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Abstract 

In this study we investigated the small sample properties 

of six two-step estimators of dynamic s.laultaneous equation 

models with autoregressive errors using the Monte Carlo 

approach. The six estimators were proposed by Hatanaka. 

The study focused on the relative performances of the 

estimators in strrctural estimation and prediction. 

All the six estimators exhibited significant biases. 

The rankings of the estimators depended on the magnitude of 

autocorrelation, the coefficient of the lagged endogenous 

variables and the sample size. Furthermore, the problem of 

choice among estimators was relatively more important for 

prediction than for structural estimation. The kernel 

estimates of the sampling distributions of the estimators were 

quite similar and were almost symmetric. Significant 

differences among the estimators emerged only if there were 

large differences between the autocorrelation coefficients of 

the equations. The full information estimators generally 

performed worse than their limited information counterparts 

when autocorrelation was high and the reverse was true at low 

levels of autocorrelation. Whereas the asymptotic covariance 

matrices of the structural parameters were unreliable for 

purposes of inference in small samples, very large samples 

were required for the asymptotic covariance matrices of 

dynamic simulation forecasts to make valid inferences 

concerning forecasts. 
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CHAPTER 1: INTRODUCTION 

X.l The choice among several alternative estimators 

Econometric modelling involves a series of decisions 

during various stages of the exercise. Virtually all these 

decisions require imaginative insights into the problem(s) 

under investigation taking into consideration any prior 

knowledge about the underlying economic structure as well as 

the small sample properties of the available estimators. 

Specification of the model involves decisions regarding 

the variables to be included in the model. Also decisions are 

made with respect to the functional form of the equation(s) in 

the model and the assumptions about the distribution of the 

error terms. The econometrician may choose a single equation 

model or a simultaneous equations model(SEM). In either case 

the model might be static or dynamic. The model is dynamic if 

lagged endogenous variables appear among the explanatory 

variables in the equation(s). Such models are used to explain 

the dynamic behaviour of the economy. The specification of 

dynamic simultaneous equations models has become increasingly 

common in applied econometric research in recent years. In 

the estimation stage decisions are made as to which estimators 

would be appropriate for the specified models. Usually, for a 

given model specification, there are several alternative 

1 
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estimators to choose from. A choice airing these estimators 

requires some basis for comparing them. One possible 

approach is to base decisions on the (desirab." •) properties 

of these estimators, which may include the large sample 

properties of asymptotic unbiasedness, consistency, 

asymptotic efficiency ^nd asymptotic normality, or their 

small sample properties. For practical applications, 

however, the asymptotic properties are no more than cold 

comfort because cost and time constraints often limit the 

applied researcher to small samples. Perhaps a stronger case 

for using small samples in applied research arises from the 

fact that with the passage of time, structural evolution 

renders obsolete the data that belongs to the remote past. 

As Brown(1960,pl74) explicitly put it: 

"... small samples are the rule with economic time 
series appropriate for structure estimation of complete 
models.The. passage of time may not correct for this,for 
structure evolution may force the gradual rejection of data 
from periods too far in the past". 

In view of this problem, evaluating the estimators on 

the basis of their asymptotic properties is not a useful 

endeavour. Furthermore, the fact that the asymptotic 

properties of these estimators may not necessarily reflect 

their performance in small samples provides a justification 

for establishing the small sample properties as well. Should 

the estimators possess the same optimal small sample 

properties, then factors other than these, e.g.cost, may 

• 
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influence choice among such estimators. 

In order to establish the small sample properties of 

any estimator there are two possible and often complementary 

procedures that may be followed: analytical derivations and 

Monte Carlo experiments. 

In the former case the exact expressions or 

approximations for the sampling distributions and/or moments 

of the sampling distributions of the estimators are derived 

for a given model specification. This task may be easily 

accomplished for simple estimators, such as the ordinary 

least squares (OLS) for the standard linear regression 

model. For more complex models, analytical derivations of 

sampling distributions of estimators may be a formidable 

task. Furthermore, even if the task is successfully 

accomplished for such estimators, the resulting mathematical 

expressions are often too complicated, rendering them 

incomprehensible and thereby undermining their usefulness 

for purposes of comparison. 

Monte Carlo experiments, on the other hand, involve 

the simulation of the sampling distributions of the 

estimators by controlled experimentation. This approach, 

which is also jailed the distribution sampling method, has 

the advantage of being feasible over a wider range of error 

distributions whereas analytical investigations of small 

sample distributions become even more involved if the 

structural errors are assumed to follow non-normal 
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distributions. 

Assuming that the problems of specification and 

estimation have been resolved and the estimates of the 

parameters of the model have been obtained, the researcher 

would then proceed to the evaluation stage in which 

decisions are made as to whether the computed estimates are 

theoretically meaningful on the basis of sign, significance 

of the coefficients and values of the coefficient of 

determination, among others. Should the resultant estimates 

be declared acceptable, they may then be used for either 

verifying or rejecting the theory being tested as well as 

for post sample prediction and policy evaluation. Also there 

is an increasing body of empirical evidence (for example, 

Raj(1980) ) which suggests that the ranking of alternative 

estimators of the structural parameters according to their 

small sample properties may differ from their ranking from 

a post sample prediction point of view. Thus, if the main 

c'o jective of structural estimation is for post sample 

prediction, then it might be useful to compare the 

estimators according to their predictive capabilities and 

this provides a prima facie case for comparing their 

predictive capabilities. 

It is needless to say that standard errors have 

direct relevance for drawing inferences about the 

significance of the estimates of structural parameters. This 

poses the question of the reliability of the estimated 
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standard errors. If the small sample distributions cannot be 

deiived, the moments cannot be derived either. Since 

asymptotic distributions of estimators are relatively easier 

to derive, it is also easy to derive the asymptotic 

covariance matrix from which the asymptotic standard errors 

can be computed. In practice estimation and tests of 

hypotheses are almost invariably based on the asymptotic 

standard errors. Accordingly, an assessment of the 

reliability of the asymptotic standard errors of the 

estimators in small sample situations would be a useful 

endeavour. Unfortunately, this question was not routinely 

dealt with in most Monte Carlo studies. 

Recent developments in the area of nonparametric density 

estimation have made it possible to estimate the 

distributions of the estimators, standard errors and 

t-ratios using the point estimates obtained in Monte Carlo 

experiments. For example, Power and Ullah (1984) used the 

kernel method of nonparametric density estimation to 

estimate the distribution of limited information rational 

expectations estimators and their t-ratios. This approach 

can also be extended to estimate the distributions of 

prediction errors as well, thus providing a new perspective 

for comparing alternative estimators in Monte Carlo studies. 

As mentioned above each method of estimation has 

specific problems but in this study we concern ourselves 

with the comparison of some estimators of dynamic 

! 
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simultaneous equation models (SEM's) in which the errors are 

assumed to be normally distributed and autocorrelated. The 

case of non-normal errors is not dealt with in this study. 

Before the oojectives of this study are articulated it 

is important to review the problems associated with 

estimating dynamic SEM's and, in particular, how these 

problems are compounded when the standard assumption of 

serial independence of errors is dropped. 

1.2 Estimation of SEM and the problem of autocorrelation 

Interdependent relationships among economic variables 

has dominated thinking in economic theory for many years. A 

survey of Keynesian economics, for example, reveals numerous 

examples of such interdependent relationships. For over four 

decades the interest of econometricians has centered on 

the modelling of such systems and, in most cases, obtaining 

asymptotically efficient and consistent estimates of the 

parameters of such models, under given assumptions. Dynamic 

simultaneous equation models, in particular, are often 

specified to capture the dynamic behaviour of an economy 

while highlighting the structural interdependence in the 

economy. 

Recently there has been considerable interest in the 

specification, estimation and testing of hypotheses in 

dynamic SEM's with errors generated by vector autoregressive 

processes. Numerous tests for the presence of 
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autocorrelation in SEM's have been proposed, of which the 

most relevant for dynamic simultaneous equation models are 

Guilkey (1975), Maritz (1978) and Godfrey (1976). Whereas 

these tests apply only in the case of first order 

autoregressive processes, Godfrey (1978a,1978b) proposed 

tests that apply for higher order error processes as well. 

The question which arises is: how do we estimate the 

structural parameters given that the null hypothesis of no 

autocorrelation is rejected? 

The introduction of serially correlated errors into 

SEM's poses new estimation problems because the commonly 

applied estimators, such as two stage least squares(2SLS) 

and three stage least squares(3SLS) become unsatisfactory, 

as they yield asymptotically inefficient estimates. 

Furthermore, the presence of lagged endogenous variables 

among the predetermined variables causes further estimation 

problems because these techniques yield both inconsistent 

and asymptotically inefficient estimates of structural 

parameters. Inconsistency arises because of the correlation 

between the lagged endogenous variables and the serially 

correlated disturbances. Thus, in the presence of 

autocorrelation, new estimators have to be developed. The 

derivation of such estimators and their sampling 

distributions becomes even more difficult in the case of 

dynamic SEM's with autocorrelated errors. 

To fix ideas, we introduce a typical dynamic SEM with 
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an autocorrelated error structure and specify precisely the 

estimation problem with respect to such models. 

1.3 Dynamic SEM with autocorrelation 

A typical dynamic SEM consisting of g endogenous variables, 

g one-period lagged endogenous variables, ka exogenous 

variables and errors generated by a vector autoregressive 

process may be specified as 

Y = YB + Ŷ C,, + XC, + U (1.1) 

U = U,R + E 

where Y is the T x g matrix of observations on g endogenous 

variables; Y., is the T x g matrix of observations of 

one-period lagged values of Y; X is the T x ]c, matrix of 

observations on kg exogenous variables (The t-th row of X is 

denoted by x, t = 1,. . . ,T) ; U is the T x g matrix of 

disturbances generated by the first order autoregressive 

process defined above. The t-th row of U is denoted by u,. E 

is the T x g matrix of white noise errors (The t-th row of E 

is denoted by e, t = 1,. . .,T). Note that U., is the T x g 

matrix of one-period lagged values of U. B, C0 and C, are 

respectively of orders g x g, g x g and It, x g. C0 has k, 

( < g) non-zero rows corresponding to the k, lagged endogenous 

variables entering into the model. The model is dynamic in the 

sense that C0 is non-null. 

Since one endogenous variable in each equation is 

considered as the dependent variable, its coefficient may be 
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set arbitrarily equal to unity. To this end all the diagonal 

elements of B are prespecified to be zero. R is a square 

matrix of order g x g. Some elements of R may be specified a 

priori to be zero. 

The following assumptions are made regarding model 

(1.1): 

Assumption 1. The matrix (I - B) is non singular. This 

guarantees that the model ic mathematically complete in the 

sense that the reduced form of the model exists and is 

unique. Note that I is the g x g identity matrix. 

Assumption 2. et 's are n.i.d. (0,S), 2 is positive 

definite. 

Assumption 3. The characteristic roots of R and C0(I-B)"
1 

lie inside the unit circle. This guarantees stability in the 

model. 

Assumption 4. lim T____>(0 X'X/T is positive definite. 

Assumption 5. plim 1/T [Y.., :X :X.,]'E = 0 

Assumption 6. All equations to be estimated in the model 

are identified. 
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The i-th equation embedded in model (1.1) can be written as 

y.i - Y b . i + Y-i co.i + * c ^ + u , ( 1 . 2 ) 

Similarly, at time t, the model (1.1) may be written as 

y t . = y t . B + y- i t . c o + x t . c i + u t . 

with ut_ = Uj.^R + et_ (1-3) 

The reduced form of the model (1.1), ignoring 

autocorrelation is 

Y = 0* n* + V* (1.4) 

where <p* = [Y.,, X] ; II* = [II,*' II2* * j • 7 

1^* = C0(I - B)*
1; II2* =0,(1 - B)"

1 and V* = U(I - B) "1 

Similarly the reduced form, taking into account 

autocorrelation is 

Y = 011+ V (1.5) 

where 0 = [Y.., Y_2 X X.,] and II =[ni'n2' n3' n 4']'; 

A, = (C^I-B)"1 + (I-B)R(I - B)'1}; n2 = {-C0R(I - B)"
1}; 

n3 = 0,(1 - B)"
1 ,-n4 = -C^JI-B)

-1; 

and V =E(I - B) "1 is the matrix of reduced form errors. 

Y_2 denotes the matrix of two-period lagged values of Y. 

It follows from the above assumptions that the T rows 

of V are independent random vectors which are normally 

distributed with mean 0 and covariance matrix 

(I-B')"1Z(I- B)"1. 

Application of OLS to (1.5) yields consistent estimates 

of II.,, II2, II3 and II4 (and hence consistent unrestricted 

reduced form predictions of Y). Alternatively, consistent 
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predictions of Y can be obtained using consistent estimates 

of C0, B, R and C, . However, the application of OLS to 

(1.4) where the autocorrelation is ignored yields 

inconsistent estimates of the reduced form parameters, which 

in turn yields inconsistent predictions of Y. 

The identification restrictions may be incorporated 

into the model (1.1) using special selection matrices. The 

selection matrices S11f Sj2 and Si3 are defined below. 

For the i-th equation Sn is a selection matrix such 

that YSn = Y- the matrix of endogenous variables included 

on the RHS of the i-th equation; Y_,,S.2 = Y.̂ - is the matrix 

of lagged endogenous variables included in the i-th equation 

and XSf3 = X. is the matrix of pure exogenous variables 

appearing in the i-th equation. This selection matrix has 

very special properties in that Si1'bl. = /3 { the elements of 

b j not specified a priori to be zero. Similarly Ŝ 'c,,, = 

Vi and si3'
ci.i = 7i.i 

If some elements of R are specified to be zero then 

the non-zero elements can be picked by using appropriate 

selection matrices. For this we define Sn- to be the 

selection matrix such that Srj' r . =r» • the vector of 

elements of the i-th column not specified a priori to be 

zero. In this case we estimate SrJ 'r f and not r {. It 

follows that if R is specified to be diagonal then we have 

Sr].' = [0 0. . .1. . .0] with the number 1 occupying the 

i-th position in the vector and only the diagonal elements 
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of R need to be estimated. Clearly ^.^r- picks up the 

columns of U.,, which correspond to the elements of r . not 

specified a priori to be zero. 

With the a priori restrictions incorporated, the i-th 

structural equation may be written as 

y ,- = ZS,S#f where Z = [Y Y., X] (1.6) 

and s, = diag(Sn Sj2 sf3) and S .= [p ,-' 70.,-' T u ' ] '
 i s t h e 

vector of coefficients in the i-th equation. 

Furthermore, we define y. = [-y0 .' 7, . • ] ' to be the 

vector of coefficients of all included predermined variables 

in the i-th equation. 

Accordingly, the entire model can be written as 

y = (I ® Z)S5 + u (1.7) 

where S = diag(S.,,S2, ... ,Sg) , S =[ 6/ 6 2'. .. <S g» ] •, 

y = vec(Y) and ® is the Kronecker product. 

From the equation U = U.,R + E, and using the property that 

vec(ABC) = (C® A)vec B (See Magnus and Neudecker (1986)), we 

have 

u = (R' ® I) u.., + e (1.8) 

where E(e) = 0 and cov(e) = (S ® I) 
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It is easy to show that E(ut 'ut ) = LR'̂ SR1" (see,for 

example, Fomby et. al. (1984, p.548)). Also S = n - R'flR and 

therefore vec n = [I-(R' ® R)]"1 vec 2. 

The estimation problem in the context of SEM with 

autocorrelated errors is concerned with estimating the 

elements of B, C0, c,, and R in (1.1) not specified a priori 

to be zero. The estimators proposed in the literature may be 

classified either as a limited information estimator or as a 

full information estimator. Limited information estimators 

use only the information that is specific to the equation we 

are interested in. Full information estimators, on the other 

hand, take into account the entire information provided in 

the model including all a priori restrictions . 

Sargan (1961) first proposed limited information 

maximum likelihood estimators in special cases of SEM with 

autocorrelated errors. Amemiya (1966) proposed a two-stage 

least squares analogue of one of Sargan's estimators as 

well as a truncated version of the analogue. Both Sargan's 

limited information estimator and Amemiya's 2SLS analogue 

are consistent and asymptotically efficient if the R matrix 

is diagonal. It may be pointed out here that Amemiya did not 

allow for lagged endogenous variables to be present in the 

model. Fair (1970) and the correction in Fair (1984,p 

212-214)) proposed iterated limited information estimators 

based on selected subsets of instruments required during 

the first stage regression. This procedure, in most cases, 
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is not asymptotically efficient. The seminal article by 

Brundy and Jorgenson (1971) provided a breakthrouoh in 

devising instrumental variable estimators of the standard 

SEM which, in turn, constituted the basis for limited 

information instrumental variable estimators proposed by 

Fair (1972) and Dhrymes, Berner and Cummins (1974). Fair's 

limited information instrumental variables efficient (LIVER) 

estimator is consistent and asymptotically efficient within 

the class of limited information estimators provided the 

autoregressive coefficients are known with certainty. If R 

is not known with certainty, then the LIVER estimator based 

on an iterative procedure is asymptotically efficient. 

Hatanaka (1976) devised a way of ingeniously using the 

residuals from the first stage regressions to obtain three 

consistent and asymptotically efficient limited informr ̂.ion 

two step estimators. It turns out that one of Hatanaka's 

limited information methods is an extension and 

simplification of Amemiya's 2SLS estimator which also takes 

into account lagged dependent variables. Another estimator 

is a simplification of the method proposed by Fair (1972) . 

Rao (1986) proposed a Cochrane-Orcutt type Two Stage Least 

Squares estimator (C0T2SLS) and provided an algorithm for 

estimating such models in the case where R is diagonal. The 

estimator is applicable in both dynamic and static models 

and consistency is achieved provided that we begin from 

initial consistent estimates of the autoregressive 
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parameters. Buse (1989) proposed generalized two-stage 

least squares estimators of such models. 

Sargan (1961) was also the first who proposed full 

information maximum likelihood (FIML) estimators of SEM for 

specific cases, e.g., models where all predetermined 

variables are lagged endogenous. However, it was Hendry 

(1971, 1974) who derived the full information maximum 

likelihood estimator and proposed an algorithm for purposes 

of computation. Chow and Fair (1973) also presented 

computational algorithms for the FIML estimator. Hendry 

considered the case of unrestricted autoregressive 

coefficient matrices (i.e. no zero elements) whereas Chow 

and Fair considered cases of restricted autoregressive 

coefficient matrices as well. The full information 

instrumental variable estimator developed by Brundy and 

Jorgenson (1971) for the standard SEMs was extended by Fair 

to include autoregressive errors. Again it was Hatanaka 

(1976) who proposed three full information two-step 

estimators, which were in fact extensions of the ideas 

contained in an earlier paper by Hatanaka (1974). It turns 

out that the estimators proposed by Dhrymes and Erlat (1974) 

and Fair (1972) are sp 'ial cases of Hatanaka's estimators. 

Dhrymes and Taylor (x976) independently derived one of 

Hatanaka's full information two step estimators which is a 

natural extension of Dhrymes (1974) for the single equation 

case. Rao(1986) proposed a Cochrane-Orcutt type three stage 
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least squares estimator (C0T3SLS) and provided an algorithm 

for estimating such models in the case where R is diagonal. 

This estimator is consistent provided that we begin from a 

consistent estimate of 2 (e.g. from C0T2SLS described 

above). 

Except for Hatanaka's estimators many of the 

estimators proposed above are not asymptotically efficient. 

In addition, the computational algorithms proposed are 

iterative in character. The problem with iterative 

procedures is that convergence may not always be guaranteed. 

In addition, there is always the problem of multiple 

solutions. The six two-step estimators (three limited 

information and three full information) proposed by Hatanaka 

are extremely attractive for applied econometric work in 

view of their computational simplicity. In particular, the 

asymptotic covariance matrix of the estimates is easy to 

compute, which in turn makes testing of hypotheses 

relatively simple. 

Hatanaka proved that all these estimators are 

consistent and asymptotically efficient in the sense that 

they attain the asymptotic Cramer-Rao lower bound. As 

suggested by Hatanaka, the choice among these estimators 

should be based on their performance when the sample size is 

small. Although the asymptotic distributions of the two-step 

estimators have proved analytically tractable, yet the 

derivation of the exact sampling distributions does n^t seem 
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feasible. In fact, neither the exact sampling distributions 

of these estimators nor approximations to them are currently 

available. This Monte Carlo study purports to fill the gap 

between what is known about their asymptotic properties and 

what little is known about their small sample properties. 

1.4 The kernel method of nonparametric density estimation 

The statistical technique of density estimation is 

concerned with the methods of estimating a probability 

density function given a random sample from that 

distribution. 

The methods of density estimation may be classified as 

a parametric method or as a nonparametric method. In the 

former case estimates of sample statistics are substituted 

for the corresponding estimates using the appropriate 

formulae for the density function from which the sample is 

taken. This requires prior knowledge of the distribution 

from which the sample is drawn. The nonparametric method is 

relatively more flexible for estimating a probability 

density function; it is a purely data based approach. In 

this section we concern ourselves with the nonparametric 

methods of density estimation and, in particular, the ken 1 

method. 

The idea of nonparametric density estimation can be 

traced back to an unpublished paper by Fix and Hodges (1951) 

who introduced a naive estimator using the property that 
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f(x)=lim h ___>0 (F(x+h/2)-F(x-h/2))/h 

=P(x-h/2 < X < x+h/2) 

where F(x) is the cumulative probability distribution of X. Fix and 

Hodges defined a naive estimator of f(x) given by 

fT(x)= 1/Th(number of x1,x2,...,xT in[x-h/2,x+h/2 ]) (1.9) 

This can be rewritten as 

fT(x) = (l/Th) E W(xrx)/h (1.10) 

where W( ) = 1 if abs(x{-x)/h <l/2 

= 0 otherwise 

Clearly the weight function W is such that J"(W(z)dz = 1 where 

z. =(Xj-x)/h. A major weakness of the naive estimator is that the 

relevant weight function is discontinuous and this may result in a 

discontinuous estimate of the density function. To remedy this 

problem, Rosenblatt (1956) formally introduced the kernel 

estimator. In particular, Rosenblatt generalized the above 

estimator by choosing any weight function K, called the kernel 

function, and obtaining an estimate given by 

fT(x) = (l/Th)EK(xrx)/h (1.11) 
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where K(.) is a non-negative integrable weight function 

which satisfies, among other conditions, the following: 

K(z) > 0; jK(z)dz = 1; JzKrz)dz== 0 where z is as defined 

before. The quantity h is called the window width and it is 

chosen such that it approaches 0 as T tends to infinity. The 

kernel function determines the shape of the curve and the 

window width determines the smoothness of the curve. If K(.) 

is continuous, the resultant estimate will also be 

continuous. 

Parzen(1962) extended the analysis to cases where the 

kernel function need not be non-negative. Any Borel 

measurable function K(z) satisfying jK(z)dz=l; supJK(z) J < °° 

and JjzK(z)| = 0 will result in a kernel estimator which is 

mean square error consistent provided that hT > 0 and 

ThT > 0 as T tends to infinity. 

Silverman (1986) reviewed alternative methods of non

parametric density estimation such as orthogonal series, 

histograms, maximum penalized likelihood estimators and 

nearest neighbourhood estimators. However, the kernel method 

is the most widely used in applied work because it is simple 

and its properties are relatively well known. It is for 

these reasons that the kernel method is used to estimate the 

sampling distributions of the estimators included in this 

study. Multivariate generalizations of the kernel estimator 

of the density function were discussed by Cacoullos (1966), 

among others. 
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Two main issues arise in practical applications of the 

kernel method, namely: 

l.the choice of the kernel function; and 

2.the choice of the window width 

Such choices are often based on the asymptotic and/or 

small sample properties. The most widely used criterion for 

choosing the kernel function and window width is the mean 

integrated square error (MISE) defined by 

MISE = J[fT(x)-f (x) ]
2dx. The MISE measures the global 

accuracy of the density estimates. 

The asymptotic properties are usually based on 

regularity assumptions about the kernel function and the 

density function. In addition, we require that the window 

width hT depends on T in some way. 

In a review article Ullah(1988) outlined some results 

regarding the choice of the kernel function and the window 

width in density and regression function estimation from 

which two important conclusions emerged: 

l.The results are not very sensitive to the choice of the 

kernel function. Any symmetric probability density function 

(e.g. the standard normal distribution) will suffice. 

2. The choice of the window width is relatively more 

important because of the possibility of a trade off between 

the bias and the variance. However, Ullah pointed out that a 

good practical choice of the window width for density 

estimation in the univariate case is sT"1/5, where s is the 
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standard deviation of the sample observations. 

