12       | 6×         |        | 6      | 11 | /      | 20           | 21%          |
| /      | 11     | / | 12   | 14*       |   | ð<br>1     | 11     | /      | /        | 12*        |        | 9<br>0 | 11 | 7      | 12           | 14*          |
| 0      | 12     | / | 3/   | 31        |   | 1          | 12     | /      | 8        | /*         |        | 2<br>r |    | /      | 25           | 20           |
| 3      | 12     | / | 12   | 10*       |   | 4          | 12     | /      | 13       | 10*        |        | ך<br>מ | 12 | /      | 10           | 1.5*         |
| 6      | 12     | / | 17   | 11*       |   | 1          | 12     | 7      | 14       | 12*        |        | 0<br>0 | 12 | 7      | 10           | 4*           |
| 0      | 13     | / | 1/   | 16*       |   | T<br>V     | 13     | / 7    | 12       | 14×<br>7-2 |        | ۲<br>۲ | 13 | / 7    | 10           | 21×<br>21×   |
| 5      | 13     | / | 10   | /*        |   | 4          | 1.5    | 7      | 12       | ×/<br>مدہ  |        | 2<br>1 | 17 | 7      | 10           | ەر<br>10-4   |
| 6      | 1/     | / | 11   | 11*       |   | U<br>2     | 14     | / 7    | 12       | 87<br>11.0 |        | T<br>T | 14 | /      | 4            | 2.L<br>7.Z x |
| 2      | 14     | / | 5    | 10×       |   | с<br>С     | 14     | /      | 12       | 11*        |        | 4      | 14 | /      | 13           | ×ز<br>دد     |
| 0      | 0      | 8 | 20   | 20        |   | 1          | 1<br>1 | 0<br>0 | 30<br>22 | 44         |        | J<br>T | 1  | ა<br>ი | 30<br>10     | 701<br>22    |
| 0      | 2      | ŏ | 39   | 37<br>25  |   | 1          | 2      | ð<br>م | 55       | 44<br>57   |        | ム<br>つ | 2  | 0<br>0 | 70<br>10     | 20*          |
| U<br>2 | נ<br>ר | ŏ | 32   | 33<br>/ E |   | L<br>L     | 3<br>/ | Ŭ<br>o | 20       | 50<br>C/   |        | ۲<br>۱ | 5  | ۲<br>م | 2.3          | 2.6×         |
| د      | د      | 8 | 42   | 40        |   | υ          | 4      | 8      | 64       | 64         |        | r      | 4  | 8      | 29           | 27           |

M129 SF. 8

| OBSERVED | AND | CALCULATED | STRUCTURE | FACTORS | FOR (C <sub>6</sub> H <sub>5</sub> ) <sub>4</sub> Si |
|----------|-----|------------|-----------|---------|------------------------------------------------------|
|----------|-----|------------|-----------|---------|------------------------------------------------------|

.:

,

.

| Н | K   | L  | 10F0 | 10Fc       | ł      | ł  | K  | L  | 10Fo | 10Fc | Н | K  | L  | 10Fo | 10Fc |
|---|-----|----|------|------------|--------|----|----|----|------|------|---|----|----|------|------|
| 2 | 4   | 8  | 7    | 17*        |        | 3  | 4  | 8  | 12   | 19*  | 4 | 4  | 8  | 23   | 23*  |
| 0 | 5   | 8  | 3    | 7*         | ]      |    | 5  | 8  | 31   | 29   | 2 | 5  | 8  | 12   | 25*  |
| 3 | 5   | 8  | 16   | 16*        | L      | ŀ  | 5  | 8  | 11   | 8*   | 5 | 5  | 8  | 40   | 36   |
| 0 | 6   | 8  | 42   | 43         | ]      | -  | 6  | 8  | 10   | 4*   | 2 | 6  | 8  | 36   | 33   |
| 3 | 6   | 8  | 11   | 15*        | L      | ŀ  | 6  | 8  | 11   | 18*  | 5 | 6  | 8  | 8    | 15*  |
| 6 | 6   | 8  | 30   | 33         | (      | )  | 7  | 8  | 11   | 1*   | 1 | 7  | 8  | 11   | 14×  |
| 2 | 7   | 8  | 5    | 9*         |        | 3  | 7  | 8  | 11   | 15*  | 4 | 7  | 8  | 13   | 22*  |
| 5 | 7   | 8  | 20   | 16*        | 6      | ;  | 7  | 8  | 11   | 7*   | 7 | 7  | 8  | 30   | 29   |
| 0 | 8   | 8  | 11   | 5*         | 1      | L  | 8  | 8  | 5    | 5*   | 2 | 8  | 8  | 31   | 24   |
| 3 | 8   | 8  | 15   | 16*        | L      | ł  | 8  | 8  | 14   | 15*  | 5 | 8  | 8  | 11   | 7*   |
| 6 | 8   | 8  | 28   | 20         | -      | 7  | 8  | 8  | 12   | 3*   | 8 | 8  | 8  | 10   | 13*  |
| 0 | 9   | 8  | 11   | 10*        | 1      | L  | 9  | 8  | 25   | 31*  | 2 | 9  | 8  | 17   | 16*  |
| 3 | 9   | 8  | 28   | 30         | L      | ł  | 9  | 8  | 12   | 10*  | 5 | 9  | 8  | 8    | 20*  |
| 6 | 9   | 8  | 17   | 3*         | -      | 7  | 9  | 8  | 12   | 13*  | 8 | 9  | 8  | 12   | 8*   |
| 9 | 9   | 8  | 1.3  | 8*         | (      | )  | 10 | 8  | 16   | 5*   | 1 | 10 | 8  | 12   | 13*  |
| 2 | 10  | 8  | 26   | 30*        | 2      | 3  | 10 | 8  | 12   | 12*  | 4 | 10 | 8  | 16   | 7*   |
| 5 | 10  | 8  | 12   | 5*         | 6      | 5  | 10 | 8  | 6    | 8*   | 7 | 10 | 8  | 9    | 9*   |
| 8 | 10  | 8  | 12   | 8*         | (      | )  | 11 | 8  | 14   | 23*  | 1 | 11 | 8  | 12   | 14*  |
| 2 | 11  | 8  | 13   | 19*        |        | 3  | 11 | 8  | 12   | 3*   | 4 | 11 | 8  | 12   | 4*   |
| 5 | 1,1 | 8  | 17   | 7*         | 6      | 5  | 11 | 8  | 18   | 2*   | 7 | 11 | 8  | 13   | 13*  |
| 0 | 12  | 8  | 20   | 14*        | 1      | L  | 12 | 8  | 7    | 8*   | 2 | 12 | 8  | 32   | 22   |
| 3 | 12  | 8  | 12   | 9*         | l      | ł  | 12 | 8  | 12   | 12*  | 5 | 12 | 8  | 17   | 1*   |
| 0 | 13  | 8  | 13   | 9*         | 1      | _  | 13 | 8  | 13   | 12*  | 0 | 1  | 9  | 4    | 9*   |
| 0 | 2   | 9  | 19   | 16*        | 1      | Ļ  | 2  | 9  | 45   | 43   | 0 | 3  | 9  | 11   | 6*   |
| 1 | 3   | 9  | 15   | 12*        | 2      | 2  | 3  | 9  | 25   | 21*  | 0 | 4  | 9  | 26   | 32*  |
| 1 | 4   | 9  | 36   | 36         |        | 2  | 4  | 9  | 11   | 13*  | 3 | 4  | 9  | 29   | 31   |
| 0 | 5   | 9  | 11   | 24*        | 1      | L  | 5  | 9  | 11   | 15*  | 2 | 5  | 9  | 36   | 29   |
| 3 | 5   | 9  | 15   | 14*        | L      | ŧ  | 5  | 9  | 21   | 28*  | 0 | 6  | 9  | 8    | 11*  |
| l | 6   | 9  | 7    | 2*         |        | 2  | 6  | 9  | 11   | 4*   | 3 | 6  | 9  | 11   | 11*  |
| 4 | 6   | 9  | 12   | 14*        | ۵<br>• | 5  | 6  | 9  | 12   | 10*  | 0 | 7  | 9  | 11   | 0*   |
| 1 | 7   | 9  | 12   | 11*        |        | ?  | 7  | 9  | 5    | 19*  | 3 | 7  | 9  | 12   | 1*   |
| 4 | 7   | 9  | 17   | 13*        | -<br>- | 5  | 7  | 9  | 12   | 15*  | 6 | 7  | 9  | 12   | 12*  |
| 0 | 8   | 9  | 18   | 8*         | -      | L  | 8  | 9  | 12   | 9*   | 2 | 8  | 9  | 3    | 7*   |
| 3 | 8   | 9  | 20   | 21*        | 1      | ŧ. | 8  | 9  | 16   | 19*  | 5 | 8  | 9  | 17   | 10*  |
| 6 | 8   | 9  | 12   | 1*         | -      | 7  | 8  | 9  | 11   | 3*   | 0 | 9  | 9  | 12   | 2*   |
| 1 | 9   | 9  | 16   | 9*         |        | 2  | 9  | 9  | 18   | 4*   | 3 | 9  | 9  | 10   | 6*   |
| 4 | 9   | 9  | 12   | 10*        | 4      | 5  | 9  | 9  | 24   | 12*  | 6 | 9  | 9  | 8    | 8*   |
| 0 | 10  | 9  | 12   | 7*         |        | L  | 10 | 9  | 22   | 11*  | 2 | 10 | 9  | 12   | 11*  |
| 3 | 10  | 9  | 16   | 17*        | 4      | 4  | 10 | 9  | 12   | 7*   | 5 | 10 | 9  | 8    | 12*  |
| 0 | 11  | 9  | 12   | 18*        |        | L  | 11 | 9  | 12   | 6*   | 2 | 11 | 9  | 13   | 13*  |
| 0 | 0   | 10 | 15   | 14*        | (      | )  | 1  | 10 | 5    | 0*   | 1 | 1  | 10 | 9    | 8*   |
| 0 | 2   | 10 | 12   | 3*         |        | L  | 2  | 10 | 12   | 15*  | 2 | 2  | 10 | 12   | 17×  |
| 0 | 3   | 10 | 15   | <u>2</u> * |        | 1  | 3  | 10 | 12   | 10*  | 2 | 3  | 10 | 9    | 8*   |
| 3 | 3   | 10 | 25   | 30*        |        | C  | 4  | 10 | 12   | 4*   | 1 | 4  | 10 | 24   | 18*  |
| 2 | 4   | 10 | 21   | 20*        |        | 3  | 4  | 10 | 7    | 8*   | 4 | 4  | 10 | 20   | 24*  |
| 0 | 5   | 10 | 12   | 17*        |        | 1  | 5  | 10 | 12   | 6*   | 2 | 5  | 10 | 12   | 7*   |
| 3 | 5   | 10 | 9    | 20*        | 1      | 4  | 5  | 10 | 17   | 7*   | 5 | 5  | 10 | 29   | 18   |
| 0 | 6   | 10 | 12   | 1*         |        | 1  | 6  | 10 | 12   | 8*   | 2 | 6  | 10 | 12   | 11*  |

M130 <sub>SF, 9</sub>

.

| Н | к | L  | 10Fo | 10Fc   | н | ĸ | L  | 10Fo | 10Fc | н | к | L   | 10Fo | 10Fc |
|---|---|----|------|--------|---|---|----|------|------|---|---|-----|------|------|
| 3 | 6 | 10 | 12   | <br>6* | 4 | 6 | 10 | 12   | 18*  | 5 | 6 | 10  | 12   | *0   |
| 6 | 6 | 10 | 9    | 7*     | 0 | 7 | 10 | 12   | 2*   | 1 | 7 | 1.0 | 14   | 11*  |
| 2 | 7 | 10 | 11   | 11*    | 3 | 7 | 10 | 12   | 8*   | 4 | 7 | 10  | 12   | 2*   |
| 5 | 7 | 10 | 13   | 7*     | 0 | 8 | 10 | 12   | 5*   | 1 | 8 | 10  | 12   | 3*   |
| 2 | 8 | 10 | 12   | 3*     | 3 | 8 | 10 | 13   | 1*   | 0 | 1 | 11  | 12   | 5*   |
| 0 | 2 | 11 | 12   | 4*     | 1 | 2 | 11 | 29   | 14   | 0 | 3 | 11  | 12   | 10×  |
| 1 | 3 | 11 | 12   | 10*    | 2 | 3 | 11 | 10   | 8*   | 0 | 4 | 11  | 11   | 5*   |
| 1 | 4 | 11 | 16   | 5*     | 2 | 4 | 11 | 13   | 4*   |   |   |     |      |      |

•

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $({\rm C_6H_5})_4{\rm Si}$
いたいであるというというないないであるとないのである

いるととない

warding of the same

-----

manager and the

1.1.1

when r

: \$

#### OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

An \* indicates weak reflections not used in the final refinements.

| Н        | к  | L      | 10Fo       | 10Fc       | Н        | к     | L     | 10Fo      | 10Fc       | Н       | К  | L      | 10Fo        | 10Fc                       |
|----------|----|--------|------------|------------|----------|-------|-------|-----------|------------|---------|----|--------|-------------|----------------------------|
| 0        | 2  | <br>0  | 694        | 684        |          | <br>2 | <br>0 | 96        | 92         | 2       |    | <br>0  | 152         | 146                        |
| 1        | 3  | 0      | 468        | 452        | 2        | 3     | 0     | 121       | 115        | 3       | 3  | 0      | 741         | 714                        |
| 0        | 4  | 0      | 352        | 342        | 1        | 4     | 0     | 3         | 5*         | 2       | 4  | 0      | 365         | 351                        |
| 3        | 4  | 0      | 179        | 171        | 4        | 4     | 0     | 158       | 156        | 1       | 5  | 0      | 322         | 309                        |
| 2        | 5  | 0      | 75         | 71         | 3        | 5     | 0     | 365       | 362        | 4       | 5  | 0      | 180         | 167                        |
| 5        | 5  | 0      | 217        | 221        | 0        | 6     | 0     | 412       | 400        | 1       | 6  | 0      | 103         | 100                        |
| 2        | 6  | 0      | 561        | 555        | 3        | 6     | 0     | 244       | 229        | 4       | 6  | 0      | 380         | 385                        |
| 5        | 6  | 0      | 4          | 3*         | 6        | 6     | 0     | 332       | 330        | 1       | 7  | 0      | 405         | 394                        |
| 2        | 7  | 0      | 12         | 6*         | 3        | 7     | 0     | 287       | 278        | 4       | 7  | 0      | 7           | 16*                        |
| 5        | 7  | 0      | 275        | 270        | 6        | 7     | 0     | 48        | 50         | 7       | 7  | 0      | 260         | 261                        |
| 0        | 8  | 0      | 378        | 385        | 1        | 8     | 0     | 64        | 58         | 2       | 8  | 0      | 332         | 327                        |
| 3        | 8  | 0      | 4          | 2*         | 4        | 8     | 0     | 183       | 184        | 5       | 8  | 0      | 79          | 80                         |
| 6        | 8  | 0      | 200        | 202        | 7        | 8     | 0     | 5         | 15*        | 8       | 8  | 0      | 248         | 250                        |
| 1        | 9  | 0      | 457        | 447        | 2        | 9     | 0     | 29        | 23*        | 3       | 9  | 0      | 204         | 205                        |
| 4        | 9  | 0      | 50         | 48         | 5        | 9     | 0     | 207       | 206        | 6       | 9  | 0      | 20          | 13*                        |
| 7        | 9  | 0      | 197        | 198        | 8        | 9     | 0     | 5         | 7*         | 9       | 9  | 0      | 80          | 75                         |
| 0        | 10 | 0      | 120        | 119        | 1        | 10    | 0     | 41        | 41         | 2       | 10 | 0      | 180         | 177                        |
| 3        | 10 | 0      | 15         | 13*        | 4        | 10    | 0     | 134       | 134        | 5       | 10 | 0      | 12          | 12*                        |
| 6        | 10 | 0      | 154        | 148        | 7        | 10    | 0     | 27        | 1*         | 8       | 10 | 0      | 140         | 141                        |
| 9        | 10 | 0      | 30         | 19*        | 10       | 10    | 0     | 67        | 58         | 1       | 11 | 0      | 69          | 69                         |
| 2        | 11 | 0      | 76         | 74         | 3        | 11    | 0     | 58        | 63         | 4       | 11 | 0      | 35          | 35*                        |
| 5        | 11 | 0      | 145        | 140        | 6        | 11    | 0     | 45        | 32         | 7       | 11 | 0      | 166         | 162                        |
| 8        | 11 | 0      | 6          | 10*        | 9        | 11    | 0     | 63        | 61         | 10      | 11 | 0      | 33          | 24*                        |
| 11       | 11 | 0      | 81         | 83         | 0        | 12    | 0     | 128       | 126        | 1       | 12 | 0      | 75          | 76                         |
| 2        | 12 | 0      | 204        | 197        | 3        | 12    | 0     | 20        | 7*         | 4       | 12 | 0      | 113         | 110                        |
| 5        | 12 | 0      | 12         | 36*        | 6        | 12    | 0     | 106       | 100        | 7       | 12 | 0      | 52          | 49                         |
| 8        | 12 | 0      | 70         | /6         | 9        | 12    | 0     | 48        | 41*        | 10      | 12 | 0      | 66          | 50                         |
| 11       | 12 | 0      | 36         | 16*        | 12       | 12    | 0     | 15        | 23*        | 1       | 13 | 0      | 151         | 148                        |
| 2        | 13 | 0      | 60         | 63         | 3        | 13    | 0     | 103       | 99         | 4       | 13 | 0      | 6           | 0*                         |
| 5        | 13 | 0      | 81         | 81         | 6        | 13    | 0     | 6         | 13*        | /       | 13 | 0      | //          | 11                         |
| 8        | 13 | 0      | 3/         | 22*        | 9        | 13    | 0     | 50        | 42         | 10      | 13 | 0      | 20          | 35*                        |
| 11       | 13 | 0      | 42         | 52*        | 12       | 13    | 0     | 1         | *0         | 13      | 13 | 0      | 33          | 2/*                        |
| 0        | 14 | 0      | //         | 61         | 1        | 14    | 0     | 16        | 31*        | 2       | 14 | 0      | 106         | 101                        |
| 5        | 14 | 0      | 21         | 24*        | 4 7      | 14    | 0     | 93        | 83         | 5       | 14 | 0      | 31          | 6×                         |
| 0        | 14 | 0      | 69         | /2         | 10       | 14    | 0     | 01<br>70  | 4*         | 8       | 14 | 0      | 58          | 6/                         |
| 10       | 14 | 0      | 20         | 23*        | 10       | 14    | 0     | /0        | 69         | 11      | 14 | 0      | 31          | 0*<br>07.                  |
| 17       | 14 | 0      | 102        | 34*        | 13       | 14    | 0     | 49        | /*         | 14      | 14 | 0      | 8           | 2/*                        |
| 1        | 10 | 0      | 103        | 98         | 2        | 12    | 0     | 6         | 12*        | 5       | 12 | 0      | 94          | 92                         |
| 4 7      | 10 | 0      | 35         | /*<br>51-4 | 5        | 15    | 0     | 94        | 8/         | 6       | 15 | 0      | 1           | 13*                        |
| 10       | 10 | 0      | 43         | 21×        | 8        | 12    | 0     | /         | 7×1        | 9       | 15 | 0      | 56          | 46                         |
| 10       | 10 | 0      | /          | 3×<br>(1)+ | 11       | 12    | 0     | 52        | 3/*        | 12      | 15 | 0      | 8           | 9*                         |
| 13       | 10 | 0      | 25         | ×          | 14       | 12    | 0     | 21        | 3×<br>5(.) | 0       | 16 | 0      | /4          | 63                         |
| ۲<br>۲   | 14 | 0      | 3L<br>22   | <u>۲×</u>  | 2        | 10    | 0     | 45        | 26×        | 3       | 10 | U      |             | /*<br>17-1                 |
| 4 7      | 16 | 0      | <i>د ر</i> | / L<br>75  | 2        | 10    | 0     | 10        | 10*        | 0       | 10 | 0      | 40          | 5/*                        |
| 10       | 16 | ۰<br>۸ | 20         | 337<br>\*  | 0<br>11  | 10    | 0     | ے کر<br>م | ১4×<br>ান  | y<br>10 | 10 | 0      | /           | <u>ځ۲</u>                  |
| 13       | 16 | 0      | 57         | ×در<br>۲۰۰ | 11       | 17    | 0     | 0<br>//   | 20⊤<br>T×  | 12      | 10 | 0      | y<br>00     | 21*                        |
| ۲.<br>۲. | 17 | 0<br>0 | ינ<br>ר    | 34*        | 1        | 17    | 0     | 47        | J∠*<br>1∩+ | ۲<br>۲  | 17 | 0<br>0 | 2.3<br>1. 0 | 7.2- <del>1</del> .<br>7.4 |
|          | ±/ | · · ·  |            |            | <u> </u> | . /   |       | 17        | 11/2       | 3       |    |        | 40          | <u></u>                    |

### OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

| н      | ĸ      | L | 10Fo     | 10Fc       | н      | к  | L | 10Fo       | 10Fc            | н      | к  | L | 10F0      | 10Fe       |
|--------|--------|---|----------|------------|--------|----|---|------------|-----------------|--------|----|---|-----------|------------|
| <br>6  | <br>17 | 0 | 7        |            | 7      | 17 | 0 | 40         | 25*             |        | 17 | 0 | 31        | 2*         |
| 9      | 17     | 0 | 44       | 28*        | 10     | 17 | 0 | 8          | 1*              | 11     | 17 | 0 | 23        | 17*        |
| 12     | 17     | 0 | 8        | 8*         | 0      | 18 | 0 | 49         | 42*             | 1      | 18 | 0 | 54        | 6*         |
| 2      | 18     | 0 | 23       | 28*        | 3      | 18 | 0 | 37         | 0*              | 4      | 18 | 0 | 42        | 41*        |
| 5      | 18     | 0 | 28       | 3*         | 6      | 18 | 0 | 34         | 21*             | 7      | 18 | 0 | 8         | 3*         |
| 8      | 18     | 0 | 41       | 17*        | 9      | 18 | 0 | 10         | 1*              | 10     | 18 | 0 | 19        | 10*        |
| 1      | 19     | 0 | 24       | 18*        | 2      | 19 | 0 | 26         | 10*             | 3      | 19 | 0 | 39        | 20*        |
| 4      | 19     | 0 | 33       | 4*         | 5      | 19 | 0 | 8          | 21*             | 6      | 19 | 0 | 8         | 1*         |
| 7      | 19     | 0 | 36       | 15*        | 8      | 19 | 0 | 84         | 3*              | 0      | 20 | 0 | 8         | 13*        |
| 1      | 20     | 0 | 25       | 7*         | 2      | 20 | 0 | 36         | 11*             | 3      | 20 | 0 | 50        | 4*         |
| 4      | 20     | 0 | 25       | 18*        | 5      | 20 | 0 | 35         | 3*              | 6      | 20 | 0 | 26        | 1.6*       |
| 0      | 1      | 1 | 567      | 534        | 0      | 2  | 1 | 1043       | 1036            | 1      | 2  | 1 | 831       | 806        |
| 0      | 3      | 1 | 527      | 494        | 1      | 3  | 1 | 470        | 440             | 2      | 3  | 1 | 361       | 340        |
| 0      | 4      | 1 | 234      | 208        | 1      | 4  | 1 | 632        | 597             | 2      | 4  | 1 | 122       | 116        |
| 3      | 4      | 1 | 347      | 334        | 0      | 5  | 1 | 615        | 576             | 1      | 5  | 1 | 88        | 79         |
| 2      | 5      | 1 | 412      | 395        | 3      | 5  | 1 | 157        | 143             | 4      | 5  | 1 | 374       | 376        |
| 0      | 6      | 1 | 155      | 147        | 1      | 6  | 1 | 411        | 393             | 2      | 6  | 1 | 162       | 152        |
| 3      | 6      | 1 | 246      | 247        | 4      | 6  | 1 | 107        | 100             | 5      | 6  | 1 | 278       | 275        |
| 0      | 7      | 1 | 372      | 360        | 1      | 7  | 1 | 4          | 10*             | 2      | 7  | 1 | 370       | 362        |
| 3      | 7      | 1 | 56       | 50         | 4      | 1  | 1 | 246        | 242             | 5      | /  | 1 | 31        | 27*        |
| 6      | 7      | 1 | 319      | 310        | 0      | 8  | 1 | 46         | 50              | 1      | 8  | 1 | 319       | 317        |
| 2      | 8      | 1 | 4        | *8         | 3      | 8  | 1 | 362        | 357             | 4      | 8  | 1 | 69        | 65         |
| 5      | 8      | 1 | 230      | 227        | 6      | 8  | 1 | 54         | 50              | /      | 8  | 1 | 211       | 212        |
| 0      | 9      | 1 | 201      | 193        | L (    | 9  | 1 | 161        | 57              | 2      | 9  | 1 | 2/4       | 2/1        |
| 5      | 9      | 1 | 135      | 134        | 4 7    | 9  | 1 | 100        | 108             | С<br>0 | 9  | 1 | 24        | ×رز<br>۱۵۵ |
| 6      | 10     | 1 | 210      | 212        | /      | 10 | 1 | 10/        | 0/              | 0      | 10 | 1 | 100       | 102        |
| 0      | 10     | 1 | 200      | 00         | L<br>L | 10 | 1 | 194        | 109             | 2      | 10 | 1 | 9L<br>122 | 91         |
| 2      | 10     | 1 | 200      | 797<br>732 | 4 7    | 10 | 1 | ے 2<br>اور | 49              | )<br>0 | 10 | 1 | 122       | 134        |
| 0      | 10     | 1 | 120      | 110        | /      | 11 | 1 | 107        | 190             | 0      | 11 | 1 | 126       | 40*        |
| 9      | 10     | 1 | 120      | 160        | 2      | 11 | 1 | 10/        | 100             | 1      | 11 | 1 | 133       | 135        |
| 5      | 11     | 1 | 104      | 764<br>100 | د<br>۲ | 11 | 1 | 122        | 130             | 4      | 11 | 1 | 114       | 110        |
| ر<br>ہ | 11     | 1 | 20       | 80         | 0      | 11 | 1 | 132        | 20 <del>4</del> | 10     | 11 | 1 | 80        | 20n<br>91  |
| 0      | 12     | 1 | 90<br>27 | 69<br>//1+ | 1      | 12 | 1 | 114        | 113             | 20     | 12 | 1 | 20        | 01-<br>01- |
| ্য     | 12     | 1 | 122      | 115        | 4      | 12 | 1 | 28         | 30*             | 5      | 12 | 1 | 110       | 103        |
| 6      | 12     | 1 | 23       | 2*         | 7      | 12 | 1 | 20         | 87              | 2<br>8 | 12 | 1 | 28        | 203        |
| q      | 12     | 1 | 83       | 79         | 10     | 12 | 1 | 28         | 21*             | 11     | 12 | 1 | 60        | 53         |
| ó      | 13     | 1 | 147      | 136        | 1      | 13 | ī | 25         | 28*             | 2      | 13 | ī | 114       | 104        |
| 3      | 13     | 1 | 11       | 11*        | 4      | 13 | 1 | 128        | 121             | 5      | 13 | 1 | 30        | 21*        |
| 6      | 13     | 1 | 100      | 99         | 7      | 13 | ĩ | 36         | 17*             | 8      | 13 | ī | 61        | 63         |
| ğ      | 13     | 1 | 32       | 13*        | 10     | 13 | ī | 54         | 42              | 11     | 13 | 1 | 7         | 13*        |
| 12     | 13     | ī | 42       | 50*        | 0      | 14 | ī | 23         | 25*             |        | 14 | 1 | 109       | 106        |
| 2      | 14     | 1 | 27       | 23*        | 3      | 14 | 1 | 97         | 97              | 4      | 14 | 1 | 24        | 14*        |
| 5      | 14     | 1 | 96       | 89         | 6      | 14 | ī | 35         | 11*             | . 7    | 14 | ī | 78        | 66         |
| 8      | 14     | ī | 7        | 19*        | 9      | 14 | ĩ | 68         | 50              | 10     | 14 | ī | 7         | 16*        |
| 11     | 14     | 1 | 38       | 32*        | 12     | 14 | 1 | 21         | 13*             | 13     | 14 | 1 | 29        | 30*        |
| 0      | 15     | 1 | 76       | 75         | 1      | 15 | 1 | 43         | 38*             | 2      | 15 | 1 | 75        | 61         |
| 3      | 15     | 1 | 25       | 19*        | 4      | 15 | 1 | 62         | 63              | 5      | 15 | 1 | 68        | 3*         |
| 6      | 15     | 1 | 57       | 64         | 7      | 15 | 1 | 28         | 18*             | 8      | 15 | 1 | 75        | 57         |
| 9      | 15     | 1 | 39       | 12*        | 10     | 15 | 1 | 40         | 37*             | 11     | 15 | 1 | 21        | 2*         |

•

.

•

! .

ŗ

÷

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

| Н      | K      | L | 10Fo      | 10Fc | н      | K      | L     | 10Fo      | 10Fc       | Н      | K      | L | 10Fo | 10Fc |
|--------|--------|---|-----------|------|--------|--------|-------|-----------|------------|--------|--------|---|------|------|
| 12     | 1.5    | 1 | 8         | 30*  | 13     | <br>15 | <br>1 | 13        | <br>4*     |        | <br>15 |   |      | 19*  |
| 0      | 16     | 1 | 7         | 10*  | 1      | 16     | 1     | 40        | 58*        | 2      | 16     | 1 | 38   | 11*  |
| 3      | 16     | 1 | 59        | 56   | 4      | 16     | 1     | 27        | 11*        | 5      | 16     | 1 | 50   | 51*  |
| 6      | 16     | 1 | 7         | 10*  | 7      | 16     | 1     | 38        | 45*        | 8      | 16     | 1 | 32   | 4*   |
| 9      | 16     | 1 | 29        | 33*  | 10     | 16     | 1     | 9         | 5*         | 11     | 16     | 1 | 20   | 23*  |
| 12     | 16     | 1 | 61        | 6*   | 13     | 16     | 1     | 8         | 16*        | 0      | 17     | 1 | 60   | 49   |
| 1      | 17     | 1 | 35        | 14*  | 2      | 17     | 1     | 41        | 49*        | 3      | 17     | 1 | 36   | 6*   |
| 4      | 17     | 1 | 42        | 41*  | 5      | 17     | 1     | 81        | 11*        | 6      | 17     | 1 | 44   | 32*  |
| 7      | 17     | 1 | 35        | 10*  | 8      | 17     | 1     | 38        | 22*        | 9      | 17     | 1 | 8    | 3*   |
| 10     | 17     | 1 | 13        | 18*  | 11     | 17     | 1     | 46        | 4*         | 12     | 17     | 1 | 8    | 15*  |
| 0      | 18     | 1 | 24        | 4*   | 1      | 18     | 1     | 35        | 28*        | 2      | 18     | 1 | 7    | 8*   |
| 3      | 18     | 1 | 48        | 28*  | 4      | 18     | 1     | 31        | 4*         | 5      | 18     | 1 | 26   | 26*  |
| 6      | 18     | 1 | 33        | 6*   | 7      | 18     | 1     | 8         | 18*        | 8      | 18     | 1 | 29   | 6*   |
| 9      | 18     | 1 | 42        | 1.9* | 10     | 18     | 1     | 8         | 5*         | 0      | 19     | 1 | 8    | 21*  |
| 1      | 19     | 1 | 27        | 7*   | 2      | 19     | 1     | 28        | 21*        | 3      | 19     | 1 | 71   | 8*   |
| 4      | 19     | 1 | 29        | 25*  | 5      | 19     | 1     | 31        | 5*         | 6      | 19     | 1 | 43   | 21*  |
| 7      | 19     | 1 | 29        | 3*   | 8      | 19     | 1     | 24        | 16*        | 0      | 20     | 1 | 31   | 8*   |
| 1      | 20     | 1 | 8         | 19*  | 2      | 20     | 1     | 39        | 5*         | 3      | 20     | 1 | 37   | 20*  |
| 4      | 20     | 1 | 41        | 5*   | 5      | 20     | L     | 8         | 21*        | 6      | 20     | 1 | 38   | 3*   |
| 0      | 0      | 2 | 69        | 66   | 0      | 1      | 2     | 180       | 1/6        | 1      | 1      | 2 | 599  | 583  |
| 0      | 2      | 2 | 292       | 2//  | 1<br>N | 2      | 2     | 278       | 253        | 2      | 2      | 2 | 6/0  | 63/  |
| 0      | 3      | 2 | 394       | 351  | 1      | 3      | 2     | 5/1       | 529        | 2      | 3      | 2 | 165  | 155  |
| 3      | 3      | 2 | 4/8       | 453  | 0      | 4      | 2     | 5/3       | 535        | 1      | 4      | Ž | 133  | 120  |
| 2      | 4      | 2 | 586       | 328  | 3      | 4      | 2     | 216       | 203        | 4      | 4      | 2 | 249  | 243  |
| 0      | 2      | 2 | 90        | 88   | I,     | 2      | 2     | 514       | 490        | 2      | 2      | 2 | 205  | 193  |
| 2      | 2      | 2 | 222       | 329  | 4      | 2      | 2     | 00<br>1// | 8/         | 2      | 2      | 2 | 305  | 297  |
| 2      | 0<br>C | 2 | 220<br>51 | 221  | 1      | 0      | 2     | 200       | 134        | 2      | 0      | Z | 2/4  | 272  |
| 2      | 0<br>6 | 2 | 270       | 40   | 4      | ט<br>ר | 2     | 209       | 304<br>124 | כ<br>1 | 07     | 2 | 20   | 04   |
| 0<br>2 | 7      | 2 | 270       | 204  | 2      | 7      | 2     | 200       | 124        | L<br>A | 7      | 2 | 239  | 233  |
| 5      | 7      | 2 | 202       | 45   | ر<br>۲ | 7      | 2     | 290       | 205        | 4      | 7      | 2 | 101  | 172  |
| 2      | 2<br>2 | 2 | 205       | 279  | 1      | 0      | 2     | 105       | 103        | 2      | 0      | 2 | 737  | 1/3  |
| 2      | 0<br>8 | 2 | 205       | 230  | 1      | o<br>Q | 2     | 268       | 267        | 5      | 0      | 2 | 107  | 100  |
| 6      | 8<br>8 | 2 | 172       | 169  | 7      | R<br>R | 2     | 62        | 54         | 2      | s<br>S | 2 | 130  | 136  |
| ñ      | Q      | 2 | 25        | 26*  | , ,    | a      | 2     | 175       | 170        | 2      | 0      | 2 | 139  | 51   |
| ર      | ģ      | 2 | 201       | 194  | 4      | ģ      | 2     | 175       | 78         | 5      | ó      | 2 | 191  | 173  |
| 6      | ģ      | 2 | 60        | 56   | 7      | ģ      | 2     | 124       | 117        | 8      | ģ      | 2 | 18   | 18*  |
| ğ      | 9      | 2 | 144       | 139  | ,      | 10     | 2     | 215       | 206        | 1      | 10     | 2 | 5    | 10*  |
| 2      | 10     | 2 | 189       | 182  | ,<br>3 | 10     | 2     | 67        | 69         | L<br>L | 10     | 2 | 217  | 212  |
| 5      | 10     | 2 | 5         | 16*  | 6      | 10     | 2     | 136       | 134        | 7      | 10     | 2 | 31   | 212  |
| 8      | 10     | 2 | 108       | 102  | 9      | 10     | 2     | 34        | 23*        | 10     | 10     | 2 | 93   | 91   |
| Ō      | 11     | 2 | 29        | 3*   | 1      | 11     | 2     | 185       | 180        | 2      | 11     | 2 | 24   | 36*  |
| 3      | 11     | 2 | 194       | 195  | 4      | 11     | 2     | 18        | 29*        | 5      | 11     | 2 | 133  | 128  |
| 6      | 11     | 2 | 48        | 56   | 7      | 11     | 2     | 92        | 87         | 8      | 11     | 2 | 25   | 20*  |
| 9      | 11     | 2 | 89        | 85   | 10     | 11     | 2     | 64        | 2*         | 11     | 11     | 2 | 66   | 61   |
| 0      | 12     | 2 | 133       | 127  | 1      | 12     | 2     | 27        | 33*        |        | 12     | 2 | 131  | 122  |
| 3      | 12     | 2 | 33        | 32*  | 4      | 12     | 2     | 106       | 103        | 5      | 12     | 2 | 28   | 35*  |
| 6      | 12     | 2 | 108       | 99   | 7      | 12     | 2     | 6         | 13*        | 8      | 12     | 2 | 83   | .8   |
| 9      | 12     | 2 | 38        | 12*  | 10     | 12     | 2     | 74        | 67         | 11     | 12     | 2 | 8    | 11*  |
| 12     | 12     | 2 | 74        | 55   | 0      | 13     | 2     | 14        | 15*        | 1      | 13     | 2 | 107  | 97   |

.

