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ABSTRACT 

Pure rotational transitions of DF(Z12+) with 1 < J" <, 8 in v" = 0 were 
obtained precisely with a state-of-the-art Fourier transform spectrometer. 
These data were combined with selected spectroscopic data for DF(v" = 0-4) in 
a least-squares determination of Dunham coefficients. 

The B 2 + - Z 2 + ultraviolet emission band system of DF was recorded 
spectrographically in the region 205-275 nm. Computer assisted rotational 
analyses of 41 bands with 0 < v' ^ 5 and 16 < v" < 26 resulted in band origins 
and rotational parameters for both electronic states. 

The B1^ - Z 1 2 + emission bands of DC1 in the region 166-240 nm were 
photographed in higher orders of a 10.7-m concave grating vacuum spectrograph. 
Rotational analyses of 56 bands of D35C1 with v' = 0-7 and v" = 11-23 furnished 
molecular parameters for both states. 

All reliable literature data for the Z12+(v" = 0-19) and Bh+(v' = 0-10) 
states of HF and the xh+(v" = 0-26) and B^ty' = 0-7) states of DF were 
employed to determine isotopic?ily self-consistent radial operators which take 
full account of Bom-Oppenheimer breakdown. The dissociation energy of 
DF(Za2+) was estimated as 2> = 49338(45) cm"1 and the vibrational index at 
dissociation as i>D = 29.2(5). The electronic isotope shift of B 2 + was 
estimated as AT = -2.48(7) cm" . Rotationally dependent Franck-Condon 
factors for the B -> X transition and Einstein coefficients for spontaneous 
emission in X1^ were calculated. Rotational assignments for the 5X2+ - Z*2+ 

emission band system of DF were extended significantly. 

A similar analysis of data for H35C1, H37C1, D35C1, and D37C1 was 
performed. A simultaneous four-isotopomer least-squares fit of 8497 line 
positions resulted in Bom-Oppenheimer potentials for the B 2 + and Z 2+states 
and radial functions which describe adiabatic and nonadiabatic effects. The 

1 4- 1 

electronic isotope shift of B 2 was obtained as AT = -11.11(3) cm" . 
1 4- 1 + 35 

Rotational assignments for the B 2 - Z 2 emission band system of D CI were 
37 

extended and the first set of assignments for the B —» Z system of D CI was 

obtained. Quantum mechanical rotational and centrifugal distortion constants 

were calculated for TQ. As was the case for HF/DF, the repulsive A U state 

of HCl/DCl was found to perturb significantly the energy level manifold of 

Z ^ 4 " in a heterogeneous fashion. 
xxi 
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CHAPTER 1 

GENERAL INTRODUCTION 

In the earlier part of this century, Erwin Schrodinger published a series 

of articles (1) on the wave mechanical description of matter at the atomic 

level. Schrodinger's theory had far-reaching implications and influenced the 

development of most areas of physical science. In the field of molecular 

spectroscopy, the new wave mechanics was swiftly adopted as it provided much 

improved interpretations of simple spectra over the old quantum theory 

results. 

All the stationary state energies, E, and wavefunctions, W, of a quantum 

mechanical system are obtained as solutions of the -time-independent 

Schrodinger equation, 

* (q, Q) Vfe, Q)=E W(q, Q). (1.1) 

Despite the deceptively simple appearance of this eigenvalue equation, an 

exact solution is usually far from straightforward. The main problem is that 

the eigenfunctions correlate the electronic coordinates, q, with those of the 

nuclei, Q. 

In 1927 Born and Oppenheimer (2) achieved a significant simplification of 

the diatomic wave equation. In the absence of external magnetic and electric 

fields, the total wavefunction was factored into electronic and nuclear parts 

and any interaction between the two motions thus neglected. An important 

result emerging from the Bom-Oppenheimer treatment was the concept of a 

potential energy function, describing the behaviour of a chemical bond as 

1 
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a function of intemuclear separation. 

Much effort has been directed towards the development of procedures for 

the determination of potential functions from basic principles and from the 

results of spectroscopic experiments. Ab initio methods varying in degree of 

sophistication are applied routinely to the problem. It is found, however, 

that such methodology provides results which approach spectroscopic accuracy 

only for relatively simple one- or two-electron diatomics. For many-electron 

systems, the average-field approximations of quantum methods give results 

which are significantly inconsistent with experimental observation. 

Fortunately, more accurate methods are available whereby spectroscopically 

derived "molecular constants" can be inverted to the intemuclear potential. 

A direct inversion method which is widely employed to generate diatomic 

potentials is the semiclassical RKRV procedure. This, however, is an 

approximate method only; in recent years, improvement in the precision of 

spectral measurements has necessitated a review of this inversion scheme. 

This has stimulated the development of improved numerical procedures whose end 

products are intemuclear potential functions that are consistent with 

experimental results, within the precision of the measurements. 

One such method is employed in the present work to bring about a better 

understanding of the electronic structures and spectra of the diatomic 

hydrogen halides HF and HC1. In order to achieve this, it has been necessary 

to go beyond the Born-Oppenheimer approximation. Spectroscopic information 

has been employed to determine effective radial (nuclear) Hamiltonian 

operators which consider adequately the coupling of electronic and nuclear 

motions. Despite the widely held belief that these simple diatomic systems 

have long been Avell understood, interesting results presented in this thesis 
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demonstrate clearly that previous characterizations in terms of molecular 

constants precluded a comprehensive understanding of the molecular states and 

their interactions. 

In order to investigate the isotopic dependence of Born-Oppenheimer 

breakdown in HF and HCl it has been necessary to incorporate spectral data of 

several isotopomers. Due to the inferior quality or complete absence of some 

data, comprehensive spectrographic investigations of the ultraviolet 

5 2 —> Z 2 emission band systems of DF and DCl have been undertaken. Also, 

a few very precise far-infrared transitions in v" = 0, and the fundamental 

band of DF in the infrared, have been studied by interferometric techniques. 

A review of some relevant theory is presented in the second chapter. The 

semiclassical RKRV equations are developed and their theoretical basis, the 

JWKB quantization condition, is outlined. The Bom-Oppenheimer principle is 

explained and its shortcomings are clearly indicated. It is shown how 

electronic-nuclear coupling can be described by employing effective 

Hamiltonian operators that include implicitly the effects of excited 

electronic states on nuclear motion. Chapter 2 also deals with computational 

procedures important to this work. The statistical fitting method of 

least-squares, which has been of crucial importance to the completion of the 

present work, is described. Of equal importance was the numerical solution of 

the radial wave equation for a general potential function, and this is 

therefore also described. 

The third chapter reviews previous attempts to improve semiclassical RKRV 

potentials. The numerical correction method applied here to HF and HCl is 

considered in particular detail; model calculations are carried out and the 

effectiveness and limitations of the procedure are assessed. 
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The fourth and fifth chapters describe the acquisition of new 

experimental information on DF and DC1. Chapter 4 reports a conventional 

rotational analysis for the B 2 + -> I T electronic band system of DC1 in the 

ultraviolet and vacuum ultraviolet. Chapter 5 is divided into two parts; the 

first describes a Fourier transform study of DF(u" = 0, 1), and in the second 
1 4- 1 4-

part a rotational analysis of the ultraviolet B 2 —> Z 2 emission band 

system is reported. 

In the sixth and seventh chapters a numerical method is employed to 

determine radial Hamiltonian operators from spectroscopic data. Chapter 6 

describes the application of the procedure to a spectroscopic data base of the 

isotopomers H35C1, H37C1, D35C1, and D37C1. In Chapter 7 a similar analysis 

is made of the spectroscopic information available for the isotopomers HF and 

DF. An important result of both analyses concerns the detection of 

rotationally dependent energy shifts in the rovibrational levels of the ground 
l + Z 2 states arising from a strong second-order perturbation by the low-lying 

repulsive A II state. 

In the concluding chapter, the numerical method employed to derive radial 

operators for HF and HCl is discussed briefly. The procedure is reviewed 

objectively and suggestions for improved methods are provided. 



CHAPTER 2 

THEORETICAL BACKGROUND AND NUMERICAL TECHNIQUES 

2.1 The JWKB Approach 

Within the Schrodinger equation framework, it is possible to obtain exact 

analytic solutions for a relatively few, often physically uninteresting 

quantum mechanical systems. In practice, it is necessary to apply approximate 

methods, as in the case for the solutions of the one-dimensional radial wave 

equation. Aside from the usual tools of quantum mechanics, which include 

perturbational and variational approaches, methods which investigate the 

asymptotic behaviour of the wave equation can be employed. 

One such procedure, for which an enormous literature exists, was 

developed by Jeffreys (5), Wentzel (4), Kramers (5), and Brillouin (<5). 

Although this is abbreviated as JWKB in the present work, it is not uncommon 

to find the alternatives WKB and WKBJ in the literature. The method is based 

on a transformation of the one dimensional Schrodinger equation, 

d y + H [E - U(R)] f(R) = 0. (2.1) 

dRl h 

The total energy of the system is denoted by E, and its potential energy by 

U(R); ip(R) is the associated wavefunction and u the reduced molecular mass. 

Insertion of the JWKB wavefunction (7), 

¥JWKB(i?) = e(//*)0 ( 2 2 ) 

where, 

5 



n 
0 = 0O + fi ©x + fT ©2 + . ., (2.3) 

can be followed by solution of the wave equation to any desired order. 

Substitution of the classical component 0 into Eq. (2.2) yields the modified 

differential equation, 

(ih/2fi)d2©0/dR2 - (2n)-\deQldR)2 + [E - U(R)] = 0. (2.4) 

If quantal effects are considered small in comparison to the classical, the 

leftmost term can be omitted, whereupon Eq. (2.4) suffers a reduction in 

order. Straightforward integration yields the classical action integral, 

0 O = ± Jlfi[E - U(R)] dR. (2.5) 

Dunham (8) has shown that if the classical component of the JWKB 

wavefunction is employed only, and appropriate boundary conditions are 

imposed, the Bohr quantization condition, 

f2 , 
/2fi[E - U(R)] dR = iMh v, (2.6) 

emerges. This old quantum theory result can be improved further by including 

quantum effects partially through 0 leading to the Bohr-Sommerfeld 

half-integer quantization condition, 

Ji2 , 
y/lfi[E - U(R)] dR = 2nh (v + Vi), (2.7) 

where R and iL are the classical turning points of motion and the quantum 

number for the oscillation can assume the values v = 0, 1, 2 . . ., etc. This 

is also known as the semiclassical JWKB quantization condition. 
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If the first three terms of the expansion Eq. (2.3) are retained, a 

two-term JWKB quantization condition arises and can be written as, 

'[E - U(R)]1/2dR -
96JV 

1_ 

^r/5 J 
[E - U(R)]1/2dR - - £ - < > U"(R)[E - U(R)]~3lldR = v + Vi , (2.8) 

Rx r 

2 Vi 

where /? = (hllfi) and the contour of integration r encloses the portion of 

the real line for which U(R) < E. Initial applications of this and higher 

order conditions were concerned with the calculation of the eigenvalues of 

empirical analytical potential functions (9, 10). 

The JWKB method has been criticized by Killingbeck (11) for its inherent 

restriction to the classical region of motion; he pointed out that tunnelling 

corrections beyond the classical turning points should be considered. As an 

alternative to JWKB methodology, Killingbeck proposed a formulation based on 

Young's local momentum concept (12) and obtained preliminary numerical results 

for symmetric oscillators that surpassed the two-term JWKB quantization 

condition in accuracy. An alternate method stemming from work in the early 

1930's, was proposed following the rediscovery of the Milne differential 

equation (13) by Korsch and Laurent (14). The new procedure was developed 

both for truly bound (14), as well as quasibound (15) energy levels. 

2.2 The Dunham and Dunham-type Solutions 

Dunham (16) was the first to recognize an important application of the 

JWKB method to the diatomic problem. Starting with the two-term quantization 

condition, Eq. (2.8), Dunham assumed a potential energy function of the form, 

U(R) = a / ( l + fl | + a/ + ...) + 
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B/(J + 1)(1 - 2 | + 3 | 2 - . . .), (2.9) 

where £ = (R - R)/R . R and B are the equilibrium intemuclear separation 

and rotational constant, respectively, and the rotational quantum number is 

denoted by / . Dunham arrived at the energy level expression, 

EVJ=£ Yu(v + Vi)kw + 1 ) ] l > (2l0) 

kl 

where the coefficients of the double summation, Y,„ were defined in terms of 
A 3 ' 

the potential expansion coefficients, a . The usual application of Dunham's 

result involves fitting spectral line positions to a model constructed on the 

basis of Eq. (2.10). The determination of the Y„ is followed by an 

estimation of the potential equilibrium derivative terms, a . By this simple 

inversion procedure, experimentally derived positions of stationary energy 

states are employed to deduce the molecular structure. 

The main weakness of Dunham's approach rests with the choice of the 

reduced intemuclear coordinate, £. The radius of convergence of this 

expansion is 2R , making the model unreliable for extrapolation to larger R. 

Also, the potential function adopted by Dunham fails to describe properly the 

long-range diatomic interaction, the theoretical formulation of which is well 

understood (17). Following Dunham's pioneering effort, other authors (18-20) 

adopted different choices for £ in an attempt to improve the convergence of 

the series. Despite some improvement, these models also remain deficient in 

their description of the long-range forces. 
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23 Rydberg-Klein-Rees-Vanderslice Potentials 

If the rovibrational energy levels are known from experiment, it is 

possible to use another semiclassical method to determine the potential energy 

function. The procedure developed by Rydberg (21), and soon thereafter also 

discussed by Klein (22), exploited the half-integer quantization condition in 

generating the classical turning points of motion from experimental 

information, without assuming any particular analytic form for the potential. 

Rees (23) later provided a graphical working formulation or Klein's equations, 

but the large number of tedious manual calculations required made the method 

cumbersome; as a result it did not enjoy wide use before the advent of digital 

computers. Another factor contributing to the slow initial progress of this 

method is the fact that the precision of experimental data often did not 

warrant a more extensive description than was provided by closed term value 

expressions of empirical potential-like functions. The subsequent treatment 

of Vanderslice et al. (24) was successful at painting a clear picture of the 

physical significance of the procedure and demonstrated the efficacy of 

performing such calculations with digital computers. 

The following derivation of the Rydberg-Klein-Rees-Vanderslice (RKRV) 

expressions follows mainly that given in Ref. (24). As shown in Fig. 2.1, the 

area enclosed by the potential function U(R) and energy level E is given by, 

^ o 

A(E, J) = [E - Uj(R)] dR, (2.11) 

*1 

where Uj(R) = UQ(R) + B2J(J + 1)/R2, the effective potential including the 

kinetic energy of rotation. The partial derivatives 



Figure 2.1 

Illustration of the RKRV potential inversion procedure. R 

and R are the inner and outer classical turning points, 

respectively. The shaded area bound by energy E and the 

potential well is denoted by A. 
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[M(E, J)ldE]j = 

[9A(E, J)/dJ(J + 1)]£ = -p 

A, 

R. 

A 

R« 

dR = R2- Rv (2.12) 

R"2 dR = -p2(R^ - R"1), (2.13) 

allow for a unique determination of the two classical turning points. It is 

now necessary to relate the experimentally derived energy terms to the area 

integral. This is accomplished through the Eulerian integral of the type, 

E - E' ,u 
Uj(R) ^ J ^ U ' - Uj(Ry 

Vz dE'. (2.14) 

where E' are the (quantum number) parametrized energy terms and UQ is the 

minimum of energy. It is then possible to express the area integral as, 

A(E, J) « L 
A 

J E - E' dE' 

u 

dR 

R^E' - Uj(R) 

(2.15) 

The next step in the derivation involves the manipulation of the first-order 

JWKB quantization condition to bring it in a form compatible with the 

rightmost integral above. The semiclassical eigenvalue condition, 

v'+ V2 - (Tip)'1 JE' - Uj(R) dR, (2.16) 

R. 

can be differentiated once to give, 

d(v' + Vi)ldE' = (2np)~l 
A dR 

Rx SOT- Uj(R) 
(2.17) 

allowing the area integral to be cast as, 
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A(E, / ) = 4/? J E - E' dE' d(v' + Vz)/dE'= 

u 

Ap 
V+Vz 

/E - E' d(v' + Vz). (2.18) 

v +Vz e 

Since d(v' + Vz) - dv', we can write, 

A(E, / ) = 4p JE - E' dv'. (2.19) 

which is essentially the usual S(E, J) "auxiliary" function from which most 

derivations of the RKRV equations begin. Differentiating partially with 

respect to E and / ( / + 1), and setting the appropriate terms to Eqs. (2.12), 

and (2.13) respectively, one obtains the relevant expressions, 

"v dv' 
2f = R2-R1 = 2p 

v / E -
(2.20) 

E' 

and 

2g = R:1 - R:1 = 2/r1 •
v dE' /dJ(J + l) 

V / 

dv' = 2p~l r
v B , dv' 

E - E' vy 
, (2.21) 

E - E' 

where B , is a rotational constant. The two functions / and g make it 

possible to extract the classical turning points from, 

3M 
Rh2(v) = [fjgv + / ; r ± fv (2.22) 

where the + and - signs refer to the inner (i?x) and outer (R ) turning points, 

respectively, for vibrational level v. 
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2.4 The Concept of Molecular Structure: The Bom-Oppenheimer Approximation 

The Bom-Oppenheimer approximation (2) is the cornerstone of modern 

molecular physics. Proposed in 1927, it facilitated an exact solution of the 

wave equation for one-electron diatomic systems such as the H* molecule. 

Although the general three-body problem is theoretically impossible to solve 

exactly, both for classical and quantum mechanical systems, casting the 

particles into a confocal elliptical coordinate system allows for a separation 

of variables and hence facilitates a restricted type of solution. 

In their original treatment, Born and Oppenheimer (2) applied 

perturbation theory to achieve a separation between the motions of the 

electrons and those of the nuclear vibrations. A working formalism for the 

separate quantization of the two motions was thus set up. Their argument was 

based on the relatively large differential between values for the mass of the 

electron and of typical nuclei. Since the nucleus-electron mass ratio is 

large, it is expected that electrons will average their motion adequately 

during the course of a single nuclear vibration, so that, to a good 

approximation, the nuclei can be regarded as stationary. This allows for the 

computation of electronic eigenvalues with a parametric dependence on the 

intemuclear coordinate. 

The precise nature of the ansatz can be best elucidated by the 

conventional mathematical formulation (25). In solving the total Schrodinger 

eigenvalue equation, 

V > *> v*Jr- V=E v*Jr- *> • <*») 
the total molecular Hamiltonian operator for a diatomic system AB can be 

expressed as, 
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**Jr>R) = total 2M. 

P2 

B 

2M 
B 

Z 

P 2 z.z„ 
L\ 2m Anen «. R * 2w 

*• i e 

R-R'^E-U A. B. 
i 

2 - * T - . y 
(2.24) 

where r and R refer to electronic and nuclear coordinates, respectively. 

Specifically, r and r„ are the instantaneous distances of electron / and 
i i 

nuclei A and B, and the r.. are instantaneous interelectronic separations. 

The intemuclear separation is given by R. The nuclear charges are Z\e and 

Z e, where e is the elementary electronic charge and the Z give the number of 

protons. The nuclear and electronic masses are given by M and m , 

respectively, and the symbol P represents a momentum operator; e is the 

permittivity of free space. The total energy operator can be written as, 

<**<& = *U*) + KJr> *). total nuc elecv (2.25) 

where 3€ (R) and & (r, R) correspond to the terms in square brackets in 

Eq. (2.24). 

The first part of the approximation involves the separation of the total 

eigenfunction into electronic and nuclear components, 

%^> R) = *,Jr> R) VrJfi* total elecv 
nucv 

(2.26) 

where tp (r, R) satisfies the eigenvalue equation, 
elec 

*Uir, R) VaJr, R) = Epi(R) *(r, R). elecv elecv ' relecv (2.27) 

Since the nuclei are considered as fixed, the ZJZJR term contributes to 
A B 

Eelec(R) parametrically and need not be considered explicitly in the solution 
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of Eq. (2.27). This results in an effective potential energy, U(R), for 

nuclear motion. Direct substitution of Eqs. (2.25, 2.26) in the total 

Schrodinger equation, Eq. (2.23), then yields, 

KJB + •**.Jr' » - » * ( " ) - *«.AJWaJr. R). (2.28) 

Multiplying through and discarding terms containing J4f} (r, R)Vnu 0", R)> one 

obtains, 

V W ^ d o c k ^ d e c C ' * ) = ^ t o t a l ^ u c ^ W ' * ) • <2'29) 

Substituting the right-hand side of Eq. (2.27) in Eq. (2.29) and rearranging 

yields, 

**£ **W- wtojn- (2-M) 
The omission of the underlined term constitutes the second part of the 

approximation; in this fashion all interaction between nuclear and electronic 

motions is eliminated. A subsequent division of Eq. (2.30) by V , (f, R) 

followed by rearrangement gives the quantization expression, 

**JRKJR) - [£,o,a.- m»jn. ("i) 
for nuclear motion. The entire procedure can be regarded as a simple 

separation of variables iationalized by the observation that the electronic 

Laplacian is orders of magnitude greater than its nuclear counterpart. 

While the treatment given above, obviously inspired by the typical 

smallness of the m IM, ratio, seemingly achieves the desired separation, it is 
6 fC 
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thought by some that the argument was too hastily accepted. Woolley and 

Sutcliffe (26) contend that the Born-Oppenheimer treatment was devised in an 

attempt to rationalize an already existing school of thought consisting of a 

preconceived (classical) notion of molecular structure in terms of a 

well-defined potential energy surface, distinct bonds and angles. Although 

these authors fail to suggest practical alternatives, they bring to light some 

of the dangers associated with the blind use of the Bom-Oppenheimer 

approximation. At a deeper level of the solution of the wave equation, it can 

be shown that the concept of a potential energy function is not preserved. 

In an independent examination into the causes leading to the apparent 

separation between nuclear and electronic motions, Essen (27) also expresses 

dissatisfaction with the original treatment of Born and Oppenheimer (2). 

Essen's view of a molecule, which is also shared by Bader (28), is supported 

by application of the quantum mechanical virial theorem to the description of 

Coulombic interictions. According to this view, it is not the smallness of 

the m IM ratio that leads to the observed separation, but rather the derived 

form for the Coulombic interaction between collective (vibrational) and 

individual (electronic) internal molecular motions. Bader (28) views a 

molecule as a network of essentially neutral subsystems, which can be likened 

to atoms, that interact weakly, in analogy with the conventional notion of 

bonds, arranged spatially in some orientation, forming the concept of a 

molecular structure. Bader then distinguishes molecular structure from 

molecular geometry, stating that his definition of molecular structure 

survives beyond the clamped-nuclei approximation, whereas the concept of 

molecular geometry does not. In accord with this theoretical setup, the 

solution for the total system then simply requires that a separate virial 
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theorem be solved for each subsystem. 

Essen (27) did not provide a working formalism in his analysis. This was 

achieved, to a limited degree, in recent work by Monkhorst (29). Employing 

the coupled-cluster approach to treat the electrons and nuclei on the same 

quantum mechanical footing, Monkhorst gave a lucid description of how the 

computational effort should proceed in obtaining positions for both stationary 

and time-dependent states. The coupled-cluster approach has since been 

implemented computationally and is in routine use for ab initio calculations. 

Despite the philosophical objections of some, a potential energy function 

for vibrational motion remains as indispensable a tool to the molecular 

spectroscopist as the electronic wavefunction is to the quantum chemist. The 

whole of infrared spectroscopy, with particular emphasis on radiative 

transition probabilities, appears to be impossible without it. It should be 

realized at the outset however, that a potential function far outside the 

Born-Oppenheimer approximation should be regarded as a useful mathematical 

tool only. Often, at higher energy, a network of crossings of zeroth-order 

curves occurs; in this case a potential energy function is devoid of any 

physical meaning. 

2.5 The Adiabatic Separation of Electronic States 

The Born-Oppenheimer approximation neglects all avenues by which nuclear 

vibrations can affect the electronic motions. A preliminary intuitive 

examination of this limitation suggests two situations which can disturb the 

efficient averaging of the electronic mass/charge distribution about a 

dinuclear framework. The most obvious arises in the case of increasingly 

energetic vibrations. Here, the separation begins to break down as the 



19 

electrons cannot average their motions as efficiently in the course of the now 

significantly more rapid nuclear oscillations. This renders the electronic 

potential E (R) inappropriate for governing the nuclear vibrations. 

The Born-Oppenheimer description of an electronic state is short-sighted 

in one more respect. It assumes that no interactions between electronic 

states occur. This can be shown to be false, most effectively by a 

mathematical treatment. In a comprehensive review article, Kotos (25) 

develops rigorously the different levels of approximation at which the radial 

wave equation can be solved. The exact radial Schrodinger equation, which 

considers the coupling of nuclear and electronic motions within a single 

electronic state, as well as the coupling between rovibronic levels of 

different electronic states, can be written as, 

[ -(W\ + U*°(R) + CJR) - E y»\R) -

-L nuc, C«m(RK <&> <2'32) 

BO 

where A^ is the nuclear Laplacian operator and U (R) the Born-Oppenheimer 

potential for electronic state n. The term C (R) is known as the adiabatic H/r 

correction and is given by, 

C (R) = 
wr 

^ l ec(r, R) «*f '(Ryf^r, R) dr, (2.33) 

where the perturbing Hamiltonian is given by, 

• n ^2 

&'(R) = (8/*)"1- £ V - - (2^)"1 VR £ V , (2.34) 

2 2 where V - B Idq and the reduced masses are defined as, 
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ft'1 = M^ + M"1, (2.35) 

-"a" = ~MA + MB' ( 1 3 6 ) 

The cross-terms VR V in Eq. (2.34) represent the mass-polarization effect, 

which induces the electrons to follow the motion of the nuclei. This effect 

is, for example, responsible for the finite dipole moment in the homonuclear 

diatomic HD (25). The terms C (R) in Eq. (2.32) are off-diagonal matrix 

elements coupling electronic state n to excited states m. Their explicit form 

is at this point unimportant. Within the realms of the adiabatic 

approximation considered here, these terms are neglected. In addition, the 

effective potential for nuclear motion now contains the radial term C (R) and 

is collectively referred to as the adiabatic potential. Within this 

formulation, the radial wave equation is still of a second-order homogeneous 

type and the concept of a unique potential energy function survives. 

The adiabatic approximation can be expected to provide a good description 

for a well-isolated ground electronic state. Since the matrix elements 

C (R), which describe the effects of excited rovibronic states on the 

electronic motions of electronic state n, are inversely proportional to the 

nuclear masses, the adiabatic approximation should be less accurate for light 

molecules. The adiabatic solutions of the simple molecular systems H, and H* 

are in fact shown (25, 30) to be unsuccessful at predicting the positions of 

the vibrational levels of the rotationless ground states which are known quite 

accurately from spectroscopic observation. 

When interactions between electronic states are of significant magnitude, 

the concept of a potential function is not preserved. Neglecting electronic 

state coupling for the moment, it is possible to improve further on the 
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adiabatic potential. There are two more effects which have not yet been 

considered, First, due to a relativistic Lorentzian transformation of the 

electronic masses, the simplistic "rest-mass" wave description of Schrodinger 

fails to describe the effects arising from special relativity. These are 

larger for the faster moving inner core electrons of heavy atoms and can be 

shown to follow a Zln dependence, where n is the principle quantum number and 

Z is the nuclear charge number. For the relatively light systems for which 

traditional ab initio methods are most successful, the relativistic effects 

are small. In general, to ensure a theoretically proper inclusion of these in 

the electronic and nuclear energies, one must solve the relativistic wave 

equation of Dirac (31). Alternatively, if the terms omitted in Schrodinger's 

treatment are small, they can be estimated by conventional perturbation 

theory. 

Additional corrections are predicted from the branch of quantum 

electrodynamics that deals with self-interactions (32). Since the bound 

electrons in a molecular system cannot be separated from their charge 

radiation fields, they will undergo continuous absorption and re-emission of 

virtual photons, the pairs existing for times dictated by the energy-time 

uncertainty principle. The photons are not detectable experimentally (hence 

the label 'virtual'). The electron can be viewed as being continuously 

"bathed" in these virtual particles leading to a self-energy associated with 

each electron, whether bound or free. The classical electrodynamical 

treatment of this phenomenon predicts unphysical infinite energy shifts. The 

infinities are removed by performing a mass-renormalization, whereby a mass 

contribution dm,, due to quantum fluctuations of the electromagnetic field, is 

added to the mass m of a hypothetical chargeless electron, m is not an 
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observable, but the effective observed mass, m. + dm, or m , is now associated ' ' 0 ' e' 

with finite shifts in the positions of the system's energy levels. At yet a 

deeper level, relativistic quantum electrodynamics describes an analogous 

renormalization of the electronic charge, introducing a further shift in 

energy, evidently much less important. These quantum-field effects are often 

referred to as radiative corrections. The experimental detection of these 

Lamb (32) shifts in atoms cannot be rationalized by either Schrodinger's or 

Dirac's wave mechanics. 

The adiabatic function corrected for relativistic and radiative effects 

can then be regarded as the best possible function which preserves the concept 

of a potential energy curve. 

2.6 Nonadiabatic Theory 

The explicit consideration of terms connecting rovibronic levels of 

different electronic states leads to an exact solution of the radial wave 

equation, Eq. (2.32). These off-diagonal nonadiabatic terms give a full 

account of the electron-nuclear motion interactions. In this case, the 

problem involves the solution of an inhomogeneous differential equation, but 

in practice it is not approached in this fashion; an exception is found in 

the article by Hutson and Howard (33). 

A nonadiabatic calculation begins with the best possible potential 

function, as defined above. The rovibrational energy eigenvalues of the 

electronic state in question are calculated by solving the homogeneous problem 

and second-order nonadiabatic corrections are applied to the eigenvalues. 

These contributions are normally small enough to warrant a nondegenerate 

perturbation treatment. A radial nonadiabatic correction function cannot be 
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added to the best possible potential, as can be seen from Eq. (2.32), if the 

problem is to be approached in a truly direct fashion; there is no simple way 

in which Eq. (2.32) can be manipulated to transform the terms on the 

right-hand side to the form of a unique effective radial correction to the 

adiabatic function. In fact, Bishop and Shih (30) have shown that a plausible 

solution would involve a separate potential for each vibrational level. In an 

ab initio sense, there cannot exist a unique potential function which 

describes nonadiabatic corrections simultaneously in all the bound levels. 

Although the task of calculating nonadiabatic corrections reliably is 

enormous, requiring an accurate description of excited state electronic 

wavefunctions and potentials, these computations are usually not attempted for 

a more important reason. The bottleneck in an electronic calculation of this 

sort is the solution to the fixed-nuclei problem. At the Hartree-Fock level, 

variational methods suffer from the need to account for electron correlation. 

Although this effect can be included by employing configuration interaction 

(CI) wavefunctions, such calculations demand considerable CPU time and mass 

storage (34). In the zeroth-order solution of Eq. (2.27), the instantaneous 

repulsions between pairs of electrons are not accounted for properly, and an 

iteratively improved average-field approximation is applied. For "heavy" 

diatomic systems, the relativistic corrections are considerable; the magnitude 

of these effects is often large enough that convergence in a perturbational 

calculation cannot be ensured. The inapplicability of conventional quantum 

tools to this problem has prompted the development of a field of research that 

is still in its infancy. 

For these reasons, exhaustive nonadiabatic calculations have only been 

carried out for one- and two-electron diatomic systems. It should be noted 



that the agreement between experimental measurements and ab initio 

calculations for the ground state of HD+ has reached the 0.001 cm"1 

level (30). The agreement between ab initio estimates of the bond 

dissociation energies for the isotopomers of molecular hydrogen with the 

experimentally derived values is most remarkable (35, 36). This problem has 

been the subject of an interesting long-term interplay between theory and 

experiment, where improvements to the methodology of both fields were in the 

end needed to achieve the present day agreement. 

2.7 Effective Hamiltonians for Radial Motion 

In the adiabatic approximation, electronic state interactions are not 

accounted for so that energy levels of one state are completely oblivious to 

those of distant ot nearby states. An exact nonadiabatic solution constitutes 

an enormous computational task. Nonetheless, spectroscopic observables 

reflect all internal and external perturbations to which the eigenstates are 

subjected. 

Improvement in the resolving power of spectroscopic instruments over the 

years has led to more precise determinations of the energy level positions and 

revealed inconsistencies in the predicted interrelationships between the 

molecular constants for different isotopic forms of a diatomic molecule. The 

illuminating review article of Van Vleck (37) considered the various causes 

resulting in such inconsistencies. The experimentally derived constants <uexp 

and 5 e x p were shown to differ from their zero-order values, (o and B , by 
e ' e e' J 

small isotopically variant corrections, so that the simple isotopic relations, 

coJa)e' = (n'ln)V\ (2.37) 
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and 

BJB'e = n'ln , (2.38) 

where the primes refer to isotopic substitution, could not be satisfied. 

Briefly, four causes were implicated: the incompleteness of the JWKB expansion 

in Dunham's treatment, adiabatic corrections, and nonadiabatic perturbations 

of two types. Those arising from coupling of electronic states with the same 

orbital angular momentum, A, were termed homogeneous, and those mixing states 

differing by a unit in A were named heterogeneous interactions. Theoretical 

expressions were provided through which the estimation of such deviations 

could, in principle, be carried out, and their limiting behaviour for certain 

cases was discussed. 

Owing to the aforementioned difficulties associated with a reliable ab 

initio estimation of these terms, the work of Van Vleck served chiefly as a 

qualitative guide to the understanding of the causes, offering little in terms 

of a quantitative analysis, except for the simplest cases, and then only with 

approximate analytical electronic wavefunctions. Since these effects follow 

well understood isotopic behaviour, and since the experimental observables 

inherently hold all information relating to these, it should be possible to 

contrive an inversion procedure by which reliable quantitative descriptions 

become available. 

Fortunately, the nonadiabatic problem can be cast in a form that proves 

to be more useful. A perturbation treatment of Eq. (2.32) can decouple 

distant excited states from a ground state, projecting the (small) 

nonadiabatic interactions onto the adiabatic Hamiltonian of the lower state. 

These, then, appear as additional radial functions modifying the adiabatic 
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Hamiltonian operator without altering the homogeneous nature of the eigenvalue 

equation. This effective Hamiltonian operator is characterized by eigenvalues 

which are essentially identical to those of the exact Hamiltonian. The 

procedure for accomplishing this, is known as the Van Vleck, or electronic 

contact transformation (38). It appears, upon reflection, that the key to 

preserving the concept of a potential energy function is the requirement that 

a homogeneous differential equation describe the system. The inhomogeneous 

wave equation is thus essentially equivalent with an infinite nondegenerate 

perturbation expansion resulting in an homogeneous problem. It would seem, 

then, that within the validity of the Van Vleck transformation, a potential 

energy function is preserved. This concept is sustained as long as the 

nondegeneracy of the perturbation can be ensured. 

Since the pioneerir j treatment of Van Vleck, three independent works have 

appeared in the literature that present effective vibration-rotation 

Hamiltonians for a diatomic molecule. In the consideration of energy shifts 

associated with non-Born-Oppenheimer behaviour in 2 states, Herman and 

Asgharian (39) derived the effective radial Hamiltonian operator, 

* f ( * ) = (2/aat)"
1[l + (mJmp)g2(R)]P2

R + 

(2^at)"
1[l + (mJmp)gl(R)]J(J+l) + llf(R), (2.39) 

where if (R) is the adiabatic potential, and fi is defined with atomic rather 

than nuclear masses, m is the mass of a proton and the radial functions 

g (R) and g2(R) represent heterogeneous and homogeneous perturbations, 

respectively. These two Born-Oppenheimer breakdown contributions are of the 

order of m lm , in line with the errors expected in making the 
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Born-Oppenheimer approximation. 

A discussion of the physical significance of these functions with regard 

to the electronic structure of a 2 state is appropriate. In a 

Born-Oppenheimer rotating oscillator there is complete separation of the 

electronic and the nuclear motions, and g^R) and g2(R) are both uniformly 

zero. The effective radial Hamiltonian thus collapses to the adiabatic 

operator. However, as the energy of vibration increases, some of the nuclear 

excitation is transferred to the electronic cloud, coupling electronic and 
l l 

vibrational motions and consequently also the ground 2 state to excited 2 

states. In an analogous fashion, as the frequency of rotation increases, some 

of the nuclear angular momentum is transferred to the valence electrons, 

distorting the otherwise cylindrical symmetry of the electronic distribution 

along the intemuclear axis. This results in a net nonzero electronic angular 

momentum along the intemuclear axis which imparts a partial II character onto 

the 2 state, along with a net magnetic moment. Accordingly, matrix elements 
1 1 

coupling 2 states to II states assume finite values. Since the valence 

electrons acquire a finite moment, they can interact with an applied magnetic 

field and the molecule is now characterized by a Zeeman spectrum. 

The results of Bunker and Moss (40) bear general similarity to those of 

Herman and Asgharian (39). However, the effective Hamiltonian, 
J i f ( * ) = (2M)\b(R)P2

R + B(R)[1 + gTQt(R)]J(J+l) + lfa(R), (2.40) 

where B(R) = h2lluR2, is now defined with lfa(R). This potential is no longer 

the adiabatic potential, but in addition contains nonadiabatic contributions. 

These arise naturally by subjecting the isomorphic 12 Hamiltonian to a contact 

transformation and extending the resultant effective operator to the 
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perturbation order required to give rise to such effects. The analogy of 

grot(R) and g^R) to gt(R) and g2(R) in Eq. (2.39) should be obvious. In an 

ensuing application of this operator to the H and D. isotopomers, Bunker et 

al. (41) chose to model these nonadiabatic functions with effective constant 

values, and achieved moderate success in describing the rovibrational energy 

levels, with residuals displaying systematic trends. 

The formulations of Herman and Asgharian (39) and Bunker and Moss (40) 

were aimed primarily towards an ab initio type of analysis. The more recent 

work of Watson (42) presents the Born-Oppenheimer breakdown problem in a 

manner amenable to a JWKB treatment, and thus is more tractable for the 

incorporation of experimental data in the estimation of relevant effects. 

Watson begins with the Bom-Oppenheimer operator and treats the correction 

terms separately. The expression for the deviations of rovibrational level 

positions from their Born-Oppenheimer values in electronic state n is given 

by, 

AEn(v,J) = £ (mJM^J(p2JR2)J(J+l)Rf(R) + s f }(R) | Vv/>, (2.41) 
i 

where the index i refers to each atom and the <ip | are rovibronic state 

vectors; P . contains the reduced molecular mass constructed with atomic ' rat 

masses. The functions R-n\R) and S;\R) are defined as, 

Ji 

Rf\R) = Rf\R) - R"1 Qf\R) dR, (2.42) 
*0 

$(n)(R) = Sin)(R) + 1 [BUBO(R)ldR] 
1 l 2 

Qf\R) dR, (2.43) 

Rn 

(n)t 

0 

in terms of the isotopically invariant functions, Q\ '(R), R\ '(R), and 

Sv\R). TO the accuracy envisaged by Watson, Sv\R) represents the pure 
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adiabatic correction. The purely nonadiabatic functions Q}"'(R) and R>"\R) 

represent homogeneous and heterogeneous perturbations, respectively, for 

atomic subsystems /. The expression for the energy corrections, Eq. (2.41), 

is conveniently in the form of the first-order Rayleigh-Schrodinger 

perturbation theory result. Regarding the kernel as a perturbing Hamiltonian, 

an effective (first-order) operator for radial motion can be written as, 

«*f = (2fiJlP2
R + (p2

atIR2)J(J+l)[l + YffnJM^W] + lff(R), (2.44) 
i 

where, 

uf(R) = U?(R) + ^(me/Af.)sf >(R). (2.45) 
i 

Examination of Eqs. (2.42, 2.43) reveals at once the uncertainty associated 

with unique determinations of Sv\R) and Rv\R), on account of the 

unspecified value of R Although different functions would result for 

different values of RQ, Watson (42) states that this does not affect the value 

of the energy correction AE (v, J); addition of -XIR to Rr\R) with a 

corresponding addition of (A/2)[a£/BO(R)/3R] to S^R), would result in 

identical energy corrections. From the experimentalist's point of view, this 

uncertainty results because there is no simple experimental method for 

extracting any information relating to the vibrationally induced perturbation 

of electronic cloud averaging, i.e. the pure homogeneous effects. Thus, as 

the effective Hamiltonian, Eq. (2.44), suggests, the effects of R^n\R), 

Q.f\R) and S^\R) are experimentally inseparable. 

2.8 Tfie Isotopic Dependence of Molecular Constants 

As indicated in the previous section, improvements in the resolution of 
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spectroscopic instruments helped reveal significant inconsistencies in the 

simple isotopic relations describing diatomic molecular constants. Although 

in the early days these defects were discovered from the spectra of hydrides 

and deuterides, nowadays it has been possible to detect significant 

Bom-Oppenheimer breakdown effects in the high resolution spectra of such 

relatively heavy diatomics as InCl (43) and MgCl (44). A rather interesting 

case of what appears to be a relativistic breakdown of the Born-Oppenheimer 

approximation has been reported recently for thallium chloride (45). 

Within the framework of Dunham's semiclassical treatment, the V„ 

parameters in Eq. (2.10) can be related to a set of isotopically invariant 

constants U^ according to, 

providing for a unified description of data for different isotopomers. A 

rigorous account of Born-Oppenheimer breakdown effects, as well as 

consideration of the two-term JWKB quantization condition, leads to the 

modified relationship (42), 

Ykl = UkJ ^"(/£+2i)/2U + mAyMa + mJ^JMb + € (m2/M2)}, V-W 

which gives better descriptions of experimental line positions for 

isotopically related molecules. The isotopically invariant U can be 

regarded as the molecular constants of the Born-Oppenheimer potential. The 

mass-scaling parameters A' are composed of contributions from adiabatic and 

nonadiabatic coupling, as well as from higher-order JWKB phase integrals, and 
2 2 

are normally of the order of unity. The term € (m IM) emphasizes that the 

exact expression should include contributions from additional mass-scaling 
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parameters with mass weights beginning with mJM{. These are normally 

neglected as they are too small to characterize experimentally. Eq. (2.47) 

was employed by Coxon and Ogilvie (46) in a simultaneous least-squares 

reduction of spectroscopic lines for isotopomers of HCl. 

In recent years, it has become preferable to approach the problem from a 

different perspective. Instead of concentrating on the determination of the 

coefficients of power series in (v + Vz) and / ( / + 1), efforts have been 

directed towards the estimation of the radial variation of elements of 

effective radial Hamiltonian operators which include non-Born-Oppenheimer 

effects. It is from these radial functions, after all, that the concept of 

molecular constants is born. It is possible, then, with a proper 

understanding of the mass dependence of such effects, to formulate the 

reduction procedure in a manner which allows the simultaneous incorporation of 

data for various isotopomers. If desired, it is possible to calculate the 

molecular parameters, using fully quantum mechanical methods, following a 

determination of the Hamiltonian operators. These would arise naturally by 

subjecting the radial operator to a vibrational contact transformation 

yielding an expression that operates within a single vibrational state. This 

is entirely analogous to subjecting the exact multi-electronic state operator 

to a Van Vleck, or electronic contact transformation, to yield a function that 

operates within a single electronic state. 

2.9 Centrifugal Distortion Constants for Diatomic Molecules 

An appreciation for the need and general usefulness of rotational and 

centrifugal distortion constants can be gained by reviewing the results of 

Dunham's theory (16). The most practical result of Dunham can be regarded as 
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the compact representation of rovibronic energies in terms of a double power 

series in (v + Vz) and / ( / + 1). Although Dunham provided explicit expressions 

for the (interrelated) Y^ coefficients in terms of the potential parameters, 

these are ordinarily treated as free parameters in least-squares fits of 

spectral data. The molecular constant model also provides a theoretical basis 

for performing interpolation and (cautious) extrapolation to new members of a 

set of spectroscopic line positions. An additional advantage of this 

methodology is that the coefficients of such expansions can be employed in any 

of several inversion schemes to yield the intemuclear potential, allowing for 

the estimation of molecular intensity factors by considering the associated 

wavefunctions. 

There exist many methods for the estimation of centrifugal distortion 

constants. A straightforward procedure involves the representation of 

spectral line frequencies as, 

v.(v', v", J', J") = vQ(v', v") + F(v', J') - F(v", J"), (2.48) 

where 

F(v, J) = B CfC - D CfC2 + HCfC2, + L CfCA + M CfC5 + . . ., (2.49) 

1 

and CfC = / ( / + 1) for a diatomic molecule in a 2 state. Subsequent fitting of 

line positions to this model furnishes estimates of rotational and centrifugal 

constants for the two states involved. The vibrational term energies can then 

be extracted from the fitted band origins, v (v', v"), and can be used along 

with the rotational constants, B , to yield first-order RKRV turning-points. 

There are two problem with this procedure. The first deals with the 

possibility of estimated constants absorbing some contribution from missing 

constants due to the required truncation of the power series in X. The 
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additional effect of interparameter correlation in the least-squares procedure 

renders the rotational constants as effective least-squares parameters which 

serve only to represent the data from which they were derived, lack a strict 

physical meaning, and have little extrapolation ability. Also, for 

sufficiently large powers of CfC and values of / , the procedure can encounter 

computational round-off error problems, which may necessitate the use of 

quadruple precision arithmetic. 

The second problem is theoretical in origin. As a result of electronic 

state interactions, the rotational and centrifugal distortion constants lose 

their usual mechanical meaning. Use of contaminated rotational constants in 

the ensuing generation of RKRV potential curves is inconsistent with the 

derivation of the semiclassical inversion procedure, and the resulting 

functions will not be fully decoupled from neighbouring electronic states. 

Centrifugal distortion constants can also be calculated if a potential 

energy curve is available. Two basic approaches involve semiclassical and 

quantum mechanical methods. Within the JWKB picture, Kirschner and 

Watson (47) developed and employed a semiclassical perturbation theory to 

estimate the centrifugal distortion constants of C O ^ ^ * ) . The method was 

found to be increasingly unstable towards the dissociation limit and its 

accompanying complexity made it unattractive for routine use. Barwell (48) 

devised a procedure which removed the near-dissociation problems, so that 

semiclassical quadratures could be evaluated to obtain the constants over the 

entire range of potential energy. This was made possible by considering the 

theoreticallv predicted (49) form of the long-range potential in the 

first-order JWKB quantization condition. 

There are three quantum mechanical methods for calculating centrifugal 
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distortion constants for a diatomic molecule. The first, introduced by Moody 

and Beckel (50), was termed the eigenvalue-fitting method. Here, the 

vibrational-rotational eigenvalues of a potential energy function were found 

and subsequently fitted to a power series in CfC, giving at once B , D , H , 

etc. The second method, discussed by Tellinghuisen (51), exploited the 

relationship, 

By(J) = d° V' J) = f<#JIC2\y>J> - B - 2D CfC + ZHCfC2 + . . .,(2.50) 
BCfC 

where calculation of the expectation values for different values of / of given 

v followed by a least-squares fit to a power series in CfC led to estimates of 

the constants. This is known as the energy-derivative method. These two 

fitting methods suffer from similar problems as the experimental method above. 

Moreover, the energy-derivative method makes the explicit assumption that 

rotational constants are given as expectation values of R" . A neglect of 

heterogeneous contributions to B (J) is made. The eigenvalue-fitting method 

also assumes this, albeit implicitly, by constructing rotational potentials on 
2 2 

the basis of a centrifugal term p CfCIR . 

The third, and most fundamental quantum mechanical method is based on the 

application of Rayleigh-Schrodinger perturbation theory. Developed by 

Albritton and co-workers (52), this procedure defines the rotational and 

centrifugal distortion constants as perturbation energies of the rotational 
2 2 

Hamiltonian operator p" IR . Expressing first and higher order wavefunction 

corrections in terms of summations over zero-order terms, these authors 

obtained, 
Rv=/?2<V>v |R-2 |^>, (2-51) 
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f <yv\R-l\%,>2 

EW-E<? 
V V 

(2.52) 

etc., where for D the special symbol emphasizes that a summation should be 

considered over the bound vibrational levels and an integration carried out 

over the continuum. Since the computational algorithm neglects altogether the 

continuum contributions, second and higher order constants become increasingly 

unreliable as the dissociation limit is approached. This traditional 

perturbation procedure is also inefficient computationally owing to the great 

number of summation operations, particularly for higher-order perturbation 

energies. 

In recent work, Hutson (53) was able to circumvent the sum-over-states 

expressions by considering a direct perturbation calculation. This was made 

possible by employing Hutson and Howard's novel numerical procedure (34) for 

solving reliably an inhomogeneous differential equation. For first- and 

second-order wavefunction corrections made orthogonal to the zero-order 

eigenfunctions, expressions for the rotational and centrifugal distortion 

constants are (53, 54), 

Bv = <fl0)\^'\^0)>, (2.53) 

Dv = -<^0)\^'\^1}>, (2-54) 

Hv = ^\Of' -BjyW>, (2.55) 

L
v = <^1} i * ' - *, i ^ 2 ) > + DM1] i €]> > (2-56) 

M
v = <*® I * ' - BJ V f > + 2Z>v<^1) | ̂ 2 ) > - H<v£1} | V f > , (2.57) 

where the perturbing Hamiltonian is CfC" = B2IR2. This method gives constants 
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which are, in principle, reliable up to the dissociation limit. Of course, 

for very high vibrational levels, an extended integration range is required to 

ensure that all significant portions of the wavefunction are sampled, 

rendering the procedure somewhat inefficient for such levels. This latter 

problem was overcome recently by Pajunen (55) through the reformulation of the 

perturbation problem in terms of the Priifer phase function. The method does 

not involve wavefunctions explicitly, but the natural oscillatory behaviour of 

the Priifer function makes the procedure more reliable for high vibrational 

levels, where the highly oscillatory structure of the wavefunction could make 

previous methods less reliable due to insufficient sampling. 

2.10 Tlie Method of Least-Squares 

2.10.1 Introduction 

The fruitful interplay between the experimentalist and the theoretician 

during the first half of this century led to the development of theoretical 

models which could be applied to the representation of spectroscopic data. 

However, without the modem electronic computer, the spectroscopist was 

required to draw upon tedious and often unreliable methods for relating 

spectral features to physical models. Although approximate graphical 

procedures (56) allowed the experimentalist to become more directly involved 

with the analysis by exploiting an intimate familiarity with the experimental 

information, they failed to provide reliable estimates for the molecular 

parameters and their uncertainties, and were inherently limited in power and 

scope. 

Nowadays, fast digital computers are readily available; this has 

contributed tremendously to the growth and maturity of the field of molecular 
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spectroscopy. With a variety of options available for fitting equations to 

data, it is necessary to justify a preference for any one in particular. Some 

of the better known fit criteria are, least absolute deviation, least-squared 

deviation, maximum likelihood, minimum chi-squared, the simplex method, and 

others. However, the method of minimum-variance, or least-squares (57), has 

gained an almost universal acceptance as a standard fitting technique. In 

molecular spectroscopy, whether it is used for the purpose of calibrating the 

wavelengths of a spectrum on a photographic plate, or for extracting 

meaningful estimates of molecular constants from spectral line positions, the 

method of least-squares enjoys wide popularity, primarily because of the 

advantageous properties associated with the estimates it provides. 

The estimates furnished by least-squares are the most precise unbiased 

estimates that are linear functions of the measurements (57). These are 

usually termed minimum-variance linear unbiased (MVLU) estimates. The 

'unbiased' attribute is the most important because it indicates that the 

procedure itself will not introduce any systematic error into the estimates, 

whereas this is often not the case for other fit criteria. 

It is important to examine briefly the assumptions of the least-squares 

method. First, a perfect model is presumed. This is rarely the case, as it 

appears that time and again nature evades being modelled perfectly by 

mathematics; hence it is important to establish the adequacy of a chosen model 

through critical tests where possible or practical, before applying it to 

experimental data. The linear regression method assumes a model which depends 

linearly on the parameters, although it is possible to obtain MVLU estimates 

for a nonlinear model. Another important assumption is that the measurements 

must be described by some distribution function (not necessarily Gaussian) 
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with zero-mean and a finite error variance. Accordingly, the systematic 

component in the measurement error should be zero; that is, if an estimate is 

determined from the same data set measured many times, with measurements 

subject only to random error, the deviation from the "true" value would 

average to zero. When this is not the case, as is found occasionally for 

spectroscopic data, it should be realized that the 'unbiased' property is 

rendered useless and the estimates should be viewed with suspicion. Finally, 

the independent variable is assumed to be without error. While this is 

normally not a problem for many spectroscopic applications, as the independent 

variables are often quantum numbers, the general problem in which both 

variables are subject to finite errors has been solved (58). 

2.102 Weighted Linear Least-Squares 

The general linear least-squares problem can be expressed most concisely 

in matrix notation as, 

y = Xp + e, (2.58) 

where 

pll 
y.2 

.V 
. fi-

\fil] h 

kl 
e = 

\€i] 
E2 

e 
n 

y contains the experimental data, p is the column vector containing the 

parameters to be estimated, e contains the (unknown) measurement errors, and X 

is the coefficient matrix. Application of the least-squares criterion to this 

linear system yields the MVLU values p that minimize the sum of the squares 
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between the measurements y and the calculated values y, as 

Alternatively, 

p = (XTWX)"1XTWy. 

p = (xVx^xVy, 

(2.60) 

(2.61) 

where the weight matrix (W) is the reciprocal of the measurement error 

dispersion matrix M, which is in turn given in terms of the diagonal matrix 0 

of the measurement errors. More specifically, in matrix form, 

ro2 

$ = 
1 « * . o 

0 o2 
M = 

<K M o 
Z n 

0 
(2.62) 

so that 4> = a M. The cr. are unknown variances, but the ratios cr./cr., for 
n i i ]' 

i •& j are assumed to be known, cr is an unknown common factor and the weight 
-1 2 matrix is simply W = M . The common unknown factor a is calculated r J n 

from 

o2
n = f % - Xp)TV?(y - XP), (2.63) 

0 = ff^(X1WX)"1 = alV, 

where/ are the degrees of freedom. The variance-covariance matrix, 0 , of the 

molecular parameters is calculated from 

(2.64) 

where V is the dispersion matrix with the obvious value (X WX)"1. This matrix 

is important as it gives an indication of the degree of interdependence of the 

least-squares estimates. An often more immediately helpful indicator of 

parameter interdependence is the correlation coefficient matrix element, C , 

given by 



ko 

C. = Q.J(Q.B.y2, (2.65) 

the diagonal elements of which have values of unity and the off-diagonal 

elements take values which range from - 1 to +1. Absolute off-diagonal values 

near unity indicate strong correlation between the pair of estimates involved; 

this means that there is a mutual influence in the determination of the two 

estimates. In applications to real data this usually serves to reduce the 

physical significance of both estimates. 

Finally, it should be obvious that if the weight matrix equals the unity 

matrix I , that is, if all the data are weighted equally, the results given 

above collapse precisely to those of the unweighted formulation. 

2.103 Correlated Least-Squares (Merging) 

The problem of combining multiple estimates of least-squares parameters 

for the purpose of obtaining an optimum set of single MVLU values cannot be 

resolved satisfactorily by a simple weighted averaging scheme. Although this 

takes account of the potentially different precisions of such estimates, it 

overlooks correlations that link a set of estimates together. 

A procedure which facilitates a statistically sound solution to this 

problem has been described by Albritton et al. (57). Here, a single-step 

merge formulation was proposed whereby results from separate unweighted single 

band fits were merged together to yield an optimum set of constants. The 

unattractive alternative of a simultaneous weighted multi-band fit makes the 

single-step approach advantageous in terms of the significantly reduced 

computational demands on storage and execution time that can be achieved. An 

additional benefit of this approach is the improved manner in which relative 



kl 

systematic error in a subset can be unmasked. Furthermore, the results of the 

single-step approach are completely equivalent to those of the weighted 

multi-band fit. 

The merge approach considers the output of k individual band fits as the 

input to another least-squares fit which reduces a set of m redundant input 

parameters to a final set of p unique estimates. The solution of m equations 

of the type 

r = Xp + <5, (2.66) 

is considered where 

y is the vector containing m input parameters, 

X maps the input and output parameters, 

p contains the p output parameters, 

(5 are unknown (interrelated) errors. 

Albritton et al. (57) stressed that the d are interrelated through the 

variance-covariance matrices associated with the redundant input constants, 

and that it is precisely these (known) interrelations which form the basis of 

the merge approach. A minimization of d d yields p nonredundant parameters 

PM = ( X V X ) ^ V V , (2.67) 

where <3> is a matrix containing the individual variance-covariance matrices 

associated with each separate single band fit, so that 

$ = 
6j . 0 

1 0 2 . 

0 • ek 

(2.68) 

The estimated variance of the merge fit if given by 
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°M - tf<* " ^ M ) 1 * " 1 ^ ~ X3M), (2.69) 

where fu = m-p are the degrees of freedom of the merge fit. The 

variance-covariance matrix associated with the merged constants is 

defined with the p X p dispersion matrix 

VM = (XT<D ^ . (2.71) 

Despite the advantages gained by adopting the single-step merge approach, 

in large applications it quickly becomes apparent that detection of systematic 

error in individual subsets can be a time consuming matter. It must be 

accomplished through the systematic exclusion of suspect subsets in repeated 

single-step merges. For this reason, Coxon (59) investigated the possibility 

of carrying out merge fits in a stepwise fashion. The stepwise approach 

considers the output of several single-step merges as input into a grand 

merge, shown to give results that are identical to that of a single-step 

procedure. In direct analogy to the single-step result, the stepwise approach 

gives the expression 

V " <X *M X ) X * M " M - ( " 2 ) 

for the stepwise merge MVLU parameter estimates p _M. The estimated stepwise 

merge variance is given by 

"SM " f£$u ~ tfafiuWu ~ X ŜM>- ( i73> 
The weight matrix <I> is not composed by the variance-covariance matrices 

associated with the single-step merged constants, as might first be expected. 

Coxon (59) found that in order to obtain results identical to those of the 
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single-step approach, the weight matrix had to be defined as 

(2.74) <T> = ^ M^2 
0 (V, 

where the (VM). are the dispersion matrices from the q single-step merge fits. 

This difference is at the heart of the stepwise approach. The variance of an 

equivalent single-step grand merge of several stepwise merges is calculated by 

aGM-̂ GM = ^SMl^SMl + aSM2 4 M 2 + * * *' C2,75) 

where fQM = /g M 1 + /g M 2 + • • -, / S M being the degrees of freedom for 

stepwise merge i. 

2.10.4 Weighted Nonlinear Least-Squares 

There are many interesting intrinsically nonlinear problems in chemical 

physics and molecular spectroscopy. The direct reduction of line positions to 

molecular constants for JT states, the fitting of spectral line profiles to 

Gaussian, Lorentzian, or Voigt models, and the representation of RKRV turning 

points by flexible analytical potential functions, are just a few. 

For a set of k observations Y, the nonlinear problem can be written as, 

7 = /( l1 ? £2, . . ., ^ 0V 02, . . ., 6p) + e, (2.76) 

or simply, Y = f(E, 0 ) + e. The object here is to obtain least-squares 

estimates 0 in an iterative fashion from a linearized problem. The 

linearization is achieved by expanding /(S, 0 ) in a Taylor series, 

i =1 i 0 
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Mf 

(2.77) 

where the 0Q are initial trial values of the parameters. Birss (60) has 

proposed using the Hellmann-Feynman theorem (61, 62) in evaluating the second 

derivatives to achieve improved convergence. These terms are neglected here. 