In a Monte Carlo study the kernel density estimation 

method can be used to estimate the distribution of the 

structural parameters or prediction errors by treating the 

estimates of each structural parameter (or post-sample 

prediction errors for each endogenous variable) in all the 

replications as being i.i.d. observations from their 

corresponding small sample distributions. In the kernel 

method the distribution is estimated at selected points. By 

plotting this distribution one gets an idea of the moments 

of the distribution. Also, by overlaying the distributions 

corresponding to different sample sizes, one can visually 

identify the effect of changes in the sample size on the 

distribution. Furthermore, it can be shown that the (l-a)lOO 

percent confidence interval for f(x) at each point x is 

given by 

fT(x) + Za/2[(l/Th)fT(x)jK
2(t)dt]1/2 (1.12) 

where Zff/2 is the value of Z which leaves an area of a/2 on 

its right under the standard normal curve. 

In this study the kernel method is used to estimate and 

compare the sampling distributions of Hatanaka's two-step 

estimators and their corresponding distributions of post-

sample prediction errors. 
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1.5 Objectives and plan of this study 

In this study the Monte Carlo experiments are conducted 

to investigate the small sample properties of the three 

limited information estimators and the three full 

information estimators proposed by Hatanaka (1976) for 

dynamic SEMs with autoregressive errors. 

As pointed out in Dhrymes and Taylor(1976) the limited 

information procedures cease to be single equation 

procedures if the autoregressive matrix is assumed to be 

non-diagonal. Consequently the design of the Monte Carlo 

experiments in this study is based on the assumption of a 

diagonal autoregressive matrix. 

The study is divided into two broad parts, namely, 

structural estimation and prediction. 

For structural estimation, the following questions are 

addressed: 

1. How do the small sample properties of these estimators 

compare in estimating the structural parameters? 

2. How reliable are the asymptotic standard errors for 

purposes of inference in small sample situations? 

3. How do the kernel estimates of the sampling distributions 

of the structural parameters compare? 

With respect to prediction the following questions are 

addressed: 

1. How do the small sample properties of these estimators 

compare in dynamic simulation forecasts? 
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2. How reliable are the formulae for the asymptotic 

covariance matrix of forecasts for testing hypotheses about 

predictions in small sample situations? 

3. How do the kernel estimates of the sampling distributions 

of the dynamic simulation forecasts compare? 

Chapter 2 reviews the two step estimators investigated 

in this study. Also the full information maximum likelihood 

estimators and the limited information maximum likelihood 

estimators and their asymptotic distributions are briefly 

derived. In chapter 3 the asymptotic distribution of 

dynamic simulation forecasts for dynamic SEM's with 

autocorrelated errors is derived. In chapter 4 the design of 

experiments conducted are described. The various 

nonparametric statistics used to compare the relative small 

sample properties are spelled out. The chapter concludes 

with a review of the results of previous Monte Carlo studies 

which addressed the same issues. In chapter 5 the results 

of individual experiments performed are summarized. Finally, 

chapter 6 reports on the conclusions drawn from this study. 



CHAPTER 2:STRUCTURAL ESTIMATION 

2.1 Introduction 

Efficient estimates of model (1.1) specified in chapter 

1 may be obtained using the maximum likelihood procedure. 

Specific algorithms for computing the maximum likelihood 

estimates of the parameters of the model have been proposed by 

Hendry (1972) and Chow and Fair (1973). The entire model may 

be estimated using full-information maximum likelihood (FIML) 

procedure. Alternatively, each equation in the system may be 

estimated using limited information maximum likelihood (LIML) 

procedure. The FIML and the LIML estimators and their 

asymptotic distributions are derived in Hatanaka (1976). 

However, Hatanaka does not provide detailed derivations of 

these estimators and their asymptotic distributions. Brief 

derivations of the FIML estimator of model (1.1) and its 

asymptotic distribution and the LIML estimator and its 

asymptotic distribution are presented in sections 2.2 and 2.3, 

respectively. The derivations presented in sections 2.2 and 

2.3 are essentially Hatanaka's. In section 2.4 the two-step 

estimators proposed by Hatanaka whose properties are 

investigated in this study are described. 

24 
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2.2 Derivation of the full-information maximum likelihood 

estimator and its asymptotic distribution 

Given model 1.1, and assuming normality of errors, the 

likelihood of observing e is 

f(e) = (/2lI)"T9|2 ® Ij"1/2 exp -1/2 e'(2_1 ® I) e (2.1) 

where j. { denotes the determinant. 

To transform the likelihood from the e-space to the y-space, 

we need the Jacobian of transformation and it is easy to see 

that for this particular case the Jacobian matrix is 

de/dy = j IT ® (I - B){ ={I-B!T 

Also j s ® I j " 1 / 2 = J2|"T / 2 

e = u - (R* ® I ) u . , 

= y - (R« ® IJy., - [(I ® Z) -(R> ® Z.t)]S5 

The log-likelihood function, in terms of y, is, therefore, 

given by 

In L = (-Tg/2)ln2ll - (T/2)lnJ2 j + Tln|l-Bj 

- (1/2) [y-(I®Z)S<S(R»®I) (y.1-(I®Z.1)S5] (2"
1®I) x 

[y-(I®Z)S5-(R'®I) (y_,,-(I ® Z.^SS] (2.2) 

and 

In L/T = (-g/2)ln2n + (l/2)ln|2"1j + lnjl-BJ 

-(l/2T)[y - (I ® Z)S5 - (R» ® I) (y.., -(I ® Z.1)S5](S"
1 ® I) [y -

(I ® Z)S6 - (R' ® I) (y., - (I ® Z.^S^] (2.3) 

Using the property that tr ABC = (vecC')'(B' ® I)vecA (see 
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Neudecker(1969), p.954 ), it is easy to show that 

e'(2_1 ® I)e = tr2"1E'E =2aije.'e , 
• i -J 

Differentiating (2.3) with respect to 2"1 and equating their 

derivatives to zero yields 2 = E'E/T 

Thus the concentrated log-likelihood function is given by 

T"1lnL* = -(g/2)ln2lI+lnjI-B!-(l/2)lnjz!-(l/2)Te' (2"1 ® I)e 

But (l/2T)e'(2"1 ® I)e = tr2"1E'E/2T = trT2"12/2 = g/2 

Thus T^lnL* = -g/2[ln2ll + 1] + lnjl-BJ - l/2lnj2| (2.4) 

= c + p(0) + q($) 

where 6 = [$' r']',c= -g/2[ln2ll + 1] and r = vec R 

(2.4) should be maximized with respect to the unknown elements 

of B, C0 , c, and R. 

D i f f e r e n t i a t i n g (2 .4 ) w . r . t 5 , we o b t a i n 

T"1ainL*/35 = T" 1 [S ' ( I®Z') (2"1®I)e-S'(R'eZ. . , ) (Z"1 ® I ) e ]+ c 

= T"1S' [ ( I s Z ' J - t R ' S Z . . , ) ' ] (2"1 ® I ) e +c (2 .5) 

where 

c = [ c , 1 c 2 ' . . . c g ' ] ' a n d c,. = 31nj I-B/3/3 u=Su13lnj I - B J / d b u 

Also d i f f e r e n t i a t i n g (2.4) w . r . t . r , we obta in 

T"13lnL*/3r = T"1[2"1 ® U . / j e (2.6) 

To d e r i v e t h e asymptot ic covar iance mat r ix , we need t o obta in 
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p l im - T ' ^ l n L V d t f d f l » 

I t t u r n s o u t t h a t 

p l i m T"1a2lnL/a63<S' 

=-pl imT" 1 S»[(I®Z)-(R ® Z. , ) ] ' (2"1®I) [(I® Z) - (R '® Z.1 ;S] (2 .7 ) 

where Z= [Y Y., X] and Y = All from formula 1.5 i n c h a p t e r 1 . 

Also p l i m T"1 3 2 lnL*/ d r d r ' = - [2 " 1 ® n ] ( 2 . 8 ) 

S i m i l a r l y , p l i m T" 1 d 2 lnL*/drd5 ' 

= - ( 1 ® ^ / ) (2"1 ® I ) ( I ® Z)S + ( I ® U. 1 ' ) (2" 1 R' ® I ) ( I ® Z"1)S 

=-(I®U_,,') (2"1®I) ( I ® Z)S +(I«U.1») (2"1® I ) (R' ® I ) ( I ® Z.-,)S 

= - ( I S U . , ' ) (2"1 ® I ) [ ( I ® Z) - (R» ® Z_,,)]S (2 .9 ) 

and 

plim T"1d2lnL/35dr» = -S'[ (IsZJ-tR'sZ..,) ] (2"1®I) (I®U.., )(2.10) 

Finally combining (2.7), (2.8), (2.9) and (2.10^ we have 

established that 

-plimT'^lnL*/^^1 = M 

PI1 

PI 

P2 (2.11) 

where 

M = plim T^S'HI® Z)-(R'® Z.,)] ' (2'1®!) [(I® Z)-(R«® Z.^jS 
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PI = plim T"1S'[(I ® Z) -(R»®Z..,) ] ' (2"1®I) (I ® UM ) 

P2 = 2"1 ® n 

The inverse of the matrix in (2.11) is the asymptotic 

covariance matrix of the FIML. If some elements of R are 

specified a priori to be zero then we delete the rows and 

columns of the information matrix (2.11) which correspond to 

the elements of R which are prespecified to be zero before 

inverting. It follows that if R is diagonal then replace the 

sub-matrix (I ® U..,) in (2.11) by diag[u 1 _., . . . u .] and 

the asymptotic covariance of the unknown elements of B, C0, 

C, and R is given by the inverse of the information matrix 

after making the appropriate substitutions. 

Computing the maximum likelihood estimates involves 

solving non-linear equations. To this end iterative procedures 

are required. Furthermore, the convergence of these procedures 

are usually not guaranteed or rather the speed of convergence 

may not be fast enough. These computational difficulties 

associated with maximum likelihood estimators are partly 

resolved using linearized versions of the maximum likelihood 

estimator similar to the one proposed in Rothenberg and 

Leenders (1964), which are easily computable if we start from 

initial consistent estimates and which require only one 

iteration if the Hessian matrix is known. The linearized 

maximum likelihood estimator simplifies, from a computational 

point of view, the method of Newton which may require more 
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than one iteration. Alternatively, if determining the 

information matrix is not difficult, we may use the method of 

scoring in which the Hessian in Newton's method is replaced by 

the information matrix. Clearly if one starts from an initial 

consistent estimate, only one iteration is required for the 

scoring estimator. 

It is easy to prove chat the linearized maximum 

likelihood and the scoring estimator have the same asymptotic 

distribution as the FIML estimator. 

2.3 Derivation of the limited information maximum likelihood 

estimator and its asymptotic distribution 

The limited information esti1*-tors proposed by Hatanaka 

are based on the assumption that the R matrix is diagonal. As 

mentioned above these procedures would not be termed single 

equation procedures if the R matrix is not diagonal. This is 

because limited information methods use only the information 

pertaining to the equation of interest and ignore a priori 

restrictions on the parameters of the remaining equations. 

Ignoring the restrictions related to other equations does not 

only simplify the calculations but also constitutes the 

essential difference between LIML and FIML. In particular, we 

assume that the i-th diagonal element is non-zero and the rest 

of the elements in the i-th column are specified a priori to 

be zero. For i = 1 this is identical to Amemiya's (1966) A0 

specification. 
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To derive the limited information maximum likelihood 

estimator of, say, the first equation it is necessary to 

eliminate the parameters of all the othe7. equations by 

concentrating them out. 

The reduced form of model (1.1) can be rewritten in a 

more convenient form as 

Z*A = E (2.12) 

where A = [A°» A1' A2' A3' A 4']' and Z* = [Y Y.,, Y_2 X X.,]; 

A0 =(I-B), A1 = {C0+(I -B)R}, A
2 = C0R, A

3 = -C, and A4 = ^R 

Furthermore, we partition A1 = [a.,1 k,1], i = 0, 1,..., 4 and 

E = [e , E,] 

Therefore, using the new partition, the first equation 

may be specified as 

Yap1° +Y.laJ
1 +Y.2aJ

2 +Xa>1
3 +X.1a-1

4 = ep1 (2.13) 

The remaining g-1 equations may be specified collectively 

as 

YA,,0 +Y.1A1
1 +Y.2A1

2 +XA,3 + X.jA,4 = E, (2.14) 

In order to disregard the a priori specification of the 

second through the g-th columns of (I-B) , CQ, C, and R, we need 

to transform the system sue': that 

i 
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1) the sub-systems (2.13) and (2.14) are mutually independent; 

and 

2) we do not disturb tne parameters of the first equation 

This is achieved through a transformation H such that 

AH = [a., A,]H = [a, A,*] 

H'2H = '11 

0 Lg-1 

where a., = [a.,0' a,,1' a/' a,3' a / 1 ] 1 

and A^* = [A,0*' A,1*' A12*' A,
3*' A,4*' ] ' 

This transformation leaves the parameters of the first 

equation unchanged and renders the first equation independent 

of the g-1 transformed equations. The transformation is 

possible [See for example Schmidt (1976, Lemma 17, p.187) or 

Dhrymes 1970, pp. 330-332). 

Given the independence of the T rows of E it is easy to see 

that 

E(etH) • (es H) = 5t
sH'2H t,s = 1,2, . . .,T (2.15) 

where <5ts denotes the Kronecker delta. 

From (2.15) we conclude that the vectors et H are mutually 

independent. 

Since transformation by the non-singular matrix H does 
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not affect the value of the likelihood function, we can write 

the log-likelihood function in terms of the transformed system 

as 

InL = -(gT/2)ln 211 -(T/2)ln JH'2HJ + Tlnj (I - B)H| 

- (l/2)tr(H'2"1H) (Z*AH) ' (Z*AH) (2.16) 

Note that the Jacobian of transformation from etK to yt is 

given by J = Jl®A0Hj = {I® (I-B)HJ . Using the above properties 

of H, the log-likelihood (2.16) is 

InL =-(gT/2)ln2lI -(T/2)lno^ +Tlnjai1° A,
0* J 

- (l/2an) aA " Z* ' Z*a#1 -l/2trA1* ' Z* ' Z*A,* (2.17) 

We eliminate A,* from (2.17) by maximizing with respect to its 

elements, ignoring all restrictions on A.,* 

ainL/a^* 

=Tainja.,0 A^jdA,* - ( l / 2 ) 3 t r A:*"Z*'Z*A]*/dA^* (2.18) 

But a in j a^ 0 A°*\/dA,* =fain|a_1° Af*\/dA°* 

ainja,0 A°*\/dAf* 

and ainja.,0 A1°*j/aA1
i* = 0 for i = 1,2,3,4 

The only derivative to evaluate is ainja_1° A°*\/dA^* 

But ainja^0 A°*\/8[aA° A,0*| = [a,0 A,0*| •_1 

= ainja^0 A^j/aa^0 ainja^0 A,0* j /3A,0* 

Using the fact that a|Aj/3A = A'"1, it follows that 
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am|afl° A^i/aA,
0*- [a,,0 A^J'-^O 1^]'=^ (2.19) 

The matrix [0 Ig.,]' eliminates the first column of 

[a>1° A,
0*]*"1 and therefore the matrix J2 essentially consists 

of the last g-1 columns of [a^0 A,0*]'"1. 

Also, using the fact that atr X'AX/ax = 2AX, it follows that 

atr A1*'Z*'Z*A1*/3A1* = 2Z*'Z*At* 

Substituting these in (2.18) yields 

ainL/aA,* = [(TJ2 )• o
1 o' o' o']' 

-Z*'Z* [ A,,0*'A,,1* ' Af* ' A,3* A,4*' ]» = 0 (2.20) 

From (2.20) it follows that TJ2 = Z*'Z*A1°*. Furthermore, it 

can be shown that 

A1*'Z*'Z*A1* = T x I , 

Thus tr A1*'Z*'Z*A1* = Ttr I , = T(g-l) 

and -(l/2)tr A1*'Z*'Z*A1* = -(T/2)(g-l) which is a constant. 

Also disentangling the Z*'Z* matrix in (2.20) and noting that 

Z* = [Y Y., Y.2 X X.,] = [Y 0] we have 

TJ. 1 Y'Y Y'# 

$ i y $ ' $ 

A,0* 

A,** (2.21) 

where $ = [Y., Y.2 X x.,] and A,** = [A,
1* A^* A^* A,4*] • 

(2.21) can be written in expanded form as 

TJ2 = Y'YA^* + Y'*^** 

0 = 4'YA,0* + f'SA,** (2.22) 
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Eliminating A,** from the second equation in (2.22) yields 

A^* = - ( S ' S J ' V Y A ^ * 

Substituting this in the first equation in (2.22) yields 

TJ2 = Y'YA^* - Y'$(§'$)"1$'YA1°* 

= [Y'Y - Y'§(*'§)"1$'Y]A1°* 

= WA,0* where W = [Y'Y - Y'$($'$)'1$'Y] 

Therefore J2 = W'A,
0*/?. 

We can derive the identity 

Tlnja^0 A1°*|={(T/2)lnJaJ° A^*!)
2 +(T/2) lnjwj-(T/2) lnjwj 

=T/21n{ja^0 A^*!2. jwj } - T/21n|WJ (2.23) 

But Jwj is a constant in the sense that it does not depend on 

any parameters we are interested in estimating. 

Also }a-1° A:°*\2. jW[ = j[a>1° A,
0*]'! JW{ [a^0 A,0* j 

a^'Wa,0 a^'WA^* 

A1°*'Wa_1° A^A'WA,0* 

Now consider the individual components of this matrix. 

It can be shown that a^'WA^* = 0 

Also A1°*
,WA1°* = I , 

Substituting the results in (2.23) we conclude that 

Tlnja,,0 A^* J = (T/2)lnja<1°Wa_1°| - (T/2)lnjW| (2.24) 

Inserting the maximizing values of (2.24) and into (2.17) we 

obtain the concentrated log-likelihood function 
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InL* = c - ( T / 2 ) l n a 1 l + ( T / 2 ) l n j a l
0 , W a 1 ° | 

- ( 1 / 2 ^ ) 3 1 'Z*'Z*a_1 (2 .25) 

where c = - ( T g / 2 ) ( l n 2 n + 1) + ( T / 2 ) ( 1 - I n |w|) 

The concentrated log-likelihood function (2.25) is now 

expressed in terms of the parameters of the first equation and 

we have to maximize it, imposing all a priori restrictions 

related to the first equation. 

Differentiating (2.25) with respect to an we have 

ainL*/3a11=-(T/2a11) + (l/2on
z)a ,'Z*'Z*aA = 0 

Thus a^ = a_1'Z*'Z*a1/T 

Concentrating out on from (2.25), we obtain 

InL** = c-(T/2)lna-1
,Z*'Z*a_1-(T/2)lnT+(T/2)ln|a-1

0Wai1
0!-T/2 

= c1-(T/2)lnaJ'Z*'Z*a ,,/T + (T/2)ln{a-1°Wa>1°j (2.26) 

where c, = (Tg/2) (ln2ll + 1) - (T/2) (ln|wj+ InT) 

Now a_t° = [1 0 0 . . . 0]' - bA = e1 - S,^,, 

Noting that a^1 = - s ^ ^ - r ^ + r , , ^ ^ ; a,2 = r^2y0A; 

a.,3 = —S13y1>1 and a,,
4 = r̂ Ŝ ŷ ,,, we may write 

z*a.i = Cy.i "ZS^.O - rn[y>vl - r^Z.,8^.,] 

This implies that 

a./Z*^*^ = ( [y.T -ZS,*.,] - r„[y v 1 - r^Z^S^,]}' 

{[y.1 -ZS^.,] - r„[y.v1 - r^Z.^,]} (2.27) 

Substituting (2.27) into the concentrated log-likelihood 
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L** = cr(T/2)ln { [Y|1 -ZS^,] - r^Cy^., - r^Z^Sl^]}» 

u y . i - z s i 5 . i 3 - r n[y . i , - i - r i i z - i s i 5 . i ] ) 

+ (T/2)ln(erSul3A) »W(e1-S11)8-1) (2.28) 

A slight rearrangement of (2.28) yields 

InL** = c + (T/2)ln (ei - S11J81)'W(e1 - s,^,) -(T/2) ln[ (Yj 

-rnv.i,-i)+Yi*^.i -X1*T0.1 -Y-n*^.,]' [ (Y.T ~ruYAi.,) +V*.1 -X/7Q.1 

-¥-11*71.1] (2-29) 

where Y,* =Yl-r11Y.1 1# x,* =X1-r11X.11, Y.„* =Y.l1-r11Y.21. 

InL** 

c1+(T/2)ln(e1-S1lj8>1)W(e>l-S11/8-1)-(T/2)ln[Y*(e1-S11jS<l) 

-Y-i*si2-yo.r
x*si3'ri.i]' w*(*rs„fimo-Y.i*sny0m<l-x*stfimi] 

(2.30) 

Using the partitioned matrix 

X1*=[(Y.1-r11Y.2)S12:(X-r11X.1)S13] and letting y A = [701' T u ' ] 1 / 

the vector of coefficients of the predetermined variables 

included in the first equation, and Y* = (Y - r^Y..,), the 

concentrated log-likelihood function (2.30) can be written as 

InL** = c, + (T/2)ln(ei - S11/81)'W(e1 - S11/31)-

(T/2)ln[Y*(e1-S11/3_l)-701-Xl*/3_1]'[Y*(e1-S1lJ9 1)-X1*T.1](2.31) 
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Differentiating (2.31) w.r.t yA, we obtain 

7el =-(X1*
,X1*)"

1X1*
,Y*(e1 - S^pA) and substituting it in (2.31) 

we get InL** c + (T/2) ln(e1-S11)8 ,) 'W^-S,^A) 

-(T/2)ln(e1-S11)0_1) 'Y*'[I - X , * ^ * ' ^ * ) -
1 ^ * ^ * 

= c + (T/2)ln(e1-S11̂ .1)'W(e1-S11)8-1) 

- (T/2)ln(e1-S11)9>1)«W1(e1 - S,,̂ ,) 

where w, = Y*'(I - X,*^*'^*)'''x,*')Y* 

=c+(T/2)ln[(e1-S11/31) 'W, (e1-S11/8>1)/(erSl1j8>1)'WfepS^,) ] 

(2.32) 

It should be noted that (2.32) takes the form in Amemiya 

(1966, equation 14, p. 288) adjusted for the presence of 

lagged dependent variables. 

The LIML estimator of SA and rt1 are obtained by 

maximizing the concentrated log-likelihood function under an 

appropriate normalization rule using a similar procedure to 

that outlined in Amemiya (1966), namely: 

l.Find the smallest root X* of the determinantal equation 

j W - AW, J = 0 where W* and Wt are as defined above. 

2.Find $A for which (W - Xw,,)/?A = 0 subject to an arbitrary 

normalization rule. i.e. >& 1 is the eigenvector corresponding 

to the smallest characteristic root in step(l). 

3.Substitute f)A in the expression (X^'X,*) "
1X1*Y*j§J and this 

is the estimator of f r 

4.Substitute the values of £_,, and y , to get an estimate of r^ 

given by r„ = [Y.^e, - S^^-Y^S^i - X ^ S ^ ] ' [Yfe, -
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S11^.l)-Y-1S12^0.1 ~ X S13^1. l ] / t Y - l ( e l ~ S l A l ) ~Y-2S12^0.1 " X-1S13?1.0' 

CY-i<ei " s n^ . i ) - Y - 2 Mo. i " * is i3?i. i3 

It can be shown that the LIML estimator is consistent and 

asymptotically efficient within the limited information class. 

To establish the asymptotic covariance matrix of LIML we 

take the second derivatives of (2.31) and obtain 

-plim 1'^dzL**/d$^d$^ , where 0, = [Sy r y . 

It turns out that -plim Tydzl,**/BSAdSA* 

KL/CT^plimT-^S^Z-r^zy'ntZ-r^zys,] (2.33) 

Also -plim T"1a2lnL**/a5-iar1l 

= [(ZS^'-ryz.^J^u^/eye., 

= l/a1lPl.im ̂ [ ( Z S ^ ' - r y z . ^ ) ' ^ ^ (2.34) 

Also -plimT"1a2lnL**/ar11
2 = ^^/an (2.35) 

Combining (2.33), (2.34) and (2.35) we obtain 

-plimT"1a2L**/fl*ifl*i* = 

where m, = (l/a^plimT^CS,' (Z-r^zy ' ] [ (Z-r^zys,] 

p, = (l/ayplimT-^ZS^'-ryz.^J'lu,^ 

and p2 = u,,/^, 

The inverse of the matrix given in (2.36) is the 

m, Pi 

V P2 

(2.36) 
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asymptotic covariance matrix of the LIML estimator. 

It is apparent from the above discussion that obtaining 

LIML is a tedious process. The three two-step limited 

information estimators proposed by Hatanaka have the same 

asymptotic distribution as the LIML and yet are much easier to 

compute. 

In the next section we discuss the six two-step 

estimators proposed by Hatanaka whose small-sample properties 

are investigated in this study. Three of these are full-

information estimators which are denoted briefly as HF1, HF2 

and HF3. The remaining three are limited information 

estimators denoted briefly as HL1, HL2 and HL3. All these 

estimators are asymptotically efficient in the sense that they 

attain the Cramer-Rao lower bound. 

