

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Service des thèses canadiennes

Ottawa, Canada K1A 0N4

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canada

.

i

ŝ

Genetic analysis in Haloferax volcanii.

by

Wan L. Lam

۹

٦.

4

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia January, 1991

.

I,

¢

Bibliothèque nationale du Canada

Canadian Theses Service

Ottawa, Canada K1A 0N4

National Library

of Canada

Service des thèses canadiennes

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

۲

ISBN 0-315-64544-X

Canadä

To Ford

1

81

4

ţ

iv

Table of contents

r

ı

1

114

ì

1

A.

Chemical mutagenesis	29
DNA preparations	29
Spheroplast preparation	31
Transformation of Hf. volcanii spheroplasts	31
Trausfection with ϕH DNA	31
PEG purification	32
Transformation using cosmid DNA pools	32
Recombinant DNA manipulations in E. coli	32
Hybridizations	33
Deletion analysis	33
DNA sequencing and computer analysis	33
RNA isolation and transcript analysis	34
Results and Discussion	35
I. Developing genetic tools	35
1. Plasmid transformation	35
Demonstrating plasmid transformation	35
Confirmation experiment	35
2. Development of shuttle vectors	37
Selectable marker	37
Transformation experiments with genomic	
DNA from mevinolin-resistant mutants	37
Isolation of mevinolin resistance marker	
Construction and transformation of shuttle vectors	4 _. >
Tailoring of shuttle vectors	46
3. Characterization of mevinolin resistance	49
Identity of the resistance gene	49
Comparison to eukaryotic and eubacterial HMG CoA reductases.	51
Up-promoter mutation	54
Genetic demonstration of an archaebacterial promoter	58
Gene amplification	59
Gene expression	61
4. Host strain development	62
Gene replacement	62
Deletion of trpB gene from chromosome	67

ł

ŕ.

ł

II. Tryptophan biosynthetic genes of Hf. volcanii	72
1. Isolation of trp genes	72
Isolation and identification of mutants	72
Cloning of trp genes	72
2. Analyses of :rp genes	76
trpCBA gene cluster	76
trpDFEG gene cluster	83
3. Expression and regulation of trp genes	90
4. Evolutionary considerations	94
III. Genetic mapping	97
Genetic mapping of <i>trp</i> genes	97
Mapping auxotrophic mutations	98
Linkage of alleles	103
IV. Conclusion	104
References	

ī

۲ کړ

te

٢

٢

M

1

1

ł

List of Figures

\$

3

.

an dia

12 H P P P P

:

1.	Chemical mutagensis of Hf. volcanii	30
2.	Hf. volcanii plasmid pHV2	36
3.	Mevinolin inhibition	38
4.	Characterization of mevinolin-resistant transformants	42
5.	Construction of shuttle vectors	44
6.	Deletion analysis of pWL101	48
7.	DNA sequence of the mevinolin resistance marker and the deduced amino acid sequence of <i>Hf. volcanii</i> HMG CoA reductase	50
8.	Comparison of HMG CoA reductase sequences	52
9.	Chromosomal region containing the wild-type and mutant HMG CoA reductase gene	55
10.	Consensus promoter sequences	56
11.	Initiation of HMG CoA reductase transcript	57
12.	Characterization of mevinolin resistant mutants	60
13.	Strategies for gene replacement	63
14.	Replacement of trpB with mev ^r marker	64
15.	Deletion of trpB from the chromosome	68
16.	Universal tryptophan biosynthetic pathway	71
17.	Cloning of trp genes	75
18.	DNA and deduced amino acid sequence for Hf. volcanii trpCBA	77
1 9 .	Alignments of TrpB, TrpA and TrpC sequences	80
20.	DNA and deduced amino acid sequence for Hf. volcanii trpDFEG	84
21.	Alignments of TrpD, TrpF, TrpE and TrpG sequences	88
22.	Putative transcription signals	92
23.	Transcription of trp genes in response to tryptophan and tryptophan biosynthetic intermediates	93

List of Tables

.

- **H** - 5

.

ų ×

The second second second

et B

,

1.	Transformation with mevinolin resistance-conferring plasmids	40
2.	Transformation with crude shuttle vectors	45
3.	Summary of cloning and linkage analysis of Trp auxotrophs	73
4.	Sequence similarities among trp genes from distant organisms	81
5.	Organization of trp genes in various organisms	96
6.	Auxotrophic mutations mapped by cosmid transformation	100

Genetic tools have been developed for studying the molecular biology of the halophilic archaebacterium, *Haloferax volcanii*. Shuttle vectors and a transformation system facilitate direct cloning of archaebacterial genes, and allow the reintroduction of *in vitro*-altered DNA into *Hf. volcanii*. The archaebacterial genes isolated have in turn provided the necessary genetic markers for further development of strategies for genetic mapping and for direct manipulation of the chromosome.

Several of these genetic techniques are applied to describe genes for tryptophan biosynthesis and mevalonic acid biosynthesis, to determine the organization of functionally-related genes, and to map auxotrophic mutations to the *Hf. volcanii* chromosome.

I

Abbreviations

Α	adenosine	0.D.
С	cytidine	ORF
G	guanosine	PEG
Т	thymidine	phe
ade	adenine	PPE
ala	alanine	pro
AMV	avian myeloblastosis virus	pur
arg	arginine	pyr
aro	aromatic amino acid	RNase
asn	asparagine	rRNA
asp	aspartic acid	ser
Bat	bacterio-opsin activator-	SR
	protein	thr
Bon	bacterio-onsin	Tris
bp	basepair	
Brp	bacterio-opsin related-	tRNA
P	protein	tro
C-terminus	carboxy-terminus	tvr
CVS	cysteine	Ŭ.
DHER	dihydrofolate reductase	ura
DNase	deoxyribonuclease	IIV
DPF	distal promoter element	Vac
FDTA	ethylenediaminetetra	val
LUIA	acetic acid	vai
FMS	ethyl methanesulfonate	
aln	alutamine	
gin alu	dutamic acid	
glu	glucino	
giy	giyenie	
gua	bistiding	
	msuaine	
HING COA	nyuroxymetnyigiutaryi-	
ile	coenzymeA	
IIC Ish on Ishm		
ko or kop		
100		
lys	lyshe	
met	memonine	
mev	mevinolin registered	
mev	mevinoini resistance	
MMS	methyl methanesulfonate	
mRNA	messenger RNA	
N-terminus	amino-terminus	
Nif	nitrogen fixation	
nt	nucleotide	

Ĩ

optical density open reading frame polyethylene glycol phenylalanine proximal promoter element proline purine pyrimidine ribonuclease ribosomal RNA serine sensory rhodopsin threonine tris(hydroxymethyl)methylaminomethane transfer RNA tryptophan tyrosine uridine uracil ultraviolet gas vacoul protein valine 1

.,

{

• •

•

ł

INTRODUCTION

1. Archaebacteria

 Archaebacteria represent a conophyletic group of microorganisms distinct from the eubacteria and the eukaryotes (Woese and Fox 1977; Woese 1981, 1987; Woese et al. 1990). Woese and colleagues first proposed this in 1977 on the basis of phylogenetic analyses of archaebacterial ribosomal RNAs (Woese and Fox 1977). The methanogens, certain sulfur-dependent thermophiles and the extreme halophiles make up this group. These diverse divisions of archaebacteria share common features in their translation apparatus (Gupta 1984; Gehrmann et al. 1986; McCloskey 1986; Woese and Olsen 1986) and in their signature ether-linked archaebacterial lipids (De Rosa and Gambacorta 1986; De Rosa et al. 1986) absent from the eubacteria and the eukaryotes. The archaebacteria, although morphologically resembling the common bacteria, actually represent a third primary lineage of life as distinct from the eubacteria and the eukaryotes as the latter two are from each other.

The finding of eukaryotic features in archaebacteria has raised suspicion of a closer relationship between archaebacteria and eukaryotes. Zillig and colleagues have pointed out the resemblance of archaebacterial DNA-dependent RNA polymerases to their eukaryote homologs, in primary sequence and in complexity (Gropp et al. 1986; Leffers et al. 1989; Huet et al. 1983; Puhler et al. 1989; Zillig et al. 1988, 1989). Futhermore, composite phylogenetic trees rooted by gene pairs duplicated prior to the divergence of the three primary kingdoms (namely, the α and β subunits of H⁺ATPase and the elongation factors Tu and G) hint that the archaebacteria are more closely related to eukaryotes than to eubacteria (Iwabe et al. 1989; Gogarten et al. 1989; Sudhof et al. 1989).

Archaebacteria have become adapted to live under extreme conditions, such as low pH, boiling temperatures and saturating salinity, and show us how adaptable life on Earth is. Survival under extreme conditions presumably requires unusual adaptations in

biological features and strategies. Therefore, archaebacteria provide a source for discovering new mechanisms and strategies for fulfilling molecular and cell physiological tasks.

More significantly, inquiries into basic features of archaebacterial gene structure and function should provide information necessary for understanding the molecular biology of the last ancestor of the three primary kingdoms -- features common to diverged lineages should have been present in their last common ancestor, and should consequently reveal the biological sophistication of the progenote, the ancestor to all living things on Earth.

It has been more than a decade since the discovery of archaebacteria; but still relatively little is known about their molecular biology. The lack of genetic methods is clearly limiting the understanding of archaebacteria at the DNA level. I will describe here the limited information available on archaebacterial genetics.

2. Genetics in archaebacteria

ť

Genome structure and organization. Although several archaebacterial genomes have been characterized by physical means, genetic maps are not yet available. Archaebacterial chromosomes are similar to those of eubacteria in sequence complexity (Klein and Schorr 1984; Mitchell et al. 1979; Moore and McCarthy 1969a, b; Charlebois et al. 1989; Searcy and Doyle 1975; Jones et al. 1987). Restriction mapping data show that the cmomosomes of *Sulfolobus acidocaldarius* and *Thermococcus celer* are circular, like the typical eubacterial chromosome (Noll 1989; Yamagishi and Oshima 1990). The sizes of archaebacterial genomes range from about 4 million bp in halobacteria, similar to the size of the *E. coli* genome, to 8.4×10^8 daltons in *Thermoplasma acidophilum*, about 30% of *E.coli* and similar to *Mycoplasma* species (Charlebois et al. 1989; Moore and McCarthy 1969b; Searcy and Doyle 1975).

2

Gene organization in archaebacteria resembles that found in eubacterial-like. Functionally related genes are often linked, and in some cases arranged in operous. The typical 16S-23S-5S ribosomal gene order found in eubacteria is also common in archaebacteria, but not all archaebacterial examples studied conform to this arrangement. Many thermophilic archaebacteria have unlinked 5S rRNA genes, and the 16S and 23S rRNA genes in *Thermoplasma acidophilum* are not transcriptionally linked (Tu and Zillig 1982). Transfer RNA genes often exist within a tRNA operon, and are sometimes associated with rRNA genes, including the otherwise independent 5S rRNA gene in two species of *Methanococcus* (Larsen et al. 1986; Wich et al. 1984; Brown et al. 1989). Protein-coding genes, such as the genes for halobacterial flagellins (Gerl and Sumper 1988), ribosomal proteins (Auer et al. 1989a, b; Shimmin et al. 1989a), methyl reductase subunits and RNA polymerase subunits are organized in operons (Bokranz et al. 1988; Cram et al. 1987; Leffers et al. 1989; Puhler et al. 1989). The four genes associated with bacterio-opsin synthesis so far identified are also clustered, but only two of the four genes are tandemly transcribed (Betlach et al. 1989).

Understanding of enzymatic activities relevant to DNA replication, topology, and base-modification has led to intriguing discoveries concerning DNA structure in certain archaebacteria. Kikuchi and Asai (1984) identified in *Sulfolobus* a unique topoisomerase which introduces positive helical turns into DNA (Nakasu and Kikuchi 1985; Forterre et al. 1985). The discovery of positively-supercoiled DNA in a virus-like particle in *Sulfolobus*, SSV1, convincingly shows *in vivo* reverse gyrase function (Nadal, et al. 1986). This reverse gyrase activity is widely distributed in hyperthermophilic archaebacterial species (including *Archaeoglobus fulgidus*, *Methanopyrus kandleri*, and also members of the *Sulfolobales*, *Thermoproteales*, *Thermococcales* and certain *Methanobacteriales*) which grow optimally between 85°C and 105°C, but is not found in mesophilic and moderately thermophilic archaebacteria, such as members of *Thermoplasmales*, *Methanomicrobiales*, *Methanococcales* (Slezarev 1988; DeLa Tour et al. 1990). Topoisomerases from *Halobacterium* species show no reverse-gyrase activity, and plasmids pGRB and pHV2 in *Halobacterium* are negatively supercoiled *in vivo* (Sioud et al. 1988a, b; Forterre et al. 1986, 1989).

DNA base composition varies from a G+C content of about 30 mol% in *Methanococcus voltae* and *Methanobrevibacter arboriphilicus* to nearly 70 mol% in certain *Halobacterium* species (Klein, Schnorr 1984; Moore and McCarthy 1969b). High G+C content apparently is not required for protecting double stranded DNA from denaturation by high growth temperature -- DNA in *Thermoplasma acidophilum* is 46 mol% in G+C (Searcy and Doyle 1975). Stable DNA structure in thermophilic archaebacteria has been linked to high internal salt concentration and histone-like DNA-binding proteins (Green et al. 1983; Stein and Searcy 1978).

Genetic instability in extreme halophiles. The genomes of many halophilic archaebacteria can be fractionated by their G+C content into two components, FI and FII. FI DNA (about 68% C+C) represents the major part of the genome and is highly conserved in purple membrane-forming halobacteria (Ebert and Goebel 1985). FII DNA (58% G+C) in Halobacterium halobium accounts for about 30% of the genome and consists of the 150 kbp plasmid piHH1, other heterogeneous covalently closed circular DNAs, present in low copy number, and an A-T rich island in the chromosome (Pfeifer and Betlach 1985). FII DNA harbours a variety of insertion (ISH) elements (Pfeifer et al. 1983; Pfeifer 1986; Hofman et al. 1986; Charlebois and Doolittle 1989). These ISH elements are largely responsible for the instability of the Halobacterium genome (Charlebois and Doolittle 1989). Their existence also explains the remarkably high frequency of genomic rearrangements involving many families of repeat sequence elements (Sapienza and Doolittle 1982; Sapienza et al. 1982). An insertion element, ISM1, structurally similar to the ISH elements, exists in Methanobrevibacter smithii, suggesting that insertion elements are not restricted to the extreme halophiles (Hamilton and Reeve 1985b). However, abundance and variety of such elements have not been

observed outside the extreme halophiles, nor has the presence of two major fractions of DNA of different base composition. The instability of the halophile genome is reflected in the genetic variability of the bacteriophage ϕ H of *Hb. halobium*, which also suffers specific deletions, insertions and ISH element-mediated inversions at high frequencies (Schnabel et al. 1982a).

Repeated sequences also arise spontaneously by duplication (and amplification) of segments of the chromosome. Amplification of DNA segments containing the *Haloferax volcanii* (formerly *Halobacterium volcanii*) dihydrofolate reductase (DHFR) gene leads to overproduction of the enzyme it encodes, and allows cells to overcome growth inhibition by DHFR inhibitors (Rosenshine et al. 1987). Similarly, *Hf. volcanii* exposed to an hydroxy-methylglutaryl coenzyme A (HMG CoA) reductase inhibitor often survives by amplifying the HMG CoA reductase gene (see *Results and Discussion*).

Mutants defective in bacterio-opsin synthesis. The abundant active insertion (ISH) elements in *Hb. halobium* have generated a variety of mutants defective in gas vacuole (Vac) production and bacterio-opsin (Bop) synthesis, and thus permitted genetic dissection of these systems (Betlach et al. 1983; DasSarma et al. 1983, 1986; DasSarma 1989; Pfeifer et al. 1984; Pfeifer 1986). In *Hb. halobium*, spontaneous Bop mutants occur at a frequency of 10^{-4} (Pfeifer et al. 1981). Bop⁻ mutants are readily detectable due to changes in colony appearance (Stoeckenius and Bogomolni 1982; DasSarma 1989). Insertion events are responsible for the majority of the many Bop⁻ mutants isolated so far, although one deletion has been found (Betlach et al. 1989; DasSarma 1989). Eight halobacterial insertion elements (ISH1, ISH2, ISH23, ISH24, ISH26, ISH27, ISH28 and ISHS1) were detected to have inserted within or upstream of the *bop* gene in individual mutants (Pfeifer et al. 1984; Pfeifer 1986; Ebert et al. 1987; Simsek et al. 1982). Located upstream from *bop* are 2 other genes (*brp* and *bat*) which are transcribed, in this order, in the opposite direction relative to *bop*, and are associated with *bop* gene expression (Betlach et al. 1984).

Bop mutant IV-4 suffers an ISH24 insertion near the 3'-terminus of the *brp* (bacterio-opsin related protein) gene. This insertion abolishes *bat* and *bop*, as well as *brp*, transcription. The only characterized revertant of IV-4 (Bop⁻), reIV-41, has acquired a second insertion (via translocation of a 588 bp segment from the *Hb. halobium* plasmid pHH1) adjacent to the ISH24 element, proximal to the *bat* gene. This segment (which, when disrupted by further ISH insertions results in Bop⁻ phenotype again) contains a copy of archaebacterial promoter consensus sequence, and it is presumably this which restores *bat* t.anscription. The *bop*, truncated *brp* and *bat* mRNAs in this revertant are present at 100%, 75% and 20%, respectively, of the wild-type levels (Betlach et al. 1984; Leong et al. 1988a, b).

Disruption of *bat* (bacterio-opsin activator) results in the loss of detectable levels of *bop* and *brp* mRNA, suggesting that the *bat* gene product is necessary to activate *bop* and *brp* gene expression. Insertion in the 526 bp region between (and upstream of)*bop* and *brp* drastically reduces *brp* and *bop* mRNA levels as well -- perhaps a trans-acting *bat* gene product could affect transcription initiation by binding to this putative regulatory region (Pfeifer et al. 1985; Betlach, et al. 1989). Since *bat* gene expression is affected by upstream insertions in *brp*, while *brp* requires *bat* activation, the *bat* gene would be autoregulated (Betlach, et al. 1989; Leong et al. 1988a, b). A small ORF oriented opposite to *brp* and down stream of *bat* is also suspected to play a role in bacterio-opsin synthesis.

Genetics of gas-vacuole formation. *Hb. halobium* has two similar gas vacuole protein genes. The p-vac (or gvpA) gene, which is constitutively expressed, is mutated at a remarkable frequency of 10^{-2} . In contrast, *c*-vac (or gvpB), which is only expressed during stationary growth, exhibits a much lower mutation frequency of 10^{-5} . The drastic difference in mutation frequency can be explained by the locations of these genes. *c*-vac is situated in the more stable FI DNA of the chromosome, while *p*-vac is found in the ISH element-rich plasmid pHH1 (or pNRC100) which belongs to the variable FII fraction of

the genome (DasSarma et al 1987; Horne et al. 1988). In addition to insertional inactivation by ISH elements (as experienced by the Bop mutants described above), the *p*-vac gene can be lost by a deletion event encompassing the *p*-vac gene region of pHH1 (DasSarma et al. 1988; DasSarma 1989; Pfeifer et al. 1988, 1989; Pfeifer and Blaseio 1989).

Deletion events within the 150 kbp plasmid pHH1 occur at high frequencies during the development of a *Hb. halobium* culture. Certain Vac⁻ derivatives of pHH1 have acquired more than one deletion, leading to the fusion of non-contiguous pHH1 sequences to give smaller plasmids. Pfeifer and Blaseio (1989) have linked plasmid variability to the action of insertion elements. Each deletion occured exactly at the terminus of an insertion element. Most likely, the deletion variants result from recombination between repeated sequences, and from intramolecular transposition, which breaks a plasmid into two circular DNA molecules of which only one retains the sequences for plasmid maintainance and replication.

Restriction and modification systems. Restriction endonucleases have been found in *Halobacterium*, *Thermoplasma*, *Methanococcus* and *Methanobacterium* (McConnell et al. 1978; Prangishvilli et al. 1985; Schmid et al. 1984; Lunnen et al. 1989). Evidence of restriction suggests the presence of base modifications. Modified bases common in eubacteria, like N⁴-methylcytosine, 5-methylcytosine and N⁶-methyladenine, have been found in archaebacteria (Ehrlich et al. 1985). A virus of *Hb. halobium*, ϕ N is, in fact, fully methylated at all cytosine residues in its entire genome (Vogelsang-Wenke and Oesterhelt 1988). Recently, Juez et al. (1990) detected modifications in *Haloferax mediterranei* DNA associated with changes in the salt concentration of the growth medium.

Phages of the *Halobacteria* provided *in vivo* evidence of restriction and modification (Daniels and Wais 1984; Patterson and Pauling 1985; Schnabel et al. 1982b). Phage ϕ H forms plaques on *Hb. halobium* strain R1, which carries a deleted version of plasmid

pHH1, and is deficient in vacuole formation. Plating efficiency is reduced by a factor of 10^3 - 10^4 if wild-type *Hb. halobium* is used as host, while ϕ H grown on the wild-type strain infects both R1 and wild-type hosts efficiently, suggesting the existence of a restriction-modification system, perhaps determined by plasmid genes (Schnabel et al. 1982b).

Patterson and Pauling (1985) were able to isolate spontaneus and uv-mutagenized mutants of *Halobacterium cutirubrum* deficient in restriction, in modification or in both processes. Correlation between changes in restriction-modification and in gas vacuolation phenotypes were again observed. They also showed that more than one restriction-modification system exists in *Hb. cutirubrum*. Multiple restriction systems have been found also in *Methanococcus aeolicus* -- 3 restriction enzymes were isolated from this organism (Schmid et al. 1984).

The genes for a type II restriction-modification system in *Methanobacterium wolfei* have been cloned and expressed in *E. coli* (Lunnen et al. 1989). Restriction-modification systems appear to be a wide-spread phenomenon in archaebacteria, as in eubacteria. **Archaebacterial virus-host systems.** Viruses are exposed to the same extreme habitats as their hosts, and have adapted accordingly. Despite difficult culture conditions in the laboratory, a variety of DNA viruses have been isolated from *Halobacterium*, *Thermoproteus*, *Sulfolobus*, *Methanobacterium*. and *Methanobrevibacter* (Torsvik and Dundas 1974, 1980; Wais et al. 1975; Pauling 1982; Schnabel et al. 1982b; Janekovic et al. 1983; Rohrmann et al. 1983; Martin et al. 1984; Meile et al. 1989; Jordan et al. 1989). Zillig and colleagues have put together a thorough review of the biology of these viruses (Reiter et al. 1988c).

1

Archaebacterial viruses have served as model systems for the study of genetic variability, host strain restriction-modification, gene expression and DNA uptake and transformation in archaebacteria. Considerable effort has been directed towards understanding gene expression in the phage ϕ H of *Hb. halobium* (Schnabel et al. 1982b) and viral particle SSV1 of *Sulfolobus* B12 (Martin et al. 1984).

Phage ϕ H has a linear double-stranded DNA genome which exhibits genetic variability involving specific deletions, insertions or inversions, explainable by the action of insertion elements (Schnabel et al. 1982a). ISH 1.8 elements have been found on either side of a 12 kbp region (called the L segment) which contains the genes expressed in early lytic development. When two copies of ISH 1.8 flank the L-segment in opposite orientations, frequent inversion events are observed. Excision and circularization of this L-segment forms a self-replicating plasmid (p ϕ HL) which confers immunity to ϕ H infection, except that phages carrying an insertion of ISH23 (or ISH50) within the L-region can overcome immunity (Pfeifer et al. 1984; Schnabel 1984; Schnabel et al. 1984; Xu and Doolittle 1983).

Transcripts expressed during the early, middle and late stages of lytic growth have been identified, and certain transcripts are not detected in lysogens (Gropp et al. 1989). The specific function, regulation and interaction of these transcripts are yet unknown; nevertheless, ϕ H genes contribute to the growing list of sequences from which consensus signals for transcription and translation are deduced. Transcripts identified in ϕ H infection account for nearly half of all the characterized protein-coding RNA transcripts in the halophilic archaebacteria.

SSV1 provided Zillig and co-workers (Reiter et al. 1989; Reiter and Palm 1990) information on viral DNA integration, and added more examples of putative transcription signals (Reiter et al. 1988a, b). SSV1 has a 15.5 kbp double-stranded circular DNA genome, which specifically integrates into a site within a tRNA^{Arg} gene on the chromosome, and it is inducible by ultraviolet (uv) radiation. SSV1 integrates via recombination between a 44 bp sequence present in the SSV1 DNA and in a chromosomal tRNA^{Arg} gene, so that the integrated SSV1 DNA is flanked by direct repeats of the 44 bp core attachment sequence (Reiter et al. 1989). A defective SSV1 genome has also been

9

found integrated in the same manner into a second putative tRNA^{Arg} gene containing a segment nearly identical to the 44 bp core attachment sequence (Reiter and Palm 1990).

The transcription pattern of the small SSV1 genome is simple; at least eight of the transcripts are constitutively expressed. T_{ind} is the only inducible RNA, transcribed in response to uv irradiation (Reiter et al. 1987a, b). All transcript start sites, except for that of T_{ind} , are preceded by a short A-T rich sequence which resembles the consensus putative archaebacterial promoter (Reiter et al. 1988b; also see below). 3'-term'ni of several transcripts have been located to a pyrimidine rich region following a run of T residues (Reiter et al. 1988a).

Natural mating system. The natural genetic transfer system in the extreme halophile *Hf. volcanii* is the only archaebacterial mating system known. Mevarech and Werczberger (1985) produced prototrophs by cofiltering any two of three auxotrophic mutants -- demonstrating that DNA transfer is not unidirectional, unlike classical eubacterial conjugation. The transfer is an active process, inhibited when one of the two auxotrophic partners is heat killed prior to mating.

Mevarech and colleagues (Rosenshine et al. 1989) followed the process of genetic transfer using immobile plasmids pHV2 and pHV11 as cytoplasmic markers, and found that the cytoplasms of the parental types do not mix during the mating process -- unlike in the fusion of eukaryotic gametes. Chromosomal DNA, but not the cytoplasmic markers, passes through intercellular cytoplasmic bridges which connect *Hf. volcanii* cells into a network. Protoplast fusion could only be induced artificially.

Genetic transformation. Transformation has recently been demonstrated in several species of archaebacteria. Low frequency transformation with exogenous DNA has been reported in two methanogens (Bertani and Baresi 1987; Worrell *et al.* 1988), although these methods have yet to find extensive use. Transformation of halophiles is more widely practised, since the polyethyleneglycol mediated-transformation protocol is efficient and has been well characterized (Cline and Doolittle 1987; Charlebois et al. 1987;

Cline et al. 1989a, b; Lam and Doolittle 1989). To date, no methods for transforming thermophilic archaebacteria have been d_veloped.

Two species of methanogens can be transformed naturally by allowing recipient cells to grow in the presence of marker DNA. Bertani and Baresi (1987) have devised a method patterned after the calcium treatment and heat shock protocol commonly used in "he transformation of *E. coli*. Purine or histidine requiring-mutants of *Methanococcus voltae* were transformed to prototrophy at a slightly higher frequency than the reversion rate. Later they found that incubating the same auxotrophs in liquid culture with wild-type DNA alone yielded similar or better results.

Suspecting that physiological factors might affect transformation, Worrell et al. (1988) allowed recipient *Methanobacterium thermoautotrophicum* cells to grow into colonies on non-selective gellan gum plates containing marker DNA, before replicating onto selective medium. They were able to obtain fourteen 5-fluorouracil resistant transformants out of approximately one thousand colonies tested.

Gernhardt and colleagues (Gernhardt et al. 1990) have very recently applied the protocol of Bertani and Baresi to transform M. voltae with an E. coli vector-construct carrying (i) the puromycin transacetylase gene of Streptomyces alboniger fused to the promoter and terminator region of the ``. voltae methyl reductase operon and (ii) the M. voltae hisA gene. Puromycin resistant transformants recovered typically carry the vector-construct integrated into their chromosome at the hisA locus. The integrated sequences are stably maintained in the presence of puromycin, but slowly lost in the absence of selective pressure.

Handicapped by the lack of available genetic markers, Cline and Doolittle (1987) relied on plaque assays to score for successful transformation events -- using DNA from the lytic phage ϕ H to transfect spheroplasts of its natural host, *Hb. halobium*. Transformation is dependent on the physiological state of the cells (early- to mid-log-phase cultures yield higher transformation frequency), inhibited by divalent cations (spheroplasts

11

are formed by adding sufficient EDTA to chelate free calcium and magnesium ions) and sensitive to high DNA concentrations (DNA precipitates in the presence of PEG and NaCl). The procedure is reliable and efficient, yielding up to 10^7 plaques per microgram of phage DNA. ϕ H DNA can also transfect (at reduced frequency, presumably because of restriction) *Hf. volcanii*, which is not a natural host for the phage. This transformation procedure has recently been modified and applied to several species of halophiles (Charlebois et al. 1987; Cline et al. 1989a; Holmes and Dyall-Smith 1990; Lam and Doolittle 1989; S. Cline, personal communication).

÷

-

In our laboratory, we have successfully transformed *Hf. volcanii* with phage, plasmid and chromosomal DNA using a modified version of the transfection protocol (Cline et al. 1989a, b; Charlebois et al. 1987; Lam and Doolittle 1989). Plasmid transformation was first demonstrated using a naturally-occurring *Hf. volcanii* plasmid (pHV2) and a recipient strain previously cured of pHV2 by treatment with ethidium bromide (Charlebois et al. 1987). This plasmid becomes the logical starting material for construction of shuttle vectors maintainable in either halobacteria or *E. coli*, because it transforms *Hf. volcanii* efficiently, and because it has been completely sequenced (Lam and Doolittle 1989; also see *Results and Discussion* below).

Keith Conover of our laboratory has shown that cosmid DNAs containing wildtype *Hf. volcanii* inserts and prepared in *E. coli* can transform halobacterial auxotrophs to prototrophy (Conover and Doolittle 1990). Cosmid DNA cannot replicate autonomously in *Hf. volcanii*, and therefore requires integration into the chromosome for transformation, presumably via homologous recombination. Transformation with cosmid clones (generated and assembled in preparation of a restriction map of the *Hf. volcanii* chromosome) provides a simple strategy for linkage analysis (Charlebois et al. 1989; Conover and Doolittle 1990; Lam et al. 1990b; also see *Results and Discussion*).

Plasmids and potential vectors. Extrachromosomal DNA is common in archaebacteria. Cryptic plasmids have been reported in many archaebacteria (see recent

listing by Brown et al. 1989). Of the many plasmids identified, only a few are associated with obvious phenotypes. Anaerobic autotrophy in *Sulfolobus ambivalens*, and gas vacuole formation and phage immunity in *Hb. halobium* are plasmid-related traits (Zillig et al. 1985; Simon 1978; Weidinder et al. 1979; Schnabel 1984).

Plasmids are potential vectors for DNA transfer. Several low-molecular-weight plasmids from halobacteria are potentially exploitable for vector development, for example, the poHL formed by circularization of the L-segment from phage of (Schnabel 1984), the mini-plasmid found in *Halobacterium* strain SB3 (Hackett and DasSarma 1989; Kagramanova et al. 1989), and plasmids isolated from *Hf. volcanii* (Charlebois et al. 1987; Rosenshine and Mevarech 1989). Having an efficient plasmid transformation system in *Hf. volcanii*, it is not surprising that shuttle vectors were first developed for this organism (Charlebois et al. 1987; Lam and Doolittle 1989).

The development and use of shuttle vectors in *Hf. volcanii* is described later in *Results and Discussion*. Some of these vectors have been widely distributed, and in some cases modified by other laboratories for specific purposes. The shuttle vector pWL102, a pHV2-based mevinolin resistance vector, can transform and be maintained in other halophiles, such as *Haloferax* phenon K and *Haloarcula hispanica* (Holmes and Dyall-Smith, personal communication; S.W. Cline, personal communication), but by itself is unable to replicate in *Hb. halobium*. To study features specific for *Hb. halobium*, Blaseio and Pfeifer (1990) have constructed a shuttle vector, maintainable in *Hb. halobium*, *Hf. volcanii* and in *E. coli*, by inserting the replication region of the *Hb. halobium* plasmid pHH1 into a pUC-type plasmid carrying the *Hf. volcanii* mevinolin resistance marker from pWL102. Likewise, to study tRNA-intron splicing *in vivo*, Nieuwlandt and Daniels (1990) have inserted the protector which allows transcription of tRNA gene clones inserted into sites downstream of this promoter region.

Holmes and Dyall-Smith (1990) have cloned a DNA fragment which confers resistance to novobiocin into a plasmid (pHK2) of *Haloferax* Phenon K, to form a selectable vector which can be maintained in both *Haloferax* Phenon K and its close relative *Hf. volcanii* (Dyall-Smith, personal communication). A shuttle vector replicatable in *E. coli* also has since been constructed. Further analysis of the novobiocin resistance marker reveals that it is in fact a mutant DNA gyrase B (gyrB)gene (Holmes and Dyall-Smith 1991).

Complementation of *E. coli* auxotrophs. Several biosynthetic genes (*hisA*, *hisI*, *argG*, *proC*, *trpB*, *trpA* and *purE*) have been isolated by complemention of *E. coli* auxotrophs with randomly cloned methanogen DNA (Wood et al. 1983; Cue et al. 1985; Hamilton and Reeve 1985a, b; Beckler and Reeve 1986; Weil et al. 1987; Morris and Reeve 1988; Sibold and Henriquet 1988). Similarities between the products encoded by the complementing genes and their *E. coli* counterparts vary. Complementation is possible because of the occasional incidence of fortuitous eubacterial promoters in the very A+T-rich intergenic spaces of some methanogenic strains (Wood et al. 1983; Bollschweiler et al. 1985; Cue et al. 1985). Perhaps any suboptimal expression of the methanogen genes and the potentially reduced activity of the gene products are compensated by the high copy number imposed by the *E. coli* cloning vectors.

3. Gene structure and function

Our knowledge of archaebacterial gene structure and function is, so far, largely based on comparison of archaebacterial sequences with their eukaryotic and eubacterial homologs. A small number of genes has been isolated by screening libraries of archaebacterial DNA cloned into *E. coli*, using immunological probes (antibodies raised against purified archaebacterial proteins), degenerate oligonucleotide probes (designed using peptide-sequence information of abundant proteins), heterologous gene probes (related eubacterial and eukaryotic genes) and occassionally by complementing \overline{Z} . *coli*

auxotrophs. Signals for gene expression are tentatively identified by looking for consensus sequences or recurring structural motifs flanking the termini of RNA transcripts. As more archaebacterial genes and their transcripts are analysed, the prediction of transcription and translation signals becomes more believable.

Gene structure. The universal genetic code is used in archaebacterial protein-coding genes, and codon usage is generally consistant with the G+C content of organisms. Ribosome-binding sequences (Shine-Dalgarno sequences which complement the 3'-terminal sequence of the 16S rRNA) are found in front of some, but not all, protein-coding genes characterized (Brown et al. 1989; Zillig et al. 1988). In some cases, transcription begins so close to the translation initiation site that an upstream Shine-Dalgarno sequences positioned in a hairpin loop structure within the coding region are suspected to facilitate ribosome binding (Betlach et al. 1986; Brown et al. 1989). In other cases, transcription begins sufficiently far upstream that the mRNA contains an untranslated leader -- a 74 nucleotide leader RNA at the beginning of the message for the *H. cutirubrum* L1-L10-L12 ribosomal proteins has been suspected to serve a regulatory function (Shimmin and Dennis 1989). A 111 nucleotide long untranslated leader RNA precedes the sequence which encodes the *H. halobium* surface glycoprotein and its leader peptide (Lechner and Sumper 1987; Sumper et al. 1990).