The resultant pseudolinear system of equations can be written succinctly in 

matrix form as 

AY = ZAB, (2.78) 

where, for the /th iteration, 

and 

AY 

% 

AB = 

Ad n 

(2.79) 

z = 

fJL] [JL] 
d02hj 

[JL) [JL] 
«• ^ J2/ l 30 2

 J2/ 

[JL] [JL] 
L d0 Jkj ^ afl J *02 J * 

[JL] 
<• 30 Jlj 

P 

fJL] 
l 30 ->2/ 

[JL] 
30 Jig 

(2.80) 

where AY = /(S, 0) - /(S, ©0),fromEq. (2.77) above, and AB = 0. - 0.o< The 

key to rapid convergence is the method of estimation of the first derivatives. 
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Although methods can vary in degree of sophistication, a simple finite-

difference approach was found adequate in applications found in this work. 

A minimization must be applied to the error sum of squares, 

S = (AY)T(AY), (2.81) 

to obtain the parameter correction estimates 

A0 = (ZTWZ)"1ZTAY, (2.82) 

such that the 0 of the current (/th) iteration are 

0. . = 0. . , + A0. .. (2.83) 

The procedure is iterated until a specified convergence criterion in the sum 

of the squares is met. After convergence, an indication of the goodness of 

the fit can be obtained from 
n 

a =f-1[V AY2]'72. (2.84) 
i = l 

The variance-covariance matrix is 

0 = oh, (2.85) 

defined with the dispersion matrix 

V = (ZTWZ)_1. (2.86) 

The square roots of the diagonal variance-covariance elements give estimated 

standard errors for the parameters. 

2.11 Numerical Solution of the Radial Wavs Equation 

2.11.1 Truly Bound States 

One the most useful applications of numerical methods to the field of 
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molecular spectroscopy is undoubtedly in obtaining solutions of the central-

field eigenvalue problem. The present work rests on the availability of a 

trustworthy solution of the radial wave equation. 

The location of truly bound levels, that is, those which lie below the 

dissociation limit, is accomplished through the procedure usually ascribed to 

Cooley (63). The computer program used in this work includes the subsequent 

modifications of Zare and Cashion (64). For a diatomic molecule regarded as a 

symmetric top, solution of the Schrfidinger equation expressed in polar 

spherical coordinates is preceded by a separation of the problem into angular 

and radial parts so that 

is an acceptable solution. The Y M are hypergeometric functions and should 

not be confused with Dunham's Y (16). p(R) are the solutions of the radial 

wave equation expressed in dimensionless form as, 

d2p(R)ldR2 = [U(R) - E] p(R), (2.88) 

where U(R) is the effective rotational potential, 

U(R) = EJR) + ZZJR + [JT - A2]/R2, (2.89) 

and E is the vibrational eigenvalue. E .(R) is the electronic energy having a 

parametric dependence on intemuclear distance, and Z ZJR is the nuclear 

Coulombic repulsion term. The last term in Eq. (2.89) is the kinetic energy 

of nuclear rotation. 

The program of Zare and Cashion (64) considers the modified second-order 

differential equation, 

d2S(R)ldR = [U(R) - E] S(R), (2.90) 
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where S(R) = R p(R), automatically ensuring the inclusion of volume element 

R2 dR in subsequent expectation value calculations. 

Application of Numerov's (65) sixth-order difference equation, 

-T._x + 27;. - r / + 1 + h2(U. - E) P. m 0, (2.91) 

where P. = P(R.) is an initial non-normalized solution and, 

T. = [1 - (h2ll2)(U. - E)) P., 

U. = U(Rt), (2.92) 

h = R.^ - R., 1+1 1' 

yields a solution associated with an error of (h /240) drPJdR . The 

integration is performed in a bidirectional mode with inward and outward 

integrations starting at the last and first mesh points, respectively. The 

inward integration is initialized by applying the boundary conditions, 

Pn = 10"30, (2.93) 

and 

p _ D JR YU - E - R ,YU - E ] n 0/)N 

r , = P e l n n n-1 n-1 ', (2.94) 

with a trial value E. Eq. (2.94) is derived from the JWKB wavefunction and 

its use at the beginning of the inward solution is justified so long as the 

potential is slowly approaching an asymptote near R . The inward 

(decreasing-R) integration continues until the first extremum of the 

wavefunction is detected, at R . 

The outward (increasing-R) integration begins with the boundary 

conditions, 
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PQ = 0, Pt = 10"20. (2.95) 

The solution proceeds in accord with Eq. (2.91) until the radial distance R 

is reached, that is, at the place where the inward integration was terminated. 

At this point, the inward and outward solutions are made mutually consistent 

through division by their respective non-normalized values at R ; hence at the 

joint between the inward and outward integrations the solution has the same 

value (P = 1), but likely suffers from a discontinuity in slope. 

The potentially different slopes between the two curves at the 

crossing-point R are used to correct the trial energy value, E. A simple 

expression for such a correction is given by, 

^ = (p'out - ^ ) / J V ( * ) f **> (2-96) 

where P' and F. give the first derivatives at R from the outward and 
out in ° m 

inward integration, respectively. Improved convergence can be achieved 

through the use of the Newton-Raphson result, 

A£ = -F(E)IF'(E), (2.97) 

where the correction function is 

F(E) = /,-2(-rm.1 + nm - rm+1) + (um - E) pm, (2.98) 

and its derivative is given by 
n 

F'(E) = - Y P2.. (2.99) 
;=i 

The procedure is iterated until |AE] < e, where e is a preset convergence 

criterion. Following convergence, the normalized solution is obtained as, 



• 

k9 

S. = P. /[h y P§h , i = 1, 2, . . ., n. (2.100) 

It was decided to test the accuracy of the procedure using model 

potential functions for which the wave equation is solvable exactly. For the 

case of no nuclear rotation (J = 0), the radial wave equation can be solved 

essentially exactly with the Morse potential function, 

2 
U(R) = 2>Jl - e°^ " *P] . (2.101) 

An analytical expression for the vibrational eigenvalue emerges, 

G = me(v + Vz) - Q>xe(v + Vz)2, (2.102) 

with 

a>e = 2aP(®/2 , (2.103) 

coxe = (ap)2. (2.104) 

Choosing appropriate values for a and W allows for the procedure to be tested 

very near dissociation. Table 2.1 gives the parameters a, 2> , a) , and cox 

for the Morse potential employed here. Cashion (64) also tested the procedure 

using a Morse potential; variables such as integration interval size and 

number of points were thus not investigated here. It should be noted, 

however, that in specific applications, these factors were thoroughly 

explored. The main objective of the present test is to ensure and demonstrate 

the proper operation of the computer program, which is of critical importance 

to this research. The eigenvalue convergence criterion employed was 10"6 

cm" . Results from the program are compared to the true (exact) energies in 

Table 2.2. 



TABLE 2.1 

Test of Algorithm for Solution of Radial Wave Equation: 
Parameters of Analytical Potential Functions 

Morse Potential Fues-Kratzer Potential 

R =1.000 A R =0.916 835 9 A 
6 € 

® =31 250 cm"1 & =49 375 cm"1 
e e 

(I =1.685 763 14 amu p =0.957 055 282 amu 

R . =0.40 A R . =0.40 A 
nun nun R =6.40 A R =8.40 A 
max max 

h =0.002 A h =0.0025 A 

= 10"6 cm"1 e =10"4cm"1 

<y =2500 cm x 

cox =50 cm 
e e 

Morse potential can be constructed from Eq. (2.101). 
Fues-Kratzer potential is defined by Eq. (2.105). R is the 
equilibrium intemuclear separation, 2> is the dissociation 
limit and p is the reduced molecular mass. The functions 

were constructed in the range R . to R with a mesh size 
° mm max 

of h. The radial wave equation was solved with a 

convergence criterion of e. The energy parameters co and 

co x are defined by Eqs. (2.103) and (2.104), respectively. 



TABLE 22 

Test of Algorithm for Solution of Radial Wave Equation: 

A Comparison of Calculated with Exact Energies (cm ) 

Morse Potential 

v E™*ct 106 X AE v E*mct 106 x AE 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

1237.5 

3637.5 

5937.5 

8137.5 

10237.5 

12237.5 

14137.5 

15937.5 

17637.5 

19237.5 

20737.5 

22137.5 

2 
15 
49 
111 
205 
330 
482 
654 
839 
1028 

1212 

1382 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

23437.5 

24637.5 

25737.5 

26737.5 

27637.5 

28437.5 

29137.5 

29737.5 

30237.5 

30637.5 

30937.5 

31137.5 

31237.5 

1530 

1646 

1725 

1762 

1752 

1695 

1589 

1436 

1241 

1008 

743 
456 
-753 

Fues-Kratzer Potential0 

v / = o / = 5 / = 10 / = 15 / = 20 

0 
4 
8 
12 
16 
20 

0.0000 

-0.0001 

-0.0002 

-0.0013 

-0.0044 

-0.0109 

0.0000 

-0.0001 

-0.0002 

-0.0006 

-0.0022 

-0.0055 

-0.0001 

-0.0001 

-0.0001 

-0.0002 

-0.0003 

-0.0009 

-0.0001 

-0.0001 

-0.0001 

-0.0002 

-0.0001 

-0.0001 

-0.0001 

-0.0002 

-0.0001 

-0.0002 

-0.0002 

-0.0003 

flEntries for Fues-Kratzer potential are the discrepancies between 

the exact (Eq. 2.106) and calculated (numerical solution of the 

radial wave equation) energies, in cm" . 
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In order to ensure the proper operation of the program for the rotational 

case, the Fues-Kratzer potential, 

U(R) - 0 [ 1 + x2 - M, (2.105) 

with % = R IR, was used. The Fues-Kratzer Schrodinger equation is solvable 

exactly for all values of v and / . The terms are given by (66), 

k 3) 

^ = ^ - 7 - uTi . (2-106) 

\(v + V2) + [J(J + 1) + V* + k]/2 

where 

fc = R2 $ /£ 2 . (2.107) 

The parameters of the potential and the rotational eigenvalue test results are 

given in Tables 2.1 and 2.2, respectively. 

It is noteworthy that the Cooley predictor-corrector procedure is not the 

only method available for solving the one-dimensional Schrodinger equation. A 

series of papers (67-69) dealing with an application of the quantum mechanical 

variational method appeared in the late 1960's and early 1970's. Basis sets 

were constructed as linear combinations of the well-known wavefunctions of the 

harmonic oscillator, and later the eigenfunctions of a Morse potential. All 

these attempts met with moderate success. In view of an already existing 

successful method (64), application of the variational method to the problem 

appears to be of academic value only. More reliable alternatives include the 

"Log-Derivative Method" (70), the Priifer phase function method (55), and the 

"Canonical Functions Method" (CFM) proposed by Kobeissi et al. (71). 

Recently, Tellinghuisen (72) showed that the CFM method is formally and 

numerically equivalent to the procedure of Cooley (63), provided that both 
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algorithms are implemented with the Numerov integration formula. The 

Cooley-Numerov method was, however, shown to be computationally more 

efficient. 

2.11.2 Quasibound States (Orbiting Resonances) 

Adjustment of the rotationless potential by the centrifugal term 

p J(J + 1)IR yields effective rotational functions, characterized by a 

barrier. As shown in Figure 2.2, energy states which exist above the 

asymptote are associated with three turning points. These quasibound states 

are not truly bound but possess a finite probability of penetrating the 

barrier in a nonradiative fashion. Associated with these metastable levels 

are finite lifetimes and widths related by the uncertainty principle of energy 

and time. The spectroscopic detection, in emission, of a gradual broadening 

of rotational lines with increasing / , followed by an abrupt disappearance of 

the structure, provides convincing proof that a predissociation is occurring. 

A quantitative analysis of this information yields an estimate for the 

dissociation energy. 

The theoretical description of quasibound states can be accomplished by a 

variety of methods. Since the "exact" methods of quantum mechanics are often 

tedious to use, approximate boundary condition schemes have proven to be of 

great value in locating orbiting resonances. These were reviewed and tested 

by Le Roy and Liu (73). Their results suggested that the Airy function 

boundary condition is reliable for the type of resonances encountered in this 

work. 

The Airy function boundary condition derivation assumes that the 

rotational potential near the third turning point can be approximated by a 
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Figure 2.2 

Graphical representation of a quasibound level. E Q and E . 

are vibrational energies corresponding to rotationless and 

rotational potential curves, respectively. (R , R ), and 

(R , R.) are the inner and outer classical turning points 

for the case of rotationless and rotational potentials, 

respectively. The third turning point for the rotational 

potential curve is given by R_. 
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R(A) 

Figure 2,2 
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straight line. Application of the uniform approximation (73) to the problem 

casts the wavefunction at the outermost turning point as an Airy function of 

the second kind, Bi(-z) (74). Along with a boundary condition at R = 0, the 

problem is transformed into the one-dimensional eigenvalue type, which allows 

the procedure to be incorporated directly in Cooley's algorithm. Since the 

approximation requires the three turning points to be spaced well apart, the 

increasing proximity of the second and third turning points with increasing 

energy makes the method more reliable for resonances well below the barrier 

maximum and totally inapplicable above it. It was shown (73) that the error 

in the prediction of quasibound energies with the Airy BC is approximately 5% 

of F, where T is the full width at half-height of the energy state. 

Tiemann (75), however, has shown recently that these estimates could deviate 

by as much as 20% and in an unpredictable direction. For the types of 

resonances that can be detected spectrographically (T < 1 cm" ), the error in 

the calculated position is almost indistinguishable from the experimental 

uncertainty. 

The treatment of the resonance widths follows a different path. 

Conceptually, the simplest approach views the width as the ratio of the 

probability of barrier penetration to the period of oscillation in the 

potential well (76, 77), so that by the uncertainty principle, 

r = hcoltvib, (2.108) 

where 

i/2 |*3<*> 
a = expj- W [U(R) - E]Vz dR\, (2.109) 

h Ji?2(£) 
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and 
Ji2(E) 

tvib = (2u)/z [E - U(R))-l/2 dR. (2.110) 

This semiclassical recipe was found (77) to yield widths that were within 

~ 12% of more accurate estimates, for HX5T 2+) . The widths reported in the 

present work were calculated by a more complicated prescription. Le Roy's 

QBOUND subroutine (78) originally provided the simple width given above; 

however, following the recent article of Connor and Smith (79), the code 

appears to have been modified to calculate the width in the semiclassical 

uniform approximation as, 

r = 2fitvihw(€)lx, (2.111) 

where 
[1 + e^f2 - 1 

W(e) = „ , (2.112) 

[1 + e^f2 + 1 

and e is the quadrature through the barrier. 

Unfortunately, it is not as easy to verify the accuracy of level 

positions for quasibound states as it was for truly bound states. The 

rotational solution for the Morse oscillator is, as stated above, not truly 

exact. The Fues-Kratzer eigenvalue formula is of little use here since this 

potential cannot form a potential barrier. There simply does not appear to be 

any absolute standard for direct comparison. This has forced previous 

investigators to rely on ab initio results for positions, and well-studied 

experimental systems for widths. Some promise was offered by a relatively 

obscure article by Tietz (80) where an analytical potential was developed, 

having an exact solution in closed form for the eigenvalues. It was found 
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that adjustment of one of the potential parameters led to the foriuation and 

controlled the magnitude of an inherent potential maximum. With the exact 

eigenvalue expression at hand it appeared at first that this might offer a 

sound way of evaluating the accuracy of approximate methods. However, there 

appears to be an error associated with the energy expression; in any case, a 

solution was only considered for a real wavefunction; the case E > 3) , where 

the wavefunction enters the complex plane, was not considered by Tietz (80). 



CHAPTER 3 

IMPROVED HAMILTONIAN OPERATORS FOR RADIAL MOTION 

PART A: SEMICLASSICAL METHODS 

The first-order RKRV potential inversion procedure is popular because of 

the relatively easy calculations involved and the usually excellent potentials 

it provides. Additionally, it is an almost unique procedure, failing to 

define the behaviour of the curve only below the ground vibrational level. 

Reliable evaluation of the improper integrals / and g has been the subject of 

numerous articles in the literature (81-85), and the first-order problem can 

be considered adequately resolved. 

However, the advent of laser and interferometric methods brought an 

accompanying improvement in the precision of spectroscopic data; this has 

served to demonstrate convincingly the limitations of the first-order RKRV 

approximation. It is often found that the quantum mechanical expectation 

values of first-order RKRV functions fail to describe observables within the 

measurement uncertainties. A case in point is the fundamental band of HF, 

obtained experimentally by Fourier transform techniques (86). Table 3.1 shows 

a comparison of observed frequencies and those calculated on the basis of 

quantum mechanical eigenvalues of the RKRV curve of Di Lonardo and 

Douglas (87). 

The inadequacy of the semiclassically approximate RKRV potential 

inversion procedure derives primarily from the neglect of higher-order JWKB 

phase integrals in its derivation. On account of the correspondence 

principle (88), a semiclassical JWKB formulation is expected to be less 
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TABLE 3.1 

Fundamental Band of HF(Z12"1"): Demonstration of Inadequacy of RKRV 

Potential in Predicting Observables 

/ P(J) AP(J) | AP(/)/61 R(J) AR(J) |AR(/)/c| 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

3920.3328 

3877.7289 

3833.6846 

3788.2533 

3741.4890 

3693.4467 

3644.1822 

3593.7520 

3542.2127 

3489.6214 

3436.0358 

-0.0210 

-0.0214 

-0.0320 

-0.0255 

-0.0291 

-0.0336 

-0.0395 

-0.0465 

-0.0537 

-0.0620 

-0.0698 

42.0 

42.8 

46.0 

51.0 

58.2 

67.2 

79.0 

93.0 

107.4 

124.0 

139.6 

4001.0127 

4038.9882 

4075.3231 

4109.9709 

4142.8863 

4174.0267 

4203.3509 

4230.8197 

4256.3958 

4280.0442 

4301.7319 

4321.4284 

-0.0235 

-0.0259 

-0.0295 

-0.0343 

-0.0401 

-0.0469 

-0.0548 

-0.0638 

-0.0736 

-0.0838 

-0.0953 

-0.1080 

47.0 

51.8 

59.0 

68.6 

80.2 

93.8 

109.8 

127.6 

147.2 

167.6 

190.6 

216.0 

The quantities AP(J) and AR(/) refer to observed-calculated line 

positions (cm~ ) for the P- and R-branches, respectively, e is the 
_ i 

experimental error estimate; e = 0.0005 cm for this band. 
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reliable where quantal effects are significant. Better results can therefore 

be obtained for heavy molecules and high values of the quantum numbers. In 

this section, methods for improving first-order RKRV Hamiltonians are 

reviewed. 

3.1 Direct Inclusion of 3rd-Order JWKB Phase Integral 

The first documented method for incorporating exactly the second finite 

JWKB integral in the RKRV procedure is due to Vanderslice and co-workers (89). 

This derivation was followed by an application to the ground state of 

molecular hydrogen (90). A solution was obtained in an iterative fashion, 

whereby a repetitively improved first-order curve was used to estimate the 

second-order RKRV (third-order JWKB) corrections to the turning points. Some 

difficulty was encountered in fitting the potential derivative required for 
i /2 

the second-order corrections to a power series in U . This was due to the 

large values of dU/dR at small intemuclear separations and led to problems 

with the uniqueness and stability of the procedure. Furthermore, the 

corrections obtained were of the order of the uncertainties in the first-order 

turning points indicating that highly precise data are required for a proper 

evaluation of such effects. 

A mathematically equivalent procedure for second-order RKRV calculations 

was presented by Kirschner and Watson (47). This was applied to the ground 
1 + X 2 state of CO, and despite the need for intermediate least-squares fits, 

the calculations provided a potential which could recover satisfactorily the 

input G and B values. The Rydberg-Klein-Dunham second-order calculations of 

McKecver (91) for the ground state of H2 appear to be equally successful. 

Here, it was shown that the previous results of Davies and Vanderslice (90) 
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were overestimates of the second-order corrections to the turning points. 

A rigorous derivation of a two-term RKRV procedure was undertaken by 

Le Roy (92). The resulting expressions for the / and g integrals included 

explicitly the effects of the third-order JWKB integral. The solution 

proceeds in an iterative fashion but so far there do not appear to be any 

published applications of this procedure. 

3.2 Indirect Inclusion of Higher-Order JWKB Terms 

It is possible to include the effects of higher-order phase integrals 

while avoiding the mathematical and numerical complexities associated with 

their explicit evaluation. 

By far the simplest procedure of this type was proposed by Kaiser (93). 

The contributions from the second JWKB term were considered in the modified 

quantization condition, 

o J EvJ - U(R) dR = 2np(v f Vi + A), (3.1) 

where A was treated most concisely by Kirschner and Watson (47), obtaining 

A = -L. l im 0 (dUldR)2[E - U(R)]~5/2dR. (3.2) 
6AtJZ E-* 0 J 

K£/;er (93) gave the simple result, 

A = YQOIY1Q, (3.3) 

where the Dunham coefficient Y. was approximated by 

(B - cox) a co (a co )" 

Ym = + — + - , (3.4) 
4 125 14453 

e e 
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defined with the usual vibrational-rotational parameters. This adjusts the 

positions of all vibrational levels by a constant amount and simply requires 

that first-order RKRV integrals be evaluated from the modified lower limit, 

v^ = - 1/2 - A, (3.5) 

reducing sharply the work required to obtain what is presumably in effect a 

second-order RKRV potential. Recent work (94), however, has shown that the 

Kaiser modification may lead to results for the g integral that are often 

inferior to those of an unmodified first-order calculation. This is because, 

even though the Kaiser correction considers the second JWKB term, it fixes its 

value to that at the potential minimum (94), i.e. the condition that E —> 0 in 

Eq. (3.2) above. 

The approach of Huffaker (95) considered the evaluation of turning points 

in terms of two power series given as analytic functions of the spectroscopic 

constants. Second-order JWKB terms were introduced effectively by making 

corrections to spectroscopic constants based on Huffaker's Perturbed Morse 

Oscillator (PMO) model (96), 

y^lKf (3.6) lfMO(R) = x 

where 

y = 1 - exp[-«(R - * ) ] . (3.7) 

This method was applied to the ground electronic states of CO and HF (95) with 

moderate success, encountering particularly significant problems near the 

dissociation limit. A breakdown of JWKB theory might be expected immediately 

near dissociation (97), but it is unlikely that the levels considered by 

Huffaker (95) enter into this region. 



tmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmnv MMIIM in m^^^ MJ»P<IIPPIBI>aaa«iiiwif •, 

6k 

By a similar approach, Coxon and Ogilvie (46) followed Watson's (42) 

suggestion of correcting experimental values of the U^ for higher-order 

effects, and used these in a Kaiser unmodified first-order RKRV calculation. 

The resulting potential should then have been equivalent to one obtained by 

considering higher-order JWKB phase integrals explicitly. Along the same 

lines, expressions for higher-order contributions to some Dunham coefficients 

were obtained by Bouanich (98) through perturbation theory. 

In more recent work, Schwartz and Le Roy (94) proposed to eliminate the 

third-order JWKB integral by considering information on two isotopomers 

simultaneously. The resulting simple expressions were thus exact within the 

third-order JWKB approximation. Model calculations showed that results were 

superior to those of both an unmodified first-order calculation and the Kaiser 

corrected first-order results. At the same time, the model testing suggested 

that care should be exercised in applying the method. In particular, the 

procedure was found to be highly sensitive to the precision of the input data, 

and should be used for very precise measurements only. Also, since the two 

isotopomers were assumed to have the same potential, the method should not be 

applied to systems for which the Bom-Oppenheimer approximation is 

significantly deficient. This limitation is unfortunate as it makes the 

procedure less reliable for light diatomics, the very systems for which 

higher-order JWKB effects are most significant. These warnings were 

apparently not heeded in a recent application of the procedure to the isotopic 

LiH molecules (99). Not surprisingly, improvement over the first-order 

results was not realized. 

A most interesting application of Watson's (100) semiclassical inversion 

procedure was proposed by Gouedard and Vigue (101). In an attempt to improve 
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a first-order RKRV potential iteratively, these authors identified a function 

X(R) with a small potential correction, AU(R), and inverted AG and AB values 

to this function. AG and AB , the differences between the experimental and 

quantum mechanical values, became gradually smaller, but it was found that 

after convergence, the final differences displayed oscillatory behaviour for 

CO(JST12+), with better results realized for heavier diatomics. The authors 

speculated that for a light molecule like CO, quantum effects may be 

significant, and pointed to their inability in separating calculational from 

quantum limitations on the method. 

A chief criticism of methods that rely on a partial intermediate set of 

molecular constants is that these constants are not true observables of a 

system, but have significance only as parameters that define an infinite 

perturbation expansion. Putting aside, for the moment, any inconsistencies 

and loss of mechanical significance that may result owing to the method of 

their estimation, the quantum mechanical identities of these constants, and 

their effect on the physical significance of RKRV potentials must be 

considered. 

Since the molecular constants employed in the estimation of RKRV turning 

points are derived by considering experimental line positions, they must 

reflect the nonadiabatic interactions experienced by the electronic state in 

question. This contamination will, to some extent, enter into the classical 

turning points of motion. In order to gain more insight into this, it is 

helpful to examine qualitatively the influence of neighbouring electronic 

states on the values taken by the derived G and B constants that serve as 

input for such a calculation. The vibrational terms will deviate from their 

(generally unknown) adiabatic values through homogeneous mixing of the 
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unperturbed eigenfunctions. This type of perturbation is fully compatible 

with a JWKB transformation of the eigenvalue problem, Eq. (2.1), since it will 

contribute to the adiabatic potential and to the adiabatic rotational 

constants in a /-independent fashion. Thus the RKRV procedure can recover 

homogeneously perturbed potential curves. However, even though a 

heterogeneous interaction will have no additional effect on the rotationless 

term values, it can significantly alter the adiabatic (or even homogeneously 

nonadiabatic) identity of rotational constants. No provisions were made for 

this type of interaction in the derivation of the RKRV equations; the 

formulation of Klein's g integral assumes that rotational constants are 
-2 

expectation values of R . More significantly, a fundamental neglect of 

heterogeneous coupling is made in the JWKB transformation of the radial wave 

equation, Eq. (2.1). It is Eq. (2.32) that should be subjected to this 

transformation. Therefore, although the rotational constants contain all the 

information on the heterogeneous couplings, the RKRV equations have not been 

set up to extract such information in a theoretically proper fashion. It 

appears, then, in the matter of electronic state interactions, that 

semiclassical methods face similar limitations as ab initio descriptions; in 

order to describe the couplings properly, knowledge of excited state potential 

functions is required. In spite of this, a tmly inverse JWKB procedure 

taking this implicitly into account appears to be possible; the recent work of 

Watson (42) offered an as yet unexplored semiclassical scheme for achieving 

such a task. 

33 Extended Dunham and Dunham-type Methods 

Recently Bessis et al. (102) proposed a method for the direct reduction 
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of vibrational-rotational data to analytical functions describing the radial 

dependences of various interesting effects. The coefficients of such 

functions were expressed in terms of familiar spectroscopic parameters. The 

starting point in a computer-aided perturbation calculation was the Dunham 

potential. Additional functions were employed to describe the effects of 

interest, and the coefficients of these were given by unwieldy expressions in 

terms of the potential parameters and known spectroscopic constants. One 

application of the method was to the description of the radial variations of 

the spin-rotation and spin-orbit couplings in the ground state of OH, with 

encouraging results. 

More recently, Ogilvie (103) developed an analogous inversion procedure 

modelled with the Ogilvie-Tipping reduced potential coordinate (104). In 

addition to providing less complicated expressions for the coefficients of the 

radial functions, the work of Ogilvie was superior in another aspect; the 

Dunham reduced coordinate x = (R - R)IR employed by Bessis et al. (102), 

suffers from a hmited radius of convergence (0 < R < 2R), whereas use of 

x0T = 2(R - Re)l(R - RJ, with 0 < Rc < oo, is preferable. 

The main criticism of these approaches concerns their ability to describe 

properly the potential function all the way up to dissociation. It is 

doubtful whether any single' analytic function can achieve this. In addition, 

the power series functions employed above fail to describe the long-range 

behaviour of an intemuclear potential function. Finally, neither of the 

analytic formulations has been adapted to include heterogeneous interactions 

in a theoretically proper fashion. The coefficients would then partially 

absorb such effects, losing their originally intended identity. 
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PART B: QUANTUM MECHANICAL METHODS 

3.4 Direct Perturbation Methods 

Initial efforts involving the application of quantum mechanical 

perturbation theory to the improvement of potential functions were concerned 

with systematic corrections to a variety of analytical model functions. Galin 

et al. (105) considered the calculation of Dunham parameters in high orders of 

perturbation theory, obtained through computer algebraic methods. 

Subsequently, Burenin (106) formally perturbed a Fues-Kratzer oscillator, 

using the exact solution for this system as a zeroth-order starting basis. 

The perturbation expansion was carried out in terms of inverse powers of the 

intemuclear distance, but use of the conventional Rayleigh-Schrodinger 

approach was avoided. Instead, a different perturbation theory (106) was 

used, involving a finite number of terms for the energy corrections, in 

contrast to the conventional infinite expansion method. Only the theoretical 

layout was presented, and application of the resulting (complicated) procedure 

does not appear to have been undertaken. 

The first "perturbative" expansion on the basis of a Morse oscillator can 

be attributed to Dunham (16). In more recent work, expressions similar in 

structure to those of Dunham emerged from the formal perturbative treatment of 

Huffaker (96). The model was coined the Perturbed Morse Oscillator (PMO) and 

in later work (107) it was applied to a variety of diatomic states. In its 

purely theoretical form, the PMO expansion was only moderately successful, 

encountering particular problems for the ground states of HF and HCl. Thus, 

despite jargon suggesting otherwise, its current applications find it as a 

flexible analytic fitting model for the representation of RKRV turning 
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points (95, 108), or ab initio results (109). 

35 Inverse Methods 

The label for methods to follow herein as "inverse" is only loosely 

applied. A true inverse method determines the intemuclear potential directly 

from experimental data rather than assume some parametrized functional form 

and adjust it in a fit to the data (110). In this section, methods which 

systematically impose corrections to radial Hamiltonian operators to attain 

agreement with the experimental data are considered. On the other hand, 

Dunham's procedure can be regarded as a true inversion of the experimental 

data to the intemuclear potential. This also applies to the procedures 

considered in sections 3.2.1 and 3.2.2 above. 

3.5.1 Semiempirical Correction Methods 

The possibility of removing the disagreement between experimental results 

and those of approximate theoretical methods by using the correction function 

approach, was first explored by Le Roy and Bernstein (111). The method was 

applied to H (X 2 + ) where the ab initio potential of Kotos and 

Wolniewicz (112) was adjusted by an empirical correction function in an effort 

to resolve a serious discrepancy in the calculated vibrational intervals from 

those known precisely from experiment. An interesting result of this work was 

that either of a pair of empirical correction functions could remove the 

discrepancy, indicating a displeasing lack of uniqueness. 

Kuriyan and Pritchard (113, 114) constructed effective nonadiabatic 

potential functions for diatomic hydrogen and deuterium, and their molecular 
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ions using a correction function approach. The method of estimation of such 

functions involved the interactive piecemeal determination of linear 

correction patches (113), applied only to the outer limbs of the trial 

potentials. The work of Ref. (Ill) showed that the nonuniqueness of the 

correction procedure would be greatest for the low vibrational levels 

considered here, so that adjustment of either limb near the minimum would 

result in similar changes to the eigenvalues. A small criticism of this 

work (113) concerns the failure to consider any possible alteration of the 

centrifugal term by heterogeneous nonadiabatic coupling. The importance of 

these two articles (113, 114) is that they offered an interesting, albeit 

somewhat unrefined alternative to expensive high-level ab initio nonadiabatic 

calculations. 

Some consideration to heterogeneous effects in hydrogen was given in an 

article by Bunker et al. (41), where a centrifugal term of the type, 

XJR) = p2J(J + 1)[1 + a(R)]IR2, (3.8) 

was included in fits to low vibrational-rotational energy levels of H, and D<. 

However, only partial success was demonstrated, most hkely due to the 

modelling of a(R) by a simple constant. 

3.5.2 Inverse Perturbation Analysis (IPA) 

A more methodical approach for obtaining potential correction functions 

from experimental data was proposed by Kosman and Hinze (115). This method 

begins with a zeroth-order radial Schrodinger equation for a 12 state, 

<<> + **&"%,<? (3.9) 



71 

where 

*fv;b - -p2d2ldR2 + U°Q(R), (3.10) 

and 

CtexQt = p2J(J + 1)/R2. (3.11) 

It is then assumed that the "true" (effective) rotationless potential differs 

from the approximate function IJQ(R) in Eq. (3.10), by a radial correction 

function AU(R), so that 

Vf(R) = lfQ(R) + AU(R), (3.12) 

where the -as yet unknown- correction function can be regarded as a perturbing 

operator. Rayleigh-Schrodinger perturbation theory provides the first-order 

energy corrections, 

M:vJ = < ^ I A ^ ) I ^ > ' (3-13) 

in terms of the zeroth-order radial eigenvectors. Eq. (3.13) is normally 

encountered in direct applications, whereby an assumed AU(R) function is 

employed to calculate the first-order energy corrections. Alternatively, a 

known AU(R) function can be used in conjunction with parametrized eigenvectors 

\ip Sav av . . ., a ; R)> in a variational calculation. 

The inverted perturbation approach seeks to determine AU(R) by assuming 

that the differences AE. between the approximate eigenvalues, E ., and the 

experimental terms, E®®', can be described entirely by a first-order model. 

These differences should actually be expressed as, 

r», |<v/|At/|M>£>|2 

AEvJ = <vJ\AU\vJy + \ g ^— + higher order terms. (3.14) 
vJ*wK vJ EwK 
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The IPA assumes that second- and higher-order terms are small in relation to 

the first term in Eq. (3.14), and unimportant with regard to the experimental 

errors. 

If the perturbing Hamiltonian AU(R) is expanded in terms of a flexible 

mathematical basis set, 

AU(R) - c. f.(R), (3.15) 

and substituted back into Eq. (3.13), a set of linear equations, 

i 

is obtained. In typical applications, this set of linear equations is 

overdetermined and can be treated effectively by a least-squares minimization 

procedure to provide estimates of the c. 

The key approximation of IPA is that the E®® - E\ differences can be 

equated to the AE first-order corrections of Eq. (3.14). This can be 

ensured by choosing a trial potential, £uR), which forms a close 

approximation for the final effective potential, UT(R). Since this might 

not always be possible, and since a finite basis set is used to approximate 

AU(R), it is not expected that the perturbation calculation will converge in 

one cycle. Therefore, in the IPA formulation of Kosman and Hinze (115), an 

iterative approach was adopted. This might equally be thought of as an 

application of the variational theorem since the stepwise improvement of the 

potential causes a concomitant optimization of the radial eigenfunctions. 

Vidal and Scheingraber (116) formulated the IPA in much the same fashion 

as the previous investigators (115). The key difference was their choice of a 

basis set; improved convergence was claimed with the nonlinear interpolation, 
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(R - R)(R - R . ) v e'v max mur 
x = , (3.17) 

(R + R .)(R + R) - 2(R R . + R R) v max nuirv e ' v max nun e ' 

with R and R , chosen as the outermost and innermost classical turning 
max nun ° 

points, respectively. Their representation for AU(R) was, 

A*7(R) = y c. P.(x) e'x (1 < n < 5) (3.18) 
i 

where P.(x) are Legendre polynomials. These authors employed Eq. (3.18) in a 

fit using a partial set of term value differences. 

The inverted perturbation procedure can also be discussed in terms of the 

Hellmann-Feynman (61, 62, 117) theorem (HFT). The HFT equates the rate of 

change of an eigenvalue with resoect to a real parameter, with the expectation 

value of the rate of change of the potential function with respect to the same 

parameter, that is, 

dE dU(R) (3 m 

Bl dX 

It is easy to show that the first-order perturbation result is actually a 

limiting case of the HFT. In fact, Epstein (118) went on to derive the 

conventional second-order result from the HFT, and intimated that the entire 

Rayleigh-Schrodinger perturbation theory follows from the HFT. However, the 

relationship between the IPA and the HFT is not as simple as this and derives 

from the use of a least-squares minimization procedure in the optimization of 

UZ (R). Consider the simple case of a single electronic state n, 

characterized by a potential, 

C/f(R) = [lft(R) + p2J(J + 1)/R2] + AUn(R), (3.20) 

with associated eigenvalues 
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The IPA procedure considers the minimization of eigenvalue residuals, AEn ., 

to obtain AU(R). It is possible to write a Hellmann-Feynman theorem for 

Eq. (3.21) with respect to a set of parameters c. that define the potential 

correction AU(R), as 

dEnJdCi - < / * ! + dAEnJdCi <3'22) 

which is also equal to 

dEJdc. = <nvJ\dlfB(R)ldc.\nvJ>, (3.23) 

leading to the relationship, 

BAEnJdc. = <nvJ\dAUn(R)ldct\nvjy. (3.24) 

Ii At/ (R) is given by Eq. (3.15) above, the partial derivatives given here 

assume the explicit form, 

dAEnJdc:i = <nvJ\f.(R)\nvJy. (3.25) 

These are identically the expectation values (cf. Eq. (3.16)) which form the 

coefficient matrix for the least-squares fit of the IPA. 

The need for an initial potential which forms a close approximation to 

the final potential has been discussed previously in terms of the reliability 

of a first-ordei perturbation model; a good initial potential can reduce the 

number of iterations required to achieve convergence. However, a slightly 

different interpretation here finds the use of first-order perturbation theory 

as the means of linearizing an inherently nonlinear problem, that is, the 

exact relationship between a Hamiltonian operator and its point spectrum. It 

appears that perturbation theory acts as the agent of a pseudolmearization of 
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the exact nonlinear problem; partial derivatives required for the 

least-squares analysis are obtained most accurately as Hellmann-Feynman 

integrals. The quality of partial derivatives in nonlinear least-squares 

analysis is a crucial factor in determining the rate of convergence of the 

problem. 

The expressions Eqs. (3.23-3.25) given above were written in terms of the 

wavefunctions of the final effective potential; in fact, in equating the 

Hellmann-Feynman treatment with the first-order perturbation setup, the subtle 

assumption, 

aEnJ^ = <*&&> wj£ > - <<jm i«L> • <3-26) 
was made. In the usual perturbative treatment, the true wavefunction is 

expanded, 

\€J > = i*>S > + x \*2* > + A2 I * S > + • • •> < 3 - 2 7 ) 
in terms of the zeroth-order eigenfunctions and perturbation corrections. 

This shows clearly the nature of the first-order perturbation assumption; the 

first- and higher-order wavefunction corrections are neglected in the first 

cycle and as the potential function is improved iteratively, 

i O > - \<C >• <3-2 8> 
that is, the IPA wavefunctions approach the exact wavefunctions. This is the 

inverse perturbation formulation of the problem of correcting wavefunctions 

which is, of course, implicit in the procedure. The IPA wavefunctions are 

implicitly, and nonlinearly, dependent on the c. coefficients of the potential 

correction. This demonstrates the importance of a good initial potential. 

The expectation values employed in the correction procedure depend critically 
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on the quality of the trial wavefunctions and will affect the convergence 

properties of the solution. 

Despite the demonstrated success of IPA in describing systems to which it 

had been applied, it remains theoretically deficient in its ability to 

describe rotational shifts that arise from a global heterogeneous 

perturbation. The validity of Eq. (3.11) was not in any way questioned 

despite the existing article of Herman and Asgharian (39). It would have 

taken little additional labour to implement a Bunker et al. (41) a(R)J(J + 1) 

contribution to the eigenvalues in the IPA algorithm. The importance of such 

a term in relation to the experimental errors must be established 

statistically and not a priori ignored. Finally, although Kocman and 

Hinze (115) claim the method to be within the adiabatic approximation, it is 

easy to see that the scheme can absorb homogeneous nonadiabatic perturbations 

as additional corrections to the rotationless potential curve. Thus, the 

claim of adiabaticity in the functions derived by the IPA is not proven simply 

by obtaining a satisfactory representation of the spectral data. Adiabatic 

and homogeneously nonadiabatic corrections are experimentally inseparable and 

potential functions derived in this fashion must reflect both effects. 

3.53 A Hamiltonian Correction Approach 

3.5.3 (a) Introduction 

The procedure described in this section has been developed by 

Coxon (119, 120) and applied to the description of the quantum energy levels 

and electronic structure of hydrogen chloride isotopomers. The method is 

employed in the present work to improve the understanding of the spectra, 

molecular stmctures, and electronic state interactions in the hydrides HF, 
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DF, HCl and DC1. The formulation rests soundly on the theoretical results of 

Watson (42), allowing Coxon to write an effective radial Hamiltonian for a *2 

electronic state n as, 

Cf^(R) = P2/(2/g + p2J(J + 1)[1 + qn(R))IR2 + lff(R), (3.29) 

defined with atomic masses to take into account the general tendency of the 

inner electrons to follow closely the motion of the nuclei. The inclination 

of the valence electrons to "slip" from rapid nuclear vibrations is described 

by applying a correction to the Bom-Oppenheimer potential, as given 

previously by Eq. (2.45), with radial functions S"(R) for each atomic centre 

i. The Sn.(R) can be expressed in terms of two other functions, S".(R) and 

Q?.(R), as in Eq. (2.43). In the formulation of Watson, the ^.(R) are pure 

adiabatic corrections, whereas the work of Bunker and Moss (40) shows that 

they contain some (small) nonadiabatic component. The functions (^.(R) 

describe homogeneous nonadiabatic interactions and allow for the vibrationally 

induced slippage effect. 

The slippage of valence electrons during particularly energetic nuclear 

rotations is characterized by the purely nonadiabatic function q (R) given in 

terms of isotopically invariant functions R?.(R), 

qn(R) = £(me/M.)R^(R), (3.30) 
i 

where, as indicated by Eq. (2.42), R?(R) is expressed in terms of two 

functions Rn.(R) and ^.(R). The functions R*.(R) are responsible for 

heterogeneous electronic state mixing. Due to the contributions from Q?.(R), 

the total function q (R) is purely nonadiabatic but not purely heterogeneous. 

i i 



A 
78 

353 (b) Numerical Procedure 

Unlike the IPA, the Hamiltonian Correction Approach (HCA) considers the 

adjustment of line position residuals by optimizing term value residuals for 

two states simultaneously. This is statistically more correct than the 

separate adjustment of term values, as the process of measuring a spectral 

line position correlates the two levels. It is also more pleasing 

conceptually to operate on true observables, the spectral line positions, 

rather than on derived quantities. The residuals Av, between the measured 

line positions, v , and those constructed from the eigenvalues of the trial 

Hamiltonians, vQ, are given by, 

Av, ,., n MJI — (E , tjt — E t ,.,) — (E n ttJi — E»»jf). (3.31) 
nvJnvI v n v J nvJ' v nvr nvJ' K ' 

The simultaneous adjustment of two AE , is accomplished by applying the 

principles of IPA. Starting with the approximate radial operator 

SfC\R) = P2/2/<at + rf(R) + /£./(/ + 1)/R2, (3.32) 

the terms 

AUn(R) + p2
&tJ(J + 1\(R)IR2, (3.33) 

associated with the difference between the trial and final effective 

operators, Eqs. (? 32) and (3.29), yield the corrections to the eigenvalues, 

where gn(R) = B2
tqn(R)/R2. Note that the exact corrections are given as 

expectation values of the final effective wavefunctions. Now, a first-order 

approximation for Eq. (3.34) is obtained, 
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and the individual kernels are expanded as 

AUn(R) = £ c. <p.(R), (3.36) 
i 

and 

gn(R) = y d. *.(R), (3.37) 
i 

casting the Av problem into, 

Kvf„vr - I <;<«>;>+ Z W P * + I ) -
i i 

y cj<̂ > - £ W(/"+l) . (3-38) 
i i 

where 

<*> - <*LW»>WL>- <V - <VL|*WIVL>- (3-39) 

Weighted linear least-squares optimization is applied to determine estimates 

of the coefficients. The weighting is achieved as a'. , where a. is the 

estimated measurement uncertainty of the i Une position. 

3.53 (c) Mathematical Model 

In retrospect, the most important consideration in the success of any 

inverted perturbation approach, is the choice of a mathematical basis for 

representing the unknov.n functions. It is also the main weakness of any sucL 

procedure; one attempts to determine functions with no prior knowledge of 

their radial variations. This requires thoughtful selection of a basis set. 

Also, at the fitting stage, much time consuming trial and error optimization 
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is not unusual. More will be said on this later, when the HCA is scrutinized 

through model calculations. 

Coxon (120) realized that the use of global functions, which exert an 

influence over the entire domain of molecular existence, can lead to 

difficulties. In particular, the determination of such functions is weighted 

strongly towards the lower vibrational levels, for which highly precise data 

are often available, paying little regard for spectrographically obtained 

electronic data. Thus, it was found (119) that highly precise low-v data 

could be fitted quite satisfactorily, whereas electronic data fits were 

characterized by systematic residuals that increased with v and / . In later 

work (120), use of functions that imposed corrections in locahzed regions of 

coordinate space, removed the systematic trend in the fitted residuals and 

allowed the inclusion of highly excited rotational levels in the fits. 

The mathematical model employed for AU (R) in this work is, 

AU (R) = AT + a S (R) + Y b G .(R) + Y c .F JR). (3.40) 

* ij 
AT is an adjustment to a trial electronic term value. The second function, 

S (R), is the first derivative of the trial rotationless potential, 

Sn(R) = dU°n(R)ldR, (3.41) 

which is approximated by the cintral-difference formula (121), 

. - U,^ + 8fr .. - 8U. . + Uuo 
b(K) — , (3.42) 

12« 

h being the radial distance between adjacent points in the numerical 

potential. The derivative term is aimed at translating the potential function 

along the intemuclear coordinate axis without changing the positions of the 

r 
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energy levels. Use of the first derivative term alone is not correct 

mathematically. The increment form of the Taylor series (122) defines, 

U(R + h)^U(R)^hdM^ + l d ^ +
l l d ^ + . . . , (3.43) 

dR 2! dR1 3! dRs 

as the mathematical transformation required to achieve a translation of the 

rotationless potential by h units along the radial axis. Clearly, then, use 

of the S (R) function alone ignores second and higher derivative terms. 

However, the approximation is good for small translations ?nd use of the first 

derivative alone in this work is justified a posteriori. The explicit use of 

higher than first derivatives in the fitting procedure is possible but would 

necessitate the use of nonlinear least-squares since the coefficients of 

derivative terms in the Taylor series expansion, Eq. (3.43), are interrelated. 

The G .(R) are modified Gaussian functions, nr 

GJR) = (R - Re)^[-anik(R - Rjl (3.44) 

constructed about a central radial distance R .. The damping parameters a 

are in general different on either side of R . (k = 1 and 2 refer to R < R . 
° ni K ni 

and R > R ., respectively). For two adjacent Gaussians, G . and G . v a , 

and a . are chosen such that the damping components of both functions 

have a value of 0.75 midway between R . and R (120). The 0.75 factor is 

somewhat arbitrary but Coxon has shown (120) that a fitted function is 

relatively insensitive to this, provided sufficient overlap between adjacent 

functions is ensured. Similar conclusions were reached by Hamilton et 

al. (123) in a recent application of a correction proceduie employing local 

Gaussian functions as a basis. 

Finally, the F ..(R) functions are defined by 

i 
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FJR) = (R - Rj for R < R^ and FJR) = 0 for R > R^ (3.45) 

and 

Fn.2(R) = (R - Rj for R > R^ and P /2(R) = 0 for R < R„e, (3.46) 

allowing for separate radial correction functions for the inner ( j = 1) and 

outer ( i = 2) limbs. R is the R value for electronic state n. 

The representation chosen for the nonadiabatic function g (R) is 

* . w - 1 ^ H ^ ) > <3-47> 
i 

where 

H .(R) = (R - * n y - (Rwe - ^ y , (3.48) 

with St chosen to be the smallest intemuclear separation to which the data 

are sensitive. 

353 (d) Model Testing 

3.53 (d.l) General Description of the Problem 

A major assumption of the least-squares method is that the selected model 

describes the physical problem perfectly. In practice this condition is 

almost never fulfilled. Here, the a priori assumption is made that the 

effective radial operator given by Eq. (3.29), portrays an adequate 

theoretical description of the p' ical problem. The reliability of this 

assumption can be established absolutely only by extensive ab initio 

calculations that consider explicitly the electronic structures and 

interactions of all possible states of a quantum mechanical system. This is 

clearly not practical here. In general, Eq. (3.29) can be trusted insofar as 
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a contact transformation of the exact Hamiltonian is valid. This requires 

that electronic states remain fairly well-separated so that any nonadiabatic 

interactions can be managed by a second-order nondegenerate perturbation 

scheme. 

The primary objective of the model calculations is to test the general 

reliability of the mathematical basis in reproducing known Hamiltonian 

operators from synthetic spectra. This will be of help in assessing the 

strengths and weaknesses of the HCA and will give an indication of the ranges 

of reliability of derived functions. 

The model problem is designed to approximate closely the situations 

encountered later in this work, where the procedure is applied to real data. 

Figure 3.1 portrays a hypothetical layout of three electronic states, labelled 

X, A, and B. The ground singlet X state possesses no axial electronic angular 

momentum in its unperturbed configuration. It does, however, gain a net 

magnetic moment through an interaction with its repulsive A IT neighbour state. 

The nonadiabatic mixing is small for the low vibrational levels of the ground 
l + state, but becomes quite significant as X 2 vibrational levels approach the 

dissociation limit, where neutral atomic products are shared by the two 

electronic states. Also, a unique perturber approximation is made, whereby 
1 1 4-

other n states are too far away from X 2 to influence its energy level 

manifold to the precision of the measurements. The (second-order) energy of 

interaction from the L-uncoupling can then be given approximately by (124), 

W' = - / ( / + 1){R(R)}2 L^L + 1 ) / l , (3.49) 
1 E(U) - £(2) 

where only valence electron excitation contributes to the kinetic energy of 

the nuclei. This expression bears a striking resemblance to the term 



Figure 3.1 

Arrangement of electronic states for the model calculations. 

The system is composed of a valence ground state X 2 + , a 

repulsive electronic state A II which correlates with the X 
1 + state dissociation products, and an ionic B 2 state at 

higher energy. 
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R(A) 

Figure 3*1 
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q(R)J(J + 1) in the effective operator, Eq. (3.29). In fact, by analogy with 

a more rigorous treatment (124), q(R) would be given by, 

q(R) = -A{B{R)}2\2af) Nm r2* x
 r - , (3.50) 

qK } K J L L s °* u(Axn) - u(xH)y K 

s 

where the summation is over closed-shell electrons around nuclei of distance 

x away from the centre of mass. The approximation of pure-precession is not 

used as it is clearly not realistic for the particular problem at hand 

It is evident that the perturbation to bound rotational energy levels 

will always be negative. This is fully consistent with the second-order 

Rayleigh-Schrodinger perturbation theory result which dictates that the 

unperturbed levels of the lower state adjust away (Le. in a negative 

direction) from the higher-lying perturber. With respect to the electronic 

state mixing, it is also assumed that the matrix element <(A Ti\L \X 2> from 

which the L(L + 1) term in Eq. (3.49) is derived, is slowly-varying and tends 

to zero at very small separations and in the limit of dissociation. These 

arguments are not only helpful in obtaining a reasonable radial variation for 

the model q(R) function, but also in providing a description that may later be 

of value in understanding the physics of real molecules. 

On the "experimental" front, the emission from the lower vibrational 

levels of the ionic B 2 + state to the upper vibrational levels of the X1!,* 

state has been "studied" photographically in the ultraviolet. The coupling of 
l + l B 2 to A II is assumed to be too small to characterize spectrographically, and 

mixing of B 2 + with high-lying Rydberg states is not of measurable magnitude 

for the low vibrational levels considered here. The ground state lower 

vibrational levels are known precisely from Fourier transform spectroscopy, 
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and an ensuing flame emission "study", examining intermediate vibrational 

levels, has closed-up the gap between the infrared and ultraviolet data. 

Spectral data are available both for a hydride HX and its deuteride DX, 

covering similar energy ranges. The hypothetical halogen atom X has only one 

stable nuclide. Synthetic spectroscopic information is summarized in Table 

3.2. The entire system has admittedly been designed to resemble HF and DF, 

for reasons that will become apparent as this work progresses. 

3.53 (d.2) Model Hamiltonians and Synthetic Spectra 

1 -4-

Herein, the model molecular systems are defined mathematically. The X 2 

valence ground state for the hydride HX has been represented by a Morse 

potential function, Eq. (2.101), the relevant parameters given in Table 3.3. 

The potential function of the deuteride has been constructed by adding the 
simple polynomial form, 

6 

AU%(R) = y h.(R - Rj, (3.51) 

to the hydride Morse function. The h. are listed in Table 3.3. The 

rotational perturbations from A II are described by the nuclear-mass-

independent part of the g(R) function, Eq. (3.37), as 

„ m R*(R) „ „ . 
(ft2/2) e f = a2(R - Rf + a3(R - R / + a4(R - R )4, (3.52) 

R 

constructed by considering the theoretical scenario described above. 

Parameters a. are listed in Table 3.3. It is assumed that the same functional 

form (Le. the isotopically invariant part) of g(R) applies to both 



TABLE 3.2 

Synthetic Spectroscopic Data Base for the Model Calculations 

HF DF 

Fourier Transform Infrared Spectra 

Bands: 1-0, 2-0 
Precision: 0.0002 cm" 

Bands: 1-0, 2-0 
Precision: 0.0002 cm" 

Infrared Flame Emission Spectra 

Bands: 1-0, 2-1, 3-2, 4-3, 5-4, Bands: 1-0, 2-1, 3-2, 4-3, 5^4, 

4-2, 5-3, 6-4, 7-4, 8-4, 6^5, lj±, 8 ^ , 9 ^ , 9 ^ , 

8-5 10-6,11-6,12-7 

Precision: 0.05 cm" Precision: 0.05 cm" 

B -> X Electronic Emission Spectra 

Bands: 0-12, 0-13, 0-14, 0-16, 

1-11, 1-15, 1-16, 2-10. 

2-14, 2-17, 3-15, 3-17, 

3-18, 3-19, 4- 9, 4-10, 

4-18, 4-19, 5- 9, 5-13, 

6-11, 6-12 

Bands: 0-20, 0-21, 0-22, 1-17, 

1-18, 1-19, 2-12, 2-16, 

2-17, 3-14, 3-15, 3-16, 

4-12, 4-13, 4-14, 5-23, 

5-24, 5-25, 6-22, 6-26, 

7-12, 7-13, 8-24, 8-26 

Precision: 0.030 cm" Precision: 0.035 cm - l 

Underlined data subsets were excluded in fit II (see text). 



TABLE 33 

Parameters of Hamiltonian Operators for the 
Model Calculations0 

Potential Functions 

HF(Z12+) Eq. (2.101) HF(B12+) Eq. (2.105) 

® =49 380 cm"1 

R =0.9168 A 

p =2.382 704 898 3 A"1 

Radial Range: 0.40 - 4.00 A 
Number of Points: 2001 

AU^(R) Function, 

hx = -4.20 

h2 = 10.16 
h3 = -11.60 

(h2/2)mR*(R)IR7 

a2 = -4.0 X 10"3 a3 = 

0 « 45 000 cm'1 

R = 2.1000 A 

Radial Range: 1.20 - 4.20 A 
Number of Points: 1201 

Eq. (3.51) 

hA = 6.02 

hs = -1.47 
hc = 0.14 

0 

: Function, Eq. (3.52) 

4.0 X 10"3 aA = -2.0 X 10"3 

4 

ah. are in cm" A-1 units and a. in units of amu cm" A"'. 
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isotopomers. This implies that only contributions from R^(R) in Eq. (3.30) 

are considered spectroscopically significant. 

B1?.* is assumed to be a Born-Oppenheimer state. Its representation has 

been chosen to reflect the ionic nature of the interaction, and is given by a 

Fues-Kratzer potential, Eq. (2.105), with R and S> given in Table 3.3. 

Following the construction of model operators, the point spectra 

(eigenvalues) were obtained. The ground state rovibrational eigenvalues for 

the two isotopomers were obtained through numerical solution of the radial 
l + wave equation, whereas the eigenvalues for the B 2 state were obtained 

directly from Eq. (2.106). The spectra described briefly above were then 

calculated from the true eigenvalues, normally distributed zero-mean random 

errors were generated using the Box-Muller method (125) and added onto the 

synthetic line positions. These errors are known precisely and facilitate a 

later comparison with the fitted values. 

353 (d3) Trial Operators and Least-Squares Fit 

Although trial operators for a real data set are normally found from 

least-squares estimates of the molecular constants, this was not required for 

the model calculations; it sufficed to identify the quantum mechanical 

definitions of the traditionally derived rotational constants and vibrational 

term values. In defining properly the tme rotational constant of the ground 

state, it is helpful to write, 

EvJ=Gv+ W + !)1 " DJW + X ) l 2 + HvW + V? + • ' •> < 3 - 5 3 ) 
so that the partial derivative 
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BE . 
vJ -Bv~ 2Dy[J(J + 1)] + 3Hv[J(J + l)]2 + . . ., (3.54) 

3[J(J + 1)] 

evaluated at / = 0, gives precisely the rotational constant B . This partial 

derivative may be estimated by applying the Hellmann-Feynman theorem with 

A = / ( / + 1) to yield, 

BU}(R) 1 
B 

v 

BE . 
VJ 

WV + i)IUo 
- <vj 

I W + l))J/=0
 v IV„>, (3.55) 

where, as a result of the heterogeneous mixing, 

UJR) = U0(R) + p2J(J + 1)[1 + q(R)]IR2. (3.56) 

Evaluation of the partial derivative on the right-hand side of Eq. (3.55), 

gives 

Bv = /?2<VJ[1 + ^(R)]/R2|VW>, (3.57) 

which is composed of the usual mechanical R expectation value, and a 
2 2 

nonmechanical contribution, p\q(R)IR > . Identical results are obtained by 

applying the first-order Rayleigh-Schrodinger perturbation expression, showing 

once again the intimate relationship between the HFT and ordinary perturbation 

theory. It is important to realize that a conventional Dunham-style 

rotational analysis would estimate precisely these constants, as the energy 

levels, however parametrized, reflect fully the L-uncoupling effects. The 

constants of Eq. (3.57) can then be safely regarded as the experimental 

constants, demonstrating the futility of performing time consuming 

band-by-band and merge fits. However, it is only fair to comment that 

constants obtained traditionally would be slightly different than these 

quantum mechanical constants owing to interparameter correlations and 

tmncation of the series in the least-squares procedure. At the same time, 
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for the lowest-order constants B , these should be of the order of the 

uncertainties. The tme rotational constants were thus calculated and the 

vibrational terms, G , were obtained by numerical integration of the radial 

wave equation with UJR), the tme rotationless potential. The Gy, Ry pairs 

were employed to calculate first-order RKRV curves which serve as the trial 

potentials. 