2.4 Hatanaka*s two-step estimators investigated in this 

study 

The first stage which is common to all the estimators 

proposed involves instrumental variable estimation of model 

(1.1) using the appropriate instruments for the current and 

lagged endogenous variables. This yields consistent estimates 

of the structural coefficients in each of the equations in the 

system. For the i-th equation we obtain 

IA = {(WSf)'ZS,}-
1(WS{)'y-f (2.37) 



40 

where W = [M M.., X], the M denotes the T x g matrix of 

instruments for Y. These estimates are used to obtain trie 

residuals, u . = y^ - ZS^. i=l,2,...,g. 

If some elements of R are specified a priori to be zero 

then the elements of r . not specified a priori to be zero are 

estimated by Sn-'r f = (Sr1
,U.1'U.1SM)"

1Sp,
,U.1

,u>,. 

It turns out that if R is diagonal then fn = 

(a.i-i'a.i)/u.i-ia.i-i i = 1,2,...,g. and R = diag (r11f... ,rgg) ; E 

= U - U^R and 2 = E'E/T. These are used to obtain restricted 

reduced form predictions, YR, of the current endogenous 

variables which are used in the second stage for some 

estimators. For other estimators we need to obtain the 

unrestricted reduced form predictions, Yu, by applying 

ordinary least squares to (1.5). The first stage estimates are 

used to form the following matrices and vectors: 

Zju+ = [Yf
u -f„Y..„ : Y.1? -rHY_21 : X, - fSiX. l f] 

X*= [ d i a g f Z * , . . . ,2*) : d i a g ( u M , . . . , u , , ) ] 

Z. = [Y,- - r(l.Y.1f :Y.1t - fnY.2 , :X, -r f fX_„] 

XR+ = [ d i a g f z / * , . . . ,Zg
R+) :diag(vi M , . . . , u g y ] 

Z. =[Yj - r^-Y.^-: Y.,,- - r^-Y.g. :X{ - r^-X.^-j 

X+ = [ d i a g ( Z 1
+ , . . . , Z g

+ ) : d i a g ( u , . , , . . . , u g y ] 

X ^ C Z ^ r G , . , ] , X ^ C Z ^ i u . . , ] , X , + =[Z \ + : u M ] and ^ [ f ^ . - . f g g ] ' 

The six estimators differ in the second stage regressions as 

described below: 
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Full information estimators 

HPl: a) Form the joint generalized least squares(GLS) 

estimator 

[71' r1,],SB[Xu*(S"1 ® I)Xu+]-1xu+(2-1 ® I) (y - (R» ® I)yy 

b) Construct the residual adjusted estimator 

[S1' r1»] »= [ ?1' (r1 + f) ']» 

HF2: a) Form the joint GLS estimator 

["£2. r2«]«= [XR+(2"1 ® I)X+]"1XR+' (2"1 ® I) (y - (R' ® l)yy 

b) Construct the residual adjusted estimator 

[$2, t21;] , = j-̂ 2, (r2 + f) '] ' 

HF3: a) Form the joint GLS estimator 

[53- r3']' = [XR+(2_1 ® I)XR+]"1XR+'(2'1 ® I) (u-(R»®I)uy 

b) Construct the residual adjusted estimator 

[£3' r3']' = [(T3 + 6) • (r3 + f) •] ' 

Limited information estimators of the i-th equation: 

HLl: a) Form the OLS estimator 

[«,•' r,.,1']' = [Xl.
u+»X,.u+]-1Xiu+'(y_rf1-iy M ) 

b) Construct the residual adjusted estimator 

[«V- V ' ] ' = [fi.,11 < V + * , , ) • ] • 

HL2: a) Form the OLS estimator 

[?,*• r,,2']' = [X,R+'X,+]-1X,R*'(y.r f,.yH) 

b) Construct the residual-adjusted estimator 

[S.i2' r n
2']' = [7.2' (r.,2 + ff).) • ] • 

HL3: a) Form the OLS estimator 

[7,-3' r„3«]' = [X^'X, 1 1*)- 1^'^, - r „ u M ) 
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b) Construct the residual adjusted estimator 

[*.i3' tuS,y = U V + *.,->' ( V + rn)']' 

In fact, HL1, HL2 and HL3 are limited information 

analogues of HF1, HF2 and HF3, respectively. The asymptotic 

covariance matrix for HF1, HF2 and HF3 are given by the 

inverse of (2.11) and for HL1, HL2 and HL3 by the inverse of 

the matrix in (2.36). 

If asymptotic properties of these estimators are a useful 

guide to their small-sample properties, we would expect the 

full information estimators HF1, HF2 and HF3 to be more 

efficient than their limited information counterparts for both 

structural estimation and dynamic simulation forecasting. The 

purpose of the Monte Carlo study is to compare the 

performances of these estimators when small samples are used. 

In ..hapter 3 we discuss the problem of dynamic simulation 

forecasting in dynamic SEM's with errors generated by a 

vector-autoregressive process. 



CHAPTER 3: PREDICTION 

3.1 Introduction 

One of the objectives of specifying a dynamic SEM is for 

dynamic simulation forecasting, provided that the model which 

generated the observations in the sample period remains valid 

in the period of prediction. An important characteristic of 

the dynamic simulation forecasts is that the values of the 

lagged endogenous values are replaced by their corresponding 

forecasted values for purposes of post-sample predictions. It 

is needless to say that in the presence of autocorrelated 

errors, the standard formulae for the asymptotic distribution 

of the dynamic simulation forecasts for the uncorrelated 

errors (e.g. Schmidt (1974)) become invalid. Therefore, in 

order to make valid inferences about the reliability of the 

post-sample predictions, the standard asymptotic formulae must 

be adjusted to take into account the feature of autocorrelated 

errors in the model. 

Baillie (1982) has derived the asymptotic distribution of 

the dynamic simulation forecasts from dynamic simultaneous 

equations models with autocorrelated errors in the general 

case using Taylor's expansion and recommends exploration of 

some of the recursions in the matrix elements of the 

asymptotically negligible terms for practical applications. In 

the next section we derive the asymptotic distribution of the 

43 
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dynamic simulation forecasts in the dynamic simultaneous 

models with errors generated by a first order vector 

autoregressive process. The approach adopted in deriving the 

asymptotic distribution of dynamic simulation forecasts is 

similar to that in Schmidt (1974) and makes use of the 

distribution of the reduced form parameters. If the 

distribution of the reduced form parameters can be determined, 

then the distribution of the dynamic simulation forecasts can 

easily be obtained. It turns out that the distribution of the 

restricted reduced form can easily be derived in the 

autoregressive case (see, for example Knight (1982)), where 

the reduced form is estimated by FIML. By setting R = 0, the 

formula specializes to the uncorrelated case considered by 

Schmidt (1974). 

3.2 Asymptotic distribution of dynamic simulation forecasts 

To derive the asymptotic distribution of dynamic 

simulation forecasts we rewrite the reduced form given in 

(1.5) in chapter 1 as follows: 

v * = v . *n.* + x *n_* + v * 
*t. Jft-1. "1 A t . "2 vt. 

(3.1) 

where y t * = [y t - y t _y , y ^ * = [ y ^ y t.2 ] , 

xt * = [xt_ x t _y and v t * = [v t 0 ] . 

n,* = n, 

3 
- i 

h 
0 

n2* = \ 

n4 

mm 

0 

0 
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I is the identity matrix of order g. Note that the first g 

columns realize the reduced form and the last g columns of 

(3.1) represent an identity. 

On repeated substitution this yields 

Yt+h.* = y t.*V
h + Ext+h.J_*n2*n1*^ + Ev h_y nyJ (3.2) 

Unless otherwise indicated all the summations in this chapter 

run from j=0 to j=h-l. 

Accordingly, the vector of forecasts for the h-th post 

sample period is given i:y 

Yh.* = yo.*Vh + ^xh-j.*Vfii*J ( 3 - 3 ) 

But yh * = [yh yh-i.] and this implies that yh = yh-*D where D 

= [Ig 0]' is a matrix which selects the first g columns of 

the matrices in question. 

Thus yh = y^fi^D + Exh.j*(fl2*fi1*
j)D (3.4) 

(3.4) can be wri t ten in matrix notation as 

Yh. = WhAh ( 3 - 5 ) 

where Wh = [y0>* x y . . . xh *] 

a n d hh = [ ( f l , * ^ ) •:(fl2*fl1*h-1D) •:(fi2*fl1*h"2D) » . . . ( f l 2 * D ) • ] • 
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Since v(l.J. * = vh - D' we can write the following relation 

corresponding to (3.5) 

Yh. = Yo.*ni*hD +Exh. j_*n2*n1* j D+ Evh.j<D»n1*j D ( 3 . 6 ) 

(3.6) can also be rewritten as yh = WhAh + Lvh . D'lly^D where 

Ah = [ (TL,*hD) ': ( n2*ll1*
h-'lD) ': (II2*II1*

h"2D) '... (n2*D) ' ] • 

and Wh = [y0_* x1 * ... xh_*] 

Applying t h e column s t ack ing opera to r , vec , t o (3.6) we get 

y h - ' = vec yh> = (I ® Wh)vecAh + E(D-ni*J*D) ' v ^ . ' (3.7) 

From (3.5) and (3.7) it follows that 

Yh.' " Yh.' = (l0Wh) vec(Ah-Ah) + E (D,ni*
iD)'Vh.J.' (3.8) 

With known coefficients (Ah = A h ) , the asymptotic 

covariance matrix of the h-th post-sample forecast error is 

given by 

E(yh. - yh.)'(Yh. - yh.) 

= EE[(D'II1*
jD)vh.j 'v^jjD'n^JD) 

= E [(D'n^J'D) ' (I - B)_1'2(I - BJ-^D'n^J'D) (3.9) 

In most cases the parameters of ft.,* and fi2* are unknown 

and therefore have to be estimated through an appropriate 

procedure, such as maximum livelihood or least squares. More 
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specifically, we need to obtain estimates of II, and II2 of II.,* 

and ILj and 11̂  of II2*. 

We now consider the distribution of individual elements 

of (Ah - Ah) . Note that Ah has the same structure as Ah except 

for the fact that II1 and II2 in II,* and II3 and II4 in II2* are 

replaced by their estimated values. 

Using the results of Schmidt (1973) we know that 

(ft,*h -n,*h) = Eft,* 1^,* - n1*)n1*
h"1"i 

Therefore (ft,*h - II1*
h)D = Eft,*j(ft,* -II-,*) II1*

h"1'jD 

= Efl,*j (ft,* - ni*)D(D'ni*
h"1"JD ) (3.10) 

The expression (3.10) follows from the fact that the 

upper and lower right hand blocks of (ft.,* - II,*) are zero which 

makes (ft,* -II,*) = (ft,* - II,*) DD'. 

Therefore, vec(ft1*
h - n,*h)D 

= E(D,ni*
h"1"JD) ® fl1*

jvec(ft1* -II,*) D 

= Bh vec (ft,* - II,*)D (3.11) 

where Bh = E(D»II,*
h'1"jD) • ® ft,*j 

Similarly for i = 1,2, . . .,h-l we have 

vec(ft2*ft,*
i - n2*n,*'")D =[C, Df] 

vec(fl,* -n,*)D 

vec(ft2* -II2*)D 
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where C,. = E(D'II,*J*D*) '® ft2*ft,*
l""1_i and D,* =(D'II,*1"D) '®I 

Defining Ah* = fvec(ft,*h - II,*h)D j 

' vec(ft2*ft,*
h_1 - II2*II,*

h"1)D 

vec (ft,* - II?*)D 

we may write 

Ah* = Qh Eec(ft,* - II,*) D*̂  

vec(ft2* - II2*)D 

where Q. = Bh ' 

V 

We know that vec(ft,* - n,*)D 

vec(ft2* - II2*)D 

c ' 
*~h-1 

Dh-1' 

: 0' 

. : I 

P vec (ft,* -n,*)D 

(ft2* -n2*)D (3.12) 

where P =[(I, ® F,) ' : (I2 ® F2) • ] ', and F, = [I, 0], 

F2 = [0 I 2], and I, and I2 are , respectively, 2g x 2g and 2k2 

x 2k2 identity matrices. 

Therefore 

Ah* = Q„ vec ( ft,* - II,*)D 

vec ( ft2* - II2*)D 

= Q. P vec ( ft,* - n,*)D 

( ft2* - n2*)D| 
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This can be written as Ah* = Qh P vec (ft - II) 

Furthermore, Ah* = G. vec (ft,*h - n,*h)D 

(ft2*ft,*h"1 - n2*n1*h"1)D 

(ft?* - IL*)D 

or Ah* = Gh vec(Ah - Ah) (3 .13) 

where Gh = [ ( I ® V,) ' , ( I ® V2) ' , . . . , ( I ® Vh+1) ] • and 

V, = [ 1 0 . . . 0 ] , V2 = [0 1 0 . . . 0 ] , . . . , Vg = [0 0 . . . I ] ; 

V, i s of o r d e r 2g x 2 (g + hk2) and V,. ( i = 2 , . . . , h + l ) a r e of 

o r d e r 2k, x 2 (g + hk2) . 

An i n s p e c t i o n of t h e m a t r i x Gh i n d i c a t e s t h a t Gh'% i s 

t h e i d e n t i t y m a t r i x of o r d e r 2 (g + hk2) and p r e m u l t i p l y i n g 

(3 .13) by Gh»= [(I®V,) : (I®V2) : . . , (I®Vh+1) 1 ' we o b t a i n Gh'Ah* = 

vec(Ah -Ah) 

T h e r e f o r e vec(Ah - Ah) = Gh'Qh vec (ft,* - n,*)D 

(ft2* - II2*)D 

Gh'QhP vec (ft - II) 

Knight (1982) proved the asymptotic distribution of 

7Tvec(ft - II), where ft is the restricted reduced form estimator 

of II based on FIML, is N(0,J$J') where J and * are defined in 
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Knight(1982,pp. 588-589). In order to take into account the 

diagonality of R in (J$J') we replace I ® U., by diag(u , .,,. 

. . ,u , ) . We also note that the full information two-step 

estimators have the same asymptotic distribution as the FIML. 

Thus the asymptotic covariance matrix of the forecast error 

(Yh. ~ Yh.) based on HF1, HF2 or HF3 is given by 

E(yh. - yh.)'(yh. - yh.) 

= 0h/T + E[(D'n,*
jD) ' (I - B)'1'2(I - B)"1(D'n,*jD) (3.14) 

where 0h = (I ® Wh)Gh'QhP(J$J')P'QhGh(I ® Wh') 

We also note that if 6 and r are based on LIML then the 

expression (24) in Knight's article becomes 

JT [(£ - 6)•(f - r)']' ~ N(0,$*) 

where ** = plim(l/TX+'X+)"1X+'(2 ® I)X+/T(X+»X+/T)-1 and 

X+ = [diag(Z,
+,... ,Z+) : diag(u,.,,. . .,ug.,). It follows that 

the asymptotic covariance matrix of the forecast error based 

on HL1, HL2 and HL3 is given by 

E(yh.- yh.)'(yh.- yh.) 

= 0h*/T + E[(D'n,*
jD) • (I - B)"1'2(I - Br^D'n,*^) (3.15) 

where 0h* is the same expression as 0h but with * replaced by 
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$*. Although the first terms in (3.14) and (3.15) are 

asymptotically negligible, it is not exactly clear what the 

impact of omitting this term would be in small sample 

situations. Accordingly, in our study, we have included these 

asymptotically negligible terms in estimating the asymptotic 

covariance matrices of the dynamic simulation forecasts based 

on each of the six estimators. 
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CHAPTER 4:THE DESIGN OF EXPERIMENTS 

4.1 Introduction 

A typical Monte Carlo experiment designed to compare the 

small sample properties of estimators of economic models 

consists of the following steps: 

1. Specify an appropriate model. 

2. Assign numerical values to all the structural parameters 

including the variance-covariance matrix of the errors, taking 

into account any a priori restrictions that the parameters are 

expected to obey. In other words, we specify a structure 

within the model. 

3. Specify T numerical values for each exogenous variable in 

the model and, in addition, specify the initial values of the 

lagged endogenous variables if the model is dynamic. Note that 

T represents the sample size. 

4. Generate a random sample of size T of errors from the 

desired probability distribution and combine it with the 

specified model-structure to generate a sample of size T of 

current values of the endogenous variables. In the case of 

dynamic SEM's current values of the endogenous variables are 

generated from the structural reduced form of the model. 

5. For purposes of estimation a sample of observations 

consists of the specified T values of each exogenous variable, 

the T current values of the endogenous variables generated as 

52 
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in step 4 and, if the model is dynamic, the T lagged values of 

the endogenous variables, which include the initial values. 

These data constitute a sample which is used to estimate the 

parameters of the model by alternative estimators included in 

the study. 

6. The process described in steps 4 and 5 is repeated several 

times, e.g. 1000 times, thereby generating 1000 point 

estimates of each parameter by each of the estimators. The 

point estimates of any given parameter and estimator are used 

to construct an empirical distribution of that estimator. 

These empirical distributions of estimators are compared to 

shed light on their relative small sample properties. The 

descriptive statistics a. d the ranking statistics upon which 

the comparison of the estimators is based are described later 

in this chapter. 

4.2 Description of the Experiments 

The experiments conducted in this study were based on 

a two-equation model used by Wang and Fuller (1982). The 

particular model used in the Monte Carlo experiments is a 

special case of model (1.1) with the B, C0 and C, specified as 

follows: 

B = 0 

*21 

^12 

0 

cn = '11 

'22 

C1 = C11 C21 C31 

C,2 0 0 C42 C52i 
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2 = cr„ cr,2 I R 

a12 a22 

r,, 

The model consists of two endogenous variables,two lagged 

endogenous variables, five exogenous variables which include 

the dummy variable that accounts for the intercept parameter. 

Hereafter, for convenience, we refer to the endogenous 

variable in the first column of Y as yl and the second second 

column of Y as y2. The model satisfies all the assumptions 

listed in chapter 1. The equations are identified in the 

sense that the number of purely exogenous variables that are 

not redundant when lagged exceeds, 2, the number of 

equations. See Hendry (1976) for a discussion of the issue of 

identification. Since it has only two equations, the total 

number of parameters to be estimated is kept reasonable, which 

in turn facilitates comparison of the estimators, and, in 

addition, allows us to conveniently extend the analysis to 

compare the prediction performances of these estimators. 

The model consists of 10 structural coefficients(5 in 

each equation), 2 autocorrelation coefficients (r,, and r22) 

and 3 distinct elements of 2 (a,,,cr,2 and a22) . Thus, for each 

structure, there is a total of 15 parameters to be estimated. 

For convenience we identify the parameters by numbers as follows: 

Equation 1: Parameter : 02, c,,0 c,, c2, c3, 

Coefficient No.: 1 2 3 4 5 
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E q u a t i o n 2 : P a r a m e t e r : j8,2 

C o e f f i c i e n t N o . : 6 

R a n d 2 : P a r a m e t e r : r , , 

C o e f f i c i e n t N o . : 11 

C22 

7 

r 2 2 

12 

C12 C42 

8 9 

CT„ ff12 a 2 2 

13 14 

'52 

10 

15 

Thus, we refer to 02, as coefficient number 1, c,,° as 

coefficient number 2, etc. The coefficients of the two lagged 

endogenous variables are identified as coefficients 2 and 7, 

respectively. 

Four different structures, differing in the elements of 

C0 and R were used for purposes of experimentation. These 

model-structures henceforth referred to as models 1 through 4, 

are specified below. 

Structure 

R 

0 . 8 

0 . 0 

0 . 9 

0 . 0 

0 . 0 

0 . 5 

0 . 0 

0 . 9 
— 

0 . 2 

0 . 0 

0 . 9 

0 . 0 
—• 

0 . 0 

0 . 5 

0 . 0 

0 . 3 

• 

• 

0 . 8 

0 . 0 

—• 
0 . 9 

0 . 0 

0 . 0 

0 . 5 

"1 
0 . 0 

- 0 . 6 

0 . 8 

r 
| 0 . 9 

0 . 0 
L 

0 . 0 

0 . 5 

-

0 . 0 

0 . 0 

For the 4 structures, the B, C, and 2 matrices which remain 

the same are specified below. 

C1 - 1.0 2.0 1.0 0.C 0.0l' B =0.0 -1.0 

1.0 0.0 0.0 0.9 4.01 1.0 0.0 

2 = 1.00 1.21 

1.21 2.21 
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Two sample sizes, T=30 and T=60, were used to study the 

effect of varying T on the sampling distributions of the 

structural parameters and forecasts. Thus, we had four major 

experiments each consisting of two sub-experiments. Experiment 

1 was based on model 1 and the sub-experiments 1A and IB were 

based on samples of sizes 30 and 60, respectively. A similar 

intepretation holds true of experiments 2, 3 and 4. 

Generation of sample data 

The following steps were followed in generating samples 

of dat on the endogenous variables 

1)Generation of uniform random numbers 

Two hundred and ten uniform random numbers on the open 

interval (0,1) were generated by the multiplicative 

congruential method. The pseudo random numbers were generated 

using the RAN subroutine that is available in VAX Fortran 

version 4.0. The 210 random numbers were rearranged into a 105 

x 2 matrix. 

2)Generation of standard normal numbers 

The random numbers generated in step (1) were transformed 

into independent standard normal numbers using the Box-Mueller 
* 

(1958) method and were arranged into a 105 x 2 matrix, NS. The 

Box-Mueller method is. used to transform any pair of 
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independent uniform random numbers, say U, and U2, into a pair 

of independent standard normal numbers, say, N, and N2. The 

following formulae were used to generate N, and N2. 

N, = (-2lnU,)1/2 cos (2IIU2) 

N2 = (-2lnU,)
1/2 sin (2IIU2) 

3)Generation of independent normal vectors with given 

covariance matrix 2 

The matrix, NS, of standard normal deviates obtained in 

step (2) were transformed into a matrix E whose row vectors 

are bivariate independent normal vectors with the specified 

covariance matrix 2 using an appropriate lower triangular 

matrix Q such that Q'Q = 2. This is achieved using the 

relation E = NS x Q. The 105 x 2 error matrix U was obtained 

from E as follows: 

u„. = 7(1.0 -ryje,, for i=l,2 

ukj = r,,̂ .,, + ek{ for k=2,. . .,105, i=l,2 

4)Generation of exogenous variables 

The 5 exogenous variables used in the simulation study 

were the same as those used in Wang and Fuller (1982) which 

are reproduced here. 

X,: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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x2:1.0 3.0 0.0 9.0 1.0 6.0 3.0 8.0 6.0 7.0 

X3S 0.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 

x4: 0.0 10.0 8.0 0.0 16.0 0.0 0.0 4.0 10.0 14.0 

x5: 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 

The first exogenous variable was taken to represent the 

constant term. The data were repeated to obtain a total of 105 

observations on each exogenous variable. The exogenous 

variables were kept fixed in all replications and for all 

experiments. 

5)Generation of endogenous variables 

105 observations on each endogenous variable were 

generated using the specified data on the exogenous variables 

and the error matrix U via the reduced form. The first row of 

Y_, matrix was calculated from the reduced form given in (1.4) 

using the formula y.,, = xC0(I-B)"
1 where x is a row vector of 

the means of the the 10 repeated observations on each 

exogenous variable that are given above (i.e. x = [1.0 4.4 

0.5 6.2 0.6]) 

Generation of samples for simulation 

The first 40 observations of the 105 observations on Y, 

Y_, and X were discarded to eliminate the effect of the initial 

values of the lagged endogenous variables. Observations 71 to 

100 constituted the sample size 30 and observations 41 to 100 

constituted the corresponding samples of size 60. In all cases 
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observations 101-105 were used to investigate the properties 

of the estimators for dynamic simulation. The above steps were 

repeated each time we wished to generate a sample. In our 

study the number N of samples or replications was fixed at 

1000. The use of nested/overlapping samples was not only to 

improve the reliability of the comparisons of the estimators 

between the two sample sizes but also to economize on the 

number of random numbers generated. In addition, it ensured 

-_ the five post-sample prediction periods 101 to 105 

considered in the study remained the same in both the sample 

periods used for structural estimation. 

Variance reduction 

We decided to use the direct simulation approach 

discussed by Smith (1972) rather than implement the antithetic 

variate or control variate approach discussed, for example, in 

Hendry (1984). The antithetic variate technique was used in 

the study of limited information estimators of dynamic SEM's 

with autocorrelated errors by Moazzami and Buse (1986). 

However, as pointed out by Hendry and Harrison (1974), in a 

single equation -ontext, the antithetic method offers little 

efficiency gain for autoregressive schemes such as the one 

considered here. The control variate approach, on the other 

hand, requires that we find an auxiliary estimator which is 

positively correlated with the estimators whose properties are 

being investigated but whose first few moments can be obtained 
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analytically. However, it is not immediately clear what the 

best control variate for estimators of dynamic SEM's with 

autocorrelated errors would be. 

