

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Ottawa, Canada K1A 0N4 Service des thèses canadiennes

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

1

QUANTITATIVE GENETICS OF POSTPONED SENESCENCE

IN DROSOPHILA MELANOGASTER

by

Edward Wellington Hutchinson

A thesis submitted to the Faculty of Graduate Studies of Dalhousie University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

1

Department of Biology 1990

© Copyright by Edward Wellington Hutchinson, 1990

1

•

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Ottawa, Canada KIA 0N4 Service des thèses canadiennes

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may $L \ge printed$ or otherwise reproduced without his/her permission.

F 7

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-64397-8

CONTENTS

ł

ł

CHAP	PART I INTRODUCTION TER	
1.	GENEPAL INTRODUCTION	2
	Definition	3
		3
	General Evolutionary Theory of Senescence	
	Particular Mechanisms of Senescence	10
	Physiological Genetics of Postponed Senescence	16
	Scope of this Study	19
2.	GENERAL METHODS AND MATERIALS	21
	Source of the <u>Drosophila</u> <u>melanogaster</u>	
	Populations	22
	Culture Methods	23
	Assay Methods	24
	General Statistical Methods	26
	PART II ANALYSIS OF OUTBRED (B and O) POPULATIONS	
3.	DIALLEL ANALYSIS OF B AND O POPULATIONS	29
	Introduction	30
	Experimental Procedure	31
	Results and Discussion	31
4.	TRANSMISSION PATTERNS OF B AND O POPULATIONS	40
	Introduction	41
	Experimental Procedure	41
	Results and Discussion	44
5.	GENE NUMBER ANALYSIS OF B AND O POPULATIONS	52

F.

.

Т

Introduction	•	•	•	53
Experimental Procedure	•	•	•	53
Results and Discussion	•	•	•	61
6. DISCUSSION OF ANALYSIS OF OUTBRED POPULATIONS	•	•	•	71
Discussion	•	•	•	72

PART III ARTIFICIAL SELECTION OF F AND S POPULATIONS

7. CREATION OF F AND S SELECTED POPULATIONS	•	•	•	٠	•	76
Introduction	•	•	•	•	•	77
Experimental Procedure	•	•	•	•	•	80
Half-sib Heritability Experiments	•	•	•	•	•	80
Selection Experiments	•	•	•	•	•	82
Statistical Analysis	•	•	•	•	•	85
Half-sib Heritability	•	•	•	•	•	85
Realized Heritability	•	•	•	•	•	86
Results	•	٠	•	٠	•	87
Discussion	•	•	•	•	•	102

,1

PART IV ANALYSIS OF SELECTED (F and S) POPULATIONS

8.	DIALLEL ANALYSIS OF F AND S POPULATIONS 107
	Introduction
	Experimental Procedure
	Results and Discussion
9.	TRANSMISSION PATTERNS OF F AND S POPULATIONS 115
	Introduction
	Experimental Procedure

N.

L

	Results and Discussion .	•	• •	•	••	•	•	٠	•	•	•	•	119
10.	GENE NUMBER ANALYSIS OF F	AN	D S	PO	PUL	ATI	ON	IS	•	•	•	•	126
	Introduction	•	•••	•	• •	•	•	•	•	•	•	•	127
	Experimental Procedure .	•	• •	•	••	•	•	•	•	•	•	•	127
	Results and Discussion .	•	••	•	••	•	•	•	•	•	•	•	127
11.	DISCUSSION OF ANALYSIS OF	SE	LEC	FED	POI	PUL	ЪT	'IC	ONS	5	•	•	138
	Discussion			•						•			139

PART V GENERAL DISCUSSION

12.	GENERAL DISCUSSION	•	•	•	•	142
	Discussion	•	•	•	•	143
BIBLI	OGRAPHY	•	•	•	•	147
APPEN	IDIX					
Α.	SUMMARY STATISTICS OF B AND O DIALLELS	•	•	•	•	155
в.	ANALYSIS OF B AND O POPULATION DIALLELS	•	•	•	•	165
c.	SUMMARY STATISTICS OF B AND O TRANSMISSION PATTERNS	•	J	•	•	175
D.	ANALYSIS OF B AND O TRANSMISSION PATTERN.	•	•	•	•	210
E.	SUMMARY STATISTICS OF B AND O GENE NUMBER ESTIMATES	•	•	•	•	245
F.	SUMMARY STATISTICS OF HERITABILITY ESTIMATES	5	•	•	•	263
G.	SUMMARY STATISTICS OF F AND S DIALLELS	•	•	•	•	271
H.	ANALYSIS OF F AND S POPULATION DIALLELS	•	•	•	•	288
I.	SUMMARY STATISTICS OF F AND S TRANSMISSION PATTERNS	•	•	•	•	305
Ј.	ANALYSIS OF F AND S TRANSMISSION PATTERNS .	•	•	•	•	334
к.	SUMMARY STATISTICS OF F AND S GENE NUMBER ESTIMATES	•	•	•	•	363

L

I

TABLES

r

TABLE				
1.1	Characteristics of short-lived and long-lived stocks	•	•	18
3.1	5 Diallel Experiments	•	•	32
3.2	O Diallel Experiments	•	•	33
3.3	B and O Diallel Line Differentiation	•	•	35
3.4	B and O Diallel Maternal Effects	•	•	37
3.3	B and O Diallel Heterosis Effects	•	•	38
4.1	B and O Crossing Experiments	•	•	42
4.2	B and O Differences	•	•	45
4.3	B and O Maternal Effects	•	•	48
4.4	B and O Average Dominance Effects	•	•	50
5.1	B and O Gene Number Experiments	•	•	59
5.2	B and O Effective Factor Estimates	,	•	68
5.3	B and O Inverse Effective Factor Estimates .	•	•	69
7.1	Heritabilities of Selected Characters in B and O Populations Before Selection	•	•	88
7.2	Heritabilities of Selected Characters in F and S Populations After 25 Generations of Directional Selection	•	•	89
7.3	Realized Heritabilities for Selection on Early Fecundity in the Three B Populations	•	•	94
7.4	Realized Heritabilities for Selection on Starvation Time in the Three O Populations	•	•	100
8.1	F Diallel Experiments	•	•	109
8.2	S Diallel Experiments	•	•	110
8.3	F and S Diallel Line Differentiation \ldots	•	•	112
8.4	F and S Diallel Maternal Effects	•	•	113

I

I

I

1 - 1 - 1

ļ

8.3	F and S Diallel Heterosis Effects
9.1	F and S Crossing Experiments
9.2	F and S Differences
9.3	F and S Maternal Effects
9.4	F and S Average Dominance Effects
10.1	F and S Gene Number Experiments
10.2	F and S Effective Factor Estimates 136
10.3	F and S Inverse Effective Factor Estimates 137
A.1	Experiment DB1 - Ovary Weight
A.2	Experiment DB1 - Female Starvation 157
A.3	Experiment DB2 - Ovary Weight 158
A.4	Experiment DO1 - Ovary Weight 159
A.5	Experiment DO1 - Female Starvation 160
A.6	Experiment DO2 - Female Starvation 161
A.7	Experiment DO3 - Ovary Weight
A.8	Experiment DO4 - Female Starvation 163
A.9	Experiment DO4 - Male Starvation 164
B.1	Experiment DB1 - Ovary Weight
B.2	Experiment DB1 - Female Starvation 167
B.3	Experiment DB2 - Ovary Weight
B.4	Experiment DO1 - Ovary Weight
B.5	Experiment DO1 - Female Starvation 170
B.6	Experiment DO2 - Female Starvation 171
B.7	Experiment DO3 - Ovary Weight
B.8	Experiment DO4 - Female Starvation 173
B.9	Experiment DO4 - Male Starvation

,

;

•

C.1 Experiment BO1 - Ovary Weight
C.2 Experiment BO1 - Female Starvation 177
C.3 Experiment BO1 - Male Starvation 178
C.4 Experiment BO2 - Ovary Weight
C.5 Experiment BO2 - Fecundity
C.6 Experiment BO2 - Conditional Fecundity 181
C.7 Experiment BO2 - Female Starvation
C.8 Experiment BO2 - Female Longevity
C.9 Experiment BO3 - Ovary Weight
C.10 Experiment BO3 - Female Starvation 185
C.11 Experiment BO3 - Female Longevity
C.12 Experiment BO4 - Female Starvation
C.13 Experiment BO5 - Fecundity
C.14 Experiment BO5 - Conditional Fecundity 189
C.15 Experiment BO5 - Female Starvation
C.16 Experiment BO5 - Male Starvation
C.17 Experiment BO6 - Fecundity
C.18 Experiment BO6 - Conditional Fecundity 193
C.19 Experiment BO6 - Female Starvation
C.20 Experiment BO6 - Male Starvation
C.21 Experiment BO6 - Female Longevity
C.22 Experiment BO6 - Male Longevity
C.23 Experiment BO7 - Fecundity
C.24 Experiment BO7 - Conditional Fecundity 199
C.25 Experiment BO7 - Female Starvation 200
C.26 Experiment BO7 - Male Starvation

.

C.27 Experiment BO7 - Female Longevity
C.28 Experiment BO7 - Male Longevity
C.29 Experiment BO8 - Fecundity
C.30 Experiment BO8 - Conditional Fecundity 205
C.31 Experiment BO8 - Female Starvation 206
C.32 Experiment BO8 - Male Starvation
C.33 Experiment BO8 - Female Longevity 208
C.34 Experiment BO8 - Male Longevity 209
D.1 Experiment BO1 - Ovary Weight
D.2 Experiment BO1 - Female Starvation
D.3 Experiment BO1 - Male Starvation
D.4 Experiment BO2 - Ovary Weight
D.5 Experiment BO2 - Fecundity
D.6 Experiment BO2 - Conditional Fecundity 216
D.7 Experiment BO2 - Female Starvation
D.8 Experiment BO2 - Female Longevity
D.9 Experiment BO3 - Ovary Weight
D.10 Experiment BO3 - Female Starvation
D.11 Experiment BO3 - Female Longevity
D.12 Experiment BO4 - Female Starvation
D.13 Experiment BO5 - Fecundity
D.14 Experiment BO5 - Conditional Fecundity 224
D.15 Experiment BO5 - Female Starvation
D.16 Experiment BO5 - Male Starvation
D.17 Experiment BO6 - Fecundity
D.18 Experiment BO6 - Conditional Fecundity 228

۱

₹ i

-

D.20 Experiment BO6 - Male Starvation	D.19 Experiment BO6 - Female Starvation
D.22 Experiment B06 - Male Longevity	D.20 Experiment BO6 - Male Starvation 2 0
D.23 Experiment B07 - Fecundity	D.21 Experiment BO6 ~ Female Longevity
D.24 Experiment B07 - Conditional Fecundiz,	D.22 Experiment BO6 - Male Longevity
D.25 Experiment BO7 - Female Starvation	D.23 Experiment BO7 - Fecundity
D.26 Experiment BO7 - Male Starvation	D.24 Experiment BO7 - Conditional Fecundic, 234
 D.27 Experiment B07 - Female Longevity	D.25 Experiment BO7 - Female Starvation
D.28 Experiment B07 - Male Longevity	D.26 Experiment BO7 - Male Starvation
 D.29 Experiment BO8 - Fecundity	D.27 Experiment BO7 - Female Longevity
 D.30 Experiment BO8 - Conditional Fecundity	D.28 Experiment BO7 - Male Longevity
 D.31 Experiment BO8 - Female Starvation	D.29 Experiment BO8 - Fecundity
 D.32 Experiment BO8 - Male Starvation	D.30 Experiment BO8 - Conditional Fecundity 240
 D.33 Experiment BO8 - Female Longevity	D.31 Experiment BO8 - Female Starvation
D.34 Experiment BO8 - Male Longevity	D.32 Experiment BO8 - Male Starvation
E.1 Experiment GBO1 - Ovary Weight	D.33 Experiment BO8 - Female Longevity
E.2A Experiment GBO1 - Female Starvation	D.34 Experiment BO8 - Male Longevity
E.2B Experiment GBO1 - Female Starvation	E.1 Experiment GBO1 - Ovary Weight
E.2C Experiment GB01 - Female Starvation	E.2A Experiment GB01 - Female Starvation
 E.3A Experiment GB01 - Male Starvation	E.2B Experiment GB01 - Female Starvation 248
 E.3B Experiment GB01 - Male Starvation	E.2C Experiment GBO1 - Female Starvation
 E.3C Experiment GB01 - Male Starvation	E.3A Experiment GB01 - Male Starvation
E.4 Experiment GBO2 - Fecundity	E.3B Experiment GB01 - Male Starvation
E.5 Experiment GBO2 - Conditional Fecundity 254	E.3C Experiment GBO1 - Male Starvation
-	E.4 Experiment GBO2 - Fecundity
E.6 Experiment GBO2 - Female Starvation 255	E.5 Experiment GBO2 - Conditional Fecundity 254
	E.6 Experiment GBO2 - Female Starvation 255

xi

E.7 Experiment GBO2 - Male Starvation
E.8 Experiment GBO2 - Female Longevity 257
E.9 Experiment GBO2 - Male Longevity
E.10 Experiment GBO3 - Fecundity
E.11 Experiment GBO3 - Conditional Fecundity 260
E.12 Experiment GBO3 - Female Starvation
E.13 Experiment GBO3 - Male Starvation
E.14 Experiment GBO3 - Female Longevity
F.15 Experiment GBO3 - Male Longevity
F.1 Analysis of Heritability Changes
F.2 Analysis of Direct Response to Selection for Early Fecundity in Last 6 Generations of B -> F Populations
F.3 Analysis of Indirect Response to Selection for Early Fecundity in Last 6 Generations of B -> F Populations
F.4 Analysis of Direct Response to Selection for Starvation Time in Last 6 Generations of O -> S Populations
F.5 Analysis of Indirect Response to Selection for Starvation Time in Last 6 Generations of B -> F Populations
G.1 Experiment DF1 - F cundity
G.2 Experiment DF1 - Conditional Fecundity 273
G.3 Experiment DF2 - Fecundity
G.4 Experiment DF2 - Conditional Fecundity 275
G.5 Experiment DF2 - Female Starvation 276
G.6 Experiment DF2 - Male Starvation
G.7 Experiment DF3 - Fecundity
G.8 Experiment DF3 - Conditional Fecundity 279

1

י ו

ł

.

-

G.9 Experiment DF3 - Female Starvation 280
G.10 Experiment DF3 - Male Starvation
G.11 Experiment DS1 - Fecundity
G.12 Experiment DS1 - Conditional Fecundity 283
G.13 Experiment DS2 - Fecundity
G.14 Experiment DS2 - Conditional Fecundity 285
G.15 Experiment DS2 - Female Starvation
G.16 Experiment DS2 - Male Starvation
H.1 Experiment DF1 - Fecundity
H.2 Experiment DF1 - Conditional Fecundity 290
H.3 Experiment DF2 - Fecundity
H.4 Experiment DF2 - Conditional Fecundity 292
H.5 Experiment DF2 - Female Starvation 293
H.6 Experiment DF2 - Male Starvation
H.7 Experiment DF3 - Fecundity
H.8 Experiment DF3 - Conditional Fecundity 296
H.9 Experiment DF3 - Female Starvation 297
H.10 Experiment DF3 - Male Starvation
H.11 Experiment DS1 - Fecundity
H.12 Experiment DS1 - Conditional Fecundity 300
H.13 Experiment DS2 - Fecundity
H.14 Experiment DS2 - Conditional Fecundity 302
H.15 Experiment DS2 - Female Starvation
H.16 Experiment DS2 - Male Starvation
I.1 Experiment FS1 - Fecundity
I.2 Experiment FS1 - Conditional Fecundity 307

.

.

r

2

I.3 Experiment FS1 - Female Starvation
I.4 Experiment FS1 - Male Starvation
I.5 Experiment FS1 - Female Longevity
I.6 Experiment FS1 - Male Longevity
I.7 Experiment FS2 - Fecundity
I.8 Experiment FS2 - Conditional Fecundity 313
I.9 Experiment FS2 - Female Starvation
I.10 Experiment FS2 - Male Starvation
I.11 Experiment FS3 - Fecundity
I.12 Experiment FS3 - Conditional Fecundity 317
I.13 Experiment FS3 - Female Starvation
I.14 Experiment FS3 - Male Starvation
I.15 Experiment FS3 - Female Longevity
I.16 Experiment FS3 - Male Longevity
I.17 Experiment F34 - Fecundity
I.18 Experiment FS4 - Conditional Fecundity 323
I.19 Experiment FS4 - Female Starvation
I.20 Experiment FS4 - Male Starvation
I.21 Experiment FS4 - Female Longevity
I.22 Experiment FS4 - Male Longevity
I.23 Experiment FS5 - Fecundity
I.24 Experiment FS5 - Conditional Fecundity 329
I.25 Experiment FS5 - Female Starvation
I.26 Experiment FS5 - Male Starvation
I.27 Experiment FS5 - Female Longevity
I.28 Experiment FS5 - Male Longevity

1

ţ

and an and the second second second

1.

J.1 Experiment FS1 - Fecundity
J.2 Experiment FS1 - Conditional Fecundity 336
J.3 Experiment FS1 - Female Starvation
J.4 Experiment FS1 - Male Starvation
J.5 Experiment FS1 - Female Longevity
J.6 Experiment FS1 - Male Longevity
J.7 Experiment FS2 - Fecundity
J.8 Experiment FS2 - Conditional Fecundity 342
J.9 Experiment FS2 - Female Starvation
J.'O Experiment FS2 - Male Starvation
J.11 Experiment FS3 - Fecundity
J.12 Experiment FS3 - Conditional Fecundity 346
J.13 Experiment FS3 - Female Starvation
J.14 Experiment FS3 - Male Starvation
J.15 Experiment FS3 - Female Longevity
J.16 Experiment FS3 - Male Longevity
J.17 Experiment FS4 - Fecundity
J.18 Experiment FS4 - Conditional Fecundity 352
J.19 Experiment FS4 - Female Starvation 353
J.20 Experiment FS4 - Male Starvation
J.21 Experiment FS4 - Female Longevity
J.22 Experiment FS4 - Male Longevity
J.23 Experiment FS5 - Fecundity
J.24 Experiment FS5 - Conditional Fecundity 358
J.25 Experiment FS5 - Female Starvation
J.26 Experiment FS5 - Male Starvation

Į

5-11

ć

3

ļ

-

Ϊ

-

J.27 Experiment FS5 - Female Longevity	1
J.28 Experiment FS5 - Male Longevity	2
K.1 Experiment GFS1 - Fecundity	4
K.2 Experiment GFS1 - Conditional Fecundity 36	5
K.3 Experiment GFS1 - Female Starvation	6
K.4 Experiment GFS1 - Male Starvation	7
K.5 Experiment GFS1 - Female Longevity 36	8
K.6 Experiment GFS1 - Male Longevity	9
K.7 Experiment GFS2 - Fecundity	0
K.8 Experiment GFS2 - Conditional Fecundity 37	1
K.9 Experiment GFS2 - Female Starvation	2
K.10 Experiment GFS2 - Male Starvation	3
K.11 Experiment GFS2 - Female Longevity	4
K.12 Experiment GFS2 - Male Longevity	5
K.13 Experiment GFS2 - Fecundity	6
K.14 Experiment GFS2 - Conditional Fecundity 37	7
K.15 Experiment GFS2 - Female Starvation	8
K.16 Experiment GFS2 - Male Starvation	9
K.17 Experiment GFS2 - Female Longevity	0
K.18 Experiment GFS2 - Male Longevity	1

.

•

1

FIGURES

i:

t

;

93

FIGURE		
1.1	The Decline in the Intensity of Selection on Alleles Having Proportionately Equal Effects Mortality Rates at Different Ages	6
1.2	Illustration of the Evolution of Postponed Senescence Through the Action of Selection for Later Reproduction	7
5.1	Relationship Between Parental Lines, Hybrid Crosses, and Backcrosses with Respect to the Means and Variances of a Quantitative Trait	55
5.2	Effective Factor Estimation	56
	Inverse Effective Factor Estimation	
		50
5.4	Frequency Histograms of Fecundity in Replicate $B_2 \times O_2$ of Experiment GBO3	62
5.5	Frequency Histograms of Female Starvation Time in Replicate $B_2 \propto O_2$ of Experiment GBO3	63
5.6	Frequency Histograms of Male Starvation Time in Replicate $B_2 \propto O_2$ of Experiment GBO3	64
5.7	Frequency Histograms of Female Longevity in Replicate $B_2 \propto O_2$ of Experiment GBO3	65
5.8	Frequency Histograms of Male Longevity in Replicate $B_2 \times O_2$ of Experiment GBO3	66
7.1	Creation of Short-Lived (B), Long-Lived (O), and Their Derived Selected Populations (F and S, respectively)	84
7.2	Direct Response of the Three B Populations to Selection for Increased Early Fecundity	91
7.3	Regression of Selection Response on the Cumulative Selection Differential for Selection on Early Fecundity in the Three B Populations .	93

7.4 Indirect Response of Mid-Parent Starvation Resistance to Selection for Increased Early Fecundity in the Three B Populations 95

7.5	Direct Response of the Three B Populations to Selection over 25 Generations for Increased Early Fecundity	96
7.6	Direct Response of the Three O Populations to Selection for Increased Starvation Time	97
7.7	Regression of Selection Response on the Cumulative Selection Differential for Selection on Starvation Time in the Three O Pcpulations .	99
7.8	Indirect Response of Early Fecundity to Selection Mid-Parent Starvation Time in the Three O Populations	101
7.9	Direct Response of the Three O Populations to Selection over 25 Generations for Increased Starvation "ime	103
10.1	Frequency Histograms of Fecundity in Replicate $F_2 \ge S_2$ of Experiment GFS3	130
10.2	Frequency Histograms of Female Starvation fime in Replicate $F_2 \propto S_2$ of Experimenc GFS3	131
10.3	Frequency Histograms of Male Starvation Time in Replicate $F_2 \propto S_2$ of Experiment GFS3	132
10.4	Frequency Histograms of Female Longevity in Replicate $F_2 \times S_2$ of Experiment GFS3	133
10.5	Frequency Histograms of Male Longevity in Replicate $F_2 \times S_2$ of Experiment GFS3	134

.

1

Ì

,

. . .

* * * * * * *

1

\$

:

¢

ł

.

•

ABSTRACT

The quantitative genetics of postponed senescence in <u>Drosophila melanogaster</u> were investigated using postponed-senescence stocks created by selection. There was little evidence of non-Mendelian inheritance, inbreeding depression, net directional dominance, or sex-linkage.

The apparently simple additive inheritance of postponed senescence allowed the use of conventional quantitative genetic estimators for gene number. Assays of 24-hour fecundity, ovary weight, starvation resistance (female and male), and longevity (female and male) did <u>not</u> indicate a small number of loci involved in postponed aging.

Heritability estimates for early starvation resistance, a character closely related to longevity, revealed abundant genetic variability in selected and control lines, indicating that neither were near fixation. Selection experiments designed to push each of the two sets of lines towards fixation were performed, although a second series of heritability estimates, conducted after cessation of selection response, revealed that fixation had not occurred.

A genetic analysis was performed on the newly selected lines. Again there was little evidence of non-Mendelian inheritance, inbreeding depression, net directional dominance, or sex-linkage. The results for a second set of gene number experiments on these stocks also did <u>not</u> indicate the action of a single locus postponing senescence.

xix

ACKNOWLEDGEMENTS

It is a pleasure to thank my advisor and mentor Michael Rose for his guidance, support, and friendship throughout the duration of these studies. I am also grateful to Phil Service for help in the planning and execution of the experiments.

I am fortunate to have experienced a constant and abuidant source of encouragement and support from my parents, my family and my friends. My wife, Anne, and my children, Meeka and Tem, have brought much joy into what has been a long and arduous endeavor.

I thank D. Arab, H. Gillis, G. Glazov, K. Grimm, L.E. Johnston, S. Johnson, D.M. Lane, J. Judah, M.D. MacKinley, B. Musgrave, J. Nelson, S. C'Keefe, D. Pringle, A.J. Shaw, B. Singh, D. Stewart, and B. Tremblay for technical assistance. Chapter 7 was part of a collaborative effort with Alison Shaw. Anne Brooks, Tom Johnson, and Gerry Miles were most helpful with their careful reading and commenting on this thesis. The research was supported by NSERC of Canada grant U0178 and PHS of the United States grant AG06346 to Michael R. Rose. My graduate studies were completed with the support of a Dalhousie Graduate Fellowship.

XX

INTRODUCTION

PART I

ŧ

_

;

,

ŧ

.

ł.

ł

ı.

3

, ,

CHAPTER 1

General Introduction

1

a matanta a

*

ł

1.1 Definition

Senescence may be defined as the persistent, and ultimately catastrophic, decline in viability and fertility which afflicts most reproductively mature organisms when they are protected from death due to external factors. A great deal of information has been gathered concerning the biology of senescence, or at least phenomena associated with it (Lamb 1977; Comfort 1979). However, while the scientific problem of the physiological cause(s) of senescence has been recognized since Aristotle, solutions to this problem have proven elusive (Lamb 1977; Comfort 1979).

1.2 General Evolutionary Theory of Senescence

Evolutionary analyses of senescence began to appear in the 1880's (Weismann 1889; Kirkwood and Cremer 1982). There was an initial flirtation with the idea of senescence as an adaptation for the benefit of populations, and so brought about by group selection (Weismann 1889; Wilson 1974; Wade 1978; Kirkwood and Cremer 1982). Evolutionary biologists have since almost always argued for the view that senescence is a result of the indifference of natural selection to deleterious genetic effects expressed some time after the onset of reproduction: the declining force of natural selection with the age of the adult soma. Whereas this was realized intuitively by August Weismann and R.A. Fisher in the period 1910-1930, modern research on the evolution of senescence in terms of natural selection acting on gene frequencies begins with Haldane (1941) and Medawar (1946, 1952). Both drew attention to the central point of all evolutionary analyses of senescence: In multicellular organisms, deleterious effects on the survival of the adult soma will have a strictly decreasing impact on fitness as the age at which these effects are expressed increases, all other things being equal.

×,

Once an individual ceases to reproduce, its direct importance to subsequent generations is effectively zero; any post-reproductive genetic changes will be irrelevant to the process of evolution. Specifically, if a gene is given phenotypic expression only after reproduction has ceased, then it has no effect on fitness. Further, if a gene exists which is slightly beneficial in early ages but highly deleterious at later ages, the gene is unlikely to be eliminated since "selection favors early over late reproduction when a conflict in interest arises" (Williams 1957). Thus, due to the decline the force of natural selection with age of the adult soma, the health of the adult soma declines as well.

This general theory was further elaborated and clarified by Hamilton (1966), Edney and Gill (1968), Emlen (1970), Charlesworth and Williamson (1975), and Charlesworth (1980). The decline in the force of natural

selection has been made mathematically explicit, and is shown in Figure 1.1, from Charlesworth (1980), using U.S. human data.

The general evolutionary theory can be tested in two distinct ways -- the first experimental, the second comparative. Edney and Gill (1968) outlined an experimental procedure designed to test the general theory of senescence. It is based on the corollary of the general theory that reproductive schedules should determine patterns of senescence. If the appropriate terms are changed in the laboratory, by imposing different reproductive schedules, senescence should evolve accordingly. There are two such tests possible: 1) selection for earlier reproduction, which should give accelerated senescence; and 2) selection for later reproduction, which should give postponed senescence. An illustration of the second test, selection for later reproduction, is shown in Figure 1.2.

The dependence of senescence on a population's reproductive schedule has been demonstrated repeatedly. In experiments where late reproductive opportunities were denied and early reproduction is favored, it has been found that longevity was reduced (Mertz 1975; Sokal 1970), although there are problems of consistency over replicates and thus statistical significance. Evidence of postponed senescence in Drosophila populations with delayed reproduction has been published by Wattiaux (1968a,b),

7

Figure 1.1. The decline in the intensity of selection on alleles having proportionately equal effects on mortality rates at different ages. After Charlesworth (1980, p. 215).

6

1 m

1

ŝ

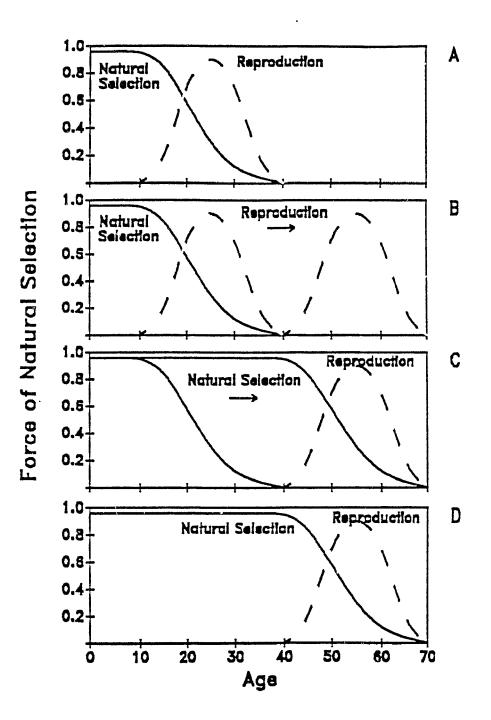


Figure 1.2. Illustration of the evolution of postponed senescence through the action of selection for later reproduction. In A the force of natural selection falls off as the age-specific reproductive rate increases. Shifting the time of reproduction to a later ag., B, results in an extension of the time period when the force of natural selection is high, C. This results in D, where the force of natural selection does not fall off until a later age, thereby causing selection of longer-lived individuals.

Taylor and Condra (1980), and Rose and Charlesworth (1980, 1981b), although all of this work suffered from a lack of replication, and not all of these authors discussed their results from the standpoint of natural selection molding senescence. More recently Rose (1984a) and Luckinbill et al. (1984) have repeated these experiments with greater replication, creating populations with postponed senescence when reproduction was delayed. Therefore the central corollary of the evolutionary theory of senescence has been corroborated in a number of independent laboratory studies.

There are those who have sought to cast doubts on these results, emphasizing difficulties in the interpretation of the data from experiments of this kind (Lints 1978; Lints and Hoste 1974, 1977). However, Clare and Luckinbill (1985) and Luckinbill and Clare (1985) presented a penetrating analysis of the disparity between the Drosophila experiments of Wattiaux (1968a,b) and others and those of Lints and colleagues. As well as corroborating the general theory, they showed that there is a gene-environment interaction which results in reduced expression of genetic effects when fruit flies are reared in uncrowded conditions, an interaction which can then prevent a response of senescence to selection when low rearing densities are artificially maintained in the laboratory. Thus the experiments of Lints et al. (1979) probably would have corroborated the general evolutionary

-

theory if they had been performed at higher rearing densities or had been continued for a longer period, since the data of Clare and Luckinbill (1985) show that even at low rearing densities, there are genetic differences which could eventually produce a response to selection for postponed senescence.

The second way of testing the evolutionary theory of senescence is comparative. It is based on the correspondence between evolutionary age-structure and the evolution of senescence implicit in the theory. When there is no soma, there should be no senescence. For the most part the data are corroborative, although the quality is poor (see Williams 1957; Rose in prep.).

Bell (1984a) has performed the first direct, critical, comparative test, checking the central prediction that senescence should evolve only in the presence of soma. Bell chose six asexual freshwater invertebrates to assay for age-dependent mortality patterns in the laboratory, two of those reproducing paratomically, four reproducing ovigerously. As predicted by evolutionary theory, the paratomical species did not exhibit statistically significant declines in age-specific mortality rates, whereas all of the ovigerous species had such declines.

Overall, then, the general evolutionary theory of senescence first explicitly propounded by Medawar (1946, 1952) seems as well developed mathematically and as well corroborated empirically as could be reasonably expected. There have been no refutations of the evolutionary theory of senescence which are free of artifactual problems.

1.3 Particular Mechanisms of Senescence

ŝ

Two cogent population genetic mechanisms for the evolution of senescence have been proposed, both based on the decline of the force of natural selection with adult age. 1) Mutation-accumulation: maintenance of high-frequency deleterious alleles by mutation pressure, when they have such late effects that natural selection has little impact on their frequency compared with mutation (Medawar 1952; Edney and Gill 1968). 2) Antagonistic pleiotropy: natural selection favoring genes with early beneficial effects which have later deleterious effects, because the latter have little impact on fitness (Medawar 1952; Williams 1957; Rose 1985). The general evolutionary theory of senescence is compatible with either the mutation-accumulation or antagonistic pleiotropy mechanism and can be tested independently of them. In particular, evidence in favor of the general theory may have no bearing on the validity of these two subsidiary mechanisms. On the other hand, the subsidiary mechanisms cannot hold if the general theory does not, as they both presume its validity. Either or both mechanisms may apply to any particular population, depending on the gene action.

They are not mutually incompatible (Rose 1985).

The mutation-accumulation theory is based on the consequences of the decline with age in the force of natural selection for the evolutionary fate of genes with effects confined to late age classes. This theory assumes the existence of alleles with solely deleterious effects which are confined to late ages. They would thus be largely free of natural selection acting to reduce their frequency. Accordingly there should be an increase with adult age in the genetic variability of age-specific life history characters. This was first tested by Rose and Charlesworth (1980, 1981a) for 24-hour fecundity in Drosophila melanogaster. Even after an upward correction favoring the hypothesis, to compensate for the possibility of proportionate gene action, there was no evidence for an increase with age in the genetic variance for daily fecundity, thus making unlikely the action of the mutation-accumulation mechanism in their population. In opposition to these findings, Kosuda (1985) used chromosomally homozygous and heterozygous lines of <u>D</u>. melanogaster to study age dependence in the genetic variation affecting male mating success. He found that the genetic variation at later ages was greater than that affecting mating success at earlier ages, in keeping with the mutation-accumulation mechanism for the evolution of senescence.

More recently, there have been two sets of relaxed

selection experiments showing evidence of the action of mutation-accumulation. Firstly, Rose et al. (1987) and Service et al. (1988) found evidence in the absence of a reversal in response in some characters which had responded to selection for postponed aging, when selection for early reproduction was re-imposed. Secondly, Mueller (1987) found that relaxing selection on late fecundity caused it to fall without an associated change in early reproduction. Both of these studies are explicable in terms of population genetic processes in which deleterious mutations accumulate at later ages.

The antagonistic pleiotropy theory leads naturally to the reproductive effort theory (Williams 1966a,b) and to optimal life history theory (Stearns 1976; Charlesworth 1980). Thus, there are a number of experiments supporting the hypothesis that there are genes which enhance early life history characters at the expense of later life history characters. It should be noted that phenotypic correlations within outbred populations are not relevant. They could be due to physiological interdependence which is strictly environmental. Suitable corroborative evidence has come from three types of experiments: 1) negative correlations between the life history characters in cases of clones (Snell and King 1977) and genetically distinct, somewhat inbred, populations grown under standardized conditions (Gowen and Johnson 1946); 2) negative additive genetic correlations, or their equivalents, between early

and late life history characters within outbred populations (Law 1975; Rose and Charlesworth 1981a); and 3) negative correlations in selection response between early and late life history characters (Wattiaux 1968a; Law et al. 1977; Rose and Charlesworth 1980, 1981b; Doyle and Hunte 1981; Rose 1984; Luckinbill et al. 1984). These will be discussed in turn.

Snell and King (1977) examined lifespan and fecundity patterns in rotifers and found negative correlations between these two characters. Gowen and Johnson (1946) found a negative genetic correlation between egg-laying rate and longevity among laboratory strains of wild-type <u>D</u>. <u>melanogaster</u>.

Law (1979) found that high early reproduction was correlated with reduced later survival and reproduction in lineages of <u>Poa</u> <u>annua</u>, the annual meadow grass. Rose and Charlesworth (1981a) found a negative additive genetic correlation between early fecundity and longevity in a sib analysis of <u>D</u>. <u>melanogaster</u>.

Wattiaux (1968a) found reduced early male mating success in a <u>D</u>. <u>subobscura</u> population which had evolved greater longevity. Comparisons of populations of <u>Poa</u> <u>annua</u> show that plants from transient habitats, where survivorship to later ages is reduced, exhibit accelerated senescence compared with plants from permanent pastures. Those from the stable environment, in turn, showed reduced early reproductive output (Law et al. 1977). Doyle and

Hunte (1981) found reduced longevity in <u>Gammarus</u> <u>laurencianus</u> which had been selected in the laboratory for increased early reproduction. Rose and Charlesworth (1980, 1981b), Rose (1984), and Luckinbill et al. (1984) all found reduced early female fecundity in <u>D. melanogaster</u> populations which had been selected in the laboratory for increased late reproduction. All these results support antagonistic pleiotropy as a mechanism for the evolution of senescence.

`}

î.

h

Evidence against antagonistic pleiotropy was claimed by Bell (1983, 1984a, 1984b) and Geisel (Geisel 1979; Geisel and Zettler 1980; Geisel et al. 1982). Bell studied patterns of life history variation among individuals within clones of Daphnia pulex (Bell 1983), assayed the life histories of clones of Platyias patulus (Bell 1984a), and compared the life histories of five freshwater invertebrates (Bell 1984b). No evidence of antagonistic pleiotropy was found between reproduction and longevity. However, these three experiments suffered from errors in experimental design which invalidate their conclusions. The most serious error was that of gene-environment interactions caused by rearing the progeny in a novel environment. Specifically, Bell (1983, 1984a, 1984b) sampled individuals from nature and assayed them or their progeny in the laboratory. The populations would therefore not be at selective equilibrium, leading to bias in the estimation of the genetic parameters. It is well

established that many organisms, especially insects, exhibit genotype-environment interactions that make the attributes of a genotype in one environment a poor guide to its attributes in another (Service and Lenski 1982; Service 1984). Service and Rose (1985) demonstrated experimentally using <u>D</u>. <u>melanogaster</u> that genetic correlations between survival and reproductive characters are subject to upward perturbations by rearing of progeny in novel environments. The genetics of a population should therefore be analyzed in the setting in which it has evolved, if evolutionarily meaningful results are to be obtained (Rose and Service 1985).

Another type of error in experimental design has been demonstrated by Geisel (1979), Geisel and Zettler (1980), Geisel et al. (1982), and Murphy et al. (1983). Geisel and colleagues studied the life history genetics of <u>D. melanogaster</u> using heavily inbred lines, arguing against the antagonistic pleiotropy theory due to the positive genetic correlations they observed in earl γ and late life history characters in these lines. However, it has been shown by Rose (1984b) that artificially inbreeding Drosophila populations can produce predominantly positive genetic correlations among life history characters, even when the ancestral outbred population does not exhibit such predominantly positive correlations. Thus Geisel's arguments are not supported by his experiments, because inbreeding produces artifactual positive genetic correlations (Rose 1984b). There seems to be little cause to doubt that antagonistic pleiotropy has often been important in the evolution of senescence.

The significance of this research, and other evolutionary research on aging (see Rose 1983; Rose and Service 1985; Rose and Hutchinson 1987 for reviews), is that the evolutionary theory of senescence is reasonably well corroborated, as are the two population genetic mechanisms, antagonistic pleiotropy and mutation-accumulation.

1.4 Physiological Genetics of Postponed Senescence

The first attempt at unravelling the specific physiological and genetic mechanisms which underlie the evolution of aging was by Rose et al. (1984). They showed that the only gross morphological difference between postponed senescence lines and their controls was a substantial reduction in early ovary weight associated with postponed senescence, in keeping with the reduced early fecundity in these flies. These flies did not differ from the controls with respect to egg weight, larval growth pattern, adult weight, digestive tract weight, thorax weight or male reproductive system weight.

Service et al. (1985) performed numerous assays of stress resistance in adult flies of the two types. Postponed senescence is associated with increased

resistance to starvation, desiccation, and low levels of ambient ethanol. Other forms of stress, such as heat shock response or resistance to high levels of ambient ethanol, were not better resisted by flies from postponed senescence populations. Starvation and desiccation resistance differences were sustained over a wide range of adult ages.

Service (1987) found that the starvation character differences described above can be explained in terms of differing lipid levels between postponed senescence populations and the controls. Females from postponed senescence populations had greater proportional lipid content than did females from control populations over the range of ages examined.

Luckinbill et al. (1988a) confirmed the finding of Rose et al. (1984) that there was no significant variation in adult body size between postponed senescence populations and control populations. They also examined another character, duration of tethered flight, finding that the long-lived populations flew from three to five times longer than did the controls. Graves et al. (1988) and Graves and Rose (in press) have repeated the flight duration studies with the same results as Luckinbill et al. (1988a): The long-lived stocks flying longer than the short-lived stocks.

Table 1.1 provides a summary of the characteristics of the short-lived (control) and long-lived stocks. For those characters which have to do with reproduction, early

Table 1.1. Some characteristics of short-lived and long-lived stocks. The "+" indicates that the population type has a greater value for the character, the "-" that it has a lesser value, and the "0" that there is no statistical differentiation between the population types for that character.

Character	Short-lived "B"	Long-Lived "O"
Generation Time	2 weeks	10 weeks
Early Fecundity $1,2,3,4,5,6,7$	+	-
Early Ovary Weight ^{6,8}	+	-
Female Total Body Weight ^{8,9}	n	0
Male Total Body Weight ^{8,9}	0	0
Female Longevity 1,2,3,4,5,6,9	-	+
Male Longevity ^{9,6,10}	-	+
Female Starvation Resistance 6,7,11,	.12 _	+
Male Starvation Resistance ^{6,11,12}	-	+
Female Desiccation Resistance 7,11,	12 _	÷
Male Desiccation Resistance ^{11,12}	-	+
Female Ethanol Resistance 7,11,12	-	÷
Male Ethanol Resistance ^{11,12}	-	+
Female Lipid Content ¹²	-	+
Male Lipid Content ¹²	-	+
Female Flight Duration 9,13,14	-	+
Male Flight Duration 9,13,14	-	+

 1. Rose (1984a)
 8. Rose et al. (1984)

 2. Rose (1984b)
 9. Luckinbill et al. (1988a)

 3. Luckinbill et al. (1984)
 10. Service (in press)

 4. Luckinbill and Clare (1985)
 11. Service et al. (1985)

 5. Clare and Luckinbill (1985)
 12. Service (1987)

 6. Hutchinson and Rose (in press)
 13. Graves et al. (1988)

 7. Service et al. (1988)
 14. Graves et al. (in press)

うちょう ひょうしょう

2 4

And a second sec

٠

2

fecundity and early ovary weight, the short-lived stocks have higher values. For total body weight there is no difference between the stocks. For the rest of the characters (longevities, stress resistances, flight durations, and lipid contents), the long-lived stocks show higher values tha⁷ do the short-lived stocks. [Since these findings were consistent over strains exhibiting increased lifespan, and outbred populations were used in selection, these characters are almost certainly involved in the biological changes which underlie postponed aging.] There seems to have been a shift from investment in reproduction to investment in survival capabilities.

Collectively, the findings of Rose et al. (1984), Service et al. (1985, 1988), Service and Rose (1985), Service (1987), and Luckinbill et al. (1988a) suggest the existence of a common physiological basis of longevity. Improved lipid and/or glycogen metabolism might form the basis of extended life span, as reflected in the various stress characters assayed.

1.5 Scope of This Study

This thesis combines both the physiological and the biometrical avenues of research in an attempt to unravel the quantitative genetic basis of poscponed aging in \underline{D} . <u>melanogaster</u>. This work has three main purposes. Firstly,

to establish whether or not maternal effect, inbreeding, and directional dominance have affected the evolution of postponed senescence in the selected populations of Rose (1984a). Secondly, to investigate differences between replicated postponed senescence populations to determine if they respond similarly to the same selection regime. Thirdly, to determine the number of loci that are involved in the postponed senescence response.

The basic techniques used involve crosses of populations, both within and between types of stocks. Ι report experiments in which: (i) diallel analysis and other types of population crosses were performed on the short-lived and long-lived stocks; (ii) effective factor estimates were performed on these stocks; (iii) the genetic variability present in postponed aging stocks was assayed by means of a sib analysis; (iv) artificial selection was applied to both control and postponed-aging stocks to make them diverge farther; (v) sib analysis was used to assess the degree to which selection reduced genetic variability; (vi) diallel analysis and other types of population crosses were performed on the derived stocks; and (vii) effective factor estimates were performed on these derived stocks. Taken together, these results indicate additive inheritance and an absence of differentiation between lines within a given type. The number of loci involved in postponed aging in these stocks is not significantly different from infinity.

CHAPTER 2

.

General Methods and Materials

2.1 Source of the Drosophila melanogaster Populations

The experimental populations used in these experiments were obtained from an outbred laboratory population in turn derived from the wild South Amherst, Massachusetts, <u>Drosophila melanogaster</u> population studied by Ives (1970), as outlined in Rose and Charlesworth (1981a). This population was extensively studied during 1977-1979, when it was found to have a great deal of additive genetic variability for many life-history characters (Rose and Charlesworth 1981a,b). In particular, there were several lines of evidence indicating negative additive genetic correlations between early and late life-history characters, such as early fecundity and longevity.

In February, 1980, after more than 130 generations of laboratory culture at 25°C with unlimited food and 14 day discreet generations, 10 experimental populations were derived from a single generation of the base population (Rose 1984a). Five of those were maintained in the same fashion as the base populations. They are referred to as the "B" populations, with subscripts 1 -> 5 to indicate replicate number. The remaining five populations were kept under the same culture conditions as the B's, but the day on which eggs were collected for the next generation was progressively postponed. Eventually the females used were 10 weeks of age from the egg. For more details, consult Rose (1984a) and Service et al. (1985). These five populations in which only surviving older females were able to reproduce are called "O" populations with subscripts 1 -> 5 as before. Approximately 140 two week generations had elapsed in the "B" populations and approximately 23 ten week generations had elapsed in the "O" populations when the work described in this thesis was begun.

2.2 Culture Methods

The B stocks, maintained in discrete generations of 14-day length, have been subjected to strong selection for the early-life fitness-components. The O stocks, maintained in 70-day-long discreet generations, have been subjected to strong selection for late-life fitness-components. Larval, pupal, and early-adult development of each 0 generation takes place in 25- x 95-mm. shell vials. At 2-4 days of adult age (11 days after oviposition), 0 flies are transferred to population cages. Food, in 100- x 15-mm. plastic petri dishes, is replaced in the O population cages three times weekly. B flies spend their entire 14-day lives in shell vials. All stocks are maintained on banana-agar medium that contains corn and malt syrup and baker's yeast. At the start of these experiments, there had peen approximately 105 B generations and 26 O generations. Population sizes are in the thousands at the start of each generation.

Stocks and experimental flies are maintained at 25°C

under a 24L:0D regime. Food is always abundant in the rearing tubes used for experimental flies. All handling is performed at room temperature using CO₂ anaesthesia.

2.3 Assay Methods

At the start of all experiments large samples of eggs were obtained from the stocks and transferred, at a density of 30 or 90 eggs per vial, to 25- x 95-mm. shell vials. This controlled density sampling was repeated for a second generation before any assays were performed. This was done to remove parental and grandparental effects. Thes effects have been shown to affect the phenotypic expression of life history traits.

Throughout, when comparisons between the control and postponed senescence populations were assayed, B and O populations were handled as pairs in a consistent order. The pairing followed their replicate number. B1 was paired with 01, B2 with 02, B3 with 03, B4 with 04, and B5 with 05. This reduced the possibility of uncontrolled biases and also resulted in five independent assays. The pairing was also followed with the three F and the three S stocks, whose formation is the subject of Chapter 7.

There were always large numbers, between 30 and 60, of both females and males used to create the populations assayed in the experiments of this thesis.

Six life history characters were measured throughout

this study: ovary weight, 24-hour fecundity, female starvation time, male starvation time, female longevity, and male longevity. These were not all measured for any one experiment, with anywhere from one to five being assayed at one time. The age at assay was always between 3 to 4 days after eclosion unless otherwise noted. The protocol for each assay is as follows:

Ovary Weight

Female flies were frozen in an ultralow freezer. They were later thawed and dissected under a microscope. The ovaries were individually dried in a desiccating oven for at least 24 hours at 75 C. All measurements were made with a Cahn electronic microbalance to the nearest 0.0001 mg.

24-Hour Fecundity

One female and one male were placed in a plastic 22- x 70- mm. shell vials with black "charcoal" food. (The food being black facilitates counting the white eggs.) They were left in this vial for approximately 24 hours and then transferred to a new black food vial. After exactly 24 hours the flies were removed and the number of eggs laid was assayed under a dissecting microscope with the aid of a precision counter. The term "conditional fecundity" (Rose and Charlesworth, 1981a) refers to fecundity data in which zero fecundity is treated as a missing data point.

Starvation Assay (Female and Male)

Provention of a system

a the analysister of

Foam-plastic test tube stoppers (35 mm. long) were used to confine adult flies to the lower 15 mm. of empty 25- x 95-mm. shell vials. Approximately 0.7 g. of absorbent rayon and 3 ml. of distilled water were added above the plugs. The open ends were covered with Parafilm M laboratory film. The number and sex of the flies varied between the experiments. (More details will be given in the methods and materials of each specific experiment.) The vials were checked at regular intervals, every 4, 6 or 8 hours depending on the experiment, and the time was recorded when the flies were dead, as determined by lack of movement upon provocation.