In order to introduce uncertainty in the RKRV calculations, the 

rotational constants and the vibrational term values were truncated at the 

fourth and second decimal places, respectively. Additional error arises from 

the use of a simple first-order RKRV procedure, although for the Morse 

potential this would be very small, as there exists an exact quantization 

condition for this oscillator, which resembles that of Bohr and 

Sommerfeld (126). This can be expected also by calculating the Dunham Y 

correction, which turns out to be zero, suggesting that the third-order JWKB 

contributions are small, at least near the minimum. The eight-point 

interpolation of Lagrange introduces yet more error, and finally, the RKRV 

potential for X 2 + was purposely extrapolated to a false dissociation limit, 

20 cm" lower than the tme value. This might be a common problem for hydride 

molecules, as the dissociation energy is rarely known with more certainty, 

chiefly due to the relatively sparse distribution of vibrational levels near 

dissociation. With the pointwise trial potential known, it is possible to 

calculate exactly what correction is required to give back the model 

potential. The main objective of the model testing is to examine to what 

extent the least-squares procedure employed here can recover the model 

functions. RKRV calculations were also carried out for the BXX+ state 

employing rotational constants which were simple expectation values of R . 
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l + - l 

For the B 2 state, a dissociation energy 2000 cm lower than the tme limit 

was assumed. 

In order to set up the least-squares problem to take into account data 

for two isotopomers simultaneously, the rotationless potential functions for 

X T resulting from such an analysis are written as, 

DJ^IOHX = tf^Hx + Al^(R), (3.58) 

£/f(R)DX = U f ( R ^ + AU£(R), (3.59) 

where Aut(R) relates the hydride and deuteride effective functions. For the 
1 4-

Born-Oppenheimer B 2 state, 

for both isotopomers. The ground state rotational perturbations can be 

handled simultaneously for both HX and DX, having already made the 

approximation that the halogenic contribution to q(R) is spectroscopically 

insignificant. Thus, the relationship 

qf(R) = (MD/MH>gX(R), (3.61) 

is built into the fit. 

The mathematical model employed in the representation of correction 

functions is given by Eq. (3.40). Table 3.4 lists the basis functions that 

represented correction functions in the least-squares fit. Initial fits were 

concerned with finding an adequate representation for the basic correction 

functions, AUJR) and AUJR), as well as for the function gJR), by employing 

a small representative hydridic data base. This was accomplished by numerous 

trial and error fits. Once satisfactory representations of these functions 

were obtained, a partial representative data base for both isotopomers was set 



TABLE 3.4 

Basis Functions for Model Calculations 

Z 1 2 + State 

AU^R) \U*(R) 

G i n " and G i n? Fy„ and i? 

F . F and F F F F F 
rX42' Z62 Z82 ^12' X32' X52' ^72, 

<w* and ^ 2 
5 * 5 Z 

%(*) WB(R) 

HXA, HX5 and ff^ J ^ , ^ and / ^ 

F F F F 
532' 552' 572' J392 

The functions are defined in the text by Eqs. (3.42, 3.44, 
3.45, 3.46, and 3.48). The superscripts " T 1 " refer to 
Gaussian functions centered on inner/outer turning points of 
the vibrational levels denoted as subscripts. The subscripts 
J for functions F identify the electronic state. 
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up. Numerous subsequent fits optimized the additional functions required to 

take the effective hydride functions to those of the deuteride. Finally, the 

entire data set was included in a two-isotopomer fit. 

Before a comprehensive discussion is made of the results, it is helpful 

to summarize briefly the final findings. The reduced standard deviation, 

which is defined as, 

Jy* - v' ) 2 / 2 

i i 

with / being the degrees of freedom and e. the measurement error of the / 

line position, is ideally a = 1, for a model representing the data within 

the precision of the measurements, on average. The value obtained here in fit 

A (complete data base) was a = 1.07, which is considered satisfactory. 

Some numerical results of interest are summarized in Table 3.5; with a full 

data set, the ability of the method to extract the model electronic term value 

is excellent. However, the fact that the final equilibrium bond lengths are, 

for the ground state, further away from the model values than the trial 

estimates is somewhat disconcerting. It can be noted, however, that the 
HX DX 

fitted difference, R - R , was obtained very accurately. 

A second data base was collected, excluding all spectroscopic information 

for the deuteride in the region v = 5-14 of the ground electronic state. This 

simulates the situation which is found for the spectral data base of the 

diatomic DF, considered later in this thesis. A subsequent least-squares fit 

(B), gave a reduced standard deviation identical to that of fit A. Moreover, 

it was found (Table 3.5) that the electronic term values of the B 2 + state 

were obtained in very good agreement with the model parameters, despite the 
1 4-

gap of several thousand wavenumbers in DX(X 2 ). The interpolated data were 



TABLE 3.5 

Results of the Model Calculations: Radial Functions 

Quantity HF DF 

i?™0d(X12+) 0.916 800 0 A 0.916 807 5(1) A 

e 

m o d ( z l 2 + ) 

Rf(xh+) 0.916 791 7(1) A 0.916 799 3(1) A 

R™od(R 2 1 )+ 2.100 0 A 

Rfit(Ri2+) 2.099 999 5(5) A 
e 

7^od(B12+) 84 780.00 cm"1 84 800.00 cm"1 

FIT I 
T^B1^) 84 780.01(2) cm"1 84 799.98(2) cm"1 

FIT II 
7^it(R12+) 84 779.98(3) cm"1 84 799.88(6) cm"1 

Quantities Xmo and X t are associated with the model and 

fitted operators, respectively. R is the equiUbrium bond 
* 1 + length and T is the term value of 5 2 . 
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typically within two to three standard measurement errors. 

Results for selected / for a representative model band, the 4-14 

electronic band of DX, are shown in Table 3.6. The random normally 

distributed errors Av added onto the synthetic line positions are *hown to 

be in better than expected agreement with the fitted residuals, Avfi . This 

situation is typical of the vast majority of line positions and is indicative 

of the large flexibility of the mathematical model. This shows the ability of 

the procedure in representing accurately spectroscopic line positions subject 

to random error. From the application of the procedure to real data, later in 

this work, it is found that systematic error is also readily detected. 

The ability of the procedure to predict energies and widths of quasibound 

states is shown by the results given in Table 3.7. It is particularly 

interesting to note that for the levels (v, J) = (24, 29) and 

(v, J) = (25, 26) of DX, which were not sampled by the least-squares fit, the 

agreement in the widths is nevertheless satisfactory. It should be mentioned, 

however, that several hne positions associated with high-lying orbiting 

resonances, could not be fitted by the model and had to be excluded from 

consideration. There does not appear to be any distinguishing characteristic 

linking these levels together. While they all have fairly short lifetimes, 

levels with even shorter lifetimes were included in the fit and represented 

satisfactorily. Perhaps these problems are associated with local 

discrepancies between the tme and fitted correction functions. 

3.53 (d.4) Radial Functions and Discussion 

Substantial effort with trial and error optimization was required to 

provide the success described above for the model calculations. During the 



TABLE 3.6 

Results of Least-Squares Fit for the Model DF 4-14 (5 -» X) Band 

R-Branch (cm"1) R-Branch (cm-1) 

/ v ,+Av Av Av~ v ,+Av Av Av" 
mod err err fit mod err err fit 

0 
4 
8 
12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 

mod 

51662.825 

51393.582 

50973.535 

50410.245 

49713.670 

48896.913 

47975.435 

46967.943 

45896.094 

44785.619 

43667.558 

42581.491 

41583.730 

are line 

0.027 

-0.037 

-0.082 

-0.004 

-0.037 

0.024 

-0.014 

0.016 

0.004 

-0.010 

-0.036 

-0.034 

0.065 

positions 

0.033 

-0.033 

-0.081 

-0.007 

-0.042 

0.016 

-0.027 

-0.002 

-0.013 

-0.018 

-0.038 

-0.039 

0.071 

synthesized 

51780.361 

51697.194 

51458.358 

51068.081 

50533.660 

49864.980 

49074.877 

48178.587 

47194.756 

46144.908 

45054.435 

43954.653 

42884.820 

41901.408 

I from the 

0.065 

-0.041 

-0.002 

-0.020 

-0.010 

-0.043 

0.024 

-0.042 

0.023 

0.103 

-0.006 

0.031 

-0.032 

0.047 

0.072 

-0.035 

0.002 

-0.020 

-0.013 

-0.049 

0.015 

-0.055 

0.006 

0.086 

-0.012 

0.031 

-0.034 

0.056 

eigenvalues of 

the model operators. Av are the random normally distributed 

errors and Av\.. represent the fitted residuals. 
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Results of the Model Calculations: Energies and Widths 
of Selected Quasibound Levels 

V 

10 
11 
12 
13 
14 
15 
16 
17 

18 
19 

V 

*24 

*25 

26 

/ 

40 

38 
35 
33 
30 
27 
24 
21 

17 

14 

/ 

29 

26 

21 

p,mod 

51 617.77 

51 390.69 

50 831.06 

50 704.76 

50 318.86 

50 023.86 

49 812.24 

49 671.96 

49 463.07 

49 454.01 

c-mod 

49 746.69 

49 667.91 

49 478.25 

-pmod 
fwhm 

HF(X 12 +) 

0.30 

1.71 

0.11 

1.49 

0.27 

0.08 

0.06 

0.15 

0.09 

1.46 

•pmod 

fwhm 

DF(Z !2 +) 

0.30 

1.02 

0.13 

Em 

51 617.76 

51 390.70 

50 831.07 

50 704.77 

50 318.86 

50 023.85 

49 812.22 

49 671.76 

49 463.00 

49 454.09 

Em 

49 746.81 

49 668.69 

49 478.24 

pflt 
fwhm 

0.30 

1.73 

0.12 

1.55 

0.30 

0.06 

0.04 

0.11 

0.08 

1.33 

pfit 
fwhm 

0.19 

0.81 

0.11 

Quantities Xm and X l are associated with the model and 

fitted operators, respectively. E (cm" ) are the 

eigenenergies and I \ . (cm" ) are the full widths at half 

intensity maximum. Levels marked with an asterisk (*) were 

not represented in the least-squares fits. 
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course of this intermediate phase of the analysis it was possible to identify 

some interesting aspects of the physical problem which deserve some 

discussion. 

Since information pertaining to energy is employed to determine the 

radial variation of elements of the Hamiltonian operators, it seemed natural 

to consider a mapping of the vibrational-rotational energy eigenvalues onto 

the radial domain. This can be achieved by linking the energy levels to the 

classical turning points of motion for the outer limb, or to the intemuclear 

separations at which the probability function ip IR) has decreased to a small 

percentage (eg. 10%) of the outermost peak magnitude. The resulting 

distribution peaks at mid-v,J and finds the highest vibrational-rotational 

levels relatively isolated and sparsely distributed. Determining a correction 

function at large-R then places a large burden on these few implicitly 

outweighted levels. While low-v,/ levels near the potential minimum are also 

somewhat similarly distributed, these are often more precisely studied. The 

total weighting, then, derives explicitly from the precision of the data and 

the frequency of observation, and implicitly from the distribution of levels 

along the radial coordinate. 

A number of correction functions were obtained in various fits, differing 

only slightly from the true correction at short/large-R, while providing 

equally satisfactory representation of the data. This demonstrates the 

expected difficulties in obtaining a unique solution of the radial functions 

in regions of lower weights. Fortunately, it was also noted that as 

statistical correlations among fit parameters were reduced, by careful choice 

of basis functions, the fitted corrections reproduced the tme functions 

essentially exactly. The nonuniqueness problem is depicted in Figure 3.2, 
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Figure 3.2 

The correction function AUJR) for the model calculations. 

The solid line represents the model correction function and 

the broken lines are functions obtained in two independent 

fits (see text). R . and R are the innermost and 
v ' mm max 

outermost turning points respectively, obtained by 

considering all the fitted E ,. Filled circles represent 

the radial distances where the probability function ty IR) 

declines to 10% of its value at the outermost maxima for 

/ = 0 and J — J of given v. For H F vibrational levels 
max ° 

v = 16-19, the open circles indicate the analogous positions 

for other high-/ rotational levels, with / decreasing in 

steps of unity from / 
r J max 
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which shows two fitted AUJR) functions, both representing the line positions 

equally well, but with only one being a good representation of the true radial 

correction functions, also shown in the figure. Some indication is given of 

the distribution of the higher rovibronic levels along the radial coordinate, 

which helps in rationalizing the onset of nonuniqueness with a sharp decline 

in the distribution. The range defined by R . and R in Fig. 3.2, is that 
° J nun max ° ' 

of the innermost and outermost turning points obtained by considering all the 

fitted E r. 
VJ 

The agreement between the fitted and model g(R) functions is also very 

good, as shown in Fig. 3.3. The systematic disagreement at large-R is due to 

the rapidly diminishing implicit weighting in this region. For the functions 

AUJR) and AUz(R), Figures 3.4 and 3.5 show excellent agreement in regions of 

ample weighting, but exhibit clear disagreement at both extremities of the 

function, where only a relatively few (implicitly outweighted) line positions 

influence the determination of the functions. It is interesting to note, 

however, that the disagreement for the two limbs is of opposite sign; it is 

hence found that the model eigenvalues are predicted considerably better, 

despite the nonuniqueness in the determination of the radial functions at 

small/large-R. 

Although it is essential to choose radial ranges for the generation of 

first-order perturbation expectation values (Hellmann-Feynman/least-squares 

partial derivatives) which sample the rovibrational eigenfunctions adequately, 

it is not expected that the fitted corrections will be physically meaningful 

in this entire range of R. While this would be the case for a perfect model, 

the collective results of the model testing indicate clearly that the tme 

functions fall within the 95% confidence intervals of the fitted functions in 



Figure 33 

The isotopically invariant component of the ground state 

g(R) function for the model calculations. The solid curve 

represents the model function and the two broken curves give 

the 95% confidence limits of the fitted function. For the 

definitions of R . and R and the filled circles see the 
mm max 

legend to Figure 3.2. 
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Figure 3.3 



106 

Figure 3.4 

The function AUJR) for the model calculations. The solid 

curve represents the model correction and the two broken 

curves represent the 95% confidence limits of the fitted 

function. For the definitions of R . and R and the 
mm max 

filled circles see the legend to Figure 3.2. 
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Figure 3.5 

The function AUz(R) for the model calculations. The solid 

curve represents the model correction and the two broken 

curves represent the 95% confidence Umits of the fitted 

function. For the definition of R . and R and the 
mm max 

filled circles see the legend to Figure 3.2. 
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â  
X X 

D 
<1 

^^+ ^+^* 

-*K*^«' . 

\ 

w 
\ \ w 

« 
• > 

• 

I 

/ W 
/ "-1 

/ Xj 

1 1 

( 
< 

1 

K 
(0 

E QC 

" • • — 

c 

1 
cc 

o 
in CM E u 

o 
d CM i/> 

i 

Figure 3.5 



• • a 

110 

a slightly less extensive range of R. It is found that the innermost and 

outermost classical turning points (R . and R ), obtained by considering 

all the fitted eigenvalues, define a more realistic range of R for a 

statistically meaningful determination of the correction functions. It is 

evident that outside this range, the calculated statistical confidence limits 

have little significance. 

In summary, the overall results of the model testing are very 

satisfactory and quite enlightening. While the intermediate regions of the 

fitted corrections are trastwL^hy, the extreme inner and outer sections of 

the derived potential functions are less reliable and should be regarded with 

caution. This is partly due to the inherent nonuniqueness of the 

central field problem, which unavoidably correlates the corrections on the 

inner and outer limbs, and also due to a slight inadequacy of the mathematical 

correction model. In regions of low weighting, the procedure is more 

committed to the determination of a unique set of eigenvalues than unique 

determinations of the radial variations of the Hamiltonian operator elements. 

The uniqueness in the determination of radial functions can be improved by 

careful choice of basis functions as to decrease interparameter correlations, 

and hence also by the careful choice of trial operators. 



CHAPTER 4 

ROTATIONAL ANALYSIS OF THE BlZ+ - Xl2+ 

EMISSION BANDS OF D35C1 

4.1 Introduction 

The X1!.* state of HCl/DCl is not a pure covalent state. While it does 

yield neutral products upon dissociation, its chemical properties in the 

ground vibronic level reflect some degree of ionicity. This is due to an 
l + avoided crossing with the excited B 2 state, as a recent ab initio study has 

shown (127). The ground state is mainly ionic, 4a 2n 5a, at small (< 3.5 

bohr) intemuclear separations while at larger bond lengths (> 5.2 bohr) the 

4o22?r5o6a valence configuration is dominant. Contributing in the 

intermediate intemuclear separation region is yet a third configuration, 

4cr27t &r, peaking at about 15% of the total contribution at approximately 4.8 

bohr. The valence contribution increases rapidly at large R leading to the 
0 0 1 4* 

neutral dissociation products Cl( P) + H( S). Correspondingly, the B 2 

interaction is valence at small separations, becoming increasingly ionic at 
1 4-

long-range and yielding the products Cf( 5") + H . Also, at very small (= 1.5 

bohr) intemuclear distances, the B state intersects a set of tightly bound 

Rydberg states which converge gradually to, and resemble, the HCl (X U) core 

in character. 

A single electron (jt —> o*) excitation gives rise to the A n repulsive 
l + l + 

state, lying between X 2 and B 2 and sharing neutral dissociation products 

with I E + . This state contributes heterogeneously to the energy level 

manifold of the ground state in a rotationally dependent fashion. The smooth 
111 
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vibrational dependence of this effect makes it impossible to detect the A - X 

interaction from a spectroscopic analysis based on molecular constants for a 

single isotopomer. Figure 4.1 shows some of the low-lying electronic states 

of HCl(DCl). The experimental spectrum (128) displays severe local 

perturbations beginning approximately above v = 9(13) for HCl(DCl) of the B 2 + 

state due to interactions with the neighbouring Rydberg states. 

The ground electronic state of hydrogen chloride has been the subject of 

numerous spectroscopic studies. Very precise molecular constants are 

available for the lowest vibronic level (129). Far-infrared transitions in 

v" = 0 have been studied by tunable laser techniques and serve as reliable 

spectral standards. The first eight vibrational levels are known well from 

experiment and the higher vibrational levels (7 < v" < 17) have been 

characterized by the rotational analysis of Coxon and Roychowdhury (130). 

These authors observed emission from the lower (0 < v' < 6) levels of the B 
l + state. The B 2 state has also been detected in absorption from v" = 0 of the 

ground state by Douglas and Greening (128). The higher vibrational levels 

accessed in this study were found to be highly perturbed so that the quoted 

molecular constants must be viewed with caution. This study also reported 

fragmentary structure attributed to several high-lying Rydberg states. 
1 4* 

The spectroscopic characterization of the X 2 state of DCl is less well 

established. Only levels with v" = 0-5 have been studied experimentally and 

no information is available for the higher vibrational levels, the emission 

from B 2 + not having been hitherto observed. A principal aim of the present 

work is therefore to provide an analysis of the B - X system of DCl in 

emission to complement the information already available for the 

hydride (130). A combined treatment of HCl and DCl line positions will result 
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Figure 4.1 

Arrangement of low-lying electronic states of HCl(DCl). The 

potentials for ZX2+ and R*2+ are RKRV curves (130). All 

other potentials were taken from an ab initio study (127). 
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in radial Hamiltonian operators for each isotopomer and will allow for a 

reliable extrapolation to the energy levels of tritium chloride, as well as 

providing an improved understanding of the electronic structures of HCl/DCl. 

4.2 Experimental Details 

Experimental spectroscopy in the ultraviolet region is faced with special 

problems. The strongly absorbing R32" - X32~ (Schumann-Runge) band system of 
u 8 

atmospheric oxygen in the 1950-1759 A region interferes even if air is present 

at very low concentrations. Carbon dioxide and water vapour absorb below 

1750 A and molecular nitrogen poses problems below 1450 A (131). Thus for 

meaningful spectroscopic work below 2000 A, it is necessary to evacuate the 

chamber containing the dispersive element and the detector. 

The pioneering work of Victor Schumann (131) was instrumental in 

establishing a sound understanding of the special problems of vacuum 

ultraviolet (VUV) spectroscopy. Schumann recognized that ordinary quartz 

optics become opaque below 1850 A and employed fluorite prisms instead. Since 

the gelatin based emulsions employed traditionally also become opaque around 

1850 A, Schumann developed photographic plates which were essentially free of 

gelatin. Having established methodology with respect to optics, medium and 

detectors, Schumann can be regarded as the founder of VUV spectroscopy. 

The emission spectrum of DCl in the ultraviolet has been recorded with 

the 10.7-m vacuum spectrograph at the Herzberg Institute of Astrophysics. A 

detailed account of the construction and operation of this instrument has been 

published (132). It is useful, however, to review briefly some important 

features. The general layout of the spectrograph is shown in Figure 4.2. The 

entrance slit, diffraction grating, and photographic plate holder all lie 
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Figure 4.2 

Schematic of the 10.7-m concave grating vacuum spectrograph. 
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along the perimeter of what is known as a Rowland circle (131). The radius of 

curvature of the concave dispersion element is 10.685-m and its ruled area is 

198 X 100 mm. The slightly curved plate holder is 93-cm long and can hold two 

5 X 45 cm photographic plates. The entire assembly is contained within a 

vacuum tank a little over 11-m in length and equipped with a powerful pumping 

system composed of a parallel arrangement of a 22-cm Edwards 1500 L/s oil 

diffusion pump and a 52 L/s Kinney mechanical pump. In addition to this "fast 

system", there is a "stand-by system" consisting of a 15-cm National Research 

Corp. fractionating pump backed by a 5-cm Edwards diffusion pump and a 0.9 L/s 

Kinney mechanical pump. The plate holder assembly can be isolated from the 

rest of the tank by means of a gate valve, so that changing photographic 

plates can be accomplished without subjecting large parts of the tank surface 

to the atmosphere. 

The slit is also associated with a gate valve so that changes to its 

height and width can be made without breaking the vacuum in the tank; it is 

thus possible to operate the spectrograph for months without significant 

contamination from atmospheric gases. Since inert gases are transparent far 

into the ultraviolet (131), for certain studies it is possible to "flush" the 

surface of the grating with a steady stream of argon or helium. Two gratings 

were employed for the present study. The first is a 600 line/mm grating 

blazed at 11 600 A. Blazing is a process whereby the shape of the ruled 

groove is adjusted to cause the incident intensity to diffract with the 

highest possible efficiency at a particular angle (133). This grating has 

been coated with MgF2 in order to increase its reflectivity at approximately 

1200 A. A1200 line/mm platinum coated grating blazed at 1200 A was employed 

in its first-order for lower resolution exploratory work. This grating is 
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particularly helpful for the vacuum ultraviolet region owing to the high 

reflectivity of platinum at such wavelengths, and was used by Di Lonardo and 

Douglas in recording the electronic absorption spectrum of HF (87). 

The B1^ state was populated by flowing DCl (Matheson, 99.9% purity) and 

helium (Matheson, 99.995%) through a 2450 MHz microwave discharge, at total 

pressures of about 5 Torr. Order separation was attempted by predispersing 

and refocussing the emission onto the 20-/mi slit of the 10.7-m concave grating 

vacuum spectrograph. Spectra were recorded in the wavelength region 1660 to 

2400 A in the fourth to sixth orders of the 600 line/mm grating. Kodak SWR 

and 103a-0 as well as Ilford Q2 photographic plates were used with exposure 

times ranging from 7 min to 2lA hr and reciprocal dispersions of 0.018 to 0.035 

nm/mm. The exposed plates were subsequently developed and photographic 

prints of all the spectra were obtained. 

Measurement of the plates was made with the aid of a comparator 

accompanied by an oscilloscope display of the spectral line profiles. Atomic 

calibration lines were measured during the same sessions as the molecular 

lines to avoid any systematic shifts in the vacuum wavenumbers from different 

plates. Each plate required three separate measuring sessions and care was 

exercised to obtain slightly overlapped measurement regions between sessions 

so that any systematic shifts could be readily detected. The position of the 

plate along the platform was automatically punched onto a card after a 

conversion of the (analog) comparator translation wheel position into a 

digital signal. Additional information, relating to the relative intensity 

and shape characteristics of spectral line contours were manually punched onto 

cards. The cards were assembled and the information was transferred onto 

magnetic tape so it could be more easily manipulated. 
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43 Wavelength Calibration 

The first step of the analysis involved wavelength calibration of the 

molecular line positions. Initial efforts were concerned with the 

identification of atomic lines from the measurements with the vacuum 

wavelengths of Crosswhite (134). Here, the photographic prints were ,ery 

useful, but it was found that the job of identifying manually lines recorded 

in overlapping orders was very time consuming, with an average processing time 

of several hours for the results of each measuring session. Thus, the task of 

identifying atomic line measurements with standards, the least-squares 

construction of a dispersion curve relating the distance along the plate with 

the vacuum wavelength, and the generation of vacuum wavenumbers for molecular 

line measurements, were combined into an automated computer program. 

Program SPECTRUM (Appendix A-l) accomplishes the same tasks as the 

preliminary manual analysis in a matter of a few minutes. A brief description 

follows here, and is extended by comment statements in the source listing. 

The spectral order containing most assignments was selected (e.g. 3 r ) and 

approximate dispersion curve coefficients were used to make additional 

identifications and improve the preliminary dispersion curve. This iterative 

increase of identifications was carried out in an interactive fashion as the 

desired convergence was in a few cases not immediately realized, with fits 

latching-on to false dispersion curves. In such cases, the program was halted 

and a manual least-squares fit provided better trial coefficients. In all 

cases the desired convergence was achieved eventually. Following this, lines 

not identified previously were calculated in all other expected orders (2nd, 

4 , 5 ) and a search was performed to make the remaining identifications. 
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Finally, a least-squares fit employing all identified lines was carried out, 

excluding lines involved in coincidences between different orders. The fitted 

dispersion curve was then transformed to the order of the molecular emission 

spectrum. This made possible the rapid estimation of vacuum wavenumbers for 

the DC1(R - X) measurements. 

Small adjustments (< 0.10 cm ) were made to the wavenumbers of a small 

portion of the data to establish internal consistency, and multiple 

measurements of the same transition were averaged to produce a unique set of 

measurements. 

4.4 Analysis of Molecular Spectrum 

The high rotational temperature of DC1(R12+) formed in the discharge 

leads to severe overlapping between different vibronic bands, yielding 

spectra which lack any apparent regularity. In addition, the presence of two 

predominant nuclides of chlorine lends further complexity to the spectrum. A 

feature that is often helpful in initiating the process of assigning quantum 

numbers to spectral line positions is a well-defined band head. In this case, 

however, the rapidly dininishing line intensities toward low-/ make the visual 

identification of bandheads an almost impossible task. An appreciation for 

these problems can be gained by examining Figure 4.3 which shows a small 

partially assigned portion of the spectrum. 

A modem technique that could be employed to simplify the appearance of 

complex spectra involves a supersonic jet expansion apparatus, leading to 

spectra with a "cold" rotational distribution. However, this technique is 

useful for absorption spectroscopy only. Initial efforts at making 

assignments consisted of drawing "stick-spectra" from approximate term values 
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I 

Figure 43 

A small portion of the B 2 + -» X 2 + emission band system of 
35 

DCl. Assignments are shown for the D CI isotopomer. 



123 

u> « 

Figure 4*3 
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obtained by solving the radial wave equation with the H CI potentials (130). 

Shifting these along the appropriate photographic prints led to visual 

matches. Although some success was realized, it was decided to abandon such 

traditional methodology and devise a computer-aided search procedure for 

obtaining quick and reliable rotational assignments. 

The computer search was developed on the basis of the conventional 

combination relations. These can be written as, 

AJTfJ) = R(J - 1) - P(J + 1) = F"v(J + 1) - FfJ - 1), (4.1) 

A2F'v(J) = R(J) - P(J) = F'v(J + 1) - F'v(J - 1), (4.2) 

for the lower and upper states, respectively. In past years, analyses of 

moderately resolved spectra employed these expressions in a graphical fashion 

to yield estimates of molecular constants. However, with better resolved 

spectra now available, and with the wide availability of computers and 

software, the role of combination differences in spectroscopic analyses has 

been somewhat diminished. These were found to be very helpful in the present 

work mainly for their rather low sensitivity to small smooth changes to the 

intemuclear potentials. In preliminary efforts towards the development of 

molecular line search software, it was found that term values for D35C1 

obtained by employing the H3 CI RKRV potentials of Coxon and 

Roychowdhury (130), gave synthetic line positions that deviated from the 

observed values by several wavenumbers. At the same time, however, the 

synthetic combination differences were in remarkably good agreement with those 

observed. This provided for a stable and tmstworthy means of obtaining quick 

and reliable rotational assignments. 

As the analysis progressed, better potentials and combination differences 
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became available. Two separate computer search programs were written, one 

each for the upper and lower combination differences. The algorithms were 

designed to search Av wavenumber units on either side of the calculated 

combination difference, and Ava wavenumbers on either side of the calculated 

R(J) lines; thus, the amount of output could be controlled. From the several 

possibilities provided, it was quite straightforward to recognize a nonrandom 

/•dependent pattern in the residuals between observed and calculated 

frequencies, signifying the discovery of a vibronic band. 

Using the progressively improved potentials for both states, it was 

possible to decide which bands to search for, on the basis of calculated 

Franck-Condon factors (FCF). These are defined as, 

/--00 

XV J V J V'JPWJLWR 
2 

(4.3) 

the square of the overlap integral between rovibronic wavefunctions involved 

in a transition. The FCF for DCl were found to be highly /-dependent, and a 

simple / = 0 calculation did not offer an accurate prediction of the 

observations. Table 4.1 shows FCF calculated for various values of / , on the 

basis of the final RKRV potential functions given below. These were extremely 

useful in rationalizing observed intensity patterns and in avoiding futile 

searches for stmcture with predicted low transition probabilities. Even with 

this insight in hand, however, the poor extrapolation properties of a power 

series in / ( / + 1) often precluded the identification of stmcture which 

commenced or resumed at higher / . 
35 

Assignments were made for 56 bands of D CI with 0 S v' <> 7 and 

11 < v" £ 23. Rotational lines belonging to a vibronic transition were fitted 

to a band origin and rotational parameters for both electronic states, in 



TABLE 4.1 

Franck-Condon Factors0 for the Bh+ - Z 1 2 + Band System of D35C1 

for Selected Values of / 

v" J v' = 0 v' = 1 v' = 2 v' = 3 v' = 4 v' = 5 u' = 6 v' = 7 

11 0 
15 
30 
45 
60 

12 0 
15 
30 
45 
60 

13 0 
15 
30 
45 
60 

14 0 
15 
30 
45 

15 0 
15 
30 
45 

16 0 
15 
30 
45 

17 0 
15 
30 
45 

18 0 
15 
30 
45 

1.48-5 
1.56-5 
2.08-5 
5.27-5 
4.33-4 

7.23-5 
7.82-5 
1.13-4 
3.15-4 
2.78-3 

3.18-4 
3.53-4 
5.46-4 
1.63-3 
1.48-2 

1.26-3 
1.43-3 
2.32-3 
7.24-3 

4.41-3 
5.09-3 
8.56-3 
2.69-2 

1.36-2 
1.59-2 
2.71-2 
8.10-2 

3.66-2 
4.28-2 
7.16-2 
1.88-1 

8.33-2 
9.65-2 
1.53-1 
3.05-1 

2.14-4 
2.16-4 
2.58-4 
5.27-4 
2.95-3 

8.64-4 
9.01-4 
1.16-3 
2.53-3 
1.41-2 

3.08-3 
3.29-3 
4.46-3 
1.01-2 
5.04-2 

9.59-3 
1.04-2 
1.46-2 
3.26-2 

2.55-2 
2.80-2 
3.93-2 
8.02-2 

5.65-2 
6.19-2 
8.34-2 
1.34-1 

9.92-2 
1.06-1 
1.28-1 
1.17-1 

1.26-1 
1.28-1 
1.16-1 
1.08-2 

1.47-3 
1.44-3 
1.56-3 
2.63-3 
1.03-2 

4.87-3 
4.92-3 
5.68-3 
1.01-2 
3.64-2 

1.39-2 
1.43-2 
1.73-2 
3.06-2 
8.68-2 

3.31-2 
3.47-2 
4.24-2 
6.97-2 

6.41-2 
6.71-2 
7.97-2 
1.05-1 

9.38-2 
9.65-2 
1.03-1 
7.89-2 

9.13-2 
8.84-2 
6.91-2 
5.13-3 

4.03-2 
3.17-2 
5.60-3 
4.82-2 

6.35-3 
6.07-3 
6.06-3 
8.64-3 
2.45-2 

1.69-2 
1.67-2 
1.77-2 
2.60-2 
6.26-2 

3.74-2 
3.76-2 
4.14-2 
5.85-2 
9.34-2 

6.56-2 
6.67-2 
7.30-2 
8.84-2 

8.47-2 
8.55-2 
8.65-2 
6.87-2 

6.79-2 
6.54-2 
5.12-2 
7.47-3 

1.90-2 
1.47-2 
2.15-3 
2.75-2 

3.29-3 
6.92-3 
3.06-2 
6.52-2 

1.89-2 
1.78-2 
1.68-2 
2.07-2 
4.31-2 

3.95-2 
3.85-2 
3.85-2 
4.80-2 
7.69-2 

6.47-2 
6.44-2 
6.63-2 
7.61-2 
6.32-2 

7.64-2 
7.67-2 
7.68-2 
6.66-2 

5.35-2 
5.26-2 
4.47-2 
1.38-2 

1.03-2 
8.67-3 
2.09-3 
1.19-2 

6.65-3 
9.20-3 
2.40-2 
5.75-2 

4.90-2 
5.24-2 
5.62-2 
6.04-3 

4.01-2 
3.79-2 
3.47-2 
3.80-2 
5.82-2 

6.28-2 
6.14-2 
6.00-2 
6.52-2 
6.82-2 

6.99-2 
7.03-2 
7.06-2 
6.63-2 
2.20-2 

4.48-2 
4.57-2 
4.34-2 
2.32-2 

6.66-3 
6.56-3 
3.42-3 
2.35-3 

8.17-3 
9.12-3 
1.67-2 
4.50-2 

4.48-2 
4.62-2 
4.96-2 
2.16-2 

3.16-2 
2.80-2 
1.12-2 
1.43-2 

6.04-2 
5.82-2 
5.38-2 
5.40-2 
6.17-2 

6.53-2 
6.58-2 
6.60-2 
6.43-2 
4.23-2 

4.00-2 
4.24-2 
4.47-2 
3.40-2 
9.37-4 

5.25-3 
6.27-3 
6.17-3 
2.14-4 

8.18-3 
7.69-3 
9.90-3 
2.80-2 

4.08-2 
4.11-2 
4.36-2 
3.55-2 

2.89-2 
2.76-2 
1.81-2 
3.53-4 

9.46-5 
5.10-4 
7.33-3 
3.77-2 

6.25-2 
6.28-2 
6.17-2 
5.91-2 
5.30-2 

3.87-2 
4.20-2 
4.71-2 
4.37-2 
1.64-2 

5.40-3 
7.32-3 
1.06-2 
5.85-3 
4.98-3 

6.92-3 
5.46-3 
4.21-3 
1.13-2 

3.71-2 
3.62-2 
3.61-2 
3.90-2 

2.87-2 
2.89-2 
2.54-2 
5.71-3 

3.69-5 
9.11-6 
9.04-4 
2.08-2 

2.74-2 
2.87-2 
3.42-2 
1.63-2 



TABLE 4.1 (Cont'd) 

for the R V - X1! 

for Selected Values of / 

Franck-Condon Factors8 for the R V - x V Band System of D35C1 

v" 

19 

20 

21 

22 

23 

/ 

0 
15 
30 
45 

0 
15 
30 
40 

0 
15 
30 
35 

0 
15 
30 
35 

0 
15 
20 

v' = 0 

1.56-1 
1.76-1 
2.47-1 
2.90-1 

2.29-1 
2.46-1 
2.75-1 
2.08-1 

2.45-1 
2.42-1 
1.75-1 
1.13-1 

1.69-1 
1.41-1 
3.83-2 
5.63-3 

5.71-2 
3.22-2 
1.71-2 

v' * 1 

9.51-2 
8.30-2 
2.94-2 
1.08-1 

1.79-2 
6.27-3 
2.33-2 
2.34-1 

2.29-2 
5.32-2 
2.31-1 
3.24-1 

1.83-1 
2.37-1 
2.82-1 
1.64-1 

2.61-1 
2.37-1 
1.98-1 

v' = 2 

6.47-7 
1.70-3 
3.37-2 
6.63-2 

4.98-2 
6.61-2 
9.34-2 
1.08-2 

8.90-2 
7.69-2 
3.30-3 
2.67-2 

6.39-3 
6.56-4 
2.09-1 
3.87-1 

1.18-1 
2.15-1 
2.93-1 

v' = 3 

5.25-2 
6.00-2 
6.74-2 
4.31-5 

5.41-2 
4.35-2 
3.80-3 
3.11-2 

5.85-5 
2.99-3 
5.42-2 
5.73-2 

6.25-2 
7.27-2 
4.81-3 
5.95-2 

2.24-2 
4.80-4 
1.19-2 

v' = 4 

3.86-2 
3.18-2 
6.16-3 
4.30-2 

2.42-4 
3.17-3 
3.52-2 
4.74-2 

4.98-2 
5.56-2 
2.97-2 
4.66-3 

1.95-2 
6.03-3 
1.90-2 
1.26-2 

2.91-2 
4.26-2 
4.02-2 

vf *• 5 

3.17-4 
1.85-3 
1.90-2 
3.04-2 

4.07-2 
4.46-2 
3.68-2 
4.01-4 

1.84-2 
9.31-3 
6.15-3 
2.80-2 

1.88-2 
3.16-2 
3.74-2 
1.53-2 

3.19-2 
1.55-2 
5.10-3 

v' = 6 

3.37-2 
3.64-2 
3.91-2 
1.53-4 

2.03-2 
1.45-2 
6.34-5 
2.22-2 

9.63-3 
1.68-2 
3.68-2 
2.70-2 

3.38-2 
2.47-2 
7.86-4 
2.51-2 

5.52-3 
1.73-2 
2.86-2 

v' « 7 

2.35-2 
2.04-2 
6.69-3 
1.64-2 

3.40-3 
6.40-3 
2.34-2 
2.61-2 

3.40-2 
3.10-2 
8.18-3 
6.86-5 

3.30-5 
2.45-3 
2.45-2 
1.54-2 

3.24-2 
2.56-2 
1.64-2 

a1.48-5 reads as 1.48 X 10"5. 
bj = / ' = /". 
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accord with the model, 

v(v',v",/',/") = v0(v',v") + F'(v',J') - F W " ) + e., (4.4) 

where 

vQ(v',v") = T + G^- G"v, (4.5) 

and 

F(v, J) = y Xln\j{l + l)f, (4.6) 
n 

and e. are the associated measurement errors. This individual band fitting 

approach of 2784 lines led to a set of 560 parameters, most of which were 

redundant estimates. The results for individual band fits are given in Table 

4.2. These results were merged to a set of single-valued estimates composed 

of 32 upper state and 65 lower state rotational parameters (Table 4.3) and 56 

band origins (Table 4.2). The standard deviation of this merge was a = 1.70, 

dictating that reported standard error estimates for the parameters should be 

multiplied by this factor. A subsequent merge in which the 56 band origins 

were reduced to a set of vibronic term values relative to the energy of the 

lowest observed level, v" = 11, gave a standard deviation of a = 1.81, 

indicating that there is little relative systematic error in the data across 

the extensive band system. The relative vibronic terms are listed in Table 

4.4. 

45 RKRV Potentials and Electronic Isotope Shift 

Since energy data are not available for ground state levels with 

v" = 6-10, the energy of v" = 11 relative to the energy of v" = 0 can only be 

obtained by interpolating vibrational intervals above v" = 5 and below 
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TABLE 4.2 

Least-Squares Fits* for Individual Bands of the 

R*2+ - Z x 2 + Band System of D35C1. 

v' 

0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 
4 
4 
4 

v" 

16 
17 
18 
19 
20 
21 
22 

15 
16 
17 
18 
19 
21 
22 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

13 
14 
15 
16 
18 
19 
21 
22 

12 
13 
14 
15 
17 
18 
19 
21 

V 0 

49529.90(2) 
48316.34(2) 
47167.78(2) 
46085.99(2) 
45075.07(3) 
44139.38(2) 
43284.35(2) 

51417.28(2) 
50142.48(2) 
48929.40(2) 
47780.34(1) 
46698.58(3) 
44751.96(3) 
43896.94(2) 

53347.83(2) 
52013.35(2) 
50738.56(1) 
49525.48(1) 
48376.41(2) 
47294.63(3) 
46283.75(4) 
45348.04(3) 
44493.05(3) 
43725.28(2) 

55320.20(1) 
53927.88(1) 
52593.40(1) 
51318.58(1) 
48956.52(2) 
47874.73(2) 
45928.09(3) 
45073.11(3) 

57333.89(1) 
55884.83(1) 
54492.51(1) 
53158.02(1) 
50670.19(2) 
49521.12(1) 
48439.33(3) 
46492.76(3) 

a 

0.030 
0.032 
0.030 
0.032 
0.031 
0.031 
0.033 

0.026 
0.030 
0.026 
0.026 
0.030 
0.036 
0.029 

0.034 
0.030 
0.032 
0.030 
0.035 
0.041 
0.034 
0.029 
0.027 
0.026 

0.027 
0.024 
0.027 
0.030 
0.030 
0.033 
0.037 
0.025 

0.028 
0.029 
0.032 
0.032 
0.039 
0.028 
0.036 
0.037 

N 

49 
58 
72 
65 
50 
47 
23 

56 
82 
72 
58 
23 
36 
47 

82 
85 
73 
58 
27 
24 
33 
31 
15 
19 

87 
82 
73 
45 
36 
40 
19 
29 

79 
79 
80 
66 
34 
52 
17 
21 

' P 

22-58 
11-52 
7-49 
6-48 
3-31 
4-38 
3-28 

24-56 
7-55 
2-51 
4-38 

12-22 
16-40 
5-37 

3-60 
6-56 
7-50 
2-38 
3-23 

32-47 
16-38 
13-40 
24-37 
6-22 

4-64 
6-55 
3-49 
5-35 

24-48 
6-32 

28-39 
7-30 

4-62 
2-52 
1-58 
2-47 

27-50 
3-40 
7-24 

14-32 

JR 

27-54 
9-52 
8-50 
5-48 
6-37 
0-39 
3-30 

22-56 
7-56 
5-50 
4-38 

11-31 
17-40 
4-37 

3-59 
6-56 
4-50 
2-40 
3-24 

33-47 
16-37 
16-41 
24-37 
7-19 

8-63 
5-54 
3-49 
4-35 

23-49 
3-31 

25-38 
7-28 

2-59 
3-53 
0-56 
1-49 

27-49 
0-38 
9-26 

13-30 



TABLE 4.2 (Cont'd) 

Least-Squares Fits0 for Individual Bands of the 

v' 

5 
5 
5 
5 
5 
5 

6 
6 
6 
6 
6 

7 
7 
7 
7 
7 

v" 

11 
12 
13 
14 
17 
20 

11 
12 
13 
16 
19 

11 
12 
15 
16 
18 

5 1 2 + - xh* System of D35C1. 

V 0 

59388.12(2) 
57883.70(1) 
56434.65(2) 
55042.31(1) 
51219.96(2) 
47978.23(3) 

59923.86(2) 
58419.46(2) 
56970.39(2) 
52968.79(2) 
49524.94(3) 

60446.45(3) 
58942.04(3) 
54766.16(2) 
53491.34(2) 
51129.25(3) 

a 

0.030 
0.027 
0.030 
0.030 
0.033 
0.032 

0.025 
0.030 
0.036 
0.035 
0.036 

0.031 
0.032 
0.036 
0.043 
0.039 

N 

64 
67 
63 
45 
42 
24 

56 
47 
56 
45 
30 

67 
55 
40 
33 
26 

' P 

8-53 
5-48 
7-47 
3-37 
8-40 
7-29 

9-48 
4-41 
7-51 
6-37 
8-31 

13-55 
9-48 
6-37 
7-41 

12-41 

' R 

7-47 
4-41 
6-38 
1-36 
9-38 
9-31 

8-42 
3-40 

10-53 
2-40 
9-31 

15-55 
7-54 
8-35 
3-33 

12-41 

flThe merged band origins (vn) and standard 
deviations (a) are in cm" , N is the number of 
lines fitted; / and /_ indicate the ranges of 
fitted lines in the P and R branches. Standard 
errors (in parentheses) are given in units of the 
last quoted decimal place. 



TABLE 4 3 

Merged Parameters0 (cm-1) for the X*2 + and B1!,* States of D35C1 

v" 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 

v' 

0 
1 

2 
3 
4 
5 
6 

7 

2& 
V 

4.16925fi(2) 

4.055418(1) 

3.9389^(1) 

3.8210Q7(1) 

3.6994?5(1) 

3.574185(1) 

3.4449^(2) 

3.3085Q5(2) 

3.16537Q(2) 

3.014552(4) 

2.8504^(3) 

2.671612(4) 

2.4700?(6) 

z9 
V 

1.40821?(1) 

1.41654?(1) 

1.4263g9(l) 

1.438139(1) 

1.451741(1) 

1.467023(1) 

1.483803(1) 

1.501133(1) 

-10W 
V 

1.3125g(3) 

1.32522(2) 

l-32937(2) 

1.354n(2) 

1.37675(2) 

1.403^(2) 

1-45223(3) 

1-497^(3) 

1.55856(5) 

L*W2) 
^ W 1 ) 
^ W 2 ) 
V 

2-95^(1) 

3-37596(l) 

^ W 1 ) 
4-36729(l) 
5.00589(1) 

5-7 0407(2) 
6.48552(2) 
7-2W2) 

lO&JP 

-0.05783(3) 

-0.04^(1) 

-0.136^(9) 

-0.14339(1) 

-0-22^(2) 

-°-38407(2) 
-0.47588(3) 

-°-76965(4) 

- ^ W 6 ) 
-0.8349(3) 
-2-l459(2) 
-3.441g(3) 

-30.943(27) 

V 

l-2727(7) 

1.80^(5) 

2 3 2 6 4 ( 5 ) 
3-0512(4) 

4-1472(5) 

5-26^(9) 

6.7054(8) 

7-84J8) 

10XW 
V 

0.04877(1) 

0.033%(4) 

0.047^(3) 

0.03841(4) 

0.04891(6) 

0.092^(5) 
a i V ) 
0.19^(2) 

°-38l04(3) 

°-<W2) 
0-8^(1) 
LW 2> 

92.851(55) -

1013*<?> 
V 

-0.5965(11) 

-0.9779(8) 

- l ^ t ? ) 
-1.7923(5) 

-2.87J7) 
-3.7558(17) 

-5.1651(15) 

-5.9947(14) 

io15^) 

-0.09072(1) 

-0.0786?(4) 

-0.103^(3) 

-0.H6J4) 
-0.164Q1(7) 

-0.28402(7) 

-0.40523(2) 

-°-71743(3) 
-1.36372(5) 

-1.1193(7) 
-4.33V2(2) 

•*W> 
•1087(411) 

°The standard errors (in parentheses) are given in units of the last 

decimal place preceding the subscript figures which have been added to 

reproduce the original data. 



TABLE 4.4 
1 1 4- 1 4-

Merged Vibronic Energies (cm ) for the B 2 and X 2 

States of D 3 5 ^ 
Tv' 

56484.95s(3) 

57097.534(3) 

57693.619(3) 

58273.67fi(3) 

58838.30^3) 

59388.11^3) 

59923.86g(3) 

60446.425(3) 

v" 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

V 

0.0 
1504.412(3 

2953.47^3, 

4345.794(3; 

5680.276(3; 

6955.075(3; 

8168.134(3; 

9317.18?(3; 

10398.952(3; 

11409.884(4; 

12345.57Q(4; 

13200.599(4; 

13968.34(2) 

"See footnote a of Table 4.3. 

The term values in the table refer to v = 11 of the 

ground state. They may be referred to v = 0 by 

adding 20077.0 ± 1.0 cm"1 (see text). 
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v" = 11. This procedure gave G(v" = 11) - G(v" = 0) = 20 077.0 cm"1 with a 

rather conservative error estimate of ± 1.0 cm"1. Following a similar 

interpolation of the missing rotational constants, through a fit to a power 

series in (v + VT), a first-order RKRV potential was constructed. The turning 
1 4- 1 " 

points and energies for the X 2 and B IP states are listed in Table 4.5. 
With an absolute energy scale for the ground state levels established, it 

1 + 35 
was possible to estimate the electronic term of the B 2 state of D CI and 

35 hence any isotopic shift from H CI. The value obtained here was 

7/(DCl) = 77 318 ± 1.0 cm-1, which, when compared to the value of 

T (HCl) = 77 307.13 cm"1 (119), gave an electronic isotope shift of 

AT = —11 ± 1.0 cm" . The approximate equation of Bunker (135), 

AT = 0.000068[r ] + [5e(HCl) - Be(DC\)]^L\ 

- [Be(HCl) - Be(DCl)]x<:L\, (4.7) 

where <X > was approximated by the sum of the values of L(L + 1) for the 

dissociation products for each electronic state, gave a value of AT = -5.0 

cm" , in only approximate agreement with the experimental value. 

4.6 Rydberg ~ non-Rydberg Interactions 

The inner limb of the ionic B 2 + state intersects the 0+ components of a 

set of high-lying Rydberg states which are derived from the ground II state of 

the ion. This gives rise to marked irregularities in large portions of the 

B 2 + <r- X 2+(i> = 0) absorption spectrum (136-139), which samples higher 

vibrational levels of the B state. A deperturbation of these primarily local 

interactions has yet to be attempted; nor has an unequivocal vibrational 

numbering been established for the levels of B 2 + involved in the absorption 



TABLE 4.5 

4 ~ + „ _ J r>l-c+ Ox_. r T^35, 

13^ 

RKRV Turning Points0 for the XlZ+ and Bl2+ States of DJ:>C1 

V 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19 
20 

21 
22 
23 

G* + yoo 

1066.60 

3157.66 

5195.03 

7179.05 

9109.99 

10988.03 

12813.25* 

14585.68* 

16305.20* 

17971.62* 

19584.59* 

21143.62 

22648.05 

24097.07 

25489.41 

26823.89 

28098.70 

29311.77 

30460.84 

31542.57 

32553.63 

33489.22 

34344.20 

35111.95 

xV 
R . nun 

1.19091 

1.13797 

1.10512 

1.08041 

1.06041 

1.04356 

1.02899 

1.01619 

1.00479 

0.99454 

0.98526 

0.97681 

0.96908 

0.96199 

0.95546 

0.94946 

0.94393 

0.93885 

0.93421 

0.92995 

0.92609 

0.92255 

0.91940 

0.91676 

R 
max 

1.37364 

1.45779 

1.52250 

1.57976 

1.63305 

1.68397 

1.73347 

1.78214 

1.83042 

1.87866 

1.92716 

1.97618 

2.02601 

2.07692 

2.12929 

2.18335 

2.23971 

2.29874 

2.36115 

2.42798 

2.50001 

2.57944 

2.66797 

2.77001 

G + ym 
v 00 

310.59 

923.17 

1519.26 

2099.31 

2663.94 

3213.75 

3749.51 

4272.06 

Bh+ 

R . mm 

2.34579 

2.22567 

2.14205 

2.07266 

2.01118 

1.95486 

1.90229 

1.85275 

R 
max 

2.68207 

2.81597 

2.91318 

2.99563 

3.06964 

3.13814 

3.20267 

3.26435 

00 
°Both R . and I? are given in Angstrom units: G + Y^ is in cm" . 

mm max °^ ° > •» m 
* Interpolated energies. 

Ym(Xh+) = 0.82 cm-1; Y^B1!*) = -1.97 cm" •1 
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spectrum of DCl. Progress in the latter had been curtailed due to the total 

absence of B - X emission data prior to the present work. 

Douglas and Greening (128) reported the vibrational numbering of B 2 + on 

a relative basis and proposed that the vibrational quantum number 

corresponding to the lowest level observed on their plates was v = 12. On the 

basis of the vibronic term values presented earlier in this chapter and the 

current T value, it has been possible to confirm this prediction. A 

graphical display of the determination of the absolute vibrational numbering 

of the B 2 + state of DCl is given in Figure 4.4. Also shown are the positions 

of B v + vibrational levels reported in the more recent resonance enhanced 

multiphoton ionization (REMPI) study of Callaghan et al. (139). These authors 

reported an additional level B 2+(u = 11), as shown in Fig. 4.4. The position 

of v = 11 is predicted in the present work to lie approximately 100 cm" from 

the value reported in Ref. (139). In view of the absence of a perturbation in 

HCl^X*) at similar energy, the assignment of 512+(u = 11) (139), which was 

supported by fragmentary data only, is clearly erroneous. 

The lowest energy interaction of B 2 + has been identified (138) as that 

with the H 2 + Rydberg electronic state. The sequence of B 2 + vibrational 

levels proceeds in a smooth fashion up to an energy of approximately 84 000 

cm" . Above this energy, the vibronic stmcture begins to display anomalous 

behaviour. It is possible to gain a qualitative understanding of these local 

perturbations quite effectively in a graphical manner. Figures 4.5 and 4.6, 

for HCl and DCl respectively, show clearly that discontinuities in the 

behaviour of rotational constants of 5X2+ occur precisely at the reported 

energies for the vibrational levels of H 2*. It is interesting to note that 
l + the positions of JS 2 levels can be rationalized qualitatively from the 



Figure 4.4 

Determination of the absolute vibrational numbering for the 

B 2 + state of DCl. Column A contains levels involved in the 

emission spectmm from the present study, as solid lines; 

the dashed lines are levels obtained by extrapolation on the 

basis of the smooth behaviour of levels observed in 

emission. Levels in column B are from the work of Douglas 

and Greening (128). The levels in column C are from 

Ref. (139). N is found to be 12. 
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Figure 4.5 
1 4-

Perturbations in the 5 2 state of HCl. The discontinuities 

in the vibrational dependence of the rotational constant, 

B , on the lower part of the figure, correspond to local 

interactions with the H(0+) Rydberg state's vibrational 

levels. The upper part of the figure displays the potential 

energy curves of BJ. and H(0 ) , as well as the 1(1) Rydberg 

state. The plot predicts an additional vibronic level v = 2 

of the H(0+) state which is responsible for the local 
- l l + 

interaction near an energy of 89500 cm . The B 2 state 

potential is from an RKRV calculation (130) and the Rydberg 

state potentials are Morse functions chosen to give 

eigenvalues corresponding to the observed vibronic energies 

(128). 
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Figure 4.6 

Perturbations in the 2J12+ state of DCl. The discontinuities 

in the vibrational dependence of the rotational constant, 

B , shown in the lower part of the figure, are due to local 

interactions with the H(0+) Rydberg state's vibrational 

levels v - 0 and 1. The upper part of the figure displays 
l + + 

the potential energy curves of B 2 and H(0 ) . A diabatic 

crossing of B 2 + and H(0+) is anticipated near v = 0 of the 

Rydberg state. 
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diagrams, given the positions of the perturbing H 2 vibrational levels. It 

is evident in Fig. 4.5 from the slightly larger than average gap between B 2 + 

vibrational levels v - 18 and v = 19 that an additional local interaction 

occurs between B1^" and another electronic state. This interaction is likely 

due to the experimentally unobserved v = 2 level of ^ 2 + and not due to the 

ground vibronic level of 1(1), also shown in the figure. The latter level is 
1 4* 

too close to the v = 18 vibronic level of 5 2 and hence cannot be the local 

perturber. 

An additional conclusion that can be made on the basis of the diagrams is 

that the the B1^ state potential is not characterized by a well-defined 

double minimum, in contrast to the results of a recent theoretical work (127). 

Instead, the two curves are shown to interact in a diabatic fashion near an 

energy of 84 500 cm" . However, a satisfactory quantitative interpretation of 

the experimental observations will probably not be achieved by employing 

solely diabatic electronic wavefunctions. Neither will a model constructed on 

the basis of purely adiabatic eigenvectors succeed in rationalizing the data. 

Unfortunately, it is not a simple matter to predict which formulation might 

achieve the best description of the data. 

A comprehensive interpretation of the B 2 + « H Z+ interaction is 

complicated further by the observation that perturbing H 2 + levels are not of 
l + pure 2 character. These acquire partial spin and orbital momentum through 

interactions with 3II(0+) and 32"(0+) states which also derive from the same 

Rydberg / complex. 



CHAPTERS 

SPECTROSCOPIC INVESTIGATIONS OF DEUTERIUM FLUORIDE 

PART A: FOURIER TRANSFORM SPECTROSCOPY OF DF 

5.1 Basic Principles of Fourier Transform Spectroscopy 

Experimental spectroscopists concerned primarily with the infrared region 

benefitted tremendously from the advent of Fourier transform spectrometric 

instmments. Fourier transform spectroscopy (140) has a profitable advantage 

over more conventional methods. For most of the latter, it is necessary to 

record portions of a spectmm in a consecutive fashion so that each wavelength 

must be sampled individually for a selected period of time. Photographic 

studies, on the other hand, often involve long exposure times over which a 

source or experimental conditions must be sustained. Interferometric 

techniques have improved the quality of spectroscopic information and reduced 

significantly the time required for data acquisition. 

Consider a hypothetical spectral transition in emission with frequency Vj 

and of infinitely small line width. The radiation associated with this 

emission is characterized by a pure sine wave of constant frequency v . If an 

additional transition of frequency v. is also considered from the same source, 

the radiation will now be described by a linear combination of these two sine 

waves. The two waves may combine constmctively or destructively at each 

point in time yielding a complex waveform known as an interferogram. The 

pattern is still easily decomposed into the individual sine waves. The 

process of decomposing the waveform into individual frequencies v. and v and 

143 
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intensities L and L is a well-known mathematical operation known as Fourier 

transformation (141). Essentially, this corresponds to an integration of the 

complex waveform from the time domain to the frequency domain. For a real 

emitting source composed of many spectral transitions that now also possess 

finite line widths, it is easy to appreciate the complexity of the waveform in 

the time domain. However, the Fourier transform operation can be performed 

quite efficiently by a computer; in practice this poses little difficulty. 

A Fourier transform spectrometer operating in emission consists of a 

detector which considers the incoming radiation as a function of time. The 

signal is stored as an interferogram and the computer carries out a Fourier 

transformation to resolve the individual components of the waveform. A 

familiar frequency domain spectrum is the result. What is important to 

realize is that the radiation, or the interferogram, with all its disguised 

frequency information, can be recorded almost instantaneously, leading to 

significant improvement in the time required for an experiment. The 

transformation also requires short periods of time, so that the total time for 

an experiment is still sharply reduced over conventional methods. 

Most of the Fourier transform work in the infrared and far-infrared is 

performed in absorption. The arrangement here is different than in emission 

and is similar to that employed by Michelson earlier in this century to 

measure the speed of light. Figure 5.1 shows the basic components of the 

interferometer unit in a Michelson-type Fourier transform spectrometer. The 

"white" reference source, which emits a broad range of spectral frequencies, 

is directed to a beam splitter; 50% of the emission is directed onto two 

mirrors, M and M . M is stationary while M is moved smoothly over a 
s m s ' m J 

specified distance. The combined reflected signal from the two mirrors, which 
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Figure 5.1 

interferometer unit of a Fourier transform spectrometer. 
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constitutes an interferogram, is then directed into the sample. Upon exiting 

the cell, carrying now information about the absorbing resonances of the 

species under investigation, it is guided into a detector and the output 

stored into computer memory. A Fourier transform of this waveform will result 

in the familiar absorption pattern, since the absorptions in the sample 

correspond to gaps in the frequency distribution of the original 

interferogram. 

It is found that a series of n scans increases the level of the noise in 

the recorded spectrum as 11 . Thus, the signal to noise ratio is nln or n . 

This is known as the multiplex advantage (133). Normally, then, many scans of 

a sample are performed to average out the random noise, resulting in spectra 

with high S/N ratios. 