Since simulation efficiency can also be increased in a 

relatively straightforward manner by increasing the number of 

replications in the experiment, we opted for this approach by 

increasing the number of replications from the typical number 

of 500 to the much larger number of 1000. 

Programming and execution 

For purposes of estimation n sample consisted of data on 

the current and lagged endogenous variables as well as the 

exogenous variables. The variables used as instruments in the 

first stage regression were chosen from current and /or one-

period lagged exogenous variables. All experiments were 

programmed in VAX Fortran, using the IMSL matrix inversion 

subroutines LINDS and LINRG and executed on Dalhousie 

University's VAX 8800 VMS. For each sample and for each 

estimator,we obtained point estimates of the following: 

i) structural coefficients of the two equations; 

ii) autoregressive parameters which include the non-zero 

elements of R (r,, and r22) and the three distinct elements 

a„, a,2 and CT22 of 2; 

iii) the asymptotic covariance matrix of the structural 

coefficients and the autoregressive parameters; 

iv) dynamic simulation forecasts for up to 5 post-sample 
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periods; and 

v) estimates of the asymptotic covariance matrix of the 

dynamic simulation forecasts 

As the number of replications was 1000, we obtained, for 

each estimator 1000 point estimates of each structural 

parameter and 1000 forecasts of each endogenous variable and 

for each of the five periods beyond the sample run. Treating 

the 1000 point estimates of the structural parameters and 

dynamic simulation of forecast errcrs as a random sample from 

the small sample distributions of the respective estimators, 

we computed the kernel density estimates of their 

distributions at 50 equally spaced points within 4 standard 

deviations from the respective means (which is 0 for 

post-sample predictions). The kernel function used for this 

purpose is the standard normal distribution. 

4.3 Descriptive rtatistics used in the design of experiments 

As pointed out in the previous section, each 

experiment, given T, resulted in 1000 point estimates of each 

structural parameter, 1000 dynamic simulation forecasts of 

each endogenous variable for each of the 5 post-sample 

periods, and 1000 estimates of their asymptotic covariance 

matrices. These estimates, which vary from replication to 

replication, constitute a random sample from their respective 
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finite sampling distributions. In order to compare the 

sampling distributions of the estimators we need to answer two 

basic questions: 

1. How close are the estimates of the parameters to their 

corresponding true values? 

2. How large/small is the spread of these estimates around 

their corresponding true values? 

It turns out that these questions can be answered with 

the aid of the statistical measures of central tendency and 

dispersion. In this section we introduce the basic statistics 

that are used to compare the relative performances of the six 

estimators investigated in this study. These are described 

separately for structural estimation and prediction. 

a) Summary statistics for structural estimation 

l.Mean bias(MB) 

Let a,, a2,. . . ,aN be the N (=1000) estimates from the 

sampling distribution of a certain estimator for a particular 

parameter whose true value is, say, a. Furthermore, let us 

denote the mean of these estimates by a. The mean bias of 

these estimates is measured by: 

MB = a - a 

The mean bias describes, on average, the extent by which 

the estimates differ from the true values. The smaller the 



63 

value of the mean bias the better the estimator. The mean 

bias is used to test the hypothesis that the bias = C. A major 

deficiency with the mean bias is that the mean of the sampling 

distribution might not exist. However, in the context of a 

Monte Carlo study, the existence of moments of the sampling 

distributions of estimators can be verified following the 

procedure suggested by Hendry (1984). Suppose we wish to 

verify the existence of the mean, the first moment about the 

origin. To this end sample means based on increasing sample 

sizes say 200, 400, 600 and 1000 are computed and compared. If 

the sample means converge, within limits of sampling 

variability, it is most probable that the moment of interest 

exists. If, on the other hand, the sample means are not well-

behaved in the sense that they fluctuate widely, it is most 

probable that the moment of interest does not exist. This 

procedure was used in this study to verify the existence of 

the first four moments of the sampling distributions of 

estimators and those of post-sample prediction errors. We 

verified the existence of moments by varying the number of 

replications. It turned out that the first four sample moments 

were not sensitive to the variations in the number of 

replications, thus confirming, with some relief, the existence 

of moments. Also the bias is an inadequate measure in the 

sense that an estimator with a smaller bias does not 

necessarily mean that it has a smaller variance. Since the 

mean-squared error measures the spread of the estimates around 
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the true value, we have used it to compare the dispersions of 

the estimators. 

Testing the significance of the bias 

In a Monte Carlo study the true value of the structural 

parameter, which is known, can be used to perform a large 

sample two tailed test of the null hypothesis HQ: Bias = 0 

against the alternative Hg: Bias f 0. This is done using the 

test statistic 

Z = MB/SE(a) 

where SE(a) = (s2/T)1/2, where the sample variance 

s2 = l/NL(a1- - a)
2. N is the number of estimates a, which is 

the same as the number of replications. The summation runs 

from i=l to i=N. Note Z is AN(0,1). 

The Mean Square Error(MSE) 

The MSE is given by 

MSE = l/NE(a, - a)2 

where the summation runs from i=l to N. 

The MSE, which measures dispersion about the true value 

of the parameter, is a better measure in the sense that it 

incorporates both bias and dispersion. It is easy to show that 

MSE = (MB)2 + Variance 
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If one estimator has a larger mean bias but a smaller 

variance than the other, it is clear that a trade off between 

these two characteristics is taken care of by the MSE. The 

smaller the values of the MSE the better the estimator. 

Frequency statistics for structural estimation 

The relative performances of the estimators in testing 

hypotheses about the structural coefficients are also 

assessed. This is achieved by computing the studentized t-

ratios based on the standard errors computed from the 

asymptotic covariance matrix of the estimator of structural 

coefficients. The studentized t-ratio is t = (ai-a)/SE(ai) 

> AN(0,1). We calculated the . umber of type I errors based 

on the z-statistics defined above in order to assess the 

reliability of estimators in testing hypotheses concerning 

structural parameters. These statistics are refered to as 

frequency statistics. At the 5 percent level of significance, 

the expected number of type I errors in 1000 replications is 

50. Using the binomial test the number of type I errors 

falling between 36 and 64 in 1000 replications was not 

considered to be significantly different from 50. Thus, if for 

a particular coefficient, and an estimator, the number of type 

I errors was less than 36, the estimator was deemed to have 

performed better than expected and if the number was greater 

than 64, it was deemed to have performed worse than expected. 
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b) Summary statistics for Prediction 

In a simulation study of predictions the true values of 

the endogenous variables vary from sample to sample. Let yM 

be the true value of an endogenous variable for the h-th post 

sample period in the i-th replication (i=l,. . . ,N) and denote 

an estimate of the dynamic simulation forecast by yhi. Then the 

Mean Prediction Bias (MPB) and the Mean Squared Error of 

Prediction (MSEP) are defined as follows: 

MPB = E(yh]. - yhl.)/N , i = 1,2...,N (=1000) 

The MPB measures on average the closeness of the forecasts to 

the true values of the endogenous variable. 

2. MSEP = E(yhl- - yhl-)
2/N ,i = 1,2,...,N (=1000) 

The MSEP measures the dispersion of the forecasts around the 

true values of the endogenous variable. 

Frequency statistics for predictions 

We also counted the number of type I errors that occured 

in the 1000 replications for each post sample period, and 

for each endogenous variable by estimators for each individual 

experiment. In a typical test of hypothesis concerning 

predictions the null hypothesis for the test is given by HQ: 

Yhi ~ Yh,- = ° anc^ t n e alternative hypothesis is given by Hfl: yhi 
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- yhj f 0. Under H0 (yhf-yhl)/SE(yhryhf) is asymptotically 

N(0,1). By dividing e<^h forecast error by the corresponding 

estimate of its asymptotic standard error (including the 

asymptotically negligible term) , we were able to determine the 

number of type I errors in the 1000 replications and compare 

with the expected number of type I errors at the 5 percent 

level of significance, which is 50. 

The procedure discussed above in the context of structural 

parameters is equally valid here. Accordingly, the number of 

type I errors lying between 36 and 64 were not considered to 

be significantly different from 50 at the 5 percent level of 

significance. 

Skewness and kurtosis statistics 

The asymmetry and peakedness of the sampling 

distributions of the estimators /dynamic simulation forecasts 

may be described with the help of the sample measures of 

skewness and kurtosis. These measures were computed from the 

1000 point estimates of the structural parameters and the 1000 

dynamic simulation forecasts for each of the six estimators. 

These estimators were compared by these statistics to shed 

some light on the shapes of the sampling distributions. 

Skewness 

The c o e f f i c i e n t of skewness (CS) i s given by 

CS = [l/NE(a i - a ) 3 ] / s 3 
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For symmetric distributions the coefficient of skewness 

is zero; for positively skewed distributions the coefficient 

of skewness is greater than zero and for negatively skewed 

distributions the coefficient of skewness is less than zero. 

Although there is no upper or lower limit for the coefficient 

of skewness, marked skewness is indicated when the absolute 

value of the coefficient is greater than 2. The skewness 

statistics were used in conjunction with the kernel density 

estimates in analyzing the empirical distributions of the 

estimators for both the structural parameters and forecast 

errors. 

Kurtosis 

The kurtosis measure describes the peakedness of the 

distributions, i.e., the degree to which the curve tends to be 

pointed or peaked. For this purpose we computed the 

coefficient of Kurtosis (CK) which is given by 

CK = [l/NE(ara)
4]/s4 

The standard for comparing the kurtosis measures among 

distributions is the standard normal distribution. For this 

distribution the kurtosis measure is 3. For flatter curves the 

value is less than 3 and for more peaked curves the value is 

greater than 3. The higher the value, the more peaked is the 

distribution. The kurtosis statistics were also used in 
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conjunction with the kernel density estimates in interpreting 

the empirical distributions of the estimators of structural 

parameters and forecast errors. 

c)Ranking statistics 

Since the ranking of the estimators may depend on the 

structural parameter or forecast period chosen, we need an 

indication of the strength of the overall ranking. This is 

achieved by using Kendall's coefficient of Concordance, W. The 

W is used to test the extent to which the rankings of the 

estimators agree or disagree. The null hypothesis of the test 

is that there is no association among the rankings of the 

estimators. This is tested against the alternative that there 

is an association. 

The ranking procedure followed is described here. To fix ideas 

this discussion focuses on ranking the estimators of a 

structural coefficient for a chosen statistic, say, the MSE 

though the same procedure is usually valid for ranking the 

forecasting performances of estimators. 

Let rjk denote the ranking of the jth structural 

coefficient for the k-th estimator (k=l,2,...,6). For each 

structural coefficient, the estimator which yields the 

smallest mean square error is assigned rank number 1. The next 

largest is assigned rank number 2, etc. The implication is 

that an estimator which performs consistently well on the 

basis of each structural coefficient or forecast is ranked 
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consistently higher and that which perfrrms worse is ranked 

consistently lower. This means that the sums of the ranks 

serve as indexes to compare the performances of the 

estimators. Accordingly, if there are n coefficients on which 

to base the ranking of the estimators or forecasts, and if HF1 

performed consistently the best, then the total sum of the 

ranks is n. If HL3 performed consistently the worst, the sum 

of the ranks corresponding to HL3 is 6n. If there is 

absolutely no association we would expect the rank sums to be 

approximately equal. In this case the ranking of the 

estimators is not consistent over all the structural 

parameters considered, i.e, estimators that are ranked first 

according to a given structural parameter have lower ranks 

according to other structural parameters. 

Kendall's coefficient of concordance, W, is given by 

W = S/ [{k2(L3-L) }/12] 

where 

k is the number of parameters considered 

L is the number of estimators to be ranked (6 in this case) 

S = E(Rj-R)2 where 

R, is the rank sums for the j'th estimator, where the 

summation used to obtain R, is over all the structural 

parameters considered.R = LR./L is the mean of the rank sums. 

Accordingly, S is the sums of squares of deviations of 

the rank sums from the mean of the rank sums. It turns out 
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that for structural estimation k = 8 (2 intercept parameters 

excluded) and for prediction k = 5. 

If there is perfect agreement or perfect association 

W=l. If there is perfect disagreement (i.e. complete absence 

of association) W=0. However, if there are more than 2 ranks 

to be considered, a situation of perfect disagreement does not 

arise. For example, if there is perfect disagreement between 

HF1 and HF2 and HF3 then HF2 and HF3 must agree. i.e., 

complete disagreement is impossible. 

A test of hypothesis concerning W consists of checking 

•vhether the observed W exceeds the critical value. The 

stronger the ranking the closer the value of W to +1 and the 

weaker the ranking the closer the value of W to 0. The 

critical values of W are given in Siegel (1956, Table R, 

p.286). When the observed sets of rankings are in close 

agreement, the computed value of W tends to be large. If there 

is perfect disagreement W tends to be small. Sufficiently 

large values of W lead us to reject the null hypotheses of no 

association. If L is greater or equal to 7, the test may be 

based on the X2 distribution. For a detailed description of 

this test see Siegel (1956,chapter 8). 

To examine the strength of the rankings we computed the 

Kendall's W and tested it for significance in rankings of the 

estimators by various criteria like the mean ̂ as, MSE, etc. 

in both structural estimation and prediction. 
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4.4 Computational Problems 

As noted above, the two-step estimators considered in 

this study are free from the convergence problems which are 

characteristic of the maximum likelihood and other iterative 

procedures. Also we did not encounter any estimates of the 

autoregressive coefficients which are greater than l in 

absolute value. However, one of the problems encountered was 

the occurence of negative elements on the diagonal of the 

asymptotic covariance matrices of the dynamic simulation 

forecasts. This problem arose as a result of the near-

singularity of the matrices to be inverted in order to obtain 

the covariance matrices. The problem tended to occur whenever 

the reciprocal of the condition number of one of the matrices 

to be inverted was less than 10"10. Consequently, such a sample 

was dropped and replaced with a new sample. However this 

problem resulted in the rejection of no more than 2 of the 

1000 samples in any given experiment. 

Table 4-1 shows the number of samples rejected by experiments. 

Table 4-1: Number of rejected samples by experiment 

T = 30 T = 60 

Experiment 1 1 2 

Experiment 2 2 1 

Experiment 3 2 0 

Experiment 4 2 2 
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4.5 Review of previous Monte Carlo studies 

A brief review of earlier Monte Carlo studies which 

focussed on the small sample properties of SÊ f's with 

autocorrelated errors is presented below. 

Hurd (1972) considered the small sample properties of 

OLS and 2SLS in a two equation static simultaneo' n equation 

autocorrelated model. He concluded that at low degrees of 

autocorrelation in the error structure, OLS is generally more 

efficient than 2SLS. The study also found that the single 

equation Prais-Winsten estimator which corrects for 

autocorrelation is still more efficient than OLS at fairly 

large degrees of autocorrelation by yielding smaller MSE's. 

However, this study is not relevant in the context of the 

present study because it did not deal with dynamic SEM's. 

Goldfeldt and Quandt (1972) also considered static SEM's. 

Table 4-2 provides a summary of the Monte Carlo studies 

that deal specifically with dynamic SEM's with vector 

autoregressive errors. 

Hendry and Harrison (1974) used the control variate 

approach and found that the two inconsistent estimators, OLS 

and 2SLS, could lead to very biased results when applied to 

dynamic SEM's with autocorrelated errors. This justifies the 

use of consistent estimators like the two-step estimators 

considered here. 

Hendry and Srba(1977) utilized the control variate 

approach to compare the small sample properties of the 



74 

following limited information estimators: autoregressive 

instrumental variable estimator (AIV), 2SLS, OLS and 

autoregressive least squares (ALS). The ranking of the 

estimators according to the mean squared error criterion was 

that AIV outperformed the other estimators at very la^e 

degrees of (positive or negative) autocorrelation and large 

sample sizes (T>55). 2SLS ranked first at modest degrees of 

autocorrelation |rj<0.5 and large sample sizes. OLS performed 

best at modest degrees of autocorrelation and small sample 

sizes whereas ALS performed best at large degrees of 

autocorrelation and small sample sizes. 

Wang and Fuller (1982) performed a Monte Carlo study to 

compare the small sample properties of two full information 

estimators and one limited information estimator. The two full 

information estimators considered were the autoregressive 

three stage least squares 1 (A3SLS1) and the autoregressive 

three stage least squares 2 (A3SLS2). The limited information 

estimator considered was the autoregressive two stage least 

squares (FA2SLS). Like Hatanaka's estimators, the three 

estimators are also residual adjusted but are not necessarily 

fully efficient.Using a two equation model (without 

identities) Wang and Fuller found no significant difference 

between A3SLS1 and A3SL32 and that FA2SLS performed quite 

well. 

Moazz^.mi and Buse (1986) performed a Monte Carlo study of 

a number of estimators of dynamic simultaneous equation models 
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with autocorrelated errors. In addition to the three limited 

information two-step estimators considered in this study,they 

also included the S2SLS, Fair's (1970) modification of S2SLS, 

the instrumental variable and iterative 2SLS estimators 

proposed by Dhrymes, Berner and Cummins (1974) and a modified 

version of Theil's (1958) estimator which has been modified to 

take into account of autocorrelation and a practically 

unrealistic estimator which uses known autocorrelation 

coefficients, which they dubbed "True Dhrymes". Using a three 

equation model and the antithetic variate technique, they 

found that, on the criterion of aggregate bias, Hatanaka's 

two-step estimators were inferior to the 2SLS, True Dhrymes 

and Theil's estimators with HL2 (which behaved abnormally in 

certain cases) coming dead last. The other two, HL1 and HL3 

were, however, superior to Fair's estimator. There were no 

substantial changes in the rankings when other criteria were 

used although when the median bias was used HF2 dominated all 

the other estimators. 

An important characteristic of all these studies was that 

they dealt exclusively with structural estimation. In 

addition, no results were reported on the relative post-sample 

prediction performances of estimators of dynamic SEM's with 

autocorrelated errors. Furthermore, although some results of 

Monte Carlo studies were reported regarding the reliability of 

the asymptotic standard errors in dynamic SEM's satisfying the 

standard assumptions, (e.g. Basmann et. al. (1974), 
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Maddala(1974)), this issue has not been explored in the case 

of dynamic SEM's with autocorrelated errors. In this study we 

address these questions, viz, structural parameter estimation, 

reliability of asymptotic standard errors in hypothesis 

testing and forecasting performance. 



TABLE 4-2:SUMMARY OF MONTE CARLO STUDIES OF ESTIMATORS OF DYNAMIC SEM's WITH AUTOCORRELATED ERRORS 

Hen 
1 .No. of equations 
(lagged endogenous) 

2.Sample size 

3. Estimation techni
ques compared 

4. Prediction 

dry and Harrison{1974) Hendry and Srba(1977) 
2 2 
1 1 

20 to 80 

OLS.2SLS 

No 

20,40,60,80 

AIV.ALS.OLS.TSLS 

No 

Wang and Fuller(1982) 
2 
2 

30 ,60 

FA2SLS,FA3SLS,A3SLS 

No 

Moazzami and Buee(1986) 
3 
2 

30,60 

Includes HL1,HL2,HL3 

No 

5.Main conclusions Significant bias of OLS and Autocor Sample Best A3SLS1 and A3SLS2 not 
2SLS -relation size estimator significantly different; 

High large AIV FA2SLS performed well 
Low large 2SLS Results consistent with 
Low small OLS asymptotic theory 
Low large ALS 

No significant difference 
between HL1 and HL3 with 
HL2 performing consistently 
worse. However some other 
estimators considered 
performed better than HL1, 
HL2 and HL3. 

OLS - Ordinary Least Squares 
2SLS - 2 Stage Least Squares 
AIV - Autoregressive Instrumental Variable Estimator 
ALS - Autoregressive Least Squares Estimator 
A3SLS1 - Autoregressive three stage least squares 1(For a description see Wang and Fuller(1982) 
A3SLS2 - Autoregressive three stage least squares 2(For a description see Wang and Fuller(1982) 
FA2SLS - Autoregressive two stage least squares(For a description see Wang and Fuller(1982) 



CHAPTER 5: SUBSTANTIVE RESULTS 

In this chapter we report the results of the major 

experiments performed. As stated earlier, four major 

experiments, differing in the coefficients of the lagged 

endogenous variables and/or autoregressive coefficients, were 

performed. Each major experiment consisted of two 

sub-experiments, denoted by A (sample size 30) and B (sample 

size 60) . Accordingly, we conducted 8 experiments. These 

experiments allow us to investigate the effect of different 

magnitudes of the coefficients of the lagged endogenous 

variables, autoregressive coefficients and the sample size. 

Model 1 is characterized by high autocorrelation coefficients 

in that the autoregressive coefficient in both equations is 

0.9. In model 2 the coefficient of the lagged endogenous 

variable in the first equation is reduced from 0.8 to 0.2 and 

the autoregressive coefficient of the second equation is 

reduced from 0.9 to 0.3. This is designed to capture the 

combined effect of changing the coefficient of the lagged 

endogenoxis variable and the autoregressive coefficient. Model 

3 is characterized by significant differences in the 

autocorrelation coefficients of the two equations (0.9 for the 

first equation and -0.6 for the second equation). This allows 

us to investigate the effect of differences in the 

autocorrelation coefficients on the small sample properties of 

78 
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estimators. In model 4, the errors in the second equation are 

specified to be serially independent. 

It must be mentioned that, in reporting the mean biases, 

the MSE and other statistics, the intercept parameter, i.e., 

coefficients numbered 3 and 8, were excluded. This is because 

the estimate of the intercept parameter is not directly 

relevant in empirical work. In the next sections we report the 

results of the experiments conducted under the broad headings 

of structural estimation, prediction, ranking statistics and 

density estimates. Hereafter we use the "model" and 

"experiment" interchangeably. For example, we may refer to the 

results of experiment 1 as the results of model 1, etc. 

Furthermore, we refer to the coefficients of the variables in 

the two equations as the structural coefficients. Also the 

non-zero elements of R, i.e, r1t and r22 and the distinct 

elements an, a12 and cx22 of the error covariance matrix 2 are 

referred to as the autoregressive coefficients. In this case 

the structural parameters include the structural coefficients 

and the non-zero coefficients of R and the distinct elements 

of 2. 

5.1 Structural estimation 

Bias 

Tables 5.1-1 and 5.1-2 show the mean biases of the 

structural coefficients and the autoregressive parameters, 

respectively for all the experiments. 



TABLE 5.1-1 :MEAN BIASES OF COEFFICIENT PARAMETERS* 
T - 3 0 

Coeff. 