Introns. Many archaebacterial tRNA genes analysed contain introns in the vicinity of their anticodons, but none of the protein-coding genes characterized so far appears to have an intron (Kaine et al. 1983; Kaine 1987; Kjems et al. 1989; Wich et al. 1987; Daniels et al. 1985; Datta et al. 1989; Zillig et al. 1988). Introns are also found in the 23S rRNA gene of certain thermophilic archaebacteria. The 23S rRNA gene of *Desulfurococcus mobilis* contains a 622 bp intron, which encodes a 194 amino acid protein, within the highly conserved domain IV of the rRNA secondary structure model (Kjems and Garrett

15

11

1985). *Staphylothermus marinus* has two smaller introns: a 56 bp intron in domain VI and a 54 bp intron in domain V of the 23S rRNA gene (Kjems and Garrett 1991).

1

1

4

Promoter structure. The typical eubacterial RNA polymerase recognizes promoter sequence elements located 10 bp and 35 bp upstream of the transcript start site (Reznikoff et al. 1985). Transcription in eukaryotes, on the other hand, depends on 3 different types of RNA polymerases which do not generally share promoter recognition sequences. In the RNA polymerase II promoters, the consensus sequences "TATAT/_AAT/_A" exists 25 bp upstream of the transcription initiation site (Bucher and Trifonov 1986). Both the stable RNA genes and the protein coding genes of archaebacteria are transcribed by the same RNA polymerase, which resembles eukaryotic polymerases in sequence and in complexity (Huet et al. 1983, Puhler et al. 1989, Zillig et al. 1988).

A number of transcription initiation sites have been identified by primer extension and S1 nuclease protection experiments (see compilation by Zillig et al. 1988; Gropp et al. 1989). Transcription of messenger RNA typically begins very close to the translation start site (AUG). *In vitro* capping experiments have defined the initiation of *bop* (bacterioopsin) mRNA transcription to two bp upstream of the AUG (DasSarma et al. 1984). Similarily, the two transcripts encoding SSV1 viral proteins VP1, VP2 and VP3 are initiated from the same site eight bp upstream of the AUG (DasSarma et al. 1984; Reiter et al. 1988b).

Extensive comparison of the sequences upstream from the coding region of a variety of archaebacterial genes, including rRNA genes, tRNA genes and protein-coding genes (many of which are viral protein genes), revealed the presence of a short stretch of A-T rich sequences located about 25 bp upstream of the transcript start (Brown et al. 1989; Zillig et al. 1988; Gropp et al. 1989; Thomm and Wich 1988; Reiter et al. 1988b), very much like the eukaryotic pol II "TATA" promoter element, which is also located about 25 bp prior to the transcript start. The consensus sequence (commonly referred to as box A sequence) is believed to constitute the typical archaebacterial promoter. A second

element, weakly conserved in sequence (often TGC or TGA) but always located at or close to the site of transcription initiation, has been termed box B. Transcription often begins at the G residue in box B or at a nearby purine nucleotide (Zillig et al. 1988; Gropp et al. 1989).

Futhermore, RNA polymerase purified from *Methanococcus vannielii* binds and protects, in footprinting experiments, a specific region (upstream of an rRNA gene, a tRNA gene, the methyl reductase operon and the *hisA* gene) which extends from about 30 bp upstream to about 20 bp downstream relative to the transcript initiation site -- this region includes consensus box A and box B sequences (Thomm and Wich 1988; Brown et al. 1988; Thomm et al. 1989).

Genetic evidence that box A sequences are part of the archaebacterial promoter now exists. A single base subsitution generated an "up-promoter" mutant which overexpresses the gene for HMG CoA reductase in *Hf. volcanii* (see *Results and Discussion*). The mutant promoter sequence corresponds, in sequence and in location, to the box A consensus sequence of highly expressed halobacterial genes, and to the distal promoter element (DPE) defined by *in vitro* transcription analysis of engineered sequences upstream of the *Sulfolobus B12* rRNA operon (Reiter et al. 1990).

Reiter and colleagues have extensively mutagenized the sequences upstream of the *Sulfolobus* rRNA operon by insertions, deletions and linker substitutions (Reiter et al. 1990). They used a newly developed *Sulfolobus in vitro* transcription system (Hudepohl et al. 1990) to monitor changes in transcription initiation and efficiency. Linker substitution (including minor dinucleotide substitutions) in the DPE region (which encompasses box A) drastically reduces transcription efficiency *in vitro*. Alteration of the A-T composition of a region between -11 and -2 (which Reiter et al. [1990] called the proximal promoter element, or PPE) also affects transcription efficiency. The sequence TGC (box B) is not required for transcription efficiency but appears to be involved in

ł

ł

1.1

precise start site selection -- when a region containing box B is altered, transcription initiates at multiple sites.

Processing. Considerable effort has been directed towards understanding the processing of polycistronic stable RNA transcripts, but relatively little is known about processing and post-transcriptional modification of peptide-coding RNA transcripts, although polyadenylated RNAs (possibly messenger RNA) have been isolated from *Methanococcus vannielii* and *Hb. halobium* (Brown and Reeve 1985, 1986).

Archaebacterial rRNA and tRNA genes are often transcribed as a polycistronic transcript which is further processed into individual RNAs. The 16S and 23S rRNA are flanked by inverted repeats which could form double stranded stems of varying lengths containing the two small loops, separated on opposite strands by 3 to 4 bp, very much like the eubacterial RNaseIII recognition sites (Dennis 1986; Mankin et al. 1984; Hui and Dennis 1985; Chant and Dennis 1986; Jarsch and Bock 1985; Kjems and Garrett 1987; Kjems et al. 1987). This feature is absent only from the 16S RNA transcript of T. *acidophilum*, which is made independently of the 23S rRNA (Ree et al. 1989).

Processing of archaebacterial tRNA transcripts is virtually unexamined, except that ribonuclease P, the endonuclease which processes the 5'-end of a tRNA from its precursor, has been isolated from *Sulfolobus solfataricus* and from *Hf. volcanii* (Darr et al. 1990; Lawrence et al. 1987). Mature archaebacterial tRNAs contain many modified nucleotides and a terminal CCA which is not encoded by the gene.

The splicing mechanism of the *Desulfurococcus mobilis* 23S rRNA gene intron, at first glance, resembles those of the class III eukaryotic tRNA introns. Sequences flanking the rRNA intron splice site can be folded into a structure which resembles part of a tRNA, such that the intron is located in an anticodon-like loop in the rRNA (Kjems and Garrett 1988; Kjems et al. 1989). However such a tRNA-like structure is not found near the exon junctions of the two introns in the *Staphylothermus marinus* 23S rRNA gene (Kjems et al. 1989; Kjems and Garrett 1991).

The intron is precisely excised from the pre-23S RNA giving a 3'-terminal phosphate, and subsequently ligated to form a stable circular RNA *in vivo* (Kjems and Garrett 1988). *In vitro* precursor transcripts are efficiently cleaved, but poorly ligated (Kjems and Garrett 1988, 1991). Surprisingly, ceil extracts from a variety of archaebacteria species, which lack introns in their 23S rRNA gene, contain the cleavage enzyme (Kjems and Garrett 1988, 1991).

1

ł

ł

-

ţ

1

67X 340

1

A structural motif may be common to all archaebacterial intron cleavage sites. Comparison of the intron-exon boundaries of the *D. mobilis* and *S. marinus* 23S rRNA precursors with over ten other intron-containing tRNA precursors from *Desulfurococcus*, *Sulfolobus*, *Thermoproteus* and *Haloferax* (Kaine et al. 1983; Kaine 1987; Wich et al. 1987; Daniels et al. 1985; Kjems et al. 1989; Datta et al. 1989; Kjems and Garrett 1991) revealed that, in all cases, the cleavage sites are located within two three-nucleotide loops on opposite strands separated by four basepairs, reminiscent of the cleavage sites in the processing stem of the rRNA precursor (Thompson and Daniels 1988; Thompson et al. 1989; Kjems et al. 1989; Kjems and Garrett 1990). A similar structure is also observed at the splice site of the *Thermoproteus tenax* tRNA^{iMet} precursor, however, the sites are separated by three nucleotides, and the 5' cleavage site lies within a four nucleotide loop (Wich et al. 1987; Thompson et al. 1989).

This staggered loops structure is, in fact, recognized by an intron endonuclease in *Hf. volcanii*. Thompson and coworkers (Thompson and Daniels 1988; Thompson et al. 1989) isolated a *Hf. volcanii* enzyme preparation capable of excising the intron from the halobacterial tRNA^{Trp} precursor, as well as accurately cleaving an *in vitro*-generated tRNA^{Trp} precursor which lacks most of the intervening sequences and retains little more than the putative cleavage structure (opposing three nucleotide loops separated by four basepairs). The cleavage products have 5'-hydroxyl and 2',3' cyclic phosphate termini, the same as the those produced by *D. mobilis* and *S. marinus* rRNA intron cleavage, except that the 3'- phosphate is not cyclic (Kjems and Garrett 1988, 1991).

These similarities in splicing sites and mechanisms raise the possibility that the same enzymes splice the rRNA and tRNA introns in the archaebacteria. This would explain why crude cell extracts from archaebacteria lacking rRNA introns effectively carry out the cleavage of, and in the case of *Desulfurococcus mucosus* the splicing of, the *D. mobilis* rRNA intron (Kjems and Garrett 1988, 1991).

Termination signals. It is difficult to decide what an archaebacterial terminator looks like. Comparison of sequences and putative structures near the transcription termination sites of a number of stable RNA genes and protein-coding genes fails to reveal a common termination signal. Termination often occurs over a number of consecutive or scattered positions, as illustrated by the 3'-end heterogeneity in most transcripts defined by nuclease protection experiments (Auer et al. 1989b; Leffers et al. 1989; Shimmin and Dennis 1989; Kjems et al. 1987; Kjems and Garrett 1987; Muller et al. 1985; Reiter et al. 1988a). Transcription of *Hb. cutirubrum* L11 equivalent ribosomal protein gene stops at eight separate positions within 100 bp downstream of the stop codon, while the L12 equivalent ribosomal protein gene terminates at essentially a unique site (Shimmin and Dennis 1989).

Termination often, but not always, occurs within or near a segment of T-rich sequences (Kjems et al. 1987; Reiter et al. 1988a). As expected, A-T rich sequences are found close to the end of most, if not all, of the genes in methanogens which generally have DNA composition low ir G+C content (Bollschweiler et al. 1985). The *Methanococcus vannielii* rRNA operon and several tRNA transcriptional units terminate at the beginning of the sequence TTTTTAATTTT which bears resemblance to eukaryotic RNA polymerase III termination signals (Wich et al. 1986a, b; Cozzarelli et al. 1983). In addition, several genes for *Sulfolobus* SSV1 viral proteins terminate in pyrimidine rich sequences preceded by a stretch of T's (Reiter et al. 1988a). Similarly, the ribosomal protein L12 mRNA in *Hb. cutirubrum* ends at a short stretch of T's which is preceded by a G+C rich region which could not form secondary structure elements (Shimmin and Dennis 1989).

21

1

Inverted repeats, often found near termination sites, are sometimes imperfect, vary in length, and often followed by T-rich sequences. The *bop* gene transcript in *Hb*. *halobium* terminates over several positions immediately after a nearly perfect stem and loop structure, independent of T-rich sequences (DasSarma et al. 1984). Similarly, each of the multiple termination sites of the unlinked 5S rRNA operon in *Thermococcus celer* is located downstream of a stem and loop structure without neighbouring T-rich sequences (Culham and Nazar 1989). On the other hand, examples of genes which possess structural elements containing consecutive T residues following inverted repeats, similar to eubacterial rho-independent terminators (Rosenberg and Court 1979), are frequently spotted -- for example, the methyl reductase genes (for methanogenesis) in several methanogens and the unlinked ribosomal genes of *Thermoplasma acidophilum* (Bokranz et al. 1988; Cram et al. 1987; Sanangelantoni et al. 1990; Takao et al. 1989; Auer et al. 1989b; Ree and Zimmermann 1990). However, transcription through such a plausible terminator behind the *Hb. cutirubrum* rRNA operon into the downstream tRNA^{Cys} gene has been reported (Chant and Dennis 1986; Dennis 1986).

Furthermore, the lack of obvious structural motifs downstream of certain archaebacterial genes challenges the presumed function of all these putative structures as termination signals (Conover and Doolittle 1990; Hui and Dennis 1985; Kjems and Garrett 1987). Efficiencies of these putative structures in transcription termination have not been directly compared, although read-through transcription has been observed (Leffers et al. 1989; Chant and Dennis 1986; Culham and Nazar 1989). Further understanding of transcription termination (and other transcriptional processes) in archaebacteria requires a vector transformation system and an *in vitro* transcription system to allow *in vivo* and *in vitro* assessment of engineered transcription signals.

Gene expression and regulation. Many archaebacterial genes are inducible or regulated in response to external stimuli. For example, the expression of the *Hb*. *cutirubrum* superoxide dismutase gene is responsive to paraquat treatment, which

22

generates oxygen radicals in respiring cells (May and Dennis 1989; May et al. 1989). Similarly, the pattern of the *hisA* transcription changes in *M.voltae* cells exposed to aminotriazole, a chemical which derepresses histidine biosynthesis in *Salmonella* and in yeast (Sment and Konisky 1986). Purine analog-resistant mutants have recently been isolated from several species of methanogens (Bowen and Wh nan 1987; Knox and Harris 1988; Worrell et al. 1988; Nagle 1989; Worrell and Nagle 1990). These mutants should prove useful in studying the regulation of nucleotide biosynthesis and in developing pathway genetics.

The purple membrane in *Hb. halobium* and related species is produced constitutively at a low level under aerobic growth conditions. When oxygen tension is reduced and intense light is available, the cells grow photoheterotrophically, and synthesis is increased by 5 fold, covering 50% of cell surface with purple membrane (Oesterhelt and Stoeckenius 1973). Bacterio-opsin (bop) is the protein component of purple membrane. The mechanism by which environmental signals regulate *bop* expression is unclear. However, we do know that *bop* expression depends on two other genes which encode the bactero-opsin related protein (*brp*) and the bacterio-opsin activator protein (*bat*). The *bat* gene product may be a trans-acting factor which binds to the putative regulatory sequence upstream of *bop* and *brp* -- insertion of ISH elements into the *bat* gene or into the spacer between the oppositely transcribed *brp* gene and *bop* gene results in Bop⁻ phenotype (Betlach et al. 1984, 1986, 1989; Leong et al. 1988a, b).

Autogenous translational regulation of the tri-cistronic L1-L10-L12 mRNA in *Hb. cutirubrum* has been suggested, though no real experimental evidence has been provided (Shimmin and Dennis 1989). The 74 nucleotide long untranslated leader of the L1-L10-L12 mRNA contains a structure almost identical to part of the presumed L1-binding domain of the 23S rRNA. In *E. coli*, excess L1 protein not incooperated into ribosomes can bind to a L1-binding site-like structure in the 5' leader of the L11-L1 mRNA to stop its translation (Thomas and Nomura 1987). At this point, it is premature to guess how widely this putative regulatory mechanism is distributed among archaebacteria, although translational control has been suggested also for the L1-L1-L12 operon of *M. vannielii* (Baier et al. 1990). Of the small number of archaebacterial ribosomal protein operons sequenced, analyses have been focused on gene organization and sequence similarity with eubacterial and eukaryotic homologs (Shimmin et al. 1989b; Auer et al. 1989a 1989b; Leffers et al. 1989; Spiridonova et al. 1989; Kopke and Wittmann-Liebold 1989; Ramirez et al. 1989).

11

Regulatory regions upstream of the rRNA operon of *Sulfolobus* sp. B12 have been experimentally identified. Using a recently developed *Sulfolobus in vitro* transcription assay, Reiter and colleagues thoroughly analysed the sequences upstream of the 16S rRNA gene by linker scanning experiments and deletion analysis (Reiter et al. 1990). They observed a weak positive regulatory region between positions -354 and -190, upstream of the distal and proximal promoter elements described above, and more significantly a negative regulatory sequence between position -93 to -38. Deletion of this negative regulatory region leads to an increase of up to 4 fold in transcription efficiency.

Other than these specific examples, and the guesses at regulatory signals prompted by scattered sequence homologies in front of some archaebacterial genes (Daniels et al. 1986; May and Dennis 1989; Shimmin et al. 1989a), gene regulation in archaebacteria is largely unexplored. However, the structural genes for several potentially regulated systems (such as biosynthetic pathways, methanogenesis and nitrogen fixation in the methanogens and phototaxis in certain halophiles) have been isolated, and should provide useful starting points for investigation.

H. halobium has three flagellin glycoproteins which are encoded by a multigene family of five structural genes, arranged in clusters of two (*fla A1 and A2*) and three (*fla B1, B2* and *B3*). The amino acid sequences deduced from these 5 genes are very similar, but exhibit variability in several regions (Gerl and Sumper 1988). Although the regulation

of flagellin synthesis is unexplored, flagella switching in response to phototaxis stimuli has been demonstrated.

Phototaxis in *H. halobium* is mediated by two retinal-containing chromoproteins, sensory rhodopsin (SR) I and II (Spudich and Bogomolni 1988). Signal transduction is mediated by a methylation/demethylation system through photoactivation of SR-I in either its attractant or repellent signaling form, as well as through the repellent receptor SR-II. An SR-I⁺SR-II⁺ culture releases methyl groups when either SR-I or SR-II is stimulated, while an SR-I⁻SR-II⁺ mutant lacking a 25-kDa chromophoric protein and a 94-kDa methyl-accepting protein fails to respond to SR-I stimulation. Similarly, no response is seen in an SR-I⁻SR-II⁻ mutant which lacks both receptors (Spudich et al. 1989). The gene for SR-I has recently been cloned (Blanck et al. 1989), and the amino acid sequence deduced from the gene sequence can be arranged to conform to the secondary structure models previously developed for halobacterial light-driven ion pumps bacteriorhodopsin and halorhodopsin (Oesterhelt and Tittor 1989; Blanck and Oesterhelt 1987; Lanyi et al. 1990).

ì

.....

ł

Several species of methanogens can fix nitrogen and contain DNA sequences homologous to the *nifH* gene (which encodes the nitrogenase iron protein) from *Klebsiella pneumonae* and *Anabaena* strain 7120 (Murray and Zinder 1984; Belay et al. 1984; Sibold et al. 1985; Souillard and Sibold 1986; Scherer 1989; Lobo and Zinder 1990). The putative *nifH* genes from *Methanococcus thermolithotrophicus*, *Methanobacterium ivanovii* and *Methanococcus voltae* have been cloned and sequenced, and show similarites to eubacterial NifH proteins at the amino acid sequence level (Souillard et al. 1988). Surprisingly, the methanogen sequences appear to be as distant from one another as they are from the eubacterial sequences (Souillard et al. 1988; Normand and Bousquet 1989). A plasmid carrying *M. voltae nifH* does not complement *K. pneumoniae nifH* mutants. A second region homologous to *Anabaena nifH* was detected in *M. thermolithotrophicus*. This region contains five open reading frames (ORFs), three of which could encode

proteins similar to eubacterial NifH, NifD and NifK (the structural components of nitrogenase), (Souillard and Sibold 1989). The product of this second nifH gene is more similar to the *Clostridium pasteurianum* NifH3 protein and the *Azotobacter vinelandii* NifH3 protein, than it is to the first NifH protein of *M. thermolithotrophicus* -- raising questions of its origin. The *nifH* gene is physically separated from *nifD* (and *K*) by two ORFs which could encode proteins significantly similar in sequence, and is transcribed separately from *nifD* (and *K*). Expression of *nifD*, *K* and the second *nifH* are responsive to nitrogen-fixing conditions, but the first *nifH* gene is not transcribed. How nitrogenase production is regulated in *M. thermolithotrophicus* is still unclear.

4. To develop molecular genetics

.]

Reason. The value of genetic tools in dissecting biological systems is obvious. The emphasis here is on the urgency for development, as the comparative approach for predicting archaebacterial gene structure and function has reached its potential. Further cloning and sequencing of archaebacterial genes can add little insight into the biological function of predicted open reading frames, putative secondary structures and consensus sequences alike. Deeper understanding demands the development of reliable techniques which allow us to do archaebacterial genetics in archaebacteria (Lam et al. 1990a).

Hf. volcanii as a model host. Halophilic archaebacteria can be easily maintained at moderate temperatures, and require no elaborate growth facilities. *Hb. halobium*, the best studied of the halophiles (primarily because of the tremendous interest in its light-harvesting bacterio-opsin system and because of its unusually high genetic variability), was initially chosen for the development of a transfection protocol.

We (our laboratory) have decided to adapt this protocol for *Hf. volcanii* which we hope to become a model for the archaebacteria (or at least for the halophiles). *Hf. volcanii* has fewer insertion sequences than *Hb. halobium*, and therefore is believed to be more genetically stable (Charlebois and Doolittle 1989). Natural mating and protoplast fusion
have been demonstrated by Mevarech and coworkers (Rosenshine et al. 1989). Wild-type *Hf. volcanii* is able to synthesize all 20 amino acids plus nucleotides, because it can grow on defined medium with ammonia as the sole nitrogen source. Mevarech and Werczberger (1985) showed that adenine-, serine-, methionine- and proline-requiring mutants can be generated by means of EMS treatment.

-

٠,

Rationale of the work reported here. Molecular genetics hinges on the ability to introduce exogenous DNA into a cell, so transformation technology is a priority. A vector system is necessary to facilitate DNA transfer -- preferably, a shuttle vector system that allows direct selection in *E. coli* and in halophiles for cloning archaebacterial genes, and for reintroducing genes altered *in vitro* for functional analyses. Using the endogenous plasmid pHV2 and a strain of *Hf. voicanii* cured of this plasmid, a host vector system was developed (see *Results and Discussion*). The pHV2-based shuttle vectors are marked by mevinolin resistance in *Hf. volcanii* and ampicillin resistance in *E. coli*. These vectors efficiently transform *Hf. volcanii* using a protocol modified from that used to transfect *Hb. halobium*. Isolation of the mevinolin resistance marker has subsequently led to the characterization of the *Hf. volcanii* HMG CoA reductase gene and its promoter, as well as revealing the mechanisms for drug resistance.

Efficient transformation of *Hf. volcanii* allows the development of gene replacement techniques which have proven so useful in targetting foreign DNA into yeast chromosomes, and in simple strain construction in eubacteria. Genes, isolated using the vector transformation system, provided the necessary genetic markers for replacing the *trpB* gene on the *Hf. volcanii* chromosome with the imported mevinolin resistance gene (see *Results and Discussion*).

Methods for genetic mapping are essential for linkage analysis, which is instrumental in elucidating operon structure and genome organization in eubacteria. Newly developed technologies (namely, the ability to generate auxotrophic mutants using ethyl methanesulfonate, the ability to transform auxotrophs to prototrophy using cosmid clones, and the ability to clone genes using shuttle vectors) permit direct mapping of genetic loci to individual cosmid clones. An ordered set of cosmids has been assembled, in our laboratory, in preparation of a restriction map of the *Hf. volcanii* chromosome (Charlebois et al. 1989; Conover and Doolittle 1990; Lam et al. 1990b). Fine-scale mapping could be achieved by further transformation experiments using subfragments of the cosmid clones containing the gene of interest.

In this thesis, I will describe the development of (i) techniques for introducing plasmid DNA into spheroplasts of *Hf. volcanii*, (ii) shuttle-vectors selectable in *E. coli* and *Hf. volcanii*, (iii) methods for host strain construction by direct manipulation of the chromosome and (iv) methods for mapping genetic markers to the chromosome. Tryptophan (*trp*) biosynthesis is used as a model system to test and to refine the genetic tools developed for *Hf. volcanii*. These tools have been applied to begin a preliminary description of genetics in *Hf. volcanii* at the gene, operon and chromosomal level.

MATERIALS AND METHODS

This section of the thesis describes general methods used throughout my work. Techniques applied to specific experiments are described in the relevant sections in *Results and Discussion*.

Materials. Restriction endonucleases, T4 DNA ligase, nucleases, polymerases, and avian myeloblastosis virus (AMV) reverse transcriptase were purchased from Boehringer Mannheim, New England Biolabs ar 1 Pharmacia. Nucleotides were also from Pharmacia. Radioactively labeled nucleotides were either synthesized by J. D. Hofman or purchased from Amersham, Dupont or ICN Biochemicals. Solvents, organic and inorganic reagents came from Anachemia, Sigma and BDH chemicals. Ingredients for growing bacteria were obtained from Difco and Sigma. Mevinolin (1,2,6,7,8,8a-hexahydro-b,d-dihydroxy-2,6-dimethyl-8-[2-methyl-1-oxobutoxyl-1-naphthalene heptanoic acid d-lactone, Alberts et al. 1980) was generously provided by A. Alberts of Merck, Sharp and Dohme International.

Halophile strains, plasmids and phage. Bacteriophage ϕ H and its natural host *Hb. halobium* R1 were obtained from W. Zillig, Max-Planck-Institut fur Biochemie, Martinsried. *Hf. volcanii* DS2 (from C. R. Woese, University of Illinois) contains at least two plasmids, including the 90 kbp pHV1 and the 6 kbp pHV2 (Pfeifer et al. 1981). WFD11, a strain cured of pHV2, was derived from DS2 after exposure to ethidium bromide (Charlebois et al. 1987). Auxotrophic and drug resistant mutants are listed and described in the appropriate sections in *Results and Discussion*.

Culture conditions. Both *Hb. halobium* and *Hf. volcanii* cells were grown in minimal or rich medium previously described by Mevarech and Werczberger (1985), except that Tris-HCl, pH 7.2 was added to a final concentration of 50mM and the concentration of CaCl₂ was increased to 7 mM. When necessary, minimal medium was supplemented with specific amino acids (50mg/L) or nucleotides (25mg/L). Mevinolin-resistant *Hf.*

volcanii strains were maintained on minimal medium containing 10 μ M mevinolin or on rich medium with 40 μ M inhibitor. Cultures were incubated at 42°C for agar plates and at 37°C for liquid media with vigorous shaking (at 110 rpm on a platform shaker).

Chemical mutagensis. Typically, a 30 ml culture of *Hf. volcanii* WFD11 (at OD₆₀₀ of 1) was harvested by centrifugation, and resuspended in 30 ml of a salt solution (containing, per liter, 206 g of NaCl, 37 g of MgSO4·7H₂O, 4 g of KCl) with 0.2M Tris-HCl pH7.2. One milliliter cell suspensions were shaken with 10 μ l of liquid EMS or 0.5 μ l of MMS, or with no mutagen, at 37°C for varying lengths of time. Mutagenesis treatment was terminated by the addition of 40 ml of medium salts. Washed cells were allowed to grow in rich medium for one day, and then diluted and plated onto rich agar medium. Percent survival is calculated using the number of recovered colonies in chemical-treated and untreated experiments (figure 1).

DNA preparations. To obtain genomic DNA, actively growing cells were harvested by centrifugation (at $3,300 \ge g$ for 15 minutes). Cell pellets were resuspended and lysed in one half growth volume of 10 mM Tris-HCl, pH 8.0/1mM EDTA and extracted twice with phenol. DNA remaining in the aqueous phase was then either spooled into ethanol or precipitated with two volumes of ethanol without addition of any ammonium or sodium salts, and dissolved in buffer.

Phage ϕ H DNA was isolated according to the description by Schnabel et al. (1982). Phage particles were precipitated from filtered lysates with polyethyleneglycol (PEG 6000) and further purified twice on cesium chloride gradients. Phage DNA was obtained by solvent extractions followed by extensive dialysis.

Plasmid DNA was isolated from *Hf. volcanii* typically by alkaline extraction (Maniatis et al. 1982). When necessary, plasmid preparations were further fractionated by rate zonal centrifugation (on 10-40% sucrose gradients prepared in 1M NaCl/5mM EDTA/20mM Tris-HCl pH 8) to separate the contaminating 90kbp endogenous pHV1 from the plasmid of interest.

1

1

Tir le of exposure (min)

Figure 1. Conditions for mutagenesis. An exponentially growing culture (approximate OD₆₀₀ of 1) was pelleted and resuspended in a solution of medium salts with 0.2M Tris-HCl pH7.2 (to the same cell density). One milliliter cell suspensions were shaken with 10 μ l of liquid EMS or 0.5 μ l of MMS, or with no mutagen, at 37°C for varying lengths of time. Mutagenesis treatment was terminated by the addition of 40 ml of medium salts. Washed cells were allowed to grow in rich medium for one day, and then, diluted and plated onto rich agar medium. Percent survival is calculated using the number of recovered colonies in chemical-treated and untreated experiments.

Spheroplast preparation. Exponentially growing cells (between 1 to 1.5 A_{600}) were pelleted and resuspended in spheroplasting solution. Spheroplasting solution for *Hb*. *halobium* contained 2M NaCl, 27mM KCl, 50mM Tris-HCl (pH 8.75) and 15% sucrose. Spheroplasting solution for *Hf*. *volcanii* contained 1M NaCl, 25mM KCl, 50mM Tris-HCl (pH 8.2) and 15% sucrose. (*Hf*. *volcanii* grows optimally at a lower NaCl concentration.) Cells resuspended in spheroplasting solution plus 15% glycerol could be frozen and stored at -70°C (Cline et al. 1989a).

Transformation of Hf. volcanii spheroplasts. Input DNAs were prepared in 125mM EDTA, pH 8, typically by adding 5 μ l of 0.5M EDTA (pH 8.0) to 15 μ l DNA samples (including ligation mixtures). The presence of carrier RNA in the DNA sample does not interfere with transformation. Five minutes after the addition of DNA (20 µl) to the spheroplasts (220 μ l), an equal volume (240 μ l) of polyethylene glycol solution [60% purified PEG 600 (v/v) in spheroplasting solution] was blended into the spheroplast-DNA mixture by repeated gentle inversions. After a further 5 to 20 minute incubation at room temperature, 1 ml of regeneration salt solution [3.5M NaCl, 150mM MgSO₄, 50mM KCl, 7 mM CaCl₂ 50mM Tris-HCl (pH 7.2), 15% sucrose (w/v)] was added to the 480 µl transformation mixture. Cells were pelleted by centrifugation at 6,500 rpm for 7 minutes at room temperature in an MSE microcentrifuge. In cases that require time for gene expression, cell pellets were resuspended in 1 ml of rich medium containing 15% sucrose and incubated for 6-12 hours at 42°C before plating. 100 µl samples of the appropriate dilutions were mixed with 3 ml of top agar [medium containing 0.7% agar and 15% sucrose (w/v), kept at 60°C], and poured onto selective agar plates. Mevinolin, when necessary, was added to the top agar to a final concentration of 10µM. Mevinolin resistant transformants appears after 10 to 14 days incubation.

Transfection with ϕ **H DNA.** EDTA, phage DNA and PEG solution were sequentially incubated with the spheroplasts as above. A 200 µl inoculum from an *Hb*.

halobium R1 culture was added to each 3 ml of top agar to provide an indicator lawn (for *Hf. volcanii* and *Hb. halobium* transfectants -- since ϕ H will not infect *Hf. volcanii*). **PEG purification.** The quality of polyethyleneglycol affects transformation efficiency. PEG 600 purchased from Sigma is routinely purified by a method modified from that described by Klebe et al. (1983). PEG 600, dissolved in benzene, was extracted three times with equal volumes of isooctane. PEG was then precipitated from these solvents simply by chilling on ice. Repeated liquid extractions with ether at room temperature rid the PEG of residual benzene and isooctane. Residual ether was evaporated at 60°C in a waterbath.

Transformation using cosmid DNA pools. A multiplex system was devised to handle the large number of transformation mapping experiments. Procedures were carried out at room temperature. Three hundred μ l of 0.5M EDTA, pH8.0 was added to 2.4 ml of frozen Hf. volcanii spheroplasts of each auxotroph. Eighty µl aliquots of the mixtures were dispensed into 27 microtiter wells containing about $2\mu g$ of DNA dissolved in 0.1M EDTA. The DNA preparations were pools of cosmid DNAs, constructed in such a way that each of 154 cosmids was present in two of 25 different pools. Two control transformations -- no DNA and wild-type Hf. volcanii DNA, were included. Nivety µl of a PEG solution [60% PEG600 (vol/vol)/0.4M NaCl/10mM KCl/ 6% sucrose(wt/vol)/50mM Tris-HCl, pH7.5] was then added, and mixed by gentle pipetting with a multi-channelled pipettor, to prevent cell lysis. Transformation was terminated by adding 90µl of regeneration solution (described above). One tenth volume of each transformation mixture (containing about 10⁸ spheroplasts) was plated in top agar onto minimal agar plates. The small amount of PEG600 and EDTA carried over does not noticeably hinder the regeneration of spheroplasts. Transformants appear after 7 to 10 days.

Recombinant DNA manipulations in *E. coli*. Molecular cloning and analysis of cloned DNA, unless otherwise specified, were performed using standard methods

(Maniatis et al. 1982; Messing 1983; Sambrook et al. 1989). Transformation of *E. coli* cells was carried out according to the method of Chung and Miller (1988).

Hybridizations. DNAs immobilized to GeneScreen PlusTM hybridization transfer membrane or Colony/Plaque ScreenTM (Dupont) were hybridized with ³²P-labeled DNA probes under conditions recommended by the manufacturer. Conditions for experiments using labeled oligonucleotides as hybridization probe are described by Zeff and Geliebter (1987). Plasmid DNA probes were labeled with $[\alpha^{32}P]$ dATP or $[\alpha^{32}P]$ dGTP by nicktranslation (Maniatis et al. 1982) and by random priming (Feinberg and Vogelstein 1983; 1984). M13 probes were synthesized from universal primers which anneal to sequences upstream or downstream of the polylinker region in M13 (Messing 1983). Synthetic oligonucleotides were labeled with $[\gamma^{32}P]$ ATP using polynucleotide kinase (Geliebter 1987).

ţ

Ì

£

ł

ĩ

ł

ſ

1

Deletion analysis. Specific sections of pHV2-based plasmid clones were deleted with various combinations of restriction endonucleases. After removing the 3'-overhangs using T4 DNA polymerase and filling in the 3'-recessed ends using the Klenow fragment of DNA polymerase (Maniatis et al. 1982), these DNA samples were separately self-circularized at 0.1 μ g of DNA in 300 μ l, using 3 units of ligase, under conditions recommended by the manufacturer. Plasmids retrieved from transformed *E. coli* DH5 α were analysed for altered restriction patterns. Various deleted forms were tested for their ability to transform *Hf. volcanii* strains to give the expected phenotype.

DNA sequencing and computer analysis. DNA fragments were subcloned into M13 vectors (M13 um vectors from International Biotechnologies Inc. and M13 tg vectors from Amersham). Ordered sets of deletions were generated using ExoIII nuclease (Henikoff 1984) and Mung bean nuclease. Both strands were sequenced by the dideoxychain termination method (Sanger et al. 1977) using the Taquenase system (US Biochemicals, Ohio). Deoxyguanosine triphosphate was replaced by its 7-deaza-analog in

all sequencing reactions. Sequencing reaction products were resolved on polyacrylamide gels containing either 50% urea (w/v) or 85% formamide (v/v) as denaturant.

DNA sequences were analyzed for open reading frames, direct and inverted repeats and base composition using standard software (Queen and Korn 1984; Marck 1988). Data bank searches were carried out with FASTA (Pearson and Lipman 1988) and with Microgenie from Beckman (Queen and Korn 1984). Deduced amino acid sequences were aligned using MULTALIN software of Corpet (1988).