5.2 Experimental 

A far-infrared spectrum of deuterium fluoride involving pure rotational 

transitions with J" - 1-8 has been obtained. DF gas was introduced into the 

11-cm cell of a Bomem DA3.002 Fourier transform spectrometer at total 

pressures of approximately 100 mTorr. The detector was a Ge bolometer cooled 

to less than 1 K by a liquid helium cryostat. A bolometer is a 

background-limited thermal detector measuring the rise in temperature in the 

sample from absorption of radiation as a change in electrical 

resistance (133). Cooling is required to reduce the surrounding thermal noise 

and thus increase the sensitivity. The bolometer was very sensitive and could 

detect low-level external microphonic noise such as conversation near the 
_i 

instmment. A spectral resolution of approximately 0.002 cm was employed 

and several scans were performed, usually overnight. The calibration was 
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based on HF pure rotational transitions which are known extremely precisely 

from laser heterodyne measurements (142); HF is conveniently an impurity in 

the DF sample. Unfortunately, so is H20, eliminating the use of one HF line 

(=* 123 cm" ) due to an overlap with a water line. 

A trace of a small portion of the Fourier transform spectrum of DF 

containing the / = 3 <- / = 2 pure rotational transition is shown in Fig. 5.2. 

53 Analysis 

Calibration of the Fourier transformed spectrum was not achieved in the 

normal fashion. First, measurements of the spectral features were obtained 

automatically by the computer from the intersections on the abscissa of the 

spectrum first derivative. The differences between the measured and standard 

HF frequencies were then plotted against frequency, giving a fairly linear 

plot (Fig. 5.3). The raw DF measurements were corrected using the 

relationship between calibrant error and frequency. A final, corrected, set 

of DF pure rotational transitions is listed in Table 5.1. Dr. J. W. Johns at 

the Herzberg Institute of Astrophysics recorded the. fundamental band of DF 

subsequent to the far-infrared work and provided the set of wavenumbers also 

listed in Table 5.1. 

These new data were combined with the laser emission transitions of 

Sengupta et al. (143) in a simultaneous merge fit to Dunham coefficients for 

0 < v" < 4. The results are presented in Table 5.2. 

The main reason for conducting this research was to make available data 

of high precision to complement similarly precise data on HF in this range of 

v" so that an extrapolation to the energy levels and transitions of TF could 

be achieved with comparable precision. 



Figure 5.2 

A small portion of the far-infrared spectmm of DF. The 
•t 

/ = 3 <— / = 2 pure rotational transition near 65 cm is 

shown. 
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Figure 53 

A plot of cahbrant error versus frequency. The calibration 

was achieved with heterodyne measurements (129) of HF pure 

rotational transitions in v" = 0. The HF line near 123 cm 

is overlapped by a transition of HDO and is hence excluded 

from consideration in the construction of the solid line. 
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TABLE 5.1 
1^+-, Fourier Transform Line Positions of DF(X 2 ) 

Pure Rotational Transitions in v - 0 

J" v(crrf ) J" v(cm~ ) 

1 
2 
3 
4 

43.42268(40) 
65.09863(20) 
86.73251(20) 

108.31021(20) 

5 129.81770(20) 
6 151.24126(20) 
7 172.56709(20) 
8 193.78167(40) 

Fundamental Band 

pm™1) R(J)(cm~l) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

2884.94325 
2862.64640 
2839.78537 
2816.37489 
2792.42963 
2767.96456 
2742.99505 
2717.53624 
2691.60400 
2665.21349 
2638.38085 
2611.12169 

2927.78725 
2948.30660 
2968.20599 
2987.47230 
3006.09249 
3024.05393 
3041.34460 
3057.95269 
3073.86638 
3089.07498 
3103.56756 
3117.33405 
3130.36458 

The experimental error estimate for the fundamental band line 
positions is e = 5 X 10" cm" . 

TABLE 5.2 
Dunham Coefficients (cm-1) for DF(Z12+) 

kl 
Estimate 2a 

Id 
Estimate 2a 

10 

Y30 
Y40 

01 

r31 

3000.09251 

-47.283395 

0.357898 

7.83 X 10 

6.59 X 10 

1.96 X 10" 

f 3 

-3 

v 3 5.4702 X 10"J 1.92 x 10 
-4 

11.0106910 

-0.3021884 

1.88 X 10" 

5.33 X 10 
3.01066 X 10° 3.39 x 10 

-4.5930 x 10"5 4.69 x 10" 

f5 
-5 

02 

hi 
r22 

03 
Y, 13 

-5.93259 x 10"^ 

1.17476 x 10"5 

-1.874 x 10"7 

2.375 X 10"8 

-5.188 x 10"10 

5.11 X 10' 

1.24 X 10' 

6.12 X 10" 

1.30 x 10" 

1.01 X 10" 

r8 

-10 

10 
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PART B: SPECTROGRAPHS STUDY OF THE DF B^+ - **2 + 

EMISSION BAND SYSTEM IN THE ULTRAVIOLET 

5.4 Introduction 

Hydrogen fluoride has been investigated extensively in its ground 

electronic state by experimental as well as theoretical methods. The 

pioneering efforts of Deutsch (144) showed HF to be a viable chemical laser 

medium based on vibrational-rotational transitions. For this reason, the 

lower vibrational levels of the ground state have been the subject of numerous 

spectroscopic studies (86, 143, 145, 146); the pure rotational transitions in 

the lowest vibrational level have been examined (129, 142, 14/) by a variety 

of techniques and very precise molecular constants are available. These 

pure-rotational transitions have established HF as a frequency standard in the 

infrared and far-infrared regions of the spectrum. 
l + The X 2 state is also interesting because of its unusually high degree 

of ionicity (148). This observation has been explained in terms of a strongly 

avoided crossing with the B 2 + state in the rigorous ab initio study of 

Bettendorff et al. (149). The ground electronic state is primarily ionic, 
2 2 2 4 

(la) (2a) (3a) (IJZ) , at small (< 2.5 bohr) intemuclear separations. At 

approximately 3.0 bohr, it is approximately 50% ionic and 50% valence, 

(la) (2a) (3a) (In) (4a)\ The valence contribution increases rapidly leading 

to the neutral dissociation products F(2P) + H(25). The calculated (149) 

nonadiabatic coupling matrix element (X12+\3lBR\B12,+)> reaches its maximum 

value at approximately 3.5 bohr. Correspondingly, the 5 I + state has valence 

character at small separations, becomes increasingly ionic at long-range and 

yields the dissociation products F"(15) + H+ . Also, at very small (= 1.5 
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bohr) intemuclear distances, the B state mixes with ligh-energy Rydberg 

states which arise from the HF+(X IT) core. Figure 5.4 displays some of the 

low-lying electronic states of HF(DF). The main difference with the analogous 

diagram for HCl (Fig. 4.1) is that the Rydberg «* non-Rydberg interactions on 

the inner limb of the 5 2 + state occur at relatively lower energies for 

hydrogen chloride. 

The low-lying repulsive (la)2(2a)2(3a)2(l3r)3(4a)-J4
1II state of HF, which 

l + approaches the X 2 state dissociation limit asymptotically, has been observed 

in continuous absorption by Safary et al. (150). This state is shown later in 

this work to be responsible for rotational energy shifts in the ground state 

that become especially noticeable at high vibrational energies. The quantum 

mechanical description of such significant nonadiabatic coupling can be given 

by the Hamiltonian operator Eq. (3.29). 

Past spectroscopic investigations of the excited electronic states of HF 

were limited to the B - X emission and absorption band systems (87) and the 

vacuum ultraviolet absorption (128) from X(v" = 0) to several excited states. 

The observations are much less complete for deuterium fluoride. The B - X 

bands of the deuteride were first detected in emission by Johns and 

Barrow (151); rotational analysis provided molecular constants for 

15 < v" < 24 and 0 < v' < 3. The C1]! state was detected in absorption by 

Douglas and Greening (128) and more recently in the resonance enhanced 

multiphoton ionization study of Tashiro et al. (152). 

The present work reports a reinvestigation of the ultraviolet B 2 + - X 2 + 

emission bands of DF. The higher dispersions afforded by the 10.7-m vacuum 

spectrograph employed here give significantly better resolved spectra than 

obtained previously (151). This has a twofold advantage. First, it provides 
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Figure 5.4 

Low-lying electronic states of hydrogen fluoride. The I 2 + 

and 5 ! 2 + potentials are from RKRV calculations (87). The 

repulsive A II state was modelled on the basis of ab initio 

calculations (127). The Rydberg states were constracted 

with the aid of experimental results (128). 
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a general improvement in the precision of the measurements which gives in turn 

more precise estimates of the molecular constants. Second, it resolves the 

congested rotational structure associated with very high v". Piecise 

estimates of the positions of these levels are important in giving an improved 

value for the dissociation energy and a more reliable estimation of the 

significant nonadiabatic mixing shifts. The present study also extends the 

information on the 5 1 2 + state to higher vibrational levels and gives better 
l + estimates for the electronic term value of B 2 and the electronic isotope 

shift from HF. In addition, an improved data set for DF, used in association 

with the similarly precise HF data of Di Lonardo and Douglas (87), enables a 

reliable prediction of the energy levels of tritium fluoride. 

55 Experimental Details 

The ultraviolet emission spectrum of DF was recorded with the 10.7-m 

spectrograph at the Herzberg Institute of Astrophysics. Emission of 

ultraviolet photons follows the population of lower vibrational levels of the 

B 2 + state. Electronic excitation was accomplished by flowing 99.2% 

isotopically pure DF gas (Matheson 99.9%) and helium (Matheson 99.995%), at 

pressures near 5 Torr, through a hollow cathode discharge operating at 300-500 

mA. Spectra were recorded in the wavelength range 2050-2750 A in the fourth 

and fifth orders of a 600 line/mm grating, with reciprocal dispersions of 

0.18-0.35 A/mm. Lower resolution exploratory spectra were also recorded in 

the first-order of a 1200 line/mm grating blazed at 1200 A. Emission from an 

Fe/Ne hollow cathode lamp (125 mA, 220 V), in overlapping orders, was recorded 

separately (onto the same plates but at different times) to calibrate the 

molecular spectra. The emitted radiation was predispersed and refociissed in 
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an attempt to minimize the crerlap between different spectral orders. It then 

entered the 10.7-m spectrograph through a 20-/<m wide slit and was diffracted 

by the concave grating. The dispersed light was then projected onto the focal 

plane containing the photographic plates. Exposure times varied from 10 min 

to 1 hr on ultraviolet sensitive Ilford Q2, Kodak SWR and 103-a0 plates. 
l + l + 

A small portion of the B 2 —> X 2 emission spectmm of DF is shown in 

Fig. 5.5. Assignments are shown for three vibronic bands. 

The measurements were made with the comparator described previously and 

the the spectra were calibrated against iron/neon standards (134). Standard 

deviations of calibration hne fits were typically 0.0008 A, which corresponds 

to 0.015 cm at 2350 A. Since the molecular lines were broader than the 

atomic lines, their measurement error should be slightly higher, approximately 

0.020-0.025 cm"1 for sharp, strong, unblended lines. Such is not the case for 

most of the lines measured here. Owing to the high rotational temperature in 

the discharge, extensive overlapping of different vibronic bands occurs. The 

concomitant blending, complicated further by the observation that some hydride 

impurity spectmm was identified on the plates, makes the average measurement 
-l error approximately 0.030-0.035 cm . This, however, does not take into 

account any relative systematic error in the data across the entire band 

system. 

In order to detect any systematic shifts from plate-to-plate that are 

often encountered in spectrographic work, careful computer-aided comparisons 

were made of slightly overlapped regions from independent measuring sessions, 

and larger overlapped regions from plate-to-plate. The session-to-session 

measurements were in excellent agreement, any systematic shifts being 

wavelength independent and less than the measurement errors (< 0.02 cm* ). 
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Figure 5.5 

A small portion of the DF(B 2 + - X 2+ ) emission spectmm. 

Rotational assignments are shown for three vibromc bands. 
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The plate-to-plate comparisons revealed slightly larger inconsistencies, for 

the most part < 0.04 cm"1 in magnitude, and wavelength independent. In one 

case, the shift was approximately 0.15 cm"1, consistently, for that plate 

alone. Following a careful computer evaluation of the shifts, all 

measurements were made mutually consistent by adjustment to a common 

reference, chosen by observing that the vast majority of the measurements were 

already well-consistent with each other. The adjusted lines were then 

averaged where multiple measurements of the same transition existed, resulting 

in a set of precise unique vacuum wavenumbers. It should be clear, however, 

that because of the need to make adjustments in the first place, the absolute 

error in the wavenumbers could be as high as the largest observed systematic 

shift, 0.15 cm" . In a reduction of line positions to molecular constants, 

this will only affect estimates of the band origins. 

As mentioned above, the causes for the presence of such shifts are often 

not well-understood, calling for intuitive speculation. A first possibility 

has to do with the fact that calibration spectra were recorded at separate 

times. While small time intervals were spanned between the recording of 

atomic and molecular spectra, it is entirely possible that small vibrations 

moved the plate very slightly during this time period. Vibrations due to 

"nearby construction projects" caused rather significant shifts in the 

HF(5 - X) plates of Di Lonardo and Douglas (87). Another possibility deals 

with small temperature variations in the tank during recording sessions. The 

shift in the position of a spectral line due to changes in the index of 

refraction of the grating has been estimated (131) at approximately 0.5 A per 

degree Celsius for a flint glass spectrograph. Assuming a similar temperature 

coefficient for the index of refraction of the 10.7-m spectrograph concave 
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grating, a 0.02 C temperature fluctuation would be quite sufficient in causing 

a shift of 0.15 cm . While this is not inconceivable, it would necessarily 

cause an accompanying serious loss in definition of spectral features, 

resulting in "fuzzy", badly focussed spectra. This was not found to be the 

case for the plate with the 0.15 cm-1 shift, therefore making the temperature 

shift theory unlikely. Other possibilities include small pressure variations 

in the vacuum tank, a mechanical imperfection of the slit, or small defects in 

the plate holder curvature; nevertheless, the most probable cause appears to 

be small vibrations between recordings of calibration and molecular spectra. 

5.6 Rotational Assignments 

Rotational assignments were facilitated in part by the availability of 

approximate term values for the B 2 + and X 2 + states from the previous 

rotational analysis (151). Additional assignments, particularly those 

involving vibrational levels not observed previously, were achieved by 

employing the molecular line search computer program described in the previous 

chapter. A helpful guide to the search was the preliminary and periodically 

improved set of Franck-Condon factors over a range of / . An extensive 

calculation of the rotationally dependent FCF is found in Table 7.18. Some 

very interesting intensity patterns were predicted by the FCF, as for example 

for the 2-22, 3-23, and 1-20 bands. For these bands, the calculated low-/ 

intensities are quite high, in accord with observations, but decline with 

increasing / to reach a minimum at mid-/, where no rotational structure was in 

fact observed, and pick-up again at higher / . Without the rotationally 

dependent FCF, the search for rotational stmcture may have been abandoned 

prematurely at mid-/, at the onset of a noticeable decrease in intensity. 
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5.7 Molecular Parameters 

Initial assignments were obtained with the computer search program 

described previously. They were extended, where possible, by performing fits 

to the linear least-squares model Eqs. (4.4-4.6) with the summation index 

taken to n = 3 and 4 for the excited and ground states, respectively, a model 

which represents adequately the vast majority of assigned line positions. For 

some high-/ lines of high-t/, the model is clearly not adequate, requiring 

additional X^n\ Inclusion of such parameters for bands which did not require 

them resulted in poorly determined estimates for the lower-order constants, 

chiefly due to high correlations between parameters. It is important to make 

the definitions of parameters as consistent as possible by employing the same 

model throughout, even at the expense of a few transitions. In analyzing the 

highly rotationally excited B - X emission bands of HF, Di Lonardo and 

Douglas (87) encountered a similar problem. In their work, this was rectified 

by reducing the line positions directly to relative rovibrational term values 

using the method of Aslund (153). Estimates for the rotational parameters 

were then obtained by least-squares fits to Eq. (4.6), employing low- and 

mid-/ energies only. 

Assignments were made for 41 bands in the present conventional analysis, 

covering 0 < v' < 5 and 16 < v" < 26. The results of individual band 

least-squares fits are listed in Table 5.3. The table contains the estimated 

standard deviations (o) of such "free" fits, the total number of lines fitted 

(N), the range of / fitted for each branch (/„ and /_) , and estimates of the 

band origins (vQ), obtained by merging the entire collection of bands. A 

total of 1240 line positions was fitted and the root-mean square of the 



TABLE S3 

Least-Squares Fits0 for Individual Bands of the B —» X Band 
System of DF 

v' v" vQ a N Jp / R 

0 - 16 47426.32(6) 0.035 19 29 -42 30 - 43 
0 - 17 45857.35(2) 0.027 26 22 - 36 21 - 36 
0 - 18 44376.29(2) 0.027 43 6 - 3 3 5 - 34 
0 - 19 42986.01(2) 0.031 49 2 - 3 0 2 - 3 1 
0 - 20 41691.07(1) 0.029 55 2 - 32 1-32 
0 - 21 40496.77(2) 0.039 36 2 - 3 1 0 - 3 1 
0 - 22 39410.32(1) 0.031 47 1 -27 0 - 2 8 
0 - 23 38440.32(2) 0.028 26 2-20 3 - 21 

1 - 17 46679.02(2) 0.027 49 5-35 1 - 37 
1 - 18 45198.03(2) 0.024 47 4-31 6 - 32 
1 - 19 43807.74(1) 0.025 45 3-29 0-30 
1 - 20 42512.84(2) 0.039 19 4-17 2-17 
1 - 22 40232.08(2) 0.032 41 3-27 1 - 25 
1 - 23 39262.06(2) 0.029 41 2-27 2 - 27 
1 - 24 38419.43(2) 0.025 27 5-19 2 - 17 

2 - 16 49051.29(7) 0.034 52 11 - 42 13 - 41 
2 - 17 47482.43(2) 0.032 57 6-37 2 - 39 
2 - 18 46001.47(2) 0.036 38 2-23 1 - 22 
2 - 20 43316.26(2) 0.036 31 14 - 34 15 - 35 
2 - 21 42122.02(2) 0,027 35 4-25 2 - 24 
2 - 22 41035.54(2) 0.040 16 3 - 10 2 - 16 
2 - 23 40065.48(2) 0.025 20 13 - 25 11 - 25 
2-24 39222.83(2) 0.031 27 6-22 1 - 22 
2 - 25 38521.23(3) 0.034 26 2 - 1 9 2 - 1 9 
3 - 16 49836.81(8) 0.033 28 17 -34 18-36 
3 - 17 48267.94(2) 0.032 42 2 - 2 8 3 - 30 
3 - 20 44101.75(2) 0.035 33 7 ~ 27 5 - 28 
3 - 24 40008.38(3) 0.019 15 10 - 18 9 - 19 
3 - 25 39306.75(3) 0.029 21 5-18 4-18 

4 - 19 46164.80(3) 0.034 33 9-30 7-30 
4 - 22 42589.14(3) 0.032 20 7-19 7 - 19 
4 - 24 40776.52(2) 0.027 14 3-10 1 - 12 
4 - 25 40074.85(4) 0.032 20 4 - 1 9 5 - 1 9 
5 - 18 48306.09(4) 0.035 14 13 - 22 14 - 24 
5 - 19 46915.78(3) 0.032 15 4 - 1 4 6 - 1 4 
5 - 2 1 44426.59(4) 0.031 21 7 - 2 0 7 - 2 1 
5 - 26 40283.42(6) 0.027 14 2 - 14 10 - 13 

The merged band origins (v ) and standard deviations (a) are in 
l units of cm ; N is the number of lines fitted; /_ and / „ are 

the / ranges of the fitted lines for the P and R branches. 
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/v 1 

individual a in Table 5.3 was approximately 0.035 c m , in agreement with the 

estimate given above. This serves as a rough indicator of the precision of 

the data, but does not take into account any relative systematic error. 

In order to reduce the 328 parameters obtained from individual 

least-squares fits, many of which are multiple estimates, to a set of 103 

single-valued parameter estimates, the method of correlated least-squares 

(merging) was applied in a stepwise fashion Of these 103 values, 41 are the 

band origin estimates given in Table 5.3; the remaining parameters consist of 

the 18 Z y and 44 JSfv rotational parameter estimates given in Table 5.4. 

The standard deviation of this merge fit was a = 1.30 with / M = 225 degrees 

of freedom. A subsequent merge was carried out to reduce the 41 band origin 

estimates to a set of relative vibronic terms for both electronic states. The 

results are given in Table 5.5. The standard deviation of this merge was 

a — 1.44 with / = 250 degrees of freedom, indicating a small degree of 

systematic error across the entire band system. In view of this, 

0.035 X (1.44/1.30) cm" , or « 0.040 cm" , might be a more honest estimate of 

the precision of the measurements. Two additional merge fits furnished the 

equilibrium vibrational-rotational parameters presented in Table 5.6. 

5.8 RKRV Potential Curves for DF 

Past spectroscopic investigations in the far-infrared (154, 155) and 

infrared (143, 145) have characterized vibrational levels with 0 < v" < 4 of 

the ground state of DF. The electronic emission from B 2 + involved levels 

with 15 < v" < 26, leaving a significant 20 000 cm gap in the range 

v" = 5-14 where no spectroscopic information exists. The chemical laser work 

of Sileo and Cool (156) was aimed at rationalizing intensities. Though bands 



TABLE 5.4 

Merged Parameters0 (cm-1) for the Z 1 2 + ard B 1 2 + States of DF 

V" 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

v' 

0 

1 

2 

3 

4 

5 

v(l) 

6.5467J5) 

6.269913(2) 

5.988119(2) 

5.692743(2) 

5.3832?2(2) 

5.0510?6(3) 

4.691759(3) 

4-297144(4) 

3.853155(5) 

^ \ ^ 

2-717319(3) 

^ 

2.115403(1) 

2.107994(1) 

2.100151(1) 

2.092236(2) 

2.084042(2) 

2.075858(4) 

-104*? 
V 

4.963Q5(9) 

4-964^(5) 

5-11382(8) 

5.2835?(1) 

^W1) 
SXm® 
6-46i7o(2) 

7-26969(2) 
8-2V4) 

1Q2m(U 
n - 9 84l ( 6 ) 

- I O W 
11 

5-6V3) 
5-97008(2) 

6-33036(2) 

6 '7 6619(3) 

7-24407(6) 

7"75969(2) 

loW 
V 

l-30356(7) 

"•2»4l6(5) 

•"W1) 
-0.61952(

2> 

W) 
-0.8M5(2) 

-V) 
•V 
"W1) 
W5> 

-100.m(45) 

V 

2-V(2) 

« « ^ ) 

2-7522(D 

" ^ ( l ) 

4.22„(4) 

5'3052(2) 

l O 1 1 ^ 
V 

-°-64250(2) 

-°-52463(2) 

-0.82195(5) 

_1,1371o(1) 

-2.53J5) 

-3-W1) 

-6-°505(2) 
-13.491(3) 

-24-766(2) 

-91.558(6) 

-128.31(104) 

°To reproduce the original data, entries are quoted with 

more significant figures (as subscripts) than the associated 

standard errors (in parentheses) require. 



TABLE 5.5 

Merged Vibronic Terms0 (cm" ) for the 

5 1S+ and Xh+ States of DF3 

Tv' 

47426.104(7) 

48247.854(7) 

49051.12^(7) 

49836.795(7) 

50604.939(8) 

51355.879(8) 

v" 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

T. 
V 

0.0 

1568.844(7) 

3049.81?(7) 

4440.10fi(8) 

5735.03^8) 

6929.262(8) 

8015.77?(8) 

8985.792(8) 

9828.425(8) 

10530.05^8) 

11072.4^(1) 

"See footnote a of Table 5.4. 

The term values in this table refer to v = 16 of 

the ground state. They may be referred to the 

minimum of the I 2 ! + state potential by 

adding G" = 37792 ± 5 cm"1. 



169 
TABLE 5.6 

Equilibrium Vibrational-Rotational Parameters 

for the Bh+ State of DF* 

<o0 840.46,(3) 

«Ve 7'°42(2) X 10"2 

Z?g 2.119101(2) 

« e 7.28J12) X 10"3 

Ye -1-2V24) X 10"4 

aAll quantities are in cm" units. Numbers in 
parentheses are the 95% confidence limits. 
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with v" up to 12 were observed, no band origin estimates were reported. The 

resolution of the spectra was too poor to give reliable energy estimates and 

these authors resorted to the molecular constants of Johns and Barrow (151) to 

construct the RKRV curves required for evaluation of Einstein coefficients. 

Since more precise estimates of the molecular constants became available 

in this work, it was decided to repeat the interpolation of the missing data. 

Precise AG(v" + Vz) estimates for v" = 0-3 were derived by merging the laser 

data of Sengupta et al. (143). These were fitted to a power series in 

(v" + Vz), along with the AG"(16Vz) - AG"(25Vz) values obtained in this work and 

the intermediate AG" values were interpolated. This procedure gave 

G" + YL = 37 796 ± 5 cm"1, for the lowest observed level in this work. This 
lo 00 

serves as a reference for the vibronic terms in Table 5.5. After 

interpolating the rotational constants in an analogous fashion, first-order 

RKRV turning points were calculated and are presented in Table 5.7, along with 

those of the B 2 + state. These potentials can be regarded as approximate 

initial descriptions of the X 2 + and B1-Z+ radial operators. 

5.9 Dissociation Energy of DF(X1^) 

The results of the conventional rotational analysis presented above can 

be used to obtain an estimate for the dissociation energy of the ground state. 

For the levels v" = 23-26 an abrupt breaking-off of rotational structure at 

high-/ has been observed. Although there was no indication of noticeable 

broadening for the last observed line positions, this phenomenon can still be 

attributed to a predissociation mechanism. The tunnelling for the deuteride 

is not as efficient as that for the hydride, for which measurable broadening 

was reported (87) in predissociated levels. 
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TABLE 5.7 

RKRV Turning Points" for the X1^ and B V States of DF 

Xh+ B1^ 
V 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 
18 

19 
20 
21 
22 
23 
24 
25 
26 

Gv + Yoo 

1490.34 
4397.00 
7212.15 
9937.69 
12575.38 
15126.99* 
17594.08* 
19978.05* 
22280.03* 
24500.91* 
26641.30* 
28701.57* 
30681.76* 
32581.63* 
34400.6S* 
36137.79* 
37791.75* 
39360.60 
40841.58 

42231.87 
43526.80 
44721.03 
45807.55 
46777.57 
47620.20 
48321.83 
48864.24 

R . mm 

0.84540 
0.80112 
0.77406 
0.75394 
0.73782 
0.72435 
0.71275 
0.70262 
0.69363 
0.68559 
0.67834 
0.67177 
0.66580 
0.66035 
0.65538 
0.65082 
0.64665 
0.64284 
0.63933 
0.63613 
0.63321 
0.63058 
0.62825 
0.62620 
0.62445 
0.62304 

0.62211 

R 
max 

1.00365 
1.07876 
1.13728 
1.18953 
1.23851 
1.28556 
1.33144 
1.37669 
1.42167 
1.46670 
1.51204 
1.55792 
1.60461 
1.65235 
1.70141 
1.75213 
1.80487 
1.86014 
1.91856 

1.98074 
2.04819 
2.12208 
2.20515 
2.30081 

2.41527 
2.55985 
2.76072 

Gv + YM 

416.14 
1237.89 
2041.32 
2826.83 
3594.97 
4345.91 

R . 
nun 

1.94778 
1.84934 
1.78399 
1.73206 
1.68792 
1.64894 

R 
max 

2.24550 
2.37044 
2.46327 
2.54345 
2.61662 
2.68547 

°G.. + Ym are given in cm"1; R . and R n are in Angstrom units. Energies v oo w nun max ° ° 
marked with an asterisk (*) were obtained by interpolation (see text), 

y (X 1S+ ) = 2.03 cm"1; Y (Bl2,+) = -1.57 cm"1. 
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The independence of this effect from excited state vibrational levels 

signifies a predissociation in the ground e'ectronic state. This can also be 

expected from a purely theoretical argument. The behaviour of the 2?2+ state 

potential of HF(DF) at large-i? has been shown from experimental results (87), 

to follow primarily an 1IR (ionic) dependence. For this type of interaction, 

the rotationless potential approaches the dissociation limit at a slower rate 

than the centrifugal 1/JR term, precluding the formation of a potential 

barrier. 

Buttenbender and Herzberg (157) have shown how these observations can be 

utilized to furnish an estimate of the dissociatici energy, 31 . By plotting 

the energies of ground state levels associated with the abrupt breaking-off of 

rotational structure versus / ( / + 1), as well as the estimated energies of 

first unobserved levels, and extrapolating a curve drawn between the two sets 

of energies to / = 0, an estimate for the dissociation limit is given 

directly. This type of plot was termed the limiting curve of dissociation 

(LCD). Soon afterwards, Schmid and Gero (158) showed that the slope of the 

LCD could be related to the JR value corresponding to the rotational barrier 

maximum. 

One problem with the LCD method is that the last observed levels need not 

correspond to the last bound levels, particularly when no significant 

broadening of lines has been detected. It is possible that bound levels above 

the last observed exist but have lifetimes which make them difficult to detect 

experimentally. This is especially true for light molecules. It was shown in 

Chapter 2 that the tunnelling efficiency through a centrifugal barrier 

increases for systems with smaller reduced masses. Thus, % estimates 

obtained from the LCD method are usually lower than the true limit. 
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In order to gain a better appreciation of the quantitative behaviour of 

the LCD method, model cdculations were carried out using a Morse potential 

with 3) = 50000 cm"1, R = 1.00 A, a> x = 100.0 cm"1 and u = 2.000 amu. A e e e e ' 

nonadiabatic g(R) function need not be considered; its inclusion serves only 

to alter the slope of an LCD plot and has no effect on the intercept (3)), as 

the pure centrifugal and nonadiabatic rotational contributions both tend to 

zero, albeit at different rates, as / —> 0. 

The wave equation was then solved for all quasibound levels of 

vibrational levels with v" = 16-20 to obtain estimates for ther positions and 

widths. The results are listed in Table 5.8. In the lower solir curve of 

Figure 5.6, levels which had widths of less than 1 cm" were included. This 

plot allows for the estimation of the error that might arise where large 

widths preclude the experimental observation of levels which still lie below 

the barrier maximum. A second solid curve was plotted on Fig. 5.6 including 

all levels below the barrier maximum. It is evident from the plots that the 

LCD method provides slight overestimates of 3) when all bound levels are 

considered. Theoretically, the slope of the LCD at / = 0 should be zero, yet 

as can be seen from the true LCD points on Fig. 5.6 this does not occur for 

the range of / considered. The tendency to "flatten" the LCD towards / = 0 in 

order to satisfy the theoretical behaviour is the reason that experimental 

LCD's give slightly higher estimates of 3). When levels with T. < 1 cm"1 

are considered, the 3> estimate is understandably lower, which implies that 

for light molecules the LCD method may be somewhat self-compensating. It is 

also obvious that 3> estimates obtained through the LCD method are associated 

with a large uncertainty due to the large extrapolation to / = 0. 

A second method was therefore explored. If a numerical potential is 



TABLE 5.8 

A Test of the LCD Method: Energies and Widths of 

Model Potential Quasibound Levels0 

V 

16 
16 
16 
16 
16 
16 
16 
16 
17 
17 
17 
17 
17 
17 
17 
18 
18 
18 
18 
18 
18 
19 
19 
19 
19 
19 
20 
20 
20 
20 
20 

J 

31 
32 
33 
34 
35 
36 
37 
38 
27 
28 
29 
30 
31 
32 
33 
23 
24 
25 
26 
27 
28 
19 
20 
21 
22 
23 
13 
14 
15 
16 
17 

c-QM 

v J 

50017.179 
50211.494 
50407.148 
50603.288 
50798.823 
50992.239 
51181.054 
51361.275 

50012.396 
50166.301 
50321.487 
50477.069 
50631.850 
50783.941 
50930.181 

50038.479 
50154.619 
50271.752 
50388.840 
50504.204 
50615.236 

50074.864 
50156.017 
50237.360 
50316.988 
50393.772 

50002.003 
50049.548 
50097.894 
50145.703 
50193.067 

r c u fvrtun 

b 
b 
b 
b 
b 

0.016 
0.505 
5.558 

b 
b 
b 
b 

0.006 
0.242 
3.328 

b 
b 
b 

0.007 
0.312 
3.761 

b 
0.004 
0.057 
1.279 
8.733 

0.019 
0.072 
0.292 
1.770 
11.994 

AE, 
1 

864.988 
936.360 
1011.394 
1090.178 
1172.805 
1259.369 
1349.966 
1444.689 

614.305 
671.931 
732.862 
797.185 
864.988 
936.360 
1011.394 

415.132 
460.396 
508.623 
559.898 
614.305 
671.931 

262.044 
296.286 
333.160 
372.748 
415.132 

107.256 
127.432 
149.747 
174.284 
201.125 

AE-
2 

847.809 
724.867 
604.246 
486.890 
373.982 
267.130 
168.912 
83.415 

601.909 
505.630 
411.374 
320.116 
233.139 
152.419 
81.213 

376.653 
305.776 
236.870 
171.058 
110.101 
56.695 

187.179 
140.270 
95.801 
55.759 
21.360 

105.254 
77.885 
51.853 
28.581 
8.058 

"Energies and Widths are given in units of cm" . 

AE is the energy from the dissociation limit to the 

barrier maximum. 

AE is the energy from £ to the barrier maximum. 

*rfi . < 0.0005 cm"1, 
fwhm 

®true = 50000 cm'1. 
e 



Figure 5.6 

Limiting curve of dissociation (LCD) plots of model data. 

The points represented by open triangles fall along the true 

LCD plot found by numerical determination of the barrier 

height for various values of / . The lower solid curve 

represents an LCD plot for levels with widths of T < 1 cm ; 

the upper solid curve represents an LCD plot in which all 

bound vibrational levels were considered. The data employed 

in the construction of this figure are hsted in Table 5.8. 

The filled circles represent the last "observed" levels. 

The open circles represent extrapolated levels with / one 

unit higher than those of the last "observed" levels. The 

model dissociation limit is denoted by D t rue and corresponds 

to an energy of 50000 cm" . 
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available, it is possible to find the position of the barrier maximum using 

numerical methods. Moreover, it has been found here that these energies can 

be represented very well by, 

where g - / / ( / + 1), and eQ is the dissociation limits 3) . Use of the 

variable g in Eq. (5.1) is not supported theoretically but was suggested by 

the analytical LCD expression of Waech and Bernstein (159). The £J values 

for the rotational barrier maxima with 10 < / < 20 were found numerically and 

fitted to Eq. (5.1). The value of 3) was slightly model dependent but for a 

satisfactory fit, without systematic error in the residuals, it was always a 

few wavenumbers higher than the tme limit. 

With a quantitative appreciation for the errors expected in the LCD 

estimates, a plot was constructed for the real DF data. Table 5.9 gives term 

values for the last observed rotational levels for v" = 23-26, as well as 

estimates of the energies for the first unobserved levels. The experimental 

LCD plot is shown in Figure 5.7. Extrapolation to / -• 0 with the constraint 

of a zero slope at the intercept, gave the estimate 3) = 49400 ± 55 cm"1. The 

uncertainty not only considers the extrapolation to / = 0; on the basis of the 

model calculations an additional error estimate is included to consider the 

possible exclusion of quasibound levels that cannot be detected by 

spectrographic methods. Finally, the uncertainty in the absolute energies is 

also included. In comparison with the most recent estimate for HF, 

3) = 49380 ± 60 cm" (87), there does not appear to be a significant 

difference between the 3> values for the two isotopomers. 



TABLE 5.9 

Rotational Predissociation in the X 2 + State of DF: 

Determination of the Dissociation Energy0 

/ E(v, J) (cm-1) / + 1 E(v, /H-l) (cm"1) 

178 

23 

24 

25 

26 

29 

25 

20 

15 

49879 

49715 

49522 

49433 

30 

26 

21 

16 

50026 

49831 

49606 

49489 

2J is the value of the rotational quantum number for the last 
observed level of vibrational state v. 
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Figure 5.7 

Limiting curve of dissociation (LCD) plot for D F ^ S * ) . The 

filled circles represent the last observed levels and the 

open circles represent extrapolated levels with / one unit 

higher than those of the last observed levels. An LCD 

estimate of 31 = 4 9 400 ± 50 cm"1 is obtained. 
e 
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5.10 Electronic Isotope Shift 

Since an absolute energy scale for the ground state has been established, 

it is now possible to obtain an estimate for the electronic isotope shift of 

the B 2 + state. This shift represents the difference in the term values, T, 

for HF and DF. The presence of a significant electronic isotope shift would 

occur because of breakdown of the Born-Oppenheimer approximation. Van 

Vleck (37) indicates that this shift arises because the centre of mass of the 

bare dinuclear framework is not the same as that of the diatomic molecule, 

including the motions of the electrons. In reality, one wobbles about the 

other, in a nuclear-mass-dependent fashion, so that electronic term energies 

for excited states are not exactly the same upon isotopic substitution of the 

constituent nuclides. 

Di Lonardo and Douglas (87) obtained a value T = 84783 cm"1 for the B 

state of HF. In the present work, the corresponding value for DF was found to 

be T = 84806 ± 5 cm" . If the electronic isotope shift is defined as the 

difference T (HF) - T (DF), then a value AT = -23 ± 5 cm"1 is obtained. The 

uncertainty reflects primarily the error in the interpolation of AG values to 

obtain absolute energy estimates for the missing ground state levels. This 

experimental value may be compared with a theoretical estimate obtained by 

Bunker's (135) equation, 

AT = 0.000068|T ] + [5 (HF) - Bg(DF)]B<L\ 

- [5 (HF) - £e(DF)]x<L2>z (5.2) 

where <L2> is approximated by the sum of the values of L(L + 1) for the 

dissociation products, for each electronic state. The ground state 

dissociation products, F(2P) + H(2S), give a value for <L2> = 2, whereas the 
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corresponding value for the excited state ionic products is <L2)B = 0. 

Eq. (5.2), which gives an approximate description only, furnishes a value 

AT = -14.1 cm" . This is in reasonable agreement with the value derived 

experimentally. 



CHAPTER 6 

ISOTOPIC BEHAVIOUR OF BORN-OPPENHEIMER BREAKDOWN: 

THE B1^ AND XlX+ STATES OF HCl AND DCl 

6.1 Introduction 

The interpretation of spectroscopic frequencies in terms of theoretical 

models involving intemuclear potentials and functions describing electronic 

state interactions, foruis an important theme of contemporary chemical physics. 

The thrust of this chapter is to achieve an interpretation of spectral line 

positions within the framework of an effective radial Schrodinger equation 

that considers both adiabatic and nonadiabatic corrections. 

In Chapter 3, a modem method for reducing experimentally measured line 

positions to elements of the radial operators was described. Also, an 

application was made to a set of model data, giving insight into the 

effectiveness of the procedure. Here, the procedure is applied to 
l + l + 

experimental line positions of the X 2 and B 2 electronic states of the four 

isotopically related diatomics, H35C1, H37C1, D35C1, and D37C1. 

Before the analysis is described, it is useful to review, briefly, 

previous works in which the molecular potentials for the HCl isotopomers were 

calculated. First, we consider the work of Coxon and Ogilvie (46). This 

analysis was based on the Watson-Dunham analytical expression for E „ 

Eq. (2.47), which makes corrections for omission of higher-order JWKB terms 

and breakdown of the Bom-Oppenheimer approximation. Ground state spectral 

data for four isotopomers were considered, namely, H35C1 (v" = 0-7), H37C1 

183 
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(v" = 0-7), DJDC1 (vH = 0-5), and DJ/C1 (v" = 0-4). It was also possible to 

determine the Born-Oppenheimer potential for X 2 + over a limited range of R. 

It must be noted, however, that the quoted (46) range of R = 0.987 - 1.920 A, 
BO which defines U (R) up to 52% of 3> , is unduly optimistic. Rather, the 

smaller range R = 1.03 - 1.70 A, which accounts for the fact that data for DCl 

up to 30% of the dissociation limit were employed, gives a more realistic 

indication of the physically significant range for the Bom-Oppenheimer 

potential curve. 

In later work by Coxon and Roychowdhury (130), the electronic emission 

bands of the B12+ -> X 2 + system of H CI were analyzed rotationally, 

providing reliable and extensive information on the higher vibrational levels 

of the ground state. The quantum mechanical eigenvalues of a first-order RKRV 

potential constructed for the ground state did not succeed in recovering the 

experimentally derived vibrational spacings; furthermore, it was demonstrated 

convincingly that the failure of experimentally derived rotational constants, 

B , to correspond to the RKRV averages <R > was accompanied by significant 

breakdown of the Bom-Oppenheimer approximation. In short, this work was 

important in bringing to light the difficulties encountered in a conventional 

rotational analysis of high quality spectral data for a hydride. 

Improved understanding of the nature of these problems was demonstrated 

in subsequent work by Coxon (119). Here, the principles of IPA were at the 

heart of an improved numerical procedure that was superior in its theoretical 

interpretation of /-dependent nonadiabatic corrections. It was possible for 

the first time to incorporate systematically the entire spectroscopic 

information for a hydride over a wide range of vibrational levels, spanning 

from the potential minimum to near dissociation and taking full account of 
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adiabatic breakdown. The method was applied to the XlnZ+ (v" = 0-17) and B1^ 

(v' = 0-6) states of H35C1, and the rather limited ground state data on H37C1, 

D35C1, and D37C1. 

A significantly enhanced procedure, containing improvements to the 

mathematical correction model, was reported in further work by Coxon (120). 

Using this more reliable predictor, Coxon was able to extend the assignments 
35 

for the B -» X system of H CI, particularly to higher / , and made the first 
37 

extensive rotational assignments for the corresponding band system of H CI. 

The /-dependent nonadiabatic contributions from q(R) (cf. Eq. (3.29)) to the 

higher rovibrational levels of X 2 + were explained in terms of a significant 

heterogeneous interaction with the repulsive A IT state. Previously, 

Mulliken (160) had implicated the A II state as the likely single-perturber of 

the rotational level manifold near the X 2 + potential minimum. The small 

effects encountered in v" = 0 are relatively unimportant in comparison with 

the rapidly increasing energy shifts experienced by high-v",/" levels, the 

latter shown (119) to be of the order of several wavenumbers. 

The unavailability of spectroscopic data for the higher vibrational 

levels of deuterium chloride hitherto precluded verification of the 

predicted (42) theoretical isotopic dependence of q(R). This limitation 

served as the primary motivation for the spectrographic study reported in 

Chapter 4. With information on the ground states of HCl and DCl nearly 

complete, it is now possible to examine reliably the isotopic dependence of 

Bom-Oppenheimer breakdown in X1!.* over a large range of R. The analysis also 

allows for a sound estimation of the Bom-Oppenheimer potentials for the X 1 2 + 

and B 2 + electronic states of HCl, and thus a reliable extrapolation to the 

energy levels of the tritirm chloride isotopomer. 



186 

62 The Multi-isotopomer Problem 

The analysis furnishes effective rotationless potentials for electronic 

states n that can be expressed as, 

uf(R) = £ / f (R) + U > ) / M A + t^(i?)/MB. (6.1) 

The inverse dependence on the atomic masses in this expression is 

theoretically incomplete; smaller terms € (1IM ) also predicted, are omitted. 

The 1IM dependence accounts fully for adiabatic corrections and largely for 

homogeneous nonadiabatic contributions to the rotationless curve. Bunker and 

Moss (40) have shown that secondary (homogeneous) nonadiabatic terms which are 

inversely dependent on the square of mass also contribute to U° (R) if the 

contact transformation of the exact Hamiltonian is carried out to sufficiently 

high order. Fortunately, these are predicted to be much smaller than the 

primary homogeneous contributions; this is confirmed experimentally (46), for 

even the most highly precise data. 

Even if data are available for only a single isotopomer, the present 

method of analysis can yield direct information on the /-dependent shifts 

arising from heterogeneous coupling of two nearby electronic states. This is 

not possible with the approach of molecular constants. The isotopic 

dependence of q(R) has been given previously, with regard to the model 

calculations, but is written here also in slightly different notation, as 

qn(R) = ? > ) M / A + 9
B

n(R)IMB. (6.2) 

A B 
For the multi-isotopomer problem, it is reasoned that, for f (R) and y (R) of 
comparable magnitude, and M usually much smaller than Mfi, the /-dependent 
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shifts can be explained adequately in terms of f (R) alone. It is stressed 

that this is not a necessary condition for the simultaneous consideration of 

data for many isotopomers. This can be achieved without difficulty, albeit 

with reduced compactness; the validity of using y (R) alone in all work was 

tested critically at intermediate stages of the analysis. A determination of 

separate q(R) functions for different isotopomers does not improve the quality 

of the fits significantly. It is found that, within the precision of the 

data, such an approximation is absorbed at negligible cost to the physical 

significance of f (R). 

The aim of incorporating spectroscopic hne positions for different 

isotopomers in a least-squares fit to radial functions is to determine 

functions C^°(i?)» U^(R), U^(R), and f*(R). The determination of U*°(R) 

requires isotopic substitution at both atomic centres and can thus be achieved 

in the present analysis of HCl/DCl data. The four-isotopomer problem is setup , 

as, 

Uf(R, H3SC1) = U(°\R) + AUn(R), (6.3) 

Uf(R, H37C1) = uf(R, H35C1) + &U~l(R), (6.4) 

uf(R, D35C1) = uf(R, H35C1) + AlP(R), (6.5) 

Uf(R, D37C1) = uf(R, H35C1) 4- AU^(R) + AU^l(R), (6.6) 

where U^°\R) is a trial potential for the predominant isotopomer, H35C1. 

There are simple mass relationships between the correction functions AC/01^) 

and AU^(R% and the isotopically invariant functions U°\R) and U^R) (cf. 

Eq. (6.1)). 

A q(R) function is determined significantly for the ground electronic 
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35 35 
state only. The individual functions for H CI and D CI can be written as, 

^(H35C1) = me[R*(R)IMu + ^ J Q / A f ^ J , (6.7) 

^D3 5C1) = me[R*(R)IMD + R®(R)fM35C]l. (6.8) 

Since it has already been established that the R^(R)IMn term is not 

significant to the precision of the data, the multi-isotopomer problem can be 

cast as, 

^ D C l ) = (MR /MD^HC1). (6.9) 

The simultaneous incorporation of data for the four isotopomers thus leads to 

the isotopically invariant function (h I2)m RJR)IR . 
C JC\. 

The results of the present analysis make it possible to extrapolate to 

the energy levels of tritium chloride. The calculation of numerical 

Hamiltonian operators for i CI and Tr CI is quite straightforward; from these 

functions, quantum mechanical eigenvalues can be obtained and synthetic 

spectra constructed. These can then be compared to available experimental 

spectra giving an inoication of the isotopic self-consistency of the model. 

63 Determination of Effective Hamiltonian Operators 

63.1 Selection of Data 

The vibrational-rotational spectrum of hydrogen chloride has been known 

since the pioneering days of infrared absorption spectroscopy. The 

spectroscopic characterization of the ground electronic state has since been 

well-established. Here, a brief discussion is given of the data base employed 

in the least-squares fit to Hamiltonian operators. The information is 

summarized in Table 6.1, which refers to the ground state HCl/DCl data. The 



TABLE 6.1 

Summary of Vibrational-Rotational Data for HCl/DCf 

H3S0(Jir12+) 

v'-v" 

v = 0 
v = 0 
v = 0 
v = 0 

v = 1 

v = 2 
1-0 
1-0 
1-0 
2-0 
2-0 
2-1 
3-0 
3-0 
3-1 
3-2 
4-2 

5-3 
5-4 

6-5 

Reference 

163 

129 
129 

166 

166 

166 
162 
163 
164 

86 
164 
163 

162 
164 
164 
163 
164 

164 
163 

163 

e(cm" ) 

3.3 x 10"6 

6.67 X 10"6 

1.17 x 10"5 

0.0197 

0.016 

0.016 
0.001 
0.0022 
0.0045 
0.0002 
0.004 
0.0019 
0.0025 
0.007 
0.0055 
0.0022 
0.0048 
0.007 
0.0025 

0.006 

N 

1 
6 
3 

16 

8 

2 
15 
31 
51 

25 
50 
45 
18 
15 
21 
44 

11 
3 

21 

3 

PJ 

/ = 1 
/" 

/" 

/" 

/" 

/" 

1- 2 
2-29 
1-30 

1-12 
1-26 
1-26 

1- 9 
1- 8 
2-16 
1-24 
3-10 
5- 7 
3-15 

Rl 

<r-J = 0 
= 1-6 
= 7-9 

= 18-40 

= 19-26 

= "H-25 

0-13 
5-34 
0-31 

0-12 
0-25 
0-29 

0- 8 
0-11 
0-16 
0-29 
4-15 

1-17 

2- 9 

H37C1(Z12+) 

v'-v" 

v = 0 
v = 0 

v = 0 

v = 1 

Reference 

161 

129 

129 

166 

^(cm"1) 

3.3 X 10"6 

6.7 x 10"6 

1.15 X 10"5 

0.008 

N 

1 

6 
3 

1 

PJ RJ 

j = i < _ / = o 

/" = 

/" = 

/" = 

= 1-6 

= 7-9 

= 20 
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TABLE 6.1 (Cont'd) 

Summary of Vibrational-Rotational Data for HCl/DCf 

v'-v" 

1-0 
1-0 

2-0 
2-0 
3-0 
3-0 

v'-v" 

v = 0 
v = 0 

1-0 
1-0 
2-0 
2-0 
3-0 
3-0 

Reference 

162 
167 

86 
168 
162 
169 

Reference 

161 

161 

164 
164 

162 
164 

162 
170 

H ^ C p 1 ! 

e(cm'1) 

0.0006 
0.0085 
0.0002 
0.0093 
0.0028 
0.0039 

D^C^Z 1 ! 

e(cm" ) 

1.0 x 10"6 

3.7 X 10"6 

0.0021 
0.005 
0.00024 
0.002 

0.00054 
0.0034 

:+) 

N 

13 
24 
22 
21 
12 
17 

: + ) 

N 

1 
1 

13 
5 

26 
27 
22 
9 

PJ 

1- 2 
3-19 
1-11 
1-13 
2- 7 
1- 8 

PJ 

J = 
/ = 

1- 8 

1-15 
1-15 

1-11 
12-16 

RJ 

0-12 
13-22 
0-11 
0-13 
0- 5 
0- 9 

RJ 

1 < - / = 0 

2 * - / = 1 

0- 7 
12-16 
0-16 
0-14 
0-11 

12-16 

D37C1(Z12+) 

v'-v" 

v = 0 
v = 0 

1-0 

2-0 
2-0 

Reference 

161 

161 

167 

162 
168 

e(cm-1) 

1.1 x 10"6 

1.0 x 10"5 

0.0125 
0.0005 
0.0082 

N 

1 
1 

29 
29 
25 

PJ 

J = 

J = 

1-15 

1-14 
1-13 

RJ 

1 < - / = 0 

2 < - / = 1 

0-17 

0-15 
0-15 
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TABLE 6.1 (Cont'd) 

Summary of Vibrational-Rotational Data for HCl/DCf 

D37a(xh+) 

v'-v" 

3-0 
3-0 

Reference 

162 
170 

e(cm-1) 

0.0013 
0.0044 

N 

12 
15 

PJ 

2- 8 
1-15 

* / 

1" u 
0-14 

ae is the estimated precision of the data; N is the number of 
lines fitted; P and R. axe, the ranges of / fitted for the P and 
R branches, respectively. 
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r 

weights of individual line positions were calculated as the inverse squares of 

the precision estimates. 
fie <i*7 

The ground state v" = 0 pure rotational transitions of H CI and H CI 

have been studied by GX-laser heterodyning techniques, resulting in very 

precise molecular constants (129). Although there has not been an analogous 

study for DCl, the / •= 0, 1 microwave transitions are known (161) with 

comparable precision. There have been many investigations (86, 162-171) of 
35 

the infiart" vibrational-rotational bands, involving levels v" = 0-6 in H CI, 

and v" = 0-3 in H37C1, D35C1, and D37C1. A variety of spectroscopic 

techniques has been employed, including absorption Fourier transform, laser 

emission, and classical spectrographic absorption methods. 

Information on the higher vibrational levels of the ground states of HCl 

and DCl has become available by analyzing the complex emission rotational 

stmcture of 5 1 2 + - xh+ bands (130, 172, 173). For HCl, vibrational levels 

v" = 7-17 have been studied (130); for DCl the levels v" = 10-24 are involved 

in emission from the lower vibrational levels of B 2 + (173). It is obvious, 

then, that there is still a significant gap in the information on the ground 

state of DCl, involving levels v = 4-9. Although Deutsch (166) obtained data 

on levels v = 4 and 5, these were found to be contaminated with significant 

systematic error and were not included in the final least-squares fit. 

Systematic error in these data has also been detected by Coxon and 

Ogil/ie (46). Similarly, Zughal's (165) data, which were obtained in a study 

of the pressure broadening of spectral lines, were found to contain systematic 

error, possibly due to pressure shift effects, and were also excluded from the 

global fit. 
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63.2 Assignment of D37Cl 5 1 2 + - X^+ Bands 

In the conventional rotational analyses of emission spectra of HCl and 
37 DCl, no effort was made to assign lines associated with the CI nuclide; the 

traditional mass-transformation of molecular constants is simply unreliable. 
37 37 

The assignments for H CI and D CI were thus accomplished by obtaining 
35 effective Hamiltonian operators for these isotopomers from the assigned CI 

35 isotopomer data. Coxon (120) fitted H CI line positions to obtain operators 

for the X 2 + and B Z + states of this isotopomer, and mass-transformed them to 
37 

obtain approximate operators for H CI. The eigenvalues of such functions 

predicted the B - X emission band structure to within two standard measurement 

errors. This enabled a reliable assignment of the rotational line positions 
37 35 

of H CI. A similar analysis of D CI data in this work yielded quick and 
37 unequivocal assignments for D CI through a computer search program. 

1 + 1 + 

The B 2 —» X 2 line positions were assigned labels describing the 

spectral line contours (e.g. asymmetric, broad, shoulder, diffuse, etc.) as 

thi-y appeared on the oscilloscope display during the plate-measuring process. 

It was thus possible to gain a better understanding of the blending problem 

and justify the exclusion of certain line positions from the global fits. As 

expected, the blending was worse for the deuteride, as there are more 

vibrational and rotational levels involved in observed transitions. 

633 Initial Operators and Hamiltonian Correction Model 

The most accurate potential functions for the majority of diatomic 

molecules are available through RKRV calculations. However, there are two 

distinct disadvantages associated with these potentials. 
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First, experimentally derived molecular constants are used as input. The 

associated uncertainties have been demonstrated (174) to give rise to an inner 

limb ripple, despite the "buffering" action that is inherent on account of the 

stmcture of the RKRV equations. Such ripple may be reduced somewhat by 

smoothing input values through fitting power series in (v + Vz). 

This, however, does not address the second problem. It is simply not 

sufficient to report the coefficients of such power series to define the 

potentials uniquely; many procedures have been proposed to evaluate the RKRV 

integrals and the slight nonuniqueness would probably result in differences 

large enough to cause problems in the description of highly precise pure 

rotational lines. In addition, and as others have pointed out (95, 175), the 

extensive multi-digit numerical information required to define the RKRV 

potentials is a somewhat undesirable feature. 

It was decided therefore to explore the possibility of representing RKRV 

turning points entirely by analytic functions. However, in anticipation of a 

potential lack of smoothness on the inner limb, a method was devised for the 

smoothing of raw turning points before any attempt was made to represent the 

potentials by flexible functions. Some time ago, it was found by Coxon (176) 

that the Morse p° parameter (cf. Eq. (2.101)) obtained locally for the inner 

limb turning points as, 

p = ln[l + (URKRV(R)f3)e)
/2]l(Re - R), (6.10) 

displayed a linear dependence on the square root of energy, for the higher 

vibrational levels of diatomic halogen and interhalogen ground states. For 

the hydrogen halide molecules considered here, it was found that local values 

of /S could be represented very well by, 
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N 

m = £ b/, (6.H) 

where 

« = ln[l + (tFKBS(R)l3)f1\ (6.12) 

After imposing small corrections on the inner limb, corresponding adjustments 

were made to the outer limb turning points. This method then assumes that 

there is essentially no error in the vibrational terms and makes corrections 

for any lack of smoothness introduced from error in the rotational constants. 

Although this is not strictly correct, the major source of ripple is expected 

from error in the g integral (174). 

Following the smoothing of the raw RKRV turning points and the generation 

of extrapolated points in accord with the theoretically expected behaviour of 

the potential beyond the innermost and outermost points, an attempt was made 

to find a simple, yet flexible, analytical function for representing the 

numerical information. Many functions were tested, and it was concluded that 

no single expression was uniformly successful for all diatomic molecules 

considered in the tests. For HCl, the function, 

U(R) = 3> h - em[R " VI , (6.13) 

with 

W) =PQ+ fifl ~ R
e) + P2(R - * / + . . . + PJR ~ Rf, (6.14) 

was successful at describing the smoothed numerical information. Both 

electronic states were represented by Eqs. (6.13, 6.14). The weighted 

nonlinear least-squares analysis gave the fitted parameters listed in Table 

6.2. The residuals between the smoothed and fitted functions do not exceed 



TABLE 6.2 

Trial Potential Functions" for the j f 1 2 + and B x 2 + 

States of HCl 

Parameter 

R 
e 

^0 

Pi 
h 
h 

h 
?i 
D 

e 
R . 

ttllH 
R 

ftlQX 
h 

R. 
inner R t outer 

31 

X1^ 

1.274 558 3 A 

1.867 940 8 

1.401 745 1 x 

0.239 770 33 

-1.350 400 0 X 

4.566 623 4 X 

-3.574 987 1 X 

-1.242 920 1 x 

2.510 519 2 X 

37 243 cm"1 

0.70 A 

4.20 A 

0.0025 A 

0.90 A 

3.30 A 

0.90 A 

10'2 

10"2 

10"2 

10"2 

10"3 

10'3 

Bh+ 

2.511 547 2 A 

0.863 721 98 

0.275 610 08 

-0.123 991 54 

-3.351 652 7 X 

8137 865 9 X 

1.284 928 8 x 

-1.718 832 9 x 

15 000 cm"1 

1.40 A 

3.90 A 

0.0025 A 

1.75 A 

3.55 

10"2 

10"2 

10"2 

10"2 

"Potentials constructed from Eqs. (6.13, 6.14) (see 

text); units of /3 are A"^m+ \ R is the equilibrium 

intemuclear separation, 3) is '^e dissociation limit 

and the functions are defined from R . to R in a 
mm max 

mesh of h. R. , R and SI are defined in the inner' outer 
text. 
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2 cm on the outer limb, with a root-mean square deviation of approximately 

0.7 cm"1. 

There are several advantages in representing the potential functions by 

analytical models. First, the trial functions are defined unequivocally, 

eliminating any error from interpolation. Smooth initial functions also lead 

to increased economy in the representation of correction functions in the 

fitting procedure. Of equal importance is the avoidance of discontinuities 

associated with potential functions that have been constructed by splicing 

together different analytic forms with little regard for derivative 

continuity. This latter concern should be of importance in the numerical 

integration of the radial wave equation. Finally, the analytical 

representation approach leads to compact functions, an undeniable advantage 

over the alternative of long lists of multi-digit RKRV energies and classical 

turning points. 