Longevity Assay (Female and Male)

Between 3 to 5 pairs of flies were placed in a brown banana food vial. The number dead was checked each day. Every 3 or 4 days the flies were transferred to fresh food vials. At this time the flies were mixed between vials so as to keep constant densities and sex ratios. The age at death was recorded for each fly.

2.4 General Statistical Methods

For biometrical analysis it is desirable to choose a scale of measurement where the variance is not a significant function of the mean. There are various methods to use to

choose the appropriate transformation, the two used here are Taylor's Power Law method (Downing 1979) and Wright's method (Wright 1968).

Taylor's method consists of linear regression of the log of the variance of the populations on their log means. The slope of the regression is equal to b in the resulting transformation $x' = x^{1-b/2}$.

Wright's method consists of a linear regression of the standard deviations of the populations on their mean values, resulting in a formula of the form $F(x) = C_1 + C_2 X$. The resulting transformation is given by $x' = \log (x + C_1/C_2)$.

Both of these methods were used on all the data presented in this thesis. As well, all data were transformed by $\mathbf{x'} = \log (\mathbf{x}+1)$ and $\mathbf{x'} = \mathbf{/x}$. None of the transformations changed the results of any hypothesis test, so only the data analysis with untransformed data is reported. Throughout the tables, a single asterisk (*) is used to indicate a result with p < 0.05, while a double asterisk (**) is used to indicate a result with p < 0.01.

All data analysis was done using the software SYSTAT: The System for Statistics. The ANOVA and Regression models use least squares methods. These procedures can estimate and test any univariate or multivariate general linear model, balanced or unbalanced. Specific details will be given in discussing the separate experiments. PART II

ANALYSIS OF OUTBRED (B and O) POPULATIONS

i.

CHAPTER 3

۳

i

1

Diallel Analysis of B and O Populations

.

,

3.1 Introduction

Schmidt (1919) introduced the term diallel to denote all possible crosses among a collection of male and female animals. More generally, a diallel cross refers to a set of all possible crosses among a collection of genetic entities, such as individuals or lines (Hinkelmann 1977). Crossing a set of n lines in this way will result in n^2 combinations. These can be divided into three groups: (i) the n parental lines themselves; (ii) one set of n(n-1)/2 F₁'s ; and (iii) the set of n(n-1)/2 reciprocal F₁'s. Diallel crossing techniques vary depending upon which of these groups are included in the analysis.

The diallel cross has been used as a genetic tool for evaluating the performance of lines and breeds in crossbred combinations and to gain a better understanding of the nature of gene action involved in determining quantitative traits (Paroda and Joshi 1970; Fejer 1977; Gupta et al. 1983; Lynch and Sulzbach 1984; Sulzbach and Lynch 1984).

Three separate questions are addressed in the present diallel analysis. Firstly, to what extent are the lines within a given stock-type differentiated from each other? Secondly, to what extent do maternal effects outweigh paternal effects, within stock-types? Thirdly, is there any evidence for heterosis, or, conversely, inbreeding depression, in crosses between 'ines within stock-types?

3.2 Experimental Procedure

A series of diallel analyses (cf. Mather and Jinks 1982) were performed within the O (long-lived) stocks and, separately, within the B (control) stocks. The coding for these experiments involves three character positions: In the first position, D indicates that it is a diallel experiment; in the second position, B or O indicates whether the populations used were B or O stocks; and the character in the third position is a numeral indicating which experiment it was, in chronological order. Thus the first experiment performed was DB1. Tables 3.1 and 3.2 give the experiment codes, the characters assayed, the populations assayed, and e number of individuals assayed. In experiment DO2, starvation was assayed in individuals of 17-20 days of age from pupal eclosion. In all other experiments the characters were assayed in individuals of 3-4 days of age from pupal eclosion.

3.3 Results and Discussion

The summary statistics for each character in each experiment are given in Appendix A, Tables A1 through A9. The order of these tables follows the order of the experiments and the characters within the experiments as presented in Tables 3.1 and 3.2. The corresponding detailed

Table 3.1 : B Diallel Experiments

.

.

**

Exper	lment	Character Assayed	Populations Assayed per Character	Mean Number Assayed per Population	Total Number Assayed
<u>DB1</u>					
	Ovar	y Weight	5x5 = 25	29.6	740
	Fema	le Starvation	5x5 = 25	54.7	1,368
<u>DB2</u>	Ovar	y Weight	3x3 = 9	26.1	235
Тс	otal		59		2,343

- - 1

. .

•

7

ţ

ţ

ţ

۱ ډ

オウアロシー

Table	3.2	:	0	Diallel	Experiments
-------	-----	---	---	---------	-------------

Experi	ment Character Assayed	Populations Assayed per Character	Mean Number Assayed per Population	Total Number Assayed
<u>D01</u>	Ovary Weight	5x5 = 25	28.0	700
	Female Starvation	5x5 = 25	55.4	1,384
<u>D02</u>	Female Starvation	5x5 = 25	52.8	1,321
<u>DO3</u>	Ovary Weight	3x3 = 9	26.0	234
<u>D04</u>	Female Starvation	5x5 = 25	25.6	639
	Male Starvation	5x5 = 25	25.4	636
То	tal	84		4,914

analysis for each character in each experiment is given in Appendix B, Tables B1 through B9. These Appendix B tables present the analysis in three sections; line effects, maternal effects, and heterosis/inbreeding effects. I will discuss these results addressing the three questions stated above.

Firstly, to what extent are the lines within a stock-type differentiated from each other? This was analyzed using a mixed model in which the maternal and paternal lines used in each cross appear as factorial design components. The results are summarized in Table 3.3 for the maternal line effect, the paternal line effect, and the combined maternal and paternal line effect. In some cases, there were significant differences between lines, but these were not usually reproducible for the characters concerned. The only reproducible significant differences were for ovary weight in the O populations. A weakness of this design, however, is that it confounds the effects of a line with of the parents' sex from that line. This can lead to the erroneous inference of a line effect when none is present. Therefore, the absence of any reproducible line effect in this design, except for ovary weight in the O populations, suggests that there is only slight differentiation between lines within stock-types.

Secondly, to what extent do maternal effects outweigh paternal effects, within stock-types? This question is

34

¢

4

1.64

_ _ _ _

Character				ANOVA		
<u>character</u>	Line o	f Mother	Line o	f Father	Combin	ed Effect
Experiment	F	SIG.	F	SIG.	F	SIG.
<u>Ovary Weigh</u>	<u>t</u>					
DB1	0.28	0.887	1.15	0.370	0.71	0.677
DB2	0.75	0.530	0.57	0.608	0.67	0.648
D01	4.72	0.010*	1.06	0.409	2.89	0.034*
DO3	34.03	0.003**	0.06	0.944	17.10	0.009**
<u>Female Star</u>	vation					
DB1	1.38	0.280	2.63	0.073	2.04	0.107
D01	1.86	0.167	1.60	0.224	1.74	0.165
DO2	2.44	0.089	5.27	0.007**	3.91	0.010*
DO4	0.98	0.448	1.45	0.263	1.25	0.334
<u>Male Starva</u>		0.420	2 74	0.065	1 02	0 1 2 7
DO4	1.03	0.420	2.74	0.005	1.92	0.127

Table 3.3 : B and O Diallel Line Differentiation

٠

,

ł

1

1

;

; ; . .

addressed with greater experimental power in the transmission pattern experiments, but there is the possibility that it arises in the diallel designs. This question was examined using the F-statistic produced by the ratio of female parent to male parent variance components in the mixed model ANOVA of the diallels presented above. Methods 1 and 2 differ with respect to inclusion (Method 1) or exclusion (Method 2) of the uncrossed parental lines in the data analysis. The results from the two methods differed only in the analysis of experiment DO1. As shown in Table 3.4, significant maternal effects arise only in the cases in which there were significant line effects (from Table 3.3), and those were not reproducible in any case. It would seem dubious to draw any firm conclusions from these maternal-effect results, as opposed to the transmission pattern results (see next chapter).

Thirdly, is there any evidence for heterosis, or, conversely, inbreeding depression, in crosses between lines within either B or O stocks? The data were analyzed using both t-tests and a nested analysis of variance. The contrast being analyzed is that between the n parental lines (the diagonal in the diallel results of Appendix A) and the n(n-1) reciprocal crossed lines (the off-diagonals). The results are summarized in Table 3.5 . The two types of t-test in this table differ with respect to both the pooling of the sample variances in the calculation of the

Character		ANOV	VA		
	Met		Method 2		
Experiment	F	SIG.	F	SIG.	
<u>Ovary Weight</u>					
DB1	0.24	0.900	0.98	0.506	
DB2	1.32	0.431	2.45	0.290	
DO1	4.46	0.088	14.78	0.012*	
DO3	576.84	0.002**	40.98	0.024*	
Female Starvation					
DB1	0.53	0.723	0.67	0.646	
D01	1.17	0.443	0.96	0.515	
D02	0.46	0.763	0.41	0.795	
DO4	0.67	0.645	0.54	0.716	
Male Starvation					
DO4	0.38	0.816	0.57	0.698	

Table 3.4 : B and O Diallel Maternal Effects

÷

•

1

F

Character		T-TES	5T		AN	OVA
Experiment	Separ T	ate Var. SIG.	Pool T	ed Var. SIG.	F	SIG.
<u>Ovary Weight</u>	<u></u>				. 19 ₉₉ - 1997 - 199	
DB1	0.54	0.619	0.78	0.444	0.62	0.438
DB2	0.75	0.480	0.61	0.598	0.33	0.582
DOl	0.98	0.368	1.18	0.249	1.40	0.249
DO3	0.03	0.976	0.03	0.974	0.001	0.974
Female Starv	ation					
DB1	0.09	0.934	0.12	0.908	0.01	0.908
DO1	0.47	0.658	0.46	0.652	0.21	0.648
DO2	1.27	0.259	1.53	0.139	2.28	0.145
DO4	0.58	0.587	0.61	0.551	0.52	0.478
Male Starvat		0.279	1 00	0 217	1 50	0.020
DO4	0.97	0.378	1.02	0.317	1.52	0.230

Table 3.5 : B and O Diallel Heterosis Effects

-

.

,

ĩ

n waterton to kny faultust is a

è

¥

* * * * *

ą

t-statistic and the number of degrees of freedom. The results consistently indicate an absence of heterosis, whichever way the data are analyzed.

I

٤

* * ** * * *

;

:

10-14 × 1-14

CHAPTER 4

Transmission Patterns of B and O Populations

ţ,

}

4.1 Introduction

In the transmission pattern experiments, B and O stocks were crossed between lines, B_1 with O_1 , B_2 with O_2 , etc. The parental populations as well as both the reciprocal cross populations of the F_1 hybrids were then assayed for all six characters (male longevity, female longevity, female early starvation resistance, male early starvation resistance, early fecundity, and early ovary weight). Three features of the transmission data are of importance: (i) preservation of the B-O differences that had been detected in earlier studies (Rose 1984; Rose et al. 1984; Service et al. 1985); (ii) maternal effects, as measured by differences between two reciprocal cross means; and (iii) average dominance, as measured by the deviation of the crosses from the mid-parent value of the parental lines.

4.2 Experimental Procedure

The series of experiments on transmission of postponed aging characters is outlined in Table 4.1. These experiments are coded with "BO" in the first two positions, indicating crosses of B and O populations. The numerals then refer to the specific experiments. In all these experiments, but one (BO1), B and O parental populations were assayed together with both their reciprocal crosses. [This gives rise to the "4x" terms.] In experiment BO4,

Experi	iment Characte Assayed	er Populations Assayed per Character		Total Number Assayed
<u>B01</u>	Ovary Weight	3x5 = 15	29.5	443
	Female Starva		31.2	624
	Male Starvati	on $4x5 = 20$	31.2	624
<u>B02</u>	Ovary Weight	4x5 = 20	30.0	600
	Fecundity	4x5 = 20	58.9	1,177
	-	ecund. $4x5 = 20$	58.9	1,177
				·
	Female Starva		54.0	1,080
	Female Longev	ity $4x5 = 20$	57.0	1,140
<u>B03</u>				
	Ovary Weight	4x3 = 12	45.2	542
	Female Starva	tion $4x3 = 12$	40.0	480
	Female Longev	ity $4x^3 = 12$	49.9	599
<u>B04</u>				
<u>D04</u>	Female Starva	tion $4x3 = 12$	33.7	404
<u>B05</u>	Fecundity	4x3 = 12	76.5	918
	Conditional F	ecund. $4x3 = 12$	75.3	903
	Female Starva	tion $4x3 = 12$	78.3	940
	Male Starvati	on $4x3 = 12$	78.3	940

Table 4.1 : B and O Crossing Experiments

ı.

۴

• • • • • • • • • • • • •

a souther provide the second states when

٠

ち モー どまき

and the state of the state of

Experi	lment	Assayed	Populations Assayed per Character	Mean Number Assayed per Population	Total Number Assayed
<u>B06</u>	Fecu	ndity	4x3 = 12	77.4	929
	Cond	itional Fecund	4x3 = 12	75.9	911
	Fema	le Starvation	4x3 = 12	78.8	945
	Male	Starvation	4x3 = 12	78.8	945
	Fema	le Longevity	3x3 = 9	98.9	890
	Male	Longevity	3x3 = 9	98.4	886
<u>B07</u>	Fecu	Indity	4x3 = 12	70.1	841
		litional Fecund		69.3	831
		le Starvation	4x3 = 12	71.8	863
	Male	Starvation	4x3 = 12	71.8	861
	Fema	le Longevity	4x3 = 12	58.5	702
	Male	e Longevity	4x3 = 12	57.8	694
<u>B08</u>	Fogu		4	50.0	226
		Indity	4x1 = 4	59.0	236
		litional Fecund		58.0	232
		le Starvation		60.0	240
		Starvation	4x1 = 4	60.0	240
	Fema	le Longevity	4x1 = 4	58.2	233
	Male	Longevity	$4 \times 1 = 4$	57.3	229
Т	otal		413		24,299

1 5

1 2 4

ł

1

.

Table 4.1 continued : B and O Crossing Experiments

starvation was assayed at 17-20 days of age. In experiment BO7, the flies for assay were reared at a density of 90 per vial. In experiment BO8, the parental B and O lines were obtained by a synthetic cross of three B and three O stocks, respectively.

4.3 Results and Discussion

The summary statistics for each character in each experiment are given in Appendix C, Tables C1 through C34. In these tables BB refers to the parental B population, BO to the F_1 population formed through the cross of female B flies with male O flies, OB to the reciprocal F_1 formed through the cross of female O flies with male B flies, and OO to the parental O population. The order of these tables follows the order of the experiments and the characters within the experiments as presented in Table 4.1. The corresponding detailed analysis for each character in each experiment is given in Appendix D, Tables D1 through D34. The Appendix D tables are in three sections corresponding to the three questions of interest: BB - OO differences, maternal effects, and dominance effects.

Table 4.2 provides a summary of the analysis of the BB - 00 difference data, which was performed by both independent and paired t-tests and also by using a mixed model analysis of variance. It is apparent that most of the

44

l

and a

No.

Ĭ

Table 4.2 : B and O Differences

Character			Mean :	<u>+</u> S.E.			T-TI	EST	ANOVA
Expt.		в			0		Indep. T	Paired T	F
Ovary	Weight	(1	nillig	rams)					
BO2	0.109	<u>+</u>	0.009	0.057	<u>+</u>	0.006	4.61**	3.75*	14.09*
BO3	0.177	±	0.003	0.112	±	0.022	2.94*	3.14	9.65
Fecund	<u>lity</u> (e	gđi	5 / 24	hours)				
BO2	102.1	<u>+</u>	C 8	92.3	<u>+</u>	6.0	1.38	3.86*	14.74*
BO5	80.7	<u>+</u>	4.3	85.0	±	2.0	0.92	1.91	3.70
BO6	94.2	±	1.9	93.3	<u>+</u>	2.5	0.26	0.42	0.18
BO7	81.9	Ŧ	9.7	87.3	<u>+</u>	6.3	0.47	0.82	0.68
BO8	95.2	±	4.0	98.6	±	2.2			0.57
<u>Condit</u>	cional	Fe	cundit	र्षे (edu	s,	/ 24 h	ours)		
BO2	102.1	<u>+</u>	3.8	92.3	±	6.0	1.38	3.86*	14.74*
BO5	82.2	<u>+</u>	3.6	86.2	Ŧ	2.6	0.90	3.16	10.42
B06	96.3	±	2.9	95.6	<u>+</u>	1.4	0.22	0.26	0.06
BO7	83.2	±	10.1	88.9	<u>+</u>	6.6	0.47	0.80	0.64
BO8	98.9	<u>+</u>	3.5	98.6	<u>+</u>	2.2			0.01
Female	<u>e Starv</u>	<u>at</u>	<u>ion</u> (h	ours)					
B01	28.7	±	0.9	32.7	<u>+</u>	0.6	3.74**	2.88*	8.25*
BO2	47.3	<u>+</u>	2.7	68.2	<u>+</u>	6.3	3.05*	4.10*	16.65*
BO3	44.8	<u>+</u>	1.6	55.5	±	1.3	5.19**	7.10*	50.40*
BO4	39.6	<u>+</u>	2.5	47.2	<u>+</u>	2.0	2.38	10.99*	116.65**
									56.19*

.

4

ĩ

ł

۰ ۰ .

.

Charact	<u>ter</u> Mean	<u>+</u> S.E.	T-T	EST	ANOVA
Expt.	В	0	Indep. T	Paired T	F
Female	Starvation -	continued			
B06	27.3 <u>+</u> 1.0	33.8 <u>+</u> 2.0	2.89*	6.41*	40.92*
B07	34.3 <u>+</u> 1.0	48.1 <u>+</u> 1.8	6.54*	6.62*	43.78*
BO8	27.2 <u>+</u> 0.8	35.4 <u>+</u> 0.9			45.51**
<u>Male St</u>	<u>carvation</u> (hou	ırs)			
BO1	19.9 <u>+</u> 0.8	25.6 <u>+</u> 0.9	5.04**	10.45**	109.94**
BO5	17.8 <u>+</u> 0.6	26.7 <u>+</u> 0.4	12.96**	53.07**	2799.13**
BO6	20.0 <u>+</u> 1.8	31.0 <u>+</u> 2.6	3.48*	13.86**	191.88**
B07	24.3 <u>+</u> 0.8	36.4 <u>+</u> 0.5	12.45**	11.62**	135.08**
BO8	21.3 ± 0.8	26.1 <u>+</u> 0.6			25.02**
Female	Longevity (da	ays)			
BO2	50.1 <u>+</u> 2.7	62.5 <u>+</u> 2.7	3.26*	9.15**	76.07**
BO3	25.2 <u>+</u> 2.9	48.3 <u>+</u> 2.7	5.86**	5.86*	34.32*
B06	40.4 <u>+</u> 2.3	51.4 <u>+</u> 2.2	3.48*	2.48	6.15
B07	36.6 <u>+</u> 1.1	48.6 <u>+</u> 0.9	8.33**	8.41*	71.22*
BO8	34.9 <u>+</u> 1.5	44.9 <u>+</u> 2.0			16.46**
<u>Male Lo</u>	ongevity (days	5)			
B06	31.9 <u>+</u> 0.3	52.0 <u>+</u> 1.4	13.83**	11.92**	142.15**
BO7	31.8 <u>+</u> 1.3	48.0 <u>+</u> 0.4	11.87**	9.90**	98.67**
BO8	31.1 ± 1.2	45.0 <u>+</u> 1.6			50.77**

Table 4.2 continued : B and O Differences

, I

· · · · · ·

known character differences have been preserved, except for early fecundity. [It should be noted that the cases where statistically significant differences between B and O types were not found were cases where the level of replication was reduced from five-fold to three-fold.] For longevity and starvation resistance, at least, there is consistent duplication of earlier findings.

1

The maternal effect analysis is presented in Table 4.3. There are only a few cases of statistical significance and these are not consistent for any one character between experiments. Table 4.4 is a summary of the dominance effects analysis. Again, there are only a few cases of statistical significance, which are not consistent between experiments. Given the problem of repeated statistical tests on a body of data, some cases with statistical significance are expected by chance alone. Therefore, it is concluded that the transmission pattern data indicate additive inheritance without maternal effects or dominance effects, averaged over all loci. [This does not, however, indicate an absence of dominance in the transmission patterns of the particular loci involved in postponed senescence.]

<u>Character</u>				Mean -	<u>+</u> S.E.		<u> </u>	T-1	EST	ANOVA
Expt.	-	В	0			OB		Indep. T	Paired T	F
Ovary	Weigł	<u>nt</u>	(1	nilligi	rams)				<u>, , , , , , , , , , , , , , , , , , , </u>	
B01	0.?			J.008	0.124	±	0.006	0.28	0.27	0.07
B02	0.09	8	<u>+</u>	0.009	0.090	Ŧ	0.009	0.47	0.86	0.75
B03	0.14	13	<u>+</u>	0.014	0.16.	<u>+</u>	0.009	1.04	0.81	0.67
Fecund	ity ((eg	gs	5 / 24	hours)				
BO2	97.	9 :	<u>+</u>	4.8	97.0	<u>+</u>	3.6	0.15	0.47	0.22
B05	88.	0 :	t	3.7	85.3	<u>+</u>	5.6	0.41	1.41	2.15
B06	91.	1 :	±	3.2	88.2	<u>+</u>	3.0	0.67	1.60	2.60
B07	87.	7 :	<u>+</u>	4.3	84.5	<u>+</u>	3.3	0.54	10.64**	114.70**
BO8	98.	0 :	Ł	5.2	102.9	<u>+</u>	3.7		~-	0.28
Condit:	lonal	<u>. F</u>	ec	undity	<u>z</u> (egg	s,	/ 24 hc	ours)		
BO2	97.	9 :	<u>+</u>	4.8	97.3	<u>+</u>	3.6	0.10	0.33	0.11
B05	89.	0 :	<u>+</u>	3.3	86.7	±	4.9	0.39	1.18	1.46
воє	91.	9 :	t	3.0	90.3	<u>+</u>	3.8	0.31	1.43	1.98
B07	87.	7 :	<u>+</u>	4.3	85.1	±	4.9	0.40	3.77	14.04
BO8	99.	7 :	<u>+</u>	5.0	102.9	±	3.7			0.13
<u>emale</u>	Star	vat	ti	<u>on</u> (ho	ours)					
B01	31.	8 -	<u>+-</u>	1.1	30.5	<u>+</u>	1.2	0.81	0.66	0.44
BO2	58.	6 -	F	4.8	50.5	<u>+</u>	3.8	1.34	3.	7.70
BO3	50.	8 _	ŀ	1.8	52.2	±	2.9	0.41	0.48	0.23
BO4	47.	0 -	F	3.6	42.8	±	5.9	0.60	0.53	0.28

Table 4.3 : B and O Maternal Effects

M.

-

Charact	<u>ter</u> Mean	Mean <u>+</u> S.E.		T-TEST		
Expt.	во	OB	Indep. T	Paired T	F	
Female	Starvation -	continued				
B05	29.2 <u>+</u> 1.4	32.1 <u>+</u> 2.6	0.98	1.99	3.89	
B06	27.7 <u>+</u> 0.9	28.7 <u>+</u> 2.0	0.44	0.76	0.58	
B07	38.3 <u>+</u> 0.7	40.7 <u>+</u> 0.7	2.34	2.46	6.05	
BO8	29.6 <u>+</u> 1.0	29.7 <u>+</u> 1.3			0.00	
Male Starvation (hours)						
B01	22.0 <u>+</u> 0.6	22.3 <u>+</u> 0.8	0.30	0.50	0.25	
B05	20.9 <u>+</u> 0.8	25.3 <u>+</u> 0.7	4.05	17.51**	300.16**	
B06	25.1 <u>+</u> 0.7	27.1 <u>+</u> 2.0	0.94	1.30	1.71	
B07	31.0 <u>+</u> 0.7	32.0 <u>+</u> 0.1	1.52	1.40	1.97	
BO8	23.6 <u>+</u> 0.6	22.9 <u>+</u> 1.0			0.32	
Female	Longevity (d	ays)				
BO2	57.7 <u>+</u> 2.5	55.9 <u>+</u> 2.3	0.53	0.59	0.32	
BO3	36.3 <u>+</u> 1.7	37.9 <u>+</u> 1.5	0.73	0.68	0.47	
B07	41.5 <u>+</u> 2.7	41.4 <u>+</u> 2.1	0.03	0.04	0.00	
BO8	41.4 <u>+</u> 2.0	40.6 <u>+</u> 2.2			0.07	
<u>Male Lo</u>	ongevity (day	s)				
BO7	35.6 <u>+</u> 2.3	39.4 <u>+</u> 2.3	1.17	1.66	2.75	
BO8	37 .1 ± 1.7	38.4 ± 1.6			0.30	

Table 4.3 continued : B and O Maternal Effects

-

ť

<u>Character</u> Mean <u>+</u> S.E.		T-TEST		ANOVA			
Expt	Parentals	Crosses	Indep. T	Paired T	F		
<u>Ovary Weight</u> (milligrams)							
B02	0.083 <u>+</u> 0.004	0.094 <u>+</u> 0.008	1.27	1.89	3.58		
BO3	0.142 ± 0.010	0.152 <u>+</u> 0.004	0.92	1.91	3.66		
<u>Fecundity</u> (eggs / 24 hours)							
BO2	97.2 <u>+</u> 4.9	97.4 <u>+</u> 4.1	0.04	0.18	0.03		
B05	82.7 ± 3.2	86.7 <u>+</u> 4.6	0.71	1.64	2.62		
B06	93.7 ± 0.9	89.7 <u>+</u> 3.1	1.08	0.82	0.67		
B07	84.7 <u>+</u> 8.0	86.1 <u>+</u> 4.3	0.16	0.29	0.08		
BO8	96.9 <u>+</u> 2.3	99.2 <u>+</u> 4.0			0.30		
<u>Conditional Fecundity</u> (eggs / 24 hours)							
B02	97.2 <u>+</u> 4.9	97.6 <u>+</u> 4.2	0.07	0.28	0.08		
B05	84.1 <u>+</u> 3.1	87.9 <u>+</u> 4.1	0.73	1.73	2.91		
B06	95.9 <u>+</u> 1.8	91.1 <u>+</u> 3.4	1.25	1.02	1.03		
B07	86.1 <u>+</u> 7.8	86.4 <u>+</u> 4.6	0.04	0.07	0.01		
B08	98.7 <u>+</u> 2.0	100.5 <u>+</u> 3.8			0.19		
Female_Starvation (hours)							
B01	30.4 <u>+</u> 0.3	31.1 <u>+</u> 0.6	0.94	1.40	2.05		
BO2	59.0 <u>+</u> 4.4	53.9 <u>+</u> 4.1	0.84	3.36*	11.21*		
BO3	50.1 <u>+</u> 1.2	51.5 <u>+</u> 1.9	0.59	1.92	3.67		
B04	44.3 <u>+</u> 2.4	45.1 <u>+</u> 3.1	0.21	0.89	0.80		
B05	31.9 <u>+</u> 1.1	30.7 <u>+</u> 2.0	0.51	0.84	0.71		

.

Table 4.4 : B and O Average Dominance Effects

95° 4 496 100

+

ł

.

. . . .

į

÷

¥

<u>Character</u> Mean <u>+</u> S.E.		T-TEST		ANOVA			
Expt.	Parentals	Crosses	Indep. T	Paired T	F		
Female Starvation - continued							
BO6	30.5 <u>+</u> 1.5	28.3 <u>+</u> 0.6	1.03	14.33**	202.54**		
B07	41.2 <u>+</u> 1.1	39.5 <u>+</u> 0.5	1.41	2.50	6.23		
BO8	31.3 <u>+</u> 0.7	29.6 <u>+</u> 0.8			2.22		
Male Starvation (hours)							
BO1	22.3 <u>+</u> 0.8	22.1 <u>+</u> 0.6	0.22	0.3	0.14		
B05	22.2 <u>+</u> 0.5	23.1 <u>+</u> 0.7	0.99	4.28	18.12		
B06	25.5 <u>+</u> 2.2	26.3 <u>+</u> 1.2	0.31	0.70	0.50		
B07	30.3 <u>+</u> 0.4	31.5 <u>+</u> 0.3	2.28	3.21	10.29		
BO8	23.7 ± 0.5	23.4 <u>+</u> 0.5			0.13		
Female Longevity (days)							
BO2	55.9 <u>+</u> 2.8	56.9 <u>+</u> 1.9	0.30	0.42	0.19		
BO3	36.7 <u>+</u> 2.0	37.1 <u>+</u> 1.0	0.16	0.24	0.06		
B06	45.9 <u>+</u> 0.3	47.2 <u>+</u> 0.9	1.28	1.84	3.39		
B07	42.6 <u>+</u> 0.8	41.4 <u>+</u> 1.9	0.57	0.60	0.36		
BO8	40.0 <u>+</u> 1.3	41.0 <u>+</u> 1.5			0.25		
<u>Male Longevity</u> (days)							
B06	42.0 <u>+</u> 0.7	39.1 <u>+</u> 0.9	2.64	3.03	9.16		
B07	40.2 ± 0.3	37.5 <u>+</u> 2.0	1.33	1.53	2.35		
BO8	37.8 <u>+</u> 1.1	37.8 <u>+</u> 1.2			0.00		

Table 4.4 continued : B and O Average Dominance Effects

.

CHAPTER 5

Gene Number Analysis of B and O Populations

Experiments were performed to estimate the number of "effective factors" (Lande 1981) involved in postponed aging. Effective factors are a measure of the number of loci of "equivalent effect" that are responsible or the differentiation of a quantitative character between two populations.

5.2 Experimental Procedure

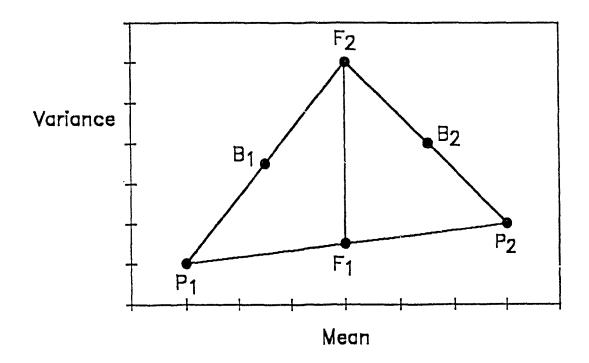
The actual number of factors contributing to the pheneotypic difference between samples from parental populations raised in a common environment is (Lande 1981)

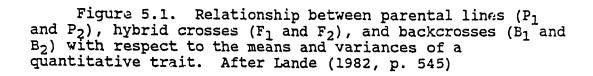
n =
$$\frac{(m_1 - m_2)^2}{8V_s}$$
 [1 + (V_V / V)²] 5.1

where m_i gives the mean of one of the parental populations, V_s gives the segregation variance, where

$$V_{s} = Var(F_{2}) - Var(F_{1}),$$
 5.2

and where the last term in parenthesis is the squared coefficient of the magnitudes of the genetic factors. This last term is generally unknown, but must be positive, as noted by Mather and Jinks (1982). Therefore, estimates of the minimum number of genetic factors, also known as the effective number of factors, were calculated from the formula (Lande 1981)


$$n_e = (m_1 - m_2)^2 / 8V_s$$
 5.3


This method of factor estimation is based on the relationship between parental and hybrid crosses with respect to their means and variances (Figure 5.1). It is to be noted that the method hinges on the basic Mendelian phenomenon of F_2 segregation giving rise to increased variance relative to that of the F_1 . For example, with fixation of distinct alleles at a locus in two ancestral populations, the F_1 will consist solely of heterozygotes, whereas the F_2 will have both types of homozygotes, as well as the heterozygote, in the Hardy-Weinberg proportions of 1:2:1. With an infinite number of loci, F_1 and F_2 variances will be equal to each other.

As well as the n_e estimates, we calculated the inverse estimates:

$$1/n_e = 8V_s / (m_1 - m_2)^2$$
. 5.4

The reason for this is that there is a mathematical singularity in n_e when $V_s = 0$. When V_s is just above zero, n_e diverges to positive infinity. When V_s is just below zero, n_e diverges to negative infinity. Figure 5.2

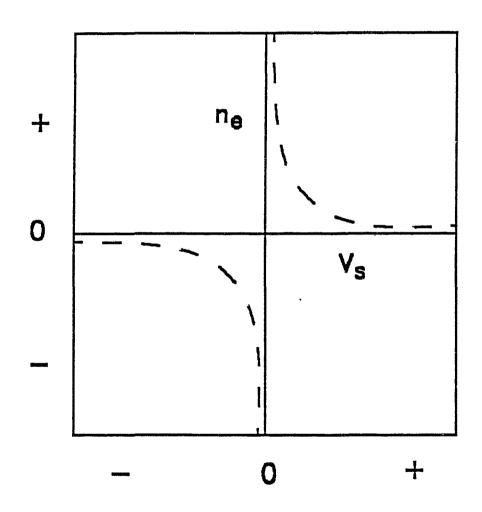


Figure 5.2. Effective Factor Estimation. Illustration of the general form of the function relating the number of effective factors, n_e , to the segregation variance, V_s .

illustrates this situation. This creates a problem of interpreting negative values of ne when the data are replicated. When $1/n_e$ is used as a test statistic, none of these problems arise, providing only that there is in fact differentiation between the parental lines under consideration. [And this proviso is almost always satisfied in this type of experiment.] Figure 5.3 illustrates the function of $1/n_e$ against V_s . In addition, when $1/n_e = 0$, we must have n_e approaching infinity. This is an appropriate null hypothesis, because n_e is biased toward small values (Lande 1981). Effectively, ne constitutes a lower bound on the actual number of loci involved in population differentiation. Testing 1/ne for significant deviation above zero tests whether or not there is any statistical reason to conclude that there are fewer than an arbitrarily large number of loci involved in population differentiation.

Table 5.1 outlines the experiments that were performed to estimate the number of effective factors involved in postponed senescence of the B and O populations. The "GBO" coding indicates that these are gene number experiments for the B and O populations, and the numeral indicates the particular experiment. GBO1 and GBO2 had a larval density of 30/vial, while GBO3 had a larval density of 90/vial. These experiments had the same type of design as the transmission pattern experiments, except that F_2 's were

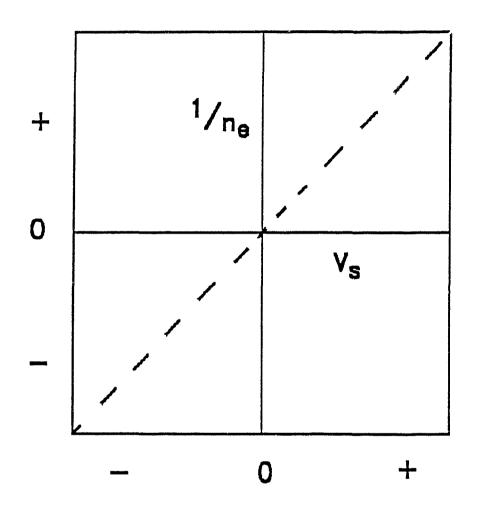


Figure 5.3. Inverse Effective Factor Estimation. Illustration of the general form of the function relating the inverse of the number of effective factors, $1/n_e$, to the segregation variance, V_s .

ĥ

Exper	Assayed	Populations Assayed per Character	Mean Number Assayed per Population	Total Number Assayed
<u>GB01</u>			<u></u>	
	Ovary Weight	4x5 = 20	43.2	864
		3x5 = 15 x2x5 = 60	41.6 41.2	624 2,061
	Male Starvation 5	3x5 = 15 x2x5 = 60	41.6 41.2	624 2,061
<u>GB02</u>	Fecundity	4x3 = 12	112.8	1,353
	Conditional Fecund.	4x3 = 12	110.5	1,326
	Female Starvation	4x3 = 12	114.3	1,371
	Male Starvation	4x3 = 12	114.3	1,371
	Female Longevity	4x3 = 12	113.3	1,360
	Male Longevity	4x3 = 12	113.7	1,364
<u>GB03</u>	Fecundity	4x3 = 12	116.5	1,398
	Conditional Fecund.	4x3 = 12	115.1	1,381
	Female Starvation	4x3 = 12	118.3	1,420
	Male Starvation	4x3 = 12	118.3	1,420
	Female Longevity	4x3 = 12	98.3	1,179
	Male Longevity	4x3 = 12	98.2	1,178
То	tal	314		22,355

Table 5.1 : B and O Gene Number Experiments

۲

ŧ

Ì

.

obtained from the F1's of B and O stocks. In experiment GB01, generations F_3 to F_6 were obtained, as well. Two effective factor estimates were calculated for these characters -- one using the F_2 data together with the F_1 and parental data, and one using the average of the effective factor estimates calculated using these later generations' variance estimates in place of the F₂ variance estimate. [These calculations also used control lines, to standardize environmental sources of fluctuation in variance estimates.] These later generations were used in the estimation procedure because the technique assumes free recombination of all contributing loci in the production of the F_2 generation. For an organism with many chromosomes this may be a reasonable assumption. In Drosophila it is not, because there are few chromosomes and there is suppression of recombination in males. In fact, it is often found that the calculated n_e values increase when the means and variances of F_3 , F_4 , etc. are used in place of those for F_2 (Jinks and Towey 1976; Towey and Jinks 1977). This reflects the action of recombination in freeing loci from cosegregation when they are on the same chromosome, in turn reducing the variance of the hybrid population. Thus, F_3 and subsequent generations were used as a check agai 🔅 a low estimate of n_e due to a relative lack of recombination per generation. The two types of estimates are distinguished in the tabulation of the results.

ŧ

and The strengthere was

5.3 Results and Discussion

The summary statistics for each character in each experiment are given in Appendix E, Tables E1 through E15. The order of the tables follows the order of the experiments and the characters within each experiment as outlined in Table 5.1.

Figure 5.4 is a set of frequency histograms of fecundity for one of the replicates, $B_2 \times O_2$, of experiment GBO3. Shown are, from top to bottom, the B_2 parental histogram, the O_2 parental histogram, the F_1 hybrid histogram, and the F_2 hybrid histogram. It is clear that there is not a trimodal distribution in the histogram of the F_2 hybrid; evidence against the existence of only one gene being responsible for the differentiation of the parental populations. Figures 5.5 through 5.8 are similar sets of histograms for female starvation time, male starvation time, female longevity, and male longevity, respectively. All of these are from the same replicate, $B_2 \times O_2$, of experiment GB03 and are intended to be representative of the patterns found in all of the crosses. [To have presented all sixty-two of the sets of histograms in these experiments would have been a bit excessive.] In none of the F_2 histograms is there a trimodal distribution, again evidence against the existence of only one gene differentiating the parental populations. Further, the distributions of the

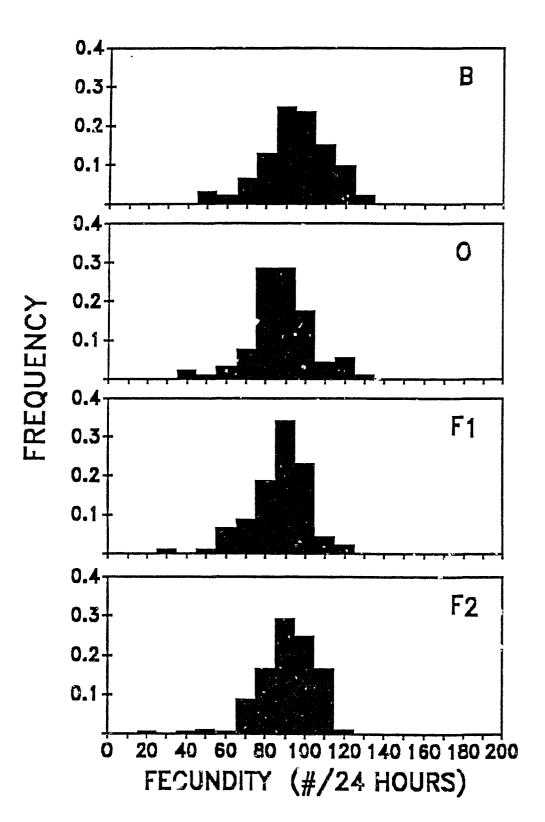
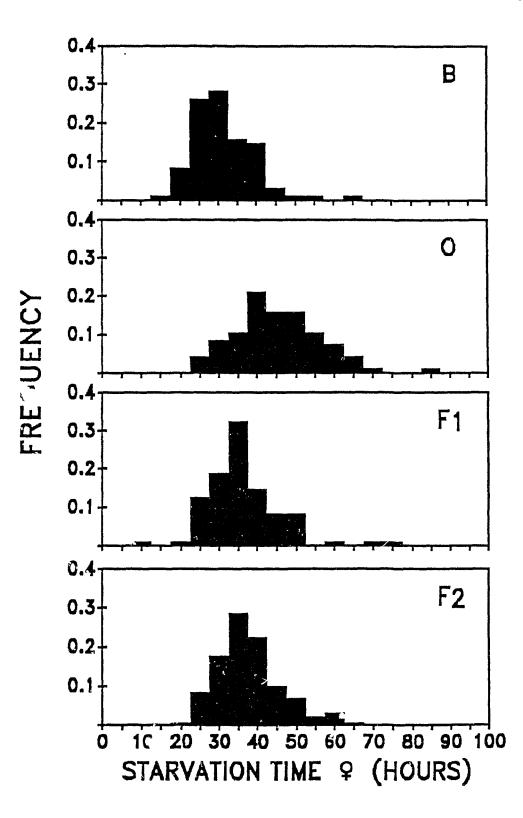



Figure 3.4. Frequency histograms of fecundity in replicate $B_2 \ x \ O_2$ of experiment GBO3.

ţ

Figure 5.3. Frequency histograms of female starvation time in replicate $B_2 \ x \ O_2$ of experiment GBO3.

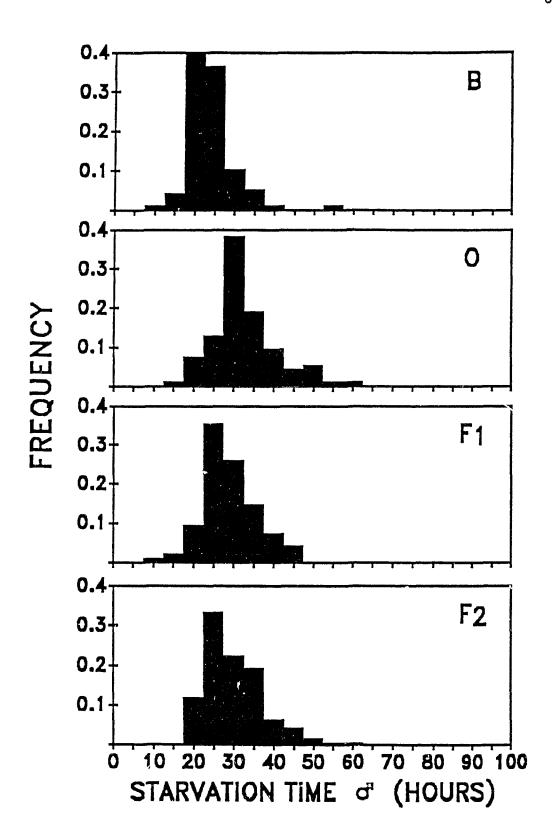


Figure 5.6. Frequency histograms of male starvation time in replicate $B_2 \ge 0_2$ of experiment GB03.

64

-

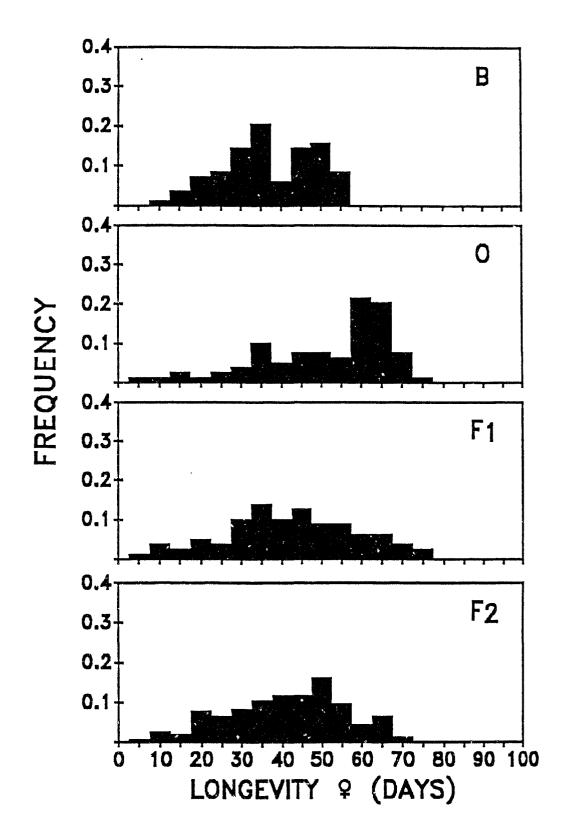


Figure 5.7. Frequency histograms of female longevity in replicate $B_2 \propto O_2$ of experiment GBO3.

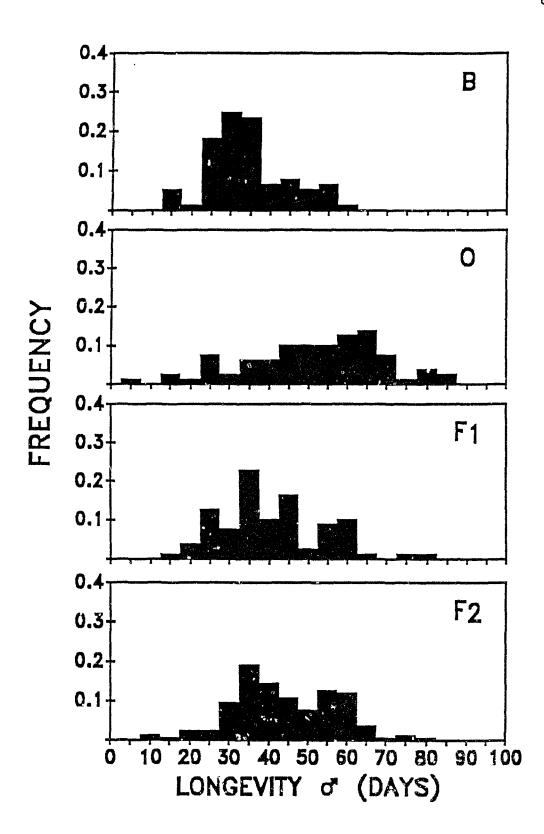


Figure 5.8. Frequency histograms of male longevity in replicate $B_2 \propto O_2$ of experiment GBO3.

 F_2 's does not appear to be very different from the distributions of their paired F_1 's; evidence for a large number of genes being involved in the differentiation of the parental populations. It should be noted, however, that the distributions of the parental populations are not discrete, which could cause an overlapping of a possible trimodal distribution in the F_2 and also cause the F_2 and the F_1 distributions to resemble each other. This is one of the reasons for the selection experiments of Part III; to create populations which are well separated, allowing a better analysis of the F_1 and the F_2 distributions.

The estimates of the number of effective factors are given in Table 5.2. Table 5.3 gives the results with the inverted effective factor estimates. The effective factor results themselves suggest that there are a small number of The mean ne values over replicates tend to loci involved. be below 1, and the standard errors for these estimates are reasonably small. It is only when the inverse ne values are considered statistically that these results can be seen to be misleading. The 1/ne estimates are not significantly different from zero. This different behavior probably arises from the role of the negative estimates in the two Negative ne data decrease the average ne value, cases. biasing the results toward underestimates, even though the negative segregation variances that generate the negative data in fact indicate a large number of segregating factors.