•

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

| Н   | К  | L | 10Fo | 10Fc                 | Н      | к  | L | 10Fo    | 10Fc                   | н      | к  | L | 10Fo    | 10Fc            |
|-----|----|---|------|----------------------|--------|----|---|---------|------------------------|--------|----|---|---------|-----------------|
| 2   | 13 | 2 | 63   | 52                   | 3      | 13 | 2 | 106     | 101                    | 4      | 13 | 2 | <br>51  | 29              |
| 5   | 13 | 2 | 89   | 83                   | 6      | 13 | 2 | 6       | 6*                     | 7      | 13 | 2 | 89      | 86              |
| 8   | 13 | 2 | 39   | 18*                  | 9      | 13 | 2 | 69      | 61                     | 10     | 13 | 2 | 27      | 21*             |
| 11  | 13 | 2 | 53   | 40*                  | 12     | 13 | 2 | 39      | 2*                     | 13     | 13 | 2 | 7       | 31*             |
| 0   | 14 | 2 | 93   | 87                   | 1      | 14 | 2 | 37      | 29*                    | 2      | 14 | 2 | 79      | 81              |
| 3   | 14 | 2 | 27   | 24*                  | 4      | 14 | 2 | 75      | 71                     | 5      | 14 | 2 | 20      | 17*             |
| 6   | 14 | 2 | 82   | 76                   | 7      | 14 | 2 | 27      | 6*                     | 8      | 14 | 2 | 51      | 47*             |
| 9   | 14 | 2 | 31   | 7*                   | 10     | 14 | 2 | 17      | 29*                    | 11     | 14 | 2 | 23      | 5*              |
| 12  | 14 | 2 | 7    | 29*                  | 13     | 14 | 2 | 30      | 2*                     | 14     | 14 | 2 | 35      | 20*             |
| 0   | 15 | 2 | 52   | 20                   | 1      | 15 | 2 | 48      | 55*                    | 2      | 15 | 2 | 32      | 4*              |
| 3   | 15 | 2 | 54   | 53                   | 4      | 15 | 2 | 7       | 12*                    | 5      | 15 | 2 | 61      | 49              |
| 6   | 15 | 2 | 7    | 13*                  | 7      | 15 | 2 | 55      | 48                     | 8      | 15 | 2 | 24      | 11*             |
| 9   | 15 | 2 | 43   | 33*                  | 10     | 15 | 2 | 64      | 14*                    | 11     | 15 | 2 | 34      | 23*             |
| 12  | 15 | 2 | 30   | 6*                   | 13     | 15 | 2 | 37      | 22*                    | 14     | 15 | 2 | 8       | 1*              |
| 0   | 16 | 2 | 61   | 56                   | 1      | 16 | 2 | 37      | 8*                     | 2      | 16 | 2 | 41      | 46*             |
| 3   | 16 | 2 | 7    | 6*                   | 4      | 16 | 2 | 54      | 40                     | 5      | 16 | 2 | 7       | 9*              |
| 6   | 16 | 2 | 48   | 43*                  | 7      | 16 | 2 | 44      | 10*                    | 8      | 16 | 2 | 29      | 34*             |
| 9   | 16 | 2 | /    | 5*                   | 10     | 16 | 2 | 39      | 26*                    | 11     | 16 | 2 | 25      | 4*              |
| 12  | 16 | 2 | /0   | 20*                  | 13     | 16 | 2 | 33      | 3*                     | 0      | 1/ | 2 |         | 10*             |
| 1   | 1/ | 2 | 54   | 51                   | 2      | 1/ | 2 | 23      | 10*                    | 3      | 1/ | 2 | 66      | 40*             |
| 4 7 | 17 | 2 | 54   | 30 <del>4</del>      | د<br>0 | 17 | 2 | 55      | <del>*</del> دد        | 0      | 17 | 2 | /       | 00''<br>0x      |
| 10  | 1/ | 2 | 57   | 30*                  | 5      | 1/ | 2 | 8       | 6×                     | 9      | 10 | 2 | 33      | 28*             |
| 10  | 10 | 2 | 40   | ე <del>ო</del><br>ეჯ | 11     | 10 | 2 | 11      | 20 <del>4</del><br>T0× | U<br>2 | 10 | 2 | 49      | 10±             |
| 1   | 10 | 2 | 20   | ×ر<br>∿7∿            | 2      | 10 | 2 | 40      | 30 <del>*</del>        | د<br>۲ | 10 | 2 | 22      | 10*             |
| 4 7 | 10 | 2 | 22   | 24<br>2/*            | د<br>ہ | 10 | 2 | 12      | 7.7 <del>*</del>       | 0      | 10 | 2 | 22      | ער<br>ער<br>גוע |
| 10  | 10 | 2 | 21   | ×ر<br>۲۵۰            | 0      | 10 | 2 | 30      | 24×                    | 9      | 10 | 2 | 60      | 2*              |
| 10  | 10 | 2 | 67   | 7.                   | 3      | 10 | 2 | 30      | 25+                    | 1      | 10 | 2 | 62      | 13+             |
| 5   | 10 | 2 | 40   | 25*                  | 5      | 10 | 2 | 33      | 2.J*<br>1*             |        | 10 | 2 | 41      | 20 <del>4</del> |
| 2   | 10 | 2 | 40   | 2 J *                | 0      | 20 | 2 | J2<br>0 | 20 <del>*</del>        | 1      | 20 | 2 | 40      | 20~             |
| 2   | 20 | 2 | 22   | 22 <del>*</del>      | े<br>२ | 20 | 2 | 12      | <u> </u>               | 1<br>4 | 20 | 2 | 8<br>10 | 18*             |
| 5   | 20 | 2 | 8    | <u>د</u>             | 0      | 1  | 3 | 299     | 293                    | 0      | 20 | 2 | 185     | 171             |
| ĩ   | 20 | 3 | 399  | 375                  | Ő      | 3  | 3 | 358     | 340                    | ĩ      | 3  | 3 | 81      | 75              |
| 2   | ร  | 3 | 562  | 536                  | Ő      | 4  | 3 | 188     | 177                    | 1      | 4  | ž | 223     | 214             |
| 2   | 4  | 3 | 52   | 46                   | 3      | 4  | 3 | 506     | 487                    | 0      | 5  | 3 | 155     | 162             |
| 1   | 5  | 3 | 65   | 59                   | 2      | 5  | 3 | 319     | 309                    | 3      | 5  | 3 | 85      | 84              |
| 4   | 5  | 3 | 388  | 382                  | ō      | 6  | 3 | 67      | 60                     | 1      | 6  | 3 | 303     | 294             |
| 2   | 6  | 3 | 78   | 72                   | 3      | 6  | 3 | 351     | 341                    | 4      | 6  | 3 | 84      | 81              |
| 5   | 6  | 3 | 289  | 282                  | Ō      | 7  | 3 | 260     | 251                    | 1      | 7  | 3 | 62      | 58              |
| 2   | 7  | 3 | 214  | 206                  | 3      | 7  | 3 | 57      | 59                     | 4      | 7  | 3 | 240     | 231             |
| 5   | 7  | 3 | 90   | 88                   | 6      | 7  | 3 | 95      | 88                     | 0      | 8  | 3 | 5       | 11*             |
| 1   | 8  | 3 | 159  | 153                  | 2      | 8  | 3 | 62      | 65                     | 3      | 8  | 3 | 149     | 145             |
| 4   | 8  | 3 | 47   | 45                   | 5      | 8  | 3 | 181     | 176                    | 6      | 8  | 3 | 94      | 96              |
| 7   | 8  | 3 | 109  | 105                  | 0      | 9  | 3 | 201     | 193                    | 1      | 9  | 3 | 50      | 53              |
| 2   | 9  | 3 | 162  | 153                  | 3      | 9  | 3 | 47      | 51                     | 4      | 9  | 3 | 195     | 189             |
| 5   | 9  | 3 | 35   | 45*                  | 6      | 9  | 3 | 140     | 132                    | 7      | 9  | 3 | 25      | 29*             |
| 8   | 9  | 3 | 133  | 132                  | 0      | 10 | 3 | 5       | 1*                     | 1      | 10 | 3 | 183     | 177             |
| 2   | 10 | 3 | 41   | 47*                  | 3      | 10 | 3 | 159     | 153                    | 4      | 10 | 3 | 22      | 17*             |
| 5   | 10 | 3 | 171  | 168                  | 6      | 10 | 3 | 24      | 21*                    | 7      | 10 | 3 | 114     | 108             |
| 8   | 10 | 3 | 22   | 12*                  | 9      | 10 | 3 | 82      | 80                     | 0      | 11 | 3 | 179     | 167             |

the standard of the

Anthe share

ŵ.

where we address

\* \* \* \* \* \*

. . . . . . . . . . . . .

.

ŗ.

۰

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

| Н       | к        | L    | 10Fo      | 10Fc       | н      | К      | L     | 10F0      | 10Fc       | н   | K      | L   | 10Fo   | 10Fc      |
|---------|----------|------|-----------|------------|--------|--------|-------|-----------|------------|-----|--------|-----|--------|-----------|
| 1       | 11       | 3    |           | <br>19*    | 2      | <br>11 | <br>3 | 154       | 148        |     | <br>11 |     | <br>26 | 16*       |
| 4       | 11       | 3    | 167       | 161        | 5      | 11     | 3     | 25        | 16*        | 6   | 11     | 3   | 109    | 105       |
| 7       | 11       | 3    | 28        | 15*        | 8      | 11     | 3     | 93        | 93         | 9   | 11     | 3   | 6      | 9*        |
| 10      | 11       | 3    | 58        | 52         | 0      | 12     | 3     | 6         | 24*        | 1   | 12     | 3   | 129    | 128       |
| 2       | 12       | 3    | 36        | 14*        | 3      | 12     | 3     | 130       | 122        | 4   | 12     | 3   | 35     | 16*       |
| 5       | 12       | 3    | 115       | 115        | 6      | 12     | 3     | 31        | 19*        | 7   | 12     | 3   | 85     | 81        |
| 8       | 12       | 3    | 25        | 8*         | 9      | 12     | 3     | 65        | 62         | 10  | 12     | 3   | 7      | 24*       |
| 11      | 12       | 3    | 52        | 44*        | 0      | 13     | 3     | 66        | 70         | 1   | 13     | 3   | 14     | 19*       |
| 2       | 13       | 3    | 75        | 75         | 3      | 13     | 3     | 33        | 9*         | 4   | 13     | 3   | 91     | 84        |
| 5       | 13       | 3    | 7         | 10*        | 6      | 13     | 3     | 52        | 58         | 7   | 13     | 3   | 13     | 11×       |
| 8       | 13       | 3    | 60        | 61         | 9      | 13     | 3     | 29        | 23*        | 10  | 13     | 3   | 39     | 49*       |
| 11      | 13       | 3    | 43        | 7*         | 12     | 13     | 3     | 42        | 32*        | 0   | 14     | 3   | 28     | 1*        |
| 1       | 14       | 3    | 56        | 58         | 2      | 14     | 3     | 25        | 19*        | 3   | 14     | 3   | 60     | 56        |
| 4       | 14       | 3    | 43        | 18*        | 5      | 14     | 3     | 63        | 50         | 6   | 14     | 3   | 7      | 6*        |
| 7       | 14       | 3    | 51        | 45*        | 8      | 14     | 3     | 31        | 8*         | 9   | 14     | 3   | 39     | 40*       |
| 10      | 14       | 3    | 7         | 15*        | 11     | 14     | 3     | 19        | 34*        | 12  | 14     | 3   | 19     | 6*        |
| 13      | 14       | 3    | 8         | 18*        | 0      | 15     | 3     | 61        | 53         | 1   | 15     | 3   | 7      | 26*       |
| 2       | 15       | 3    | 66        | 61         | 3      | 15     | 3     | 7         | 9*         | 4   | 15     | 3   | 58     | 50        |
| 5       | 15       | 3    | 37        | 8*         | 6      | 15     | 3     | 7         | 30*        | 7   | 15     | 3   | 7      | 8*        |
| 8       | 15       | 3    | 31        | 26*        | 9      | 15     | 3     | 7         | 11*        | 10  | 15     | 3   | 7      | 26*       |
| 11      | 15       | 3    | 12        | 5*         | 12     | 15     | 3     | 24        | 17*        | 13  | 15     | 3   | 8      | 5*        |
| 0       | 16       | 3    | 32        | 11*        | 1      | 16     | 3     | 45        | 42*        | 2   | 16     | 3   | 33     | 16*       |
| 3       | 16       | 3    | 27        | 40*        | 4      | 16     | 3     | 47        | 11*        | 5   | 16     | 3   | 24     | 31*       |
| 6       | 16       | 3    | 7         | 21*        | 7      | 16     | 3     | 7         | 29*        | 8   | 16     | 3   | 41     | 5*        |
| 9       | 16       | 3    | 12        | 20*        | 10     | 16     | 3     | 18        | 4*         | 11  | 16     | 3   | 43     | 21*       |
| 12      | 16       | 3    | 22        | 7*         | 0      | 17     | 3     | 7         | 26*        | 1   | 17     | 3   | 7      | 13*       |
| 2       | 17       | 3    | 38        | 35*        | 3      | 17     | 3     | 19        | 4*         | 4   | 17     | 3   | 33     | 31*       |
| 5       | 17       | 3    | 36        | 17*        | 6      | 17     | 3     | 46        | 34*        | 7   | 17     | 3   | 8      | 11*       |
| 8       | 17       | 3    | 34        | 27*        | 9      | 17     | 3     | 33        | 5*         | 10  | 17     | 3   | 34     | 21*       |
| 11      | 17       | 3    | 30        | 3*         | 0      | 18     | 3     | 24        | 3*         | 1   | 18     | 3   | 37     | 34*       |
| 2       | 18       | 3    | 18        | 12*        | 3      | 18     | 3     | 16        | 32*        | 4   | 18     | 3   | 33     | 6*        |
| 5       | 18       | 3    | 56        | 29*        | 6      | 18     | 3     | 45        | 5*         | 7   | 18     | 3   | 44     | 32*       |
| 8       | 18       | 3    | 35        | 4*         | 9      | 18     | 3     | 48        | 16*        | 0   | 19     | 3   | 47     | 30*       |
| 1       | 19       | 3    | 37        | 5*         | 2      | 19     | 3     | 39        | 29*        | 3   | 19     | 3   | 8      | 5*        |
| 4       | 19       | 3    | 46        | 1/*        | 2      | 19     | 3     | 8         | 3*         | 6   | 19     | 3   | 21     | 22*       |
| /       | 19       | 3    | 43        | 1*         | 0      | 20     | 3     | 25        | 1*         | 1   | 20     | 3   | 52     | 21*       |
| 2       | 20       | 3    | 8         | 2*         | 3      | 20     | 3     | 31        | 13*        | 0   | 0      | 4   | 134    | 130       |
| 0       | 1        | 4    | 122       | 115        | 1      | 1      | 4     | 241       | 241        | 0   | 2      | 4   | 314    | 308       |
| L<br>N  | 2        | 4    | 133       | 121        | 2      | 2      | 4     | 416       | 405        | 0   | 5      | 4   | 86     | //        |
| L       | <b>3</b> | 4    | 324       | 310        | 2      | 5      | 4     | //        | /4         | 3   | 5      | 4   | 351    | 347       |
| 0       | 4        | 4    | 212       | 207        | L /    | 4      | 4     | 20        | 22*        | 2   | 4      | 4   | 258    | 246       |
| 3       | 4<br>E   | 4    | 49        | 41         | 4      | 4      | 4     | 338       | 328        | 0   | 2      | 4   | 13     | 14*       |
| L<br>J. | 2        | 4    | 233       | 220        | ۲<br>۲ | 2<br>F | 4     | 41        | 40         | 3   | 2      | 4   | 2/3    | 268       |
| 4       | 2<br>2   | 4    | 102       | 13/        | 2      | 2      | 4     | 200       | 247        | 0   | 6      | 4   | 256    | 248       |
| L<br>A  | D<br>L   | 4    | 2/<br>ددر | /2         | 2      | 0      | 4     | 228       | 220        | 3   | 6      | 4   | 10/    | 170       |
| 4       | ס<br>רי  | 4    | 233       | ۲۲٦<br>۲۵۳ | 2      | 0<br>7 | 4     | /0<br>015 | / J<br>101 | 6   | 5      | 4   | 1/0    | 1/0       |
| U<br>a  | /<br>7   | 4    | 0C<br>01/ | 47×<br>20% | L /    | '      | 4     | 212       | 203        | 2   | /      | 4   | 70     | )/<br>150 |
| د<br>2  | /<br>7   | 4    | 214       | 204        | 4 7    | 7      | 4     | 0/<br>110 | 00<br>112  | C 2 | /      | 4   | 101    | 102       |
| 0       | /<br>0   | - 4- | 73        | 74<br>26-1 | /      | /      | 4     | 110       | 113        | 0   | ŏ      | 4   | 141    | 134       |
| T       | Ő        | - 4  | 20        | 20×        | 2      | Ö      | 4     | T28       | 125        | 3   | ŏ      | - 4 | 23     | 54        |

11

,

e

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

| н  | K  | L   | 10Fo | 10Fc | н  | K  | L     | 10Fo | 10Fc | Н   | K  | L | 10F0 | 10Fc |
|----|----|-----|------|------|----|----|-------|------|------|-----|----|---|------|------|
|    |    | 4   | 158  | 152  | 5  |    | <br>4 | 52   | 50   | 6   |    | 4 | 116  | 111  |
| 7  | 8  | 4   | 44   | 35*  | 8  | 8  | 4     | 117  | 104  | 0   | 9  | 4 | 41   | 43   |
| 1  | 9  | 4   | 141  | 134  | 2  | 9  | 4     | 5    | 21*  | 3   | 9  | 4 | 136  | 131  |
| 4  | 9  | 4   | 30   | 35*  | 5  | 9  | 4     | 143  | 137  | 6   | 9  | 4 | 36   | 8*   |
| 7  | 9  | 4   | 103  | 94   | 8  | 9  | 4     | 32   | 13*  | 9   | 9  | 4 | 106  | 100  |
| 0  | 10 | 4   | 167  | 161  | 1  | 10 | 4     | 38   | 28*  | 2   | 10 | 4 | 140  | 137  |
| 3  | 10 | 4   | 28   | 30*  | 4  | 10 | 4     | 139  | 135  | 5   | 10 | 4 | 30   | 35*  |
| 6  | 10 | 4   | 96   | 89   | 7  | 10 | 4     | 10   | 21*  | 8   | 10 | 4 | 89   | 84   |
| 9  | 10 | 4   | 6    | 9*   | 10 | 10 | 4     | 71   | 71   | 0   | 11 | 4 | 6    | 6*   |
| 1  | 11 | 4   | 136  | 132  | 2  | 11 | 4     | 37   | 38*  | 3   | 11 | 4 | 114  | 110  |
| 4  | 11 | 4   | 20   | 21*  | 5  | 11 | 4     | 111  | 104  | , 6 | 11 | 4 | 29   | 13*  |
| 7  | 11 | 4   | 63   | 63   | 8  | 11 | 4     | 6    | 2*   | 9   | 11 | 4 | 63   | 64   |
| 10 | 11 | 4   | 23   | 16*  | 11 | 11 | 4     | 41   | 38*  | 0   | 12 | 4 | 110  | 101  |
| 1  | 12 | 4   | 6    | 20*  | 2  | 12 | 4     | 89   | 84   | 3   | 12 | 4 | 33   | 12*  |
| 4  | 12 | 4   | 105  | 101  | 5  | 12 | 4     | 6    | 10*  | 6   | 12 | 4 | 62   | 65   |
| 7  | 12 | 4   | 40   | 21*  | 8  | 12 | 4     | 74   | 63   | 9   | 12 | 4 | 33   | 17*  |
| 10 | 12 | 4   | 52   | 40*  | 11 | 12 | 4     | 28   | 4*   | 12  | 12 | 4 | 38   | 33*  |
| 0  | 13 | 4   | 10   | 12*  | 1  | 13 | 4     | 77   | 68   | 2   | 13 | 4 | 36   | 5*   |
| 3  | 13 | 4   | 75   | 70   | 4  | 13 | 4     | 6    | 25*  | 5   | 13 | 4 | 72   | 67   |
| 6  | 13 | - 4 | 33   | 13*  | 7  | 13 | 4     | 60   | 49   | 8   | 13 | 4 | 24   | 3*   |
| 9  | 13 | 4   | 42   | 43*  | 10 | 13 | 4     | 19   | 6*   | 11  | 13 | 4 | 39   | 33*  |
| 12 | 13 | -4  | 26   | 1*   | 13 | 13 | 4     | 26   | 22*  | 0   | 14 | 4 | 61   | 49   |
| 1  | 14 | 4   | 15   | 11*  | 2  | 14 | 4     | 38   | 51*  | 3   | 14 | 4 | 26   | 21*  |
| 4  | 14 | 4   | 31   | 48*  | 5  | 14 | 4     | 42   | 23*  | 6   | 14 | 4 | 54   | 38   |
| 7  | 14 | 4   | 11   | 7*   | 8  | 14 | 4     | 29   | 37*  | 9   | 14 | 4 | 7    | 15*  |
| 10 | 14 | 4   | 43   | 27*  | 11 | 14 | 4     | 26   | 3*   | 12  | 14 | 4 | 30   | 21*  |
| 13 | 14 | 4   | 8    | 3*   | 14 | 14 | 4     | 16   | 13*  | 0   | 15 | 4 | 7    | *8   |
| 1  | 15 | 4   | 40   | 49*  | 2  | 15 | 4     | 14   | 18*  | 3   | 15 | 4 | 55   | 45   |
| 4  | 15 | 4   | 11   | 17*  | 5  | 15 | 4     | 7    | 33*  | 6   | 15 | 4 | 23   | 6*   |
| 7  | 15 | 4   | 14   | 29*  | 8  | 15 | 4     | 9    | 3*   | 9   | 15 | 4 | 41   | 23*  |
| 10 | 15 | 4   | 8    | 1*   | 11 | 15 | 4     | 8    | 19*  | 12  | 15 | 4 | 8    | 5*   |
| 13 | 15 | 4   | 8    | 11*  | 0  | 16 | 4     | 43   | 34*  | 1   | 16 | 4 | 7    | 1*   |
| 2  | 16 | 4   | 37   | 45*  | 3  | 16 | 4     | 17   | 11*  | 4   | 16 | 4 | 22   | 29*  |
| 5  | 16 | 4   | 27   | 16*  | 6  | 16 | 4     | 24   | 29*  | 7   | 16 | 4 | 7    | 17*  |
| 8  | 16 | 4   | 41   | 28*  | 9  | 16 | 4     | 8    | 1*   | 10  | 16 | 4 | 17   | 20*  |
| 11 | 16 | 4   | 8    | 4*   | 0  | 17 | 4     | 29   | 1*   | 1   | 17 | 4 | 46   | 27*  |
| 2  | 17 | 4   | 7    | 9*   | 3  | 17 | 4     | 33   | 28*  | 4   | 17 | 4 | 18   | 10*  |
| 5  | 17 | 4   | 8    | 23*  | 6  | 17 | 4     | 37   | 2*   | 7   | 17 | 4 | 31   | 26*  |
| 8  | 17 | 4   | 25   | 2*   | 9  | 17 | 4     | 9    | 21*  | 10  | 17 | 4 | 8    | 3*   |
| 0  | 18 | 4   | 55   | 23*  | 1  | 18 | 4     | 37   | 5*   | 2   | 18 | 4 | 46   | 30*  |
| 3  | 18 | 4   | 8    | 9*   | 4  | 18 | 4     | 8    | 20*  | 5   | 18 | 4 | 36   | 9*   |
| 6  | 18 | 4   | 8    | 23*  | 7  | 18 | 4     | 8    | 1*   | 8   | 18 | 4 | 8    | 17*  |
| 0  | 19 | 4   | 31   | 1*   | 1  | 19 | 4     | 39   | 25*  | 2   | 19 | 4 | 8    | 3*   |
| 3  | 19 | 4   | 43   | 20*  | 4  | 19 | 4     | 43   | 10*  | 5   | 19 | 4 | 15   | 16*  |
| 0  | 1  | 5   | 238  | 240  | 0  | 2  | 5     | 32   | 36*  | 1   | 2  | 5 | 194  | 187  |
| 0  | 3  | 5   | 293  | 284  | 1  | 3  | 5     | 148  | 143  | 2   | 3  | 5 | 245  | 240  |
| 0  | 4  | 5   | 78   | 76   | 1  | 4  | 5     | 254  | 243  | 2   | 4  | 5 | 74   | 70   |
| 3  | 4  | 5   | 158  | 150  | 0  | 5  | 5     | 215  | 207  | 1   | 5  | 5 | 23   | 18*  |
| 2  | 5  | 5   | 194  | 188  | 3  | 5  | 5     | 46   | 41   | 4   | 5  | 5 | 82   | 80   |
| 0  | 6  | 5   | 43   | 40   | 1  | 6  | 5     | 203  | 198  | 2   | 6  | 5 | 28   | 35*  |

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

| Н  | ĸ  | L | 10Fo | 10Fc | н  | К  | L     | 10Fo | 10Fc | Н  | K  | L | 10Fo | 10Fc |
|----|----|---|------|------|----|----|-------|------|------|----|----|---|------|------|
| 3  | 6  | 5 | 160  | 154  | 4  | 6  | <br>5 | 45   | 30   | 5  | 6  | 5 | 172  | 168  |
| 0  | 7  | 5 | 147  | 141  | 1  | 7  | 5     | 27   | 38*  | 2  | 7  | 5 | 151  | 145  |
| 3  | 7  | 5 | 5    | 19*  | 4  | 7  | 5     | 172  | 172  | 5  | 7  | 5 | 89   | 92   |
| 6  | 7  | 5 | 129  | 125  | 0  | 8  | 5     | 50   | 51   | 1  | 8  | 5 | 144  | 142  |
| 2  | 8  | 5 | 54   | 48   | 3  | 8  | 5     | 124  | 120  | 4  | 8  | 5 | 79   | 83   |
| 5  | 8  | 5 | 134  | 134  | 6  | 8  | 5     | 34   | 29*  | 7  | 8  | 5 | 99   | 98   |
| 0  | 9  | 5 | 129  | 133  | 1  | 9  | 5     | 48   | 40   | 2  | 9  | 5 | 116  | 113  |
| 3  | 9  | 5 | 20   | 16*  | 4  | 9  | 5     | 129  | 124  | 5  | 9  | 5 | 49   | 36   |
| 6  | 9  | 5 | 56   | 61   | 7  | 9  | 5     | 23   | 33*  | 8  | 9  | 5 | 82   | 79   |
| 0  | 10 | 5 | 33   | 19*  | 1  | 10 | 5     | 88   | 92   | 2  | 10 | 5 | 40   | 32*  |
| 3  | 10 | 5 | 93   | 85   | 4  | 10 | 5     | 6    | 27*  | 5  | 10 | 5 | 74   | 77   |
| 6  | 10 | 5 | 53   | 37   | 7  | 10 | 5     | 81   | 59   | 8  | 10 | 5 | 39   | 27*  |
| 9  | 10 | 5 | 64   | 56   | 0  | 11 | 5     | 74   | 64   | 1  | 11 | 5 | 17   | 22*  |
| 2  | 11 | 5 | 85   | 82   | 3  | 11 | 5     | 6    | 17*  | 4  | 11 | 5 | 75   | 72   |
| 5  | 11 | 5 | 6    | 13*  | 6  | 11 | 5     | 55   | 46   | 7  | 11 | 5 | 7    | 13*  |
| 8  | 11 | 5 | 50   | 49*  | 9  | 11 | 5     | 33   | 9*   | 10 | 11 | 5 | 64   | 47   |
| 0  | 12 | 5 | 27   | 27*  | 1  | 12 | 5     | 95   | 82   | 2  | 12 | 5 | 20   | 15*  |
| 3  | 12 | 5 | 60   | 63   | 4  | 12 | 5     | 33   | 8*   | 5  | 12 | 5 | 81   | 46*  |
| 6  | 12 | 5 | 7    | 18*  | 7  | 12 | 5     | 54   | 45   | 8  | 12 | 5 | 7    | 7*   |
| 9  | 12 | 5 | 30   | 34*  | 10 | 12 | 5     | 17   | 5*   | 11 | 12 | 5 | 35   | 30*  |
| 0  | 13 | 5 | 54   | 50   | 1  | 13 | 5     | 17   | 14*  | 2  | 13 | 5 | 62   | 63   |
| 3  | 13 | 5 | 30   | 14*  | 4  | 13 | 5     | 44   | 41*  | 5  | 13 | 5 | 7    | 7*   |
| 6  | 13 | 5 | 57   | 48   | 7  | 13 | 5     | 7    | 2*   | 8  | 13 | 5 | 42   | 37*  |
| 9  | 13 | 5 | 8    | 8*   | 10 | 13 | 5     | 41   | 30*  | 11 | 13 | 5 | 8    | 3*   |
| 12 | 13 | 5 | 25   | 20*  | 0  | 14 | 5     | 29   | 12*  | 1  | 14 | 5 | 50   | 50*  |
| 2  | 14 | 5 | 36   | 20*  | 3  | 14 | 5     | 47   | 43*  | 4  | 14 | 5 | 7    | 5*   |
| 5  | 14 | 5 | 46   | 48*  | 6  | 14 | 5     | 8    | 4*   | 7  | 14 | 5 | 33   | 44*  |
| 8  | 14 | 5 | 7    | 9*   | 9  | 14 | 5     | 39   | 25*  | 10 | 14 | 5 | 8    | 2*   |
| 11 | 14 | 5 | 34   | 16*  | 12 | 14 | 5     | 16   | 3*   | 13 | 14 | 5 | 37   | 16*  |
| 0  | 15 | 5 | 40   | 44*  | 1  | 15 | 5     | 14   | 1*   | 2  | 15 | 5 | 41   | 44*  |
| 3  | 15 | 5 | 7    | 14*  | 4  | 15 | 5     | 26   | 38*  | 5  | 15 | 5 | 35   | 4*   |
| 6  | 15 | 5 | 51   | 35*  | 7  | 15 | 5     | 7    | 10*  | 8  | 15 | 5 | 41   | 21*  |
| 9  | 15 | 5 | 8    | 6*   | 10 | 15 | 5     | 49   | 18*  | 11 | 15 | 5 | 37   | 6*   |
| 12 | 15 | 5 | 30   | 12*  | 0  | 16 | 5     | 38   | 0*   | 1  | 16 | 5 | 42   | 35*  |
| 2  | 16 | 5 | 7    | 9*   | 3  | 16 | 5     | 12   | 29*  | 4  | 16 | 5 | 20   | 7*   |
| 5  | 16 | 5 | 23   | 28*  | 6  | 16 | 5     | 46   | 14*  | 7  | 16 | 5 | 8    | 21*  |
| 8  | 16 | 5 | 24   | 5*   | 9  | 16 | 5     | 43   | 23*  | 10 | 16 | 5 | 21   | 2*   |
| 0  | 17 | 5 | 23   | 25*  | 1  | 17 | 5     | 8    | 7*   | 2  | 17 | 5 | 8    | 22*  |
| 3  | 17 | 5 | 21   | 6*   | 4  | 17 | 5     | 14   | 21*  | 5  | 17 | 5 | 32   | 5*   |
| 6  | 17 | 5 | 44   | 16*  | 7  | 17 | 5     | 8    | 3*   | 8  | 17 | 5 | 8    | 17*  |
| 9  | 17 | 5 | 41   | 5*   | 0  | 18 | 5     | 13   | 4*   | 1  | 18 | 5 | 8    | 18*  |
| 2  | 18 | 5 | 46   | 7*   | 3  | 18 | 5     | 8    | 18*  | 4  | 18 | 5 | 39   | 6*   |
| 5  | 18 | 5 | 8    | 13*  | 6  | 18 | 5     | 8    | 3*   | 0  | 19 | 5 | 47   | 11*  |
| 1  | 19 | 5 | 41   | 5*   | 2  | 19 | 5     | 38   | 14*  | 3  | 19 | 5 | 45   | 5*   |
| 0  | 0  | 6 | 147  | 145  | Û  | 1  | 6     | 5    | 17*  | 1  | 1  | 6 | 277  | 274  |
| 0  | 2  | 6 | 202  | 201  | 1  | 2  | 6     | 57   | 49   | 2  | 2  | 6 | 191  | 185  |
| 0  | 3  | 6 | 35   | 41*  | 1  | 3  | 6     | 111  | 102  | 2  | 3  | 6 | 40   | 37*  |
| 3  | 3  | 6 | 63   | 66   | 0  | 4  | 6     | 143  | 140  | 1  | 4  | 6 | 27   | 20*  |
| 2  | 4  | 6 | 109  | 107  | 3  | 4  | 6     | 40   | 31*  | 4  | 4  | 6 | 158  | 156  |
| 0  | 5  | 6 | 15   | 28*  | 1  | 5  | 6     | 157  | 159  | 2  | 5  | 6 | 61   | 57   |

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

| н  | K  | L   | 10Fo    | 10Fc        | н      | к  | L | 10Fo     | 10Fc            | н        | к      | L | 10Fo      | 10Fc        |
|----|----|-----|---------|-------------|--------|----|---|----------|-----------------|----------|--------|---|-----------|-------------|
| 3  |    | 6   | 128     | 122         | 4      |    | 6 | 36       | 30*             | 5        | 5      | 6 | 110       | 1,09        |
| 0  | 6  | 6   | 129     | 127         | 1      | 6  | 6 | 35       | 33*             | 2        | 6      | 6 | 93        | 88          |
| 3  | 6  | 6   | 30      | 39*         | 4      | 6  | 6 | 71       | 69              | 5        | 6      | 6 | 27        | 10*         |
| 6  | 6  | 6   | 99      | 93          | 0      | 7  | 6 | 6        | 19*             | 1        | 7      | 6 | 151       | 150         |
| 2  | 7  | 6   | 36      | 8*          | 3      | 7  | 6 | 125      | 118             | 4        | 7      | 6 | 6         | 8*          |
| 5  | 7  | 6   | 73      | 73          | 6      | 7  | 6 | 6        | 10*             | 7        | 7      | 6 | 109       | 114         |
| 0  | 8  | 6   | 144     | 142         | 1      | 8  | 6 | 32       | 15*             | 2        | 8      | 6 | 150       | 149         |
| 3  | 8  | 6   | 31      | 22*         | 4      | 8  | 6 | 78       | 78              | 5        | 8      | 6 | 37        | 12*         |
| 6  | 8  | 6   | 116     | 113         | 7      | 8  | 6 | 38       | 14*             | 8        | 8      | 6 | 45        | 47*         |
| 0  | 9  | 6   | 6       | 0*          | 1      | 9  | 6 | 74       | 67              | 2        | 9      | 6 | 15        | 9*          |
| 3  | 9  | 6   | 93      | 84          | 4      | 9  | 6 | 6        | 17*             | 5        | 9      | 6 | 57        | 51          |
| 6  | 9  | 6   | 6       | 26*         | 7      | 9  | 6 | 78       | 74              | 8        | 9      | 6 | 21        | 3*          |
| 9  | 9  | 6   | 65      | 41          | 0      | 10 | 6 | 82       | 73              | 1        | 10     | 6 | 18        | 15*         |
| 2  | 10 | 6   | 66      | 65          | 3      | 10 | 6 | 36       | 22*             | 4        | 10     | 6 | 39        | 30*         |
| 5  | 10 | 6   | 33      | 26*         | 6      | 10 | 6 | 82       | 76              | 1        | 10     | 6 | 17        | 8*          |
| 8  | 10 | 6   | 4/      | 35*         | 9      | 10 | 6 | 24       | 3*              | 10       | 10     | 6 | 1/        | 31*         |
| 0  | 11 | 6   | 19      | 24*         | 1      | 11 | 6 | 54       | 28<br>15-4      | 2        | 11     | 6 | 33        | 19*         |
| 3  | 11 | 6   | 24      | 49          | 4 7    | 11 | 0 | 10<br>55 | 10 <del>*</del> | 2        | 11     | 0 | 23        | ירה.<br>אכנ |
| 0  | 11 | 6   | 54<br>7 | 10×         | 10     | 11 | 6 | 22       | 42×<br>63       | 0        | 11     | 6 | 27        | /×<br>124   |
| 9  | 12 | 6   | 1       | 20*<br>20*  | 1      | 12 | 6 | 23       | 14+             | 11       | 12     | 6 | יג<br>ד   | 13×<br>27+  |
| 2  | 12 | 6   | 37      | 42*         | 1<br>/ | 12 | 6 | 30       | 214             | <u>۲</u> | 12     | 6 | י<br>ר    | 2/*<br>16+  |
| 2  | 12 | 6   | 14      | /~<br>/5*   | 7      | 12 | 6 | 7        | 3*              | 2<br>Q   | 12     | 6 | ر<br>۲    | 214         |
| å  | 12 | 6   | 19      | 10*         | 10     | 12 | 6 | /<br>//  | 23*             | 11       | 12     | 6 | 47        | 6*          |
| 12 | 12 | 6   | 8       | 21*         | 10     | 13 | 6 |          | 14*             | 1        | 13     | 6 | 64        | 45          |
| 2  | 13 | 6   | 32      | 21*         | 3      | 13 | 6 | 58       | 48              | Ĺ        | 13     | 6 | 7         |             |
| 5  | 13 | 6   | 40      | 37*         | 6      | 13 | 6 | 50<br>7  | 6*              | 7        | 13     | 6 | 7         | 24*         |
| 8  | 13 | 6   | 39      | 3*          | 9      | 13 | 6 | 35       | 27*             | 10       | 13     | 6 | 28        | 14*         |
| 11 | 13 | 6   | 8       | 14*         | 12     | 13 | 6 | 41       | 2*              | 13       | 13     | 6 | 27        | 13*         |
| 0  | 14 | 6   | 59      | 59          | 1      | 14 | 6 | 43       | 21*             | 2        | 14     | 6 | 64        | 44          |
| 3  | 14 | 6   | 17      | 9*          | 4      | 14 | 6 | 29       | 40*             | 5        | 14     | 6 | 7         | 5*          |
| 6  | 14 | 6   | 33      | 25*         | 7      | 14 | 6 | 7        | 2*              | 8        | 14     | 6 | 41        | 21*         |
| 9  | 14 | 6   | 34      | 12*         | 10     | 14 | 6 | 8        | 18*             | 11       | 14     | 6 | 14        | 3*          |
| 0  | 15 | 6   | 38      | 1*          | 1      | 15 | 6 | 50       | 26*             | 2        | 15     | 6 | 9         | 8*          |
| 3  | 15 | 6   | 41      | 29*         | 4      | 15 | 6 | 32       | 6*              | 5        | 15     | 6 | 7         | 25*         |
| 6  | 15 | 6   | 8       | 3*          | 7      | 15 | 6 | 42       | 23*             | 8        | 15     | 6 | 32        | 5*          |
| 9  | 15 | 6   | 8       | 24*         | 10     | 15 | 6 | 47       | 6*              | 0        | 16     | 6 | 29        | 21*         |
| 1  | 16 | 6   | 35      | 6*          | 2      | 16 | 6 | 34       | 24*             | 3        | 16     | 6 | 8         | 7*          |
| 4  | 16 | 6   | 8       | 25*         | 5      | 16 | 6 | 23       | 5*              | 6        | 16     | 6 | 19        | 21*         |
| 7  | 16 | 6   | 27      | 7*          | 8      | 16 | 6 | 8        | 16*             | 9        | 16     | 6 | 31        | 2*          |
| 0  | 17 | 6   | 8       | 1*          | 1      | 17 | 6 | 24       | 20*             | 2        | 17     | 6 | 37        | 3*          |
| 3  | 17 | 6   | 30      | 21*         | 4      | 17 | 6 | 32       | 3*              | 5        | 17     | 6 | 26        | 17*         |
| 6  | 17 | 6   | 37      | 5*          | 7      | 17 | 6 | 8        | 9*              | 0        | 18     | 6 | 28        | 6*          |
| 1  | 18 | 6   | 33      | 3*          | 2      | 18 | 6 | 8        | 9*              | 3        | 18     | 6 | 35        | 4*          |
| 0  | 1  | 7   | 204     | 203         | 0      | 2  | 7 | 34       | 23*             | 1        | 2      | 7 | 75        | 67          |
| 0  | 3  | 7   | 107     | 102         | 1      | 3  | 7 | 81       | 82              | 2        | 3      | 7 | 94        | 91          |
| 0  | 4  |     | 6       | 18*         | 1      | 4  | 7 | 100      | 99              | 2        | 4      | / | 35        | 16*         |
| 3  | 4  |     | 92      | 8/<br>05    | 0      | 2  |   | 15       | / L             | L L      | )<br>5 | / | JU<br>5 7 | 20*         |
| 2  | 2  |     | 90      | 90<br>1 Cat | 3      | 2  | / | 52       | 30*             | 4        | 3<br>2 | / | )رد<br>م  | 20<br>17-1  |
| 0  | b  | - 7 | 6       | Tox.        | 1      | 6  |   | 91       | 82              | 2        | 6      | / | 6         | 10*         |

÷

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

21

÷

ŝ

5

,

ŕ

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o 10Fc      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 75        |
| 3       7       7       15 $28*$ 4       7       7       65       64       5       7       7         6       7       7       69       68       0       8       7       13       13*       1       8       7         2       8       7       32 $27*$ 3       8       7       17 $51*$ 4       8       7       5         5       8       7       54       48       6       8       7       23 $21*$ 7       8       7       5         0       9       7       88       91       1       9       7       19 $20*$ 2       9       7         3       9       7       6       9*       4       9       7       42 $42*$ 5       9       7         6       9       7       11 $42*$ 7       9       7 $28$ $7*$ 8       9       7 $4$ 0       10       7       30 $25*$ 1       10       7 $28$ $15*$ 5       10       7 | 2 81        |
| 677 $69$ $68$ 087 $13$ $13*$ 187 $2$ 87 $32$ $27*$ 387 $17$ $51*$ 487 $5$ 87 $54$ 48687 $23$ $21*$ 787 $0$ 978891197 $19$ $20*$ 297 $3$ 976 $9*$ 497 $42$ $42*$ 597 $6$ 9711 $42*$ 797 $28$ $7*$ 897 $6$ 9711 $42*$ 797 $28$ $7*$ 897 $6$ 9711 $42*$ 797 $28$ $15*$ 5 $10$ 7 $3$ 107 $32$ $34*$ 4 $10$ 7 $28$ $15*$ 5 $10$ 7 $3$ 107 $32$ $34*$ 4 $10$ 7 $28$ $15*$ 5 $10$ 7 $9$ 1077 $16*$ 7 $10$ 7 $46$ $41*$ $8$ $10$ 7 $9$ 1077 $19*$ 0 $11$ 7 $7$ $11*$ $11$ $7$ $2$ $11$ 7 $38$ $30*$ $3$ $11$ 7 $42$ $6*$ $4$ $11$ $7$ $2$                                                                                                                                                                                                                                                                                   | 4 26*       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 89        |
| 587544868723 $21*$ 7871097889119719 $20*$ 297139769*49742 $42*$ 59769711 $42*$ 797287*89769711 $42*$ 797287*89701073025*11076145210731073234*41072815*51076107716*71074641*81079107719*0117711*111721173830*3117426*4117511774*61174138*711781174529*91172027*2107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 31*       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 54*       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 71        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 9*        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 43*       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 8*        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 41*       |
| 9       10       7       7       19*       0       11       7       7       11*       1       11       7         2       11       7       38       30*       3       11       7       42       6*       4       11       7         5       11       7       7       4*       6       11       7       41       38*       7       11       7         8       11       7       45       29*       9       11       7       42       14*       10       11       7         0       12       7       30*       1       12       7       30       37*       2       10       7                                                                                                                                                                                                                                           | 9 3*        |
| 2       11       7       38       30*       3       11       7       42       6*       4       11       7         5       11       7       7       4*       6       11       7       41       38*       7       11       7         8       11       7       45       29*       9       11       7       42       14*       10       11       7         0       12       7       30*       1       12       7       30       37*       2       10       7                                                                                                                                                                                                                                                                                                                                                            | 8 17*       |
| 5     11     7     7     4*     6     11     7     41     38*     7     11     7       8     11     7     45     29*     9     11     7     42     14*     10     11     7       0     12     7     36     30*     1     12     7     30     37*     3     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 26*       |
| 8 11 7 45 29* 9 11 7 42 14* 10 11 7<br>0 12 7 36 30* 1 12 7 39 37* 3 12 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 16*       |
| 0 10 7 2/ 20+ 1 10 7 20 27+ 0 10 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 18*       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 18*       |
| 3 12 7 33 32* 4 12 7 33 10* 5 12 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 31*       |
| 6 12 7 7 12* 7 12 7 16 28* 8 12 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 2*        |
| 9 12 7 33 13* 10 12 7 75 9* 11 12 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 17*       |
| 0 13 7 41 32* 1 13 7 25 12* 2 13 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 41        |
| 3 13 7 42 4* 4 13 7 60 23 5 13 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 3*        |
| 6 13 7 29 25* 7 13 7 28 4* 8 13 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 15*       |
| 9 13 7 42 10* 10 13 7 20 14* 11 13 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 4*        |
| 0 14 7 30 14* 1 14 7 30 24* 2 14 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 14*       |
| 3 14 7 75 22* 4 14 7 22 3* 5 14 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .8 23*      |
| 6 14 7 32 1* 7 14 7 21 20* 8 14 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 4*        |
| 9 14 7 8 15* 10 14 7 8 2* 0 15 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 20*       |
| 1 15 7 27 3* 2 15 7 44 22* 3 15 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0 6*       |
| 4 15 7 33 22* 5 15 7 40 1* 6 15 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .4 19*      |
| 7 15 7 43 6* 8 15 7 33 14* 0 16 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 3*        |
| 1 16 7 25 19* 2 16 7 8 1* 3 16 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,5          |
| 4 16 7 72 4* 5 16 7 21 17* 6 16 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 4*        |
| 0 17 7 44 14* 1 17 7 8 3* 2 17 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>4 8*</u> |
| 3 17 7 32 2* 0 0 8 6 51* 0 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 55*       |
| 1 1 8 6 34* 0 2 8 69 76 1 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 42*       |
| 2 2 8 47 52* 0 3 8 31 28* 1 3 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 88        |
| 2 3 8 40 23* 3 3 8 84 76 0 4 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91          |
| 1 4 8 6 26* 2 4 8 44 51* 3 4 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 19*      |
| 4 4 8 65 61 0 5 8 20 16* 1 5 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ig 60       |
| 2 5 8 34 19* 3 5 8 54 52 4 5 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 8*        |
| 5 5 8 68 67 0 6 8 61 65 1 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 4*        |
| 2 6 8 63 54 3 6 8 6 21* 4 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48*         |
| 5 6 8 7 16* 6 6 8 26 49* 0 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 2*        |
| 1 7 8 43 34* 2 7 8 6 2* 3 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 38*       |
| 4 7 8 27 18* 5 7 8 22 38* 6 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 6*        |
| 7 7 8 46 38* 0 8 8 18 13* 1 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 3*       |
| 2 8 8 44 45* 3 8 8 7 12* 4 R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52 39*      |
| 5 8 8 7 1* 6 8 8 26 35* 7 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 2*       |
| 8 8 8 43 20* 0 9 8 34 20* 1 9 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +5 41*      |

ŕ

\$

٢

.

