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Abstract 

Water chemistry, sediment geochemistry, and acid 
phosphatase activity were examined in selected lakes in 
Atlantic Canada to assess the impact r.t lake water 
acidification on phosphorus availability. Sediment phosphorus 
flux rates in 25 lakes ranged from -0.007 to 0.361 rngP-m'^d"1. 
Sediment phosphorus flux was not significantly correlated with 
lake water acidity, but was correlated (p < 0.01) to lake 
trophic status and dissolved organic carbon (DOC) 
concentration. Comparisons with lake phosphorus budgets, 
suggest that sediment phosphorus loading was negligible. 

Lower Ca concentrations in surface sediments was evident 
in some lakes. Greater Al flux from sediments was measured 
with increasing lake acidity. Lower pH in experimentally 
acidified cores indicated that aluminum, iron, manganese and 
calcium were mobilized from sediments, while soluble reactive 
phosphorus (SRP) was removed from the water column. 

Greater phosphatase activity in lake water was generally 
associated with low pH and high DOC, aluminum and iron 
concentrations. Phosphatase activity was found to be highly 
pH dependant. Enzyme pH optima closely approximated that of 
ambient lake water in 4 lakes ranging in pH from 4.5-6.3. 
Little Springfield Lake (pH 3.8) showed a pH optima closer to 
its preacidification pH suggesting that enzyme modification to 
acidification may be slow. Inorganic Al added to water 
samples was found to inhibit enzymatic hydrolysis of organic 
phosphorus substrates to varying degrees depending on DOC 
content. The lack of substantial interference in the presence 
of large Al concentrations mobilized from sediments in 
acidified cores suggested that the Al mobilized from sediments 
was unreactive. Phosphatase activity in core water and 
surface sediments decreased with increased acidity down to pH 
4.0, largely due to reductions in enzyme efficiency due to pH. 
Enzyme activity normalized for changes in efficiency due to 
pH, indicated greatest increases enzyme production at pH < 
4.0. Increased acid phosphatase activity under increasingly 
acidic conditions may be related to removal of soluble 
reactive phosphorus (SRP) by direct phosphorus-metal 
interactions or enzyme inhibition but may also be a response 
reduced enzyme activity at lower pH. 

Greater acidity was found to reduce DOC concentrations 
which may reduce enzyme substrate availability and reduce 
metal-organic complexation which could increase metal toxicity 
or reduce phosphorus availability through direct phosphorus-
metal interactions. 
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1. INTRODUCTION 

1 

The availability of phosphorus is especially important 

because of its role as the primary limiting nutrient 

controlling the epilimnetic productivity of many lakes 

(Vollenweider and Kerekes 1980; Tarapchak et al. 1S86 a,b) . 

1.1. Oligotrophication - The Hypothesis. 

Grahn et al. (1974) were the first to suggest that the 

continuous input of acidifying substances into aquatic 

ecosystems might lead to reductions in lake productivity, and 

coined the phrase "oligotrophication". Their conclusions were 

based, in part, on the loss of more alkiphilic plant species 

(i.e. Lobelia sp. and Isoetes sp.) from the benthic plant 

community and the subsequent expansion of Sphagnum sp. The 

expansion of Sphagnum sp was determined to have two important 

consequences. First, due to the strong ion exchange capacity 

of Sphagnum, several ions important to biological productivity 

were thought to bind to the tissues of this moss and would no 

longer be available to other species and, second, the change 

in habitat structure towards a moss dominated community (in 

addition to two filiform alga and dense growths of fungal 

hyphae) would cause a deterioration in the invertebrate 

benthic community. They further hypothesized that the 

increased dominance of Sphagnum sp. would accelerate the 

exchange and loss of base cations leading to further 

acidification and that the feedback established would cause 



2 

acidification to be a self-accelerating process. 

Oligotrophication of lakes was thought to occur primarily 

through the increased accumulation of coarse detritus (leaves) 

and increased coverage of sediments by leaves, moss, algae and 

fungi. In addition to reduced decomposition rates of the 

litter, coverage of the benthos prevents the exchange of 

nutrients and base cations between sediments and the overlying 

water. Although fungi also decompose organic material, they 

do so more slowly than bacteria meaning that the recycling of 

nutrients from litter would be impeded. This concept has been 

supported by recent increases of accumulation rates of organic 

bottom sediments in acidified Scandinavian lakes (Grahn and 

Hultberg 1974). 