<u>Character</u> Experimer	nt 1	2	Line 3	4	5	Mean <u>+</u> SEM
<u>Ovary Weic</u> GBO1		0.25	0.14	0.94	-0.04	0.22 ± 0.19
<u>Fecundity</u> GBO2	0.00	-0.01	0.07			0.02 <u>+</u> 0.02
GBO3	0.03	-0.32	0.89			0.20 <u>+</u> 0.36
<u>Conditiona</u> GBO2	<u>al Fecun</u> 0.01	<u>dity</u> 0.12	0.53			0.22 <u>+</u> 0.16
GBO3	0.13	-0.32	2.29			0.70 <u>+</u> 0.81
Female Sta	rvation					
GBO1: F2	0.04	0.05	-0.00	0.09	0.15	0.07 ± 0.03
F2-F6	0.05	0.64	0.67	-0.13	10.07	2.26 <u>+</u> 1.96
GBO2	0.19	0.32	0.08			0.19 <u>+</u> 0.07
GBO3	0.90	-1.08	0.23			0.02 ± 0.58
Male Starv	<u>ration</u>					
GB01: F2	0.97	0.36	0.23	-0.43	0.69	0.36 <u>+</u> 0.24
F2-F6	0.40	0.49	-0.15	0.17	0.12	0.20 <u>+</u> 0.11
GBO2	2.94	-1.31	0.54			0.72 ± 1.23
GBO3	0.59	0.99	-10.79			-3.07 <u>+</u> 3.86
Female Lon						
GBO2	-0,06	0.75	0.59			0.43 ± 0.25
GBO3	0.39	-0.50	-(.45			-0.19 <u>+</u> 0.29
<u>Male Longe</u> GBO2		4.33	2.67			0.61 <u>+</u> 2.93
GBO3	3.75	-8.13	2.58			-0.60 <u>+</u> 3.78

. 1

r

,

¢

Table 5.2 : B and O Effective Factor Estimates

Table 5.3	:	B and O	Inverci	Effective	Factor	Estimates

-

<u>Character</u> Experimer	nt 1	2	Line 3	4	5	Mean <u>+</u> SEM
<u>Ovary Weic</u> GB01		4.00	7.14	1.06	-25.02	-3.67 <u>+</u> 5.73
<u>Fecundity</u> GB02	106	-98.93	14.86			$10^5 \pm 10^5$
GB03			1.13			10.46 ± 11.5
Conditiona			1 00			
GBO2	68.31	8.61	1.88			26.27 <u>+</u> 21.1
GB03	7.62	-3.15	0.44			1.64 <u>+</u> 3.16
Female Sta	arvation	<u>1</u>				
GBO1: F2	28.65	19.94	-5182	11.24	6.58	-1 023 <u>+</u> 1039
F2-F6	18.70	1.56	1.50	-7.58	0.10	2.86 <u>+</u> 4.31
GBO2	5.35	3.15	12.72			7.07 <u>+</u> 2.89*
GBO3	1.11	-0.93	4.32			1.50 <u>+</u> 1.78
Male Stary	vation					
GBO1: F2	1.03	2.78	4.35	-2.33	1.45	1.46 <u>+</u> 1.11
F2-F6	2.50	2.04	-6.67	5.88	8.33	2.42 <u>+</u> 2.55
GBO2	0.34	~0.77	1.86			0.48 <u>+</u> 0.76
GBO3	1.71	1.01	-0.09			0.88 <u>+</u> 0.52
Female Lor						
GBO2	-16.88	1.34	1.70			-4.61 ± 6.13
GBO3	2.55	-2.00	-2.21			-0.55 ± 1.55
Male Longe						
GBO2	-0.19	0.23	0.38			0.14 ± 0.17
GBO3	0.27	-0.12	0.39			0.18 <u>+</u> 0.15

69

_

The reason that these negative ne estimates should be interpreted as evidence for a large number of effective factors is straightforward. Negative ne estimates arise when the variance of the F_2 is less than the variance of the F_1 . In theory, of course, this should not happen. The variance of the F_2 should be equal to or greater than the variance of the F_1 . What we are seeing when the F_2 variance is less than the F₁ variance is simply statistical fluctuation around the situation where the F2 variance is equal to the F_1 variance, indicating a large number of effective factors. In the inverse effective factor data, negative estimates pull the mean toward zero, indicating more effective factors, which is the appropriate effect. Taken together, the histograms and the results of Table 5.3 indicate the involvement of many loci in the postponed aging of the O stocks, relative to the B stocks.

CHAPTER 6

Discussion of Analysis of Outbred Populations

7

`___

Ł

6.1 Discussion

There is little or no evidence in the present results that suggests anything other than polygenic additive inheritance in the laboratory evolution of postponed aging in the D. melanogaster stocks studied. Maternal or line effects, when present, are inconsistent over lines and characters. It cannot be said that any of the postponed senescence stocks is superior to any other. On average, hybrids of postponed senescence and control stocks appear to be intermediate; there is no consistent heterosis, inbreeding depression, or directional dominance. While average effective factor estimates seem to be small, in fact there is no statistical evidence that the results indicate a small number of loci involved in postponed aging. In general, then, the characters examined here seem to be classic "quantitative characters" (cf. Falconer 1981).

These results may be compared with those found before by Luckinbill and co-workers. Like Clare and Luckinbill (1985), who studied fewer characters, fewer lines, and far fewer individuals, essentially additive inheritance was found in the population crosses. [This is in fact a prerequisite for effective factor number estimation (Lande 1981).] Like Luckinbill et al. (1987), there are small estimates of effective factor number. Indeed, many of the estimates tend to be smaller than those of Luckinbill et al. (1987), and the amount of replication in the present study

72

Ł

is considerably greater. However, I disagree with the interpretation that Luckinbill et al. (1987) offer of their findings. They discarded negative estimates of ne, failing to treat them as evidence for a large number of effective factors. The method of averaging inverse effective factor estimates gives hypothesis tests which are not as biased toward the conclusion that only a few loci are involved in the differentiation of the populations crossed. The actual results, then, are not particularly different from those of Luckinbill et al. (1987); only the analysis is. This analysis then leads to a differing conclusion. Considering the data alone, there seems to be a remarkable degree of congruence between the results of the present study and those of Luckinbill and co-workers. Since the stocks involved are independent, and those in the present study are considerably more replicated, the conclusions of Clare and Luckinbill (1985) seem to be strongly supported.

However, the gene number estimates are at least somewhat placed in doubt by the possibility that the populations that have been analyzed are still highly polymorphic for the alleles involved in postponed senescence. In particular, if the alleles that postpone aging are not consistently differentiated over loci, such that some alleles postponing aging are at higher frequencies in the control populations than in the populations with postponed aging, as some of the results of Luckinbill et al. (1988b) suggest, then the effective factor estimates will

not be valid (Lande 1981). More generally, crosses of highly polymorphic populations will not give clean tests of average dominance of differentiated alleles. In addition, parental lines that aren't extremely differentiated will not be as distinguishable from their F_1 's, nor will segregation in the F_2 's be as detectable. For these reasons, selected lines were created that would be more differentiated with respect to at least some of the characters involved in postponed aging, in the hope of then performing a more refined genetic analysis. The creation of these stocks is the subject of Part III of this thesis and their subsequent analysis is described in Part IV.

85

PART III

ş

.

:

.

••••••

ARTIFICIAL SELECTION OF F AND S POPULATIONS

CHAPTER 7

i

Creation of F and S Selected Populations

7.1 Introduction

The artificial selection experiments described in this chapter were an attempt to fix those alleles with strong effects on senescence. There were three stages to these experiments. Firstly, the heritabilities (h^2) of female starvation resistance and male starvation resistance were assayed in the outbred populations $B_{1->3}$ and $O_{1->3}$. Secondly, these six populations were subjected to a rigorous selection regime designed to drive to fixation those alleles having a strong effect on senescence, in so doing creating the selected populations $F_{1->3}$ and $S_{1->3}$. Thirdly, the heritabilities (h^2) of female starvation resistance, male starvation resistance, and 24-hour fecundity were assayed in the selected populations. If the alleles had been fixed, the heritabilities would have declined.

The narrow-sense heritability of a trait, h^2 , is defined as the ratio of additive genetic variance, V_A , to phenotypic variance, V_P :

$$h^2 = V_A / V_P.$$
 7.1

This ratio determines the extent to which phenotypes are determined by the genes transmitted from the parents (Falconer 1981). Its theoretical value must lie between 0 and +1 since the numerator is part of the denominator. h^2 is widely used to predict genetic gains following selection (Turner and Young 1969). As pointed out by Falconer (1981), heritability is a property not only of a character, but also of the population and of the environmental circumstances to which the individuals are subjected. Whenever a value is stated for the heritability of a given character, it refers to a particular population under particular circumstances. Particular populations where fixation has taken place are expected to show lower heritabilities than non-fixed populations. The characters with the lowest heritabilities are those most closely connected with reproductive fitness (Falconer 1981).

Heritability is estimated as the degree of resemblance between relatives. The choice of what sort of relatives to use depends on the circumstances. The heritability can be calculated using parent-offspring regressions, sib analysis, or through selection responses. Here, a half-sib analysis was used before and after the selection regime and realized heritability estimates were calculated from the selection experiments.

The basic effect of selection is to change the array of gene frequencies, as described in Falconer (1981, Chapter 2). When dealing with a metric character, however, the changes in the gene frequencies are hidden from view. The effects of selection are restricted mainly to changes in the population mean. Artificial selection produces a change of the gene frequencies by selecting individuals which differ in the expression of the character under selection. The

T

measure of the selection applied is called the selection differential, S: the difference between the mean phenotypic value of the selected parents and the mean of the whole parental population before selection. The change produced in the population mean is the response to selection, R: the difference between the mean phenotypic value of the offspring of the selected parents and the mean of the parental generation before selection. The relationship between the response and the selection differential is given by:

$$R = h^2 S.$$
 7.2

The ratio of response to selection differential is thus equal to the heritability (Falconer 1981).

Three B populations, $B_{1->3}$, and three O populations, $O_{1->3}$, were subject to selection for two different characters, early fecundity and starvation resistance, respectively. The rationale for this is that B stocks have enhanced early fecundity relative to O stocks (Rose 1984a), while O stocks have enhanced starvation resistance relative to B stocks (Service et al. 1985). More extreme differentiation is thereby obtainable by selecting further. in those directions. In addition, since there is a negative additive genetic correlation between these characters of large magnitude, -0.913 (Service and Rose 1985), selecting up on fecundity should depress starvation resistance and conversely. The O populations were therefore selected upward for starvation resistance and the B populations were selected upward on 24-hour fecundity. Selecting upwards on both characters avoids the possibility of inadvertent selection for generally deleterious alleles, as could happen with downward selection. Thus, the high fecundity/low starvation resistance alleles can be selected for by artificial selection for increased fecundity. The high starvation resistance/low fecundity alleles can be selected for by artificial selection for increase starvation resistance.

7.2 Experimental Procedure

Half-Sib Heritability Experiments

a) Before selection

Experimental flies were derived from the $B_{1->3}$ and $O_{1->3}$ populations. In the B populations, flies were collected between 3 and 4 days after eclosion. Two hundred and sixty sets of 3 males and 3 females were established for each population. Each set was put in a yeasted charcoal vial for approximately 24 hours, at which time 30 eggs from each vial were transferred to 260 new vials containing banana-agar media.

When the adult flies began emerging 8->9 days later, 50 males (sires) and 600 females (dams) were collected as virgins. Fifty groups of 12 dams and 1 sire were randomly

80

ř

mated for each population. These were left for 3 days to ensure male mating success. Subsequently, males were discarded and individual females were placed in separate vials containing charcoal media, family groupings conserved. After 48 hours of laying, 30 eggs from each female were transferred to rearing tubes containing banana media. (Vials in which females had laid less than 26 eggs were discarded in order to reduce the potential for confounding results due to different larval densities, as were entire families if less than 6 females had succeeded in laying the required number of eqgs.) Adult flies emerging within vials were full-sibs (these were also discarded if less than 10 flies emerged). Adult flies from different vials within the family groupings were half-sibs (they have the same sire but different dams). One full subling of each sex from each vial within all families was assayed for starvation resistance, with 6-hour check intervals.

Identical procedures were followed with the O populations except that the initial egg collection was sampled from four petri dishes containing yeasted charcoal media which had been placed in the population cages for 24 hours. The replicate B populations were offset in experimental handling times by 2 days from each other; the O populations were treated identically but assays began 1 week later than for the B lines.

T

b) After selection

Experimental procedures for estimating heritability after selection were identical with those of the original estimates. Replicate selected $B_{1->3}$ and $O_{1->3}$ lines, renamed $F_{1->3}$ and $S_{1->3}$, respectively (where F stands for fecundity selection and S stands for starvation resistance selection) were derived after 21 generations of selection in the F's and 22 generations of selection in the O's.

Differences in procedure were as follows. Firstly, the F_1 population flies died off more quickly than had been expected when subjected to starvation, hence checks for the F_2 and F_3 populations were conducted every 3 hours as opposed to every 6. Secondly, egg viability in many cases was severely reduced, hence the total number of families per replicate was lower. Thirdly, 24-hour fecundity was assayed as well as starvation resistance.

¥,

Selection Experiments

Experimental flies were derived from the $O_{1->3}$ and $B_{1->3}$ stock populations, as described in the Heritability experiments. Each replicate was created with 250 vials, with a two-generation run-in at a controlled density of 30 eggs per vial. For both the O's and the B's, selection proceeded with control lines matched to each of the selection lines for the first 11 generations in B_1 and B_3 , the first 14 generations in E_2 , and the first 13 generations in $O_{1->3}$. Over that same period, 250 flies (or pairs of

flies in the case of starvation resistance) were assayed for the selected character from each selected line in each generation, while 120 were assayed from each control line. The character which was **not** selected was also observed in 120 flies from both selected and control lines. Both selected and control lines were maintained using 50 separately reared couples as parents of the next generation, the control-line parents being chosen at random. The selected-line parents were chosen from those individuals in the top 50 of their generation. While starvation resistance was not selected in B-derived lines, and fecundity was not selected in O-derived lines, both characters were monitored in both sets of selection lines. The control lines were discarded after 13 generations, but selection was continued for another 12 generations, at reduced intensity (90 selected out of 160). These later generations of selection cannot, because of the lack of controls, be used for quantitative genetic hypothesis testing. Selection was continued in order to produce more extremely differentiated The total number of observations made in the course stocks. of all the selection experiments exceeded 70,000.

The lines eventually produced by selection for fecundity are designated "F" lines. The lines eventually produced by selection for starvation resistance are designated "S" lines (Figure 7.1).

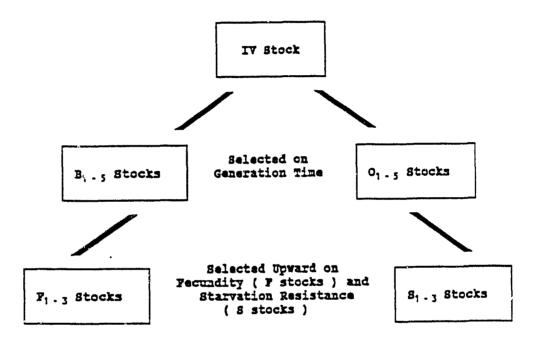


Figure 7.1. Creation of Short-Lived (B), Long-Lived (O), and their derived selected populations (F and S, respectively).

19¹²

Т

-

-

Ħ

84

7.3 Statistical Analysis

Half-Sib Heritability

The estimation of the heritability from half-sibs is made with an Analysis of Variance. The phenotypic variance is divided into components attributed to differences between the progeny of different males (the between-sire component) and to differences between the progeny of females mated to the same male (the within-sire component). There are s sires each mated to k dams. The values of the mean squares are denoted by MS_s and MS_e .

The mean square within sires, MS_e , is the estimate of the within-sire variance component, σ_e^2 . The mean square between sires, MS_s , however, is not the variance component, its composition being equal to $\sigma_e^2 + k \sigma_s^2$. Therefore, the between-sire variance component is estimated as (Falconer 1981):

$$\sigma_{s}^{2} = (1/k) (MS_{s} - MS_{e}).$$
 7.2

If there are unequal numbers of dams within the sire groups, as in the present experiments, the exact solution for k, the average number of dams is:

$$k = (1/(s-1))(N - (\Sigma n_1^2/N)), \qquad 7.3$$

where s equals the number of sires, n_i equals the number of dams of the ith sire, and N equals the total number of dams $(N = \Sigma n_i)$ (Turner and Young 1969). The estimation of the heritability is:

$$h^{2} = \frac{4\{(MS_{s} - MS_{e})/k\}}{MS_{e} + (MS_{s} - MS_{e})/k}$$
7.4

The standard error of h^2 can be calculated as 4 times the standard error of the intraclass correlation. The intraclass correlation, t, is calculated as:

$$t = \frac{(MS_s - MS_e)/k}{MS_e + (MS_s - MS_e)/k}$$
 7.5

and standard error of the intraclass correlation is:

$$S_{t} = \frac{\{1 + (k-1)t\} (1-t)}{\{1/2 \ (k) (k-1) (s-1)\}^{2}}, \qquad 7.6$$

where k and s are the average number of dams per sire and the total number of sires, respectively (Turner and Young 1969).

Realized Heritability

Realized heritability was calculated as the regression of cumulative response on cumulative selection differential. Estimates for cumulative response were calculated using the

N.

differences between the selected groups and the control groups and then summed over successive generations. The constitution differential is the selection differential in each generation summed over successive generations.

7.4 Results

Heritability Estimates

a) Before selection

The initial heritability estimates for Female Starvation and Male Starvation in $B_{1->3}$ and $O_{1->3}$ are presented in Table 7.1. The mean heritabilities \pm standard error in the B populations are 0.747 ± 0.325 for Female Starvation and 0.177 ± 0.118 for Male Starvation. In the O populations the mean heritabilities are 0.842 ± 0.273 and 0.592 ± 0.279 for Female and Male Starvation, respectively.

b) After selection

Heritability estimates for Female Starvation and Male Starvation in $F_{1->3}$ and $S_{1->3}$ are presented in Table 7.2. The mean heritabilities \pm standard error in the F p-ulations are 0.485 \pm 0.020 for Female Starvation and 0.307 \pm 0.058 for Male Starvation. In the S populations the mean heritabilities are 0.516 \pm 0.205 and 0.463 \pm 0.057 for Female and Male Starvation, respectively. 大学がく うくちょう

Populatio Type	n Character		1		Line	(Me 2	an <u>+</u>	SEM)	3	-
В	Female Starvation	0.47	<u>+</u>	0.18	1.40) ±	0.25	0.38	± 0.16	5
В	Male Starvation	0.00	<u>+</u>	0.11	0.40) ±	0.16	0.14	<u>+</u> 0.13	3
0	Female Starvation	0.68	<u>+</u>	0.19	1.37	′±	0.31	0.47	<u>+</u> 0.17	7
0	Male Starvation	0.38	<u>+</u>	0.15	1.15	۶±	0.30	0.25	<u>+</u> 0.14	1

Į

· |

Table 7.1	: He	: Keritabilities		elected	Characters	in
В	and C	Populations	Pafo	re Selec	tion	

Populatic Type	n Character	1	Line (Mean <u>+</u> S 2	3 3
F	Female Starvation	0.50 <u>+</u> 0.18	0.45 <u>+</u> 0.18	0.51 <u>+</u> 0.19
F	Male Starvation	0.34 <u>+</u> 0.16	0.39 <u>+</u> 0.17	0.20 <u>+</u> 0.14
F	Fecundity	0.24 <u>+</u> 0.14	0.35 <u>+</u> 0.17	0.27 ± 0.16
S	Female Starvation	0.78 ± 0.20	0.11 <u>+</u> 0.14	0.65 <u>+</u> 0.21
S	Male Starvation	0.57 <u>+</u> 0.18	0.37 <u>+</u> 0.18	0.45 <u>+</u> 0.18
S	Fecundity	1.27 <u>+</u> 0.24	0.92 <u>+</u> 0.25	0.07 <u>+</u> 0.14

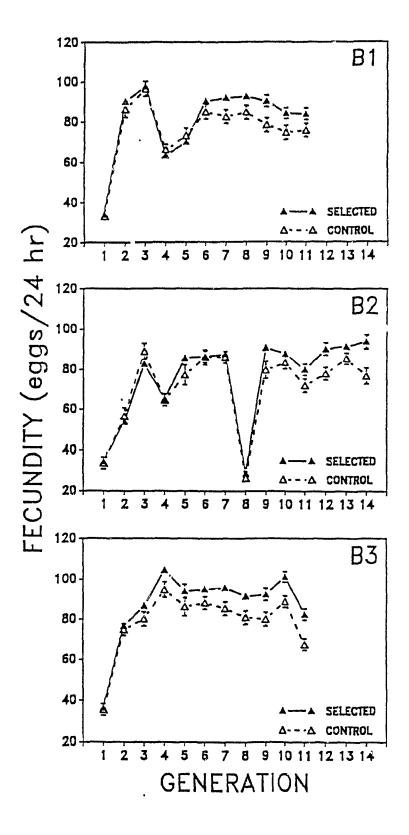
Table 7.2 : Heritabilities of Selected Characters in F and S Populations After 25 Generations of Directional Selection

~ .--

-- --

,

I.


Table F.1 (Appendix F) presents the analysis of the effects of the selection process on the heritability estimates. There was no significant reduction in the heritabilities of Female Starvation or Male Starvation , in the B to F selection regime. Nor was there a reduction in the heritabilities of Female Starvation or Male Starvation in the O to S selection regime.

Heritability estimates for 24-hour fecundity in the $F_{1->3}$ and $S_{1->3}$ lines are also presented in Table 7.2. The mean heritabilities \pm standard error are 0.287 \pm 0.033 and 0.755 \pm 0.356 in the F and S lines, respectively.

<u>B -> F Selection Experiments</u>

a) With controls: generations 1->11 (14 in B_2)

Figure 7.2 shows the direct response to selection for increased 24-hour fecundity in the three B replicates. In these graphs and those which follow, the selected group is represented by solid triangles connected by a solid line, the control group by empty triangles connected by a dashed line. The 95% confidence intervals are shown around the mean 24-hour fecundity for generations 1 through 12 in B_1 and B_3 and generations 1 through 14 in B_2 . The selected and control lines start to diverge in the second generation. A mixed model ANOVA of the last 6 generations with controls shows significant differences between selected and control

<u>م</u>

Figure 7.2. Direct response of the three B populations to selection for increased early fecundity.

groups (F = 199.87^{**} for Fecundity, F = 275.64^{**} for Conditional Fecundity (Table F.2)).

Figure 7.3 plots the cumulative response on the cumulative selection differential, the regression being shown as the dashed line. The slope of the regression is the realized heritability (Table 7.3). The mean \pm SEM of the realized heritability of early fecundity in the three lines is 0.058 \pm 0.001.

The indirect response of female starvation time to selection on 24 hour fecundity is shown in Figure 7.4. Although not as striking as the direct responses, these indirect responses are significant in a mixed model ANOVA $(F = 15.83^{**}, Table F.3).$

b) Without controls: generations 1->25

After 11 generations in replicates B_1 and B_3 and 14 generations in B_2 the paired controls were no longer used. The direct responses to selection for increased fecundity for all 25 generations are shown in Figure 7.5. As is clear in the figure, the mean fecundity in each generation is seen to increase throughout the experiment.

<u>O -> S Selection Experiments</u>

a) With controls: generations 1->13Figure 7.6 shows the direct response to selection for



Figure 7.3. Regression of selection response on the cumulative selection differential for selection on early fecundity in the three B populations.

Replicate	Slope <u>+</u> SEM
1	0.058 <u>+</u> 0.020
2	0.060 <u>+</u> 0.013
3	0.055 <u>+</u> 0.009
Mean	0.058 <u>+</u> 0.001

- 4

おうれた ちょうにんち やちをある

1

udurat for a

È

Table 7.3 : Realized Heritabilities for Selection on Early Fecundity in the Three B Populations

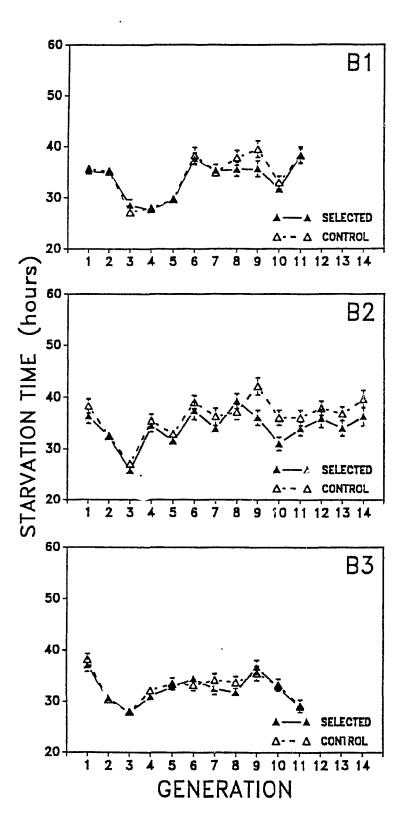


Figure 7.4. Indirect response of mid-parent starvation resistance to selection for increased early fecundity in the three B populations.

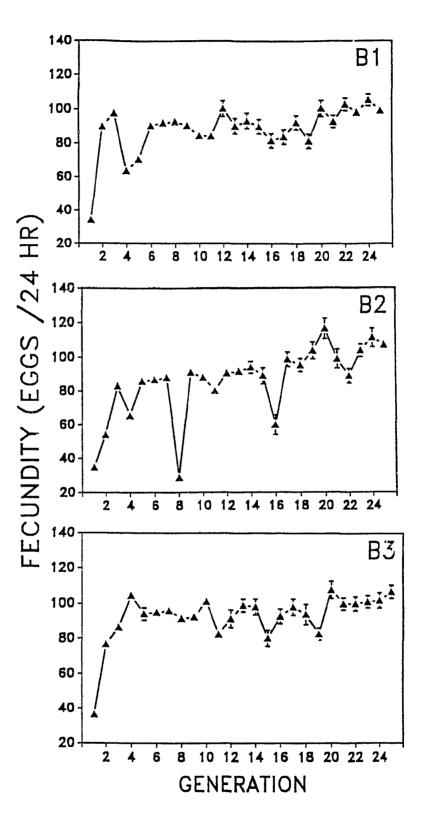
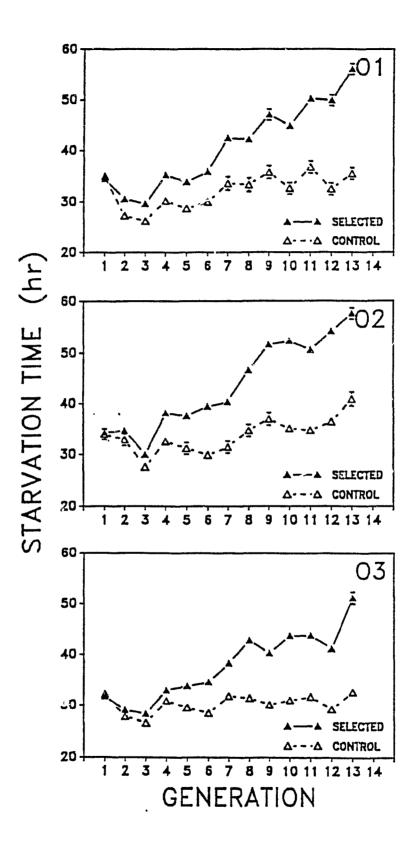



Figure 7.5. Direct response of the three B populations to selection over 25 generations for increased early fecundity.

1

I

Figure 7.6. Direct response of the three O populations to selection for increased starvation time.

increased starvation time in the three O replicates. As before, solid triangles and empty triangles signify the selected and control groups. The 95% confidence intervals are shown around the mean mid-parent starvation time for generations 1 through 13. Some points appear not to have the 95% confidence intervals. This is caused by the interval being smaller than could be graphed. As with the B lines, the selected and control lines diverge in the second generation. After 13 generations there was an increase of 68% in the mid parent starvation time in the selected lines. An ANOVA of the last 6 generations (8 through 13) shows significant differences between the selected and control groups, (F = 584.93^{**} for Female Starvation, F = 679.88^{**} for Male Starvation, F = 841.41 for Mid-Parent Starvation (Table F.4)).

Figure 7.7 plots the cumulative response on the cumulative selection differential for starvation in the three 0 lines. The realized heritabilities, the slopes of the regression, are presented in Table 7.4. The mean and standard error of the heritability in the three lines is 0.172 ± 0.012 .

The indirect response of 24-hour fecundity to selection on mid-parent starvation time is shown in Figure 7.8. These indirect responses are significant (F = 36.84^{**} for Fecundity, F = 39.12^{**} for Conditional Fecundity (Table F7)) with the selected groups having lower fecundities than their

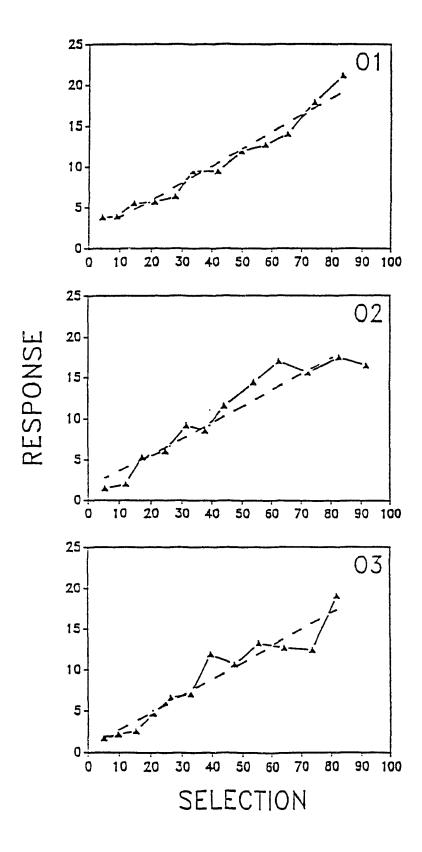


Figure 7.7. Regression of selection response on the cumulative selection differential for selection on starvation time in the three O populations.

99

Ante, outern

. . . .

そういんがある 二日 二日の 天代の

,4

Replicate		Slope <u>+</u> SEM	
	Female	Male	Mid-Parent
<u></u>	<u> </u>		
1	0.293 <u>+</u> 0.016	0.144 ± 0.013	0.209 ± 0.013
2	0.211 ± 0.019	0.188 <u>+</u> 0.026	0.196 <u>+</u> 0.020
3	0.251 <u>+</u> 0.020	0.174 <u>+</u> 0.024	0.204 <u>+</u> 0.020
Mean	0.252 ± 0.024	0.169 <u>+</u> 0.013	0.203 <u>+</u> 0.004

Table	7.4	:	Rea	alized	l He	erita	abilit	ies	for	Selection	on
	Starv	ati	lon	Time	in	the	Three	0	Popul	lations	

No. And

k

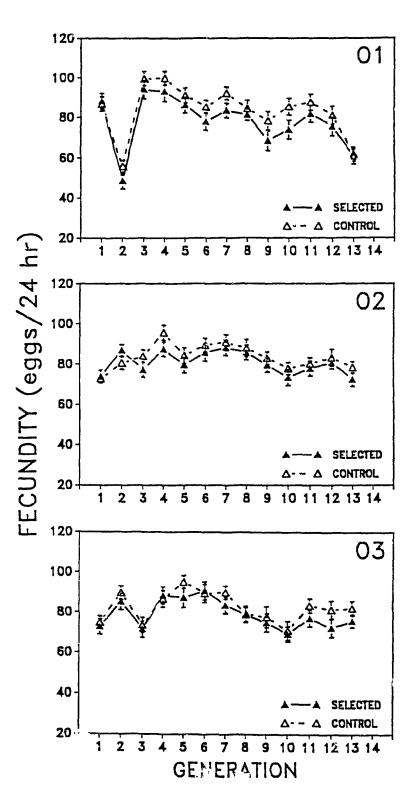


Figure 7.8. Indirect response of early fecundity to selection for mid-parent starvation time in the three 0 populations.

~ ~

paired controls.

b) Without controls: generations 1->25

After 13 generations of selection the paired control groups were no longer used. The direct responses to selection for increased starvation time are shown in Figure 7.9. Again, 95% confidence intervals are plotted about the mean but in some cases they are too small to show.

7.5 Discussion

These selection experiments were an attempt to fix the extreme alleles of high fecundity/low starvation resistance in the B populations and low fecundity/high starvation resistance in the O populations. Heritability experiments before selection showed that there was abundant genetic variance for starvation resistance in both the B and the O populations. The strong selection applied resulted in a 58% increase in starvation time in the O lines and a 15% increase in fecundity in the B lines. However, even with this level of response, over 25 generations, the additive genetic variance did not seem to decrease, as shown by the heritability estimates after selection. The lines, therefore, do not seem to have been pushed towards fixation. However, these lines are considerably farther apart after selection, offering some hope of clearer results from population crosses.

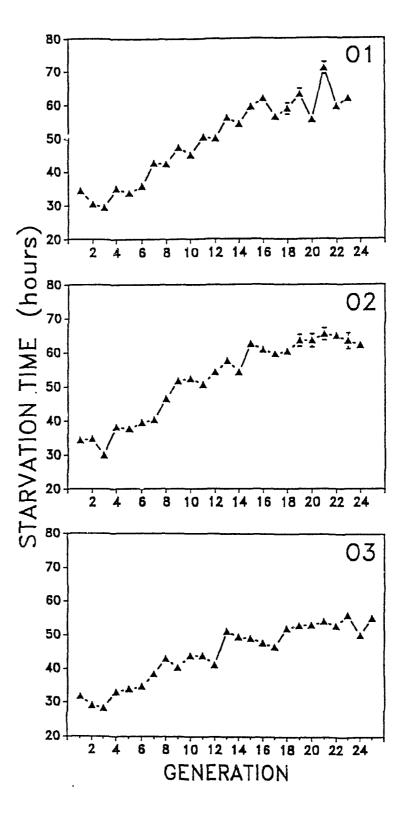


Figure 7.9. Direct response of the three O populations to selection over 25 generations for increased starvation time.

ł

There was a large discrepancy between the heritability estimates arrived at using the half-sib method and using the realized heritability method. In general this is probably due to the difficulty in getting reliable estimates with the half-sib analysis. There are many cases in the literature where theoretically impossible heritabilities are estimated, that is, heritabilities which are negative or which are greater than one.

Realized heritability estimates do not necessarily provide . . . estimates of the heritability either. As noted by Falconer (1981), systematic changes due to environmental trends, inbreeding depression, or random drift will confound the response to selection. However, these were probably not important in the selection experiments due to the use of comparisons with control lines, which would account for environmental trends and inbreeding depression, and also due to the three-fold replication of the selection, which would allow detection of random drift.

The lack of fixation in the presence of such a strong response to selection could be due to many factors:

1) The appearance of mutations favored under artificial selection.

2) The decrease in linkage disequilibrium resulting from renewal recombination between alleles (unlikely since it was shown in Chapter 4 that linkage disequilibrium was not detectable).

3) The effects of confounding environmental factors (unlikely since the experiments were well controlled with respect to environmental ______.

4) The opposing action of natural and artificial selection.

5) The presence of many genes involved in the determination of the characters.

The simplest explanation is of course the fifth, the presence of many genes. Selection limits are less readily obtained the greater the number of loci involved (Falconer 1981). Further, in combination with the fourth factor, if several genes are implicated in the control of survivorship and fertility, differential responses of these loci to the actions of artificial and natural selection may be generated, resulting in the maintenance of genetic variability. PART IV

ANALYSIS OF SELECTED (F and S) POPULATIONS

٨

ø

.

CHAPTER 8

Diallel Analysis of F and S Populations

.

,

4

.

1

, ,

ì

;

8.1 Introduction

The same principles of diallel analysis as those described in Chapter 3 were practiced. As before, there are three separate questions which are addressed in the present diallel analysis. Firstly, to what extent are the lines within a given stock-type differentiated from each other? Secondly, to what extent do maternal effects outweigh paternal effects, within stock-types? Thirdly, is there any evidence for heterosis, or, conversly, inbreeding depression, in crosses between lines within stock-types?

8.2 Experimental Procedure

Again, the experiments were coded: D in the first position indicating a diallel design; F or S in the second position indicating the nature of the populations analyzed; and the third position numeral indicating the particular experiment. Table 8.1 and Table 8.2 give the experiment codes, the characters assayed, the number of populations assayed, and the number of individuals assayed. In the DF1 and DS1 experiments, reciprocal crosses were not followed. The DF2 and DS2 experiments were performed in order to remedy this deficiency. The DF3 experiment was performed because of a lack of numbers in some of the cells of experiment DF2.

Exper	iment Character Assayed	Populat: A3sayed Characte	per	Mean Number Assayed per Population	Total Number Assayed
DF1			_		
	Fecundity	3+3 =	б	60.0	360
	Conditional Fe	cund. $3+3 =$	6	59.5	357
DF2					
	Fecundity	3x3 =	9	30.9	278
	Conditional Fe	cund. $3x3 =$	9	29.7	267
	Female Starvat	ion 3x3 =	9	34.0	306
	Male Starvation	n 3x3 =	9	34.0	306
DF3					
***	Fecundity	3x3 =	9	51.9	467
	Conditional Fe	cund. 3x3 =	9	50.7	456
	Female Starvat	ion 3x3 =	9	52.4	472
	Male Starvation	n 3x3 =	9	52.3	471
Tc	otal		84		3,740

Table 8.1 : F Diallel Experiments

p-stag

.

panajaria Mil

L

\$

,

Experi	ment	Character Assayed	Popu Assa Char	ye	d	per	Mean Number Assayed per Population	Total Number Assayed
<u>DS1</u>								
	Fecu	ndity	3+	3	=	6	59.7	358
	Cond	itional Fecuno	1. 3+	3	=	6	54.7	348
DS2								
	Fecu	ndity	3x	3	=	9	46.1	415
	Cond	itional Fecuno	d. 3x	:3	=	9	43.9	395
	Fema	le Starvation	3x	3	=	9	47.8	430
	Male	Starvation	33	:3	=	9	47.6	428
То	tal					48		2,374

1

ţ

Table 8.2 : S Diallel Experiments

8.3 Results and Discussion

The summary statistics for each character in each experiment are given in Appendix G, Tables G1 through G16. The order of these tables follows the order of the experiments and the characters within the experiments as presented in Tables 8.1 and 8.2. The corresponding detailed analysis for each character in each experiment is given in Appendix H, Tables H1 through H16. As before, the results will be addressed with respect to the three questions stated above.

The results of the analysis of F and S lines for line effects are presented in Table 8.3. There is little evidence for consistent between-line heterogeneity. Table 8.4 contains the analysis of maternal versus paternal contribution. In none of the experiments was there a significant result. As to the heterosis question, Table 8.5 shows that in only one experiment (DF2) and for only one character (female starvation) was there any evidence of inbreeding depression. The other 15 assays do not show a significant result. [The missing columns in Tables 8.4 and 8.5 arise from the lack of reciprocal crosses in DF1 and DF2, as discussed in the Experimental Procedure section.] As in the diallel analysis of B and O stocks, in Chapter 3, these F and S diallels exhibit simple additive inheritance.

Character ExperimentLine of FFecundityDF20.34DF31.60DS21.32Conditional Fecundity	of Mother SIG. 0.730 0.390 0.364 lity	Line o F 0.90 1.75 0.71	ANOVA f Father SIG. 0.477 0.284 0.545	Combin F 0.58 2.00	ed Effect SIG. 0.694 0.259
DF2 0.34 DF3 1.60 DS2 1.32	0.390 0.364	1.75	0.284		
DF2 0.34 DF3 1.60 DS2 1.32	0.390 0.364	1.75	0.284		
DF3 1.60 DS2 1.32	0.390 0.364	1.75	0.284		
DS2 1.32	0.364			2.00	0 259
		0.71	0 545		0.237
Conditional Fecund	litv		0.345	1.04	0.484
DF2 1.15	0.403	2.00	0.445	1.24	0.420
DF3 1.63	0.303	1.93	0.258	2.11	0.244
DS2 0.97	0.454	1.25	0.380	0.94	0.523
Female Starvation					
DF2 2.58	0.191	0.20	0.830	1.47	0.360
DF3 0.41	0.691	0.03	0.966	0.21	0.922
DS2 0.92	0.468	0.43	0.675	0.82	0.573
<u>Male_Starvation</u>					
DF2 0.26	0.784	0.14	0.870	0.15	0.953
DF3 7.37	0.046*	4.77	0.087	5.83	0.058
DS2 1.35	0.356	0.17	0.847	0.82	0.573

Table 8.3 : F and S Diallel Line Differentiation

. . . .

ļ

Character			ANOVA		
Experiment	Met F	hod 1 SIG.		Met F	hod 2 SIG.
Fecundity					
DF1	7.15	0.123			
DF2	0.38	0.724		0.11	0.898
DF3	0.91	0.523		1.55	0.393
DS1	0.79	0.557			
DS2	1.86	0.350		0.06	0.942
Conditional Technolity					
Conditional Fecundity					
DF1	2.95	0.253			
DF2	1.15	0.465	(0.33	0.751
DF3	0.85	0.542	:	1.38	0.420
DS1	1.18	0.460			
DS2	0.78	0.563	(0.03	0.976
Female Starvation					
DF2	13.21	0.070	:	1.04	0.489
DF3	11.79	0.078	!	5.56	0.153
DS2	2.13	0.320	4	0.86	0.538
Male Starvation					
DF2	1.80	0.357	(0.42	0.703
DF3	1.50	0.393	:	1.30	0.435
DS2	7.78	0.114	:	2.08	0.325

Table 8.4 : F and S Liallel Maternal Effects

١

• 1

Character		T-TE:	रक		ANC	0772
<u>UNAL ACCEL</u>	Separ	ate Var.		ed Var.	ANC	VVA
Experiment	т	SIG.	т	SIG.	F	SIG.
Fecundity				<u></u>		
DF1			0.62	0.567	0.39	0.567
DF2	0.30	0.775	0.27	0.795	0.06	0.809
DF3	0.31	0.784	0.37	0.721	0.14	0.723
DS1			2.51	0.066	6.27	0.066
DS2	1.65	0.198	1.68	0.138	3.08	0.123
<u>Conditional</u>	Fecund	ity				
DF1			0.17	0.873	0.03	0.872
DF2	0.04	0.975	0.04	0.970	0.001	0.978
DF3	0.39	0.737	0.45	0.666	0.21	0.663
DS1			2.51	0.066	6.36	0.065
DS2	1.71	0.138	1.31	0.233	2.24	0.178
<u>Female Starv</u>	<u>vation</u>					
DF2	0.72	0.524	0.73	0.487	0.51	0.500
DF3	3.32	0.016*	2.62	0.034*	9.58	0.017*
DS2	0.59	0.589	0.58	0.581	0.36	0.566
<u>Male_Starvat</u>	ion					
		0 165	1 63	0 149	2 04	0.130
DF2	1.70	0.165	1.63		2.94	
DF3	0.90	0.401	0.71	0.502	0.68	0.436
DS2	0.13	0.909	0.13	0.899	0.12	0.896

Table 8.5 : F and S Diallel Heterosis Effects

ł ş ļ

ł

Ţ

CHAPTER 9

;

1

.

.

÷

7

Transmission Patterns of F and S Populations

9.1 Introduction

These F and S transmission pattern experiments follow the same protocol as the B and O transmission experiments. The F and S stocks were crossed between lines, F_1 with S_1 , F_2 with S_2 , etc. The parental populations as well as both the reciprocal cross populations of the F_1 hybrids were then assayed for six characters (fecundity, conditional fecundity, female starvation resistance, male starvation resistance, female longevity, and male longevity). As before, three features of the transmission data are of importance: (i) documentation of the parental line (F & S) differences; (ii) maternal effects, as measured by differences between two reciprocal cross means; and (iii) average dominance, as measured by the deviation of the crosses from the mid-parent value.

9.2 Experimental Procedure

The series of experiments on transmission patterns in the F and S stocks is outlined in Table 9.1. These experiments are coded with "FS" in the first two positions, indicating crosses of F and S populations. The numerals then refer to the sequence of experiments. In experiments FS1 and FS4, larvae were reared at a density of 90/vial. In experiments FS2, FS3, and FS5, larvae were reared at 30/vial. Experiments FC2 and FS3 were parts of repeated

Exper	iment	Character Assayed	Populations Assayed per Character	Mean Number Assayed per Population	Total Number Assayed
<u>FS1</u>					
	Fecu	ndity	4x3 = 12	66.8	801
	Cond	itional Fecund	4x3 = 12	65.3	783
	Fema	le Starvation	4x3 = 12	71.5	858
	Male	Starvation	4x3 = 12	71.9	863
	Fema	le Longevity	3x3 = 9	98.0	882
	Male	Longevity	3x3 = 9	97.6	878
FS2					
	Fecu	ndity	4x3 = 12	68.3	820
	Cond	itional Fecund	• $4x3 = 12$	66.9	803
	Fema	le Starvation	4x3 = 12	70.4	845
	Male	Starvation	4x3 = 12	70.5	846
FS3					
100	Fecu	ndity	4x3 = 12	70.2	842
	Cond	itional Fecund	.4x3 = 12	68.5	822
	Fema	le Starvation	4x3 = 12	70.2	842
	Male	Starvation	4x3 = 12	70.1	841
	Fema.	le Longevity	3x3 = 9	98.4	886
	Male	Longevity	3x3 = 9	98.3	885

Table 9.1 : F and S Crossing Experiments

夜

A COMPANY AND A COMPANY

ł

Experi	ment Character Assayed	Populations Assayed per Character	Mean Number Assayed per Population	Total Number Assayed
FS4				
	Fecundity	4x3 = 12	69.3	832
	Conditional Fecund	4x3 = 12	68.3	820
	Female Starvation	4x3 = 12	70.9	851
	Male Starvation	4x3 = 12	70.9	851
	Female Longevity	4x3 = 12	58.3	699
	Male Longevity	4x3 = 12	58.0	696
FS5				
100	Fecundity	4x1 = 4	59.0	236
	Conditional Fecund	4x1 = 4	57.8	231
	Female Starvation	4x1 = 4	60.0	240
	Male Starvation	4x1 = 4	60.0	240
	Female Longevity	4x1 = 4	60.0	240
	Male Longevity	4x1 = 4	60.0	240
То	tal	276	9.09-99-9 <u>-</u> 00-9-9-44-90-9-9-48-93-9	19,373

.

.

.

Table 9.1 - continued : F and S Crossing Experiments

gene number estimation experiments. In experiment FS5, synthetic crosses was performed involving all F or all S lines, to create multiple-hybrid F and S populations. These two populations were then crossed to test for their transmission patterns.

9.3 Results and Discussion

The summary statistics for each character in each experiment are given in Appendix G, Tables G1 through G34, and the corresponding detailed analysis for each character in each experiment is given in Appendix H, Tables H1 through H34.

With the more differentiated F and S lines, there is the prospect of greater clarity in the transmission pattern results. Table 9.2 presents the summary of the analysis of the FF - SS difference data. Most of the tests for significant differentiation of F and S populations yield statistical significance, particularly those for fecundity. Most of the tests for maternal effects, Table 9.3, and average dominance, Table 9.4, give non-significant results. Taken together with the diallel results, the F and S lines also provide strong support for the existence of roughly additive inheritance, without maternal effects or dominance effects, averaged over all loci.

Charact	<u>ter</u>	Mea	n <u>+</u> S.E.	T-TI	EST	ANOVA
Expt.		F	S	Indep. T	Paired T	F
Fecund	<u>ity</u> (e	ggs /	24 hours)			
FS1	77.0	<u>+</u> 2.7	54.5 <u>+</u> 1.8	6.95**	17.66**	310.58**
FS2	92.6	<u>+</u> 5.7	72.6 <u>+</u> 5.3	2.55	18.10**	332.69*7
FS3	106.7	± 5.1	80.6 <u>+</u> 1.5	4.88**	6.75*	50.06*
FS4	88.4	± 4.3	72.1 ± 2.7	3.18*	9.55*	90.66*
FS5	122.3	± 3.3	100. <u>+</u> 2.7			27.38*
<u>Condit</u> FS1			<u>lity</u> (eggs / 24 2 57.2 <u>+</u> 1.8	طه مله	32 . 84**	1070.32*
			73.3 ± 5.0			116.40*
FS3		_	5 83.9 <u>+</u> 1.9		15.27**	259.25*
FS4	90.2	<u>+</u> 4.9	5 72.9 <u>+</u> 3.1	3.19*	12.49**	150.59**
FS5	125.5	<u>+</u> 2.4	102.5 <u>+</u> 2.1			51.05*
Female	Starv	ation	(hours)			
FS1	35.3	<u>+</u> 2.0	67.4 ± 7.0	4.42*	3.60	13.02
FS2	32.0	<u>+</u> 8.7	39.5 <u>+</u> 3.9	0.79	0.66	0.42
FS3	25.5	± 1.3	47.3 <u>+</u> 6.2	3.47*	3.62	11.55
FS4	38.7	<u>+</u> 3.9	65.7 <u>+</u> 4.4	3.78*	6.50*	45.41*
FS5	31.7	+ 0.9	51.2 <u>+</u> 1.6			114.39*

-

ł

* * *

٠

1 1

1

a we want there is an

Table 9.2 : F and S Differences

Character		Mean <u>+</u> S.E.		T-TEST		ANOVA	
Expt	F		S		Indep. T	Paired T	F
Male	Starvation	<u>n</u> (hours	5)				
FS1	24.2 <u>+</u>	1.7	51.7 <u>+</u>	5.4	4.89**	4.71*	22.15*
FS2	23.9 <u>+</u>	7.3	32.8 <u>+</u>	4.5	1.03	0.78	0.59
FS3	18.5 <u>+</u>	0.8	39.3 <u>+</u>	5.4	3.82*	3.90	13.22
FS4	25.0 <u>+</u>	2.2	48.7 <u>+</u>	4.4	10.09**	4.88*	106.33**
FS5	24.5 <u>+</u>	0.7	40.4 <u>+</u>	1.4			108.68**
<u>Femal</u>	<u>e Longevit</u>	<u>y</u> (days	5)				
FS1	35.9 <u>+</u>	1.1	53.8 <u>+</u>	4.9	3.52*	3.10	9.64
FS3	32.1 <u>+</u>	3.3	49.6 <u>+</u>	2.7	4.09*	3.78	14.28
FS4	33.9 <u>+</u>	0.9	50.9 <u>+</u>	1.7	8.49**	11.15**	123.46**
FS5	36.3 <u>+</u>	1.4	46.2 <u>+</u>	1.9			17.98**
Male	Longevity	(days)					
FS1	34.4 <u>+</u>	2.2	53.9 <u>+</u>	2.1	6.36*	8.68**	74.91*
FS3	31.6 <u>+</u>	1.3	47.5 <u>+</u>	0.4	15.08**	23.59**	556.63**
FS4	32.2 <u>+</u>	2.7	52.9 <u>+</u>	1.1	7.08**	5.76*	33.33*
FS5	31.8 <u>+</u>	1.3	49.0 <u>+</u>	1.9			55.39**

,

Table 9.2 continued : F and S Differences

1. 1. 1. I.