RNA isolation and transcript analysis. RNA was prepared from early-to mid-logphase cultures. Typically, a 40 ml culture (between $0.4-0.6 \text{ OD}_{600}$) was chilled and centrifuged at 10,000g for 5 minutes. Chilled cell pellet was suspended in 0.5 ml of medium salts [3.5M NaCl, 150mM MgSO₄, 50mM KCl, 7mM CaCl₂, 50mM Tris-HCl (pH 7)], lysed in a guanidiniun-sarcosyl solution, extracted with acidic phenol and chloroform and precipitated repeatly with ethanol, according to the method described by Chomczynski and Sacchi (1987). RNA pellet was dissolved in 0.1M sodium acetate/5mM MgSO₄,pH5 and digested with RNase free DNaseI. After phenol extractions and ethanol precipitations, a sample of the dissolved RNA was checked on a 1.2% agarose gel. Primer extension experiments were performed as described by Geliebter (1987) using AMV reverse transcriptase but without actinomycin D.

RESULTS AND DISCUSSION

I. Developing genetic tools

1. Plasmid transformation

The first demonstration of plasmid transformation was the result of the joint effort between a former graduate student and myself (Charlebois et al. 1987). Charlebois provided the sequence of pHV2, a cloned pHV2 probe and a strain of *Hf. volcanii* cured of pHV2 by ethidium bromide treatment. (This cured strain is referred to as strain WFD11.) pHV2 becomes the logical choice to attempt transformation, even though pHV2 does not confer any readily detectable phenotype other than its existence.

Demonstrating plasmid transformation. We used the procedure described for transfecting *Hb. halobium* with phage ϕ H DNA (Cline and Doolittle 1987), except with reduced NaCl, to transform *Hf. volcanii* WFD11 with 0.1µg of pHV2 (made from *Hf. volcanii* to avoid any complications caused by the host restriction systems). Regenerated colonies, which appeared after 10 days to 2 weeks of incubation, were transferred with tooth picks to fresh agar plates. Of the 10,100 colonies picked, 18 gave a positive hybridization signal with ³²P-labeled-cloned-pHV2 probe after colony lifting (methods given in detail in Charlebois et al. 1987). Further analysis of DNA extracted from these 18 potential transformants verified that 17 of them contained a plasmid of 6.4 kbp. These results were extrapolated to provided an optimistic estimation of transformation efficiency of 10⁷ transformants per µg of pHV2, with 2% of the regenerated spheroplasts expected to be transformed.

Confirmation experiment. To rule out the possibility of contamination by pHV2harbouring cells during transformation, these experiments were repeated using a "tagged" plasmid. The marked plasmid pHV2 Δ 93 was constructed *in vitro* from native pHV2

J

Figure 2. *Hf. volcanii* plasmid pHV2. Arrows indicate the 4 major ORFs predicted by the nucleotide sequence of pHV2 (see Charlebois et al. 1987). Restriction sites relevant for later vector construction, as well as the artificially introduced deletion between the 2 SnaBI sites to generate pHV2 Δ 93 are indicated. Insertion of an ISH51 element into ORF 3, detected in a natural variant called pHV51, does not interfere with plasmid replication and maintenance.

DNA by deleting a 93 bp SnaBI fragment from the spacer region between ORF 2 and ORF 3 of pHV2 (figure 2). Transformation of WFD11 with 25 ng of circular pHV2 Δ 93 yielded two positive transformants out of the 1300 regenerated colonies screened by hybridization. Southern analysis confirmed that these two transformants both contained the expected plasmid with the specific 93 bp deletion (Charlebois et al. 1987).

2. Development of shuttle vectors

-

1

ļ

1

}

ł

Selectable marker. Determinants available for direct selection of transformants are few; archaebacteria are insensitive to most of the antibiotics used in eubacterial vector-host systems. In 1986, Cabrera and coworkers reported that mevinolin, an inhibitor of eukaryotic HMG CoA reductases, also strongly inhibits this enzyme in halobacterial extracts, and prevents growth of Hb. halobium in liquid media (Cabrera et al. 1986). Hf. volcanii is also sensitive to mevinolin (figure 3A), and cell growth is completely inhibited at mevinolin concentrations of 1-2 μ M and 20-40 μ M on plates of minimal and rich agar respectively. Mevalonic acid, the product of the HMG CoA reductase catalyzed reaction, prevents mevinolin inhibition (figure 3B). Mutant colonies resistant to the drug appear spontaneously at a frequency of about one in 10^9 cells plated (figure 3C) and grow well at mevinolin concentrations up to 100 μ M on minimal plates. I concluded that mevinolin resistance, if it were due to a stable genetic mutation and could be genetically transferred to sensitive cells, might be employed as a selectable marker for *Hf. volcanii* plasmid vectors. Transformation experiments with genomic DNA from mevinolin-resistant mutants. DNAs from four spontaneous mevinolin-resistant mutants (isolated independently from minimal plates with 40 μ g/ml mevinolin) were pooled and used in transformation experiments with spheroplasts of Hf. volcanii WFD11, as described in Materials and Methods. After 6 hours in rich medium to allow for gene expression, cells

Figure 3. Mevinolin inhibition of *H. volcanii*. (A) shows concentration-dependent growth inhibition of *Hf. volcanii* by mevinolin in minimal liquid medium. Mevinolin (mev) concentrations are indicated. (B) shows the effect of mevalonic acid on mevinolin inhibition. Concentrations of mevinolin (mev) and mevalonic acid lactone (mva) are given in μ M. (C) Frequency of spontaneous mutants resistant to mevinolin was determined by spreading a known number of wild-type *Hf. volcanii* cells on solid agar med¹; m containing various concentrations of mevinolin

:

were plated on minimal regeneration medium containing 10 µM mevinolin. After ten days on plates, resistant transformants were found at frequencies of approximately $4x10^3$ per μ g DNA -- more than 2,000 colonies among 1-2 x10⁹ regenerated spheroplasts, when 0.5 µg of total high-molecular-weight DNA from resistant cells was used (for instance, see Table 1). Control transformations (wild-type or no DNA) yielded resistant colonies at a frequency of 1-5 among 10^9 regenerated spheroplasts, the same as the mutation frequency observed with intact cells. Thus, mevinolin resistance is heritable, and can be transferred. Isolation of mevinolin resistance marker. A rare variant of pHV2, pHV51, was used as a vector. pHV51 was fortuitously detected during plasmid screening of different colonies of Hf. volcanii strain DS2. It resulted from the insertion of a single copy of the transposable element ISH51 at about position 5,500 of the pHV2 sequence near the unique KpnI site within ORF 3 (refer to figure 2 above). A cloned ISH51 probe (Hofman et al. 1986) hybridizes to pHV51. Purified pHV51 and the cloned probe gave identical hybridization patterns against digested genomic DNA. The inserted ISH51 provides convenient sites for cloning with MluI and EcoRI, and further insertions into the ISH51 moiety of pHV51 seem unlikely to disrupt functions essential for plasmid maintenance. Pfeifer has recently published the sequence of the ISH51 element in pHV2 (Pfeifer and Blaseio 1990).

pHV51 DNA was isolated from *Hf. volcanii* cultures, digested with MluI and ligated with MluI-digested DNA from mevinolin-resistant cells. Spheroplasts of *Hf. volcanii* WFD11 were transformed with such ligated DNA preparations (the "MluI library") and plated on minimal agar containing mevinolin. Transformants were readily obtained, with the DNA preparation ligated with pHV51 showing about three times as many transformants as a DNA preparation partially digested with MluI but not ligated to MluI-digested pHV51. Transformants were screened by colony hybridization with

			mevinolin resistant
			transformants
Source of DNA	<u>µg DNA</u>	<u>a ansformants</u>	per microgram
none	400 AND 100	<101	
mevinolin res.*	0.5	2.2 x 10 ³	4 x 10 ³
M3	0.02	2.3 x 10 ⁶	1 x 10 ⁸
M3 - PstI+	0.02	1.3 x 10 ⁴	6 x 10 ⁶
M9 (pWL2)#	0.015	1.5 x 10 ⁶	1 x 10 ⁸
M9 - PstI+	0.015	1.9 x 10 ⁴	1 x 10 ⁶
M9 - HindIII+	0.015	1.4 x 10 ⁴	9 x 10 ⁵
M10	0.005	2.8 x 10 ⁵	6 x 10 ⁷
M10 - HindIII+	0.005	2.6 x 10 ³	5 x 10 ⁵

Table 1. Transformation of WFD11 with mevinolin resistance-conferring plasmids from an MluI library.

Spheroplasts of strain WFD11 (cured of pHV2) were incubated with total cellular DNA from mevinolin resistant cells ("mevinolin res.") or plasmid DNA preparations and polyethylene glycol, as described in Materials and Methods, and plated on minimal agar in the presence of 10 μ g/ml mevinolin, in serial ten-fold dilutions. At least 100 colonies at the appropriate dilution were counted for each transformation (except "no DNA" control).

* DNA from four spontaneous mevinolin-resistant strains, mixed in equal proportions. Source of DNA for preparation of MluI library.

+ DNA digested to completion with indicated restriction endonuclease, to linearize plasmid, before transformation.

[#] The plasmid borne by strain M9 was designated pWL2.

]

£

labeled pHV2 DNA; most had reacquired pHV2-related sequences simultaneously with resistance.

To show that these hybridization-positive transformants bore independentlyreplicating plasmids with chromosomal DNA inserted into pHV51, plasmid DNAs were made from them. In some cases these plasmids bore more than a single inserted MluI fragment, but all of the 24 tested did carry a common 7.9 kbp MluI fragment (figure 4). The 7.9 kbp MluI fragment from the plasmid borne by one such transformant, designated M9 in figure 4, was used to probe the total DNA of two independent transformants, M3 and M10, and itself. Strong hybridization signals confirmed that the cloned fragments were identical (figure 4C, 4E).

Plasmids were also detected in mevinolin-resistant transformants obtained when WFD11 was transformed with a library prepared with KpnI-digested DNA from mevinolin-resistant cells and KpnI-digested pHV2. These contained large (>20 kbp) insertions, and have not been characterized further.

When plasmids from mevinolin-resistant transformants such as those designated M3, M9 and M10 in figure 4 were isolated and used once again to transform WFD11, mevinolin-resistant colonies were obtained at frequencies between 5 and 10 x 10^7 per µg DNA, 10,000-fold higher than the frequency obtained with uncloned total DNA from resistant cells (Table 1). Presumably, this increase reflects primarily the over one-thousand-fold enrichment provided by cloning, although the fact that plasmid-borne markers need not be integrated into the chromosome to be expressed, and that circular DNAs may be more easily taken up (and/or recombined into the chromosome) may well also partly explain this. When plasmids from M3, M9 or M10 were linearized by digestion with PstI or HindIII (which cut once within pHV51 and not within the inserted mevinolin-resistance fragments; Table1), transformation frequencies dropped about 100-fold.

Figure 4. Characterization of mevinolin-resistant transformants obtained with MluI library. (A) Total DNAs from transformants M3, M9 and M10 (see Table 1), WFD51(which contains pHV51) and WFD11(which has been cured of pHV2) were digested with HindIII and resolved on a 0.5% agarose gel. H λ indicate HindIII digested λ DNA as size markers. (B) The gel shown in A, blotted and probed with ³²P-labeled pHV2 DNA. (C) A duplicate blot probed with a 7.9 kbp Mlu fragment of chromosomal DNA excised from the mevinolin-resistance-conferring plasmid extracted from strain M9. Dark arrow indicates position of faintly-hybridizing band (visible on darker exposures) we assume to be the homologous chromosomal region of the recipient, which would be present in 6-fold fewer copies (Charlebois et al. 1987). (D) Plasmid DNAs isolated from mevinolin-resistant transformants, digested with MluI plus PstI, and resolved on a 0.7% agarose gel. (E) The gel shown in D, blotted and probed with the same 7.9 kbp MluI fragment described in C above.

Construction and transformation of shuttle vectors. Plasmids from transformants M3, M9 and M10 (see above) can be used as selectable vectors for cloning into *Hf. volcanii*, though recovery of these low copy number plasmids from *Hf. volcanii* is inefficient. For further development of a shuttle vector the mevinolin resistance-conferring plasmid pWL2 borne by strain M9 was selected as starting material. A restriction map of pWL2 is shown in figure 5A; the chromosomal insertion determining resistance is 7.9 kbp, and pWL2 has unique sites for NheI, PstI, SpeI, DraIII and HindIII. EcoRI and SnaBI insertions can also be made easily.

. 📐

t

-

Hybrid vectors for transformation into *E. coli* were prepared by ligation of pWL2 with the pBR322 derivative pAT153 (Twigg and Sherratt, 1980), which lacks 622 bp of pBR322, but retains its ampicillin- and tetracycline-resistance determinants. These hybrid constructs are also shown in figure 5A. For pH455, HindIII-digested pWL2 was ligated with HindIII-digested pAT153 (disrupting its tetracycline-resistance determinant). In p74, the ampicillin-resistance gene is disrupted by ligation of PstI-digested plasmids. Plasmids pE3- and pE3+, obtained by ligation of EcoRI-digested plasmids, retain both resistance determinants, and differ in the orientation of their pAT153 moieties.

Competent *E. coli* DH5 α cells were transformed with the hybrid constructs shown in figure 5A. Plasmids were prepared from the ampicillin- or tetracycline-resistant *E. coli* transformants obtained and used to transform *Hf. volcanii* WFD11 spheroplasts, selecting for resistance to mevinolin (Table 2). As one control, I "reconstructed" pWL2 *in vitro* by HindIII digestion of *E. coli*-propagated pH455, removal of pAT153, and religation. (This plasmid, designated p Δ AT in Table 2) should lack modifications characteristic of DNA prepared from *Hf. volcanii* cells.) With p Δ AT, or with any of the constructs containing pAT153, mevinolin-resistant transformants were obtained at frequencies of about 10⁴ per microgram DNA. When DNA was prepared from such transformants, plasmids of approximately 20 kbp (the expected size) were detected.

Figure 5. Construction of shuttle vectors. (A) shows the restriction maps of pWL2 and hybrids constructed with pWL2 and pAT153. pWL2 is the mevinolin-resistance-conferring plasmid isolated from transformant M9. Solid shading indicates pHV2 sequence, hatched shading indicates ISH51 sequence, and the dotted region is the mevinolin-resistance-conferring Mlul fragment of chromosomal DNA. The unshaded region in pH455, p74 and pE3+/pE3- is the pBR322 derivative pAT153, linearized with HindIII, PstI or EcoRI, respectively, and ligated into the corresponding sites on pWL2. (B) shows the construction of pWL101. The mevinolin-resistance fragment was excised from pH455 with MluI, to produce pH455ΔM. This was digested with BamHI and SphI, and ligated with BamHI-SphI digested M13-tg131-mev, which was obtained by ligation of the 3.5 kbp KpnI/SphI mevinolin resistance determinant of pE3+ into M13-tg131 vector from Amersham. Restriction endonuclease designations, in this and subsequent figures are: B, BamHI; C, ClaI; D, DraIII; E, EcoRI; H, HindIII; K, KpnI; M, MluI; Nc, NcoI; Nh, NheI; P, PstI; Spe, SpeI; Sph, SphI; Sm, SmaI; Sn, SnaBI; Ssp, SspI; X, Xmn; Xb, XbaI.

			mevinolin resistant transformants
Source of DNA	<u>ug DNA</u>	transformants	per microgram
none		1 x 10 ¹	
mevinolin res.*	0.5 µg	2.0 x 10 ³	4 x 10 ³
pH455	2 µg	2.9 x 10 ⁴	1 x 10 ⁴
p74	2 µg	$3.0 \ge 10^4$	2 x 10 ⁴
pE3-	2 µg	$2.4 \ge 10^4$	1 x 10 ⁴
p∆AT**	1 µg	2.1 x 10 ⁴	2 X 10 ⁴

A TANK TANK

ł

ł

1

Table 2. Transformation of WFD11 with pWL2-pAT153 hybrid constructs (figure 5A), prepared from Escherichia coli.

* DNA from four spontaneous mevinolin-resistant strains, mixed in equal proportions. Source of DNA for preparation of MluI library. ** Product of removal of pAT153 sequences from pH455 grown in *E. coli*. Should be identical in sequence to pWL2 (designated M9 in Table 1) but lack *Hf. volcanii*-specific modifications.

46

Crude alkaline plasmid preparations of pH455-bearing *Hf. volcanii* strains transformed *E. coli* DH5 α to ampicillin resistance, and the ampicillin-resistant transformants acquired plasmids with the same restriction endonuclease digestion pattern as pH455 -- confirming its utility as a shuttle vector.

The relatively low transformation frequencies obtained with hybrid constructs prepared from *E. coli* (compared to around $1 \times 10^8/\mu g$ obtained with *Hf. volcanii*-propagated pWL2) is probably caused by restriction in the archaebacterial host -- a similar reduction is observed when DNA from phage ϕH grown in *Hb. halobium* is used to transfect *Hf. volcanii*, and yet burst sizes in the two hosts are the same (Charlebois *et al.* 1987). Although a mutant of *Hf. volcanii* lacking this restriction system(s) has not yet been isolated, utility of the hybrid constructs as shuttle vectors is, for most purposes, not seriously compromised by restriction. A microgram of vector DNA prepared in *E. coli* will produce thousands of mevinolin-resistant *Hf. volcanii* transformants in a typical experiment, while on average less than one new spontaneously-resistant mutant appears on plates with comparable numbers (10^8) of regenerated spheroplasts after mock (no DNA) transformations.

Tailoring of shuttle vectors. To reduce the size and complexity of subsequent generations of shuttle vectors, specific regions of pWL2 and of the hybrid constructs were experimentally deleted.

The 7.9 kbp plasmid-borne mevinolin resistance marker could recombine with the chromosome of the sensitive recipient, a problem which could be reduced but not eliminated by shortening the region of homology. A deletion (resulting also in the loss of tetracycline resistance) between the two SphI sites of the construct pE3+ (figure 5A) did not destroy the ability to transform strain WFD11 to mevinolin resistance. Even a subsequent deletion between KpnI sites, which removed more of the mevinolin-resistance region and all but a few hundred base pairs of the pHV51 moiety, allowed transformation

The 3.5 kbp SphI - KpnI fragment which, from these experiments, must contain a functional mevinolin resistance determinant, was recloned into pH455∆M (pH455 religated after removal of the 7.9 kbp MluI fragment bearing the mevinolin resistance determinant; see figure 5B). The resultant plasmid, pWL101 contains complete pHV51 and pAT153 sequences (figure 5B). It was subjected to functional analyses by deletion into the pHV2 moiety from the unique ClaI and BamHI sites near the boundaries of the pAT153 component. (pAT153 replication and ampicillin resistance functions remain intact in such deletions.) Results of these analyses are presented in figure 6. A deletion of 762 bp of pHV2 between ClaI and SpeI sites reduced transformation frequency by over 20 fold. Deletions from the opposite direction up to the NcoI site do not affect ability to transform WFD11 to mevinolin resistance, but a further deletion, extending to the DraIII site does, again reducing transformation frequency by 20 fold. These experiments presumably have defined a region(s) important to plasmid replication in *Hf. volcanii*. The smaller number of transformants obtained with plasmids lacking this region(s) (or indeed lacking all pHV2-derived material) result from integration of the mevinolin-resistance determinant into the chromosome of WFD11 (see below).

DNA samples made from mevinolia resistant *Hf. volcanii* transformants obtained with the deleted vectors designated Δ BM, Δ K, Δ BSn, and Δ BNc in figure 6, contain circular plasmids, in all of twenty cases. Digestion with ClaI produced linearized plasmids of the expected sizes, with no obvious insertions or deletions (figure 6C). Southern analysis showed these plasmids bear pAT153 sequences (see figure 6D). No such plasmids were seen in preparations of DNA from the few mevinolin-resistant transformants obtained with deletions designated Δ BD and Δ BSpe, but colony hyridization detected pAT153 in some of these transformants, as might be expected from

Figure 6. Deletion analysis of pWL101. Deletions were made by digesting pWL101 with the indicated enzymes. religating and transforming *E. coli* DH5 α , with selection for ampicillin resistance. (A) Schematic representation of DNA remaining after deletion. pWL101 is shown as linearized at its unique ClaI site. Mevinolin resistance region, and ampicillin-resistance region of pAT153 (between broken lines) are not displayed, as these are retained in all deletions. Shading as in figure 5. Frequencies of transformation of WFD11 to mevinolin resistance obtained with each deleted plasmid are indicated. (B) Size analysis of deleted plasmids, prepared in *E. coli* DH5 α . Plasmids were linearized and resolved on a 0.7% agarose gel. (C) ClaI digestions of total DNA obtained from mevinolin-resistant *H. volcanii* colonies from transformation with some of the deleted plasmids shown in **B**. Two independent transformations are presented for each deleted plasmid. (D) Southern hybridization of gel shown in C, with pAT153 DNA probe.

chromosomal integration, by a single crossover, of non-replicating but circular input DNA. With two such Δ BSpe transformants, Southern hybridization signals obtained when ClaI-digested total DNA was probed with pAT153 suggest that there are indeed chromosomal copies of this eubacterial sequences (figure 6D). It should prove easy to use recombination with non-replicating selectable markers for insertional and gene replacement mutagenesis (see below).

The 11.2 kbp pWL102 is an effective vector for shuttling between *E. coli* and *Hf. volcanii*, with selection for ampicillin- and mevinolin-resistance, respectively. It bears no ISH51 sequences, and contains unique sites for KpnI, XbaI, SphI, ClaI, and EcoRI. Insertions can be made into any of these sites without disrupting plasmid maintenance or resistance functions. The 15.0 kbp pWL101 has additional (BamHI, SnaBI and MluI) sites for cloning. These vectors, as they are, have proven useful in isolating genes in the leucine and tryptophan biosynthetic pathways (see below). Further tailoring of vectors and hosts could increase utility. Pfeⁱfer and co-worker have recently transferred the mevinolin resistance marker from pWL102 into a plasmid of *Hb. halobium* and have shown that the mevinolin selection can also be used in *Hb. halobium* (Blaseio and Pfeifer 1990).

3. Characterization of mevinolin resistance

1

Identity of the resistance gene. DNA sequencing of the 3.5 kbp KpnI-SphI fragment, which contains the mevinolin resistance gene in the shuttle vector pWL102 (figure 5B) revealed a 1212 basepair (bp) open reading frame encoding a protein of approximately 4.1x 10⁴ MW (figure 7). The deduced amino acid sequence aligns coherently with the C-terminal half of animal and the soluble plant HMG CoA reductases (Chin et al. 1984; Learned and Fink 1989), but lacks the variable N-terminal membrane spanning domains (Basson et al. 1988; Woodward et al. 1988) found in animal and yeast

CTCGAGTCGTCCCACGTGCTCTCGTCGTAGCCGAGCACCCAGCCGGCCTCGTCGCCGGTCT GGCGTCTACGAGCGAGCGGCCGACCATCGGGGAGGTGCGTGGGGGCGTCGATGAAGCCGGGGAGGACGACGCGGCGCCG CAGTCGACGACCGCGCGTCTCGACGCCGGCGAGCAGTCCCACGTCGAACGCGGCCGGACGCGGACGACCTCGCCGTCGC GGACGGACGGCTTCGTCGGTCGGCGGCGGCCGAGGGTGTGTACCTCCGCGTTCGTCAGTACGAGGTCCGCTGCCG G GCGGGTGACGCCGGGCGGGTGGCGGCGGTGGAAGAACCGGAACGC**T**TTAGGGCCGGGGGAAACGTCGGAGC 541 ATG ACA GAC GCC GCG TCC CTC GCA GAC CGC GTT CGG GAG GGC GAC CTC CGC CTC CAC GAA 601 Met thr asp ala ala ser leu ala asp arg val arg glu gly asp leu arg leu his glu leu glu ala his ala asp ala asp thr ala ala glu ala arg arg leu leu val glu ser CAG TCC GGC GCG TCG CTC GAC GCG GTC GGG AAC TAC GGC TTC CCC GCG GAG GCC GAC 721 gin ser gly ala ser leu asp ala val gly asn tyr gly phe pro ala glu ala ala glu TCC GCC ATC GAG AAC ATG GTC GGC TCG ATC CAG GTG CCG ATG GGC GTC GCC GGC CCC GTC 781 ser ala ile glu asn met val gly ser ile qln val pro met gly val ala gly pro val AGC GTC GAC GGC GGC TCC GTC GCC GGC GAG AAG TAC CTC CCC CTC GCG ACC ACC GAG GGC 841 ser val asp gly gly ser val ala gly glu lys tyr leu pro leu ala thr thr glu gly GCG CTC CTC GCG TCG GTC AAC CGC GGT TGC TCG GTC ATC AAC AGC GCC GGC GGC GCG ACC 901 ala leu leu ala ser val asn arg gly cys ser val ile asn ser ala gly gly ala thr GCC CGC GTC CTC AAG TCC GGG ATG ACC CGC GCG CCG GTG TTC CGC GTC GCC GAC GTT GCC 961 ala arg val leu lys ser gly met thr arg ala pro val phe arg val ala asp val ala GAG GCC GAG GCG CTC GTC TCG TGG ACC CGC GAC AAC TTC GCG GCG CTG AAG GAG GCC GCG 1021 glu ala glu ala leu val ser trp thr arg asp asn phe ala ala leu lys glu ala ala GAG GAG ACG ACG AAC CAC GGC GAA CTC CTC GAC GTG ACG CCG TAC GTC GGC AAC TCG 1081 glu glu thr thr asn his gly glu leu leu asp val thr pro tyr val val gly asn ser GTG TAC CTG CGA TTC CGC TAC GAC ACC AAG GAC GCG ATG GGG ATG AAC ATG GCC ACC ATC 1141 val tyr leu arg phe arg tyr asp thr lys asp ala met gly met asn met ala thr ile GCC ACC GAG GCC GTC TGC GGC GTC GTC GAA GCC GAG ACG GCC GCC TCG CTC GTC GCC CTC 1201 ala thr glu ala val cys gly val val glu ala glu thr ala ala ser leu val ala leu TCG GGC AAC CTC TGT TCC GAC AAG AAG CCC GCC GCC ATC AAC GCC GTC GAG GGG CGC GGC 1261 ser gly asn leu cys ser asp lys lys pro ala ala ile asn ala val glu gly arg gly CGG AGC GTC ACC GCC GAC GTT CGA ATC CCG CGC GAG GTC GTC GAA GAA CGC CTG CAC ACC 1321 arg ser val thr ala asp val arg ile pro arg glu val val glu glu arg leu his thr ACG CCC GAA CGC GGT CGC GAA CTC AAC ACA CGC AAG AAC CTG GTC GGC TCC GCG AAG GCC 1381 thr pro glu arg gly arg glu leu asn thr arg lys asn leu val gly ser ala lys ala SCG AGC CTC GGG TTC MAC GCC CAC GTC GCC AAC GTC GCC GCG ATG TTC CTC GCC ACC 1441 ala ser leu gly phe asn ala his val ala asn val val ala ala met phe leu ala thr GGG CAG GAC GAG GCG CAG GTC GTC GAG GGC GCG AAC GCC ATC ACG ACC GCC GAG GTG CAG 1501 gly gln asp glu ala gln val val glu gly ala asn ala ile thr thr ala glu val gln GAC GGC GAC CTC TAC GTC TCG GTC TCC ATC GCC TCC CTC GAA GTC GGC ACC GTC GGC GGC 1561 asp gly asp leu tyr val ser val ser ile ala ser leu glu val gly thr val gly gly GGC ACG AAA CTC CCG ACG CAG TCC GAG GGC CTC GAT ATC CTC GGC GTC AGC GGC GGC GGC 1621 gly thr lys leu pro thr gln ser glu gly leu asp ile leu gly val ser gly gly gly GAC CCC GCC GGC TCC AAC GCC GAC GCC CTC GCC GAA TGC ATC GCC GTC GGT TCC CTC GCG 1681 asp pro ala gly ser asm ala asp ala leu ala glu cys ile ala val gly ser leu ala GGC GAA CTC TCC CTT CTC TCC GCG CTC GCC TCG CGG CAC CTC TCC AGC GCC CAC GCG AAC 1741 gly glu leu ser leu leu ser ala leu ala ser arg his leu ser ser ala his ala asn -~> <~-TCC GGT CGG TAACTCGCCGGGTTCATTTTCACCGACAGCAGGGACGGCTGGACTGCCTTTTCTTCGCCGTTGTTCC 1817 ser gly arg OCH

GGTCTGTTCCCTCCGACTTCGACCTCGTCACGTTTCACTTTCACTTCCCCCACCTGTTACGGGTCGCCAGTTTTA 1996

Figure 7. DNA sequence of the mevinolin resistance marker and the deduced amino acid sequence of *Hf. volcanii* HMG CoA reductase. Arrow denotes the start of transcription. G to T substitution in the promoter region is indicated.

50

enzymes (figure 8). Cabrera et al. (1986) have located a salt-dependent HMG CoA reductase activity in the soluble fractions of *Hb. halobacterium* lysates.

Comparison to eukaryotic and eubacterial HMG COA reductases. The archaebacterial sequence is strikingly similar to the catalytic domain (C-terminal half) of eukaryotic HMG CoA reductases, sharing between 42% to 45% identical residues with the corresponding sequences of hamster, yeast and *Arabidopsis*. Therefore these enzymes must share a common origin. The eukaryotic sequences are slightly more similar to each other (about 55% sequence identity in the region shown in figure 8), reflecting the deep divergence between these primary kindoms.

The NADH-dependent HMG CoA reductase of *Pseudomonas mevalonii* (Beach and Rodwell 1989) is the only eubacterial sequence available for comparison. The *Pseudomonas* enzyme bears very limited resemblance to either the eukaryotic or the archaebacterial HMG CoA reductases at the sequence level. Sequence similarity is more recognizable near the region corresponding to the last 75 residues of the archaebacterial enzyme (figure 8). Unlike the eukaryotic and the archaebacterial NADPH-dependent reductases, the primary role for this NAD enzyme from mevalonate-grown *Pseudomonas* is catabolic, converting mevalonic acid to HMG CoA. The *Pseudomonas* reductase shares only 15% sequence identity with the halobacterial enzyme, but over half of the identical residues are conserved among *Hf. volcanii*, *P. mevalonii* and all the eukaryotic examples compared, suggesting that they are true homologs. All but two of the 30 conserved residues are clustered within two regions (figure 8). The clustering may reflect functional importance of these regions.

The eukaryotic enzymes have probably diverged from the archaebacterial enzyme after their common ancestor diverged from the eubacterial HMG CoA reductase. Horizontal gene transfer is unlikely, since such a transfer has to predate the divisions within these primary kingdoms. However, we cannot rule out the possibility that the

Pseudomonas H. volcanii Hamster Arabidopsis	40 MSTASPLPAFRNLSPAARLDHIGOTLGL MTDASLADRVREGOURLHELEANA-DADTAAPARU
Pseudomonas H. volcanii Hamster Arabidopsis	137 ShddysllaMagalpmdiangmtenvigtfelfyaVASNFQINGRUULVELVVEEpsiVAAASYMAKLARANGGMTSSSAPIMHAQVQIVGI OSGASIDAVGNGEPABAAESA-HENNVGSLQVenGVAGPVSVDGGSVAGEKYLPLATTEGALUASVNRGGSVINSAGGATARVLINGGMTRAPVFRVA KLPEPSSLQYLPYRDYNYSLVMGACGENVIGYMPIPVGVAGELCLDGKEYQVENATTEGGUMASINRGGANGGASSATARVLINGGMTRAPVPPLP VTGRGTEGLPLDGEDYESILGQCGMEVGYLQIPVGIAGELLLDGYEYSVENATTEGGUMASINRGGANGSVAMFISGGATSTVLKDGMTRAPVPEP
Pseudomonas H. volcanii Hamster Aradıdopsis	234 QDPLNARTISLLRRKDEIIELANRKDQILNSLÖGGCRDIEVHTFADTPRI3PMLVAHLIVDVRDAMGANTVNTMAEAVAPLMEAITGGOVELRILSNIADLR DVAEAEAUVSMTRONFAALKENAEETTINHGELLDWIPYVVGNSVILRERYDIKDAMGMMMITIATE-AVCGVVEAETAASLVALSGNLCEDKKPAAIN RACDSAEVKAMLENPEGFAVTKDAFDSTSRFARLOKIHVTMAGRNIMTERSKIGDAMGMMMISKGTEKALLKLOEFFPEMQILAVSGNKCTDKKPAAIN SARRESELIKFFLENPEMEDTUAVVFNRSSRFARLOSVKCTIAGKNAMMERCSTGDAMGMMMISKGTEKALLKLOEFFPEMQILAVSGNKCTDKKPAAIN
Pseudomonas H. volcanii Hamster Arabidopsis	330 LARAOVRITPOOLETAEFSGEAVIEGILDAYAFAAVDRYRAATHNKGIMNGIDELIVATGNDWRAVEAGAHAYACRSGHYGSLTTWERDNNGHTVGTLEM AVEGRGRSVIRDVRIDREVVEDRITTPERGRELNTRKNILVGSAKAASLG-ENAHAMVAAMTIATGODHACWEGSAVAIITABVO-DG-DLYVSVSI WIEGRGRTVVCEAVIERKVVREVVIRTTIDAMIDVNINKNLVGSAVASLGGYNAHANIVITAIYIAGGODHACWESSVCITLMEASOFTNEDLYISSCTM WIEGRGRSVVCEAVIERDIVNKVLKISVAALVELMIKNLAGSAVASLGSINAHANIVITAIYIAGGODHACWESSVCITLMEASOFTNEDLYISSCTM WIEGRGRSVVCEAVIERDIVNKVLKISVAALVELMIKNLAGSAVASLGSINAHANIVITAIYIAGGODHACWESSVCITLMEASOFTNEDLYISSCTM WIEGRGRSVVCEAVIERDIVNKVLKISVAALVELMIKNLAGSAVASLGSINAHANIVITAIYIAGODHACWESSVCITLMEASOFTNEDLYISSCTM
<i>Pseudomonas H. volcanii</i> Hamster Arabidopsis	403 P-MEVGLVGGATRITHPLAQLSIATLGVKIAVALAEIIAVAVGLAQNI GAMBALATEGIQRGHMALHARNIAVVAGARGDEVDWVARQL ASIEVGTVGGGTKIPT-OSEGIDILGVSG-GGPAGSNADALAECIAVGSLAGELSILFALASEHIJSSAHANSGA PSIEJGTVGGGTNULE-OGAGLOMLGVQACKDNPGENARQLARIVCGTVMAGELSILFALASEHIJSSAHANSGA PSIEVGTVGGGTJQLAS-QGAGLUNLGVQACKDNPGENARQLARIVCGTVMAGELSILFALASEHIJSSAHANSGA PSIEVGTVGGGTJQLAS-QGAGLUNLGVQACKDNPGENARQLARIVGTVAGASVLAGELSILFAJIAGGLVRSHWHNRGKINLQDLQGTCTKKSA

Figure 8. Comparison of HMG CoA reductase sequences. Numbers refer to positions in the *Hf. volcanii* sequence. Residues identical to those found in the *Hf. volcanii* sequence are boxed. (---) indicates gaps introduced to accommodate alignment, while (...) represents sequence not shown. Cys (\clubsuit) and his (\clubsuit) residues conserved in the eukaryotic and the archaebacterial sequences are marked by arrows. Conserved residues are marked by a dot.

Pseudomonas example may be atypical or that there is another eubacterial (paralogous) HMG CoA reductase gene yet to be discovered. The close resemblance between archaebacterial and eukaryotic enzymes is in line with the growing suspicion that the archaebacteria are more closely related to the eukaryotes than to the eubacteria (see *Introduction*), based on the findings of eukaryotic features (such as introns) in archaebacteria, and the similarities in eukaryotic and archaebacterial key metabolic enzymes (for example, H⁺ATPase, elongation factors and RNA polymerase subunits; refer to Iwabe et al. 1990 and Puhler et al. 1989).