J

ţ

\$ •

1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

| Н      | ĸ       | L      | 10Fo                 | 10Fc                    | н      |          | K        | L      | 10Fo    | 10Fc                              | н      | к     | L      | 10Fo        | 10Fc                                  |
|--------|---------|--------|----------------------|-------------------------|--------|----------|----------|--------|---------|-----------------------------------|--------|-------|--------|-------------|---------------------------------------|
| 2      | <br>9   |        | 27                   | 14*                     | 3      |          | ·<br>9   |        | <br>57  | 49                                | 4      | <br>9 | 8      | 16          | 12*                                   |
| 5      | 9       | 8      | 31                   | 36*                     | 6      |          | 9        | 8      | 30      | 3*                                | 7      | 9     | 8      | 36          | 24*                                   |
| 8      | 9       | 8      | 7                    | 10*                     | 9      |          | 9        | 8      | 7       | 11*                               | 0      | 10    | 8      | 27          | 20*                                   |
| 1      | 10      | 8      | 7                    | 16*                     | 2      |          | 10       | 8      | 48      | 42*                               | 3      | 10    | 8      | 7           | 11*                                   |
| 4      | 10      | 8      | 37                   | 27*                     | 5      |          | 10       | 8      | 41      | 5*                                | 6      | 10    | 8      | 42          | 22*                                   |
| 7      | 10      | 8      | 7                    | 11*                     | 8      |          | 10       | 8      | 7       | 19*                               | 9      | 10    | 8      | 26          | 1*                                    |
| 10     | 10      | 8      | 8                    | 26*                     | 0      |          | 11       | 8      | 8       | 17*                               | 1      | 11    | 8      | 48          | 30*                                   |
| 2      | 11      | 8      | 36                   | 25*                     | 3      |          | 11       | 8      | 16      | 24*                               | 4      | 11    | 8      | 41          | 2*                                    |
| 5      | 11      | 8      | 44                   | 23*                     | 6      |          | 11       | 8      | 30      | 4*                                | 10     | 11    | 8      | 51          | 23*                                   |
| 8      | 11      | 8      | 8                    | 4*                      | 9      |          | 11       | 8      | 44      | 20*                               | 10     | 11    | 8      | 26          | 3*                                    |
| 11     | 11      | ð      | /0                   | 18*                     | 0      |          | 12       | 8      | 37      | 29 <del>*</del>                   | 1      | 12    | 8      | ~ ~ /       | 10*                                   |
| 2      | 12      | ð      | 30                   | ×1د<br>۱۰۰              | د<br>ء |          | 12       | 0      | 42      | 1.1.*                             | 4 7    | 12    | ð<br>o | 24          | 2/*                                   |
| 0      | 12      | 0      | 20                   | 15+                     | 0      |          | 12       | 0<br>0 | 55      | 1/×                               | 10     | 12    | 0      | 22          | 104                                   |
| 0      | 13      | o<br>g | 7                    | 10*                     | 1      |          | 13       | 0<br>8 | 40      | 19*                               | 2      | 12    | o<br>R | 24          | 1.Z^<br>7*                            |
| 2      | 13      | 2<br>2 | ,<br>38              | 14*                     | 4      |          | 13       | 8      | 8       | 2*                                | 5      | 13    | g      | 57          | 20*                                   |
| 6      | 13      | 8      | 8                    | 6*                      | 7      |          | 13       | 8      | 44      | 16*                               | 8      | 13    | Я      | л.<br>В     | 20*                                   |
| ğ      | 13      | 8      | 37                   | 8*                      | Ó      | l I      | 14       | 8      | 25      | 13*                               | 1      | 14    | 8      | 46          | 2*                                    |
| 2      | 14      | 8      | 8                    | 11*                     | 3      |          | 14       | 8      | 13      | 3*                                | 4      | 14    | 8      | 8           | 17*                                   |
| 5      | 14      | 8      | 9                    | <br>4*                  | 6      |          | 14       | 8      | 73      | 15*                               | . 7    | 14    | 8      | 50          | 3*                                    |
| Ō      | 15      | 8      | 41                   | 5*                      | 1      |          | 15       | 8      | 8       | 15*                               | 2      | 15    | 8      | 8           |                                       |
| 3      | 15      | 8      | 13                   | 10*                     | 4      | •        | 15       | 8      | 30      | 3*                                | 5      | 15    | 8      | 8           | 12*                                   |
| 0      | 16      | 8      | 33                   | 11*                     | 1      | -        | 16       | 8      | 8       | 3*                                | 0      | 1     | 9      | 33          | 18*                                   |
| 0      | 2       | 9      | 29                   | 1*                      | 1      |          | 2        | 9      | 64      | 61                                | 0      | 3     | 9      | 7           | 15*                                   |
| 1      | 3       | 9      | 7                    | 4*                      | 2      | 2        | 3        | 9      | 40      | 47*                               | 0      | 4     | 9      | 40          | 17*                                   |
| 1      | 4       | 9      | 55                   | 53                      | 2      | 2        | 4        | 9      | 19      | 16*                               | 3      | 4     | 9      | 56          | 51*                                   |
| 0      | 5       | 9      | 43                   | 33*                     | 1      | -        | 5        | 9      | 7       | 9*                                | 2      | 5     | 9      | 62          | 49                                    |
| 3      | 5       | 9      | 13                   | 17*                     | 4      | F        | 5        | 9      | 49      | 45*                               | 0      | 6     | 9      | 7           | 9*                                    |
| 1      | 6       | 9      | 7                    | 17*                     | 2      | ?        | 6        | 9      | 7       | 9*                                | 3      | 6     | 9      | 19          | 27*                                   |
| 4      | 6       | 9      | 43                   | 5*                      |        | 5        | 6        | 9      | 24      | 25*                               | 0      | 7     | 9      | 31          | 21*                                   |
| 1      | 7       | 9      | 12                   | 9*                      | 2      | 2        | 7        | 9      | 33      | 26*                               | 3      | 7     | 9      | 40          | 4*                                    |
| 4      | 7       | 9      | 39                   | 32*                     | -      | >        | 7        | 9      | 7       | 12*                               | 6      | 7     | 9      | 23          | 21*                                   |
| 0      | 8       | 9      | 7                    | 8*                      | ]      | _        | 8        | 9      | 11      | 21*                               | 2      | 8     | 9      | 32          | 7*                                    |
| 3      | 8       | 9      | 7                    | 27*                     | 2      | ł        | 8        | 9      | 30      | 15*                               | 5      | 8     | 9      | 42          | 21*                                   |
| 6      | 8       | 9      | 29                   | 4*                      |        | 1        | 8        | 9      | 7       | 9*                                | 0      | 9     | 9      | 7           | 18*                                   |
| 1      | 9       | 9      | 39                   | /*                      |        | 2        | 9        | 9      | /       | 12*                               | 3      | 9     | 9      | 31          | 1*                                    |
| 4      | 9       | 9      | 33                   | 22*                     |        | >        | 9        | 9      | /       | 9 <del>*</del>                    | 6      | 9     | 9      | /           | 10+                                   |
| /      | 9<br>10 | 9      | 31                   | 8*                      | 2      | 5        | 10       | 9      | 8       | 14*                               | 0      | 10    | 9      | 40          | 20+<br>10*                            |
| L<br>A | 10      | 9      | 0/<br>12             | 20                      | 4      | 2        | 10       | 9      | 30      | 9 <del>*</del><br>24 <del>*</del> | د<br>۲ | 10    | 9      | 00          | ×0ر<br>×0ر                            |
| 4      | 10      | 9      | 20<br>TO             | ×ر<br>۲/۰۰              |        | 2        | 10       | 9<br>0 | 39      | 24×<br>2+                         | 0      | 10    | 9      | 0<br>22     | 9×<br>16+                             |
| /      | 11      | 9      | 30<br>//             | 14*<br>30*              |        | 2        | 11       | 9      | 24      | 6×                                | 9<br>2 | 11    | 2      | 23          | 23+<br>10*                            |
| 2      | 11      | 2      | 40                   | 50×<br>7+               |        | L.<br>'. | 11       | 2      | 29      | 254                               | 5      | 11    | 2      | 41          | 2.)*<br>5.#                           |
| د<br>۲ | 11      | 9      | 24<br>10             | / ^<br>1 ይ <del>ኔ</del> |        | ∻<br>7   | 11       | 9      | 20      | 2J ~<br>0+                        | ג<br>ג | 11    | 9<br>0 | 2.3<br>Q    | 10*                                   |
| 0<br>0 | 11      | 9      | 42<br>Q              | 10~<br>54               |        | י<br>ר   | ++<br>10 | 9      | 2       | ۲ <u>۰</u><br>۲۰۰۲                | 0      | 12    | 2      | o<br>g      | 10*                                   |
| ד<br>ר | 12      | 7<br>0 | 0<br>27              | /.*                     |        | ,<br>ז   | 12       | 7<br>0 | o<br>Q  | 19 <del>*</del>                   | 1      | 12    | 9<br>Q | 0<br>77     | ±∠^<br>)*                             |
| 2<br>ج | 12      | 9      | 21<br>/13            | 10+                     |        | 5        | 12       | 9      | U<br>Q  | 2 <del>7</del><br>70~             |        | 12    | 9<br>0 | 16          | ~ د<br>11+                            |
| 2      | 12      | 9<br>Q | ر <del>ب</del><br>لا |                         |        | 5        | 12       | 9<br>Q | ט<br>פ  | 14*                               | 1      | 13    | 9<br>Q | 13          | · · · · · · · · · · · · · · · · · · · |
| 2      | 13      | a      | 23                   | 13*                     |        | 3        | 13       | a      | 5<br>۵۵ | <u>_</u> _*                       | 4      | 13    | q      | 2<br>2<br>2 | 11*                                   |
| 5      | 13      | 9      | 8                    | 2*                      |        | 5        | 13       | 9      | 22      | 11*                               | 0      | 14    | 9      | 8           | 3*                                    |

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4

Ŧ

r

| Н | к  | L  | 10Fo   | 10Fc | н | К  | L     | 10Fo | 10Fc   | Н | К  | L     | 10Fo | 10Fc    |
|---|----|----|--------|------|---|----|-------|------|--------|---|----|-------|------|---------|
|   |    |    | <br>19 | 9*   | 2 | 14 | <br>9 | 36   | <br>7* | 3 | 14 | <br>9 |      | <br>12* |
| 0 | 0  | 10 | 18     | 26*  | 0 | 1  | 10    | 32   | 1*     | 1 | 1  | 10    | 18   | 20*     |
| 0 | 2  | 10 | 8      | 22*  | 1 | 2  | 10    | 38   | 12*    | 2 | 2  | 10    | 7    | 29*     |
| 0 | 3  | 10 | 12     | 10*  | 1 | 3  | 10    | 7    | 25*    | 2 | 3  | 10    | 53   | 4*      |
| 3 | 3  | 10 | 9      | 41*  | 0 | 4  | 10    | 7    | 12*    | 1 | 4  | 10    | 28   | 18*     |
| 2 | 4  | 10 | 7      | 25*  | 3 | 4  | 10    | 45   | 7*     | 4 | 4  | 10    | 16   | 28*     |
| 0 | 5  | 10 | 7      | 20*  | 1 | 5  | 10    | 23   | 14*    | 2 | 5  | 10    | 37   | 6*      |
| 3 | 5  | 10 | 7      | 26*  | 4 | 5  | 10    | 44   | 7*     | 5 | 5  | 10    | 47   | 25*     |
| 0 | 6  | 10 | 10     | 21*  | 1 | 6  | 10    | 31   | 7*     | 2 | 6  | 10    | 7    | 23*     |
| 3 | 6  | 10 | 7      | 7*   | 4 | 6  | 10    | 34   | 25*    | 5 | 6  | 10    | 7    | 3*      |
| 6 | 6  | 10 | 47     | 10*  | 0 | 7  | 10    | 8    | 1*     | 1 | 7  | 10    | 23   | 20*     |
| 2 | 7  | 10 | 13     | 10*  | 3 | 7  | 10    | 41   | 15*    | 4 | 7  | 10    | 7    | 5*      |
| 5 | 7  | 10 | 35     | 12*  | 6 | 7  | 10    | 39   | 1*     | 7 | 7  | 10    | 8    | 8*      |
| 0 | 8  | 10 | 43     | 14*  | 1 | 8  | 10    | 24   | 2*     | 2 | 8  | 10    | 82   | 12*     |
| 3 | 8  | 10 | 46     | 3*   | 4 | 8  | 10    | 28   | 13*    | 5 | 8  | 10    | 19   | 10*     |
| 6 | 8  | 10 | 8      | 6*   | 7 | 8  | 10    | 8    | 8*     | 8 | 8  | 10    | 48   | 13*     |
| 0 | 9  | 10 | 39     | 2*   | 1 | 9  | 10    | 45   | 14*    | 2 | 9  | 10    | 8    | 7*      |
| 3 | 9  | 10 | 45     | 12*  | 4 | 9  | 10    | 20   | 7*     | 5 | 9  | 10    | 42   | 14*     |
| 6 | 9  | 10 | 38     | 6*   | 7 | 9  | 10    | 8    | 11*    | 8 | 9  | 10    | 31   | 1*      |
| 0 | 10 | 10 | 40     | 14*  | 1 | 10 | 10    | 40   | 3*     | 2 | 10 | 10    | 8    | 12*     |
| 3 | 10 | 10 | 32     | 7*   | 4 | 10 | 10    | 31   | 16*    | 5 | 10 | 10    | 8    | 4*      |
| 6 | 10 | 10 | 37     | 10*  | 7 | 10 | 10    | 36   | 2*     | 0 | 11 | 10    | 39   | 1*      |
| 1 | 11 | 10 | 8      | 13*  | 2 | 11 | 10    | 8    | 2*     | 3 | 11 | 10    | 33   | 14*     |
| 4 | 11 | 10 | 39     | 6*   | 5 | 11 | 10    | 29   | 13*    | 6 | 11 | 10    | 8    | 3*      |
| 0 | 12 | 10 | 8      | 11*  | 1 | 12 | 10    | 60   | 2*     | 2 | 12 | 10    | 8    | 12*     |
| 3 | 12 | 10 | 19     | 4*   | 0 | 1  | 11    | 32   | 9*     | 0 | 2  | 11    | 22   | 10*     |
| 1 | 2  | 11 | 7      | 21*  | 0 | 3  | 11    | 38   | 16*    | 1 | 3  | 11    | 35   | 10*     |
| 2 | 3  | 11 | 8      | 11*  | 0 | 4  | 11    | 8    | 1*     | 1 | 4  | 11    | 8    | 11*     |
| 2 | 4  | 11 | 23     | 6*   | 3 | 4  | 11    | 8    | 9*     | 0 | 5  | 11    | 8    | 17*     |
| 1 | 5  | 11 | 27     | 3*   | 2 | 5  | 11    | 32   | 13*    | 3 | 5  | 11    | 8    | 5*      |
| 4 | 5  | 11 | 8      | 10*  | 0 | 6  | 11    | 8    | 5*     | 1 | 6  | 11    | 28   | 14*     |
| 2 | 6  | 11 | 8      | 4*   | 3 | 6  | 11    | 49   | 12*    | 4 | 6  | 11    | 19   | 10*     |
| 5 | 6  | 11 | 8      | 10*  | 0 | 7  | 11    | 30   | 15*    | 1 | 7  | 11    | 48   | 3*      |
| 2 | 7  | 11 | 8      | 12*  | 3 | 7  | 11    | 29   | 7*     | 4 | 7  | 11    | 40   | 10*     |
| 5 | 7  | 11 | 8      | 8*   | 6 | 7  | 11    | 36   | 11*    | 0 | 8  | 11    | 48   | 1*      |
| 1 | 8  | 11 | 46     | 8*   | 2 | 8  | 11    | 39   | 5*     | 3 | 8  | 11    | 8    | 13*     |
| 4 | 8  | 11 | 31     | 4*   | 5 | 8  | 11    | 8    | 9*     | 0 | 9  | 11    | 28   | 7*      |
| 1 | 9  | 11 | 8      | 1*   | 2 | 9  | 11    | 39   | 9*     | 3 | 9  | 11    | 32   | 1*      |
| 4 | 9  | 11 | 8      | 8*   | 0 | 0  | 12    | 39   | 20*    | 0 | 1  | 12    | 37   | 3*      |
| 1 | 1  | 12 | 41     | 11*  | 0 | 2  | 12    | 37   | 8*     | 1 | 2  | 12    | 24   | 3*      |
| 2 | 2  | 12 | 8      | 5*   | 0 | 3  | 12    | 8    | 2*     | 1 | 3  | 12    | 43   | 8*      |
| 2 | 3  | 12 | 37     | 3*   | 3 | 3  | 12    | 8    | 7*     | 0 | 4  | 12    | 24   | 8*      |
| 1 | 4  | 12 | 8      | 2*   | 2 | 4  | 12    | 41   | 7*     | 3 | 4  | 12    | 46   | 0*      |
| 4 | 4  | 12 | 8      | 6*   | 0 | 5  | 12    | 8    | 1*     | 1 | 5  | 12    | 46   | 7*      |
| 2 | 5  | 12 | 8      | 1*   |   |    |       |      |        |   |    |       |      |         |

•

#### OBSERVED AND CALCULATED STRUCTURE FACTORS FOR ${\rm GePh}_4$ (-60°C)

An \* indicates weak reflections not used in the final refinements.

| Н   | к      | L | 10Fo     | 10Fc | н       | К  | L | 10Fo      | 10Fc        | н      | к          | L      | 10Fo     | 10Fc         |
|-----|--------|---|----------|------|---------|----|---|-----------|-------------|--------|------------|--------|----------|--------------|
|     |        |   |          |      |         |    |   |           |             |        |            |        |          |              |
|     | ·<br>1 | 0 |          | 752  |         |    | 0 | 698       | 671         | · 1    |            |        | 96       | <br>03       |
| 2   | 2      | ñ | 144      | 143  | ĩ       | 3  | õ | 455       | 463         | 2      | ĥ          | Ő      | 114      | 113          |
| 3   | 3      | õ | 733      | 720  | ō       | 4  | Õ | 346       | 344         | 1      | 4          | õ      | 18       | 13*          |
| 2   | 4      | 0 | 363      | 363  | 3       | 4  | 0 | 181       | 173         | 4      | 4          | 0      | 143      | 147          |
| 1   | 5      | 0 | 315      | 324  | 2       | 5  | 0 | 65        | 63          | 3      | 5          | 0      | 367      | 383          |
| 4   | 5      | 0 | 180      | 175  | 5       | 5  | 0 | 225       | 230         | 0      | 6          | 0      | 426      | 414          |
| 1   | 6      | 0 | 105      | 107  | 2       | 6  | 0 | 580       | 590         | 3      | 6          | 0      | 250      | 240          |
| 4   | 6      | 0 | 396      | 415  | 5       | 6  | 0 | 20        | 11*         | 6      | 6          | 0      | 348      | 345          |
| 1   | 7      | 0 | 413      | 407  | 2       | 7  | 0 | 26        | 6*          | 3      | 7          | 0      | 281      | 283          |
| 4   | 7      | 0 | 23       | 19*  | 5       | 7  | 0 | 278       | 288         | 6      | 7          | 0      | 52       | 53           |
| 7   | 7      | 0 | 301      | 300  | 0       | 8  | 0 | 411       | 418         | 1      | 8          | 0      | 69       | 65           |
| 2   | 8      | 0 | 343      | 347  | 3       | 8  | 0 | 17        | 10*         | 4      | 8          | 0      | 182      | 191          |
| 5   | 8      | 0 | 79       | 82   | 6       | 8  | 0 | 204       | 212         | 7      | 8          | 0      | 5        | 16*          |
| 8   | 8      | 0 | 305      | 298  | 1       | 9  | 0 | 493       | 491         | 2      | 9          | 0      | 39       | 37           |
| 3   | 9      | 0 | 206      | 218  | 4       | 9  | 0 | 47        | 53          | 5      | 9          | 0      | 213      | 227          |
| 6   | 9      | 0 | 31       | 21*  | 7       | 9  | 0 | 220       | 229         | 8      | 9          | 0      | 20       | 5*           |
| 9   | 9      | 0 | 80       | 78   | 0       | 10 | 0 | 117       | 116         | 1      | 10         | 0      | 58       | 56           |
| 2   | 10     | 0 | 197      | 202  | 3       | 10 | 0 | 18        | 15*         | 4      | 10         | 0      | 151      | 163          |
| 5   | 10     | 0 | 18       | 26*  | 6       | 10 | 0 | 159       | 169         | /      | 10         | 0      | 16       | 0*           |
| 8   | 10     | 0 | 166      | 170  | 9       | 10 | 0 | 20        | 29*         | 10     | 10         | 0      | 83       | 73           |
| í,  | 11     | 0 | 83       | 83   | Z       | 11 | 0 | 89        | 91          | 2      | 11         | 0      | 69       | 70           |
| 4   | 11     | 0 | 100      | 38*  | ز<br>ہ  | 11 | 0 | 20<br>TOV | 100         | 0      | 1 L<br>1 1 | 0      | /د<br>۲۶ | טנ.<br>דר    |
| 10  | 11     | 0 | 100      | 190  | 0<br>11 | 11 | 0 | 105       | 114         | 9      | 10         | 0      | 140      | 140          |
| 10  | 12     | 0 | 14<br>03 | 57~  | 2       | 12 | 0 | 236       | 236         | ט<br>ז | 12         | 0      | 27       | 7.40<br>T.40 |
| 1   | 12     | 0 | 122      | 126  | 5       | 12 | 0 | 2.50      | 2.J0<br>//8 | 5      | 12         | 0      | 106      | 112          |
| 4 7 | 12     | 0 | 63       | 45   | 2       | 12 | 0 | 40<br>01  | 40          | 0<br>Q | 12         | 0      | 50       | 50           |
| 10  | 12     | 0 | 71       | 66   | 11      | 12 | 0 | 7         | 18*         | 12     | 12         | n<br>n | 97       | 25*          |
| 1   | 13     | 0 | 178      | 179  | 2       | 13 | õ | 64        | 70          | 3      | 13         | ő      | 112      | 113          |
| 4   | 13     | Ő | 15       | 3*   | 5       | 13 | õ | 95        | 98          | 6      | 13         | Ő      | 27       | 13*          |
| 7   | 13     | õ | 87       | 97   | 8       | 13 | 0 | 40        | 24*         | 9      | 13         | Õ      | 62       | 53           |
| 10  | 13     | Ō | 32       | 40*  | 11      | 13 | 0 | 82        | 71          | 12     | 13         | 0      | 9        | 2*           |
| 13  | 13     | Ő | 6        | 35*  | 0       | 14 | 0 | 73        | 68          | 1      | 14         | 0      | 34       | 33*          |
| 2   | 14     | 0 | 125      | 126  | 3       | 14 | 0 | 36        | 28*         | 4      | 14         | 0      | 110      | 107          |
| 5   | 14     | 0 | 6        | 9*   | 6       | 14 | 0 | 84        | 83          | 7      | 14         | 0      | 6        | 9*           |
| 8   | 14     | 0 | 78       | 86   | 9       | 14 | 0 | 8         | 24*         | 10     | 14         | 0      | 94       | 93           |
| 11  | 14     | 0 | 27       | 2*   | 12      | 14 | 0 | 43        | 46*         | 13     | 14         | 0      | 28       | 9*           |
| 14  | 14     | 0 | 33       | 39   | 1       | 15 | 0 | 89        | 119*        | 2      | 15         | 0      | 25       | 12*          |
| 3   | 15     | 0 | 96       | 113  | 4       | 15 | 0 | 16        | 9*          | 5      | 15         | 0      | 105      | 112          |
| 6   | 15     | 0 | 21       | 13*  | 7       | 15 | 0 | 63        | 63          | 8      | 15         | 0      | 36       | 2*           |
| 9   | 15     | 0 | 48       | 62*  | 10      | 15 | 0 | 33        | 2*          | 11     | 15         | 0      | 52       | 51.          |
| 12  | 15     | 0 | 52       | 12*  | 13      | 15 | 0 | 28        | 33*         | 14     | 15         | 0      | 3        | 4*           |
| 0   | 16     | 0 | 74       | 81   | 1       | 16 | 0 | 7         | 1*          | 2      | 16         | 0      | 60       | 66           |
| 3   | 16     | 0 | 29       | 10*  | 4       | 16 | 0 | 75        | 94*         | 5      | 16         | 0      | 20       | 19*          |
| 6   | 16     | 0 | 37       | 45*  | 7       | 16 | 0 | 7         | 6*          | 8      | 16         | 0      | 53       | 54           |
| 9   | 16     | 0 | 7        | 2*   | 10      | 16 | 0 | 37        | 49*         | 11     | 16         | 0      | 55       | 2*           |
| 12  | 16     | 0 | 24       | 32*  | 13      | 16 | 0 | 4         | 8*          | 1      | 17         | 0      | 50       | 48*          |
| 2   | 17     | 0 | 22       | 6*   | 3       | 17 | 0 | 46        | 43*         | 4      | 17         | 0      | 8        | 1,2*         |

ALL SECTOR

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $GePh_4$  (-60°C)

.

.

| Н     | к   | L | 10Fo | 10Fc | Н       | ĸ      | L        | 10Fo     | 10Fc     | Н        | K      | L      | 10Fo     | 10Fc       |
|-------|-----|---|------|------|---------|--------|----------|----------|----------|----------|--------|--------|----------|------------|
| <br>5 | 1.7 | 0 | 43   | 57   | 6       | <br>17 | <br>0    | 7        |          | 7        | <br>17 | 0      | 53       | 37         |
| 8     | 1.7 | 0 | 27   | 4*   | 9       | 17     | 0        | 42       | 43*      | 10       | 17     | 0      | 6        | 3*         |
| 11    | 17  | 0 | 21   | 24*  | 12      | 17     | 0        | 11       | 9*       | 0        | 18     | 0      | 64       | 66         |
| 1     | 1,8 | 0 | 9    | 8*   | 2       | 18     | 0        | 8        | 39*      | 3        | 18     | 0      | 13       | 2*         |
| 4     | 18  | 0 | 35   | 59*  | 5       | 18     | 0        | 50       | 0*       | 6        | 18     | 0      | 34       | 29*        |
| 7     | 18  | Q | 7    | 4*   | 8       | 18     | 0        | 50       | 27*      | 9        | 18     | 0      | 6        | 1*         |
| 10    | 18  | 0 | 13   | 12*  | 1       | 19     | 0        | 12       | 28*      | 2        | 19     | 0      | 7        | 14*        |
| 3     | 19  | 0 | 7    | 30*  | 4       | 19     | 0        | 23       | 8*       | 5        | 19     | 0      | 19       | 32*        |
| 6     | 19  | 0 | 22   | 0*   | 7       | 19     | 0        | 6        | 25*      | 8        | 19     | 0      | 18       | 3*         |
| 9     | 19  | 0 | 19   | 22*  | 0       | 20     | 0        | 31       | 21*      | 1        | 20     | 0      | 45       | 10*        |
| 2     | 20  | 0 | 6    | 17*  | 3       | 20     | 0        | 5        | 7*       | 4        | 20     | 0      | 22       | 24*        |
| 5     | 20  | 0 | 17   | 6*   | 6       | 20     | 0        | 16       | 26*      | 1        | 21     | 0      | 4        | 33*        |
| 0     | 1   | 1 | 539  | 528  | 0       | 2      | 1        | 995      | 1031     | 1        | 2      | 1      | 788      | 821        |
| 0     | 3   | 1 | 500  | 485  | 1       | 3      | 1        | 436      | 450      | 2        | 3      | 1      | 340      | 347        |
| 0     | 4   | 1 | 224  | 208  | 1       | 4      | 1        | 588      | 616      | 2        | 4      | 1.     | 123      | 121        |
| 3     | 4   | 1 | 343  | 353  | 0       | 5      | 1        | 601      | 602      | 1        | 5      | 1      | 84       | 81         |
| 2     | 5   | 1 | 401  | 411  | 3       | 5      | 1        | 147      | 142      | 4        | 5      | 1      | 378      | 394        |
| 0     | 6   | 1 | 163  | 155  | 1       | 6      | 1        | 406      | 412      | 2        | 6      | 1      | 164      | 157        |
| 3     | 6   | 1 | 245  | 253  | 4       | 6      | 1        | 110      | 107      | 5        | 6      | 1      | 282      | 290        |
| 0     | 7   | 1 | 367  | 376  | 1       | 7      | 1        | 23       | 21*      | 2        | 7      | 1      | 373      | 389        |
| 3     | 7   | 1 | 63   | 59   | 4       | 7      | 1        | 252      | 258      | 5        | 7      | 1      | 39       | 41         |
| 6     | 7   | 1 | 340  | 344  | 0       | 8      | 1        | 53       | 55       | 1        | 8      | 1      | 323      | 329        |
| 2     | 8   | 1 | 23   | 10*  | 3       | 8      | 1        | 393      | 393      | 4        | 8      | 1      | 70       | 75         |
| 5     | 8   | 1 | 247  | 251  | 6       | 8      | 1        | 60       | 59       | 7        | 8      | 1      | 227      | 231        |
| 0     | 9   | 1 | 203  | 210  | 1       | 9      | 1        | 59       | 61       | 2        | 9      | 1      | 292      | 297        |
| 3     | 9   | 1 | 153  | 157  | 4       | 9      | 1        | 176      | 182      | 5        | 9      | 1      | 32       | 37*        |
| 6     | 9   | 1 | 235  | 245  | 7       | 9      | 1        | 86       | 86       | 8        | 9      | 1      | 112      | 115        |
| 0     | 10  | 1 | 67   | 72   | 1       | 10     | 1        | 214      | 218      | 2        | 10     | 1      | 106      | 104        |
| 3     | 10  | 1 | 222  | 224  | 4       | 10     | 1        | 60       | 61       | 5        | 10     | ĩ      | 146      | 151        |
| 6     | 10  | 1 | 35   | 20   | 7       | 10     | 1        | 173      | 178      | 8        | 10     | 1      | 55       | 60         |
| 9     | 10  | 1 | 137  | 139  | Ó       | 11     | 1        | 199      | 210      | ì        | 11     | 1      | 153      | 157        |
| 2     | 11  | 1 | 176  | 178  | 3       | 11     | 1        | 17       | 7*       | 4        | 11     | 1      | 129      | 128        |
| 5     | 11  | 1 | 26   | 29*  | 6       | 11     | 1        | 151      | 154      | 7        | 11     | 1      | 27       | 34*        |
| 8     | 11  | 1 | 114  | 112  | 9       | 11     | ī        | 16       | 34*      | 10       | 11     | 1      | 99       | 100        |
| 0     | 12  | 1 | 57   | 58   | 1       | 12     | 1        | 121      | 128      | 2        | 12     | 1      | 36       | 33*        |
| 3     | 12  | 1 | 145  | 140  | 4       | 12     | 1        | 30       | 32*      | 5        | 12     | 1      | 126      | 122        |
| 6     | 12  | 1 | 21   | 4*   | 7       | 12     | 1        | 103      | 105      | 8        | 12     | 1      | 14       | 28*        |
| 9     | 12  | 1 | 100  | 104  | 10      | 12     | 1        | 49       | 28       | 11       | 12     | ī      | 73       | 72         |
| 0     | 13  | 1 | 161  | 170  | 1       | 13     | 1        | 31       | 36*      |          | 13     | ī      | 125      | 122        |
| 3     | 13  | 1 | 14   | 12*  | 4       | 13     | î        | 156      | 149      | 5        | 13     | 1      | 25       | 20*        |
| 6     | 13  | ī | 123  | 118  | , 7     | 13     | î        | 6        | 18*      | 8        | 13     | 1      | 79       | 79         |
| ģ     | 13  | 1 | 6    | 16*  | 10      | 13     | 1        | 36       | 49*      | 11       | 13     | 1      | 20       | 20*        |
| 12    | 13  | 1 | 54   | 69   | 0       | 14     | 1        | 38       | 354      | 1        | 14     | 1      | 107      | 121        |
| 2     | 14  | 1 | 6    | 28*  |         | 14     | ĩ        | 125      | 110      | 1<br>/   | 14     | 1      | ۲۲۲<br>۲ | 7)t<br>7)t |
| 5     | 14  | 1 | 115  | 107  | 2       | 1/     | 1        | 30       | ፲፬፡      | 4 7      | 1/     | 1<br>1 | 00       | 22×<br>02  |
| 8     | 14  | 1 | 22   | 20%  | a a     | 14     | 1        | 20<br>Q1 | 67       | 10       | 14     | 1      | 25       | 00-        |
| 11    | 14  | 1 | 24   | 42*  | 10      | 1/     | 1        | 01<br>01 | 104      | 10       | 14     | 1      | 22       | 22*        |
| -n    | 15  | 1 | 88   | 95   | 1       | 15     | 1        | 21<br>50 | 17~      | د<br>د ۲ | 14     | 1      | 20       | 40×<br>~~> |
| ĩ     | 15  | 1 | 23   | 24*  | L<br>/. | 15     | 1        | גנ<br>רר | 40       | ۲<br>۲   | 12     | 1<br>1 | 01<br>17 | / J<br>/ J |
| 6     | 15  | 1 | 92   | 83   | -+<br>7 | 15     | 1        | 21       | 70<br>70 | )<br>0   | 15     | 1      | 60<br>TA | ×۲<br>۵۲   |
| -     |     | - | ~ ~  | ~ ~  | '       | * 2    | <b>.</b> | J T      | 207      | 0        | тJ     | T      | 02       | 17         |