Studies of acidified waterbodies elr -where have also 

shown an increase in the accumulation rat i of organic material 

in bottom sediment which has been linked to reductions in 

microbial activity and subsequent organic decomposition rates 

(e.g. Leivestad et al. 1976; Kelly et al. 1984). Bick and 

Drews (1973) studied the effects of acidity on bacterial 

communities taken from natural and artificially acidified 

waters. With decreasing pH, decreased total bacterial cell 

counts were accompanied by reduced decomposition rates and 

reduced nitrification. A shift in the decomposer community 

from bacteria to fungi was also noted. Traaen (1974, 1976) 

examined the effect of reduced pH on decomposition rates by 

incubating homogenized wilted birch leaf litter for one year 
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in flow through tanks using naturally acidic water (pH 4.5-

5.2) and water adjusted to pH 6 and 4. There was a 

significantly greater leaf decomposition rate at pH 6 than at 

lower pH and decomposition rates (based on weight loss) were 

lowest at pH 4. However, it was cauti jned that there could be 

other factors besides acidity affecting leaf processing. 

Several studies have reported changes in bacterial 

communities or bacterial activity in relation to pH changes. 

Boylen et al. (1983) measured bacterial activity in 1200 

sediment samples collected from 9 Adirondack lakes. There 

were no significant differences in bacterial numbers isolated 

at different pH levels. However, only 10% of bacteria grew at 

pH < 5.0 regardless of the original isolation Ph. For 

bacteria isolated from circumneutral lakes (Ph 7.0), only 90% 

grew at pH 6.0 and 44% at pH 5.0. Hoeniger (1985) measured 

bacterial abundance and cellulose breakdown rates in the water 

column and sediments of lakes sensitive to acid deposition in 

Ontario. However, no significant differences in decomposition 

rates were found in sediments or the epilimnion over the pH 

range of 5.5 to 6.9. Kelly et al. (1984) also found that, 

based on methane and inorganic carbon release, in situ 

decomposition rates in sediments were unaffected over a lake 

water pH range of 5.1-6.7. It was suspected that alkalinity 

generation by sulphate and nitrate bacteria in sediments 

maintained a higher pH microcosm at the sediment/water 

interface (Carignan 1985). When freshly sedimented material 
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was mixed and maintained at a controlled pH, decomposition 

rates decreased at pH < 5.25. These studies indicate that the 

effects of acidification may not be severe until below pH 5.0. 

Decomposition rates are a function of several processes 

including leaching, microbial, fungal, protozoan and 

macroinvertebrate activity (Francis et al. 1987). Anderson 

(1985) studied the processing of allochthonous material in 

acid and none acid lakes using alder leaves. Samples were 

incubated in 4 lakes ranging in pH 4.8 - 6.4. Weight loss in 

leaves exposed in situ in the lakes showed reduced 

decomposition rates at lower pH but results were inconsistent. 

Experiments on leaf litter decomposition were conducted with 

and without invertebrate shredders (Acellus) to test the 

relative importance of microbial activity versus invertebrate 

abundance. These experiments showed that leaves were quickly 

skeletonized and weight loss was much greater in the presence 

of Acellus sp., compared to samples where shredders were 

excluded, regardless of pH. The reductions in decomposition 

rates of alder leaves were found to be more closely correlated 

to invertebrate activity (which was also lower in more acidic 

lakes) than with pH. The positive effect of invertebrates on 

litter decompjsition has been documented elsewhere (Webster 

and Simons 1978; Danell and Sjoberg 1979; Burton et al. 1985) 

although the extent of their role can be variable between 

lakes. 

A study involving experimental acidification of benthic 
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microbial communities collected from three Nova Scotia lakes, 

indicated that active bacterial populations were two orders of 

magnitude smaller in acid stressed samples (Rao 1982). 

Decomposition of organic material was also found to be 

adversely affected by acid stress. A similar study of five 

Ontario lakes showed that bacterial populations were an order 

of magnitude smaller or completely absent in acidic lakes 

compared to non-acid lakes which were similar in other 

features. In addition, surface sediments of acid lakes 

contained up to four times more organic matter than did an 

adjacent non-acidic lake (Rao 1983). 

Studies have indicated that the effects of acidification 

may be reversible. Anderson et al. (1975) and Scheider et al. 