おうちょう ちょうち ちょうちょう

÷

Charac	ter Mean	Mean <u>+</u> S.E.		T-TEST	
Expt.	FS	SF	Indep. T	Paired T	F
Fecund	ity (eggs / 2	4 hours)			<u></u>
FS1	68.4 <u>+</u> 4.5	65.5 <u>+</u> 5.1	0.43	2.39	0.14
FS2	85.2 <u>+</u> 6.6	88.2 <u>+</u> 3.0	0.41	0.69	0.49
FS3	101.2 <u>+</u> 3.7	101.1 <u>+</u> 4.5	0.04	0.09	0.01
FS4	76.2 <u>+</u> 6.8	76.7 <u>+</u> 3.4	0.08	0.17	0.03
FS5	116.6 <u>+</u> 4.4	114.0 <u>+</u> 3.9			0.20
<u>Condit</u>	ional Fecund	<u>ity</u> (eggs / 24]	nours)		
FS1	68.4 <u>+</u> 4.5	66.0 <u>+</u> 5.0	0.37	3.04	9.23
FS2	87.0 <u>+</u> 6.0	89.6 <u>+</u> 3.5	0.37	0.90	0.49
FS3	103.0 <u>+</u> 3.8	101.0 <u>+</u> 4.5	0.34	0.93	0.88
FS4	77.3 <u>+</u> 6.1	77.4 <u>+</u> 4.0	0.01	0.04	0.00
FS5	119.5 <u>+</u> 3.4	114.0 <u>+</u> 3.9		27 14	1.15
<u>Female</u>	Starvation	(hours)			
FS1	47.7 <u>+</u> 3.5	46.9 <u>+</u> 1.6	0.20	0.36	0.13
FS2	30.6 <u>+</u> 2.0	31.3 ± 3.2	0.17	0.55	0.31
FS3	34.0 <u>+</u> 4.8	35.6 <u>+</u> 4.2	0.81	1.51	2.21
FS4	51.4 <u>+</u> 2.5	55.4 <u>+</u> 4.7	0,75	1.75	3.08
FS5	35.4 <u>+</u> 1.3	34.1 <u>+</u> 1.4			0.48

Table 9.3 : F and S Maternal Effects

, ,

<u>Character</u> Mean <u>+</u> S.E.			T-TEST		ANOVA
Expt.	FS	SF	Indep. T	Paired T	F
Male St	tarvation (hou	rs)	<u>, , , , , , , , , , , , , , , , , , , </u>		
FS1	36.1 <u>+</u> 2.5	37.0 <u>+</u> 1.9	0.52	2.23	4.99
FS2	20.7 <u>+</u> 2.2	26.2 <u>+</u> 2.8	1.65	5.61*	30.39*
FS3	24.5 <u>+</u> 2.9	30.0 <u>+</u> 2.7	1.40	6.09*	38.29*
FS4	34.2 <u>+</u> 3.2	39.2 <u>+</u> 4.6	0.89	2.10	4.35
FS5	33.6 <u>+</u> 1.9	28.7 <u>+</u> 1.2			4.75
Female	Longevity (da	ys)			
FS4	44.4 <u>+</u> 0.9	42.3 <u>+</u> 2.1	0.92	1.75	3.04
FS5	42.0 <u>+</u> 1.5	41.5 <u>+</u> 2.3			0.09
<u>Male Lo</u>	ongevity (days)			
FS4	41.2 <u>+</u> 2.9	42.7 <u>+</u> 4.1	0.27	1.23	1.49
FS5	38.5 <u>+</u> 2.0	40.9 <u>+</u> 1.9		1000 (MY)	J.74

Table 9.3 continued : F and S Maternal Effects

7

Ţ

1

1

ŧ

ŀ :

* ..., **

.

gint all colors a tair gange

una ano

.

<u>Character</u> Mean <u>+</u> S.E.			T-TEST		ANOVA
Expt.	Parentals	Crosses	Indep. T	Paired T	F
Fecund	<u>ity</u> (eggs / 24	hours)			
FS1	65.7 <u>+</u> 2.2	66.9 <u>+</u> 4.7	0.23	0.47	0.22
FS2	82.2 <u>+</u> 5.8	86.7 <u>+</u> 4.7	0.60	1.73	2.93
FS3	91.6 <u>+</u> 4.0	101.1 <u>+</u> 4.0	1.69	2.08	4.49
FS4	80.7 <u>+</u> 3.1	76.5 <u>+</u> 5.0	0.73	^ .10	4.39
FS5	111.0 <u>+</u> 2.3	115.3 <u>+</u> 2.9			1.24
<u>Condit</u>	ional Fecundit	<u>cy</u> (eggs / 24 h	nours)		
FS1	67.8 <u>+</u> 2.0	67.2 <u>+</u> 4.7	0.13	0.25	0.06
FS2	84.0 <u>+</u> 4.8	88.3 <u>+</u> 4.7	0.63	1.91	3.67
FS3	94.7 <u>+</u> 3.4	102.0 <u>+</u> 4.0	1.38	2.14	4.71
FS4	82.0 <u>+</u> 3.3	77.3 <u>+</u> 5.0	0.78	2.75	7.54
FS5	113.9 <u>+</u> 1.9	116.7 <u>+</u> 2.6			0.81
<u>Female</u>	<u>Starvation</u> (h	nours)			
FS1	51.6 <u>+</u> 2.8	47.3 <u>+</u> 2.5	1.13	1.37	1.87
FS2	36.3 <u>+</u> 3.7	30.9 <u>+</u> 2.6	1.19	1.56	2.37
FS3	38.3 <u>+</u> 4.2	34.8 <u>+</u> 4.5	0.58	1.37	2.00
FS4	51.3 <u>+</u> 4.4	53.4 ± 3.6	0.38	0.92	0.86
FS5	41.4 <u>+</u> 1.2	34.8 <u>+</u> 1.0		ويتبة بنتي	13.43*

•1

.

1

Table 9.4 : F and S Average Dominance Effects

.

Charact	ter Mean	<u>+</u> S.E.	T-1	EST	ANOVA
Expt.	Parentals	Crosses	Indep. T	Paired T	F
<u>Male St</u>	tarvation (hour	cs)			
FS1	37.9 <u>+</u> 2.7	36.9 <u>+</u> 2.2	0.30	1.51	2.27
FS2	29.0 <u>+</u> 2.2	23.5 <u>+</u> 2.4	1.68	1.77	3.06
FS3	30.7 <u>+</u> 3.7	27.2 <u>+</u> 2.8	0.76	1.71	2.94
FS4	35.9 <u>+</u> 3.1	36.8 <u>+</u> 3.7	0.18	0.80	0.63
FS5	32.5 <u>+</u> 1.0	31.1 <u>+</u> 1.1			0.68
Female	Longevity (day	vs)			
FS1	45.0 <u>+</u> 2,2	45.3 <u>+</u> 4.1	0.08	0.16	0.03
FS3	40.7 <u>+</u> 2.0	47.6 <u>+</u> 2.9	1.93	3.85	14.83
FS4	42.5 ± 1.2	43.3 <u>+</u> 1.5	0.44	3.08	9.43
FS5	41.2 <u>+</u> 1.2	42.0 <u>+</u> 1.5			0.70
<u>Male Lc</u>	ongevity (days)				
FS1	44.2 <u>+</u> 1.9	43.5 <u>+</u> 1.5	0.32	1.57	2.46
FS3	36.9 <u>+</u> 0.9	42.8 <u>+</u> 2.0	2.21	4.29	18.29
FS4	42.5 <u>+</u> 1.0	41.9 <u>+</u> 3.5	0.15	0.20	0.04
FS5	40.3 <u>+</u> 1.3	39.7 <u>+</u> 1.4			0.77

J

Table 9.4 continued : F and S Average Dominance Effects

CHAPTER 10

Gene Number Analysis of F and S Populations

.)

Experiments were performed to estimate the number of "effective factors" (Lande 1981) involved in postponed aging. Effective factors are loci of "equivalent effect" that are responsible for the differentiation of a quantitative character between two populations.

10.2 Experimental Procedure

The basic estimators and design principles described in Chapter 5 were used again. As before, inverse effective factor estimates were used for hypothesis testing, because they do not have the problem of misleading biases when the F_2 variance is less than the F_1 variance. Table 10.1 outlines the experiments that were performed to estimate the number of effective factors, or n_e . These experiments are coded as GFS1, i giving the number of the experiment. In experiments GFS1 and GFS3, the larvae were reared at a density of 90/vial. In experiment GFS2, the larvae were reared at a density of 30/vial.

10.3 Results and Discussion

The summary statistics for each character in each experiment are given in Appendix K, Tables K1 through K18, following the order of Table 10.1.

Experi	ment		Populations Assayed per Character	Mean Number Assayed per Population	Total Number Assayed
<u>GFS1</u>	Fecu	ndity	4x3 = 12	88.9	1,067
	Fecundity Conditional Fecund.				·
				87.3	1,048
		le Starvation	4x3 = 12	95.5	1,146
	Male	Starvation	4x3 = 12	95.9	1,151
	Fema	le Longevity	4x3 = 12	98.5	1,182
	Male	Longevity	4x3 = 12	98.0	1,176
<u>GFS2</u>					
	Fecu	ndity	4x3 = 12	105.3	1,264
	Cond	itional Fecund	4x3 = 12	102.4	1,229
	Fema	le Starvation	4x3 = 12	108.8	1,305
	Male	Starvation	4x3 = 12	108.6	1,303
	Fema	le Longevity	4x3 = 12	98.1	1,177
	Male	Longevity	4x3 = 12	97.4	1,169
<u>GFS3</u>					
<u></u>	Fecu	ndity	4x3 = 12	115.5	1,386
	Cond	itional Fecund	4x3 = 12	113.9	1,367
	Fema	le Starvation	4x3 = 12	117.8	1,414
	Male	Starvation	4x3 = 12	117.9	1,415
	Fema	le Longevity	4x3 = 12	97.3	1,167
	Male	Longevity	4x3 = 12	96.7	1,160
То	tal		216		22,125

.

Table 10.1 : F and S Gene Number Experiments

:

Figure 10.1 is a set of frequency histograms of fecundity for one of the replicates, $F_2 \propto S_2$, of experiment GFS2. Shown are, from top to bottom, the F_2 parental histogram, the S_2 parental histogram, the F_1 hybrid histogram, and the F₂ hybrid histogram. It is clear that there is not a trimodal distribution in the histogram of the F_2 hybrid, which is evidence against the existence of only one gene being responsible for the differentiation of the parental populations. Figures 10.2 through 10.5 are similar sets of histograms for female starvation time, male starvation time, female longevity, and male longevity, respectively. All of these are from the same replicate, F_2 x S2, of experiment GFS2 and are intended to be representative of the patterns found in all of the crosses. There are a total of 54 of these sets of histograms in the In none of the F_2 histograms is there present experiments. a trimodal distribution, again evidence against the existence of only one gene differentiating the parental populations. Further, the distributions of the F_2 's does not appear to be very different from the distributions of their paired F_1 's; evidence for a large number of genes being involved in the differentiation of the parental The distributions of the parental populations, populations. while not being completely discrete, are quite well separated. These F x S histograms are, therefore, stronger evidence for the existence of many genes affecting

į

ł

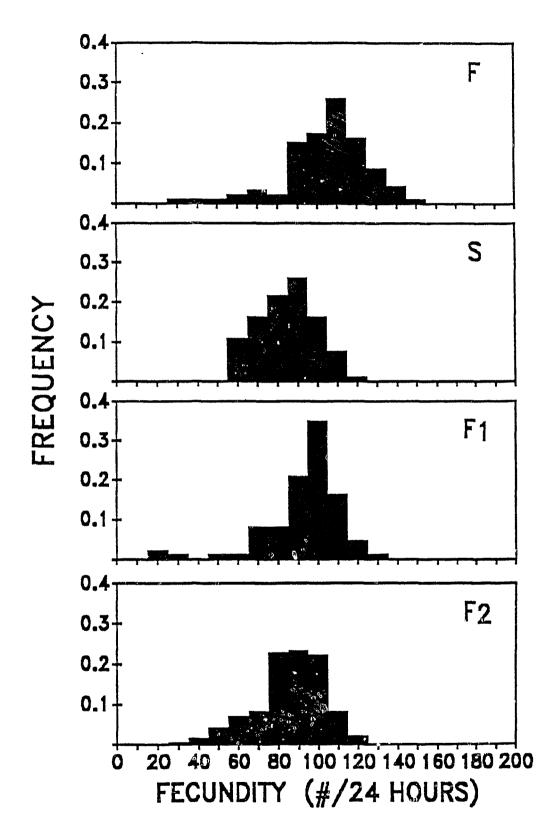


Figure 10.1. Frequency histograms of fecundity in replicate $F_2 \propto S_2$ of experiment GFS2.

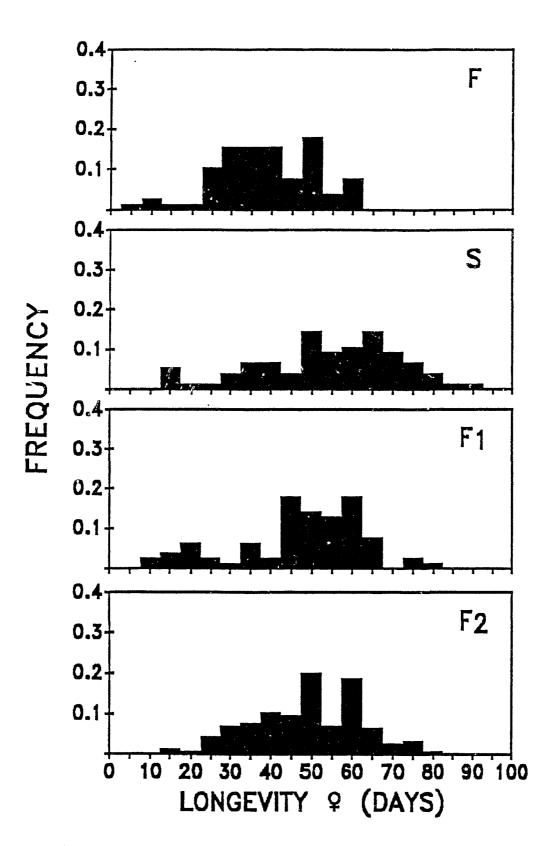


Figure 10.4. Frequency histograms of female longevity in replicate $F_2 \propto S_2$ of experiment GFS2.

133

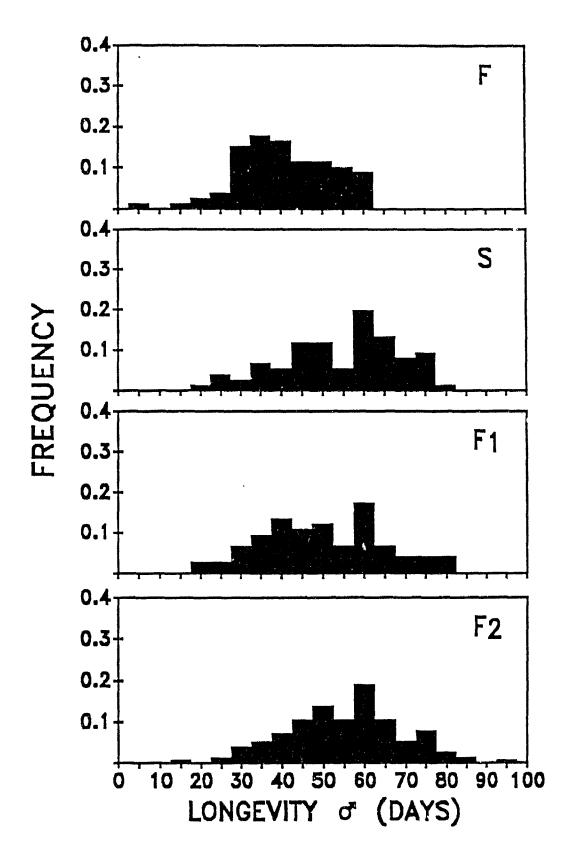


Figure 10.5. Frequency histograms of male longevity in replicate $F_2 \propto S_2$ of experiment GFS2.

senescence than were the B x O crosses of Chapter 5.

Table 10.2 gives the effective factor estimates from crosses of F and S lines. It is apparent that many of the gene number estimates are now negative or take on positive values greater than one, unlike the data from the B and O populations. Table 10.3 gives the inverse effective factor estimates from crosses of F and S lines. These data are more appropriate for the analysis, for the reasons discussed in Chapter 5, particularly because negative ne estimates indicate large numbers of loci, yet bias averages of ne estimates downward. In only three cases, fecundity in experiment GFS1, female starvation in experiment GFS2, and female starvation in experiment GFS3, was there statistical evidence for fewer than an arbitrarily large number of loci involved in the differentiation of F and S stocks. In these cases, the effective factor estimates indicate the involvement of at least two loci. [It should be borne in mind that this is a systematic underestimate (cf. Lande 1981).] Whatever is made of the three cases having a significantly small number of contributing loci, in general the results of this study do not indicate a small number of loci contributing to the differentiation of the F and S populations.

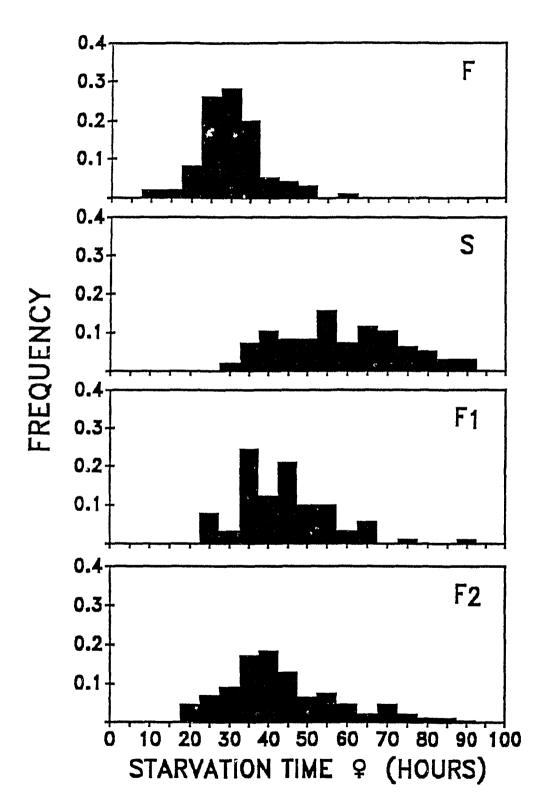


Figure 10.2. Frequency histograms of female starvation time in replicate $F_2 \propto S_2$ of experiment GFS2.

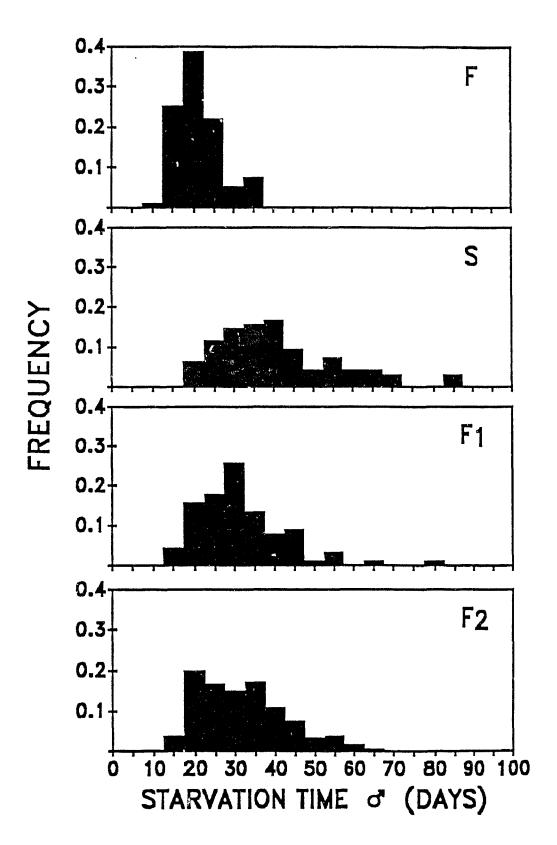


Figure 10.3. Frequency histograms of male starvation time in replicate $F_2 \propto S_2$ of experiment GFS3.

Į

Character		Line		Mean <u>+</u> SEM
Experiment	1	2	3	_
		<u></u>		******
<u>Fecundity</u> GFS1	2.01	0.89	3.46	2.12 <u>+</u> 0.74
GFS2	0.49	0.19	-0.71	-0.01 ± 0.36
GFS3	-0.43	~0.18	0.27	
		-0.10	0.27	-0.11 ± 0.21
<u>Conditional Fecu</u> GFS1	<u>indity</u> -4.06	1.31	0.93	-0.59 ± 1.74
				_
GFS2	0.90	0.29	-0.64	0,19 <u>+</u> 0.45
GFS3	-0.61	-0.40	0.86	-0.05 <u>+</u> 0.46
Female Starvatio	<u>on</u>			
GFS1	18.93	-36.76	0.66	-5.72 <u>+</u> 16.39
GFS2	1.27	0.94	3.03	1.75 <u>+</u> 0.65
GFS3	1.57	4.22	0.95	2.25 <u>+</u> 1.00
Male Starvation				
GFS1	2.87	2.73	0.40	2.00 ± 0.80
GFS2	-2.97	1.69	0.86	-0.14 <u>+</u> 1.43
GFS3	-4.00	228.14	1.35	75.16 <u>+</u> 76.5
Female Longevity	Z			
GFS1	-0.99	0.31	-2.76	-1.15 ± 0.89
GFS2	-13.48	-0.37	0.27	-4.53 <u>+</u> 4.48
GFS3	-0.42	-0.73	3.67	0.84 ± 1.42
Male Longevity				
GFS1	-2.36	-4.71	1.46	-1.87 <u>+</u> 1.80
GFS2	0.50	33.50	-1.80	9.14 <u>+</u> 12.04
GFS3	-1.85	-1.96	1.51	-0.77 ± 1.14

Table 10.2 : F and S Effective Factor Estimates

. . .

. .

ŧ.

Character		Line		Mean <u>+</u> SEM
Experiment	1	2	3	
Fecundity				
GFS1	0.50	1.12	0.29	$0.64 \pm 0.25*$
GFS2	2.03	5.26	-1.42	1.96 <u>+</u> 1.93
GFS3	-2.30	-5.48	3.66	-1.38 <u>+</u> 2.68
Conditional Fecu	Indity			
GFS1	-0.25	0.76	1.08	0.53 <u>+</u> 0.40
GFS2	1.11	3.45	-1.57	1.00 <u>+</u> 1.45
GFS3	-1.65	-2.52	1.17	-1.00 ± 1.11
Female Starvatic	<u>on</u>			
GFS1	0.05	-0.03	1.51	0.51 <u>+</u> 0.50
GFS2	0.79	1.06	0.33	$0.73 \pm 0.21^*$
GFS3	0.64	0.24	1.05	$0.64 \pm 0.24^{*}$
<u>Male Starvation</u>				
GFS1	0.35	0.37	2.50	1.07 <u>+</u> 0.71
GFS2	-0.34	0.59	1.16	0.47 ± 0.44
GFS3	-0.25	0.00	0.741	0.17 ± 0.30
Female Longevity				
GFS1	-1.01	3.21	-0.36	0.61 ± 1.31
GFS2	-0.07	-2.71	3.73	0.31 <u>+</u> 1.87
GFS3	-2.37	-1.36	0.27	-1.15 ± 0.77
Male Longevity				
GFS1	-0.43	-0.21	0.69	0.02 <u>+</u> 0.34
GFS2	1.98	0.03	-0.56	0.49 <u>+</u> 0.77
GFS3	-0.54	-0.51	0.66	-0.13 ± 0.40

· 115, - -

t

Table 10.3 : F and S Inverse Effective Factor Estimates

CHAPTER 11

and the second sec

Parties a state

a s standard a l May

1. P. I.

1

‡ ±

んどうかいたいないたいないないない

「「「「「「」」」

٠

Discussion of Analysis of Selected Populations

11.1 Discussion

The results of this part of the study conform to those reported in Part II on the B and O populations, in Clare and Luckinbill (1985), and in Luckinbill et al. (1987). The only point of difference between any of these studies is in the interpretation of their results by Luckinbill et al. (1987), who argued for a single major factor producing postponed aging in their <u>D</u>. <u>melanogaster</u> stocks, even though there was no evidence of trimodality in their F_2 populations. The present study is probably the clearest of the four; there are fewer instances of significant maternal and dominance effects than there were in Part II. However, the four studies together are simple in their implications: Aging in laboratory cultures of <u>D</u>. <u>melanogaster</u> cultured from older females only, for a number of generations, appears to be postponed as a result of allele frequency changes at at least a moderate number of loci, those alleles having additive effects on average. There is no reproducible evidence for any type of maternal, or other non-genetic, effect.

These findings fit those of Luckinbill et al. (1988b), who found clear evidence in at least some of their experiments for a hereditary contribution of all three major <u>D. melanogaster</u> chromosomes to postponed aging. This conclusion, as noted by Luckinbill et al. (1988b), is incompatible with the gene number experiments of Luckinbill

et al. (1987), in that it suggests that there are **at least** three contributory loci for postponed aging, and probably many more. The evidence for a predominant effect of chromosome III on aging in Luckinbill et al. (1988b) does not neccessarily indicate a small number of loci, because it makes up a large proportion of the <u>D</u>. <u>melanogaster</u> genome. In any case, it is not known how reproducible this particular chromsomal-effect result would be over a number of lines having postponed aging, since only one line was analyzed by Luckinbill et al. (1988b). PART V

. ...

.

;

Contrast - Second Contrast - - - -

,

GENERAL DISCUSSION

CHAPTER 12

General Discussion

.

1

ł

.

,

t

12.1 Discussion

1

One of the outstanding problems affecting research on aging has been the persistence of disbelief that aging is made up of normal phenotypes amenable to genetic analysis and selection (e.g. Lints and Hoste 1974, 1977; Lints 1978; Lints et al. 1979). The present results together with those of Luckinbill and his colleagues (Clare and Luckinbill 1985; Luckinbill and Clare 1985) indicate that aging phenotypes are quite ordinary, at the level of quantitative genetics.

A more technical point is that of inbreeding depression. While a number of Drosophila stocks exhibit different aging patterns, upon crossing there is often extensive heterosis (Gowen and Johnson 1946; Clarke and Maynard Smith 1955), indicating inbreeding depression. [This has made the study of Caenorhabditis elegans aging particularly attractive, because self-fertilization in that species appears to prevent inbreeding depression for aging (Johnson and Wood 1982).] The lack of inbreeding depression in the extensive within-type crosses performed in the present study indicates that stocks with postponed aging created using the methods of Rose (1984) will not suffer from the problem. Thus, they can be used as material for the investigation of physiological hypotheses concerning mechanisms for the postponement of normal aging (see Rose et al. 1984; Service et al. 1985; Service 1987; Luckinbill et al. 1988a).

What is the significance of all of these Drosophila results for our understanding of the genetics of aging in general? Firstly, what of the many known alleles, from that which causes Huntington's chorea in man to those aberrant mutants in Drosophila with shortened lifespan? These alleles are often supposed to cause "accelerated aging", and are taken as evidence for few controlling elements for the aging process. In both man (e.g. Martin 1978) and Drosophila (Hutchinson and Rose 1987), it is doubtful that alleles of this kind are related to aging. These alleles may kill adults, and induce chronic pathologies, but that is not evidence that they affect aging itself. Close inspection of their pathophysiology reveals a number of disparities with "normal aging" (Martin 1978). Therefore, the existence of such alleles does not clash with the present conclusions, because they are of no genuine relevance to the genetic dissection of aging.

Secondly, are there any known alleles which can postpone aging in any model system? Such alleles are known in both <u>D</u>. <u>subobscura</u> (Maynard Smith 1958) and <u>C</u>. <u>elegans</u> (Friedman and Johnson 1988). In both these cases, lifespan is increased by homozygosity of a single allele as much or more than it is in the <u>D</u>. <u>melanogaster</u> stocks of Rose (1984) or Luckinbill et al. (1984). Interestingly, in both these cases, reproduction is greatly decreased in the longer-lived mutant strain. The <u>D</u>. <u>subobscura</u> mutants are in fact completely sterile (Maynard Smith 1958). In a physiological

sense, these other studies corroborate the results of Rose and Charlesworth (1981a,b), Rose (1984), and Luckinbill and Clare (1985) in finding a clear association between postponed aging and reduced early reproduction.

Thirdly, is there any likelihood that the <u>D</u>. melanogaster results will prove to be universally applicable to the genetics of aging in general? The finding of conantitative inheritance is indeed guite likely to hold. Many loci should affect later survival and reproduction, because survital and reproduction are the ends toward which natural selection strives. Loci which do not have alleles that directly or indirectly foster survival or reproduction are not going to be preserved, because natural selection will not oppose the accumulation of silencing mutations at those loci. Maintenance of polymorphism at those loci affecting aging is likely, because both of the population genetic mechanisms of aging, antagonistic pleiotropy (Williams 1957; Rose 1985) and mutation-accumulation (Medawar 1952; Edney and Gill 1968; Charlesworth 1980), act to maintain genetic polymorphism. Antagonistic pleiotropy does so by generating overdominance and its higher-order analogues (Rose 1982, 1985). Mutation-accumulation maintains genetic polymorphism by allowing mutations affecting later survival and reproduction to drift to high frequencies, due to the weakness of natural selection at later ages (Charlesworth 1980). Therefore, almost all outbred species are likely to have allelic variation

145

Į.

affecting aging at a great many loci, allelic variation which could be selected so as to postpone aging.

h.A II

1

.

APPENDIX A

ì

,

۱

.

-

.

٠

Ŀ

Summary Statistics of B and O Diallels

Table A1 : Experiment DB1 - Ovary Weight

- -----

,

Male		Mean				
Parent	1	2	3	4	5	
1	0.124	0.134	0.129	0.133	0.150	0.134
	(0.006)	(0.009)	(0.009)	(0.006)	(0.009)	(0.004)
	28	28	28	36	28	5
2	0.142	0.111	0.139	0.144	0.140	0.135
	(0.007)	(0.008)	(0.003)	(0.007)	(0.010)	(0.006)
	28	28	28	36	28	5
3	0.153	0.123	073	0.154	0.139	0.148
	(0.008)	(0.006)	(0.008)	(0.008)	(0.007)	(0.008)
	28	28	28	36	28	5
4	0.146	0.145	0.160	0.144	0.150	0.149
	(0.008)	(0.009)	(0.006)	(0.005)	(0.011)	(0.003)
	28	28	28	36	28	5
5	0.143	0.158	0.104	0.146	0.127	0.136
	(0.009)	(0.008)	(0.008)	(0.007)	(0.010)	(0.009)
	28	28	28	36	28	5
Mean	0.142	0.134	0.141	0.144	0.141	0.141
	(0.005)	(0.008)	(0.012)	(0.003)	(0.004)	(0.002)
	5	5	5	5	5	740

Mean Dry Ovary Weight (mg.) (Standard Error) Number of Individuals

Table A2 : Experiment DB1 - Female Starvation

Male		F	emale Par	ent		Mean
Parent	1	2	3	4	5	
1	40.02	37.90	34.68	34.05	37.78	36.89
	(1.50)	(1.36)	(1.21)	(1.12)	(1.97)	(1.11)
	52	56	56	52	56	5
2	36.96	44.97	41.40	39.69	45.95	41.79
	(1.46)	(1.39)	(1.34)	(1.44)	(1.65)	(1.66)
	56	56	52	56	56	5
3	35.84	39.64	33.92	38.19	41.12	37.74
	(0.90)	(1.13)	(1.21)	(1.39)	(2.23)	(1.29)
	56	56	56	56	56	5
4	35.98	38.64	34.94	37.82	34.74	36.42
	(1.22)	(1.13)	(1.38)	(1.25)	(1.47)	(0.78)
	56	48	52	56	52	5
5	36.94	39.79	35.33	43.06	32.91	37.61
	(1.45)	(1.19)	(1.87)	(1.81)	(0.93)	(1.76)
	56	52	56	56	56	5
Mean	37.15	40.19	36.05	38.56	39.90	38.10
	(0.76)	(1.24)	(1.36)	(1.46)	(2.40)	(0.30)
	5	5	5	5	5	1368

.

Mean Survival Time (hours) (Standard Error) Number of Individuals

Table A3 : Experiment DB2 - Ovary Weight

Male Parent	Fema	le Parent		Mean
	1	2	3	
1	0.183	0.171	0.134	0.163
	(0.016)	(0.006)	(0.008)	(0.015)
	22	32	19	3
2	0.170	0.177	0.186	0.178
	(0.009)	(0.010)	(0.009)	(0.005)
	28	23	27	3
3	0.186	0.131	0.157	0.158
	(0.008)	(0.007)	(0.011)	(0.016)
	31	32	21	3
Mean	0.180	0.160	0.384	0.167
	(0.005)	(0.014)	(0.015)	(0.003)
	3	3	3	235

.

Mean Dry Ovary Weight (mg.) (Standard Error) Number of Individuals

.

Table A4 : Evperiment DO1 - Ovary Weight

Male		Female Parent							
Parent	1	2	3	4	5				
1	0.060	0 000	0 100	0 106	0.062	0.086			
T	0.069 (0.006) 28	0.092 (0.008) 28	0.102 (0.006) 28	0.106 (0.011) 28	(0.006) 28	(0.009) 5			
2	0.057	0.054	0.086	0.099	0.049	0.069			
	(0.009)	(0.005)	(0.007)	(0.011)	(0.011)	(0.010)			
	28	28	28	28	28	5			
3	0.081	0.093	0.123	0.117	0.049	0.093			
	(0.010)	(0.005)	(0.012)	(0.010)	(0.005)	(0.013)			
	28	28	28	28	28	5			
4	0.095	0.078	0.110	0.052	0.039	0.075			
	(0.010)	(0.006)	(0.009)	(0.006)	(0.004)	(0.013)			
	28	28	28	28	28	5			
5	0.075	0.123	0.063	0.093	0.044	0.080			
	(0.006)	(0.008)	(0.006)	(0.012)	(0.005)	(0.013)			
	28	28	28	28	28	5			
Mean	0.075	0.088	0.097	0.093	0.C49	0.080			
	(0.006)	(0.011)	(0.010)	(0.011)	(0.004)	(0.002)			
	5	5	5	5	5	700			

1

Mean Dry Ovary Weight (mg.) (Standard Error) Number of Individuals

Table A5 : Experiment DO1 - Female Starvation

Male Parent		Mean				
	1	2	3	4	5	
1	38.17	33.79	36.36	37.20	41.37	37.38
	(1.72)	(1.51)	(1.40)	(1.72)	(2.45)	(1.24)
	56	56	56	56	52	5
2	33.85	39.88	37.63	31.14	37.17	35.93
	(1.47)	(2.20)	(1.73)	(1.42)	(1.86)	(1.54)
	56	56	56	56	56	5
3	35.05	43.75	33.33	31.74	36.26	36.03
	(1.37)	(1.87)	(1.44)	(1.27)	(1.47)	(2.08)
	56	56	56	56	56	5
4	37.13	33.60	35.09	31.08	37.03	34.79
	(1.41)	(1.85)	(1.37)	(1.62)	(1.50)	(1.13)
	56	56	56	56	56	5
5	40.64	38.93	46.42	34.85	37.95	39.76
	(2.34)	(1.72)	(1.68)	(1.57)	(1.55)	(1.91)
	52	56	52	52	56	5
Mean	36.97	37.99	37.77	33.20	37.96	36.73
	(1.19)	(1.93)	(2.28)	(1.22)	(0.89)	(0.35)
	5	5	5	5	5	1384

Mean Survival Time (hours) (Standard Error) Number of Individuals

Table A6 : Experiment DO2 - Female Starvation

. .

1

ļ

Mean Survival Time (hours) (Standard Error) Number of Individuals

Male		Female Parent							
Parent	1	2	3	4	5				
1	55.10	61.69	60.18	48.85	61.63	57.49			
	(3.12)	(3.27)	(2.73)	(2.51)	(3.16)	(2.47)			
	52	60	56	56	36	5			
2	60.15	69.18	60.79	58.52	62.35	62.20			
	(2.68)	(3.12)	(3.05)	(2.28)	(4.03)	(1.85)			
	56	56	56	56	48	5			
3	58.02	67.90	77.92	50.59	60.58	63.00			
	(2.67)	(2.89)	(4.09)	(2.19)	(2.89)	(4.64)			
	52	56	36	52	52	5			
4	51.40	52.31	54.18	59.26	53.24	54.08			
	(1.95)	(2.07)	(2.33)	(3.10)	(2.35)	(1.38)			
	56	48	56	56	52	5			
5	69.00	72.49	66.20	64.79	65.13	67.52			
	(3.71)	(3.17)	(3.40)	(3.18)	(2.34)	(1.45)			
	56	60	52	52	56	5			
Mean	58.73	64.71	63.85	56.40	60.59	60.85			
	(2.96)	(3.56)	(4.00)	(2.95)	(1.99)	(0.61)			
	5	5	5	5	5	1321			

Table A7 : Experiment DO3 - Ovary Weight

Male	Fema		Mean	
Parent	1	2	3	19 Juny
1	0.156	0.093	0.164	0.138
	(0.009)	(0.010)	(0.006)	(0.022)
	23	24	27	3
2	0.168	0.094	0.146	0.136
	(0.009)	(0.009)	(0.009)	(0.022)
	31	23	32	3
3	0.148	0.099	0.157	0.135
	(0.010)	(0.010)	(0.013)	(0.018)
	28	24	22	3
Mean	0.157	0.095	0.156	0.138
	(0.006)	(0.002)	(0.005)	(0.004)
	3	3	3	234

Mean Dry Ovary Weight (mg.) (Standard Error) Number of Individuals -----

ţ

Table A8 : Experiment DO4 - Female Starvation

Male	Female Parent							
Parent	1	2	3	4	5			
1	35.25	35.86	37.44	32.50	38.19	35.85		
	(1.42)	(1.87)	(2.57)	(1.57)	(3.43)	(0.99)		
	39	21	21	21	18	5		
2	34.07	39.04	35.95	40.60	35.25	36.98		
	(1.58)	(2.21)	(2.77)	(3.30)	(2.07)	(1.22)		
	18	48	24	21	24	5		
3	37.36	30.80	33.59	34.26	32.90	33.78		
	(2.89)	(0.88)	(1.33)	(3.17)	(1.57)	(1.07)		
	21	24	42	21	21	5		
4	36.23	32.60	29.11	31.06	36.79	33.16		
	(2.68)	(1.66)	(1.28)	(0.95)	(3.43)	(1.48)		
	18	24	21	42	21	5		
5	34.15	36.96	28.33	31.26	38.53	33.85		
	(1.63)	(2.54)	(0.87)	(2.82)	(2.60)	(1.86)		
	24	21	18	21	45	5		
Mean	35.41	35.05	32.88	33.94	36.33	34.89		
	(0.63)	(1.49)	(1.81)	(1.76)	(1.04)	(0.46)		
	5	5	5	5	5	639		

.

Mean Survival Time (hours) (Standard Error) Number of Individuals

Table A9 : Experiment DO4 - Male Starvation

•

Male	Female Parent							
Parent	1	2	3	4	5			
1	27.72	29.57	30.01	25.93	26.47	27.94		
	(1.50)	(1.60)	(2.12)	(1.21)	(1.50)	(0.81)		
	39	21	21	21	18	5		
2	33.40	28.48	29.77	29.17	28.25	29.81		
	(1.75)	(1.12)	(1.92)	(1.69)	(1.39)	(0.94)		
	18	48	21	21	24	5		
3	25.64	26.80	24.87	29.11	26.33	26.55		
	(1.28)	(1.14)	(0.86)	(1.52)	(1.70)	(0.72)		
	21	24	42	21	21	5		
4	30.23	28.35	27.69	30.20	29.36	29.17		
	(1.65)	(1.75)	(1.78)	(1.45)	(1.53)	(0.50)		
	18	24	21	42	21	5		
5	29.65	29.81	26.33	26.11	25.60	27.50		
	(1.63)	(1.34)	(1.14)	(1.44)	(1.19)	(0.92)		
	24	21	18	21	45	5		
Mean	29.33	28.60	27.73	28.10	27.20	28.04		
	(1.30)	(0.53)	(0.99)	(0.87)	(0.69)	(0.30)		
	5	5	5	5	5	636		

Mean Survival Time (hours) (Standard Error) Number of Individuals the state of the s

And a second damage with

÷

APPENDIX B

Analysis of B and O Population Diallels

,

:

Ĩ.

+

n an Br. Arrenterentering der

71.27 E 7 U

Table B1 : Experiment DB1 - Ovary Weight

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	0.008	4	0.002	0.279	0.887
MPAR	0.034	4	0.008	1.148	0.370
FPAR & MPAR	0.042	8	0.005	0.713	0.677
FPAR x MPAR	0.117	16	0.007		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagon	al		
SOURCE		SS	DF	MS	F	P	
FPAR MPAR		0.008 0.034	-	0.002 0.008	0.243	0.900	
<u>Method 2</u>	- ANOVA of Diallel without Diagonal						
SOURCE		SS	DF	MS	F	P	
FPAR MPAR		0.014 0.014		0.003 0.004	6.983	0.506	

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-t	est	Parenta	l Lines	Crossed	Lines		
Mean Standard Deviati N	on	0.13 0.02 5		0.14 0.01 20	2		
	T = 0.53 T = 0.77			bability = bability =	0,619 0.444		
Method 2 - ANOVA							
SOURCE	SS	DF	MS	F	Р		
TRT REP within TRT	0.004 0.154	1 23	0.004 0.007	0.624	0.438		

1

1

r

F

3

1

•

- L . ..

, }

Table B2 : Experiment DB1 - Female Starvation

LINE EFFECTS

SOURCE	SS	DF	MS	F	Ρ
FPAR	2655.26	4	663.81	1.396	0.280
MPAR	5009.89	4	1252.47	2.634	0.073
FPAR & MPAR	7771.00	8	971.38	2.043	0.107
FPAR x MPAR	7607.31	16	475.46		

MATERNAL EFFECTS

<u>Method 1</u> -	ANOVA of Dia	allel w	ith Diagona	1	
SOURCE	SS	DF	MS	F	Р
FPAR MPAR	2655.26 5009.89	4 4	663.81 1252.47	0.530	0.723
<u>Method 2</u> -	ANOVA of Dia	allel w	ithout Diag	onal	
SOURCE	SS	DF	MS	F	P
FPAR MPAR	3113.65 4643.00	4 4	778.41 1160.75	0.671	0.646

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-te		Parenta	l Lines	Crossed	Lines		
Mean Standard Deviatio N	n	37.92 4.87 5		38.130 3.110 20			
	= 0.089 = 0.117			robability = robability =	0.934 0.908		
<u>Method 2</u> - ANOVA							
SOURCE	SS	DF	MS	F	P		
TRT REP within TRT 15	9.06 394.43	1 23	9.00 669.3		0.908		

y'

ţ

ŧ

Table B3 : Experiment DB2 - Ovary Weight

LINE EFFECTS

Î

÷

,

1

.

• • • •

• -

SOURCE	SS	DF	MS	F	P
FPAR	0.021	2	0.010	0.746	0.530
MPAR	0.016	2	0.008	0.565	0.608
FPAR & MPAR	0.037	4	0.009	0.666	0.648
FPAR x MPAR	0.056	4	0.014		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of Di	iallel	with Diagona	al		
SOURCE		SS	DF	MS	F	Р	
FPAR MPAR		0.021 0.016	2 2	0.010 0.008	1.319	0.431	
<u>Method 2</u>	-	- ANOVA of Diallel without Diagonal					
SOURCE		SS	DF	MS	F	Р	
FPAR MPAR		0.014 0.006	2 2	0.007 0.003	2 454	0.290	

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-t	est	Parenta	l Lines	Crossed	Lines		
Mean Standard Deviati N	on	0.17: 0.01: 3		0.163 0.024 6			
	T = 0.75 T = 0.61			bability = bability =	0.480 0.559		
Method 2 - ANOVA							
SOURCE	SS	DF	MS	F	Р		
TRT REP within TRT	0.004 0.089	1 7	0.004 0.013	0.333	0.582		

160

Table B4 : Experiment DO1 - Ovary Weig 3

LINE EFFECTS

SOURCE	SS	DF	MS	F	P
FPAR	0.216	4	0.054	4.723	0.010
MPAR	0.048	4	0.012	1.058	0.409
FPAR & MPAR	0.264	8	0.033	2.891	0.034
FPAR x MPAR	0.183	16	0.011		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagor	nal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		0.216 0.048	-	0.054 0.012	4.463	0.088
<u>Method 2</u>	-	ANOVA of	Diallel	without Dia	agonal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		0.194 0.013		0.048 0.003	14.782	0.012

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-t	est	Parenta	l Line:	s Crossed	Lines
Mean Standard Deviatio N	on	0.06 0.03 5		0.083 0.024 20	
	T = 0.98 T = 1.18			Probability = Probability =	
Method 2 - ANO	VA				
SOURCE	SS	DF	MS	F	Р
TRT REP within TRT	0.026 0.421	1 23	0.020 0.018		0.249

:

Table B5 : Experiment DO1 - Female Starvation

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	4597.75	4	1149.44	1.859	0.167
MPAR	3946.77	4	986.69	1.596	0.224
FPAR & MPAR	8597.97	8	1074.75	1.738	0.165
FPAR x MPAR	9894.49	16	618.41		

MATERNAL EFFECTS

Method 1	-	ANOVA of	Diallel	with Diagona	al	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		4597.75 3946.77		1149.44 986.69	1.165	0.443
<u>Method 2</u>	-	ANOVA of	Diallel	without Diag	gonal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		4359.94 4538.23		1089.99 1134.56	0.961	0.515

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test	1	Parei	ntal	l Line	es	Cross	ed	Lines
Mean Standard Deviat N	ion			082 703 5	-		36.9 3.8 2	23	
SEPARATE VAR POOLED VAR	T = T =	0.465 0.456		H	6.3 23		oility : pility :		0.658 0.652
<u>Method 2</u> - AN	OVA								
SOURCE	SS		DF		MS		F		P
TRT REP within TRT	168 18107		1 23		168 787		0.213		0.648

ı.

r

Table B6 : Experiment DO2 - Female Starvation

LINE EFFECTS

ı,

2

SOURCE	SS	DF	MS	F	Р
FPAR	13300.13	4	3325.03	2.442	0.089
MPAR	28717.63	4	7179.41	5.273	0.007
FPAR & MPAR	42532.90	8	5316.61	3.905	0.010
FPAR x MPAR	21783.54	16	1361,47		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagona	l	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		13300.13 28717.63		3325.03 7179.41	0.463	0.763
<u>Method 2</u>	-	ANOVA of	Diallel	without Diag	jonal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		13273.78 32369.17	-	3318.44 8092.29	0.410	0.795

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-		Parenta	l Lines	Crossed	Lines
Mean Standard Deviat N	ion	65.310 8.873 5	-	59.933 6.575 20	
SEPARATE VAR POOLED VAR	T = 1.272 T = 1.532	DF = DF =		ability = ability =	0.255 0.139
<u>Method 2</u> - AN	AVC				
SOURCE	SS	DF	MS	F	Р
TRT REP within TRT	5826.35 58904.56	1 23	5826.35 2561.07	2.275	0.145

ľ

Table B7 : Experiment DO3 - Ovary Weight

LINE EFFECTS

-

£ 3

SOURCE	SS	DF	MS	F	Р
FPAR	0.181	5	0.091	34.029	0.003
MPAR	0.000	2	0.000	0.059	0.944
FPAR & MPAR	0.182	4	0.046	17.095	0.009
FPAR x MPAR	0.011	4	0.003		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagon	nal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		0.181 0.000	-	0.091 0.000	576.84	0.002
Method 2		ANOVA of	Diallel	without Dia	agonal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		0.092 0.002		0.046 0.001	40.983	0.024

HETEROSIS / INDREEDING EFFECTS

<u>Method 1</u> - t-t	est	Parenta	l Line	s Crossed	Lines
Mean Standard Deviati N	on	0.13 0.03 3		0.136 0.032 6	
	$\begin{array}{rcl} T &=& 0.0\\ T &=& 0.0 \end{array}$			Probability = Probability =	
<u>Method 2</u> - ANO	VA				
SOURCE	SS	r	MS	F	Р
TRT REP within TRT	0.000 0.193	1 7	0.00 0.02		0.974

Table B8 : Experiment DO4 - Female Starvation

LINE EFFECTS

SOURCE	SS	DF	MS	F	\mathbf{p}
FPAR	830.28	4	207.57	0.977	0.448
MPAR	1235.34	4	308.84	1.453	0.263
FPAR & MPAR	2124.53	8	265.57	1.249	0.334
FPAR x MPAR	3400.64	16	212.54		

MATERNAL EFFECTS

<u>Method 1</u>	 ANOVA of	Diallel	with Diagona	1	
SOURCE	SS	DF	MS	F	Р
FPAR MPAR	830.28 1235.34		207.57 308.84	0.672	0.645
<u>Method 2</u>	 ANOVA of	Diallel	without Diag	fonal	
SOURCE	SS	DF	MS	F	Р
FPAR MPAR	521.66 962.04		130.41 240.51	0.542	0.716

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-test	: Parental	Lines	Crossed	Lines
Mean Standard Deviation N	35.494 3.361 5		34.530 3.147 20	
SEPARATE VAR T = POQLED VAR T =	0.002 22		ability = ability =	
<u>Method 2</u> - ANOVA				
SOURCE SS	G DF	MS	F	P
TRT 133 REP within TRT 5843	1.88 1 3.74 23	131.88 254.08	0.519	0.478

Table B9 : Experiment DO4 - Male Starvation

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	302.72	4	75.68	1.034	0.420
MPAR	803.17	4	200.79	2.743	0.065
FPAR & MPAR	1124.17	8	140.52	1.919	0.127
FPAR x MPAR	1171.43	16	73.22		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of D	iallel	with Diagona	1	
SOURCE		SS	DF	MS	F	Р
FPAR MFAR		302.72 803.17	4 4	75.68 200.79	0.377	0.816
Method 2		ANOVA of D	Diallel	without Diag	jonal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		271.34 472.61	4 4	67.84 118.15	0.574	0.698

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	-test	Parenta	l Lines	Crosse	d Lines
Mean Slandard Deviat N	ion	27.37 2.16 5		28.40 1.97 20	5
SEPARATE VAR POOLED VAR	T = 0.96 T = 1.02			obability = obability =	
<u>Method 2</u> - AN	AVOI				
SOURCE	SS	DF	MS	F	Р
TRT REP within TRT	149.69 2282.70	1 23	149.69 98.38	1.522	0.230

¢

APPENDIX C

..

i

Summary Statistics of B and O Transmission Patterns

ł

Table C1	:	Experime	ent	B01		Ovary	Weight
----------	---	----------	-----	-----	--	-------	--------

Mean Dry Ovary Weight (mg.) (Standard Error) Number of Individuals

*.