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  ${\rm GePh}_4$  (-60°C)

| н      | к      | L      | 10Fo    | 10Fc       | Н      | K      | L                 | 10Fo    | 10Fc         | н      | к      | L       | 10Fo | 10Fc         |
|--------|--------|--------|---------|------------|--------|--------|-------------------|---------|--------------|--------|--------|---------|------|--------------|
| <br>9  | <br>15 | 1      | <br>6   | 16*        | 10     | 15     | 1                 | 60      | 52           |        | 15     | 1       | 31   | 5*           |
| 12     | 15     | 1      | 30      | 43*        | 13     | 15     | 1                 | 3       | 5*           | 14     | 15     | 1       | 2    | 28*          |
| 0      | 16     | 1      | 15      | 8*         | 1      | 16     | 1                 | 75      | 74           | 2      | 16     | 1       | 6    | 124          |
| 3      | 16     | 1      | 74      | 73         | 4      | 16     | 1                 | 18      | 17*          | 5      | 16     | 1       | 71   | 68           |
| 6      | 16     | 1      | 28      | 16*        | 7      | 16     | 1                 | 61      | 62           | 8      | 16     | 1       | 24   | 5*           |
| 9      | 16     | 1      | 51      | 47         | 10     | 16     | 1                 | 6       | 6*           | 11     | 16     | 1       | 34   | 34*          |
| 12     | 16     | 1      | 16      | 8*         | 13     | 16     | 1                 | 9       | 25*          | 0      | 1.7    | 1       | 65   | 64           |
| 1      | 17     | 1      | 27      | 18*        | 2      | 17     | 1                 | F'1     | 68           | 3      | 17     | 1       | 17   | 6*           |
| 4      | 17     | 1      | 61      | 55         | 5      | 17     | 1                 | 51      | 16*          | 6      | 17     | 1       | 47   | 44           |
| 7      | 17     | 1      | 6       | 13*        | 8      | 17     | 1                 | 17      | 30*          | 9      | 17     | 1       | 32   | 5*           |
| 10     | 17     | 1      | 16      | 27*        | 11     | 17     | 1                 | 4       | 6*           | 12     | 17     | 1       | 15   | 23*          |
| 0      | 18     | 1      | 6       | 7*         | 1      | 18     | 1                 | 39      | 41*          | 2      | 18     | 1       | 30   | 14*          |
| 3      | 18     | 1      | 57      | 40*        | 4      | 18     |                   | 18      | 4*           | 5      | 18     | 1       | 42   | 37           |
| 6      | 18     | Ţ      | 22      | 9*         | /      | 18     |                   | 9       | 2/*          | 8      | 18     | L<br>1  | 6    | 13*          |
| 9      | 10     | 1      | 1/      | 30*        | 10     | 10     |                   | 6       | 8×           | 0      | 19     | 1       | 6    | 32*          |
| Ļ      | 19     | 1      | р<br>00 | 10×        | 2      | 19     |                   | 0<br>25 | <u>ک</u> ر ک | 5      | 19     | L,      | 6    | 11×          |
| 4      | 10     | 1      | 23      | 20×<br>7.4 |        | 15     | / L               | 22      | ×ر<br>۲۰     | 0      | 7.9    | L<br>1  | 21   | 31*          |
| 1      | 19     | 1      | כ<br>דר | /*<br>004  | 0      | 20     | / 1<br>\ 1        | 54      | Z/*<br>7.4   | 0      | 20     | 1<br>1  | 38   | 14<br>204    |
| 1      | 20     | 1      | 21      | 20×<br>24  | 2      | 20     | / <u>1</u><br>\ 1 | ע<br>רו | 20           | נ<br>ר | 20     | 1       | 21   | 29×<br>วน    |
| 4      | 20     | 1<br>2 | 76      | ۰×<br>۵۸   | -<br>- | 20     | / L<br>)          | 170     | 190          | 0      | 20     | 1.<br>2 | 550  | ູ່ ມ.<br>ເບລ |
| 0      | 0      | 2      | 07<br>1 | 202        | 1      |        | - 2<br>) 0        | 172     | 100          | 1<br>1 | 1<br>1 | 2       | 552  | 202          |
| 0      | 2      | 2      | 271     | 203        | 1      |        | 2 2               | 520     | 270          | 2      | 2      | 2       | 165  | 000<br>167   |
| 2      | 2      | 2      | 72      | 502<br>480 | د<br>۲ |        | , 2<br>, 2        | 561     | 556          | 2      | נ<br>ו | 2       | 105  | 100          |
| ר<br>י | 2<br>/ | 2      | 475     | 400        |        |        | + 2<br>\ 2        | 201     | 220          | 1      | 4      | 2       | 220  | 144          |
| n n    | 5      | 2      | 86      | 902<br>81  | -      | , .    | + 2<br>5 2        | 487     | 504          | 4      | 5      | 2       | 229  | 245          |
| ্র     | 5      | 2      | 220     | 353        | 1      |        | 5 2               | 100     | 101          | 5      | 5      | 2       | 317  | 200          |
| n<br>N | 5      | 2      | 233     | 239        | 1      | · -    | 5 2               | 148     | 145          | 2      | 6      | 2       | 278  | 290          |
| ž      | 6      | 2      | 57      | 52         |        |        | 5 2               | 330     | 340          | 5      | 6      | 2       | 79   | 82           |
| 6      | 6      | 2      | 291     | 296        | (      | ,<br>, | 7 2               | 12      | 12*          | 1      | 7      | 2       | 237  | 250          |
| 2      | 7      | 2      | 49      | 46         |        |        | 7 2               | 299     | 310          | 4      | . 7    | 2       | 145  | 146          |
| 5      | 7      | 2      | 301     | 309        | é      |        | 7 2               | 87      | 84           | 7      | 7      | 2       | 188  | 189          |
| õ      | 8      | 2      | 282     | 296        |        |        | 3 2               | 116     | 113          | . 2    | 8      | 2       | 237  | 244          |
| 3      | 8      | 2      | 86      | 88         | l      | . 1    | 3 2               | 290     | 300          | 5      | 8      | 2       | 120  | 123          |
| 6      | 8      | 2      | 182     | 186        | -      | 7      | 3 2               | 64      | 68           | 8      | 8      | 2       | 159  | 165          |
| 0      | 9      | 2      | 35      | 31         |        |        | 92                | 193     | 192          | 2      | 9      | 2       | 57   | 57           |
| 3      | 9      | 2      | 219     | 224        | L      | +      | 92                | 87      | 89           | 5      | 9      | 2       | 190  | 200          |
| 6      | 9      | 2      | 73      | 68         | •      | 7      | 92                | 133     | 137          | 8      | 9      | 2       | 31   | 26*          |
| 9      | 9      | 2      | 166     | 172        | (      | ) 1    | 0 2               | 224     | 231          | 1      | 10     | 2       | 23   | 25*          |
| 2      | 10     | 2      | 207     | 204        |        | 3 10   | 0 2               | 82      | 89           | 4      | 10     | 2       | 243  | 247          |
| 5      | 10     | 2      | 25      | 18*        | (      | 5 1    | 0 2               | 148     | 154          | 7      | 10     | 2       | 35   | 22*          |
| 8      | 10     | 2      | 122     | 119        | 9      | 9 1    | 0 2               | 25      | 29*          | 10     | 10     | 2       | 106  | 113          |
| 0      | 11     | 2      | 25      | 8*         |        | L 1    | 1 2               | 202     | 209          | 2      | 11     | 2       | 39   | 39           |
| 3      | 11     | 2      | 227     | 231        |        | + 1    | 1 2               | 41      | 38           | 5      | 11     | 2       | 151  | 152          |
| 6      | 11     | 2      | 65      | 64         |        | 71     | 1 2               | 100     | 104          | 8      | 11     | 2       | 29   | 27*          |
| 9      | 11     | 2      | 104     | 106        | 10     | ) 1    | 1 2               | 26      | 2*           | 11     | 11     | 2       | 75   | 79           |
| 0      | 12     | 2      | 145     | 154        | •      | L 1    | 22                | . 36    | 42*          | 2      | 12     | 2       | 150  | 148          |
| 3      | 12     | 2      | 23      | 41*        | 4      | 4 1    | 2 2               | . 116   | 117          | 5      | 12     | 2       | 45   | 43           |
| 6      | 12     | 2      | 129     | 126        |        | 71     | 2 2               | 26      | 14*          | 8      | 12     | 2       | 102  | 100          |
| 9      | 12     | 2      | 29      | 16*        | 1      | ) 1    | 2 2               | 2 90    | 91           | 11     | . 12   | . 2     | 5    | 16*          |

t,

-----

i

そうちょう ちょう きょう

•

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  ${\tt GePh}_4$  (-60°C)

| Н   | К   | L | 1.0Fo | lOFc | н       | K      | L      | 10Fo | 10Fc                                  | н      | K          | L      | 10Fo | 10Fc       |
|-----|-----|---|-------|------|---------|--------|--------|------|---------------------------------------|--------|------------|--------|------|------------|
| 1.2 | 1.2 | 2 | 50    | 73   | 0       | <br>13 | 2      | 5    | 24*                                   | <br>1  | <br>13     | <br>2  |      |            |
| 2   | 13  | 2 | 67    | 67   | 3       | 13     | 2      | 122  | 122                                   | 4      | 13         | 2      | 40   | 38*        |
| 5   | 13  | 2 | 96    | 96   | 6       | 13     | 2      | 35   | 9*                                    | 7      | 13         | 2      | 118  | 112        |
| 8   | 13  | 2 | 18    | 27*  | 9       | 13     | 2      | 81   | 80                                    | 10     | 13         | 2      | 36   | 30*        |
| 11  | 13  | 2 | 57    | 54   | 12      | 13     | 2      | 8    | 6*                                    | 13     | 13         | 2      | 32   | 42         |
| 0   | 14  | 2 | 92    | 107  | 1       | 14     | 2      | 39   | 39*                                   | 2      | 14         | 2      | 104  | 102        |
| 3   | 14  | 2 | 34    | 27*  | 4       | 14     | 2      | 93   | 89                                    | 5      | 14         | 2      | 6    | 23*        |
| 6   | 14  | 2 | 106   | 103  | 7       | 14     | 2      | 16   | 10*                                   | 8      | 14         | 2      | 65   | 60         |
| 9   | 14  | 2 | 26    | 14*  | 10      | 14     | 2      | 49   | 40                                    | 11     | 14         | 2      | 9    | 5*         |
| 1.2 | 14  | 2 | 27    | 40*  | 13      | 14     | 2      | 13   | 3*                                    | 14     | 14         | 2      | 8    | 32*        |
| 0   | 15  | 2 | 35    | 34*  | 1       | 15     | 2      | 65   | 72                                    | 2      | 15         | 2      | 29   | 9*         |
| 3   | 15  | 2 | 77    | 73   | 4       | 15     | 2      | 7    | 14*                                   | 5      | 15         | 2      | 85   | 66         |
| 6   | 15  | 2 | 35    | 15*  | 7       | 15     | 2      | 70   | 65                                    | 8      | 15         | 2      | 6    | 16*        |
| 9   | 15  | 2 | 36    | 45*  | 10      | 15     | 2      | 25   | 21*                                   | 11     | 15         | 2      | 38   | 33*        |
| 12  | 15  | 2 | 4     | 11*  | 13      | 15     | 2      | 15   | 35*                                   | 14     | 15         | 2      | 7    | 2*         |
| 0   | 16  | 2 | 66    | 78   | 1       | 16     | 2      | 6    | 10*                                   | 2      | 16         | 2      | 64   | 61         |
| 3   | 16  | 2 | 59    | 10*  | 4       | 16     | 2      | 60   | 54                                    | 5      | 16         | 2      | 15   | 14*        |
| 6   | 16  | 2 | 64    | 58   | 7       | 16     | 2      | 30   | 15*                                   | 8      | 16         | 2      | 35   | 46*        |
| 9   | 16  | 2 | 21    | 6*   | 10      | 16     | 2      | 31   | 36*                                   | 11     | 16         | 2      | 26   | 8*         |
| 12  | 16  | 2 | 18    | 32*  | 13      | 16     | 2      | 2    | 1*                                    | 0      | 17         | 2      | 6    | 14*        |
| 1   | 17  | 2 | 68    | 70   | 2       | 17     | 2      | 34   | 16*                                   | 3      | 17         | 2      | 66   | 56         |
| 4   | 17  | 2 | 35    | 2*   | 5       | 17     | 2      | 51   | 47                                    | 6      | 17         | 2      | 21   | 10*        |
| 7   | 17  | 2 | 43    | 43   | 8       | 17     | 2      | 10   | 11*                                   | 9      | 17         | 2      | 35   | 41*        |
| 10  | 17  | 2 | 5     | 7*   | 11      | 17     | 2      | 14   | 24*                                   | 0      | 18         | 2      | 47   | 47         |
| 1   | 18  | 2 | 6     | 2*   | 2       | 18     | 2      | 39   | 41*                                   | 3      | 18         | 2      | 6    | 12*        |
| 4   | 18  | 2 | 40    | 41*  | 5       | 18     | 2      | 27   | 19*                                   | 6      | 18         | 2      | 38   | 40*        |
| 7   | 18  | 2 | 5     | 3*   | 8       | 18     | 2      | 35   | 36                                    | 9      | 18         | 2      | 21   | 4*         |
| 10  | 18  | 2 | 15    | 28*  | 0       | 19     | 2      | 5    | 3*                                    | 1      | 19         | 2      | 38   | 36         |
| 2   | 19  | 2 | 5     | 9*   | 3       | 19     | 2      | 25   | 38*                                   | 4      | 19         | 2      | 21   | 20*        |
| 5   | 19  | 2 | 33    | 39   | 6       | 19     | 2      | 4    | 4*                                    | 7      | 19         | 2      | 20   | 29*        |
| 8   | 19  | 2 | 15    | 7*   | 0       | 20     | 2      | 14   | 31*                                   | 1      | 20         | 2      | 24   | 3*         |
| 2   | 20  | 2 | 27    | 35*  | 3       | 20     | 2      | 4    | 6*                                    | 4      | 20         | 2      | 17   | 28*        |
| 5   | 20  | 2 | 15    | 8*   | 0       | 1      | 3      | 287  | 305                                   | 0      | 2          | 3      | 176  | 171        |
| 1   | 2   | 3 | 399   | 406  | Ó       | 3      | 3      | 355  | 361                                   | 1      | 3          | 3      | 63   | 65         |
| 2   | 3   | 3 | 563   | 574  | 0       | 4      | 3      | 192  | 189                                   | 1      | 4          | 3      | 217  | 226        |
| 2   | 4   | 3 | 70    | 67   | 3       | 4      | 3      | 534  | 537                                   | Ō      | 5          | 3      | 163  | 179        |
| 1   | 5   | 3 | 60    | 63   | 2       | 5      | 3      | 328  | 332                                   | 3      | 5          | 3      | 98   | 96         |
| 4   | 5   | 3 | 422   | 434  | Ō       | 6      | 3      | 71   | 68                                    | 1      | 6          | 3      | 319  | 330        |
| 2   | 6   | 3 | 74    | 74   | 3       | 6      | 3      | 370  | 371                                   | 4      | 6          | 3      | 95   | 95         |
| 5   | 6   | 3 | 306   | 314  | 0       | 7      | 3      | 289  | 289                                   | 1      | 7          | 3      | 69   | 66         |
| 2   | 7   | 3 | 229   | 237  | 3       | 7      | 3      | 57   | 60                                    | 4      | 7          | 3      | 257  | 264        |
| 5   | 7   | 3 | 111   | 114  | 6       | 7      | 3      | 101  | 100                                   | Ó      | 8          | 3      | 26   | 16*        |
| 1   | 8   | 3 | 173   | 177  | 2       | 8      | 3      | 73   | 78                                    | 3      | 8          | 3      | 165  | 166        |
| 4   | 8   | 3 | 55    | 57   | 5       | 8      | 3      | 210  | 212                                   | 6      | 8          | 3      | 112  | 116        |
| 7   | 8   | 3 | 127   | 130  | Ő       | 9      | 3      | 216  | 216                                   | 1      | ğ          | 3      | 60   | 65         |
| 2   | 9   | 3 | 176   | 175  | 3       | 9      | 3      | 52   | 55                                    | т<br>/ | á          | ר<br>ג | 215  | 210        |
| -5  | 9   | 3 | 41    | 47   | с<br>К  | ģ      | 3      | 164  | 161                                   | 7      | ģ          | 2      | 213  | 36*        |
| - 8 | 9   | 3 | 156   | 163  | n<br>N  | 10     | 3      |      | 7*                                    | 1      | 10         | د<br>د | 206  | 210        |
| 2   | 10  | 3 | 49    | 53   | 3       | 10     | ך<br>א | 173  | 174                                   | 1<br>/ | 10         | 2      | 200  | 210<br>174 |
| 5   | 10  | 3 | 198   | 204  | 6       | 10     | 3      | 45   | 19*                                   | -+ 7   | 10         | ר<br>ג | 134  | 122        |
| -   |     | - |       |      | · · · · | ~ ~    |        |      | · · · · · · · · · · · · · · · · · · · |        | <b>T</b> O |        |      | L L L      |

ı.

ı

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  ${\rm GePh}_4$  (-60°C)

| Н          | K        | L      | 10Fo      | 10Fc       | ł | ł             | K  | L      | 10Fo     | 10Fc       | Н  | l       | К  | L      | 10Fo       | 10Fc            |
|------------|----------|--------|-----------|------------|---|---------------|----|--------|----------|------------|----|---------|----|--------|------------|-----------------|
|            |          |        |           |            |   |               |    | •      |          |            |    |         |    |        |            |                 |
| 8          | 10       | 3      | 17        | 17*        | ç | •             | 10 | 3      | 100      | 101        | 0  | )       | 11 | 3      | 192        | 200             |
| 1          | 11       | 3      | 26        | 25*        |   | 2             | 11 | 3      | 180      | 181        | 3  | •       | 11 | 3      | 26         | 21,*            |
| 4          | 11       | 3      | 196       | 196        | - | 5             | 11 | 3      | 17       | 16*        | 6  | 5       | 11 | 3      | 125        | 128             |
| 7          | 11       | 3      | 23        | 19*        | 1 | 3             | 11 | 3      | 117      | 117        | 9  | )       | 11 | 3      | 34         | 13*             |
| 10         | 11       | 3      | 65        | 67         | ( | )             | 12 | 3      | 15       | 35*        | 1  | L       | 12 | 3      | 153        | 157             |
| 2          | 12       | 3      | 18        | 20*        |   | 3             | 12 | 3      | 152      | 150        | 4  | ł       | 12 | 3      | 26         | 24*             |
| 5          | 12       | 3      | 146       | 148        | ( | Ś             | 12 | 3      | 34       | 2/*        | 1  | (       | 12 | 3      | 107        | 100             |
| 8          | 12       | 3      | 1/        | 15*        |   | ۶<br>۲        | 12 | 3      | 80       | /8         | 10 | )       | 12 | 3      | 10         | 31*             |
| 11         | 12       | 3      | 55        | 60         |   | )             | 13 | 3      | 80       | 82         | L  | L       | 13 | 3      | 9          | 18*             |
| 2          | 13       | 3      | 93        | 95         |   | 5             | 13 | 3      | 20       | 21*        |    | ŧ<br>   | 13 | 5      | 115        |                 |
| 5          | 13       | 3      | 01        | 14×        |   | 5             | 13 | 2      | 83       | /6<br>07-4 | 1  | /<br>`` | 13 | נ<br>ר | 28         | 14*             |
| 8          | 13       | 3      | 81        | 82         | 1 | ץ<br>ה        | 13 | ა<br>ა | סנ<br>דנ | 2/×        | 10 | ן<br>ר  | 13 | ა<br>ე | 69         | 12              |
| 11         | 13       | 2      | ט<br>רד   | ×ه<br>۲۲   | T | 2             | 17 | י<br>ג | 37       | 40         |    | ן<br>ר  | 14 | נ<br>י | 20         | 4×<br>70        |
| 1          | 14       | נ<br>ר | / J<br>27 | /0<br>07.4 |   | 2             | 14 | 2      | 9        | 23×<br>70  |    | 2<br>6  | 14 | ა<br>ა | 10         | 10.4            |
| 4 7        | 14       | נ<br>י | /د<br>در  | 2/*<br>63  |   | ך<br>ס        | 14 | 2      | 10       | 04<br>10   |    | 0<br>0  | 14 | ン<br>2 | LU<br>57   | 12×<br>co       |
| 10         | 14       | ່<br>ວ | 12        | 10-        | 1 | 0<br>1        | 14 | 2      | 51       | 5/         | 1  | ש<br>כי | 14 | 2      | ے ر<br>ارد | 20<br>114       |
| 10         | 14       | ່າ     | 21        | 30*<br>10* | T | U<br>T        | 15 | 2      | 60       | 70         | 1  | ۲<br>۱  | 15 | ン<br>つ | 10         | 1. L ^<br>7 / 4 |
| 7.7<br>7.7 | 14<br>15 | 2      | 21        | 96         |   | ้า            | 15 | ר<br>ר | 6        | 16*        |    | 7<br>7  | 15 | ר<br>ר | 2.5<br>6.9 | 24^<br>70       |
| 5          | 15       | 2      | 07<br>23  | 10%        |   | ג<br>ג        | 15 | 2      | 32       | 10×        |    | 4<br>7  | 15 | ר<br>ר | 25         | 70<br>11-4      |
| 2          | 15       | 2      | 23        | 35*        |   | a             | 15 | 2      | 22       | 14.*       | 1  | '<br>ሰ  | 15 | ר<br>ר | 41         | 70*             |
| 11         | 15       | 2      | 13        | 9*         | 1 | ァ<br>つ        | 15 | 2      | 25       | 26*        | 1  | ิง      | 15 | 2      | 41         | -40^<br>7#      |
| 11         | 16       | 2      | 34        | 17*        | * | 2             | 16 | 3      | 68       | 60         | Ŧ  | ן<br>כ  | 16 | ך<br>ג | 23         | 2/*             |
| a<br>a     | 16       | 3      | 68        | 59         |   | <u>т</u><br>4 | 16 | 3      | 17       | 18*        |    | 5       | 16 | 3      | 25         | 45*             |
| 6          | 16       | 3      | 31        | 31*        |   | 7             | 16 | จั     | 6        | 43*        |    | 8       | 16 | รั     | 23         | 8*              |
| g          | 16       | 3      | 16        | 27*        | 1 | ó             | 16 | 3      | 51       | 8*         | 1  | 1       | 16 | ĩ      | 21         | 32*             |
| 12         | 16       | 3      | 18        | 7*         | * | õ             | 17 | 3      | 26       | 33*        | •  | 1       | 17 | 3      | 6          | 20*             |
| 2          | 17       | 3      | 46        | 50         |   | 3             | 17 | 3      | 6        | 6*         |    | 4       | 17 | 3      | 38         | 45*             |
| 5          | 17       | 3      | 28        | 24*        |   | 6             | 17 | 3      | 63       | 53         |    | 7       | 17 | 3      | 23         | 1.5*            |
| 8          | 17       | 3      | 38        | 39*        |   | 9             | 17 | 3      | 19       | 8*         | 1  | 0       | 17 | 3      | 29         | 32*             |
| 11         | 17       | 3      | 3         | 3*         |   | 0             | 18 | 3      | 6        | 4*         |    | 1       | 18 | 3      | 43         | 47              |
| 2          | 18       | 3      | 27        | 18*        |   | 3             | 18 | 3      | 44       | 45         |    | 4       | 18 | 3      | 6          | 9*              |
| 5          | 18       | 3      | 28        | 42*        |   | 6             | 18 | 3      | 9        | 6*         |    | 7       | 18 | 3      | 45         | 49              |
| 8          | 18       | 3      | 21        | 7*         |   | 9             | 18 | 3      | 11       | 23*        |    | 0       | 19 | 3      | 42         | 44              |
| 1          | 19       | 3      | 18        | 6*         |   | 2             | 19 | 3      | 35       | 43*        |    | 3       | 19 | 3      | 5          | 8*              |
| 4          | 19       | 3      | 4         | 25*        |   | 5             | 19 | 3      | 4        | 3*         |    | 6       | 19 | 3      | 23         | 35*             |
| 7          | 19       | 3      | 5         | 3*         |   | 0             | 20 | 3      | 4        | 3*         |    | 1       | 20 | 3      | 18         | 33*             |
| 2          | 20       | 3      | 7         | 2*         |   | 3             | 20 | 3      | 13       | 21*        |    | 4       | 20 | 3      | 3          | 2*              |
| 0          | 0        | 4      | 156       | 162        |   | 0             | 1  | - 4    | 132      | 129        |    | 1       | 1  | 4      | 256        | 271             |
| 0          | 2        | ٤,     | 332       | 339        |   | 1             | 2  | 4      | 141      | 136        |    | 2       | 2  | - 4    | 433        | 450             |
| 0          | 3        | 4      | 94        | 95         |   | 1             | 3  | · 4    | 350      | 353        |    | 2       | 3  | 4      | 89         | 89              |
| 3          | 3        | 4      | 371       | 391        |   | 0             | 4  | 4      | 245      | 242        |    | 1       | 4  | 4      | 21         | 23*             |
| 2          | 4        | 4      | 284       | 283        |   | 3             | 4  | 4      | 46       | 41         |    | 4       | 4  | - 4    | 360        | 374             |
| 0          | 5        | 4      | 28        | 18*        |   | 1             | 5  | 4      | 259      | 259        |    | 2       | 5  | 4      | 42         | 44              |
| 3          | 5        | 4      | 300       | 303        |   | 4             | 5  | 4      | 181      | 185        |    | 5       | 5  | 4      | 299        | 297             |
| 0          | 6        | 4      | 291       | 291        |   | 1             | 6  | 4      | 85       | 85         |    | 2       | 6  | 4      | 255        | 258             |
| 3          | 6        | 4      | 123       | 125        |   | 4             | 6  | 4      | 265      | 267        |    | 5       | 6  | 4      | 94         | 97              |
| 6          | 6        | 4      | 204       | 208        |   | 0             | 7  | 4      | 54       | 66         |    | 1       | 7  | 4      | 240        | 243             |
| 2          | 7        | 4      | 74        | 72         |   | 3             | 7  | 4      | 243      | 244        |    | 4       | 7  | 4      | 101        | 106             |
| 5          | 7        | 4      | 191       | 192        |   | 6             | 7  | 4      | 103      | 110        |    | 7       | 7  | 4      | 145        | 152             |

\*

1

7 1

f

í

t

3

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4 (-60°C)

| Н      | к          | L      | 10Fo      | 10Fc                   | Н        | K        | L | 10Fo      | 10Fc       | н      | ĸ        | L     | 10Fo    | 10Fc                                             |
|--------|------------|--------|-----------|------------------------|----------|----------|---|-----------|------------|--------|----------|-------|---------|--------------------------------------------------|
|        | <br>8      | 4      | 166       | 163                    | 1        | 8        |   | 40        | 46*        | 2      | 8        | <br>4 | <br>149 | 146                                              |
| 3      | 8          | 4      | 50        | 53                     | 4        | 8        | 4 | 182       | 188        | 5      | 8        | 4     | 53      | 56                                               |
| 6      | 8          | 4      | 141       | 136                    | 7        | 8        | 4 | 39        | 45*        | 8      | 8        | 4     | 142     | 135                                              |
| 0      | 9          | 4      | 58        | 57                     | 1        | 9        | 4 | 166       | 167        | 2      | 9        | 4     | 5       | 26*                                              |
| 3      | 9          | 4      | 152       | 156                    | 4        | 9        | 4 | 48        | 47         | 5      | 9        | 4     | 172     | 172                                              |
| 6      | 9          | 4      | 5         | 13*                    | 7        | 9        | 4 | 123       | 118        | 8      | 9        | 4     | 19      | 16*                                              |
| 9      | 9          | 4      | 134       | 133                    | 0        | 10       | 4 | 191       | 197        | 1      | 10       | 4     | 46      | 35                                               |
| 2      | 10         | 4      | 166       | 165                    | 3        | 10       | 4 | 41        | 39         | 4      | 10       | 4     | 170     | 171                                              |
| 5      | 10         | 4      | 28        | 37*                    | 6        | 10       | 4 | 104       | 112        | 7      | 10       | 4     | 33      | 25*                                              |
| 8      | 10         | 4      | 111       | 110                    | 9        | 10       | 4 | 14        | 12*        | 10     | 10       | 4     | 91      | 94                                               |
| 0      | 11         | 4      | 11        | 6*                     | 1        | 11       | 4 | 162       | 164        | 2      | 11       | 4     | 55      | 49                                               |
| 3      | 11         | h      | 138       | 138                    | 4        | 11       | 4 | 16        | 25*        | 5      | 11       | 4     | 132     | 134                                              |
| 6      | 11         | 4      | 21        | 19*                    | 7        | 11       | 4 | 78        | 80         | 8      | 11       | 4     | 32      | 2*                                               |
| 9      | 11         | 4      | 85        | 83                     | 10       | 11       | 4 | 29        | 23*        | 11     | 11       | 4     | 12      | 54*                                              |
| Ő      | 12         | 4      | 122       | 128                    | 1        | 12       | 4 | 6         | 23*        | 2      | 12       | 4     | 111     | 110                                              |
| 3      | 12         | 4      | 21        | 17*                    | 4        | 12       | 4 | 127       | 133        | 5      | 12       | 4     | 6       | 13*                                              |
| 6      | 12         | 4      | 82        | 86                     | 7        | 12       | 4 | 27        | 27*        | 8      | 12       | 4     | 85      | 8.4                                              |
| 9      | 12         | 4      | 31        | 22*                    | 10       | 12       | 4 | 57        | 56         | 11     | 12       | 4     | 30      | 6*                                               |
| 12     | 12         | 4      | 31        | 50*                    | 0        | 13       | 4 | 6         | 16*        | 1      | 13       | 4     | 85      | 90                                               |
| 2      | 13         | 4      | 6         | 8*                     | 3        | 13       | 4 | 94        | 95         | 4      | 13       | 4     | 33      | 36*                                              |
| 5      | 13         | 4      | 95        | 95                     | 6        | 13       | 4 | 18        | 20*        | 7      | 13       | 4     | 77      | 70                                               |
| 8      | 13         | 4      | 31        | 7*                     | 9        | 13       | 4 | 71        | 63         | 10     | 13       | 4     | 6       | 8*                                               |
| 11     | 13         | 4      | 43        | 51                     | 12       | 13       | 4 | 22        | 2*         | 13     | 13       | 4     | 3       | 34*                                              |
| 0      | 14         | 4      | 60        | 64                     | 1        | 14       | 4 | 31        | 16*        | 2      | 14       | 4     | 72      | 72                                               |
| 3      | 14         | 4      | 20        | 33*                    | 4        | 14       | 4 | 63        | 65         | 5      | 14       | 4     | 47      | 36*                                              |
| 6      | 14         |        | 61        | 58                     | 7        | 14       | 4 | 18        | 8*         | 8      | 14       | 4     | 53      | 55                                               |
| ğ      | 14         | 4      | 19        | 19*                    | 10       | 14       | 4 | 50        | 43         | 11     | 14       | 4     | 22      | 4*                                               |
| 12     | 14         | 4      | 16        | 34*                    | 13       | 14       | 4 | 6         | 7*         | 14     | 14       | 4     | 1       | 23*                                              |
| 0      | 15         | 4      | 6         | 20*                    | 1        | 15       | 4 | 77        | 71         | 2      | 15       | 4     | 23      | 26*                                              |
| ž      | 15         | 4      | 73        | 64                     | 4        | 15       | 4 | 38        | 26*        | 5      | 15       | 4     | 42      | 20*<br>49*                                       |
| 6      | 15         | 4      | 27        | 11*                    | 7        | 15       | 4 | 58        | 43         | 8      | 15       | 4     | 33      | 4.*                                              |
| g      | 15         | 4      | 22        | 34*                    | 10       | 15       | 4 | 26        | 3*         | 11     | 15       | 4     | 17      |                                                  |
| 12     | 15         | 4      | 18        | 8*                     | 13       | 15       | 4 | 10        | 18*        | 1      | 16       | 4     | 51      | 70                                               |
| 1      | 16         | 7      | 16        | 3.¥                    | 2        | 16       | 7 | 74        | 68         | 3      | 16       | 4     | 25      | 16*                                              |
| 4      | 16         | 4      | 7         | 43*                    | 5        | 16       | 7 | 6         | 20*        | 5      | 16       | 4     | 22      | 10*                                              |
| 7      | 16         | 4      | 29        | 26*                    | 8        | 16       | 4 | 35        | 42*        | a<br>a | 16       | 4     | 40      |                                                  |
| 10     | 16         | 4      | 28        | 20**                   | 11       | 16       | 7 | 20        | 42.0<br>0+ | 0      | 17       | 7     | 30      | 1                                                |
| 1      | 17         | 4      | 20        | 38*                    | 2        | 17       | 4 | 20        | 16*        | 3      | 17       | 4     | 30      | 1"<br>/1*                                        |
| 4      | 17         | 4      | 24        | 19*                    | 5        | 17       | 4 | 34        | 35+        | 5      | 17       | 4     | 52      | ·+1."                                            |
| 7      | 17         | 4      | 55        | 70*                    | 2        | 17       | 4 | 10        | ×در<br>+د  | 0      | 17       | 4     | 0<br>   | 30*                                              |
| 10     | 17         | 4      | 2         | 3~                     | 0        | 10       | 4 | 12        | ×ر<br>+،۲  | 9      | 10       | 4     | 10      | ^ JZ                                             |
| 20     | 10         | 4      |           | ×ر<br>۱.۲.۰            | 2        | 10       | 4 | 44        | )4^<br>1)4 | L<br>A | 10       | 4     | 10      | ^ / ^<br>۲ ^ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ |
| 5      | 10         | 4      | 20        | 40×                    | ر<br>۲   | 10       | 4 | ד<br>רכ   | 10×        | 4 7    | 10       | 4     | 10      | 20×                                              |
| )<br>0 | 10<br>10   | 4<br>人 | 29        | ፲ዓ <del>አ</del><br>ባንዱ | 0        | 10       | 4 | /د<br>=   | ×0C        | /      | 10<br>10 | 4     | 24      | ×ر<br>م                                          |
| 0      | 10<br>10   | 4      | 21        | ۲/۳<br>دی              | 0        | 10       | 4 | 2         | <u>2×</u>  | ļ      | 10       | 4     | 38      | 72.                                              |
| ۲<br>د | 10         | 4      | 10        | )⊼.<br>                | د<br>م   | 19<br>19 | 4 | 29        | 33×        | 4      | т. А     | 4     | 4       | 15*                                              |
| )<br>1 | 7.2<br>7.2 | 4<br>E | 12<br>רבר | 20*                    | 0        | 1<br>2   | 2 | 280       | 200        | 0      | 2        | 2     | 45      | 38                                               |
| 2<br>T | 2          | 2<br>2 | 231       | 232                    | 0        | 3        | 2 | 341       | 340        | 1      | 3        | 5     | 1/2     | 1/2                                              |
| 2      | <u>с</u>   | 2<br>5 | 233       | 202                    | U        | 4        | 2 | , 75<br>, | 94         | 1      | 4        | 5     | 293     | 292                                              |
| 2      | 4          | 2      | 90        | 90 ( H                 | <u>د</u> | 4        | 2 | 1//       | 1/5        | 0      | 2        | 5     | 265     | 267                                              |
| T      | 2          | С      | دد        | 20×                    | 2        | 5        | 5 | 235       | 228        | 3      | 5        | 5     | 56      | 48                                               |

.

.