1 
2 
4 
5 
6 
7 

9 
10 

KF1 

- 0 . 0 0 5 3 
0 .0064 
0 .0094 

- 0 . 0 0 5 1 
0 .0237 

- 0 . 0 0 8 5 

- 0 . 0 1 0 1 
- 0 . 0 2 0 9 

HF2 

0.0105 
0.0131 
0 .0107 
0 .0616 

- 0 . 0 0 3 3 
0 .0097 

0.0056 
0 .0696 

HF3 

-0 .0186 
-0 .0494 
-0 .0453 
-0 .1798 
0.0001 

-0 .0079 

0.0002 
-0 .0743 

HL1 

0 .0056 
0.0207 
0 .0075 
0 .0772 
0.0471 

- 0 . 0 3 0 8 

-0 .0201 
- 0 . 1 2 5 9 

HL2 

0.0241 
0 .0342 
0 .0315 
0 .1064 

- 0 . 0 0 0 7 
0 .0043 

0 .0038 
0 .0167 

HL3 

- 0 . 0 2 5 2 
- 0 . 0 4 6 3 
-0 .0424 
-0 .1857 
0 .0078 

-0 .0175 

-0 .0057 
-0 .1917 

1 
2 
4 
5 
6 
7 
9 

10 

- 0 . 0 2 2 6 
- 0 . 0 4 5 6 
- 0 . 0 1 5 7 

- 0 . 2 9 1 
0.0121 
0 .0106 

- 0 . 0 0 4 1 
0 .0419 

0 .0189 
- 0 . 0 4 1 3 
0 .0126 

- 0 . 2 1 3 7 
-0 .0241 

0 .0363 
0.0225 

0.21 

-0 .032 
-0 .0433 
-0 .0394 
-0 .1243 
-0 .0267 

0.0362 

0.0188 
0.3184 

- 0 . 0 0 9 6 
- 0 . 0 3 6 6 
-0 .0124 
-0 .2316 

0.0321 
- 0 . 0 0 5 9 
-0 .0075 
-0 .0665 

0.0184 
- 0 . 0 4 1 4 
0 .0122 

- 0 . 3 3 3 7 
- 0 . 0 1 6 3 
0 .0227 
0 .0165 
0 .1301 

-0 .0334 
- 0 . 0 3 3 8 
- 0 . 0 3 7 7 
-0 .1021 
- 0 . 0 1 8 6 

0 .0256 
0.0164 
0.2034 

1 
2 
4 
5 
6 
7 
9 

10 

- 0 . 0 0 6 1 
0 .0178 
0.0001 
0 .0859 
0 .0116 

- 0 . 0 0 4 1 
- 0 . 0 0 8 1 

- 0 . 0 3 7 

0 .0103 
0.0267 
0.0109 
0.1342 

-J .0577 
0.0171 

0.031 
0.3185 

0.0061 
0.0213 
0.0062 

0.107 
-0 .0386 
-0 .0395 

0.0063 
0.1294 

- 0 . 0 0 1 8 
0.0167 

-0 .0005 
0.0772 
0.0248 

- 0 . 0 1 1 8 
- 0 . 0 1 6 

- 0 . 1 0 1 9 

0 .0084 
0 .0229 
0 .0107 
0 .0963 

- 0 . 0 3 3 7 
0 .0146 
0 .0286 
0 .3535 

0 .0056 
0 .0186 
0 .0069 
0 .0777 

-0 .0424 
- 0 . 0 3 8 2 

0.0037 
0.1601 

1 
2 
4 
5 
6 
7 

9 
10 

- 0 . 0 0 4 8 
0 .0171 
0.0031 
0 .0687 
0 .0054 
0 .0186 

0 .0036 
0 .0439 

0.0036 
0.0215 
0.0062 
0.1044 

-0 .0304 
0.0373 

0.0252 
0.2307 

0.0003 
0.0173 
0.0005 

0.076 
-0 .0246 
0.0172 

0.0168 
0.1642 

0.0018 
0.0158 
0.0041 
0.0661 

0.021 
0.0086 

-0 .0028 
-0 .0483 

0.0051 
0 .0173 
0 .0075 
0 .0712 
- 0 . 0 3 8 
0 .0376 

0.027 
0 .2567 

0 .0019 
0 .0118 
0 .0027 
0 .0462 

-0 .0301 
0.01S 

0.0171 
0.1779 

HF1 HF2 

0 .0054 0 .0015 
0 .0009 0 .0055 
0.0001 0 .0022 
0 .0006 0.029 
0.0114 - 0 . 0 0 1 1 
0 .0042 0 .0062 
0 .0058 0 .0037 
-0 .021 0 .0305 

0 .0036 0 .0003 
0.0038 0.0071 

0 .002 0.0001 
0.0217 0 .0546 
0 .0062 - 0 . 0 1 1 
0.0034 0 .0146 
0 .0029 0.0084 
- 0 . 0 3 7 0 .0369 

0 .0042 0 .0033 
0 .0079 0 .0122 
0 .0007 0.0041 
0.0494 0 .0702 
0 .0049 - 0 . 0 3 3 4 
0 .0092 0.0133 
0 .0027 0 .0185 
0.0474 0.1881 

0 .0043 -0 .0013 
0 .0069 0 .0087 
0.0001 0 .0009 
0.0373 0 .0487 
0 .0022 -0 .0127 
0 .0152 0 .0202 
0.0049 0.0107 

0.046 0.1024 

T-60 
HF3 HL1 

-0.0009 0.0001 
-0.0022 0.0072 
-0.0024 0.0005 
-0.0132 0.0319 
0.0024 0.0223 
-0.0008 -0.0151 
0.0013 -0.0109 
-0.0084 -0.0717 

-0.0018 0.0003 
-0.0058 0.0091 
-0.0063 0.003 
-0.0304 0.0474 
-0.011 0.0119 
0.0141 0.0005 
0.0078 -0.003 
0.0296 -0.0346 

0.0006 -0.0021 
0.0091 0.0066 
0.0017 -0.001 
0.0582 0.0333 
-0.0259 -0.0012 
-0.0035 0.0081 
0.0124 0.0004 
0.1357 0.0228 

-0.0024 -0.0007 
0.0059 0.0061 

-0 .0016 0.0008 
0.0324 0.0277 

-0 .0118 0.0024 
0.C12 0.0149 

0.0 38 0.0038 
0.0851 0.0156 

HL2 HL3 

- 0 . 0 0 2 - 0 .0043 
0.0061 - 0 . 0 0 2 6 

- 0 . 0 0 1 6 -0 .0056 
0 .0283 - 0 . 0 1 4 9 
0 .0002 0.0051 

0 .002 -0 .0056 
0.C003 -0 .0021 
- 0 . 0 1 2 -0 .0631 

- 0 . 0 0 0 8 -0 .003 
0 .0088 -0 .0045 
0.0019 -0 .0048 
0 .0455 - 0 . 0 4 0 9 

- 0 . 0 1 2 2 - 0 . 0 1 1 4 
0.0161 0.0145 
0 .0089 0.0078 
0 .0508 0.0457 

0.0021 0.0006 
0.0095 0.007 
0 .0037 0.0018 
0.0421 0.0345 

- 0 . 0 3 9 7 -0 .0293 
0.0135 - 0 . 0 0 3 8 
0.0181 0.0106 

0.208 0.1408 

0.0005 - 0 . 0 0 0 8 
0.0066 0.0031 
0.0021 0.0001 
0.0294 0.0142 

-0 .0201 -0 .0181 
0.024 0.0139 

0.0144 0.0166 
0.1285 0.1088 



TABLE 5.1 -2-JWEAN BIASES OF THE AUTOREGRESSIVE COEFFICIENTS 

T = 30 
Mot! 
1 

ei Coeff. 
11 
12 
13 
14 
15 

HF1 
-0 .1315 
-0 .1335 
-0 .0306 
-0 .258S 
-0 .4305 

HF2 
-0 .1328 
-0 .1222 
3.7787 
0.2453 

-0 .2251 

HF3 
-0 .1438 
-0 .1396 
4.06S9 

-0 .0954 
4 .9185 

HL1 
-0 .1243 
-0 .1325 
-0 .2132 
-0 .3933 
-0 .4746 

HL2 
- 0 . 1 2 2 

-0 .1142 
24.1411 
-0 .3406 
-0 .3132 

11 -0 .0299 -0 .0127 -0 .0549 
12 -0.0789 -0.0645 -0.0809 
13 0.3131 0.4379 0.1475 
14 -0 .2065 -0 .2049 -0 .2074 
15 -0 .4544 -0 .3561 -0 .3193 

-0 .0813 - 0 . 0 6 2 
-0 .0818 -0 .0638 

0.3843 0.6112 
-0 .3645 -0 .3476 
-0 .5433 -0 .4213 

11 -0.0879 -0.0952 -0.0969 
12 0.1724 0.1701 0.191 
13 - 0 .196 -0 .1905 -0 .1683 
14 -0 .2866 -0 .2297 -0 .2536 
15 - 0 . 2 0 3 9 0 .0294 1.2138 

-0 .1155 -0 .1188 
0.1895 0.1941 
-0 .224 -0 .2191 

-0 .4082 -0 .3486 
-0 .2683 0.0112 

11 -0 .0844 -0 .0926 -0 .0965 
12 0.0305 0.0367 0.0451 
13 -0 .1865 -0 .1885 -0 .1561 
14 - 0 . 2 5 7 -0 .2323 -0 .2468 
15 -0.3947 -0.3028 -0.159 

-0 .1157 0 .1188 
0.0413 0.0566 

-0 .2226 -0 .2205 
-0 383 -0 .3395 

-0 .4687 -0 .3191 

HL3 HF1 HF2 
-0 .1292 -0 .0531 -0 .0534 
-0 .1319 -0 .0307 -0 .057 
3.7886 -0 .098 -0 .083 

-0 .4357 -0 .1311 -0 .1033 
15.4902 -0 .2559 -0 .1986 

-0 .1103 -0 ,0356 -0 .0391 
-0 .0712 -0 .023 -0 .0194 

0.2012 -0 .0666 -0 .085 
-0 .3471 -0 .125 -0 .1105 

0.4046 -0 .2389 -0 .1861 

-0 .121 -0 .0377 - 0 . 0 4 1 4 
0.2157 0.0721 0.0723 
-0.2006 -0.0986 -0.0936 
-0.3728 -0.1168 -0.0829 

0.843 0.1053 0.012 

-0 .1214 -0 .034 - 0 .0373 
0.0648 0.0097 0.0114 

-0 .1972 -0 .0957 -0 .0953 
-0 .3518 -0 .1145 -0 .105 
-0 .2027 -0 .1951 -0 .1617 

T = 60 
HF3 HL1 HL2 HL3 

-0 .0581 -0 .0543 -0 .0539 -0 .0568 
-0 .0617 -0 .0632 -0 .0574 -0 .0614 
-0 .0034 -0 .1133 -0 .1076 -0 .0219 
-0 .0831 -0 .2022 -0 .1781 -0 .1844 
0.1246 -0 .3218 -0 .248 0.0867 

-0 .0421 -0 .063 -0 .0637 -0 .0655 
-0 ,0211 -0 .0241 -0 .0178 -0 .0188 

-0 .063 -0 .1115 -0 .1092 -0 .0881 
-0 .1092 -0 .2014 -0 .1771 -0 .1765 

-0 .176 -0 .2837 -0 .211 -0 .2075 

-0 .0407 -0 .0573 -0 .0585 -0 .0588 
0.0866 0.0875 0.0837 0.1077 

-0 .0828 -0 .1176 -0 .1153 -0 .1072 
-0 .0857 -0 .1982 -0 .1667 -0 .1771 
0.0514 -0 .1452 0.012 0.0317 

-0 .0394 -0 .0571 -0 .0582 -0 .0589 
0.0183 0.0169 0.0253 0 .0324 

-0 .0859 -0 .1178 -0 .1165 -0 .1107 
-0 .1053 -0 .1932 -0 .1733 -0 .1754 
-0 .1256 -0 .2404 -0 .1714 -0 .1502 
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We note that both positive and negative biases were 

observed. In addition, the null hypothesis that the bias = 0 

was rejected at the 5 percent level for all the structural 

parameters in the four models and for all the six estimators. 

The biases generally decreased as the sample size was 

increased from 30 to 60 observations implying that the 

estimators were asymptotically unbiased. 

The salient points regarding the biases encountered in 

individual experiments are reported below. 

Experiment 1: 

No estimator completely dominated the others according to 

the bias criterion though HF2 and HF3 and their limited 

information counterparts had generally larger biases than HF1 

and its limited information counterpart. Furthermore, the 

limited information estimators had generally larger biases 

than their full-information analogues for T = 30 but this 

observation did not consistently hold for T = 60. There are 

cases when the biases were as much as 40 percent of the true 

values. All the six estimators tended to perform equally well 

when T = 60. 

Experiment 2: 

Generally the observations made on the biases encountered 

in experiment 1 were also valid for this experiment. No 

estimator completely dominated the others although, in 
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general, the full information estimators had larger biases 

than the limited information estimators for the coefficients 

of the first equation and the reverse was true for the 

coefficients of the second equation. The biases generally 

decreased as the sample size was increased from 30 to 60. 

Experiment 3: 

The ranking of the estimators according to the biases 

were fairly consistent for this experiment and for both sample 

sizes. IIF2 and HL2 were relatively more biased than the other 

estimators for a number of coefficients for T = 30 and T = 60. 

Also the full information estimators had generally larger 

biases than their limited information counterparts. The biases 

decreased considerably as the sample size was increased. 

Experiment 4: 

Again HF2 and HL2 were generally the most biased but the 

results varied substantially among the coefficients. The 

biases generally decreased as the sample size was increased 

from 30 to 60. The full information estimators had generally 

smaller biases than their limited-information counterparts. 
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Comparison of the biases of the structural coefficients across 

experiments 

In models 2, 3 and 4 where there are differences in the 

autoregressive coefficients of the two equations, the full 

information estimators tended to have relatively larger biases 

for the equation with high autocorrelation and the reverse was 

true for the equation with low autocorrelation. However, the 

differences in the biases became less apparent when T=60. 

There was, however, no noticeable pattern in the magnitude of 

the biases across experiments except that the absolute values 

of the biases were generally greater for experiment 2 than the 

corresponding values for experiment 1. This suggests that 

changing the coefficient of the lagged endogenous variable and 

the autoregressive coefficient might have significant effects 

on the biases. Furthermore, the ordering of estimators 

according to the biases was most consistent for model 3. 

Mean Biases of the autoregressive coefficients 

The biases of all the autoregressive parameters were 

significant at the 5 percent level. Furthermore, the biases 

encountered were generally negative in all the four 

experiments. In every experiment the results were mixed in the 

sense that no estimator completely dominated the others 

according to this criterion and this was true of all the 

autoregressive coefficients. For experiments 3 and 4 the 

biases of r.. and r„ were opposite in sign. However, these 
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biases tended to decrease considerably for all models as the 

sample size was increased. The absolute value of the biases 

were generally the highest for model 1 for which the 

autocorrelation coefficient in both equations was 0.9. In some 

cases the biases were as much as twice the true values of the 

corresponding elements of R and 2. The absolute values of the 

biases of the elements of 2 were higher than those of R for 

every estimator and in all the experiments. 

Mean Square Errors 

Tables 5.1-3 and 5.1-4 give the MSE's of the structural 

coefficients and the autoregressive parameters, respectively. 

As the entries indicate, there were no substantial differences 

among the six estimators as the MSE's of parameters were close 

to each other. Also the MSE's of estimators generally 

decreased as the sample size was increased; this was true for 

all models. 

The main observation regarding the MSE's encountered in 

the individual experiments are reported below: 

Experiment 1: 

Although there were no large differences in the 

magnitudes of the MSE's of the structural parameters, the 

limited information estimators had generally larger MSE's than 

the full-information estimators but this result was not true 

of all the 8 structural coefficients considered. This 



TABLE 5.1-3:MEAN SQUARE ERRORS OF COEFFICIENT PARAMETERS 

Model Coeff. 
1 1 

2 
4 
5 
6 
7 
9 

10 

2 1 
2 
4 
5 
6 
7 
9 

10 

HF1 
0 .0062 
0 .0208 
0.0124 
0 .4622 
0.0601 
0.0384 
0.0191 
2 .0807 

0.0177 
0.038 

0.0174 
1.0089 
0 .0102 
0 .0093 
0 .0053 
0 .5325 

HF2 
0.0085 
0.0233 
0.0163 
0.4951 
0.0307 
0.0303 
0.0126 
1.5241 

0.0143 
0.0401 
0.0172 
1.0566 
0.0121 
0.0113 
0.0063 
0.6397 

T = 30 
HF3 

0.0066 
0 .0262 
0 .0132 
0 .6413 
0 .0362 
0 .0538 
0.0094 
1.1662 

0.0121 
0.034 
0 .017 

0 .8549 
0.0121 
0 .0116 
0.0061 
0 .7092 

HL1 
0.0061 
0 .0253 
0 .0115 
0 .5969 
0.0644 

0 .047 
0.0219 
2 .5147 

0.0164 
0.0461 
0 .0172 
1.2279 

0.011 
0 .0113 
0 .0059 

0.666 

HL2 
0 .008 

0 .0288 
0 .0137 
0 .6611 
0 .0338 
0 .0378 
0 .0163 
2 .0465 

0 .0142 
0 .0498 
0 .0173 
1.3395 
0 .0123 
0 .0129 

0 .007 
0 .7505 

HL3 
0 .0066 
0.0299 
0 .0132 
0 .8189 
0 .0358 
0.0591 
0 .0103 
1.4613 

0.0123 
0.0424 
0 .0173 
1.0895 
0.0123 

0.013 
0.0069 
0.7911 

1 0 .0157 0.0258 
2 0.0153 0.0264 
4 0.0149 0.0224 
5 0.2496 0.5406 
6 0.0123 0.0216 
7 0.0129 0.0152 
9 0.0061 0.0104 

10 0.4215 0.7369 

0.016 0.0169 
0.0175 0.0165 
0.0152 0.019 
1.2699 0 .3429 
0.0157 0.0144 
0 .0109 0.0111 
0.0071 0 .007 
0.5516 0 .5266 

0 .0284 0.0161 
0 .0275 0 .0202 
0 .0264 0.0181 
0 .6329 1.4681 
0 .0249 0.0182 
0 .0139 0 .0117 
0 .0106 0 .0082 
0 .8735 0.673 

1 0.0145 0.0118 
2 0.0153 0.019 
4 0.0163 0.0138 
5 0.2543 0.3607 
6 0.0118 0.0166 
7 0 .012 0.0152 
9 0.0061 0.0088 

10 0.6168 0.8241 

0.0118 
0.0163 
0.0168 
0.5564 
0.0149 
0.0094 

o.ooes 
0.7919 

0.015 
0 .0175 

0.018 
0.3621 
0.0138 
0.0112 
0 .0069 
0 .7559 

0 .0137 
0.0211 
0 .0157 
0.4481 
0 .0187 

0.014 
0 .0092 
0 .9597 

0.0123 
0.0188 
0.0179 
0.7086 
0.0174 
0.0123 
0.0085 
0.9387 

HF1 
0 .003 

0 .0173 
0 .0066 
0.3531 
0 .0603 
0 .0449 
0 .0169 
1.5741 

0 .0183 
0 .0565 
0 .0147 
1.5091 
0 .0047 
0.0051 
0 .0025 
0 .2619 

0 .0186 
0 .0155 
0 .0152 
0 .1889 
0.0058 
0 .0076 
0 .0034 
0 .2117 

0.01S2 
0.0135 
0 .0159 
0 .1572 
0 .0065 
0 .0102 
0.0034 

0.344 

HF2 
0.0066 
0.0219 
0.0128 
0.4198 
0.0313 
0.0368 
0.0097 
1.0778 

0.0126 
0.0617 

0.009 
1.6436 
0.0056 
0.0r63 
0.0029 
0.3058 

0.0469 
0.027 

0.0265 
0.6382 
0.0104 

0.008 
0.0068 

0.365 

0.0138 
0.0156 
0.0085 
0.3033 
0.0079 
0.0127 
0.0051 
0.4309 

T = 60 
HF3 

0.0035 
0 .0237 
0.0081 
0 .6847 
0 .0416 
0 .0637 
0 .0099 
0 .8683 

0.0105 
0.0546 

0.014 
1.2749 
0.006 

0.0066 
0.0028 
0.3733 

0.0213 
0 .0147 
0 .0145 
1.7817 
0.0072 
0.0034 
0.0031 
0.2353 

0.0123 
0.017 
0.016 

0 .5699 
0 .0072 
0.0049 
0 .0029 
0 .4115 

HL1 
0.0029 
0.0211 

0.006 
0 .4982 
0 .0653 
0.0558 
0 .0195 
1.8691 

0.017 
0 .0659 
0.0131 

1.811 
0 .0048 
0.0058 
0.0028 
0.3196 

0.0198 
0.0166 
0.0184 
0 .2542 
0.0062 
0 .0043 

0.003 
0.2323 

0.0166 
0.0162 
0.0166 
0.2566 
0.0059 
0.0053 
0.0029 
0.3431 

HL2 
0.0062 
0.0268 
0.0096 
0.6042 
0.0333 
0.0466 
0.0117 
1.2662 

0.0115 
0.0731 
0 .0085 
2 .0284 
0 .0053 
0 .0064 

0 .003 
0 .338 

0 .0489 
0 .0289 
0 .0288 
0 .7318 
0 .0109 
0 .0046 
0 .0046 
0 .3659 

0.0144 
0.0191 
0 .0087 
0.3884 
0 .0075 
0.0061 
0 .0036 
0.4031 

HL3 
0.0034 
0.0268 
0.0084 
0.9099 
0.0422 
0.0711 
0.0113 
1.0266 

0.0104 
0.0618 
0.0137 
1.5349 
0.0055 
0.0065 
0.0031 
0.3614 

0.0198 
0.0169 
0.0155 
2.0473 
0.0084 
0.0039 
0.0036 
0.2855 

0.0123 
0.0199 

0.016 
0.6682 
0.0075 
0.0058 
0.0035 
0.4112 

I 



TABLE 5.1-4MEAN SQUARE ERRORS OFTHE AUTOREGRESSIVE PARAMETERS 
T = 30 

Coeff. 
11 

12 
13 
14 
15 

HF1 
0 .085 

0 .1425 
0 .1442 
0 .3153 
0 .9805 

HF2 
0.0891 
0 .0806 
0 .1619 
0 .2962 
4 .6112 

HF3 
0 .0862 
0 .0779 
0 .1654 
0 .3368 
1.2906 

HL1 
0 .0928 
0 .1629 
0 .1508 
0 .4276 
1.6302 

HL2 
0 .0964 

0 .112 
0 .1656 
C.4041 

14 .1923 

HL3 
0.0956 
0 .0788 
0 .1718 
0 .4323 
1.9064 

11 
12 
13 
14 
15 

0.0757 
0.0368 
2.0G50 
0.2235 
0.5946 

0.0778 
0.0367 
4.2258 
0.2311 
0.6022 

0.0622 
0.0324 
0.S347 
0.2332 
0.6184 

0.1057 
0.0521 
5.1463 
0.2563 

0.612 

0.1106 
C.0523 

12.7825 
0.2654 
0.5986 

0.0953 
0.048 

2.0176 
0.2603 

0.594 

11 
12 
13 
14 
15 

0 .0548 
0 .0243 
0.6674 

0.238 
0.6214 

0 .0587 
0 .0268 
4 .0513 

0 .282 
0 .794 

0 .049 
0 .0285 
0 .7508 
0 .2441 

0 .608 

0 .0746 
0.0356 
0 .7977 
0 .2778 
0 .6423 

0 .0815 
0 .0399 
7 .2406 
0 .3004 
0 .7825 

0 .0809 
0.0338 

0.734 
0 .2953 
0.6291 

11 
12 
13 
14 
15 

0 .0459 
0.0335 
0.4575 
0.2202 
0 .5886 

0 .0432 
0.0341 
0 .7923 

0.215 
0 .6258 

0 .0382 
0.0284 
0 .4238 
0 .2125 
0 .6147 

0.0721 
0.0497 
0 .6332 
0.2642 
0 .6159 

0 .0709 
0 .0506 
1.2419 
0.2611 
0 .6232 

0.071 
0 .0472 
0 .4717 
0.2566 
0.6184 

HF1 HF2 
0 .0467 0.05 
0 .0749 0.0401 
0 .0997 0 .1096 
0 .1876 0 .1775 
0 .3794 1.3348 

0 .0886 0.1011 
0 .0137 0 .0138 
4 .2507 9 .7964 
0 .1381 0 .1437 
0 .2664 0 .2706 

0 .0447 0 .0756 
0 .0102 0.01C9 
0 .7119 13 .1233 
0 .1286 0 .2275 
0 .2749 0 .3617 

0 .0348 0 . 0 3 / 8 
0 .0147 0 .0152 
0 .4577 0.9256 
0.1321 0 .1272 
0 .2879 0 .3078 

T = 60 
HF3 HL1 

0.0466 0 .0469 
0 .0396 0 .0799 
0 .1153 0.1031 
0 .2642 0 .2783 
0 .5523 0 .5388 

0.0633 0.1036 
0.0125 0.0219 

2.165 7.5276 
0.1406 0.1169 
0.2833 0.2726 

0.025 0.0531 
0 .0163 0 .0146 
1.5529 0 .9137 
0 .1186 0 .1146 
0 .2763 0 .2778 

0 .0224 0 .0465 
0 .0132 0 .0226 
0 .6889 0 .6244 
0 .1115 0 .1085 
0 .2852 0 .2767 

HL2 HL3 
0.0491 0 .0482 
0 .0516 0 .0373 
0.1168 0 .1343 
0.2467 0 .3483 
3.0588 0.7 ' 9 2 

0.1161 0 .0768 
0.0221 0 .0208 
17.894 3 .9515 

0 .132 0.1202 
0.2686 0.2678 

0.097 0.0395 
0.0158 0.0147 

18.9006 1.5542 
0.1514 0 .1222 
0.3115 0.2911 

0 .0535 0.0351 
0.0231 0.0228 
1.7162 0.7371 
0.1169 0.1046 
0 .2828 0 .2828 

I 
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observation remained true as the sample size was increased 

from 30 to 60. The results varied from parameter to parameter 

and no estimator completely dominated the others on the basis 

of MSE. 

Experiment ?: 

The limited information estimators generally had largai 

MSE's than their full information analogues for both sample 

sizes though there was no consistency over all the structural 

parameters. The MSE's of the coefficients of the second 

equation were generally smaller than the MSE's of the 

coefficients of the first equation- In all cases the MSE's 

decreased as the sample size was increased. 

Experiment 3: 

This experiment produced fairly consistent rankings of 

the estimators by MSE's for both T = 30 and T = 60. HFk anJ 

HL2 performed poorly especially with sample size 30. Also the 

MSE's decreased as the sample size was increased. The limited 

information estimators performed worse than their full 

information counterparts for both sample sizes. The 

differences in the MSE's were not very apparent when sample 

size 60 was used. 

I 
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Experiment 4: 

In this experiment the errors in the second equation were 

specified to be serially independent. The limited information 

estimators generally performed worse than their full-

information counterparts for T = 30 but not for T - 60. The 

MSE's decreased as the sample size was increased from 30 to 

60. There was no consistent ranking of the estimators for all 

structural coefficients. 