Residue-specific chemical modification experiments suggest the presence of histidine and cysteine residues in the active site of rat liver and yeast HMG CoA reductases, although the catalytic residues have yet to be identified (Roitelman and Shechter 1989; Dugan and Katiyar 1986). Sequence alignment of HMG CoA reductases from hamster (Chin et al. 1984), human (Luskey and Stevens 1985), sea urchin (Woodward et al. 1988), Schistosoma (Rajkovic et al. 1989), Drosophila (Gertler et al. 1988) yeast (Basson et al. 1988), and plant (Learned and Fink 1989) show five conserved cysteine and two conserved histidine residues. The *Pseudomonas* enzyme has only 2 cysteine residues; however, and they are not present at the corresponding positions in either the eukaryotic or the archaebacterial enzymes (figure 8). Replacement of these two cysteine residues with alanine residues shows no major effect on enzyme specificity or enzyme activity (Jordon-Starck and Rodwell 1989a, b). With the archaebacterial enzyme, two cysteine and two histidine residues are common to all the eukaryotic sequences compared above. Cys-110, cys-225 and his-288 are situated in conserved stretches of amino acid sequences. His-398, near the C-terminus of the enzyme, is also found in the *Pseudomonas* sequence. Site-direct mutagenesis experiments are required to clarify the role of these and other conserved residues in enzyme activity.

Up-promoter mutation. In an initial attempt to determine whether mevinolin resistance could be due to gene amplification, DNAs isolated from the wild-type (strain DS2) and

54

ţ

1

÷ ¥

ŝ

A second the big day of the second second

from resistant mutants (from which the resistance gene was isolated) were compared in Southern hybridization experiments using the 7.9 kbp MluI fragment containing the resistance-determining gene as hybridization probe (figure 9A). Although no amplification was detected in these first four mutants, unexpectedly the loss of an MluI site was evident. Two MluI fragments (2.9 and 5.0 kbp) in the wild-type DNA appear as a single 7.9 kbp fragment in the mutant DNA. No other obvious rearrangements were detected; both DNA samples indicate a single copy of the HMG CoA reductase gene (figure 9A, B). Is this mutation, destroying the MluI recognition site, responsible for mevinolin resistance?

To answer this question, I isolated the gene for HMG CoA reductase from wildtype (mevinolin sensitive) *Hf. volcanii* cells, using the resistant gene as a probe. The DNA seq...ence in the coding region of the wild-type gene is identical to that isolated from the resistant mutant. A single base substitution (from G to T, which coincidentally destroys the recognition site for the restriction enzyme MluI), detected 29 bp upstream of the translation initiation site, is apparently responsible for drug resistance (figure 9 and 10).

A TATA like sequence preceeding the transcript initiation site by about 25 bp resembles the archaebacterial consensus promoter described by others, (figure 10; Thomm and Wich 1988; Zillig et al. 1988). The HMG CoA reductase messenger RNA begins at the C residue 6 nt upstream of the translation start site (figure 11), placing the mutation within this putative promoter (figure 10). Quantitative primer extension experiments confirm that this mutation at position -23 is in fact an "up promoter" mutation, increasing the expression of the gene for HMG CoA reductase (figure 11). The cell becomes resistant to mevinolin, presumably, by titrating the inhibitor with excess

Figure 9. Chromosomal region containing the wildtype and the mutant HMG CoA reductase gene. (A) Restriction digests of genomic DNA from resistant mutants (**r**, mixture of DNA isolated from 4 mutants, source of DNA for the MluI library used for cloning the mevinolin resistance marker) and from wildtype strain WFD11 (mevinolin sensitive, s), were compared by Southern hybridization technique using the 7.9 kb MluI fragment of pWL2 as probe. (B) Restriction map of the chromosomal region. Arrow points at the MluI site missing in mutants. (C) Comparison of DNA sequence upstream of the wildtype and the resistance gene reveals a G to T base subsitution in the mutant sequence.

Hh/HcrRNAP1	ACGGTGTTTTTATGTACCCCACCACTCGGATGAGATGCGAaCGACG
ISH1.8	CACAAGAGTTATCTGAATTGGGTGTCTCGTATCTGCTaAGGCCAA
фН T1,2,3	CAATTTTATTATACTGGGGTTCCACGGACATGACaGAGCAGG
фн т4	GATATAAGTTAGACCCCTCGTAAAGTCCAGACTGaCGAAG
фн т5	GTAGTGTCTTCCCGACCCCTCGGAACGAGGAGGCCcGAAAGATAT
фН Тб	GGAACACGTTATCATGGGCCAAAAACCTCTTTTAGGTCaTGCACC
фн т7	ACGGGGATTTATCTTTGCACGCATGGAAGTCCACTCGTTCCATGA
фн т8	AAACAGATTTAATAGGTAGGGGCCTCTAATGTTTGACAAGGTATG
Hh RNApol	GACAAGGCTTAAATGCTGTGGGCAGCAACTGGCCTGTaGTATG
Hh vac	ACACATCCTTATGTGATGCCCGAGTATAGTTAGAGATgGGTTAAT
Hh flaA	AACGTTTATTAGTCAGCTGTCACACTGACGTCAAACaCTATG
Hh flaB	ACACTTTTGTATCGATGGCCGATCTGTATGGGTaAGCCCATG
Hc nab	TCGACACGTTAATACGCCGAGTGAAGCCATCGCATAGTGATG
Hc Llle	GACAAGGGTTAAACCCGCGGCGGCGGTTTCTCGGAGTaTG
Hc Lle	CGACGCTTTTAAGCCCGGGATCACCGTCTGTAGAACCGaGATG
Hm S12S7	CGGGAGCATAAGFGCGCCCATCGGATAGCAGGGGTATaTG
Hh S12S7	GGTCGG与CTTAAGFGCCTCCGCGGGATACTCGGCTGTaTG
Hh csg	AGAAGCATTTACCAGTGGCCGGGTATAGTCGGAGCaCCCATG
Hc sod	AAACCA¢CATAAG¢AGCGCCGACGTACGACACACtGTATG
Hh bop	TCGTATAGTTACACACATATCCTCGTTAGGTACTGTTgCATG
Hh brp	GGTCTTTTTGATGCTCGGTAGTGACGTGTGTATTCATaTG
Hh hop	GAGGTTATTTAATGGCGTGCCGTGTCCTTCCGAACACCATG
Hv hisC	ACGCACCCTTAAGAACCGCGACCCGCATTTTCCGACCATG
Hv tRNA ^{trp}	AAACCCCTTTTAAGAAAAATCGCCATACGAGAGAGTGCAGACAGA
Hv trpCBA	CGTAAGCCTTATGTACAGATACGTGCGTLAGTGTACATCAATG
Hv hmgA	GGAACG¢GTTAGG\$CCGGCGCGGGAAACGTcGGAGCATG
Hv mev	GGAACGCTTTAGGCCCGGCGCGGGAAACGTcGGAGCATG
	hannen merken han han han han han han han han han ha
CONSENSUS	CTTTATG
	Z
Sufolobus rRNA	AGTTAGATTTATATGGGATTTCAGAACAATATGTATAAToCGGAT
	<dpe></dpe>

Figure 10. Consensus promoter sequence. Sequences upstream of protein-coding genes of *Halobacteria* were compared. Lower case letter indicates transcription start site. DPE is the distal promoter element upstream of *Sulfolobus* B12 rRNA operon defined by *in vitro* transcription experiments (Reiter et al. 1990).

Figure 11. Initiation of the *Hf. volcanii* HMG CoA reductase RNA transcript. (A) Determination of 5'-terminus of the transcript by primer extension $\iota sing 15 \mu g$ of total RNA isolated from a culture of *Hf. volcanii* WFD11 grown on minimal liquid medium. Arrowhead indicates transcription initiation site. (B) The same primer extension assay applied to WFD11 (wt) cultures, grown with (+) and without (-) supplement of 10mM mevalonic acid lactone, and to a up-promoter mut nt culture in minimal medium. (C) Summary of features in the sequence upstream of the *hmgA*.

ą.

58

enzyme. Overexpression as a means to overcome mevinolin inhibition has been well documented in mammalian cells. Amplification of the gene for HMG CoA reductase permits Chinese Hamster Ovary cells to grow in the presence of mevinolin (Chin et al. 1984). I have also observed similar amplification mutants of *Hf. volcanii* (see below).

Genetic demonstration of an archaebacterial promoter. The G->T mutation alters the efficiency of transcription initiation and thus locates and functionally defines the archaebacterial promoter *in vivo* -- this is the first genetic demonstration of an archaebacterial promoter. The increase in promoter strength is consistent with the fact that the mutant sequence (TTTAGG) resembles more closely the consensus sequence (Zillig et al. 1988) located at the same distance upstream of the transcript start sites of highly expressed halobacterial genes, such as ribosomal RNA genes of *Hb. halobium* (TTTATG) and the tRNA^{Trp} gene of *Hf. volcanii* (TTTAAG). Furthermore, this mutant promoter corresponds (figure 10), both in sequence and in location, to the distal promoter element (DPE) upstream of the *Sulfolobus B12* ribosomal RNA operon which Reiter and coworkers have recently defined by linker substitutions to influence the efficiency of *in vitro* transcription (Reiter et al. 1990).

Unlike the typical eubacterial promoter, which depends on signals positioned at -35 and at -10 relative to the transcript start site for RNA polymerase binding and transcription initiation (Reznikoff et al. 1985), the A-T rich archaebacterial promoter sequence (especially prominent in G+C rich halophile DNA) is very similar to the A-T rich "TATA box" sequence of eukaryotic promoters for RNA polymerase II, which is also located about 25 bp upstream from the starting point of RNA synthesis (figure 10). Zillig and colleagues (Puhler et al. 1989; Zillig et al. 1988) have repeatedly pointed out the similarities between the archaebacterial and the eukaryotic RNA polymerases.

Gene amplification. A second mechanism leading to mevinolin resistance was discovered when additional resistant mutants were surveyed for rearrangement in regions flanking the gene for HMG CoA reductase.

59

Hf. volcanii DS2 and its derivatives WFD11, T9 and T11 are sensitive to mevinolin and all display the wild-type two banded hybridization pattern -- the 7.9 kbp MluI fragment containing the resistant gene hybridizes to a 2.9 kbp and a 5.0 kbp fragment in an MluI digest of wild-type DNA (see figure 9A above). Surprisingly, DNA isolated from various resistant mutants originating from these four sensitive parental strains exhibited two types of hybridization patterns, only one of which could be explained by the loss of an MluI site to give a single signal of 7.9 kbp. The second pattern looks more complex, but can be explained simply. Tandem amplification of a specific segment of the chromosome containing the gene for HMG CoA reductase could account for the intense hybridization signal not found in the wild-type DNA (figure 12), as well as for retention of 2.9 and 5.0 kbp signals. In some mutants, the amplified segment encompasses the 2.9 kbp and the 5.0 kbp MluI fragments entirely. Different segments of DNA have been amplified in each mutant.

**

This is not the first example of gene amplification in *Hf. volcanii*. Mevarech and coworkers (Rosenshine etal., 1987) have correlated resistance to dihydrofolate reductase inhibitors to the amplification of specific DNA sequences. Gene amplification is also responsible for mevinolin resistance in Chinese Hamster ovary cells (Chin et al. 1984).

In summary, *Hf. volcanii* utilizes two independent mechanisms to escape growth inhibition by mevinolin. An up-promoter mutation, which also provided the first genetic evidence of an archaebacterial promoter, and the amplification of the target gene both lead to mevinolin resistance via overexpression of HMG CoA reductase. I have found several occurrences of each type of mutation, although only one has been characterized at the sequence level.

Α

Manager & Contraction of the Con

-194 m

f

X,

Figure 12. Characterization of mevinolin resistant mutants of *Hf. volcanii*. (A) shows hybridization of 32 P-labeled 7.9 kb mevinolin resistance marker to MluI-digested DNA samples, isolated from four mevinolin sensitive (s) strains (W, wildtype strain DS2; C, cured strain, WFD11; T9 and T11, two tryptophan auxotrophic strains) and ten resistant (r) mutant strains generated from T9 and T11. (B) shows a schematic representation of gene amplification. M represents MluI sites. DNA derived from the 2.9 kb MluI fragment is shaded. Gene expression. I undertook some preliminary experiments to examine the regulation of expression of the HMG CoA reductase gene. Transcription of this gene appears to be insensitive to exogenous mevalonic acid (the product of the reaction catalyzed by the reductase). Total RNA isolated from a WFD11 culture grown with 10 mM of mevalonic acid lactone gave a signal, in primer extension experiments, no less intense than the signal obtained from mevalonate-starved cells (figure 11). (Mevelonic acid at this concentration should prevent mevinolin growth inhibition; see figure 3B above.) This is consistent with the findings of Cabrera et al. (1986) who reported that exogenous mevalonate did not suppress *Hb. halobium* reductase activity over a wide range of concentrations. It is premature to conclude constitutive expression since regulation by more complex mevalonate-derived products has not been tested. Mevalonate-derived products (like cholesterol) are responsible for feedback inhibition in mammals (Brown and Goldstein, 1980; Goldstein and Brown 1990).

The biochemical pathway for mevalonic acid biosynthesis in halobacteria is unclear. Ekiel et al. (1986) proposed that biosynthesis in *Halobacterium* involves carbon atoms from lysine and the pathway may be different from that of the eukaryotes. However, the same group found that the lipid labeling pattern in another archaebacterium, *Methanospirillum hungatei*, is consistent with the pattern expected from mevalonic acid synthesized by the standard eukaryotic pathway (Ekiel et al. 1983).

Annalee Cohen (of our laboratory) and I are trying to isolate mutants in the early steps of the pathway. Since exogenous mevalonate has been shown to be incorperated into the lipids of *Halobacterium* (Kates et al. 1968; Cabrera et al. 1986), we may be able to generate mevalonate auxotrophs. In addition, mammalian HMG CoA synthase inhibitors (if they work on halophiles) could be used for generating resistant mutants in *Hf. volcanii*, and for isolating the gene using the same strategy employed to clone the HMG CoA reductase gene.
4. Host strain development

Integration of a non-replicating selectable marker into the *Hf. volcanii* chromosome has been observed in transformation experiments (using deleted forms of pWL101, such as those designated Δ BD and Δ BSpe in figure 6). Such a recombination events should allow the application of gene replacement techniques, which have been proven useful in targeting genes and in introducing *in vitro*-manufactured mutations into yeast chromosomes, to *Hf. volcanii*. This section describes experiments which demonstrate that gene replacement techniques can, in fact, be applied to *Hf. volcanii*. Useful strains, which will aid detailed dissection of biological functions like tryptophan biosynthesis, are still under construction.

Gene replacement. I set out to replace the chromosomal trpB gene with a nonreplicatable mevinolin resistance (mev^r) marker. An artificial construct (pmev Δtrp), built by fusing the cloned mev^r gene to the trpB flanking sequences (figure 13), was linearized with PstI, and used to transform *Hf. volcanii* WFD11 (which is Trp⁺Mev^S). Mevinolin resistant transformants recovered were maintained on rich medium containing mevinolin, and then tested for tryptophan requirement. Trp⁻Mev^r transformants should reflect recombination (via two crossover events) at the regions flanking the *trp* locus, resulting in the replacement of the *trpB* gene on the chromosome by the *mev^r* gene from the artificial construction (figure 13). Southern analysis of genomic DNA isolated from Trp⁻Mev^r transformants verified the occurrence of this replacement event. The 8 kbp *trpB*containing EcoRI fragment on the chromosome of WFD11 has changed, as expected, in seven of the eight Trp⁻Mev^r transformants analysed, to become a 10 kbp fragment (figure 14A) which also hybridizes to the *mev^r* gene (figure 14B).

A circular pmev Δ trp should integrate via a single crossover event into the chromosome at either the *mev* locus or at the regions flanking the *trpB* locus of interest, to give mevinolin resistant transformants. The complex integration structure

Figure 13. Schematic representation of the events leading to the replacement of the chromosomal trpB by the *mev* marker on linear or circular pmev Δ trp. (\clubsuit) represents EcoRI sites. P stands for PstI, and C for ClaI.

ł

ł

Figure 14. Characterization of mevinolin resistant strains resulting from transformation of *Hf. volcanii* WFD11 with linear or circular pmev Δ trp. Construction of pmev Δ trp, and its use in gene replacement experiments, are summarized in Figure 13. EcoRI digestion of DNA samples isolated from WFD11 (wt) and 16 mevinolin resistant transformants (8 from transformation with linearized pmev Δ trp shown in A and B, and 8 from circular pmev Δ trp transformation shown in C and D) were analysed by Southern hybridization. A and C were probed with the 8 kb *trpB*-containing EcoRI fragment. B and D (blots identical to those used in A and C, respectively) were probed with the 3.5 kb mevinolin resistance marker (*mev*) from pWL102. Dots in B indicate the position of hybridization signals visible after longer exposure. Transformant 5 in C and D may have pmev Δ trp integrated at the *mev* locus. The 2 fragments, indicated by thin arrows, hybridize to both the *mev* and the *trp* probe, and futhermore, the signal for the wild-type *mev*-containing EcoRI fragment is missing from transformant 5.

ţ

.

i

۱.

Т

A

×.

С			•	wt	1	2	3	4	5	6	7	8	
										*			
										*			
	10	kb	►		the offi	-		-		-		**	
	8	kb		4 <i>34</i> 4		***							
			.•										
п						_							
U				W	1	2	3	4	5	6	7	8	
	n	1 8 y		•.				*		-		r	

10 kb 🕨

8 kb 🕨

-7

٠.

66

Ħ

Indianal and

1 181

Pharmon the P

ţ

1 ; 1

*

encompassing the *trp* locus should subsequently resolve via a second crossover event, either to give back the parental arrangement or to complete the replacement of *trpB* with mev^r (figure 13). Mevinolin resistant transformants, recovered from transformation experiments using circular pmev Δ trp, were allowed to grow in rich medium without mevinolin. DNA samples isolated from such transformants exhibit hybridization patterns consistent with those expected from the size of the resolution products (figure 14C and D).

1.4

Deletion of trpB gene from chromosome. M. Mevarech suggested that the integration and resolution process could be applied to delete specific segments of DNA from the chromosome. The strategy is summarized in figure 15A. Hf. volcanii WFD11 was transformed with a non-replicatable circular plasmid construct (containing the mev^r marker, trpB upstream and trpB downstream sequences, in this order). Mevinolin resistant transformants were picked onto rich agar medium and allowed to grow without selection. DNA samples prepared from 22 of such transformants were digested with EcoRI, and compared to digested DNA from strain WFD11 using the 8 kbp EcoRI trpB containing fragment as hybridization probe. Integration of the construct by recombination between the plasmid-borne and the chromosomal trpB upstream regions results in 2 EcoRI fragments of 6.7 and 14.2 kbp in size. Integration at the *trpB* downstream region results in EcoRI fragments of 8 and 13 kbp. Resolution of integrated intermediates (via homologous recombination between trpB flanking sequences) could give either an 8 kbp fragment identical to that on the wild-type chromosome or a 6.7 kbp fragment representing the deletion of *trpB* from the chromosome (figure 15). The 22 transformants analysed show the same hybridization pattern, except that the relative intensities of hybridization signals are different for each mutant -- differences presumably represent varying degrees of resolution. The same strategy is being applied to generate a strain

Figure 15. Deletion of the *trpB* gene from the *Hf. volcanii* chromosome. (A) schematically describes the predicted sequence of events after introducing a non-replicatable circular plasmid construct (containing the *mev^r* marker, *trpB* upstream and *trpB* downstream sequences, in this order), into *Hf. volcanii* WFD11 spheroplasts. Integration of the construct by recombination between the plasmid-borne and the chromosomal *trpB* upstream (up) regions results in 2 EcoRI fragments of 6.7 and 14.2 kbp in size. Integration at the *trpB* downstream (dn) region results in EcoRI fragments of 8 and 13 kbp. Resolution of integrated intermediates (via homologous recombination between *trpB* flanking sequences) could give either an 8 kbp fragment identical to that on the wild-type chromosome or a 6.7 kbp fragment representing the deletion of *trpB* from the chromosome. Small vertical arrow (\clubsuit) denotes EcoRI sites.

(B) shows the result of Southern analysis of the resultant mevinolin resistant transformants. Mevinolin resistant transformants were picked onto rich agar medium and allowed to grow without selection. DNA samples prepared from 22 of such transformants were digested with EcoRI, and compared to digested DNA from strain WFD11 using the 8 kbp EcoRI *trpB* containing fragment as hybridization probe.

2 1

-

į

ł

ŝ

Ł

1

A

-

wt 1 2 3 4 5 6 7 8 9 10 wt 11 12 13 14 15 16 17 18 19 20 21 22

lacking *trpCBA* genes. Precise deletion of the *trpCBA* sequence is necessary to avoid disruption of neighbouring genes.

II. Tryptophan biosynthetic genes of Hf. volcanii

I used tryptophan (*trp*) biosynthesis as a model system to test and to refine the genetic tools developed for *Hf. volcanii*. The *trp* system was chosen because of the absolute conservation in the biochemical pathway and the tremendous variability in gene organization and regulation. All organisms capable of synthesizing tryptophan use seven identical enzymatic functions in the same biochemical pathway (figure 16), and the genes encoding these functions have been extensively characterized in a variety of organisms, both eukaryotic and eubacterial (Yanofsky 1984; Hutter and Niederberger 1986; Yanofsky and Crawford 1987). Crawford, in his recent reviews (Crawford 1989; Crawford and Milkman 1990), listed and thoroughly compared a collection of completed gene or protein sequences for each component polypeptide (E,G,D,C,F,B,A) catalyzing the five steps of the *trp* pathway. Among archaebacteria, the *Methanococcus voltae trpB*, *trpA* and the C-terminus of *trpF* coding regions have been sequenced using a DNA fragment cloned by virtue of its ability to complement *E. coli* auxotrophs (Sibold and Henriquet 1988).

Trp genes are arranged very differently in various organisms (Crawford 1989; Yanofsky 1984). Many linkage and fusion patterns exist. TrpA and trpB, which encode the two subunits of tryptophan synthase, are fused in the fungal trp(AB), but remain as separate genes and linked to trpF in most eubacteria and Methanococcus, in a $troF \cdot B \cdot A$ transcription unit (dots indicate cotranscription, genes enclosed in parentheses are fused). Fusion of trp(EG), (GD), (GC), (CF) and (GCF) have also been observed. In Escherichia coli, the trp genes exist in a single operon, $trpE \cdot (GD) \cdot (CF) \cdot B \cdot A$. In contrast,

70

N -5'-phosphoribosyl - anthranilate

ľ

1- (o-carboxyphanylamino)-1- deoxyribulose-5-P

Figure 16. Biochemical pathway for tryptophan biosynthesis. This figure is taken directly from the 1968 Ph.D. dissertation of W.Ford Doolittle, with his permission. Step 1 is catalyzed by anthranilate synthase (TrpE, TrpG); step 2 requires 5-phosphoribosyl-1-pyrophosphate (PRPP), this step is catalyzed by anthranilate phosohoribosyl transferase (TrpD); step 3 by phosphoribosyl anthranilate isomerase (TrpF); step4 by indoleglycerol phosphate synthetase (TrpC) and step 5 by tryptophan synthase (TrpB + TrpA).

ş

Pseudomonas aeruginosa trp genes are organized in four unlinked transcriptional units with no gene fusion, trpE, $trpG\cdot D\cdot C$, trpF and $trpB\cdot A$. With *Hf. volcanii*, direct genetic methods allow the generation and the mapping of Trp mutations to two unlinked clusters, and the isolation of DNA fragments containing genes for all seven functions in tryptophan biosynthesis (see below). DNA sequencing confirms the functional assignments and reveals an organization of genes within these clusters unlike that in eukaryotes, eubacteria or *Methanococcus*.

1. Isolation of trp genes

Isolation and identification of mutants. Auxotrophic mutants of *Hf. volcanii* WFD11 were generated by treatment with EMS. Conditions to achieve >99% killing were established by varying the duration of of EMS treatment (see *Materials and Methods*). Incubation with 10 μ l of liquid EMS per ml of cell suspension for 2 hours at 37°C reliably generates one auxotroph out of about 500 surviving colonies analyzed. Specific nutritional requirements were identified by streaking on plates supplemented with various combinations of amino acids and nucleotides. Mutants utilizing tryptophan, leucine, histidine, arginine, asparagine or glutamine were obtained.

Twenty-nine tryptophan-utilizing mutants were identified in three different mutant hunts (including a mutagenesis experiment performed by Annalee Cohen of our laboratory, which produced over 400 auxotrophs; see genetic mapping section below). These Trp⁻ mutants were further categorized by their ability to grow on media containing anthranilic acid, indole or tryptophan (Table 3).

Cloning of *trp* genes. In initial experiments, genes of tryptophan bicsynthesis were cloned by complementation of Trp auxotrophs with shotgun libraries of wild-type DNA in vectors derived from pHV2. Initially, two auxotrophs that would crow only on tryptophan, WFD35 and WFD36, were rescued with Eco RI-digested wild-type DNA

35 $trp-101$ T $pT9-42$ 452 36 $trp-102$ T $pT11-E60$ 452 37 $trp-103$ A,I $pT1323-n$ $A159$ 39 $trp-105$ T $pDWT1$ 452 41 $trp-106$ T $pDWT1$ 452 $131*$ $trp-107$ T $pDWT1$ 452 135 $trp-107$ T $pDWT1$ 452 135 $trp-108$ I $pDWT1$ 452 163 $trp-109$ I $A159$ 167 $trp-109$ I $A159$ 167 $trp-110$ I $A159$ 178 $trp-111$ I $pT178-n$ $A159$ 186 $trp-112$ I $pT186-n$ $A159$ 192 $trp-113$ I $pT204-3$ $A159$ 204 $trp-114$ I $pT207-n$ $A159$ 207 $trp-116$ I $pT216-n$ $A159$ 240 $trp-117$ I $pT240-n$ $A159$ 246 $trp-118$ I $pT246-5$ $488,A159$	
36 $trp-102$ 1 $p111-E00$ 452 37 $trp-103$ A,I $pT1323-n$ A15939 $trp-105$ T $pDWT1$ 452 41 $trp-106$ T $pDWT1$ 452 131* $trp-106$ T $pDWT1$ 452 135 $trp-107$ T $pDWT1$ 452 163 $trp-109$ IA159167 $trp-109$ IA159167 $trp-110$ IA159178 $trp-111$ I $pT178-n$ A159186 $trp-112$ I $pT186-n$ A159192 $trp-113$ I $pT204-3$ A159204 $trp-114$ I $pT207-n$ A159216 $trp-116$ I $pT216-n$ A159240 $trp-117$ I $pT240-n$ A159246 $trp-118$ I $pT246-5$ $488,A159$	
37 $trp-103$ A,1 $p11323-n$ A159 39 $trp-105$ T $pDWT1$ 452 41 $trp-106$ T $pDWT1$ 452 $131*$ $trp-106$ T $pDWT1$ 452 135 $trp-107$ T $pDWT1$ 452 135 $trp-107$ T $pDWT1$ 452 163 $trp-109$ IA159 167 $trp-110$ IA159 167 $trp-110$ IA159 178 $trp-111$ I $pT178-n$ A159 186 $trp-112$ I $pT186-n$ A159 192 $trp-113$ I $pT207-n$ A159 204 $trp-114$ I $pT207-n$ A159 216 $trp-116$ I $pT216-n$ A159 240 $trp-117$ I $pT240-n$ A159 246 $trp-118$ I $pT246-5$ $488,A159$	
39 $trp-103$ 1 $pDW11$ 432 41 $trp-106$ T $pDWT1$ 452 $131*$ $trp-107$ T $pDWT1$ 452 135 $trp-107$ T $pDWT1$ 452 135 $trp-108$ I $pDWT1$ 452 163 $trp-109$ IA159 167 $trp-110$ IA159 178 $trp-111$ I $pT178-n$ A159 186 $trp-112$ I $pT186-n$ A159 192 $trp-113$ I $pT204-n$ A159 204 $trp-114$ I $pT207-n$ A159 216 $trp-116$ I $pT216-n$ A159 240 $trp-117$ I $pT240-n$ A159 246 $trp-118$ I $pT246-5$ $488,A159$	
41 $trp-100$ 1 $pDW11$ 452 $131*$ $trp-107$ T $pDWT1$ 452 135 $trp-107$ T $pDWT1$ 452 135 $trp-108$ I $pDWT1$ 452 163 $trp-109$ IA159 167 $trp-110$ IA159 178 $trp-111$ I $pT178-n$ A159 186 $trp-112$ I $pT186-n$ A159 192 $trp-113$ I $pT204-n$ A159 204 $trp-114$ I $pT207-n$ A159 216 $trp-116$ I $pT216-n$ A159 240 $trp-117$ I $pT240-n$ A159 246 $trp-118$ I $pT246-5$ $488,A159$	
131^{+-} $trp-197$ 1 $pDW11$ 432 135 $trp-108$ I $pDW11$ 452 163 $trp-109$ IA159 167 $trp-110$ IA159 178 $trp-111$ I $pT178-n$ A159 186 $trp-112$ I $pT186-n$ A159 192 $trp-113$ I $pT192-n$ A159 204 $trp-114$ I $pT204-3$ A159 207 $trp-115$ Y $pT207-n$ A159 216 $trp-116$ I $pT216-n$ A159 240 $trp-117$ I $pT240-n$ A159 246 $trp-118$ I $pT246-5$ $488,A159$	
155 $trp-108$ 1 $pDW11$ 452 163 $trp-109$ IA159167 $trp-110$ IA159178 $trp-111$ I $pT178-n$ A159186 $trp-112$ I $pT186-n$ A159192 $trp-113$ I $pT192-n$ A159204 $trp-114$ I $pT204-3$ A159207 $trp-115$ Y $pT207-n$ A159216 $trp-116$ I $pT216-n$ A159240 $trp-117$ I $pT240-n$ A159246 $trp-118$ I $pT246-5$ 488,A159	
103 $trp-109$ I $trp-100$ I $A159$ 167 $trp-110$ I $$ A159 178 $trp-111$ I $pT178-n$ A159 186 $trp-112$ I $pT186-n$ A159 192 $trp-113$ I $pT192-n$ A159 204 $trp-114$ I $pT204-3$ A159 207 $trp-115$ Σ $pT207-n$ A159 216 $trp-116$ I $pT216-n$ A159 240 $trp-117$ I $pT240-n$ A159 246 $trp-118$ I $pT246-5$ $488,A159$	
107 $trp-110$ 1 $pT178$ $A159$ 178 $trp-111$ I $pT178-n$ $A159$ 186 $trp-112$ I $pT186-n$ $A159$ 192 $trp-113$ I $pT192-n$ $A159$ 204 $trp-114$ I $pT204-3$ $A159$ 207 $trp-115$ Y $pT207-n$ $A159$ 216 $trp-116$ I $pT216-n$ $A159$ 240 $trp-117$ I $pT240-n$ $A159$ 246 $trp-118$ I $pT246-5$ $488,A159$	
176 $up=111$ 1 $p1176-n$ $A159$ 186 $trp=112$ I $pT186-n$ $A159$ 192 $trp=113$ I $pT192-n$ $A159$ 204 $trp=114$ I $pT204-3$ $A159$ 207 $trp=115$ Y $pT207-n$ $A159$ 216 $trp=116$ I $pT216-n$ $A159$ 240 $trp=117$ I $pT240-n$ $A159$ 246 $trp=118$ I $pT246-5$ $488,A159$	
130 $up=112$ 1 $pT100-n$ $A159$ 192 $trp=113$ I $pT192-n$ $A159$ 204 $trp=114$ I $pT204-3$ $A159$ 207 $trp=115$ I $pT207-n$ $A159$ 216 $trp=116$ I $pT216-n$ $A159$ 240 $trp=117$ I $pT240-n$ $A159$ 246 $trp=118$ I $pT246-5$ $488,A159$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
240 trp-117 I pT240-n A159 246 trp-118 I pT246-5 488,A159	
246 <i>trp</i> -118 I pT246-5 488,A159	
258 trn-119 I nT258-n A159	
261* trp-120 I pT261-n 488 A159	
284 trp-121 I $ A159$	
287* <i>trp</i> -122 T pDWT1 452	
292 <i>trp</i> -123 I pT292-n A159	
300* <i>trp</i> -124 I pT300-n 488.A159	
347 <i>trp</i> -125 T pDWT1 452	
369 trp-131 T pDWT1 452	
531* <i>trp</i> -127 I pT31-n 488. A159	
543 trp-128 T pDWT1 452	
564 trp-129 I pT64-n A159	
567 trp-130 I pT67-n A159	

Table 3. Auxotrophic strains, their nutritional requirement, and the plasmids or cosmids which transform them to prototrophy.

The indole-utilizing WFD135 and all the trp(T)-requiring mutants were complemented by pDWT1, whil the rest of the mutants which grow on indole (I) or anthranilic acid (A) were rescued by pT240-1, pT186-4 and pT1323-15. * Strains initially transformed with cosmid pools. ** All strains were tested for transformation with cosmids A159 and 452.

cloned into compatible sites in the ISH51 sequences of pHV51. (pHV51 is the variant of pHV2 containing a copy of the insertion sequence ISH51 desc_..bed above.) Plasmid DNAs isolated from a number of independent Trp⁺ transformants of either recipient contained a common 8 kbp insert. Two such plasmids (pT9E42, from transformation of WFD35, and pT11E60, from transformation of WFD36) could be used to transform either strain to prototrophy (6 to 8 thousand times more efficiently than linear wild-type DNA), and indeed all Trp⁻ strains which can grow only on tryptophan could be rescued with these plasmids. Plasmid pT11E60 was made into a hybrid vector, pDWT1, maintainable in *E. coli*, by insertion of the pBR322 derivative pAT153 into its unique HindIII site. pDWT1 is able to rescue one of the twenty indole- or anthranilate-utilizing mutants (WFD135 in Table 3).

The more recently developed shuttle vector pWL102 was used in similar cloning experiments with those mutants which could grow on indole or anthranilic acid. Wild-type DNA partially-digested with MspI or HinPI was separately fractionated on sucrose gradients. DNA fragments 4 to 7 kbp in size were purified and ligated into the unique Cla I site of pWL102. The shuttle vector DNA was prepared from *Hf. volcanii*, to protect ligated DNA from restriction when transformed into *Hf. volcanii* auxotrophs. Recombinant plasmids isolated from prototrophic, mevinolin-resistant transformants shared some common restriction sites and could be used to define a 7 kbp region in which these mutations lie (figure 17A). In fact, three plasmids (pT1323-15, pT240-1 and pT186-4) which contain no extra sequences ouside this predicted region, could transform 19 of the 20 indole- or anthranilate-utilizing mutants to Trp⁺ (all except WFD135 which is complemented by pDWT1 above), placing the gene for at least one component of the anthranilate synthase, and at least one other *trp* gene.

Figure 17. Delimitation of *trp* genes. In (A), the restriction maps of plasmid clones (isolated via transformation of individual mutants with a library of wild-type DNA cloned into pWL102) were aligned to determine the minimal region required for complementation. DNA inserts (MspI or HinPI partial digests) cloned in plasmids pT1323-15, pT240-1 and pT186-4 could complement 1 anthranilate-utilizing and 18 indole-utilizing mutants. The remaining 1 indole-utilizing and 9 tryptophan-requiring mutants could be rescued by pDWT1. (B) Deletion analysis of the 8 kb insert in pDWT1 localizes the *trpB* gene, since mutants with an absolute requirement for tryptophan are defective in the β subunit of tryptophan synthase which is encoded by *trpB*.