A trial q(R) function was not considered. This is not found to affect 

the ability of first-order perturbation theory to describe properly the 

rotational shifts after just one iteration. Omitting q(R) in the trial 

operator is not a matter of necessity but of expedience, and it is shown here 

how to estimate such a trial function. As demonstrated previously, the 

experimentally derived rotational constants contain a uomnechanical 

contribution from q(R). If one calculates the expectation values, 

then a first-order approximation to q(R) may be oHained from the differences, 

ABv = *7 - Bf*v = fa^WVRW™^. (6.16) 
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q(R) could be expressed in terms of some radial power series expansion and the 

unknown coefficients determined in accord with the principles of IPA. 

Normally, however, there is too much noise in the experimentally determined 

rotational constants to give reliable results. Also, this procedure requires 

initial potentials (and hence rovibronic wavefunctions) which form close 

approximations for the effective functions that would be obtained by a full 

analysis. 

Nonetheless, anomalously large systematic AB differences should, at the 

very least, signal the need to consider inclusion of a q(R) function in the 

effective Hamiltonian. The AB residuals were plotted for the ground state by 
35 

Coxon and Roychowdhury (130) for H CI in the rotational analysis of the 

B —> X transition. These were found to increase with v and were several times 

greater than their estimated statistical uncertainties. 

A least-squares fit to spectroscopic line positions of the four HCl 

isotopomers was performed to determine the functions AUJR), AUJR), AU~(R), 
y_r 

AUJR), AUJR), and the mass-invariant part of q(R), that is, the function 

(ft2l2)mRg(R)/R2. The correction functions AU^(R) and &UJR), were modelled 

as linear combinations of types of functions appearing in Eq. (3.40). 

63.4 Least-Squares Fit and Radial Operators 

A total of 73 parameters was required to describe 8497 line positions 

with a reduced standard deviation of a . = 0.961. The only marginal increase 
/\ 25 37 

in the value of ff from that obtained in a similar analysis of H Cl/H CI 

spectroscopic data by Coxon (120) (a = 0.945), indicates that the 

constraint Eq. (6.9) is valid within the precision of the bulk of the data. 

Tables 6.3 and 6.4 describe the final fitted B1^ - X1!,* data sets for HCl and 
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TABLE 63 

Final Assignments for HC1(B - Xf 

HJ3C1 HJ/C1 

Band 

0 -
0 -
0 -
0 -
0 -
0 -

1 -
1 -
1 -
1 -
1 -
1 -
1 -
1 -

2 -
2 -
2 -
2 -
2 -
2 -
2 -
2 -
2 -

3 -
3 -
3 -
3 -
3 -
3 -
3 -
3 -
3 -
3 -

4 -
4 -
4 -
4 -
4 -

• 11 
• 12 
• 13 
• 14 
• 15 
16 

10 
11 
12 
13 
14 
15 
16 
17 

8 
9 
10 
11 
12 
14 
15 
16 
17 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

7 
8 
9 
10 
12 

PJ 

12 - 40 
6-42 
3-38 
2 - 35 
5 - 30 
5-22 

10- 45 
5-44 
4 - 38 
3 - 29 
26 - 34 
10 - 30 
4 - 25 
3 - 19 

8-34 
3-45 
2-44 
6 - 38 
3-28 
13 - 32 
3 - 22 
17 - 25 
5-19 

11 - 35 
4 - 36 
3 - 40 
2 - 40 
5 - 32 
32 - 39 
8 - 35 
7 - 21 
22 - 29 
7-21 

6-35 
2 - 37 
3-36 
6 - 27 
19 - 34 

11 
5 
3 
1 
2 
2 

10 
5 
0 
5 
26 
11 
1 
2 

10 
2 
1 
4 
3 
14 
3 
17 
3 

11 
5 
1 
2 
3 
35 
6 
8 
23 
5 

8 
2 
3 
1 
21 

RJ 

- 41 
- 42 
- 38 
- 35 
- 30 
- 24 

- 43 
- 42 
- 39 
- 31 
- 34 
- 29 
- 25 
- 19 

- 35 
- 42 
- 43 
- 38 
- 29 
- 32 
- 23 
- 24 
- 19 

- 33 
- 38 
- 39 
- 39 
- 33 
- 38 
- 34 
- 24 
- 28 
- 21 

- 34 
- 38 
- 35 
- 28 
- 34 

N 

51 
67 
67 
66 
47 
39 

58 
72 
71 
49 
18 
33 
42 
29 

44 
74 
78 
64 
45 
36 
35 
16 
29 

34 
64 
68 
71 
53 
11 
51 
29 
12 
27 

50 
68 
66 
45 
27 

rms 

0.021 
0.021 
0.019 
0.021 
0.018 
0.025 

0.029 
0.027 
0.016 
0.021 
0.021 
0.020 
0.019 
0.016 

0.032 
0.027 
0.024 
0.022 
0.018 
0.015 
0.019 
0.028 
0.026 

0.033 
0.024 
0.022 
0.026 
0.026 
0.024 
0.018 
0.016 
0.027 
0.019 

0.024 
0.027 
0.023 
0.017 
0.017 

21 
12 
6 
9 
5 

25 

4 
18 

20 
14 
7 

10 
7 
15 
10 
20 
11 
18 
14 

11 
6 
7 
26 

23 
15 
10 
12 

Pf 

- 41 
- 37 
- 34 
- 30 
- 19 

- 44 

- 36 
- 27 

- 30 
-25 
- 17 

- 27 
- 38 
- 34 
- 22 
- 30 
- 16 
- 25 
- 19 

- 33 
- 32 
- 37 
- 31 

- 33 
- 35 
- 33 
- 22 

21 
11 
5 
7 
6 

24 

3 
15 

23 
10 
7 

8 
4 
15 
9 
22 
12 
20 
11 

10 
7 
7 
25 

28 
14 
7 
15 

RJ 

- 42 
- 38 
- 34 
- 30 
- 19 

- 44 

- 37 
- 29 

- 30 
- 25 
- 17 

- 25 
- 39 
- 33 
- 22 
- 30 
- 20 
- 25 
- 18 

- 33 
- 31 
- 37 
- 33 

- 32 
- 36 
- 34 
- 24 

N 

37 
46 
51 
39 
20 

34 

57 
20 

18 
24 
17 

26 
56 
36 
23 
19 
14 
11 
13 

33 
46 
52 
14 

11 
38 
47 
18 

rms 

0.022 
0.024 
0.023 
0.027 
0.023 

0.019 

0.017 
0.023 

0.023 
0.031 
0.023 

0.030 
0.028 
0.030 
0.016 
0.016 
0.019 
0.027 
0.029 

0.033 
0.027 
0.027 
0.026 

0.028 
0.027 
0.026 
0.021 
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TABLE 63 (Cont'd) 

Final Assignments for HC1(B - X) a 

Band 

4 - 1 3 
4 - 15 

5 - 7 
5 - 8 
5 - 9 
5 - 12 

6 - 7 
6 - 8 
6 - 1 1 

PJ 

4 - 25 
12 - 26 

5 - 29 
4 - 32 
4 - 30 

20 - 30 

11 - 20 
11 - 22 
13 - 23 

H3SC1 

*J 

5 - 2 7 
14 - 25 

2 - 2 8 
2 - 31 
4 - 2 9 

19 - 29 

10 - 21 
10 - 20 
9 - 2 2 

N 

39 
25 

48 
55 
44 
19 

19 
23 
21 

rms 

0.022 
0.018 

0.029 
0.028 
0.037 
0.020 

0.030 
0.037 
0.020 

PJ 

10 - 22 

10 - 26 
13 - 27 

H37C1 

RJ 

13 - 23 

10 - 25 
11 - 25 

N 

20 

30 
23 

rms 

0.020 

0.032 
0.036 

aP and Rj define the ranges of / fitted for the P and R branches, 

respectively. N are the number of lines fitted and the quantity rms is the 

root-mean-square of the residuals (cm" ) between observed and calculated line 

positions. 
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TABLE 6.4 

Final Assignments for DC1(B - X)a 

DJDC1 D^'Cl 

Band 

0-16 
0-17 
0-18 
0 - 19 
0 - 20 
0-21 

1 - 14 
1 - 15 
1 - 16 
1 - 17 
1 - 18 
1 - 19 
1 - 20 
1 - 21 
1 - 22 
1 - 23 

2-12 
2 - 13 
2 - 14 
2 - 15 
2-16 
2 - 17 
2 - 18 
2 - 19 
2 - 20 
2 - 21 
2-22 
2-23 
2 - 24 

3-12 
3 - 13 
3 - 14 
3 - 15 
3 - 16 
3 - 17 
3 - 18 
3-21 
3 - 22 
3-23 
3 - 24 

25 
12 
8 
6 
3 
4 

36 
24 
7 
2 
7 
12 
30 
16 
4 
12 

31 
16 
10 
6 
7 
2 
6 
32 
16 
13 
24 
7 • 
8 • 

10 
4 • 
6-
3 • 
5 • 
8 • 
24-
23 • 
11 • 
24-
15 • 

PJ 

- 60 
- 59 
- 55 
- 51 
- 46 
- 38 

- 45 
- 63 
- 57 
- 51 
- 38 
- 50 
- 47 
- 42 
- 37 
- 28 

- 59 
- 54 
- 64 
- 57 
- 62 
- 57 
- 53 
- 47 
- 38 
- 41 
- 37 
- 30 
- 22 

- 60 
- 64 
- 59 
- 49 
- 35 
- 55 
- 48 
- 39 
- 26 
- 31 
- 21 

25 
9 
8 
5 
6 
0 

36 
22 
7 
5 
4 
11 
30 
17 
4 
11 

31 
16 
3 
7 
2 
2 
5 
33 
17 
16 
24 
9 
8 

8 
8 
5 
4 
4 
8 
24 
25 
10 
24 
13 

RJ 

- 62 
- 59 
- 54 
- 51 
- 45 
- 39 

- 45 
- 63 
- 58 
- 50 
- 38 
- 50 
- 47 
- 42 
- 37 
- 28 

- 59 
- 54 
- 63 
- 57 
- 63 
- 57 
- 55 
- 47 
- 39 
- 42 
- 37 
- 31 
- 22 

- 60 
- 64 
- 58 
- 51 
- 37 
- 55 
- 50 
- 40 
- 28 
- 30 
- 22 

N 

51 
71 
80 
65 
62 
44 

11 
69 
82 
73 
52 
37 
32 
43 
50 
29 

24 
47 
84 
87 
81 
61 
39 
23 
33 
30 
17 
29 
13 

58 
94 
90 
78 
48 
25 
35 
24 
26 
12 
11 

rms 

0.036 
0.032 
0.036 
0.037 
0.036 
0.032 

0.042 
0.035 
0.034 
0.033 
0.032 
0.036 
0.036 
0.041 
0.033 
0.040 

0.051 
0.040 
0.037 
0.039 
0/037 
0.033 
0.040 
0.040 
0.039 
0.043 
0.030 
0.040 
0.051 

0.042 
0.042 
0.035 
0.035 
0.043 
0.044 
0.033 
0.046 
0.047 
0.046 
0.049 

35 
39 
27 
22 
11 
7 

39 
28 
18 
4 
2 

34 
22 
18 

13 
18 
15 
13 

40 

28 

20 
6 
8 
11 
11 

PJ 

- 59 
- 56 
- 54 
- 51 
- 46 
- 28 

- 44 
- 63 
- 55 
- 50 
- 40 

- 46 
- 42 
- 36 

- 64 
- 48 
- 40 
- 33 

- 45 

- 36 

- 40 
- 60 
- 55 
- 50 
- 38 

35 
39 
27 
22 
10 

put 

39 
24 
16 
3 
2 

34 
19 
15 

13 
21 
14 
12 

39 

26 

22 
9 
7 
12 
11 

RJ 

- 61 
- 56 
- 54 
- 51 
- 46 
- 26 

- 44 
- 61 
- 58 
- 49 
- 38 

- 44 
- 39 
- 36 

- 64 
- 49 
- 38 
- 33 

- 45 

- 36 

- 40 
- 60 
- 53 
- 50 
- 39 

N 

26 
26 
38 
43 
38 
21 

10 
30 
54 
54 
39 

13 
26 
15 

40 
33 
30 
32 

12 

13 

19 
57 
60 
48 
29 

rms 

0.042 
0.041 
0.041 
0.041 
0.048 
0.031 

0.056 
0.039 
0.042 
0.041 
0.041 

0.044 
0.036 
0.050 

0.055 
0.043 
0.042 
0.044 

0.043 

0.046 

0.049 
0.048 
0.048 
0.045 
0.048 
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TABLE 6.4 (Cont'd) 

Final Assignments for DC1(B - X)a 

Band 

4 - 11 
4 - 12 
4 - 13 
4 - 14 
4 - 15 
4 - 17 
4 - 1 8 
4 - 19 
4 - 21 

5 - 1 0 
5 - 1 1 
5 - 12 
5 - 13 
5 - 14 
5 - 16 
5 - 17 
5 - 19 
5 - 20 

6 - 10 
6 - 1 1 
6 - 12 
6 - 1 3 
6 - 1 6 
6 - 17 
6 - 19 

7 - 10 
7 - 11 
7 - 12 
7 - 15 
7 - 16 
7 - 1 8 

PJ 

5 - 4 8 
4 - 6 4 
2 - 59 
4 - 5 6 
2 - 46 

27 - 50 
3 - 4 0 

1 0 - 24 
17 - 26 

2 3 - 4 6 
7 - 5 5 
3 - 58 
7 - 53 
1 - 4 3 

34 - 50 
8 - 4 5 

26 - 41 
8 - 29 

2 6 - 57 
9 - 5 7 
4 - 54 
7 - 4 9 
6 - 4 3 

14 - 38 
11 - 35 

27 - 49 
13 - 52 
15 - 47 
11 - 46 
11 - 37 
18 - 43 

D35C1 

RJ 

5 - 5 1 
2 - 64 
0 - 5 9 
2 - 5 5 
1 - 4 9 

27 - 49 
0 - 4 0 
9 - 2 6 

14 - 26 

23 - 46 
7 - 5 7 
2 - 5 9 
6 - 5 1 
1 - 4 4 

35 - 50 
9 - 46 

28 - 41 
9 - 3 1 

26 - 55 
9 - 5 7 
3 - 5 3 

10 - 53 
2 - 4 4 

17 - 35 
11 - 36 

27 - 49 
15 - 50 
15 - 47 
8 - 4 6 
4 - 3 9 

12 - 43 

N 

59 
90 
91 
82 
67 
35 
56 
15 
11 

29 
79 
97 
78 
57 
22 
52 
14 
21 

35 
73 
69 
61 
50 
17 
27 

29 
60 
39 
43 
27 
24 

rms 

0.044 
0.036 
0.036 
0.038 
0.038 
0.042 
0.040 
0.042 
0.023 

0.042 
0.043 
0.045 
0.036 
0.038 
0.037 
0.040 
0.045 
0.041 

0.045 
0.041 
0.049 
0.042 
0.045 
0.042 
0.040 

0.040 
0.056 
0.048 
0.050 
0.056 
0.045 

PJ 

2 7 - 4 8 
7 - 43 
8 - 6 0 
5 - 41 

17 - 47 
5 - 49 
4 - 47 

14 - 28 

19 - 43 

15 - 48 
9 - 4 2 

18 - 42 

21 - 48 

D37C1 

RJ 

29 - 50 
8 - 42 
9 - 5 9 
7 - 45 

16 - 48 
5 - 4 8 
4 - 47 

15 - 32 

19 - 39 

15 - 48 
9 - 42 

18 - 41 

18 - 48 

N 

18 
36 
56 
51 

28 
52 
47 
21 

17 

37 
38 
27 

31 

rms 

0.045 
0.054 
0.043 
0.041 

0.046 
0.046 
0.041 
0.041 

0.049 

0.047 
0.050 
0.045 

0.050 

aPj and R define the ranges of / fitted for the P and R branches, 
respectively. N are the number of lines fitted and the quantity rms is the 
root-mean-square of the residuals (cm ) between observed and calculated line 
positions. 
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DCl, respectively. 

A calculation of the line positions from the eigenvalues of the corrected 
.A. 

operators gave a reduced standard deviation of a = 0.979. This slight 

increase from the value obtained in the fit can be interpreted in terms of 

breakdown of first-order perturbation theory. The breakdown is insignificant 

however, and the data are still described within the measurement precisions. 

Also in view of the fact that the increase in a was global and not 

restricted to individual line positions, an iteration was considered 

unwarranted. 

The fitted values of the 73 parameters required to reconstruct the 

correction functions are given in Table 6.5. No uncertainties are given here, 

but the determinations were typically ten to one. Watson's prescription (177) 

for rounding-off least-squares parameter estimates has been followed. The 

trial and error method of constraining systematically individual parameters 

proposed recently by Tellinghuisen (178), would clearly be impractical for 

this work. 

It is realized that a fair amount of labour is required to reconstruct 

the functions from the coefficients. Such is the price that must be paid, 

however, for achieving accuracy in the rotational spacings of « 10" cm near 

the potential minimum. For some purposes it is sufficient to consult the 

RKRV-type of listings given in Tables 6.6-6.9. An 8-point Lagrangian 

interpolation of the function RU(R) has been recommended (111, 179) to keep 

the associated errors small, and its use is also suggested here. A more 

complete numerical listing of the fundamental functions U*°(R), ^(R), U01^) 

and i?y(R) is given in Appendix A-2. 

The quantum mechanical eigenvalues of the eight operators obtained in 



TABLE 6.5 

Fitted Coefficients (p) for Correction Functions" 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 

22 
23 

24 
25 
26 

27 
28 

Function 

Ground State AU^R) 
F 

Z41 
F 

X51 
JP 

xei 
F 

Xll 
F 

X&l 
F 
GX1 (1.2725/1.37364) 

G ^ (1.45779) 
G ^ (1.49729) 
GX4 (1.57897) 
GX5 (1.65262) 
GZ6 (1.72238) 
GXJ (1.79028) 
G ^ (1.85752) 
G ^ (1.92500) 
GZ10(1.99348) 
Gxn(2.06377) 
G^12(2.13663) 

0^(2.21300) 
Gzu(2.29430) 

GZ15(2.38202) 

GZ16(2.47880) 

0^(2.58849) 
Gzlg(2.71724) 
Gxig(2.87796) 
0^(2.97300) 

0^(3.183/3.40) 

SX 

h 
function 

3.118 25 X 104 

6.004 643 X 105 

5.019 099 X 106 

2.118 461 1 X 107 

4.391 117 9 X 107 

3.599 082 x 107 

2.099 8 X 10"2 

-1.429 01 X 10"1 

-9.803 5 x 10"2 

-3.907 0 x 10"1 

-9.107 5 X 10"2 

-3.357 X 10"1 

2.436 x 10"1 

4.397 X 10"1 

1.086 9 
1.669 3 
2.144 2 
2.646 9 
3.115 9 

3.199 0 
2.886 9 

2.244 1 
9.272 9 
1.799 4 
1.040 3 
1.024 3 X 101 

-8.630 
1.219 225 X 10"5 



TABLE 6.5 (Cont'd) 

Fitted Coefficients (p.) for Correction Functions0 

Function pk 

Ground State gJR) function 
3.807 1 X 10"4 

-3.188 4 X 10"3 

2.312 6 x 10"3 

-6.441 0 X 10"4 

Ground State AU^(R) junction 

6.349 
7.760 8 X 101 

2.252 2 X 102 

5.880 X 10"2 

-3.906 x 10"2 

1.96 x 10"7 

29 
30 
31 
32 

33 

34 
35 
36 
37 

38 

39 

40 
41 
42 

43 
44 

45 
46 

47 

48 

49 

50 
51 

HX2 
HX3 
HXA 
HX5 

Gro 
F 

Xll F 
XSl F 
Z41 
X2>1 

F 
XA2 sx,c\ 

Gro 
F 

XAl F 
XSl 

F 
X61 F 
Xll F 
Xll F 
Xil F 
XAl F 
XSl F 
X62 

SX,H 

Exc 
F 

531 j?" 
541 

F 
551 

Ground State AU^(R) function 

-2.225 35 X 10 3 

-2.648 27 X 104 

-1.061 16 X 105 

-1.387 53 X 105 

3.989 59 
-2.118 331 X 101 

1.494 713 x 101 

-1.506 01 
-7.938 1 X 10'1 

-3.022 3 X 10"5 

Excited State AUJR) function 

-3.980 60 x 102 

1.173 982 X 104 

8.291 192 X 103 



TABLE 6.5 (Cont'd) 
Fitted Coefficients (p ) for Correction Functions0 

k 

52 

53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

63 

64 
65 

66 
67 
68 
69 
70 
71 

72 
73 

Function 

F 
A"61 

F 
Xll O51(2.50/2.68207) 

0^(2.81597) 
0^(2.87585) 
0^(2.99438) 
Ofi5(3.09621) 
G56(3.18869) 
0^(3.27476) 
G58(3.35686/3.45) 

SB 

Pk 

1.144 334 X 104 

4.567 71 x 103 

-1.019 0 
-4.045 2 
-4.484 2 

-8.579 4 
-4.437 0 
-7.021 1 
1.419 6 

-2.360 
4.001 0 x 10"4 

Excited State AU"(R) function 
F 

511 
F 

Ell F 
531 

F 
542 F 
552 F 
562 

F 
Bll F 
582 

SBM 

-1.884 4 

-1.441 4 x 101 

1.785 2 x 101 

-2.688 31 X 102 

1.513 62 X 103 

-3.181 49 x 103 

1 

2.956 45 X 103 

-1.020 568 X 103 

4 

7.753 1 x 10"4 

Excited State T Corrections 

Ar(HCl) 
Ar(DCl) 

-3.318 
7.791 

flThe intemuclear distances used for the generation of expectation 
values are 

the values 
given are 

R* 
e in 

= 1.27455363 A and R8 = 
e parentheses are the R .; : 

= 2.5104848 A. For the G ., 
nv for Gv. and GD1 the values 

A l />1 the R and R ; similarly, for G™. and G„g, the second 

values in parentheses are the pivot points for the a nil' 



TABLE 6.6 

Intemuclear Potentials for the X1?* States of H35C1 and H37Cla 

H35C1(Z12+) H37C1(X12+) 

v min max v min max 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

1483.880 

4369.857 

7151.864 

9830.658 

12406.715 

14880.158 

17250.770 

19517.840 

21680.085 

23735.620 

25681.690 

27514.689 

29229.726 

30820.375 

32278.243 

33592.316 

34747.970 

35725.102 

1.177176 

1.117191 

1.080690 

1.053654 

1.032069 

1.014122 

0.998818 

0.985546 

0.973901 

0.963604 

0.954452 

0.946298 

0.939033 

0.932579 

0.926885 

0.921918 

0.917673 

0.914168 

1.393424 

1.497280 

1.578958 

1.652589 

1.722353 

1.790229 

1.857456 

1.924922 

1.993401 

2.063649 

2.136476 

2.212857 

2.294050 

2.381762 

2.478470 

2.588014 

2.716789 

2.877233 

1482.768 

4366.639 

7146.695 

9823.697 

12398.117 

14870.080 

17239.370 

19505.281 

21666.533 

23721.253 

25666.696 

27499,271 

29214.111 

30804.819 

32263.044 

33577.829 

34734.628 

35713.469 

1.177209 

1.117241 

1.080748 

1.053717 

1.032136 

1.014191 

0.998888 

0.985617 

0.973973 

0.963675 

0.954523 

0.946367 

0.939100 

0.932644 

0.926946 

0.921975 

0.917725 

0.914212 

1.393374 

1.497179 

1.578813 

1.652400 

1.722119 

1.789948 

1.857125 

1.924537 

1.992956 

2.063136 

2.135885 

2.212174 

2.293255 

2.380826 

2.477350 

2.586636 

2.715024 

2.874839 

aEnergies are in units of cm" and intemuclear separations in A 



TABLE 6.7 

Intemuclear Potentials for the X1!* States of D35C1 and D37Clfl 

D ^ C p - V ) D37C1(Z12+) 

v min max v min max 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

17 
18 
19 

20 

21 
22 

23 
24 

1066.603 

3157.663 

5195.034 

7179.055 

9109.984 

10988.018 

12813.238 

14585.653 

16305.222 

17971.695 

19584.715 

21143.818 

22648.301 

24097.277 

25489.663 

26824.102 

28098.921 

29312.064 

30461.041 

31542.848 

32553.829 

33489.525 

34344.501 

35111.924 

35782.945 

1.190909 

1.137970 

1.105120 

1.080413 

1.060410 

1.043554 

1.028984 

1.016170 

1.004756 

0.994493 

0.985199 

0.976733 

0.968991 

0.961889 

0.955358 

0.949347 

0.943813 

0.938720 

0.934043 

0.929761 

0.925860 

0.922332 

0.919174 

0.916390 

0.913995 

1.373633 

1.457786 

1.522496 

1.579754 

1.633036 

1.683963 

1.733454 

1.782105 

1.830367 

1.878585 

1.927055 

1.976062 

2.025880 

2.076794 

2.129116 

2.183208 

2.239502 

2.298526 

2.360945 

2.427633 

2.499769 

2.578988 

2.667652 

2.769687 

2.891090 

1065.044 

3153.105 

5187.633 

7168.967 

9097.365 

10973.024 

12796.026 

14566.378 

16284.041 

17948.769 

19560.208 

21117.896 

22621.139 

24069.056 

25460.573 

26794.345 

28068.715 

29281.645 

30430.667 

31512.806 

32524.441 

33461.160 

34317.584 

35086.966 

35760.567 

1.190965 

1.138057 

1.105222 

1.080526 

1.060531 

1.043680 

1.029115 

1.016304 

1.004892 

0.994631 

0.985337 

0.976872 

0.969129 

0.962025 

0.955494 

0.949481 

0.943944 

0.938848 

0.934167 

0.929881 

0.925975 

0.922441 

0.919275 

0.916483 

0.914077 

1.373553 

1.457630 

1.522275 

1.579471 

1.632692 

1.683557 

1.732985 

1.781571 

1.829764 

1.877909 

1.926303 

1.975226 

2.024954 

2.075769 

2.127982 

2.181952 

2.238106 

2.296967 

2.359195 

2.425651 

2.497500 

2.576353 

2.664533 

2.765877 

2.886313 

"Energies are in cm" and intemuclear distances in A. 



TABLE 

Intemuclear Potentials for the B 2 

H35C1(JB12+) 

v min max 

0 
1 
2 
3 
4 
5 
6 

430.936 

1276.358 

2090.344 

2874.378 

3630.282 

4359.904 

5065.210 

2.317497 

2.175088 

2.074589 

1.990216 

1.914810 

1.845365 

1.780419 

2.714873 

2.876472 

2.995175 

3.096697 

3.189113 

3.274896 

3.357174 

209 

6.8 

+ States of H35C1 and H37Cf 

H37C1(£12+) 

v min max 

430.616 

1275.421 

2088.838 

2872.343 

3627.756 

4356.921 

5061.800 

2.317569 

2.175217 

2.074760 

1.990425 

1.915055 

1.845644 

1.780729 

2.714794 

2.876323 

2.994970 

3.096442 

3.188811 

3.274548 

3.356778 

flEnergies are given in cm" units and intemuclear distances in A. 



TABLE 

Intemuclear Potentials for the B 1 

D35CI(51Z+) 

v G 
V 

0 
1 
2 
3 
4 
5 
6 
7 

310.570 

923.148 

1519.189 

2099.183 

2663.796 

3213.602 

3749.364 

4271.750 

2.345892 

2.225790 

2.141985 

2.072417 

2.010812 

1.954403 

1.901710 

1.851890 

2.682145 

2.816166 

2.913145 

2.995614 

3.069400 

3.137904 

3.202499 

3.263793 

+ States of D35C1 and D37Ci 

D^CKBV) 

v min max 

310.119 

921.820 

1517.030 

2096.239 

2660.109 

3209.211 

3744.305 

4266.056 

2.346011 

2.226000 

2.142261 

2.072751 

2.011201 

1.954843 

1.902199 

1.852426 

2.682016 

2.815926 

2.912821 

2.995216 

3.068932 

3.137366 

3.201898 

3.263129 

"Energies are in units of cm" and intemuclear distances in A. 
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this work are listed in Appendix A-3. From these eigenvalues, the fitted line 

positions were calculated and the residuals from the observed frequencies 

formed. These are listed in Appendix A-4. 

The functions U^(R), U^(R), ?nd U^(R) are plotted in Figures 6.1, 6.2, 

and 6.3, respectively. Also shown in these plots are the innermost and 

outermost turning points obtained by considering all the fitted J5 and some 

indication of the radial distribution of rotational levels for the highest 

vibrational levels. The function RX(R) is plotted in Figure 6.4. Shown in 

all plots of radial functions are the 95% confidence limits as obtained by 

standard methods (57). 
M i l 

According to the theory of Watson (42), the function RJR) can be 

expressed as, 

Q*(R) dR, (6.17) 

TJ 1 4-

where the function QJR) accounts for homogeneous coupling of X 2 to excited 
1 + H 
2 electronic states, and RJR) signifies pure heterogeneous mixing. In 

T T T T 

regions where RJR) » QX(R), the coupling can be thought of as purely 

heterogeneous, and the radial variation of the matrix element (AlTl\L H |X 1 2 + > 

can be examined. The function Ry\R) («* RyXR)) can be written as, 

R%R) = E&R) - RT1 

«> = ti?)I \<n\Lx}i\X
lX+y\2 

+ KnlL^l^sV -/{UJW-UJLR)} + ZH, (6.18) 

where ZR is the charge of the hydrogen nucleus and the summation is taken over 

all excited II states. It is assumed that A1!! - X1!.* is the predominant 
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Figure 6.1 

The estimated function UX(R) for HC1/DC1(Z12+). The dotted 

and broken curves represent the 95% confidence limits of the 

fitted function, R . and R represent the innermost and 
mm max r 

outermost classical turning points respectively, obtained by 

considering all the fitted E ,. 
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Figure 6.2 

The estimated function U^(R) for HC1/DC1(Z12+). The dotted 

and broken curves represent the 95% confidence limits of the 

fitted function. R . and R represent the inneimost and 
mm max r 

outermost classical turning points respectively, obtained by 

considering all the fitted E .. 

2 H 
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Figure 63 

The estimated function U^(R) for HCl /DCl^* ) . The dotted 

and broken curves represent the 95% confidence limits of the 

fitted function. R . and R represent the innermost and 
mm max r 

outermost classical turning points respectively, obtained by 

considering all the fitted E ,. 
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Figure 6.3 
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Figure 6.4 

The estimated function RX(R) for HC1/DC1(X12+). The two 

solid Unes represent .he 95% confidence limits of the 

fitted function. 
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heterogeneous interaction in regions where homogeneous coupling is small. 

From the results of ab initio calculations (127), this range has been chosen 

as 1.80 - 3.20 A for HCl/DCl. Based on this single heterogeneous perturber 
l l + 

hypothesis, the matrix element <A II |L H | X 2 )• can be found from, 
i /2 

K ^ I I I L J X ^ I = [(R*(R) - ZH)(m//4)[Cyi?) - UA(R)]] , (6.19) 

2 2 1 
having assumed <L „)> = <L H> . The potential for the repulsive A TL state was 
represented by the analytical expression, 

UA(R) = 3)e(X
1^) + ^ c R \ (6.20) 

obtained by fitting parameters ^ and n to the ab initio potential (127); the 

fitted parameters are ^ = 140 998 cm" and n = 1.745 390 5, and the 

dissociation limit 3) (X 2 ) was constrained to the thermochemical value of 

37 243 cm (119). Values of the matrix element obtained in this fashion are 

presented in Table 6.10. This restricted type of calculation shows the matrix 

element to possess a smooth radial variation with increasing R, reaching a 

fairly constant value in the range 2.8 < R < 3.2 A. Beyond this intemuclear 

separation the function q(R) (and hence RJR)) is not known with certainty. 
1 1 4-

Also, as A II continues to approach X 2 towards larger R, there is an expected 

breakdown of the Van Vleck transformation, which is essentially a second-order 

nondegenerate perturbation description. 

6.4 Isotopic Variation of Equilibrium Bond Lengths 

The isotopic dependence of equilibrium rotational constants has received 

considerable attention. Fortunately, the spectroscopic characterization of 

the \ow-v,J levels of the isotopomers of HCl has been accomplished through 
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TABLE 6.10 

Radial Variation of Matrix Element ^ n j L |Z a 2 + > for HCf 

R 

2.2 
2.4 
2.6 
2.8 
3.0 
3.2 

AU(R) 

-12711 

-7529 

-4230 

-2271 

-1184 

-620 

Rx 

-1.09 

-1.88 

-3.16 

-5.28 

-8.86 

-14.89 

K^niLjx^i 

0.44 

1.14 

1.46 

1.62(8) 

1.69(9) 

1.74(8) 

aR are in A units and AU(R) in units of cm" . For the last 
three entries, the numbers in parentheses signify estimated 
errors. 
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techniques which provide very precise results; the isotopic variation of R 

for HCl can therefore also be described with comparable certainty. 

The work of Kaiser (93) dealt primarily with the hyperfine structure and 

parameters of v" = 0-2, /" = 1-2 in H35C1, and v" = 0-1, /" = 1-3 in D35C1, as 

well as with the influence of the electric dipole moment on the moment of 

inertia. The rotational g factor was determined as g. = 0.47 ± 0.03 for 
35 

v" ,J" = 0, 1 of H CI from a measurement of the rotational magnetic moment of 

the perturbed ground state. Kaiser also reported estimates of R for H CI 
35 

and D CI; these appear to be the adiabatic values, even though they were not 

explicitly identified as such. They were obtained by considering the effect 

on the moment of inertia of the nonspherical electron distribution around the 

two atoms. 

Shortly thereafter, improved measurements of submillimeter-wave 

transitions were made for several hydrogen halides (267). These included the 
37 37 

first reliable measurements on the H CI and D CI isotopomers. A detailed 
BO theoretical interpretation of these frequencies was made to obtain JR , the 

equihbrium bond length in the Bom-Oppenheimer approximation. This result 

was in shght error because an assumption was made that g. is proportional to 

ff ; g. has a more complicated mass dependence. This oversight led to 

slightly erroneous estimates of the correction for the nonspherical electron 

distribution. 

A rigorous theoretical investigation into the isotopic variation of R 

was made by Watson (180). An important result of this work was the 

expression, 
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which enables the estimation of the Bom-Oppenheimer equilibrium bond length 

by considering R values obtained from uncorrected estimates of YQV The 

parameters d. comprise adiabatic, nonadiabatic and semiclassical corrections. 

Collectively, they describe the small difference between Bg and YQV 

Another important expression in Watson's article (180) relates the 

adiabatic equilibrium bond length to that obtained in the clamped nuclei 

approximation, as 

Rf = R*°{1 + me(d£d/MH + «*Cl/Ma>}- (6.22) 

The parameters d*. refer to adiabatic corrections exclusively. A solution of 

the electronic wave equation in spaced-fixed coordinates gives these as, 

df = - ( l /2m/°tfB 0 ) [ *^Xl^\v\\Xl-L+>] (6.23) 
L dR *R 

e 

where P. are the momenta of the nuclei relative to space-fixed axes. A 

space-fixed coordinate system was employed (180) as it leads to a simpler 

expression for the adiabatic correction, the expectation value in Eq. (6.23). 
BO 2 iBO 2 

k is the Bom-Oppenheimer harmonic force constant, or dlr(R)ldR evaluated 

at R*°. The relation between Rf and RB0 can also be written as (180), 

R? = RBO - ( l / feB O ) [^M!M] ROJ (6.24) - dR J*B O ' 
e 

where AU3 (R) is the adiabatic correction. 

Improved atomic masses (181) and fundamental constants (182) have become 

available since the analysis of Watson (180); his analysis was therefore 

repeated here for the isotopomers of HCl. Table 6.11 lists estimates of 

RJXm) obtained by using the conversion factor, 5(MHz) = 505 379.075/fiR2, for 

p in amu and Rg in A, where p is calculated from improved estimates of the 
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TABLE 6.11 

Isotopic Dependence of Equilibrium Intemuclear Separations for HCf 

Isotopomer Re(YQ1) Rg(uf) Rf 

H35C1 

H37C1 

D35C1 

D37Ci 

j3Sa 

T^Cl 

1.274 556 710(40) 

1.274 556 631(40) 

1.274 579 071(55) 

1.274 578 989(60) 

1.274 587 254(1140) 

1.274 586 171(1140) 

1.274 545 903(18) 

1.274 545 797(10) 

1.274 576 083(20) 

1.274 575 964(12) 

1.274 585 960(55) 

1.274 585 935(47) 

1.274 709 86 

1.274 709 73 

1.274 656 13 

1.274 656 01 

1.274 638 25 

1.274 638 13 

RXe = 1.274 604 3(1) from UX(R). 

R*° = 1.274 600 0(6) from Eq. (6.21) and RJYQl) above. 

aAll quantities are in Angstrom units. 
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atomic masses. The atomic masses and reduced molecular masses employed in 

this work are listed in Table 6.12. Table 6.11 also contains the JReff values 
e 

corresponding to the minima of the numerical functions Ur (R) determined in 
eff 

the present analysis. The quantal values, R , differ from the semiclassical 

R (YQ1) values in a clearly mass-dependent way. A weighted least-squares fit 

of Eq. (6.21) to the semiclassical estimates gave R®° = 1.274 600 0(6) A, 

dH = -0.06451(12), and dQ[ = 0.075(34). 
l + The Born-Oppenheimer potential for X 2 has also been obtained from the 

individual isotopically dependent potential functions. Its minimum has been 
BO X 

found numerically at R = 1.21 A 604 3(1) A, in good agreement with the value 

given above, considering that the errors on these quantities do not reflect 

the uncertainties in the fundamental constants. In particular, the 

uncertainty in Planck's constant would introduce a corresponding uncertainty 

in the R value of approximately 1 X 10" A. This alone does not explain the 

observed discrepancy; nor is it clear why a deviation of such magnitude is 

found. One may speculate that, while the potentials obtained in this work 

inextricably contain radiative and relativistic corrections, Eq. (6.21) may 

not be capable of extracting such effects in a theoretically proper fashion. 

Along the similar theme of a deficiency in Eq. (6.21), a separate fit found 

the coefficient of (m /M„) to be marginally supported; this indicates that 
BO 

R and d. determined in accord with Eq. (6.21) are slightly contaminated. On 

the other hand, since the correction functions determined in this work are 

expanded about a trial R estimate and hence forced to assume zero values at the trial potential minimum, it may not be unreasonable to expect a 

model-dependent error on the Reif estimates which would also display isotopic 

dependence; this could lead to a slightly (» 10"6 A) erroneous RBO estimate. 



TABLE 6.12 

Atomic and Reduced Molecular Masses0 
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Atomic Masses 

M(XH) 

M(2H) 

M(3H) 

M(35C1) 

M(37C1) 

1.007 825 037 

2.014 101 787 

3.016 049 286 

34.968 852 729 

36.965 902 624 

Reduced Molecular Masses 

^(1H35C1) 

^ H ^ C l ) 

,u(2H35Cl) 

^(2H37C1) 

//(3H35C1) 

A*(3H37Q) 

0.979 592 544 

0.981 077 299 

1.904 413 254 

1.910 032 891 

2.776 571 155 

2.788 532 798 

aAtomic masses taken from Ref. (181). 
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With R50 and d. now available, it was possible to obtain new estimates of 

the adiabatic parameters dad from the expressions (180), 

"o - «H , (6.25) 
e e ]? 

C1 u 2m B 2m 

e e p 

where m is the protonic mass and AYQ1 the Dunham correction. The 

isotopically independent values (pgX are given by (180), 
(Mgj)R = (*gj + 2cam;jAfa/(MH + M a ) , (6.27) 

and 

so that 

C"2/)ci = Wj + Z ^ V V ^ H + M
a ) ' (6'28) 

Sj = W e f t +
 W H / M C I > (6-29) 

showing clearly that g is not simply dependent on pi . Eqs. (6.27, 6.28) 

introduce the formal charges cH and c discussed further below. The Dunham 

correction in Eqs. (6.25, 6.26) is given in terms of the anharmonic potential 

derivatives, a , as 

AYQ1 = (53/4<y2)(30 + 28^ + 21a2 + 21a3 - 18a2 - 4 6 ^ + 30«3). (6.30) 

Precise a for HC1(Z 2+ ) have been reported by Coxon and Ogilvie (46). 

Despite these improved estimates, we do not obtain a significant difference in 

the estimates of df from those of Watson (180). Using d^ = 0.155 and 

da<J = 0.116 (180), estimates of Ra* are also presented in Table 6.11. It is 

interesting to note that, given the expression for dad, Eq. (6.23) above, the 
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adiabatic matrix elements <X 2 |P. \X 2 > must possess negative slopes near the 

equilibrium configuration of the Born-Oppenheimer curve. Hence, the total 

adiabatic correction must similarly be associated with a negative slope near 

According to Watson (180), there exists a relationship between d. and d. 

and c, the formal charges associated with each atom. It is given by 

where |c.| = |D/eR | , D being the equilibrium dipole moment and e the 
ad 

electronic charge. From the d. and d. obtained in this work, we calculate 

cH = 0.1786 and c = -0.1786. Using Kaiser's (93) equilibrium dipole moment, 

M = 1.0933 D and R = 1.27456 A, we also obtain Ic.l = 0.1786, indicative of 

the consistency in the theory. The small formal charges on atoms H and CI 

imply a H+C1~ distribution of electronic charge, in accord with chemical 

intuition. This slight imbalance of charge is related to a finite dipole 

moment, and is also linked to the small degree of tonicity in the ground 

electronic state. For HF, the significantly higher degree of ionicity in the 

ground state is reflected in the formal charges c„ = 0.4083, and c = -0.4083 

obtained by using a dipole moment of 1.7982 D (183). Ultimately, these 

observations reflect the orbital composition of the electronic wavefunctions 

for HCl and HF ground states, shown by ab initio calculations (Jf27, 149) to be 

admixtures of ionic with valence configurations. 

It is clear that the equilibrium bond lengths in the adiabatic 
approximation follow a mass-dependent trend which is opposite to that of both 

the R(X01) and R . As indicated by Eq. (6.24), above, in order for the 
ad BO 

adiabatic R values to be larger than R , it is necessary for the adiabatic 
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correction, AU^^R), to possess a negative slope at R . A n examination of 

Fig. 6.1 of U^(R) obtained in this work reveals a positive slope near the 
eff 

potential minimum; hence the opposite isotopic trend is observed in R . 
This observation is important. It implies that the function Uz(R) is 

ad considerably different from the tme adiabatic correction, AZ7„ (R). 

Therefore, the experimentally derived function Uz(R) must contain significant 

homogeneous nonadiabatic contributions, most likely due to interactions 

between Z X + and the lowest excited bound electronic state, B 2 + , which has a 

vertical excitation energy of approximately 10.9 eV (173), and the Rydberg 

H 2+(0+) state, which undergoes a diabatic curve crossing with B 2 + at 

approximately the same energy. 

6.5 Perturbation Calculation of Centrifugal Distortion 

A nonuniqueness has been discussed previously regarding the potential 

energy functions for individual isotopomers. Coxon (120) has demonstrated 

numerically that the nonuniqueness parameter A has negligible effect on the 

quantum mechanical eigenvalues, when applied in the prescription suggested by 

Watson (42). This is discussed further in Section 6.8. Any parametrization 

of energy must also be independent of A. Hence, the rotational energy 

expression, 

Fvj = < W + 1)1 - < W + !)]2 + < V ( ' + I)]3 + • • ., (632) 

will also be affected only slightly by use of different A as prescribed by 

Watson (42). B*s, D°s, lfs, etc., are rotational and centrifugal 

distortion constants contaminated with nonmechanical effects. They are the 

perturbed constants determined through a fit of experimental line positions to 
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a power series in / ( / + 1). The theoretically correct expression for B has 

been given previously as Eq. (3.57). The centrifugal distortion constants can 

be calculated most efficiently through the methodology laid out by 

Hutson (53). The computer code of Hutson was modified, however, to account 

for the effects of q(R). Constants were calculated in this fashion for the 

B 2 + and I X + states of all four isotopomers and are listed in Tables 

6.13-6.16. 

A particularly rigid test of the physical significance of such constants 
35 37 

was carried out for v" = 0 of H CI and H CI, by comparing synthetic pure 

rotational line positions for /" = 0-9 with those obtained very precisely 

through tunable far-infrared laser spectroscopy (129). The comparison is 

shown in Table 6.17. Also shown is a comparison of rotational and centrifugal 

constants obtained from perturbation theory and experimentally. The agreement 

is found to be exceptional. These observations provide strong support for the 

physical significance of the calculated constants and hence also the derived 

operators. 

There is a twofold benefit in obtaining molecular constants through 

perturbation theory. First, the physical significance of the results derived 

from a Hamiltonian correction analysis may be evaluated. In some cases it is 

even possible to diagnose the progressive lack of physical meaning of 

rotational parameters obtained traditionally; this problem is of particular 

concern for the coefficients of increasing powers of J(J + 1). Second, the 

availability of constants which are quantum mechanically consistent with the 

derived operators offers the possibility of representing the eigenvalues 

compactly. 

This latter potential benefit was investigated further. The calculated 



TABLE 6.13 
lv+\a Quantum Mechanical Molecular Constants for HC1(X 2 )' 

H35a(AT12+) 

v B D H M 

0 

10 

11 

12 

13 

14 

15 

1483.8803 
1483.8803 

4369.8569 
4369.8569 

7151.8635 
7151.8635 

9830.6584 
9830.6584 

12406.7146 
12406.7146 

14880.1579 
14880.1579 

17250.770 
17250.770 

19517.840 
19517.840 

21680.085 
21680.085 

23735.620 
23735.620 

25681.690 
25681.690 

27514.689 
27514.689 

29229.726 
29229.726 

30820.375 
30820.375 

32278.243 
32278.243 

33592.316 
33592.316 

10.4401982 
10.4402186 

10.1361830 
10.1362482 

9.8345962 
9.8347122 

9.5347866 
9.5349600 

9.236010 
9.236248 

8.937344 
8.937655 

8.63780 
8.63820 

8.33580 
8.33629 

8.02993 
8.03052 

7.717943 
7.718651 

7.397450 
7.398296 

7.065210 
7.066220 

6.716843 
6.718049 

6.34665 
6.34810 

5.94685 
5.94861 

5.50610 
5.50829 

5.280772-4 
5.280302-4 

5.214313-4 
5.213716-4 

5.154519-4 
5.153782-4 

5.102765-4 
5.101873-4 

5.061039-4 
5.059975-4 

5.03084-4 
5.02957-4 

5.0155-4 
5.0140-4 

5.01924-4 
5.01749-4 

5.04502-4 
5.04294-4 

5.10297-4 
5.10048-4 

5.19730-4 
5.19429-4 

5.34621-4 
5.34250-4 

5.56686-4 
5.56217-4 

5.88966-4 
5.88351-4 

6.3632-4 
6.3547-4 

7.0716-4 
7.0591-4 

1.672182-8 
1.673014-8 

1.61678-8 
1.61775-8 

1.55218-8 
1.55330-8 

1.47755-8 
1.47885-8 

1.3866-8 
1.3881-8 

1.2828-8 
1.2846-8 

1.13-8 
1.13-8 

9.7025-9 
9.7301-9 

7.273-9 
7.309-9 

4.438-9 
4.484-9 

4.233-10 
4.869-10 

-5.286-9 
-5.195-9 

-1.3414-8 
-1.3278-8 

-2.5465-8 
-2.5247-8 

-4.4865-8 
-4.4487-8 

-7.757-8 
-7.684-8 

-8.64924-13 
-8.64250-13 

-8.963-13 
-8.955-13 

-9.418-13 
-9.408-13 

-1.0107-12 
-1.0095-12 

-1.088-12 
-1.087-12 

-1.20-12 
-1.19-12 

-1.560-12 
-1.556-12 

-2.076-12 
-2.069-12 

-2.4018-12 
-2.3919-12 

-3.4461-12 
-3.4298-12 

-4.630-12 
-4.603-12 

-6.969-12 
-6.921-12 

-1.0929-11 
-1.0835-11 

-1.8549-11 
-1.8348-11 

-3.493-11 
-3.444-11 

3.086-17 
3.091-17 

2.698-17 
2.704-17 

2.37-17 
2.38-17 

1.22-17 
1.23-17 

8.78-18 
8.99-18 

-6.2-17 
-6.2-17 

-1.699-16 
-1.690-16 

-1.01-16 
-9.91-17 

-3.507-16 
-3.481-16 

-5.812-16 
-5.764-16 

-9.420-16 
-9.328-16 

-1.6540-15 
-1.6350-15 

-3.469-15 
-3.424-15 

-6.784-15 
-6.670-15 

-1.675-14 
-1.640-14 



232 

TABLE 6.13 (Cont'd) 

Quantum Mechanical Molecular Constants for HCl(X'12+)a 

H35Q(JSr12+) 

v G B D H L M 
V V V V V V 

16 34747.970 5.00723 8.1828-4 -1.4130-7 -7.738-11 -4.81-14 
34747.970 5.01007 8.1621-4 -1.3965-7 -7.587-11 -4.66-14 

17 35725.102 4.42018 1.0097-3 -2.901-7 -2.259-10 -2.25-13 
35725.102 4.42411 1.0057-3 -2.853-7 -2.196-10 -2.16-13 

H^cprV) 

v G B D H L M 
V V V V V V 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1482.7679 
1482.7679 

4366.6391 
4366.6391 

7146.6954 
7146.6954 

9823.697 
9823.697 

12398.117 
12398.117 

14870.080 
14870.080 

17239.370 
17239.370 

19505.281 
19505.281 

21666.533 
21666.533 

23721.253 
23721.253 

25666.696 
25666.696 

' \4245153 
j.4245357 

10.121190 
10.121256 

9.820285 
9.820401 

9.521148 
9.521321 

9.223043 
9.223280 

8.925051 
8.925361 

8.62619 
8.62659 

8.32489 
8.32537 

8.01974 
8.02032 

7.70850 
7.70921 

7.38881 
7.38965 

5.264830-4 
5.264361-4 

5.19863-4 
5.19804-4 

5.1390-4 
5.1383-4 

5.0874-4 
5.0865-4 

5.0458-4 
5.0447-4 

5.0156-4 
5.0144-4 

5.0002-4 
4.9988-4 

5.0039-4 
5.0021-4 

5.0293-4 
5.0273-4 

5.0869-4 
5.0844-4 

5.1805-4 
5.1775-4 

1.664659-8 
1.665487-8 

1.6095-8 
1.6104-8 

1.54-8 
1.55-8 

1.47-8 
1.47-8 

1.38-8 
1.38-8 

1.28-8 
1.28-8 

1.124-8 
1.126-8 

9.666-9 
9.694-9 

7.256-9 
7.291-9 

4.438-9 
4.484-9 

4.578-10 
5.210-10 

-8.5975-13 
-8.5908-13 

-8.9-13 
-8.9-13 

-9.4-13 
-9.3-13 

-1.0-12 
-1.0-12 

-1.1-12 
-1.1-12 

-1.2-12 
-1.2-12 

-1.390-12 
-1.387-12 

-1.5482-12 
-1.5439-12 

-2.0615-12 
-2.0549-12 

-2.3822-12 
-2.3723-12 

-3.4175-12 
-3.4015-12 

3.058-17 
3.063-17 

2.7-17 
2.7-17 

2.4-17 
2.4-17 

1.2-17 
1.2-17 

8.5-18 
8.7-18 

-6.2-17 
-6.1-17 

1.035-17 
1.086-17 

-1.678-16 
-1.669-16 

-1.003-16 
-9.886-17 

-3.447-16 
-3.421-16 

-5.750-16 
-5.703-16 

file:///4245153
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TABLE 6.13 (Cont'd) 

Quantum Mechanical Molecular Constants for HC1(Z 2+) a 

H37C1(Z12+) 

V 

11 

12 

13 

14 

15 

16 

17 

G 
V 

27499.271 
27499.271 

29214.111 
29214.111 

30804.819 
30804.819 

32263.044 
32263.044 

33577.829 
33577.829 

34734.628 
34734.628 

35713.469 
35713.469 

B 
V 

7.05744 
7.05844 

6.71003 
6.71123 

6.34092 
6.34237 

5.94239 
5.94415 

5.50319 
5.50537 

5.00629 
5.00911 

4.42197 
4.42587 

D 
V 

5.3283-4 
5.3246-4 

5.5474-4 
5.5427-4 

5.8678-4 
5.8616-4 

6.3376-4 
6.3292-4 

7.0400-4 
7.0275-4 

8.1405-4 
8.1200-4 

1.0033-3 
9.9930-4 

H 
V 

-5.206-9 
-5.116-9 

-1.326-8 
-1.313-8 

-2.520-8 
-2.498-8 

-4.440-8 
-4.402-8 

-7.672-8 
-7.600-8 

-1.396-7 
-1.379-7 

-2.856-7 
-2.809-7 

L 
V 

-4.5895-12 
-4.5626-12 

-6.9031-12 
-6.8550-12 

-1.0808-11 
-1.0715-11 

-1.8326-11 
-1.8128-11 

-3.4440-11 
-3.3955-11 

-7.6103-11 
-7.4629-11 

-2.2075-10 
-2.1458-10 

M 
V 

-9.280-16 
-9.189-16 

-1.633-15 
-1.614-15 

-3.419-15 
-3.375-15 

-6.674-15 
-6.562-15 

-1.644-14 
-1.609-14 

-4.701-14 
-4.560-14 

-2.181-13 
-2.100-13 

aAll quantities are in units of cm" . For each vibrational level, the top 

and bottom entries represent perturbed and deperturbed values, 

respectively. 5.280772-4 reads as 5.280772 X 10"4. 