Comparison of the MSE's across experiments 

The MSE's of the coefficients of the second equation were 

generally smaller for models 2, 3 and 4 than for model 1. This 

suggests that smaller absolute values of the autocorrelation 

coefficient in 'he equations might reduce the MSE. The MSE's 

generally decreased as the sample size was increased from 30 

to 60. 

MSE of the autoregressive parameters 

Like the biases of the autoregressive coefficients the 

results for the MSE were rather mixed. In all the 4 models 

there was a systematic decrease in MSE as the sample size was 

increased from 30 to 60. The results of individual experiments 

are discussed below. 

i 
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Experiment 1: 

The limited information estimators generally performed 

worse than their full information counterparts for both sample 

sizes and that no estimator completely dominated the others 

for all the autoregressive coefficients. 

Experiment 2: 

The full information estimators generally performed 

better than the limited information estimators. However, HF2 

and HL2 had generally larger MSE's than the other estimators. 

The differences in MSE were less apparent for T = 60. 

Experiment 3: 

Generally the limited information estimators performed 

worse than their full information counterparts. HF2 and HL2 

performed consistently worse than the other estimators for 

both sample sizes. Furthermore, for HF2 and HL2, the MSE of 

some autoregressive coefficients tended to increase as the 

sample size was increased from 30 to 60. 

Experiment 4: 

The observations were generally the same as for 

experiment 3. The limited information estimators performed 

worse than their full information counterparts and the MSE's 

decreased as the sample size was increased from 30 to 60. HF2 

and HL2 had generally the largest MSE's and in some cases 

w 
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their MSE's increased as the sample size was increased. 

Comparison of the MSE's of the autoregressive coefficients 

The MSE's were extremely high for the parameters in model 

1 where the autoregressive coefficients for both equations 

were high. The MSE's of r,, and r22 were generally smaller for 

model 2 than for model 1 but the KSE's of the distinct 

elements of 2 were larger for model 2 than for model 1. The 

MSE's of r^ and r22 were lower in models 3 and 4 than in model 

1. Generally the MSE's of the distinct elements of 2 did not 

exhibit any noticeable pattern across experiments. Except for 

HF2 and EL2 in some cases, the MSE's generally decreased as 

the sample size was increased from 30 to 60. These results 

suggest that reducing the absolute value of the 

autocorrelation coefficient also reduces the MSE's of the 

estimates of these coefficients. 

Hypothesis testing 

To assess the usefulness of the asymptotic standard 

errors in hypothesis testing, we computed the number of type 

I errors for each coefficient parameter and for each estimator 

in the 1000 replications. Based on the binomial test at the 5 

percent level of significance, we expect between 36 and 64 

type I errors in 1000 replications. However, in all the 

experiments and for all the six estimators, the number of type 

I errors observed for any given coefficient parameter is zero 

n i n 
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and hence not reported in tabular form. The failure to find 

any rejections of the null hypothesis is very surprising as 

it indicates that the standard normal distribution which is 

used to set up the critical region { Za j > 1.96 is perhaps 

thicker in tails than the sampling distributions of 

estimators. In fact, the quality of a cest of hypothesis is 

measured by its power, and in the present context, the power 

of the test could be increased by adjusting the critical 

region. The adjustment that should be made here is to choose 

a smaller critical value than J Za j = 1.96, which, in turn, 

might increase the power of the test. 

The experience with the standard linear model suggests 

that, in principle, adjustments to the asymptotically valid 

test statistics could be made so that it has the correct size 

in small samples,, Two such adjustments are: 1) to implement 

a degrees of freedom correction in estimating the error 

covariance matrix and 2) to compute the second order 

approximations to the distributions of the test statistics. 

In their Monte Carlo study of the impact of alternative 

degrees of freedom in 2SLS and 3SLS estimators, Binkley and 

Nelson (1984) had concluded that a degrees of freedom 

correction should be used in estimating 2, the covariance 

matrix of errors. They stated: "While the use of a normal 

approximation for making inferences does not appear to be 

highly accurate for any of the procedures examined in this 

study (in small samples), it was less so when no correction 

I 
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was used." Unfortunately, such a degrees of freedom correction 

is not useful in the present context as it would generate even 

smaller values of the z statistic and hence would not result 

in rejecting the null hypothesis. 

Size corrections which make use of the second order 

approximations to the distributions of the test statistics 

may be a reasonable way to proceed by analogy with inferential 

procedures used in the standard linear model (see, for 

example, Rothenberg (1984), (1987), Evans and Savin(1982), 

(1987) and Harris (1985). Thus, size-adjusted values based on 

these approximations could be computed. However, as pointed 

out by Rothenberg (1984, p.259), in the context of the 

standard linear model, useful general results on the magnitude 

of the size corrections do not seem to be feasible as the 

answer depends very much on the specific model and the null 

hypothesis. A resolution of the problem of zero type I errors 

observed in this study is feasible, in principle, though the 

required size adjustment is not clear. 

Another plausible explanation for the poor performance 

of the test statistic could be the two step nature of the 

estimator. Dhrymes and Taylor (1976) recommended iterating 

the two step estimator at least onct in practical 

applications. While iteration makes no difference 

asymptotically it might as well be crucial in small samples. 

This issue needs further investigation. 

It is concluded that the standard errors computed from 
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the asymptotic covariance matrices of the six two step 

estimators are of doubtful validity for purposes of inference 

regarding the true values of the coefficient parameters. The 

failure to observe any type I errors calls for some size 

adjustments to the distributions of the test statistics, which 

in turn, might increase the power of the test. 

Skewness 

Tables 5.1-5 and 5.1-6 report the skewness statistics 

of the structural coefficients and the autoregressive 

parameters, respectively.In all experiments we notice that 

there were no substantial differences in skewness. Most values 

of the coefficient of skewness were less than 1 in absolute 

value which suggest that the sampling distributions of the 

structural parameters were almost symmetric. Both positive and 

negative values for the coefficient of skewness were observed 

in all experiments. 

We note the following in regard to the results c^ 

individual experiments. 

Experiment 1: 

Although the skewness tended to vary from coefficient to 

coefficient, the full-information estimators were generally 

more skewed than their limited information counterparts for 
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TAB E5.1-5-.SKEWNESS STATISTICS FOR COEFFICIENT PARAMETERS 
T - 3 0 

Coeff. 
1 
2 
4 
5 
6 
7 
9 

10 

HF1 
-0.405 
0.3317 

-0.1902 
0.8197 
0.7007 

-0.3192 
-0.7543 
-0.6288 

HF2 
-0.0501 
0.5198 

-0.1033 
0.966 

0.4973 
-0.5144 
-0.2667 
0.3584 

HF3 
-0.1101 
0.2911 

-0.1549 
0.9019 
0.5395 
-0.367 
-0 .723 
0.6947 

HL1 
-0.3033 
0.1166 
-0.205 
0.5228 
0.5803 

-0.1438 
-0.5553 
-0.3465 

HL2 
0.0244 
0.2438 

-0 .1415 
0.6241 

0.245 
-0.3134 
0.0782 

-0.0099 

HL3 
-0.0396 
0.1078 

-0.1589 
0.6261 
0.4673 
-0.264 
-0.573 

-0.4275 

1 
2 
4 
5 
6 
7 
9 

1 0 

-2.0928 
1.0924 

-0.8869 
0.8381 

•0.5338 
0.1943 
0.2953 
0.1501 

-1.3641 
1.036 

-0.276 
0.912 

-0.4991 
0.1944 
C.3681 
0.2065 

-1.7115 
1.5677 

-0.3733 
1.573 

-0.5046 
0.2275 
0.3856 
0.2396 

-2.0205 
0.6857 

-0.7689 
0.4768 

-0.6403 
0.2626 
0.3594 
0.1248 

-1.2502 
0.5789 

-0.3179 
0.4794 

-0.6254 
0.2673 
0.3981 
0.1501 

-1 5615 
1.0881 

-0.3753 
1.0617 

-0.6224 
0.2725 
0.4109 
0.1602 

1 
2 
4 
5 
6 
7 
9 

10 

-2.3313 
-0.3257 
-1.2791 
0.2639 
-0.378 

-0.1268 
0.2534 
0.0863 

1.3846 
1.2588 
1.0366 
2.30-24 

-0 .4^ )2 
0.097 

0.4044 
0.283 

-0.2058 
0.7919 

-0.0058 
1.7479 

-0.5159 
-0.4416 
0.4368 
0.2345 

-2.117 
-C.2758 

-1.099 
0.4552 

-0.4939 
0.0102 
0.4027 
0.3345 

1.1514 
1.1388 
0.7091 
2.0953 

-0.5221 
0.3027 
0.5633 
0.5042 

-0.1912 
0.7473 

-0.0968 
1.4278 

-0.6274 
-0.3126 
0.4913 
0.4901 

1 
2 
4 
5 
6 
7 
9 

10 

-2.0997 
-0.3662 
-1.1095 

0.173 
-0.3856 
0.1147 
0.3186 
0.1155 

-0.439 
0.1088 
-0.098 
0.7362 

-0.3465 
0.183 

0.4449 
0.1833 

-0.8921 
-0.0465 
-0.3024 

0.996 
-0.3658 
0.1653 
0.4456 
0.2047 

-1.9045 
0.3347 

-0.9274 
0.3331 

-0.5486 
0.3749 

0.416 
0.3275 

-0.3702 
0.0553 

-0.1483 
0.6975 

-0.5074 
0.4916 
0.4887 
0.3617 

-0.7569 
-0.0243 
-0.2483 
0.8365 

-0.5C16 
0.4057 
0.4736 
0.3387 

I*" I 

HF1 HF2 
-0.3484 0.3961 
0.7218 0.8916 
0.0434 0.418 
1.0443 1.1985 
0.6143 0.8076 

-0.2494 -0.5413 
-0 .7342 -0.8S2 
-0.7745 -0.8389 

-2.6416 -2.1284 
1.198 1.1254 

-1.382 -0.4325 
0.9621 1.1054 

-0.2948 -0.3115 
0.0694 0.0652 

0.252 0.2362 
-0.0143 0.0005 

-2.6207 1.4884 
-0.4348 2.0336 
-1.7508 1.5827 

-0.117 2.8098 
-0.2067 -0.1635 
-0.1138 0.0141 
0.0903 0.1577 
0.0771 0.1218 

-2.4483 -1.0423 
-0.316 0.6221 

-1.4497 -0.1248 
0.1696 1.3704 

-0.2663 -0.1808 
-0.0479 -0.0425 
0.^654 0.1902 
0.0501 0.0318 

T - 6 0 
HF3 HL1 

0.2739 -0 .2947 
0.5309 0.4671 
0.1839 0.0187 
0.9694 0.6819 
0.7574 0.5154 

-0.3263 -0.0941 
-1.0751 -0.554 
-1.0728 -0.5298 

-2.5568 -2.6629 
1.5268 0.9395 

-0.5074 -1.3069 
1.6857 0.7338 

-0 .3193 -0.4214 
0.1047 0.1754 

0.246 0.3058 
0.0151 -0.038 

-0.3221 -2.4236 
1.8079 -0.2073 
0.1488 -1.5196 
2.0973 0.4302 

-0.2258 -0.3412 
0.3279 0.2177 
0.3081 0.3576 
0.0562 0.2763 

-1.6511 -2.2742 
0.3962 -0.0969 

-0 .3487 -1.3123 
1.7301 0.5861 

-0.1813 -0.S97 
-0.0164 0.2795 
0.2467 0.4177 
0.0578 0.2353 

HL2 HL3 
0.3748 0.284 
0.6112 0 3951 
0.4009 0.1501 
0.8036 0.7271 
0.6443 0.6944 

-0.3502 -0.2239 
-0.5025 -0.8532 
-0.4752 -0.8115 

-2.1033 -2.4542 
0.8823 1.2695 

-0.4545 -0.4557 
0.8669 1.3522 

-0.4366 -0.4367 
0.201 0.2037 
0.333 0.3429 

-0.023 0.0017 

1.3347 -0.322 
2.1817 1.817 

1.364 -0.0609 
3.0578 1.9297 
0.2597 -0.2885 
0.3017 0.0181 
0.4737 0.4097 
0.3441 0 2502 

-0.9121 -1.4428 
0.868 0.5381 

-0.2643 -0.3649 
1.7313 1.7152 u! 

-0.3433 -0.3212 
0 3254 0.265 
0.4725 0.457 

0 248 0.2508 

W I 



TABLE 5.1 -6SKEWNESS STATISTICS FOR THE AUTOREGRESSiyE PARAMETERS 

MocVt) 
1 

<Xaff. 
11 
12 
13 

HF1 
- 0 . 6 2 3 5 
- 0 . 7 5 3 6 

2 .2646 

T - 3 0 
HF2 HF3 HL1 

- 0 . 6 0 6 9 -0 .64C2 - 0 . 5 2 6 3 
-0.0532 -0.702 -0.3534 
2 .6838 3 .5801 3 .5398 

HL2 HL3 
-0.5022 -0.5062 
0.2474 -0.4658 
3.1542 4.0473 

14 16.5265 16.0122 15.2281 12.983 11.0169 11.9695 
15 3.2724 3.5725 2.2293 3.5589 3.9378 2.0485 

11 
12 
13 
14 
15 

11 
12 
13 
14 
15 

-1.165 
-0.0101 
9.3673 

21.3096 
0.8751 

-0.8638 
0.3256 
8.5191 

19.9535 
1.3373 

-0.P445 
0.CC33 
9.0607 

20.2311 
0.943 

-0.0341 
0.145 

6.7144 
15.8645 
1.6978 

-1.4786 
-0.0561 
7.9047 

20.4748 
1.0526 

-1.2743 
0.4197 
3.4703 

18.9698 
1.0784 

-0.6045 
-0.0815 

11.909 
22.077 
0.7458 

-0.6229 
0.3574 

8.764 
21.348 

1.453 

-0.2997 -0.7854 
-0.0148 -0.144 
11.7375 10.1926 
19.3418 20.1267 
0.8761 0.8754 

0.0042 -0.8308 
0.183 0.4444 

9.5704 4.0764 
17.603 17.2368 
1.8482 1.0976 

HF1 
-0.9214 
-0.9682 
3.0152 

37.2101 
1.2007 

-1.7345 
-0.0658 
6.4093 

40.6565 
0.5511 

-1.567 
0.4081 

3.751 
44.3655 

0.5217 

HF2 
-0.919 

-0.6366 
2.8265 

34.5388 
2.5272 

-1.2049 
-0.0447 
5.8577 

37.5973 
0.543 

0.0316 
0.327 

7.1618 
20.2975 

0.7167 

I » eu 
HF3 

-0.8389 
-1.2934 
4.3839 

24.2193 
1.2693 

-1.9747 
-0.1357 
4.5849 

39.7264 
0.626 

-; .6874 
0.3618 
4.3121 

51.2044 
0.5044 

HL1 
-0.6812 

-0.692 
4.3166 
24.176 
1.8979 

-1.1312 
-0.2016 
5.9522 
53 337 

0.507 

-1.3027 
0.4434 
4.5204 
63.065 
0.5324 

HL2 
-0.6833 
-0.2733 
3.5931 

22.0639 
3.8879 

-0.7119 
-0.1741 
6.4381 

44.4222 
0.5356 

-0.0177 
0.404 

7.2232 
46.2151 

0.7094 

HL3 
-0.6505 
-0.3974 
5.8745 

16.6758 
1.6769 

-1.3059 
-0.2858 
7.3306 

50.3959 
0.5473 

-1.1688 
0.4293 
4.8386 

49.4872 
P 5954 

11 -0.7049 -0.3294 -0.8506 -0.5199 -0.305 -0.5648 
12 0 2284 0.2823 0.0457 0.1759 0.2292 0.1223 
13 6.1265 8.181 2.5422 7.5179 7.9299 3.9055 
14 21.7891 22.3905 22.6688 23.179 21.4027 20.9051 
15 0.9222 0.9854 1.012 0.8166 0.9618 0.9484 

-1.4721 -0.8571 -1.4552 -1.1425 
0.1741 0.1986 -0.0423 0.0214 
3.1981 4.3629 3.3997 3.7829 

43.3855 45.8579 56.5718 68.087 
0.5474 0.526 0.5392 0.5046 

-0.6643 -0.9568 
0.0527 -0.0226 
5.1231 4.1*91 
64.3404 62.5194 
0.5521 0.5533 
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both sample sizes. Furthermore, there were no substantial 

changes in skewness as the sample size was increased from 30 

to 60. Also there was not much variability in skewness across 

the coefficients. 

Experiment 2: 

Generally the coefficients of the first equation were 

more skewed than those of the second equation as judged by 

the relative magnitudes of the coefficient of skewness. For 

each coefficient the values of the skewness statistics were 

quite similar for all the estimators suggesting no marked 

differences among the estimators. For the first equation, the 

full information estimators were more skewed than their 

limited information counterparts and for the second equation 

the limited information estimators were more skewed for both 

sample sizes. 

Experiment 3: 

For all estimators and for both sample sizes the values 

of the coefficient of skewness were greater for the 

coefficients of the first equation than those of the second 

equation. No estimator was consistently the most skewed for 

all the structural coefficients, though, for the parameters 

of the second equation, the limited information estimators 

were relatively more skewed. 
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Experiment 4: 

The skewness was generally greater for the coefficients 

of the first equation than for the coefficients of the second 

equation for all the six estimators. 

The coefficients of skewness for the coefficients of the 

lagged endogenous variables were much closer to zero 

indicating near perfect symmetry in these cases. However, the 

coefficient of the endogenous variable, of the first equation 

(i.e. coefficient 1) tended to give numerically larger values 

of the coefficient of skewness, especially for HF1 and KF2. 

Comparison of the skewness statistics across experiments 

In general the values of the coefficient of skewness 

encountered were much higher for the parameters in model 2 

than those in model l. For experiments 1 and 2, the sampling 

distributions tended to become more skewed as the sample size 

was increased from 30 to 60. However, as indicated earlier, 

the low values of the coefficients of skewness in Table 5.1-

5 suggest near symmetry of the sampling distributions. 

Skewness statistics for autoregressive parameters 

The distributions of estimators of the parameters r,, and 

r^ were almost symmetric in all experiments. However, the 

distributions of the estimators of oul a12 and a^ were highly 

sktwed and tended to yield very large values especially when 

the sample size was increased and this was true in all 

I 
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experiments. The most serious case of skewness arose for the 

a,2 parameter. The limited information estimator- were 

generally more skewed than the full information estimators for 

models 3 and 4 and less skewed than the full information 

estimators for models 1 and 2. 

As indicated earlier, for cases where the kernel density 

estimates were not provided, we relied on the skewness 

statistics in interpreting the shapes of the empirical 

distributions as the skewness statistics provide the same 

information as the kernel density estimates in regard to V ? 

symmetry characteristic of the sampling distributions. 

Kurtosis 

Tables 5.1-7 and 5.1-8 present the kurtosis statistics 

for the structural coefficients and the autoregressive 

parameters, respectively. 

The kurtosis statistics of the coefficient pa- ameters 

presented in Table 5.1-7 were markedly close t • each other 

most of the time. In most cases, the kurtosis statistics were 

greater than 3, suggesting that the distributions of the 

structural parameters were more peaked than the standard 

normal distribution. 

The following observations are noteworthy regarding the 

results of individual experiments. 



TABLE 5.1-7:KURTOSIS STATISTICS FOR COEFFICIENT PARAMETERS 
T - 3 0 

Coeff. 
1 
2 
4 
5 
6 
7 
9 

10 

HF1 
4.6057 
3.4947 
3.2354 
4.2476 
3.3126 
2.6523 
3.9545 

3.346 

HF2 
3.0903 
3.7308 
2.8944 
4.6401 
3.5882 
3.0733 
3.8956 
3.2947 

HF3 
3.1884 
3.5562 
2.9985 
4.1445 
3.5218 
2.8431 
4.2151 
3.7296 

HL1 
4.1201 
3.2019 
3.1917 
3.4186 
3.1895 
2.6092 
3.7236 
3.1077 

HL2 
2.9317 
3.2764 

2.862 
3.5765 
3.5269 
2.9389 
3.6728 
3.0767 

HL3 
3.0611 
3.3673 
2.9381 
3.4877 
3.4517 
2.8027 
3.7286 
3.2801 

1 
2 
4 
5 
6 
7 
9 

10 

10.0588 
8.6667 
4.9724 
3.2528 
3.9503 
3.0562 
3.1606 
3.1227 

8 ^ " 
9.0859 

3.891 
8.8173 
3.6609 
2.9609 
3.2883 
3.1523 

1192 
10. 505 

3 . ' 362 
10.0548 
3.7451 
2.9181 
3.3431 
3.1426 

10.0556 
7.7755 
4.6024 
7.1091 
4.2865 
3.1464 
3.1872 
3.1497 

8.1929 
8.3044 
3.8855 
7.7716 

4.17 
3.1172 
3.2947 
3.1419 

8.5897 
8.5863 
3.4821 
7.8106 
4.2061 
3.0673 

3.323 
3.0626 

1 
2 
4 
5 
6 
7 
9 

1 0 

11.974 
3.836 

6.6589 
5.9302 
3.5992 
3.4229 
3.0562 
3.2322 

7.4659 
9.1559 
5.9092 

17.2371 
3.2233 
3.5246 
3.1706 
3.1178 

3.5421 
6.1904 
2.8733 
8.7281 

3.957 
3.8085 
3.3535 
3.4654 

10.861 
3.2809 
5.7172 
5.5555 
3.9714 
3.5434 
3.2406 
3.5389 

6.4563 
8.3775 
4.8661 

13.8376 
3.5576 
3.7565 
3.3059 
3.5822 

3.4496 
5.9329 
2.8598 
7.1184 
4.3895 
3.7195 
3.5142 
3.8858 

1 
2 
4 
5 
6 
7 
9 

1 0 

10.5305 
3.7363 
5.8274 
4.2083 
3.4364 
3.1094 
2.9662 
3.0892 

6.2664 
4.1847 
4.0768 
5.3536 
3.2647 

3.066 
3.1326 
2.9966 

5.894 
3.6431 
3.4295 
4.9553 
3.4801 

3.08 
3.1531 
2.9896 

9.5901 
3.983 

5.0078 
4.5282 
4.0521 
3.3627 
3.1071 
3.4383 

5.314 
4.4106 
3.3627 
5.2733 
3.7636 
3.4344 
3.1059 

3.221 

5.3411 
4.0754 
3.2056 
4.6794 
3.8804 

3.338 
3.1167 
3.1968 

HF1 HF2 

4.0387 3.3506 

3.7703 4.0657 

3.2315 3.4831 

4.8894 5.3804 

2.7698 3.5519 

2.2655 2.7974 

3.2213 4.0967 

3.4554 4.2565 

11.321 11.9439 

8.5641 9.0842 

6.3063 4.5258 

8.0749 9.2363 

3.3214 3.2393 

3.236 3.2893 

3.1144 3.0415 

2.9605 2.9103 

11.479 6.85 

3.7655 11.2112 

7.6975 7,5437 

3.9187 15.1203 

3.0271 3.2926 

3.0729 3.0975 

2.9943 3.33 

3.1102 3.3763 

10.7746 9.4837 

3.6492 5.3186 

6.559 4.8265 

3.5913 6.9434 

3.2231 3.0679 

2.9436 3.0445 

2.9943 2.926 

3.0389 3.0305 

T - 6 0 

HF3 HL1 

3.4661 3.8276 

3.5935 3.2939 

3.2848 3.0711 

4.495 3.9243 

3.4238 2.6926 

2.5166 2.2207 

4.5237 3.0246 

4.5914 3.2076 

13.3879 11.5497 

10.1305 7.8082 

3.8528 6.2433 

11.0553 7.5357 

3.2495 3.495 

3.255 3.1762 

3.086 3.0954 

2.8956 3.1556 

4.0376 10.2463 

9.1872 9.7325 

3.569 6.6456 

9.4697 4.4924 

3.2401 3.2475 

3.6295 3.2743 

3.5359 3.0406 

3.4974 3.3818 

10.1749 9.6306 

5.1461 3.9839 

3.7931 5.8427 

7.9141 4.6632 

3.1088 3.4461 

2.9717 3.0873 

2.9651 3.1524 

3.035 3.4639 

HL2 HL3 

3.3756 3.4986 

3.4543 3.3693 

3.5887 3.2931 

4.2208 3.9793 

3.3827 3.2998 

2.6011 2.4268 

3.6521 3.9375 

3.77 3.9592 

11.6124 12.6362 

8.4258 9.3351 

4.3258 3.683 

8.7643 10.1763 

3.4728 3.4601 

3.2368 3.2367 

3.1015 3.1082 

3.2232 3.1489 

6.2086 3.8519 

12.3518 9.6062 

6.9703 3.2383 

17.076 9.0211 

3.303 3.3455 

3.4331 3.4834 

3.4579 3.5842 

3.4756 3.6365 

7.6161 8.2449 

6.5487 5.8313 

4.1854 S.5678 

9.5207 9.0683 

3.2931 3.2763 

3.1196 3.0266 

3.1827 3.1621 

3.4486 3.4367 



TABLE 5.1-8:KURTOSIS STATISTICS FOR THE AUTOREGRESSIVE PARAMETERS 

MOCSOI 

i 

2 

3 

4 

Coeff. 