75

¥

2. Analyses of trp genes

3

trpCBA gene cluster. The ability to transform *Hf. volcanii* auxotrophs with small DNA fragments allows more precise localization of genes within plasmid or cosmid clones. The EcoRI fragment which was cloned into pDWT1 is able to rescue all mutants absolutely requiring tryptophan and the indole-utilizing WFD135, thus placing the *trpB* gene and at least one other *trp* gene within this fragment (Table 3). Using subfragments of this 8 kb insert to transform WFD36 allowed the identification of a 2.8 kbp *trpB*-containing region (figure 17B). This region also transforms WFD135 to Trp⁺.

The nucleotide sequence of this and neighbouring regions shows three open reading frames (ORFs) transcribed in the same direction (figure 18). These ORFs were named trpC (756 bp), trpB (1272 bp) and trpA (834 bp), based on their amino acid sequence similarities to eubacterial and yeast homologs (figure 19 and Table 4).

The deduced amino acid sequence of *Hf. volcanii* TrpB is about 45% identical to homologs in eubacteria, methanogen and yeast (Table 4). The 423 residue *Hf. volcanii* TrpB sequence, although significantly larger than that of *E. coli* (397 a.a.), aligns coherently with eubacterial tryptophan synthase β subunit sequences (Yanofsky et al. 1981) and with the β chain sequence derived from part of the yeast *TRP5* gene (Zalkin and Yanofsky 1982) (figure 19). Extra residues at the C-terminus account for some of the size difference between the eubacterial and the *Hf. volcanii* TrpB. Three insertions (of 2, 6 and 8 residues at positions 40, 263 and 367 of the *E. coli* sequence) introduced to optimize the sequence alignment, are found in regions predicted by the *Salmonella* threedimensional structure (Hyde et al. 1988) to be random coils. Half of these 16 inserted residues are acidic amino acids -- not surprising, since most proteins in halophilic archaebacteria are acidic (Eisenberg and Wachtel 1987). The nine extra residues found in *M. voltae* TrpB (at position 245 of *E. coli*) are not present in *Hf. volcanii*.

....G GTC GGT CGG GAC GGT CAG TCG ATG GGG ACC GAC GAG AGG TCC GTC TGG CCC 52 val gly arg asp gly gln ser met gly thr asp glu arg ser val trp pro CGG TCG ATG GCG GCC AAC ACG GCG TCG AGG TGG GCG TGG TCC GAC TCG GAG TCC GCC GGC 112 arg ser met ala ala asn thr ala ser arg trp ala trp ser asp ser glu ser ala gly AGC GAG TCC GGA AAC GAG ACG TCG ATG ACC TTC CCG CTG ACC ACG CCG ACC TGC ACG GGG 172 ser glu ser gly asn glu thr ser met thr phe pro leu thr thr pro thr cys thr gly CGG CCG AGC GTG GAC GAT TCG CGC GCG TAGATTCCCGAGACGGGCATACGTTCGGCTCCCGTCGCCGGAC 242 arg pro ser val asp asp ser arg ala AMB GCTTGACCCTTCCGGCGACGGCGTGCGGTTGGGGTGGCGCTCGGTTCGGGTGGCCGATACCTCGCCGTGCGCTCTC 321 GCCCGCGCGCACGCGAGAGACGGTGAGTGTCCCCCGCCGACGTAAGCCTTATGTACAGATACGTGCGTTAGTGTACATCA 400 trpC-> ATG AAC GCT AGT GGA GAC GAA TTA GCT CCC GAC GTG CGC GCC ATC TTG GAG GCC GCG CGG 460 Met asn ala ser gly asp glu leu ala pro asp val arg ala ile leu glu ala ala arg GAG CGA CCC GGC GGG GAG ACG CGC GTG TCG GTC GAC GCG CGG TCG TTC CCC GAG GCC GTG 520 glu arg pro gly gly glu thr arg val ser val asp ala arg ser phe pro glu ala val GCC GAG ACG GAG GCC GCG GGT CGG GTC CCC GTC ATC GCC GAG GTG AAG CCC ACG AGT CCG 580 ala glu thr glu ala ala gly arg val pro val ile ala glu val lys pro thr ser pro ACG ACC GAG GGC GTC CGC GAG GAC GAC CCG GTC GAA CTG GCC CGC GAG ATG GTC GCC GGC 640 thr thr glu gly val arg glu asp asp pro val glu leu ala arg glu met val ala gly GGC GCG ACG GCG CTG TCG GTC CTC ACC GAA CCC GAG CAC TTC GGA GGC TCC GCC GAG TCG 700 gly ala thr ala leu ser val leu thr glu pro jlu his phe gly gly ser ala glu ser CTG CGG CGC ATC CGC GAG GCC GTC GAC GTG CCC GTG CTC CGC AAG GAC TTC ATC ATG AAC 760 leu arg arg ile arg glu ala val asp val pro val leu arg lys asp phe ile mut asm GAG GCC CAA CTG GAT GTC GTC CAG TCC GAC CTC GTG CTC CTC ATC GCG CGG TTC GTC GGC 820 glu ala gln leu asp val val gln ser asp leu val leu leu ile ala arg phe val gly GAG GAC CTC CCG GCC CTC GTC GAG GCG GCC CGC GAC CGC GCC TTC CAG CCG CTC GTG GAG 880 glu asp leu pro ala leu val glu ala ala arg asp arg gly phe gln pro leu val glu GTC CAT ACG CGC GAG GAA CTC ACG GCG GCG CTC GCG GCC GGT GCC GAC ATC GTC GCC ATC 940 val his thr arg glu glu leu thr ala ala leu ala ala gly ala asp ile val gly ile AAC AAC CGC GAC CTC GGG AAG CTG GAA GTC GAC CTC GGC ACG TTC GAG GAA CTC GCG CCC 1000 asn asn arg asp leu gly lys leu glu val asp leu gly thr phe glu glu leu ala pro GAA GCG CCC GAG GAC GTG CTT CTC GTG GCC GAA AGC GGC GTG CAG ACG GTC GAC GAC GCG 1060 glu ala pro glu asp val leu leu val ala glu ser gly val gln thr val asp asp ala CGG CGG ATG CGC GAG GCC GGT GCC GAC GCC CTC CTC GTC GGG ACC GCC ATC ATG GAC GGC 1120 arg urg met arg glu ala gly ala asp ala leu leu val gly thr ala ile met asp gly trpB-> GAC GTG CGA CAG AAC ACG GAG ACA CTC ACA CAA TG AGC GCA GAC GGC AAA TTC GGC GAC 1179 asp val arg gin asn thr glu thr leu thr gin CPA Met ser ala asp gly lys phe gly asp TAC GGC GGA CAG TAC GTT CCC GAG GCA CTC ATG CCG GCC ATC GAG GAA CTG ACC GAC GCG 1239 tyr gly gly gln tyr val pro glu ala leu met pro ala ile glu glu leu thr asp ala TAC GAG CGG TAC GTC CTC GAC AAC GAA GAC GGC TTC AIG GAC GAC TTC CGC GCG CGA CTG 1299 tyr glu arg tyr val leu asp asn glu asp gly phe met asp asp phe arg ala arg leu CGG GAC TTC GGC GGG CGA CCG ACG CCC CTC CAG CGC GCG GAC CGA CTC TCG GAG CGC TAC 1359 arç asp phe gly gly arç pro thr pro leu çln arç ala asp arç leu ser glu arç tyr

continues...

Figure 18. DNA sequence of the *trpCBA* region and the amino acid sequence of open reading frames predicted by this sequence. Arrows indicate repeated sequences.

77

GAC CGC GAG GTC TAC CTC AAG CGC GAG GAC CTC CTC CAC GGC GCG CAC AAG CTC AAC 1419 asp arg glu val tyr leu lys arg glu asp leu leu his gly gly ala his lys leu asn AAC GCG CTC GGG CAG GTC TTA CTG GCG AAG TAC ATG GGC AAA GAG CGC ATC ATC GCC GAG 1479 asn ala len gly gln val leu leu ala lys tyr met gly lys glu arg ile ile ala glu ACC GGC GCG GGC CAG CAC GGC ACC GCC ACG GCG ATG GCC TGC GCG CAC CTC GAT ATG CCC 1539 thr gly ala gly gln his gly thr ala thr ala met ala cys ala his leu asp met pro TGC GAG ATT TAC ATG GGC GAG CGC GAC ATC AAC CGC CAG CGC CCC AAC GTC TTC CGG ATG 1599 cys glu ile tyr met gly glu arg asp ile arn arg gln arg pro asn val phe arg met ANG CTC ANC GGC TCC GAG GTG ANC CCC GTC ACC GTC GGC CGC GGC ACG CTC ANG GAG GCC 1659 lys leu asn gly ser glu val asn pro val thr val gly arg gly thr leu lys glu ala ATC TCC GAG ACG ATG CGC GAC TGG GAG ACC AAC GTC GAG GAC ACC CAC TAC GTC ATC GGC 1719 ile ser glu thr met arg asp trp glu thr asn val glu asp thr his tyr val ile gly TCC GTC GTC GGC CCG CAC CCG TTC CCG AGC ATG GTT CGG GAC TTC CAG TCG GTC ATC TCC 1779 ser val val gly pro his pro phe pro ser met val arg asp phe gln ser val ile ser GAG GAG GCC CGC ACG CAG GCC AGA GAG AAA CTC GGC CGG CTC CCC GAC GCC GTC GTC GCC 1839 glu glu ala arg thr gln ala arg glu lys leu gly arg leu pro asp ala val val ala TGC GCG GGC GGC TCG AAC ACG ATG GGC GCG TTC GCC GAG TTC GTC GAC GAC GAG GAG 1899 cys ala gly gly gly ser asn thr met gly ala phe ala glu phe val asp asp glu glu ACC GCG TTC TAC GCC GTC GAG GCC GGC GGC TCG ACG CTC GAA GTG GAC GAG GAA GCC GGC 1959 thr al/ ieu tyr ala val glu ala gly gly ser thr leu glu val asp glu glu ala gly GTC GCG CCC AAC TCG GCG TCG CTC ACG ACC GGG TCG GAG GGC ATT CTC CAC GGC GCG CGC 2019 val ala pro asn ser ala ser leu thr thr gly ser glu gly ile leu his gly ala arg ACC CGG CTC TTG CAG GAC CGC GAC GGC CAG ATT ATG GAG TCG CAC TCG GTG TCG TCC GGC 2079 thr arg leu leu gln asp arg asp gly gln ile met glu ser his ser val ser ser gly CTC GAC TAC GCC GGC GTC GGC CCC GAA CTC GCA CAC CTC GTG GAC ACC GGC CGC GTC ACC 2139 leu asp tyr ala gly val gly pro glu leu ala his leu val asp thr gly arg val thr GCC GTC AAC GTC GAC GAC GAC GCG GCG CTG ACC GCG TTC CAC CGG CTC TCG CAG ATG GAG 2199 ala val asn val asp asp asp ala ala leu thr ala phe his arg leu ser gln met glu GGC ATC ATC CCC GCC CTG GAG TCG GCC CAC GCG TTC GGC TAC CTC GAA GTC TGG TCG TCT 2259 gly ile ile pro ala leu glu ser ala his ala phe gly tyr leu glu val trp ser ser gly pro asp ala pro asp ala glu asn ala asp asp leu gly glu tyr val val asn GTT TCC GGT CGC GGC GAC AAA GAC CTC GAA TCG GCC ATC GAG GAG ACC TAC GAG CGC GAC 2379 val ser gly arg gly asp lys asp leu glu ser ala ile glu glu thr tyr glu arg asp trpA-> ATC GAT ATC GCG CCG AAC ATG GAC GAG TTC ACG GGG GGC CTG TGA TG TCG CTC GAA GAC 2438 ile asp ile ala pro asn met asp glu phe thr gly gly leu OPA Met ser leu glu asp GCC TTC TCC GAC GGC CCG GCG TTC GTC CCC TAT CTT GCC GCC GAC GAC CCC GAC TAC GAG 2498 ala phe ser asp gly pro ala phe val pro tyr leu ala ala gly asp pro asp tyr glu TCC TCG CTC GAA TAC GTC GAG GCG CTC GAA CGC GGC GGC GCG GAC GTC ATC GAA CTC GGA 2558 ser ser leu glu tyr val giu ala leu glu arg gly gly ala asp val ile glu leu gly CTT CCG TTC TCG GAG CCC ATC GCC GAG GGG CCG ACC ATC CAG AAC GCG GTT GTT CGG TCG 2618 leu pro phe ser glu pro ile ala glu gly pro thr ile gln asn ala val val arg ser

continues...

ながい

.

1

1.00

1

CTC GAA GGC GGC ATG ACG CCG ACG CGC TTT TTC GAG TTC GTC GAG GAC CTC GAC GTG TCG 2678 leu glu gly gly met thr pro thr arg phe phe glu phe val glu asp leu asp val ser GTG CCG GTG GTC TGT ATG AGG TAC TAC AAC CTC ATC TAT CGC TAC GGC GAT GAA CCC GGA 2738 val pro leu val cys met arg tyr tyr asr leu ile tyr arg tyr gly asp glu pro gly CCG CGG CCG TTC GTC GAG AAG GCG GCG GAA GTC GGT ATC GAG GGC TTC GTC GTC CCC GAC 2798 pro arg pro phe val glu lys ala ala glu val gly ile glu gly phe val val pro asp CTG CCG GCC GAG GAG GCC GGC CCG CTC CGC GAG GCC TGC GAC GAG TTC GGC CTC GAC CTC 2958 leu pro ala glu glu ala gly pro leu arg glu ala cys asp glu phe gly leu asp leu GTG TTC ATC GTC GCG CCG ACG ACC CGC GGC GAG CGC CTC GAC CGA ATC ATG GAA CAG GTC 2918 val phe ile val ala pro thr thr arg gly glu arg leu asp arg ile met glu gln val TCG GGC TAC GTC TAC GTG CAG GCG CGC CTC GGC ACG ACG GCC GCG CAG TCG AGC GTC TCC 2978 ser gly tyr val tyr val gln ala arg leu gly thr thr gly ala gln ser ser val ser GAC CAG ACC GAC TCG TCG CTC GAA CGA CTC ACC GAC TAC GAC GTG CCC AAG GCG GTC GGC 3038 asp gln thr asp ser ser leu glu arg leu thr asp tyr asp val pro lys ala val gly TTC GGA ATC AGC GAC GGC GAC CAC GCC GAG CGC ATC GTC GCC AGC GGT GCC GAC GGC ATC 3098 phe gly ile ser asp gly asp his ala glu arg ile val ala ser gly ala asp gly ile ATC GTC GGC AGC GCG CTC GTC GAL ATC GTC GCC GAG GGC CAC GAG AAC GGC GAC GAC GCC 3158 ile val gly ser ala leu val asp lle val ala glu gly his glu asn gly asp asp ala GAA ACG GTC GCG GAC CGA CTC GAA ACG CTC GCC CGC GAA CTC GAA GAC GGT GCG GTA GCG 3218 glu thr val ala asp arg leu glu thr leu ala arg glu leu glu asp gly ala val ala GGC GCG TCG CAA CGC CCA CCG CAT CCG GAA CGC ACA TAA CTG CTC TGC CAC CCT TTC TCA 3278 gly ala ser gln arg pro pro his pro glu arg thr OCH ----> <---TAC ATG AAC ACA GAC GTC GGA CTC TCC GCA CGA CTC GAC CGC ATT TCC ACA GAC 5GG CGA 3338 TAC CTC ATC GTC CCG ATG GAC CAC GGC ATC ACC CTC GGC CCG GTC ACG GGC CTC GTC GAT 3398 Met asp his gly ile thr leu gly pro val thr gly leu val asp ATC GAA YCC ACT ATC GAC GGC ATC ACG CGC GGC GGC CGT GAC GCC GTC CTC ACG CAC AAG 3458 ile glu ser thr ile asp gly ile thr arg gly gly arg asp ala val leu thr his lys GGG ACC GCG CGC CGC GTC CAC CCG AAC AAA AAC GGC AAA GGC TAC ATC GTC CAC GTA AAC 3518 gly thr ala pro arg val his pro asn lys asn gly lys gly tyr ile val his val asn GGC TCG ACG GAC ATC GGC CCG GAC GAA AAC CAC AAG CGA CTC 3560 gly ser thr asp ile gly pro asp g'u asn asp lys arg leu

Ттра Sc....ENHKHPIHFODFGGOM/TEADHACLREDEKGFDEAVADPT--Mv MKCNTKCDKNGYFGEFGGOM/TEADHACLREDEKEAYKELKODED--Ec----MTTLLNPYFGEFGGYMYFDILMPALROLEEAFVSAOKOPE--Hv ----MSAD--GKGDYEGDYDFALMPALEELTDAYERYVLDNEDGE 41 TrpA TEPA Sc -----MSEQLRQTFANAKKENRNAL WIFFMTACMPTVKDTVPILKGFQDG-GVDIIE Mv MKNLENLEKDLKNDLKKDLKKEKPILVSFLVSCOPNIEATLKFMNALDEYCOV--IE Ec -----MERYESLFAQLKERKEGAFVPFVTLCOPGIEQSLKIIDTLIEA-GADALE Hv -----MSLEDAFS-----DGPAFMPYLAAGDPDYESSLEYVEALERG-GADVIE WEDFKSLYS-YIGHPSEIDHKAERLTEHCOGAQIWLKREDDMINGHIKIN QNELAYYLKHYAGRETFLYYAKNLTEKLGGAKIYLKREDLLIGGAHKIN QAQFNDLLKNYAGRETALTKCQNIT-AGTHTTLYLKREDLLIGGAHKINQ MDDFRARLRDFGGRETFLQRADRLS-ERYDREVYLKREDLLIGGAHKINQ 90 LGMEFSDENADEHTIOLSNTVALONGVTLPOTLEMVSOARNEGVTVEN I ILMGYNNE I LNY LGIEFSDENADGETIOEANVRSLSNGYKIHOSFDVLREFRKFSDT-EVVLMTYNNE I YKR LGIEFSDENADGETIONATLRAFAAGVTPAOCFEMLALIROKHETIEIGLLMYNMLVFNK LGIEFSEENAFGETIONAVVRSLEGGMTETRFFEFVEDL---DVSVELVCMRYNMLI YRY 100 100 GER----FIQDAAKAGANGFIIVDLEPEALKVENYINDNGLSLIPLVAESTTDERLEL GIEN----FVIQAKEAGANGLIIVDLELDEAEQYRAICKKHDMGTVFLVAENTPDERLMY GIDE----FYAQCEKVCVDSVLVADVPVEESAPFRQAALRHNVAPIFICPENADDDLLRQ GDEPGPRPFVEKAAEVGIEGFVVPDLPAEDAGPIBEACDEFGLDLVFIVAETTRGERLDR T60 ALAOMLLAKRIGKKNVIAETGAGOHGVATATACAKFGLTCTVFMGAEDVR TIGCALLAKKYCKTRIIAETGAGCHGVGTSMACALFGLETEIFMCRVDTE VLCCALLAKRKKKTEIIAETGAGCHGVASALASALLGLKCRIYMGAKOVE ALGCVLLAKYMGKERIIAETGAGOHGTATAMACAHLDMPCEIYMGSRDIN ROAINVERTRILLOAMIAMINGIKILIRDATSEAFRETWINLKITYYYVÖS RODENVARUKLISAKVIPYDISKVIKDAVISAMINTATFENTHYLLGI ROSENVERUKLISAKVIPYDISKVIKDAVISAMINTATFENTHYLLGI ROSENVERUKLISEVIPYISKAILKDAVISAMINTATENVEDITYVIS RORENVERUKLISEVIPYIVGROTIKDAISETMEDMETNVEDITYVIS 190 LSHIADSFYTYVYSRATTGYQSSYASDLDELISRVRKYTKDTPLAVGFGYTTREHF-QSV SDEASTLFLIVVISTFGITGARGSFEKMTFEFIARAKNLCDKNKLYYGFGISNGEHAEKII IASYGRGYTYLLSRAGYTGBENRAALPLNHLVAKLKEYNAAPPL-OGFGIGAPDQVKAAI IMEQVSGYVMVQARLGTGAQSSYSDQTDSSLERLTDYDVPKAV--<u>FFG</u>IGDGDHAERIV 218 218 GSVPDGVVIGSKIVTLC-----GDAPEGKRYDVAKEYVQGILNGAKHKVLSKDEF.... ENGADGVIVSSAFVDII---KEYGDSNEITYKLKELARELSEGIHKGYVKYNEKNKY DAGAAGAISSSAIVKII---EQHINEPEKMLAALKVFVQPMKAATRS ASGADGIIVSSALVDIVAEGHENGDDAETVADRLETLARELEDGAVAGASQRPPHPERT 277 AIGPHHYPTLWRFGSVIIGKETKEGE AAMNNGKLEDAVVACVGGGSNSTG VAGPHHEFFTMVRGFOSVIIGKEVKKOIMEQE-ERLPCILVACIIGGGSNAVG AAGPHHYFTIVREFORMIGEETKAOILERE-GRLPDAVIACVGGGSNAIG VVIPHHFHSMVRGFOSVIISEETAATQAREKL-GRLPDAVVACAGGGSNIVAJ 239 277 MESTERE-----TKEHSARILGVEAGEDGVD-----TKEHSARILTAJ LEHEFILSNNISTGNDDAKNVKMIGIEAACKGIN-----TSLHGASITKG MEADEII-----RETNVGLIGVEPGSHGIE-----TGEHGAPIKHJ AFAEEV-----DDEETALYAVEAGSTLEVDEEAGVAPNSUSITTJ 280 TrpC SG ... SILDRIYARRATOVNEQSKIPGFTFQDLQSNYDLGLAPPLQDFYTVLSS--SHK EG -MQTVLAKIVADKATAVEARKQQOPL-----ASFQNEVQPSTRIFYDALQG----A HY MNASGDELAPDVRAT-LEAARERPGG------ETRVSVDARSEPEAVAETEAAG REGVENENKTYVLOSTGOVNDTHEVSAGLDYPGVGPELAYMKSTGRAOF EKGVLNGMLSYFLODEDGGIEEAXSISAGLDYPGJGPENAYLHNIGROOF RVGIYFMKAPMOTEDGGIEESYSISAGLDFPSVGPONAYLNSTGRADY SEGILNGARTRLLOPPGGIMESHSVSSGLDYAGVGPELANLVDTGRVTA 3300 RAVVLAEVKRASPS-KSPICLKAVAAEOALKYAEAGASALSVLTEPHAEHESLOOLIVNVR RTAFILECKKASPS-KSVIRDDFDPARIAAIY-KHYASALSVLTDEKYEOGSENFLPIVS RVPVIAEVKPTSPITEGV-RED-DPVELAREMVAGGATALSVLTEPEHEGGSAESLARIR 105 KILDLKFPPKERPCVLRKEFIFSKYCJILEARLAGADTVLIJIVKMLSOPLLKELIYSYSKDL QIAPOP------ILCKOFIJOPYCJIYLARYYOADACLLMLSVLDDDOYRCIAAVAHSL EAVDVP------VLRKOFIMNEAC-LD--VVOSDLVLIJIARFVGEDLPA-LVEAARDR IAATDACAILCERLISQIEGIIPALESSHAVYGACELAKTMK------ASATDKCALKAPMELIRTEGIIPALESSHAIAYAIENAGNMD------VSITDDEALEAFKTLCLHEGIIPALESSHALAHALKMMRENPD------VNVDDAALITAEHRLSCMEGIIPALESSHALAHALKMMRENPD------153 NMEPTIVEVNSKEBLOFALEIGAKVOOVNNRDIHSFNVDINTTSNIVESIPKOVLLIALGG EMGVINEVSNEEEDERAIALGAKVVOINNRDIRDISIDINRTRELAPKLGHNVIVISEGG GEOP<u>LVEV</u>HTREELTAALAAGADIVOINNRDIGKLEVDIGTEEELAPEAPEOVLLVAEGG 213 380 -PDQHLWINISGRGDKDVQSVAEVLPKLGPKIGWDLRFEEDPSA -KDDIMVINLSGRGDKDLNTVINAVHKLGC -KEQLLVVNLSGRGDKDIFTVHDILKARGEI DLGEYVVNNSGRGDKDLESAIEETYERDIDIAPNMDEFTGGL ITTIRDDAEKYKKEGVHGFTVGEALMKSTDVKKFIHELCE INTYAQVRELSHFA-NGFULGALMAHDDLHAAVRRVLLG.... VQTVDDARRMREAGADALLVD:MIM-DQDVRQN-TETLTQ 423 251

Figure 19. Alignment of amino acid sequences for TrpB, TrpA and TrpC from Sc (yeast), Mv (*M. voltae*), Ec (*E. coli*) and Hv (*Hf. volcanii*). Sequences were aligned by the MULTALIN method of Corpet (Corpet 1988). Very few adjustments were required to conform the alignments to those reported by other groups (Sibold and Henriquet 1988; Essar et al. 1990a). Conserved residues are boxed. Number at the end of each block refers to the position of the *Hf. volcanii* sequence.

08

Table 4. Conservation of TrpC, B and A sequences between *Hf. volcanii* and other organisms.

~

~ ~

-

.

١

-

organisms compared	vala — 848-yr. — -	identical amino acids (%) in								
	TrpD	TrpF	TrpE	TrpG	TrpC	TrpB	TrpA			
E. coli	36	26	30	32	32	45	32			
S. cerevisiae	25	29	25	32	36	45	33			
P. aeruginosa	41			37	38	49	37			
M. voltae						47	40			

i.

.

The catalytic residue Lys-87 (Hyde and Miles 1990) and the Gly-Gly-Gly-Ser-Asn stretch at position 232-236 involved in co-enzyme binding (Crawford 1989; Hyde et al. 1988) are conserved in *Hf. volcanii*, along with other residues involved in TrpB function (His-82, His-86 and Cys-230). The invariant tryptophan residue of unknown function at position 177 is also found.

The 834 bp ORF downstream from *trpB* encodes a 277 residue peptide resembling the *E. coli* TrpA sequence (figure 19). As in *E. coli*, the start codon (AUG) of *trpA* overlaps t. z stop codon (UGA) of *trpB* by one nucleotide (UGAUG). In contrast, the *trpB* and *trpA* gene in the methanogen are separated by a 37 bp AT-rich region (Sibold and Henriquet 1988).

Overall sequence conservation for TrpA is significantly lower than for TrpB (Table 4). The *Hf. volanii* TrpA is about 30-40% identical to all TrpA sequences we have compared. Important residues (Phe-22, Glu-49, Tyr-175, Thr-183, Gly-211, Gly-234 and Ser-235) defined by missense mutations and second site reversion in *E. coli* (Crawford 1989; Hyde and Miles 1990; Yanofsky and Crawford 1972) are all found in the *Hf. volcanii* sequence, except Tyr-16 substitutes for Phe-22. Leu-177 is replaced by Asn-172 in *Hf. volcanii*. Isoleucine and valine substitutions at this position have previously been reported in other organisms (Sibold and Henriquet 1988, Zalkin and Yanofsky 1982). The Gly-Phe-Gly-Ile stretch which contacts the substrate in *E. coli* is located, by sequence alignment, at position 205-208 of the *Hf. volcanii* TrpA.

In the α subunit of the Salmonella tryptophan synthase, Glu-49 and Asp-60 serve as proton donors/acceptors in The cleavage of indoleglycerol phosphate. Substituting Asp-60 by Asn, Ala, or Tyr destroys α chain activity, but glutamic acid replacement retains partial activity (Hyde and Miles 1990). In fact, glutamic acid (Glu-54) is the residue found at the corresponding position in *Hf. volcanii*.

Immediately upstream of trpB is a 756 bp ORF which overlaps trpB by 4 nucleotides (AUGA, figure 19). The deduced peptide (251 a.a.) has stretches of

conserved sequences common to the indoleglycerol phosphate synthase (IGPS) domain of yeast (Zalkin et al. 1984) and eubacterial (Yanofsky et al. 1981; Essar et al. 1990a, b) TrpC sequences (figure 19 and Table 4). Residues which may contribute to catalytic activity of *E. coli* IGPS are mostly conserved in *Hf. volcanii*.

The sequences GTGAT (at the *trpBA* junction) and GGAG (near the end of *trpC*, 11 bp upstream of *trpB*) are both complementary to the 3'-terminus of the small subunit ribosomal RNA of *Hf. volcanii* (3'-UCCUCCACUA...), and may serve as ribosome-binding sites.

Codon usage of the *trpC*, *trpB* and *trpA* genes is very much biased to codons with C or G in the third position, reflecting the high G+C content of these genes (68 to 71 %) -- this is consistent with the >65% G+C estimated for halobacterial genomes (Moore and McCarthy 1969a, b).

trpDFEG gene cluster. DNA sequencing of the region which complements anthranilate- and indole-utilizing mutants (defined in figure 17A and table 3) revealed four open reading frames that could encode a 337 residue TrpD, a 211 residue TrpF, a 523 residue TrpE and a 204 residue TrpG-like protein (figure 20). Although the gene structure-function relationship of eubacterial and eukaryotic *trpD*, *trpF*, *trpE* and *trpG* have not been characterized to the same extent as *trpB* and *trpA*, a large number of gene sequences are available for comparison.

The first gene of the cluster, *trpD*, encodes phosphoribosyl (PR) transferase. Variable regions occur throughout the alignment of many TrpD sequences (Crawford 1989; Essar et al. 1990a). All but a few conserved positions in the alignment by Crawford and co-workers are found in the *Hf. volcanii* sequence. Alignment of TrpD

AAGCTTTCGAATCGGACTACGTGCG 25 GCGGATTCGGGTCACAGCGCGGTCCCGCCGTCCCGAGGCGGTGCGATTCGACCCGCCGCCGACCAGTCGATGCCGGCG 104 ATTTTCGCCAGCCCGACACGCTTAAGCCGATGTACGAATTTGTACATCGTAACCCGAAGAAGTACATCGGTGATTACCA 183 trpD-> ATG CAG GAT TAT ATC GAA CGT GTG ACC GGC GGT GCG GAC CTG ACT GTC GAG GAG GCG CGC 243 Met gln asp tyr ile glu arg val thr gly gly ala asp leu thr val glu glu ala arg CGA CCG CCG CGC GGG CGG TCT TCG GAG GAC GCG ACC GAG GCG CAA ATC GGC GCG CTC CTC 303 arg pro pro arg gly arg ser ser glu asp ala thr glu ala gln ile gly ala leu leu GCC GCG CTC CGG GCG AAA GGC GAG ACC GAG GCC GAA ATC GCG GGG TTC GCG CAG GGG ATG 363 ala ala leu arg ala lys gly glu thr glu ala glu ile ala gly phe ala gln gly met CGC GAC GCC GCC CTG ATC CAT CGA GCC CGA CCC GCG GCC CGC TCG TCC GAT ACT GCT GGC 423 arg asp ala ala leu ile his arg ala arg pro ala ala arg ser ser asp thr ala gly ACC GGC GGC GAC GAC TAC AAC ACC ATC AAC GTC CTC GAC CCC ACG ACG CGC TCG TCC GCG 483 thr gly gly asp asp tyr asn thr ile asn val leu asp pro thr thr arg ser ser ala GCC GCG CCG GGC GCg gCG GCG GTG GCC AAG CAC GGC AAC TAC TCC GTC TCT TCG TCT TCT 543 ala ala pro gly ala ala ala val ala lys his gly asn tyr ser val ser ser ser ser GGG AGC GCC GAC GTG CTG GAG GTC GCC GGC GTG AAC GTC GAG GCU GAA CCC GAG TCC GTC 603 gly ser ala asp val leu glu val ala gly val asn val glu ala glu pro glu ser val GAG GCG TGC ATC GAG GAC AAC GGC GTC GGC TTC ATG CTC GCG CCC GTG TTC CAC CCC GCG 663 glu ala cys ile glu asp asn gly val gly phe met leu ala pro val phe his pro ala ATG AAG GCC GTC ATC GGC CCG CGG AAG GAA CTC GGC ATG CGG ACG GTC TTC AAC GTC CTC 723 met lys ala val ile gly pro arg lys glu leu gly met arg thr val phe asn val leu GGC CCG TTG ACG AAC CCC GCC GGG GCC GAC GCG CAG GTC CTC GGC GTC TAC GAC GCC GAC 783 gly pro leu thr asn pro ala gly ala asp ala gln val leu gly val tyr asp ala asp CTC GTC CCC GTC ATC GCC GAG TCG CTG TCG CAC ATG CCC GTC GAG CGC GCC CTC GTC 643 leu val pro val ile ala glu ser leu ser his met pro val glu arg ala leu val val CAC GGC TCC GGC ATG GAC GAA ATC GCG CTC CAC GAC CGG ACC ACG GTC GCU GAA ATC GAC 903 his gly ser gly met asp glu ile ala leu his asp arg thr thr val ala glu ile asp GGC GAC GAA ATC ACC GAG TAC ACC CTC ACG CCC GCC GAC CTC GGC CTC GAA CGG GCC CCC 963 gly asp glu ile thr glu tyr thr leu thr pro ala asp leu gly leu glu arg ala pro ile glu ala val ala gly gly thr pro gln glu asn ala asp asp leu glu gly ile leu ACC GGC GAC GTG ACC GGG CCG AAG CGC GAC CTC ATC CTC GCC AAC GCC GGC GCG GCA ATG 1083 thr gly asp val thr gly pro lys arg asp leu ile leu ala asn ala gly ala ala met TAC GTC GCC GGC CTC GCG GAC TCG CTG GAG GGG GGC GTC GAA GTC GCC CGC GAC GCC ATC 1143 tyr val ala gly leu ala asp ser leu glu gly gly val glu val ala arg asp ala ile trpF-> GAC TCC GGG GCC GCG AAA GCC AAA CAC GAC GCG CTT CCG GGA GGC GTG AGA TG ACC CGC 1202 asp ser gly ala ala lys ala lys his asp ala leu pro gly gly val arg OPA Met thr ard GTC AAA GTG TGC GGC GTC ACC GAC GAA ACC GAC CTC GCC GCC GTC GAC GCG GCC GGT GCC 1262 val lys val cys gly val thr asp glu thr asp leu ala ala val asp ala ala gly ala GAC GCG GTC GGT GCC ATC TCC GAC GTG CCC GTG GAC ACG CCC CGC GAG ATT CCC CGC GAG 1322 asp ala val gly ala ile cys asp val pro val asp thr pro arg glu ile pro arg glu CGC GCC CGC GAA CTG TTC GCC GCC GCG CCG CCG TTC CTC ACG ACC CTC GTG ACG ATG 1382 arg ala arg glu leu phe ala ala ala pro pro phe leu thr thr thr leu val thr met

continues...

Figure 20. DNA sequence of the trpDFEG region. Deduced amino acid sequence of TrpD, TrpF, TrpE and TrpG are shown. Direct repeats immediately downstream of trpG are indicated by arrows.