TABLE 6.14 

Quantum Mechanical Molecular Constants for HC1(J5 2 + ) a 

H3Sa(B12+) 

V 

0 
1 
2 
3 
4 
5 
6 

G 
V 

430.936 
1276.358 
2090.344 
2874.378 
3630.282 
4359.904 
5065.210 

B 
V 

2.73990 
2.76407 
2.79491 
2.83232 
2.87564 
2.92435 
2.97732 

D 
V 

1.1614-4 
1.4032-4 
1.6994-4 
2.0529-4 
2.4691-4 
2.9469-4 
3.4872-4 

H 
V 

1.2638-8 
2.0484-8 
3.1703-8 
4.6962-8 
6.7482-8 
9.3524-8 
1.2576-7 

L 
V 

-2.836-12 
-5.753-12 
-1.059-11 
-1.829-11 
-2.985-11 
-4.642-11 
-6.561-11 

M 
V 

7.866-16 
1.980-15 
4.298-15 
8.601-15 
1.578-14 
2.688-14 
3.453-14 

H^atB1**) 

v G B D H L M 
V V V V V V 

0 
1 
2 
3 
4 
5 
6 

430.616 
1275.421 
2088.838 
2872.343 
3627.756 
4356.921 
5061.798 

2.73574 
2.75985 
2.79061 
2.82793 
2.87113 
2.91971 
2.97254 

1.1578-4 
1.3986-4 
1.6936-4 
2.0457-4 
2.4601-4 
2.9359-4 
3.4740-4 

1.2578-8 
2.0381-8 
3.1534-8 
4.6702-8 
6.7097-8 
9.2979-8 
1.2504-7 

-2.818-12 
-5.714-12 
-1.052-11 
-1.815-11 
-2.962-11 
-4.606-11 
-6.517-11 

7.803-16 
1.963-15 
4.259-15 
8.521-15 
1.563-14 
2.665-14 
3.435-14 

aAll quantities are in units of cm' . 1.1614-4 reads as 1.1614 X 10' . 
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TABLE 6.15 

Quantum Mechanical Molecular Constants for DC1(X 2 ) 

D 3 5C1(X 12 +) 

V G B D H L M 
V V V V V V 

0 

10 

11 

12 

13 

14 

15 

1066.6029 
1066.6029 

3157.6629 
3157.6629 

5195.0340 
5195.0340 

7179.0550 
7179.0550 

9109.984 
9109.984 

10988.018 
10988.018 

12813.24 
12813.24 

14585.65 
14585.65 

16305.22 
16305.22 

17971.69 
17971.69 

19584.715 
19584.715 

21143.818 
21143.818 

22648.301 
22648.301 

24097.277 
24097.278 

25489.663 
25489.663 

26824.102 
26824.102 

5.3922719 
5.3922756 

5.2798470 
5.2798587 

5.1681217 
5.1681422 

5.0569848 
5.0570148 

4.946317 
4.946358 

4.836002 
4.836053 

4.72582 
4.72589 

4.61568 
4.61576 

4.50533 
4.50542 

4.39446 
4.39457 

4.28289 
4.28301 

4.17026 
4.17041 

4.05615 
4.05631 

3.94017 
3.94036 

3.82182 
3.82204 

3.70047 
3.70071 

1.39956-4 
1.39950-4 

1.38663-4 
1.38656-4 

1.37453-4 
1.37443-4 

1.36338-4 
1.36328-4 

1.3533-4 
1.3532-4 

1.3447-4 
1.3446-4 

1.337-4 
1.337-4 

1.331-4 
1.331-4 

1.328-4 
1.328-4 

1.327-4 
1.326-4 

1.32754-4 
1.32730-4 

1.33226-4 
1.33199-4 

1.34063-4 
1.34034-4 

1.35335-4 
1.35301-4 

1.37176-4 
1.37137-4 

1.39706-4 
1.39661-4 

2.286-9 
2.286-9 

2.233-9 
2.234-9 

2.175-9 
1176-9 

2.111-9 
2.112-9 

2.046-9 
2.046-9 

1.955-9 
1.956-9 

1.88-9 
1.88-9 

1.76-9 
1.76-9 

1.62-9 
1.62-9 

1.49-9 
1.49-9 

1.3069-9 
1.3088-9 

1.0716-9 
1.0739-9 

8.3554-10 
8.3825-10 

5.2349-10 
5.2682-10 

1.2495-10 
1.2913-10 

-3.8342-10 
-3.7807-10 

-6.0-14 
-6.0-14 

-6.1-14 
-6.1-14 

-6.4-14 
-6.4-14 

-6.6-14 
-6.6-14 

-7.1-14 
-7.1-14 

-7.3-14 
-7.3-14 

-7-14 
-7-14 

-9-14 
-9-14 

-9.5-14 
-9.5-14 

-1.239-13 
-1.237-13 

-1.280-13 
-1.278-13 

-1.522-13 
-1.520-13 

-1.890-13 
-1.886-13 

-2.256-13 
-2.250-13 

-2.943-13 
-2.935-13 

-6.12-18 
-6.10-18 

-2.35-19 
-2.14-19 

-9.43-18 
-9.39-18 

-1.39-17 
-1.39-17 

-1.85-17 
-1.84-17 

-2.54-17 
-2.52-17 
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TABLE 6.15 (Cont'd) 

W+\a Quantum Mechanical Molecular Constants for DC1(X 2 )' 

V 

16 

17 

18 

19 

20 

21 

22 

23 

24 

V 

0 

1 

2 

3 

G 
V 

28098.921 
28098.921 

29312.064 
29312.064 

30461.041 
30461.041 

31542.848 
31542.848 

32553.829 
32553.829 

33489.525 
33489.525 

34344.501 
34344.501 

35111.924 
35111.924 

35782.945 
35782.945 

G 
V 

1065.0435 
1065.0435 

3153.1050 
3153.1050 

5187.6325 
5187.6325 

7168.9668 
7168.9668 

B 
V 

3.57533 
3.57561 

3.44549 
3.44581 

3.30983 
3.31018 

3.16690 
3.16731 

3.01486 
3.01534 

2.85132 
2.85187 

2.67303 
2.67369 

2.47496 
2.47576 

2.24989 
2.25092 

B 
V 

5.376490 
5.376494 

5.264562 
5.264573 

5.153328 
5.153349 

5.042678 
5.042708 

D^Q^S 

D 
V 

1.43119-4 
1.43066-4 

1.47618-4 
1.47556-4 

1.53505-4 
1.53429-4 

1.61244-4 
1.61150-4 

1.71494-4 
1.71374-4 

1.85153-4 
1.84993-4 

2.03930-4 
2.03706-4 

2.31046-4 
2.30710-4 

2.71069-4 
2.70509-4 

Tpanxh 

D 
V 

1.39134-4 
1.39128-4 

1.37852-4 
1.37845-4 

1.36648-4 
1.36639-4 

1.35541-4 
1.35532-4 

+ ) 

H 
V 

-1.0286-9 
-1.0216-9 

-1.8675-9 
-1.8580-9 

-3.0010-9 
-2.9878-9 

-4.5743-9 
-4.5552-9 

-6.7729-9 
-6.7440-9 

-1.0003-8 
-9.9563-9 

-1.5309-8 
-1.5229-8 

-2.4092-8 
-2.3937-8 

-4.1184-8 
-4.0832-8 

:+) 

H 
V 

2.266-9 
2.266-9 

2.214-9 
2.214-9 

2.156-9 
2.156-9 

2.093-9 
2.093-9 

L 
V 

-3.728-13 
-3.717-13 

-4.896-13 
-4.879-13 

-6.792-13 
-6.764-13 

-9.817-13 
-9.771-13 

-1.435-12 
-1.426-12 

-2.278-12 
-2.262-12 

-4.052-12 
-4.018-12 

-6.929-12 
-6.849-12 

-1.875-11 
-1.850-11 

L 
V 

-5.96-14 
-5.96-14 

-6.07-14 
-6.07-14 

-6.28-14 
-6.28-14 

-6.54-14 
-6.53-14 

M 
V 

-4.30-17 
-4.28-17 

-6.75-17 
-6.71-17 

-1.03-16 
-1.03-16 

-1.640-16 
-1.628-16 

-2.878-16 
-2.853-16 

-5.713-16 
-5.657-16 

-1.161-15 
-1.146-15 

-2.288-15 
-2.245-15 

-1.218-14 
-1.198-14 

M 
V 
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TABLE 6.15 (Cont'd) 

l^+\fl Quantum Mechanical Molecular Constants for DCl(Jf 2 ) 

D3 7Q(Z12+) 

v G B D H M 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

9097.365 
9C97.365 

10973.024 
10973.024 

12796.026 
12796.026 

14566.378 
14566.378 

16284.041 
16284.041 

17948.769 
17948.769 

19560.208 
19560.208 

21117.896 
21117.896 

22621.139 
22621.139 

24069.056 
24069.056 

25460.573 
25460.573 

26794.345 
26794.345 

28068.715 
28068.715 

29281.645 
29281.645 

30430.667 
30430.667 

31512.806 
31512.806 

4.93249 
4.93253 

4.82266 
4.82271 

4.71297 
4.71303 

4.60331 
4.60339 

4.49345 
4.49354 

4.38308 
4.38318 

4.27200 
4.27213 

4.159893 
4.160036 

4.046311 
4.046475 

3.930885 
3.931072 

3.813111 
3.813324 

3.692363 
3.692605 

3.567880 
3.568154 

3.438742 
3.439053 

3.303843 
3.304198 

3.161776 
3.162182 

1.3454-4 
1.3453-4 

1.3368-4 
1.3367-4 

1.3296-4 
1.3295-4 

1.3236-4 
1.3235-4 

1.3202-4 
1.3200-4 

1.3188-4 
1.3186-4 

1.31966-4 
1.31943-4 

1.32428-4 
1.32402-4 

1.33253-4 
1.33223-4 

1.34505-4 
1.34471-4 

1.36320-4 
1.36282-4 

1.38814-4 
1.38769-4 

1.42180-4 
1.42127-4 

1.46616-4 
1.46554-4 

1.52418-4 
1.52343-4 

1.60041-4 
1.59948-4 

2.028-9 
2.029-9 

1.938-9 
1.939-9 

1.8599-9 
1.8610-9 

1.7439-9 
1.7451-9 

1.6046-9 
1.6060-9 

1.4738-9 
1.4754-9 

1.2984-9 
1.3003-9 

1.0656-9 
1.0678-9 

8.3269-10 
8.3538-10 

5.2550-10 
5.2879-10 

1.3277-10 
1.3689-10 

-3.6722-10 
-3.6195-10 

-1.0021-9 
-9.9521-10 

-1.8267-9 
-1.8174-9 

-2.9392-9 
-2.9263-9 

-4.4814-9 
-4.4627-9 

-6.98-14 
-6.98-14 

-7.18-14 
-7.17-14 

-7.02-14 
-7.02-14 

-8.93-14 
-8.92-14 

-8.65-14 
-8.64-14 

-9.33-14 
-9.32-14 

-1.221-13 
-1.219-13 

-1.264-13 
-1.262-13 

-1.498-13 
-1.496-13 

-1.861-13 
-1.857-13 

-2.219-13 
-2.214-13 

-2.894-13 
-2.887-13 

-3.661-13 
-3.650-13 

-4.801-13 
-4.784-13 

-6.652-13 
-6.625-13 

-9.606-13 
-9.560-13 

-6.144-18 
-6.127-18 

-1.40-19 
-1.19-19 

-9.179-18 
-9.145-18 

-1.365-17 
-1.360-17 

-1.786-17 
-1.779-17 

-2.488-17 
-2.476-17 

-4.193-17 
-4.173-17 

-6.557-17 
-6.523-17 

-1.001-16 
-9.947-17 

-1.596-16 
-1.585-16 



TABLE 6.15 (Cont'd) 

lv.+\a Quantum Mechanical Molecular Constants for DC1(JST 2 ) 

V 

20 

21 

22 

23 

24 

G 
V 

32524.441 
32524.441 

33461.160 
33461.160 

34317.584 
34317.584 

35086.966 
35086.966 

35760.567 
35760.567 

B 
V 

3.010703 
3.011173 

2848275 
2.848825 

2.671313 
2.671968 

2.47488 
2.47568 

2.25191 
2.25293 

vFaix1^ 

D 
V 

1.70132-4 
1.70013-4 

1.83567-4 
1.83410-4 

2.02000-4 
2.01781-4 

2.28584-4 
2.28255-4 

2.67676-4 
2.67131-4 

+ ) 

H 
V 

-6.6355-9 
-6.6073-9 

-9.7900-9 
-9.7448-9 

-1.4951-8 
-1.4873-8 

-2.3516-8 
-2.3365-8 

-3.9802-8 
-3.9464-8 

L 
V 

-1.400-12 
-1.392-12 

-2.214-12 
-2.199-12 

-3.930-12 
-3.897-12 

-6.712-12 
-6.635-12 

-1.768-11 
-1.744-11 

M 
V 

-2.785-16 
-2.761-16 

-5.491-16 
-5.437-16 

-1.124-15 
-1.110-15 

-2.158-15 
-2.117-15 

-1.142-14 
-1.123-14 

--1 All quantities are in units of cm . For each vibrational level, the top 

and bottom entries represent perturbed and deperturbed values, 

respectively. 1.39956-4 reads as 1.39956 x 10"4. 
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TABLE 6.16 

Quantum Mechanical Molecular Constants for DCl(B12+)a 

V 

0 
1 
2 
3 
4 
5 
6 
7 

V 

0 
1 
2 
3 
4 
5 
6 
7 

C? 
V 

310.570 
923.148 
1519.189 
2099.183 
2663.796 
3213.602 
3749.364 
4271.750 

G 
V 

310.119 
921.820 
1517.030 
2096.239 
2660.109 
3209.211 
3744.305 
4266.056 

B 
V 

1.40843 
1.41680 
1.42695 
1.43894 
1.45264 
1.46798 
1.48495 
1.50312 

B 
V 

1.40428 
1.41261 
1.42271 
1.43464 
1.44827 
1.46353 
1.48041 
1.49849 

D35C1(£ 

D 
V 

2.9958-5 
3.4313-5 
3.9391-5 
4.5198-5 
5.1871-5 
5.9310-5 
6.7683-5 
7.6932-5 

D37C1(£ 

D 
V 

2.9779-5 
3.4101-5 
3.9139-5 
4.4900-5 
5.1520-5 
5.8898-5 
6.7201-5 
7.6376-5 

2 2 + ) 

H 
V 

1.6002-9 
2.2925-9 
3.2069-9 
4.3541-9 
5.8182-9 
7.6400-9 
9.7565-9 
1.2508-8 

>2 +) 

H 
V 

1.5856-9 
2.2706-9 
3.1749-9 
4.3092-9 
5.7562-9 
7.5579-9 
9.6476-9 
1.2366-8 

L 
V 

-1.774-13 
-3.034-13 
-4.873-13 
-7.559-13 
-1.115-12 
-1.633-12 
-2.283-12 
-3.118-12 

L 
V 

-1.752-13 
-2.995-13 
-4.808-13 
-7.454-13 
-1.099-12 
-1.609-12 
-2.250-12 
-3.069-12 

M 
V 

2.421-17 
4934-17 
9.017-17 
1.587-16 
2.608-16 
4.100-16 
6.561-16 
9.434-16 

M 
V 

2.384-17 
4.855-17 
8.866-17 
1.559-16 
2.562-16 
4.025-16 
6.439-16 
9.252-16 

-1 - , n n f o c _._.,.. _ . o ™ ™ .. ^ - 5 aAll quantities are in units of cm" . 2.9958-5 reads as 2.9958 X 10 



TABLE 6.17 

Rotational and Centrifugal Distortion Constants for HCl: 

Calculation of Far-Infrared Transitions for H35C1 and H37Cf 

H3SC1 

BQ(calc) 10.440 198 2(23) 

(exp) 10.440 197 4(5) 

104D0(calc) 5.280 771 8(74) 

(exp) 5.280 49(11) 

108#Q(calc) 1.672 182(72) 

(exp) 1.644 8(63) 

-1013LQ(calc) 8.649 24(65) 

1017M0(calc) 3.086 4(47) 

J v . 
obs 

0 20.878 284 
1 41.743 895 
2 62.584 183 
3 83.386 501 
4 104.138 260 
5 124.826 909 
6 145.439 949 
7 165.964 971 
8 186.389 616 
9 206.701 655 

Res. 

0.000 000 
-0.000 003 
0.000 001 
-0.000 002 
0.000 000 
0.000 004 
0.000 004 
0.000 011 
0.000 007 
0.000 002 

R 

0.0 
-0.4 
0.1 
-0.3 
0.0 
0.6 
0.6 
0.9 
0.6 
0.2 

H37C1 

10.424 515 3(23) 

10.424 514 9(5) 

5.264 829 7(73) 

5.264 75(9) 

1.664 659(72) 

1.650 1(54) 

8.597 54(65) 

3.058 2(47) 

v , 
obs 

20.846 923 
41.681 215 
62.490 255 
83.261 445 
103.982 226 
124.640 084 
145.222 562 
165.717 277 
186.111 934 
206.394 337 

Res. 

-0.000 002 
-0.000 002 
-0.000 002 
-0.000 002 
-0.000 001 
0.000 000 
-0.000 002 
-0.000 006 
-0.000 006 
0.000 011 

R 

-0.3 
-0.3 
-0.3 
-0.3 
-0.1 
0.0 
-0.3 
-0.5 
-0.5 
0.9 

"Rotational parameters and line positions are in cm" . The column 
labelled 'Res.' contains the residuals of observed-calculated line 
positions and the R are ratios of the residuals and the experimental 
uncertainty. The experimentally derived constants and the observed 
line positions are from Ref. (129). 
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1 - 4 - 1 4-

constants were employed to calculate the positions of B 2 - X 2 rovibronic 

transitions. The agreement was within the experimental errors for low- and 

mid-/ but deteriorated rather significantly for the high-/ lines, particularly 

for bands involving high vibrational levels of the ground state. It appears 

that as the dissociation limit is approached, constants beyond the available 

B - M are required. This is supported by order-of-magnitude estimates of 

the missing higher-order constants and their expected contribution with 

increasing / , as well as by the obvious inability of the fifth-order 

rotational energy expression to reproduce the precisely known quantum 

mechanical eigenvalues. In order to estimate the number of additional 

constants required for given v, the quantum mechanical eigenvalues were fitted 

to a power series in / ( / + 1) while constants B - M were constrained to the 

calculated values. This test was not fully conclusive on account of the 

relatively high statistical correlations that exist between adjacent 

higher-order parameters. It was possible nevertheless to determine that the 

perturbation in the wavefunction needs to be calculated to fourth or fifth 

order; in other words, terms up to [/(/ + 1)] may in fact be required to 

describe the experimental observations within the uncertainties of the 

measurements. It is clear, then, from these results that the parameters A^ 

presented in Tables 4.3 and 5.4 for D CI and DF, respectively, lack any 

strict physical significance; they are parameters aimed simply at representing 

the data within the experimental errors. 

Despite the failure of a fifth-order rotational energy expression in 

representing spectroscopic information satisfactorily, the constants given in 

Tables 6.13-6.16 are the true perturbation expansion coefficients, obeying 

identical boundary conditions as the associated radial operators and having 
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proper theoretical meanings, free from the contamination of interparameter 

statistical correlations. 

Currently, all methods available for calculating centrifugal distortion 

constants for diatomic molecules are set up to evaluate constants up to M . 

Tellinghuisen (54) recently improved on Hutson's (53) algorithm by eliminating 

instabilities in the nonclassical region, and remarked that the method could 

now be extended to higher orders of perturbation theory. This would be highly 

desirable in view of the results presented in this work. 

It is not entirely clear whether there is full convergence of the 

perturbation expansion for the rotational energy, given the relatively large 

magnitude of the perturbation for the diatomic hydrides considered here. This 

might be of special concern for the higher vibrational levels of the ground 

state, for despite the rapid decrease in the rotational constant, the 

distortion constants become increasingly singular and dominant. For the ionic 

B 2 + state, the perturbation expansion appears to converge at a slower rate 

than that of the ground state. 

6.6 Tritium Chloride 

An appealing test of the isotopic self-consistency of the model consists 

of evaluating the accuracy of purely synthetic operators for tritium chloride. 

The Born-Oppenheimer potential for HCl is given by, 

U*°(R) = (1 - od^ - oUc)XT a(R) + oU^P Cl(R) + JicXT cl(/?)(6.33) 

where 
M 

oU„ = 5 , (6.34) 
MD -Mu 
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and 

Ujf_ = U£l . (6.35) 
37C1 35CI 

The rotationless potential functions for TCI are given by, 

U1* Cl(R) = (1 + <M)IT Cl(R) - <M U° Cl(R), (6.36) 

IT Cl(R) = (1 + U8)tr a(tf) - JtU° °(R), (6.37) 

where 

u r - ^ B f ^ " ^ . (6.38) 

defined with the atomic masses. The q(R) function for TCI is calculated from, 

qTCl(R) = (MH/MT)^HC1(i?). (6.39) 

A calculation of the eigenvalues was carried out for X 2 + of T̂  CI and r CI, 

and the precisely known (184) microwave / = 1 <— / = 0 transitions were 

constructed. The comparison with the experimental lines is shown in Table 

6.18 to be excellent, the residuals between observed and calculated 

transitions lying well within the experimental uncertainties. It is 

interesting to note that the TCI energy levels v\ /" = 0, 0 and 0, 1 lie 

below the v", /" = 0, 0 levels of HCl and DCl so that, in a sense, their 

prediction amounts to an extrapolation. 

Also listed in Table 6.18 are rotationless eigenvalues, and rotational 

and centrifugal distortion constants for the lowest four levels of TC1(.X'12+). 

Only BQ and DQ have been reported in the literature (161) from analyses of 

experimental data; these are shown to be in reasonable agreement with the 
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TABLE 6.18 

Calculated Eigenvalues and Rotational Constants0 for TCI: Comparison 

of Observed and Calculated Microwave Transitions 

v 

0 

1 

2 

3 

G 
V 

884.192 867 
882.305 310 

2 623.648 7 
2 618.106 5 

4 326.212 1 
4 317.170 5 

5 992.091 7 
5 979.707 6 

B 
V 

3.705 093 3 
3.689 268 9 

3.641 162 
3.625 749 

3.577 570 
3.562 565 

3.514 279 
3.499 678 

10DD 
V 

6.589 038 
6.532 684 
6.538 20 
6.482 43 
6.489 75 
6.434 46 
6.444 25 
6.389 38 

1 0 % 
V 

7.389 4 
7.295 2 

7.250 0 
7.157 9 

7.099 5 
7.008 4 

6.931 2 
6.842 8 

-1014L 

1.331 7 
1.309 5 

1.348 0 
1.325 3 

1.382 5 
1.357 2 

1.446 3 
1.422 0 

v" = 0 / = 1 <- / = 0 Microwave Transition of T^Cl (MHz) 

Calculated Experimental Residual Uncertainty Ratio 

222 143.90 222 143.78 -0.12 0.40 -0.30 

v" = 0 / = 0 «- / = 1 Microwave Transition of T37C1 (MHz) 

Calculated Experimental Residual Uncertainty Ratio 

222 195.16 221 195.40 0.24 0.40 0.60 

flTop and bottom entries correspond to r CI and r CI, respectively. 

Experimental frequencies are from Ref. (184). Eigenvalues and rotational 

parameters are in units of cm" . Ratio = Residual/Uncertainty. 
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calculated constants. The infrared TCI measurements (185) appear to be in 

systematic discrepancy with the wavenumbers calculated from the constants in 

Table 6.18. Systematic error in these measurements has also been discussed by 

Guelachvili et al. (162), as well as by Coxon and Ogilvie (46), the latter 

attributing such discrepancy to unreliable DBr calibration standards (186). 

The eigenvalues of B1^ and X 1 2 + for T^Cl and T^Cl have been calculated 

and are listed in Appendix A-5. The prediction of the TCI (B -» X) emission 

band spectrum from these energies should provide a rather stringent test of 

the isotopic self-consistency of the method. An estimate of the electronic 

term value for 5 2 + is required to predict the absolute positions of the 

expected rotational lines. The chlorine independent estimates for T obtained 

in this work for HCl and DCl have been employed to construct the empirical 

relationship, 

K = C + <>«• > (6-40> 
with t = 11 329.477 cm", the separation between the minima of the 

H 1 
Born-Oppenheimer curves, and t = -22.409 cm" amu. This expression predicts 

TCI 1 

T =11 322.05 cm . An expression similar to Eq. (6.40) but employing 
molecular reduced masses gives the same result. 

6.7 Higher-Order JWKB Effects in the RKRV Procedure 

It is possible to use the results from the present analysis to estimate 

the effects of neglected higher-order JWKB integrals in the RKRV procedure. 

Using quantum mechanical rotational constants which have had the effect of 

q(R) subtracted from them, and the quantal rotationless eigenvalues, a 

first-order RKRV potential is constructed. This was then compared with the 
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numerical potential obtained from the Hamiltonian correction analysis; the 

difference between the quantal and semiclassical potentials gives the 

higher-order JWKB corrections. 

A set of deperturbed B , obtained simply by setting q(R) = 0, and the 

corresponding eigenvalues for / = 0 are listed in Tables 6.13 and 6.15 for the 

Z J 2 + state of H35C1, and D35C1. From these, first-order RKRV curves were 

constructed and the difference functions from the quantal potentials were 

obtained. These were multiplied by fi. and plotted in Figure 6.5. It is clear 

that the discrepancies scale in accord with expected mass behaviour (89). The 

small undulations in the difference functions are due to lack of smoothness in 

the semiclassical turning points. 

6.8 Nonuniqueness in the Hamiltonian Operators: Further Comments. 

As discussed previously, Watson (42) predicts that addition of (XI2)dU/dR 

onto the rotationless potential with a corresponding modification of q(R) by 

-XIR, for any real X, should have no effect on the rovibrational eigenvalues. 

This appeared to be confirmed numerically by Coxon (120). Under closer 

scrutiny, however, this was found to be true for small (< 10" ) values of A 

only. For greater values of X, noticeable discrepancies begin to appear. 

It was decided to investigate this apparently puzzling behaviour of the 

radial Hamiltonian operator mathematically, in order to find a prescription 

that gives an exact agreement for any value of A. The results presented below 

indicate that it is not possible to obtain exact agreement for all values of 

A, but the range of A that can be employed is significantly enlarged. Also, 

the results shed more light on the physical significance of Watson's (42) 

prescription. 
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Figure 6.5 

Mass-scaled higher-order JWKB corrections for the I T state 

of H35C1/D35C1. The raw JWKB corrections for each 

isotopomer are multiplied by the respective reduced masses 

and the two plots are found to be virtually superimposed in 

the entire range of R with the exception of the point at 

R = 0.95 A. 
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Figure 6.5 
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We begin with a general, nonadiabatically perturbed rotational potential 

energy function, 

U/R) = UQ(R) + fl2[J(J + 1)][1 + q(R)]IR2. (6.41) 

We then proceed to transform this expression into the increment foirm of a 

Taylor series (122), as 

U/R + X) = U/R) f X(dUj/dR) + (X2l2\)(d2U/dR2) + (X3IV.)(d3U/dR3) 

+ (A4/4!)(a4I//3i?4) + . . ., (6.42) 

which can then be considered as a lateral translation of the rotational 

potential by A units along the R axis. After considerable algebra and some 

simplification, it is useful to consider a translation operator T, 

T= fQ+ fp (6.43) 

where T~, which modifies the rotationless potential by 

UQ(R) = U°Q(R) + TQ, (6.44) 

is defined as 

N 

fW = Y L BWrfjR), (6.45) 
t—'Ji! 
n-l 

where 

i) (n) = d W , (6.46) 

is a differentiation operator. The effect of 7\ is shown by the difference, 

2 

l/fR) - U*Q(R) = ? J(J
2

+ *> [l + q(R) + 7 ,} , (6.47) 

with 
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M M 

W> = V' —(-If (FIR - B)"̂ (i?) + V ^(-l)"(F)tti?'n, (6.48) 
«=1 n = l 

which can be written more succinctly as, 
M 

j-W = V ¥-(-l)n$(F/R - Dfq(R) + (F)nR-n\, (6.49) 
7 1 = 1 ' 

where the factorial operator F is assigned the property, 

(F)n = F(n) = (n + 1)\, (6.50) 

and the operators D and F do not commute. The first term in curly brackets in 

Eq. (6.49) represents a shift along the intemuclear axis of the perturbation 

due to q(R) and the second term gives the shift of the usual kinetic energy of 

rotation. 

It is helpful to write the first few terms of these operators explicitly 

to give an appreciation for their effects. The rotationless part T has been 

given previously in this thesis, as Eq. (3.43), and corresponds simply to a 

radial shift of the rotationless function by A units. The first few terms of 

Tj are quite interesting; these are 

ff> = X{dq(R)ldR - 2[1 + q(R)]IR}, (6.51) 

.2 
?f) = L{d2q(R);dR2 - (AIR)dq(R)/dR + 6[1 + q(R))IR2}, (6.52) 

7<3) = L{d3q(R)ldR3 - (6IR)d2q(R)ldR2 + (18IR2)dq(R)ldR -
J 3! 

24[1 + q(R)]IR3}. (6.53) 

Now, for small values of q(R) we can write the first term as 

f0) « -qxiR. (6.54) 

If we write the shifted rotational potential, including the effects of T^ ' 
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and TJ ' only, we find 

U/R + A) - {£$/?) + XdU°Q(R)ldR} + 

fi2J(J + 1)[1 + {tf(i?) - 2XIR}]IR2, (6.55) 

which is exactly Watson's (42) mathematical description of nonuniqueness in 

the radial operators; that is, modification of the rotationless potential by 

addition of a constant k multiplied by the potential first derivative should 

be accompanied by addition of —2klR to the function q(R). This also 

illustrates why Watson's procedure fails for larger values of A; simply, more 

terms of 7" are required. However, convergence in Eq. (6.42) is not guaranteed 

for all values of A. The determination of the radius of convergence of this 

expression is not a trivial undertaking; neither is it of particular value 

when the physical meaning of A is examined. 

From Eqs. (2.42, 2.43) and Eq. (6.55) above, it is easy to see that 

Qf\R)dR, (Re>RQ), (6.56) A = e 
R0 

where A is a special value of A. Essentially, this is a small amount of 

homogeneous mixing that is neglected. This neglect is made inadvertently when 

q(R) is constrained to vanish at R (42). For small values of A the 

contribution from Qr\R), or the homogeneous mixing of electronic states, for 

arbitrary values of RQ, corresponds to a shift of the rotational potential 

energy along the intemuclear coordinate. The value of A increases in 

proportion to the total homogeneous perturbation experienced by the electronic 

state in question. Since it is assumed to be zero, finite values of A would 
r e 

lead to small discrepancies in the derived R values. 
l^+s Consider a hypothetical situation where the first bound excited ( B 2 ) 
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state of HCl is lowered in energy. According to Eq. (6.42), this would affect 

the inertial properties of the ground X 2 + state by causing a radhl shift of 

its potential. As the B 2 + state is continuously brought closer to X 2 + , an 

apparent contradiction begins to form. Will the ground state shift endlessly 

along R? Of course not! The ground state will shift by a certain amount, but 

as the excited state continues its approach, the wave equation which describes 

I I + will become progressively inapplicable due to a increasing breakdown of 

the perturbation theory on which it is based. It will then be necessary to 

apply degenerate perturbation theory to describe the system, and the 

nondegenerate perturbation parameter X has little physical meaning. 

6.9 Tfie Adiabatic Correction at the Potential Minimum 

Homogeneous nonadiabatic coupling of X 2 + shifts the adiabatic curve by a 

negative amount along R, requiring that the perturbation function possess a 

positive slope near the equilibrium configuration. Since the isotopic trend 

of equilibrium bond lengths found from YQ requires a positive slope for 

UJR), and since the adiabatic correction is found to have a negative slope 

near R , the homogeneous perturbation must be of greater magnitude than the 

„ diabatic function near the potential minimum. This can also be seen from the 

mction, 

SX(R) = S>) + I KU£* 
2 BR 

QX(R) dR, (6.57) 

TJ 

where SJR) is the pure adiabatic correction and the second term corresponds 

to the homogeneous nonadiabatic contribution to the rotationless potential. 

Since QX(R) is of the order of the number of valence electrons (42) and thus 
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positive, and since the slope of the potential derivative is similarly always 

positive near R , the effect of the second term on R is contrary to that of 

the pure adiabatic correction. Since the UziR) function, which is related 

directly to the composite function SX(R), has a net positive slope near Re, 

the homogeneous coupling must overtake the adiabatic contribution in this 

region. 

This can be seen yet more clearly by differentiating Eq. (6.57), above, 

and evaluating the derivatives at R = R . Assuming that QJR) is fairly 

constant near the potential minimum we can write, 

T n a* Jl 
rdSx(R) 

dR R=R 

dSx(R) 

dR 
+ (Ae/2) 

R=R dR 
(6.58) 

JR=R 

It is obvious that there is a competing slope mechanism here and that the 

second term on the RHS dominates. This occurs mainly because of the large 

potential derivative term. The net slope is responsible for the observed 

trend in the R (7ni) values. 
ev Or 

Given the adiabatic bond lengths in Table 6.11 and Eq. (6.24), it is 

possible to obtain an estimate of the slope of the pure adiabatic correction 
,BO at i T u . Expanding Alfa(R) as, 

BCX2 Alf\R) = (VMc/R - Rf) + c/R - /J*0)2 + . . . } , (6.59) 

near the equilibrium configuration, the first derivative evaluated at R - R BO 

yields, 

dAU*d(R)] 

dR R 
BO 

= cp. (6.60) 

For H35Cl and D35Cl, Eq. (6.24) may now be written as, 
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Rf (H35C1) = R*° - ^ / [ ^ ( H ^ C J ) ] , (6.61) 

and 

Rf(D35C1) = i?*0 - ^ / [ ^ ( D ^ C l ) ] . (6.62) 

Obtaining c„ separately for each isotopomer and averaging, gives a predicted 

value of c = -28 ± 2 cm" A for the slope of the adiabatic correction of 

X X+ at R . The adiabatic corrections for HCl and DCl have been computed by 

ab initio methods (187) and clearly possess negative slopes near the 

equilibrium configuration. The average mass-adjusted theoretical slope 

obtained from Fig. 3 of Ref. (187) is c - -29 cm"1 A" , in gratifying 

agreement with the present estimate. 

The overall results here infer that the adiabatic equilibrium bond length 

in well-isolated ground states is always displaced at larger equilibrium 

separations from the Born-Oppenheimer potential minima; in other words, the 

ad 

adiabatic parameters d. are always positive. Watson (180) found this to be 

the case for the molecules CO, HCl, and LiCl. Further confirmation is found 

in Figs. 1 and 2 of Kotos' (24) article, from explicit calculations of the 

diagonal motion corrections for the various states of H* and H ; these have 

negative slopes at R . Additional support is found from Saykally's laboratory 

for the cations ArH+/ArD+ and OH+/OD+ (188), where it is found that the 
BO ad 

quantity R occurs at smaller intemuclear separations than R . Negative 
sd d. values should serve as an indication of anomalies arising from significant 

breakdown of the adiabatic approximation. 



CHAPTER 7 

ISOTOPIC BEHAVIOUR OF BORN-OPPENHEIMER BREAKDOWN: 

THE J?*2+ AND XlX+ STATES OF HF AND DF 

7.1 Introduction 

Hydrogen fluoride has been the subject of numerous theoretical and 

experimental investigations dealing with electronic effects on isotopic 

exchange equilibria (189), the electronic potential energy curves (108, 149, 

190), the electric dipole moment (156, 183), and Einstein coefficients (108, 

156). Consisting of only two nuclei and ten electrons, HF is a particularly 

attractive candidate for ab initio studies. 

Although the excited electronic states are not known in great detail from 

experiment, the ground state has been characterized rather well. The analyses 

of the B 2 + - I 2 + emission band systems of HF and DF by Johns and 

Barrow (151) resulted in rotational parameters and vibrational energies. 

These were employed later by Alvarino et al. (191) to construct RKRV curves 

for the two states. The potentials wer^ in turn used to calculate 

Franck-Condon factors for the B ~» X transition. The 5 1 2 + - X 2 + emission 

band system of HF was reinvestigated by Di Lonardo and Douglas (87) under 

higher resolution. The rotational analysis yielded precise vibrational terms 

and rotational parameters on the vibrational levels with v" = 7-19 and 

v' = 0-10. Analysis of the electronic absorption spectrum (87) gave 

information on B state levels with v' = 14-73. Vibrational levels with 

v' £ 26 were found to be highly perturbed. RKRV potentials were reported for 

Z35 
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both electronic states. 

The accuracy of the RKRV function for HF(X *2+) has been tested in the 

present work. The Schrodinger equation was solved with this potential to 
RKRV 

yield rotationless eigenvalues, E , and vibrational wavefunctions, 
RKRV 2 

ĵx«ax ^ ^ which were then employed to calculate expectation values of R , and 

thus mechanical rotational constants. The differences between these 

quantities and those derived experimentally are plotted in Figure 7.1. The 

unsmooth behaviour of these differences is due to a corresponding lack of 

smoothness in the potential function; experimental uncertainties in G and B 

are much smaller than the scatter. This shows clearly that the RKRV function 

is quite inconsistent with the experimental information from which it was 

derived. The reasons for this lack of agreement have been discussed 

previously; briefly, one must consider higher-order JWKB effects and breakdown 

of the Bom-Oppenheimer approximation. 

Such considerations were taken into account in the recent work of Coxon 

and Ogilvie (190). The rotationless potential was modelled as 

U(z) = c/(l + E of), (7.1) 
n=l 

where the reduced intemuclear coordinate is given by 

2 = 2(R - R)I(R + Rg). (7.2) 

A further hydrogenic radial function Kr(z) 

^(z) = I hy, (7.3) 

was determined from experimental data on HF and DF and together with U(z) 

account for adiabatic, nonadiabatic, semiclassical, radiative and relativistic 



Figure 7.1 

Quantum mechanical inconsistency of an RKRV potential for 
1 + the X 2 state of HF. The potential was constracted from 

the results of Ref. (87). The upper half of the figure 

shows a plot of the differences AB = £exp - £RKRV. The 

lower half of the figure gives a plot of the differences 

AG = Gexp - G 
V V V 

RKRV 
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t i 

effects. The coefficients c and h were found by an analytical inversion of 
n n 

T T 

the Dunham IX. and A" coefficients in Eq. (2.47). Radial functions were 

determined up to 65% of the well depth. 

There are two problems with this work. First and foremost, the effect of 

q(R) was neglected in the generation of analytical relationships linking U„ 
and A,, with the coefficients c and h . Thus, heterogeneous contributions to kl n n ' ° 

the rotational energy levels were inverted onto the / = 0 potential functions. 

The theory supports homogeneous but not heterogeneous nonadiabatic adjustment 

of the rotationless potential. Although q(R) is of small magnitude near the 

potential minimum, its effect on the eigenvalues can be quite significant in 

relation to the high precision with which low-v levels are studied 

spectroscopically. The second problem is similar to that discussed in Chapter 

6 for HCl/DCl. A fifth-order rotational energy expansion in J(J + 1) is found 

to be inadequate in representing some of the energy levels within their 

spectroscopic precision. This is especially true for low-t> levels known very 

accurately from heterodyne measurements and for high-v,/ levels even though 

these might be known with only moderate precision. The estimates of U,. and 

A„ obtained by Coxon and Ogilvie (190) do not therefore retain their proper 

quantum mechanical identities but contain contributions from missing constants 

and interparameter statistical correlations; this in turn contaminates the 

functions U(z) and I^(z). This is a general problem with the reduction of 

spectroscopic line positions to "molecular constants". 

In the recent work of Huffaker (108), the RKRV potential of Di Lonardo 

and Douglas (87) for the ground state of HF was represented analytically by a 

Perturbed Morse Oscillator/Extended Geometric Series (PMO/EGS) model. 

Huffaker claimed the / = 0 representation to correspond to the adiabatic 
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potential. This was derived by considering not only the RKRV turning points 

but also the rotational and centrifugal distortion constants B and D . A 

chief criticism of this work is that effective rotational constants, which are 

perturbed significantly by excited IT states, are employed to determine the 

/ = 0 potential while the rotational Hamiltonian operator is constrained to 

the kinetic energy of rotation expression. It is thus not surprising that 

considerable problems were encountered (108) in finding a satisfactory 

representation for all vibrational levels, forcing Huffaker to consider two 

separate fits, one for v" :< 16 and another for v" < 19. A smaller problem is 

associated with the fact that the HF(X12+) RKRV potential of Di Lonardo and 

Douglas (87) is not particularly smooth. There was no indication in 

Huffaker's paper (108) that it had been smoothed prior to the fit to the 

PMO/EGS model. Although the fit itself can be considered a smoothing of the 

raw turning points, lack of smoothness can require more terms in the model and 

hence increase interparameter correlations and instability. Another criticism 

of the PMO/EGS study of HF (108) is the apparent need to fit the residual 

"nonadiabatic" eigenvalue corrections to a sinusoidal function, which in 

Huffaker's opinion is an indication of a tme physical effect. This 

conclusion was made on the basis of previous results on H.(Z 2 + ) (109). It 

seems likely, however, that for HF all that is being fitted is the residual 

inadequacy of the PMO/EGS model in fitting the adiabatic/homogeneously 

nonadiabatic potential, as if is impossible to extract the nonadiabatic 

component of the rotationless eigenvalues from the results of first-order 

spectroscopic experiments. 

In summary, no investigation has previously taken into account the 

contributions from q(R) to the rotational energies. Franck-Condon factors, 
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Einstein coefficients, and other intensity related information continue to be 

reported in the literature in complete ignorance of this potentially important 

effect. The purpose of this chapter is to undertake a rotational analysis of 

all I I + and the low-v' B 2 + spectroscopic line position data on the basis of 

an effective Hamiltonian operator. The effect of q(R) on intensity 

calculations will be examined. 

7.2 Analysis 

7.2.1 Selection of Data 

There have been several studies of the pure rotational transitions of 

HF(ZX2+) in vibrational levels v" = 0-5. Akitt and Yardley (192) observed HF 

pure rotational transitions in v" = 0-3 by examining laser emission in pulsed 

discharges through BF , apparently without the presence of any intentional 

hydrogen source. Cuellar and Pimentel (193) observed pure rotational 

transitions of HF (yH - 0-2) in a C1F-H. chemical laser. Mason and 

Neilsen (194) studied pure rotational transitions of HF in v" = 0 using a 

simple absorption setup and atmospheric vapour lines to calibrate their 

spectmm. Revich and Stankevich (195), Sengupta et al. (143), and 

Rothschild (196) also examined the pure rotational spectmm of HF. More 

recently, highly precise heterodyne measurements of HF(v" = 0) were reported 

by Jennings et al. (142). 

The vibrational-rotational spectmm of HF has been similarly well studied 

in various laboratories (143-146). The most extensive and significant study 

is that of Mann et al. (146); here, the H2/F2 flame emission spectrum was 

analyzed spectrographically to yield information on vibrational levels 

v" = 0-9. This work is important because it connects the lower-v" data in the 
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infrared region to the • acuum ultraviolet B —> X emission data. 

The spectroscopic information available for deuterium fluoride is much 

less complete, consisting of only 9 far-infrared transitions (154, 156) and 

101 vibrational-rotational transitions (143, 145). Improved v" = 0 pure 

rotational measurements and a Fourier transform spectrum of the fundamental 

band in the infrared were presented in Chapter 5. Sengupta et al. (143) 

obtained spectroscopic measurements from DF chemical laser emission for the 

1-0, 2-1, 3-2 and 4-3 bands. The rotational analysis of the B1I,+ -» X 1 2 + band 

system presented in Chapter 5 provides information on levels v" - 16-26 in the 

ground state and v' = 0-5 in B 2 + . The emission measurements are interpreted 

further in this chapter to yield information on levels v" = 9-26 in X 2 + and 

v' = 0-7 in B 2 + . For most of the bands presented in Chapter 5, it was 

possible to extend the rotational assignments to higher and/or lower / . 

The individual spectroscopic hne positions have been assigned weights 

which are inversely proportional to the square of their precision estimates. 

Precision estimates for line positions obtained previously in other studies 

were obtained by reference to the original papers, or by performing new fils 

to power series in / ( / + 1). A summary of the HF/DF ground state pure 

rotational and vibrational-rotational information employed in this work is 

given in Table 7.1. 

7.22 Trial Operators 

The initial radial operator for the ground state was modelled after the 

RKRV potential of Di Lonardo and Douglas (87); however, instead of working 

with the turning points provided in Table 9 of Ref. (87), which were only 

quoted to four decimal points, the molecular constants given in Table 5 of 
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TABLE 7.1 

Summary of Experimental Data Base for HF/DF3 

V 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
** 
X 
1 
2 
2 
2 
2 
3 
3 
4 
5 

v'-v" 

1 0 
1-0 
1-0 
1-0 
1-0 
1-0 
1-0 

HF Pure Rotational Data 

Reference 

142 
142 
142 
142 
192 
193 
194 
195 
143 
196 
192 
193 
195 
143 
192 
193 
195 
143 
192 
143 
195 

195 

e(cm_1) 

7.5 X 10"6 

0.0003 
0.0018 
0.01 
0.70 
0.20 
0.05 
0.50 
0.0037 
0.20 
0.20 
0.20 
0.575 
0.01 
0.20 
0.10 
0.50 
0.014 
0.20 
0.013 
0.20 
0.50 

in Xh+ 

N 

4 
3 
3 
5 
8 

12 
10 
32 
5 

11 
4 
7 

23 
6 
1 
2 

16 
6 
1 
3 
2 
2 

HF Vibrational-Rotational Data in 

Reference 

b 
144 
86 

146 
143 
c 

168 

^cm"1) 

0.03 
0.10 
0.0005 
0.014 
0.009 
0.10 
0.02 

N 

19 
5 

22 
32 
10 
11 
29 

/-Range 

0- 3 
4- 6 

17-19 
20-21, 26-28 
13-24 
21-32 
0- 9 
9-40 

17-21 
0-10 

14-23 
22-28 
10-34 
18-23 

15 
23-24 
10-28 
14-23 

16 
14-22 
16-24 
16-18 

xh+ 

JP JR 

1-9 0-9 
6-10 
1-10 0-11 
5-15 7-27 
6-15 
1-6 0-5 
1-15 0-14 



261). 

TABLE 7.1 (Cont'd) 

Summary of Experimental Data Base for HF/DF 3 

HF Vibrational-Rotational Data in Z x 2 + 

v'-v" Reference e(cm~ ) N Jp J 

2-0 
2-0 
2-0 
2-0 
2-1 
2-1 
2-1 
3-0 
3-2 
3-2 
4-0 
4-2 
4-3 
5-0 
5-1 
5-2 
5-3 
6-1 
6-2 
6-3 
6-4 
6-5 
7-2 
7-3 
8-3 
8-4 
9-4 

b 
86 

146 
168 
144 
146 
143 
d 

146 
143 
146 
146 
143 
146 
146 
146 
146 
146 
146 
146 
146 
143 
146 
146 
146 
146 
146 

0.04 
0.0008 
0.22 
0.016 

0.10 
0.12 
0.012 

0.025 
0.075 
0.025 

0.10 
0.23 
0.012 

0.12 
0.05 
0.05 
0.12 

0.12 
0.045 
0.03 
0.03 
0.04 

0.055 
0.034 

0.058 
0.058 

0.06 

16 
17 
52 
15 
13 
36 
12 
16 
29 
9 
41 
47 
9 
16 
44 
28 
35 
29 
41 
12 
32 
3 
34 
35 
34 
24 
18 

1- 7 
1- 8 
1-28 
1- 9 

2-14 
1-12 
2-13 

1- 7 
1- 9 
3-13 

1-19 
1-22 
3-14 

4-14 
1-22 
1- 8 
1-18 

2-16 
1-20 

1-14 
4- 9 

2-18 
2-16 

1-15 
2-11 

2- 8 

0- 8 
0- 8 
2-26 
0- 7 

0-24 

0- 8 
0-22 

0-21 
0-24 

1-13 
0-23 
0-20 
0-19 

1-16 
0-21 
1-13 
0-18 

2-18 
0-19 

0-21 
1-16 

0-15 

DF Ground State Data 

Reference e(cm ) N Jp J 

v = 0 161 3.3 X 10"7 1 / = 1 <- J = 0 



TABLE 7.1 (Cont'd) 

Summary of Experimental Date Base for HF/DF3 

v'-v" 

DF Ground State Data 

Reference e(cm ) N JB 
J 

R 

v = 0 
v = 0 
1-0 
1-0 
2-0 
2-1 
3-2 
4-3 

Present Work 
Present Work 

e 
143 
154 
143 
143 

143 

0.0002 
0.0004 
0.00005 
0.005 
0.01 
0.003 
0.003 
0.01 

6 
2 

25 
29 
19 
12 
11 
5 

1-12 
2-17 
1- 8 
3-16 
3-14 

4- 8 

2- 7 
1 and 8 
1-12 
0-14 
0-10 

ae is the estimated precision; N is the number of lines fitted; 
/ and / „ are the ranges of / fitted for the P and R branches. 

ftW. F. Herget, W. E. Deeds, N. M. Gailar, R. J. Lovell, and A. H. 
Neilsen, /. Opt. Soc. Am. 52, 1113 (1962). 

CR. M. Talley, H. M. Kaylor, and A. H. Neilsen, Phys. Rev. 77, 
529 (1950). 

rfE. S. Fishbume and K. N. Rao /. Mol. Spectrosc. 19, 290 (1966). 
eDF fundamental band data obtained oy J. W. Johns (see Chapter 5). 
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TABLE 7.1 (Cont'd) 

Summary of Experimental Data Base for HF/DF3 

Assigned Lines and Least-Squares 

Band 

0-12 
0-14 
0-15 
0-16 
0-17 
0-18 
0-19 
0-20 
0-21 
0-22 
0-23 

1- 9 
1-10 
1-11 
1-12 
1-13 
1-14 
1-15 
1-16 
1-17 
1-18 
1-19 
1-20 
1-21 
1-22 
1-23 
1-24 

2- 9 
2-10 
2-11 
2-12 
2-13 
2-14 
2-15 
2-16 
2-17 
2-18 
2-19 
2-20 

PJ 

55-60 
42-57 
36-55 
29-52 
22-49 
7-46 
2-43 
2-38 
1-34 
1-33 
3-20 

68-69 
61-66 
59-63 
51-60 
39-59 
32-55 
20-50 
12-52 
5-42 
4-45 
3-36 
4-39 

15-35 
3-31 
3-26 
6-19 

60-70 
51-66 
57-65 
44-62 
40-57 
32-54 
23-50 
11-41 
6-35 
2-43 

29-38 
16-33 

RJ 

57-61 
39-57 
39-55 
30-51 
21-49 
7-46 
2-43 
3-38 
0-36 
0-27 
3-21 

68 
65-66 
60-65 
53-59 
40-60 
34-55 
22-53 
13-52 
1-40 
3-45 
0-42 
2-39 

18-36 
1-31 
2-26 
2-13 

67 
57-63 
60-64 
47-58 
40-56 
32-55 
24-47 
12-40 
0-34 
1-45 

30-39 
14-31 

N 

10 
24 
26 
36 
48 
54 
59 
62 
45 
45 
29 

3 
6 
9 

12 
28 
30 
48 
54 
62 
57 
52 
35 
29 
44 
34 
23 

8 
12 
12 
19 
29 
37 
40 
52 
57 
54 
14 
26 

rms 

0.041 
0.045 
0.045 
0.04<J 
0.038 
0.034 
0.042 
0.049 
0.039 
0.026 
0.039 

0.044 
0.041 
0.039 
0.047 
0.036 
0.043 
0.040 
0.045 
0.043 
0.040 
0.031 
0.045 
0.036 
0.039 
0.054 
0.047 

0.030 
0.027 
0.040 
0.046 
0.041 
0.044 
0.031 
0.039 
0.034 
0.044 
0.052 
0.043 

Results for Bands of DF (B -» 

Band 

2-21 
2-22 
2-23 
2-24 
2-25 
2-26 

3- 9 
3-10 
3-11 
3-12 
3-13 
3-14 
3-15 
3-16 
3-17 
3-18 
3-19 
3-20 
3-22 
3-23 
3-24 
3-25 

4- 9 
4-11 
4-12 
4-13 
4-14 
4-15 
4-16 
4-17 
4-18 
4-19 
4-20 
4-21 
4-22 
4-24 
4-25 

5-10 

PJ 

3-22 
3-25 

11-29 
6-22 
2-19 

10-13 

63-67 
59-65 
51-65 
45-60 
39-56 
32-48 
25-43 
17-34 
2-41 
5-38 

20-35 
7-27 

12-26 
2-28 

10-23 
5-18 

67-69 
50-62 
46-54 
39-50 
35-44 
29-42 
22-49 
36-43 
19-34 
9-30 

27-34 
18-29 
7-19 
3-10 
4-19 

54-67 

*l 

2-25 
2-24 

11-28 
1-22 
2-19 

10-14 

-
59-66 
52-63 
47-60 
40-55 
33-47 
27-43 
18-36 
3-48 
6-38 

21-36 
5-28 

16-25 
4-28 
9-25 
4-18 

-
53-63 
47-57 
40-52 
36-47 
30-40 
23-50 
40-43 
20-36 
7-30 

32-37 
16-32 
7-20 
1-10 
5-19 

56-65 

N 

35 
20 
27 
27 
23 
7 

4 
12 
20 
26 
28 
24 
33 
30 
55 
25 
23 
35 
20 
29 
24 
21 

3 
17 
13 
19 
22 
19 
28 
9 

24 
31 
12 
18 
22 
10 
21 

14 

X) 

rms 

0.041 
0.036 
0.050 
0.049 
0.034 
0.055 

0.046 
0.054 
0.048 
0.049 
0.030 
0.040 
0.030 
0.039 
0.040 
0.043 
0.050 
G.042 
0.049 
0.052 
0.042 
0.052 

0.024 
0.045 
0.051 
0.043 
0.028 
0.040 
0.049 
0.038 
0.032 
0.034 
0.049 
0.042 
0.045 
0.045 
0.042 

0.046 



TABLE 7.1 (Cont'd) 

Summary of Experimental Data Base for HF/DF3 

Assigned Lines and Least-Squares Results for Bands of DF (B —> X) 

Band 

5-11 
5-12 
5-13 
5-16 
5-18 
5-19 
5-20 
5-21 
5-22 
5-23 

PJ 

52-58 
48-54 
42-48 
36-45 
13-21 
4-37 

18-30 
7-20 

23-30 
8-16 

* / 

51-61 
47-53 
43-48 
38-47 
14-26 
6-41 

25-32 
10-21 
24-27 
4-18 

N 

15 
11 
10 
14 
14 
24 
13 
18 
8 

16 

rms 

0.041 
0.051 
0.028 
0.054 
0.034 
0.034 
0.036 
0.034 
0.044 
0.036 

Band 

5-26 

6- 9 
6-15 
6-19 

7- 9 
7-14 
7-18 
7-25 

PJ 

3-14 

60-68 
39-46 
25-32 

62-66 
45-52 
30-36 
10-18 

*J 

10-14 

60-67 
42-51 
21-37 

62-64 
47-52 
32-39 
8-19 

N 

14 

13 
9 

15 

6 
7 

10 
13 

rms 

0.041 

0.058 
0.040 
0.051 

0.031 
0.026 
0.038 
0.048 

aFor each band, the table shows the /-ranges of fitted lines in the P and R 
branches, the number of fitted lines (N), and the root mean square residual 
(rms) between the observed line positions and those calculated from the 
fitted B and X Hamiltonian operators. 

• nan 



268 

Ref. (87) were employed to generate RKRV potentials with the computer program 

developed in this laboratory by Coxon and Foster (197). Furthermore, the 

turning points were smoothed with the variable-/? Morse procedure described 

previously in section 6.3.3. 

Following the smoothing of the inner limb and the corresponding 

adjustments to the outer turning points, an attempt was made to fit the RKRV 

curve to the analytical potential given by Eq. (6.13). Initial efforts met 

with considerable difficulty in achieving such a description for the ground 

state; above approximately 80% of the potential well depth, the analytic 

representation obtained herein deviated from the numerical RKRV function in an 

oscillatory fashion, with average peak deviations on the outer limb of several 

wavenumbers. Slight improvement was realized by resorting to the 

representation, 

B(R) = £ /?m( 1 - RJR)m, (7.4) 
m 

which has an improved radius of convergence (17) over Eq. (6.14), but the 

final representations obtained even with this model were not satisfactory. It 

is clearly not desirable to introduce additional, artificial, error for the 

fitting procedure to have to reproduce, particularly at larger-JR (higher 

energy), where the model calculations presented in Chapter 3 have shown a 

slightly reduced effectiveness. It was decided therefore to employ the 

smoothed interpolated RKRV potentials as the trial operators, for both 

electronic states. Extrapolated points were obtained by applying the 

smoothing computer program locally to the innermost and outermost regions of 

the potential. 
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7.2.3 Least-Squares Fitting 

It is important to plan wisely the choice of correction functions in the 

long-K region. Clearly, Gaussian correction functions would not be 

appropriate in representing a systematic error in the extrapolation. Local 

basis functions are inappropriate in this region for another reason. It was 

found in preliminary model fits that these functions were extremely sensitive 

to the magnitudes of local weights; in many cases the determination of 

Gaussian functions at large-i? became unstable, giving correction functions 

with large oscillatory structure. 

It was thus decided to distribute Gaussian functions locally on the outer 

limb up to the last rotationless turning point and combine them with a few 

higher-order global radial functions, F ,.(R). In this fashion, the Gaussian 

functions looked after local stmcture and the radial functions represented 

smooth systematic corrections, as well as systematic extrapolation corrections 

that may be required at large R. 

In preUminary work, a small representative data set for HF was employed 

to determine linear combinations of terms for AUJR), AUJR), and qJJR). A 

qJR) function could not be significantly determined for the B 2 + state. A 

representative data set for DF was then added and initial descriptions of the 

additional corrections AUZXR) and Aloi?) were obtained. The least-squares 

fit was organized on the basis of the relations, 

U$R) = U$(R) + AU(R), (7.5) 

U$R) = U^f(R) + AUH(R), (7.6) 

qDF(R) = (MH/MD^IIF(i?), (7.7) 

w 
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so that the determinavion of functions AU(R), AUli(R) and q(R) depends on data 

for both isotopomers. After initial linear combinations foi the correction 

functions were obtained, the entire set of 3939 spectral line positions was 

included in a final fit (A) and a total of 60 parameters was fitted with a 

reduced standard deviation of o , = 0.961. 
red 

This is considered satisfactory. A reduced standard deviation near unity 

indicates that the data, on average, are being represented by the fitted 

parameters in accord with the experimental error- within a first-order 

perturbation model. However, an attempt to calculate -hese same line 

positions from the quantum mechanical eigenvalues of the corrected Hamiltonian 

operators failed to give corresponding agreement. Some line positions at 

high-v,/ and very highly precise data for v" = 0 could not be represented by 

the calculated eigenvalues within the precision of the measurements. This 

observation has a twofold interpretation. It can be seen as a breakdown of 

first-order perturbation theory, or it may mean that, within the 

pseudolinearized problem framework, the trial potential was not uniformly a 

close enough approximation to the final solution. In any case, the results 

signalled a necessity to iterate. 

Before the iteration was carried out, however, a search was made for 

additional assignments in the electronic spectrum of DF, using the corrected 

eigenvalues. The assignment of the measured frequencies was until this point 

less than half-complete. A search for additional rotational stmcture on the 

basis of traditional methods was neither a realistic nor a desirable option. 

The structure predicted on the basis of intensity calculations occurs at very 

high-/ and the approach of constants is not reliable for such extrapolations. 

A significant number of previously unassigned measurements were identified as 
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newly discovered band stmcture. Rotational lines associated with quasibound 

levels at very high-/ (/ s 60) were found, involving new ground state 

vibrational levels v" = 9-15. 

Since the isotopic constraints, Eqs. (7.6-7.7) were employed, the 

iteration (fit B) proceeded in the following manner. Smaller, secondary 

corrections were determined to improve further on Uy,L(R)t and the functions 

AUy.JR) and qJR) were redetermined. These latter functions were found to 

differ insignificantly from those determined in fit A. This is indicative of 

the stability of the procedure in determining functions from different initial 

choices for the potentials and also shows the relatively small correlations 
i i 

between the functions AU (R) and AU(R). The reduced standard deviation of fit 

B was raised slightly to a = 0.997, chiefly due to the inclusion of the new 

DF assignments. The secondary corrections were easily represented by linear 

combinations of global radial functions and required no additional Gaussian 

functions. Also, no additional shift functions were supported, indicating 

that the determination of R had converged after the first cycle. 

A total of 94 DF(B —» X) bands was included in fit B which can be 

compared with the previously identified 41 bands from the conventional 

analysis. A total of 2374 fitted DF(J5 —> X) lines in this analysis can also 

be compared with the 1240 fitted lines from the conventional analysis. The 

assignments for the electronic spectrum of DF are now approximately 75% 

complete. A significant portion of the remaining 25% of the measurements can 

be attributed to other sources and are not necessarily due to DF. A computer-

aided search revealed the presence of the HF(B -» X) system on the DF plates; 

obviously the small amount of HF impurity in the DF gas was sufficient to 

excite the strongest HF bands. The few remaining lines are probably due to 
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incomplete spectral order separation. Although a serious attempt was made to 

separate different spectral orders by employing a prism/cylinder combination, 

the degree of order separation breakdown was not Investigated rigorously. A 

valuable method of evaluating the extent of this effect would consist of 

recording atomic standards, under identical conditions as the molecular 

spectra, followed by a critical examination of the photographic plates. 

A total of 5213 line positions was included in fit B, 2482 for DF and 

2729 for HF. The final assignments for the DF(J5 -» X) band system can be 

found in Appendix A-6. Here, all DF experimental lines included in the final 

fit are provided, as well as estimates of their positions calculated from the 

quantum mechanical eigenvalues of the corrected operators. Also listed here 

are the hydrogen fluoride lines employed in fit B, including those of the 
l + l + 

5 2 —> X 2 emission band system (87). The present work has revealed 

previously undetected systematic error in the 155 nm region. A small portion 

of the data in this region, for more than one band, is found to be 

systematically inconsistent (« 0.2 cm-1) with the rest of the measurements. 

It appears that although Di Lonardo and Douglas (87) allude to an attempt to 

correct their plates for systematic inconsistencies, they were not fully 

successful. There were a few additional incorrect assignments found quite 

readily by using the present fitting procedure. These were primarily pairs of 

lines which satisfied upper state combination differences but not those of the 

lower state. Here, then, is a distinct advantage of the Hamiltonian 

correction approach; all line positions must arise from the same radial 

operators. The approach of fitting molecular constants to individual bands 

often masks incorrect assignments, particularly at high-/. The resulting 

representations need not then be characterized by a self-consistent set of 
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molecular constants. Although the process of merging constants from 

individual bands to a nonredundant set might reveal such inconsistencies, this 

approach was not followed for the HF(B - X) data (87). 

7.3 Results and Discussion 

7.3.1 Radial Functions and Eigenvalues for HF and DF 

The functions I/?(it) and U^(R) are shown in Figures 7.2 and 7.3, 

respectively. There is a striking qualitative similarity between these 

functions for HF/DF and the corresponding functions derived for HCl/DCl. A 

similar observation is made for the RJR) function obtained here for HF/DF 

(Fig. 7.4) and that given in Fig. 6.4 for HCl/DCl. The experimental function 
<wTT 

RJR) for HF/DF, however, increases in magnitude more rapidly than the 

corresponding HCl/DCl function. This indicates that the perturbing IT state 

and the X 2 + ground state are approaching each other at a faster rate in the 

case of HF than for HCl; this is confirmed from the results of ab initio 

calculations (127, 149). 

These observations are significant and provide experimental evidence for 

the large similarity between the stmcture and arrangement of electronic 

states in the two hydrogen halides. 

The final operators are available in numerical form only. A detailed 

listing of relevant radial functions is found in Appendix A-7 but for certain 

applications it may simply be sufficient to refer to the functions given in 

Tables 7.2 and 7.3, arranged in RKRV-style output. The energies corresponding 

to the vibrational levels are the quantum mechanical eigenvalues of the 

rotationless functions, and the turning points were obtained by inverse 

interpolation. The mass-independent part of the function gJR) can be 



ftk 

Figure 7.2 

The experimentally determined function U^(R) for 

HF/DF(2r12+). The two broken curves represent the 95% 

confidence Umits of the fitted function. For the 

definitions of R . and R and the filled circles see the mm max 

legend to Figure 3.2. / is not shown for HF level 

v = 19. 
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Figure 7.2 
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Figure 13 

fnnptirvn lt 
TT 

The experimentally determined function U™(R) for 

HFIDF(B1X+). The two broken curves represent the 95% 

confidence limits of the fitted function. For the 

definitions of R . and R and the filled drcles see the 
mm max 

legend to Figure 3.2. / is not shown for HF level 
b * max 

v = 10. 
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Figure 7.3 
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Figure 7.4 

The function R^(R) for the X1^ state of HF/DF. The two 

sohd curves represent the 95% confidence limits of the 

fitted function. 