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh<sub>4</sub> (-60°C)

| Н        | K  | L | 10Fo     | 10Fc        | ł | l       | K  | L      | 10Fo      | 10Fc       | н      |          | к  | L      | 10Fo     | 10Fc       |
|----------|----|---|----------|-------------|---|---------|----|--------|-----------|------------|--------|----------|----|--------|----------|------------|
|          |    |   |          |             |   | -       |    |        |           |            |        |          |    |        |          |            |
| 4        | 5  | 5 | 98       | 99          | ( | )       | 6  | 5      | 46        | 43         | 1      |          | 6  | 5      | 238      | 239        |
| 2        | 6  | 5 | 45       | 45          | 3 | }       | 6  | 5      | 195       | 195        | 4      |          | 6  | 5      | 6        | 39*        |
| 5        | 6  | 5 | 208      | 210         | ( | )       | 7  | 5      | 185       | 180        | 1      |          | 7  | 5      | 56       | 56         |
| 2        | 7  | 5 | 183      | 181         |   | 5       | 7  | 5      | 32        | 19*        | 4      |          | 7  | 5      | 215      | 218        |
| 5        | 7  | 5 | 121      | 126         | 6 | >       | /  | 5      | 165       | 167        | 0      |          | 8  | 5      | 61       | 67         |
| 1        | 8  | 5 | 182      | 182         |   | 2       | 8  | 2      | 59        | 58         | 3      |          | 8  | 5      | 165      | 163        |
| 4        | 8  | 5 | 109      | 116         | : | >       | 8  | 2      | 166       | 170        | 6      |          | 8  | 5      | 42       | 45*        |
| /        | 8  | 5 | 125      | 131         |   | )       | 9  | 2      | 165       | 168        | 1      |          | 9  | 5      | 51       | 55         |
| 2        | 9  | 2 | 147      | 146         | • | \$      | 9  | 2      | 2/        | 1/*        | 4      |          | 9  | 5      | 156      | 161        |
| 2        | 9  | 2 | 49       | 52          |   | כ<br>ר  | 10 | 2      | 81        | 84         | /      |          | 9  | 5      | 41       | 48*        |
| 8        | 9  | 2 | 97       | 105         |   | ן<br>א  | 10 | 2      | 24        | 21*        | L,     |          | 10 | 5      | 114      | 115        |
| 2        | 10 | 2 | 34       | 40*         | • | 2       | 10 | )<br>5 | 108       | 113        | 4      |          | 10 | 2      | 55       | 39*        |
| 2        | 10 | 2 | 98       | 100         |   | כ<br>ר  | 10 | 2      | 41        | 24×<br>77  | /      |          | 10 | 2      | /3       | /9         |
| 8<br>1   | 10 | 2 | 28       | 40*<br>21.5 |   | ש<br>כי | 10 | 5      | 00<br>11/ | 112        | U<br>2 | )        | 11 | 2      | 86       | 88         |
| 1<br>/   | 11 | 5 | 21       | 04          |   | ۲<br>۲  | 11 | 5      | 114       | 772        | د<br>م |          | 11 | 2      | 41       | 20*<br>Cl  |
| 4 7      | 11 | 5 | 36       | 94<br>14*   |   | ך<br>2  | 11 | 5      | 19        | <u> </u>   | 0      | )        | 11 | 5      | 0Z<br>40 | 04<br>16+  |
| 10       | 11 | 5 | 50       | 71          |   | n       | 12 | 5      | 57        | 60         | 1      | ,        | 12 | ר<br>ב | 116      | 100        |
| 20       | 12 | 5 | 26       | 18*         |   | ર       | 12 | 5      | 78        | 85         | 1      | -        | 12 | 5      | 7        | 84<br>TT4  |
| ے<br>ج   | 12 | 5 | 56       | 65          |   | 5       | 12 | 5      | 26        | 24*        |        | r<br>7   | 12 | 5      | 64       | 60         |
| 2        | 12 | 5 | 36       | 12*         |   | 0<br>0  | 12 | 5      | 43        | 53*        | 10     | <b>`</b> | 12 | 5      | 04<br>7  | 07<br>54   |
| 11       | 12 | 5 | 17       | 12*         |   | 0<br>0  | 12 | 5      | 45        | 73         | 1      | ,        | 12 | ך<br>ב | י<br>25  | ×ر<br>۱۰۰۰ |
| 2        | 13 | 5 | £7<br>83 | 86          |   | ้าง     | 13 | 5      | 7         | 7.5<br>22* | 1      |          | 13 | 5      | 2J<br>57 | 57         |
| <u>ح</u> | 13 | 5 | 36       | 10*         |   | 6       | 13 | 5      | 67        | 72         | -      | +<br>7   | 13 | 5      | 58       | 51         |
| 2        | 13 | 5 | 50<br>45 | 56*         |   | c<br>c  | 13 | 5      | 7         | 18*        | 10     | 'n       | 13 | 5      | 20       | 0*<br>//7* |
| 11       | 13 | 5 | 45       | //*         | 1 | 2<br>2  | 13 | 5      | 21        | 21*        | 10     | )<br>)   | 14 | 5      | 17       | 17*        |
| 1        | 14 | 5 | 76       | 77          | 1 | 2       | 14 | 5      | 26        | 32*        |        | ,<br>a   | 14 | 5      | 62       | 64         |
| 4        | 14 | 5 | ,0       | 3*          |   | 5       | 14 | 5      | 70        | 71         | -<br>F | 5        | 14 | 5      | 36       | 8*         |
| 7        | 14 | 5 | 67       | 65          |   | 8       | 14 | 5      | 7         | 15*        |        | à        | 14 | 5      | 44       | 37*        |
| 10       | 14 | 5 | 18       | 3*          | 1 | 1       | 14 | 5      | 24        | 24*        | 12     | ,        | 14 | 5      | 9        | 5%         |
| 13       | 14 | 5 | 11       | 29*         | - | 0       | 15 | 5      | 73        | 67         | -      | Ī        | 15 | 5      | 7        | 1*         |
| 2        | 15 | 5 | 46       | 63*         |   | 3       | 15 | 5      | 34        | 24*        | l      | 4        | 15 | 5      | 56       | 60         |
| 5        | 15 | 5 | 29       | 7*          |   | 6       | 15 | 5      | 47        | 53*        | -      | 7        | 15 | 5      | 58       | 18*        |
| 8        | 15 | 5 | 32       | 35*         |   | 9       | 15 | 5      | 6         | 11*        | 10     | )        | 15 | 5      | 26       | 29*        |
| 11       | 15 | 5 | 4        | 10*         | 1 | 2       | 15 | 5      | 14        | 21*        | (      | 5        | 16 | 5      | 37       | 2*         |
| 1        | 16 | 5 | 33       | 54*         |   | 2       | 16 | 5      | 7         | 18*        |        | 3        | 16 | 5      | 45       | 43*        |
| 4        | 16 | 5 | 7        | 14*         |   | 5       | 16 | 5      | 36        | 44*        | (      | 6        | 16 | 5      | 27       | 24*        |
| 7        | 16 | 5 | 18       | 35*         |   | 8       | 16 | 5      | 46        | 7*         | (      | 9        | 16 | 5      | 17       | 38*        |
| 10       | 16 | 5 | 4        | 3*          |   | 0       | 17 | 5      | 29        | 41*        |        | 1        | 17 | 5      | 37       | 11*        |
| 2        | 17 | 5 | 13       | 35*         |   | 3       | 17 | 5      | 6         | 11*        |        | 4        | 17 | 5      | 25       | 34*        |
| 5        | 17 | 5 | 29       | 7*          |   | 6       | 17 | 5      | 15        | 25*        | •      | 7        | 17 | 5      | 27       | 5*         |
| 8        | 17 | 5 | 24       | 30*         |   | 0       | 18 | 5      | 14        | 6*         |        | 1        | 18 | 5      | 30       | 28*        |
| 2        | 18 | 5 | 26       | 11*         |   | 3       | 18 | 5      | 5         | 31*        |        | 4        | 18 | 5      | 5        | 8*         |
| 5        | 18 | 5 | 23       | 22*         |   | 6       | 18 | 5      | 17        | 4*         | (      | 0        | 19 | 5      | 15       | 16*        |
| 1        | 19 | 5 | 18       | 8*          |   | 2       | 19 | 5      | 4         | 23*        | (      | 0        | 0  | 6      | 215      | 211        |
| 0        | 1  | 6 | 6        | 34*         |   | 1       | 1  | 6      | 368       | 362        | (      | 0        | 2  | 6      | 249      | 258        |
| 1        | 2  | 6 | 70       | 67          |   | 2       | 2  | 6      | 233       | 231        | (      | 0        | 3  | 6      | 33       | 36*        |
| 1        | 3  | 6 | 128      | 125         |   | 2       | 3  | 6      | 25        | 42*        |        | 3        | 3  | 6      | 69       | 73         |
| 0        | 4  | 6 | 175      | 176         |   | 1       | 4  | 6      | 35        | 33*        |        | 2        | 4  | 6      | 146      | 144        |
| 3        | 4  | 6 | 45       | 44*         |   | 4       | 4  | 6      | 213       | 211        | 1      | 0        | 5  | 6      | 41       | 43*        |

;

.

I.

.

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $GePh_4$  (-60°C)

| Н      | ĸ     | L      | 10Fo   | 10Fc       | Н      | K  | L | 10Fo | 10Fc                  | H       | ĸ  | L | 10Fo | 10Fc       |
|--------|-------|--------|--------|------------|--------|----|---|------|-----------------------|---------|----|---|------|------------|
| 1      | <br>5 | 6      | 204    | 209        | 2      | 5  | 6 | 80   | 81                    | 3       | 5  | 6 | 172  | 166        |
| 4      | 5     | 6      | 35     | 42*        | 5      | 5  | 6 | 147  | 145                   | 0       | 6  | 6 | 163  | 162        |
| 1      | 6     | 6      | 36     | 38*        | 2      | 6  | 6 | 123  | 122                   | 3       | 6  | 6 | 56   | 52         |
| 4      | 6     | 6      | 92     | 88         | 5      | 6  | 6 | 6    | 23*                   | 6       | 6  | 6 | 128  | 132        |
| 0      | 7     | 6      | 14     | 22*        | 1      | 7  | 6 | 202  | 205                   | 2       | 7  | 6 | 36   | 18*        |
| 3      | 7     | 6      | 161    | 160        | 4      | 7  | 6 | 30   | 8*                    | 5       | 7  | 6 | 91   | 100        |
| 6      | 7     | 6      | 25     | 11*        | 7      | 7  | 6 | 151  | 162                   | 0       | 8  | 6 | 195  | 191        |
| 1      | 8     | 6      | 6      | 19*        | 2      | 8  | 6 | 197  | 207                   | 3       | 8  | 6 | 32   | 36*        |
| 4      | 8     | 6      | 99     | 102        | 5      | 8  | 6 | 6    | 20*                   | 6       | 8  | 6 | 150  | 162        |
| 7      | 8     | 6      | 30     | 18*        | 8      | 8  | 6 | 61   | 64                    | 0       | 9  | 6 | 7    | 8*         |
| 1      | 9     | 6      | 91     | 97         | 2      | 9  | 6 | 36   | 15*                   | 3       | 9  | 6 | 109  | 118        |
| Ľ,     | 9     | 6      | 6      | 21*        | 5      | 9  | 6 | 75   | 69                    | 6       | 9  | 6 | 6    | 32*        |
| 7      | 9     | 6      | 95     | 109        | 8      | 9  | 6 | 13   | 10*                   | 9       | 9  | 6 | 39   | 62*        |
| 0      | 10    | 6      | 119    | 112        | 1      | 10 | 6 | 7    | 24*                   | 2       | 10 | 6 | 94   | 94         |
| 3      | 10    | 6      | 15     | 35*        | 4      | 10 | 6 | 53   | 39                    | 5       | 10 | 6 | 13   | 36*        |
| 6      | 10    | 6      | 112    | 115        | /      | 10 | 6 | 20   | 10*                   | 8       | 10 | 6 | 50   | 56*        |
| 9      | 10    | 6      | 37     | 3*         | 10     | 10 | 6 | 40   | 45*                   | 0       | 11 | 6 | 25   | 33*        |
| 1      | 11    | 6      | 87     | 81         | 2      | 11 | 6 | 30   | 30*                   | 3       | 11 | 6 | /8   | 72         |
| 4      | 11    | 6      | 23     | 26*        | 5      | 11 | 6 | 42   | 55*                   | 6       | 11 | 6 |      | 20*        |
| 7      | 11    | 6      | 65     | 68         | 8      | 11 | 6 | 18   | 9*                    | 9       | 11 | 6 | 63   | 5/         |
| 10     | 11    | 6      | 30     | 9*         | 11     | 11 | 6 | 5    | 19*                   | 0       | 12 | 6 | 6/   | 63         |
| 1      | 12    | 6      | 45     | 23*        | 2      | 12 | 6 | 12   | 35*                   | 3       | 12 | 6 | 19   | */         |
| 4      | 12    | 6      | 24     | 49*        | 2      | 12 | 0 | 23   | 23×                   | 6       | 12 | C | 6/   | 10         |
| 10     | 12    | 6      | 10     | ۵۲۳<br>۵×۹ | 11     | 12 | 0 | 22   | 20×<br>10+            | 9<br>10 | 12 | 6 | 2/   | 10×        |
| 10     | 12    | 0<br>6 | 19     | >0×<br>07∳ | 1      | 12 | 6 | 20   | 70                    | 12      | 12 | 6 | 24   | 40^<br>25* |
| 2      | 12    | 6      | 20     | 21^        |        | 12 | 6 | 10   | 70<br>2¥              | 2       | 13 | 6 | 50   | 5/         |
| 5      | 13    | 6      | 02     | /0<br>12+  | 7      | 12 | 6 | 7    | 3/*                   | 2       | 13 | 6 | 12   | _4<br>∕≁   |
| 0      | 13    | 2      | 25     | 73*        | 10     | 12 | 6 | 20   | 254                   | 11      | 13 | 6 | 5    | 23*        |
| 10     | 13    | 6      | 20     | 4.5×       | 10     | 14 | 6 | 29   | 25 <sup>n</sup><br>06 | 1       | 1/ | 6 | 3/   | 36*        |
| 12     | 14    | 6      | 20     | 67         | 3      | 14 | 6 | 35   | 15*                   | 1       | 14 | 6 | 5%   | 50 m       |
| 5      | 14    | 6      | 7      | 9*         | 5      | 1/ | 6 | 47   | 30*                   | 7       | 14 | 6 | 7    | 6*         |
| ך<br>א | 14    | 6      | 33     | 36*        | Q      | 14 | 6 |      | 19*                   | 10      | 14 | 6 | 32   | 30*        |
| 11     | 14    | 6      | 4<br>4 | 3*         | Ó      | 15 | 6 |      | ^<br>2*               | 1       | 15 | 6 | 13   | 30*        |
| 2      | 15    | 6      | 19     | 11*        | ů<br>Ř | 15 | 6 | 31   | 46*                   | L<br>L  | 15 | 6 | 7    | 9*         |
| 5      | 15    | 6      | 47     | 40*        | 6      | 15 | 6 | 15   | 2*                    | 7       | 15 | ő | 48   | 39*        |
| 8      | 15    | 6      | 6      | 7*         | 9      | 15 | 6 | 38   | 45                    | 10      | 15 | 6 | 40   | 9*         |
| Ő      | 16    | 6      | 41     | 34*        | 1      | 16 | 6 | 7    | 8*                    | 2       | 16 | 6 | 30   | 38*        |
| 3      | 16    | 6      | 62     | 13*        | 4      | 16 | 6 | 35   | 42*                   | 5       | 16 | 6 | 6    | 7*         |
| 6      | 16    | 6      | 28     | 36*        | 7      | 16 | 6 | 8    | 10*                   | 8       | 16 | 6 | 20   | 27*        |
| 9      | 16    | 6      | 3      | 4*         | 0<br>0 | 17 | 6 | 38   | 5*                    | 1       | 17 | 6 | 32   | 34*        |
| 2      | 17    | 6      | 48     | 5*         | 3      | 17 | 6 | 26   | 37*                   | 4       | 17 | 6 | 16   | 5*         |
| 5      | 17    | 6      | 23     | 31*        | 6      | 17 | 6 | 35   | - 9*                  | 0       | 18 | 6 | 6    | 14*        |
| 1      | 18    | 6      | 22     | 4*         | 2      | 18 | 6 | 20   | 16*                   | 3       | 18 | 6 | 15   | 10*        |
| Õ      | 1     | 7      | 275    | 284        | 0      | 2  | 7 | 13   | <br>9*                | 1       | 2  | 7 | 85   | 87         |
| 0      | 3     | 7      | 154    | 155        | 1      | 3  | 7 | 113  | 120                   | 2       | 3  | 7 | 137  | 136        |
| 0      | 4     | 7      | 34     | 19*        | 1      | 4  | 7 | 137  | 141                   | 2       | 4  | 7 | 33   | 24*        |
| 3      | 4     | 7      | 116    | 126        | Ō      | 5  | 7 | 94   | 100                   | 1       | 5  | 7 | 6    | 37*        |
| 2      | 5     | 7      | 138    | 140        | 3      | 5  | 7 | 47   | 52*                   | 4       | 5  | 7 | 75   | 82         |
| 0      | 6     | 7      | 7      | 16*        | 1      | 6  | 7 | 123  | 123                   | 2       | 6  | 7 | 39   | 24*        |

r

ł

á

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $GePh_4$  (-60°C)

しょうちょうかい いっ ちゃくしんにんしょうないがになる

: ; ;

يوسد بر يدر

1. 1. L. Part

3

4 7

ş

¥.

and the man

ŝ

ł

| H      | К  | L | 10Fo | 10Fc       | н          | K  | L   | 10Fo       | 10Fc      | н      | K  | L   | 10Fo    | 10Fc        |
|--------|----|---|------|------------|------------|----|-----|------------|-----------|--------|----|-----|---------|-------------|
| 3      |    | 7 | 126  | 132        | 4          | 6  | 7   | 8          |           | 5      | 6  |     | 110     | 114         |
| 0      | 7  | 7 | 102  | 98         | 1          | 7  | 7   | 46         | 51*       | 2      | 7  | 7   | 111     | 116         |
| 3      | 7  | 7 | 33   | 44*        | 4          | 7  | 7   | 89         | 93        | 5      | 7  | 7   | 36      | 42*         |
| 6      | 7  | 7 | 96   | 99         | 0          | 8  | 7   | 12         | 19*       | 1      | 8  | 7   | 129     | 133         |
| 2      | 8  | 7 | 45   | 41*        | 3          | 8  | 7   | 60         | 70        | 4      | 8  | 7   | 28      | 46*         |
| 5      | 8  | 7 | 66   | 70         | 6          | 8  | 7   | 19         | 31*       | 7      | 8  | 7   | 96      | 90          |
| 0      | 9  | 7 | 136  | 139        | 1          | 9  | 7   | 7          | 28*       | 2      | 9  | 7   | 107     | 118         |
| 3      | 9  | 7 | 7    | 15*        | 4          | 9  | 7   | <b>6</b> 5 | 69        | 5      | 9  | 7   | 8       | 15*         |
| 6      | 9  | 7 | 56   | 61*        | 7          | 9  | 7   | 26         | 15*       | 8      | 9  | 7   | 54      | 68*         |
| 0      | 10 | 7 | 40   | 47*        | 1          | 10 | 7   | 37         | 70*       | 2      | 10 | 7   | 33      | 13*         |
| 3      | 10 | 7 | 60   | 54         | 4          | 10 | 7   | 7          | 26*       | 5      | 10 | 7   | 48      | 70*         |
| 6      | 10 | 7 | 14   | 28*        | 7          | 10 | 7   | 54         | 71*       | 8      | 10 | 7   | 7       | 9*          |
| 9      | 10 | 7 | 38   | 28*        | 0          | 11 | 7   | 32         | 12*       | 1      | 11 | 7   | 63      | 33          |
| 2      | 11 | 7 | 30   | 53*        | 3          | 11 | 7   | 46         | 10*       | 4      | 11 | 7   | 42      | 46*         |
| 5      | 11 | 7 | 29   | 12*        | 6          | 11 | 7   | 59         | 63        | 7      | 11 | 7   | 28      | 29*         |
| 8      | 11 | 7 | 36   | 51%        | 9          | 11 | 7   | 41         | 25*       | 10     | 11 | 7   | 34      | 38*         |
| 0      | 12 | 7 | 69   | 48         | 1          | 12 | 7   | 35         | 65*       | 2      | 12 | 7   | 28      | 27*         |
| 3      | 12 | 7 | 57   | 51         | / <u>,</u> | 12 |     | 25         | 18*       | 5      | 12 | /   | 40      | 49*         |
| 6      | 12 | 7 | 16   | 22*        | 1          | 12 | /   | 44         | 48*       | 8      | 12 | / 7 |         | 6*          |
| 9      | 12 | / | 20   | 20*        | 10         | 12 | 7   | 31         | 18*       | 11     | 12 | /   | 26      | 33*<br>70   |
| 0      | 13 | 7 | 32   | 49*        | 1          | 13 | 7   | 33         | 20*       | 2      | 13 | 7   | 64<br>7 | /U<br>E.L   |
| 5      | 13 | 1 | 32   | 6×<br>(1.1 | 4 7        | 12 | 7   | / 27       | ×8C       | С<br>0 | 13 | 7   | 21      | ×ر<br>۲     |
| 0      | 12 | 7 | 20   | 41*        | 10         | 12 | 7   | رد<br>ء    | 0×<br>26+ | 11     | 13 | 7   | 21      | 20×<br>5+   |
| 9      | 17 | 7 | 12   | 70×        | 10         | 17 | 7   | 10         | 20*       | 2      | 14 | 7   | 14<br>0 | ×ر<br>بەرد  |
| 2      | 14 | 7 | 44   | 24*        | 1<br>/     | 14 | 7   | 19         | -0-×      | ۲<br>۲ | 14 | 7   | 6<br>10 | 22 m<br>1 m |
| 5      | 14 | 7 | 31   | 50~        | 47         | 14 | 7   | 3/         | 35*       | 2<br>R | 14 | 7   | 42      | 8*          |
| 0<br>0 | 14 | 7 | 1/   | 0^*<br>27* | 10         | 14 | 7   | 16         | 25*<br>2* | 0      | 15 | 7   | 43      | 36*         |
| 1      | 15 | 7 | 4    | 6*         | 2          | 15 | 7   | 22         | 36*       | 3      | 15 | 7   |         | 11*         |
| 4      | 15 | 7 | 29   | 42*        | 5          | 15 | 7   | 12         | 2*        | 6      | 15 | 7   | 8       | 33*         |
| 7      | 15 | 7 | 5    | 12*        | 8          | 15 | 7   | 4          | 27*       | Ő      | 16 | 7   | 68      | 4*          |
| 1      | 16 | 7 | 23   | 33*        | 2          | 16 | , 7 | 28         | 3*        | 3      | 16 | 7   | 6       | 27*         |
| 4      | 16 | 7 | 23   | 6*         | 5          | 16 | 7   | 4          | 31*       | 6      | 16 | 7   | 18      | <br>7*      |
| ò      | 17 | 7 | 12   | 32*        | 1          | 17 | 7   | 6          | 3*        | 2      | 17 | 7   | 4       | 15*         |
| 3      | 17 | 7 | 4    | 4*         | 0          | 0  | 8   | 46         | 44*       | 0      | 1  | 8   | 83      | 88          |
| 1      | 1  | 8 | 57   | 48*        | 0          | 2  | 8   | 110        | 118       | 1      | 2  | 8   | 51      | 66*         |
| 2      | 2  | 8 | 80   | 89         | 0          | 3  | 8   | 7          | 45*       | 1      | 3  | 8   | 133     | 139         |
| 2      | 3  | 8 | 28   | 40*        | 3          | 3  | 8   | 101        | 119       | 0      | 4  | 8   | 140     | 150         |
| 1      | 4  | 8 | 27   | 44*        | 2          | 4  | 8   | 73         | 84        | 3      | 4  | 8   | 7       | 27*         |
| 4      | 4  | 8 | 105  | 108        | 0          | 5  | 8   | 35         | 27*       | 1      | 5  | 8   | 99      | 100         |
| 2      | 5  | 8 | 52   | 26*        | 3          | 5  | 8   | 98         | 85        | 4      | 5  | 8   | 43      | 17*         |
| 5      | 5  | 8 | 110  | 108        | 0          | 6  | 8   | 104        | 101       | 1      | 6  | 8   | 48      | 6*          |
| 2      | 6  | 8 | 84   | 82         | 3          | 6  | 8   | 41         | 36*       | 4      | 6  | 8   | 65      | 74          |
| 5      | 6  | 8 | 20   | 26*        | 6          | 6  | 8   | 71         | 81        | 0      | 7  | 8   | 28      | 5*          |
| 1      | 7  | 8 | 51   | 51*        | 2          | 7  | 8   | 7          | 6*        | 3      | 7  | 8   | 61      | 66          |
| 4      | 7  | 8 | 7    | 30*        | 5          | 7  | 8   | 49         | 64*       | 6      | 7  | 8   | 8       | 14*         |
| 7      | 7  | 8 | 79   | 62         | 0          | 8  | 8   | 8          | 15*       | 1      | 8  | 8   | 91      | 4*          |
| 2      | 8  | 8 | 57   | 77*        | 3          | 8  | 8   | 48         | 20*       | 4      | 8  | 8   | 76      | 68          |
| 5      | 8  | 8 | 39   | 5*         | б          | 8  | 8   | 43         | 63*       | 7      | 8  | 8   | 33      | 8*          |
| 8      | 8  | 8 | 8    | 25*        | 0          | 9  | 8   | 33         | 44*       | 1      | 9  | 8   | 50      | 63*         |

איזייניין איזייניטאראין איזיין איז

samples of a sublimities

-----

strong within the Brailin a monant

-

5

\*

24

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR GePh4 (-60°C)

| Н      | K      | L      | 10Fo     | 10Fc        | Н      | K       | L      | 10Fo       | 10Fc            | Н      | ĸ      | L      | 10Fo      | 10Fc           |
|--------|--------|--------|----------|-------------|--------|---------|--------|------------|-----------------|--------|--------|--------|-----------|----------------|
| 2      | 9      | <br>8  | <br>39   | 24*         | 3      | 9       | 8      | 83         | <br>87          | 4      | <br>9  |        | 33        | 25*            |
| 5      | 9      | 8      | 63       | 64          | 6      | 9       | 8      | 29         | 6*              | 7      | 9      | 8      | 36        | 39*            |
| 8      | 9      | 8      | 18       | 22*         | 9      | 9       | 8      | 39         | 24*             | 0      | 10     | 8      | 56        | 39*            |
| 1      | 10     | 8      | 14       | 28*         | 2      | 10      | 8      | 73         | 74              | 3      | 10     | 8      | 42        | 22*            |
| 4      | 10     | 8      | 41       | 49*         | 5      | 10      | 8      | 28         | 10*             | 6      | 10     | 8      | 42        | 41*            |
| 7      | 10     | 8      | 25       | 21*         | 8      | 10      | 8      | 26         | 37*             | 9      | 10     | 8      | 38        | 7*             |
| 10     | 10     | 8      | 37       | 53*         | 0      | 11      | 8      | 21         | 24*             | 1      | 11     | 8      | 47        | 57*            |
| 2      | 11     | 8      | 74       | 49*         | 3      | 11      | 8      | 41         | 45*             | 4      | 11     | 8      | 7         | 3*             |
| 5      | 11     | 8      | 52       | 40          | 6      | 11      | 8      | 7          | 8*              | 7      | 11     | 8      | 32        | 42*            |
| 8      | 11     | 8      | 36       | 5*          | 9      | 11      | 8      | 40         | 41*             | 10     | 11     | 8      | 5         | 9*             |
| 11     | 11     | 8      | 4        | 35*         | 0      | 12      | 8      | 57         | 52*             | 1      | 12     | 8      | 38        | 23*            |
| 2      | 12     | 8      | 38       | 52*         | 3      | 12      | 8      | 26         | 23*             | 4      | 12     | 8      | 42        | 50*            |
| 5      | 12     | 8      | 32       | 5*          | 6      | 12      | 8      | 6          | 31*             | 7      | 12     | 8      | 35        | 15*            |
| 8      | 12     | 8      | 6        | 29*         | 9      | 12      | 8      | 5          | 14*             | 10     | 12     | 8      | 19        | 22*            |
| 0      | 13     | 8      | 35       | 18*         | 1      | 13      | 8      | 8          | 35*             | 2      | 13     | 8      | 8         | 15*            |
| 3      | 13     | 8      | 7        | 28*         | 4      | 13      | 8      | 22         | 4*              | 5      | 13     | 8      | 6         | 38*            |
| 6      | 13     | 8      | 14       | 13*         | /      | 13      | 8      | 26         | 30*             | 8      | 13     | 8      | 1/        | 9*             |
| 9      | 13     | 8      | 4        | 16*         | 0      | 14      | 8      | 38         | 2/*             | 1      | 14     | 8      | 26        | 5*             |
| 2      | 14     | 8      | 21       | 19*         | 3      | 14      | 8      | 44         | 9*              | 4      | 14     | 8      | 29        | 32*            |
| 5      | 14     | 8      | 5        | 8*          | 6      | 14      | 8      | 11         | 28*             | /      | 14     | 8      | 16        | 4*             |
| 0      | 15     | 8      | 35       | /*          | L,     | 15      | 8      | 6          | 28*             | 2      | 12     | 8      | 9         | 10*            |
| 2      | 12     | 8      | 30       | 1/*         | 4      | 12      | 8      | 42         | 4*              | 2      | 12     | 8      | 4         | 22*            |
| 0      | 1      | 9<br>0 | 57       | 33×<br>34-  | 1      | 2       | 9      | 54<br>70   | ×ر<br>۲۰        | T      | 2      | 9      | 99        | 106            |
| 0      | )<br>/ | 9<br>0 | 20       | 24*         | 1      | 2<br>/. | 9      | 49         | 21*             | 2      | 5      | 9      | 84        | 89<br>01.4     |
| 2      | 4      | 9      | 3U<br>01 | 10*         | 1      | 4       | 9      | 00<br>// C | 94<br>504       | 2      | 4      | 9      | 25        | × ۱۵۰          |
| ר<br>ר | 4<br>5 | 9      | 91       | 94          | 2      | 5       | 9      | 40         | × 22<br>21      | 1      | ך<br>ב | 9<br>0 | 2.5<br>71 | 12~            |
| 2      | 5      | 2      | 09<br>50 | 00<br>20*   | י<br>1 | 2       | 2      | 42         | 30*<br>21×      | 4      | 2      | 2      | 11        | 00<br>00       |
| 2      | 6      | 9      | 5/       | 20*         | 1      | 6       | 2      | 45         | 50×<br>7÷       | 5      | 6      | 2      | 44        | ረ ፈ ሳ<br>5 ሰ ዓ |
| 2      | 7      | 0      | 74       | 54×         |        | 7       | 0      | 51         | 194             | 2      | 7      | 2      | 27        |                |
| 3      | ,<br>7 | 0      | 45       | 44 <i>1</i> | 1      | 7       | 0      | 51         | 63*<br>T0*      | 5      | 7      | 2      | ہ<br>رد   | 20*            |
| 5      | 7      | 9      | 57       | * 37*       | -<br>- | ,<br>8  | 0<br>0 | 45         | 154             | 1      | 2<br>2 | 2      | 74        | 201            |
| 2      | 8      | q      | 10       | 15*         | 2      | 8       | 9      | 4J<br>52   | 78 <del>*</del> | т<br>4 | 0<br>8 | G      | 30        | 27<br>20*      |
| 5      | R      | á      | 7        | 38*         | 5      | 8       | á      | 52<br>97   | 134             | 7      | Q      | á      | J2<br>0   | 2.9~           |
| ő      | q      | ģ      | 10       | 38*         | 1      | q       | ģ      | 27<br>Q    | 17*             | 2      | a<br>a | Q      | 6         | 10*            |
| 3      | 9      | 9      | - 8      | 8*          | Ĺ      | 9       | 9      | 7          | 45*             | 5      | ģ      | ģ      | 21        | 22             |
| 6      | 9      | ģ      | 35       | 33*         | 7      | ģ       | ģ      | 22         | 16*             | 8      | ģ      | ģ      | 30        | 33*            |
| Ő      | 10     | 9      | 9        | 24*         | 1      | 10      | 9      | 32         | 50*             | 2      | 10     | ģ      | 50        | 18*            |
| 3      | 10     | 9      | 57       | 60*         | 4      | 10      | 9      | 7          | 5*              | 5      | 10     | ģ      | 29        | 49*            |
| 6      | 10     | 9      | 36       | 16*         | 7      | 10      | ģ      | 23         | 28*             | 8      | 10     | á      | 6         | 16*            |
| 9      | 10     | 9      | 5        | 33*         | Ó      | 11      | 9      | 61         | 59*             | 1      | 11     | á      | 8         | 9*             |
| 2      | 11     | 9      | 50       | 46*         | 3      | 11      | 9      | 29         | 14*             | 4      | 11     | ģ      | 33        | 51*            |
| 5      | 11     | 9      | 24       | 10*         | 6      | 11      | 9      | 30         | 37*             | 7      | 11     | ģ      | 33        | 5*             |
| 8      | 11     | 9      | 4        | 20*         | 9      | 11      | 9      | 4          | 10*             | ,<br>0 | 12     | ģ      | 8         | 5*             |
| 1      | 12     | 9      | 86       | 26*         | 2      | 12      | 9      | 7          | <br>4*          | 3      | 12     | ģ      | 7         | 38*            |
| 4      | 12     | 9      | 6        | 6*          | 5      | 12      | 9      | 32         | 26*             | 6      | 12     | ģ      | 17        | ۰.<br>4*       |
| 7      | 12     | 9      | 25       | 24*         | 0      | 13      | 9      | 7          | 27*             | 1      | 13     | ģ      | 7         | 9*             |
| 2      | 13     | 9      | 6        | 28*         | 3      | 13      | 9      | 27         | <br>8*          | ۰<br>د | 13     | ģ      | ,<br>5    | 20*            |
| 5      | 13     | 9      | 4        | 3*          | 6      | 13      | 9      | 14         | 26*             | 0      | 14     | 9      | 5         | 10*            |
| 1      | 14     | 9      | 13       | 18*         | 2      | 14      | 9      | 24         | 13*             | 3      | 14     | 9      | 4         | 27*            |

1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $GePh_4$  (-60°C)

| Н      | К  | L    | 10Fo | 10Fc      | н | к   | L    | 10Fo   | 10Fc       | н | K   | L  | 10F0 | 10Fc |
|--------|----|------|------|-----------|---|-----|------|--------|------------|---|-----|----|------|------|
|        |    | 10   | 34   |           |   | 1   | 10   | <br>58 | 0*         |   | 1   |    |      |      |
| Ő      | 2  | 10   | 55   | 49*       | 1 | 2   | 10   | 40     | 19*        | 2 | 2   | 10 | 63   | 62*  |
| õ      | 3  | 10   | 9    | 26*       | 1 | 3   | 10   | 59     | 49*        | 2 | 3   | 10 | 48   | 6*   |
| š      | 3  | 10   | 41   | 82*       | ō | 4   | 10   | 21     | 20*        | 1 | 4   | 10 | 33   | 38*  |
| 2      | 4  | 10   | 32   | 45*       | 3 | 4   | 10   | 23     | 12*        | 4 | 4   | 10 | 8    | 64*  |
| ō      | 5  | 10   | 9    | ¥0        | 1 | 5   | 10   | 47     | 27*        | 2 | 5   | 10 | 9    | 9*   |
| 3      | 5  | 10   | 17   | 54*       | 4 | 5   | 10   | 40     | 11*        | 5 | 5   | 10 | 8    | 55*  |
| 0      | 6  | 10   | 9    | 51*       | 1 | 6   | 10   | 41     | 16*        | 2 | 6   | 10 | 72   | 51   |
| 3      | 6  | 10   | 50   | 18*       | 4 | 6   | 10   | 47     | 52*        | 5 | 6   | 10 | 8    | 9*   |
| 6      | 6  | 10   | 8    | 19*       | 0 | 7   | 10   | 45     | 2*         | 1 | 7   | 10 | 54   | 47*  |
| 2      | 7  | 10   | 42   | 19*       | 3 | 7   | 10   | 8      | 30*        | 4 | 7   | 10 | 40   | 19*  |
| 5      | 7  | 10   | 35   | 27*       | 6 | 7   | 10   | 35     | 6*         | 7 | 7   | 10 | 7    | 21*  |
| 0      | 8  | 10   | 57   | 31*       | 1 | 8   | 10   | 23     | 6*         | 2 | 8   | 10 | 43   | 30*  |
| 3      | 8  | 10   | 37   | 10*       | 4 | 8   | 10   | 29     | 29*        | 5 | 8   | 10 | 28   | 25*  |
| 6      | 8  | 10   | 32   | 17*       | 7 | 8   | 10   | 14     | 18*        | 8 | 8   | 10 | 30   | 33*  |
| 0      | 9  | 10   | 30   | 5*        | 1 | 9   | 10   | 42     | 29*        | 2 | 9   | 10 | 29   | 16*  |
| 3      | 9  | 10   | 38   | 25*       | 4 | 9   | 10   | 40     | 13*        | 5 | 9   | 10 | 36   | 33*  |
| 6      | 9  | 10   | 13   | 10*       | 7 | 9   | 10   | 26     | 28*        | 8 | 9   | 10 | 20   | 1*   |
| 0      | 10 | 10   | 44   | 30*       | 1 | 10  | 10   | 34     | 7*         | 2 | 10  | 10 | 7    | 26*  |
| 3      | 10 | 10   | 41   | 13*       | 4 | 10  | 10   | 30     | 33*        | 5 | 10  | 10 | 5    | 14*  |
| 6      | 10 | 10   | 22   | 21*       | 7 | 10  | 10   | 3      | 4*         | 0 | 11  | 10 | 7    | 3*   |
| 1      | 11 | 10   | 7    | 32*       | 2 | 11  | 10   | 6      | 6*         | 3 | 11  | 10 | 27   | 31*  |
| 4      | 11 | 10   | 21   | 15*       | 5 | 11  | 10   | 4      | 30*        | 0 | 12  | 10 | 29   | 24*  |
| 1      | 12 | 10   | 5    | 6*        | 2 | 12  | 10   | 25     | 28*        | 0 | 1   | 11 | 29   | 25*  |
| 0      | 2  | 11   | 17   | 29*       | 1 | 2   | 11   | 37     | 47*        | 0 | 3   | 11 | 8    | 38*  |
| 1      | 3  | 11   | 43   | 21*       | 2 | 3   | 11   | 8      | 26*        | 0 | 4   | 11 | 39   | 3*   |
| 1      | 4  | 11   | 51   | 31*       | 2 | 4   | 11   | 15     | 16*        | 3 | 4   | 11 | 7    | 16*  |
| 0      | 5  | 11   | 8    | 42*       | 1 | 5   | 11   | 42     | /*         | 2 | 5   | 11 | /    | 29*  |
| 3      | 5  | 11   | 40   | 14*       | 4 | 5   | 11   | 7      | 19*        | 0 | 6   | 11 | 8    | 13*  |
| 1      | 6  | 11   | 9    | 36*       | 2 | 6   | 11   | /      | 12*        | 3 | 6   | 11 | 30   | 29*  |
| 4      | 6  | 11   | 6    | 26*       | 5 | 6   | 11   | 37     | 29*        | 0 |     | 11 | 28   | 38*  |
| Ţ      | /  | 11   | 36   | 9*        | 2 | /   | 11   | 42     | 31*        | 3 | /   | 11 | 37   | 1/*  |
| 4      | /  | 11   | 2    | 2/*       | 5 | /   | 11   | 21     | 20*        | 6 | /   | 11 | 4    | 29*  |
| 0      | 8  | 11   | 10   | 5*        | 1 | 8   | 11   | 45     | 21*        | 2 | 8   | 11 | 35   | 1.6* |
| 3      | 8  | 11   | 19   | 31*       | 4 | 8   | 11   | 29     | 11*        | 0 | 9   | 11 | 26   | 18*  |
| L<br>A | 9  | 11   | 5    | 5*        | 2 | 9   | 11   | 23     | 20*        | 0 | 0   | 12 | 38   | 59*  |
| 0      | Ţ  | 12   | 29   | 6*<br>7-# | 1 | L   | 12   | 6      | 30*        | U | 2   | 12 | 28   | 25*  |
| 1      | 2  | 12   | 5/   | /×        | 2 | 2   | 12   | 5      | 14*        | 0 | د ، | 12 | 22   | 8*   |
| 1      | 3  | 12   | 5    | 23*       | 2 | 3   | 12   | 12     | <b>5</b> * | 3 | 3   | 12 | 28   | 24*  |
| 0      | 4  | - 12 | 23   | 22*       | 1 | - 4 | - 12 | 24     | 4*         | 2 | - 4 | 12 | 4    | 16*  |

An \* indicates weak or extinct reflections not used in the final refinements.