1

84

ĩ

1

CCC GAC TCC GTC GAC CAC GCC CGA GAC CTC GCC CGC GAG GTC GGC CCG GAC GTG CTC CAA 1442 pro asp ser val asp his ala arg asp leu ala arg glu val gly pro asp val leu gln CTC CAC GGC GAC TTC GCG GCC GAC GAC CTC GAC TCG CTC CGC GCG ACG GGC GLC GGC GTC 1502 leu his gly asp phe ala ala asp asp leu asp ser leu arg ala thr gly va' gly val GTC CCG GTC GTC GAC GCG ACC GAC CTC GCC CGC GCA CGC GAC CTC GCG CCC GTC GTC GAC 1562 val pro val val asp ala thr asp leu ala arg ala arg asp leu ala pro val val asp GET ATE GTE GAE ACG CCC TEC GAE TEG GGE GEG GGE GGE GGE GAE ACE CAE GAE 1622 ala ile leu val asp thr pro ser asp ser gly ala gly gly thr gly glu thr his asp TEG GAC GCC TCG CGC GAC CTC GTC GCG SCG GTC GAC GCG CCC GTA ATT CTC GCG GGC GGC 1682 trp asp ala ser arg asp leu val ala ala val asp ala pro val ile leu ala gly gly CTG ACG CCA GAC AAC GTC GTC GAG GCG GTT CGA ACC GTC GAA CCT TAC GGC GTC G.4C GTC 1742 leu thr pro asp asn val val glu ala val arg thr val glu pro tyr gly val asp val GCG AGC GGC GTC GAG GCC TCC GGC GGG GTC AAG GAC CAC GAC GCG GTC CGC GCG TTC GTC 1802 ala ser gly val glu ala ser gly gly val lys asp his asp ala val arg ala phe val trpE-> GCC GCG GCG AAG ACG GCT CGC GGA GCG GTC GAC GAC CAC GAG GAG GTC GTC GCG TG ACG 1861 ala ala ala lys thr ala arg gly ala val asp asp his glu glu val val ala OPA val GCC CCC GAC ACC GAC CGC GAG GAG TTC GTC TCC CTC GCC GGC GAC GGG GAC GGA CCG GTC 1921 ala pro asp thr asp arg glu glu phe val ser leu ala gly asp ala asp gly pro val GTG ACC CAC CTC GTG GCC GAC CTC GAC GTG TCC GTG GAC CCG CTG GCC GCG TAC ACG ACG 1981 val thr his leu val ala asp leu asp val ser val asp pro leu ala ala tyr thr thr CTC GCG GAC CGC AGC GAC TAC GGC TTC CTC CTG GAG AGC GCC GAG AAG GTC TCC TCG AGC 2041 leu ala asp arg ser asp tyr gly phe leu leu glu ser ala glu lys val ser ser ser AAC CCG CAG GCG CGT TCT CCG CGC CCG CGC ACG GCC GAC TCC CAC GCG CGC TTC TCG 2101 asn pro gln ala arg ser pro arg pro arg thr ala ala asp ser his ala arg phe ser TTC GTC GGC TAC GAC CCC GAA GCG GTC GTG ACG GTC GGT CCC GAC GGC GTC GAC GTG ACC 2161 phe val gly tyr asp pro glu ala val val thr val gly pro asp gly val asp val thr GAC CTC GGC GGC CCC GCC GCG GAG TTC GTC GGC GCG GGC GAC GGC GAC GTG CTC GAT TCC 2221. asp leu gly gly pro ala ala glu phe val gly ala gly asp gly asp val leu asp ser CTG CGC GGC GCG CTC CCC GAC CTC CCG CGC GTC AAC TTC CCC GAG ACG GAC GCA GAC GTC 2281 leu arg gly ala leu pro asp leu pro arg val asn phe pro glu thr asp ala asp val ACC GGC GGG CTG GTC GGC TTC CTC GCC TAC GAG GCC GTC TAC GAC CTC TGG CTC GAC GAG 2341 thr gly gly leu val gly phe leu ala tyr glu ala val tyr asp leu trp leu asp glu GTC GGC CGC GAG CGC CCC GAC ACG GAC GAC CCG GAC GCC GAG TTC GTC CTC ACG ACC CGG 2401 val gly arg glu arg pro asp thr asp asp pro asp ala glu phe val leu thr thr arg ACC COC TCG TTC GAC CAC CGC GAG GAC GCC GTC CGC CTC GTC TGT ACC CCC GTC GTC TCG 2461 thr leu ser phe asp his arg glu asp ala val arg leu val cys thr pro val val ser CCC GAC GAC GAC CCC GGC GAG GTG TAC GAC GGC GTC GTC GCC GAG GCC GAG CGC GTC GCG 2521 pro asp asp pro gly glu val tyr asp gly val val ala glu ala glu arg val ala glu lys leu arg ala ala asp asp pro ala pro gly gly phe glu arg thr gly glu asp GCC GCC TCC CGC GAG GAG TAC GAG GCC GCG GTC AGG AAG ACG AAA GAA CAC GTC CGC GAC 2641 ala gly ser arg glu glu tyr glu ala ala val arg lys thr lys glu his val arg asp GGC GAC ATC TAT CAG GGC GTC ATC TCG CGC ACC CGG AAG CTC CGC GGG CAG GTC GAC CCG 2701 gly asp ile tyr gln gly val ile ser arg thr arg lys leu arg gly gln val asp pro GTC GGT CTG TAC GCC TCG CTG CGC GAG GTG AAC CCC TCG CCG TAC ATG TTC CTG CTC CGG 2761 val gly leu tyr ala ser leu arg glu val asn pro ser pro tyr met phe leu leu arg

continues...

 I_{i}

CAC GGC GAC CGG CGC GTC GTC GGC GCG AGC CCC GAA ACG CTC GTC TCC GTC AGG GGC GAC 2821 his gly asp arg arg val val gly ala ser pro glu thr leu val ser val arg gly asp CGC GTC GTC GTC AAC CCC ATC GCG GGG ACG TGC CAG CGC GGG TCC GGC CCG GTT GAG GAC 2881 arg val val asn pro ile ata gly thr cys gln arg gly ser gly ro val glu asp CGC CGC CTL GCC GGC GAA CTC CTC GCG GAC GCG AAA GAG CGC GCC GAG CAC ACG ATG CTC 2941 arg arg leu ala gly glu leu leu ala asp ala lys glu arg ala glu his thr met (eu GTC GAC CTC GGC CGC AAC GAC GTG LJC CGG GTC TCG ACG CCC GGG AGC GTC CGC GTC GAG 3001 val asp leu gly arg asn asp val arg arg val ser thr pro gly ser val arg val glu GAC TTC ATG AGC ATC ATC AAG TAC AGC CAC GTC CAG CAC ATC GAA TCG ACC GTC TCG GGG 3061 asp phe met ser ile ile lys tyr ser his val gln his ile glu ser thr val ser gly ACG CTC GAC GCC GAC GCC GAC GCC TTC GAC GCC ACG CGA GCG ACG TTC CCC GCG GGG ACG 3121 thr leu asp ala asp ala asp ala phe asp ala thr arg ala thr phe pro ala gly thr CTC ACC GGC GCG CCG AAG GTC CGC GCG ATG GAG ATT ATC GAC GAC CTC GAA GCC GAG CCC 3181 len thr gly ala pro lys val arg ala met glu ile ile asp asp leu glu ala glu pro CGT GGC GTC TAC GGC GGC GGC GGC GGC TAC TAC TCG TGG ACC GGC GAC GCC GAC GTG GCA 3241 arg gly val tyr gly gly gly val gly tyr tyr ser trp thr gly asp ala asp val ala ATC GTC ATC CGA ACC GCG ACG GTC GAC TCC GGC GGC GCG GAC GAC GCC ATC ACC GTC CGC 3301 ile val ile arg thr ala thr val asp ser gly gly ala asp asp ala ile thr val arg GCG GGT GCC GGC ATC GTC GCC GAC TCC GAC CCG ACC GCG GAG TAC GAG GAG ACG GAA CAG 3361 ala gly ala gly ile val ala asp ser asp pro thr ala glu tyr glu glu thr glu gln AAG ATG GGC GGG GTG CTC GYC GCC GTC CGC CGC ATC GAG TAC GGG ACC GAG GAG GCG TCG 3421 lys net giv giv val leu asp ala val arg arg ile giu tyr giv thr olu giu ala ser tro3-> CAA TG ATT COG CTC GTC GTC GAC AAC TTC GAC TCC TTC ACG TAC AAC CTC GTG GAG 3480 gln OPA ile arg leu val val val asp asn phe asp ser phe thr tyr asn leu val glu Met TAC TTC TCC GAG CAG ACC GTC GAG GGC GAA CCG CTC GAC ATC GAG GTG CGC AAG ACC ACC 3540 tyr phe ser glu gln thr val glu gly glu pro leu asp ile glu val arg lys thr thr GCC TCG CTC GAC GAG ATA CGC GAC CTC GAC CCC GAC GCT ATC GTC ATC TCG CCG GGG CCT 3600 ala ser leu asp glu ile arg asp leu asp pro asp ala ile val ile ser pro gly pro GGC CAC CCG AAA AAC GAC CGC GAC GTG GGC GTG ACC AAC GAC GTT CTC ACG GAG CTG TCG 3660 gly his pro lys asn asp arg asp val gly val thr asn asp val leu thr glu leu ser ACC GAG ATT CCC ACC CTC GGC GTC TGT CTC GGC CTC GAA GCC GCG GTG TAC GCC YAC GGC 3720 thr glu ile pro thr leu gly val cys leu gly leu glu ala ala val tyr ala tyr gly GGC ACC ATC GGC CAC GCG CCG GAC GCG ATT CAC GGG AAG GCG TTC CCC GTC GAC CAC GAC 3780 gly thr ile gly his ala pro asp ala ile his gly lys ala phe pro val asp his asp GGC GCG GGC GTC TTC GCC GGC CTC GAA GAC GGC TTC CCG GCC GGG CGC TAC CAC TCG CTC 3840 gly ala gly val phe ala gly leu glu asp gly phe pro ala gly arg tyr his ser leu GTC GCC ACG GAC GTC CCC GAC TGC TTC GAC GTC TCT GCG ACG ACC GAC GAC GAC GGC GAG 3900 val ala thr asp val pro asp cys phe asp val ser ala thr thr asp his asp gly glu GCG CTG GTG ATG GGC STC CGC CAC CGC GAC TAC CCA ATC GAG TGC GTC CAG TTC CAC CCC 3960 ala leu val met gly val arg his arg asp tyr pro ile glu cys val gln phe his pro GAG AGC GTG CTC ACG GGG TCG GGA CAC GGC GTC GTC AGA AAC TTC CTC ACG GCG GTC G/C 4020 glu ser val leu thr gly ser gly his gly val val arg asn phe leu thr ala val ala GGC TTC GAC GTG GCC TGA GTC GGG TCG GGT CGG GTC AGA CGC GGG CGA GAC GTG CGC 4053 gly phe asp val ala OPA ACTCCGTGTCGGCCGCGGCGACGGCCGCGCGCGCGGGATTACAGGACGTTGATGCCGAAAAACGAGAGCAACAGCAGCAGC 4172

I.

т. I

sequences from yeast (Furter et al. 1986), E. coli (Yanofsky et al. 1981) and Hf. volcanii is presented in figure 21.

Hf. volcanii ORF *trpF*, which encodes N-phosphoribosylanthranilate (PRA) isomerase, overlaps *trpD* by 4 bp (AUGA). The sequence of the 221 residue TrpF protein conforms to the alignment of 10 eubacterial and eukaryotic sequences proposed by Priestle et al. (1987) according to predicted protein structures. With 26% identical residues with *E. coli* and 29% with yeast, *trpF* is the least conserved of the Trp enzymes (figure 21 and Table 4). Residues of functional importance (Priestle et al. 1987, Crawford 1989) are largely conserved in the *Hf. volcanii* TrpF.

ORF *trpE*, which encodes the α subunit of anthranilate synthase, does not begin with a methionine. Overlapping the stop codon of the upstream *trpF* is a codon for valine (<u>GUG</u>A). Valine start has been reported in archaebacterial protein-coding genes before (Gropp et al. 1989). Sequence conservation among eubacterial and eukaryotic TrpE proteins is concentrated in the C-terminal domain; the N-terminal half of the protein is usually variable (Crawford 1989). *Hf. volcanii* TrpE is no exception: conservation within the first 250 residues is minimal (figure 21). Interestingly, the segment between position 52 and 55 (leu-leu-glu-ser), identified as a site for mutations affecting feedback inhibition by tryptophan in *Brevibacterium lactofermentum* (Matsui et al. 1987) and in *Salmonella typhimurium* (cited as R. Bauerle personal communication, by Crawford 1989), is conserved in the *Hf. volcanii* sequence.

The high degree of sequence conservation in the C-terminal half of TrpE proteins reflects the functional importance of this region. This is consistent with the locations of five inactivating missense mutations occuring between position 388 and 526 of the *Salmomella* TrpE (cited as R. Bauerle personal communication, by Crawford 1989).

TrpG, the β subunit of anthranilate synthase, is the smallest of the seven *Hf*. *volcanii* Trp sequences. The *Hf*. *volcanii* sequence fits with the alignment of eubacterial

TRPD E.C. ...QPILEK--LYQAQTISQQESHQLFSAVVRGULKPEQLAAALVSMKIRGEHPNEIAGA S.C. ...LSLLOKCDTNSDESLSIYTKVSSFLTALRN HIAEYTAEAAKAVLRHSDLVDL H.v. MQDYIER--VTGGADLTVEEARRPFRGRS, AJIGALLAALRAKGETEAEIAGF E.C. ATALLENAAPFP-RPDYLFADIVGTGGDGSNSTA-IGTASAFVAAACGLKV-AKHGNRSV S.C. PLPKKDE---LHPEDGPVILDIVGTGGDGCNTENVSTSAA1/ASGIOGLKI-CKHGGKAS H.V. AQGMRDAALIHRARPAARSSDIAGTGGDD'NTINVLDPTTRSSAAAPGAAAVFKHGYLSV 116 SSKSGSSDLLAAFGINLDMNADKSROAL-DELGV:FLEAFKXHTGFRHAMPVROOLKTRI TSNSGAGOLIGTUGCDMFKVNSSTVPKLWPDNTFMEL AFFFHHGMGHVSKTRKFLGIPT SSSSGSADVLEVAGVNVEAEPESVEACI-EDNGVGFMLAEVFHPAMKAVIGPRKELGMRT E.c. S.c. LENVLGPLINPAHP-PLALIGVYSPETVLPIAETLRVL-GYORAAVVHSG-GYDEVSLHA VFNVLGPLLHPVSHVNKRILGVYSKETAPEYAKAAALVYPGSETFIVNGHVGLDEVSPIG VENVLGPLINEAGA-DAQVIGVYDADLVPVIAESLSHM-PVERALVVHGS-GYDEIIALHD E.c. S.c. H.v. PD---IVAELHDG-EIKSYQLIAEDEGUTPYHQEQLAGGTHEENRDIIITRLLQ---GKGD KUTVWHIDPTSSELKLKTFOLEPSMEGLEEHELSKCASYGHKENARIIKEEVLSGKYHLG RD---TVAEIDGD-EITEYTUTPADLGLERAPIEAVAGGTHQENADDIEGILT---GDVT E.c. S.c. H.v. 285 AAHE--AAVAAWAMLMRLHG-HEDIQANAQTVLEVLKSGAYDRVTALAALRG DNNPIYDYIIMNTAVLYCLSQGHQNWKEGIIKAEESIHSGAALRSLEHFIDSVSSI, GPKR--DLILAMAGAAMYVAGLADSLEGGVEVARDAIDSGAAKAKHDALPGGVR E.c. S.c. H.v. 337 TRPF ... ENKVCGLTRGQDAKAAYDAGAIYGGLG ... GPLVKVCGLQSTEAAECALDSDADLLGIICVPNRKRTIDP.'IARKISTLVKAYKNSS MTRVKVCGVTDETDLAAVDAAGDA'GAUC-----DVPVD TEREIPR-ERARELFA E.c. S.c. H.v. AAFLQYVGVFRNHDI~-ADVVDKAKVLSLVAVDEHGNEEQLYIDT-FRALPAHVAIWKA GTEKYLVGVFRNQPK~-EDVLALVNDYGIDIVQLHGDESWQEYQEFIGLPVIKRLVFPKD AAFPFLTTTLVTMPDSVDHARDLAREVGPDVIQLHGDFAADDLDS-FRATGVGVV9VVDA E.c. S.c. H.v. 109 E.C. LSVGETLFAREFQHVDKY--VIDNGGGSGQRFDWSLLNG--QSLGNV-----ILAGGIG S.C. CNILLSAASQKPHSFIPL---FDSEAGCIGELIDWNSISDWVGRQESPESLHEMLAGGIT H.V. TDLARARDLAPVVDAILVDTPSDSGAGGIGETHDWDASRDLVAAVDAPV----ILAGGIT ADVCVERAQT-GCACLDFNSAVESQECTKDARLLASVFQTLRAY PENVGDALRI NGVIGVO-VSGGVETNGVKDSNKIANFVKNAKK PDDVVERVRTVEPYCVDVAGGVEASGENKDHDAVRAFVAAAKTARGAVDDHEEVVA E.c. S.c. 221 TRPG E.C. MADILLIDNIDSFINNLADQLRSNGHNVVIYRNHIP-AQILIERLATMSNPVLMLSPGPG S.C. NKHVVLIDNIDSFINNVYEYLCOEGAKVSYYRNDAI-T---VEELAALNPDILLISPGPG PABA MILLIDNIDSFINNLYQYFCEIGADVLVKRNDAL-T---LADIDALKPQKIVISPGPC H.v. MIRLVVVDNEDSFINNLVEYFSEQTVEGEPLDIEVRKTTASLDEIRDLDPDAIVISPGPG VES-EA--GCMPELLTRLRGKIFIIIGIGLGHQAIVEAYGGYVGGAGEIIHGRASSIEFDG HEKTDS--GISRDCIRYFTGKIFVGIGYGQQCMEDVEGGVAYAGEIVHGKTSPISHDN TED-EA--GISLDVIRHYAGRIFILGYGLGHQAMAQAFGGKVVRAAKVMHGKTSPITHNG HEKNDRDVGVTNDVLTELSTEIETIGYGLGLEAAVYAYGGIIGHAPDAIHGKAFPVJHDG E.c. S.c. PARA H.v. 120 QAMFAGLTNPLPVARYHSIV--GSNIFAGLTINAHEN----GNVAVRHDADRVCGEOFH CGIFRNVPQGIAVTRYHSIAGTESSIESCLKVTRSTEN---GIIMGVRHKKYTVEGVOFH EGVERGLPNPLTVTRYHSIVVEPDSIFACFDVTRWSET---REIMGIRHRQWDLEGVOFH AGVEJAGLEDGFPAGRYHSIV--ATDVEDCFDVSMTTDHDGEALVMGVRHRDYPIECVOFH 17A E.c. S.c. PABA H.v. E.C. PESTERTOGARLLEQTEAWAQHKLEPANTLQP S.C. PESTERECHLMIRNIKNYRKEVIA PABA PESIESECHQLLANFIHRSGGTWEENKSSPS H.V. PESVETGSCHGVVRNFETAVAGFDVA 204

Figure 21 continues...

88

ľ

TRPE MQTQKPTLELLTCEGAYRDNPTALF-HQLCGDRPATILLESADIDSKDDLKSLLLVD ...INMYPVYAYLPSLDLTPHVAYLKLAQLNNPDRKESFLLES-AKTNNEDRYSFIGIS MKTLSPAVITLLWRQDAAEF': SRLSHLPWAMLLHSGYADHPYSRFDIVVAE ...DADGPVVTHLVADLDVSVDPLAXY-TTLADRSDYGFLLEGAEKVSSSNPQARSPR-70 E.c. S.c. PABB H.v. E.c. SALRITALGDTVTIQALSGNGEALLALLDNALPAGVESEQSPNCRVLRFPPVSPLLDEDA P------RKTIKTGPTE-----GIE P-----IC JTFGKETVVSESEKRTTT S.c. PABB H.v. ---PF AADSHARFSFVGYDPEAVV-----TVGPDGVDVTDLGGPAAEFVGAGD 116 E.C. RL-CSLSVFDAFRLLQNLLNVPKEEREAMFFSGLTSMDLVAGFEDLPQLSAENNC----P S.C. TD-PLEILEKEMSTFKVAENVPGLPKLSGGAIGYISYDCVRYFEPKTRRPLKDVLR--LP PAPB TDDPLQVLQQVLDRADIRPTHNEDLPFQGGAIGLFGYDLGRRFESLPEIAEQDIV---LP H.v. GD-VLDSLRGALPDLPRVNFPETDADVTGGLVGFLAMEAV--YDLWLDEVGRERPDTDDD DFCFYLAETLMVIDHQKKSTRIQASLFAPNEEE-----KQRLTARLNELRQQLTEAAP EAYLMLCDTIIAFDNVFQRFQIIHNINTNETSLEEGYQAAAQIITDIVSKLDRRFLANTI DMAVGIYDWALIVDHQRHTVSLLSHNDVNARRA-----PGEVYDGVVAEAERVA3KLRAA DAEFVLTTRTLSFDHREDAVRLVCTPVVSPDDD-----PGEVYDGVVAEAERVA3KLRAA E.c. S.c. PABB H.v. 22B PLPVVSVPHMRCECNQSDEEFGGVVRLLQKAIRAGEIFCVVPSRRFSLPCP-S''LAAYYV PEQPPIKPNQLLNRMWARKVTKITSPTLKKHIKKGDIJQGVPSQRVARPSR-YILSIFTD SPQEDFTLTSDWQSNMTREQYGEKFRQVQEYLHSTOCTOVNLAQRFHATYSG/JEWQAFLQ DDPAPGGFERTGEDAGSREEYEAAVRKTKEHVRDGDIYQGVISRTRKLRGQVDPVGLYAS 286 E.c. S.c. PABB H.v. -----EKKSDP % YMEFMODNDFTLFGA SPESSIKYDATSROIE IYP TAGTUEKSRRADGS IYRHLRTINP SEYLFY IDCLDFOI IGASPELLCKSDSKNRVIT-HP TAGTUT KGA----AT ----- LNQANKAPFSAFLRLEQGAI LSLSPERFIL---CDNSEIQTRP IKG4L & ALP -----DP -----LXEVNP SEYMFLLRHGDRRVVGA SPETLVS---VRGDRVVVNP IN <u>-T</u>CORGS----GP E.c. S.c. PABB H.v. LDRDLDSRIELEMRTDHKELSEHIMIVDIARNDLARICTPGSRYMADLTKVDRYSYMHL EE---DDAGADQLRGSIKOR, GHVMIVDIARVDINRICDPLTTSVDKLLTIQKFSHVOHL QE---DSKQAVKLANSAKDRAENIMIVDIARNDIGRVAVAGSVKVELFVVEPFPAVIHL VE---DRRLAGELLADAKERAGHTMIVDIGRNDVRRVSTPGSVRVEDFMSIIKYSHVOHI 396 E.c. S.c. PABB H.v. VSRVVGETRHDLDALHAYRACMMGTLSGAPKVRAMDLFAEABGRRBGSYGG:VGYETAH VSDVSGVLRPEKTREDAERINEPACITVSGAPKVRAMELIAELBGERGVYAGAVGHWSYD VSTITAOLPEQLHASDLLRAAFPGGSITGAPKVRAMEL[DELBPQRRNAWGSIGYLSFC ESITVSGTLDADADAEDATRATFPAGILTGAPKVRAME.[[DDLEAERGVYGGGVGYYSWT E.c. S.c. PABB H.v. BD-LDTCTVIRSALVENGIAT"----CAGATMIDSVPQSEADETRNKARAVLRAIATAH GKTMDNCTIALRTMVYKDCILTL----CAGGGIMDSIEYDEMLETMNNDGQSQYYCASRR LN-MDTSITTIRTLTAINQQIFC----SAGGIMADSQEEADYCETFDKVNRILKQLEK GD-ADVALWIRTATVDSGGADDAITVRAGAGIMADSQETADYEETEQKMGGVLDAVRRIE E.c. S.c. PABB H.v. 515 HAQETE E.c. IVGRYRRISLKRAFSVFFPLDDIFIV S.c. PABB YGTEEASQ 523 H.v.

Figure 21. Comparison of *Hf. volcanii* TrpD, TrpF, TrpE and TrpG amino acid sequences with homologous sequences in *S. cerevisiae*, *P. aeruginosa* and *E. coli* and with *E. coli* PabA and PabB. Sequences were aligned by the MULTALIN method (Corpet 1988). Conserved residues are boxed. The number at the end of each block refers to the position of the *H. volcanii* sequence.

Ĩ

89

1

and eukaryotic TrpG sequences by Crawford and coworkers (Essar et al. 1990a). Among the invariant positions identified, the catalytic residue Cys-84, which has been shown to form a covalent glutaminyl catalytic intermediate (Tso et al. 1980; Zalkin et al. 1984), is found at position 88 of the *Hf. volcanii* TrpG.

The subunits of *Hf. volcanii* anthranilate synthase (TrpE and TrpG) show similarities to the products of *E. coli pabA* and *pabB* genes, the subunits of *para*aminobenzoate synthase of the folate pathway (figure 21). These genes are believed to be products of ancient duplications of trpE and trpG (Crawford 1989; Crawford and Milkman 1990).

All four genes in the *trpDFEG* cluster are preceded by good ribosome-binding sequences: GGUGAU for *trpD*, GGAGG for *trpF*, AGGAGGU for *trpE* and AGGAGG for *trpG*. The sequence of the 3'-terminus of the *Hf*. *volcanii* small subunit ribosomal RNA is , as mentioned before, 3'-UCCUCCACUA....

Codon usage of the genes in the *trpDFEG* cluster is similar to that of the *trpCBA* cluster; that is, it shows an extreme bias towards codons with C or G in the third position. Codons ending with C or G account for over 90% of the alanine, glycine and valine residues in the two gene clusters. (Codons for each of these amino acid residues are variable only in their third position, ending in all 4 different bases.)

All seven Trp enzymes of *Hf. volcanii* contain 17 to 20% acidic residues (aspartic acid and glutamic acid residues). This is consistent with the finding that most proteins in halophilic archaebacteria are acidic (Eisenberg and Wachtel 1987).

3. Expression and regulation of trp genes

4

2

The fact that trpC, B and A overlap by their stop and start codons suggests that these genes are transcribed as a unit from the same promoter. Similarly, trpD, F, E and G are probably transcribed together. Northern analyses are required to verify operon structure. Incidentally, ribosome-binding sequences precede all the Hf. volcanii trp genes

ţ

except for *trpC*. Examination of the sequence upstream and downstream of the two gene clusters revealed obvious secondary structures which may represent signals for transcription initiation and termination (figure 22A and B).

About 40 bp in front of the translation start (AUG) of trpD is the sequence ATTTGTA, which resembles the promoter consensus. The distance between this sequence and the transcription start site has not been determined.

-

Approximately 30 bp upstream from the start codon (AUG) of trpC is the putative halobacterial promoter sequence TTATGTA, followed by two nearly perfect direct repeats 10 bp apart (see figure 22A). The sequence within 100 bp further upstream can potentially be folded into stable secondary structures (figure22). Remarkably, the sequence between 76 and 95 bp from the AUG can form alternate stable stem and loop structures with the adjacent sequences immediately upstream or downstrem (from position 127 to 112 and from 67 to 53 upstream of the AUG). Site-specific mutagenesis experiments are required to assess any role of these sequences in gene expression or its control.

Many predictions regarding regulation of gene expression could be made, based on the primary sequence of the *trp* genes and their flanking regions. Experimentally, I have just begun to analyze the regulation of these *trp* gene clusters. At this point, several qualitative conclusions can be drawn from the limited data.

The expression of *trp* genes is regulated in *Hf. volcanii*. Primer extension assays show a signal absent only in cells supplied with tryptophan (figure 23). Interestingly, the segment (leu-leu-glu-ser) in the eubacterial α subunis of anthranilate synthase, essential for feedback inhibition by tryptophan, is conserved in *Hf. volcanii* (refer to section on *trpE* z bove).

-

ĥ

1-19

ļ

L

trpDFEG TCAPTCGGGTCGGGTCGGGTCAGACGCGACGGGCGAGACGTGCGCCG

Figure 22. Putative secondary structures flanking hmgA, trpCBA and trpDFEG. Sequence between 53 and 127 bp upstream of the translation start codon (AUG) of trpCBA can be folded into two alternative secondary structures (A). Putative terminator structures are shown in (B).

I

92

Figure 23. Transcription of *trp* genes in response to tryptophan and tryptophan biosynthetic intermediates. Levels of *trpD* and *trp C* transcripts, under various growth conditions, were estimated by primer extension assays. RNA samples (15 μ g), isolated from *Hf. volcanii* cultures grown on minimal liquid medium (M), or on medium supplemented with 25 μ g/ml of anthranilic acid (A) or 10 μ g/ml of indole (I) or 25 μ g/ml of L-tryptophan (T), were subjected to primer extension assays, using oligonucleotides complementary to sequences near the 5'-terminus of the *trpD* or of the*trpC* mRNA.

Ę1

ł

Transcription of the two *trp* gene clusters seems to be coordinately activated by anthranilic acid (figure 23). Data on hand cannot distingish whether anthranilic acid directly activates one or both gene clusters, or indirectly regulates gene expression via activator proteins. Also, one cannot overlook the possibility of the activation of *trpCBA* expression by a gene product of the *trpDFEG* cluster. In *Pseudomonas aeruginosa*, an activator protein regulates *trpBA* expression in response to the level of indoleglycerol phosphate, the substrate of the tryptophan synthase reaction (Chang et al. 1989). Indole did not shut off transcription of either cluster (figure 23).

A variety of tryptophan analogs, commonly used in studies on the regulation of trp biosynthesis in eubacterial and eukaryotic systems, were tested on *Hf. volcanii*. Certain analogs did inhibit growth of *Hf. volcanii*. (They include 4-methyltryptophan, 5methyltryptophan, 6-methyltryptophan, 7-methyltryptophan, 5-fluorotryptophan, 6fluorotryptophan, 7-azatryptophan and indole acrylic acid.) Frequencies of resistant mutations have been determined for several of these analogs.

4. Evolutionary considerations

I.

The *Hf. volcanii* TrpB and TrpA amino acid sequences are as different from all sequences we have compared (including that of the methanogen) as the eubacterial sequences from the eukaryotic ones (Talvle 4). The same observation applies to TrpC, TrpD, TrpF, TrpE and TrpG, except *Methanococcus* sequences are not available for comparison. The rate of amino acid substitution outside the invariable positions is too high to allow the use of these sequences for assessing phylogenetic relatedness of organisms. However, the existence of conserved regions in all of the seven Trp enzymes indicates the presence of these polypeptides before the divergence of archaebacteria, eubacteria and eukaryotes.

All seven Trp enzymes of *Hf. volcanii* are encoded by separate genes, arranged in two gene clusters: *trpDFEG* (figure 20) and *trpCBA* (figure 18). Both *trp* gene clusters

are unusual in their organization. These arrangements have little in common with the eukaryotic and the eubacterial arrangements observed to date, execpt that the E,G order and the B,A order are found in eubacteria (Table 5).

In all known cases, trpE, which encodes the first enzyme of the tryptophan biosynthetic pathway, is either solitary or is the first gene in a polycistronic unit (Crawford 1989; Crawford and Milkman 1990). The significance of this gene arrangement for gene regulation is unknown. *Hf. volcanii* provides the only example of trpE in the middle of a gene cluster.

As in eubacteria, the two domains of *Hf. volcanii* tryptophan synthase are encoded by transcriptionally linked but separate genes. The *trpB* and *A* genes are preceded by *trpC*-- an arrangement unique to *Hf. volcanii*. Methanococcal and eubacterial *trpB* and *trpA* genes either follow *trpF* or exist as a unit alone (Sibold and Herniquet 1988; Yanofsky 1984). The *trpC* gene is either fused to or transcriptionally linked to *trpF*, *trpG* or *trpD* (Yanofsky 1984; Crawford 1989; Crawford and Milkman 1990).

The difference in gene arrangement between *Hf. volcanii* (C·B·A) and *M. voltae* (F·B·A) is perhaps not surprising, since no unified arrangements are common to all eukaryotes or all eubacteria (except for the linkage of *trpB* and *A* in prokaryotes). Diversity is apparent even within the γ subdivision of purple eubacteria (Table 5): *E. coli* has a single *trp* operon, but the *trp* genes of *Pseudomonas* exist in 4 transcriptional units and respond to 3 distinct regulatory mechanisms (Essar et al. 1990a, b).

Nevertheless, *trp* genes tend to be fused or transcriptionally linked. Unless linkage provides tremendous selective advantage, it is difficult to envision seven separate genes repeatedly seeking out one another to form fusion units and operons -- the

EUBACTERIA								
Furple bacteria:								
a subdivision	_	~	-	~	-	-		
Rhizobium and relatives	<u>E</u>	<u>G</u>	\underline{p}	<u></u>	<u>F</u>	<u></u>	<u>_</u> A	
Zymomonas mobilis	_		\underline{D}	<u>C</u>	<u>F</u>	<u></u>	<u></u>	
Caulobacter crescentus	<u>E</u>		<u>D</u>	<u> </u>	<u>F</u>	<u> </u>	<u>_A</u>	
β subdivision								
Pseudomonas acidovorans	<u>E</u>	<u>G</u>	<u>D</u>	<u></u>	<u>F</u>	<u> </u>	<u>A</u>	
y subdivision								
Escherichia coli and relatives	<i>E</i>	G	D	<i>C</i>	<i>F</i>	B	A	
Serratia and relatives	E	G	D	<i>C</i>	F	B	A	
Pseudomonas aeruginosa								
and relatives	Ε	G	D	С	F	B	Α	
Acinetobacter calcoaceticus	Ē	\overline{G}	D	\overline{C}	\overline{F}	B	A	
Gram-positive eubacteria:					· · · · · · · · · · · · · · · · · · ·			
low (G+C) subdivision								
Bacillus subtilis and relatives	E		D	С	F	R	Α	G
Lactobacillus casei	~		<u>n</u>	<u> </u>	F	<u> </u>	Ā	~
high (G+C) subdivision			<u> </u>				<u> </u>	
Brevibacterium lactofermentum	E	G	D	<i>C</i>	F	R	Α	
Spirochetes:							<u> </u>	
Spirochaeta aurantia	E							
L'entosnira hiflera	Ē	G						
exprospri a ograna	<u> </u>							
ARCHAEBACTERIA								
Methanococcus voltae					F	R	A	
Haloferar volcanii D F	F	G		C	4	<u></u>	<u></u>	
$\frac{D}{1}$				<u>v</u>	· · · · · ·	_ <u>D</u>		
FUKARVOTES								
Saccharomyces cerevisiae	F	<i>C</i>		C	F	Δ	R	ת
Nourgenorg crassa		$\frac{0}{C}$		$\frac{1}{C}$		<u>A</u>	$\frac{D}{P}$	$\frac{D}{D}$
Asparaillus nidulans	<u></u>	$\frac{Q}{C}$		<u></u>	<u></u> <u> </u>	<u>A</u>	<u>D</u> D	$\underline{\nu}$
Convinus ainaraus		<u>U</u>		<u></u>	<u>/</u>	<u>A</u>	<u>D</u> D	
Coprinus cinereus Daniaillium abmisaaanum		C		C	r	<u>A</u>	<u>D</u>	
renculturi cru ysogenun Arabidansis thaliana		<u>v</u>		<u></u>	<u>Γ</u>		D	
Arabidopsis inditana							<u>D</u>	

Table 5. Organization of trp genes in various organisms.

Fused genes are jointed by dashes; transcriptional units are underlined.

L

M

L

1

1

1

ł

ţ

i

ancestral set of trp genes must have been linked, and subsquently $\log \frac{1}{2} + \frac{1}$

III. Genetic mapping

In preparing a bottom-up restriction map for *Hf. volcanii*, a minimally overlapping set of 154 cosmids covering >95% of the genome was assembled in this laboratory (Charlebois et al. 1989). Although cosmids cannot replicate autono.nously in *Hf. volcanii*, cosmid DNA (individually or in pools) can be used to transform *Hf. volcanii* auxotrophs to prototrophy (Conover and Doolittle, 1990), presumably through homologous recombination. Such transformation allows us to map mutations, and to localize genes on the 3.8 million base pair genome of *Hf. volcanii* to within 1%.