1

Replicate	BB	ВО	OB
1	0.112	0.100	0.141
	(0.007)	(0.009)	(0.012)
	43	22	22
2	0.147	0.109	0.104
	(0.009	(0.010)	(0.009)
	43	24	16
3	0.126	0.139	0.127
	(0.008)	(0.013)	(0.008)
	46	24	25
4	0.142	0.125	0.131
	(0.007)	(0.010)	(0.009)
	47	25	21
5	0.125	0.135	0.119
	(0.008)	(0.009)	(0.011)
	46	23	16
Mean	0.130	0.122	0.124
	(0.006)	(0.007)	(0.006)
	5	5	5

168

Replicate	BB	BO	OB	00
1	30.33	33.10	30.05	31.60
	(1.20)	(1.72)	(1.36)	(1.41)
	48	24	24	33
2	27.79	31.17	34.83	34.50
	(0.81)	(1.96)	(2.08)	(1.40)
	42	24	18	30
3	29.60	34.50	28.1	31.88
	(1.16)	(2.16)	(1.32)	(0.82)
	48	24	24	36
4	30.20	32.10	28.31	32.06
	(1.03)	(2.01)	(1.27)	(1.06)
	48	24	21	33
5	25.43	28.20	31.22	33.63
	(0.90)	(0.88)	(2.88)	(1.37)
	45	27	15	36
Mean	28.67	31.81	30.50	32.74
	(0.93)	(1.06)	(1.23)	(0.57)
	5	5	5	5

,

Table C2 : Experiment BO1 - Female Starvation

Mean Survival Time (hours)

(Standard Error) Number of Individuals

8 T

12

ŗ

Table CC : Experiment BO1 - Male Starvation

Replicate	BB	BO	OB	00
1	19.14	23.01	22.05	24.15
	(0.96)	(1.33)	(1.40)	(1.19)
	48	21	24	33
2	22.02	23.00	24.17	28.86
	(1.04)	(1.19)	(1.74)	(1.08)
	42	24	18	33
3	18.98	22.75	22.85	25.60
	(0.74)	(1.49)	(1.13)	(1.06)
	48	24	24	36
4	21.20	20.85	23.07	25.16
	(1.01)	(1.56)	(1.54)	(0.75)
	48	24	21	33
5	17.97	20.20	19.22	24.30
	(1.31)	(1.32)	(1.17)	(1.28)
	45	27	15	36
Mean	19.86	21.96	22.27	25.61
	(0.75)	(0.60)	(0.83)	(0.85)
	5	5	5	5

Mean Survival Time (hours) (Standard Error) Number of Individuals

;

ſ

.

1 }

ş

-- -- --

.

a deve a strategica in a stategica

s.

L

Replicate	BB	BO	OB	00
1	0.128	0.085	0.104	0.051
	(0.011)	(0.005)	(0.005)	(0.003)
	30	30	30	30
2	0.101	0.072	0.075	0.041
	(0.006)	(0.004)	(0.006)	(0.003)
	30	30	30	30
3	0.135	0.124	0.111	0.051
	(0.012)	(0.006)	(0.006)	(0.008)
	30	30	30	30
4	0.098	0.100	0.064	0.070
	(0.010)	(0.008)	(0.005)	(0.006)
	30	30	30	30
5	0.084	0.110	0.098	0.072
	(0.006)	(0.009)	(0.009)	(0.006)
	30	30	30	30
Mean	0.109	0.098	0.090	0.057
	(0.009)	(0.009)	(0.009)	(0.006)
	5	5	5	5

Table C4 : Experiment BO2 - Ovary Weight

Mean Dry Ovary Weight (mg.) (Standard Error) Number of Individuals

ł

1 1 1

4 1

١

•

Table C5 : Experiment BO2 - Fecundity

Replicate	BB	во	ОВ	00
1	88.8	79.9	84.0	70.3
	(1.4)	(1.7)	(1.7)	(1.5)
	60	59	59	60
2	100.8	95.8	95.5	89.8
	(1.7)	(2.2)	(2.0)	(2.1)
	54	60	58	59
3	106.9	102.4	104.9	97.5
	(1.7)	(1.5)	(1.4)	(1.4)
	59	60	59	60
4	111.5	105.4	100.1	105.1
	(1.7)	(1.9)	(2.9)	(2.5)
	60	59	56	59
5	102.4	105.8	100.2	98.8
	(1.3)	(1.7)	(2.2)	(1.9)
	59	59	60	59
Mean	102.1	97.9	97.0	92.3
	(3.8)	(4.8)	(3.6)	(6.0)
	5	5	5	5

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

ł

ŧ

..

•; ≸ .

Table C6 : Experiment BO2 - Conditional Fecundity

Replicate	BB	во	OB	00
1	88.8	79.9	84.0	70.3
T	(1.4) 60	(1.7) 59	(1.7) 59	(1.5) 60
	60	59	59	60
2	101.0	95.8	95.5	89.8
	(1.7) 54	(2.2) 60	(2.0) 58	(2.1) 59
		00		
3	106.9	102.4	104.9	97.5
	(1.7)	(1.5)	(1.4)	(1.4)
	59	60	59	60
4	111.5	105.4	100.1	105.1
	(1.7)	(1.9)	(2.9)	(2.5)
	60	59	56	59
5	102.4	105.8	101.9	98.8
	(1.3)	(1.7)	(1.4)	(1.9)
	59	59	59	59
Mean	102.1	97.9	97.3	92.3
	(3.8)	(4.8)	(3.6)	(6.0)
	5	5	5	5

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

ş

÷

1

13

Replicate	BB	BO	OB	00
1	50.49	71.00	53.00	83.55
	(1.79)	(4.00)	(2.17)	(3.20)
	55	55	80	65
2	43.96	65.73	58.60	75.85
	(2.15)	(3.22)	(2.27)	(2.90)
	50	45	60	80
3	43.65	46.00	37.92	50.17
	(1.98)	(3.10)	(1.41)	(2.27)
	40	30	50	65
4	42.04	49.45	46.60	56.47
	(2.09)	(1.93)	(1.97)	(2.69)
	50	40	45	45
5	56.16	60.90	56.51	75.00
	(2.88)	(2.36)	(2.14)	(1.65)
	50	60	55	60
Mean	47.25	58.62	50.53	68.21
	(2.65)	(4.76)	(3.75)	(6.34)
	5	5	5	5

Table C7 : Experiment BO2 - Female Starvation

Mean Survival Time (hours) (Standard Error) Number of Individuals No.

1

1

1

1

1

-

Table C8 : Experiment BO2 - Female Longevity

Replicate	BB	BO	OB	00
1	60.7	66.6	56.4	71.3
Ŧ	(1、7)	(1.9)	(2.4)	(2.0)
	60	60	60	60
2	46.7	53.4	50.0	55.1
	(1.4)	(1.9)	(1.7)	(1.7)
	60	60	60	60
3	49.5	54.6	51.9	64.4
	(1.7)	(1.7)	(1.9)	(2.3)
	60	60	60	60
<u>4</u>	47.2	59.5	58.0	59.6
	(1.9)	(2.1)	(2.8)	(2.8)
	60	60	30	30
5	4t .3	54.5	63.3	62.2
	(1.8)	(2.0)	(2.4)	(2.3)
	60	60	60	60
Mean	50.08	57.72	55.92	62.52
	(2.43)	(2.20)	(2.10)	(2.40)
	5	5	5	5

I

1

Mean Longevity (days) (Standard Error) Number of Individuals

Table C9 : Experiment BO3 - Ovary Weight

Replicate	BB	BO	OB	00
1	0.183	0.156	0.166	0.148
Ŧ	(0.016) 22	(0.011) 47	(0.008)	(0.007) 46
2	0.177	0.113	0.174	0.072
	(0.007)	(0.007)	(0.008)	(0.006)
	46	45	48	47
3	0.170	0.159	0.143	0.115
	(0.010)	(0.009)	(0.008)	(0.010)
	45	48	48	45
Mean	0.177	0.143	0.161	0.112
	(0.003)	(0.015)	(0.009)	(0.022)
	3	3	3	3

_

Mean Dry Ovary Weight (mg.) (Standard Error) Number of Individuals

ч

1

1

ĩ

}

I.

Replicate	BB	во	OB	00
1	45.83	52.58	48.33	53.70
	(1.79)	(2.20)	(1.16)	(1.54)
	40	40	40	40
2	46.93	52.55	57.83	57.95
	(1.46)	(1.39)	(1.63)	(2.09)
	40	40	40	40
3	41.68	47.23	50.35	54.70
	(1.43)	(1.84)	(1.43)	(1.62)
	40	40	40	40
Mean	44.81	50.78	52.17	55.45
	(1.60)	(1.78)	(2.89)	(1.28)
	3	3	3	3

T

,

Table C10 : Experiment BO3 - Female Starvation

..

١

.

.

1

.

Γ. Ν

Mean Survival Time (hours) (Standard Error) Number of Individuals

Table C11 : Experiment BO3 - Female Longevity

Replicate	BB	во	OB	00
1	29.0	39.6	37.4	44.2
	(1.9)	(1.6)	(1.9)	(1.3)
	50	50	50	50
2	19.5	34.6	35.6	47.2
	(1.7)	(2.2)	(2.4)	(1.8)
	50	50	50	49
3	27.0	34.6	40.6	53.5
	(1.6)	(2.0)	(1.7)	(1.7)
	50	50	50	50
Mean	25.2	36.3	37.9	48.3
	(2.9)	(1.7)	(1.5)	(2.7)
	3	3	3	3

Т

Mean Longevity (days) (Standard Error) Number of Individuals

l

Table C12 : Experiment BO4 - Female Starvation

Replicate	BB	BO	OB	00
1	38.07	53.59	34.63	46.81
-	(2.23)	(3.36)	(1.74)	(2.96)
	36	36	36	36
2	44.41	46.30	54.40	50.78
	(3.84)	(2.89)	(3.48)	(2.57)
	16	32	40	40
3	36.35	41.18	39.50	43.88
	(3.06)	(2.98)	(2.67)	(2.88)
	20	36	36	40
Mean	39.61	47.02	42.84	47.15
	(2.45)	(3.60)	(5.95)	(2.00)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

1 1/4/201

ŧ

* 4 - L - F

the second section

1

ŕ

Table C13 : Experiment BO5 - Fecundity

Replicate	BB	BO	OB	00
	· · · · · · · · · · · · · · · · · · ·			<u></u>
1	80.2	84.4	79.3	85.2
	(2.1)	(1.7)	(2.7)	(1.8)
	104	64	59	99
2	88.3	95.3	96.4	88.4
	(2.1)	(3.2)	(2.7)	(2.4)
	100	39	58	98
3	73.6	84.2	80.1	81.4
	(2.0)	(3.0)	(1.9)	(2.0)
	97	59	59	82
Mean	80.7	88.0	85.3	85.0
	(4.3)	(3.7)	(5.6)	(2.0)
	3	3	3	3

=

-

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

٠

— ,

ť

•

4

٢

Table C14 : Experiment BO5 - Conditional Fecundity

Replicate	BB	BO	OB	00
1	82.5	84.4	82.1	85.2
	(1.6)	(1.7)	(1.9)	(1.8)
	101	64	57	99
2	88.3	95.3	96.4	91.1
	(2.1)	(3.2)	(2.7)	(1.9)
	100	39	58	95
3	75.9	87.2	81.5	82.4
	(1.6)	(2.2)	(1.3)	(1.7)
	94	57	58	81
Mean	82.2	88.9	86.7	86.2
	(3.6)	(3.2)	(4.9)	(2.6)
	3	C	3	3

_

j.

-

Mean 24 Hour Fecundity (Standard Error) Number of Individuals 1

.

Table C15 : Experiment BO5 - Female Starvation

Replicate	BB	BO	OB	00
1	25.46	27.75	27.80	33.64
	(0.64)	(0.79)	(1.10)	(0.82)
	98	64	56	100
2	28.10	27.85	31.68	37.78
	(0.88)	(1.07)	(1.05)	(1.02)
	96	52	60	100
3	30.09	32.03	36.93	36.10
	(0.84)	(1.19)	(1.06)	(1.06)
	100	60	60	94
Mean	27.88	29.21	32.14	35.84
	(1.34)	(1.41)	(2.65)	(1.20)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

1

1

.

ſ

Table C16 : Experiment BO5 - Male Starvation

Replicate	BB	во	0B	00
1	18.84	22.55	26.57	27.49
	(0.48)	(0.82)	(0.97)	(0.80)
	98	64	56	100
2	16.94	20.07	24.28	26.14
	(0.44)	(0.79)	(1.20)	(0.86)
	96	52	60	100
3	17.46	20.03	24.88	26.56
	(0.58)	(0.88)	(0.84)	(1.14)
	100	60	60	94
Mean	17.75	20.88	25.25	26.73
	(0.57)	(0.83)	(0.69)	(0.40)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

ż

5

ŧ

Table C17 : Experiment BO6 - Fecundity

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Replicate	BB	BO	OB	00
1	97.7	87.5	82.5	97.8
	(2.6)	(1.9)	(2.4)	(2.5)
2	95	58	60	100
	91.0	88.3	89.0	93.0
	(1.5)	(3.4)	(2.3)	(2.4)
3	100	42	75	99
	93.8	97.6	92.9	89.1
	(2.8)	(2.3)	(3.9)	(2.9)
Mean	94	60 91.1	49 	97 93.3
	(1.9)	(3.2)	(3.1) 3	(2.5)

٦

184

r T

:

.

Table C18 : Experiment BO6 - Conditional Fecundity

<u></u>				
Replicate	BB	BO	OB	00
1	100.8	87.5	83.9	97.8
	(1.9)	(1.9)	(2.0)	(2.5)
	92	58	59	100
2	91.0	90.5	90.2	95.9
	(1.5)	(2.8)	(2.0)	(1.8)
	100	41	74	96
3	96.9	97.6	96.9	92.9
	(2.2)	(2.3)	(2.8)	(2.3)
	91	60	47	93
Mean	96.3	91.8	90.3	95.6
	(2.9)	(3.0)	(3.8)	(1.4)
	3	3	3	3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

ŗ

.

-

ł

•

.

.

. . .

Table C19 : Experiment BO6 - Female Starvation

Replicate	BB	BO	OB	00
l	27.41	27.32	29.72	33.50
	(0.65)	(0.95)	(0.87)	(0.95)
	100	59	60	60
2	28.98	29.42	31.59	37.47
	(0.60)	(1.02)	(0.78)	(0.82)
	100	42	78	100
3	25.45	26.35	24.73	30.49
	(0.54)	(0.70)	(0.74)	(1.01)
	100	62	46	100
Mean	27.28	27.70	28.68	33.82
	(1.02)	(0.98)	(2.04)	(2.02)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

Replicate	BB	во	OB	00
1	22.46	26.45	30.22	33.96
	(0.53)	(0.67)	(1.01)	(0.94)
	100	60	60	98
2	21.12	24.40	27.44	33.18
	(0.52)	(0.90)	(0.86)	(1.19)
	100	42	78	100
3	16.42	24.51	23.49	25.87
	(0.43)	(0.87)	(0.09)	(0.93)
	100	62	46	99
Mean	20.00	25.12	27.05	31.00
	(1.83)	(0.67)	(1.95)	(2.58)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

Table C20 : Experiment BO6 - Male Starvation

14

1

-+ 1

1 1

•

:

1

•

Table C21 : Experiment BO6 - Female Longevity

Replicate	BB	BO & OB	00
1	43.7	49.0	49.1
	(1.2)	(1.5)	(1.7)
	99	97	100
2	41.5	45.8	49.4
	(1.2)	(1.3)	(1.6)
	100	98	100
3	36.0	46.8	55.7
	(1.2)	(1.1)	(1.5)
	99	97	100
Mean	40.4	47.2	51.4
	(2.3)	(0.9)	(2.2)
	3	3	3

Mean Longevity (days) (Standard Error) Number of Individuals

1

٠.

ŗ

,

1

ĩ.

.

Replicate	BB	BO & OB	00
1	32.3	39.0	49.4
	(1.2)	(1.2)	(1.4)
	98	97	95
2	31.4	40.7	54.3
	(0.9)	(1.2)	(1.4)
	100	100	100
3	32.2	37.7	52.3
	(0.9)	(1.0)	(1.6)
	96	100	100
Mean	31.9	39.1	52.0
	(0.3)	(0.9)	(1.4)
	3	3	3

Mean Longevity (days) (Standard Error) Number of Individuals

Table C22 : Experiment BO6 - Male Longevity

-

e,

4

1

Į-.

Table C23 : Experiment B07 - Pecundity

Replicate	BB	ВО	OB	00
7	0.4.4		02.0	
1	94.4	96.3	93.0	99.9
	(2.5)	(2.0)	(2.9)	(2.4)
	92	48	48	95
2	88.4	82.6	79.9	82.4
	(1.8)	(2.6)	(1.7)	(1.7)
	93	46	45	91
3	62.9	84.3	80.5	79.8
	(1.4)	(2.3)	(2.1)	(2.0)
	93	44	51	95
Mean	81.9	87.7	84.5	87.3
	(9.7)	(4.3)	(4.3)	(6.3)
	3	3	3	3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

1

i.

Table C24 : Experiment BO7 - Conditional Fecundity

				<u></u>
Replicate	BB	B0	OB	00
1	97.5	96.3	94.9	102.0
	(1.8)	(2.0)	(2.1)	(1.9)
	89	48	47	93
2	88.4	82.6	79.9	82.4
	(1.8)	(2.6)	(1.7)	(1.7)
	93	46	45	91
3	63.6	84.3	80.5	82.3
	(1.3)	(2.3)	(2.1)	(1.5)
	92	44	51	92
Mean	83.2	87.7	85.1	88.9
	(10.1)	(4.3)	(4.9)	(6.6)
	3	3	3	3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Table C25 : Experiment BO7 - Female Starvation

.,

Replicate	BB	BO	OB	00
1	32.20	36.95	40.03	47.46
	(0.88)	(1.52)	(1.74)	(1.44)
	96	48	48	96
2	35.05	38.50	42.06	51.52
	(0.97)	(1.03)	(2.01)	(1.36)
	96	48	48	95
3	35.56	39.45	39.92	45.26
	(0.84)	(1.11)	(1.17)	(1.08)
	96	45	51	96
Mean	34.27	38.30	40.67	48.08
	(1.05)	(0.73)	(0.70)	(1.84)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

.

;

5

Table C26 : Experiment BO7 - Male Starvation

Replicate	BB	во	OB	00
		<u></u>	<u> </u>	<u></u>
1	23.48	32.26	40.03	37.46
	(0.67)	(1.27)	(1.74)	(1.01)
	96	48	48	96
2	25.89	30.81	32.14	36.25
	(0.71)	(1.08)	(1.21)	(1.03)
	96	48	48	94
3	23.47	29.92	32.09	35.58
	(0.60)	(1.31)	(1.17)	(0.98)
	96	45	51	95
Mean	24.28	31.00	32.04	36.43
	(0.80)	(0.68)	(0.07)	(0.55)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals ٨

4

.

1

1

i

1

Į

1

.

1

Table C27 : Experiment BO7 - Female Longevity

Replicate	BB	во	OB	00
1	37.8	45.8	44.7	47.1
	(1.4)	(2.3)	(2.0)	(1.8)
	71	39	39	79
2	34.4	36.6	42.0	48.5
	(1.2)	(2.5)	(2.6)	(1.8)
	83	41	38	79
3	37.7	42.1	37.6	50.2
	(1.4)	(2.9)	(2.0)	(2.0)
	78	39	39	77
Mean	36.6	41.5	41.4	48.6
	(1.1)	(2.7)	(2.1)	(0.9)
	3	3	3	3

Mean Longevity (days) (Standard Error) Number of Individuals

Table C28 : Experiment BO7 - Male Longevity

Replicate	BB	BO	OB	00
1	34.2	40.2	41.2	47.3
	(1.5)	(1.9)	(2.4)	(1.8)
	77	40	39	75
2	31.5	33.8	42.1	48.5
	(1.1)	(1.8)	(2.2)	(1.9)
	77	39	40	79
3	29.7	32.9	34.9	48.3
	(1.1)	(2.1)	(1.6)	(2.0)
	68	40	39	81
Mean	31.8	35.6	39.4	48.0
	(1.3)	(2.3)	(2.3)	(0.4)
	3	3	3	3

5

ł

Mean Longevity (days) (Standard Error) Number of Individuals

Table C29 : Experiment BO8 - Fecundity

BB	BO	OB	00
95.2	98.0	102.9	98.6
(4.0)	(5.2)	(3.7)	(2.2)
79	58	20	79

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

£.,

Ļ

1

i

й || |

i, F,

Table	C30	:	Experiment	BO8	-	Conditional	Fecundity
-------	-----	---	------------	-----	---	-------------	-----------

BB	во	OB	00
98.9	99.7	102.9	98.6
(3.5) 76	(5.0) 57	(3.7) 20	(2.2) 79

1

ļ

ţ

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Į

Table C31 : Experiment BO8 - Female Starvation

BB	во	OB	00
27.21	29.62	29.65	35.41
(0.80)	(1.01)	(1.26)	(0.91)
80	60	20	80

Mean Survival Time (hours) (Standard Error) Number of Individuals

ı

Table C32 : Experiment BO8 - Male Starvation

BB	ВО	OB	00
21.33	23.57	22.90	26.05
(0.77)	(0.60)	(0.97)	(0.55)
80	60	20	00

Mean Survival Time (hours) (Standard Error) Number of Individuals

Table C33 : Experiment B08 - Female Longevity

BB	BO	OB	00
34.85	41.41	40.63	44.86
(1.46)	(2.03)	(2.15)	(1.96)
72	44	40	77

Mean Survival Time (hours) (Standard Error) Number of Individuals

۱ L

~

1

Table C34 : Experiment BO8 - Male Longevity

-

BB	во	OB	00
1.14	37.14	38.40	44.96
1.17)	(1.72)	(1.56)	(1.57) 74
79	36	40	

են, ենքնել են են են են են են են են են ենքի

ł

-1

Mean Survival Time (hours) (Standard Error) Number of Individuals

1

APPENDIX D

I

1

ł

Analysis of B and O Transmission Patterns

Table D1 : Experiment BO1 - Ovary Weight

MATERNAL EFFECTS

<u>Method 1</u> - t-test			
	BO Lines	OB Lines	DIF
Mean	0.122	0.124	-0.003
Standard Deviation	0.017	0.014	0.023
N	5	5	5
INDEPENDENT T = PAIRED T =	0.278 DF = 0.265 DF =	8 Probabilit 4 Probabilit	
<u>Method 2</u> - ANOVA			
SOURCE SS	DF	MS F	Р
TRT 0.00	0 1	0.000 0.06	9 0.806
TRT X REP 0.02	3 4	0.006	

Table D2 : Experiment BO1 - Female Starvation

	<u>BB - O</u>	<u>O DIFFEI</u>	RENCES	
<u>Method 1</u> - t- Mean Standard Deviat N	BB 2	Lines 8.67 2.07 5	00 Lines 32.74 1.27 5	DIF - 4.07 3.16 5
INDEPENDENT PAIRED			8 Probabili 4 Probabili	
<u>Method 2</u> - AN	IOVA			
SOURCE TRT TRT x REP		1 16	MS F 501.92 8.24 194.30	-
	MATE)	RNAL EFFE	ECTS	
<u>Method 1</u> - t- Mean Standard Deviat N	BO 31	Lines 1.81 2.37 5	OB Lines 30.50 2.74 5	DIF 1.31 4.43 5
INDEPENDENT PAIRED			8 Probabilit 4 Probabilit	
<u>Method 2</u> - AN	IOVA			
SOURCE TRT TRT X REP	94.01	1	MS F 94.01 0.444 211.64	
	DOMI	NANCE EFF	FECTS	
<u>Method 1</u> - t- Mean Standard Deviat N	Parenta 30		Crossed Line: 31.05 1.31 5	
INDEPENDENT PAIRED	T = 0.940 T = 1.404	DF = DF =	8 Probabilit 4 Probabilit	ty = 0.375 ty = 0.233
<u>Method 2</u> - AN	IOVA			
SOURCE TRT TRT x REP	SS 58.07 113.11	DF 1 4	MS F 58.07 2.054 28.28	P 4 0.225

ì

BB - OO DIFFERENCES

ł

تألفها فأعثامه كالانتخاصة معاملات سلاطاهما والعراف المرا

.

•

(}

٠

5

,

Table D3 : Experiment B01 - Male Starvation

1

,

1

standard to represent the second second to be be

BB - OO DIFFERENCES							
<u>Method 1</u> - t-t Mean Standard Deviat: N	BB 19 ion 1	Lines .86 .69 5	00 Lines 25.61 1.91 5	DIF - 5.75 1.23 5			
INDEPENDENT PAIRED	T = 5.047 T = 10.457	DF = 8 DF = 4	B Probabili 4 Probabili	ty = 0.001 ty = 0.000			
<u>Method 2</u> - ANG	AVG						
	3241.82	1 324	MS F 41.82 109.9 29.49	P 4 0.00			
	MATERNA	L EFFECTS	5				
<u>Method 1</u> - t- Mean Standard Deviat N	BO 21 ion 1	Lines .96 .34 5	OB Lines 22.27 1.87 5	DIF - 0.31 1.39 5			
INDEPENDENT PAIRED	T = 0.301 T = 0.497	DF = 3 DF = 4	8 Probabili 4 Probabili	ty = 0.771 ty = 0.645			
<u>Method 2</u> - AN	AVC						
SOURCE TRT TRT x REP	5.15	1	MS F 5.15 0.24 20.80				
	DOMINANC	E EFFECT	<u>S</u>				
<u>Method 1</u> - t- Mean Standard Deviat N	Parenta 22	l Lines .32 .70 5	Crossed Line 22.11 1.39 5	s DIF 0.22 1.28 5			
INDEPENDENT PAIRED	T = 0.220 T = 0.377						
<u>Method 2</u> - AN	OVA						
SOURCE TRT TRT x REP	SS 6.63 187.46	DF 1 4	MS F 6.63 0.14 46.87	P 1 0.726			

1

,

,

Table D4 : Experiment BO2 - Ovary Weight

BB - OO DIFFERENCES						
<u>Method 1</u> - t-te Mean Standard Deviatio N	BB 0.	Lines 109 021 5	00 Line 0.057 0.014 5	0.052		
INDEPENDENT 7 PAIRED 7	$\Gamma = 4.614$ $\Gamma = 3.753$	DF = DF =	8 Probab: 4 Probab:	ility = 0.002 ility = 0.020		
<u>Method 2</u> - ANOV	VA					
	0.204			F P .088 0.020		
	MATERNA	L EFFECI	<u>'S</u>			
<u>Method 1</u> - t-te Mean Standard Deviatio N	BO 0.	Lines 098 020 5	OB Line 0.090 0.020 5	0.008		
	r = 0.437 r = 0.863			ility = 0.556 ility = 0.437		
<u>Method 2</u> - ANOV	/A					
TRT C	SS 0.005 0.024	1 0		F P .745 0.437		
	DOMINANC	E EFFECI	<u>'S</u>			
<u>Method 1</u> - t-te Mean Standard Deviatio N	Parenta 0.	l Lines 083 009 5	Crossed L: 0.094 0.017 5			
INDEPENDENT I PAIRED I		DF = DF =		ility = 0.241 ility = 0.131		
<u>Method 2</u> - ANOV	7A					
SOURCE TRT TRT x REP	SS 0.018 0.020	DF 1 4		F P .579 0.131		

Table 75 : Experiment BO2 - Fecundity

BB - OO DIFFERENCES

Method 1 - t-test BB Lines 00 Lines DIF Mean 102.13 92.28 9.85 Standard Deviation 8.52 13.48 5.70 5 N 5 5 INDEPENDENT T = 1.381DF = 8Probability = 0.204T = 3.864DF = 4PAIRED Probability = 0.018Method 2 - ANOVA SOURCE SS \mathbf{DF} MS F Ρ TRT 14281.86 1 14281.86 14.743 0.018 4 TRT X REP 3874.79 968.70 MATERNAL EFFECTS <u>Method 1</u> - t-test BO Lines OB Lines DIF Mean 97.87 96.95 0.92 10.77 7.94 4.39 Standard Deviation 5 5 5 Ν Probability = 0.881INDEPENDENT T = 0.154DF = 8PAIRED T = 0.470 DF = 4Probability = 0.663Method 2 - ANOVA SOURCE SS \mathbf{DF} MS F Р 0.221 0.663 TRT 125.30 1 125.30 TRT X REP 566.83 2267.30 4 DOMINANCE EFFECTS Method 1 - t-test Parental Lines Crossed Lines DIF - 0.27 Mean 97.15 97.42 Standard Deviation 10.92 9.21 3.34 5 Ν 5 5 Probability = 0.967T = 0.042INDEPENDENT DF = 8PAIRED T = 0.181DF = 4Probability = 0.865Method 2 - ANOVA SOURCE SS DF MS F Ρ 0.865 1 21.53 0.033 TRT 21.53 4 656.05 TRT x REP 2624.20

Table D6 : Experiment B02 - Conditional Fecundity

BB - OO DIFFERENCES

<u>Method 1</u> -	t-test	DD	Lines			00 Lines	DIF
Mean Standard Dev N	iation	102	5 11 13 13 13 13 13 13 13 13 13 13 13 13			92.28 13.48 5	9.85 5.70 5
INDEPENDENT PAIRED		1.381 3.864					
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 14281.8 3874.7			14	MS 281.8 968.7	36 14.743	P 0.018
		MATER	NAL F	FF	<u>ECTS</u>		
<u>Method 1</u> - Mean Standard Dev N		97	Lines .87 .77 5			OB Lines 97.29 8.15 5	DIF 0.58 3.99 5
INDEPENDENT PAIRED		0.097 0.327				Probability = Probability =	
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 49.9 1862.0		DF 1 4		MS 49.9 465.5	F 93 0.107 51	Р 0.760
		DOMIN	ANCE	EF:	FECTS	<u>5</u>	
<u>Method 1</u> - Mean Standard Dev N		97				ossed Lines 97.59 9.35 5	DIF - 0.45 3.50 5
INDEPENDENT PAIRED	T = T =	0.069 0.284	DF DF		8 4	Probability = Probability =	0.947 0.790
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 58.2 2875.7	24	DF 1 4		MS 58.2 718.9	24 0.081	P 0.790

ł

Table D7 : Experiment BO2 - Female Starvation

		<u>BB - 00</u>) DII	FEF	RENCE	<u>IS</u>		
<u>Method 1</u> -	t-test	BB	Lines	3		00 Lines		DIF
Mean Standard Dev: N	iation		7.26 5.93 5			68.21 14.17 5		20.95 11.42 5
INDEPENDENT PAIRED						Probability Probability		
<u>Method 2</u> -	ANOVA							
SOURCE TRT TRT x REP	59189.			59:	189.7	74 16.651		Р 0.015
		<u>MATE</u>	RNAL	<u>EFF</u>]	<u>ECTS</u>			
<u>Method 1</u> - Mean Standard Dev		58	Line: 8.62 0.64			OB Lines 50.53 8.39		DIF 8.09 5.92
N			5			5		5
INDEPENDENT PAIRED	T = T =	1.336 3.055	DF DF	=	8 4	Probability Probability	=	0.218 0.038
<u>Method 2</u> -	ANOVA							
SOURCE TRT TRT x REP	59 7984 4146	13	DF 1 4	7		13 7.702		P 0.050
		DOMI	NANCE	EF	FECT	<u>S</u>		
<u>Method 1</u> - Mean Standard Dev N			al Li 9.00 9.94 5	nes	Cr	ossed Lines 53.94 9.07 5		DIF 5.06 3.37 5
INDEPENDENT PAIRED		0.841 3.361			8 4	Probability Þrobability		0.425 0.028
<u>Method 2</u> -	ANOVA							
SOURCE TRT TRT x REP	59 6732 2401	.98	DF 1 4		MS 732. 600.	98 11.214		P 0.029

i

ł and the second

ţ in the Table D8 : Experiment BO2 - Female Longevity

BB - OO DIFFERENCES

	-						
<u>Method 1</u> -	t-test	ממ	Line	-		00 Lines	DIF
Mean).08	5			-12.44
Standard Dev	iation		5.06			6.00	3.04
N	1401011	·	5			5	5
INDEPENDENT	ጥ ==	3.261	DF	-	8	Probability =	= 0.012
PAIRED						Probability =	
	-				•	1100000011101	0.001
<u>Method 2</u> -	ANOVA						
SOURCE	55		DF		MS	F	Р
TRT						76.069	-
TRT X REP	1110.2				277.5		0.001
INI A NDF	TTTO • 4	20	7		~ / / • -		
		MATE	RNAL I	<u>EF</u> F	ECTS		
<u>Method 1</u> -	t-tost						
Mechou I -	L-LESL	BO	Lines	2		OB Lines	DIF
Mean			7.73	3		55.92	1.81
Standard Dev	istion		5.48			5.25	6.81
N		~	5			5	5
14			5			5	5
INDEPENDENT	т =	0.532	DF	=	8	Probability =	= 0.609
PAIRED						Probability =	
	_				-	·	
<u>Method 2</u> -	ANOVA						
SOURCE	SS		DF		MS	F	Р
TRT	445.3					LO 0.320	0.602
TRT x REP					390.2		
			-				
		DOMIN	IANCE	EF	FECTS	5	
Method 1 -	t-test						
<u>Method 1</u>		Daronta	l T.iz	noc	Cre	ssed Lines	DIF
Mean	-		5.89	103	CIC	56.87	- 0.99
Standard Dev.	iation		5.16			4.18	5.25
N	racion	, c	5			4.10 5	5
			5			5	5
INDEPENDENT	т =	0.297	DF	=	8	Probability =	= 0.774
PAIRED		0.421				Probability =	
					-	_	
<u>Method 2</u> -	ANOVA						
SOURCE	SS		DF		MS	F	Р
TRT	274.7	73	1		274.7		0.689
TRT X REP	5910.3		4		77.58		~ ~ ~

į

i

Table D9 : Experiment BO3 - Ovary Weight

BB - OO DIFFERENCES

<u>Method 1</u> -	t-test	BB Lines	00 Lines	DIF
Mean		0.177	0.112	(.065
Standard Dev	iation	0.006	0.038	0.036
N	LUCION	3	3	3
14		5	3	•
INDEPENDENT	ጥ = 2.9	38 DF =	4 Probability	= 0.042
PAIRED	Ψ = 3 °	140 DF =	2 Probability	= 0.088
FAINED	I J•.		2 itobability	- 0.000
<u>Method 2</u> -	ANOVA			
Mechou z -	ANOVA			
COUDOF	SS	DF	MS F	Р
SOURCE				0.090
TRT	0.245			0.090
TRT x REP	0.051	2	0.025	
	MATI	ERNAL EFFEC	CTS	
<u>Method 1</u> -	t-test			
		BO Lines	OB Lines	DIF
Mean		0.143	0.161	-0.018
Standard Dev	viation	0.025	0.016	0.039
N	1001011	3	3	3
1		5	5	5
INDEPENDENT	m = 1 (043 DF ==	A Probability	= 0.356
PAIRED		807 DF ==	4 Probability 2 Probability	= 0.504
PAIRED	1 - 0.0	507 Dr	2 FIODADITICY	- 0.304
Mathed 2 -	3 MO173			
<u>Method 2</u> -	ANOVA			
SOUR	SS	DF	MS F	Р
	0.024		0.024 0.668	
TRT				0.500
TRT x REP	0.071	2	0.035	
	DOMI	NANCE EFFE	CTS	
Method_1 -	t-test			
		ental Lines	s Crossed Lines	DIF
Mean		0.142		-0.010
Standard Dev	viation	0.017	0.008	0.009
		3	3	3
N		3	3	5
	m – 0	010 07 -	4 Probability	- 0 411
INDEPENDENT	T = 0.1			
PAIRED	$\mathbf{T} = 1.$	908 DF =	2 Probability	= 0.197
<u>Method 2</u> -	ANOVA			
a	~~	D 7		T
SOURCE	SS	DF	MS F	P
TRT	0.014	1	0.014 3.659	0.196
TRT X REP	0.008	2	0.004	

Table D10 : Experiment BO3 - Female Starvation

BB - OO DIFFERENCES						
<u>Method 1</u> - t Mean Standard Devia N	BB 4	Lines 4.81 2.77 3	00 Lines 55.45 2.22 3	DIF -10.64 2.60 3		
INDEPENDENT PAIRED	T = 5.192 T = 7.099	DF = 4 $DF = 2$	Probability Probability	= 0.007 = 0.019		
<u>Method 2</u> - Al	NOVA					
SOURCE TRT TRT x REP	SS 6794.70 269.63	1 6794	IS F 1.70 50.400 1.82	P 0.019		
	MATE	RNAL EFFECI	<u></u>			
<u>Method 1</u> - t- Mean Standard Deviat N	BO 5	Lines 0.78 3.08 3	OB Lines 52.17 5.00 3	DIF - 1.38 5.00 3		
INDEPENDENT PAIRED		$\begin{array}{rcl} DF &=& 4\\ DF &=& 2 \end{array}$	Probability Probability			
<u>Method 2</u> - Al	IOVA					
SOURCE TRT TRT x REP	SS 114.82 998.26	1 114	IS F 1.82 0.230 9.13	P 0.679		
	DOMI	NANCE EFFEC	<u>TS</u>			
<u>Method 1</u> - t- Mean Standard Deviat N	5	al Lines C 0.13 2.15 3	Crossed Lines 51.48 3.32 3	DIF - 1.35 1.22 3		
INDEPENDENT PAIRED			Probability Probability			
<u>Method 2</u> - AM	IOVA					
SOURCE TRT TRT x REP	SS 217.35 118.45	1 217	IS F 7.35 3.670 9.23	P 0.195		

BB - OO DIFFERENCES

.

,

Table D11 : Experiment BO3 - Female Longevity

BB - OO DIFFERENCES

Method 1 - t-test 00 Lines BB Lines DIF Mean 25.17 48.32 -23.14Standard Deviation 4.97 4.70 6.39 Ν 3 3 3 INDEPENDENT T = 5.863 DF = 4 Probability = 0.004T = 5.867 DF = 2 PAIRED Probability = 0.028Method 2 - ANOVA SOURCE \mathbf{DF} SS MS F Ρ TRT 40028.98 1 40028.98 34.324 0.028 TRT X REP 2332.42 2 1166.21 MATERNAL EFFECTS Method 1 - t-test BO Lines OB Lines DIF 37.87 36.25 - 1.61 Mean Standard Deviation 2.86 2.55 4.09 Ν 3 3 3 T = 0.729Probability = 0.506INDEPENDENT DF = 4T = 0.684DF = 2 Probability = 0.565 PAIRED Method 2 - ANOVA SOURCE Ρ DF MS F SS 0.467 TRT 195.21 195.21 0.565 1 835.17 TRT X REP 2 417.58 DOMINANCE EFFECTS <u>Method 1</u> - t-test Parental Lines Crossed Lines DIF 37.06 - 0.36 Mean 36.70 Standard Deviation 2.59 1.78 3.50 Ν 3 3 3 **INDEPENDENT** T = 0.160DF = 4 Probability = 0.881 DF = 2PAIRED T = 0.242Probability = 0.831Method 2 - ANOVA SOURCE DF Ρ MS F SS 0.059 0.831 TRT 19.68 1 19.68 TRT X REP 671.26 2 335.63

Table D12 : Experiment B04 - Female Starvation

- -

, * ,

. .

٠

•

		<u>00 Dirt Dive</u>		
<u>Method 1</u> -		B Lines	00 Lines	DIF
Mean Standard Dev N		39.61 4.25 3	47.15 3.46 3	- 7.54 1.19 3
INDEPENDENT PAIRED			Probability Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	2347.81	1 234	MS F 7.81 116.653 0.13	P 0.008
	MAT	ERNAL EFFEC	TS	
<u>Method 1</u> - Mean Standard Devi	В	47.02	OB Lines 42.84 10.30	DIF 4.18
N		6.24 3	3	13.70 3
INDEPENDENT PAIRED	T = 0.60 T = 0.52	$\begin{array}{cccc} 1 & DF = & 4 \\ 8 & DF = & 2 \end{array}$	Probability Probability	= 0.580 = 0.650
<u>Method 2</u> -	ANOVA			
SOURCE	SS	DF		Р
TRT TRT x REP	939.43 6726.09		9.43 0.279 3.04	0.650
	DOM	INANCE EFFE	CTS	
<u>Method 1</u> -	t-test	tal Tinog	Crossed Lines	DIF
Mean Standard Dev: N		44.26 4.11 3	45.08 5.30 3	- 0.83 1.61 3
INDEPENDENT PAIRED	T = 0.21 T = 0.89	$\begin{array}{rrrrr} 4 & \mathrm{DF} = & 4 \\ 2 & \mathrm{DF} = & 2 \end{array}$	Probability Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 68.68 170.78	1 6	MS F 8.68 0.804 5.39	P 0.464

BB - OO DIFFERENCES

the same time, surveying and and and

Table D13 : Experiment B05 - Fecundity

	<u>BB - 00</u>	DIFFERENCI	ES	
<u>Method 1</u> - t-to		Lines	00 Lines	DIF
Mean Standard Deviatio N	80. on 7.		85.00 3.49 3	- 4.33 3.92 3
INDEPENDENT PAIRED	T = 0.917 T = 1.909	$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$	Probability = Probability =	0.411 0.196
Method 2 - ANO	VA			
	697.25	DF MS 1 2697.2 2 729.	25 3.696	Р 0.194
	MATERN	NAL EFFECTS		
<u>Method 1</u> - t-t	BO I		CB Lines	DIF
Mean Standard Deviati N	on 6.	.98 .35 3	85.26 9.65 3	2.72 3.33 3
INDEPENDENT PAIRED	T = 0.407 T = 1.412	$\begin{array}{rcl} DF &=& 4 \\ DF &=& 2 \end{array}$	Probability = Probability =	0.705 0.294
<u>Method 2</u> - ANO	VA			
TRT		DF MS 1 607. 2 282.	29 2.151	P 0.280
	DOMINA	ANCE EFFECT	<u>S</u>	
<u>Method 1</u> - t-t		l Ling Cr	ossed Lines	DIF
Mean Standard Deviati N	82 on 5	.70 .60 3	86.69 8.03 3	- 3.99 4.23 3
			Probability = Probability =	
Method 2 - ANO	VA			
	SS 1 370.32 568.55	DF MS 1 3370. 2 1284.	32 2.624	P 0.247

.

۰ ،

.

I.

Table D14 : Experiment BO5 - Conditional Fecundity

	<u>BB - C</u>	O DIFFERE	NCES	
<u>Method 1</u> - Mean Standard Dev N	BE 8	3 Lines 32.25 6.20 3	00 Lines 86.23 4.46 3	DIF - 3.99 2.18 3
INDEPENDENT PAIRED	T = 0.903 T = 3.162	DF = 4 $DF = 2$	Probability Probability	= 0.417 = 0.087
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 2251.00 432.16	1 225	MS F 1.00 10.417 6.08	P 0.084
	MATE	RNAL EFFEC	TS	
<u>Method 1</u> - Mean Standard Dev N	BC 8	D Lines 8.96 5.67 3	OB Lines 86.65 8.45 3	DIF 2.31 3.39 3
INDEPENDENT PAIRED	T = 0.394 T = 1.182		Probability Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP	SS 434.81 594.11	1 43	MS F 4.81 1.464 7.05	P 0.350
	DOMI	NANCE EFFE	CTS	
<u>Method 1</u> - Mean Standard Dev N	8	al Lines 4.14 5.39 3	Crossed Lines 87.86 7.04 3	DIF - 3.71 3.71 3
INDEPENDENT PAIRED			Probability Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 2880.32 1982.59	1 288	MS F 0.32 2.906 1.29	P 0.230

BB - OO DIFFERENCES

- - -

ł

1 F 2 . .

ł

BB - OO DIFFERENCES Method 1 - t-test 00 Lines BB Lines DIF Mean 27.88 35.84 - 7.96 Standard Deviation 2.33 2.08 1.84 3 3 3 N INDEPENDENT T = 4.417DF = 4Probability = 0.012PAIRED T = 7.474 DF = 2 Probability = 0.017Method 2 - ANOVA SOURCE SS DF MS F \mathbf{P} 9306.58 331.24 TRT 1 9306.58 56.192 0.017 TRT x REP 2 165.6. MATERNAL EFFECTS <u>Method 1</u> - t-test BO Lines OB Lines DIF - 2.93 Mean 29.21 32.14 Standard Deviation 2.44 4.58 2.53 3 3 N 3 T = 0.977 DF = 4 Probability = 0.384 INDEPENDENT T = 1.992 DF = 2 Probability = 0.185 PAIRED Method 2 - ANOVA \mathbf{F} SOURCE SS DF MS Ρ 3.891 0.187 TRT 751.05 1 751.05 TRT x REP 386.04 2 193.02 DOMINANCE EFFECTS Method 1 - t-test Parental Lines Crossed Lines DIF 31.88 30.72 1.16 Mean 3.43 2.38 Standard Deviation 1.98 3 3 3 Ν INDEPENDENT T = 0.506 DF = 4 Probability = 0.640 T = 0.842 DF = 2 Probability = 0.488 PAIRED

Table D15 : Experiment B05 - Female Starvation

Method 2 - ANOVA

1

The state of

1

nutada

and the second of the

^}

SOURCE	SS	DF	MS	F	P
TRT	293.88	1	293.88	0.711	0.488
TRT x REP	826.15	2	413.08		

Table D16 : Experiment B05 - Male Starvation

	<u>BB - 0</u>	O DIFFEREN	ICES	
<u>Method 1</u> - Mean Standard Dev N	BB 1	Lines 7.75 0.98 3	00 Lines 26.73 0.69 3	DIF - 8.98 0.29 3
INDEPENDENT PAIRED	T = 12.956 T = 53.067	$\begin{array}{rcl} DF &=& 4 \\ DF &=& 2 \end{array}$	Probability Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 11850.06 8.47	1 11850	IS F 0.06 2799.130 .23	P 0.000
	MATE	RNAL EFFECI	<u>'S</u>	
<u>Method 1</u> - Mean Standard Dev N	BO 2	Lines 0.88 1.44 3	OB Lines 25.25 1.19 3	DIF 4.36 0.43 3
INDEPENDENT PAIRED		$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$	Probability Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 1668.86 11.12	1 1668	IS F .86 300.159 .56	P 0.003
	DOMI	NANCE EFFEC	TS	
<u>Method 1</u> - Mean Standard Dev N	2	al Lines C 2.24 0.85 3	rossed Lines 23.07 1.18 3	DIF - 0.83 0.34 3
INDEPENDENT PAIRED	T = 0.992 T = 4.283	DF = 4 DF = 2	Probability Probability	= 0.377 = 0.050
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 152.00 16.77	1 152	IS F .00 18.124 .39	P 0.051

BB - OO DIFFERENCES

ţ

ъe

.

.

.