(1975a,b) measured increased microbial activity and organic 

decomposition rates in lakes treated with lime to raise the 

ambient pH. These studies have generally involved artificial 

manipulation of pH which could bias results by causing acid 

shock effects. However, similar results have been obtained by 

comparison of streams under natural conditions. Friberg et 

al. (1980) found significantly lower leaf breakdown in the 

more acidic of two streams similar in other environmental 

parameters (pH 4.3-5.9 versus 6.5-7.3). Measurements of 

sediment oxygen uptake and glucose turnover rates in seven 

lakes ranging in pH from 4,5 to 6.8 were also found to be 

lower in more acidic lakes indicating reductions in 

decomposition rates with increased acidity (Granstrom et al. 
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1980). Conclusions regarding the effects of acidification on 

decomposition and mineralization of organic material are not 

unanimous. Studies on the effects of artificial acidification 

of Lake 223 in Ontario did not show significant changes in 

decomposition rates of organic material in the water column or 

sediment (Schindler 1980). 

Most of the research on the effects of acidification on 

decomposition rates of organic material has focused on the 

benthos. Unfortunately, studies concerning the effcts of 

acidification on mineralization processes in the water column 

are lacking. 

1.2. Acidity and Primary Productivity. 

The studies described above provide indirect evidence 

that there may be reductions in nutrient cycling in acidified 

lakes but do not provide any indication that the potential 

changes in phosphorus availability are actually manifested in 

lakes. A number of laboratory studies have shown 

relationships between either presence-absence or growth rates 

of different algae and pH. Moss (1973) studied growth rates 

of different algal species at different pH and found that 

optimum pH varies between species although a lower limit of 

growth for most species tested was found to be above 4.5 to 

5.1. However, 3 of 33 species grew well at pH levels below 

4.0. Brock (1978) studied biota in extremely acidic waters in 

Yellowstone National Park and found that some species 
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flourished at pH levels as low as 0.5 (eg. Cynanidium 

caldarium). Havas and Hutchinson (1982) found the eugleniod 

(Euglena mutablis) present at pH 1.8 in ponds exposed to 

sulphur fumigations from burning bituminous shales. 

Apparently, many aquatic algal species are able to tolerate 

high levels of metal contamination (see reviews by Stokes 

1983; Dillon et al. 1983). Most of these studies appear to 

relate more closely to algal physiology and metabolism rather 

than nutrient cycling and there is not as much direct evidence 

concerning decreases in primary or secondary production in 

acid lakes. 

Evidence from the field has generally shown no clear 

correlations between acidification and phytoplankton biomass 

or primary productivity in lakes although numerous surveys and 

studies have shown changes in phytoplankton community 

structure and species composition (Yan and Stokes 1978; EPA 

1983, Stokes 1986). In a study of primary production and 

plankton biomass in six lakes in the Sudbury region of 

Ontario, Kwaitkowski and Roff (1976) found no significant 

relationship between acidity and lake productivity. Primary 

productivity measured in the most acidic lake was 3 mgC-m"3'hr" 

1 which was well within the range of values observed in non-

acid lakes in the region (NRC 1981) . However, surveys of this 

nature tend to be short term measurements of planktonic 

primary productivity which are of limited usefulness in 

interpreting anything except large changes. They do not 
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account for physiological or metabolic changes in algae 

related to pH. Surveys and infrequent or short term 

measurements of plankton biomass or productivity are 

insensitive to plankton community relationships intrinsic in 

determining lake productivity. They do not adequately account 

for changes in zooplankton or planktivore grazing pressure on 

algae or other, more complex, predator-prey relationships 

(i.e. fish -> zooplankton -> algae) as well as annual 

variations in lake hydrodynamics. Changes in fish and 

zooplankton populations as lakes acidify have been widely 

documented and reductions in grazing pressure may give the 

false impression in increased biomass or productivity in acid 

lakes where the detrimental effects of acidification are 

masked. Short-term changes in hydrology can also produce 

substantial changes in lake productivity without significant 

changes in pH. Beauchamp and Kerekes (1989) have shown that 

planktonic primary productivity can vary by as much as 40% 

between consecutive years due to between year differences in 

hydrology and DOC export from lake catchments. Dissolved 

organic matter (DOM) in lakes affects light extinction 

coefficients and reductions in DOM concentrations accompanying 

lake acidification can ncrease euphotic depth and lake 

productivity (Schindler . al. 1980; Schindler and Turner 

1982). Long-term studies are required in order to provide 

more representative data. Clearly, observational data such as 

this are inadequate in determining processes involved in the 
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effects of acidification on phosphorus dynamics and a more 

mechanistic approach is needed. 