Genetic mapping of *trp* genes. The 29 Trp auxotrophs were used to develop strategies for locating genes within the developing genome map. A pooling scheme (in which each of the 154 cosmids is represented in two separate pools) allowed the deduction, from a single transformation experiment with 25 cosmid DNA pools and 2 control samples, of the individual cosmid which bears the wild-type allele for any auxotrophic mutation. Of the five Trp⁻ mutants initially tested, two mapped unequivocally to cosmid 452 -- the two cosmid pools which transformed WFD131 and WFD287 to prototrophy have only cosmid 452 in common. The remaining three mapped to cosmids 488 and A159. These latter two cosmids overlap by 33 kbp, and the mutations must lie within the overlap. We then transformed each of our 29 auxotrophs with cosmid 452 and A159. All mutants which grow only on tryptophan, as well as the indole-utilizing WFD135, could be transformed with cosmid 452, while the rest, which utilized indole or anthranilate, mapped to cosmid A159. These locations are separated by a minimum of 120 kbp according to the physical mapping data which has linked the cosmid set of 154 into a few large map fragments (R. Charlebois, L. Schalkwyk, J. Hofman, and
W.F.Doolittle, unpublished data). Similar mapping experiments have placed guanosine loci on cosmids near cosmids 488/A159 and tyrosine loci on a cosmid close to cosmid 452.

Plasmid clones bearing *trp* genes can be labeled and used as probes against dot blot filters bearing DNA from all 154 cosmids of the minimal set in an ordered array. This provides an independent method of assigning loci on the physical map and establishing linkage between markers. All cosmid assignments made by transformation could be confirmed by this procedure. Mutant WFD246, which reverted at too high a frequency to be mapped by transformation with cosmid DNA (which is subject to restriction in *Hf*. *volcanii*) could only be mapped in this way. All 29 Trp⁻ mutations so far obtained can be mapped to one of two unlinked regions of the *Hf*. *volcanii* genome, using these independent physical and genetic methods (Table 3).

Mapping auxotrophic mutations. Annalee Cohen of our laboratory has been actively generating auxotrophic mutants using the EMS mutagenesis procedure described above. She has identified the nutritional requirements of 254 amino acid requiring- or nucleotide requiring- mutants. Using the strategies developed for mapping the *trp* genes we (Dr. Cohen and I) proceeded to map these mutations either directly by transforming with pooled cosmid clones from the minimal set, or indirectly with plasmid libraries, which requires subsequent hybridization of clones to DNA dot blots of the cosmid set.

Out of the two hundred mutants transformed, we were able to unambiguously place 135 mutations. For the rest, mapping was hampered either because the wild-type locus fell in one of the gaps which the cosmid set does not cover (evident when genomic DNA from wild-type cells, but not DNA from cosmid pools, successfully transforms the mutant to prototrophy) or by high reversion frequencies (so that successful transformation is masked). Cosmid DNA cannot replicate autonomously in *Hf. volcanii*, requiring recombination events for transformation. In addition, cosmid DNA is subjected to host restriction, reducing the transformation efficiency to roughly 10^2 to 10^3 transformants per

 μ g of DNA per 10⁸ regenerants. Each of the mapped mutations was verified by transforming with individual cosmids and proper controls were included in these confirmatory transformation experiments to recheck the initial assignment of nutritional requirements. Table 6 summarizes the mapped loci, the result of over 4000 transformation experiments.

a

99

1

WFD strain	ailele	requires	positive pools	transformation with selected cosmids	cosmid identified
283	ser-101	serine	10, 25		499
276	ilv-105	val+ile		110,499,501	501
512	ilv-111	val+ile		1 (0,499,501	501
514	ilv-112	val+ile	10, 24		501
286	thr-101	threonine		A99,126,496	126
318	thr-102	threonine	6, 17		126
322	thr-103	threonive	6, 17		126
504	thr-105	threonine		A99,126,496	126
161	<i>met</i> -102	methionine	10, 24		501
285	met-103	methionine	13, 16		A78 (high reversion)
			10, 10		
580	gln-102	glutamine	1, 18		460
393	gin-103	glutamine	1, 18		460 .
126	aro-101	early aromatic	12, 19		G411
137	tyr-102	phe+tyr	13, 20		410
155	tyr-103	phe+tyr	12, 19		G411
177	tyr-104	phe+tyr	12, 19		G411
596	tyr-117	phe+tyr	10,24		G283
35	trp-101	tryptophan		452,A159	452
36	trp-102	tryptophan		452,A159	452
37	trp-103	anth, indole		452, A159	A159
39	trp-105	tryptophan		452,A159	452
41	trp-106	tryptophan		452,A159	452
131	trp-107	tryptophan	13,22	452,A159	452
135	trp-108	indole		452,A159	452
163	trp-109	indole		452,A159	A159
167	trp-110	indole		452,A159	A159
178	trp-111	indol		452,A159	A159
186	trp-112	indole		452,A159	A159
192	trp-113	idole		452,A159	A159
204	trp-114	indole		452,A159	A159
207	trp-115	indole		452,A159	A159
210	<i>trp-110</i>	indole		452.A159	A159
240	<i>irp-117</i>	indole		452,AI59	
240	<i>irp</i> -118	indole		452,A159	488,A159 (also by hyb.)
230	<i>wp-119</i>	indole	4 10 00	452,A159	A139 400 A160
201	<i>trp</i> -120	indole	4,19,20	452 A 150	400, ALJ9
204	trn. 199	truptophen	12 22	452,A159	A133 450
207	trn 122	indolo	13,66	452,4150	452
300	trn_121	indole	1 10 20	452 A 150	ліју Л88 д150
347	trn_124	tryntonhan	7,17,20	452 A150	450,A137
360	+p-12.) ten_12.1	truntonhan		452,A150	434 159
531	trn_1)7	indole	4 10 20	452 4159	488 A150
543	trn_178	tryptophan	7,17,20	452 A150	450, A137
564	trp_120	indole		452 4159	A 150
567	trn_130	indole		452 4159	A 159
201	<i>irp-13</i> 0	maole		452,A159	А159

Table 6. Auxotrophic mutations mapped by cosmid transformation experiments.

-

 t

Table 6 continues...

• •

WFD strain	allele	requires	positive pools	transformation with selected cosmids	cosmid identified
140	lys-101	lysine	7, 18		H680
144	lys-102	lysine		H3,H680,530	H680,530
157	lys-103	lysine		H3,H680,530	H680
254	lys-105	lysine		H3,H680,530	H680
270	lys-107	lysine		H3,H680,530	H680
309	lys-108	lysine		H3,H680,530	H680,530
327	lys-109	lysine		H3,H680,530	H680,530
329	lys-110	lysine		H3,H680,530	H680
364	lys-111	lysine		H3,H680,530	H680,530
368	lys-112	lysine		H3,H680,530	H680,530
383	Ívs-114	lvsine		H3,H680,530	H680
400	lys-115	lysine	7.18	·····	H680
586	lys-116	lysine		H3,H680,530	H680,530
105	his-102	histidine	15,24		H10
112	his-103	histidine		32,G171,G411,499,501	499
213	his-105	histidine		32,G171,G411,499,501	499
217	his-106	histidine		32,G171,G411,499,501	32,G171
220	his-107	histidine	15,24		H10
255	his-109	histidine		32,G171,G411,499,501	G171,G411
256	his-110	histidine		32,G171,G411,499,501	G171,G411
259	his-111	histidine		32,G171,G411,499,501	499
268	his-112	histidine	5,19	, , , , ,	347
274	his-113	histidine		32,G171,G411,499,501	499
545	his-123	histidine		32,G171,G411,499,501	499
556	his-124	histidine		32,G171,G411,499,501	G171,G411
572	his-125	histidine	10, 25		499
597	his-126	histidine	·	32,G171,G411,499,501	499
L7	<i>leu-</i> 101	leucine		pL7-N (cloned)	56 by hyb.
L12	leu-102	leucine		pL7-N (cloned)	56 by hyb.
L18	leu-103	leucine		L18-N (cloned) بر	56 by hyb.
130	<i>leu-</i> 104	leucine		56, 535	56
136	leu-105	leucine		56, 535	56
209	leu-107	leucine		56, 535	56
223	leu-109	leucine		56, 535	56
227	leu-110	leucine		56, 535	56
234	leu-112	leucine		56, 535	56
241	leu-113	leucine		56, 535	56
272	leu-114	leucine		56, 535	56
314	leu-115	leucine		56, 535	56
357	leu-117	leucine		56, 535	56
406	leu-119	leucine	4, 22		56
541	leu-122	leucine	·, _=	56, 535	56 (high background)
569	leu-123	leucine	4, 22		56
587	<i>leu-124</i>	leucine	.,	56, 535	56

Table 6 continues...

12

and a

Ĩ

31-12

* * *

1. 2. 5. 1

WFD strain	allele	requires	positive pools	transformation with selected cosmids	cosmid identific	e d
108	gua-101	guanosine		97, 326	97	
146	gua-104	guanosine		97, 326	97	
185	gua-112	guanosine	4, 16		97	
199	gua-113	guanosine		97,326	97	
219	gua-115	guanosine		97, 326	97	
235	gua-116	guanosine	4, 16		97	
245	gua-119	guanosine	9,22,24		101,C138	
281	gua-125	guanosine		97, 326	97	
312	gua-127	guanosine		97, 326	97	
344	gua-131	guanosine		97, 326	97	
378	gua-132	guanosine	5,6,17		G329,497	1
415	gua-138	guanosine		97, 326	97	
517	gua-140	guanosine		97, 326	97	
526	gua-141	guanosine		97, 326	97	
539	gua-142	guanosine		97, 326	97	
532	pur-128	adenine	7,19		530	
169	pyr-101	uracil	10, 22		266	haze
243	pyr-102	uracil	10, 22		266	low numbers
299	pyr-103	uracil	1,16		478	
337	<i>pyr</i> -104	uracil	4,24		166	
143	pyr-106	uracil+arg	4, 21		531	
304	<i>pyr</i> -107	uracil+arg	12, 23,24		37,128	
536	pyr-109	uracil+arg	12,23,24,25		128,H37,	208
551	<i>pyr-</i> 110	uracil+arg	1,16		478	
552	<i>pyr-</i> 111	uracil+arg	12,24		H37	
T9R12	arg-101					
(+	trp-101)	arg+trp		arg clone	21	
127	arg-102	arginine		21,247,545	247, 21	
133	arg-103	arginine		21,247,545	247, 21	
138	arg-104	arginine		21,247,545	247, 21	
174	arg-106	arginine		21,247,545	247, 21	
197	arg-107	arginine		21,247,545	247, 21	
321	arg-108	arginine		21,247,545	247, 21	
345	arg-109	arginine		21,247,545	21	
360	arg-110	arginine		21,247,545	(247), 21	
362	arg-111	arginine		21,247,545	21	
375	arg-112	arginine		21,247,545	247, 21	
388	arg-113	arginine		21,247,545	247, 21	
407	arg-114	arginine		21,247,545	(247), 21	
506	arg-115	arginine		21,247,545	247, 21	
511	arg-116	arginine		21,247,545	247, 21	
547	arg-117	arginine		21,247,545	(21)	
577	arg-118	arginine		21,247,545	247, 21	
591	arg-119	arginine		21,247,545	21	
599	arg-120	arginine		21,247,545	247,21	

103

Linkage of alleles. Organization of the mapped alleles on the Hf. volcanii chromosome will become clear when the physical map of the chromosome is completed and made available. However, the transformation mapping data have already provided much linkage information. All 17 leu loci are linked. The 29 Trp mutations map to two unlinked clusters. Histidine mutations, so far, have been mapped to five separate cosmids. There are still more His auxotrophs to be mapped. All 13 Lys mutations map together. The 19 Arg mutations are rescued by two overlapping cosmids. Fine scale transformation experiments and DNA sequencing revealed several contiguous arg genes (K. Conover, personal communication). Pyrimidine mutants map to several locations. A uracil-requiring and a uracil plus arginine-requiring mutant are transformed to prototrophy by the same cosmid, suggesting the linkage of at least two pyr genes. With the purine auxotrophs, guanosine-requiring mutants are rescued by at least three different cosmids; only one of the many adenine auxotrophs was mapped. Mutants requiring phenylalanine plus tyrosine map to three different cosmids. One of these three cosmids also transforms a strain defective early in the aromatic pathway. Two separate cosmids could rescue methionine auxotrophs. One of these cosmids (cosmid 501) also transforms mutants requiring valine plus isoleucine to prototrophy. Cosmid 501 overlaps cosmid 499 which contains a serine allele. The relative locations of these and the other alleles listed (in Table 6) will provide valuable information on the organization of an archaebacterial chromosome.

2

: . . .

IV. Conclusions

and a second of the second of the

. . .

1. I.

The significance of archaebacteria has been recognized for over a decade. Genetic analysis of this unique assemblage of organisms is long overdue. Using the transformation technology developed in our laboratory (Cline and Doolittle 1987), I built vectors for genetic transfer and adapted a variety of genetic methods (commonly used in *E. coli* and yeast) to study *Hf. volcanii* at the DNA level.

Shuttle vectors, marked by mevinolin resistance in *Hf. volcanii* and ampicillin resistance in *E. coli*, efficiently transform *Hf. volcanii* (typically, 10^8 resistant transformants per µg plasmid DNA prepared from *Hf. volcanii*, and 10^4 per µg of DNA made from *E. coli*). These vectors, and ones bearing a cloned insert, could be isolated from *Hf. volcanii*, and used directly to transform *E. coli* to a...picillip resistance. *In vivo* rearrangement of the shuttle vectors has not been observed -- even after shuttling from *E. coli* to *Hf. volcanii* and back to *E. coli* they are stably maintained in either host. DNA libraries in pWL102 have been instrumental in the isolation of biosynthetic genes, such as the *trp* genes. Furthermore, a cloned DNA fragment containing the *trpCBA* genes (on the plasmid pDWT1) was altered *in vitro*, prepared in *E. coli* and reintroduced into auxotrophic strains of *Hf. volcanii* for functional analysis. These applications demonstrate that the vectors and transformation are functional.

The nature of mevinolin resistance has been investigated. Gene amplification, as well as an up-promoter mutation, lead to overexpression of the HMG CoA reductase gene. These mechanisms allow *Hf. volcanii* to grow in the presence of mevinolin, an inhibitor of HMG CoA reductase. The promoter mutation represents the first genetic evidence of an archaebacterial promoter. The amino acid sequence of *Hf. volcanii* reductase is very similar to eukaryotic HMG CoA reductases, but has little in common with the homolog in *Pseudomonas mevalonii*. Alignment of the archaebacterial, eukaryotic and the eubacterial reductase sequences defines two regions of sequence conservation; conservation may

reflect functional importance. In addition, the *Hf. volcanii* mevinolin resistance gene may provide a useful marker for the development of genetic systems in other archaebacteria.

Transformation experiments using non-replicating constructs containing the mevinolin resistance marker and the trpB flanking sequences have shown that strategies for gene replacement and methods for deleting specific segments of the chromosome are applicable to *Hf. volcanii*.

The shuttle vector/transformation system permitted the isolation of two clusters of unusually arranged *trp* genes from *Hf. volcanii*. Genes for all 7 enzymatic functions for tryptophan biosynthesis have been identified by deletion analysis and DNA sequencing. Products of these *Hf. volcanii trp* genes are equally different from their eubacterial and eukaryotic homologs. A preliminary examination of *trp* gene expression suggests coordinated regulation of the two gene clusters

Strategies for genetic mapping were first tested on 29 Trp auxotrophs and then applied to map over a hundred more auxotrophic mutations. Distribution of the mapped alleles has given a preview of the overall organization of the archaebacterial chromosome, and an emerging genetic map. Linkage of functionally related genes is evident. In addition, DNA sequencing revealed gene organization at the operon level -- overlapping genes implies an eubacterial-like operon structure.

In summary, the advances in genetic methods for *Hf. volcanii* have promoted this organism to a model host for archaebacterial genetics. The accumulating genetic tools, information and experience will facilitate the genetic dissection of specific biological systems, as well as the determination of genetic organization in archaebacteria.

REFERENCES

Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J. 1980. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 77, 3957-3961.

Auer, J., Lechner, K. and Bock, A. 1989a. Gene organization and structure of two transcriptional units from *Methanococcus* coding for ribosomal proteins and elongation factors. Can. J. Microbiol. 35, 200-204.

Auer, J., Spicker, G. and Bock, A. 1989b. Organization and structure of the *Methanococcus* transcriptional unit homologous to the *Escherichia coli* "spectinomycin operon". J. Mol. Biol. 209, 21-36.

Baier, G., Piendl, W., Redl, B. and Stoffler, G. 1990. Structure, organization and evolution of the L1 equivalent ribosomal protein gene of the archaebacterium *Methanococcus vannielii*. Nucl. Acids Res. 18, 719-724.

Basson, M.E., Thorsness, M., Finer-Moore, J., Stroud, R.M. and Rine, J. 1988. Structural and functional conservation between yeast and human 3-hydroxy-3methylglutaryl coenzyme A reductase, the rate-limiting enzyme of sterol biosynthesis. Mol. Cell. Biol. 8, 3797-3808.

Beach, M.J. and Rodwell, V.W. 1989. Cloning, sequencing and overexpression of *mvaA*, which encodes *Pseudomonas mevalonii* 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Bacteriol. 171, 2994-3001.

Beckler, G.S. and Reeve, J.N. 1986. Conservation of primary sequence in the *hisI* gene of the archaebacterium, *Methanococcus vannielii*, the eubacterium *Escherichia coli* and the eukaryote *Saccharomyces cerevisiae*. Mol. Gen. Genet. 204, 133-140.

Belay, N., Sparling, R. and Daniels, L. 1984. Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312, 286-288.

Bertani, G. and Baresi, L. 1987. Genetic transformation in the methanogen *Methanococcus voltae* PS. J. Bacteriol. 169, 2730-2738.

Blanck, A. and Oesterhelt, D. 1987. The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J. 6, 265-273.

Betlach, M., Friedman, J., Boyer, H. and Pfeifer, F. 1984. Characterization of a halobacterial gene affecting bacterio-cpsin gene expression. Nucl. Acids Res. 12, 7949-7959.

Betlach, M., Friedman, J., Pfeifer, F. and Boyer, H.W. 1983. Bacterio-opsin mutants of *Halobacterium halobium*. Proc. Natl. Acad. Sci. USA 80, 1416-1420.

Betlach, M., Leong, D.M., Boyer, H.W. 1986. Bacterio-opsin gene expression in *Halobacterium halobium*. Syst. Appl. Microbiol. 7, 83-89.

Betlach, M.C., Shand, R.F. and Leong, D.M. 1989. Regulation of the bacterio-opsin gene of a halophilic archaebacterium. Can. J. Microbiol. 35, 134-140.

Blanck, A., Oesterhelt, D., Ferrando, E., Schegk, E.S. and Lottspeich, F. 1989. Primary structure of sensory rhedopsin I, a prokaryotic photoreceptor. EMBO J. 8, 3963-3971.

Blaseio, U. and Pfeifer, F. 1990. Transformation of *Halobacterium halobium*: development of vectors and investigation of gas vesicle synthesis. Proc. Natl. Acad. Sci. USA 87, 6772-6776.

Bokranz, M., Baumner, G., Allmansberger, R., Ankel-fuchs, D. and Klein, A. 1988. Cloning and characterization of methyl coenzyme M reductase genes from *Methanobacterium thermoautotrophicum*. J. Bacteriol. 170, 568-577.

Bollschweiler, C., Kuhn, R. and Klein, A. 1985. Non-repetitive AT-rich sequences are found in intergenic regions of *Methanococcus voltae* DNA. EMBO J. 4, 805-809.

Bowen, T.L. and Whitman, W.B. 1987. Incorporation of exogenous purines and pyrimidies by *Methanococcus voltae* and isolation of analog-resistant mutants. Appl. Environ. Microbiol. 53, 1822-1826.

Brown, J. and Reeve, J.N. 1985. Polyadenylated, noncapped RNA from the archaebacterium *Methanococcus vannielii*. J. Bacteriol. 162, 909-917.

Brown, J. and Reeve, J.N. 1986. Polyadenylated RNA isolated from archaebacterium *Halobacterium halobium*. J. Bacteriol. 166, 686-688.

Brown, J. W., Daniels, C. J. and Reeve, J. N. 1989. Gene structure, organization, and expression in archaebacteria. CRC Crit. Rev. Microbiol. 16, 287-338.

Brown, J.W., Thomm, M., Beckler, G.S., Frey, G., Stetter, K.O. and Reeve, J.N. 1988. An RNA polymerase binding site and transcription initiation of the *hisA* gene of *Methanococcus vannielii*. Nucleic Acids Res. 16, 135-150.

Brown, M.S. and Goldstein, J.L. 1980. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res. 21, 505-517.

Bucher, P. and Trifonov, E.N. 1986. Compilation and analysis of eukaryotic POL II promoter sequences. Nucl. Acids Res. 14, 10009-10026.

Cabrera, J.A., Bold, J., Shields, P.E., Havel, C.M. and Watson, J.A. 1986. Isoprenoid synthesis in *Halobacterium halobium*: modulation of 3-hydroxy-3-methylglutaryl coenzyme A concentration in response to mevalonate availability. J. Biol. Chem. 261, 3578-3583.

Chang, M., Hadero, A. and Crawford, I.P. 1989. Sequence of the *Pseudomonas* aeruginosa trpl activator gene and relatedness of trpl to other prokaryotic regulatory genes. J. Bacteriol. 171, 172-133.

Chant, J. and Dennis, P.P. 1986. Archaebacteria: transcription and processing of ribosomal RNA sequences in *Halobacterium cutirubrum*. EMBO J. 5, 1091-1097.

Charlebois, R. L., Hofman, J. D., Schalkwyk, L. C., Lam, W. L. and Doolittle, W. F. 1989. Genome mapping in halobacteria. Can. J. Microbiol. 35, 21-29.

Charlebois, R. L., Lam, W. L., Cline, S. W.and Doolittle, W. F. 1987. Characterization of pHV2 from *Halobacterium volcanii* and its use in demonstrating transformation of an archaebacterium. Proc. Natl. Acad. Sci. USA 84, 8530-8534.

Charlebois, R.L. and Doclittle, W.F. 1989. Transposable elements and genome structure in Halobacteria. In *Mobile DNA* (Berg, D.E. and Howe, M.H., ed), pp. 297-307, American Society for Microbiology, Washington, D.C.

Chin, D.J., Gil, G., Russell, D.W., Liscum, L., Luskey, K.L., Basu, S.K., Okayama, H., Berg, P., Goldstein, J.L. and Brown, M.S. 1984. Nucleotide sequence of 3hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature 308, 613-617.

Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.

Chung, C.T. and Miller, R.H. 1988. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucl. Acids Res. 16, 3580.

Cline, S. W. and Doolittle, W. F. 1987. Efficient transfection of the archaebacterium *Halobacterium halobium*. J. Bacteriol. 169, 1341-1344.

Cline, S. W., Lam, W. L., Charlebois, R. L., Schalkwyk, L. C. and Doolittle, W. F. 1989a. Transformation methods for halophilic archaebacteria. Can. J. Microbiol. 35, 148-152.

Cline, S., Schalkwyk, L.C. and Doolittle, W.F. 1989b. Transformation of the archaebacterium *Halobacterium volcanii* with genomic DNA. J. Bacteriol. 171, 4987-4991.

Conover, R.K. and Doolittle, W.F. 1:)0. Characterization of a gene involved in histidine biosynthesis in *Halobacterium (Haloferax) volcanii*: isolation and rapid mapping by transformation of an auxotroph with cosmid DNA. J. Bacteriol. 172, 3244-3249.

Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering Nucl. Acids Res. 16, 10881-10890.

Cozzarelli, N.R., Gerrard, S.P., Schlissel, M., Brown, D.D. and Bogenhagen, D.F. 1983. Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes. Cell 34, 829-835.

Cram, D.S., Sherf, B.A., Libby, R.T., Mattaliano, R.J., Ramachandran, K.L. and Reeves, J.N. 1987. Structure and expression of the genes mcr BDCGA, which encode the subunits of component C of methyl coenzyme M reductase in *Methanococcus vannielii*. Proc. Natl. Acad. Sci. USA 84, 3992-3996.

Crawford, I.P. 1989. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu. Rev. Microbiol. 43, 567-600. **E**

Crawford, I.P. and Milkman, R. 1990. Orthologous and paralogous divergence, reticulate evolution, and lateral gene transfer in bacterial *trp* genes. *In* Evolution at the Molecular level. R.K. Selander, A.G. Clark and T.S. Whittman ed., Sinauer Assoc. Inc. Publisher. Massachusetts.

Cue, D., Beckler, G.S., Reeve, J.N., and Konisky, J. 1985. Structure and sequence divergence of two Archaebacterial genes. Proc. Natl. Acad. Sci. USA. 82, 4207-4211.

Culham, D.E. and Nazar, R.N. 1989. Multiple termination sites in an unlinked 5S rRNA operon in the archaebacterium *Thermococcus celer*. Mol. Gen. Genet. 216, 412-416.

Daniels, C.J., Douglas, S.E., McKee, A.H.Z. and Doolittle, W.F. 1986. Archaebacterial tRNA genes: structure and intron processing. In *Microbiology 1986* (Leive, L., ed) pp.349-355, ASM Publications, Wash. D.C.

Daniels, C.J., Gupta, R. and Doolittle, W.F. 1985. Transcription and excision of a large intron in the tRNA^{Trp} gene of an archaebacterium, *Halobacterium volcanii*. J. Biol. Chem. 260, 3132-3134.

Daniels, L.L. and Wais, A.C. 1984. Restriction and modification of halophage S45 in *Halobacterium*. Curr. Microbiol. 10, 133-136.

Darr, S.C., Pace, B. and Pace, N.R. 1990. Characterization of ribonuclease P from the archaebacterium *Sulfolobus solfataricus*. J. Biol. Chem. 265, 12927-12932.

DasSarma, S. 1989. Mechanisms of genetic variability in *Halobacterium halobium*: the purple membrane and gas vesicle mutations. Can. J. Microbiol. 35, 65-72.

DasSarma, S., Damerval, T., Jones, J.G., and Tandeau De Marsac, N. 1987. A plasmidencoded gas vesicle protein gene in a halophilic archaebacterium. Mol. Microbiol. 1, 365-370.

DasSarma, S., Halladay, J.T., Jones, J.G., Donovan, J., Giannasca, P.J. and Tandeau De Marsac, N. 1988. High-frequency mutations in a plasmid-encoded gas vesicle gene in *Halobacterium halobium*. Proc. Natl. Acad. Sci. USA 85, 6861-6865.

DasSarma, S., RajBhandary and Khorana, H.G. 1983. High-frequency spontaneous mutation in the bacterio-opsin gene in *Halobacterium halobium* is mediated by transposable elements. Proc. Natl. Acad. Sci. USA 80, 2201-2205.

DasSarma, S., RajBhandary and Khorana, H.G. 1984. Bacterio-opsin mRNA in wildtype and bacterio-opsin-deficient *Halobacterium halobium* strains. Proc. Natl. Acad. Sci. USA 81, 125-129.

Datta, P.K., Hawkins, L.K. and Gupta, R. 1989. Presence of an intron in elongator methionine-tRNA of *Halobacterium volcanii*. Can. J. Microbiol. 35, 189-193.

De Rosa, M. and Gambacorta, A. 1986. Lipid biogenesis in archaebacteria. System. Appl. Microbiol. 7, 278-285.

De Rosa, M., Gambacorta, A. and Gliozzi, A. 1986. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol. Rev. 50, 70-80.

DeLa Tour, C.B., Portemer, C., Nadal, M., Stetter, K.O., Forterre, P. and Duguet, M. 1990. Reverse gyrase, a hallmark of the hyperthermophilic archaebacteria. J. Bacteriol. 172, 6803-6808.

Dennis, P.P. 1986. Molecular biology of archaebacteria. J. Bacteriol. 168, 471-478.

Dugan, R.E. and Katiyar, S.S. 1986. Evidence for catalytic cysteine and histidine by chemical modification of β -hydroxy- β -methylglutaryl-coenzyme A reductase. Biochem. Biophys. Res. Comm. 141, 278-284.

Ebert,K. and Goebel, W. 1985. Conserved and varible regions in the chromosomal and extrachromosomal DNA of halobacteria. Mol. Gen. Genet. 200, 96-102.

Ebert, K., Hanke, C., Delius, H., Goebel, W. and Pfeifer, F. 1987. A new insertion element, ISH26, from *Halobacterium halobium*. Mol. Gen. Genet. 206, 81-87.

Ehrlich, M., Gama-Sosa, M.A., Carreira, L.H., Ljungdahl, L.G., Kuo, K.C. and Gehrke, C.W. 1985. DNA methylation in thermophilic bacteria: N⁴-methylcytosine, 5-methylcytosine and N⁶-methyladenine. Nucl. Acids Res. 13, 1399-1428.

Eisenberg, H. and Wachtel, E.J. 1987. Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Annu. Rev. Biophys. Biophys. Chem. 16, 69-92.

Ekiel, I., Smith, I. C. P. and Sprott, G. D. 1983. Biosynthetic pathways in *Methanospirillum hungatei* as determined by ¹³C nuclear magnetic resonance. J. Bacteriol. 156, 316-326.

Ekiel, I., Sprott, G. D. and Smith, I. C. P. 1986. Mevalonic acid is partially synthesized from amino acids in *Halobacterium cutirubrum*: a ¹³C nuclear magnetic resonance study. J. Bacteriol. 166, 559-564.

Essar, D.W., Eberly, L. and Crawford, I.P. 1990a. Evolutionary differences in chromosomal locations of four early genes of the tryptophan pathway in fluorescent Pseudomonads: DNA sequences and characterization of *Pseudc ronas putida trpE* and *trpGDC*. J. Bacteriol. 172, 867-883.

Essar, D.W., Eberly, L., Han, C.-Y. and Crawford, I.P. 1990b. DNA sequences and characterization of four early genes of the tryptophan pathway in *Pseudomonas* aeruginosa. J. Bacteriol. 172, 867-883.

Feinberg, A.P. and Vogelstein, B. 1983. A technique for radio-labeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6-13.

Feinberg, A.P. and Vogelstein, B. 1984. Addendum to "A technique for radio-labeling DNA restriction endonuclease fragments to high specific activity." Anal. Biochem. 137, 266-267.

Forterre, P., Elie, C., Sioud, M. and Hamal, A. 1989. Studies on DNA polymerases and topoisomerases in archaebacteria. Can J. Microbiol. 35, 228-232.

ł

Forterre, P., Mirambeau, G., Jaxel, C., Nadal, M. and Duguet, M. 1985. High positive supercoiling *in vitro* catalysed by an ATP and polyethyleneglycol-stimulated topoisomerase from *Sulfolobus acidocaldarius*. EMBO J. 4, 2123-2128.

Forterre, P., Nadal, M., Elie, C., Mirambeau, G., Jaxel, C. and Duguet, M. 1986. Mechanisms of DNA synthesis and topoisomerization in archaebacteria- reverse gyration *in vitro* and *in vivo*. Syst. Appl. Microbiol. 7, 167-171.

Furter, R., Paravicini, G., Aebi, M., Braus, G., Prantl, F., Niederberger, P. and Hutter, R. 1986. The *TRP4* gene of *Saccharomyces cerevisiae*: isolation and structural analysis. Nucl. Acids Res. 14, 6357-6373.

Gehrmann, R., Henschen, A., Postulka, W. and Klink, F. 1986. Comparative studies on structure and function of archaebacterial elongation factors indicate the phylogenetic diversity of the urkingdom. System. Appl. Microbiol. 7, 115-122.

Geliebter, J. 1987. Dideoxynucleotide sequencing of RNA and uncloned DNA. Focus 9:1, 5-8.

Gerl, L. and Sumper, M. 1988. Halobacterial flagellins are encoded by a multigene family. J. Biol. Chem. 263, 13246-13251.

Gernhardt, P., Possot, O., Foglino, M., Sibold, L. and Klein, A. 1990. Construction of an integration vector for use in the archaebacterium *Methanococcus voltae* and expression of a eubacterial resistance gene. Mol. Gen. Genet. 221, 273-279.

Gertler, F.B., Chiu, C.Y., Richter-Mann, L. and Chin, D.J. 1988. Developmental and metabolic regulation of *Drosophila melanogaster* 3-hydroxy-3-methyl coenzyme A reductase. Mol. Cell. Biol. 8, 2713-2721.

Gogarten, J.P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E.J., Bowman, B.J., Manolson, M.F., Poole, R.J., Date, T., Oshima, T., Konishi, J., Dena, K. and Yoshida, M. 1989. Evolution of the vacuolar H⁺-ATPase: Implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86, 6661-6665.

Goldstein, J.L. and Brown, M.S. 1990. Regulation of the mevalonate pathway. Nature 343, 425-430.

Green, G.R., Searcy, D.G. and DeLange, R.J. 1983. Histone-like protein in the archaeba terium *Sulfolobus acidocaldarius*. Biochem. Biophys. Acta 741, 251-257.

Gropp, F., Palm, P. and Zillig, W. 1989. Expression and regulation of *Halobacterium* halobium phage ϕ H genes. Can. J. Microbiol. 35, 182-188.

Gropp, F., Reiter, W.D., Sentenac, A., Zillig, W., Schnabel, R., Thomm, M. and Stetter, K.O. 1986. Homologies of components of DNA-dependent RNA polymerase of archaebacteria, eukaryotes and eubacteria. Syst. Appl. Microbiol. 7, 95-101.

Gupta, R. 1984. *Halobacterium volcanii* tRNAs: identification of 41 tRNAs covering all amino acids and the sequences of 33 class I tRNAs. J. Biol. Chem. 259, 9461-9471.

i

Hackett, N.R. and DasSarma, S. 1989. Characterization of the small endogenous plasmid of *Halobacterium* strain SB3 and its use in transformation of *H. halobium*. Can. J. Microbiol. 35, 86-91.

Hamilton, P.T. and Reeve, J.N. 1985a. Sequence divergence of an archaebacterial gene cloned from a mesophilic and a thermophilic methanogcn. J. Mol. Evol. 22, 351-360.

Hamilton, P.T. and Reeve, J.N. 1985b. Structure of genes and an insertion element in the methane producing archaebacterium *Methanobrevibacter smithii*. Mol. Gen. Genet. 200, 47-59.

Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28, 351-359.

Hofman, J.D., Schalkwyk, L.C. and Doolittle, W.F. 1986. ISH51: a large, degenerate family of insertion sequence-like elements in the genome of the archaebacterium, *Halobacterium volcanii*. Nucleic Acids Res. 14, 6983-7000.

Holmes, M.L. and Dyall-Smith, M.L. 1990. A plasmid vector with a selectable marker for halophilic archaebacteria. J. Bacteriol. 172, 756-761.

Holmes, M.L. and Dyall-Smith, M.L. 1991. Mutations in DNA gyrase result in novobiocin resistance in halophilic archaebacteria. J. Bacteriol. 173, 642-648.

Horne, M., Englert, C., and Pfeifer, F. 1988. Two genes encoding gas vacuole proteins in *Halobacterium halobium*. Mol. Gen. Genet. 213, 459-464.

Hudepohl, U., Reiter, W.D. and Zillig, W. 1990. *In vitro* transcription of two rRNA genes of the archaebacterium *Sulfolobus* sp. B12 indicates a factor requirement for specific initiation. Proc. Natl. Acad. Sci. USA 87, 5851-5855.