-

Table D17 : Experiment B06 - Fecundity

BB - OO DIFFERENCES

and the start start was an interfaced and the

•

ŧ

}

ł

,

-- -- --

<u>Method 1</u> -	t-test	BB Line		00 Lines	DIF
Mean Standard Dev N	iation	94.17 3.33 3		93.33 4.36 3	0.84 3.48 3
INDEPENDENT PAIRED	T = T =	0.264 DF 0.419 DF	= 4 = 2	Probability Probability	= 0.805 = 0.716
Method 2 -	ANOVA				
SOURCE TRT TRT x REP	SS 103.0 1170.2		MS 103.0 585.3	08 0.176	Р 0.715
		MATERNAL	EFFECTS		
<u>Method 1</u> - Mean Standard Dev N		BO Line 91.13 5.62 3		OB Lines 88.15 5.28 3	DIF 2.98 3.22 3
INDEPENDENT PAIRED	T = T = T	0.669 DF 1.604 DF	' = 4 ' = 2	Probability Probability	= 0.540 = 0.250
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 737.5 566.8	5 1	MS 737. 283.	55 2.602	P 0.248
		DOMINANCE	EFFECT	<u>5</u>	
<u>Method 1</u> - Mean Standard Dev N		Parental Li 93.73 3.50 3	nes Cro	ossed Lines 89.74 5.35 3	DIF 3.99 8.47 3
INDEPENDENT PAIRED		1.082 DF 0.816 DF			
Method 2 -	ANOVA				
SOURCE TRT TRT x REP	SS 3451.3 10285.5		MS 3451.3 5142.3	34 0.671	Р 0.449

BB - OO DIFFERENCES						
		<u>JO DIFFE</u>	<u>KENCHO</u>			
<u>Method 1</u> -			~ ~ ~		DTD	
Mean	- ··	3 Lines 96.26	00 I 95.	Lines 56	DIF 0.70	
Standard Dev		4.97		46	4.88	
N		3	3		3	
INDEPENDENT	$\mathbf{T} = 0.217$	7 DF =	4 Prob	ability =	0.839	
PAIRED	T = 0.247	DF =	2 Prot	ability =	0.828	
<u>Method 2</u> -	ANOVA					
SOURCE	SS	DF	MS	F	Р	
TRT	69.15		69.15	0.060	0.829	
TRT X REP	2294.97	2 1	147.49			
	<u>MA'</u>	ERNAL EF	TECTS			
<u>Method 1</u> -	t-test					
) Lines	OB I	lines	DIF	
Mean	9	91.85	90.	34	1.51	
Standard Dev	iation	5.20	6.	51	1.83	
N		3	3	•	3	
INDEPENDENT	TT = 0.314	DF =	1 Prot	ability =	0 769	
PAIRED	T = 1.430			ability =		
<u>Method 2</u> -	ANOVA					
SOURCE	SS	DF	MS	F	Р	
TRT	186.32		186.32	1.978	0.295	
TRT X REP	188.41	2	94.20			
	DOMI	NANCE EF	FECTS			
Method 1 -	t-test					
<u>110 01100 1</u>		al Lines	Crossed	Lines	DIF	
Mean		5.86	91.		4.77	
Standard Dev	iation	3.06	5.	85	8.14	
N		3	3		3	
TNINDTININTINI	m		d Deserte	-1-1-1-4	0 070	
INDEPENDENT PAIRED	T = 1.252 T = 1.015			ability = ability =		
T 83-1-2/1012	I - I.0IS	, DI	Z FIUL	ability =	0.471	
<u>Method 2</u> -	ANOVA					
SOURCE	SS	DF	MS	F	Р	
TRT	4839.39		839.39	1.034	0.416	
TRT x REP	9364.12	2 4	682.06			

Table D18 : Experiment B06 - Conditional Fecundity

ن ع

ŧ

.

.

- (SLAN

Table D19 : Experiment BO6 - Female Starvation

4

	<u>BB</u> – (<u>OO DIFFEREN</u>	CES	
<u>Method 1</u> - Mean Standard Dev N	B	B Lines 27.28 1.77 3	00 Lines 33.82 3.50 3	DIF - 6.54 1.77 3
INDEPENDENT PAIRED		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	· · · · · · · · · · · · · · · · · · ·	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 6395.32 312.56	1 6395	IS F 5.32 40.923 5.28	P 0.024
	MAT	ERNAL_EFFECT	<u>'S</u>	
<u>Method 1</u> - Mean Standard Dev N	В	O Lines 27.70 1.57 3	OB Lines 28.68 3.55 3	DIF - 0.98 2.25 3
INDEPENDENT PAIRED		9 DF = 4 6 DF = 2		
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 80.50 275.59	1 80	IS F).50 0.584 7.79	р 0.525
	DOM	INANCE EFFEC	<u>TS</u>	
<u>Method 1</u> - Mean Standard Dev N	Paren	tal Lines (30.54 2.63 3	Crossed Lines 28.34 2.59 3	DIF 2.20 0.27 3
INDEPENDENT PAIRED	T = 1.03 T = 14.33	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Probability Probability	= 0.005 = 0.360
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 1061.54 10.48	1 1061	IS F 1.54 202.540 5.24	P 0.005

BB - OO DIFFERENCES

.

•

,

ł

Table D20 : Experiment BO6 - Male Starvation BB - OO DIFFERENCES <u>Method 1</u> - t-test BB Lines 00 Lines DIF Mean 20.00 31.00 -11.00 3.17 Standard Deviation 4.46 1.38 N 3 3 3 T = 3.480 DF = 4 Probability = 0.025 INDEPENDENT PAIRED T = 13.860 DF = 2 Probability = 0.005 Method 2 - ANOVA SOURCE SS DF MS F P

managements and address and the grant provides when some

TRT TRT x REP	18069.0 188.3)3 34	1 2	18069. 94.	03 191.881 17	0.005
		MATER	NAL E	FFECTS		
<u>Method 1</u> - Mean Standard Devi N		25 1	Lines .12 .15 3		OB Lines 27.05 3.38 3	DIF - 1.93 2.58 3
INDEPENDENT PAIRED	T = T =	0.936 1.297	DF DF	= 4 = 2	Probability Probability	= 0.402 = 0.324
<u>Method 2</u> -	ANOVA					
SOURCE TRT TRT x REP	SS 310.8 363.1	39 1	DF 1 2	MS 310. 181.	F 89 1.712 56	P 0.321
		DOMIN	ANCE	EFFECT	<u>S</u>	
<u>Method 1</u> - Mean Standard Devi N	I	3	1 Lin .47 .80 3	es Cro	ossed Lines 26.26 2.13 3	DIF - 0.79 1.94 3
INDEPENDENT PAIRED	T = T =	0.312 0.703	DF = DF =	= 4 = 2	Probability Probability	= 0.770 = 0.555
<u>Method 2</u> -	ANOVA					
SOURCE TRT TRT x REP	SS 135.7 538.5	6 0	DF 1 2	MS 135. 269.3	F 76 0.504 25	P 0.551

--

-

۲

с к |

ar 16 mg ann ann 17 10 mar anns ann an

Table D21 : Experiment BO6 - Female Longevity

-

<u>Method 1</u> - t-te	est			
	BB	Lines	00 Lines	DIF
Mean		0.43	51.39	-10967
Standard Deviation	on 3	3.95	3.76	7.66
N		3	3	3
				
	T = 3.481		4 Probabil	
PAIRED	T = 2.479	DF =	2 Probabil	ity = 0.131
<u>Method 2</u> - ANO	VA			
SOURCE	SS	DF	MS F	Р
TRT 17	971.46	1 179	71.46 6.1	53 0.131
TRT X REP 5	841.29	2 29	20.65	

BB - OO DIFFERENCES

DOMINANCE EFFECTS

<u>Method 1</u> - t-test				
	Parental I	ines Cros	sed Lines	DIF
Mean	45.93		47.18	- 1.25
Standard Deviation	0.47		1.63	1.18
N	3		3	3
				0 0 0 0
INDEPENDENT $T =$			robability =	
PAIRED T =	1.842 D	$\mathbf{F} = 2 \mathbf{P}$	robability =	0.207
<u>Method 2</u> - ANOVA				
SOURCE SS	S DF	MS	F	P
TRT 306	.81 1	306.81	3.393	0.207
TRT X REP 180.		90.43		

BB - OO DIFFERENCES							
<u>Method 1</u> - Mean Standard Dev N		3	Lines 1.94 0.50 3			00 Lines 51.99 2.46 3	DIF -20.04 2.91 3
INDEPENDENT PAIRED						Probability = Probability =	
Method 2 -	ANOVA						
SOURCE TRT TRT x REP	59122. 831.				MS 122.0 415.9	F 08 142.153 91	P 0.007
		DOMII	NANCE	EF	FECTS	5	
<u>Method 1</u> - Mean Standard Dev N		43	al Lir 1.99 1.13 3			ossed Lines 39.14 1.49 3	DIF 2.85 1.63 3
INDEPENDENT PAIRED		2.644 3.029				Probability = Probability =	
Method 2 -	ANOVA						

Table D22 : Experiment B06 - Male Longevity

N		3	3	3
INDEPENDENT PAIRED	T = 2.644 T = 3.029		Probability = Probability =	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 1606.90 350.71	DF MS 1 1606.9 2 175.3		P 0.094

.

224

ì

 Table D23 : Experiment B07 - Fecundity

BB - OO DIFFERENCES

<u>Method 1</u> -	t-test	BB Lines	00 Lines	DIF
Mean Standard Dev N	iation	81.91 16.74 3	87.35 10.94 3	-5.44 11.46 3
INDEPENDENT PAIRED	$\begin{array}{rcl} T &=& 0\\ T &=& 0 \end{array}$.471 DF = .822 DF =	 4 Probability 2 Probability 	= 0.662 = 0.497
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP	SS 4131.00 12201.13	1 41	MS F L31.00 0.677 L00.57	P 0.497
		MATERNAL EFFE	ECTS	
<u>Method 1</u> - Mean Standard Dev N		BO Lines 87.74 7.47 3	OB Lines 84.45 7.37 3	DIF 3.29 0.54 3
INDEPENDENT PAIRED	$\begin{array}{rcl} \mathbf{T} &= & 0 \\ \mathbf{T} &= & 10 \end{array}$.542 DF = .638 DF =	4 Probability 2 Probability	= 0.616 = 0.009
Method 2 -	ANOVA			
SOURCE TRT TRT x REP	SS 759.13 13.24		MS F 759.13 114.702 6.62	P 0.009
		DOMINANCE EFF	FECTS	
<u>Method 1</u> - Mean Standard Dev N		rental Lines 84.69 13.91 3	Crossed Lines 86.05 7.45 3	DIF - 1.37 8.23 3
INDEPENDENT PAIRED		.159 DF = .288 DF =		
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP	SS 350.77 8487.74		MS F 350.77 0.083 243.87	P 0.801

•,|

• . •

BB - OO DIFFERENCES					
<u>Method 1</u> - Mean Standard Dev N	8	Lines 3.17 7.57 3	00 Lines 88.89 11.37 3	DIF - 5.73 12.41 3	
INDEPENDENT PAIRED	T = 0.474 T = 0.799	$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$	Probability = Probability =		
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT X REP	SS 4506.94 14176.23	DF MS 1 4506. 2 7088.	94 0.636	P 0.509	
	MATE	RNAL EFFECTS			
<u>Method 1</u> - Mean Standard Dev N	BO 8	Lines 7.74 7.47 3	OB Lines 85.11 8.51 3	DIF 2.63 1.21 3	
INDEPENDENT PAIRED		$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$	Probability = Probability =		
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT X REP	SS 483.35 68.88	DF MS 1 483. 2 34.	35 14.035	р 0.064	
	DOMI	NANCE EFFECT	<u>S</u>		
<u>Method 1</u> - Mean Standard Dev N	8	al Lines Cr 6.06 3.46 3	ossed Lines 86.39 8.02 3	DIF - 0.33 7.79 3	
INDEPENDENT PAIRED		$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$	Probability = Probability =		
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 350.77 8487.74	DF MS 1 350. 2 4243.	77 0.083	P 0.801	

Table D24 : Experiment BO7 - Conditional Fecundity

.

,

,

•

Table D25 : Experiment BO7 - Female Starvation

	<u>DD -</u>	<u> </u>	SKENCED		
<u>Method 1</u> - t					
Mean		3B Lines 34.27		D Lines 48.08	DIF -13.81
Standard Devia		1.81		3.18	3.61
N		3		3	3
INDEPENDENT	T = 6.53	B7 DF =	4 Pi	robability =	0.003
PAIRED	T = 6.61	18 DF =	2 Pi	robability =	0.022
<u>Method 2</u> - A	NOVA				
SOURCE	SS	DF	MS	F	Р
TRT	27403.18	1 2'	7403.18	43.782	0.022
TRT x REP	1251.80	2	625.90		
	MA	TERNAL EF	FECTS		
Mathed 1 4	. .				
<u>Method 1</u> - t		BO Lines	01	B Lines	DIF
Mean	-	38.30			- 2.37
Standard Devia	tion	1.26		1.22	1.67
N		3		3	3
INDEPENDENT PAIRED				robability = robability =	
PAIKED	T = 2.4	59 DF =	2 F.	CODADITICY -	0.122
<u>Method 2</u> - A	NOVA				
SOURCE	SS	DF	MS	F	Р
TRT	404.38	1		6.054	
TRT x REP	133.60	2	66.80		
	DOI	MINANCE E	FFECTS		
Method 1 - t	-test				
		ntal Line	s Cross	sed Lines	DIF
Mean	Idrei	41.16		39.49	1.67
Standard Devia	tion	1.83		0.92	1.16
N		3		3	3
INDEPENDENT	T = 1.43			robability =	
PAIRED	T = 2.49	95 DF =	2 P:	robability =	0.130
<u>Method 2</u> - A	NOVA				
SOURCE	SS	DF	MS	F	Р
TRT	534.07	1	534.07	_	0.130
TRT x REP	171.48	2	85.74		

٠

BB - OO DIFFERENCES

あい Ron し や した きたく トット や

ţ,

No.

.

Table D26 : Experiment B07 - Male Starvation

	<u>BB</u> -	<u>OO DIFFE</u>	RENCES		
<u>Method 1</u> - Mean Standard Dev N INDEPENDENT PAIRED	В	B Lines 24.28 1.40 3 3 DF = 3 DF =	36.43 0.95 3		.15 .81 3
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 21135.62 312.94	DF 1 21 2	MS 135.62 135 156.47	F P 5.079 0.	007
	MAT	ERNAL EFF	ECTS		
<u>Method 1</u> - Mean Standard Dev N	B	0 Lines 31.00 1.18 3	OB Lir 32.04 0.13 3	- 1 3 1	.05 .29
INDEPENDENT PAIRED	T = 1.52 T = 1.40	3 DF = 3 DF =	4 Probak 2 Probak	$\begin{array}{llllllllllllllllllllllllllllllllllll$	202 296
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	79.91	1 2	78.60 1 39.95	F P .967 0.	
	DOM	INANCE EF	FECTS		
<u>Method 1</u> - Mean Standard Dev N		tal Lines 30.33 0.77 3	Crossed I 31.54 0.51 3	- 1	IF .218 .658 3
INDEPENDENT PAIRED	T = 2.28 T = 3.20	4 DF = 6 DF =		oility = 0. Oility = 0.	
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 284.18 55.26	DF 1 2	MS 284.18 10 27.63	F P 0.285 0.	085

,

:

BB - OO DIFFERENCES

-

,

.

-

Table D27 : Experiment B07 - Female Longevity

BB - OO DIFFERENCES					
<u>Method 1</u> - Mean	BB 3	6.61		DIF -11.99	
Standard Dev N	iation	1.92 3	1.59 3	2.47 3	
INDEPENDENT PAIRED			Probability = Probability =		
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 16742.31 470.18	DF MS 1 16742. 2 235.	31 71.217	P 0.014	
	MATE	RNAL EFFECTS			
<u>Method 1</u> -		Lines	OB Lines	DIF	
Mean Standard Dev N	4	1.51 4.63 3	41.41 3.60 3	0.10 5.00 3	
INDEPENDENT PAIRED	T = 0.030 T = 0.035	DF = 4 $DF = 2$	Probability = Probability =	0.978 0.975	
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 0.59 980.49	DF MS 1 0. 2 490.	59 0.001	р 0.975	
	DOMI	NANCE EFFECT	<u>'S</u>		
<u>Method 1</u> -		al Lines Cr	ossed Lines	DIF	
Mean Standard Dev N	4	2.61 1.31 3	41.43 3.34 3	1.19 3.44 3	
INDEPENDENT PAIRED	T = 0.573 T = 0.598	DF = 4 $DF = 2$	Probability = Probability =	0.598 0.611	
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 220.26 1220.31	DF MS 1 220. 2 610.	26 0.361	P 0.609	

1

•

Table D28 : Experiment B07 - Male Longevity

	<u>BB</u> - C	O DIFFER	ENCES	
<u>Method 1</u> - Mean Standard Dev N	BE	3 Lines 31.83 2.27 3	00 Lines 48.03 0.65 3	DIF -16.20 2.84 3
INDEPENDENT PAIRED	T = 11.867 T = 9.896		4 Probability 2 Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP	SS 29901.63 606.12		MS F 01.63 98.666 03.06	P 0.010
	MATE	RNAL EFFE	CTS	
<u>Method 1</u> - Mean Standard Dev N	BC 3	D Lines 5.62 4.01 3	OB Lines 39.42 3.94 3	DIF - 3.79 3.96 3
INDEPENDENT PAIRED	T = 1.169 T = 1.659		4 Probability 2 Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP	SS 852.93 620.07		MS F 52.93 2.751 10.04	P 0.239
	DOMI	NANCE EFF	ECTS	
<u>Method 1</u> - Mean Standard Dev N	4	al Lines 0.21 0.44 3	Crossed Lines 37.53 3.46 3	DIF 2.68 3.03 3
INDEPENDENT PAIRED	T = 1.331 T = 1.528		4 Probability 2 Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 1117.88 953.00		MS F 17.87 2.346 76.50	P 0.265

BB - OO DIFFERENCES

.

AND THE PARTY

Table D29 : Experiment BO8 - Fecundity

BB - OO DIFFERENCES

Method 2	-	ANOVA					
SOURCE TRT ERROR		SS 468.25 127905.70	DF 1 156	MS 468.25 819.91	F 0.571	р 0.451	
		MA	TERNAL	EFFECTS			
Method 2	-	ANOVA					
SOURCE TRT ERROR		SS 354.81 96266.48	DF 1 76	MS 354.81 1266.66	F 0.280	P 0.598	
DOMINANCE EFFECTS							
<u>Method 2</u>		ANOVA					
SOURCE TRT ERROR		SS 283.96 224995.24	DF 1 234	MS 283.96 961.52	F 0.295	P 0.587	

ţ

•

ı

そうかまでない スロンド・デザー マイス とうま とうま そうちょうせい ひんせいきん ないまた ないまた たいしょう たいまた たいしょう たいちょう たいしょう たいちょう ないない ないない

ĸ

Table D30 : Experiment BO8 - Conditional Fecundity

BB - OO DIFFERENCES

Method 2 - ANOVA

**

· 🗐

SOURCE	SS	DF	MS	F	Р
TRT	3.81	1	3.81	0.006	0.939
ERROR	99664.36	153	651.40		

MATERNAL EFFECTS

<u>Method 2</u> - ANOVA

SOURCE	SS	DF	MS	F	Р
TRT	148.38	1	148.38	0.129	0.721
ERROR	86500.87	75	1153.35		

DOMINANCE EFFECTS

<u>Method 2</u> - ANOVA

SOURCE	SS	DF	MS	F	Р
TRT	156.69	1	156.69	0.193	0.660
ERROR	186317.41	230	810.08		

_

.

٢

.

.

Table D31 : Experiment BO8 - Female Starvation

BB - OO DIFFERENCES

.

÷,

.

•

<u>Method 2</u>	-	ANOVA				
SOURCE TRT ERROR		SS 2689.60 9338.38	DF 1 158	MS 2689.60 59.10	F 45.507	P 0.000
		MA	TERNAL 1	EFFECTS		
Method 2		ANOVA				
SOURCE TRT ERROR		SS 0.017 4228.53	DF 1 78	MS 0.02 54.21	F 0.000	P 0.986
		DOI	MINANCE	EFFECTS		
<u>Method 2</u>		ANOVA				
SOURCE TRT ERROR		SS 151.88 16256.53	DF 1 238	MS 151.88 68.31	F 2.223	P 0.137

233

.

BB - OO DIFFERENCES

is charge and general

Method 2 - ANOVA

k

,

SOURCE	SS	DF	MS	F	P
TRT	893.03	1	893.03	25.017	0.000
ERROR	5640.15	158	35.70		

MATERNAL EFFECTS

Method 2	-	ANOVA				
SOURCE TRT ERROR		SS 6.67 1630.33	DF 1 78	MS 6.67 20.90	F 0.319	P 0.574

DOMINANCE EFFECTS

Method 2	 ANOVA				
SOURCE	SS	DF	MS	F	Р
TRT	4.41	1	4.41	0.128	0.720
ERROR	8070.18	238	34.33		

4 3

Table D33 : Experiment B08 - Female Longevity

· _____

----- --

8...

۲

•

.

BB - OO DIFFERENCES

<u>Method 2</u>	-	ANOVA				
SOURCE TRT ERROR		SS 3728.19 33292.75	DF 1 147	MS 3728.19 226.48	F 16.461	P 0.000
		MA	TERNAL I	EFFECTS		
Method 2	-	ANOVA				
SOURCE TRT ERROR		SS 30.13 7501.91	DF 1 74	MS 354.81 101.38	F 0.280	P 0.598
		DC	MINANCE	EFFECTS		
Method 2	-	ANOVA				
SOURCE TRT ERROR		SS 55.40 52049.83	DF 1 231	MS 55.40 225.32	F 0.246	Р 0.620

٠

Table D34 : Experiment BO8 - Male Longevity

BB - OO DIFFERENCES

<u>Method 2</u>	-	ANOVA				
SOURCE TRT ERROR		SS 3728.19 33292.75	DF 1 147	MS 3728.19 226.48	F 16.461	P 0.000
		MA	TERNAL 1	EFFECTS		
<u>Method 2</u>	-	ANOVA				
SOURCE TRT ERROR		SS 30.13 7501.91	DF 1 74	MS 30.13 101.38	F 0.297	P 0.587
		<u>D0</u>	MINANCE	EFFECTS		
Method 2	-	ANOVA				
SOURCE TRT ERROR		SS 0.02 36536.28	DF 1 227	M5 0.02 160.95	F 0.000	P 0.991

236

ł

. . .

l

APPENDIX E

.

Summary Statistics of B and O Gene Number Estimates

7

1

シントマガザ

Table E1 : Experiment GB01 - Ovary Weight

٦

--

Mean Dry Ovary Weight (mg.) (Variance) Number of Individuals

Replicate	Genera	tion 1	Generation 2		
	BB	во	BB	BO	
1	0.112	0.120	0.111	0.103	
	(0.002)	(0.003)	(0.003)	(0.003)	
	43	44	41	48	
2	0.147	0.107	0.122	0.120	
	(0.003)	(0.002)	(0.002)	(0.003)	
	43	40	43	39	
3	0.126	0.133	0.096	0.106	
	(0.003)	(0.003)	(0.002)	(0.003)	
	46	49	39	43	
4	0.142	0.128	0.118	0.114	
	(0.003)	(0.002)	(0.002)	(0.002)	
	47	46	36	48	
5	0.125	0.128	0.103	0.116	
	(0.003)	(0.002)	(0.003)	(0.002)	
	46	39	43	41	
Mean	0.130	0.123	0.110	0.112	
	(0.006)	(0.005)	(0.005)	(0.003)	
	5	5	5	5	

Table E2-A : Experiment GBO1 - Female Starvation

Mean Survival Time (hours) (Variance) Number of Individuals

Ţ

Pre an Invaluation of

1

~

P**

Replicate	Generation 1			Generat	ion 2
	BB	00	BO	BB	во
1	30.33	31.60	31.58	24.66	25.64
	(68.83)	(65.63)	(58.93)	(50.03)	(63.90)
	48	33	48	42	51
2	27.79	34.50	32.74	27.59	29.86
	(27.58)	(59.02)	(87.17)	(28.45)	(79.88)
	42	30	42	42	42
3	29.60	31.88	31.30	26.78	26.90
	(64.94)	(24.40)	(85.57)	(82.47)	(44.84)
	48	36	48	39	45
4	30.20	32.06	30.33	28.49	29.60
	(51.31)	(36.70)	(69.68)	(51.06)	(57.96)
	48	33	45	39	48
5	25.43	33.63	29.28	25.44	27.13
	(36.36)	(67.66)	(57.90)	(39.49)	(48.84)
	45	36	42	42	42
Mean	28.67	32.74	31.05	26.59	27.83
Std Error	(0.93)	(0.57)	(0.59)	(0.70)	(0.82)
N	5	5	5	5	5

ի Ե 1

<u>,</u>*

Table E2-B : Experiment GB01 - Female Starvation

Mean Survival Time (hours) (Variance) Number of Individuals

Replicate	Generat	ion 3	Generation 4		
	BB	BO	BB	BO	
1	28.57	25.61	31.17	33.47	
	(106.07)	(51.28)	(41.38)	(45.32)	
	45	42	45	42	
2	27.99	33.39	31.38	38.54	
	(79.19)	(95.19)	(38.58)	(78.13)	
	39	42	33	42	
3	25.33	31.63	29.17	32.23	
	(61.17)	(132.26)	(34.07)	(73.26)	
	42	45	45	36	
4	28.40	31.07	33.52	35.67	
	(97.28)	(102.91)	(54.56)	(53.53)	
	48	45	39	51	
5	29.60	29.65	31.63	34.61	
	(148.11)	(82.40)	(87.50)	(61.82)	
	36	39	39	42	
Mean	27.98	30.27	31.37	34.91	
Std Error	(0.71)	(1.31)	(0.69)	(1.08)	
N	5	5	5	5	

. . .

÷

Table E2-C : Experiment GBO1 - Female Starvation

Mean Survival Time (hours) (Variance) Number of Individuals

Replicate	Generat	ion 5	Generat	cion 6
	BB	BO	BB	во
1	36.44	34.93	28.89	31.46
	(58.42)	(73.00)	(35.04)	(54.86)
	45	36	42	42
2	33.10	36.30	27.67	35.59
	(52.62)	(57.47)	(33.23)	(90.27)
	27	39	36	33
3	32.47	32.67	27.07	31.56
	(73.42)	(73.46)	(44.01)	(48.27)
	42	45	42	42
4	34.50	38.27	30.53	32.27
	(49.02)	(57.91)	(49.77)	(66.84)
	42	36	48	42
5	33.13	37.10	26.80	32.65
	(93.18)	(93.34)	(41.56)	(54.07)
	39	36	42	33
Mean	33.93	35.85	28.19	32.70
Std error	(0.71)	(0.96)	(0.69)	(0.76)
N	5	5	5	5

Table F3-A : Experiment GBO1 - Male Starvation

Mean Survival Time (hours) (Variance) Number of Individuals

ł

Replicate	Ge	Generation 1			Generation 2	
	BB	00	BO	BB	BO	
1	19.14	24.15	22.50	17.80	21.88	
	(44.46)	(47.03)	(41.53)	(36.73)	(54.75)	
	48	33	45	42	51	
2	22.02	28.86	23.50	20.87	23.57	
	(45.43)	(38.73)	(41.99)	(48.84)	(65.08)	
	42	33	42	42	42	
3	18.98	25.60	22.80	17.60	21.43	
	(26.35)	(40.72)	(41.05)	(21.47)	(53.16)	
	48	36	48	39	45	
4	21.20	25.16	21.89	20.65	25.48	
	(48.83)	(18.06)	(54.46)	(78.61)	(60.11)	
	48	33	45	39	48	
5	17.97	24.30	19.85	16.73	23.27	
	(57.53)	(59.34)	(36.96)	(30.11)	(65.08)	
	45	36	42	42	42	
Mean	19.86	25.61		18.73	23.13	
Std Error	(0.754)	(0.854)		(0.849)	(0.713)	
N	5	5		5	5	

Table E3-B : Experiment GB01 - Male Starvation

M

- --

.

Mean Survival Time (hours) (Variance) Number of Individuals

Replicate	Generat	tion 3	Generation 4		
	BB	BO	BB	во	
1	20.10	24.76	20.77	25.90	
	(31.91)	(50.03)	(41.16)	(65.42)	
	45	42	45	42	
2	22.91	27.93	20.66	26.97	
	(41.59)	(50.34)	(18.70)	(41.81)	
	39	42	33	42	
3	19.47	24.70	19.30	24.04	
	(36.98)	(48.44)	(34.36)	(55.88)	
	42	45	45	42	
4	22.65	26.93	23.82	25.40	
	(39.77)	(56.98)	(33.86)	(67.96)	
	48	45	39	50	
5	20.93	22.87	17.94	22.61	
	(47.54)	(41.44)	(18.41)	(54.79)	
	36	39	39	42	
Mean	21.21	25.44	20.50	24.99	
Std Error	(0.681)	(0.895)	(0.978)	(0.757)	
N	5	5	5	5	

1

E.

Table E3-C : Experiment GB01 - Male Starvation

....

.

Replicate	Genera	tion 5	Genera	tion 6
	BB	во	BB	BO
1	20.80	20.93	19.89	20.87
	(28.09)	(27.06)	(38.99)	(32.66)
	48	36	42	45
2	24.01	26.30	19.21	23.96
	(67.77)	(110.53)	(22.75)	(56.32)
	33	39	42	33
3	20.19	22.80	18.64	20.84
	(32.11)	(38.80)	(30.86)	(28.52)
	42	45	42	42
4	23.08	22.77	21.65	25.56
	(40.25)	(38.29)	(30.57)	(41.39)
	38	36	48	42
5	22.52	23.43	18.66	22.65
	(45.09)	(33.91)	(20.17)	(42.82)
	39	36	42	33
Mean	22.12	23.25	19.61	22.77
Std error	(0.712)	(0.870)	(0.558)	(0.909)
N	5	5	5	5

1

ي ر

1

,

٠

Mean Survival Time (hours) (Variance) Number of Individuals ----

.

Table E4 : Experiment GBO2 - Fecundity

Replicate	BB	00	Fl	F2
1	97.70	97.82	84.94	82.46
	(638.2)	(604.8)	(278.6)	(486.9)
	95	100	118	143
2	91.00	93.05	88.78	89.94
	(234.7)	(584.0)	(437.6)	(385.7)
	100	99	117	143
3	93.81	89.11	95.51	84 19
	(719.0)	(831.1)	(507.8)	(548.7)
	94	97	109	138
Mean	94.17	93.33	89.74	85.53
Std Error	(1.94)	(2.52)	(3.09)	(2.26)
N	3	3	3	3

Mean 24 Hour Fecundity (Variance) Number of Individuals

-

ì

;

.

م تحمد الاسراحيات الله الم المعاملين م

11 F C 14

Maa .# ...

...

~~

Table E5 : Experiment GBO2 - Conditional Fecundity

Replicate	BB	00	Fl	F ₂
1	100.9	97.82	85.67	84.84
	(334.3)	(604.8)	(218.3)	(298.3)
	92	100	117	139
2	91.00	95.92	90.32	90.57
_	(234.7)	(328.4)	(304.6)	(330.6)
	100	96	115	142
3	96.89	92.95	97.29	86.70
-	(442.1)	(507.1)	(342.0)	(345.7)
	91	93	107	134
Mean	96.26	95.56	91.09	87.37
Std Error	(2.87)	(1.42)	(3.38)	(1.69)
N	3	3	3	3

Mean 24 Hour Fecundity (Variance) Number of Individuals

----- ~

Table E6 : Experiment GBO2 - Female Starvation

Replicate	BB	00	F1	F ₂
1	27.41	33.50	28.53	30,46
	(41.67)	(87.88)	(50.34)	(75.16)
	100	98	119	142
2	28.98	37.47	30.83	29.82
	(36.31)	(67.64)	(46.79)	(75.18)
	100	100	120	142
3	25.45	30.49	25.66	27.64
	(28.92)	(101.0)	(28.61)	(69.00)
	100	100	108	142
Mean	27.28	33.82	28.34	29.31
Std Error	(1.02)	(2.02)	(1.50)	(0.86)
N	3	3	3	3

: **1**

Mean Survival Time (hours) (Variance) Number of Individuals

F

Table E7 : Experiment GB02 - Male Starvation

k _4

Replicate	BB	00	Fl	F ₂
1	22.46	33.96	28.33	30.37
	(28.01)	(85.76)	(47.23)	(52.86)
	100	98	120	142
2	21.12	33.18	26.38	26.32
	(26.95)	(142.5)	(50.79)	(36.87)
	100	100	120	142
3	16.42	25.87	24 07	23.96
-	(18.04)	(86.25)	(42.94)	(63.74)
	100	99	108	142
Mean	20.00	31.00	26.26	26.88
Std Error	(1.83)	(2.58)	(1.23)	(1.87)
N	3	3	3	3

,

Mean Survival Time (hours) (Variance) Numper of Individuals

Table E8 : Experiment GBO2 - Female Longevity

Replicate	BB	00	F ₁	F ₂
1	43.71	49.05	48.97	43.47
	(125.3)	(277.5)	(216.0)	(155.7)
	99	100	97	153
2	41.53	49.39	45.80	43.90
	(146.0)	(268.7)	(169.0)	(179.3)
	100	100	98	158
3	36.04	55.73	46.77	42.51
	(138.0)	(233.6)	(118.7)	(201.1)
	99	100	97	159
Mean	40.42	51.39	47.18	43.29
Std Error	(2.28)	(2.17)	(0.94)	(0.41)
N	3	3	3	3

1

ļ

ļ

Mean Longevity (days) (Variance) Number of Individuals

.

.

Ł

Table E9 : Experiment GBO2 - Male Longevity

-

Replicate	BB	00	F1	F2
1	32.31	49.37	38.98	40.94
	(146.2)	(191.3)	(141.8)	(134.8)
	98	95	97	158
2	31.37	54.25	40.70	39.94
	(86.0)	(184.8)	(133.1)	(148.2)
	100	100	100	160
3	32.15	53.34	37.73	36.46
	(86.0)	(258.8)	(97.9)	(117.0)
	96	100	100	160
Mean	31.94	52.32	39.14	39.11
Std Error	(0.29)	(1.50)	(0.86)	(1.36)
N	3	3	3	3

Mean Longevity (days) (Variance) Number of Individuals

1

•

;

.

Table E10 : Experiment GB03 - Fecundity

Replicate	BB	00	F1	F ₂
1	94.40	99.90	94.64	81.22
	(565.2)	(561.6)	(294.2)	(420.1)
	92	95	96	191
2	88.44	82.40	81.29	85.66
	(289.0)	(262.7)	(219.2)	(204.8)
	93	91	91	181
3	62.89	79.76	82.24	72.94
	(193.8)	(384.4)	(223.6)	(263.7)
	93	95	95	185
Mean	81.91	87.35	86.05	79.94
Std Error	(9.66)	(6.34)	(4.30)	(3.73)
N	3	3	3	3

Mean 24 Hour Fecundity (Jariance) Number of Individuals

ł

ş

.

°t ≹

۲. ۳.

Table Ell : Experiment GBO3 - Conditional Fecundity

Replicate	FB	00	Fl	F2
1	97.49	102.0	95.63	83.80
	(287.4) 89	(356.6) 93	(201.0) 95	(220.6) 185
2	88.44	82.40	81.29	85.66
	(289.0) 93	(262.7) 91	(219.2) 91	(204.8) 181
3	63.57	82.26	82.24	73.29
	(153.4) 92	(195.9) 92	(223.6) 95	(242.7) 184
Mean	83.17	88.89	86.39	80.92
Std Error N	(10.14) 3	(6.57) 3	(4.63) 3	(3.85) 3

1

Mean 24 Hour Fecundity (Variance) Number of Individuals

1

1 *

s ē

Table E12 : Experiment GB03 - Female Starvation

.

.

*

Replicate	BB	00	Fl	F ₂
1	32.20	47.46	38.49	44.65
	(73.97)	(199.8)	(129.5)	(118.3)
	96	96	96	179
2	35.05	51.52	40.28	41.56
	(90.92)	(175.0)	(130.8)	(99.31)
	96	95	96	192
3	35.56	45.26	39.70	38.61
	(67.01)	(111.2)	(62.62)	(113.3)
	96	96	96	186
Mean	34.27	48.08	39.49	41.61
Std Error	(1.05)	(1.84)	(0.53)	(1.75)
N	3	3	3	3

Mean Survival Time (hours) (Variance) Number of Individuals

\$.

Table E13 : Experiment GBO3 - Male Starvation

a secondar en la la secondar en

......

t

BB	00	Fı	F ₂
23.48	37.46	32.08	33.17
(43.22)	(97.79)	(76.63)	(118.3)
96	96	96	179
25.89	36.25	31.48	32.32
(48.21)	(98.88)	(63.00)	(76.58)
96	94	96	192
23.47	35.58	31.08	29.00
(34.10)	(92.07)	(69.68)	(67.98)
96	95	96	185
24.28	36.43	31.54	31.50
(0.81)	(0.55)	(0.29)	(1.27)
3	3	3	3
	23.48 (43.22) 96 25.89 (48.21) 96 23.47 (34.10) 96 24.28 (0.81)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Mean Survival Time (hours) (Variance) Number of Individuals

Table E14 : Experiment GBO3 - Female Longevity

Replicate	BB	00	Fi	F ₂
1	37.78	47.05	45.27	42.71
	(143.6)	(254.9)	(180.8)	(208.3)
	71	79	78	158
2	34.40	48.51	39.20	38.13
	(129.2)	(268.7)	(260.5)	(210.8)
	83	79	79	154
3	37.65	50.23	39.81	40.79
	(160.2)	(282.3)	(239.5)	(195.8)
	78	77	78	158
Mean	36.61	48.60	41.43	40.54
Std Error	(1.11)	(0.92)	(1.93)	(1.33)
N	3	3	3	3

Mean Longevity (days) (Variance) Number of Individuals

1

ŧ

Table E15 : Experiment GBO3 - Male Longevity

Replicate	BB	00	Fl	F2
1	34.25	47.29	40.72	42.83
	(180.5)	(253.5)	(187.2)	(192.9)
	77	75	79	160
2	31.51 (96.5) 77	48.53 (293.1) 79	38.01	41.10 (170.9) 157
3	29.74	48.27	33.86	38.11
	(81.5)	(322.4)	(145.3)	(161.9)
	68	81	79	160
Mean	31.83	48.03	37.43	40.68
Std Error	(1.31)	(0.38)	(1.92)	(1.38)
N	3	3	3	3

Mean Longevity (days) (Variance) Number of Individuals

APPENDIX F

-

L

Analysis of Heritability and Selection Experiments

Ľ

~ ~ ~ ~ ~ ~

.

1

i

1 1 1

,

Table F1 : Analysis of Heritability Changes

<u>B -> F COMPARISON</u>

- merrir anger 1000

-

• - --

<u>Female Starvati</u>	on				T T i u u u	DIE
Mean			.nes '50		F Lines 0.487	DIF 0.265
Standard Deviat	ion	0.5			0.032	0.600
N		3			3	3
INDEPENDENT	т =	0.806	DF =	4	Probability =	0.465
PAIRED	T =	0.765	DF =	2	Probability =	0.524
<u>Male Starvation</u>	l				1	-
Maan		B Li 0.1	nes		F Lines 0.310	DIF -0.130
Mean Standard Deviat	ion		.80 :03		0.098	0.130
N	1011	3			3	3
INDEPENDENT		0.998				
PAIRED	T =	1.216	DF =	2	Probability =	0.348
		o -> s c	OMPART	SON		
		<u>×</u>	<u> </u>	<u></u>		
<u>Female Starvati</u>	on	о т <i>і</i>			a times	DIE
Mean		0 Li 0.8			S Lines 0.513	DIF 0.327
Standard Deviat	ion	0.8			0.355	0.809
N		3			3	3
	_					
INDEPENDENT		0.959				
PAIRED	T =	0.699	DF =	2	Probability =	0.557

Male Starvation

Mean Standard Deviat N	ion	O Li 0,5 0.4 3	93		S Lines 0.463 0.101 3	DIF 0.130 0.563 3
INDEPENDENT	= T	0.453	DF =	4	Probability =	
PAIRED	= T	0.400	DF =	2	Probability =	

į

:

£.

Table F2 : Analysis of Direct Response to Selection for Early Fecundity In Last 6 Generations of B \rightarrow F Populations

Fecundity

 SOURCE
 SS
 DF
 MS
 F
 P

 TRT
 132815.467
 1
 132815.467
 199.869
 0.000

 TRT x REP x GEN
 6645.108
 10
 664.511
 664.511

Conditional Fecundity

SOURCE	SS	DF	MS	F	Р
TRT TRT x REP x GEN	146941.388 5330.912		146941.388 533.091	275.640	0.000

2

٣

f

Table F3 : Analysis of Indirect Response to Selection for Early Fecundity In Last 6 Generations of B \rightarrow F Populations

Female Starvation

:

SOURCE	SS	DF	MS	F	P
TRT TRT x REP x GEN	2815.761 1777.799		2815.761 177.780	15.838	0.003

Table F4 : Analysis of Direct Response to Selection for Starvation Time In Last 6 Generations of O -> S Populations

Female Starvation

SOURCE	SS	DF	MS	F	Р
TRT TRT x REP x GEN	208193.230 3559.273		208193.230 355.927	584.932	0.000

Male Starvation

SOURCE	SS	DF	MS	F	Р
TRT TRT x REP x GEN	342119.839 5054.368		342119.839 505.437	679.879	0.000

Starvation

2

...

1.1

:

SOURCE	SS	DF	MS	F	Р
TRT TRT x REP x GEN	271067.320 3221.580		271067.827 322.158	841.413	0.000

6

Table F5 · Analysis of Indirect Response to Selection for Starvation Time In Last 6 Generations of O -> S Populations

Fecundity

ł

;

SOURCE	SS	DF	MS	F	Р
TRT TRT x REP x GEN	21681.823 5884.148		21681.823 588.715	36.839	0.000

Conditional Fecundity

SOURCE	SS	DF	MS	F	Р
TRT TRT x REP x GEN	16989.981 4343.541	_	16989.981 434.354	39.116	0.000

APPENDIX G

ŝ

5

ş

Same making

1

and the man

× Hell − en antica table - - - -

1

1.

Summary Statistics of F and S Diallels

Ե

Table G1 : Experiment DF1 - Fecundity

... anaran ara Fo Art ... Antara ara an ana an

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Male Parent	Fema	le Parent		Mean
	1	2	3	
1	48.75 (2.24) 60			
2	48.32 (2.07) 60	42.80 (1.51) 60		
3	47.97 (1.91) 60	45.83 (1.49) 60	46.97 (1.62) 60	
Mean				46.77 (0.75) 360

and have also a strate

ţ

- -

Table G2 : Experiment DF1 - Conditional Fecundity

Mean	24	Ho	ur	Fee	cundity
(Stan	ıdaı	:d	Err	or))
Numbe	er d)f	Ind	liv:	iduals

Male Parent	Female Parent			Mean
	1	2	3	
1	50.40 (2.00) 58			
2	48.32 (2.07) 60	42.80 (1.51) 60		
3	47.97 (1.91) 60	45.83 (1.49) 60	47.71 (1.47) 59	
Mean				47.15 (0.72) 357

¥

Table G3 : Experiment DF2 - Fecundity

- - ----

~ ~

Male Parent	Female Parent			Mean
	1	2	3	·····
1	88.64	96.50	96.89	94.01
	(7.82)	(7.75)	(6.6C)	(2.69)
	14	8	9	3
2	79.36	94.44	77.33	83.71
	(10.59)	(2.93)	(4.41)	(5.40)
	11	70	39	3
3	89.08	81.13	81.70	83.97
	(8.58)	(4.62)	(2.07)	(2.56)
	12	38	77	3
Mean	85.69	90.69	85.31	85.71
	(3.17)	(4.82)	(5.93)	(1.52)
	3	3	3	278

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

オマ麓

Table G4 : Experiment DF2 - Conditional Fecundity

Male Parent	Female Parent			Mean
	1	2	3	
1	95.31	96.50	96.89	96.23
	(4.42)	(7.75)	(6.60)	(0.48)
	13	8	9	3
2	87.10	97.19	83.78	89.36
	(8.00)	(2.26)	(2.73)	(4.03)
	10	68	36	3
3	97.18	88.09	81.70	88.99
	(3.11)	(2.68)	(2.07)	(4.49)
	11	35	77	3
Mean	93.20	93.93	87.46	89.22
	(3.10)	(2.93)	(4.75)	(1.16)
	3	3	3	267

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Į

;

5. 1 -----

k.

Table G5 : Experiment DF2 - Female Starvation

;

Mean Starvation Time (hours) (Standard Error) Number of Individuals

Male Parent	Female Parent			Mean
	1	2	3	
1	25.14	29.28	25.55	26.66
	(1.01)	(1.60)	(1.30)	(1.32)
	26	8	12	3
2	25.75	28.35	26.16	26.75
	(1.67)	(0.78)	(1.12)	(0.81)
	12	79	38	3
3	29.15	27.33	25.48	27.32
	(1.18)	(1.07)	(0.82)	(1.06)
	12	39	80	3
Mean	26.68	28.32	25.73	26.77
	(1.25)	(0.56)	(0.22)	(0.38)
	3	3	3	306

Table G6 : Experiment DF2 - Male Starvation

Male Parent	Fema	Female Parent		
	1	2	3	
1	18.91	23.65	25.30	22.62
	(0.93)	(1.58)	(2.35)	(1.92)
	26	8	12	3
2	19.75	22.44	21.85	21.35
	(1.01)	(0.82)	(0.83)	(0.82)
	12	79	37	3
3	24.15	21.40	19.85	21.80
	(2.23)	(0.83)	(0.67)	(1.26)
	12	40	80	3
Mean	20.94	22.50	22.33	21.36
	(1.62)	(0.65)	(1.59)	(0.36)
	3	3	3	306

¥

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Р

Table G7 : Experiment DF3 - Fecundity

Male Parent	Femal	.e Parent		Mean
	1	2	3	
1	90.26	47.53	80.82	72.87
	(1.70)	(2.57)	(2.37)	(12.96)
	78	40	33	3
2	39.67	39.01	76.20	51.63
	(1.56)	(1.77)	(1.85)	(12.29)
	39	80	40	3
3	66.28	77.00	80.67	74.65
	(4.35)	(2.21)	(1.96)	(4.32)
	39	40	78	3
Mean	65.40	54.51	79.23	66.98
	(14.61)	(11.51)	(1.52)	(1.17)
	3	3	3	467

-

Mean 24 Hour Fecundity (Standard Error) Number of Individuals h

_

٠

.

.

;

Table G8 : Experiment DF3 - Conditional Fecundity

-

ı

.

Male Parent	Femal	le Parent	N		
	1	2	3		
1	90.26	48.74	80.82	73.27	
	(1.70)	(2.32)	(2.37)	(12.57)	
	78	39	33	3	
2	39.67	42.12	76.20	52.66	
	(1.56)	(1.38)	(1.85)	(11.79)	
	39	74	40	3	
3	69.57	77.00	82.71	76.43	
	(3.89)	(2.21)	(1.36)	(3.80)	
	37	40	76	3	
Mean	66.50	55.95	79.91	68.55	
	(14.68)	(10.70)	(1.93)	(1.10)	
	3	3	3	456	

•

I.

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Table G9 : Experiment DF3 - Female Starvation

Mean Starvation Time (hours) (Standard Error) Number of Individuals

Male	Fema	le Parent		Mean
Parent 1	2	3		
1	30.81	28.45	28.15	29.14
	(0.77)	(1.10)	(1.08)	(0.84)
	80	40	34	3
2	29.43	31.99	27.55	29.66
	(1.23)	(0.79)	(0.99)	(1.29)
	40	80	40	3
3	31.20	26.75	30.61	29.52
	(1.20)	(1.07)	(0.87)	(1.40)
	38	40	80	3
Mean	30.48	29.06	28.77	29.88
	(0.54)	(1.54)	(0.94)	(0.33)
	3	3	3	472

Table G10 : Experiment DF3 - Male Starvation

Male Parent	Fema	le Parent		Mean
	1	2	3	
1	22.29	21.20	21.80	21.76
	(0.93)	(1.11)	(1.02)	(0.32)
	80	39	34	3
2	25.53	20.93	22.75	23.07
	(1.78)	(0.75)	(1.04)	(1.34)
	40	80	40	3
3	22.43	19.10	20.41	20.65
	(1.42)	(0.78)	(0.67)	(0.97)
	38	40	80	3
Mean	23.42	20.41	21.65	21.67
	(1.06)	(0.66)	(0.68)	(0.35)
	3	3	3	471

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

۱ –

· ·····

Ì

L

able G11 : Experiment DS1 - Fecundity

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Male Parent	Fema	Female Parent		
	1	2	3	
1	28.05 (1.47) 60			
2	29.42 (1.30) 60	25.05 (1.13) 60		
3	31.32 (1.40) 59	29.83 (1.03) 60	28.39 (1.30) 59	
Mean				28.67 (0.53) 358

I

]

J.

|

Table G12 : Experiment DS1 - Conditional Fecundity

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Male	Fema	le Parent		Mear
Parent	1	2	3	
1	29.33 (1.35) 57	1 22 225 507		
2	30.43 (1.13) 58	26.23 (0.95) 57		
3	31.32 (1.40) 59	30.34 (0.91) 59	28.98 (1.23) 58	
Mean				29.44 (0.48) 348

μī

Į

Table G13 : Experiment DS2 - Fecundity

Male Parent	Fema	le Parent	Mea		
Parent	1	2	3		
1	78.35	74.40	74.16	75.64	
	(2.28)	(3.66)	(3.89)	(1.36)	
	74	38	38	3	
2	85.23	72.81	81.36	79.80	
	(3.23)	(2.60)	(4.80)	(3.67)	
	39	72	22	3	
3	78.16	78.68	69.64	75.49	
	(3.42)	(3.47)	(3.98)	(1.73)	
	37	40	55	3	
Mean	80.58	75.30	75.05	76.31	
	(2.33)	(1.75)	(3.43)	(1.13)	
	3	3	3	415	

:

Ł

1

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

.