Schindler (1980) disputes the oligotrophication 

hypothesis since no changes in total phosphorus 

concentrations, plankton biomass or productivity were noted in 

Lake 223 as a result initial study of acidification of the 

whole lake from pH 6.6 to 5.6. However, it was pointed out 

that a pH of 5.6 may not be low enough to show measurable 

changes or, since only the lake itself was acidified, metals 

responsible for reduced inorganic phosphorus in the water, 

would not have been mobilized from the lake catchments. After 

8 years of study and a pH reduction from 6.8 to 5.0 in Lake 

.23, Schindler et al. (1985) still found no decrease in lake 

phosphorus concentrations or planktonic primary productivity. 

Decomposition rates at the sediment surface were also 

unaffected by acidification because microflora at the sediment 

water interface maintained a microenvironment with a higher 

pH. 

Hendry (1976) added sulphuric acid to stream water and 

compared chlorophyll to carbon ratios and specific activity 

(carbon uptake per unit chlorophyll) in the acidified water 

(pH 4) and the natural stream water (pH 4.3-5.5) . The ratio of 

chlorophyll to carbon was found to be low which was 

interpreted as an indication that much of the chlorophyll was 

inactive. Specific activity was also reduced at pH 4.0 which 

supports this conclusion. 
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1.3. Phosphorus Dynamics in Undisturbed Organic Lakes. 

Phosphorus dynamics and productivity in undisturbed, 

organic lakes are not well understood. Much of the research 

on primary productivity in organic lakes has focused on the 

effects of dissolved organic matter (DOM) on light attenuation 

(e.g. Effler et al. 1985; Davis-Colley and Vant 1987) . It has 

been found that increased DOM concentrations causes greater 

attenuation rates and decreased euphotic depth. Lower 

production, phosphorus uptake and increased respiration below 

the compensation level in the water column may allow an 

accumulation of mineralized phosphorus which can be brought up 

to the euphotic zone by normal turbulent mixing. This may 

explain the greater productivity maxima observed at optimum 

light levels in coloured lakes (Beauchamp and Kerekes 1989) 

although whole column productivity remains comparatively low 

when compared to similar clear water lakes. This suggests 

that DOM may have, to some extent, the physical effect of 

lowering competitive phosphorus uptake in subsurface layers of 

the water column. 

Several studies have demonstrated that DOM may reduce 

phosphorus availability through abiotic interactions, 

primarily phosphorus-DHM complexation in the presence of iron 

(e.g. Franko and Heath 1982, 1983; Franko 1986; De Haan and De 

Boer 1986). Steinberg and Baltes (1984) studied 

orthophosphate-DHM interactions in an acid bog (pH 3.9) and 

found significant reductions in inorganic phosphorus 
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availability associated with increased DHM concentrations. 

Low molecular weight DHM was found to bind more inorganic 

phosphorus than high molecular weight compounds but the role 

of the different compounds (determined by gel chromatography) 

was questionable since the pH of sample was raised from the 

ambient pH of 3.9 to 7.0 and samples were concentrated from 

1000 ml to 3 ml by evaporation prior to analysis. Such highly 

manipulative techniques are likely to alter the structure of 

DHM. Brassard and Auclair (1984) examined orthophosphate 

uptake rate constants in the presence of different DHM 

molecular weight fractions and found that DHM could moderate 

orthophosphate uptake rates. Jones et al. (1988) studied the 

interaction between humic material and inorganic phosphorus in 

a small Finnish Lake (pH 4.5) under conditions as similar as 

possible to those found in situ and found that inorganic 

phosphorus labelled with a phosphorus radioisotope was bound 

rapidly to two size fractions of DHM, one high molecular 

weight (>100,000) and one low (10,000-20,000). A chemical 

equilibrium existed between free phosphorus and the bound 

fractions, however, the exchangeability (movement) of 

phosphorus was different between fractions and even within 

fractions over time. These results were very similar to those 

of Levine et al. (1986) who examined phosphorus dynamics in a 

clear water Ontario lake. Thus, the overall effect and 

interactive potential of DHM with inorganic phosphorus could 

be expected to vary in relation to the relative concentrations 