Huet, J., Schnabel, R., Sentenac and Zillig, W. 1983. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J. 2, 1291-1294.

Hui, I. and Dennis, P.P. 1985, Characterization of the ribosomal RNA gene clusters in *Halobacterium cutirubrum*. J. Biol. Chem. 260, 899-906.

Hutter, R., Niederberger, I. and DeMoss, J.A. 1986. Tryptophan biosynthetic genes in eukaryotic microorganisms. Annu. Rev. Microbiol. 40, 55-77.

Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W. and Davies, D. R. 1988. Three-dimensional strucyure of the tryptophan synthetase $\alpha 2\beta 2$ multienzyme complex from *Salmonella typhimurium*. J. Biol. Chem. 263: 17857-17871.

Hyde, C.C. and Miles, E. W. 1990. The tryptophan synthase multienzyme complex: exploring structure-function relationships with x-ray crystallography and mutagenesis. Biotechnology 8, 27-32.

Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. and Miyata, T. 1989. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86, 9355-9359.

-

ļ

مندر وراجع المحمدة بعروم الارتباع المتحد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد

ţ

į

-

Janekovic, D., Wunderl, S., Holz, I., Zillig, W., Gierl, A. and Neumann, H. 1983. TTV1, TTV2 and TTV3, a fa nily of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium *Thermoproteus tenax*. Mol Gen. Genet. 192, 39-45.

Jarsch, M. and Bock, A. 1985. Sequence of the 23S rRNA gene from the archaebacterium *Methanococcus vannielii*: evolutionary and functional implications. Mol. Gen. Genet. 200, 305-312.

Jones, W. J., Nagle, D.P. and Whitman, W.B. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51, 135-177.

Jordan, M., Meile, L. and Leisinger, T. 1989. Organization of *Methanobacterium* thermoautotrophicum bacteriophage ψ M1 DNA. Mol. Gen. Genet. 220, 161-164.

Jordon-Starck, T.C. and Rodwell V.W. 1989a. *Pseudomonas mevalonii* 3-hydroxy-3methylglutar /1 coenzyme A reductase: characterization and chemical modification. J. Biol. Chem. 264, 17913-17918.

Jordon-Starck, T.C. and Rodwell V.W. 1989b. Role of cysteine residues in *Pseudomonas mevalonii* 3-hydroxy-3-methylglutaryl-Co A reductase: site-directed mutagenesis and characterization of the mutant enzymes. J. Biol. Chem. 264, 17919-17923.

Juez, G., Rodriguez-Valera, F., Herrero, N. and Mojica, F.J.M. 1990. Evidence for saltassociated restriction pattern modifications in the archaebacterium *Haloferax mediterranei*. J. Bacteriol. 172, 7278-7281.

Kagramanova, V.K., Derckacheva, N.I. and Mankin, A. S. 1989. Unusual nucleotide sequence heterogeneity of small multicopy pHSB plasmid from *Halobacterium* strain SB3, an archaebacterium. Can. J. Microbiol. 35, 160-163.

Kaine, B. P. 1987. Intron-containing tRNA genes of *Sulfolobus solfataricus*. J. Mol. Evol. 25, 248-254.

Kaine, B. P., Gupta, R. and Woese, C.R. 1983. Putative introns in tRNA genes of prokaryotes. Proc. Natl. Acad. Sci. USA 80, 3309-3312.

Kates, M., Wassef, M.K. and Kushner, D.J. 1968, Radioisotopic studies on the biosynthesis of the glyceryl diether lipids of *Halobacterium cutirubrum*. Can. J. Biochem. 46, 971-977.

Kikuchi, A., and Asai, K. 1984. Reverse gyrase- a topoisomerase which introduces positive superhelical turns into DNA. Nature 309, 677-681.

Kjems, J. and Garrett, R. A. 1985. An intron in the 23S ribosomal RNA gene of the archaebacterium *Desulfurococcus mobilis*. Nature 318, 675-677.

Kjems, J. and Garrett, R.A. 1987. Novel expression of the rRNA genes in the extreme thermophile and archaebacterium *Desulfurococcus mobilis*. EMBO J. 6, 3521-3530.

Kjems, J. and Garrett, R. A. 1988. Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium *Desulfurococcus mobilis*. Cell 54, 693-703.

Kjems, J. and Garrett, R. A. 1990. Secondary structural elements exclusive to the sequences flanking ribosomal RNAs lend support to the monophyletic nature of the archaebacteria. J. Mol. Evol. 31, 25-32.

1.

;

Kjems, J. and Garrett, R.A. 1991. Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing. Proc. Natl. Acad. Sci. USA 88, 439-443.

Kjems, J., Jensen, J., Olesen, T. and Garrett. 1989. Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacterium *Desulfurococcus mobilis*. Can. J. Microbiol. 36, 210-214.

Kjems, J., Leffers, H., Garett, R.A., Wich, G., Leinfelder, W. and Bock, A. 1987. Gene organization, transcription signals, and processing of the single ribosomal RNA operon of the archaebacterium *Thermoproteus tenax*. Nucl. Acids Res. 15, 4821-4835.

Klebe, R.J., Harriss, J.V., Sharp, Z.D. and Douglas, M.G. 1983. A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25, 333-341.

Klein, A. and Schnorr, M. 1984. Genome complexity of methanogenic bacteria. J. Bacteriol. 158, 628-631.

Knox, M.R. and Harris, J.E. 1988. Isolation and characterization of mutants of mesophilic methanogenic bacteria resistant to analogues of DNA bases and nucleosides. Arch. Microbiol. 149, 557-560.

Kopke, A.K.F. and Wittmann-Liebold, B. 1989. Comparative studies of ribosomal proteins and their genes from *Methanococcus vannielii* and other organisms. Can. J. Microbiol. 35, 11-20.

Lam, W.L. and Doolittle, W.F. 1989. Shuttle vectors for the archaebacterium *Halobacterium volcanii*. Proc. Natl. Acad. Sci. USA 86, 5478-5482.

Lam, W.L., Charlebois, R.L. and Doolittle, W.F. 1990a. Progress in molecular biology of the archaebacteria. In *Molecular Evolution*, UCLA Symposia on Molecular and Cellular Biology, New Series (Clegg, M.T. and O'Brien, J., ed.) Vol. 122, pp.265-272, Wiley-Liss Publisher, N.Y.

Lam, W.L., Cohen, A., Tsouluhas, D. and Doolittle, W.F. 1990b. Genes for tryptophan biosynthesis in the archaebacterium *Haloferax volcanii*. Proc. Natl. Acad. Sci. USA 87, 6614-6618.

Lanyi, J.K., Duschl, A., Hatfield, G.W., May, K. and Oesterhelt, D. 1990. The primary structure of a halorhodopsin from *Natronobacterium pharaonis*. J. Biol. Chem. 265, 1253-1260.

Larsen, N., Leffers, H., Kjems, J. and Garrett, R.A. 1986. Evolutionary divergence between the ribosomal RNA operons of *Halococcus morrhuae* and *Desulfurococcus mobilis*. System. Appl. Microbiol. 7, 49-57.

ę

Lawrence, N., Wesolowski, D., Gold, H., Bartkiewicz, M., Guerrier-Takada, C., McClain, W.H. and Altman, S. 1987. Characteristics of ribonuclease P from various organisms. Cold Spring Harbor Symp. Quant. Biol. 52, 233-238.

Learned, R.M. and Fink, G.R. 1989. 3-hydroxy-3-methylglutaryl coenzyme A reductase from *Arabidopsis thaliana* is structurelly distinct from the yeast and animal enzymes. Proc. Natl. Acad. Sci. USA 86, 2779-2783.

Lechner, J. and Sumper, M. 1987. The primary structure of a procaryotic glycoprotein. J. Biol. Chem. 262, 9724-9729.

Leffers, H., Gropp, F., Lottspeich, F., Zillig, W. and Garrett, R.A. 1989. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles *Halobacterium halobium* and *Halococcus morrhuae*. J. Mol. Biol. 206, 1-17.

Leong, D., Boyer, H. and Betlach, M. 1988b. Transcription of genes involved in bacterio-opsin gene expression in mutants of a halophilic archaebacterium. J. Bacteriol. 170, 4910-4915.

Leong, D., Pfeifer, F., Boyer, H. and Betlach, M. 1988a. Characterization of a second gene involved in bacterio-opsin gene expression in a halophilic archaebacterium. J. Bacteriol. 170, 4903-4909.

Lobo, A.L. and Zinder, S.H. 1990. Nitrogenase in the archaebacterium *Methanosarcina* barkeri 227. J. Bacteriol. 172, 6789-6796.

Lunnen, K.D., Morgan, R.D., Timan, C.J., Krzycki, J.A., Reeve, J.N. and Wilson, G.G. 1989. Characterization and cloning of MwoI (GCN7GC), a new type-II restrictionmodification system from *Methanobacterium wolfei*. Gene 77, 11-19.

Luskey, K.L. and Stevens, B. 1985. Human 3-hydroxy-3-methyl coenzyme A reductase. J. Biol. Chem. 260, 10271-10277.

Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning, A Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.)

10.17

Mankin, A., Teterina, N., Rubstov, P., Baratova, L., Kagramonova, V. 1984. Putative promoter regions of rRNA operon from archaebacterium *Halobacterium halobium*. Nucl. Acids Res. 12, 6537-6546.

Marck, C. 1988. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucl. Acids Res. 16, 1829-1836.

Martin, A. Yeats, S., Janekovic, D. Reiter, W.D., Aicher, W. and Zillig, W. 1984, SAV1, a temperate u.v. inducible DNA virus-like particle from the archaebacterium *Sulfolobus acidocaldarius* isolate B12. EMBO J. 3, 2165-2168.

Matsui, K., Miwa, K. and Sano, K. 1987. Two single-base-pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes of *Brevibacterium lactofermentum*. J. Bacteriol. 169, 5330-5332.

May, B.P. and Dennis, P.P. 1989. Evolution and regulation of the gene encoding superoxide dismutase from the archaebacterium *Halobacterium cutirubrum*. J. Biol. Chem. 264,12253-12258.

May, B.P., Tam, P. and Dennis, P.P. 1989. The expression of the superoxide dismutase gene in *Halobacterium cutirubrum* and *Halobacterium volcanii*. Can. J. Microbiol. 35, 171-175.

McCloskey, J.A. 1986. Nucleoside modification in archaebacterial transfer RNA. System. Appl. Microbiol. 7, 246-252.

McConnell, D.J., Searcy, D.G. and Sutcliffe, J.G. 1978. A restriction enzyme Thal from the thermophilic mycoplasm *Thermoplasma acidophilum*. Nucl. Acids Res. 5, 1729-1739.

Meile, L., Jenal, U., Studer, D., Jordan, M. and Leisinger, T. 1989. Characterization of ψ M1, a virulent phage of *Methanobacterium thermoautotrophicum* Marburg. Arch. Microbiol. 152, 105-110.

Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol., 101, 20-78.

Mevarech, M. and Werczberger, R. 1985. Genetic transfer in Halobacterium volcanii. J.Bacteriol. 162, 461-462.

Mitchell, R.M., Loeblish, L.A., Klotz, L.C. and Loeblich, A.R. 1979. DNA organization of *Methanobacterium thermoautotrophicum*. Science 204, 1082-1084.

Moore, R.L. and McCarthy, B.J. 1969a. Characterization of the deoxynucleic acid of various strains of halophilic bacteria. J. Bacteriol. 99, 248-254.

Moore, R.L. and McCarthy, B.J. 1969b. Base sequence homology and renaturation studies of the deoxyribonucleic acid of extremely halophilic bacteria. J. Bacteriol. 99, 255-262.

Morris, C.J. and Reeve, J.N. 1988. Conservation of the structure in the human gene encoding argininosuccinate synthetase and the argG gene of the archaebacteria *Methanosarcina barkeri* MS and *Methanococcus vannielii*. J. Bacteriol. 170, 3125-3130.

Muller, B., Allmansberger, R. and Klein, A. 1985. Termination of a transcriptional unit comprising highly expressed genes in the archaebacterium *Methanococcus voltae*. Nucl. Acid. Res. 13, 6439-6445.

Murray, P.A. and Zinder, S.H. 1984. Nitrogen fixation by methanogenic archaebacterium. Nature 312, 284-286.

Nadal, M., Mirambeau, G., Forterre, P., Reiter, W.D. and Duguet, M. 1986. Positively supercoiled DNA in A virus-like particle of an archaebacterium. Nature 321, 256-258.

Nagle, D.P. 1989. Development of genetic systems in methanogenic archaebacteria. J. Indust. Microbiol. 30, 43-51.

í

Nakasu, S. and Kikuchi, A. 1985. Reverse gyrase: ATP-dependent typeI DNA topoisomerase from *Sulfolobus*. EMBO J. 4, 2705-2710.

Nieuwlandt, D.T. and Daniels, C.J. 1990. An expression vector for the archaebacterium *Haloferax volcanii*. J. Bacteriol. 172, 7104-7110.

Noll, K.M. 1989. Chromosome map of the thermophilic archaebacterium *Thermococcus* celer. J. Bacteriol. 171, 6720-6725.

Normand, P. and Bousquet, J. 1989. Phylogeny of nitrogenase sequences in *Frankia* and other nitrogen fixing microorganisms. J. Mol. Evol. 29, 436-447.

Oesterhelt, D. and Stoeckenius, W. 1973. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70, 2853-2857.

Oesterhelt, D. and Tittor, J. 1989. Two pumps, one principle: light-driven ion transport in *Halobacteria*. Trends Biochem. Sci. 14, 57-61.

Patterson, N.H. and Pauling, C. 1985. Evidence for two restriction-modification systems in *Halobacterium cutirubrum*. J. Bacteriol. 163, 783-784.

Pauling, C. 1982. Bacteriophages of *Halobacterium halobium*: isolation from fermented fish sauce and primary characterization. Can J. Microbiol. 28, 916-921.

Pearson, W.R. and Lipman, D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444-2448.

Pfeifer, F. 1986. Insertion elements and genome organization of *Halobacterium* halobium. Syst. Appl. Microbiol. 7, 36-40.

Pfeifer, F. and Betlach, M. 1985. Genome organization in *Halobacterium halobium*: a 70 kb island of more (AT) rich DNA in the chromosome. Mol. Gen. Genet. 198, 449-455.

Pfeifer, F. Betlach, M., Martienssen, R., Friedman, J. and Boyer, H.W. 1983. Transposable elements of *Halobacterium halobium*. Mol. Gen. Genet. 191, 182-188.

Pfeifer, F. and Blaseio, U. 1989. Insertion elements and deletion formation in a halophilic archaebacterium. J. Bacteriol. 171, 5135-5140.

Pfeifer, F. and Blaseio, U. 1990. Transposition burst of the ISH27 insertion element family in *Halobacterium halobium*. Nucl. Acid.Res. 18, 6921-6925.

Pfeifer, F., Blaseio, U. and Ghahraman, P. 1988. Dynamic plasmid populations in *Halobacterium halobium*. J. Bacteriol. 170, 3718-3724.

Pfeifer, F., Blaseio, U. and Horne, M. 1989. Genome structure of *Halobacterium* halobium: plasmid dynamics in gas vacuole deficient mutants. Can. J. Microbiol. 35, 96-100.

Pfeifer, F., Boyer, H. and Betlach, M. 1985. Restoration of bacterio-opsin gene expression in a revertant of *Halobacterium halobium*. J. Bacteriol. 164, 414-420.

Pfeifer, F., Friedman, J., Boyer, H. and Betlach, M. 1984. Characterization of insertions affecting the expression of the bacterio-opsin gene in *Halobacterium halobium*. Nucl. Acids Res. 12, 2489-2497.

Pfeifer, F., Weidinger, G. and Goebel, W. 1981. Genetic variability of *Halobacterium* halobium. J. Bacteriol. 145, 369-374.

Prangishvilli, D.A., Vashakidze, R.P., Chelidze, M.G. and Gabriadze, I.Y. 1985. A restriction endonuclease SauI from the thermophilic archaebacterium *Sulfolobus* acidocaldarius. FEBS Lett. 192, 57-60.

Priestle, J.P., Grutter, M.G., White, J.L., Vincent, M.G., Kania, M., Wilson, E., Jardetzky, T.S., Kirschner, K. and Jansonius, J.N. 1987. Three-dimensional structure of the bifunctional enzyme N-(5'-phosphoribosyl)anthranilate isomerase-indole-3-glycerol-phosphate synthase from *Escherichia coli*. Proc. Natl. Acad. Sci. USA 84, 5690-5694.

Puhler, G., Leffers, H., Gropp, F., Palm, P., Klenk, H.-P., Lottspeich, F., Garrett, R. and Zillig, W. 1989. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc. Natl. Acad. Sci. USA 86, 4569-4573.

Queen, C. and Korn, L.J. 1984. A comprehensive sequence analysis program for the IBM personal computer. Nucl. Acids Res. 12, 581-599.

Rajkovic, A., Simonsen, J.N., Davis, R.E. and Rottman, F.M. 1989. Molecular cloning and sequencing analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase from the human parasite *Schistosoma mansoni*.Proc. Natl. Acad. Sci. USA 86, 8217-8221.

Ramirez, C., Shimmin, L.C., Newton, C.H., Matheson, A.T. and Dennis, P.P. 1989. Structure and evolution of the L11, L1, L10, and L12 equivalent ribosomal proteins in eubacteria, archaebacteria, and eucaryotes. Can. J. Microbiol. 35, 234-244.

Ree, H.K., Cao, K., Thurlow, D.L. and Zimmermann, R.A. 1989. The structure and organization of the 16S ribosomal RNA gene from the archaebacterium *Thermoplasma acidophilum*. Can. J. Microbiol. 35, 124-133.

Ree, H.K. and Zimmermann, R.A. 1990. Organization and expression of the 16S, 23S and 5S ribosomal RNA genes from the archaebacterium *Thermoplasma acidophilum*. Nucl. Acids Res. 18, 4471-4478.

Reiter, W.D., Hudepohl, U. and Zillig, W. 1990. Mutational analysis of an archaebacterial promoter: essential role of a "TATA box" for transcription efficiency and start site selection *in vitro*. Proc. Natl. Acad. Sci. USA 87, 9509-9513.

Reiter, W.D., Palm, P. and Yeats, S. 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucl. Acids Res. 17 1907-1914.

Reiter, W.D., Palm, P. and Zillig, W. 1988a. Transcription termination in the archaebacterium *Sulfolobus*: signal structures and linkage to transcription initiation. Nucl. Acids Res. 14, 2445-2459.

Reiter, W.D., Palm, P. and Zillig, W. 1988b. Analysis of transcription in the archaebacterium *Sulfolobus* indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucl. Acids Res. 16, 1-19.

Reiter, W.D., Palm, P., Henschen, A., Lottspeich, F., Zillig, W. and Grampp, B. 1987a. Identification and characterization of the genes encoding three structural proteins of the *Sulfolobus* virus-like particle SSV1. Mol. Gen. Genet. 205, 144-153.

Reiter, W.D., Palm, P., Yeats, S. and Zillig, W. 1987b. Gene expression in archaebacteria: physical mapping of constitutive and uv-indu the transcripts from *Sulfolobus* virus like particle SSV1. Mol. Gene. Genet. 209, 270-27.

Reiter, W.D., Zillig, W. and Paim, P. 1988c. Archaebacterial viruses. Adv. Virus Res. 34, 143-188.

Reiter, W.D.and Palm, P. 1990. Identification and characterization of a defective SSV1 genome integrated into a tRNA gene in the archaebacterium *Sulfolobus* sp. B12. Mol. Gen. Genet. 221, 65-71.

Reznikoff, W.S., Siegele, D.A., Cowing, D.W. and Gross, C.A. 1985. The regulation of transcription initiation in bacteria. Annu. Rev. Genet. 19, 355-387.

Rohrmann, G.F., Cheney, R. and Pauling, C. 1983. Bacteriophages of *Halobacterium* halobium: virion DNAs and proteins. Can. J. Microbiol. 29, 627-629.

Roitelman, J. and Shechter, I. 1989. Studies on the catalytic site of rat liver HMG-CoA reductase: interaction with CoA-thioesters and inactivation by indoacetamide. J. Lipid Res. 30, 97-107.

Rosenberg, M. and Court, D. 1979. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Genet. 13, 319-353.

Rosenshine, I. Zusman, T., Werczberger, R. and Mevarech, M. 1987. Amplification of specific DNA sequences correlates with resistance of the archaebacterium *Halobacterium volcanii* to the dihydrofolate reductase inhibitors trimethoprim and methotrexate. Mol. Gen. Genet. 208, 518-522.

Rosenshine, I. and Mevarech, M. 1989. Isolation and partial characterization of plasmids found in three *Halobacterium volcanii* isolates. Can. J. Microbiol. 35, 92-95.

Rosenshine, I., Tchelet, R. and Mevarech, M. 1989. The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245, 1387-1389.

Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning, A Laboratory Manual, 2nd edition. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.)

Sanangelantoni, A.M., Barbarini, D., Di Pasquale, G., Cammarano, P. and Tiboni, O. 1990. Cloning and nucleotide sequence of an archaebacterial glutamine synthetase gene: phylogenetic implications. Mol. Gen. Genet. 221, 187-194.

Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chainterminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467.

Sapienza, C. and Doolittle, W.F. 1982. Unusual physical organization of the *Halobacterium* genome. Nature 295, 384-389.

ť

pa ť

120

Sapienza, C., Rose, M.R. and Doolittle, W.F. 1982. High-frequency genomic rearrangements involving archaebacterial repeat sequence elements. Nature 299, 182-185.

Scherer, P. 1989. Vanadium and molybdenum requirement for the fixation of molecular nitrogen by two *Methanosarcina* strains. Arch. Microbiol. 151, 44-48.

Schmid, K., Thomm, M., Laminet, A., Laue, F.G., Kessler, C., Stetter, K.O. and Schmitt, R. 1984. Three restriction endonucleases MaeI, MaeII and MaeIII from *Methanococcus aeolicus*. Nucl. Acids Res. 12, 2619-2628.

Schnabel, H. 1984. An immune strain of *Halobacterium halobium* carries the invertible L segment of ϕ H as a plasmid. Proc. Natl. Acad. Sci. USA 81, 1017-1020.

Schnabel, H., Palm, P., Dick, K. and Grampp, B. 1984. Sequence analysis of the insertion element ISH1.8 and associated structural changes in the genome of phage ϕ H of the archaebacterium *Halobacterium halobium*. EMBO J. 3, 1717-1722.

Schnabel, H., Schramm, E., Schnabel, R. and Zillig, W. 1982a. Structural variability in the genome of phage ϕ H of *Halobacterium halobium*. Mol. Gen. Genet. 188, 370-377.

Schnabel, H. and Zillig, W. 1984. Circular structure of the genome of phage ϕ H in a lysogenic *Halobacterium halobium*. Mol. Gen. Genet. 193, 422-426.

Schnabel, H., Zillig, W., Pfaffle, M., Schnabel, R., Michel, H. and Delius, H. 1982b. Halobacterium halobium phage ϕ H. EMBO J. 1, 87-92.

Searcy, D.G. and Doyle, E.K. 1975 Characterization of *Thermoplasma acidophilum* deoxynucleic acid. Int. J. Syst. Bacteriol. 25, 286-289.

Shimmin, L.C. and Dennis, P.P. 1989. Characterization of the L11, L1, L10 and L12 equivalent ribosomal protein gene cluster of the halophilic archaebacterium *Halobacterium cutirubrum*. EMBO J. 8, 1225-1235.

Shimmin, L.C., Newton, C.H., Ramirez, C., Yee, J., Downing, W.L., Louie, A., Matheson, A.T. and Dennis, P.P. 1989a. Organization of genes encoding the L11, L1, L10, and L12 equivalent ribosomal proteins in eubacteria, archaebacteria, and eucaryotes. Can. J. Microbiol. 35, 164-170.

Shimmin, L.C., Ramirez, C., Matheson, A.T. and Dennis, P.P. 1989b. Sequence alignment and evolutionary comparison of the L10 equivalent and L12 equivalent ribosomal proteins from archaebacteria, eubacteria, and Eucaryotes. J. Mol. Evol. 29, 448-462.

Sibold, L. and Henriquet, M. 1988. Cloning of the *trp* genes from the archaebacterium *Methanococcus voltae*: nucleotide sequence of the *trpBA* genes. Mol. Gen. Genet. 214, 439-450.

Sibold, L., Pariot, D., Bhatnagar, L., Henriquet, M. and Aubert, J.P. 1985. Hybridization of DNA from methanogenic bacteria with nitrogenase structural genes (*nifHDK*). Mol. Gen. Genet. 200, 40-46. Sibold, L. and Souillard, N. 1986. Primary structure and expression of a gene homologous to *nifH* (nitrogenase Fe protein) from the archaebacterium *Methanococcus voltae*. Mol. Gen. Genet. 203, 21-28.

Sibold, L. and Souillard, N. 1989. Primary structure, functional organization and expression of nitrogenase structural genes of the thermophilic archaebacterium *Methanococcus thermolithotrophicus*. Mol. Microbiol. 3, 541-551.

Simon, R.D. 1978. *Halobacterium* strain 5 contains a plasmid which is correlated with the presence of gas vacuoles. Nature 273, 314-317.

Simsek, M., DasSarma, S., RajBhandary, U.L., and Khorana, H.G. 1982. A transposable element from *Halobacterium halobium* which inactivates the bacteriorhodopsin gene. Proc. Natl. Acad. Sci. USA 79, 7268-7272.

Sioud, M., Baldacci, G., Forterre, P. and DeRecondo, A.M. 1988a. Novobiocin induces accumulation of a single strand of plasmid pGRB-1 in the archaebacterium *Halobacterium* GRB. Nucl. Acids Res. 16, 7833-7841.

Sioud, M., Possot, O., Elie, C., Sibold, L. and Forterre, P. 1988b. Coumarin and quinolone action in archaebacteria: evidence for the presence of a DNA gyrase-like enzyme. J. Bacteriol. 170, 946-953.

Slezarev, A.I. 1988. Positive supercoiling catalyzed in vitro by ATP dependent topoisomerase from *Desulfurococcus amylolyticus*. Eur. J. Biochem. 173, 395-399.

Sment, K.A. and Konisky, J. 1986. Regulated expression of *Methanococcus voltae hisA* gene. Syst. Appl. Microbiol. 7, 90-94.

Souillard, N., Magot, M., Possot, O. and Sibold, L. 1988. Nucleotide sequence of regions homologous to *nifH* (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria *Methanococcus thermolithotrophicus* and *Methanobacterium ivanovii*: evolutionary implications. J. Mol. Evol. 27, 65-76.

Spiridonova, V.A., Akhmanova, A.S., Kagramanova, V.K., Kopke, A.K.E. and Mankin, A.S. 1989. Ribosomal protein gene cluster of *Halobacterium halobium*: nucleotide sequence of the gene coding for S3 and L29 equivalent ribosomal proteins. Can. J. Microbiol. 35, 153-159.

Spudich, E.N., Takahashi, T. and Spudich, J.L. 1989. Sensory rhodopsins I and II modulate a methylation/demethylation system in *Halobacterium halobium* phototaxis. Proc. Natl. Acad. Sci. USA 86, 7746-7750.

Spudich, J.L. and Bogomolni, R.A. 1988. Sensory rhodopsins of Falobacteria. Annu. Rev. Biophys. Biophys. Chem. 17, 193-215.

Stein, D.B. and Searcy, D.G. 1978. Physiologically important stablization of DNA by a prokaryotic histone-like protein. Science 202, 219-221.

Stoeckenius, W. and Bogomolni, R. 1982. Bacteriorhodopsin and related pigments of halobacteria. Annu. Rev. Biochem. 52, 587-616.

121

Ł

Sudhof, T.C., Fried, V.A., Stone, V.A., Johnston, P.A. and Xie, X.-S. 1989. Human endomembrane H⁺ pump strongly resembles the ATP-synthetase of Archaebacteria. Proc. Natl. Acad. Sci. USA 86, 6067-6071.

Takao, M., Kobayashi, T., Oikawa, A. and Yasui, A. 1989. Tandem arrangement of photolyase and superoxide dismutase genes in *Halobacterium halobium*. J. Bacteriol. 171, 6323-6329.

Thomas, M.S. and Nomura, M. 1987. Translational regulation of the L11 ribosomal protein operon of *Escherichia coli*: mutations that define the target site for repression by L1. Nucl. Acids Res. 15, 3085-3096.

Thomm, M. and Wich, G. 1988. An archaebacterial promoter element for stable RNA genes with homology to the TATA-box of higher eukaryotes. Nucleic Acids Res. 16, 151-163.

Thomm, M., Wich, G., Brown, J.W., Frey, G., Sherf, B.A. and Beckler, B.S. 1989. An archaebacterial sequence assigned by RNA polymerase binding experiments. Can. J. Microbiol. 35, 30-35.

Thomm, M. Sherf, B.A. and Reeve, J.N. 1988. RNA polymerase binding and transcription initiation sites upstream of the methyl reductase operon of *Methanococcus vannielii*. J. Bacteriol. 170, 1958-1961.

Thompson, L. and Daneils, C.J. 1988. A tRNA^{Trp} intron endonuclease from *Halobacterium volcanii*. J. Biol. Chem. 263, 17951-17959.

Thompson, L., Brandon, L.D., Nieuwlandt, D.T. and Daneils, C.J. 1989. Transfer RNA intron processing in the halophilic archaebacteria. Can. J. Microbiol. 35, 36-42.

Torsvik, T. and Dundas, I.D. 1974. Bacteriophage of *Halobacterium salinarium*. Nature 248, 680-681.

Torsvik, T. and Dundas, I.D. 1980. Persisting phage infection in *Halobacterium* salinarium str.1. J. Gen. Virol. 47, 29-36.

Tso, J.Y. Hermodson, M.A. and Zalkin, H. 1980. Primary structure of Serratia marcescens anthranilate synthase component II. J. Biol. Chem. 255, 1451-1457.

Tu, J. and Zillig, W. 1982. Organization of rRNA structural genes in the archaebacterium *Thermoplasma acidophilum*. Nucl. Acids Res. 10, 7231-7245.

Twigg, A.J. and Sherratt, D. 1980. Trans-complementable copy-number mutants of plasmid ColE1. Nature 283, 216-218.

Vogelsang-Wenke, H. and Oesterhelt, D. 1988. Isolation of a halobacterial phage with a fully cytosine-methylated genome. Mol. Gen. Genet. 211, 407-414.

Wais, A.C., Kon, M. and MacDonald, R.E. 1975. Salt-dependent bacteriophage infecting *H. cutirubrum* and *H. halobium*. Nature 256, 314-315.

۰.

Weidinder, G., Klotz, G. and Goebel, W. 1979. A large plasmid from *Halobacterium* halobium carrying genetic information for gas vacuole formation. Plasmid 2, 377-386.

Weil, C.F., Beckler, G.S. and Reeve, J.N. 1987. Structure and organization of the *hisA* gene of the thermophilic archaebacterium *Methanococcus thermolithotrophicus*. J. Bacteriol. 169, 4857-4860.

Wich, G. Jarsch, M. and Bock, A. 1984. Apparent operon for a 5S ribosomal RNA gene and for tRNA genes in the archaebacterium *Methanococcus vannielii*. Mol. Gen. Genet. 196, 146-151.

Wich, G., Hummel, H., Jarsch, M. Bar, U and Bock, A. 1986a. Transcription signals for stable RNA genes in *Methanococcus*. Nucl. Acids Res. 14, 2459-2479.

Wich, G., Leinfelder, W. and Bock, A. 1987. Gene for stable RNA in the extreme thermophile *Thermoproteus tenax*: introns and transcription signals. EMBO J. 6, 523-528.

Wich, G., Sibold, L. and Bock, A. 1986b. Genes for tRNA and their putative expression signals in *Methanococcus*. System. Appl. Microbiol. 7, 18-25.

Woese, C. R. 1987. Bacterial evolution. Microbiol Rev 51, 221-271.

Woese, C. R. and Fox, G. F. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088-5092.

Woese, C.R. 1981. Archaebacteria. Sci. Amer. 244, 98-122.

Woese, C.R., Kandler, O. and Wheelis, M.L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576-4579.

Woese, C.R. and Plsen, G.J. 1986. Archaebacterial phylogeny: perspective on the urkingdoms. System. Appl. Microbiol. 7, 161-177.

Wood, A.G., Redborg, H., Cue, D.R., Whitman, W.B., and Konisky, J. 1983. Complementation of *argG* and *hisA* mutations of *Escherichia coli* by DNA cloned from the archaebacterium *Methanococcus voltae*, J. Bacteriol. 156, 19-29.

Woodward, H.D., Allen, J.M.C. and Lennarz, W.J. 1988. 3-hydroxy-3-methylglutaryl coenzyme A reductase of the sea urchin embryo. J. Biol. Chem. 263, 18411-18418.

Worrell, V.E. and Nagle D.P. 1990. Genetics and physiological characterization of the purine salvage pathway in the archaebacterium *Methanobacterium thermoautotrophicum* Marburg. J. Bacteriol. 172, 3328-3334.

Worrell, V.E., Nagle D.P., McCarthy, D. and Eisenbraun, A. 1988. Genetic transformation system in the archaebacterium *Methanobacterium thermoautotrophicum* Marburg. J. Bacteriol. 170, 653-656.

Xu, W.L. and Doolittle, W.F. 1983. Structure of the archaebacterial transposable element ISH50. Nucl. Acids Res. 11, 4195-4199.

Yaniagish, A. and Oshima, T. 1990. Circular chromosomal DNA in the sulfur-dependent archaebacterium *Sulfolobus acidocaldarius*. Nucl. Acids Res. 18, 1133-1136.

ì

Yanofsky, C. 1984. Comparison of regulatory and structural regions of genes of tryptophan metabolism. Mol. Biol. Evol. 1, 143-161.

Yanofsky, C. and Crawford, I.P. 1972. Tryptophan synthetase. In *The Enzyme* vol. 7 (Boyer, P.D, ed) 3rd ed, pp. 1-31, Academic Press, New York.

Yanofsky, C. and Crawford, I.P. 1987. The tryptophan operon. In *Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology* (Neidhardt, F.C., ed) Vol. 2, pp. 1453-1472, Amercian Society for Microbiology, Washington, D.C.

Yanofsky, C., Platt, T., Crawford, I. P. Nichols, B. P., Christie, G. E., Horowitz, H., M. VanCleemput and Wu, A. M. 1981. The complete nucleotide sequence of the tryptophan operon of Escheria coli. Nucleic Acids Res. 9: 6647-6668.

Zalkin, H., Paluh, J., van Cleemput, M., Moye, W.S. and Yanofsky, C. 1984. Nucleotide sequence of *Saccharomyces cerevisiae* genes *TRP2* and *TRP3* encoding bifunctional anthranilate synthase:Indole-3-glycerol phosphate synthetase. J. Biol. Chem. 259, 3985-3992.

Zeff, R.A. and Geliebter, J. 1987. Oligonucleotide probes for genomic DNA blots. BRL Focus 9:2, 1-2.

Zillig, W., Klenk H.P., Palm, P., Puhler, G. and Gropp, F. 1989. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes and eubacteria. Can. J. Microbiol. 35, 73-80.

Zillig, W., Palm, P., Reiter, W.-D., Gropp, F., Puhler, G. and Klenk, H. 1988. Comparative evaluation of gene expression in archaebacteria. Eur. J. Biochem. 173, 473-482.

Zillig, W., Yeats, S., Holz, I., Böck, A., Gropp, F., Rettenberger, M. and Lutz, S. 1985. Plasmid-related anaerobic autotrophy of the novel archaebacterium, *Sulfolobus ambivalens*. Nature 313, 789-791.