.

\$ 1

Table G14 : Experiment DS2 - Conditional Fecundity

1

ł

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Male Parent	Female Parent			Mean	
	1	<u>э</u>	3		
1	79.41	78.53	78.28	78.74	
	(2.04)	(2.38)	(2.78)	(0.34)	
	73	36	36	3	
2	87.47	77.00	85.24	83.24	
	(2.38)	(1.70)	(2.97)	(3.18)	
	38	68	21	3	
3	80.33	80.69	79.79	80.27	
	(2.71)	(2.90)	(1.89)	(0.26)	
	36	39	48	3	
Mean	82.47	78.74	81.10	80.15	
	(2.55)	(1.07)	(2.11)	(0.79)	
	3	3	3	395	

Table G15 : Experiment DS2 - Female Starvation

Mean Starvation Time (hours) (Standard Error) Number of Individuals

Male Parent	Fema	le Parent		Mean
	1	2	3	*****
1	31.34	38.35	49.64	39.78
	(1.35)	(1.96)	(2.49)	(5.33)
	80	40	38	3
2	28.63	48.74	50.98	42.78
	(1.93)	(1.34)	(2.25)	(7.11)
	40	74	22	3
3	51.73	46.60	41.84	46.72
	(2.01)	(1.28)	(1.59)	(2.86)
	36	40	60	3
Mean	37.23	44.56	47.49	41.95
	(7,29)	(3.17)	(2.85)	(0.70)
	3	3	3	430

Table G16 : Experiment DS2 - Male Starvation

Male Parent	Fema	le Parent		Mean
	1	2	3	
1	26.01	28.13	41.91	32.02
	(1.41)	(2.47)	(1.42)	(4.98)
	78	40	38	3
2	22.48	43.43	41.98	35.96
	(2.07)	(1.45)	(1.42)	(6.75)
	40	74	38	3
3	35.23	36.40	31.36	34.33
	(1.73)	(1.55)	(1.14)	(1.52)
	36	40	60	3
Mean	27.91	35.99	38.42	33.62
	(3.80)	(4.42)	(3.53)	(0.66)
	3	3	3	428

Mean 24 Hour Fecundity (Standard Error) Number of Individuals 1

:

APPENDIX 11

8

.

<u>'</u>___

٦

Analysis of F and S Population Diallels

MATERNAL EFFECTS

<u>Meth. 11</u>	-	ANOVA of	Diallel	with Diagona	1	
SOURCE		SS	DF	MS	F	Р
FPAR		878.01	2	439.01	7.150	0.123
MPAR		122.81	2	61.40		

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-test	Parental Line	es Crossed Lines
Mean Standard Deviation N	46.172 3.054 3	47.37 2 1.34 4 3
POOLED VAR T =	0.623 DF = 4	Probability = 0.567
<u>Method 2</u> - ANOVA		
SOURCE SS	DF MS	F P
TRT 129.0 REP within TRT 1335.0		

_

f

ì

.

······

the second second

:

-,

ſ

Table H2 : Experiment DF1 - Conditional Fecundity

MATERNAL, EFFECTS

ł

- 30

<u>Method 1</u>	- ANOVA of D	iallel wi	th Diagona	1	
SOURCE	SS	DF	MS	F	P
FPAR	903.91	2	451.95	2.946	0.253
MPAR	306.81	2	153.41		

HETEROSIS / INBRFEDING EF. ECTS

<u>Method 1</u> - t-test	Parenta	l Lines	Crossed	Lines
Mean Standard Deviation N	46.9 3.8 3		47.37 1.34 3	
POOLED VAR T =	0.171 DF =	4 Prob	abi'ity =	0.873
<u>Method 2</u> - ANOVA				
SOURCE SE	DF	MS	F	Ρ
TRT 14 REP within TRT 1973	.48 1 .28 4	14.48 493.32	0.029	0.872

Table H3 : Experiment DF2 - Fecundity

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	957.60	2	478.80	0.341	0.730
MPAR	2509.41	2	1254.71	0.895	0.477
FPAR & MPAR	3257.92	4	814.48	0.581	0.694
FPAR x MPAR	5610.49	4	1402.62		

MATERNAL EFFECTS

1

1

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagona	al	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		957.60 2509.41		478.80 1254.71	0.382	0.724
<u>Method 2</u>	-	ANOVA of	Diallel	without Diag	gonal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		546.46 4833.32	_	273.23 2416.66	0.113	0.898

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test]	Parei	nta	l Line	es	Cross	sed	Lines
Mean Standard Deviat N	ion			26 37 3				.717 .696 .6	
SEPARATE VAR POOLED VAR	T = T =	0.302 0.270	DF DF		5.5 7	Probab Probab			
<u>Method 2</u> - AN	AVO								
SOURCE	SS		DF		MS		F		Р
TRT REP within TRT	100. 11125.		1 7		100 1589		0.063		0.809

1

1.11

Table H4 : Experiment DF2 - Conditional Fecundity

LINE EFFECTS

ł

- ~

SOURCE	SS	DF	MS	F	P
FPAR	1361.39	2	680.69	1.149	0.403
MPAR	1181.68	2	590.84	1.998	0.445
FPAR & MPAR	2940.17	4	735.04	1.241	0.420
FPAR x MPAR	2368.98	4	592.24		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagon	al	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		1361.39 1181.68	_	680.69 590.84	1.152	0.465
<u>Method 2</u>	-	ANOVA of	Diallel	without Dia	gonal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		719.52 2171.14		359.76 1085.57	0.331	0.751

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test	Parenta	l Lines	Crosse	d Lines
Mean Standard Deviat N	ion	91.40 8.45 3	-	91.5 5.9 6	49
SEPARATE VAR POOLED VAR	T = 0.0 T = 0.0	35 DF = 40 DF =		probability = probability =	
Method 2 - AN	AVO				
SOURCE	SS	DF	MS	F	Р
TRT REP within TRT	1.43 11934.70	1 7	1.4 1704.9	-	0.978

Cable H5 : Experiment DF2 - Female Starvation

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	212.08	2	106.04	2.578	0.191
MPAR	16.06	2	8.03	0.195	0.830
FPAR & MPAR	241.55	4	60.39	1.468	0.360
FPAR x MPAR	164.56	4	41.14		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of Di	iallel	with Diagona	al	
SOURCE		SS	DF	MS	F	q
FPAR MPAR		212.08 16.06	2 2	106.04 8.03	13.205	0.070
Method 2	-	ANOVA of Di	lallel	without Diag	gonal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		15.41 14.76	2 2	7.70 7.38	1.044	0.489

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test	I	Parenta	l Lin	es Crossed	l Lines
Mean Standard Deviat N	ion		26.3 1.7 3		27.20 1.687 6	
SEPARATE VAR POOLED VAR	T = T =	0.720 0.734	DF = DF =		Probability = Probability =	
<u>Method 2</u> - AN	OVA					
SOURCE	SS		DF	MS	F	Ρ
TRT REP within TRT	41.1 568.9		2 2	41. 81.		0.500

Table H6 : Experiment DF2 - Male Starvation

LINE EFFECTS

1

SOURCE	SS	DF	MS	F	Р
FPAR	71.22	2	35.61	0.259	0.784
MPAR	39.58	2	19.79	0.144	0.870
FPAR & MPAR	83.49	4	20.87	0.152	0.953
FPAR x MPAR	550.80	4	137.70		

MATERNAL EFFECTS

<u>Method 1</u>		ANOVA of	Diallel	with Diago	nal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		71.22 39.58		35.61 19.79		0.357
<u>Method 2</u>	-	ANOVA of	Diallel	without Di	agonal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		98.76 234.10		49.38 117.05		0.703

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-		Parenta	l Line	es Crossec	l Lines
Mean Standard Devia≁ N	ion	20.3 1.8 3		222.68 12.04 6	
SEPARATE VAR POOLED VAR	T = 1.698 T = 1.628			Probability = Probability =	
<u>Method 2</u> - AN	OVA				
SOURCE	SS	DF	MS	F	P
TRT REP within TRT	275.59 657.16	2 2	275.5 93.8		0.130

.

Table H7 : Experiment DF3 - Fecundity

LINE EFFECTS

.

₽F

SOURCE	SS	DF	MS	F	P
FPAR	42170.77	2	21085.39	1.599	0.390
MPAR	46270.27	2	23135.13	1.754	0.284
FPAR & MPAR	10544.74	4	26361.18	1.999	0.259
FPAR x MPAR	52759.23	4	13189.81		

MATERNAL EFFECTS

<u>Method 1</u>		ANOVA of	Diallel	with Diagona	al	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		42170.77 46270.27	2 2	21085.39 23125.13	0.911	0.523
<u>Method 2</u>	-	ANOVA of I	Diallel	without Diag	Jonal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		48310.05 31217.44	2 2	24155.02 15608.72	1.548	0.393

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-te		ental Lines	Crossed Lines
Mean Standard Deviatio N		9.379 7.243 3	64.582 17.131 6
	C = 0.314 DF C = 0.372 DF		bility = 0.784 bility = 0.721
Method 2 - ANOV	7A		
SOURCE	SS DF	MS	F P
TRT REP within TRT 17	3391.30 1 73870.56 7		0.137 0.723

1

Table H8 : Experiment DF3 - Conditional Fecundity

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	39042.34	2	19521.17	1.634	0.303
MPAR	46223.79	2	23111.89	1.934	0.258
FPAR & MPAR	100604.22	4	25151.06	2.105	0.244
FPAR x MPAR	47799.31	4	11949.83		

MATERNAL EFFECTS

4

r

SLot.Pt

ł

ł

wych i M

in Scheenington 44

which we want the set

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagona	al	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		39042.34 46223.79	2 2	19521.17 23111.89	0.845	0.542
<u>Method 2</u>		ANOVA of	Diallel	without Diag	gonal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		45751.25 33071.71	2 2	22875.63 16535.86	1.383	0.420

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-t		Parenta	l Line	es Crosse	ed Lines
Mean Standard Deviati N	lon	71.69 25.8 3		65.3 817.0	
SEPARATE VAR POOLED VAR	T = 0.386 T = 0.451			Probability = Probability =	
<u>Method 2</u> - ANC	AVA				
SOURCE	SS	DF	MS	F	P
TRT REP within TRT 1	4604.83 L55915.86	1 7	4604. 22273.		0.663

Table H9 : Experiment DF3 - Female Starvation

LINE EFFECTS

SOURCE	SS	DF	MS	F	P
FPAR	232.35	2	116.17	0.406	0.691
MPAR	19.71	2	9.86	0.034	0.966
FPAR & MPAR	236.24	4	59.06	0.207	0.922
FPAR x MPAR	1143.56	4	285.89		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagon	al	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		232.35 19.71	2 2	116.17 9.86	11.788	0.078
Method 2	-	ANOVA of I	Diallel	without Dia	gonal	
SOURCE		SS	DF	MS	F	Ð
FPAR MPAR		404.14 72.74	2 2	202.07 36.37	5.536	0.153

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test	Parenta	l Line	s Crossed	Lines
Mean Standard Deviat N	ion	31.1 0.7 3		228.58 11.55 6	
SEPARATE VAR POOLED VAR	T = 3.322 T = 2.620	DF = DF =		Probability = Probability =	0.016 0.034
<u>Method 2</u> - AN	OVA				
SOURCE	SS	DF	MS	F	Р
TRT RFP within TRT	765.91 559.93	2 2	765.9 79.9		0.017

1

24 + - 14P

Table H10 : Experiment DF3 - Male Starvation

LINE EFFECTS

1

SOURCE	SS	DF	MS	F	Р
FPAR	646.05	2	3 4.02	7.368	0.046
MPAR	417.83	2	201.92	4.765	0.087
FPAR & MPAR	1022.50	4	255.63	5.830	0.058
FPAR x MPAR	175.37	4	43.84		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagon	al	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		646.05 417.83	-	323.02 208.92	1.546	0.393
<u>Method 2</u>	-	ANOVA of	Diallel	without Dia	gonal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		376.78 290.35		188.39 145.18	1.298	0.435

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	-test	I	Parent	al Lin	es Cross	sed Lines
Mean Standard Deviat N	ion			208 969		.135 .105 6
SEPARATE VAR POOLED VAR	-	0.904 0.707	DF = DF =		Probability Probability	
<u>Method 2</u> - AN	NOVA					
SOURCE	SS		DF	MS	F	P
TRT REP within TRT	100.8 1034.5		2 2	100. 147.		0.436

ĸ

t

L

MATERNAL EFFECTS

- --

<u>Method 1</u>	-	ANOVA of	Diallel	with Diag	onal	
SOURCE		SS	DF	MS	F	Р
FPAR		701.97	2	350.9	9 0.794	0.557
MPAR		883.79) 2	441.8	9	

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test	Parenta	l Lines	Crossed	Lines
Mean Standard Deviat. N	ion	27.1 1.8 3		30.191 1.002 3	
POOLED VAR	T = 2.50	5 DF =	4 Prob	ability =	0.066
Method 2 - ANG	AVC				
SOURCE	SS	DF	MS	F	Р
TRT REP within TRT	820.23 523.00	1 4	820.23 130.75	6.273	0.066

1

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagon	al	
SOURCE		SS	DF	MS	F	Р
FPAR		533.43	2	266.72	1.175	0.460
MPAR		453.94	. 2	226.97		

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test	Parenta	l Lines	Crossed	Lines
Mean Standard Deviat: N	ion	28.14 1.6 3		30.697 0.543 3	
POOLED VAR	T = 2.50	6 DF =	4 Prob	ability =	0.066
Method 2 - ANG	AVG				
SOURCE	SS	DF	MS	F	Р
TRT REP within TRT	565.80 355.93	1 4	565.80 88.98	6.359	0.065

Table H13 : Experiment DS2 - Fecundity

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	2517.98	2	1258.99	1.316	0.364
MPAR	1357.27	2	678.64	0.710	0.545
FPAR & MPAR	3995.21	4	998.80	1.044	0.484
FPAR x MPAR	3825.53	4	956.38		

MATERNAL EFFECTS

<u>Method 1</u>		ANOVA of	Diallel	with Diagona	al	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		2517.98 1357.27	-	1258.99 678.64	1.855	0.350
Method 2	-	ANOVA of	Diallel	without Dia	yonal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		118.80 1931.49		59.40 965.74	0.062	0.942

<u>HETEROSIS / INBREEDING EFFECTS</u>

<u>Method 1</u> - t-test	Parenta	l Lines	Crossed	Lines
Mean Standard Deviation N	73.59 4.41 3	-	78.66 4.22 6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.647 DF = 1.675 DF =	3.9 Prob 7 Prob	ability = ability =	0.198 0.138
<u>Method 2</u> - ANOVA				
SOURCE SS	DF	MS	F	P
TRT 2580. REP within TRT 5860.		2508.40 837.23	3.082	0.123

ł.

į

1

キャーキンド まっちま たま

Table H14 : Experiment DS2 - Conditional Fecundity

LINE EFFECTS

SOURCE	SS	DF	MS	F	P
FPAR	908.96	2	454.48	0.969	0.454
MPAR	1168.80	2	584.40	1.246	0.380
FPAR & MPAR	1766.10	4	441.53	0.941	0.523
FPAR x MPAR	1875.95	4	468.99		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of I	Diallel	with Diagon	al	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		1766.10 1168.80	2 2	454.48 584.40	0.778	C.563
<u>Method 2</u>	-	ANOVA of	Diallel	without Dia	gonal	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		41.08 1642.73	-	20.54 821.36	0.025	0.976

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test	Parenta	l Lines	Crossed	l Lines
Mean Standard Deviat N	ion	78.73 1.51 3		81.75 3.75 6	
SEPARATE VAR POOLED VAR	T = 1.71 T = 1.30			bability = bability =	0.138 0.233
<u>Method 2</u> - AN	OVA				
SOURCE	SS	DF	MS	F	Р
TRT REP within TRT	866.05 2705.27	1 7	866.05 386.47	2.241	0.178

F

Table H15 : Experiment DS2 - Female Starvation

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	6948.00	2	3474.00	0.923	0.468
MPAR	3269.29	2	1634.64	0.434	0.675
FPAR & MPAR	12367.24	4	3091.81	0.822	0.573
FPAR x MPAR	15051.98	4	3763.00		

MATERNAL EFFECTS

<u>Method 1</u>	-	ANOVA of	Diallel	with Diagona	al	
SOURCE		SS	DF	MS	F	P
FPAR MPAR		6948.00 3269.29	_	3474.00 1634.64	2.125	0.320
<u>Method 2</u>	-	ANOVA of	Diallel	without Diag	gonal	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		8575.27 10000.88	_	4287.64 000.44د	0.857	0.538

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-	test	P	arenta	l Lin	es	Cross	ed	Lines
Mean Standard Deviat N	ion		40.6 8.7 3			244.: 19.:		
SEPARATE VAR POOLED VAR	T = T =	0.587 0.578	DF = DF =			bility = bility =		0.589 0.581
<u>Method 2</u> - AN	IOVA							
SOURCE	SS	3	DF	M	S	F		P
TRT REP within TRT	1413. 27237.		2 2	1413 3891		0.363		0.566

.

1

.

Table H16 : Experiment DS2 - Male Starvation

LINE EFFECTS

SOURCE	SS	DF	MS	F	Р
FPAR	7605.56	2	3802.78	1.350	0.356
MPAR	977.82	2	488.91	0.174	0.847
FPAR & MPAR	9266.41	4	2316.60	0.822	0.573
FPAR x MPAR	11267.04	4	2816.76		

MATERNAL EFFECTS

۱

1

<u>Method 1</u>	-	ANOVA of D	iallel	with Diagona	1	
SOURCE		SS	DF	MS	F	Р
FPAR MPAR		7605.56 977.82	2 2	3802.78 488.91	7.778	0.114
<u>Method 2</u>	-	ANOVA of D	allel	without Diag	jonal	
SOURCE		SS	DF	MS	F	Р
₽PAR MPAR		9008.07 4334.63	2 2	4504.04 2167.32	2.078	0.325

HETEROSIS / INBREEDING EFFECTS

<u>Method 1</u> - t-		Parenta	l Line	s Cross	ed Lines
Mean Standard Deviat N	ich	33.6 8.9 3		234. 17.	
SEPARATE VAR POOLED VAR	T = 0.125 T = 0.131	DF = DF =		Probability = Probability =	
<u>Method 2</u> - AN	AVC				
SOURCE	SS	DF	MS	F	Р
TRT REP within TRT	58.91 22661.66	2 2	58. 3237.		0.896

'

.

APPENDIX I.

Summary Statistics of F and S Transmission Patterns

÷

ì

1

1

┛

Table I1 : Experiment FS1 - Fecundity

Replicate	FF	FS	SF	SS
1	82.5	76.8	75.7	57.7
	(1.4)	(2.3)	(1.5)	(2.0)
	90	45	44	90
2	74.3	61.7	59.3	51.7
	(1.6)	(1.6)	(1.3)	(1.7)
	88	45	44	88
3	74.3	66.7	61.4	54.0
	(2.0)	(1.4)	(2.0)	(1.7)
	88	45	45	89
Mean	77.0	68.4	65.5	54.5
	(2.7)	(4.5)	(5.1)	(1.8)
	3	3	3	3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

• -

1

Ļ

3

ŀ

ł

Distantia di L

in the

stype was dear on

12.00

Table I2 : Experiment FS1 - Conditional Fecundity

Replicate	FF	FS	SF	SS
******		<u></u>		
1	82.5	76.8	75.7	60.4
	(1.4)	(2.3)	(1.5)	(1.6)
	90	45	44	86
2	75.0	61.7	59.3	54.1
	(1.4)	(1.6)	(1.3)	(1.2)
	87	45	44	84
3	76.9	66.7	62.7	57.0
	(1.3)	(1.4)	(1.5)	(1.1)
	85	45	44	84
Mean	78.1	68.4	66.0	57.2
	(2.2)	(4.5)	(5.0)	(1.8)
	3	3	3	3

Mean 24 Hour Felandity (Standard Error) Number of Individuals

2

-

,

1

~

Replicate	FF	FS	SF	SS
1	32.02	46.55	47.73	80.00
	(0.91)	(1.67)	(1.61)	(1.61)
	90	48	48	96
2	35.04	54.29	49.28	66.23
	(0.87)	(1.72)	(1.85)	(1.34)
	96	48	48	96
3	38.75	42.28	43.80	55.86
	(1.25)	(1.53)	(1.66)	(1.39)
	96	48	48	96
Mean	35.27	47.71	46.93	67.36
	(1.95)	(3.52)	(1.63)	(6.99)
	3	3	3	3

:

Mean Survival Time (hours) (Standard Error) Number of Individuals

Table I3 : Experiment FS1 - Female Starvation

ļ

• •

Table I4 : Experiment FS1 - Male Starvation

Number of Individuals					
Replicate	FF	FS	SF	SS	
1	21.06	38.43	38.73	57.17	
	(0.64)	(1.24)	(1.52)	(1.23)	
	96	48	48	96	
2	26.84	38.63	40.40	56.91	
	(0.83)	(1.46)	(1.09)	(1.42)	
	95	48	48	96	
3	24.56	31.15	33.97	40.93	
	(0.96)	(1.04)	(1.08)	(0.10)	
	96	48	48	96	
Mean	24.15	36.07	37.03	51.67	
	(1.68)	(2.46)	(1.93)	(5.37)	
	3	3	3	3	

Mean Survival Time (hours) (Standard Error) Number of Individuals

Table 15 : Experiment FS1 - Female Longevity

Replicate	FF	FS & SF	SS
l	33.9	50.0	62.8
	(1.4)	(1.7)	(1.6)
	95	100	99
2	36.2	37.1	45.8
	(1.1)	(1.2)	(1.7)
	99	97	98
3	37.7	49.0	52.9
	(1.4)	(1.6)	(1.6)
	98	97	99
Mean	35.9	45.4	53.8
	(1.1)	(4.1)	(4.9)
	3	3	3

Mean Longevity (days) (Standard Error) Number of Individuals

l ministration

3

ŧ

Table 16 : Experiment FS1 - Male Longevity

Replicate	FF	FS & SF	SS
1	38.5	46.4	57.2
	(1.4)	(1.4)	(1.8)
2	95	98	99
	33.9	42.1	50.0
	(1.4)	(1.7)	(1.9)
3	97	97	99
	30.8	41.8	54.6
	(0.9)	(1.4)	(1.8)
	100	95	98
Mean	34.4	43.4	53.9
	(2.2)	(1.5)	(2.1)
	3	3	3

Mean Longevity (days) (Standard Error) Number of Individuals

.

1

ş

Press of a second of the

「するにていた

ł

Table 17 : Experiment FS2 - Fecundity

Replicate	FF	FS	SF	SS
1	87.2	88.6	86.6	69.4
	(2.9) 88	(2.7) 43	(3.0) 48	(1.9) 92
2	86.6	72.4	84.1	65.4
	(3.6)	(3.0)	(1.5)	(1.6)
	78	44	43	95
3	104.1	94.6	94.0	83.0
	(1.9)	(2.8)	(3.1)	(1.6)
	97	50	45	97
Mean	92.6	85.2	88.2	72.6
	(5.7)	(6.6)	(3.0)	(5.3)
	3	3	3	3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Table 18 : Experiment FS2 - Conditional Fecundity

Replicate	FF	FS	SF	SS
1	90.3	88.6	88.4	70.1
	(2.4)	(2.7)	(2.4)	(1.7)
	85	43	47	91
2	93.9	75.8	84.1	66.8
	(2.3)	(1.8)	(1.5)	(1.2)
	72	42	43	93
3	104.1	96.5	96.1	83.1
	(1.9)	(2.2)	(2.4)	(1.6)
	97	49	44	97
Mean	96.1	87.0	89.6	73.3
	(4.1)	(6.0)	(3.5)	(5.0)
	3	3	3	3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

1

-

Replicate	FF	FS	SF	SS
1	20.37	27.89	27.13	37.55
	(0.48)	(1.14)	(0.93)	(1.11)
	90	46	52	96
2	26.51	34.61	37.61	46.94
	(0.63)	(1.54)	(1.99)	(1.19)
	74	44	44	100
3	49.03	29.36	29.06	33.89
	(0.74)	(0.99)	(1.19)	(0.76)
	100	50	50	99
Mean	31.97	30.62	31.27	39.46
	(8.71)	(2.04)	(3.22)	(3.89)
	3	3	3	3

Table 19 : Experiment FS2 - Female Starvation

Mean Survival Time (hours) (Standard Error) Number of Individuals

.

Table I10 : Experiment FS2 - Male Starvation

Replicate	FF	FS	SF	SS
1	15.40	18.95	25.63	33.23
	(0.45)	(0.70)	(1.12)	(1.14)
	90	46	52	96
2	17.91	25.00	31.20	40.37
	(0.69)	(1.03)	(1.38)	(0.86)
	74	44	44	100
3	38.50	18.20	21.74	24.82
	(0.38)	(0.56)	(0.71)	(0.75)
	100	50	50	100
Mean	23.94	20.72	26.19	32.81
	(7.32)	(2.15)	(2.75)	(4.50)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

ŝ

a she had the

1

1

Į

Table I11 : Experiment FS3 - Fecundity

Replicate	FF	FS	SF	SS
1	96.5	99.7	103.8	78.1
	(5.6)	(3.1)	(2.2)	(2.5)
	49	53	51	100
2	110.5	95.74	92.2	80.1
	(2.2)	(2.5)	(2.3)	(1.8)
	66	58	59	98
3	113.0	108.2	107.1	83.4
	(2.3)	(3.2)	(3.0)	(3.1)
	96	57	58	97
Mean	106.7	101.2	101.1	80.6
	(5.1)	(3.7)	(4.5)	(1.5)
	3	3	3	3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Table I12 : Experiment FS3 - Conditional Fecundity

Replicate	FF	FS	SF	SS
1	105.1	101.6	103.8	82.2
	(4.1)	(2.5)	(2.2)	(1.9)
	45	52	51	95
2	110.5	97.3	92.2	81.8
	(2.2)	(2.0)	(2.3)	(1.4)
	66	57	59	96
3	114.2	110.2	107.1	87.7
	(2.0)	(2.6)	(3.0)	(2.6)
	95	56	58	92
Mean	109.9 (2.6) 3	103.0 (3.8) 3	(4.5) 3	83.9 (1.9) 3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

ر

ζ

ן נ

÷

١

;

۱ ۴

Table	e I13	:	Experiment	FS3	-	Female	Starvation
-------	-------	---	------------	-----	---	--------	------------

t

Replicate	FF	FS	SF	SS
1	23.30	30.96	31.58	50.76
	(0.62)	(0.85)	(0.58)	(1.35)
	52	54	52	80
2	27.67	43.47	43.95	55.80
	(0.81)	(1.21)	(1.52)	(1.66)
	66	60	58	100
3	25.58	27.57	31.40	35.33
	(0.80)	(1.06)	(0.85)	(0.71)
	100	60	60	100
Mean	25.51	34.00	35.64	47.30
	(1.26)	(4.84)	(4.15)	(6.16)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

F....

Table I14 : Experiment FS3 - Male Starvation

Replicate	FF	FS	SF	SS
1	16.79	21.12	28.47	41.16
	(0.47)	(0.82)	(1.42)	(1.26)
	52	54	52	80
2	19.74	30.27	35.26	47.52
	(0.97)	(0.89)	(1.19)	(1.33)
	65	60	58	100
3	18.83	22.02	26.35	29.15
	(0.71)	(0.72)	(0.88)	(0.71)
	100	60	60	100
Mean	18.45	24.47	30.03	39.28
	(0.87)	(2.9)	(2.69)	(5.39)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

ŗ

Table I15 : Experiment FS3 - Female Longevity

Mean I	longe	evity	(days)
(Stand	lard	Error	·)
Number	: of	Indiv	iduals

• • •

Ł

r st a

<

;

:

..

ł

Replicate	FF	FS & SF	SS
1	27.8	51.1	54.3
	(1.4)	(1.8)	(1.9)
	100	100	96
2	29.9	41.7	44.9
	(1.3)	(1.7)	(2.0)
	99	96	95
3	38.6	49.8	49.6
	(1.6)	(1.5)	(1.9)
	100	100	100
Mean	32.1	47.5	49.6
	(3.3)	(2.9)	(2.7)
	3	3	3

Table I16 : Experiment FS3 - Male Longevity	Table	I16	:	Experiment	FS3		Male	Longevity
---	-------	------------	---	------------	-----	--	------	-----------

(Standard Error) Number of Individuals						
Replicate	FF	FS & SF	SS			
1	29.2	45.9	48.3			
	(1.0)	(1.5)	(2.0)			
	100	100	98			
2	25.1	39.9	47.1			
	(0.9)	(1.7)	(2.0)			
	100	97	95			
3	25.5	39.7	47.0			
	(1.3)	(1.4)	(1.6)			
	100	96	99			
Mean	26.6	41.8	47.5			
	(1.3)	(2.0)	(0.4)			
	3	3	3			

Mean Longevity (days) (Standard Error)

.

Table I17 : Experiment FS4 - Fecundity

Replicate	FF	FS	SF	SS
1	97.0	89.5	83.3	77.5
	(2.6)	(3.3)	(3.2)	(1.8)
	94	41	46	102
2	84.2	67.1	72.0	69.0
	(1.8)	(3.5)	(2.2)	(1.5)
	113	42	47	93
3	83.8	72.0	74.9	69.9
	(2.3)	(2.2)	(1.7)	(1.6)
	92	47	48	67
Mean	88.4	76.2	76.7	72.1
	(4.3)	(6.8)	(3.4)	(2.7)
	3	3	3	3

j

1

star is any selected to any is

۲

ţ

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

Table I18 : Experiment FS4 - Conditional Fecundity

Replicate	FF	FS	SF	SS
1	99.1	89.5	85.2	79.0
	(2.2)	(3.3)	(2.6)	(1.4)
	92	41	45	100
2	85.7	70.4	72.0	69.7
	(1.5)	(2.8)	(2.2)	(1.4)
	111	40	47	92
3	85.7	72.0	74.9	69.9
	(1.9)	(2.2)	(1.7)	(1.6)
	90	47	48	67
Mean	90.2	77.3	77.4	72.9
	(4.5)	(6.1)	(4.0)	(3.1)
	3	3	3	3

Mean 24 Hour Fecundity (Standard Error) Number of Individuals 1

I

1

,

Replicate	FF	FS	SF	SS
1	33.53	49.07	49.40	66.31
	(1.05)	(1.95)	(2.34)	(1.90)
	96	42	48	106
2	46.45	56.48	64.59	75.68
	(1.14)	(2.41)	(2.38)	(2.08)
	116	48	48	89
3	36.18	48.78	52.20	55.12
	(0.92)	(1.49)	(1.65)	(1.54)
	96	48	48	66
Mean	38.72	51.44	55.40	65.70
	(3.94)	(2.52)	(4.67)	(4.35)
	3	3	3	3

Table I19 : Experiment FS4 - Female Starvation

Mean Survival Time (hours) (Standard Error) Number of Individuals

ŧ

i

Table I20 : Experiment FS4 - Male Starvation

Number of Individuals				
Replicate	FF	FS	SF	SS
1	23.02	30.50	38.09	47.01
	(0.66)	(1.12)	(2.39)	(1.83)
	95	42	48	106
2	29.33	40.54	47.59	56.93
	(0.77)	(1.67)	(2.06)	(1.57)
	116	48	48	90
3	22.68	31.59	31.83	42.16
	(0.63)	(1.37)	(0.94)	(1.29)
	96	48	48	66
Mean	25.01	34.21	39.17	48.70
	(2.16)	(3.18)	(4.58)	(4.35)
	3	3	3	3

Mean Survival Time (hours) (Standard Error) Number of Individuals

	Number	of Individu	als	
Replicate	FF	FS	SF	SS
1	35.6	45.1	43.7	51.0
	(1.4)	(2.6)	(2.5)	(2.0)
	78	39	39	76
2	32.4	42.6	38.2	47.9
	(1.0)	(2.2)	(2.4)	(1.8)
	77	40	40	77
3	33.8	45.4	44.9	53.9
	(1.5)	(2.5)	(2.4)	(1.7)
	77	40	36	80
Mean	33.9	44.4	42.3	50.9
	(0.9)	(0.9)	(2.1)	(1.7)
	3	3	3	3

Mean Longevity (days) (Standard Error) Number of Individuals

ŧ

· · · ·

and a second with the second

1

,

r

,

Table I22 : Experiment FS4 - Male Longevity

Replicate	FF	FS	SF	SS
1	37.5	45.6	48.7	51.6
	(1.2)	(2.6)	(2.0)	(1.6)
	79	40	35	76
2	28.6	42.3	44.4	55.1
	(1.2)	(2.4)	(3.2)	(1.8)
	79	36	37	78
3	30.4	35.7	34.9	52.0
	(1.4)	(2.0)	(1.9)	(1.8)
	79	41	37	79
Mean	32.2	41.2	42.7	52.9
	(2.7)	(2.9)	(4.1)	(1.1)
	3	3	3	3

.

ł

All Burnston

Mean Longevity (days) (Standard Error) Number of Individuals

Table I23 : Experiment FS5 - Fecundity

Mean	24	Ho	ur	Fee	cund	ity
(Stan	ıda:	rđ	Err	or))	
Numbe	er (of	Ind	iv:	idua	ls

FF	FS	SF	SS
122.3	116.6	114.0	100.0
(3.3) 77	(4.4) 40	(3.9) 40	(2.7) 79

Table 124 : Experiment FS5 - Conditional Fecundity

Mean 24 Hour Fecundity (Standard Error) Number of Individuals

FF	FS	SF	SS
125.5	119.5	114.0	102.5
(2.4)	(3.4)	(3.9)	(2.1)
75	39	40	77

Table I25 : Experiment FS5 - Female Starvation

FF	FS	SF	SS
31.68 (0.85) 80	35.43 (1.27) 40	34.10 (1.44) 40	51.19 (1.61) 80

•

Mean Survival Time (hours) (Standard Error) Number of Individuals

l

Table I26 : Experiment FS5 - Male Starvation

(Standard Error) Number of Individuals					
FF	FS	SF	SS		
24.51 (0.69) 80	33.55 (1.88) 40	28.70 (1.18) 40	40.39 (1.36) 80		

Mean Survival Time (hours)

সম্ব

1

1

4

uthat the large

A CLARK CONTRACTOR

1 ŝ,

ş .

Cherry States

ł

Table 127 : Experiment FS5 - Female Longevity

Mean Longevity (days) (Standard Error) Number of Individuals

5

1 at 196 at

FF	FS	SF	SS
36.3	42.0	41.5	46.2
(1.4) 81	(1.5) 40	(2.3) 40	(1.9) 79

1

Table I28 : Experiment FS5 - Male Longevity

Mean Longevity (days) (Standard Error) Number of Individuals

ы

FF	FS	SF	SS
31.8	38.5	40.9	49.0
(1.3) 81	(2.0) 40	(1.9) 40	(1.9) 79

1.

,

ALL MAN ALL

APPENDIX J

1

, . . Analysis of F and S Transmission Patterns

ĥ

Table J1 : Experiment FS1 - Fecundity

,

I.

	<u>rr –</u>	35 DIFFER	LINCED	
<u>Method 1</u> - Mean Standard Dev N	iation	77.03 4.73 3	54.46 3.05 3	DIF 22.57 2.21 3
INDEPENDENT PAIRED	T = 6.9 T = 17.6	46 DF = 64 DF =	4 Probability = 2 Probability =	0.002 0.0003
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP	SS 67870.74 437.06	DF 1 678 2 2	MS F 70.74 310.581 18.53	P 0.003
	<u>MA</u>	TERNAL EFFE	<u>CTS</u>	
<u>Method 1</u> - Mean Standard Dev N		FS Lines 68.39 7.74 3		DIF 2.91 2.11 3
INDEPENDENT PAIRED	$\begin{array}{rcl} T &=& 0.4 \\ T &=& 2.3 \end{array}$	27 DF = 90 DF =	4 Probability = 2 Probability =	0.691 0.139
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 567.67 199.33	1 5	MS F 67.67 5.696 99.67	P 0.140
	<u>DO</u>	MINANCE EFF	ECTS	
<u>Method 1</u> - Mean Standard Dev N	Pare		Crossed Lines 66.94 8.28 3	DIF - 1.22 4.46 3
INDEPENDENT PAIRED	$\begin{array}{rcl} T &=& 0.2 \\ T &=& 0.4 \end{array}$	31 DF = 73 DF =	4 Probability = 2 Probability =	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 264.28 2362.78		MS F 64.28 0.224 81.39	P 0.683

FF - SS DIFFERENCES

: 1.

ł

1

Table J2 : Experiment FS1 - Conditional Fecundity

	FF - SS DIFFERENCES	
<u>Method 1</u> -	t-test FF Lines SS Lines	DIF
Mean Standard Dev: N	78.15 58.19	20.96 1.11 3
INDEPENDENT PAIRED	T = 7.293 DF = 4 Probability = T = 32.784 DF = 2 Probability =	0.002 0.001
<u>Method 2</u> -	ANOVA	
SOURCE TRT TRT X REP	SSDFMSF56659.35156659.351070.315105.87252.94	Р 0.001
	MATERNAL EFFECTS	
<u>Method 1</u> -		DIF
Mean Standard Dev N	68.39 65.91	2.48 1.42 3
INDEPENDENT PAIRED	T = 0.371 DF = 4 Probability = T = 3.038 DF = 2 Probability =	0.730 0.093
<u>Method 2</u> -	ANOVA	
TRT	SSDFMSF411.651411.659.22989.21244.60	P 0.093
	DOMINANCE EFFECTS	
<u>Method 1</u> -	t-test Parental Lines Crossed Lines	DIF
Mean Standard Dev N	67.83 67.17	0.67 4.66 3
INDEPENDENT PAIRED	T = 0.130 DF = 4 Probability = T = 0.249 DF = 2 Probability =	
Method 2 -	ANOVA	
SOURCE TRT TRT x REP	SS DF MS F 78.71 1 78.71 0.062 2553.23 2 1276.62	P 0.827

.

FF - SS DIFFERENCES

4

r

L---

•

	FF -	SS DIFFERE	INCES	
Methcd 1 -				
Mean Standard Dev N	I	FF Lines 35.27 3.37 3	SS Lines 67.36 12.11 3	DIF -32.09 15.45 3
INDEPENDENT PAIRED		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP	SS 146687.55 22531.30	1 14668	MS F 7.55 13.021 5.65	P 0.069
	MAT	ERNAL EFFEC	TS	
<u>Method 1</u> - Mean Standard Dey N	F	S Lines 47.71 6.09 3	SF Lines 46.93 2.82 3	DIF 0.77 3.68 3
INDEPENDENT PAIRED	T = 0.19 T = 0.36	$\begin{array}{rcl} 9 & \mathrm{DF} = & 4\\ 3 & \mathrm{DF} = & 2 \end{array}$	Probability = Probability =	
Method 2 -	ANOVA			
SOURCE TRT TRT x REP	SS 42.94 650.02	1 4	MS F 2.94 0.132 5.01	P 0.751
	DOM	IINANCE EFFE	CTS	
<u>Method 1</u> - Mean Standard Dev N		tal Lines 51.57 4.81 3	Crossed Lines 47.32 4.38 3	DIF 4.25 5.40 3
INDEPENDENT PAIRED		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
Method 2 -	ANOVA			
SOURCE TRT TRT x REP	SS 3462.69 3711.57	1 346	MS F 2.69 1.866 5.78	P 0.305

.

Table J3 : Experiment FS1 - Female Starvation

•

.

	<u>FF - SS</u>	DIFFERENC	ES	
<u>Method 1</u> - t- Mean Standard Deviat N	FF 24 ion 2	Lines .15 .91 3	SS Lines 51.67 9.31 3	DIF -27.52 10.12 3
INDEPENDENT PAIRED		$\begin{array}{rcl} DF = & 4 \\ DF = & 2 \end{array}$	Probability = Probability =	
<u>Method 2</u> - AN	AVO			
	SS 8826.40 9824.90	DF MS 1 108826. 2 4912.	40 22.153	P 0.042
	MATER	NAL EFFECTS		
<u>Method 1</u> - t- Mean Standard Deviat N	FS 36 ion 4	Lines .07 .26 3	SF Lines 37.70 3.34 3	DIF - 1.63 1.27 3
INDEPENDENT PAIRED	T = 0.522 T = 2.233		Probability = Probability =	
<u>Method 2</u> - AN	OVA			
SOURCE TRT TRT x REP	SS 191.43 76.75	DF MS 1 191. 2 38.	43 4.988	Р 0.155
	DOMIN	ANCE EFFECT	<u>S</u>	
<u>Method 1</u> - t- Mean Standard Deviat N	37	l Lines Cr .94 .72 3	ossed Lines 36.88 3.77 3	DIF 1.06 1.21 3
INDEPENDENT PAIRED	T = 0.303 T = 1.507	$\begin{array}{rcl} DF &=& 4 \\ DF &=& 2 \end{array}$	Probability = Probability =	0.777 0.271
<u>Method 2</u> - AN	OVA			
SOURCE TRT TRT x REP	SS 213.56 187.92	DF MS 1 213. 2 93.	56 2.273	P 0.271

_

,

.

Table J4 : Experiment FS1 - Male Starvation

۱.

.

Table J5 : Experiment FS1 - Female Longevity

	FF = 55 DIFFI	ERENCES	
<u>Method 1</u> - t-test	FF Lines	SS Lines	DIF
Mean	35.94	53.81	-17.86
Standard Deviation	1,96	8.56	9.99
N	3	3	3
	-	-	-
LNDEPENDENT T =	3.524 DF =	4 Probability	= 0.024
	3.098 DF =		
		-	
<u>Method 2</u> - ANOVA			
SOURCE SS	DF	MS F	Р
TRT 46900.	14 1 46	5900.14 9.641	0.090
TRT x REP 9729.	32 2 4	864.66	
	DOMINANCE EF	FECTS	
<u>Method 1</u> - t-test			
		S Crossed Lines	DIF
Mean	44.98		- 0.36
Standard Deviation	3.85	7.13	3.81
N	3	3	3
		4 Probability	
PAIRED $T =$	0.163 DF =	2 Probability :	= 0.886
<u>Method 2</u> - ANOVA			
0.000.000	DF	MS F	Р
SOURCE SS			
SOURCE SS TRT 25.		25.07 0.027	0.885
<u>Method 2</u> - ANOVA		-	

FF - SS DIFFERENCES

i.

3

un Ante Xe, desarrant des

5. 7

ţ

1

Table J6 : Experiment FS1 - Male Longevity

J.

.

,

FF - SS DIFFERENCES

<u>Method 1</u> - Mean Standard Dev: N	t-test iation	34 3	Lines .43 .87 3	5		SS Lines 53.92 3.64 3	DIF -19.50 3.89 3
INDEPENDENT PAIRED		6.356 8.681	DF DF			Probability Probability	
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 55860.4 1491.3	41	DF 1 2		MS 860.4 745.6	F 1 74.913 57	P 0.013
		DOMIN.	ANCE	EF	FECTS	<u>5</u>	
<u>Method 1</u> - Mean Standard Dev N		44 3	l Lin .23 .33 3		Cro	ossed Lines 43.45 2.58 3	DIF 0.78 0.86 3
INDEPENDENT PAIRED						Probability Probability	
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 118. 96.	31	DF 1 2		MS 118.3 48.3		P 0.258

.

Table J7 : Experiment FS2 - Fecundity

í

T

FF - SS DIFFERENCES

<u>Method 1</u> - Mean Standard Dev N		FF Lines 92.65 9.92 3		20.01	
INDEPENDENT PAIRED			4 Probak 2 Probak	pility = 0.063 pility = 0.003	
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 54442.05 327.29		MS 4442.05 332 163.64	F P 2.695 0.003	
	M	ATERNAL EF	FECTS		
<u>Method 1</u> - Mean Standard Dev N		FS Lines 85.23 11 48 3	SF Lir 88.23 5.15 3	- 3.00	
INDEPENDENT PAIRED		413 DF = 690 DF =		oility = 0.701 oility = 0.562	
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 612.26 2515.05			F P 0.487 0.558	
	<u>D</u>	OMINANCE E	FFECTS		
<u>Method 1</u> - Mean Standard Dev: N		82.23	s Crossed I 86.69 8.10 3	- 4.46	
INDEPENDENT PAIRED		602 DF = 725 DF =		pility = 0.580 pility = 0.227	
<u>Method 2</u> -	ANOVA				
SOURCE TRT TRT x REP	SS 3621.77 2469.14			F P .934 0.229	

333

;

4. 4

Ï

ŧ

ŝ

distant of the

Table J8 : Experiment FS2 - Conditional Fecundity

	<u>FF –</u>	SS DIFFER	ENCES	
<u>Method 1</u> - Mean Standard Dev N	1	FF Lines 96.08 7.17 3	SS Lines 73.34 8.61 3	DIF 22.74 3.74 3
INDEPENDENT PAIRED		17 DF = 4 39 DF = 5		
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 68442.01 1175.94		MS F 42.01 116.404 87.97	P 0.008
	MA	TERNAL EFFE	<u>CTS</u>	
<u>Method 1</u> - Mean Standard Dev N		FS Lines 86.98 10.43 3	SF Lines 89.55 6.10 3	DIF - 2.57 4.93 3
INDEPENDENT PAIRED	T = 0.3 T = 0.9	68 DF = 03 DF =	4 Probability 2 Probability	= 0.731 = 0.462
Method 2 -	ANOVA			
SOURCE TRT TRT x REP	SS 612.26 2515.05		MS F 12.26 0.487 57.53	P 0.558
	DO	MINANCE EFF	ECTS	
<u>Method 1</u> - Mean Standard Dev N		ntal Lines 84.02 8.31 3	Crossed Lines 88.29 8.16 3	DIF - 4.27 3.87 3
INDEPENDENT PAIRED		34 DF = 08 DF =	4 Probability 2 Probability	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 3241.84 1766.04		MS F 41.84 3.671 83.02	P 0.195

FF - SS DIFFERENCES

ì

L

ŧ.

FF - SS DIFFERENCES	
Method 1 - t-test	
FF Lines SS Lines DI	
Mean31.9739.46-7.Standard Deviation15.096.7319.N3333	67
INDEPENDENT $T = 0.785$ $DF = 4$ Probability = 0.4PAIRED $T = 0.660$ $DF = 2$ Probability = 0.5	76 77
<u>Method 2</u> - ANOVA	
SOURCESSDFMSFPTRT7751.1717751.170.4210.5TRT x REP36858.01218429.011	
MATERNAL EFFECTS	
<u>Method 1</u> - t-test	
FS Lines SF Lines DI Mean 30.62 31.27 -0. Standard Deviation 3.53 5.58 2. N 3 3 3	65 05
INDEPENDENT $T = 0.170$ $DF = 4$ Probability = 0.8PAIRED $T = 0.546$ $DF = 2$ Probability = 0.6	74 540
Method 2 - ANOVA	
SOURCE SS DF MS F P	
TRT 29.77 1 29.77 0.310 0.6	34
TRT x REP 192.00 2 96.00	
DOMINANCE EFFECTS	
Method 1 - t-test	
	39 97
INDEPENDENT $T = 1.194$ $DF = 4$ Probability = 0.2PAIRED $T = 1.563$ $DF = 2$ Probability = 0.2	
Method 2 - ANOVA	
SOURCE SS DF MS F P	
TRT5484.0515484.052.3710.2TRT x REP4626.5622313.28	64

a 🔳

Table J9 : Experiment FS2 - Female Starvation

Ť

:

1

And the set of the set

1

Table J10 : Experiment FS2 - Male Starvation

	<u>FF - SS DIFFEREN</u>	CES	
<u>Method 1</u> - t-test			
Mean Standard Deviation N	23.94	32.81	DIF - 8.87 19.67 3
INDEPENDENT T = PAIRED T =	1.033 DF = 4 0.781 DF = 2	Probability = Probability =	0.360 0.516
<u>Method 2</u> - ANOVA			
TRT 10888.	DF MS 87 1 10888. 05 2 18441.	87 0.590	Р 0.523
	MATERNAL EFFECTS		
<u>Method 1</u> - t-test	FS Lines	SF Lines	DIF
Mean Standard Deviation N	20.72	26.19 4.76 3	- 5.47 1.69 3
	1.569 $DF = 4$ 5.607 $DF = 2$		
<u>Method 2</u> - ANOVA			
TRT 232.	DF MS 45 1 2132. 32 2 70.		P 0.031
	DOMINANCE EFFECT	<u>'S</u>	
<u>Method 1</u> - t-test Mean	Parental Lines Cr 29.03	ossed Lines 23.52	DIF 5.51
Standard Deviation N	3.85 3	4.16 3	5.36 3
INDEPENDENT T = PAIRED T =	1.682 DF = 4 1.778 DF = 2	· · · · · · · · · · · · · · · · · · ·	
<u>Method 2</u> - ANOVA			
SOURCE SS TRT 5723. TRT x REP 3737.	20 1 5723.	20 3.062	P 0.222

1

•

Table J11 : Experiment FS3 - Fecundity

1

FF - SS DIFFERENCES <u>Method 1</u> - t-test FF Lines SS Lines DIF 80.56 26.09 Mean 106.66 Standard Deviation 8.88 2.66 6.70 3 3 Ν 3 INDEPENDENT T = 4.877DF = 4 Probability = 0.008 PAIRED T = 6.748DF = 2Probability = 0.021Method 2 - ANOVA SOURCE \mathbf{DF} SS MS F \mathbf{P} 50.056 TRT 80111.85 1 80111.85 0.019 TRT X REP 3200.88 2 1600.44 MATERNAL EFFECTS <u>Method 1</u> - t-test SF Lines FS Lines DIF Mean 101.22 101.01 0.20 7.79 Standara Deviation 6.40 3.91 N 3 3 3 INDEPENDENT T = 0.035DF = 4Probability = 0.974T = 0.090DF = 2 Probability = 0.936 PAIRED Method 2 - ANOVA SOURCE DF SS MS \mathbf{F} Ρ TRT 3.47 1 3.47 0.008 0.935 TRT X REP 830.23 2 415.12 DOMINANCE EFFECTS Method 1 - t-test Parental Lines Crossed Lines DIF Mean 91.55 101.09 - 9.55 Standard Deviation 7.01 6.86 7.93 N 3 3 3 INDEPENDENT T = 1.687DF = 4Probability = 0.167PAIRED T = 2.084DF = 2Probability = 0.173Method 2 - ANOVA SOURCE SS DF MS F \mathbf{P} TRT 18283.45 1 18283.45 4.494 0.168 TRT X REP 8136.50 2 4068.25

337

ſ

1

Ľ.