, 



a?9 

-50 

-120 
0.60 1.33 

RlAl 

sZ-Tz.'m **-



TP^PHPMR 

TABLE 7,2 

Intemuclear Potentials for the XXI+ States of HF and DF2 

28p 

HF(Z12+) DF(X12+) 

v E (cm-1) R . (A) R (A) E (cm-1) R . (A) /? (A) 
mur max 

0 2 050.771 0.834 164 1.020 550 
1 6 012.194 0.784 496 1.113 087 
2 9 801.566 0.754 791 1.186 891 
3 1^ 423.603 0.733 069 1.254 045 
4 16 882.448 0.715 908 1.318 066 
5 20 181.824 0.701 767 1.380 656 
6 23 324.620 0.689 804 1.442 824 
7 26 313.146 0.679 499 1.505 310 
8 29 148.927 0.670 513 1.568 760 
9 31 832.367 0.662 607 1.633 766 
10 34 362.909 0.655 612 1.701 027 
11 36 738.405 0.649 403 1.771 358 
12 38 954.943 0.643 888 1.845 822 
13 41 006.593 0.639 003 1.925 881 
14 42 884.443 0.634 696 2.013 706 
15 44 576.055 0.630 945 2.112 621 
16 46 064.207 0.627 740 2.228 215 
17 47 325.663 0.625 087 2.370 656 
18 48 328.541 0.623 019 2.561 877 
19 49 026.508 0.621 598 2.867 114 
20 
21 
22 
23 
24 
25 
26 

1 490.304 0.845 388 1.003 648 
4 396.966 0.801 118 1.078 758 
7 212.122 0.774 065 1.137 284 
9 937.659 0.753 947 1.189 533 
12 575.326 0.737 814 1.238 503 
15 126.697 0.724 331 1.285 559 
17 593.323 0.712 762 1.331 487 
19 976.491 0.702 655 1.376 810 
22 277.236 0.693 708 1.421 889 
24 496.553 0.685 708 1.467 016 
26 635.187 0.678 499 1.512 448 
28 693.560 0.671 965 1.558 424 
30 671.873 0.666 015 1.605 167 
32 570.069 0.660 578 1.652 923 
34 387.697 0.655 598 1.701 981 
36 123.796 0.651 030 1.752 658 
37 777.013 0.646 838 1.805 331 
39 345.461 0.642 993 1.860 502 
40 826.504 0.639 472 1.918 780 
42 216.725 0.636 259 1.980 990 
43 511.763 0.633 341 2.048 302 
44 705.951 0.630 711 2.122 254 
45 792.421 0.628 367 2.205 242 
46 762.391 0.626 312 2.300 913 
47 605.014 0.624 555 2.415 284 
48 306.664 0.623 111 2.559 779 
48 848.868 0.622 006 2.760 675 

aEv are the eigenvalues of the fitted operators for / = 0. The R values are 

f r a m / l ,"« T o W a 7 1 1 or t h e ™,o„*;+,-oo l ? Q M found in Table 7.13 as the quantities R 



TABLE 73 d01 

Intemuclear Potentials for the 5 1 2 + States of HF and DF0 

HF(B12+) DF(B12+) 

v E (cm-1) R .(M R (A) E (cm-1) R . (A) R (A) 
vv ' mmv maxv ' vv ' mmv ' maxv ' 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

572.063 

1 695.839 

2 785.236 

3 841.363 

4 865.358 

5 858.351 

6 821.455 

7 755.644 

8 661.873 

9 541.073 

10 10 394.194 

1.924 812 

1.810 700 

1.735 175 

1.675 277 

1.624 431 

1.579 658 

1.539 306 

1.502 346 

1.468 079 

1.436 001 

1.405 725 

2.274 901 

2.425 988 

2.540 126 

2.640 226 

2.732 818 

2.820 844 

2,905 935 

2.989 174 

3.071 041 

3.152 239 

3.232 950 

416.314 

1 238.076 

2 041.493 

2 827.016 

3 595.063 

4 346.103 

5 080.534 

5 798.834 

1.947 980 

1.849 486 

1.784 075 

1.732 106 

1.687 937 

1.649 008 

1.613 904 

1.581 743 

2.245 681 

2.370 632 

2.463 405 

2.543 554 

2.616 743 

2.685 506 

2.751 255 

2.814 838 

aE are the eigenvalues of the fitted operators for / = 0. 

i?^F(512+) = 2.091024(1) A and FPF(B1'Z+) = 2.090461(3) A. 
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calculated from the d^ coefficients and other required information hsted in 

Table 7.4. The full set of eigenvalues for both electronic states of both 

isotopomers is found in Appendix A-8. 

7.3.2 Predissociation in X1^ 

Johns and Barrow (151) as well as Di Lonardo and Douglas (87) observed 

the sudden breaking-off of rotational structure at high-/ for several bands of 

the HF(B —> X) system. These observations were independent of the vibrational 

quantum number of the upper electronic state and were thus attributed to a 
l + rotational predissociation mechanism in the ground X 2 state. Further 

support for a predissociation mechanism was provided by the observation of 

measurably broadened contours for the last observed Unes in several bands 

involving v" = 16 and 17. For the case of DF, Johns and Barrow (151) reported 

a similarly abrupt cutoff in rotational structure at high-/, but no unusual 

broadening of any rotational lines. In the present analysis of the B - X 

emission band system of DF, similar observations were made, although the range 

of observed / was increased slightly. 

The observation of broadened line positions immediately prior to a 

complete disappearance of rotational structure at high-/ can in many cases be 

explained adequately by a pure rotational predissociation mechanism. However, 

this adiabatic mechanism need not be solely responsible for the 

predissociation observations for HF/DF. Predisfjciation mechanisms have been 

categorized by Herzberg (198) and by Mulliken (199). A useful review has been 

given recently by Lefebvre-Brion and Field (200). A broadening of line 

contours with increasing / can also be due to a gyroscopic predissociation 

mechanism involving a nonadiabatic mixing of the rovibronic wavefunctions of 



TABLE 7.4 

Coefficients dL. for Nuclear-Mass-Independent 

Part of g(R)a 

d^ =-2.154 796 xlO"3 

A = 9.484 920 XlO"4 

XA 

dv, =-5.062 229 XlO"4 

R = 0.916 843 A 
e 

mx = o.60 A 

aThe function is defined by Eqs. (3.47, 3.48) (see 

text). 
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two different electronic states. This type of mechanism is most appropriate 

for HF/DF where the AlTl state interacts significantly with high-lying 

rovibrational levels of X 2 + . The classical effect of this interaction is to 

cause the X^H* levels to occur at lower energy than they would in the absence 

of A1!!; the R^(R) function, for both HF and HCl, adds negatively to the 

kinetic energy of rotation. However, as there exists an infinite number of 

short-lived collision induced energy levels for the repulsive A II state, for 

every orbiting resonance in Z 2 + there must exist a degenerate interaction 

with the wavefunction of a continuum level lying at the same energy. This is 

shown graphically in Figure 7.5. The interaction provides an additional 

avenue by which penetration of the potential barrier can occur. The 
1 + wavefunction mixing reduces the lifetimes of the X 2 quasibound levels and 

must therefore contribute positively to the observed line widths. 

This can be interpreted in yet another way. The orbiting resonances that 

can be detected by classical spectrography all lie below the barrier maximum. 

Since the effect of q(R) is to add negatively to the energy of rotation in a 

monotonic way, it follows that q(R) would decrease the position of the barrier 

maximum more than it decreases the position of a bound level. The energy 

level is therefore brought relatively closer to the barrier top than it would 

otherwise be. This induces a decrease in the lifetime of the quasibound state 

and provides a contribution to the width additional to that predicted on a 

simple rotational predissociation mechanism alone. Also, since q(R) increases 

negatively with increasing R, it must displace the third turning point towards 

smaller R by a greater amount than it does the second turning point; this 

decreases the barrier width and hence the lifetimes of quasibound levels. 
l i + 

Due to the A IT » X 2 interaction the observed width is a composite of 



Figure 7.5 

Interaction between the Aln and X1!,* states of HF(DF). The 

rovibrational wavefunction of ground state level v is seen 

to interact with the continuum wavefunction of the repulsive 

state near an energy E .. The wavefunction mixing is found 
l + to reduce the non-radiative Ufetime of the X 2 state 

quasibound level. 
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figure 7.5 
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the two mechanisms, and a reliable resolution to the individual contributions 

is difficult to achieve in the absence of a proper quantum mechanical model. 

It is then not correct to invert observed widths, either quantum mechanically 

or semiclassically, on the basis of the usual centrifugal barrier expression, 

to obtain the rotationless potential or the dissociation limit. In the 

present work, however, it was possible to decompose the total calculated 

widths, which predict magnificently their observed counterparts, to the 

gyroscopic and pure centrifugal contributions. 

Table 7.5 lists energies and calculated widths for several selected 

levels of ground state HF and DF. The agreement with widths measured 

experimentally for levels v", J" =16, 23 and v", /" =17, 19 is a good 

indication of the physical significance of the present results. It is noted, 

also, that experimental estimates are Doppler limited values and that typical 

widths of normal lines on the plates of Ref. (87) were approximately 0.30 

cm" . The Heisenberg widths calculated in the present work should therefore 

be slightly smaller than those observed experimentally, as is indeed the case. 

Also shown in Table 7.5 are the energies and widths calculated in the absence 

of /-dependent coupling, Le. with q(R) set to zero. The contribution from 

the pure centrifugal barrier then becomes apparent; it can be seen that q(R) 

contributes significantly both to the energies and widths of quasibound 

levels. Experimental observation cannot be rationalized without an explicit 

consideration of q(R). 

7.3.3 The Dissociation Energy of Xl1+ 

The determination of the dissociation energy of X 2 + states of HF and DF 

can be accomplished by a variety of methods. The LCD method has been 



TABLE 7.5 

Rotational Predissociation in X 2 + : Calculated Energies 
and Widths of Selected Quasibound Levels for HF and DF3 

Hydrogen Fluoride 

V 

9 
10 
10 
11 
11 
12 
12 
13 
13 
14 
14 
15 
15 
16 
17 
18 

/ 

44 * 
41 * 
42 * 
38 
39 * 
35 * 
36 * 
32 * 
33 * 
29 
30 * 
26 
27 * 
23 
19 
14 

E\ 
VJ 

53 150.78 
52 358.26 
52 902.45 
51 689.46 
52 197.62 
51 143.67 
51 607.16 
50 716.29 
51 128.24 
50 398.45 
50 752.98 
50 175.91 
50 467.28 
50 026.64 
49 746.14 
49 473.15 

fwhm 

0.82 
0.16 
6.18 
0.04 
2.78 
0.02 
1.41 
0.01 
1.13 
0.02 
1.68 
0.08 
4.61 
1.16 (1.25) 
0.65 (0.86) 
0.20 

El 

53 160.99 
52 367.39 
52 914.87 
51 697.81 
52 208.78 
51 151.44 
51 617.43 
50 723.65 
51 137.98 
50 405.58 
50 762.57 
50 183.10 
50 477.20 
50 034.59 
49 753.00 
49 477.58 

1" H 

fwlini 

0.57 
0.10 
5.22 
0.02 
1.97 
0.01 
0.91 
0.004 
0.69 
0.01 
1.02 
0.03 
3.01 
0.54 
0.32 
0.16 

Deuterium Fluoride 

V 

9 
10 
11 
12 

13 

14 

/ 

70 
67 
65 
63 * 
60 

58 * 

vJ 

54 943.35 
54 145.01 
53 901.92 
53 672.04 
53 041.03 

52 867.91 

fwhm 

JUO 

0.01 
0.09 
0.69 
0.14 

1.49 

< , 

54 948.29 
54 149.54 
53 906.91 
53 677.68 
53 046.15 

52 873.86 

Is 

fwhm 

0.08 
0.008 
0.07 
0.57 
0.11 

1.22 
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TABLE 7.5 (Cont'd) 

Rotational Predissociation in X 2 + : Calculated Energies 
and Widths of Selected Quasibound Levels for HF and DF3 

V 

15 
16 
17 
18 
19 
19 

20 
21 
22 
22 

23 
23 

24 
24 

25 
26 
26 

/ 

55 
52 
49 
47 * 

43 
44 * 

40 
37 * 

33 
34 * 

29 
30 * 

25 
26 * 

21 * 

15 * 
16 * 

EA
} 

vJ 

52 346.21 

51 885.26 

51 484.71 

51 425.62 

50 856.53 
51 111.16 

50 621.06 

50 429.54 

50 101.33 
50 272.28 

49 859.59 
50 004.75 
49 695.74 
49 810.09 

49 592.25 

49 413.39 
49 469.03 

rA. 
fwhm 

0.50 

0.2C 

0.11 

2.98 

0.12 
3.55 

0.27 

1.01 

0.20 
4.63 

0.07 
3.13 

0.08 
4.24 

0.68 

0.26 
1.36 

vJ 

52 351.67 

51 890.36 

51 489.53 

51 431.65 

50 861.08 
51 117.10 
50 625.63 

50 434.31 

50 105.31 
50 277.43 

49 863.04 
50 009.22 

49 698.96 
49 814.47 

49 595.79 

49 415.32 
49 471.76 

r8 

fwh 

0.39 

0.15 

0.08 

2.46 

0.08 
2.90 

0.19 

0.73 

0.12 
3.75 

0.04 
2.26 

0.05 
2.98 

0.50 

0.24 
1.22 

Quantities X and X are from calculations including and 
excluding q(R), respectively. For HF, widths given in 
parentheses are experimental estimates from Ref. (87). E 
are energies (cm" ) and T. . (cm" ) are full widths at 
half maximum of intensity, and entries marked with an 
asterisk (*) have not been experimentally observed. 
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considered previously in this work and the cautionary measures associated with 

its use were discussed. One method not discussed so far is Bernstein's Locus 

of Barrier Maximum (LBM) (201) procedure. A natural extension of the LCD 

method, the LBM assumes an explicit form for the intemuclear potential as 

predicted by long-range theory. For a potential that varies asymptotically 

as, 

U(R) = 0 - CnIR", (7.8) 

the energy of the barrier maximum is given by 

E = 0e + Sn[J(J + l )p n"Z J , (1.9) ^ „ , iM / ( n~2 ) 

where 

*. o r j-n + Z -il/(rt-2) 
Sn /cm"1 = »=1\JL—] \ (7.10) 

47tcl(nn)nC2J 

involving the reduced mass fi and a collection of constants, including the 

long-range potential parameter C . However, in order for this method to be 

applicable it is necessary to employ data that fall into the long-range region 

of the potential so that Eq. (7.9) is a vaUd representation. Le Roy (49) has 

proposed a criterion for determining the onset of the long-range region as, 

mLR > 2 « r A> 1 / 2 + <rB>'/2)' ( 7 - a i ) 

where the expectation values of atomic centres A/B are over electronic 

coordinates and refer to the first state with an outermost unfilled shell. 

This expression attempts to justify the use of Eq. (7.8) for an intemuclear 

separation 81. beyond which the electron clouds do not overlap significantly. 

For the case of HF/DF, using the relativistic <r^> value of Lu et al. (202) 

for the fluorine ground state, 2/> and estimating the hydrogenic 
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expectation value from the analytical Is orbitals (203), it is found that 

&LR(HF) > 3.12 A. This is greater than the outermost turning points of HF and 

DF and indicates that the use of the LBM procedure is not warranted. The 

validity of a previous LBM analysis for HF/DF by Byrne ci al. (204) has been 

questioned (49) despite the deceptively linear behaviour of the associated 

plots. When valid, the LBM method gives an estimate for the leading inverse 

power dispersion coefficient, C, for HF(X 2+) , for which ab initio estimates 

are unavailable. An approximate estimate has been obtained (205) as 

C6 = 37 856 cm" A ; this was calculated by scaling the C, value for NeH (206) 

with the polarizabilities of hydrogen, neon and fluorine. 5fi is given by the 

expression, 

for Cg in erg cm units. From this, the limiting slopes of the LBM for 
l + HFID¥(X 2 ) were estimated. LBM plots were then constructed for HF and DF as 

shown in Figure 7.6 and extrapolated to / = 0. The limiting slopes are also 

included and it is obvious that they deviate significantly from those which 

are suggested from a simple extrapolation of the plotted data. This 

demonstrates the danger of using the LBM blindly, as it is clear that in the 

long-range region, the behaviour of the curve is altered dramatically. The 

results indicate that the LBM 3) values for HF/DF will be slight overestimates 

if the extrapolation is carried out on the basis of the existing data. 

Since intemuclear potentials are available in this work, it is possible, 

in principle, to employ more direct methods for estimating 2>. It could be 

possible to fit the outer limb potential points to an inverse power potential 

expansion, 



Figure 7.6 

Locus of barrier maximum (LBM) plots for HF/DF(X12+). The 

filled circles represent the last observed rotational levels 

of given v. The open circles represent extrapolated 

energies for / one unit higher than the last observed 

levels. The limiting slopes indicated by dashed lines were 

calculated on the basis of Cg = 37856 cm"1 A6 (205) and Eq. 

(7.12). The dissociation limits flF* = 49335(30) cm"1 and 
DF 1 

Or = 49310(40) cm are obtained from the intercepts of the 

dashed curves. 
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U(R) = 0 - CJR6 - CJR8 - C1QIR10 - ..., (7.13) 

a result predicted by a perturbational treatment of the polarization of the 

electronic clouds as the two atoms approach each other from infinity, but 

which is inapplicable in the chemical bonding region, at intermediate R. It 

is found, unfortunately, that this method of estimating 2> is sensitive to the 

range of R considered, and the number of terms included in the potential 

expansion. Employing C and 0 as free-floating parameters, it is even 

possible to obtain unphysical negative values for Cg, Cg, etc. Using the 

approximate values Cg = 172 470 cm"1 A8, and C1Q = 103 810 cm"1 A10 (205) 

along with the C, estimate given above, it was possible to obtain a more 

physically meaningful fit to 2> and an additional constant C10. It was found 

that 3) (HF) = 49 370 ± 30 cm"1, where the error limit is intuitive. The value 

of the fitted constant C . = 72 X 10 cm A is positive and of the right 

order of magnitude but it is not clear that any strict physical significance 

should be attached to it. The correlation between 0 and C,„ could not be 
e 12 

obtained since the geometrical simplex fitting method (207) was employed. The 

fitted <2) value appears to be consistent with the LCD estimate given in 

Chapter 5. The same methodology applied to D F ^ ^ * ) furnished the fitted 

constants 2> = 49 355 ± 40 cm*1 and C„ « 71 x 106 cm"1 A12. 
e 12 

A different method exploiting the behaviour of the intemuclear potential 

was also used to estimate 2>. It was reasoned that as the potential 

approaches the dissociation limit, the slope of U(R) tends asymptotically to 

zero. If a plot is constracted with the potential slope as the abscissa and 

energy as the ordinate, the y-intercept corresponding to zero slope would give 

precisely 2J. In mathematical terms, EB - f{U'(R)}. It was found that 
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f{U'(R)} could be well represented by, 

ER= S>e+ dx(dUldR)R + d2(dUldR)2
R + d3(dUldR)3

R + . . .. (7.14) 

Also, an expression involving half-powers of the slope was used, giving 

similar results. This method appears to give estimates for 2> which are 

consistently lower than those obtained with the methods described above. For 

HF the value % = 49 315 ± 30 cm"1 was obtained and for DF 0 =49 295 ± 40 
e e 

cm" was determined. It is interesting to note that the results derived firm 

the radial functions infer that g> for HF is approximately 20 cm" higher than 

that of DF. Although this, of course, is inconclusive on the basis of the 

error estimates, it should be noted that the difference appears to be somewhat 

supported by the use of identical models throughout for both HF and DF. 

Another piece of evidence supporting this small difference is the behaviour of 

the AUJR) function, which is essentially one half of the mirror image of the 
TT 

function UJR), shown in Fig. (7.2). At large-i?, if one disregards the 

obviously unphysical anomaly beyond the outermost v,J turning point (R ) , we 
H i CIA 

see that the difference function C/^DF) - U^HF), or AU^(R), begins to 
-1 

approach constancy at a value of approximately -(15-20) cm" , indicating that 

the potential asymptote for HF lies higher than that of DF. These arguments 

are not conclusive, but it would seem unlikely that the potential difference 

function would change its behaviour in the long-range region. A situation 

similar to the present was found for the ground state of LiH (208). As R 

increases, homogeneous mixing contributions to the rotationless curve approach 

zero so that the dominant contribution to any difference in the dissociation 

limits of the two isotopomers becomes the difference in the adiabatic 

contributions to the separated atoms H/D, as compared to the total adiabatic 
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and nonadiabatic corrections at the potential minima of HF and DF. 

There appears to be, however, an inconsistency between these results and 

those obtained from the LCD method. For comparison purposes the estimates of 

0 obtained in this work by different methods are listed in Table 7.6. The 
e J 

LCD method infers slightly that the dissociation limit of DF lies higher than 

that of HF. There is significant disagreement between the 0 value for DF 

obtained by the LCD method and the slope/energy method. This could be 

explained only if the LCD gives estimates which are in fact less precise than 

first thought. 

In Chapter 5 a semiclassical potential for DF(X 2 + ) was obtained by 

interpolating AG(v + Vz) and B values in the region v" = 5-15. Despite the 

care exercised in accomplishing these interpolations, the present results show 

unequivocally that the previous absolute energy estimates above G16 are in 

large error. Specifically, the energies of the RKRV potential given in Table 

5.7 should be lowered by approximately 20 cm" . Similarly, the 2> estimate 

for the ground state obtained by the LCD method should be lowered by the same 

amount. This is yet another demonstration of the problems that can be 

encountered in traditional methods of analysis. 

The most reliable results are perhaps those obtained by using Eq. (7.13) 

with constrained estimates of the C . Averaging all results, however, the 

final values reported in this work are 2> (HF) = 49 350 ± 40 cm"1 and 

2>e(DF) = 49 338 ± 45 cm" . More precise values may be obtained only through 

the observation of higher vibrational levels of X x 2 + and further manipulation 

of the present data will not reduce the error estimates. Alternatively, the 

behaviour of the long-range section of the potential could be obtained by 

improved theoretical calculations to give more precise estimates of 0. 



TABLE 7.6 

The Dissociation Energies (cm ) of Ground State HF and DF: 
A Comparison of Several Methods of Determination 

Method HF DF 

Eq. (7.13) 49 370 ± 30 49 355 ± 40 
Energy-Slope 49 315 ± 30 49 295 ± 40 
LCD 49 380 ± 60 49 390 ± 50 
LBM (Corrected) 49 335 ± 30 49 310 ± 40 

Average 49 350 ± 40 49 338 ± 45 
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7.3.4 The Electronic Isotope Shift 

The present analysis furnishes a more reliable estimate of the electronic 

isotope shift, AT = T^ - 1 , than was reported in Chapter 5. The error 

estimate of ± 5 cm given therein has now been reduced by two orders of 

magnitude. This is made possible by the plentiful newly assigned DF(B —> X) 

data which provide information that reduces the gap in X 2 + . Also, the 

reduction in the uncertainty of this quantity is due to the smooth behaviour 
TT 

of the UJR) function in the region of missing DF experimental information. 

The electronic terms of JB
12+ obtained here are 7^F = 84 783.93(3) cm"1 

and T* ~ 84 786.41(7) cm" , giving an electronic term value difference of 

-2.48(7) cm" . There is now a large discrepancy between this experimental 

result and the approximate theoretical estimate presented earlier, AT = -14.1 

cm" . 

7.3.5 Perturbation Calculation of Centrifugal Distortion 

The interaction between A II and X 2 contributes significantly to the 
1 4-

molecular constants of bound vibrational levels of X 2 . As Herzberg 

indicates (209), such coupling requires that the rotational energj' be 

expressed as, 
F (J) = Bv[J(J + 1)} - Dv[J(J + l)]2 + . . . + 4>y(/), (7.15) 

where 0 (/) is a small nonadiabatic contribution to the energy levels. 

Although Herzberg (209) obtained this expression for A > 1 states, it was also 

stated that 2 states also require a function <E> (/) to account for electronic 

state mixing. The nonadiabatic function 3> (/) can be written as, 



299 

V ) = v̂o + W + 1)1 + *JW + ! ) ] 2 + • • - (7-16) 

where tp^ can be regarded as a purely homogeneous contribution to the 

rotationless eigenvalues. The experimentally derived quantities, 

are written in terms of the mechanical B and D values and the nonmechanical 
V V 

contributions <$> and <p 2> From Eqs. (2.53, 2.54) it follows that, 

Kl = Plt^WW*2^' (7-19) 

where t/A ' is the zeroth-order wavefunction and ilr ) the first-ordur ) is t h e 7f*rr\th-r\rr\f*r H/cmpfnnrtirvn nnH «/A / 

wavefunction correction. 

The modified version of Hutson's computer program was employed to 

calculate rotational and centrifugal distortion constants which are quantum 

mechanically consistent with the derived Hamiltonian operators. These 

constants should compare well with experimentally derived estimates. 

Calculated constants are listed in Tables 7.7-7.8 for both electronic states 

of HF and DF. Also shown in these tables are constants which have been 
l l deperturbed from II - 2 coupling, as well as some experimentally derived 

estimates. As was the case for HCl/DCl, the calculated constants fail to 

predict the high-v,/ energy levels within the experimental uncertainties. It 

is thus currently not possible to employ calculated constants to represent the 

eigenvalues in a compact fashion. Additional constants beyond M are required 

to remove the discrepancy. 
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Quantum Mechanical Molecular Constants for I 1F/DF( xLzy 

H F ( X 1 2 + ) 

V G B D H 
V V V V 

L 
V 

M 
V 

10 

11 

12 

13 

14 

15 

2050.7710 
2050.7710 

6012.1941 
6012.1941 

9801.5656 
9801.5656 

13423.603 
13423.603 

16882.448 
16882.448 

20181.824 
20181.824 

23324.620 
23324.620 

26313.146 
26313.146 

29148.927 
29148.927 

31832.367 
31832.367 

34362.909 
34362.909 

36738.405 
36738.405 

38954.943 
38954.943 

41006.593 
41006.593 

42884.443 
42884.443 

44576.055 
44576.055 

20.5597286 
20.5597459 

19.787464 
19.787521 

19.034953 
19.035057 

18.30054 
18.30070 

17.58250 
17.58273 

16.8789 
16.8792 

16.1866 
16.1870 

15.50367 
15.50419 

14.82591 
14.82657 

14.14955 
14.15037 

13.46938 
13.47041 

12.77819 
12.77945 

12.06805 
12.06963 

11.32752 
11.32950 

10.54127 
10.54377 

9.68820 
9.69144 

2.119864-3 
2.119800-3 

2.06366-3 
2.06357-3 

2.00993-3 
2.00982-3 

1.9594-3 
1.9592-3 

1.9119-3 
1.9117-3 

1.8692-3 
1.8689-3 

1.8308-3 
1.8305-3 

1.79805-3 
1.79770-3 

1.77324-3 
1.77281-3 

1.75630-3 
1.75576-3 

1.75184-3 
1.75115-3 

1.76272-3 
1.76184-3 

1.79254-3 
1.79139-3 

1.85214-3 
1.85059-3 

1.95094-3 
1.94875-3 

2.11135-3 
2.10810-3 

1.638279-7 
1.638472-7 

1.5910-7 
1.5912-7 

1.5395-7 
1.5398-7 

1.484-7 
1.485-7 

1.426-7 
1.426-7 

1.348-7 
1.349-7 

1.283-7 
1.284-7 

1.17866-7 
1.17969-7 

1.07709-7 
1.07845-7 

9.41247-8 
9.43083-8 

7.54613-8 
7.57169-8 

5.33445-8 
5.37111-8 

2.03685-8 
2.09184-8 

-2.71396-8 
-2.62693-8 

-9.93635-8 
-9.78894-8 

-2.15406-7 
-2.12674-7 

-1.55883-11 
-1.55853-11 

-1.551-11 
-1.550-11 

-1.563-11 
-1.563-11 

-1.55-11 
-1.55-11 

-1.62-11 
-1.62-11 

-1.6-11 
-1.6-11 

-1.7-11 
-1.7-11 

-1.8832-11 
-1.8f05-ll 

-1.8968-11 
-1.8929-11 

-2.3822-11 
-2.3761-11 

-2.7967-11 
-2.7871-11 

-3.2861-11 
-3.2703-11 

-4.9355-11 
-4.9072-11 

-6.5140-11 
-6.4613-11 

-1.0864-10 
-1.0755-10 

-1.7531-10 
-1.7281-10 

1.5866-15 
1.5870-15 

1.53-15 
1.54-15 

1.49-15 
1.49-15 

1.5-15 
1.5-15 

8.1-16 
8.1-16 

2-15 
2-15 

1.918-15 
1.925-15 

-2.245-16 
-2.119-16 

-9.63-16 
-9.41-16 

-8.41-16 
-8.02-16 

-5.60-15 
-5.52-15 

-1.03-14 
-1.01-14 

-2.05-14 
-2.02-14 

-4.532-14 
-4.447-14 

-9.859-14 
-9.619-14 
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TABLE 7.7 (Cont'd) 
l-e+Na Quantum Mechanical Molecular Constants for HF/DF(Z 2 ) 

v 

16 

17 

18 

19 

v 

0 
0 
1 
X 

1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 

G 
V 

46064.207 
46064.207 

47325.663 
47325.663 

48328.541 
48328.541 

49026.508 
49026.508 

G 
V 

1490.30435 

1490.30435 

4396.96596 
4396.96596 

7212.122 
7212.122 

9937.659 
9937.659 

12575.33 
12575.33 

15126.70 
15126.70 

17593.32 
17593.32 

19976.49 
19976.49 

22277.24 
22277.24 

B 
V 

8.73866 
8.74300 

7.64712 
7.65327 

6.33740 
6.34701 

4.62302 
4.64212 

B 
V 

10.8603442 

10.8603475 

10.5640266 
10.5640370 

10.273310 
10.273329 

9.987962 
9.987990 

9.70753 
9.70757 

9.43175 
9.43181 

9.16036 
9.16043 

8.89260 
8.89268 

8.62808 
8.62818 

H F ( Z ] 

D 
V 

2.36411-3 
2.35886-3 

2.78434-3 
2.77468-3 

3.5528-3 
3.5306-3 

5.5237-3 
5.4335-3 

D F ( X : 

D 
V 

5.87456-4 

5.87447-4 

5.76080-4 
5.76070-4 

5.65060-4 
5.65047-4 

5.54433-4 
5.54417-4 

5.4430-4 
5.4428-4 

5.3448-4 
5.3445-4 

5.2532-4 
5.2530-4 

5.1692-4 
5.1688-4 

5.0892-4 
5.0888-4 

2+) 

H 
V 

-4.20960-7 
-4.15214-7 

-8.28972-7 
-8.14288-7 

-1.97089-6 
-1.91658-6 

-7.99298-6 
-7.49756-6 

l2 +) 

H 
V 

2.3856-8 

2.3857-8 

2.3367-8 
2.3368-8 

2.288-8 
2.288-8 

2.229-8 
2.230-8 

2.17-8 
2.17-8 

2.12-8 
2.12-8 

2.04-8 
2.04-8 

1.97-8 
1.97-8 

1.90-8 
1.90-8 

L 
V 

-3.6377-10 
-3.5691-10 

-8.1981-10 
-7.9543-10 

-2.9881-9 
-2.8402-9 

-2.6476-8 
-2.3626-8 

L 
V 

-1.189-12 

-1.189-12 

-1.188-12 
-1.188-12 

-1.19-12 
-1.19-12 

-1.20-12 
-1.20-12 

-1.2-12 
-1.2-12 

-1.2-12 
-1.2-12 

-1.2-12 
-1.2-12 

-1.2-12 
-1.2-12 

-1.3-12 
-1.3-12 

M 
V 

-2.769-13 
-2.683-13 

-1.004-12 
-9.603-13 

-5.6478-12 
-5.2110-12 

-8.6457-11 
-7.1805-11 

M 
V 

6.4-17 

6.4-17 

6.4-17 
6.4-17 
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TABLE 7.7 (Cont'd) 

Quantum Mechanical Molecular Constants for HF/DF(JT12+)fl 

DF^S"1") 

v G B D H L M 
V V V V V V 

9 
9 
10 
10 

11 
11 

12 
12 

13 
13 

14 
14 

15 
15 

16 
16 

17 
17 

18 
18 

19 
19 

20 
20 

21 
21 

22 
22 

23 
23 

24 
24 

24496.553 
24496.553 

26635.187 
26635.187 

28693.560 
28693.560 

30671.873 
30671.873 

32570.069 
32570.069 

34387.697 
34387.697 

36123.796 
36123.796 

37777.013 
37777.013 

39345.461 
39345.461 

40826.504 
40826.504 

42216.725 
42216.725 

43511.763 
43511.763 

44705.951 
44705.951 

45792.421 
45792.421 

46762.391 
46762.391 

47605.014 
47605.014 

8.366478 
8.366596 

8.106936 
8.107077 

7.848704 
7.848870 

7.591084 
7.591280 

7.333189 
7.333419 

7.073612 
7.073881 

6.810974 
6.811289 

6.543884 
6.544253 

6.270235 
6.270667 

5.987431 
5.987940 

5.692641 
5.693243 

5.381704 
5.382425 

5.049735 
5.050608 

4.690747 
4.691824 

4.295201 
4.296563 

3.85212 
3.85391 

5.01781-4 
5.01739-4 

4.95713-4 
4.95664-4 

4.90587-4 
4.90530-4 

4.86605-4 
4.86538-4 

4.84164-4 
4.84085-4 

4.83811-4 
4.83716-4 

4.85380-4 
4.85267-4 

4.89551-4 
4.89414-4 

4.97372-4 
4.97204-4 

5.09441-4 
5.09233-4 

5.26927-4 
5.26663-4 

5.52572-4 
5.52227-4 

5.87204-4 
5.86739-4 

6.36854-4 
6.36199-4 

7.06882-4 
7.05901-4 

8.0910-4 
8.0750-4 

1.79888-8 
1.79952-8 

1.69437-8 
1.69514-8 

1.58876-8 
1.58970-8 

1.46594-8 
1.46710-8 

1.28246-8 
1.28392-8 

1.08876-8 
1.09062-8 

8.79691-9 
8.82094-9 

5.72304-9 
5.75486-9 

1.73736-9 
1.78059-9 

-2.97870-9 
-2.91849-9 

-1.01133-8 
-1.00260-8 

-1.96418-8 
-1.95101-8 

-3.22107-8 
-3.20026-8 

-5.46591-8 
-5.43034-8 

-8.49462-8 
-8.42886-8 

-1.4701-7 
-1.4561-7 

-1.3601-12 
-1.3593-12 

-1.3283-12 
-1.3272-12 

-1.4755-12 
-1.4741-12 

-1.6280-12 
-1.6261-12 

-1.9593-12 
-1.9567-12 

-1.9602-12 
-1.9565-12 

-2.4364-12 
-2.4311-12 

-3.1552-12 
-3.1473-12 

-3.7806-12 
-3.7687-12 

-4.7748-12 
-4.7560-12 

-7.4062-12 
-7.3745-12 

-8.8254-12 
-8.7714-12 

-1.5123-11 
-1.5020-11 

-2.3155-11 
-2.2946-11 

-3.9393-11 
-3.8915-11 

-8.568-11 
-8.434-11 

4.757-17 
4.769-17 

6.875-17 
6.890-17 

3.435-17 
3.458-17 

-1.273-16 
-1.269-16 

4.097-17 
4.148-17 

3.103-17 
3.178-17 

-2.603-16 
-2.590-16 

-2.885-16 
-2.864-16 

-2.621-16 
-2.587-16 

-9.348-16 
-9.284-16 

-1.340-15 
-1.328-15 

-1.538-15 
-1.515-15 

-6.306-15 
-6.251-15 

-5.810-15 
-5.686-15 

-2.325-14 
-2.287-14 

-5.308-14 
-5.171-14 
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TABLE 7.7 (Cont'd) 

Quantum Mechanical Molecular Constants for HF/DF(Z12+)a 

V 

25 
25 
26 
26 

G 
V 

48306.664 
48306.664 
48848.868 
48848.868 

B 
V 

3.34091 
3.34341 
2.72418 
2.72809 

DF(ZJ 

D 
V 

9.7460-4 
9.7162-4 
1.2835-3 
1.2762-3 

2+ ) 

H 
V 

-2.7546-7 
-2.7174-7 
-6.6639-7 
-6.5121-7 

L 
V 

-2.132-10 
-2.081-10 
-9.078-10 
-8.710-10 

M 
V 

-2.125-13 
-2.050-13 
-1.724-13 
-1.626-12 

aAll quantities are in cm" units. For each vibrational level the top and 
bottom entries represent perturbed and deperturbed constants, respectively. 
5.87456-4 reads as 5.87456 X 10"4. 
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TABLE 7.8 

Quantum Mechanical Molecular Constants for HF/DF(5x2+)a 

HF(2?12+) 

v G 
V 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

572.063 
1695.839 
2785.236 
3841.363 
4865.358 
5858.351 
6821.455 
7755.644 
8661.873 
9541.073 
10394.194 

4.02042 
4.00106 
3.98038 
3.95895 
3.93681 
3.91 <13 
3.89119 
3.86793 
3.84469 
3.82169 
3.79872 

2.0494-4 
2.2574-4 
2.4752-4 
2.7033-4 
2.9415-4 
3.1910-4 
3.4558-4 
3.7355-4 
4.0326-4 
4.3436-4 
4.6745-4 

1.9332-8 
2.4880-8 
3.1595-8 
3.9345-8 
4.8438-8 
5.9213-8 
7.1586-8 
8.6515-8 
1.0364-7 
1.2257-7 
1.4379-7 

-3.674-12 
-5.353-12 
-7.601-12 
-1.048-11 
-1.429-11 
-1.937-11 
-2.571-11 
-3.413-11 
-4.386-11 
-5.609-11 
-6.659-11 

8.33-16 
1.41-15 
2.23-15 
3.46-15 
5.27-15 
7.76-15 
1.15-14 
1.62-14 
2.21-14 
2.94-14 
3.66-14 

DF(5X2+) 

v G B D H L M 
V V V V V V 

0 
1 
2 
3 
4 
5 
6 
7 

416.314 
1238.076 
2041.493 
2827.016 
3595.063 
4346.103 
5080.534 
5798.833 

2.11520 
2.10799 
2.10034 
2.09243 
2.08432 
2.07595 
2.06746 
2.05882 

5.5878-5 
6.0002-5 
6.4251-5 
6.8666-5 
7.3192-5 
7.7909-5 
8.2711-5 
8.7760-5 

2.7060-9 
3.2590-9 
3.9042-9 
4.6289-9 
5.4130-9 
6.3401-9 
7.3310-9 
8.4788-9 

-2.651-13 
-3.494-13 
-4.583-13 
-5.818-13 
-7.441-13 
-9.206-13 
-1.171-12 
-1.431-12 

3.073-17 
4.576-17 
6.526-17 
8.899-17 
1.277-16 
1.643-16 
2.322-16 
2.999-16 

flAH quantities are in units of cm" . 2.0494-4 reads as 2.0494 x 10" . 
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The calculated constants for v" = 0 of HF and DF were employed to 

calculate the very highly precise far-infrared measurements. The comparison 

shown in Table 7.9 is very satisfactory, providing support for the physical 

significance of the present results. 

7.3.6 Vibrational Index at Dissociation 

Estimates of the vibrational index of dissociation, i»D, have been 

reported for the ground states of HF and DF (48, 210). These were derived 

from experimental estimates of centrifugal distortion constants which are 

admixtures of mechanical with nonmechanical effects. Effects from excited n 

states were not subtracted from these constants before they were employed to 

obtain v . 

These contributions were separated from the molecular constants in the 

previous section. The resulting constants are only partially deperturbed from 

excited states; the homogeneous contributions to the rovibrational 

eigenfunctions cannot be estimated. The concept of a rotationless potential 

in this work is of one which contains homogeneous contributions. This is an 

unavoidable consequence of the electronic contact transformation, the 

inabiUty of the nuclear Laplacian operator to commute with Born-Oppenheimer 

homogeneous breakdown matrix elements, and the subsequent manipulation of the 

radial wave equation to overcome this problem. This means that the estimate 

of v_ obtained here will be for such an effective rotationless potential. The 

heterogeneous contributions become especiaUy significant as the dissociation 

limit is approached and must be subtracted from the effective constants. The 

extrapolation to v is particularly sensitive on the constants of these higher 

vibrational levels and it is thus plausible that the determination of v n could 



TABLE 7.9 

Calculation of HF(JT12+) Pure Rotational Transitions from 
Quantum Mechanical Rotational and Centrifugal Distortion 

Constants0 

/+1 <- / 

1 0 
2 1 
3 2 
4 3 
5 4 
6 5 
7 6 

Vobs(Cnfl) 

41.110 983 2(30) 
82.171 117 9(60) 

123.129 670 3(90) 
163.936 164 5(120) 
204.540 45(20) 
244.892 83(20) 
284.944 44(30) 

v , (cm ) calcv ' 

41.110 979 1 
82.171 112 8 

123.129 673 6 
163.936 168 9 
204.540 46 
244.892 86 
284.944 28 

Av(cm" ) 

0.000 004 1 
0.000 005 1 

-0.000 003 3 
-0.000 004 4 
-0.000 01 
-0.000 03 
0.000 16 

av . are taken from Ref. (142) with precision estimates in 
parentheses, v are line positions calculated on the basis 
of the quantum mechanical constants found in Table 7.7. The Av 
are the differences v . - v . . 

obs calc 
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be significantly influenced. 

The prescription described by Barwell (48) was followed to estimate v_ 

for the ground states of HF and DF. The equations, 

\Hv\~™ = (% - ^Wr*' (7.22) 

i L , r 1 / 5 = (VD - u) i^( 4) i" 1 / 5 ' (7-23) 
were employed to construct the plots shown in Figures 7.7 and 7.8 for HF and 

HF 
DF, respectively. The average extrapolated values are v" = 20.4(4) and 

DF 

vD = 29.2(5). These are not found to be significantly different from the 

values reported previously (48, 210). 
HF 

The value quoted by Barwell (48), i>D = 20.9(5), suggests the possible 

existence of vibrational level v = 21, whereas the present estimate casts 

doubt on this. In fact, even vibrational level v = 20 is not predicted 

unequivocally to exist from the present estimate. In preliminary stages of 

the Hamiltonian correction analysis an attempt was made to assign the most 

probable Franck-Condon transitions to v" = 20 on the HF emission plates (87). 

No definite assignments could be made. The final results from this work 

predict that, if v" = 20 in fact exists, it must extend so far into the 
1 + long-range region that the Franck-Condon overlap with the most populated B 2 

(y' = 0-3) levels is very small. An additional problem is apparent from the 

observation that under discharge excitation conditions, the rotational level 

populations shift to higher / . Since the predicted maximum value of / in a 

v' - 20 band is approximately 5, it is highly unlikely that these transitions 

would be observed in discharge spectra. 
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Figure 7.7 
1 4-

Estimation of v for HF(X 2 ). The plots according to 

Eqs. (7.21-7.23) give an average value v n = 20.4 ± 0.4. 
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Figure 7.8 
1 4-

Estimation of v for DF(X 2 ). The plots according to 

Eqs. (7.21-7.23) give an average value vD = 29.2 ± 0.5. 
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The t>D estimate for DF predicts with confidence the existence of level 

v" - 27. The search for lines of the 6-27 band, which has the largest v" = 27 

calculated /-dependent Franck-Condon factors, resulted in several promising 

lines. These satisfied the known v' = 6 combination differences but no 

additional i>" = 27 bands could be found to confirm the lower state combination 

differences. The assignments for the 6-27 band, Usted in Table 7.10, thus 

remain tentative. The position of v" = 27 with respect to the potential 
- l - l 

minimum is nevertheless predicted at G = 49 203 ± 1 cm , a mere 135 cm 

away from the estimated dissociation limit. Owing to the uncertainty in the 

assignments, however, this band was not included in the Hamiltonian correction 

analysis. 

7.3.7 Tritium Fluoride 

The combined treatment of HF and DF spectral data has resulted in 

functions Uzt/B(R) and qJR). These can be employed to construct synthetic 

Hamiltonian operators for TF. The rotationless potential function for TF is 

given by, 

U^fR) = (1 + Jt) UHF(R) - <M U°F(R), (7.24) 

where <M has been given previously by Eq. (6.38). The q(R) function for TF is 

found from, 

q^R) = (MRIMT)qm(R). (7.25) 

The only experimental information available for TF consists of relatively 

low resolution spectrographic data for the fundamental and first-overtone 

bands in the infrared (211). These line positions could not be predicted 

satisfactorily from (simple) mass-transformed molecular constants for HF and 



TABLE 7.10 

Tentative Rotational Assignments (cm ) for the 6-27 
of the B - X System of Deuterium Fluoride 

/ P(J) R(J) 

2 
3 

4 

5 

6 

7 

8 

40 655.736 

40 652.802 

40 650.587 

40 649.227 

40 676.334 

40 681.735 

40 687.800 

40 694.635 

40 703.177 

40 712.899 

40 724.526 
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DF. Part of the reason for this inconsistency is due to semiclassical and 

Born-Oppenheimer breakdown errors, but even when such effects were 

considered (190), there was a residual disagreement. This impUes that 

unreliable calibration standards are at least partly responsible. Additional 

evidence for the lack of reUabiUty in the absolute line positions is 

provided by the anomaly in the sign of the constant B and the apparent 

inaccuracy in the reported value of R . Coxon and Ogilvie (190) excluded TF 

data in determining isotopically invariant parameters Z7„ because of a clear 

inconsistency. 

It was decided to repeat the analysis of the TF data in order to obtain 

estimates for the parameters which have a full statistical significance. 

Although the method of least-squares was employed in Ref. (211), a merge of 

separately fitted constants could not be undertaken. In the present work, the 

two bands were fitted individuaUy and the constants were merged together to 

provide the best set of nonredundant constants for TF(t>" = 0-2). The data 

were fitted with a merge standard deviation of oM ~ 2.7, which is reasonable 

for just two degrees of freedom. The merged parameters and error estimates 

are listed in Table 7.11. 

When the quantum mechanical eigenvalues of the present synthetic TF 

operators were employed to calculate the 1-0 and 2-0 rotational transitions, 

it was found that there was a smooth wavelength dependent deviation from the 

experimental spectral lines of the fundamental band, and a constant 

(«* 0.4 cm" ) discrepancy from the experimental first-overtone transitions. A 

resolution of this disagreement appears to be almost certainly in favour of 

the present results; however, new, more highly resolved spectra for TF are 

required to make an unequivocal statement. The quantum mechanical molecular 



TABLE 7.11 

Merged Molecular Constants (cm-1) for TF(Xa2+) 

315 

Constant 

*o 
Bt 

B2 

D0 

»2 

Vl-0 

Vo 

Estimate 

7.60598 
7.43385 
7.26354 

2.7034 X 10"4 

2.7821 X 10"4 

2.783 x 10"4 

2443.86 

4823.80 

Standard Error 

4.68 X 10"3 

4.52 X 10'3 

7.20 X 10'3 

1.81 X 10"5 

1.60 X 10"5 

4.89 X 10"5 

0.07 

0.12 
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constants of TF(X1'Z+) have been calculated from the synthetic operators and 

are listed in Table 7.12. It would be of interest to compare these with 

molecular constants extracted from improved experimental spectra. 

7.3.8 Equilibrium Bond Lengths 

A comparison of the X 2 + equilibrium bond lengths obtained by direct 

fitting of the effective potentials from this work (R ) and those obtained 

from the YQ1 Dunham coefficients (R ) estimated from the results of Coxon 

and Ogilvie (190), is given in Table 7.13. 

Agreement between the two sets of values need not necessarily be found. 

Dunham has shown (16) that the semiclassical estimates are sUghtly deficient 

because of the incompleteness of the JWKB approximation in his theory and, by 

extension, the slight inappropriateness of a (v + Vi) expansion variable in the 

representation of the vibrational dependence of rotational constants. This 
3 2 

leads to a small difference between Y and B which is proportional to B la) , 

or dependent on p~ , predicting in turn that the difference R - R should 

be proportional to p. . This is confirmed from the results in Table 7.13; the 

quantity fiAR is shown to be nearly constant for all three isotopomers. 

Since there is only one stable fluorine nuclide, it is not possible to 

determine the Born-Oppenheimer potential from a combined treatment of HF/DF 

data. It is similarly impossible to perform a fit to the expression (182), 

^DUN m RB0[1 + mj^MwD + dJMF)}, (7.26) 

unless the term dJM„ is ignored. This neglect would result in an effective 
BO 

R value that deviates from the true value by 



TABLE 7.12 

Quantum Mechanical Molecular Constants (cm-1) for TF(ZX2+) 

v G B 104£> 109H 1013L 

0 1247.8523 7.615 075 6 2.879 776 8.181 01 -2.846 3 

1 3691.7500 7.441 131 1 2.832 942 8.041 14 -2.856 8 

2 6071.3004 7.269 952 2.787 456 7.907 14 -2.823 8 

3 8387.6086 7.101 476 2.743 031 7.748 16 -2.870 7 
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TABLE 7.13 

Isotopic Dependence of EquiUbrium Intemuclear Separations'1 

Isotopomer RQM(A) RDm(k) ftAR(k) 

HF(xh+) 0.916 839 54(4) 0.916 852 3 -0.000 012 3 

D¥(xh+) 0.916 910 9(5) 0.916 918 0 -0.000 012 9 

TF(JST12+) 0.916 934 5(6) 0.916 939 9 -0.000 014 1 

aR are the minima of the quantal potentials constructed in 
this work. R were estimated from the results of 

e Ref. (190). 

318 
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R™(eff) = R™(true)[l + mdJM^)], (7.27) 

estimated as a difference of the order of 10" A. The effective value 
BO i 

obtained here is R (eff) = 0.916 982 1(7) A, in good agreement with the 

estimate of Coxon and Ogilvie (192), R*°(eff) = 0.916 983 9(23) A. 

The equilibrium intemuclear separation for TF calculated from Eq.(7.26), 

R = 0.916 940(2) A, differs from the present least-squares estimate, 

R = 0.917 65(32) A, by more than three standard errors. This might be 

indicative of a problem with the data employed in the determination of the 

latter estimate. 

7.3.9 Radiative Transition Probabilities 

The effect of nonadiabatic coupling on transition probabilities has not 

been investigated for the hydrogen halide diatomics considered here. 

Recently, the vibrational-rotational dependence of Einstein coefficients for 

spontaneous emission has been examined by Oba et al. (212) for the isotopomers 

HF/DF and HCl/DCl. The calculations were performed with a variety of dipole 

moment functions derived from ab initio as well as experimental studies. 

Intemuclear potentials were constructed with the RKRV procedure from 

molecular constants found in the literature. No consideration was given to a 

nonadiabatic q(R) function and it was thus decided to investigate here whether 

neglect of q(R) has a serious effect on the calculated transition 

probabilities. 

A computer program was written to employ rovibronic wavefunctions from a 

solution of the effective nonadiabatic radial wave equation to estimate the 

transition matrix elements, 
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< ? - / ipv»f(R) KR) Vv>j>(R) *R> (7-28) 

required for a calculation of the Einstein coefficients for spontaneous 

emission. fi(R) is the electric dipole moment function normally expressed as a 

power series, 

fi(R) = £ M.(R - Rj. (7.29) 
i 

The Einstein coefficients for spontaneous emission, A%',.„ are obtained as, 

A% = ^ t v3 f(J)\RvJf\
2, (7.30) 

where the rotational factor is, 

/(/) = 1 (/ = 0), (7.31) 

/(/) = | m |/(2/ + 1) (/ > 0), (7.32) 

with m - J" + 1 for the i?-branch and m — -J for a P-branch line. 

In preliminary work it quickly became apparent that the dipole moment 

function has a greater effect on the transition matrix elements than the form 

of the intemuclear potential. Furthermore, since dipole functions are 

usually known with certainty only for fairly low-v, it is necessary to 

extrapolate p(R). This form of the extrapolation is critical and must be 

considered carefuUy. The best available experimental dipole moment is that 

of Sileo and Cool (156) obtained by a meticulous treatment of infrared band 

intensity ratios from a chemical laser emission source. The simple 

extrapolation on the basis of Eq. (7.29) is hopeless; large negative values 

for fi(R) arise at large R. A model devised here to ensure both a flexible 

representation in the region of R where p(R) is known experimentally, and a 
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sensible extrapolation to larger and smaUer R is, 

l*(R) = e"(*_iV V D.(R - j y f . (7.33) 
i 

Sileo and Cool's dipole moment functions for HF and DF given in Table IV of 

Ref. (156) were employed in a fit to this expression; results are listed in 

Table 7.14. DQ of this model is equivalent to MQ of Eq. (7.29). 

Vibrational (/ = 0) Einstein coefficients were calculated here for HF/DF. 
H ft 

The rotational dependence of A ,r, is quite interesting (212) and will be 

investigated thoroughly in the future. It would appear, however, that on 

account of the uncertainty in the exact form of fi(R) at large R, the effect of 

q(R) cannot be properly evaluated at present. The results in Tables 7.15-7.16 

for HF and DF respectively, are in excellent agreement with those tabulated by 

Oba et al. (212) for lower vibrational levels of both isotopomers. For HF, 

however, there are clear discrepancies for v > 13. This is most likely due to 

the difference in the extrapolation of fi(R) beyond the region sampled by the 

experimental data. It is obvious from this that the transition matrix 

elements are more sensitive to the radial variation of u(R) than to that of 

U(R). Additional support for this is provided by the excellent agreement 

found for DF, where an RKRV potential from the molecular constants of Johns 

and Barrow (151) was used in Ref. (156). This potential is different from our 

final potential since there was an earlier error (151) in the absolute 

vibrational terms of approximately 40 cm" ; apparently this has little effect 

on the matrix elements. A comprehensive interpretation of the differences 

between the results of this work and those of Oba and co-workers (212) is not 

possible since these investigators failed to define explicitly the fashion in 

which fi(R) was extrapolated in their study. 



TABLE 7.14 

Dipole Moment Coefficients for the X1^ States of HF and DF3 

HF DF 
D. 

i 

Do 
J>1 

*>? 

D3 

*>A 

^ 
D6 

Estimate 

1.796115 
1.52116 

-0.14816 

-1.1293 
1.8315 
1.756 

-1.565 

Error 

1.4 X 10*4 

1.1 X 10"3 

8.0 X 10'3 

2.1 X 10"2 

7.7 X 10"2 

2.1 X 10"1 

1,4 X 10'1 

Estimate 

1.795866 
1.51979 
0.05703 

-1.3981 

1.0811 
2.563 

-2.016 

Error 

2.8 X 10"4 

2.0 X 10"3 

1.5 X 10"2 

3.7 X 10~2 

1.5 X 10"1 

3.8 X 10'1 

2.6 X 10"1 

Parameters and their standard errors are in Debye units. The D. 
are defined in Eq. (7.33). orrr, = 0.00028; o^ = 0.00056. 