| Н        | к      | L | 10Fo | 10Fc       | Н          | к      | L      | 10Fo      | 10Fc      | Н   | К               | L          | 10Fo       | 10Fc        |
|----------|--------|---|------|------------|------------|--------|--------|-----------|-----------|-----|-----------------|------------|------------|-------------|
|          | 1      | 0 | 1060 | 990        | 0          | 2      | 0      | 970       | 936       | 1   | 2               | 0          | 120        | 118         |
| 2        | 2      | 0 | 130  | 128        | 1          | 3      | 0      | 754       | 748       | 2   | 3               | 0          | 143        | 142         |
| 3        | 3      | 0 | 1001 | 975        | 0          | 4      | 0      | 649       | 632       | 1   | 4               | 0          | 31         | 2*          |
| 2        | 4      | 0 | 637  | 636        | 3          | 4      | 0      | 209       | 201       | 4   | 4               | 0          | 348        | 341         |
| 1        | 5      | 0 | 609  | 598        | 2          | 5      | 0      | 86        | 84        | 3   | 5               | 0          | 620        | 631         |
| 4        | 5      | 0 | 163  | 157        | 5          | 5      | 0      | 426       | 436       | 0   | 6               | 0          | 695        | 674         |
| 1        | 6      | 0 | 100  | 97         | 2          | 6      | 0      | 827       | 811       | 3   | 6               | 0          | 248        | 244         |
| 4        | 6      | 0 | 582  | 590        | 5          | 6      | 0      | 65        | 60        | 6   | 6               | 0          | 483        | 494         |
| 1        | 7      | 0 | 611  | 597        | 2          | 7      | 0      | 29        | 25        | 3   | 7               | 0          | 429        | 434         |
| 4        | 7      | 0 | 18   | 18*        | 5          | 7      | 0      | 418       | 419       | 6   | 7               | 0          | 46         | 49          |
| 7        | 7      | 0 | 411  | 417        | 0          | 8      | 0      | 563       | 566       | 1   | 8               | 0          | 86         | 82          |
| 2        | 8      | 0 | 467  | 471        | 3          | 8      | 0      | 31        | 32        | 4   | 8               | 0          | 331        | 340         |
| 5        | 8      | Ō | 86   | 83         | 6          | 8      | 0      | 340       | 347       | 7   | 8               | 0          | 27         | 5*          |
| 8        | 8      | 0 | 330  | 350        | 1          | 9      | 0      | 545       | 546       | 2   | 9               | 0          | 37         | 45×         |
| 3        | 9      | Ó | 335  | 342        | 4          | 9      | 0      | 33        | 46        | 5   | 9               | 0          | 372        | 366         |
| 6        | 9      | 0 | 25   | 12*        | 7          | 9      | 0      | 303       | 309       | 8   | 9               | 0          | 42         | 7*          |
| 9        | 9      | 0 | 108  | 97         | Ó          | 10     | 0      | 181       | 180       | 1   | 10              | 0          | 95         | 94          |
| 2        | 10     | 0 | 265  | 270        | 3          | 10     | 0      | 33        | 22        | 4   | 10              | Ō          | 261        | 264         |
| 5        | 10     | 0 | 23   | 3*         | 6          | 10     | 0      | 265       | 267       | 7   | 10              | 0          | 26         | 9*          |
| 8        | 10     | 0 | 197  | 201        | 9          | 10     | 0      | 26        | 32*       | 10  | 10              | 0          | 135        | 130         |
| 1        | 11     | 0 | 210  | 210        | 2          | 11     | 0      | 106       | 112       | 3   | 11              | 0          | 159        | 163         |
| 4        | 11     | 0 | 25   | 19*        | 5          | 11     | 0      | 237       | 238       | 6   | 11              | 0          | 46         | 46          |
| 7        | 11     | Ō | 250  | 254        | 8          | 11     | Ő      | 40        | 15*       | 9   | 11              | 0          | 136        | 135         |
| 10       | 11     | Ō | 26   | 31*        | 11         | 11     | 0      | 151       | 158       | 0   | 12              | 0          | 264        | 270         |
| 1        | 12     | 0 | 85   | 84         | 2          | 12     | Ō      | 331       | 336       | 3   | 12              | õ          | 45         | 14*         |
| 4        | 12     | Ō | 195  | 195        | 5          | 12     | Ō      | 38        | 46        | 6   | 12              | Ő          | 173        | 180         |
| 7        | 12     | Ō | 22   | 22*        | 8          | 12     | Õ      | 150       | 151       | 9   | 12              | Ő          | 41         | 49          |
| 10       | 12     | Ō | 125  | 129        | 11         | 12     | Ō      | 29        | 1*        | 1   | 13              | Ő          | 248        | 246         |
| 2        | 13     | Ō | 31   | 40*        |            | 13     | Ō      | 187       | 193       | 4   | 13              | 0          | 48         | 11*         |
| 5        | 13     | 0 | 156  | 163        | 6          | 13     | Ō      | 26        | 10*       | 7   | 13              | Ő          | 141        | 143         |
| 8        | 13     | 0 | 48   | 37         | 9          | 13     | Ō      | 114       | 114       | 10  | 13              | Õ          | 37         | 15*         |
| 0        | 14     | Õ | 118  | 116        | 1          | 14     | Õ      | 39        | 28        | 2   | 14              | Ő          | 182        | 188         |
| 3        | 14     | Ő | 35   | 12*        | 4          | 14     | õ      | 173       | 177       | -   | 14              | õ          | 28         | 5*          |
| 6        | 14     | Ő | 125  | 129        | . 7        | 14     | Ő      | 53        | 17*       | 8   | 14              | õ          | 122        | 120         |
| g        | 14     | Ő | 44   | 15*        | 1          | 15     | õ      | 147       | 151       | 2   | 15              | Ő          | 42         | 220         |
| 3        | 15     | õ | 153  | 160        | -<br>4     | 15     | õ      | 47        | 24*       | -   | 15              | ň          | 142        | 143         |
| 6        | 15     | õ | 37   | 21*        | 7          | 15     | õ      | 95        | 92        | -   | 16              | Ő          | 98         | 97          |
| 1        | 16     | õ | 30   | 2*         | , 2        | 16     | õ      | 94        | 91        |     | 16              | ň          | 56         | 14          |
| 4        | 16     | õ | 110  | 117        | 5          | 16     | õ      | 28        | 15*       | -   | ) 10<br>) 1     | 1          | 758        | 736         |
| -1       | 2      | ĩ | 1141 | 1158       | 0          | 2      | 1      | 1026      | 1040      | 1   | , <u>1</u><br>2 | 1          | 1127       | 1148        |
| -2       | 3      | 1 | 541  | 571        | - 1        | 3      | 1      | 446       | 442       | 1   | - 2<br>) 3      | 1          | 682        | 696         |
| 1        | 3      | 1 | 440  | 642        | 2          | 3      | 1      | 563       | 543       |     | , J<br>1 A      | 1          | 589        | 608         |
| -2       | у<br>4 | 1 | 102  | 99         | -1         | 4      | 1      | 874       | 886       |     | , 4<br>) /      | 1          | 200        | 107         |
| 1        | 4      | 1 | 872  | 893        | 2          | 4      | 1      | 101       | 900       |     | , 4<br>, 7      | 1          | 506        | £05         |
|          |        | î | 596  | 594        | _ 2<br>_ 2 |        | ĩ      | 201       | 96        |     | , 4<br>) 5      | 1          | 212        | 605         |
| _1       | 5      | 1 | 550  | 50         | ں<br>1-    | ר<br>ר | 1      | 20<br>850 | 20<br>852 | - 2 |                 | 1          | 210        | 270<br>270  |
| 2        | 5      | 1 | 606  | 617        | 2          | ר<br>ב | 1      | 010       | 055       |     | . )<br>. c      | 1          | 500<br>500 | 202         |
| ∡<br>_ ج | ر<br>۲ | 1 | 722  | 140<br>140 | ر<br>۱۰_   | ر<br>م | 1      | 110       | 104       | -   | ר א<br>ע ∠      | 1          | 700        | د U0<br>۱۵  |
| .2       | 6      | ì | 128  | 138        | -4         | 2      | 1      | 568       | 567       | - : | , 0<br>, 4      | ่ <u>1</u> | 100        | 417<br>100  |
| - 1      | ں<br>۲ | 1 | 100  | 577        | - T        | ں<br>د | 1<br>1 | 1/0       | 120       |     | , 0<br>, 7      | · 1        | 192        | LÖZ<br>7.10 |
| Ŧ        | 0      | Ť | 554  | 511        | 2          | 0      | T      | 140       | 700       |     | , 0             | ) <u>t</u> | 414        | 410         |

i

| н      | К         | L      | 10Fo | 10Fc         | Н      | K        | L   | 10Fo      | 10Fc       | н           | ĸ         | 1.      | 10Fo       | lOFc         |
|--------|-----------|--------|------|--------------|--------|----------|-----|-----------|------------|-------------|-----------|---------|------------|--------------|
| 4      | 6         | 1      | 107  | 106          | 5      | 6        | 1   | 436       | 449        | - 6         | 7         | 1       | 477        | 469          |
| - 5    | 7         | 1      | 39   | 33           | - 4    | 7        | 1   | 442       | 449        | - 3         | 7         | 1       | 77         | 74           |
| - 2    | 7         | 1      | 553  | 563          | -1     | 7        | 1   | 19        | 4*         | 0           | 7         | 1       | 529        | 528          |
| 1      | 7         | 1      | 57   | 4*           | 2      | 7        | 1   | 554       | 562        | 3           | 7         | 1       | 75         | 74           |
| 4      | 7         | 1      | 442  | 447          | 5      | 7        | 1   | 42        | 33         | 6           | 7         | 1       | 468        | 470          |
| - 7    | 8         | 1      | 292  | 295          | - 6    | 8        | 1   | 74        | 78         | - 5         | 8         | l       | 379        | 386          |
| -4     | 8         | 1      | 76   | 76           | - 3    | 8        | 1   | 522       | 537        | - 2         | 8         | 1       | 50         | 43           |
| -1     | 8         | 1      | 453  | 459          | 0      | 8        | 1   | 39        | 34         | 1           | 8         | 1       | 460        | 458          |
| 2      | 8         | 1      | 45   | 43           | 3      | 8        | 1   | 538       | 528        | 4           | 8         | 1       | 75         | 76           |
| 5      | 8         | 1      | 380  | 382          | 6      | 8        | 1   | 81        | 78         | 7           | 8         | 1       | 292        | 295          |
| - 8    | 9         | 1      | 202  | 206          | -7     | 9        | 1   | 78        | 84         | - 6         | 9         | 1       | 314        | 314          |
| - 5    | 9         | 1      | 20   | 34*          | - 4    | 9        | 1   | 263       | 262        | - 3         | 9         | 1       | 141        | 139          |
| - 2    | 9         | 1      | 395  | 404          | -1     | 9        | 1   | 38        | 29         | 0           | 9         | 1       | 333        | 334          |
| 1      | 9         | 1      | 23   | 29*          | 2      | 9        | 1   | 398       | 398        | 3           | 9         | 1       | 133        | 139          |
| 4      | 9         | 1      | 263  | 261          | 5      | 9        | 1   | 48        | 34         | 6           | 9         | 1       | 311        | 31,5         |
| 7      | 9         | 1      | 90   | 84           | 8      | 9        | 1   | 211       | 203        | - 9         | 10        | 1       | 213        | 218          |
| - 8    | 10        | 1      | 45   | 40           | -7     | 10       | 1   | 222       | 225        | - 6         | 10        | 1       | 38         | 28*          |
| - 5    | 10        | 1      | 237  | 228          | -4     | 10       | 1   | 28        | 34*        | - 3         | 10        | 1       | 325        | 322          |
| -2     | 10        | 1      | 102  | 104          | -1     | 10       | 1   | 338       | 338        | 0           | 10        | 1       | 99         | 99           |
| 1      | 10        | 1      | 338  | 335          | 2      | 10       | 1   | 103       | 104        | 3           | 10        | 1       | 322        | 326          |
| 4      | 10        | 1      | 40   | 34           | 5      | 10       | 1   | 225       | 234        | 6           | 10        | 1       | 24         | 2.8*         |
| 7      | 10        | 1      | 223  | 227          | 8      | 10       | 1   | 44        | 40         | 9           | 10        | 1       | 217        | 215          |
| - 9    | 11        | 1      | 56   | 45           | - 8    | 11       | 1   | 170       | 171        | -7          | 11        | 1       | 27         | 29*          |
| - 6    | 11        | 1      | 228  | 228          | - 5    | 11       | 1   | 26        | 24*        | - 4         | 11        | 1       | 242        | 229          |
| - 3    | 11        | 1      | 28   | 26*          | - 2    | 11       | 1   | 269       | 274        | -1          | 11        | 1       | 123        | 122          |
| 0      | 11        | 1      | 292  | 290          | 1      | 11       | 1   | 122       | 122        | 2           | 11        | 1       | 273        | 270          |
| 3      | 11        | 1      | 24   | 26*          | 4      | 11       | 1   | 227       | 234        | 5           | 11        | 1       | 36         | 24           |
| 6      | 11        | 1      | 227  | 228          | 7      | 11       | 1   | 26        | 29*        | 8           | 11        | T       | 175        | 166          |
| 9      | 11        | 1      | 46   | 45           | 10     | 11       | 1   | 140       | 138        | - /         | 12        | 1       | 156        | 163          |
| -6     | 12        | 1      | 34   | 13           | - 5    | 12       | 1   | 211       | 202        | -4          | 12        | 1       | 33         | 16*          |
| -3     | 12        | 1      | 235  | 233          | - 2    | 12       | 1   | 40        | 14*        | -1          | 12        | 1       | 195        | 201          |
| 0      | 12        | 1      | 90   | 93           | 1      | 12       | 1   | 199       | 193        | 2           | 12        | 1       | 25         | 14%          |
| 3      | 12        | 1      | 232  | 233          | 4      | 12       | 1   | 21        | 16*        | 5           | 12        | 1       | 200        | 203          |
| 6      | 12        | 1      | 33   | 13*          | 7      | 12       | 1   | 162       | 161        | 8           | 12        | 1       | 49         | 4*           |
| 9      | 12        | 1      | 146  | 137          | 10     | 12       | 1   | 29        | 22*        | 11          | 12        | 1       | 114        | 116          |
| -5     | 13        | 1      | 28   | 19*          | -4     | 13       | 1   | 212       | 202        | - 3         | 13        | Ţ       | 4/         | 17           |
| -2     | 13        | T      | 205  | 200          | -1     | 13       | 1   | 46        | 49         | 0           | 13        | 1       | 249        | 247          |
| Ţ      | 13        | 1      | 49   | 49           | 2      | 13       | T 1 | 198       | 196        | د<br>م      | 13        | 1       | 20         | 174          |
| 4'     | 13        | Ţ      | 209  | 206          | 5      | 13       | 1   | 24        | 19*        | 0           | 10        | 1       | 1/2        | 1/6          |
| 10     | 13        | 1      | 29   | 2*           | 8      | 1/       | 1   | 124       | 16.5       | 9           | 17        | 1       | 100        | 100          |
| 10     | 13        | 1      | 92   | 80           | - 2    | 14       | 1   | 29        | 107        | - 1         | 14        | 1       | 107        | 154          |
| 0      | 14        | 1      | 150  | 30           | 1      | 14       | 1   | 190       | 114<br>114 | 2           | 14        | L<br>1  | 116        | 1/3          |
| 2      | 14        | 1      | 128  | 164          | 4 7    | 14       | 1   | 10/       | 106        | ر<br>ہ      | 14        | 1       | 140        | 104          |
| D<br>D | 14<br>17  | 1      | 29   | 20×          | /      | 14<br>15 | 1   | 124       | 21         |             | 14        | 1.<br>1 | ےر<br>۱26  | 122          |
| y<br>1 | 14<br>1 E | 1      | 112  | אל<br>1 אי   | -1     | 15       | 1   | 4L<br>110 | JL<br>110  | 5<br>1<br>1 | 10        | 1       | 77<br>773  | ידד.<br>רכד  |
| 1<br>/ | 15<br>15  | 1      | 28   | 51×<br>111   | 2      | 12       | 1   | 20        | L L Z      | 2           | 10        | 1       | 44         | 110          |
| 4 7    | 15<br>15  | L<br>1 | 113  | 10-5<br>10-5 | כ<br>י | 12       | 1   | 30<br>115 | 0×<br>110  | 0<br>0      | 12        | 1<br>1  | 122        | 54<br>770    |
| /      | 12        | 1      | 40   | 17×<br>111   | -1     | 10       | 1   | 15        | L14<br>0.  | 2           | 10        | 1       | 40         | 110          |
| 1      | 10        | 1      | 111  | 20-r<br>TTT  | 2      | 10       | 1   | 103       | 0*         |             | 7 0<br>10 | L<br>2  | LLZ<br>(1) | V 30<br>T 10 |
| , 4    | τo        | Ť      | 20   | 20^          | 2      | τo       | L L | 102       | 70         | L L         | , ,       | ۲.      | ***        | 467          |

non hun

ŧ

} 1

ł

¢

\*

31.4

ri L

.

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $(C_6H_5)_4Sn$ 

語でないとうこ

1. 22

1

うちょうかん ちょうしんかい いっちゅう ちょうちょう しんしょう あいちょうかい いちまちょう チュール ちょう

All and the second

四方之子を ち ゆうたなたたい。

14

| Н    | K  | L | 10Fo | 10Fc | Н   | ĸ  | L<br> | 10Fo | 10Fc | н   | K  | L | 10Fo | 10Fc       |
|------|----|---|------|------|-----|----|-------|------|------|-----|----|---|------|------------|
| -1   | 1  | 2 | 667  | 653  | 0   | 1  | 2     | 210  | 210  | 1   | 1  | 2 | 660  | 681        |
| -1   | 2  | 2 | 319  | 317  | 0   | 2  | 2     | 576  | 574  | 1   | 2  | 2 | 322  | 317        |
| 2    | 2  | 2 | 897  | 931  | -1  | 3  | 2     | 793  | 787  | 0   | 3  | 2 | 327  | 296        |
| 1    | 3  | 2 | 780  | 798  | 2   | 3  | 2     | 160  | 162  | 3   | 3  | 2 | 753  | 748        |
| - 1. | 4  | 2 | 94   | 94   | 0   | 4  | 2     | 704  | 710  | 1   | 4  | 2 | 96   | <b>9</b> 5 |
| 2    | 4  | 2 | 773  | 768  | 3   | 4  | 2     | 250  | 247  | 4   | 4  | 2 | 429  | 430        |
| - 1  | 5  | 2 | 585  | 598  | 0   | 5  | 2     | 43   | 43   | 1   | 5  | 2 | 591  | 601        |
| 2    | 5  | 2 | 250  | 239  | 3   | 5  | 2     | 552  | 557  | 4   | 5  | 2 | 87   | 90         |
| 5    | 5  | 2 | 512  | 510  | -1  | 6  | 2     | 163  | 163  | 0   | 6  | 2 | 370  | 405        |
| 1    | 6  | 2 | 169  | 163  | 2   | 6  | 2     | 470  | 469  | 3   | 6  | 2 | 43   | 36         |
| 4    | 6  | 2 | 507  | 514  | 5   | 6  | 2     | 86   | 88   | 6   | 6  | 2 | 400  | 403        |
| -1   | 7  | 2 | 405  | 413  | 0   | 7  | 2     | 20   | 5*   | 1   | 7  | 2 | 414  | 405        |
| 2    | 7  | 2 | 36   | 27   | 3   | 7  | 2     | 437  | 438  | 4   | 7  | 2 | 146  | 148        |
| 5    | 7  | 2 | 388  | 391  | 6   | 7  | 2     | 57   | 58   | 7   | 7  | 2 | 259  | 256        |
| -1   | 8  | 2 | 102  | 102  | 0   | 8  | 2     | 452  | 450  | 1   | 8  | 2 | 104  | 102        |
| 2    | 8  | 2 | 353  | 343  | 3   | 8  | 2     | 80   | 81   | 4   | 8  | 2 | 397  | 396        |
| 5    | 8  | 2 | 78   | 75   | 6   | 8  | 2     | 248  | 248  | 7   | 8  | 2 | 74   | 76         |
| 8    | 8  | 2 | 299  | 285  | -1  | 9  | 2     | 338  | 336  | 0   | 9  | 2 | 38   | 42         |
| ï    | 9  | 2 | 336  | 339  | 2   | 9  | 2     | 84   | 84   | 3   | 9  | 2 | 343  | 349        |
| 4    | 9  | 2 | 47   | 47   | 5   | 9  | 2     | 286  | 292  | 6   | 9  | 2 | 88   | 84         |
| 7    | 9  | 2 | 235  | 233  | 8   | 9  | 2     | 49   | 35   | 9   | 9  | 2 | 247  | 241        |
| -1   | 10 | 2 | 32   | 38*  | 0   | 10 | 2     | 346  | 335  | 1   | 10 | 2 | 31   | 38*        |
| 2    | 10 | 2 | 303  | 305  | 3   | 10 | 2     | 94   | 104  | 4   | 10 | 2 | 343  | 348        |
| 5    | 10 | 2 | 26   | 22*  | 6   | 10 | 2     | 215  | 218  | 7   | 10 | 2 | 40   | 30         |
| 8    | 10 | 2 | 198  | 198  | 9   | 10 | 2     | 29   | 18*  | 10  | 10 | 2 | 167  | 161        |
| -1   | 11 | 2 | 294  | 298  | 0   | 11 | 2     | 34   | 12*  | 1   | 11 | 2 | 296  | 296        |
| 2    | 11 | 2 | 38   | 36   | 3   | 11 | 2     | 298  | 295  | 4   | 11 | 2 | 46   | 40         |
| 5    | 11 | 2 | 219  | 224  | 6   | 11 | 2     | 28   | 43×  | 7   | 11 | 2 | 171  | 171        |
| 8    | 11 | 2 | 29   | 18*  | 9   | 11 | 2     | 158  | 152  | 10  | 11 | 2 | 20   | 3*         |
| 11   | 11 | 2 | 109  | 112  | -1  | 12 | 2     | 45   | 41   | 0   | 12 | 2 | 217  | 218        |
| 1    | 12 | 2 | 45   | 41   | · 2 | 12 | 2     | 213  | 212  | 3   | 12 | 2 | 27   | 23*        |
| 4    | 12 | 2 | 178  | 184  | 5   | 12 | 2     | 41   | 40   | 6   | 12 | 2 | 175  | 178        |
| 7    | 12 | 2 | 29   | 6*   | 8   | 12 | 2     | 152  | 145  | 9   | 12 | 2 | 28   | 19*        |
| 10   | 12 | 2 | 129  | 119  | 11  | 12 | 2     | 32   | 13*  | - 1 | 13 | 2 | 155  | 158        |
| 0    | 13 | 2 | 14   | 2*   | 1   | 13 | 2     | 165  | 1.57 | 2   | 13 | 2 | 68   | 68         |
| 3    | 13 | 2 | 151  | 156  | 4   | 13 | 2     | 47   | 44   | 5   | 13 | 2 | 155  | 153        |
| 6    | 13 | 2 | 30   | 11*  | 7   | 13 | 2     | 143  | 144  | 8   | 13 | 2 | 42   | 23*        |
| 9    | 13 | 2 | 110  | 106  | 10  | 13 | 2     | 31   | 25*  | -1  | 14 | 2 | 38   | 35*        |
| 0    | 14 | 2 | 144  | 142  | 1   | 14 | 2     | 39   | 35   | 2   | 14 | 2 | 148  | 144        |
| 3    | 14 | 2 | 36   | 24   | 4   | 14 | 2     | 127  | 128  | 5   | 14 | 2 | 17   | 17*        |
| 6    | 14 | 2 | 136  | 132  | 7   | 14 | 2     | 40   | 6*   | 8   | 14 | 2 | 98   | 86         |
| -1   | 15 | 2 | 134  | 135  | 0   | 15 | 2     | 25   | 34*  | 1   | 15 | 2 | 137  | 131        |
| 2    | 15 | 2 | 30   | 16*  | 3   | 15 | 2     | 109  | 110  | 4   | 15 | 2 | 31   | 14*        |
| 5    | 15 | 2 | 95   | 101  | 6   | 15 | 2     | 33   | 8*   | -1  | 16 | 2 | 34   | 14*        |
| 0    | 10 | 2 | 120  | 120  | 1   | 16 | 2     | 33   | 14*  | 2   | 16 | 2 | 116  | 103        |
| 3    | 10 | 2 | 31   | 4*   | 4   | 16 | 2     | 92   | 85   | 0   | 1  | 3 | 501  | 498        |
| -1   | 2  | 3 | 651  | 657  | 0   | 2  | 3     | 77   | 75   | 1   | 2  | 3 | 655  | 652        |
| -1   | 3  | 3 | 80   | 80   | 0   | 3  | 3     | 537  | 541  | 1   | 3  | 3 | 79   | 80         |
| 2    | 3  | 3 | /16  | /16  | -1  | 4  | 3     | 376  | 393  | 0   | 4  | 3 | 160  | 159        |
| T    | 4  | 3 | 391  | 3//  | 2   | 4  | 3     | 145  | 146  | 3   | 4  | 3 | 711  | 700        |

, ,

۱ • •

• • • • •

1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR  $({\tt C_6H_5})_4{\tt Sn}$ 

,

'n

| H  | K    | L   | 10Fo | 10Fc | Н   | К    | L   | 10Fo                | 10Fc | н  | к   | L | 10Fo | 10Fc |
|----|------|-----|------|------|-----|------|-----|---------------------|------|----|-----|---|------|------|
| -1 | 5    | 3   | 25   | 27*  | 0   | 5    | 3   | 367                 | 378  | 1  | 5   | 3 | 30   | 27   |
| 2  | 5    | 3   | 454  | 459  | 3   | 5    | 3   | 102                 | 108  | 4  | 5   | 3 | 536  | 540  |
| -1 | 6    | 3   | 495  | 500  | 0   | 6    | 3   | 51                  | 33   | 1  | 6   | 3 | 506  | 498  |
| 2  | 6    | 3   | 50   | 45   | 3   | 6    | 3   | 475                 | 470  | 4  | 6   | 3 | 75   | 72   |
| 5  | 6    | 3   | 306  | 317  | -1  | 7    | 3   | 65                  | 61   | 0  | 7   | 3 | 413  | 41,6 |
| 1  | 7    | 3   | 64   | 61   | 2   | 7    | 3   | 366                 | 367  | 3  | 7   | 3 | 56   | 61   |
| 4  | 7    | 3   | 344  | 336  | 5   | 7    | 3   | 192                 | 193  | 6  | 7   | 3 | 221  | 214  |
| -1 | 8    | 3   | 283  | 281  | 0   | 8    | 3   | 23                  | 3*   | 1  | 8   | 3 | 288  | 280  |
| 2  | 8    | 3   | 65   | 73   | 3   | 8    | 3   | 288                 | 291  | 4  | 8   | 3 | 68   | 73   |
| 5  | 8    | 3   | 311  | 319  | 6   | 8    | 3   | 89                  | 92   | 7  | 8   | 3 | 225  | 223  |
| -1 | 9    | 3   | 55   | 61   | 0   | ç    | 3   | 317                 | 317  | 1  | 9   | 3 | 63   | 61   |
| 2  | 9    | 3   | 281  | 285  | 3   | ç    | 3   | 45                  | 39*  | 4  | 9   | 3 | 325  | 317  |
| 5  | 9    | 3   | 36   | 34   | 6   | ç    | 3   | 272                 | 270  | 7  | 9   | 3 | 27   | 13*  |
| 8  | 9    | 3   | 206  | 212  | -1  | 10   | ) 3 | 309                 | 316  | 0  | 10  | 3 | 37   | 23*  |
| 1  | 10   | 3   | 309  | 313  | 2   | 10   | ) 3 | 26                  | 11*  | 3  | 10  | 3 | 258  | 256  |
| 4  | 10   | 3   | 28   | 11*  | 5   | 10   | ) 3 | 275                 | 276  | 6  | 10  | 3 | 27   | 26*  |
| 7  | 10   | 3   | 199  | 197  | 8   | 10   | ) 3 | 26                  | 12*  | 9  | 10  | 3 | 146  | 145  |
| -1 | 11   | 3   | 40   | 28*  | 0   | 11   | . 3 | 286                 | 290  | 1  | 11  | 3 | 26   | 28*  |
| 2  | 11   | 3   | 239  | 241  | 3   | 11   | . 3 | 21                  | 25*  | 4  | 11  | 3 | 239  | 240  |
| 5  | 11   | 3   | 22   | 18*  | 6   | 12   | L 3 | 176                 | 178  | 7  | 11  | 3 | 29   | 6*   |
| 8  | 11   | 3   | 158  | 163  | 9   | 12   | L 3 | 35                  | 31*  | 10 | 11  | 3 | 104  | 102  |
| -1 | 12   | 3   | 198  | 202  | C   | 12   | 23  | 29                  | 37*  | 1  | 12  | 3 | 198  | 202  |
| 2  | 12   | 3   | 22   | 9*   | 3   | 12   | 23  | 183                 | 183  | 4  | 12  | 3 | 17   | 9*   |
| 5  | 12   | 3   | 177  | 175  | 6   | 12   | 23  | 30                  | 19*  | 7  | 12  | 3 | 132  | 136  |
| 8  | 12   | 3   | 30   | 19*  | ç   | 12   | 23  | 123                 | 123  | 10 | 12  | 3 | 32   | 29*  |
| -1 | 13   | 3   | 30   | 23*  | C   | 1:   | 33  | 142                 | 141  | 1  | 13  | 3 | 41   | 23*  |
| 2  | 13   | 3   | 135  | 132  | 3   | 1    | 33  | 45                  | 21   | 4  | 13  | 3 | 154  | 143  |
| 5  | 13   | 3   | 30   | 9*   | 6   | 1    | 3 3 | 104                 | 94   | 7  | 13  | 3 | 31   | 8*   |
| 8  | 13   | 3   | 122  | 122  | 9   | 1    | 3 3 | 32                  | 19*  | -1 | 14  | 3 | 120  | 119  |
| 0  | 14   | 3   | 31   | 5*   | 1   | . 14 | 4 3 | 119                 | 122  | 2  | 14  | 3 | 25   | 35*  |
| 3  | 14   | 3   | 129  | 119  | L   | + 14 | 4 3 | 30                  | 12*  | 5  | 14  | 3 | 93   | 95   |
| 6  | 14   | 3   | 31   | 8*   | 7   | 1    | 4 3 | 90                  | 88   | -1 | 15  | 3 | 31   | 26*  |
| 0  | . 15 | 3   | 109  | 106  | 1   | . 1  | 5 3 | 36                  | 26*  | 2  | 15  | 3 | 130  | 123  |
| 3  | 15   | 3   | 30   | 14*  | L   | 1    | 5 3 | 100                 | 108  | 5  | 15  | 3 | 32   | 13*  |
| -1 | 16   | 3   | 98   | 90   | (   | ) 1  | 63  | \$ 45               | 3*   | 0  | 0   | 4 | 443  | 449  |
| -1 | 1    | 4   | 431  | 433  | (   | )    | 1 4 | 120                 | 116  | 1  | 1   | 4 | 439  | 438  |
| -1 | 2    | 4   | 135  | 131  | (   | )    | 2 4 | 498                 | 498  | 1  | 2   | 4 | 138  | 131  |
| 2  | 2    | 4   | 527  | 533  | -1  | -    | 3 Z | <mark>ا 51</mark> 0 | 509  | 0  | 3   | 4 | 1.21 | 113  |
| 1  | 3    | 4   | 511  | 511  | 2   | 2    | 3 L | ⊧ 59                | 64   | 3  | 3   | 4 | 436  | 443  |
| -1 | 4    | 4   | 24   | 14*  | (   | )    | 4 L | ı 456               | 440  | 1  | 4   | 4 | 21   | 14*  |
| 2  | 4    | 4   | 412  | 415  |     | 3    | 4 L | ⊧ 28                | 15*  | 4  | 4   | 4 | 383  | 389  |
| -1 | 5    | 4   | 400  | 400  | (   | )    | 5 / | + 37                | 37   | 1  | 5   | 4 | 404  | 405  |
| 2  | 5    | 4   | 20   | 31*  |     | 3    | 5 4 | 4 347               | 352  | 4  | 5   | 4 | 136  | 137  |
| 5  | 5    | 4   | 426  | 407  | - 2 | L    | 6 / | i 73                | 81   | 0  | 6   | 4 | 369  | 381  |
| 1  | 6    | 4   | 78   | 81   | 2   | 2    | 6 / | ÷ 367               | 369  | 3  | 6   | 4 | 103  | 1.04 |
| 4  | 6    | 4   | 350  | 346  | !   | 5    | 6 4 | 4 85                | 84   | 6  | 6   | 4 | 309  | 295  |
| -1 | 7    | 4   | 345  | 341  | (   | )    | 7 / | 43                  | 39*  | 1  | . 7 | 4 | 344  | 345  |
| 2  | 7    | 4   | 60   | 69   |     | 3    | 7 4 | 4 318               | 325  | 4  | 7   | 4 | 79   | 82   |
| 5  | 7    | 4   | 303  | 298  | (   | 5    | 7 4 | 4 36                | 33   | 7  | 7   | 4 | 254  | 273  |
| -1 | 8    | - 4 | 56   | 59   | (   | )    | 8 4 | 4 276               | 270  | 1  | . 8 | 4 | 62   | 59   |

.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR ( $C_6H_5$ ) $_4Sn$ 

| H  | K  | L | 10Fo | 10Fc | <br>Н | К  | L | 10Fo | 10Fc | Н  | l  | к  | L          | 10Fo | 10Fe |
|----|----|---|------|------|-------|----|---|------|------|----|----|----|------------|------|------|
| 2  | 8  | 4 | 260  | 257  | <br>3 | 8  | 4 | 26   | 21*  | 4  |    | 8  | 4          | 266  | 2/2  |
| 5  | 8  | 4 | 18   | 17*  | 6     | 8  | 4 | 207  | 206  | 7  | ,  | 8  | 4          | 22   | 30*  |
| 8  | 8  | 4 | 216  | 213  | -1    | 9  | 4 | 268  | 264  | C  | )  | 9  | 4          | 30   | 48*  |
| 1  | 9  | 4 | 263  | 271  | 2     | 9  | 4 | 26   | 10*  | 3  | 3  | 9  | 4          | 236  | 235  |
| 4  | 9  | 4 | 33   | 35*  | 5     | 9  | 4 | 225  | 223  | e  | 5  | 9  | 4          | 27   | 11*  |
| 7  | 9  | 4 | 169  | 172  | 8     | 9  | 4 | 30   | 17*  | ç  | )  | 9  | 4          | 174  | 170  |
| -1 | 10 | 4 | 41   | 40   | 0     | 10 | 4 | 238  | 244  | 1  | L  | 10 | 4          | 48   | 40   |
| 2  | 10 | 4 | 229  | 228  | 3     | 10 | 4 | 42   | 51   | 2  | ł  | 10 | 4          | 224  | 227  |
| 5  | 10 | 4 | 31   | 21*  | 6     | 10 | 4 | 148  | 148  | 7  | 7  | 10 | 4          | 37   | 23*  |
| 8  | 10 | 4 | 151  | 154  | 9     | 10 | 4 | 29   | 10*  | 10 | )  | 10 | 4          | 121  | 118  |
| -1 | 11 | 4 | 198  | 191  | 0     | 11 | 4 | 39   | 0*   | ]  | L  | 11 | 4          | 1.97 | 195  |
| 2  | 11 | 4 | 35   | 46*  | 3     | 11 | 4 | 187  | 183  | Ĺ  | 4  | 11 | 4          | 33   | 13*  |
| 5  | 11 | 4 | 164  | 167  | 6     | 11 | 4 | 32   | 19*  | -  | 7  | 11 | 4          | 137  | 1.33 |
| 8  | 11 | 4 | 55   | 12*  | 9     | 11 | 4 | 109  | 115  | 10 | С  | 11 | 4          | 33   | 5*   |
| -1 | 12 | 4 | 29   | 11*  | 0     | 12 | 4 | 165  | 167  |    | 1  | 12 | 4          | 26   | 11*  |
| 2  | 12 | 4 | 161  | 160  | 3     | 12 | 4 | 27   | 2*   | l  | 4  | 12 | 4          | 147  | 156  |
| 5  | 12 | 4 | 30   | 11*  | 6     | 12 | 4 | 121  | 124  |    | 7  | 12 | 4          | 47   | 11*  |
| 8  | 12 | 4 | 117  | 113  | 9     | 12 | 4 | 32   | 6*   |    | 1  | 13 | 4          | 140  | 137  |
| 0  | 13 | 4 | 49   | 13*  | 1     | 13 | 4 | 136  | 140  |    | 2  | 13 | 4          | 31   | 7*   |
| 3  | 13 | 4 | 128  | 130  | 4     | 13 | 4 | 40   | 37*  |    | 5  | 13 | 4          | 122  | 125  |
| 6  | 13 | 4 | 31   | 5*   | 7     | 13 | 4 | 102  | 106  |    | 8  | 13 | 4          | 39   | 9*   |
| -1 | 14 | 4 | 31   | 11*  | 0     | 14 | 4 | 109  | 109  |    | 1  | 14 | 4          | 24   | 114  |
| 2  | 14 | 4 | 114  | 108  | 3     | 14 | 4 | 34   | 34*  |    | 4  | 14 | <i>l</i> + | 110  | 104  |
| 5  | 14 | 4 | 28   | 23*  | 6     | 14 | 4 | 98   | 101  | -  | 1  | 15 | 4          | 110  | 1.04 |
| 0  | 15 | 4 | 30   | 6*   | 1     | 15 | 4 | 110  | 105  |    | 2  | 15 | 4          | 32   | 9*   |
| 0  | 1  | 5 | 431  | 435  | -1    | 2  | 5 | 383  | 387  |    | 0  | 2  | 5          | 28   | 6*   |
| 1  | 2  | 5 | 378  | 385  | -1    | 3  | 5 | 119  | 117  |    | 0  | 3  | 5          | 390  | 383  |
| 1  | 3  | 5 | 114  | 117  | 2     | 3  | 5 | 295  | 310  | -  | 1  | 4  | 5          | 374  | 374  |
| 0  | 4  | 5 | 59   | 50   | 1     | 4  | 5 | 377  | 370  |    | 2  | 4  | 5          | 86   | 89   |
| 3  | 4  | 5 | 235  | 227  | -1    | 5  | 5 | 53   | 54   |    | 0  | 5  | 5          | 381  | 379  |
| 1  | 5  | 5 | 54   | 54   | 2     | 5  | 5 | 314  | 307  |    | 3  | 5  | 5          | 61   | 58   |
| 4  | 5  | 5 | 248  | 2.43 | -1    | 6  | 5 | 298  | 302  |    | 0  | 6  | 5          | 27   | 3*   |
| 1  | 6  | 5 | 303  | 300  | 2     | 6  | 5 | 31   | 28*  |    | 3  | 6  | 5          | 268  | 260  |
| 4  | 6  | 5 | 63   | 65   | 5     | 6  | 5 | 265  | 265  | -  | 1. | 7  | 5          | 51   | 57   |
| 0  | 7  | 5 | 282  | 283  | 1     | 7  | 5 | 27   | 57*  |    | 2  | 7  | 5          | 272  | 269  |
| 3  | 7  | 5 | 46   | 8*   | 4     | 7  | 5 | 236  | 240  |    | 5  | 7  | 5          | 112  | 116  |
| 6  | 7  | 5 | 251  | 248  | -1    | 8  | 5 | 266  | 266  |    | 0  | 8  | 5          | 33   | 31*  |
| 1  | 8  | 5 | 267  | 267  | 2     | 8  | 5 | 35   | 27*  |    | 3  | 8  | 5          | 251  | 254  |
| 4  | 8  | 5 | 84   | 87   | 5     | 8  | 5 | 188  | 198  |    | 6  | 8  | 5          | 59   | 56   |
| 7  | 8  | 5 | 183  | 185  | -1    | 9  | 5 | 36   | 53*  |    | 0  | 9  | 5          | 205  | 200  |
| 1  | 9  | 5 | 51   | 53   | 2     | 9  | 5 | 211  | 207  |    | 3  | 9  | 5          | 29   | 12*  |
| 4  | 9  | 5 | 165  | 166  | 5     | 9  | 5 | 27   | 42*  |    | 6  | 9  | 5          | 152  | 1.55 |
| 7  | 9  | 5 | 33   | 26*  | 8     | 9  | 5 | 128  | 122  | -  | 1  | 10 | 5          | 152  | 149  |
| 0  | 10 | 5 | 31   | 19*  | 1     | 10 | 5 | 155  | 147  |    | 2  | 10 | 5          | 36   | 23*  |
| 3  | 10 | 5 | 158  | 153  | 4     | 10 | 5 | 41   | 33   |    | 5  | 10 | 5          | 122  | 119  |
| 6  | 10 | 5 | 64   | 47   | 7     | 10 | 5 | 121  | 127  |    | 8  | 10 | 5          | 31   | 25*  |
| 9  | 10 | 5 | 112  | 108  | -1    | 11 | 5 | 29   | 24*  |    | 0  | 11 | 5          | 147  | 144  |
| 1  | 11 | 5 | 29   | 24*  | 2     | 11 | 5 | 148  | 154  |    | 3  | 11 | 5          | 27   | 13*  |
| 4  | 11 | 5 | 114  | 119  | 5     | 11 | 5 | 30   | 10*  |    | 6  | 11 | 5          | 122  | 120  |
| 7  | 11 | 5 | 33   | 21*  | 8     | 11 | 5 | 83   | 96   |    | 9  | 11 | 5          | 55   | 28*  |