- 4

FF - SS DIFFERENCES							
<u>Method 1</u> - Mean Standard Dev: N	F1 10	F Lines 09.90 4.57 3	SS Lines 83.90 3.31 3	DIF 26.01 2.95 3			
INDEPENDENT PAIRED		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 76370.69 589.17	DF MS 1 76370. 2 294.	69 259.250	P 0.004			
MATERNAL EFFECTS							
<u>Method 1</u> - Mean Standard Dev: N	F 1	S Lines 03.03 6.55 3	SF Lines 101.01 7.79 3	DIF 2.02 3.78 3			
INDEPENDENT PAIRED	T = 0.34 T = 0.92	3 DF = 4 6 DF = 2	. =				
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 337.80 766.14	DF MS 1 337. 2 383.	80 0.882	P 0.447			
DOMINANCE EFFECTS							
<u>Method 1</u> - Mean Standard Dev. N	Paren	tal Lines Cr 94.72 5.89 3	ossed Lines 101.99 6.95 3	DIF - 7.27 5.90 3			
INDEPENDENT PAIRED	T = 1.38 T = 2.13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Probability = Probability =	0.239 0.166			
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 10391.99 4413.48	DF MS 1 10391. 2 2206.	99 4.709	P 0.162			

Table J12 : Experiment FS3 - Conditional Fecundity

ŧ. ι

•

•

Table J13 : Experiment FS3 - Female Starvation

FF - SS DIFFERENCES							
<u>Method 1</u> - 1 Mean Standard Devia N	FF 2:	Lines 5.52 2.19 3		DIF -21.78 10.42 3			
INDEPENDENT PAIRED	T = 3.465 T = 3.619		Probability = Probability =				
<u>Met · · ' </u> 2	NOVA						
SOURCE TRT TRT x REP	SS 55523 63 951 .33	DF MS 1 55523. 2 4807.	63 11.549	P 0.077			
	MATE	RNAL EFFECTS					
<u>Method 1</u> - t Mean Standard Devia N	FS 34	Lines 4.00 8.38 3	SF Lines 35.64 7.20 3	DIF - 1.65 1.89 3			
INDEPENDENT PAIRED			Probability = Probability =				
<u>Method 2</u> - A	NOVA						
SOURCE TRT TRT x REP	SS 232.78 210.67	DF MS 1 232. 2 105.	78 2.210	P 0.275			
DOMINANCE EFFECTS							
<u>Method 1</u> - t Mean Standard Devia N	38	al Lines Cr 8.34 7.22 3	ossed Lines 34.82 7.75 3	DIF 3.52 4.47 3			
INDEPENDENT PAIRED		$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$	Probability = Probability =				
<u>Method 2</u> - A	NOVA						
SOURCE TRT TRT x REP	SS 2489.96 2501.05	DF MS 1 2489. 2 1250.		P 0.294			

1

_

.

see which good have

ļ

:

Table J14 : Experiment FS3 - Male Starvation

۲ ۲

.

FF - SS DIFFERENCES

<u>Method 1</u> -		FF Lines	SS Lines	DIF
Mean Standard Dev N		18.45 1.51 3	39.28 9.33 3	
INDEPENDENT PAIRED			4 Probabilit 2 Probabilit	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 50618.77 7660.65	DF 1 50 2 3	MS F 618.77 13.215 830.33	P 0.068
	MA	TERNAL EFF	ECTS	
<u>Method 1</u> - Mean Standard Dev N		FS Lines 24.47 5.04 3	SF Lines 30.03 4.66 3	DIF - 5.56 1.58 3
INDEPENDENT PAIRED	T = 1.4 T = 6.0	03 DF = 86 DF =	4 Probabilit 2 Probabilit	cy = 0.233 cy = 0.026
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 2647.40 138.33		MS F 647.40 38.278 69.16	P 0.025
	DO	MINANCE EF	'FECTS	
<u>Method 1</u> - Mean Standard Dev N		ental Lines 30.71 6.34 3	Crossed Lines 27.21 4.78 3	5 DIF 3.50 3.53 3
INDEPENDENT PAIRED	T = 0.7 T = 1.7		4 Probabilit 2 Probabilit	cy = 0.488 cy = 0.228
Method 2 -	ANOVA			
SOURCE TRT TRT x REP	SS 2454.57 1669.59	DF 1 2 2	MS F 454.57 2.940 834.80	P 0.279

Table J15 : Experiment FS3 - Female Longevity

anana a suan a su sugaran manun menderakan anasa mananakan anan

•

ing si

FF - SS DIFFERENCES							
<u>Method 1</u> - Mean Standard Dev N	F	F Lines 32.10 5.72 3	SS Lines 49.59 4.71 3	DIF -17.50 8.01 3			
INDEPENDENT PAIREF	T = 4.08 T = 3.78	9 DF = 4 DF =	 Probability Probability 	= 0.015 = 0.063			
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 45126.23 6322.50	2 31	MS F .26.23 14.275 .61.25	P 0.063			
	DOM	INANCE EFF	<u>ECTS</u>				
<u>Method 1</u> - Mean Standard Dev N		tal Lines 40.70 3.45 3	Crossed Lines 47.55 5.08 3	DIF - 6.85 3.08 3			
INDEPENDENT PAIRED	T = 1.93 T = 3.85		 4 Probability 2 Probability 				
<u>Method 2</u> -	ANOVA						
SOURCE TRT TRT x REP	SS 9239.14 12\0.95		MS F 39.14 14.831 32.98	P 0.061			

ţ

] 1.

;

Table J16 : Experiment FS3 - Male Longevity

FF - SS DIFFERENCES

<u>Method 1</u> - t-test			
		SS Lines	
Mean	26.60		-20.87
Standard Deviation		0.76	1.53
N	3	3	3
INDEPENDENT T =	15.076 DF =	4 Probability =	= 0.000
	23.593 DF =		
			01004
<u>Method 2</u> - ANOVA			
SOURCE S	S DF	MS F	Р
		421.54 556.627	-
		115.74	
	DOMINANCE EF	FECTS	
Method 1 - t-test			
		C')ssed Lines	DIF
Mean	36.89	42.83	- 4.94
Standard Deviation		3.52	1.99
N	3	3	3
	2.218 DF =		
PAIRED T =	4.294 DF ==	2 Probability =	= 0.050

Method 2 - ANOVA

.

,

SOURCE	SS	DF	MS	F	P
TRT	4772.91	1	4772.91	18.289	0.051
TRT \mathbf{x} REP	521.94	2	260.97		

Table	J17	:	Experiment	FS4		Fecundity
-------	-----	---	------------	-----	--	-----------

.

1

,

	<u>FF - S</u>	S DIFFERE	INCES	
<u>Method 1</u> - Mean Standard Dev N	FF 8	' Lines 8.36 7.53 3	SS Lines 72.12 4.66 3	DIF 16.24 2.94 3
INDEPENDENT PAIRED	T = 3.177 T = 9.552		Probability = Probability =	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 36031.79 794.86	1 3603	MS F 1.79 90.662 7.43	P 0.011
	MATE	RNAL EFFEC	TS	
<u>Method 1</u> - Mean Standard Dev N	7	Lines 6.17 1.77 3	SF Lines 76.75 5.90 3	DIF - 0.58 5.88 3
INDEPENDENT PAIRED	T = 0.076 T = 0.170		Probability = Probability =	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 22.39 1518.10	1 2 2 75	MS F 2.39 0.029 9.05	P 0.879
	DOMI	NANCE EFFE	CTS	
<u>Method 1</u> - Mean Standard Dev N	8	al Lines 0.72 5.33 3	Crossed Lines 76.45 8.67 3	DIF 4.26 3.51 3
INDEPENDENT PAIRED	T = 0.725 T = 2.104	DF = 4 $DF = 2$	Probability = Probability =	= 0.508 = 0.170
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 3305.70 1506.65	1 330	MS F 5.80 4.388 3.32	P 0.171

FF - SS DIFFERENCES

1

ι

.

ł,

Table J18 : Experiment FS4 - Conditional Fecundity

×

.

....

.

ء ۲

.

	<u>FF - SS</u>	DIFFERENCI	ES	
<u>Method 1</u> -		Lines	SS Lines	DIF
Mean Standard Devi N	90		72.87 5.34 3	17.30 2.40 3
INDEPENDENT PAIRED	T = 3.186 T = 12.475	$\begin{array}{rcl} DF &=& 4 \\ DF &=& 2 \end{array}$	Probability = Probability =	0.033 0.006
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP		1 40316.	F 05 150,587 73	P 0.007
	MATER	NAL EFFECTS		
<u>Method 1</u> - Mean Standard Dev: N	FS 77		SF Lines 77.37 6.94 3	DIF - 0.09 3.83 3
	D 0.010		-	
PAIRED			Probability = Probability =	
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	0.56	DF MS 1 0. 2 323.	56 0.002	P 0.971
	DOMIN	NANCE EFFECT	<u>s</u>	
<u>Method 1</u> - Mean Standard Dev: N	Parenta 82	al Lines Cr 2.01 5.75 3	ossed Lines 77.31 8.66 3	DIF 4.70 2.96 3
INDEPENDENT PAIRED		$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$		
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 3958.94 1050.53	DF MS 1 3958. 2 525.	94 7.537	P 0.111

Table J19 : Experimen' FS4 - Female Starvation

	<u>FF - S</u>	S DIFFERENC	ES	
<u>Method 1</u> -		Timor	CC times	DTE
Mean Standard Devi N	3	Lines 8.72 6.82 3		DIF -26.98 7.19 3
INDEPENI\ENT PAIRED	T = 3.784 T = 6.500	$\begin{array}{rcl} DF &=& 4\\ DF &=& 2 \end{array}$	Probability = Probability =	0.019 0.023
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT x REP	SS 100390.32 4421.27	DF MS 1 100390. 2 2210.	F 32 45.412 64	P 0.021
	MATE	RNAL EFFECTS		
<u>Method 1</u> -		Lines	SF Lines	DIF
Mean Standard Devi N	5	1.44 4.36 3	55.40 8.08 3	- 3.96 3.92 3
INDEPENDENT PAIRED	T = 0.746 T = 1.748	DF = 4 $DF = 2$	Probability = Probability =	0.497 0.223
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP			23 3.075	P 0.222
	DOMI	NANCE EFFECT	<u>s</u>	
<u>Method 1</u> -		al Lines Cr	ossed Lines	DIF
Mean Standard Devi N	5	1.26 7.64 3	53.42 6.19 3	- 2.17 4.09 3
INDEPENDENT PAIRED		$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$		
<u>Method 2</u> -	ANOVA			
SOURCE TRT TRT X REP	SS 880.24 2049.35	DF MS 1 880. 2 1024.	24 0.859	P 0.452

FF - SS DIFFERENCES

,

.

Table J20 : Experiment FS4 - Male Starvation

7

FF - SS DIFFERENCES Method 1 - t-test FF Lines SS Lines DIF Mean 48.70 25.01 -23.69 Standard Deviation 3.74 7.53 4.07 N 3 3 3 INDEPENDENT T = 10.087DF = 4Probability == 0.008 T = 4.881DF = 2PAIRED Probability = 0.010Method 2 - ANOVA SOURCE SS DF MS Ρ F TRT 77399.29 1 77399.29 106.338 0.009 TRT x REP 1455.72 727.86 2 MATERNAL EFFECTS Method 1 - t-test FS Lines SF Lines DIF Mean 34.21 39.17 - 4.96 Standard Deviation 5.51 7.94 4.10 3 N 3 3 INDEPENDENT T = 0.889DF = 4 Probability = 0.424 DF = 2 Probability = 0.171 T = 2.096PAIRED Method 2 - ANOVA SOURCE DF P MS \mathbf{F} SS 4.353 0.172 TRT 1728.96 1 1728.96 TRT x REP 794.46 2 397.23 DOMINANCE EFFECTS Method 1 t-test Parental Lines Crossed Lines DIF 36.77 - 0.88 Mean 35.89 1.91 Standard Deviation 5.39 6.47 3 Ν 3 3 DF = 4 Probability = 0.865 INDEPENDENT T = 0.181PAIRED T = 0.797DF = 2 Probability = 0.509 Method 2 - ANOVA Ρ SOURCE SS DF MS F 0.626 0.512 TRT 145.07 1 145.07 TRT x REP 463.72 2 231.86

	FF	<u>SS DIFFI</u>	<u>BRENCES</u>			
Method 1-t-testFF LinesSS LinesMean33.9050.94Standard Deviation1.693.04N33						
INDEPENDENT PAIRED	T = 8.4 T = 11.2		4 Probability 2 Probability			
<u>Method 2</u> - A	NOVA					
SOURCE TRT TRT X REP	SS 33738.74 546.60	DF 1 33 2	MS F 3738.74 123.455 273.30	Р 0.008		
	<u>M</u> 2	ATERNAL EFI	TECTS			
<u>Method 1</u> - t Mean Standard Devia N	-test tion	FS Lines 44.33 1.54 3	SF Lines 42.24 3.60 3	DIF 2.08 2.06 3		
INDEPENDENT PAIRED	T = 0.9 T = 1.7	922 DF = 751 DF =				
<u>Method 2</u> - A	NOVA					
SOURCE TRT TRT x REP	SS 253.21 166.65	DF 1 2	MS F 253.21 3.043 83.33	P 0.223		
	DOM	INANCE EFF	<u>'ECTS</u>			
<u>Method 1</u> - t Mean Standard Devia N		ental Lines 42.45 2.12 3	Crossed Lines 43.29 2.57 3	DIF - 0.84 0.47 3		
INDEPENDENT PAIRED	T = 0.4 T = 3.0	135 DF = 183 DF =				
Method 2 - A	NCVA					
SOURCE TRT TRT × REP	SS 108.99 23.12	DF 1 2	MS F 108.99 9.429 11.56	P 0.092		

Table J21 : Experiment FS4 - Female Longevity

ŝ

2

• \$\$ 1

۰ :

· · ·

ر براد د مرا

i

Table J22 : Experiment FS4 - Male Longevity

nen kei ili

FF - SS DIFFERENCES						
<u>Method 1</u> - Mean Standard Devi N	FF 32	Lines 2.15 4.70 3	SS Lines 52.89 1.91 3	DIF -20.73 6.24 3		
INDEPENDENT PAIRED		$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$	Probability = Probability =			
<u>Method 2</u> -	ANOVA					
SOURCE TRT TRT x REP		DF MS 1 50500. 2 1515.	68 33.326	P 0.029		
	MATER	RNAL EFFECTS				
<u>Method 1</u> - Mean Standard Devi N	FS 41	Lines 1.21 5.05 3	SF Lines 42.64 7.07 3	DIF -1.44 2.02 3		
INDEPENDENT PAIRED	T = -0.286 T = -1.232	$\begin{array}{rcl} \mathrm{DF} &=& 4\\ \mathrm{DF} &=& 2 \end{array}$	Probability = Probability =			
<u>Method 2</u> -	ANOVA					
SOURCE TRII TRT X REP	SS 116.40 156.32	DF MS 1 116. 2 78.	40 1.489	P 0.347		
	DOMIN	NANCE EFFECT	<u>'S</u>			
<u>Method 1</u> - Mean Standard Devi N	Parenta 42	al Lines Cr 2.45 1.72 3	ossed Lines 41.90 6.01 3	DIF 0.54 4.66 3		
INDEPENDENT PAIRED	T = 0.151 T = 0.202		Probability = Probability =			
<u>Method 2</u> -	ANOVA					
SOURCE TRT TRT x REP	SS 45.05 2241.28	DF MS 1 45. 2 1120.	05 0.040	P 0.360		

I

Table J23 : Experiment FS5 - Fecundity

FF - SS DIFFERENCES

Method 2 - ANOVA

•

SOURCE	SS	DF	MS	F	Р
TRT	19277.25	1	19277.25	27.378	0.000
ERROR	108434.76	154	704.12		

MATERNAL EFFECTS

Method 2	-	ANOVA				
SOURCE TRT		SS 135.20	DF 1	MS 135.20	<u></u> 0.196	P 0.659
ERROR		53876.75	78	690.73		•••••
DOMINANCE EFFECTS						

Method 2 - ANOVA

SOURCE	SS	DF	MS	F	Р
TRT	966.44	1	966.44	1.244	0.266
ERROR	181723.95	234	776.60		

2

Table J24 : Experiment FS5 - Conditional Fecundity

FF - SS DIFFERENCES

Method 2 - ANOVA

SOURCE	SS	DF	MS	F	Р
TRT	20144.85	1	20144.85	51.046	0.000
ERROR	59195.97	150	394.64		

MATERNAL EFFECTS

Method 2 - ANOVA

1

÷

.

.

SOURCE	SS	DF	MS	F	Р
TRT	605.59	1	605.59	1.154	0.286
ERROR	40412.72	77	524.84		

DOMINANCE EFFECTS

<u>Method_2</u>	-	ANOVA				
SOURCE		SS	DF	MS	F	P
TRT		423.30	1	423.30	0.805	0.370
ERROR		120359.12	229	525.59		

Table J25 : Experiment FS5 - Female Starvation

ALMANER AND SUCCESSION AND A REAL PROPERTY AND A REAL PROPERTY A R

μ

FF - SS DIFFERENCES

<u>Method 2</u>		ANOVA				
SOURCE TRT ERROR		SS 15229.51 21035.94	DF 1 158	MS 15229.51 133.14	F 114.388	P 0.000
		<u>MA</u>	TERNAL	EFFECTS		
Method 2	-	ANOVA				
SOURCE TRT ERROR		SS 35.11 5729.38	DF 1 78	MS 35.11 73.45	F 0.478	P 0.491
		DO	MINANCE	EFFECTS		
Method 2		ANOVA				
SOURCE TRT ERROR		SS 2371.85 42029.93	DF 1 238	MS 2371.85 176.60	F 13.431	P 0.000

1 1 1

4= 2

ik kan

staat u

3

Table J26 : Experiment FS5 - Male Starvation

;

FF - SS DIFFERENCES

<u>Method 2</u>	-	ANOVA				
SOURCE TRT ERROR		SS 10080.63 14654.98	DF 1 158	MS 10080.63 92.75	F 108.682	P 0.000
		MA	TERNAL	EFFECTS		
<u>Method 2</u>	-	ANOVA				
SOURCE TRT ERROR		SS 470.45 7718.30	D. 1 78	MS 470.45 98.95	F 4.754	P 0.032
		DO	MINANCE	EFFECTS		
<u>Method 2</u>	-	ANOVA				
SOURCE TRT ERROR		SS 93.63 32924.35	DF 1 238	MS 93.63 138.34	F 0.677	P 0.411

Table J27 : Experiment FS5 - Female Longevity

FF - SS DIFFERENCES

Method 2 - ANOVA

A A THE REPORT CONTRACTOR

M.

SOURCE	SS	DF	MS	F	Р
TRT	3904.69	1	3904.69	17.981	0.000
ERROR	34312.41	158	217.17		

MATERNAL EFFECTS

Method 2 - ANOVA

SOURCE	SS	DF	MS	F	Р
TRT	14.45	1	14.45	0.085	0.772
ERROR	13287.35	78	170.35		

DOMINANCE EFFECTS

Method 2 - ANOVA

SOURCE	SS	DF	MS	F	Р
TRT	32.03	1	32.03	0.148	0.701
ERROR	51518.90	238	216.47		

Table J28 : Experiment FS5 - Male Longevity

FF - SS DIFFERENCES

<u>Method 2</u>		ANOVA				
SOURCE TRT ERROR		SS 11759.66 33545.53	DF 1 158	MS 11759.66 212.31	F 55.388	P 0.000
		<u>MA</u>	TERNAL	EFFECTS		
Method 2	-	ANOVA				
SOURCE TRT ERROR		SS 115.20 12192.35	DF 1 78	MS 115.20 156.31	F 0.737	P 0.393
		DO	MINANCI	E EFFECTS		
<u>Method 2</u>	-	ANOVA				
SOURCE TRT ERROR		SS 20.42 57612.74	DF 1 238	MS 20.42 242.07	F 0.084	P 0.772

v e

- William

1

÷.

354

APPENDIX K

' :

-

•

5 . .

1997 - 1997

:

1

.

Summary Statistics of F and S Gene Number Estimates

Table K1 : Experiment GFS1 - Fecundity

			<u> </u>	
Replicate	FF	SS	FS1	FS2
1	82.49	57.72	76.28	71.09
	(173.5)	(376.0)	(167.5)	(205.6)
	90	90	89	89
2	74.27	51.67	60.51	60.66
	(214.1)	(241.7)	(89.78)	(161.3)
	88	88	89	88
3	74.33	53.99	64.04	61.93
	(343.2)	(260.8)	(138.6)	(153.5)
	88	89	90	89
Mean	77.03	54.46	66.94	64.56
Std Error	(2.73)	(1.76)	(4.78)	(3.29)
N	3	3	3	3

,

• • • •

ī

,

Mean 24 Hour Fecundity (Variance) Number of Individuals

*

r

Replicate	FF	SS	FS1	FS2
1	82.49	60.38	76.28	71.88
	(173.5)	(232.4)	(167.5)	(152.5)
	90	86	89	88
2	75.02	54.13	60.51	60.66
	(L66.5)	(118.5)	(89.78)	(161.3)
	87	84	89	88
3	76.94	57.05	64.71	61.93
	(153.0)	(107.2)	(100.1)	(153.5)
	85	84	39	89
Mean	78.15	57.19	67.17	64.82
Std Error	(2.24)	(1.81)	(4.72)	(3.55)
N	3	3	3	3

Table K2 : Experiment GFS1 - Conditional Fecundity

Mean 24 Hour Fecundity (Variance) Number of Individuals

Table K3 : Experiment GFS1 - Female Starvation

Replicate	FF	SS	FSl	FS2
1	32.02	80.00	47.14	50.94
	(74.72)	(249.7)	(127.4)	(142.6)
	90	96	96	96
2	35.04	66.23	51.78	52.71
	(72.16)	(173.0)	(157.9)	(154.6)
	96	96	96	96
3	38.75	55.86	43.04	45.66
	(149.9)	(186.1)	(121.7)	(177.1)
	96	96	96	96
Mean	35.27	67.36	47.32	49.77
Std Error	(1.95)	(6.99)	(2.52)	(2.12)
N	3	3	3	3

ļ

Mean Survival Time (hours) (Variance) Number of Individuals

Replicate	FF	SS	FS1	FS2
1	21.06	57.17	38.58	40.63
	(38.85)	(145.1)	(91.46)	(148.2)
	96	96	96	96
2	26.84	56.91	39,51	39.33
	(64.96)	(194.3)	(79.23)	(120.6)
	95	96	96	96
3	24.56	40.93	32.56	35.12
	(87.73)	(95.86)	(55.47)	(139.1)
	96	96	96	96
Mean	24.15	51.67	36.88	38.36
Std Error	(1.68)	(5.37)	(2.18)	(1.66)
N	3	3	3	3

Table K4 : Experiment GFS1 - Male Starvation

Mean Survival Time (hours) (Variance) Number of Individuals

	Mean Longevity (days) (* `nce) Nu of Individuals				
Replicate	FF	SS	FS1	FS2	
1	33.86	62.80	49.96	47.17	
	(186.0)	(265.9)	(289.1)	(183.0)	
	95	99	100	100	
2	36.22	45.76	37.12	39.62	
	(110.7)	(269.4)	(137.6)	(174.0)	
	99	98	97	100	
3	37.75	52.87	48.93	45.59	
	(202.2)	(269.0)	(238.7)	(228.3)	
	98	99	97	100	
Mean	35.94	53.81	45.34	44.13	
Std Error	(1.13)	(4.97)	(4.12)	(2.30)	
N	3	3	3	3	

Table K5 : Experiment GFS1 - Female Longevity

L

.

Replicate	FF	SS	FS1	FS2
1	38.53	57.20	46.42	48.53
	(177.1)	(338.6)	(197.1)	(178.6)
	95	99	98	100
2	33.93	50.01	42.13	43.99
	(127.4)	(353.6)	(264.3)	(257.4)
	97	99	97	99
3	30.83	54.56	41.79	41.43
	(78.77)	(319.7)	(187.1)	(235.5)
	100	98	95	97
Mean	34.43	53.92	44.45	44.65
Std Error	(2.24)	(2.10)	(1.49)	(2.08)
N	3	3	3	3

Table K6 : Experiment GFS1 - Male Longevity

Mean Longevity (days) (Variance) Number of Individuals

a na ka shekaranan a

ن هده

Table K7 : Experiment GFS2 - Fecundity

Replicate	FF	SS	FS1	FS2
<u>n_1, , , , , , , , , , , , , , , , , , , </u>				
1	96.51	78.14	101.7	89.84
	(1550.7)	(646.9)	(384.5)	(470.2)
	49	100	104	141
2	85.83	69.13	70.93	77.56
	(656.3)	(352.2)	(346.2)	(529.6)
	93	100	120	118
3	113.0	83.40	107.6	104.5
	(505.2)	(936.0)	(552.1)	(396.7)
	96	97	115	131
Mean	98.45	76.89	93.41	90.64
Std Error	(7.903)	(4.167)	(11.38)	(7.791)
N	3	3	3	3

۰.

Mean 24 Hour Fecundity (Variance) Number of Individuals 1

Replicate	FF	SS	FS1	FS2
1	105.1	82.23	102.7	91.14
	(769.6)	(342.9)	(286.0)	(358.4)
	45	95	103	139
2	89.69	71.21	73.34	80.27
	(336.2)	(216.5)	(182.3)	(329.3)
	89	97	116	114
3	114.2	87.71	108.6	105.3
	(378.1)	(623.6)	(453.5)	(316.1)
	95	92	114	130
Mean	103.0	80.39	94.86	92.24
Std Error	(7.146)	(4.849)	(10.90)	(7.248)
N	3	3	3	3

Mean 24 Hour Fecundity (Variance) Number of Individuals

Table K8 : Experiment GFS2 - Conditional Fecundity

-

ł

Replicate	FF	SS	FS1	FS2
1	23.30	50.76	31.26	31.90
	(19.79)	(145.8)	(36.35)	(110.5)
	52	80	106	148
2	31.14	53.91	36.12	38.41
	(48.89)	(278.1)	(83.42)	(152.3)
	`100 <i>`</i>	`100 <i>`</i>	`120 <i>´</i>	120
3	25.58	35.33	29.48	29.37
	(64.22)	(50.52)	(58.55)	(62.48)
	100	100	120	159
Mean	26.68	46.67	32.29	33.23
Std Error	(2.327)	(5.741)	(1.982)	(2.692)
N	3	3	3	3

Table K9 : Experiment GFS2 - Female Starvation

Mean Survival Time (hours) (Variance) Number of Individuals

1

5

ŧ

Table K10 : Experiment GFS2 - Male Starvation

h

	Number of Individu		dars		
Replicate	FF	SS	FS1	FS2	
1	16.79	41.16	24.73	24.73	
	(11.69)	(127.8)	(82.83)	(57.82)	
	52	80	106	147	
2	21.07	47.25	31.69	32.06	
	(55.48)	(160.4)	(68.32)	(119.2)	
	100	100	120	120	
3	18.83	29.15	24.18	25.48	
	(50.73)	(51.03)	(42.81)	(58.30)	
	100	100	120	160	
Mean	18.90	39.19	26.87	27.42	
Std Error	(1.238)	(5.318)	(2.418)	(2.328)	
N	3	3	3	3	

Mean Survival Time (hours) (Variance) Number of Individuals

Table	$\Gamma \in \mathbb{N}$:	Experiment	GFS2		Female	Longevity
-------	-------------------------	---	------------	------	--	--------	-----------

- - 1

-

8. 7 40

Replicate	FF	SS	FS1	FS2
1	27.82	54.28	51.12	48.04
	(186.0)	(334.4)	(320.0)	(313.6)
	100	96	100	100
2	29.88	44.85	41.73	43.53
	(175.1)	(390.0)	(285.5)	(209.6)
	99	95	96	95
3	38.59	49.64	49.80	41.24
	(249.3)	(344.1)	(217.4)	(274.3)
	100	100	100	96
Mean	32.10	49.59	47.55	44.27
Std Error	(3.30)	(2.72)	(2.93)	(2.00)
N	3	3	3	3

Mean Longevity (days) (Variance) Number of Individuals ł

Replicate	FF	SS	FS1	FS2
1	29.22	48.34	45.89	44.82
	(102.3)	(431.7)	(238.8)	(329.4)
	100	98	100	100
2	25.12	47.08	39.92	42.19
	(83.30)	(397.4)	(293.4)	(295.2)
	100	95	97	94
3	25.46	46.98	39.67	35.33
	(171.9)	(240.6)	(194.5)	(162.3)
	100	99	96	90
Mean	26.60	47.47	41.83	40.78
Std Error	(1.31)	(0.44)	(2.03)	(2.83)
N	3	3	3	3

Table K12 : Experiment GFS2 - Male Longevity

Mean Longevity (days) (Variance) Number of Individuals ŧ

.

Table K13 : Experiment GFS3 - Fecundity

Replicate	FF	SS	FS1	FS?
1	97.04	78.00	86.23	79.23
	(646.8)	(271.4)	(461.4)	(357.1)
	94	93	87	187
2	83.71	69.31	69.69	66.02
	(403.3)	(220.9)	(359.2)	(217.2)
	93	96	89	183
3	93.85	64.72	73.44	64.00
	(487.5)	(248.7)	(184.6)	(351.7)
	92	94	95	183
Mean	88.20	70.68	76.45	69.75
Std Error	(4.421)	(3.893)	(5.008)	(4.775)
N	3	3	3	3

L

Ļ

Mean 24 Hour Fecundity (Variance) Number of Individuals

第75 まう

Replicate	FF	SS	FS1	FS2
1	99.10	78.85	87.23	80.07
	(460.3)	(206.2)	(378.4)	(293.7)
	92	92	86	185
2	85.53	69.98	71.26	66.69
	(256.9)	(180.2)	(255.2)	(179.1)
	91	95	87	181
3	85.71	65.39	73.44	65.78
	(487.5)	(209.6)	(184.6)	(244.9)
	92	93	95	178
Mean	90.11	71.41	77.31	70.84
Std Error	(4.493)	(3.951)	(4.999)	(4.621)
N	3	3	3	3

Table K14 · Experiment GFS3 - Conditional Fecundity

Mean 24 Hour Fecundity (Variance) Number of Individuals 369

_

· 4

_

Table K15 : Experiment GFS3 ~ Female Starvation

b.

1

Mean Survival Time (hours) (Variance) Number of Individuals

Replicate	FF	SS	FS1	FS2
1	33.53	67.52	49.25	48.96
	(105.3) 96	(373.5) 96	(212.2) 90	(304.3) 186
2	45.84	75.95	60.53	63.13
	(146.7)	(376.0)	(289.0)	(315.8)
	96	92	96	192
3	36.18	54.56	50.49	50.68
	(81.18)	(163.6)	(120.6)	(165.1)
	96	92	96	186
Mean	38.52	66.01	53,42	54.26
Std Error	(3.742)	(6.222)	(3,573)	(4.465)
N	3	3	3	3

L

370

•

r

も、も また

きょうしん あいし

* N %

Table K16 : Experiment GFS3 - Male Stal ation

Replicate	FF	SS	FS1	FS2
1	23.02	46.46	34.55	35.34
	(40.85)	(322.5)	(184.0)	(166.8)
	95	96	90	186
2	30.00	56.70	44.06	42.82
	(66.74)	(219.0)	(179.9)	(180.3)
	96	93	96	192
3	22.68	41.50	31.71	33.03
	(37.96)	(104.0)	(65.68)	(98.45)
	96	93	96	186
Mean	25.24	48.22	36.77	37.07
Std Error	(2.385)	(4.477)	(3.736)	(2.955)
N	3	3	3	3

-

Mean Survival Time (hours) (Variance) Number of Individuals

Table K17 : Experiment GFS3 - Female Longevity

Replicate	FF	SS	FS1	FS2
1	35.62	51.03	44.38	45.88
	(149.5)	(290.8)	(252.1)	(181.7)
	78	76	78	155
2	32.25	47.86	40.35	37.31
	(79.98)	(249.7)	(214.4)	(172.9)
	77	77	80	159
3	33.84	53.94	45.13	41.03
	(162.9)	(228.7)	(230.9)	(244.7)
	77	80	76	154
Mean	33,90	50.94	43.29	41.41
Std Error	(0.97)	(1.76)	(1.48)	(2.48)
N	3	3	3	3

I.

Mean Longevity (days) (Variance) Number of Individuals

1

I

!

ł

Number of Individuals Replicate FS2 \mathbf{FF} SS FS1 1 37.48 51.59 47.04 52.12 (126.3) (205.9) (197.1) (210.5)76 153 79 75 2 28.58 55.08 43.37 43.74 (121.3)(247.3) (266.6)(292.1)79 78 73 155 3 30.39 51.99 35.30 37.26 (155.8)(245.6)(149.0)(187.6) 156 79 79 78 32.15 52.89 42.56 44.37 Mean Std Error (4.30)(2.72)(1.10)(2.85)3 Ν 3 3 3

Table K18 : Experiment GFS3 - Male Longevity

Mean Longevity (days)

(Variance)

i

-

.

.

Ţ

BIBLIOGRAPHY

:

-

- BELL, G., 1983 Measuring the cost of reproduction III. The correlation structure of the early life history of <u>Daphnia Pulex</u>. Oecologia **60**: 378-383.
- BELL, G., 1984a Measuring the cost of reproduction. II. The correlation structure of the life tables of five freshwater invertebrates. Evolution **38**: 314-326.
- BELL, G., 1984b Measuring the cost of reproduction. I. The correlation structure of the life table of a plankton rotifer. Evolution 38: 300-313.
- CHARLESWORTH, B., 1980 **Evolution in age-structered populations**, Cambridge University Press, Cambridge.
- CHARLESWORTH, B. and J.A. WILLIAMSON, 1975 The probability of survival of a mutant gene in an age-structured population and implications for the evolution of life-histories. Genet. Res. 26: 1-10.
- CLARE, M.J. and L.S. LUCKINBILL, 1985 The effects of gene-environment interaction on the expression of longevity. Heredity **55**: 19-29.
- CLARKE, J.M. and J. MAYNARD SMITH, 1955 The genetics and cytology of <u>Drosophila</u> <u>subobscura</u>. XI. Hybrid vigour and longevity. J. Genet **53**: 172-180.
- COMFORT, A., 1979 The biology of senescence, Ed. 3. Churchill Livingstone, London.
- DOWNING, J.A., 1979 Aggregation, transformation and the design of benthos sampling programs. J. Fish. Res. Board Can. 36: 1454-1463.
- DOYLE, R.W. and W. HUNTE, 1981 Demography of an estuary amphipod (<u>Gammarus lawrencianus</u>) experimentally selected for high "r": a model of the genetic effects of environmental change. Cont. J. Fish. Aquat. Sci. 38: 1120-1127.
- EDNEY, E.B. and R.W. GILL, 1968 Evolution of senescence and specific longevity. Nature 220: 281-282.
- EMLEN, J.M., 1970 Age-specificity and ecological theory. Ecology 51: 588-601.
- FALCONER, D.S., 1981 Introduction to Quantitative Genetics, Ed. 2. Longman, London and New York.
- FEJER, S.O., 1977 Diallel crosses in relation to breeding systems. In: International Conference on Quantitative

I.

Genetics, Edited by POLLAK, E., O. KEMPTHORNE, and T.B. BAILEY, Iowa State University Press, Ames, Iowa.

- FRIEDMAN, D.B. and T.E. JOHNSON, 1988 A mutation in the <u>age-1</u> gene in <u>Caenorhabditis elegans</u> lengthens life and reduces hermaphrodite fertility. Genetics **118**: 75-86.
- GIESEL, J.T., 1979 Genetic co-variation of survivorship and other fitness indices in <u>Drosophila melanogaster</u>. Exp. Gerontol. **14**: 323-328.
- GIESEL, J.T., P.A. MURPHY and M.N. MANLOVE, 1982 The influence of temperature on genetic interrelationships of life history traits in a population of <u>Drosophila</u> <u>melanogaster</u>: what tangled data sets we weave. Am. Nat. **119**: 464-479.
- GIESEL, J.T. and E.E. ZETTLER, 1980 Genetic correlations of life historical parameters and certain fitness indices in <u>Drosophila melanogaster</u>: r_m , r_s , diet breadth. Oecologia 47: 299-302.
- GOWEN, J.W. and L.E. JOHNSON, 1946 On the mechanism of heterosis. I. Metabolic capacity of different races of <u>Drosophila melanogaster</u> for egg production. Am. Nat. 80: 149-179.
- GRAVES, J.L., L.S. LUCKINBILL and A. NICHOLS, 1988 Flight duration and wing beat frequency in long- and short-lived <u>Drosophila melanogaster</u>. J. Ins. Physiol. 34: 1021-1026.
- GUPTA, K.R., B.S. DAHIYA and K.P. SINGH, 1983 Genetics of morphological characters related to plant type in peas (<u>Pisum satirum</u> L.). J. Anim. Sci. **101**: 583-588.
- HALDANE, J.B.S., 1941 New Paths in Genetics, George Allen & Unwin Ltd., London.
- HAMILTON, W.D., 1966 The moulding of senescence by natural selection. J. Theor. Biol. 12: 12-45.
- HINKELMANN, K., 1977 Diallel and multi-cross designs: what do they achieve?, pp. 659-676. In: International Conference on Quantitative Genetics, Edited by E. POLLAK, O. KEMPTHORNE, and T.B. BAILEY, Iowa State University Press, Ames, Iowa.
- HUTCHINSON, E.W. and M.R. ROSE, 1987 Genetics of aging in insects. Review of Biological Research in Aging 3: 63-70.

- IVES, F.T., 1970 Further genetic studies of the South Amherst population of <u>Drosophila melanogaster</u>. Evolution 24: 507-518.
- JOHNSON, T.E. and W.B. WOOD, 1932 Genetic analysis of life-span in <u>Caenorhabditis</u> <u>elegans</u>. Proc. Natl. Acad. Sci. USA **79**: 6603-6607.
- KIRKWOOD, T.B.L. and T. CREMER, 1982 Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Hum. Genet. 60: 101-121.
- KOSUDA, K., 1985 The aging effect on male mating activity in <u>Drosophila melanogaster</u>. Behav. Genet. **15**: 297-303.
- LAMB, M.J., 1977 Biology of aging, Blackie, Glasgow and London.
- LANDE, R., 1981 The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99: 541-553.
- LAW, R., 1979 The cost of reproduction in annual meadow grass. Am. Nat. 113: 3-16.
- LAW, R., A.D. BRADSHAW and P.D. FUTWAIN, 1977 Life-history variation in <u>Poa annua</u>. Evolution **31**: 233-246.
- LINTS, F.A., 1978 Interdisciplinary topics in gerontology. Genetics and Aging, Vol. 14, Edited by H.P. VON HOLN, BASEL and S. KARGER., New York.
- LINTS, F.A. and C. HOSTE, 1974 The Lansing effect revisited - J. Life-span. Exp. Gerontol. 9: 51-69.
- LINTS, F.A. and C. HOSTE, 1977 The Lansing effect revisited. II. - Cumulative and spontaneously reversible parental age effects on fecundity in <u>Drosophila melanogaster</u>. Evolution **31:** 387-404.
- LINTS, F.A., J. STOLL, G. GRUWEZ and C.V. LINTS, 1979 An attempt to select for increased longevity in <u>Drosophila</u> <u>melanogaster</u>. Genetics **25**: 192-204.
- LUCKINBILL, L.S., R. ARKING, M.J. CLARE, W.C. CIROCCO and S.A. BUCK, 1984 Selection for delayed senescence in Drosophila melanogaster. Evolution **39:** 996-_003.
- LUCKINBILL, L.S. and M.J. CLARE, 1985 Selection for life span in <u>Drosophila melanogaster</u>. Heredity **55**: 9-18.
- LUCKINBILL, L.S., M.J. CLARE, W.L. KRELL, W.C. CIROCCO and P.A. RICHARDS, 1987 Estimating the number of genetic

۳

L

377

F″

elements that defer senescence in <u>Drosophila</u>. Evol. Frol. 1: 37-46.

- LUCKINBILL, L.S., J.L. GRAVES, A. TOMKIW and O. SOWIRKA, 1988a A qualitative analysis of life history characters in <u>Drosophila melanogaster</u>. Evol. Ecol. 2: 85-94.
- LUCKINBILL, L.S., J.L. GRAVES, A.H. REED and S. KOETSAWANG, 1988b Localizing genes that defer senescence in <u>Drosophila melanogaster</u>. Heredity **60:** 367-374.
- LYNCH, C.B. and D.S. SULZBACH, 1984 Quantitative genetic analysis of temperature regulation in <u>Mus musculus</u>. II. Diallel analysis of individual traits. Evolution **38**: 527-546.
- MARTIN, G.M., 1978 Genetic syndromes in man with potential relevance to the pathobiology of aging. Nat. Found. 14: 5-39.
- MATHER, K. and J.L. JINKS, 1982 Biometrical genetics, Ed. 3. Chapman and Hall, London.
- MAYNARD SMITH, J., 1958 The effects of temperature and of egg-laying on the longevity of <u>Drosophila subobscura</u>. J. Exp. Biol. **35**: 832-842.
- MEDAWAR, P.B., 1946 Old age and natural death. Modern Quart. 1: 30-56.
- MEDAWAR, P.B., 1952 An unsolved problem of biology, H.K. Lewis, London.
- MERTZ, D.B., 1975 Senescent decline in flour beetle strains selected for early adult fitness. Physiol. Zool. 48: 1-23.
- MUELLER, L.D., 1987 Evolution of accelerated senescence in laboratory populations of <u>Drosophila</u>. Proc. Natl. Acad. Sci. USA 84: 1974-1977.
- MURPHY, P.A., J.T. GIESEL, and M.N. MANLOVE, 1983 Traperature effects on life history variation in <u>Drosophila simulans</u>. Evolution **37**: 1181-1192.
- PARODA, R.S. and A.B. JOSHI, 1970 Correlations, path-coefficients and the implication of discriminant function for selection in wheat (<u>Triticum aestivum</u>). Heredity **25**: 393-392.
- ROSE, M.R., 1982 Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48: 63-78.

- ROSE, M.R., 1984a Laboratory evolution of postponed senescence in <u>Drosophila melanogaster</u>. Evolution 38: 1004-1010.
- ROSE, M.R., 1984b Genetic covariation in <u>Drosophila</u> life history: untangling the data. Am. Mat. **123**: 565-569.
- ROSE, M.R., 1985 Life history evolution with antagonistic pleiotropy and overlapping generations. Theor. Pop. Biol. 28: 342-358.
- ROSE, M.R. and B. CHARLESWORTH, 1980 A test of evolutionary theories of senescence. Nature 287: 141-142.
- ROSE, M.R. and B. CHARLESWORTH, 1981a Genetics of life history in <u>Drosophila melanogaster</u>. I. Sib analysis of adult females. Genetics **97**: 173-186.
- ROSE, M.R. and B. CHARLESWORTH, 1981b Genetics of life history in <u>Drosophila melanogaster</u>. II. Exploratory selection experiments. Genetics **97**: 187-196.
- ROSE, M.R., M.L. DOREY, A.M. COYLE, and P.M. SERVICE, 1984 The morphology of postponed senescence in <u>Drosophila</u> <u>melanogaster</u>. Can. J. Zool. **62**: 1576-1580.
- ROSE, M.R. and E.W. HUTCHINSON, 1987 Evolution of aging. Review of Biological Pesearch in Aging 3: 23-32.
- ROSE, M.R. and P.M. SERVICE, 1985 Evolution of aging. Review of Biological Research in Aging 2: 85-98.
- ROSE, M.R., P.M. SERVICE, and E.W. HUTCHINSCY, 1987 Three approaches to trade-offs in life-history evolution, pp. 91-105. In: Genetic Constraints on Adaptive Evolution, Edited by V. LOESCHCKE, Springer-Verlag, Berlin.
- SERVICE, P., 1984 Genotypic interactions in an aphid-host plant relationship: <u>Urcleucon rudbeckiae</u> and <u>Rudbeckia</u> <u>laciniata</u>. Oecologia **2**: 271-276.
- SERVICE, P.M., 1987 Physiological mechanisms of increased stress resistance in <u>Drosophila melanogaster</u> selected for postponed senescence. Physiol. Zool. **58**: 380-389.
- SERVICE, P.M., E.W. HUTCHINSON, M.D. MACKINLEY and M.R. ROSE, 1985 Resistance to environmental stress in <u>Drosophila melanogaster</u> selected for postponed senescence. Physiol. Zool. **58**: 380-389.

I

1

379

۲-

Į.

SERVICE, P.M., E.W. HUTCHINSON and M.R. ROSE, 1988 Multiple genetic mechanisms for the evolution of senescence in <u>Drosophila melanogaster</u>. Evolution **42**: 708-716.

۲,

÷ ...

- SERVICE, P.M. and R.E. LENSKI, 1982 Aphid genotypes, plant phenotypes, and genetic diversity: A demographic analysis of experimental data. Evolution **36**: 1276-1282.
- SERVICE, P.M. and M.R. ROSE, 1985 Genetic covariation among life-history components: the effect of novel environments. Evolution **39**: 943-945.
- SCHMIDT, J., 1919 La valeur de l'individu a titre de generateur appreciee suivant la methode du croissement diallel. Compt. Rend. Lab. Carlsberg 14, No. 633.
- SNELL, T.W. and C.E. KING, 1977 Life span and fecundity patterns in rotifers: the cost of reproduction. Evolution **31**: 882-890.
- SOKAL, R.R., 1970 Senescence and genetic load: evidence from <u>Tribolium</u>. Science 167: 1733-1734.
- STEARNS, S.C., 1976 Life-history tactics: a review of the ideas. Quart. Rev. Biol. **51**: 3-47.
- SULZBACH, D.S. and C.B. LYNCH, 1984 Quantitative genetic analysis of temperature regulation in <u>Mus</u> <u>musculus</u>. III. Diallel analysis of correlations between traits. Evolution 38: 541-552.
- TAYLOR, C.E. and C. CONDRA, 1980 r- and K-selection in Drosophila pseudoobscura. Evolution 34: 1183-1193.
- TURNER, H.N. and S.S.Y. YOUNG, 1969 Quantitative Genetics in Sheep Breeding, Cornell University Press, Ithaca, New York.
- WADE, M.J., 1978 Kin selection: a classical approach and a general solution. Proc. Natl. Acad. Sci. USA 75: 6154-6158.
- WATTIAUX, J.M., 1968a Cumulative parental age effects in Drosophila subobscura. Evolution 22: 406-421.
- WATTIAUX, J.M., 1968b Parental age effects in <u>Drosophila</u> <u>pseudoobscura</u>. Exp. Gerontol. 3: 55-61.
- WEISMANN, A., 1889 Essays upon heredity and kindred biological problems, Vol. 1, Clarendon Press, Oxford.

2

ì

A Manager and

| | |

T

- WILLIAMS, G.C., 1957 Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398-411.
- WILLIAMS, G.C., 1966a Adaptation and Natural Selection, Princeton University Press, Princeton.
- WILLIAMS, G.C., 1966b Natural selection, the costs of reproduction, and a refinement of Lack's principle. Am. Nat. 100: 687-690.
- WRIGHT, S., 1968 Evolution and the genetics of populations. Vol. 1, Genetic and biometric foundations, University of Chicago Press, Chicago and London.

1

of A number of the second se

ı

· · ·