11 
12 
13 
14 
15 

11 
12 
13 
14 
15 

11 
12 
13 
14 
15 

11 
12 
13 
14 
15 

HF1 
3.5536 
4 .1942 
8 .0285 

53 .4939 
29 .4176 

7 .0148 
3 .1395 

130.809 
80 .2329 

4 .1438 

5 .7915 
4 .0584 

137.174 
75 .3542 

6 .6695 

4 .88 
3.2403 

76 .7268 
82.874 

4.197 

HF2 
3 .6479 
3 .3792 

16.2721 
51 .7675 
21 .3251 

6.9274 
3 .067 

109.581 
75 .1268 

4 .3005 

4 .6384 
3.9007 

56 .3272 
58 .8164 

8 .7303 

4 .5547 
3.2559 

119.511 
84 .7496 

4.3041 

T = 30 
HF3 

3 .4103 
4 .609 

22 .0179 
47 .8229 

13.225 

8 .4678 
2 .9797 

111.739 
81 .4664 

4 .8752 

7.49S8 
3.5177 
14.105 

69 .2632 
4 .8698 

4.9645 
3.1026 

10.0882 
86 .3503 

4 .5359 

HL1 
3.192T 
3 .4362 
12.026 
41 .753 

24 .96 

5.6161 
2 .8658 
183.88 
82 .199 
3.7855 

4 .7463 
3.4271 
130.94 

77 .09 
7 .9517 

4 .3117 
2 .9352 
91.237 
84.846 

3.939 

HL2 
3.1779 
2.0263 
15.106 

37.752S 
23.3013 

5.7493 
2 .8238 

167.926 
70.5123 

4 .0627 

3 .8924 
3.3091 

128.577 
61.2303 
10.2286 

4 .0877 
2.9965 

91.9764 
77.1554 

4.2819 

HL3 
3.1124 
3.5986 

17.5867 
36.6744 

9.5268 

6.0669 
2 .7179 

155.438 
73 .8599 

4.0876 

5.3297 
3.3186 

16.9299 
59.4215 

4 .8848 

4.3158 
2.8626 

20.1264 
74.853 
4 .2397 

HF1 
4.7248 
3.9637 

12.9546 
143.526 
6.6368 

9.1187 
3.5731 
58.421 

172.401 
3.2861 

7.3224 
3.6502 

17.1074 
192.343 

3 .2333 

7.1687 
3.2744 
13.824 

187.748 
3.2997 

HF2 
4.9884 
3 .8747 

13.0614 
130.107 
15.0272 

8.1722 
3 .5326 

40.3965 
154.127 

3 .1961 

4.4397 
3.5027 

63.1921 
78.898 

3 .854 

6.067 
3.2798 

22 .1863 
200.9 

3.1693 

T - 60 
HF3 

4.3958 
5.5366 

17.6238 
81.9958 
6.6344 

11.0892 
3.6436 

27.6563 
169.627 
3.5055 

8.2809 
3.4885 

17.2193 
219.068 

3.1543 

7.9181 
3.1722 
13.791 

253.5 
3.2333 

HL1 
3.859 

3.4417 
16.4606 
85.5354 
11.2345 

6.7164 
3.2539 

42.9896 
232.704 

3 .1702 

6.3007 
3.4453 

24 .8648 
285.169 

3.2459 

5.6852 
3.0314 

16.0118 
313 .124 

3.1965 

HL2 
3.9807 
3.4303 

15.1338 
76.4622 
26.7652 

6.2692 
3.2567 

49.0448 
185.252 
3.1696 

3.3291 
3.4747 

66.7068 
192.743 

3.8121 

4.8623 
3.0264 

30.8038 
291.68 
3.2504 

HL3 
3.8766 
4.5142 

25 .8134 
51 .8725 
10.1907 

8.014 
3.2774 

80.5463 
216 .313 

3 .1991 

6.2668 
3.5698 

20.4289 
207.669 

3.3939 

5.6787 
2.9631 

17.8329 
280.45 
3.2452 
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Experiment 1: 

The kurtosis statistics were close to each other for all 

the structural parameters and for all the six estimators. 

However, the coefficient of kurtosis tended to increase as the 

sample size was increased from 30 to 60, indicating greater 

than normal peakedness. 

Experiment 2: 

The kurtosis statistics for the coefficients of the first 

equation were generally higher than those of the corresponding 

coefficients of the second equation. The values of kurtosis 

statistic for the coefficients of the lagged endogenous 

variables had generally increased as the sample size was 

increased. Again there was a general increase in the kurtosis 

statistics as the sample size was increased from 30 to 60. 

Experiment 3: 

For the coefficients of equation 1, the full information 

estimators had generally more peaked distributions than the 

limited information analogues. For the second equation the 

limited information estimators had more peaked distributions. 

These observations were true for both sample sizes. 

Experiment 4: 

The observations were similar to experiment 3 though the 

values of the coefficient of kurtosis were more uniform for 
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the coefficients of the two equations. For equation 1, the 

full information estimators had generally more peaked 

distributions than their limited information analogues. 

Comparison of the kurtosis statistics across experiments 

Generally it seemed that decreasing the autocorrelation 

coefficient decreased the kurtosis of the coefficients in 

that equation whose autocorrelation coefficient was decreased 

(compare the results of model 1 with those of models 2, 3 and 

4)» In every experiment, the full information estimators 

c lerally yielded greater absolute values for the coefficient 

of kurtosis compared to the limited information estimators. 

The numerical values were extremely high for the full 

information estimators, suggesting that they are more peaked 

than the limited information estimators. Comparing the results 

of experiments 1 and 2 we note that the effect of decreasing 

the coefficient of the lagged endogenous variable and the 

autoregressive coefficient was to increase the peakedness of 

the distribution. Also peakedness tended to increase as the 

sample size increared, and this was true of every estimator. 

Kurtosis statistics for autoregressive parameters 

The kurtosis statistics indicate no major differences 

among the estimators for all the autoregressive coefficients. 

For all models the peakedness was the greatest for the 

elements of 2. Also for the elements of R and 2, the 

peakedness was low for model 1 and high for models 2,3 and 
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4 suggesting that a decrease in the size of the 

autocorrelation coefficients tends to increase the peakedness 

of the distributions of the autoregressive coefficients. The 

kurtosis generally increased as the sample size was increased 

from 30 to 60 in the case of all models and for all 

estimators. 

5.2:Prediction 

Bias 

Tables 5.2-1 and 5.2-2 present the mean prediction biases 

(MPB) for yl and y2, respectively. 

A test of the significance of prediction biases indicated 

that the biases of all estimators were significant at the 5 

percent level. This observation remained valid for both 

endogenous variables, all the 5 forecast periods in all the 

four models and for all the six estimators. For all the 

experiments and estimators both positive and negative biases 

were observed. The biases tended to decrease as the sample 

size was increased. However, there was no noticeable pattern 

in the prediction biases of the estimators as the forecast 

period was extended into the future, although, in some cases 

it tended to increase. In particular, the biases tended to be 

very large for the fifth post sample prediction when T = 30. 

The results of individual experiments are discussed 

below. 



TABLE 5.2-1 :MEAN PREDICTION BIAS FOR Y1 

Model 
1 

2 

3 

4 

h 
1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

HF1 
0.0492 
0.0955 

0.225 
-0.0001 
0.2551 

-0.1815 
-0.0516 
0.4477 

-0.7372 
-0.1903 

-0.094 
-0.0163 
0.0343 

-0.0229 
0.0707 

-0.038 
0.0293 
0.0401 

-0.0289 
0.1158 

HF2 
0.0408 
0.0882 
0.1338 
0.1655 
0.2833 

0.295 
-0.1369 
0.1454 

-0.4859 
-0.1685 

-0.091 
-0.0454 
-0.0989 
0.1083 
0.0758 

-0.0557 
-0.0017 
-0.0618 
0.0202 
0.1184 

T = 30 
HF3 

0.2228 
0.1877 

-1.8241 
-26.107 
-278.32 

-0.3242 
-0.2383 

C.0648 
-0.5654 
-0.3017 

-0.0549 
-0.0421 
0.1792 

-0.4132 
3.1625 

-0.024 
0.0553 
0.0466 
0.1427 

0.194 

HL1 
0.0561 
0.1294 
0.2319 
0.1297 
0.1129 

-0.1435 
-0.1472 
0.3601 

-0.7197 
-0.317 

-0.0952 
-0.0267 
0.0386 

-0.0337 
0.0465 

-0.0228 
0.0073 
0.0236 

-0.0464 
0.0568 

HL2 
-0.0354 

0.0091 
0.0438 
0.1613 
0.5565 

-0.3154 
-0.2737 
0.1295 

-0.6266 
-0.2581 

-0.1056 
-0.051 

-0.0916 
0.1025 
0.0775 

-0.0632 
-0.0234 
-0.0893 
0.0029 
0.0867 

HL3 
0.1569 
-0.162 

-3.0079 
-30.937 
-287.95 

-0.3432 
-0.3233 
0.0847 

-0.6479 
-0.3556 

-0.0823 
-0.0355 
0.0696 
0.0485 
0.64f>3 

-0.0377 
0.0132 
0.0014 
0.0998 
0.1496 

HF1 
0.0012 
0.0379 
0.0502 

-0.0283 
0.0587 

0.0001 
-0.0227 
-0.0525 
-0.1085 
0.0434 

-0.0535 
-0.0255 
-0.0429 
-0.0401 

0.068 

-0.0293 
-0.0042 
-0.0289 
-0.0551 
0.0761 

HF2 
0.0104 

0.022 
-0.0089 
-0.0216 
0.0415 

-0.0383 
-0.0499 
-0.1103 
-0.0537 
0.0424 

-0.0464 
-0.0331 
-0.0905 
0.0341 

0.068 

-0.0323 
-0.0108 
-0.0562 
-0.0337 

0.077 

T = 60 
HF3 

0.1249 
0.2623 
0.3519 
0.3455 
0.2375 

-0.0269 
-0.0576 
-0.0924 
-0.0425 
0.0367 

-0.0377 
-0.0316 
-0.0575 
0.0588 
0.0589 

-0.0146 
-0.0133 
-0.0158 
0.0196 
0.1014 

HL1 
0.0137 

0.032 
0.0556 

-0.0131 
0.0214 

0.009 
-0.0031 
-0.0364 
-0.0792 

0.0383 

-0.054 
-0.0261 
-0.0435 
-0.0456 
0.0528 

-0.0195 
-0.011 

-0.0409 
-0.0643 

0.0493 

HL2 
-0.032 

-0.0406 
-0.0739 
0.1005 
0.0393 

-0.0472 
-0.0411 
-0.0996 
-0.0548 
0.0501 

-0.0524 
-0.034 

-0.0909 
0.0267 

0.062 

-0.0354 
-0.022 

-0.0799 
-0.0395 
0.0626 

HL3 
0.0864 
0.1581 
0.1159 

-0.3385 
-1.8369 

-0.0365 
-0.0475 
-0.0792 

-0.044 
0.042 

-0.0467 
-0.0373 
-0.0627 
0.0428 
0.0452 

-0.0261 
-0.016 

-0.0538 
-0.0023 
0.0735 

o 



TABLE 5.2-2:MEAN PREDICTION BIAS FOR Y2 

Model 
1 

2 

3 

4 

h 
1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

HF1 
0.059 

0.0759 
0.0138 

-0.0303 
-0.0856 

-0.1148 
-0.2009 

-0.121 
-0.5398 
0.1201 

0.0292 
0.0867 
0.0753 
-0.025 
0.021 

-0.038 
0.0293 
0.0401 

-0.0289 
0.1158 

HF2 
0.0139 
0.0209 

-0.0344 
-0.1185 
-0.1245 

-0.24 
-0.3371 

-0.311 
-0.5147 
0.0413 

0.0168 
0.048 

-0.0214 
0.1305 
-0.076 

-0.0577 
-0.0017 
-0.0618 
0.0202 
0.1184 

T = 30 
HF3 

0.2667 
0.6517 
3.1552 

29.1469 
298.715 

-0.2829 
-0.331 

-0.3217 
-0.5434 

0.084 

0.0356 
0.0449 
0.2784 

-0.5806 
3.4325 

-0.024 
0.0553 
0.0466 
0.1427 

0.194 

hL1 
0.1483 
0.1189 
0.1768 

-0.0732 
-0.0161 

-0.039 
-0.0214 
0.1177 

-0.3545 
0.3233 

0.0217 
0.098 

0.1245 
-0.0466 
0.0494 

-0.0228 
0.0073 
0.0236 

-0.0464 
0.0568 

HL2 
0.0719 
0.0352 

-0.0429 
-0.2501 
-0.6572 

-0.2411 
-0.0518 
-0.1252 
-0.2768 
0.3191 

-0.0393 
0.0501 

-0.0198 
0.15 

-0.0458 

-0.0632 
-0.0234 
-0.0893 

0.0029 
0.0867 

HL3 
0.3239 
0.8606 
4.1467 

34.0331 
315.562 

-0.2903 
-0.1735 
-0.1585 
-0.3443 
0.3042 

0.0013 
0.0766 
0.1606 
0.0041 
0.6044 

-0.0377 
0.0132 
0.0014 
0 0998 
0.1496 

HF1 
0.0367 
0.0384 
0.0335 

-0.0151 
0.0311 

0.0223 
0.0007 
0.0077 
0.0008 
0.0619 

0.013 
0.0524 
0.0317 

0.048 
0.0645 

0.0236 
0.0392 
0.0069 
0.0145 
0.0761 

HF2 
0.0349 
0.0324 
0.0153 

-0.0004 
0.0234 

0.0057 
-0.0066 
-0.0087 
0.0291 
0.0571 

-0.0028 
0.0302 

-0.0095 
0.1134 
0.0013 

0.0178 
0.0376 

-0.0051 
0.0374 
0.0646 

T = 60 
HF3 

0.1224 
0.174 

0.2458 
0.396 

0.7926 

-0.0088 
-0.0104 
-0.0326 

-0.004 
0.041 

0.011 
0.0359 
0.0303 
0.1351 

-0.0191 

0.0364 
X0488 
0.0164 
0.0534 
0.0489 

HL1 
0.0703 
0.0623 
0.0963 

-0.0179 
0.0279 

0.0502 
0.0119 
0.0351 

-0.0066 
0.0608 

0.008 
0.0557 

0.041 
0.0329 
0.0764 

0.0256 
0.0351 
0.0194 
0.0059 
0.0847 

HL2 
0.0371 
0.0324 
0.0288 
0.0076 
0.0387 

-0.0011 
-0 0157 
-0.0234 
0.0298 
0.0626 

-0.0111 
0.03 

-0 .0177 
0.1217 
0.0152 

0.0031 
0.0321 

-0.0165 
0.0539 
0.0747 

HL3 
0.1428 
0.2381 
0.5049 
1.2329 
3.5259 

-0.0136 
-0.0157 
-0.0423 
-0.0016 
0.0467 

0.0009 
0.0389 
0.0307 
0.1403 
0.0039 

0.0081 
0.0349 
0.0056 
0.0726 
0.0556 
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Experiment 1: 

The biases for yl and y2 were generally positive for both 

sample sizes though there was some evidence of large negative 

biases for HF3 and HL3. For every predx 'ion period, HF3 and 

HL3 were generally the most biased and the other estimators 

were relatively, albeit slightly, less biased. These biases 

generally decreased when the sample size was increased from 

30 to 60. Generally the limited information estimators had 

larger biases than their full information analogues, but the 

differences were only marginal. In some cases the limited 

information estimators outperformed the full information 

estimators. These results suggest that the limited information 

estimators be preferred to the full information estimators 

according to the bias criterion. 

Experiment 2: 

The biases observed were generally negative for both yl 

and y2. Although the results were somewhat mixed, HF3 and HL3 

were generally the most biased for both yl and y2. However, 

the full information estimators did not uniformly dominate the 

corresponding limited information estimators for all forecast 

periods and for both sample sizes. As the sample size was 

increased to 60 the biases decreased and the differences 

between the estimators became less apparent. 
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Experiment 3: 

The ranking of the biases of the estimators over all the 

five forecast periods was fairly consistent for this 

experiment. The biases were generally negative for both yl 

and y2. HF3 and HL3 generally exhibited the most significant 

biases for both yl and y2 and for all the five forecast 

periods, especially when T = 30. HF2 and HL2 did not perform 

well either. Generally the full information estimators 

performed better than their limited information analogues for 

both yl and y2 and for most of the forecast periods. However, 

no specific estimator completely dominated the other 

estimators for all forecast periods and this observation was 

true irrespective of the sample size. In fact, the difference 

among the estimators became less apparent as the sample size 

was increased from 30 to 60. 

Experiment 4: 

The biases for yl and y2 were generally negative for all 

the five forecast periods. The limited information estimators 

generally yielded the largest biases for yl and y2 for all 

forecast periods compared to the full information estimators 

though this observation was not true for all the forecast 

periods. The differences became less apparent as the sample 

size was increased from 30 to 60. 
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Comparison of the prediction biases across experiments 

For each forecast period the magnitude of the bias 

generally decreased considerably for experiment 2 compared 

to those of experiment 1 for both yl and y2 as the sample size 

was increased. This observation was particularly true for T 

= 60, not for T = 30. Experiment 4 produced generally the 

smallest absolute biases for all forecast periods and for all 

models compared to experiments 1, 2 and 3. These results seem 

to suggest that prediction biases are likely to be smaller 

when the autocorrelation coefficients are smaller. 

Mean Square Error of Predictions(MSEP) 

Table 5.2-3 and 5.2-4 show the MSEP for yl and y2, 

respectively. For each estimator and for each model the MSEP 

increased as the forecast period extended. This result agrees 

wi'vh the conjecture that the MSEP increases with the distance 

of the forecast period. In addition, the MSEP's were generally 

larger for sample size 30 than for sample size 60 for all 

estimators. Again the MSEP was highest for model 1 compared 

to other models for all the forecast periods. 

From the results of individual experiments we note the 

following. 

Experiment 1: 

HF2 and HL2 possessed the largest MSEP's relative to the 

other estimators. In all cases the full information estimators 



TABLE 5.2-3AISEP FOR Y1 
30 

Model 
1 

2 

3 

4 

h 
1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

HF1 
2.4695 
6.7482 

12.1231 
14.7421 
15.9523 

2 .4172 
2.7853 
3.4163 

3.85 
6.3472 

1.979 
2 .3618 
2 .8373 
3.1704 
4.1803 

2 .0015 
3.0549 
3.4632 
3.6186 

4.238 

HF2 
2 .5664 

7 .193 
13.3968 

20 .407 
26 .7609 

2 .4373 
2 .8388 
3 .8435 
5 .1979 

11.0575 

2 .0117 
2 .5518 
3 .5112 

5 .567 
10.7756 

1.9492 
3 .0875 
3 .5819 
3 .8336 

4 .814 

HF3 
2.4413 
6.6701 

11.9732 
14.7149 

14.601 

2.2575 
2 .8483 
3.1238 
3.2267 
3.9374 

1.9456 
2 .4432 
2 .7543 
2.8795 
3.2315 

1.8777 
3.187 

3.6029 
3.6192 

3.976 

HL1 
2.3582 
6.7111 

12.1241 
16.5956 
20 .4493 

2 .4945 
2.9965 
4.2388 
6.1729 

15.9691 

2.09 
2.406 

2 .8948 
3.4562 
4.7584 

2.1251 
3.1571 
3.5886 
4.0952 
5.3331 

HL2 
2.4481 
7.6066 

15.7686 
30 .8863 
58 .4506 

2 .5478 
3.1151 
5.4867 

11.2701 
41.0851 

2.1385 
2 .699 

4 .0592 
7.3087 

15.9208 

2 .0552 
3.1783 
3.7841 
4.6261 
6.7139 

HL3 
2.3248 
6.5269 

11.5806 
14.9527 
14.9995 

2.2806 
3.0037 
3.4121 
3.8342 
5.6294 

1.9901 
2.4483 
2.7788 
2.8743 
3.2216 

1.9606 
3.2571 
3.6651 
3.7996 
4.2995 

T » 60 
HF1 HF2 HF3 

2.0816 2.1501 1.9845 
5.7158 5.8747 5.5378 

10.4458 10.5773 10.2088 
11.8644 13.6958 12.4219 
12.8476 15.0726 12.7405 

2 .1471 2 .2024 1.9594 
2.7312 2.8461 2.9639 
3.0752 3.5935 2 .9219 
4 .0729 5.5397 3.7598 
6.1226 11.1705 5.0201 

1.8723 2.0407 1.8749 
2 .1776 2 .496 2 .3793 
2 .6557 3.628 2 .6153 
2.7884 6.5651 2.875 
3.2489 13.881 2 .8733 

1.8894 1.3232 1.7232 
2 .8202 2 .7924 3.0882 
3 .2742 3.3035 3 .5639 
3.3213 3.4326 3.6755 
3.6546 4.2513 3.7478 

HL1 HL2 HL3 
1.9707 2.0001 1.9016 
5.4982 5 .8302 5.3442 
9 .8792 10.8807 9.6273 
12.024 16.1606 12.1877 

13.2276 21 .246 12.56 

2 .2076 2.2704 1.9677 
2.8945 3.0538 3.1077 
3.5089 4.2637 3.1243 
5.0788 7.35 4.3015 

8.89 17.1715 6.2247 

1.9519 2.2203 1.8815 
2 .2215 2 .8554 2 .4012 
2 .6622 4.8151 2.6696 
3.0579 10.6445 2 .8267 
2.7957 27.0662 2.8756 

1.9508 1.897 1.7574 
2.8703 2 .9169 3.1562 
3.2616 3 .4939 3.6582 
3.5393 4.2283 3.917 
4.2143 5.993 4 .0756 



TABLE 5.2-4MSEP FOR Y2 
30 60 

Model h 
1 1 

2 
3 
4 
5 

2 1 
2 
3 
4 
5 

3 1 
2 
3 
4 
5 

4 1 
2 
3 
4 
5 

HPl 
0.7662 
0.8815 
1.8746 
2.7035 
2.8658 

0.5491 
0.8687 
1.7843 
3.2933 
6.5557 

0.5085 
2.6729 
3.6371 
5.507k 
7.1456 

0.4708 
1.741 

3.1499 
3.5253 
5.6649 

HF2 
0.8192 
1.1677 
2.3304 
4.1494 

5.603 

0.5201 
1.0122 
2.5635 
5.8718 

15.5975 

0.S145 
2.959 

5.1978 
11.066 

23.4551 

0.4452 
1.7106 
3.3581 
5.2694 
7.4161 

HF3 
0.8115 
0.9139 
2.0559 
2.1847 
2.8737 

0.4483 
0.8354 
1.4348 
2.2653 
3.2488 

0.4755 
2.9272 
3.7927 
5.1054 

4.663 

0.3727 
1.7985 
3.3383 
4.6982 
4.6736 

HL1 
0.9312 

1.072 
2.5025 
3.3696 
4.2172 

0.6963 
1.0483 
2.6414 

6.209 
18.4361 

0.6248 
2.8624 
3.8992 
5.8868 
7.9826 

0.6043 
1.9008 
3.5374 
5.1999 
7.6091 

HL2 

1.0418 
1.6201 
3.6773 
7.6508 

14.5689 

0.7872 
1.2984 
4.5024 

14.3768 
57.6427 

0.7273 
3.2415 

5.769 
13.314 
29.673 

0.585 
1.9181 
3.8313 
6.5268 

11.0525 

HL3 
0.9609 
1.0882 
2.5092 
2.5656 
3.3487 

0.5573 
0.9784 
1.8676 
3.2161 
5.9895 

0.5839 
3.0208 
3.8578 
5.1601 
4.6819 

0.4968 
1.9296 
3.6001 
4.9029 
5.2199 

HF1 
0.687 

0.7293 
1.7033 

2.321 
2.4892 

0.6272 
1.0625 
2.2165 
4.2314 
8.2659 

0.5224 
2.5294 
3.4436 
4.9324 
6.3051 

0.4728 
1.6855 
2.9616 
4.1423 
5.2522 

HF2 
0.5955 
0.8307 
1.7456 
2.64P.9 
3.3852 

0.7324 
1.2448 
3.2829 
7.4335 

18.0094 

0.7778 
3.0279 
6.1743 

13.3097 
30.3093 

0.453 
1.5593 
3.1679 
4.8491 
6.9863 

HF3 
0.7618 
0.9151 
2.3337 
2.1096 
2.6594 

0.4355 
1.1852 
1.9981 
3.8664 
6.8633 

0.4775 
3.0178 
3.7965 
5.2123 

4.506 

0.3238 
1.9898 
3.6703 
5.5268 
5.6573 

HL1 
0.8151 
0.8214 
2.1072 
2.4121 

2.658 

0.7521 
1.2193 
2.7271 

5.711 
12.4772 

0.6424 
2.7001 
3.7507 
5.3811 
7.2205 

0.601 
1.7635 

3.297 
4.5335 
6.0877 

HL2 
0.6952 
0.9643 
2.1743 
3.1646 
4.5783 

0.8325 
1.4197 
4.0196 

9.983 
26.9313 

0.8813 
3.4624 
7.5125 

18.7857 
47.8986 

0.5689 
1.7521 
3.7533 
6.1173 

10.2073 

HL3 
0.8761 
1.0217 
2.6982 
2.2535 
2.9022 

0.5067 
1.3256 
2.3317 
4.6921 
8.8628 

0.5638 
3.0548 
3.8667 
5.4135 
4.5087 

0.41 
2.0197 
3.8954 

5.775 
6.3414 
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were just marginally better than their limited information 

counterparts for each sample size, although for some forecast 

periods the limited information estimators outperformed the±r 

full information counterparts. For all forecast periods, and 

both sample sizes, HF2 and HL2 performed consistently the 

worst thouc 4 the differences between these two and the others 

were not substantial. 