,

,

### OBSERVED AND CALCULATED STRUCTURE FACTORS FOR $(C_{6}H_{5})_{4}Sn$

| Н    | ĸ   | L | 10Fo | 1.0Fc | Н   | К   | L | 10Fo | 10Fc | Н  | К  | L | 10Fo | 10Fc |
|------|-----|---|------|-------|-----|-----|---|------|------|----|----|---|------|------|
|      | 12  |   | 136  | 129   | 0   | 12  | 5 | 22   | 29*  | 1  | 12 | 5 | 134  | 132  |
| 2    | 12  | 5 | 31   | 4*    | 3   | 12  | 5 | 121  | 124  | 4  | 12 | 5 | 32   | 3*   |
| 5    | 12  | 5 | 119  | 113   | 6   | 12  | 5 | 32   | 11*  | 7  | 12 | 5 | 109  | 103  |
| -1   | 13  | 5 | 32   | 28*   | 0   | 13  | 5 | 122  | 120  | 1  | 13 | 5 | 52   | 28*  |
| 2    | 1.3 | 5 | 114  | 117   | 3   | 13  | 5 | 31   | 6*   | 4  | 13 | 5 | 114  | 113  |
| 5    | 1.3 | 5 | 43   | 12*   | - 1 | 14  | 5 | 122  | 116  | 0  | 14 | 5 | 52   | 22*  |
| 1    | 14  | 5 | 109  | 119   | 2   | 14  | 5 | 48   | 29*  | 0  | 0  | 6 | 384  | 384  |
| -1   | 1   | 6 | 380  | 384   | 0   | 1   | 6 | 82   | 73   | 1  | 1  | 6 | 387  | 386  |
| -1   | 2   | 6 | 58   | 35*   | 0   | 2   | 6 | 296  | 295  | 1  | 2  | 6 | 30   | 35*  |
| 2    | 2   | 6 | 231  | 227   | - 1 | 3   | 6 | 199  | 200  | 0  | 3  | 6 | 73   | 71   |
| 1    | 3   | 6 | 202  | 198   | 2   | 3   | 6 | 46   | 45   | 3  | 3  | 6 | 190  | 182  |
| - ], | 4   | 6 | 51   | 48    | 0   | 4   | 6 | 245  | 242  | 1  | 4  | 6 | 43   | 48   |
| 2    | 4   | 6 | 239  | 238   | 3   | 4   | 6 | 61   | 68   | 4  | 4  | 6 | 270  | 268  |
| -1   | 5   | 6 | 248  | 256   | 0   | 5   | 6 | 26   | 21*  | 1  | 5  | 6 | 257  | 254  |
| 2    | 5   | 6 | 68   | 76    | 3   | 5   | 6 | 239  | 236  | 4  | 5  | 6 | 34   | 25*  |
| 5    | 5   | 6 | 182  | 184   | -1  | 6   | 6 | 27   | 19*  | 0  | 6  | 6 | 214  | 211  |
| 1    | 6   | 6 | 41   | 19*   | 2   | 6   | 6 | 210  | 205  | 3  | 6  | 6 | 26   | 39*  |
| 4    | 6   | 6 | 161  | 1.58  | 5   | 6   | 6 | 29   | 26*  | 6  | 6  | 6 | 176  | 181  |
| - 1  | 7   | 6 | 238  | 243   | 0   | 7   | 6 | 32   | 8*   | 1  | 7  | 6 | 249  | 237  |
| 2    | 7   | 6 | 52   | 27    | 3   | 7   | 6 | 212  | 201  | 4  | 7  | 6 | 29   | 35*  |
| 5    | 7   | 6 | 159  | 161   | 6   | 7   | 6 | 22   | 3*   | 7  | 7  | 6 | 164  | 174  |
| -1   | 8   | б | 34   | 43*   | 0   | 8   | 6 | 212  | 207  | 1  | 8  | 6 | 55   | 43   |
| 2    | 8   | 6 | 219  | 216   | 3   | 8   | 6 | 52   | 34*  | 4  | 8  | 6 | 134  | 138  |
| 5    | 8   | 6 | 56   | 39*   | 6   | 8   | 6 | 160  | 176  | 7  | 8  | 6 | 27   | 23*  |
| 8    | 8   | 6 | 85   | 93    | -1  | 9   | 6 | 150  | 151  | 0  | 9  | 6 | 54   | 29   |
| 1    | 9   | 6 | 150  | 150   | 2   | 9   | 6 | 45   | 31*  | 3  | 9  | 6 | 130  | 136  |
| 4    | 9   | 6 | 51   | 13*   | 5   | 9   | 6 | 121  | 125  | 6  | 9  | 6 | 31   | 27*  |
| 7    | 9   | 6 | 126  | 128   | 8   | 9   | 6 | 17   | 19*  | 9  | 9  | 6 | 90   | 77   |
| -1   | 10  | б | 32   | 13*   | 0   | 10  | 6 | 130  | 135  | 1  | 10 | 6 | 38   | 13*  |
| 2    | 10  | 6 | 125  | 126   | 3   | 10  | 6 | 63   | 33   | 4  | 10 | 6 | 85   | 91   |
| 5    | 10  | 6 | 40   | 10*   | 6   | 10  | 6 | 128  | 142  | 7  | 10 | 6 | 52   | 9*   |
| 8    | 10  | 6 | 75   | 83    | -1  | 11  | 6 | 95   | 101  | 0  | 11 | 6 | 36   | 4*   |
| 1.   | 11  | 6 | 95   | 100   | 2   | 11  | 6 | 31   | 30*  | 3  | 11 | 6 | 103  | 102  |
| 4    | 11  | 6 | 17   | 24*   | 5   | 11  | 6 | 94   | 101  | 6  | 11 | 6 | 36   | 22*  |
| -1   | 12  | 6 | 57   | 33    | 0   | 12  | 6 | 106  | 102  | 1  | 12 | 6 | 44   | 33   |
| 2    | 12  | 6 | 98   | 94    | 3   | 12  | 6 | 44   | 12*  | 4  | 12 | 6 | 83   | 86   |
| 0    | 1   | 7 | 222  | 222   | -1  | 2   | 7 | 144  | 147  | 0  | 2  | 7 | 95   | 100  |
| 1    | 2   | 7 | 153  | 140   | -1  | 3   | 7 | 61   | 58   | 0  | 3  | 7 | 254  | 259  |
| 1    | 3   | 7 | 43   | 58*   | 2   | 3   | 7 | 220  | 218  | -1 | 4  | 7 | 187  | 187  |
| 0    | 4   | 7 | 31   | 1*    | 1   | 4   | 7 | 187  | 188  | 2  | 4  | 7 | 31   | 22*  |
| 3    | 4   | 7 | 176  | 178   | - 1 | 5   | 7 | 48   | 33*  | 0  | 5  | 7 | 155  | 150  |
| 1    | 5   | 7 | 38   | 33*   | 2   | 5   | 7 | 162  | 161  | 3  | 5  | 7 | 33   | 9*   |
| 4    | 5   | 7 | 144  | 140   | - 1 | 6   | 7 | 166  | 164  | 0  | 6  | 7 | 31   | 14*  |
| 1    | 6   | 7 | 165  | 168   | 2   | 6   | 7 | 32   | 8*   | 3  | 6  | 7 | 157  | 169  |
| 4    | 6   | 7 | 38   | 22*   | 5   | 6   | 7 | 154  | 158  | -1 | 7  | 7 | 28   | 19*  |
| 0    | 7   | 7 | 101  | 112   | 1   | . 7 | 7 | 30   | 19*  | 2  | 7  | 7 | 131  | 126  |
| 3    | 7   | 7 | 26   | 31*   | 4   | . 7 | 7 | 117  | 125  | 5  | 7  | 7 | 36   | 25*  |
| 6    | 7   | 7 | 104  | 105   | - 1 | . 8 | 7 | 121  | 127  | 0  | 8  | 7 | 33   | 11*  |
| 1    | 8   | 7 | 122  | 127   | 2   | . 8 | 7 | 59   | 15*  | 3  | 8  | 7 | 111  | 109  |
| 4    | 8   | 7 | 31   | 16*   | 5   | 8   | 7 | 98   | 106  | 6  | 8  | 7 | 47   | 14*  |

| OBSERVED | AND | CALCULATED | STRUCTURE | FACTORS | FOR (C <sub>6</sub> H <sub>5</sub> ) <sub>4</sub> Su |  |
|----------|-----|------------|-----------|---------|------------------------------------------------------|--|
|----------|-----|------------|-----------|---------|------------------------------------------------------|--|

. •

| Н  | К  | L | 10Fo | 10Fc | Н   | к  | L | 10Fo | 10Fc | Н  | к  | L | 10Fo | 10Fc |
|----|----|---|------|------|-----|----|---|------|------|----|----|---|------|------|
| 7  | 8  | 7 | 97   | 101  | -1  | 9  | 7 | 33   | 12*  | 0  | 9  | 7 | 124  | 132  |
| 1  | 9  | 7 | 56   | 12*  | 2   | 9  | 7 | 153  | 149  | 3  | 9  | 7 | 49   | 18   |
| 4  | 9  | 7 | 135  | 127  | 5   | 9  | 7 | 52   | 12*  | 6  | 9  | 7 | 75   | 82   |
| -1 | 10 | 7 | 96   | 101  | 0   | 10 | 7 | 44   | 40*  | 1  | 10 | 7 | 106  | 98   |
| 2  | 10 | 7 | 25   | 16*  | 3   | 10 | 7 | 93   | 95   | 4  | 10 | 7 | 31   | 19*  |
| 0  | 0  | 8 | 44   | 9*   | -1  | 1  | 8 | 123  | 119  | 0  | 1  | 8 | 45   | 35*  |
| 1  | 1  | 8 | 125  | 124  | - 1 | 2  | 8 | 55   | 20*  | 0  | 2  | 8 | 133  | 135  |
| 1  | 2  | 8 | 47   | 20*  | 2   | 2  | 8 | 167  | 178  | -1 | 3  | 8 | 141  | 144  |
| 0  | 3  | 8 | 31   | 4*   | 1   | 3  | 8 | 149  | 146  | 2  | 3  | 8 | 43   | 35*  |
| 3  | 3  | 8 | 116  | 136  | -1  | 4  | 8 | 36   | 13*  | Ů  | 4  | 8 | 134  | 1,36 |
| 1  | 4  | 8 | 34   | 13*  | 2   | 4  | 8 | 133  | 137  | 3  | 4  | 8 | 37   | 10*  |
| 4  | 4  | 8 | 149  | 157  | -1  | 5  | 8 | 123  | 126  | 0  | 5  | 8 | 29   | 28*  |
| 1  | 5  | 8 | 130  | 128  | 2   | 5  | 8 | 31   | 12*  | 3  | 5  | 8 | 120  | 123  |
| 4  | 5  | 8 | 44   | 24*  | 5   | 5  | 8 | 108  | 115  | -1 | 6  | 8 | 51   | 3*   |
| 0  | 6  | 8 | 90   | 94   | 1   | 6  | 8 | 43   | 3*   | 2  | 6  | 8 | 93   | 87   |
| 3  | 6  | 8 | 35   | 32*  | 4   | 6  | 8 | 101  | 96   | 5  | 6  | 8 | 32   | 13*  |
| -1 | 7  | 8 | 87   | 83   | 0   | 7  | 8 | 40   | 9*   | 1  | 7  | 8 | 91   | 83   |
| 2  | 7  | 8 | 28   | 19*  | 3   | 7  | 8 | 112  | 100  | 4  | 7  | 8 | 32   | 8*   |
| -1 | 8  | 8 | 26   | 4*   | 0   | 8  | 8 | 75   | 70   | 1  | 8  | 8 | 30   | 4*   |
| 2  | 8  | 8 | 104  | 92   | 0   | 1  | 9 | 103  | 94   | -1 | 2  | 9 | 103  | 94   |
| 0  | 2  | 9 | 34   | 34*  | 1   | 2  | 9 | 92   | 95   | -1 | 3  | 9 | 35   | 39*  |
| 0  | 3  | 9 | 58   | 66   | 1   | 3  | 9 | 27   | 39*  |    |    |   |      |      |

ł r

M160

An \* indicates weak or extinct reflections not used in the final refinements.

.

| Н   | к   | L  | 10Fo  | 10Fc | н  | К  | L | 10Fo | 10Fc | Н  | К  | L | 10Fo | 10Fc |
|-----|-----|----|-------|------|----|----|---|------|------|----|----|---|------|------|
|     |     | 0  | 1593  | 1536 | 0  | 2  | 0 | 1518 | 1509 | 1  | 2  | 0 | 1.36 | 132  |
| 2   | 2   | ő  | 705   | 677  | 1  | 3  | Ō | 1291 | 1290 | 2  | 3  | Ō | 159  | 156  |
| 3   | 3   | Ō  | 1459  | 1466 | Ō  | 4  | 0 | 1186 | 1139 | 1  | 4  | 0 | 24   | 11*  |
| 2   | 4   | Ō  | 11.29 | 1117 | 3  | 4  | 0 | 214  | 209  | 4  | 4  | 0 | 801  | 790  |
| 1   | 5   | 0  | 1089  | 1079 | 2  | 5  | 0 | 96   | 89   | 3  | 5  | 0 | 1063 | 1066 |
| 4   | 5   | 0  | 152   | 150  | 5  | 5  | 0 | 813  | 848  | 0  | 6  | 0 | 1160 | 1106 |
| 1   | 6   | 0  | 110   | 109  | 2  | 6  | 0 | 1250 | 1232 | 3  | 6  | 0 | 236  | 229  |
| 4   | 6   | Ø  | 976   | 967  | 5  | 6  | 0 | 84   | 72   | 6  | 6  | 0 | 838  | 821  |
| 1,  | 7   | 0  | 975   | 983  | 2  | 7  | 0 | 25   | 32*  | 3  | 7  | 0 | 777  | 779  |
| 4   | 7   | 0  | 40    | 49*  | 5  | 7  | 0 | 725  | 736  | 6  | 7  | 0 | 61   | 54*  |
| 7   | 7   | 0  | 690   | 687  | 0  | 8  | 0 | 897  | 892  | 1  | 8  | 0 | 95   | 82   |
| 2   | 8   | 0  | 799   | 811  | 3  | 8  | 0 | 54   | 42*  | 4  | 8  | 0 | 643  | 657  |
| 5   | 8   | 0  | 104   | 94   | 6  | 8  | 0 | 616  | 624  | 7  | 8  | 0 | 50   | 4*   |
| 8   | 8   | 0  | 551   | 552  | 1  | 9  | 0 | 827  | 830  | 2  | 9  | 0 | 29   | 26*  |
| 3   | 9   | 0  | 619   | 627  | 4  | 9  | 0 | 73   | 35*  | 5  | 9  | 0 | 618  | 628  |
| 6   | 9   | 0  | 32    | 12*  | 7  | 9  | 0 | 524  | 525  | 8  | 9  | 0 | 35   | 14*  |
| 9   | 9   | 0  | 273   | 262  | 0  | 10 | 0 | 433  | 430  | 1  | 10 | 0 | 97   | 110  |
| 2   | 10  | 0  | 505   | 516  | 3  | 10 | 0 | 31   | 42*  | 4  | 10 | 0 | 496  | 497  |
| 5   | 10  | 0  | 38    | 5*   | 6  | 10 | 0 | 473  | 473  | 7  | 10 | 0 | 35   | 6*   |
| 8   | 10  | 0  | 383   | 373  | 9  | 10 | 0 | 73   | 32*  | 10 | 10 | 0 | 290  | 284  |
| 1   | 11  | 0  | 450   | 459  | 2  | 11 | 0 | 103  | 114  | 3  | 11 | 0 | 385  | 390  |
| 4   | 11  | 0  | 7     | 24*  | 5  | 11 | 0 | 436  | 432  | 6  | 11 | 0 | 52   | 53*  |
| 7   | 11  | 0  | 420   | 422  | 8  | 11 | 0 | 38   | 25*  | 9  | 11 | 0 | 289  | 275  |
| 10  | 11  | υ  | 40    | 28*  | 11 | 11 | 0 | 251  | 266  | 0  | 12 | 0 | 478  | 493  |
| 1   | 12  | 0  | 93    | 87   | 2  | 12 | 0 | 520  | 544  | 3  | 12 | 0 | 35   | 22*  |
| 4   | 12  | 0  | 393   | 385  | 5  | 12 | 0 | 53   | 44*  | 6  | 12 | 0 | 325  | 333  |
| 7   | 12  | 0  | 59    | 8*   | 8  | 12 | 0 | 279  | 276  | 9  | 12 | 0 | 71   | 54*  |
| 10  | 12  | 0  | 234   | 234  | 11 | 12 | 0 | 13   | 2*   | 12 | 12 | 0 | 133  | 131  |
| 1   | 13  | 0  | 403   | 408  | 2  | 13 | 0 | 37   | 41*  | 3  | 13 | 0 | 339  | 351  |
| 4   | 13  | 0  | 38    | 8*   | 5  | 13 | 0 | 305  | 308  | 6  | 13 | 0 | 39   | 14*  |
| 7   | 13  | 0  | 266   | 268  | 8  | 13 | 0 | 61   | 46*  | 9  | 13 | 0 | 228  | 217  |
| 1.0 | 1,3 | 0  | 43    | 7*   | 11 | 13 | 0 | 172  | 177  | 12 | 13 | 0 | 42   | 22*  |
| 13  | 13  | 0  | 126   | 123  | 0  | 14 | 0 | 247  | 253  | 1  | 14 | 0 | 44   | 28*  |
| 2   | 14  | 0  | 323   | 323  | 3  | 14 | 0 | 39   | 1*   | 4  | 14 | 0 | 307  | 303  |
| 5   | 14  | 0  | 47    | 5*   | 6  | 14 | 0 | 253  | 245  | 7  | 14 | 0 | 42   | 13*  |
| 8   | 14  | 0  | 237   | 221  | 9  | 14 | 0 | 26   | 9*   | 10 | 14 | 0 | 214  | 200  |
| 11  | 14  | 0  | 44    | 26*  | 12 | 14 | 0 | 80   | 120* | 13 | 14 | 0 | 12   | 14*  |
| 1   | 15  | 0  | 269   | 266  | 2  | 15 | 0 | 75   | 1*   | 3  | 15 | 0 | 271  | 270  |
| 4   | 15  | Ü  | 41    | 34*  | 5  | 15 | 0 | 238  | 237  | 6  | 15 | 0 | 43   | 25*  |
| 7   | 15  | () | 184   | 178  | 8  | 15 | 0 | 41   | 8*   | 9  | 15 | 0 | 156  | 157  |
| 10  | 15  | 0  | 44    | 1*   | 11 | 15 | 0 | 78   | 114* | 12 | 15 | 0 | 71   | 21*  |
| 0   | 16  | 0  | 156   | 182  | 1  | 16 | 0 | 40   | 5*   | 2  | 16 | 0 | 174  | 180  |
| 3   | 15  | 0  | 42    | 7*   | 4  | 16 | 0 | 214  | 199  | 5  | 16 | 0 | 43   | 13*  |
| 6   | 16  | 0  | 122   | 141  | 7  | 16 | 0 | 31   | 8*   | 8  | 16 | 0 | 132  | 136  |
| 9   | 16  | 0  | 44    | 3*   | 10 | 16 | 0 | 120  | 112  | 11 | 16 | 0 | 92   | 5×   |
| 1   | 17  | 0  | 148   | 147  | 2  | 17 | 0 | 9    | 12*  | 3  | 17 | 0 | 43   | 152* |

| н      | K   | L      | 10F0      | 10Fc       | Н      | K  | L | 10Fo | 10Fc       | Н             | к  | L       | 10Fo | 10Fc               |
|--------|-----|--------|-----------|------------|--------|----|---|------|------------|---------------|----|---------|------|--------------------|
| 4      | 17  | 0      | 43        | 3*         | 5      | 17 | 0 | 145  | 144        | 6             | 17 | 0       | 44   | <u>ال</u> الية الم |
| 7      | 17  | 0      | 93        | 116*       | 8      | 17 | 0 | 44   | 3*         | 9             | 17 | Ó       | 55   | 1034               |
| 0      | 18  | 0      | 155       | 154        | 1      | 18 | 0 | 39   | 13*        | 2             | 18 | 0       | 119  | 132                |
| 3      | 18  | 0      | 42        | 7*         | 4      | 18 | 0 | 138  | 138        | 5             | 18 | 0       | 43   | 3::                |
| 6      | 18  | 0      | 74        | 97*        | 7      | 18 | 0 | 42   | 2*         | 1             | 19 | 0       | 88   | 104*               |
| 2      | 19  | 0      | 40        | 14*        | 3      | 19 | 0 | 90   | 100*       | 4             | 19 | 0       | 45   | 5×                 |
| 0      | 1   | 1      | 1270      | 1261       | 0      | 2  | 1 | 1054 | 1039       | 1,            | 2  | l       | 1651 | 1677               |
| 0      | 3   | 1      | 1233      | 1210       | 1      | 3  | 1 | 459  | 440        | 2             | 3  | 1       | 1006 | 963                |
| 0      | 4   | 1      | 207       | 199        | 1      | 4  | 1 | 1364 | 1398       | 2             | 4  | 1       | 79   | 8?                 |
| 3      | 4   | 1      | 1077      | 1074       | 0      | 5  | 1 | 1321 | 1318       | 1             | 5  | 1       | 63   | 41                 |
| 2      | 5   | 1      | 1067      | 1056       | 3      | 5  | 1 | 77   | 72         | 4             | 5  | 1,      | 976  | 1013               |
| 0      | 6   | 1      | 204       | 197        | 1      | 6  | 1 | 983  | 992        | 2             | 6  | 1       | 138  | 134                |
| 3      | 6   | 1      | 778       | 807        | 4      | e  | 1 | 133  | 110        | 5             | 6  | 1       | 803  | 804                |
| 0      | 7   | 1      | 895       | 915        | 1      | 7  | 1 | 9    | 15*        | 2             | 7  | 1       | 927  | 920                |
| 3      | 7   | 1      | 73        | /3*        | 4      | /  | L | /88  | /82        | 5             | 7  | 1       | 29   | 265                |
| 6      | 7   | 1      | 770       | /64        | 0      | 8  | 1 | 27   | 22*        | Ţ             | 8  | 1       | 792  | 780                |
| 2      | 8   | 1      | 60        | 55*        | 3      | 8  | 1 | 829  | 817        | 4             | 8  | L       | 46   | 82*                |
| 5      | 8   | 1      | 669       | 653        | 6      | 8  | 1 | 97   | 81         | /             | 8  | Ţ       | 518  | 521                |
| 0      | 9   | 1      | 635       | 635        | Ĺ,     | 9  | 1 | 29   | 31*        | 2             | 9  | 1       | 669  | 667                |
| 3      | 9   | 1      | 137       | 134        | 4      | 9  | 1 | 508  | 522        | 5             | 9  | 1       | 65   | 314                |
| 6      | - 9 | 1      | 527       | 549        | /      | 10 | 1 | 54   | 83*        | 8             | 10 | 1.      | 404  | 399                |
| 0      | 10  | 1      | 6/        | 106*       | I ,    | 10 | 1 | 602  | 594        | 2             | 10 | L       | 102  | 114                |
| 3      | 10  | 1      | 282       | 20Z        | 4 7    | 10 | 1 | 200  | 18*        | С<br>0        | 10 | 1       | 448  | 469                |
| o<br>o | 10  | 1<br>1 | כנ<br>דדנ | 327<br>347 | 1      | 11 | 1 | 509  | 410        | 0             | 11 | 1       | 103  | 207                |
| 9<br>0 | 11  | 1      | 107       | 196        | 3      | 11 | 1 | 52   | 26%        | 1             | 11 | 1       | 105  | 107                |
| ے<br>ج | 11  | 1      | 497       | 400        | د<br>۲ | 11 | 1 | 202  | 407        | 4<br>7        | 11 | נ       | 432  | 445<br>07-9        |
| 2      | 11  | 1      | 337       | 30%        | 0<br>0 | 11 | 1 | 550  | 407<br>70* | 10            | 11 | т<br>1  | 262  | 2/*                |
| 0      | 12  | 1      | 124       | 118        | 1      | 10 | 1 | 370  | 368        | 20            | 12 | ید<br>۱ | 202  | 200                |
| 2      | 12  | 1      | 121       | 420        | 1      | 12 | 1 | 272  | 18%        | <u>د</u><br>ح | 12 | 1       | 375  | 272                |
| 5      | 12  | 1      | 425       | 1/1*       | 7      | 12 | 1 | 29   | 301        | 2<br>R        | 12 | 1<br>1  | 40   | //3<br>//*         |
| q      | 12  | 1      | 254       | 253        | 10     | 12 | 1 | 68   | 28*        | 11            | 12 | 1       | 201  | 213                |
| ó      | 13  | 1      | 415       | 414        | 1      | 13 | 1 | 47   | 48*        | 2             | 13 | 1       | 369  | 356                |
| 3      | 13  | 1      | 38        | 18*        | 4      | 13 | 1 | 357  | 363        | 5             | 13 | 1       | 39   | 14*                |
| 6      | 13  | 1      | 299       | 311        | 7      | 13 | 1 | 66   | 5*         | 8             | 13 | ī       | 237  | 236                |
| 9      | 13  | ĩ      | 76        | 14*        | 10     | 13 | ī | 165  | 171        | 11            | 13 | ĩ       | 37   | 6*                 |
| 12     | 13  | 1      | 141       | 155        | 0      | 14 | 1 | 38   | 27*        | 1             | 14 | 1       | 313  | 311                |
| 2      | 14  | 1      | 24        | 18*        | 3      | 14 | 1 | 282  | 294        | 4             | 14 | 1       | 71   | 10*                |
| 5      | 14  | 1      | 268       | 260        | 6      | 14 | 1 | 41   | 36*        | 7             | 14 | 1       | 238  | 2.2.5              |
| 8      | 14  | 1      | 58        | 21*        | 9      | 14 | 1 | 183  | 175        | 10            | 14 | 1       | 44   | 5*                 |
| 11     | 14  | 1      | 118       | 137*       | 12     | 14 | 1 | 41   | 20*        | 13            | 14 | 1       | 56   | 97*                |
| 0      | 15  | 1      | 249       | 243        | 1      | 15 | 1 | 40   | 29*        | 2             | 15 | 1       | 221  | 215                |
| 3      | 15  | 1      | 41        | 13*        | 4      | 15 | 1 | 234  | 211        | 5             | 15 | 1       | 77   | 12*                |
| 6      | 15  | 1      | 219       | 205        | 7      | 15 | 1 | 43   | 18*        | 8             | 15 | 1       | 164  | 174                |
| 9      | 15  | 1      | 44        | 11*        | 10     | 15 | 1 | 122  | 133        | 11            | 15 | 1       | 43   | 13*                |
| 12     | 15  | 1      | 78        | 110*       | 0      | 16 | 1 | 41   | 15*        | 1             | 16 | 1       | 208  | 205                |
| 2      | 16  | 1      | 56        | 13*        | 3      | 16 | 1 | 216  | 200        | 4             | 16 | 1.      | 43   | 24*                |
| 5      | 16  | 1      | 194       | 175        | 6      | 16 | 1 | 53   | 12×        | 7             | 16 | 1       | 148  | 146                |

r.

.

| Н      | ĸ   | L  | 10Fo       | 10Fc       | Н      | к  | L | 10Fo | 10Fc        | Н      | к      | L | 10Fo       | 10Fc       |
|--------|-----|----|------------|------------|--------|----|---|------|-------------|--------|--------|---|------------|------------|
| *<br>X | 16  | 1  |            | 11*        | 9      | 16 | 1 | 98   | 119*        | 10     | 16     | 1 | 43         | 12*        |
| 11     | 16  | 1  | 64         | 97%        | 0      | 17 | 1 | 180  | 168         | 1      | 17     | ī | 54         | 19*        |
| 2      | 17  | ĩ  | 164        | 169        | 3      | 17 | 1 | 43   | 14*         | 4      | 17     | 1 | 132        | 147        |
| 5      | 17  | ī  | 94         | 13*        | 6      | 17 | 1 | 152  | 125         | 7      | 17     | 1 | 44         | 1*         |
| 8      | 17  | 1  | 15         | 102*       | 9      | 17 | 1 | 42   | 10*         | 0      | 18     | 1 | 80         | 5*         |
| j      | 18  | 1  | 1.56       | 120        | 2      | 13 | 1 | 43   | 13*         | 3      | 18     | 1 | 123        | 124        |
| 4      | 18  | 1  | 62         | 9*         | 5      | 18 | 1 | 92   | 115*        | 6      | 18     | 1 | 62         | 4*         |
| 7      | 18  | 1  | 80         | 95*        | 0      | 19 | 1 | 81   | 102*        | 1      | 19     | 1 | 42         | 2*         |
| 2      | 1,9 | 1. | 87         | 106*       | 3      | 19 | 1 | 63   | 7*          | 4      | 19     | 1 | 117        | 109        |
| 0      | 0   | 2  | 955        | 997        | 0      | 1  | 2 | 220  | 218         | 1      | 1      | 2 | 1141       | 1164       |
| 0      | 2   | 2  | 1087       | 1072       | 1      | 2  | 2 | 346  | 329         | 2      | 2      | 2 | 1429       | 1441       |
| 0      | 3   | 2  | 303        | 279        | 1      | 3  | 2 | 1276 | 1284        | 2      | 3      | 2 | 150        | 155        |
| 3      | 3   | 2  | 1.217      | 1170       | 0      | 4  | 2 | 1147 | 1117        | 1      | 4      | 2 | 102        | 98         |
| 2      | 4   | 2  | 1212       | 1194       | 3      | 4  | 2 | 261  | 248         | 4      | 4      | 2 | 817        | 822        |
| 0      | 5   | 2  | 39         | 58*        | 1      | 5  | 2 | 944  | 995         | 2      | 5      | 2 | 265        | 252        |
| 3      | 5   | 2  | 957        | 944        | 4      | 5  | 2 | 69   | 91*         | 5      | 5      | 2 | 844        | 871        |
| 0      | 6   | 2  | 771        | 784        | 1      | 6  | 2 | 173  | 169         | 2      | 6      | 2 | 844        | 837        |
| 3      | 6   | 2  | 25         | 26*        | 4      | 6  | 2 | 845  | 867         | 5      | 6      | 2 | 91         | 88         |
| 6      | 6   | 2  | 686        | 682        | 0      | 7  | 2 | 26   | 5*          | 1      | ,      | 2 | /48        | 737        |
| 2      | 7   | 2  | 27         | 28*        | 3      |    | 2 | /52  | /56         | 4      | /      | 2 | 135        | 148        |
| 5      | 7   | 2  | 6/4        | 6/4        | 6      | /  | 2 | 31   | 3.3×        | /      | /      | 2 | 491        | 492        |
| 0      | 8   | 2  | /6/        | /65        | L      | 8  | 2 | 121  | 102         | 2      | 8      | 2 | 641        | 627        |
| 3      | 8   | 2  | 8/         | /4*        | 4      | 8  | 2 | 66/  | 680         | 2      | 8      | 2 | 4/         | 68%        |
| 6      | 8   | 2  | 481        | 480        | /      | 8  | 2 | 34   | 84*         | 8      | 8<br>O | 2 | 483        | 4/2        |
| U<br>2 | 9   | 2  | 30         | 38*        | 1      | 9  | 2 | 020  | 623<br>20.h | 2      | 9      | 2 | 503<br>507 | 102*       |
| 5      | 9   | 2  | 615        | 61/        | 4      | 9  | 2 | 45   | 39×         | د<br>ہ | 9      | 2 | 207        | 232        |
| b<br>O | 9   | 2  | 56<br>701  | 80×<br>20/ | /      | 10 | 2 | 572  | 433         | 0      | 10     | 2 | 30         | 40^        |
| 9<br>0 | 10  | 2  | 401<br>571 | 54         | 2      | 10 | 2 | 110  | 104         | 1      | 10     | 2 | 564        | 577        |
| ۲<br>۲ |     | 2  | 241        | 20**       | ر<br>۲ | 10 | 2 | 260  | 104         | 4<br>7 | 10     | 2 | 59         | 20%        |
| ړ      | 10  | 2  | 370        | 201        | 0      | 10 | 2 | 203  | 412         | 10     | 10     | 2 | 20         | 276<br>276 |
| 0      | 11  | 2  | 370        | 13*        | 1      | 11 | 2 | 510  | 503         | 10     | 11     | 2 | 272        | 270        |
| ں<br>۲ | 11  | 2  | 486        | 13*<br>477 | 1      | 11 | 2 | 33   | 51*         | 5      | 11     | 2 | 402        | 401        |
| 6      | 11  | 2  | 58         | 477        | 4      | 11 | 2 | 322  | 332         | 8      | 11     | 2 | 76         | 15*        |
| ŋ      | 11  | 2  | 286        | 274        | 10     | 11 | 2 | 41   | 7*          | 11     | 11     | 2 | 199        | 204        |
| Ó      | 12  | 2  | 378        | 386        | 10     | 12 | 2 | 36   | 43×         | 2      | 12     | 2 | 378        | 370        |
| ĩ      | 12  | 2  | 37         | 22*        | 4      | 12 | 2 | 341  | 346         | 5      | 12     | 2 | 60         | 41*        |
| 6      | 12  | 2  | 316        | 322        | 7      | 12 | 2 | 39   | 13*         | 8      | 12     | 2 | 263        | 269        |
| 9      | 12  | 2  | 41         | 26*        | 10     | 12 | 2 | 218  | 213         | 11     | 12     | 2 | 42         | 12*        |
| 12     | 12  | 2  | 155        | 167        | 0      | 13 | 2 | 37   | 3*          | 1      | 13     | 2 | 299        | 303        |
| 2      | 13  | 2  | 30         | 68*        | 3      | 13 | 2 | 302  | 300         | 4      | 13     | 2 | 39         | 47*        |
| 5      | 13  | 2  | 290        | 286        | Ğ      | 13 | 2 | 40   | 17*         | 7      | 13     | 2 | 265        | 257        |
| 8      | 13  | 2  | 12         | 25*        | 9      | 13 | 2 | 200  | 195         | 10     | 13     | 2 | 43         | 21*        |
| 11     | 13  | 2  | 167        | 156        | 12     | 13 | 2 | 21   | 21*         | 13     | 13     | 2 | 88         | 123*       |
| 0      | 14  | 2  | 257        | 278        | 1      | 14 | 2 | 39   | 33*         | 2      | 14     | 2 | 272        | 276        |
| 3      | 14  | 2  | 40         | 30*        | 4      | 14 | 2 | 251  | 247         | 5      | 14     | 2 | 41         | 22*        |
| 6      | 14  | 2  | 232        | 230        | 7      | 14 | 2 | 44   | 10*         | 8      | 14     | 2 | 191        | 164        |
| 9      | 14  | 2  | 49         | 4*         | 10     | 14 | 2 | 118  | 134         | 11     | 14     | 2 | 73         | 25*        |

19 19 19

ł

. . .