TABLE 7.15 

Rotationless Matrix Elements and Einstein Coefficients for HF(X 2+)fl 

f V <V\fi(R)\V> AvV v" v> <v"\fi(R)\v'> AvV 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

9.8376-20 
-1.2771-20 
1.8847-21 

-3.6123-22 
7.9756-23 

-2.0337-23 
6.2044-24 

-2.3878-24 
1.1756-24 

-6.9901-25 
4.6475-25 

-3.2785-25 
2.3866-25 

-1.7687-25 
1.3264-25 

-1.0034-25 
7.6240-26 

-5.7401-26 
4.0483-26 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1.6534-19 
-3.3435-20 
6.4716-21 

-1.5967-21 
4.3565-22 

-1.3154-22 
4.4651-23 

-1.7417-23 
8.0738-24 

-4.5037-24 
2.9215-24 

-2.0830-24 
1.5602-24 

-1.1963-24 
9.2464-25 

-7.0701-25 
5.0429-25 

1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 
1 11 
1 12 
1 13 
1 14 
1 15 
1 16 
1 17 
1 18 
1 19 

4.0740+02 
1.2447+02 
1.4691+01 
1.9772+01 
2.6794+01 
3.9298-02 
6.6856-03 
1.4096-03 
3.9957-04 
1.5761-04 
8.1338-05 
4.9268-05 
3.2102-05 
2.1403-05 
1.4167-05 
8.9649-06 
4.8133-06 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1.3742-19 
-2.2863-20 
3.9343-21 

-8.6432-22 
2.1352-22 

-5.9389-23 
1.9029-23 

-7.3214-24 
3.4992-24 

-2.0291-24 
1.3370-24 

-9.4673-25 
6.9886-25 

-5.2997-25 
4.0900-25 

-3.1791-25 
2.4427-25 

-1.7479-25 

1.8632-19 4.5049+02 
-4.4689-20 1.9333+02 
9.4929-21 2.7430+01 

-2.5946-21 4.5210+00 
7.7466-22 7.3184-01 

-2.5214-22 1.2438-01 
9.1069-23 2.3879-02 

-3.6879-23 5.4057-03 
1.7051-23 1.5174-03 

-9.1372-24 5.4947-04 
5.6369-24 2.5481-04 

-3.8828-24 1.4294-04 
2.8719-24 8.9951-05 

-2.2011-24 5.9204-05 
1.6888-24 3.8037-05 

-1.2115-24 2.0774-05 

1.8868+02 
2.3816+01 
1.6386+00 
1.3352-01 
1.1890-02 
1.2488-03 
1.7242-04 
3.5580-05 
1.1449-05 
5.1696-06 
2.8272-06 
1.6943-06 
1.0560-06 
6.6800-07 
4.2430-07 
2.6922-07 
1.6917-07 
1.0241-07 
5.3279-08 

3.2223+02 
6.6739+01 
6.2352+00 
6.6653-01 
7.4188-02 
9.2545-03 
1.4065-03 
2.8937-04 
8.7504-05 
3.7456-05 
2.0042-05 
1.2046-05 
7.6785-06 
5.0517-06 
3.3707-06 
2.2349-06 
1.4179-06 
7.6258-07 



TABLE 7.15 (Cont'd) 
1-O+NO Rotationless Matrix Elements and Einstein Coefficients for EF(X 2 )' 

v" 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

v' 

5 
6 
1 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

<y\ti(R)\v> A V V 

2.0152-19 
-5.6796-20 
1.2989-20 

-3.8921-21 
1.2661-21 

-4.4216-22 
1.6956-22 

-7.1784-23 
3.3827-23 

-1.7953-23 
1.0739-23 

-7.1136-24 
5.0577-24 

-3.7072-24 
2.5952-24 

2.1434-19 
-8.4585-20 
2.1424-20 

-7.4952-21 
2.8866-21 

-1.1540-21 
4.9732-22 

-2.3416-22 
1.1990-22 

-6.6476-23 
3.9717-23 

-2.5177-23 
1.5941-23 

1.9645-19 
-1.1973-19 
3.2392-20 

-1.2436-20 
5.7286-21 

-2.6720-21 
1.2957-21 

-6.7731-22 
3.8367-22 

-2.3166-22 
1.4092-22 

4.5743+02 
2.7047+02 
4.4376+01 
8.7687+00 
1.6798+00 
3.2750-01 
7.0582-02 
1.7378-02 
5.0382-03 
1.7769-03 
7.6817-04 
3.9438-04 
2.2634-04 
1.3402-04 
7.0154-05 

3.8456+02 
4.4332+02 
8.8641+01 
2.3696+01 
6.3068+00 
1.5947+00 
4.2880-01 
1.2868-01 
4.3274-02 
1.6296-02 
6.8398-03 
3.1077-03 
1.3530-03 

2.3388+02 
6.3729+02 
1.4385+02 
4.5735+01 
1.7159+01 
5.8025+00 
1.9332+00 
6.9632-01 
2.7724-01 
1.1875-01 
4.8912-02 

v" 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

v' 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

<v"\p(R)\v'> AvV 

2.1106-19 
-6.9992-20 
1.6958-20 

-5.5195-21 
1.9523-21 

-7.2954-22 
2.9700-22 

-1.3246-22 
6.4634-23 

-3.4635-23 
2.0424-23 

-1.3121-23 
8.9207-24 

-5.9577-24 

2.1012-19 
-1.0101-19 
2.6482-20 

-9.8131-21 
4.1285-21 

-1.7739-21 
8.0911-22 

-4.0168-22 
2.1666-22 

-1.2567-22 
7.7153-23 

-4.7488-23 

1.7051-19 
-1.4113-19 
3.9749-20 

-1.5315-20 
7.6877-21 

-3.9480-21 
2.0621-21 

-1.1384-21 
6.7041-22 

-4.0129-22 

4.3366+02 
3.5412+02 
6.5029+01 
1.5109+01 
3.4088+00 
7.5753-01 
1.8302-01 
4.9691-02 
1.5330-02 
5.4612-03 
2.2682-03 
1.0798-03 
5.5651-04 
2.6714-04 

3.1577+02 
5.3796+02 
1.1472+02 
3.4219+01 
1.0799+01 
3.1306+00 
9.3429-01 
3.0823-01 
1.1343-01 
4.5952-02 
1.9919-02 
8.2871-03 

1.4775+02 
7.3766+02 
1.7905+02 
5.6795+01 
2.5022+01 
1.0117+01 
3.8440+00 
1.5115+00 
6.3274-01 
2.5672-01 



TABLE 7.15 (Cont'd) 
l-^+VJ Rotationless Matrix Elements and Einstein Coefficients for HF(X 2 ) 

v" 

10 
10 
10 
10 
10 
10 
10 
10 
10 

12 
12 
12 
12 
12 
12 
12 

14 
14 
14 
14 
14 

16 
16 
16 

18 

v' 

11 
12 
13 
14 
15 
16 
17 
18 
19 

13 
14 
15 
16 
17 
18 
19 

15 
16 
17 
18 
19 

17 
18 
19 

19 

<v"\p(R)\V> 

1.2853-19 
-1.6509-19 
4.9733-20 

-1.8522-20 
9.8923-21 

-5.6553-21 
3.2425-21 

-1.9076-21 
1.1274-21 

-2.1603-20 
-2.1175-19 
8.6421-20 

-2.9826-20 
1.4454-20 

-9.2297-21 
6.0160-21 

-2.7634-19 
-1.9679-19 
1.5277-19 

-7.4408-20 
3.4372-20 

-5.3954-19 
3.4623-20 
9.1824-20 

-4.5986-19 

• A , „ 
V V 

6.9452+01 
8.2769+02 
2.2746+02 
6.6580+01 
3.2694+01 
1.6070+01 
7.1818+00 
3.1084+00 
1.2568+00 

1.2640+00 
8.5320+02 
4.1601+02 
1.0025+02 
3.8428+01 
2.2003+01 
1.1596+01 

1.1592+02 
3.9045+02 
6.4116+02 
2.8016+02 
8.5849+01 

1.8325+02 
4.3646+00 
6.8738+01 

2.2550+01 

v" 

11 
11 
11 
11 
11 
11 
11 
11 

13 
13 
13 
13 
13 
13 

15 
15 
15 
15 

17 
17 

v' 

12 
13 
14 
15 
16 
17 
18 
19 

14 
15 
16 
17 
18 
19 

16 
17 
18 
19 

18 
19 

<v*\u(R)\v'> 

6.6006-20 
-1.9011-19 
6.4364-20 

-2.2660-20 
1.2109-20 

-7.6180-21 
4.8295-21 

-2.9547-21 

-1.3689-19 
-2.2005-19 
1.1771-19 

-4.4983-20 
1.9422-20 

-1.0448-20 

-4.2321-19 
-1.1665-19 
1.6425-19 

-1.0583-19 

-5.6821-19 
2.0380-19 

A , H 
V V 

1.4879+01 
8.8135+01 
3.0163+02 
7.7528+01 
3.7299+01 
2.1599+01 
1.1388+01 
5.0803+00 

3.8916+01 
6.9064+02 
5.6219+02 
1.6012+02 
4.6436+01 
1.7661+01 

1.8512+02 
8.8715+01 
4.4705+02 
3.0964+02 

1.0213+02 
6.4091+01 

a9.8376-20 reads as 9.8376 X 10' 



TABLE 7.16 326 

l^+sfl Rotationless Matrix Elements and Einstein Coefficients for UF(X 2 ) 

v" v' <v" \fi(R) I v'y A 
vv 

v" v' <v"\n(R)\v'> A , H 
V V 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

8.4216-20 
-8.4344-21 
8.2692-22 

-1.0788-22 
1.9344-23 

-5.9293-24 
2.8481-24 

-1.6223-24 
9.6484-25 

-5.8070-25 
3.5047-25 

-2.1109-25 
1.2686-25 

-7.6484-26 
4.6686-26 

-2.9108-26 
1.8655-26 

-1.2349-26 
8.4967-27 

-6.1226-27 
4.6431-27 

-3.6937-27 
3.0429-27 

-2.5492-27 
2.1257-27 

-1.7119-27 

1.4375-19 
-2.2424-20 
2.9272-21 

-4.8377-22 
9.7998-23 

-2.9072-23 
1.3637-23 

-8.2342-24 
5.3314-24 

-3.4749-24 
2.2631-24 

-1.4843-24 

5.4621+01 
4.1794+00 
1.2926-01 
4.9717-03 
2.9758-04 
4.6039-05 
1.6071-05 
7.4133-06 
3.5550-06 
1.6813-06 
7.7547-07 
3.4726-07 
1.5151-07 
6.5316-08 
2.8397-08 
1.2696-08 
5.9203-09 
2.9110-09 
1.5294-09 
8.7233-10 
5.4568-10 
3.7204-10 
2.6944-10 
1.9986-10 
1.4541-10 
9.7624-11 

1.3120+02 
2.4327+01 
1.3323+00 
8.2115-02 
6.2637-03 
9.0630-04 
3.0116-04 
1.5581-04 
8.8362-05 
4.8892-05 
2.6190-05 
1.3867-05 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1.1844-19 
-1.5224-20 
1.7514-21 

-2.5945-22 
4.9448-23 

-1.4944-23 
7.1886-24 

-4.2429-24 
2.6277-24 

-1.6434-24 
1.0351-24 

-6.5626-25 
4.1729-25 

-2.6558-25 
1.6991-25 

-1.1046-25 
7.3971-26 

-5.1494-26 
3.7258-26 

-2.7785-26 
2.1114-26 

-1.6186-26 
1.2429-26 

-9.4906-27 
7.0833-27 

9.8686-25 
-6.6516-25 
4.5265-25 

-3.0992-25 
2.1355-25 

-1.4868-25 
1.0524-25 

-7.6124-26 
5.6361-26 

-4.2594-26 
3.2537-26 

-2.4534-26 

9.8154+01 
1.2364+01 
5.2623-01 
2.6078-02 
1.7622-03 
2.6483-04 
9.2642-05 
4.5843-05 
2.3814-05 
1.2148-05 
6.0949-06 
3.0203-06 
1.4731-06 
7.0645-07 
3.3672-07 
1.6334-07 
8.2962-08 
4.4984-08 
2.6052-08 
1.5857-08 
9.9178-09 
6.2473-09 
3.9082-09 
2.3915-09 
1.3821-09 

7.3811-06 
3.9620-06 
2.1320-06 
1.1441-06 
6.1344-07 
3.3162-07 
1.8308-07 
1.0436-07 
6.1630-08 
3.7499-08 
2.3041-08 
1.3625-08 



TABLE 7.16 (Cont'd) 

Rotationless Matrix Elements and Einstein Coefficients for DF(AT12+)a 

327 

v" 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

v' 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

<v"\fi(R)\v' 

1.6381-19 
-3.0145-20 
4.3687-21 

-7.9481-22 
1.7118-22 

-5.0350-23 
2.2689-23 

-1.3640-23 
9.1258-24 

-6.2422-24 
4.2582-24 

-2.8939-24 
1.9739-24 

-1.3621-24 
9.5492-25 

-6.7988-25 
4.9017-25 

-3.5695-25 
2.6237-25 

-1.9477-25 
1.4607-25 

-1.1017-25 
8.2023-26 

1.9244-19 
-4.7364-20 
8.1075-21 

-1.7415-21 
4.2350-22 

-1.2528-22 
5.2179-23 

-2.9996-23 
2.0394-23 

-1.4682-23 
1.0733-23 

-7.8806-24 
5.7988-24 

-4.2778-24 
3.1692-24 

-2.3643-24 
1.7813-24 

-1.3572-24 
1.0448-24 

-8.0681-25 
6.1200-25 

> A , , 
' vv 

1.5443+02 
3.9820+01 
2.6857+00 
2.0044-01 
1.7266-02 
2.4535-03 
7.5158-04 
3.8498-04 
2.3281-04 
1.4167-04 
8.3118-05 
4.7161-05 
2.6365-05 
1.4798-05 
8.4282-06 
4.8756-06 
2.8517-06 
1.6794-06 
9.9511-07 
5.9407-07 
3.5761-07 
2.1502-07 
1.2431-07 

1.7430+02 
8.0254+01 
7.5368+00 
7.8246-01 
8.5735-02 
1.2291-02 
3.2075-03 
1.4976-03 
9.3205-04 
6.2579-04 
4.1985-04 
2.7668-04 
1.7900-04 
1.1410-04 
7.2038-05 
4.5369-05 
2.8696-05 
1.8291-05 
1.1728-05 
7.4571-06 
4.5045-06 

v" 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

v' 

5 
6 
1 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

<v\KR)W 

1.7988-19 
-3.8442-20 
6.0904-21 

-1.2084-21 
2.7631-22 

-8.1214-23 
3.5227-23 

-2.0807-23 
1.4089-23 

-9.9406-24 
7.0683-24 

-5.0172-24 
3.5538-24 

-2.5226-24 
1.8057-24 

-1.3105-24 
9.6719-25 

-7.2595-25 
5.5270-25 

-4.2506-25 
3.2744-25 

-2.4748-25 

2.0160-19 
-5.6983-20 
1.0441-20 

-2.4117-21 
6.2455-22 

-1.8799-22 
7.5451-23 

-4.1580-23 
2.8033-23 

-2.0520-23 
1.5387-23 

-1.1608-23 
8.7861-24 

-6.6795-24 
5.1066-24 

-3.9289-24 
3.0416-24 

-2.3661-24 
1.8382-24 

-1.3985-24 

> AvV 

1.6853+02 
5.8560+01 
4.7161+00 
4.1818-01 
4.0566-02 
5.7491-03 
1.6297-03 
8.0461-04 
4.9759-04 
3.2161-04 
2.0460-04 
1.2636-04 
7.5986-05 
4.4999-05 
2.6630-05 
1.5946-05 
9.7314-06 
6.0575-06 
3.8279-06 
2.4356-06 
1.5339-06 
9.1675-07 

1.7252+02 
1.0464+02 
1.1248+01 
1.3484+00 
1.6731-01 
2.4794-02 
5.9976-03 
2.5684-03 
1.5682-03 
1.0858-03 
7.6419-04 
5.2994-04 
3.6144-04 
2.4362-04 
1.6299-04 
1.0856-04 
7.2006-05 
4.7462-05 
3.0702-05 
1.8727-05 



TABLE 7.16 (Cont'd) 

Rotationless Matrix Elements and Einstein Coefficients for DF(X 2+)fl 

V V <v"\p(R)\V> AvV v" v' <v"\p(R)\V> AyV 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

2.0725-19 
-6.7368-20 
1.3117-20 

-3.2381-21 
8.9354-22 

-2.7605-22 
1.0804-22 

-5.6764-23 
3.7273-23 

-2.7374-23 
2.0954-23 

-1.6231-23 
1.2614-23 

-9.8313-24 
7.6952-24 

-6.0518-24 
4.7755-24 

-3.7554-24 
2.8839-24 

1.6405+02 
1.3144+02 
1.5931+01 
2.1781+00 
3.0634-01 
4.7732-02 
1.0957-02 
4.2544-03 
2.4574-03 
1.7077-03 
1.2481-03 
9.0887-04 
6.5055-04 
4.5842-04 
3.1952-04 
2.2074-04 
1.5083-04 
1.0057-04 
6.2779-05 

8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

2.0910-19 
-7.8599-20 
1.6169-20 

-4.2401-21 
1.2486-21 

-3.9878-22 
1.5395-22 

-7.7326-23 
4.8877-23 

-3.5443-23 
2.7352-23 

-2.1607-23 
1.7202-23 

-1.3735-23 
1.0983-23 

-8.7825-24 
6.9780-24 

-5.4000-24 

1.4988+02 
1.6035+02 
2.1657+01 
3.3354+00 
5.3315-01 
8.8581-02 
1.9731-02 
6.9827-03 
3.7254-03 
2.5144-03 
1.8600-03 
1.4019-03 
1.0471-03 
7.6936-04 
5.5537-04 
3.9303-04 
2.6931-04 
1.7157-04 

9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

2.0670-19 
-9.0781-20 
1.9650-20 

-5.4362-21 
1.7112-21 

-5.6939-22 
2.1930-22 

-1.0593-22 
6.4020-23 

-4.5237-23 
3.4744-23 

-2.7697-23 
2.2409-23 

-1.8214-23 
1.4791-23 

-1.1904-23 
9.3004-24 

1.3106+02 
1.9108+02 
2.8515+01 
4.8772+00 
8.8862-01 
1.5982-01 
3.5327-02 
1.1523-02 
5.5973-03 
3.5710-03 
2.6030-03 
1.9858-03 
1.5210-03 
1.1485-03 
8.4668-04 
5.9988-04 
3.9176-04 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1.9942-19 
-1.0402-19 
2.3640-20 

-6.8442-21 
2.3060-21 

-8.0560-22 
3.1331-22 

-1.4711-22 
8.4882-23 

-5.7744-23 
4.3532-23 

-3.4599-23 
2.8133-23 

-2.3022-23 
1.8704-23 

-1.4739-23 

1.0877+02 
2.2319+02 
3.6639+01 
6.8448+00 
1.4247+00 
2.8152-01 
6.3213-02 
1.9398-02 
8.5478-03 
5.0265-03 
3.5071-03 
2.6395-03 
2.0239-03 
1.5327-03 
1.1167-03 
7.4676-04 



TABLE 7.16 (Cont'd) 
l^+\fl Rotationless Matrix Elements and Einstein Coefficients for DF(AT 2 ) 

v" 

11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
u 

13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 

V' 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

<V\M(R)\v' 

1.8648-19 
-1.1839-19 
2.8265-20 

-8.4811-21 
3.0607-21 

-1.1318-21 
4.4973-22 

-2.0803-22 
1.1535-22 

-7.5038-23 
5.4697-23 

-4.2653-23 
3.4353-23 

-2.7820-23 
2.1959-23 

1.3945-19 
-1.5055-19 
4.0335-20 

-1.2542-20 
5.1490-21 

-2.1949-21 
9.4832-22 

-4.4394-22 
2.3584-22 

-1.4267-22 
9.5910-23 

-6.9072-23 
5.0837-23 

5.5534-20 
-1.8531-19 
5.9023-20 

-1.8243-20 
8.0795-21 

-4.0785-21 
2.0516-21 

-1.0530-21 
5.7659-22 

-3.4277-22 
2.1716-22 

> AvV 

8.4441+01 
2.5606+02 
4.6256+01 
9.2535+00 
2.2018+00 
4.8555-01 
1.1329-01 
3.3565-02 
1.3578-02 
7.2499-03 
4.6906-03 
3.3658-03 
2.5033-03 
1.8313-03 
1.2382-03 

3.6622+01 
3.1899+02 
7.2031+01 
1.5345+01 
4.6796+00 
1.3563+00 
3.6946-01 
1.1047-01 
4.0323-02 
1.8247-02 
9.8045-03 
5.8308-03 
3.4965-03 

4.3701+00 
3.6011+02 
1.1363+02 
2.3608+01 
8.2555+00 
3.2975+00 
1.1931+00 
4.1874-01 
1.5780-01 
6.6626-02 
3.0476-02 

v" 

12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 

14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

16 
16 
16 
16 
16 
16 
16 
16 
16 
16 

v' 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

<V\fi(R)\v' 

1.6689-19 
-1.3392-19 
3.3725-20 

-1.0367-20 
4.0018-21 

-1.5813-21 
6.5009-22 

-3.0016-22 
1.6186-22 

-1.0108-22 
7.0669-23 

-5.3184-23 
4.1475-23 

-3.2127-23 

1.0281-19 
-1.6793-19 
4.8554-20 

-1.5098-20 
6.5101-21 

-3.0161-21 
1.3938-21 

-6.7517-22 
3.5979-22 

-2.1373-22 
1.3902-22 

-9.5025-23 

-3.7243-21 
-2.0125-19 
7.2574-20 

-2.2443-20 
9.8687-21 

-5.3748-21 
2.9848-21 

-1.6653-21 
9.6252-22 

-5.8249-22 

> A , „ 
' vv 

5.9739+01 
2.8859+02 
5.7801+01 
1.2091+01 
3.2773+00 
8.2109-01 
2.0394-01 
5.9813-02 
2.2711-02 
1.1077-02 
6.5247-03 
4.3069-03 
2.9586-03 
1.9440-03 

1.7346+01 
3.4432+02 
9.0096+01 
1.9083+01 
6.3780+00 
2.1670+00 
6.6924-01 
2.1207-01 
7.6930-02 
3.3079-02 
1.6344-02 
8.5641-03 

1.6784-02 
3.6019+02 
1.4455+02 
2.9792+01 
1.0160+01 
4.6656+00 
2.0269+00 
8.2557-01 
3.3920-01 
1.4442-01 



TABLE 7.16 (Cont'd) 
1 .1 n 

Rotationless Matrix Elements and Einstein Coefficients for DF(X 2 ) 

v" 

17 
17 
17 
17 
17 
17 
17 
17 
17 

19 
19 
19 
19 
19 
19 
19 

21 
21 
21 
21 
21 

23 
23 
23 

25 

v' 

18 
19 
20 
21 
22 
23 
24 
25 
26 

20 
21 
22 
23 
24 
25 
26 

22 
23 
24 
25 
26 

24 
25 
26 

26 

<v"\KR)W 

-7.5901-20 
-2.1317-19 
9.0054-20 

-2.8643-20 
1.2039-20 

-6.8333-21 
4.1864-21 

-2.5784-21 
1.5988-21 

-2.5679-19 
-2.0626-19 
1.3695-19 

-5.4480-20 
2.1414-20 

-1.0724-20 
6.6620-21 

-4.5572-19 
-1.0838-19 
1.7021-19 

-1.0811-19 
5.7684-20 

-5.7243-19 
1.1756-19 
6.1870-20 

-4.7315-19 

'> AvV 

5.8694+00 
3.3734+02 
1.8393+02 
3.9631+01 
1.2180+01 
5.9748+00 
3.0970+00 
1.5004+00 
6.8801-01 

4.4915+01 
2.0579+02 
2.6893+02 
8.7429+01 
2.2497+01 
8.1454+00 
4.0604+00 

8.3531+01 
3.2035+01 
2.2137+02 
1.7113+02 
7.4203+01 

6.1481+01 
1.5961+01 
1.0904+01 

1.1191+01 

v" 

18 
18 
18 
18 
18 
18 
18 
18 

20 
20 
20 
20 
20 
20 

22 
22 
22 
22 

24 
24 

v' 

19 
20 
21 
22 
23 
24 
25 
26 

21 
22 
23 
24 
25 
26 

23 
24 
25 
26 

25 
26 

<v"\fi(R)\v 

-1.6092-19 
-2.1692-19 
1.1189-19 

-3.8507-20 
1.5254-20 

-8.4249-21 
5.4811-21 

-3.6497-21 

-3.5836-19 
-1.7298-19 
1.6036-19 

-7.8642-20 
3.4393-20 

-1.6428-20 

-5.3354-19 
-8.1163-21 
1.4509-19 

-1.2422-19 

-5.5489-19 
2.3107-19 

'> A , „ 
' vv 

2.1820+01 
2.8572+02 
2.2922+02 
5.6948+01 
1.5261+01 
6.9332+00 
3.9433+00 
2.1568+00 

6.8588+01 
1.1132+02 
2.7700+02 
1.3302+02 
4.0895+01 
1.2868+01 

8.1472+01 
1.2303-01 
1.0493+02 
1.3818+02 

3.3356+01 
3.2224+01 

"8.4216-20 reads as 8.4216 X 10"20. 
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Table 7.17 Usts the averages <t/> \fi(R)\ip > found in the present work and 

compares them to the results of Sileo and Cool (156), as well as to those of 

Huffaker (108) for HF. 

A low sensitivity to the potential form is found for the DF(B - X) 

Franck-Condon factors also. An extensive calculation including the rotational 

dependence has been performed here; the results are listed in Table 7.18. The 

effect of q(R) on the radial wavefunctions has been considered explicitly in 

the present calculation. The factors are not significantly different when 

q(R) is neglected in the calculation. 



TABLE 7.17 

Electric Dipole Moment (D) for the Ground States of HF and DF 

V 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 

14 
15 
16 
17 

18 
19 
20 
21 
22 
23 
24 
25 
26 

Present work 
HF 

1.823 
1.869 
1.913 
1.956 
1.997 
2.035 
2.069 
2.096 
2.115 
2.122 
2.112 
2.079 
2.013 
1.905 
1.746 
1.531 
1.268 
0.980 

0.698 
0.412 

DF 

1.817 
1.852 
1.885 
1.918 
1.950 
1.981 
2.009 
2.035 
2.058 
2.078 
2.093 
2.102 

2.103 
2.096 
2.078 
2.046 
1.998 
1.930 

1.839 
1.724 
1.582 
1.415 
1.229 
1.034 

0.841 
0.656 
0.467 

Sileo and Coolfl 

HF 

1.819 
1.865 
1.909 
1.953 
1.994 
2.032 
2.066 
2.094 
2.113 
2.121 

DF 

1.814 
1.848 
1.882 
1.915 
1.947 
1.977 
2.006 
2.032 
2.056 
2.075 
2.090 
2.100 

2.102 

Huffaker 
HF 

1.819 
1.865 
1.907 
1.953 
1.994 
2.032 
2.066 
2.094 
2.113 
2.122 
2.113 
2.093 

2.047 
1.973 
1.866 
1.720 
1.528 
1.281 

0.971 

0.587 

"Ref. (156); fcRef. (108). 



TABLE 7,18 
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A Calculation of the Rotational Dependence of Franck-Condon Factors 
for the J5a2+ - X 1 2 + Band System of DF3 

v" J 

9 0 
6 
12 
18 
24 
30 
36 
42 
50 
56 

10 0 
6 
12 
18 
24 
30 
36 
42 
50 
56 

11 0 
6 
12 
18 
24 
30 
36 
42 
50 
56 

12 0 
6 
12 
18 
24 
30 
36 
42 
50 

v'= 0 

9.69-9 
1.04-8 
1.28-8 
1.83-8 
3.11-8 
6.51-8 
1.74-7 
6.21-7 
5.69-6 
4.75-5 

9.40-8 
1.02-7 
1.26-7 
1.82-7 
3.14-7 
6.69-7 
1.81-6 
6.49-6 
5.90-5 
4.84-4 

7.98-7 
8.64-7 
1.08-6 
1.58-6 
2.75-6 
5.91-6 
1.61-5 
5.72-5 
5.06-4 
3.98-3 

5.93-6 
6.43-6 
8.07-6 
1.19-5 
2.08-5 
4.47-5 
1.21-4 
4.24-4 
3.55-3 

!>'= 1 

1.77-7 
1.89-7 
2.26-7 
3.09-7 
4.95-7 
9.58-7 
2.32-6 
7.30-6 
5.34-5 
3.52-4 

1.52-6 
1.62-6 
1.96-6 
2.70-6 
4.38-6 
8.56-6 
2.08-5 
6.48-5 
4.54-4 
2.78-3 

1.12-5 
1.20-5 
1.46-5 
2.03-5 
3.30-5 
6.46-5 
1.56-4 
4.73-4 
3.06-3 
1.64-2 

7.14-5 
7.66-5 
9.31-5 
1.30-4 
2.11-4 
4.09-4 
9.63-4 
2.79-3 
1.58-2 

v'= 2 

1.63-6 
1.72-6 
2.01-6 
2.64-6 
3.99-6 
7.18-6 
1.58-5 
4.42-5 
2.63-4 
1.39-3 

1.23-5 
1.30-5 
1.53-5 
2.02-5 
3.09-5 
5.58-5 
1.22-4 
3.34-4 
1.84-3 
8.60-3 

7.89-5 
8.37-5 
9.87-5 
1.31-4 
2.00-4 
3.59-4 
7.72-4 
2.02-3 
9.79-3 
3.71-2 

4.30-4 
4.56-4 
5.39-4 
7.15-4 
1,08-3 
1.90-3 
3.92-3 
9.51-3 
3.73-2 

v'= 3 

1.00-5 
1.05-5 
1.20-5 
1.52-5 
2.17-5 
3.64-5 
7.36-5 
1.84-4 
8.97-4 
3.86-3 

6.65-5 
6.98-5 
8.01-5 
1.02-4 
1.47-4 
2.46-4 
4.90-4 
1.18-3 
5.18-3 
1.88-2 

3.70-4 
3.89-4 
4.48-4 
5.70-4 
8.19-4 
1.35-3 
2.61-3 
5.90-3 
2.17-2 
5.89-2 

1.72-3 
1.81-3 
2.08-3 
2.63-3 
3.71-3 
5.94-3 
1.08-2 
2.21-2 
6.05-2 

v'= 4 

4.65-5 
4.83-5 
5.39-5 
6.57-5 
8.96-5 
1.41-4 
2.61-4 
5.88-4 
2.38-3 
8.45-3 

2.70-4 
2.81-4 
3.15-4 
3.86-4 
5.28-4 
8.24-4 
1.50-3 
3.21-3 
1.13-2 
3.24-2 

1.30-3 
1.35-3 
1.52-3 
1.86-3 
2.52-3 
3.85-3 
6.69-3 
1.32-2 
3.72-2 
7.23-2 

5.12-3 
5.33-3 
5.95-3 
7.21-3 
9.55-3 
1.40-2 
2.25-2 
3.87-2 
7.38-2 

i>'= 5 

1.73-4 
1.78-4 
1.95-4 
2.29-4 
2.98-4 
4.40-4 
7.55-4 
1.54-3 
5.22-3 
1.54-2 

8.76-4 
9.05-4 
9.94-4 
1.18-3 
1.53-3 
2.23-3 
3.72-3 
7.12-3 
2.04-2 
4.60-2 

3.63-3 
3.75-3 
4.11-3 
4.85-3 
6.22-3 
8.81-3 
1.39-2 
2.40-2 
5.17-2 
7.10-2 

1.20-2 
1.24-2 
1.35-2 
1.57-2 
1.95-2 
2.61-2 
3.73-2 
5.42-2 
6.98-2 

v'= 6 

5.33-4 
5.46-4 
5.85-4 
6.68-4 
8.32-4 
1.16-3 
1.84-3 
3.42-3 
9.82-3 
2.43-2 

2.36-3 
2.42-3 
2.60-3 
2.98-3 
3.70-3 
5.07-3 
7.77-3 
1.34-2 
3.13-2 
5.57-2 

8.33-3 
8.54-3 
9.19-3 
1.05-2 
1.27-2 
1.68-2 
2.41-2 
3.65-2 
6.00-2 
5.57-2 

2.29-2 
2.34-2 
2.49-2 
2.78-2 
3.26-2 
4.01-2 
5.07-2 
6.17-2 
5.04-2 

v'= 7 

1.41-3 
1.43-3 
1.51-3 
1.67-3 
2.00-3 
2.63-3 
3.91-3 
6.63-3 
1.62-2 
3.37-2 

5.38-3 
5.49-3 
5.80-3 
6.45-3 
7.67-3 
9.90-3 
1.40-2 
2.18-2 
4.17-2 
5.81-2 

1.61-2 
1.64-2 
1.73-2 
1.91-2 
2.22-2 
2.73-2 
3.56-2 
4.73-2 
5.84-2 
3.35-2 

3.62-2 
3.67-2 
3.83-2 
4.11-2 
4.54-2 
5.13-2 
5.72-2 
5.71-2 
2.56-2 
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TABLE 7.18 (Cont'd) 

A Calculation of the Rotational Dependence of Franck-Condon Factors 
for the B1^ - Z a 2 + Band System of DF 

v" / 

13 0 
6 
12 
18 
24 
30 
36 
42 
50 

14 0 
6 
12 
18 
24 
30 
36 
42 
50 

15 0 
6 
12 
18 
24 
30 
36 
42 

16 0 
6 
12 
18 
24 
30 
36 
42 

17 0 
6 
12 
18 
24 
30 
36 
42 

v'= 0 

3.85-5 
4.18-5 
5.26-5 
7.74-5 
1.36-4 
2.90-4 
7.71-4 
2.61-3 
1.99-2 

2.18-4 
2.37-4 
2.97-4 
4.36-4 
7.59-4 
1.59-3 
4.10-3 
1.31-2 
8.46-2 

1.07-3 
1.16-3 
1.45-3 
2.11-3 
3.60-3 
7.34-3 
1.79-2 
5.20-2 

4.48-3 
4.85-3 
6.02-3 
8.61-3 
1.43-2 
2.77-2 
6.21-2 
1.55-1 

1.59-2 
1.72-2 
2.10-2 
2.93-2 
4.65-2 
8.34-2 
1.63-1 
3.12-1 

v'= 1 

3.90-4 
4.19-4 
5.09-4 
7.06-4 
1.14-3 
2.15-3 
4.86-3 
1.30-2 
5.86-2 

1.82-3 
1.94-3 
2.35-3 
3.22-3 
5.07-3 
9.23-3 
1.94-2 
4.56-2 
1.34-1 

7.08-3 
7.55-3 
9.02-3 
1.21-2 
1.83-2 
3.12-2 
5.83-2 
1.10-1 

2.26-2 
2.40-2 
2.81-2 
3.64-2 
5.17-2 
7.88-2 
1.20-1 
1.45-1 

5.71-2 
5.99-2 
6.80-2 
8.29-2 
1.06-1 
1.33-1 
1.36-1 
4.40-2 

u'= 2 

1.97-3 
2.09-3 
2.46-3 
3.22-3 
4.78-3 
8.09-3 
1.56-2 
3.34-2 
9.07-2 

7.48-3 
7.90-3 
9.19-3 
1.18-2 
1.69-2 
2.68-2 
4.60-2 
8.01-2 
1.04-1 

2.29-2 
2.40-2 
2.74-2 
3.40-2 
4.56-2 
6.49-2 
9.21-2 
1.09-1 

5.41-2 
5.62-2 
6.21-2 
7.25-2 
8.75-2 
1.03-1 
1.01-1 
4.39-2 

9.18-2 
9.36-2 
9.78-2 
1.02-1 
1.01-1 
8.03-2 
2.67-2 
1.03-2 

v'= 3 

6.57-3 
6.88-3 
7.84-3 
9.76-3 
1.34-2 
2.03-2 
3.34-2 
5.74-2 
9.20-2 

2.01-2 
2.09-2 
2.35-2 
2.83-2 
3.68-2 
5.07-2 
7.12-2 
8.97-2 
3.99-2 

4.71-2 
4.86-2 
5.30-2 
6.06-2 
7.17-2 
8.42-2 
8.74-2 
5.55-2 

7.85-2 
7.98-2 
8.27-2 
8.60-2 
8.57-2 
7.26-2 
3.54-2 
7.61-6 

7.95-2 
7.81-2 
7.32-2 
6.20-2 
4.05-2 
1.09-2 
4.02-3 
6.05-2 

t>'= 4 

1.61-2 
1.67-2 
1.84-2 
2.18-2 
2.77-2 
3.76-2 
5.32-2 
7.25-2 
6.29-2 

3.89-2 
4.00-2 
4.32-2 
4.90-2 
5.77-2 
6.89-2 
7.74-2 
6.62-2 
2.33-3 

6.73-2 
6.83-2 
7.09-2 
7.44-2 
7.64-2 
7.12-2 
4.83-2 
8.33-3 

7.23-2 
7.14-2 
6.84-2 
6.11-2 
4.62-2 
2.16-2 
4.03-4 
2.56-2 

3.16-2 
2.90-2 
2.18-2 
1.09-2 
9.66-4 
6.24-3 
4.11-2 
4.47-2 

v'= 5 

3.06-2 
3.14-2 
3.37-2 
3.79-2 
4.47-2 
5.43-2 
6.54-2 
6.89-2 
2.55-2 

5.68-2 
5.77-2 
6.00-2 
6.37-2 
6.77-2 
6.87-2 
5.90-2 
2.85-2 
7.18-3 

6.78-2 
6.75-2 
6.61-2 
6.24-2 
5.35-2 
3.56-2 
1.01-2 
2.75-3 

3.78-2 
3.58-2 
3.00-2 
2.02-2 
7.64-3 
8.38-7 
1.50-2 
4.74-2 

8.22-4 
3.67-4 
5.98-5 
2.95-3 
1.45-2 
3.71-2 
4.72-2 
5.89-3 

v'= 6 

4.64-2 
4.71-2 
4.92-2 
5.26-2 
5.73-2 
6.21-2 
6.24-2 
4.81-2 
2.71-3 

6.30-2 
6.30-2 
6.31-2 
6.22-2 
5.86-2 
4.85-2 
2.80-2 
3.24-3 
2.86-2 

4.52-2 
4.38-2 
3.97-2 
3.20-2 
2.00-2 
5.84-3 
7.21-4 
2.40-2 

5.86-3 
4.80-3 
2.33-3 
1.10-4 
2.27-3 
1.55-2 
3.85-2 
3.22-2 

1.19-2 
1.36-2 
1.87-2 
2.80-2 
3.96-2 
4.23-2 
1.75-2 
4.54-3 

v'= 1 

5.64-2 
5.67-2 
5,74-2 
5.84-2 
5.86-2 
5.57-2 
4.49-2 
2.17-2 
2.39-3 

5.13-2 
5.06-2 
4.82-2 
4.33-2 
3.46-2 
2.07-2 
4.66-3 
2.61-3 
3.76-2 

1.54-2 
1.41-2 
1.08-2 
5.71-3 
8.62-4 
1.59-3 
1.64-2 
3.79-2 

2.42-3 
3.14-3 
5.64-3 
1.14-2 
2.21-2 
3.57-2 
3.62-2 
6.65-3 

3.49-2 
3.60-2 
3.83-2 
3.97-2 
3.50-2 
1.76-2 
2.57-5 
2.45-2 



TABLE 7.18 (Cont'd) 

A Calculation of the Rotational Dependence of Franck-Condon Factors 

v" / 

18 0 
6 

12 
24 
30 
36 

19 0 
6 

12 
24 
30 
36 

20 0 
6 

12 
24 
30 

21 0 
6 

12 
24 
30 

22 0 
6 

12 
18 
24 

23 0 
6 

12 
18 
24 

24 0 
6 

12 
18 

v'= 0 

4.71-2 
5.03-2 
6.02-2 
1.19-1 
1.90-1 
2.98-1 

1.12-1 
1.18-1 
1.37-1 
2.29-1 
3.01-1 
3.19-1 

2.06-1 
2.14-1 
2.36-1 
3.00-1 
2.81-1 

2.74-1 
2.77-1 
2.81-1 
2.24-1 
1.03-1 

2.32-1 
2.24-1 
1.98-1 
1.43-1 
6.00-2 

9.73-2 
8.59-2 
5.64-2 
1.93-2 
1.04-4 

9.08-3 
5.91-3 
9.33-4 
6.15-4 

for the B12+ - < 

v'= 1 

1.07-1 
1.10-1 
1.19-1 
1.37-1 
1.15-1 
3.35-2 

1.32-1 
1.31-1 
1.28-1 
7.31-2 
1.10-2 
5.98-2 

7.52-2 
6.85-2 
4.91-2 
9.18-4 
9.64-2 

3.16-4 
6.80-5 
7.09-3 
1.79-1 
3.63-1 

1.10-1 
1.30-1 
1.88-1 
2.85-1 
3.39-1 

3.02-1 
3.08-1 
3.09-1 
2.45-1 
7.47-2 

1.74-1 
1.50-1 
8.60-2 
1.20-2 

v'= 2 

9.55-2 
9.38-2 
8.76-2 
4.30-2 
6.08-3 
2.00-2 

3.69-2 
3.24-2 
2.05-2 
2.49-3 
4.62-2 
8.75-2 

2.33-3 
4.50-3 
1.41-2 
8.39-2 
7.68-2 

7.72-2 
8.29-2 
9.40-2 
3.64-2 
3.02-2 

6.09-2 
5.13-2 
2.41-2 
1.89-4 
1.10-1 

2.54-2 
4.24-2 
1.13-1 
2.81-1 
3.99-1 

3.33-1 
3.54-1 
3.73-1 
2.53-1 

X"*2+ Band Sysfc 

v'= 3 

2.95-2 
2.62-2 
1.75-2 
3.55-4 
2.27-2 
6.78-2 

1.93-3 
3.43-3 
9.74-3 
5.58-2 
6.77-2 
1.02-2 

5.73-2 
6.08-2 
6.79-2 
4.09-2 
2.33-4 

4.43-2 
3.86-2 
2.24-2 
1.47-2 
5.35-2 

7.06-3 
1.20-2 
3.04-2 
6.13-2 
4.06-2 

7.07-2 
6.57-2 
4.07-2 
2.21-4 
1.62-1 

1.67-2 
3.66-2 
1.34-1 
3.67-1 

u'= 4 

1.92-4 
6.59-4 
3.43-3 
3.35-2 
5.61-2 
3.34-2 

4.10-2 
4.40-2 
5.11-2 
4.76-2 
1.15-2 
1.50-2 

4.39-2 
4.03-2 
2.92-2 
7.09-4 
3.61-2 

7.08-4 
2.19-3 
1.03-2 
5.51-2 
1.69-2 

5.58-2 
5.67-2 
5.27-2 
2.83-2 
1.30-5 

3.05-3 
7.07-4 
2.77-3 
2.32-2 
6.17-3 

4.11-2 
3.75-2 
1.60-2 
1.56-2 

em of DF 

v'= 5 

2.57-2 
2.82-2 
3.49-2 
4.90-2 
3.11-2 
3.02-4 

4.59-2 
4.42-2 
3.81-2 
4.50-3 
6.63-3 
4.16-2 

1.52-3 
5.38-4 
4.78-4 
3.38-2 
3.89-2 

3.66-2 
3.97-2 
4.53-2 
1.34-2 
8.94-3 

1.68-2 
1.22-2 
2.63-3 
3.62-3 
3.62-2 

2.88-2 
3.41-2 
4.45-2 
3.88-2 
7.29-3 

1.33-2 
8.20-3 
4.85-4 
1.28-3 

v'= 6 

4.38-2 
4.38-2 
4.26-2 
2.05-2 
1.31-3 
1.56-2 

1.06-2 
8.39-3 
3.37-3 
9.29-3 
3.40-2 
2.07-2 

1.64-2 
1.94-2 
2.75-2 
3.42-2 
4.56-3 

3.21-2 
2.91-2 
1.93-2 
4.42-3 
3.12-2 

4.60-3 
7.51-3 
1.78-2 
3.36-2 
2.36-2 

3.16-2 
2.75-2 
1.41-2 
4.08-6 
3.27-2 

1.38-2 
1.98-2 
3.65-2 
4.95-2 

u'= 7 

2.38-2 
2.18-2 
1.61-2 
7.50-5 
9.78-3 
3.27-2 

2.38-3 
3.62-3 
8.23-3 
3.23-2 
2.76-2 
1.70-4 

3.55-2 
3.55-2 
3.31-2 
4.62-3 
6.68-3 

1.61-3 
5.76-4 
4.84-4 
2.83-2 
1.60-2 

3.10-2 
3.22-2 
3.18-2 
1.92-2 
1.90-4 

8.02-4 
3.80-5 
2.98-3 
1.82-2 
1.49-2 

2.81-2 
2.57-2 
1.38-2 
4.06-4 



TABLE 7.18 (Cont'd) 

A Calculation of the Rotational Dependence of Franck-Condon Factors 
for the Bh+ - xh+ Band System of DF 

v" / v'= 0 v'= 1 v'= 2 u'= 3 v'= 4 «'= 5 v'= 6 v'= 7 

25 0 6.13-4 3.57-3 1.68-1 4.05-1 6.44-2 6.97-3 2.36-2 1.59-2 
6 8.47-4 7.26-4 1.28-1 4.16-1 1.08-1 3.25-3 1.95-2 2.50-2 

12 1.06-3 2.32-3 3.67-2 3.59-1 2.67-1 4.63-3 1.28-2 5.65-2 
18 2.12-4 9.35-3 7.69-3 7.86-2 3.75-1 1.36-1 2.61-2 1.11-1 

26 0 7.91-5 5.87-3 9.72-3 4.16-2 3.65-1 2.15-1 1.63-2 6.15-2 
6 1.69-5 4.95-3 1.71-2 1.28-2 3.03-1 2.64-1 3.04-2 6.32-2 

12 5.87-5 1.19-3 2.66-2 1.42-2 8.72-2 2.87-1 8.94-2 6.77-2 

fl9.69-9 reads as 9.69 x 10'9. 



CHAPTER 8 

REVIEW OF HAMILTONIAN CORRECTION APPROACH 

8.1 Comparison with a Conventional Rotational Analysis 

8.1.1 Physical Significance 

The approach of reducing a set of spectroscopic line positions to 

molecular constants often yields parameters that lack a strict physical 

significance. Before proceeding any further, it is important to define what 

is meant by "physical significance". 

Our understanding of a molecular system can be described easily in 

qualitative terms, often involving such classically influenced terminology as 

"electron cloud", "intemuclear bond", "angles", etc. A quantitative 

description is obtained by adopting a theoretical or mathematical model, which 

approaches the physical reality of the system to a varying extent. What is 

meant by physical significance here, then, is the ability of derived 

parameters obtained empirically to correspond to those predicted by a formal 

theoretical treatment of the assumed model. The ability of such derived 

parameters to describe the physical reality of a system can only be as good 

as, and is often worse than, that of the theoretical model. 

Returning to the subject under discussion, finite measurement errors and 

/ ranges Umit the number of higher-order centrifugal constants that can be 

determined significantly, in the statistical sense. Furthermore, high 

correlations among parameters and tmncation of the power series force the 

constants that are determined to absorb unphysical contributions. As a 
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result, inversion of such diatomic constants to the potentials goverm'ng 

nuclear motion will result in functions having reduced physical meaning. 

The Hamiltonian Correction Approach (HCA) employed here goes a step 

further furnishing functions that have improved physical significance. The 

corrected operators are fully quantum mechanically consistent with the 

observables from which they were derived. Moreover, an extension of the HCA 

has been devised to evaluate quantum mechanical estimates of the molecular 

constant. From this effort, it has been shown conclusively for the systems 

studied, that considerably higher orders in / ( / + 1) than normally employed 

are in fact required to describe the data within the measurement errors for 

the experimentally derived constants to preserve their proper quantum 

mechanical meanings. 

Here, it is interesting to note that with each progressive apphcation of 

a contact transformation, explicit information is lost. For example, the 

theorist begins with the exact infinite block Hamiltonian of a diatomic system 

and applies the electronic contact transformation to obtain a perturbational 

expansion that operates within a single electronic state. The experimentalist 

applying such an effective operator to the interpretation of spectroscopic 

Une positions obtains the total effect of all perturbing states but cannot 

separate the perturbation into its individual components. An example of this 

is found in the present work where the fitted functions S^R) and R^"\R) 

describe adiabatic effects and nonadiabatic coupling well but cannot provide 

information on the individual perturbations exerted by other states. A rare 

case where the perturbation has been decomposed into individual electronic 

state contributions, concerns an elegant ab initio study of the spin-orbit 

interaction in the ground state of the hydroxyl radical (213). This type of 
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decomposition is only possible for direct theoretical studies. 

Similarly, when a vibrational contact transformation is applied to the 

Van Vleck transformed operator, the perturbational coefficients B , D , etc., 

obtained experimentally on the basis of the associated model, cannot yield 

information expUcitly on nonadiabatic perturbations, even though these are 

contained impUcitly in such estimates. It is clear from these considerations 

that although the approach of molecular constants can provide a satisfactory 

description of the observables, it fails to achieve a separation of mechanical 

and nonmechanical contributions to the energy levels. Due to this 

unpreventable loss of information, the HCA, which also achieves an equally 

satisfactory description of the observables, is to be preferred. 

An additional benefit of the HCA is that the corrected operators are 

found to predict information not included in the least-squares fits, such as 

widths of spectral lines and Une positions of isotopomers not considered 

explicitly in the fitting procedure. Although an analogous procedure exists, 

describing the isotopic variation of molecular constants and accounting fully 

for Born-Oppenheimer breakdown, it is found that constants obtained in this 

fashion fail to correspond to the formal perturbational coefficients. 

8.1.2 General Fitting Extrapolation, and Interpolation Ability 

The work performed in this thesis provides a rare opportunity to compare 

reliably the properties of the molecular constant and Hamiltonian correction 

approaches. It has been demonstrated that the use of local correction 

functions in the HCA is of undeniable advantage. As Coxon has shown (120), 

the distribution of these functions is not critical as long as adjacent 

Gaussians are placed as to ensure sufficient overlap and smooth corrections 
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throughout. The results of the model testing showed that the fitted residuals 

actually represent the random errors quite closely, indicating that the model 

has a lot of flexibility and can be very accurate, not merely precise. 

From the conventional rotational analyses described in Chapters 4 and 5 

it became apparent that polynomial representations in / ( / + 1) for the 

rotational energy do not have satisfactory extrapolation properties; in fact, 

the extrapolation over a single / is often highly uncertain. On the other 

hand, the fit of spectroscopic lines to a global model improves tremendously 

the extrapolation to highly excited / levels. This feature of the HCA proved 

to be particularly helpful in rationalizing predissociation observations in 

the HF and DF ground states. 

Another demonstration of the extrapolation properties of the HCA 

operators was given by the successful prediction of the r CI and T^ CI 

microwave transitions. It must be noted that the levels involved in these 

transitions lie below the lowest levels of HCl and DCl employed in the 

least-squares fit so that their prediction is essentially an extrapolation. 

The matter of interpolation was settled quite decidedly from the results 

of the model calculations in Chapter 3, and also by the ability of an 

intermediate operator for DF(-X" 2 + ) in Chapter 7 to provide effortlessly sound 

rotational assignments for intermediate (v" = 9-15) vibrational levels not 

detected previously from a conventional analysis. The prediction of the 

intermediate DF(AT 2 + ) levels by a conventional treatment was fraught with 

large error. 

It is concluded that the general fitting ability, extrapolation and 

interpolation properties of the HCA are considerably better than those of a 

conventional rotational analysis. 
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8.1.3 Stability 

The stability of a fit of spectroscopic lines in accord with a power 

series expansion for the rotational energy in terms of / ( / + 1) is dependent 

largely on the quality of the matrix inversion method employed in the 

least-squares procedure. It is often found that inclusion of one more 

parameter than is warranted by the precision of the data results in the 

deterioration of the lower-order constants. Also, in the extended Dunham 

treatment of data from several isotopomers (cf. Eq. (2.47)), Watson (42) has 

shown that large (unphysical) values of the A„ can be associated with 

accidentally small values of some U^. There are cases, then, where stability 

can be a problem for the conventional approach. 

The stability of the HCA depends squarely on the choice and distribution 

of basis functions and the local weights along the radial coordinate. If, for 

example, a Gaussian function is placed in a region of low weighting the fit 

runs the risk of becoming unstable, the calculation often diverging. 

Additional instability can result in the extreme inner and outer regions of 

the fitted correction functions which can cause subsequent problems with the 

numerical solution of the radial wave equation. The HCA has its special types 

of problems but these were understood in the model testing. To quote 

Albritton et al. (57): "a devil known is better than a devil unknown even 

though it cannot be exorcised." 

8.1.4 Compactness 

A considerable amount of effort was expended in devising a method by 
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which initial operators could be represented by flexible analytic functions. 

This would not only eliminate ambiguities in the definitions of the trial 

operators, but also lead to more compact representations of the final 

functions. Such an approach was possible for HCl/DCl but could not be 

followed for HF/DF. 

For HCl/DCl, eight Hamiltonian operators were represented by 

approximately 100 parameters, that is, approximately 12 parameters per 

operator. One ought to consider that highly precise data („ 10" cm" ) were 

incorporated, and that all the reliable data included for all four isotopomers 

and two electronic states could be described simultaneously. This is a 

testament not only to the relative compactness that can be achieved in this 

fashion but also the general success of the fitting procedure. 

Clearly, however, a considerable amount of labour is required to 

reconstruct the corrected operators from the fitted parameters. This is part 

of the reason RKRV-like numerical potentials have been tabulated. Although 

the interpolated potentials cannot achieve an accuracy of 10" cm" , they are 

far more accurate than first-order RKRV potentials. For many purposes, it is 

not necessary to have an accuracy of 10" cm" . Thus, in the end, the HCA can 

be likened somewhat to the RKRV procedure in compactness. This is still as 

good or better than the approach of constants in representing a set of line 

positions. 

The final HCA representations must be viewed as a compromise between 

compactness and accuracy. Earlier efforts (119) employed global basis 

functions which gave more compact representations but had relatively poor 

flexibility properties. The local basis functions yield the desired 

flexibility but fail to provide as compact a representation of the radial 
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functions. 

With regard to the representation of eigenvalues, significant advantage 

would be gained if energy levels could be described more compactly. The 

problems with fitting terms to / ( / + 1) power series have been explained 

previously. These problems are amplified with decreasing reduced mass. 

Therefore, efforts were directed in obtaining molecular constants which could 

not only represent within the measurement errors the experimental data, but 

also obey the same boundary conditions as the derived operators. Although 

this approach would lead to a 5-10 fold reduction in the parameters required 

to specify the energies, it was found that considerably high orders of the 

perturbation have to be invoked to achieve the desired consistency. The 

computational algorithm for this purpose has been developed only for a 

fifth-order energy calculation. 

8.2 Suggestions for Improved Procedures 

8.2.1 Improved Compactness 

In keeping with the first-order perturbation determination of radial 

operators in numerical form, with the functions tabulated on a radial grid, it 

is possible to achieve, in some cases, much improved compactness. Upon 

reflection, the main weakness of the HCA is its relative complexity; there are 

simply too many variables left to intuition and much effort is required to 

reconstruct correction functions. On the other hand, no other method proposed 

so far has been able to achieve a successful simultaneous fit of data from the 

potential minimum to the dissociation limit for many isotopomers and more than 

one electronic state. 
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An extension of the procedure that improves the compactness in the radial 

function representations is suggested here. Suppose that the trial potentials 

can be represented by the general Dunham-type power series (214), 

U<-% ) = d"lnf (1 + £ d™^ ) , (8.1) ^mn' 0 'm / r .u, i ' jwr v ' 
i=l 

where 

Ln = <m + "X* - Re)KmR + nRe). (8.2) 

A correction function AU(R) could be modeUed as, 

A£/(£ ) = £ c m V , (8.3) 

where a linear term has also been included here to take into account the 

probability that the adiabatic component of the correction possesses a finite 

slope at R . This correction function could then be estimated with the 

Hamiltonian correction approach. The final, corrected, potential would be 

expressed as, 

U<-U - C7L»+ (C + c 7 » l + (<C«7 + <7*L 
+ «"<• + c^l + (d7^» + c^»^ + . . ., (8.4) 

in other words, one additional term only is generated; small corrections (c™n) 

are imposed onto the known coefficients of the trial function. An iteration, 

should it prove necessary, would not increase the total number of parameters 

but simply refine already existing ones. 

The effectiveness of this procedure is controlled critically by the 

radius of convergence of the reduced intemuclear coordinate | . It is not 

expected, for any choice of m and n, that the long-range region could be 

represented well by such an expansion. This type of model should be used with 
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care and only for low and intermediate vibrational levels. 

8.2.2 Extension to Higher-Order Perturbation Theory 

It is possible, with a proportional increase in labour, to extend the HCA 

to higher-order in the perturbation. First, let us examine the breakdown of 

first-order perturbation theory more closely. 

Employing the trial potential given in Table 6.2 for the X1^ state of 

HCl, as the zeroth-order function, and the model correction function AU(R), 

plotted in Fig. 3.2, as the perturbation, it is possible to calculate exactly 

the first-order correction, 

E® = <ipf\AU(R)\^y, (8.5) 

add it onto the trial eigenvalues E^ ' and examine to what degree first-order 

perturbation theory can approach the eigenvalues E^mT^ of the known corrected 

potential. Subsequently, the perturbation is doubled, a new corrected 

potential and new j ^ 0 0 * ' are obtained, and the ability of first-order 

perturbation theory in recovering these is reexamined. The perturbation is 

then tripled and similar calculations are carried out. 

Table 8.1 shows that as the perturbation is doubled, the discrepancies 

from the true exact eigenvalues are slightly more than quadrupled and when the 

perturbation is tripled the discrepancies are a bit over nine times the 

initial values. This is in accord with the expectation that the omitted 

second-order corrections go as the square of the expectation value (cf. 

Eq. (8.6)), and hence as the square of the perturbation. The ratios given in 

Table 8.1 provide general support for this argument, the small disagreement 

from the exact squares most likely due to third-order corrections. 
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TABLE 8.1 

Test of First-Order Perturbation Theorya 

v 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

ae = AU(R) 

AE, 
l 

0.000 000 
0.000 001 
0.000 006 
0.000 014 
0.000 019 
0.000 024 
0.000 044 
0.000 094 
0.000 189 
0.000 331 
0.000 511 
0.000 710 
0.000 900 
0.001 052 
0.001 146 
0.001 171 
0.001 133 
0.001 045 
0.000 915 
0.000 908 

#e = 

^ 2 

0.000 001 
0.000 005 
0.000 024 
0.000 057 
0.000 077 
0.000 097 
0.000 173 
0.000 375 
0.000 757 
0.001 327 
0.002 050 
0.002 846 
0.003 606 
0.004 219 
0.004 597 
0.004 698 
0.004 545 
0.004 194 
0.003 674 
0.003 642 

2AU(R) 

AEJAEX 

_ 
-

4.00 
4.07 
4.05 
4.04 
3.93 
3.99 
4.01 
4.01 
4.01 
4.01 
4.01 
4.01 
4.01 
4.01 
4.01 
4.01 
4.02 
4.01 

#e = 

AE3 

0.000 003 
0.000 012 
0.000 054 
0.000 128 
0.000 175 
0.000 219 
0.000 391 
0.000 846 
0.001 705 
0.002 991 
0.004 621 
0.006 417 
0.008 132 
0.009 517 
0.010 370 
0.010 601 
0.010 258 
0.009 464 
0.008 292 
0.008 214 

5AU(R) 

AE3/AE1 

-
-

9.00 
9.14 
9.21 
9.13 
8.89 
9.00 
9.02 
9.04 
9.04 
9.04 
9.04 
9.05 
9.05 
9.05 
9.05 
9.06 
9.06 
9.04 

aQuantities AE(cm" ) are the differences between the exact and 
first-order perturbation results. 
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In terms of the absolute magnitudes of the breakdown of first-order 

perturbation theory, it appears that for the most part first-order theory is 

sufficient. It is possible, however, to include second and higher orders of 

the perturbation in the Hamiltonian correction method. The correction to an 

eigenvalue could be modelled as, 

™ \<V>V \&u(R)\ip(0J>\2 

w VJ VJ VJ*WK EKy - E{y 

wK vJ 

which can be simplified further by avoiding the sum-over-states and writing 

expUcitly, 

A E , = ^\AU(R)\^ + <ip^\AU(R)\i>^y. (8.7) 

If the perturbation is expanded as in Eq. (3.15), then we obtain, 

A E , = c1{<0|/1|0> + <0l/i|l>} + c2{<0|/2|0> + <0| / 2 |1» 

c3i<Q\f3\0> + <0|/3|1>} + c4{<0|/4|0> + <0| / 4 |1» + . . ., (8.8) 

which requires simply the additional generation of expectation values <0{/.|l> 

doubling tne amount of labour needed to obtain expectation values, but not the 

time required to perform least-squares fits. The |1> vectors can be obtained 

by Hutson's (53) method. 

8.2.3 Direc* Nonlinear Least-Squares Fits to Analytical Operators 

In recent work, Gruebele et al. (188) explored the possibility of fitting 

spectral line positions directly to the relevant elements of the radial 

Hamiltonian operators. This calculation is exact within the Schrodinger 

equation picture but requires nonlinear least-squares optimization and a more 
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frequent numerical solution of the wave equation. As discussed previously, 

the HCA can also be interpreted in terms of a pseudolinearized problem with 

partial derivatives obtained by the Hellmann-Feynman theorem. These 

derivatives can also be obtained in a brute-force way in accord with, 

^vJ _ W - Ev/Pk+ 6Pk\ ( g 9 ) 

9pk
 dpk 

where dp. is chosen to avoid numerical problems or instabilities. The 

procedure is iterated, since the brute-force method does not obtain as 

accurate partial derivatives as the Hellmann-Feynman method. The p. are 

parameters defining an analytical potential function, or other elements of the 

operator. 

This method is far more demanding computationally than the HCA. This is 

because a calculation of new partial derivatives is required with every fit 

whereas the HCA operates on the same set of expectation values. It is 

estimated that for models with similar numbers of parameters and identical 

data sets, the direct method would required approximately 10-20 times the 

amount of execution time. Work carried out in this laboratory with the direct 

method has so far been restricted to the lower vibrational levels of HI(Jf 12+) 

and C0(2' 2+). The analytical model Eq. (6.13) has been employed as well as 

the Perturbed Morse Oscillator expansion, Eq. (3.6). 

Despite the increased computational labour, this method is preferable 

over the HCA since it eliminates a lot of the complexity and ambiguity 

associated with the indirect numerical procedure. Some effort has gone into, 

and is still required, in devising flexible analytical functions for use with 

the direct method. In particular, the PMO and the radial-^ Morse functions 

can only be relied on for up to approximately 50% of Qb . A model which will 



349 

be tested in the future is, 

U(R) = f^R) + f2UM(R) + fJJ0(R), (8.10) 

where UJR), UU(R), and UQ(R) are analytical forms appropriate for the inner, 

middle, and outer regions of the potential, respectively. The functions /. 

are mathematical filters which aUow for a smooth transition from one 

potential form to another as the intemuclear distance is varied. 

8.3 Concluding Remarks 

The work presented in this thesis has extended our understanding of the 

diatomic molecules HF and HCl and their isotopomers. The interpretation of 

spectroscopic observables in terms of a fully quantum mechanical model has 

been demonstrated to be very effective not only in representing information 

included in the fits, within experimental precision, but also at predicting 

with remarkable accuracy such information not obtained readily by traditional 

methods. 

Despite this, as the precision of spectroscopic data continues to 

improve, development of improved procedures will undoubtedly be required. It 

will indeed be interesting to see to what extent very precise observations 

over the entire potential well will lend themselves to an interpretation by 

approximate theoretical models. In Steinfeld's words: " . . . in every case 

the molecule has solved its own Schrodinger equation exactly, and is probably 

laughing at our attempts at attaining to some approximate solution" (215). 

It '"s my beUef that through this work we have quieted down some of the 

laughter. 
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