۲ ۱

:

A Share

学校の教育

2-2-42

11

۲

:

| Н        | К      | L      | 10Fo             | 10Fc      | Н  | к          | L          | 10Fo | 10Fc        | Н        | к       | 1.     | 10F0 | 10Fc         |
|----------|--------|--------|------------------|-----------|----|------------|------------|------|-------------|----------|---------|--------|------|--------------|
| 12       | 14     | 2      | 41               | 116*      | 13 | 14         | 2          | 37   | 5*          | Q        | 15      | 2      | 64   | 354          |
| 1        | 15     | 2      | 240              | 236       | 2  | 15         | 2          | 41   | 17*         | 3        | 15      | 2      | 218  | 213          |
| 4        | 15     | 2      | 42               | 17*       | 5  | 15         | 2          | 182  | 193         | 6        | 1,5     | 2      | 43   | 154          |
| 7        | 15     | 2      | 160              | 168       | 8  | 15         | 2          | 44   | 15*         | 9        | 15      | 2      | 144  | 131          |
| 10       | 15     | 2      | 44               | 17*       | 11 | 15         | 2          | 109  | 110*        | 12       | 15      | 2      | 20   | 14*          |
| 0        | 16     | 2      | 187              | 208       | 1  | 16         | 2          | 42   | 23*         | 2        | 16      | 2      | 198  | 186          |
| 3        | 16     | 2      | 43               | 2*        | 4  | 16         | 2          | 1.68 | 168         | 5        | 16      | 2      | 44   | 8 *          |
| 6        | 16     | 2      | 168              | 161       | 7  | 16         | 2          | 87   | 2*          | 8        | 16      | 2      | 124  | 136          |
| 9        | 16     | 2      | 43               | 7*        | 10 | 16         | 2          | 42   | 1.04*       | 0        | 1,7     | 2      | 44   | 12*          |
| 1        | 17     | 2      | 139              | 164       | 2  | 17         | 2          | 43   | 5*          | 3        | 17      | 2      | 123  | 152          |
| 4        | 17     | 2      | 44               | 13*       | 5  | 17         | 2          | 121  | 141         | 6        | 17      | 2      | 26   | 1/4          |
| /        | 17     | 2      | 99               | 124*      | 8  | 1/         | 2          | 42   | 10*         | 0        | 18      | 2      | 111  | 125%         |
| 1        | 18     | 2      | 44               | 12*       | 2  | 18         | 2          | 68   | 120*        | 3        | 18      | 2      | 43   | 18*          |
| 4        | 18     | 2      | /5               | *811      | 5  | 18         | 2          | 45   | 9*          | 6        | 18      | 2      | 101  | 1104         |
| 0        | 19     | 2      | 49               | 3*        | 1  | . 19       | 2          | 15   | 9/*         | 2        | 19      | 2      | 20   | 85           |
| 0        | 1      | ່<br>ງ | 955              | 944       | 1  | ע י<br>ר   | . ງ<br>ງ   | 51   | 29×         | L        | 2       | ز<br>م | 1098 | 1082         |
| 0        | 3      | נ<br>ר | 938              | 945       | L  | נ<br>י     | , j        | 99   | 96          | 2        | 5       | ະ<br>ເ | 1130 |              |
| 0        | 4      | ა<br>ა | 1067             | 146       | 1  | . 4        | . j        | 74.5 | 730         | 4        | 4       | 2      | 168  | 102          |
| <u>່</u> | 4      | 2      | 1007<br>017      | 1049      |    |            | נ י<br>י   | 106  | 100         | l,<br>/- | 2       | د<br>د | 24   | 07.0<br>1.5x |
| 2        | 5      | د<br>د | 014<br>50        | 021       | 1  | د (<br>م   | ່ງ         | 120  | 425         | 4        | 2       | د<br>د | 042  | 042          |
| 2        | 0      | 2      | ני<br><i>זרר</i> | ×0<br>محد | 1  | . c        | ני<br>זי   | 040  | 51.v        | ۲.<br>ج  | 0<br>C  | ວ<br>ວ | 50   | 200<br>507   |
| د<br>0   | 0<br>7 | 2      | 7/0              | 774       | -  | + C        | ני<br>ויי  | 50   | 20%         | ر<br>ر   | ס<br>לי | ר<br>ר | 227  | 004<br>C 1 1 |
| 3        | 7      | ר<br>ג | 30               | 73*       | /  |            | ר ז<br>ג ו | 612  | 504         | 5        | י<br>ד  | ר<br>ר | 205  | 220          |
| 6        | 7      | 2      | 776              | /39       | (  | • •<br>• • | ר י<br>ג י | 50   | 11-*        | 1        | 2<br>2  | 2      | 550  | 553          |
| 2        | י<br>8 | 2      | 31               | 76*       |    | א ג<br>ג   | , 」<br>∖ २ | 551  | 562         | 4        | 0<br>8  | 2      | 220  | 76*          |
| 5        | 8      | ך<br>ק | 551              | 568       | -  | 5 8        | ર ર        | 70   | 72*         |          | 8       | 2      | 497  | 437          |
| õ        | q      | 3      | 566              | 567       |    |            | , ,<br>, , | 42   | 72.º<br>53* | , 2      | q       | 3      | 533  | 541          |
| 3        | ģ      | 3      | 68               | 30*       | Ĺ  |            | , J<br>, J | 545  | 534         | 5        | 9       | 3      | 30   | 40*          |
| 6        | 9      | 3      | 450              | 460       | -  | 7 9        | 3          | 37   | 19*         | 8        | 9       | 3      | 375  | 376          |
| Õ        | 10     | 3      | 37               | 16*       | -  | 1          | ) 3        | 523  | 527         | 2        | 10      | 3      | 34   | 194          |
| 3        | 10     | 3      | 452              | 458       | l  | + 10       | ) 3        | 18   | 23*         | 5        | 1.0     | 3      | 452  | 450          |
| 6        | 10     | 3      | 37               | 31*       |    | 7 10       | ) 3        | 345  | 344         | 8        | 10      | 3      | 60   | 8*           |
| 9        | 10     | 3      | 262              | 264       | (  | 1          | L 3        | 452  | 467         | 1        | 11      | 3      | 55   | 32*          |
| 2        | 11     | 3      | 408              | 423       |    | 3 1        | L 3        | 37   | 25*         | 4        | 11      | 3      | 401  | 407          |
| 5        | 11     | 3      | 38               | 24*       |    | 5 1        | L 3        | 324  | 328         | 7        | 11      | 3      | 39   | 9*           |
| 8        | 11     | 3      | 286              | 290       |    | 9 11       | L 3        | 73   | 45×         | 10       | 11      | 3      | 197  | 204          |
| 0        | 12     | 3      | 36               | 18*       |    | 1 12       | 23         | 360  | 360         | 2        | 12      | 3      | 49   | 13*          |
| 3        | 12     | 3      | 327              | 330       |    | 4 13       | 23         | 55   | 12*         | 5        | 12      | 3      | 291  | 306          |
| 6        | 12     | 3      | 40               | 15*       |    | 7 1:       | 23         | 245  | 251         | 8        | 12      | 3      | 51   | 20*          |
| 9        | 12     | 3      | 228              | 216       | 1  | 0 13       | 23         | 50   | 20*         | 11       | 12      | 3      | 134  | 1.62         |
| 0        | 13     | 3      | 278              | 287       |    | 1 1:       | 33         | 53   | 29*         | 2        | 13      | 3      | 274  | 258          |
| 3        | 13     | 3      | 40               | 18*       |    | 4 1        | 33         | 267  | 256         | 5        | 13      | 3      | 41   | 9×           |
| 6        | 13     | 3      | 194              | 196       |    | 7 1        | 33         | 42   | 1.5*        | 8        | 13      | 3      | 222  | 21.0         |
| 9        | 13     | 3      | 43               | 20*       | 1  | 0 11       | 33         | 188  | 168         | 11       | 13      | 3      | 43   | 4*           |
| 12       | 13     | 3      | 121              | 122       |    | 0 14       | 4 3        | 40   | 3*          | 1        | 14      | 3      | 235  | 244          |
| 2        | 14     | 3      | 41               | 45*       |    | 3 14       | 4 3        | 238  | 228         | 4        | 14      | 3      | 42   | 10*          |
| 5        | 14     | 3      | 178              | 199       |    | 6 14       | 43         | 43   | 9*          | 7        | 14      | 3      | 174  | 1.80         |

| Н  | Y.  | L      | 10Fo | 10Fc | Н     | к  | L   | 10Fo | 10Fc | Н      | ĸ  | L     | 10Fo | 10Fc   |
|----|-----|--------|------|------|-------|----|-----|------|------|--------|----|-------|------|--------|
|    | 17  | <br>12 |      | 0*   | <br>Q | 14 | 3   | 135  | 159  | 10     | 14 | <br>२ | 85   | <br>б* |
| 11 | 14  | ŝ      | 106  | 120* | 12    | 14 | 3   | 72   | 10*  | -<br>0 | 15 | 3     | 226  | 210    |
| 1  | 15  | 3      | 42   | 24*  | 2     | 15 | 3   | 229  | 219  | 3      | 15 | 3     | 43   | 10*    |
| 4  | 15  | ž      | 188  | 201  | 5     | 15 | 3   | 74   | 21*  | 6      | 15 | 3     | 168  | 161    |
| 1  | 15  | 3      | 44   | 20*  | 8     | 15 | 3   | 87   | 134* | 9      | 15 | 3     | 44   | 1*     |
| 10 | 15  | 3      | 103  | 105* | 11    | 15 | 3   | 41   | 11*  | 0      | 16 | 3     | 43   | 1*     |
| 1  | 16  | 3      | 166  | 172  | 2     | 16 | 3   | 43   | 10*  | 3      | 16 | 3     | 157  | 168    |
| 4  | 16  | 3      | 44   | 38*  | 5     | 16 | 3   | 154  | 151  | 6      | 16 | 3     | 66   | 26×    |
| 1  | 16  | 3      | 153  | 1.34 | 8     | 16 | 3   | 43   | 5*   | 9      | 16 | 3     | 99   | 96*    |
| 0  | 17  | 3      | 134  | 133  | 1     | 17 | 3   | 44   | 12*  | 2      | 17 | 3     | 74   | 143×   |
| 3  | 17  | 3      | 44   | 8*   | 4     | 17 | 3   | 162  | 124  | 5      | 17 | 3     | 44   | 7*     |
| 6  | 17  | 3      | 120  | 133  | 7     | 17 | 3   | 43   | 12*  | 0      | 18 | 3     | 45   | 3*     |
| 1  | 1.8 | 3      | 129  | 130  | 2     | 18 | 3   | 43   | 15*  | 3      | 18 | 3     | 94   | 105*   |
| 4  | 18  | 3      | 42   | 3*   | 5     | 18 | 3   | 111  | 95   | 0      | 0  | 4     | 869  | 887    |
| 0  | 1   | 4      | 116  | 111  | 1     | 1  | 4   | 805  | 806  | 0      | 2  | 4     | 847  | 844    |
| 1  | 2   | 4      | 143  | 139  | 2     | 2  | 4   | 842  | 810  | 0      | 3  | 4     | 138  | 117    |
| 1  | 3   | 4      | 857  | 854  | 2     | 3  | 4   | 28   | 42*  | 3      | 3  | 4     | 740  | 749    |
| 0  | 4   | 4      | 795  | 793  | 1     | 4  | 4   | 66   | 6*   | 2      | 4  | 4     | 743  | 742    |
| 3  | 4   | 4      | 39   | 28*  | 4     | 4  | 4   | 619  | 644  | 0      | 5  | 4     | 29   | 44*    |
| 1  | 5   | 4      | 718  | 727  | 2     | 5  | 4   | 50   | 36*  | 3      | 5  | 4     | 627  | 635    |
| 4  | 5   | 4      | 102  | 122  | 5     | 5  | 4   | 638  | 598  | 0      | 6  | 4     | 650  | 652    |
| 1  | 6   | 4      | 49   | 76*  | 2     | 6  | 4   | 635  | 641  | 3      | 6  | 4     | 91   | 94*    |
| 4  | 6   | 4      | 596  | 597  | 5     | 6  | 4   | 92   | 79   | 6      | 6  | 4     | 517  | 526    |
| 0  | 7   | 4      | 31   | 21*  | 1     | 7  | 4   | 605  | 600  | 2      | 7  | 4     | 80   | 68×    |
| 3  | 7   | 4      | 557  | 576  | 4     | 7  | 4   | 51   | 73*  | 5      | 7  | 4     | 518  | 510    |
| 6  | 7   | 4      | 35   | 15*  | 7     | 7  | 4   | 446  | 481  | 0      | 8  | 4     | 510  | 527    |
| 1  | 8   | 4      | 60   | 68*  | 2     | 8  | 4   | 502  | 491  | 3      | 8  | 4     | 53   | 26*    |
| 4  | 8   | 4      | 474  | 474  | 5     | 8  | 4   | 55   | 21*  | 6      | 8  | 4     | 394  | 389    |
| 7  | 8   | 4      | 38   | 27*  | 8     | 8  | 4   | 360  | 362  | 0      | 9  | 4     | 34   | 27*    |
| 1  | 9   | 4      | 466  | 486  | 2     | 9  | 4   | 35   | 15*  | 3      | 9  | 4     | 429  | 433    |
| 4  | 9   | 4      | 36   | 36*  | 5     | 9  | 4   | 385  | 378  | 6      | 9  | 4     | 48   | 15*    |
| 7  | 9   | 4      | 325  | 327  | 8     | 9  | 4   | 40   | 13*  | 9      | 9  | 4     | 292  | 295    |
| 0  | 10  | 4      | 408  | 409  | 1     | 10 | 4   | 36   | 46*  | 2      | 10 | 4     | 390  | 401    |
| 3  | 10  | 4      | 37   | 53*  | 4     | 10 | 4   | 389  | 387  | 5      | 10 | 4     | 39   | 16*    |
| 6  | 10  | 4      | 286  | 293  | 7     | 10 | 4   | 40   | 22*  | 8      | 10 | 4     | 268  | 275    |
| 9  | 10  | 4      | 42   | 12*  | 10    | 10 | 4   | 203  | 217  | 0      | 11 | 4     | 58   | 5*     |
| 1  | 11  | 4      | 349  | 358  | 2     | 11 | 4   | 39   | 43*  | 3      | 11 | 4     | 337  | 330    |
| 4  | 11  | 4      | 39   | 7*   | 5     | 11 | 4   | 288  | 295  | 6      | 11 | 4     | 50   | 23*    |
| 7  | 11  | 4      | 251  | 241  | 8     | 11 | 4   | 42   | 10*  | 9      | 11 | 4     | 217  | 210    |
| 10 | 11  | 4      | 43   | 6*   | 11    | 11 | 4   | 142  | 161  | 0      | 12 | 4     | 302  | 306    |
| 1  | 12  | 4      | 73   | 9*   | 2     | 12 | 4   | 309  | 308  | 3      | 12 | 4     | 43   | 12*    |
| 4  | 12  | 4      | 282  | 279  | 5     | 12 | 4   | 41   | 15*  | 6      | 12 | 4     | 240  | 233    |
| 7  | 12  | 4      | 42   | 8*   | 8     | 12 | 4   | 223  | 200  | 9      | 12 | 4     | 44   | 5*     |
| 10 | 12  | 4      | 140  | 158  | 11    | 12 | 4   | 71   | 8*   | 12     | 12 | 4     | 122  | 114    |
| 0  | 13  | 4      | 40   | 20*  | 1     | 13 | 4   | 260  | 260  | 2      | 13 | 4     | 41   | 7*     |
| 3  | 13  | 4      | 248  | 243  | 4     | 13 | 4   | 42   | 43*  | 5      | 13 | 4     | 195  | 227    |
| 6  | 13  | 4      | 66   | 4*   | 7     | 13 | 4   | 166  | 193  | 8      | 13 | 4     | 44   | 10*    |
| 9  | 13  | - 4    | 156  | 157  | 10    | 13 | - 4 | 44   | 12*  | 11     | 13 | 4     | 123  | 116    |

| Γί. | ٠ | <b>N S</b> |   |   |
|-----|---|------------|---|---|
| ••  |   | M1         | 6 | 5 |

| н  | к  | L | 10Fo | 10Fc | Н | ĸ  | L | 10Fo | 10Fc  | Н  | к   | ւ | 10Fo | 10Fc    |
|----|----|---|------|------|---|----|---|------|-------|----|-----|---|------|---------|
| 12 | 13 | 4 | 40   | 2*   | 0 | 14 | 4 | 191  | 208   | 1  | 14  | 4 | 42   | <br>8 A |
| 2  | 14 | 4 | 214  | 207  | 3 | 14 | 4 | 43   | 28*   | 4  | 14  | 4 | 189  | 186     |
| 5  | 14 | 4 | 44   | 14*  | 6 | 14 | 4 | 187  | 178   | 7  | 14  | 4 | 44   | 81      |
| 8  | 14 | 4 | 175  | 146  | 9 | 14 | 4 | 44   | 11*   | 10 | 14  | 4 | 109  | 113*    |
| 11 | 14 | 4 | 42   | 5×   | 0 | 15 | 4 | 43   | 6*    | 1  | 15  | 4 | 184  | 189     |
| 2  | 15 | 4 | 80   | 5*   | 3 | 15 | 4 | 157  | 168   | 4  | 15  | 4 | 52   | 84      |
| 5  | 15 | 4 | 121  | 153* | б | 15 | 4 | 45   | 9*    | 7  | 15  | 4 | 14   | 136*    |
| 8  | 15 | 4 | 44   | 8*   | 9 | 15 | 4 | 74   | 113*  | 10 | 15  | 4 | 42   | 105     |
| 0  | 16 | 4 | 166  | 155  | 1 | 16 | 4 | 44   | 2*    | 2  | 16  | 4 | 145  | 158     |
| 3  | 16 | 4 | 44   | 16*  | 4 | 16 | 4 | 89   | 128 * | 5  | 16  | 4 | 44   | 154     |
| 6  | 16 | 4 | 58   | 120* | 7 | 16 | 4 | 82   | 11*   | 8  | 16  | 4 | 115  | 108     |
| 0  | 17 | 4 | 45   | 2*   | 1 | 17 | 4 | 84   | 120*  | 2  | 17  | 4 | 44   | 22      |
| 3  | 17 | 4 | 70   | 109* | 4 | 17 | 4 | 68   | 20*   | 5  | 17  | 4 | 43   | 96*     |
| 6  | 17 | 4 | 26   | 4*   | 0 | 18 | 4 | 89   | 97*   | 1. | 18  | 4 | 42   | 3%      |
| 2  | 18 | 4 | 103  | 98*  | 0 | 1  | 5 | 728  | 741   | 0  | 2   | 5 | 30   | 18×     |
| 1  | 2  | 5 | 663  | 667  | 0 | 3  | 5 | 648  | 640   | 1  | 3   | 5 | 90   | 95*     |
| 2  | 3  | 5 | 562  | 567  | 0 | 4  | 5 | 63   | 48*   | 1  | 4   | 5 | 638  | 622     |
| 2  | 4  | 5 | 33   | 73*  | 3 | 4  | 5 | 476  | 485   | 0  | 5   | 5 | 625  | 624     |
| 1  | 5  | 5 | 54   | 59*  | 2 | 5  | 5 | 540  | 528   | 3  | 5   | 5 | 72   | 83*     |
| 4  | 5  | 5 | 479  | 472  | 0 | 6  | 5 | 33   | 18*   | 1  | 6   | 5 | 521  | 513     |
| 2  | 6  | 5 | 38   | 28*  | 3 | 6  | 5 | 476  | 468   | 4  | 6   | 5 | 65   | 15*     |
| 5  | 6  | 5 | 450  | 459  | 0 | 7  | 5 | 494  | 505   | 1  | - 7 | 5 | 18   | 46%     |
| 2  | 7  | 5 | 479  | 489  | 3 | 7  | 5 | 66   | 21*   | 4  | 7   | 5 | 420  | 426     |
| 5  | 7  | 5 | 138  | 113  | 6 | 7  | 5 | 423  | 410   | 0  | 8   | 5 | 22   | 214     |
| 1  | 8  | 5 | 441  | 455  | 2 | 8  | 5 | 62   | 19*   | 3  | 8   | 5 | 430  | 436     |
| 4  | 8  | 5 | 38   | 78*  | 5 | 8  | 5 | 348  | 360   | 6  | 8   | 5 | 39   | 44*     |
| 7  | 8  | 5 | 305  | 313  | 0 | 9  | 5 | 356  | 355   | 1  | 9   | 5 | 84   | 50*     |
| 2  | 9  | 5 | 373  | 366  | 3 | 9  | 5 | 39   | 17*   | 4  | 9   | 5 | 295  | 297     |
| 5  | 9  | 5 | 40   | 34*  | 6 | 9  | 5 | 311  | 300   | 7  | 9   | 5 | 41   | 16*     |
| 8  | 9  | 5 | 248  | 231  | 0 | 10 | 5 | 48   | 10×   | 1  | 10  | 5 | 297  | 294     |
| 2  | 10 | 5 | 20   | 16*  | 3 | 10 | 5 | 292  | 291   | 4  | 10  | 5 | 41   | 34*     |
| 5  | 10 | 5 | 248  | 240  | 6 | 10 | 5 | 58   | 38*   | 7  | 10  | 5 | 237  | 242     |
| 8  | 10 | 5 | 73   | 19*  | 9 | 10 | 5 | 204  | 199   | 0  | 11  | 5 | 276  | 274     |
| 1  | 11 | 5 | 40   | 22*  | 2 | 11 | 5 | 290  | 284   | 3  | 11  | 5 | 42   | 8*      |
| 4  | 11 | 5 | 232  | 230  | 5 | 11 | 5 | 42   | 4*    | 6  | 11  | 5 | 236  | 235     |
| 7  | 11 | 5 | 43   | 25*  | 8 | 11 | 5 | 178  | 184   | 9  | 11  | 5 | 86   | 32*     |
| 10 | 11 | 5 | 126  | 154  | 0 | 12 | 5 | 83   | 23*   | 1  | 12  | 5 | 244  | 246     |
| 2  | 12 | 5 | 75   | 10*  | 3 | 12 | 5 | 229  | 234   | 4  | 12  | 5 | 43   | 5*      |
| 5  | 12 | 5 | 215  | 212  | 6 | 12 | 5 | 44   | 9*    | 7  | 12  | 5 | 179  | 188     |
| 8  | 12 | 5 | 45   | 15*  | 9 | 12 | 5 | 142  | 146   | 10 | 12  | 5 | 45   | 13*     |
| 11 | 12 | 5 | 113  | 107* | 0 | 13 | 5 | 224  | 229   | 1  | 13  | 5 | 47   | 34*     |
| 2  | 13 | 5 | 209  | 220  | 3 | 13 | 5 | 44   | 5*    | 4  | 13  | 5 | 217  | 201     |
| 5  | 13 | 5 | 72   | 15*  | 6 | 13 | 5 | 182  | 180   | 7  | 13  | 5 | 45   | 8*      |
| 8  | 13 | 5 | 135  | 136  | 9 | 13 | 5 | 57   | 12*   | 10 | 13  | 5 | 85   | 1.09*   |
| 11 | 13 | 5 | 42   | 3*   | 0 | 14 | 5 | 43   | 15*   | 1  | 14  | 5 | 207  | 200     |
| 2  | 14 | 5 | 67   | 32*  | 3 | 14 | 5 | 163  | 178   | 4  | 14  | 5 | 45   | 12*     |
| 5  | 14 | 5 | 180  | 161  | 6 | 14 | 5 | 23   | 5*    | 7  | 14  | 5 | 111  | 129*    |
| 8  | 14 | 5 | 45   | 10*  | 9 | 14 | 5 | 44   | 112*  | 10 | 14  | 5 | 74   | 4*      |

| Н   | K   | L. | 10Fo | 10Fc | Н | K   | L | 10Fo | 10Fc        | Н  | к  | L | 10Fo | 10Fc |
|-----|-----|----|------|------|---|-----|---|------|-------------|----|----|---|------|------|
| 0   | 15  | 5  | 137  | 144  | 1 | 1.5 | 5 | 27   | 18*         | 2  | 15 | 5 | 1.59 | 1.37 |
| 3   | 15  | 5  | 45   | 14*  | 4 | 15  | 5 | 45   | 135*        | 5  | 15 | 5 | 45   | 16*  |
| 6   | 15  | 5  | 126  | 114  | 7 | 15  | 5 | 44   | 15×         | 8  | 15 | 5 | 43   | 107× |
| 0   | 16  | 5  | 51   | 0*   | 1 | 16  | 5 | 119  | 116         | 2  | 16 | 5 | 44   | 5*   |
| 3   | 16  | 5  | 136  | 112  | 4 | 16  | 5 | 44   | 26*         | 5  | 16 | 5 | 123  | 103  |
| 6   | 16  | 5  | 37   | 16*  | 0 | 17  | 5 | 64   | 95 <b>*</b> | 1  | 17 | 5 | 34   | 10×  |
| 2   | 17  | 5  | 122  | 94   | 0 | 0   | 6 | 624  | 621         | 0  | 1  | 6 | 33   | 67×  |
| 1   | 1   | 6  | 5/2  | 585  | 0 | 2   | 6 | 498  | 505         | 1  | 2  | 6 | 34   | 31*  |
| 2.  | 2   | 6  | 425  | 432  | 0 | 3   | 6 | 100  | 100         | 1  | 3  | 6 | 421  | 421  |
| 2   | 3   | 6  | 36   | 46*  | 3 | 3   | 6 | 411  | 395         | 0  | 4  | 6 | 450  | 440  |
| 1   | 4   | 6  | 69   | 43*  | 2 | 4   | 6 | 441  | 439         | 3  | 4  | 6 | 56   | 70×  |
| 4   | 4   | 6  | 431  | 439  | 0 | 5   | 6 | 36   | 19*         | 1  | 5  | 6 | 434  | 438  |
| 2   | 5   | 6  | 37   | 70*  | 3 | 5   | 6 | 420  | 420         | 4  | 5  | 6 | 38   | 12*  |
| 5   | 5   | 6  | 341  | 352  | 0 | 6   | 6 | 387  | 383         | 1  | 6  | 6 | 37   | 26*  |
| 2   | 6   | þ  | 382  | 387  | 3 | 6   | 6 | 59   | 31*         | 4  | 6  | 6 | 336  | 327  |
| 5   | 6   | 6  | 40   | 21*  | 6 | 6   | 6 | 313  | 318         | 0  | 7  | 6 | 62   | ʻ25* |
| 1   | 7   | 6  | 387  | 378  | 2 | 7   | 6 | 77   | 27*         | 3  | 7  | 6 | 353  | 341  |
| 4   | 7   | 6  | 40   | 47*  | 5 | 7   | 6 | 303  | 303         | 6  | 7  | 6 | 58   | 9*   |
| - 7 | 7   | 6  | 285  | 284  | 0 | 8   | 6 | 347  | 344         | 1  | 8  | 6 | 39   | 42*  |
| 2   | 8   | 6  | 335  | 348  | 3 | 8   | 6 | 41   | 29*         | 4  | 8  | 6 | 263  | 276  |
| 5   | 8   | 6  | 42   | 38*  | 6 | 8   | 6 | 279  | 282         | 7  | 8  | 6 | 43   | 25*  |
| 8   | 8   | 6  | 212  | 196  | 0 | 9   | 6 | 28   | 27*         | 1  | 9  | 6 | 298  | 288  |
| 2   | 9   | 6  | 41   | 43*  | 3 | 9   | 6 | 247  | 259         | 4  | 9  | 6 | 71   | 17*  |
| 5   | 9   | 6  | 244  | 247  | 6 | 9   | 6 | 43   | 41*         | 7  | 9  | 6 | 212  | 216  |
| 8   | 9   | 6  | 45   | 23*  | 9 | 9   | 6 | 178  | 151         | 0  | 10 | 6 | 246  | 242  |
| 1.  | 10  | 6  | 15   | 15*  | 2 | 10  | 6 | 234  | 234         | 3  | 10 | 6 | 43   | 30*  |
| 4   | 10  | 6  | 211  | 209  | 5 | 10  | 6 | 31   | 10×         | 6  | 10 | 6 | 224  | 229  |
| 7   | 10  | 6  | 45   | 9*   | 8 | 10  | 6 | 176  | 162         | 9  | 10 | 6 | 46   | 6*   |
| 10  | 10  | 6  | 141  | 124  | 0 | 11  | 6 | 42   | 18*         | 1  | 11 | 6 | 217  | 203  |
| 2   | 1,1 | 6  | 44   | 27*  | 3 | 11  | 6 | 210  | 196         | 4  | 11 | 6 | 61   | 21*  |
| 5   | 11  | 6  | 181  | 197  | 6 | 11  | 6 | 45   | 25*         | 7  | 11 | 6 | 173  | 172  |
| 8   | 11  | 6  | 35   | 3*   | 9 | 11  | 6 | 133  | 129         | 10 | 11 | 6 | 55   | 7*   |
| 11  | 11  | 6  | 97   | 110* | 0 | 12  | 6 | 212  | 198         | 1  | 12 | 6 | 16   | 31*  |
| 2   | 1.2 | 6  | 216  | 189  | 3 | 12  | 6 | 45   | 4*          | 4  | 12 | 6 | 196  | 172  |
| 5   | 12  | 6  | 46   | 14*  | 6 | 12  | 6 | 123  | 154         | 7  | 12 | 6 | 48   | 4*   |
| 8   | 12  | 6  | 130  | 126  | 9 | 12  | 6 | 45   | 18*         | 10 | 12 | 6 | 44   | 107* |
| 0   | 13  | 6  | 76   | 3*   | 1 | 13  | 6 | 204  | 179         | 2  | 13 | 6 | 45   | 34*  |
| 3   | 13  | 6  | 187  | 174  | 4 | 13  | 6 | 46   | 7*          | 5  | 13 | 6 | 139  | 136  |
| 6   | 13  | 6  | 56   | 7*   | 7 | 13  | 6 | 106  | 117*        | 8  | 13 | 6 | 60   | 15*  |
| 9   | 13  | 6  | 58   | 102* | 0 | 14  | 6 | 153  | 139         | 1  | 14 | 6 | 45   | 24*  |
| 2   | 14  | 6  | 159  | 141  | 3 | 14  | 6 | 49   | 12*         | 4  | 14 | 6 | 120  | 133* |
| 5   | 14  | 6  | 46   | 3*   | 6 | 14  | 6 | 96   | 114*        | 7  | 14 | 6 | 84   | 5*   |
| 0   | 15  | 6  | 44   | 10*  | 1 | 15  | 6 | 114  | 99*         | 2  | 15 | 6 | 45   | 9*   |
| 3   | 15  | 6  | 92   | 117* | 4 | 15  | 6 | 44   | 9*          | 5  | 15 | 6 | 141  | 104  |
| 0   | 16  | 6  | 79   | 90*  | 1 | 16  | 6 | 42   | 4*          | 0  | 1  | 7 | 346  | 352  |
| 0   | 2   | 7  | 73   | 117* | 1 | 2   | 7 | 313  | 309         | 0  | 3  | 7 | 403  | 407  |
| 1   | 3   | 7  | 38   | 34*  | 2 | 3   | 7 | 380  | 379         | 0  | 4  | 7 | 39   | 16*  |
| 1   | 4   | 7  | 340  | 335  | 2 | 4   | 7 | 32   | 32*         | 3  | 4  | 7 | 299  | 317  |
## OBSERVED AND CALCULATED STRUCTURE FACTORS FOR (C6H5)4Pb M167

| н      | К  | L | 10Fo | 10Fc | н | К  | 1. | lOFo | 10Fe | Н | К  | 1, | 10Fo | 10Fc  |
|--------|----|---|------|------|---|----|----|------|------|---|----|----|------|-------|
| 0      | 5  | 7 | 312  | 295  | 1 | 5  | 7  | 40   | 31*  |   |    | ,  | 317  | 195   |
| 3      | 5  | 7 | 41   | 10*  | 4 | 5  | 7  | 266  | 278  | 0 | 6  | ;  | 54   | 153   |
| 1      | 6  | 7 | 292  | 300  | 2 | 6  | 7  | 41   | 10*  | 3 | 6  | ;  | 286  | 285   |
| 4      | 6  | 7 | 54   | 34*  | 5 | 6  | 7  | 252  | 271  | 0 | 1  | ì  | 235  | 239   |
| 1      | 7  | 7 | 42   | 4*   | 2 | 7  | 7  | 236  | 235  | 3 | ,  | ,  | 16   | 292   |
| 4      | 7  | 7 | 242  | 234  | 5 | 7  | 7  | 44   | 9*   | 6 | ,  | ,  | 189  | 10)   |
| 0<br>0 | 8  | 7 | 42   | 14*  | 1 | 8  | 7  | 225  | 230  | 2 | 8  | ,  | 67   | 163   |
| 3      | 8  | 7 | 193  | 210  | 4 | 8  | 7  | 44   | 9*   | 5 | 8  | 1  | 214  | 204   |
| 6      | 8  | 7 | 4,7  | 11*  | 7 | 8  | 7  | 179  | 178  | 0 | 9  | 1  | 238  | 229   |
| 1      | 9  | 7 | 43   | 9*   | 2 | 9  | 7  | 226  | 233  | 3 | 9  | 1  | 45   | 214   |
| 4      | 9  | 7 | 215  | 224  | 5 | 9  | 7  | 45   | 11*  | 6 | 9  | 1  | 164  | 164   |
| 7      | 9  | 7 | 46   | 24*  | 8 | 9  | 7  | 29   | 144* | 0 | 10 | 1  | 43   | 41×   |
| 1      | 10 | 7 | 180  | 188  | 2 | 10 | 7  | 45   | 23*  | 3 | 10 | 1  | 198  | 191   |
| 4      | 10 | 7 | 46   | 12*  | 5 | 10 | 7  | 150  | 169  | 6 | 10 | 1  | 37   | 55    |
| 7      | 10 | 7 | 116  | 140* | 8 | 10 | 7  | 46   | 11*  | 9 | 10 | 1  | 46   | 111%  |
| 0      | 11 | 7 | 144  | 149  | 1 | 11 | 7  | 73   | 22*  | 2 | 11 | 1  | 171  | 170   |
| 3      | 11 | 7 | 47   | 11*  | 4 | 11 | 7  | 167  | 157  | 5 | 11 | 1  | 155  | 1*    |
| 6      | 11 | 7 | 145  | 127  | 7 | 11 | 7  | 65   | 13*  | 8 | 11 | 1  | 148  | 117   |
| 9      | 11 | 7 | 59   | 12*  | 0 | 12 | 7  | 77   | 32*  | 1 | 12 | 7  | 146  | 150   |
| 2      | 12 | 7 | 46   | 21*  | 3 | 12 | 7  | 150  | 139  | 4 | 12 | 1  | 10   | 1*    |
| 5      | 12 | 7 | 119  | 129* | 6 | 12 | 7  | 23   | 10×  | 7 | 12 | 7  | 53   | 110*  |
| 8      | 12 | 7 | 44   | 9*   | 0 | 13 | 7  | 117  | 103* | 1 | 13 | 7  | 45   | 20*   |
| 2      | 13 | 7 | 109  | 114* | 3 | 13 | 7  | 46   | 1*   | 4 | 13 | 7  | 101  | 111-  |
| 5      | 13 | 7 | 46   | 10*  | 6 | 13 | 7  | 89   | 103* | 0 | 14 | 1  | 43   | 11~   |
| 1      | 14 | 7 | 44   | 96*  | 2 | 14 | 7  | 39   | 4*   | 3 | 14 | 1  | 44   | 89*   |
| 4      | 14 | 7 | 75   | 11*  | 0 | 0  | 8  | 131  | 128  | 0 | 1  | 8  | 67   | 6*    |
| 1      | 1  | 8 | 266  | 259  | 0 | 2  | 8  | 265  | 254  | 1 | 2  | 8  | 42   | 18*   |
| 2      | 2  | 8 | 282  | 295  | 0 | 3  | 8  | 43   | 5*   | 1 | 3  | 8  | 247  | 254   |
| 2      | 3  | 8 | 27   | 30*  | 3 | 3  | 8  | 225  | 236  | 0 | 4  | 8  | 242  | 232   |
| 1      | 4  | 8 | 43   | 2*   | 2 | 4  | 8  | 240  | 237  | 3 | 4  | 8  | 89   | 15*   |
| 4      | 4  | 8 | 241  | 256  | J | 5  | 8  | 43   | 29*  | 1 | 5  | 8  | 221  | 224   |
| 2      | 5  | 8 | 22   | 16*  | 3 | 5  | 8  | 226  | 221  | 4 | 5  | 8  | 45   | 1,9*  |
| 5      | 5  | 8 | 177  | 190  | 0 | 6  | 8  | 183  | 191  | 1 | 6  | 8  | 44   | 1*    |
| 2      | 6  | 8 | 164  | 180  | 3 | 6  | 8  | 67   | 31*  | 4 | 6  | 8  | 174  | 183   |
| 5      | 6  | 8 | 54   | 16*  | 6 | 6  | 8  | 126  | 149* | 0 | 7  | 8  | 44   | 10×   |
| 1      | 7  | 8 | 163  | 170  | 2 | 7  | 8  | 46   | 17*  | 3 | 7  | 8  | 209  | 189   |
| 4      | 7  | 8 | 46   | 12*  | 5 | 7  | 8  | 157  | 1,59 | 6 | 7  | 8  | 24   | 17*   |
| 7      | 7  | 8 | 65   | 123* | 0 | 8  | 8  | 167  | 154  | 1 | 8  | 8  | 46   | 3*    |
| 2      | 8  | 8 | 172  | 165  | 3 | 8  | 8  | 62   | 5*   | 4 | 8  | 8  | 155  | 164   |
| 5      | 8  | 8 | 37   | 23*  | 6 | 8  | 8  | 123  | 133* | 7 | 8  | 8  | 17   | ]*    |
| 8      | 8  | 8 | 72   | 102* | 0 | 9  | 8  | 45   | 37*  | 1 | 9  | 8  | 148  | 147   |
| 2      | 9  | 8 | 47   | 5*   | 3 | 9  | 8  | 137  | 155  | 4 | 9  | 8  | 47   | 13*   |
| 5      | 9  | 8 | 128  | 132* | 6 | 9  | 8  | 47   | 5*   | 7 | 9  | 8  | 1.09 | 108*  |
| 8      | 9  | 8 | 84   | 4*   | 9 | 9  | 8  | 58   | 117* | 0 | 10 | 8  | 106  | 1.69* |
| 1      | 10 | 8 | 46   | 26*  | 2 | 10 | 8  | 130  | 149  | 3 | 10 | 8  | 47   | 1.]*  |
| 4      | 10 | 8 | 149  | 136  | 5 | 10 | 8  | 47   | 10*  | 6 | 10 | 8  | 104  | 115*  |
| 7      | 10 | 8 | 45   | 6*   | 0 | 11 | 8  | 44   | 7*   | 1 | 11 | 8  | 120  | 131*  |
| 2      | 11 | 8 | 20   | 22*  | 3 | 11 | 8  | 23   | 127* | 4 | 11 | 8  | 49   | 6*    |

1

## OBSF VED AND CALCULATED STRUCTURE FACTORS FOR (C6H5)4Pb M168

A.

, ž

ş

4 4 4

| 31       | Y  | 1. | 10Fo | 10Fc | К | К  | L  | 10Fo | 10Fc | Н | К  | L  | 10Fo | 10Fc |
|----------|----|----|------|------|---|----|----|------|------|---|----|----|------|------|
| • ·<br>5 | 11 | 8  | 64   | 110* | 6 | 11 | 8  | 45   | 10*  | 0 | 12 |    | 67   | 102* |
| 1        | 12 | 8  | 15   | 14*  | 2 | 12 | 8  | 105  | 86*  | 3 | 12 | 8  | 42   | 7×   |
| 4        | 12 | 8  | 93   | 97*  | 0 | 1  | 9  | 205  | 186  | 0 | 2  | 9  | 46   | 30*  |
| 1        | 2  | 9  | 154  | 165  | 0 | 3  | 9  | 175  | 152  | 1 | 3  | 9  | 46   | 36*  |
| 2        | 3  | 9  | 190  | 184  | 0 | 4  | 9  | 82   | 40*  | 1 | 4  | 9  | 83   | 154× |
| 2        | 4  | 9  | 47   | 2*   | 3 | 4  | 9  | 135  | 155  | 0 | 5  | 9  | 110  | 135* |
| 1        | 5  | 9  | 46   | 10*  | 2 | 5  | 9  | 44   | 158× | 3 | 5  | 9  | 71   | 8*   |
| 4        | 5  | 9  | 139  | 135  | 0 | 6  | 9  | 33   | 5*   | 1 | 6  | 9  | 92   | 144* |
| 2        | 6  | 9  | 47   | 20*  | 3 | 6  | 9  | 126  | 142* | 4 | 6  | 9  | 47   | 14×  |
| 5        | 6  | 9  | 137  | 123  | 0 | 7  | 9  | 23   | 143× | 1 | 7  | 9  | 47   | 2*   |
| 2        | 7  | 9  | 127  | 129* | 3 | 7  | 9  | 47   | 12*  | 4 | 7  | 9  | 33   | 121× |
| 5        | 7  | 9  | 47   | 10*  | 6 | 7  | 9  | 104  | 91*  | 0 | 8  | 9  | 78   | 0*   |
| 1        | 8  | 9  | 150  | 126  | 2 | 8  | 9  | 47   | 10*  | 3 | 8  | 9  | 81   | 104* |
| 4        | 8  | 9  | 47   | 18*  | 5 | 8  | 9  | 76   | 99*  | 6 | 8  | 9  | 57   | 16*  |
| 0        | 9  | 9  | 44   | 113× | 1 | 9  | 9  | 45   | 3*   | 2 | 9  | 9  | 46   | 93×  |
| 3        | 9  | 9  | 49   | 14*  | 4 | 9  | 9  | 46   | 106* | 0 | 10 | 9  | 46   | 2*   |
| 1        | 10 | 9  | 74   | 96*  | 0 | 0  | 10 | 75   | 116* | 0 | 1  | 10 | 44   | 4*   |
| 1        | ]  | 10 | 126  | 121  | 0 | 2  | 10 | 57   | 130* | 1 | 2  | 10 | 46   | 18*  |
| 2        | 2  | 10 | 43   | 107* | 0 | 3  | 10 | 46   | 13*  | 1 | 3  | 10 | 115  | 110* |
| 2        | 3  | 10 | 85   | 6*   | 3 | 3  | 10 | 46   | 95*  | 0 | 4  | 10 | 63   | 113* |
| 1        | 4  | 10 | 50   | 3*   | 2 | 4  | 10 | 46   | 89*  | 3 | 4  | 10 | 46   | 9*   |
| 4        | 4  | 10 | 60   | 97*  | 0 | 5  | 10 | 45   | 1*   | 1 | 5  | 10 | 70   | 104* |
| 2        | 5  | 10 | 45   | 14*  | 3 | 5  | 10 | 107  | 92*  | 0 | 6  | 10 | 99   | 116* |
| 1        | 6  | 10 | 57   | 12*  |   |    |    |      |      |   |    |    |      |      |