Experiment 2: 

Generally the limited information estimators tended to 

perform worse than their full information counterparts for T 

=30. In virtually all cases HF2 and HL2 were outperformed by 

the other four estimators, and tended ";o behave erratically (in 

that the MSEP increased as the sample size increased) for some 

forecast periods. For the other estimators, the MSEP decreased 

as the sample size was increased. This observation remained 

valid even when the sample size was increased. Overall the 

full information estimators outperformed their limited 

information counterparts. 

Experiment 3: 

Again HF2 and HL2 we* outperformed by the other 

estimators. The full information estimators performed better 

than their limited information counterparts for all forecast 

periods and for both sample sizes. The MSEP's of HF2 and HL2 

tended to behave erratically for some forecast periods as the 
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sample size was increased. The differences amongst the 

estimators for this experiment where one of the 

autocorrelation coefficients is negative were substantial. 

Experiment 4: 

The dominance of the full information estimators over 

the corresponding limited information estimators was very 

clear for both yl and y2. HF2 and HL2 still performed the 

worst. Overall no large differences among the MSEP's of the 

six estimators were observed. 

Comparison of the MSEP's across experiments 

The MSEP's in experiment 2 were smaller compared to those 

of experiment 1. This observation was true especially for 

forecast periods 3, 4 and 5. Generally models 1 and 3 yielded 

larger MSEP's than models 2 and 4, especially for sample size 

30. The MSE's were comparable across experiments for sample 

size 60. 

Hypothesis testing 

Tables 5.2-5 and 5.2-6 provide the number of type I 

errors for yl and y2, respectively, by estimators in the 1000 

replications. The number of type I errors between 36 and 64 

were not significantly different from 50 at the 5 percent 

l^vel. Clearly, the number of type I errors were generally 
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greater for sample size 30 than for sample size 60, suggesting 

that very large size samples might be required for accurate 

testing of hypotheses concerning forecasts. The model 1, in 

which the autoregressive parameters in both equations assumed 

the high value of 0.9, resulted in the greatest number of 

rejections compared to the other three models for both sample 

sizes. To give an overall idea of the effect of changes in the 

coefficient of the lagged endogenous variables, 

autocorrelation and sample size on the reliability of the 

asymptotic standard errors, the number of significant 

predictions defined as those yielding more than 64 type I 

errors in 1000 replications for all the estimators and for all 

the five forecast periods and for both yl and y2 are given 

below. 

The number of significant predictions for both yl and y2 

T = 30 T = 60 

Model 1 31 32 

Model 2 24 17 

Model 3 35 16 

Model 4 29 19 

The results of individual experiments are discussed 

below. 

Experiment 1: 

The number of type I errors was significant in the sense 

that the estimators performed worse than expected, for many 
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of the forecast periods, especially for yl. The number of 

significant forecasts of both yl and y2 for the five forecast 

periods combined was 31 (out of 60) for sample size 30, and 

32 for sample size 60. However, the number of type I errors 

tended to decrease as the sample size was increased. Clearly, 

when T = 30, the asymptotic standard errors led to too many 

rejections compared to the the case when T = 60. In terms of 

the relative performances of the estimators, for each sample 

size the limited information estimators tended to perform 

marginally better than the full information estimators for 

virtually all the forecast periods. 

Experiment 2: 

The usefulness of the asymptotic standard errors were 

quite good especially for 3 period ahead and 5 period ahead 

forecasts. The number of type I errors decreased considerably. 

The difference between the limited information estimators and 

the full informaticn estimators became less pronounced though 

the limited information estimators were still marginally 

better. The number of significant predictions of both yl and 

y2 for all the five forecast periods combined was 24 for T=30, 

and 17 for T=60. The number of type I errors decreased as the 

sample size was increased from 30 to 60. 

Experiment 3: 

The full information estimators dominated the limited 
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information estimators. The number of significant predictions 

of yl and /2 for all the five forecast periods combined was 

35 for sample size 30 and 16 for sample size 60. 

Experiment 4: 

The full information estimators dominated the limited 

information estimators when one of the autocorrelation 

coefficients is zero, especially for sample size 30. However, 

the differences between the full information estimators and 

the limited information estimators became even smaller as the 

sample size was increased. The number of significant 

predictions of yl and y2 for all the five forecast periods 

combined was 29 for sample size 30, and 19 for sample size 60. 

Comparison of the number of type I errors across experiments 

The number of type I errors were generally lower in 

experiments 2, 3 and 4 than those in experiment 1. 

Furthermore, the number of type I errors generally decreased 

as the sample size was increased from 30 to 60. 

These results suggest that at low degrees of 

autocorrelation the full information estimators are more 

reliable in tests of hypotheses concerning forecasts, and at 

high degrees of autocorrelation, the asymptotic standard 

errors of the limited information estimators performed better. 

This might be due to the fact that computation of the 

asymptotic covariance matrix of the full information 
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estimators involves more matrix inversions than in the limited 

information case and this increases the possibility of 

rounding errors. 

The main conclusion that has emerged is that inferences 

concerning forecasts are not reliable in cases where 

autocorrelation is high or when the sample size is small. If 

the autocorrelation coefficients are high, then very large 

samples are required for valid and useful inferences about the 

forecasts. Even a sample of size 60 used in this Monte Carlo 

study yielded too many rejections for model 1 where 

autocorrelation was extremely severe. 

Skewness 

Tables 5.2-7 and 5.2-8 provide skewness statistics for 

yl and y2, respectively. An inspection of these statistics 

revealed both positive and negative skewness. These values 

were fairly close to zero for all estimators (except, in some 

cases for HL1 and HL2 in experiment 2) . However, as the sample 

size was increased the distribution became almost symmetric 

as was evidenced by the smaller values of the skewness 

statistic. In all experiments HL2 had generally the most 

skewed distributions thus confirming the speculation of 

Moazzami and Buse (1986) that this estimator might be 

significantly skewed. There was no noticeable pattern in 

skewness of the empirical distribution of forecasts of 

estimators as the forecast period was extended into the 

future. 
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TABLE 5.2-7:SKEWNESS STATISTICS FOR Y1 

Model 
1 

2 

3 

4 

h 
1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

HF1 
-0.0083 
-0.0202 
0.0459 
0.0572 
0.1432 

-0.0742 
0.052 
0.467 

0.8253 
4.2231 

-0.1507 
-0.0084 
0.0773 
0.4752 
1.5031 

-0.1686 
0.0006 
0.0883 
0.1254 
0.5971 

HF2 
-0.0067 
0.0289 
0.1822 

0.676 
1.5508 

-0.034 
0.0696 

1.024 
2.653 

7.6015 

0.1279 
0.0507 
0.1092 

0.866 
0.8688 

-0.0968 
0.0139 
0.1216 
0.2378 
1.1212 

T - 30 
HF3 

-0.0391 
-0.0537 
0.0024 

-0.0323 
-0.0641 

-0.1411 
0.0529 

0.101 
-0.116 
0.1481 

-0.0374 
0.023 

0.0063 
-0.0581 

0.1376 

-0.0664 
0.0033 
0.0414 

-0.1035 
-0.0223 

HL1 
0.0405 
0.0022 
0.0798 
0.3191 
0.7908 

0.0791 
0.0448 
1.3557 
3.539 

10.1444 

-0.106 
-0.0405 
0.0614 
0.5037 
1.6569 

-0.1183 
-0.0161 
0.0843 
0.4109 
1.3284 

HL2 
0.0763 
0.1492 
0.3488 
1.0095 
1.4276 

0.1908 
0.1372 
3.0143 
7.4567 

13.0066 

0.2367 
0.1093 
0.6013 

2.085 
3.6849 

-0.0212 
0.0031 
0.1702 
0.6937 
2.0677 

HL3 
0.0279 

-0.0412 
-0.0119 
-0.0488 
-0.0795 

-0.0617 
0.0182 
0.1907 

-0.0453 
0.8127 

-0.0215 
0.0204 

0.009 
-0.0557 
0.1363 

-0.0543 
-0.0227 
0.0243 

-0.1235 
-0.2908 

HF1 
0.0306 
0.0108 
0.0718 

-0.0172 
-0.0394 

-0.1324 
-0.0577 
0.0946 

-0.1893 
-0.2378 

-0.1023 
-0.0147 
0.0613 

-0.0769 
0.1074 

-0.1288 
-0.0073 
0.1009 

-0.0721 
0.1007 

HF2 
0.0676 
0.0288 
0.0508 

-0.0037 
-0 1331 

-0.031 
-0.0899 
0.3648 
0.3236 
1.4238 

0.1295 
-0.0121 
0.1694 
1.6577 

3.251 

-0.0445 
-0.027 
0.0457 

-0.0098 
0.188 

T - 60 
HF3 

0.0631 
0.0259 
0.0717 

0.011 
-0.021 

-0.0813 
-0.0614 
-0.0214 
-0.5737 
-0.9566 

0.0198 
0.0284 
0.0487 

-0.0459 
0.2033 

-0.0063 
-0.0169 
0.0777 
-0.093 

-0.0154 

HL1 
0.0423 
0.0098 
0.0493 
0.0198 

-0.0145 

-0.0576 
-0.1291 
0.1988 

-0.2117 
-0.2287 

-0.0521 
-0.0432 
0.0429 
0.0121 
0.4366 

-0.0562 
-0.018 
0.0772 

-0.0215 
0.2481 

HL2 
0.0762 
0.0601 
0.0662 

0.191 
-0.0472 

0.0671 
-0.1482 
0.5521 
0.3617 
1.2874 

0.2791 
0.1187 
0.7973 
2.8872 
5.4902 

0.048 
-0.036 
0.0347 
0.1739 
0.5541 

HL3 
0.0818 

0.029 
0.0597 

-0.0008 
-0.0522 

-0.0354 
-0.1346 

-0.077 
-0.8358 
-1.4496 

0.0209 
0.0182 
0.0641 

-0.0524 
0.2036 

0.0253 
-0.0248 
0.0628 
-0.181 

-0.2623 

o 



TABLE 5.2-8:SKEWNESS STATISTICS FOR Y2 

Model 
1 

2 

3 

4 

h 
1 
2 
3 
4 

5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

HF1 
0.3094 
0.1465 
0.3205 
0.4287 
0.3326 

0.895 
0.1367 

-1.1538 
-2.6866 
-6.2957 

0.7677 
0.1421 

-0.0514 
-0.4722 
-2.2928 

0.8192 
0.3082 

-0.0618 
-0.4769 
-1.9473 

HF2 
0.4505 
0.6747 
0.8416 
1.8092 
2.0332 

0.3565 
-0.2521 
-2.7013 
-5.3547 
-9.2119 

-0.3942 
-0.1884 
-0.1373 
-0.1002 
0.3349 

0.122 
0.2049 

-0.0742 
-0.5128 
-2.0001 

T - 30 
HF3 

0.1942 
-0.0267 
0.1004 
0.0754 

0.08 

0.8895 
0.2296 
0.0405 

-0.0825 
-0.6597 

0.2352 
0.0731 
0.0182 
-0.015 

-0.0233 

0.4192 
0.2023 
0.0927 
0.0612 
0.1978 

HL1 
0.2241 
0.2314 
0.3231 
0.8772 
1.0933 

0.8816 
-0.0016 

-2.566 
-5.7316 

-10.4724 

0.8881 
0.1607 
0.0164 

-0.4981 
-2.0746 

0.9557 
0.2261 

-0.0794 
-0.9493 
-3.3596 

HL2 
0.5052 
0.9101 
0.8777 
2.1464 
2.0356 

0.1473 
-0.9132 
-5.1646 
-9.0384 

-12.8631 

-0.2627 
-0.3073 
-0.6648 

-1.869 
-3.3956 

0.2981 
0.0039 

-0.2945 
-1.34 

-3.6182 

HL3 
0.1369 

-0.0171 
0.1925 
0.2941 
0.2242 

1.021 
0.5173 
0.2941 
0.0575 

-1.3997 

0.2438 
0.0639 
0.0496 

-0.0194 
-0.0335 

0.4812 
0.2116 
0.2449 
0.2091 
0.3032 

HF1 
0.3474 
0.1092 

0.177 
-0.0836 
-0.1166 

1.0065 
0.5026 
0.0441 
0.2286 
0.2586 

0.9256 
0.1025 
0.0593 

-0.0076 
-0.0572 

0.9655 
0.3262 
0.0921 
0.0311 
0.0179 

HF2 
0.2226 
0.2077 
0.2597 
0.2551 
0.0096 

0.5457 
0.3922 

-0.6188 
-0.8153 
-1.3485 

-0.63 
-0.2869 
-0.5049 
-1.3755 

-2.868 

0.2963 
0.1638 
0.0816 
0.0216 

-0.2552 

T - 60 
HF3 

0.1663 
-0.0311 
0.1234 

-0.1174 
0.0251 

0.9184 
0.802 

0.9281 
1.5239 
2.0379 

0.4942 
0.0468 

-0.0052 
-0.0646 
-0.0828 

0.4635 
0.3352 
0.2884 
0.3748 
0.7729 

HL1 
0.2453 
0.1252 
0.1503 

-0.0131 
-0.0525 

1.1942 
0.7245 
0.1898 

0.237 
0.0844 

1.3042 
0.1204 
0.0356 
-0.099 

-0.3485 

1.3002 
0.3248 
0.1116 

-0.0435 
-0.2337 

HL2 
0.2158 
0.3636 
0.2774 
0.5485 

-0.0798 

0.6514 
0.6674 

-0.3992 
-0.6374 
-1.2606 

-0.4853 
-0.3806 
-0.8207 
-2.0874 

-3.975 

0.5957 
0.1199 
0.0074 

-0.2607 
-0.8592 

HL3 
0.0957 
0.0053 
0.1643 
0.0494 
0.3084 

1.2155 
1.0473 
1.3837 
2.0492 
2.6278 

0.6186 
0.0688 
0.0232 

-0.0565 
-0.0316 

0.6512 
0.3715 
0.3984 
0.5516 
1.1867 

to 
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The distributions of forecast were more skewed in model 

2 than in model 1 which suggests that decreasing the 

coefficient of the lagged endogenous variable and 

autocorrelation seems to increase skewness. In fact, the 

absolute values of the skewness statistic were much higher 

for models 2, 3 and 4 than for model 1. Furthermore, the 

skewness was most uniform across estimators for model 4. Again 

it must be borne in mind that, in virtually all cases, the 

values of the skewness statistic were fairly close to zero. 

Kurtosis 

Tables 5.2-9 and 5.2-10 show the kurtosis statistics for 

yl and y2, respectively. 

In all experiments the values of the kurtosis statistic 

were greater than 3 implying that they have more peaked 

distributions compared to the standard normal distribution. 

However, as the sample size was increased from 30 to 60, the 

values of the kurtosis statistic generally decreased though 

still greater than 3. Although no estimator consistently had 

the highest values of the kurtosis statistic for all the 

forecast periods, HF2 and HL2 tended to have the most peaked 

distributions in all experiments and for both sample sizes. 

The kurtosis generally decreased as the sample size was 

increased and this was true in all experiments. 



TABLE 5.2-9:KURTOSIS STATISTICS FOR Y1 
T - 30 

HL2 HL3 
3.0895 3.1169 
3.3564 3.0981 
4.6441 2.8053 

3.0673 5.4959 2.8665 4.1466 10.0805 2.7575 

Mode 
1 

I h 
1 
2 
3 

HF1 
3.0113 
3.0887 
2.8926 

HF2 
2.997 

3.0617 
3.2008 

HF3 
3.0662 
3.0796 
2.8004 

HL1 
3.022 

3.0948 
2.9946 

3.8407 12.7521 3.0551 9.3557 21.2604 3.026 

HF1 
2.9964 
3.1219 
2.9721 

2.88 
3.0967 

HF2 
2.9572 
3.0836 
2.9456 
3.1643 
3.9863 

r - 60 
HF3 

3.0434 
3.144 

3.0116 
3.0157 
3.2184 

HL1 
2.987 
3.096 

2.8813 
2.8894 
3.2554 

HL2 
2.9954 
3.3057 
3.5195 
5.7239 
10.5731 

HL3 
3.0404 
3.1168 
2.9339 
2.9624 
3.2618 

1 3.8141 3.8061 3.5512 4.117 
2 3.0905 3.0885 3.0735 3.0945 
3 4.8031 8.2313 3.2325 11.7677 
4 8.9592 26.6985 3.187 43.7007 
5 56.8952 112.015 6.4103 180.247 

4.259 3.5421 
3.2768 3.0592 

29.0179 3.4969 
102.977 5.1054 
225.063 20.7864 

3.3722 3.395 
3.047 3.1812 

3.2686 5.027 
5.1292 11.8249 
8.7054 31.5842 

3.1628 
3.0445 

3.079 
4.5153 

3.2944 
3.2478 
4.3668 
8.1897 

7.2113 13.7831 

3.3147 
3.3986 
6.5229 
15.789 

31.8886 

3.0902 
3.2146 

3.416 
6.002 

9.6128 

1 3.3395 3.2473 
2 2.9063 3.0209 
3 3.227 6.0623 
4 6.4869 17.1052 
5 17.2746 43.9959 

2.818 3.3779 3.4596 2.8511 
2.8741 2.8333 3.1154 2.8541 

3.147 2.9887 6.3313 3.0163 
2.952 6.0684 17.1867 2.9863 

3.2348 14.893 37.6831 3.0761 

3.3406 3.1478 2.8584 3.3853 3.3725 2.8493 
2.9379 3.3942 2.9073 2.8956 4.0692 2.8909 
3.0197 6.2305 2.9357 3.076 10.3457 2.9495 
3.1336 21.7959 2.8874 3.5224 35.532J 2.9239 
3.5479 57.2016 3.2249 4.9271 90.3921 3.237 

1 3.3763 3.1956 
2 2.9791 2.9753 
3 3.1386 3.1953 
4 3.6076 4.0102 
5 6.3259 11.4611 

3.0928 
3.0117 
3.0867 
2.8541 

3.3504 
2.9273 
2.9024 
4.9586 

3.2646 
2.8945 
3.0654 
5.5394 

3.2904 12.2537 17.9096 

3.1267 3.2065 3.0117 2.9423 3.1866 3.0704 2.9453 
3.0012 3.0064 2.9738 2.9292 2.9578 2.9346 2.889 

2.953 2.9133 2.9211 2.9481 2.8869 2.9635 2.9403 
2.8669 2.7497 2.9427 2.913 2.9716 3.9236 3.2892 
4.5386 3.0993 4.3726 3.5451 3.771 7.3072 4.4697 

to 
i-o 



TABLE 5.2-10:KURTOSIS STATISTICS FOR Y2 
T - 30 

Mode 
1 

\ h 
1 
2 
3 

HF1 
3.1452 
3.4015 
3.4205 

HF2 
3.8305 
5.5691 
7.3798 

HF3 
3.1496 
2.8256 
2.7366 

HL1 
3.0101 
3.9636 
4.0736 

5.3111 13.119 2.0884 7.8304 

HL2 HL3 
3.9722 3.1006 
7.2913 2.9345 

10.6341 2.9771 
18.643 3.4003 

5.3088 18.1823 3.5377 17.3707 31.2828 4.1633 

HF1 
3.3339 
3.3272 
2.9644 
3.3998 
3.1041 

HF2 
2.9959 
3.9807 
3.6373 
4.2937 
3.8742 

• - 60 
HF3 

3.015 
3.031 

2.8899 
3.3031 
3.6081 

HL1 
3.1604 
3.3653 
3.1307 
3.4539 
3.2895 

HL2 
3.1268 
4.8627 
4.9125 
6.5457 
8.8862 

HL3 
2.9911 

3.149 
3.1409 
3.6775 
4.8877 

1 7.4778 8.4138 6.8649 8.1601 9.9117 7.452 
2 5.0257 7.7031 4.8345 5.7265 12.5594 5.4051 
3 11.0492 27.6837 4.625 27.6533 60.7561 8.224 
4 30.1302 65.4265 7.0086 77.2435 131.0016 16.9755 
5 89.8429 138.55 15.3411 175.724 215.9977 39.797 

7.1341 6.983 
5.377 7.1647 

7.0993 13.6771 
9.8504 21.3538 

6.5355 7.9137 
5.4858 6.1817 
6.8692 8.571 
9.4576 13.2638 

15.1811 35.5701 13.3982 19.8964 

7.885 
7.4409 
12.5241 
20.419 
33.2927 

7.8414 

6.3583 
8.8282 
12.8716 
17.3987 

1 
2 

3 
4 
5 

7.0122 
3.429 
3.4887 
5.4758 
26.0913 

6.792 
4.274 

10.0972 
26.264 

67.6158 

3.7249 
2.9653 
2.9176 
3.2532 

7.0003 
3.5633 
3.4424 
5.3083 

2.8842 20.8174 

6.6423 3.6776 6.9226 5.8989 4.0693 8.458 6.7305 4.4777 
4.3957 3.0197 3.2927 3.8966 2.9372 3.434 4.4256 2.9995 
8.1486 2.9627 3.0875 9.1204 2.9215 3.2548 10.6198 2.9228 

18.9671 3.1874 3.6168 19.377 2.9931 4.067 24.5925 3.0876 
39.6803 2.9213 4.362 45.065 2.8006 5.8002 56.6479 2.9181 

7.1681 
4.4374 
3.7084 
5.7885 

21.9121 

6.2039 
4.4578 
4.4706 
7.9302 

29.7474 

4.5745 
3.6121 
3.0264 
3.6517 

7.5404 
4.4133 
4.4851 
9.9197 

3.4842 40.2248 

6.6138 
4.4539 

4.878 
10.7725 
33.4365 

5.0194 
3.5754 
3.3008 
4.1209 

4.058 

6.9834 
3.8375 
3.1096 
3.1942 

6.5082 
3.5904 

3.668 
4.173 

4.8055 
4.3701 
3.8467 
5.0078 

8.1779 
4.0029 
3.3281 
3.6967 

3.3584 6.6108 8.7033 5.1462 

7.8089 
3.986 

4.2316 
5.7246 

10.9218 

5.5148 
4.4176 
4.0954 
5.8927 

11.8241 

•tv 
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5.3 Ranking statistics 

The ranking statistics presented here show how changes 

in the coefficients of the lagged endogenous variables and 

autocorrelation affect the MSE's of the structural parameters 

and forecasts. We discuss the ranking statistics for 

structural estimation and prediction separately. 

Ranking statistics for structural estimation 

The ranking statistics for the structural parameters 

based on the MSE are given in Table 5.3-1. The sums of the 

ranks given in Table 5.3-1 are based on all the structural 

coefficients (excluding the two intercept parameters). The 

estimators are first ranked in individual experiments and then 

an overall ranking is provided for all the experiments 

combined. The values and the significance of Kendall's 

coefficient of Concordance (W) are also given in the last 

column of the table. These values are used to compute the 

rankr of the estimators displayed in Table 5.3-1 (a). 

Although HF1 emerged as the winner in experiment 1, the 

value of Kendall's W is low and insignificant at the 5 percent 

level indicating a lack of evidence of systematic ranking of 

the estimators. This observation is true for both sample sizes 

30 and 60. HF1 also dominated in all the other models (i.e., 

models 2, 3 and 4). For all models, the ranking of the 

estimators became weaker when the sample size was increased 

from 30 to 60. Furthermore, the ranking of the estimators 
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based on all models did not produce any clear winner due to 

the low value of Kendall's W (0.327 for sample size 30 and 

0.129 for sample size 60). Based on this criterion HF1 came 

out as the overall winner both for sample size 30 and sample 

size 60. HF3, HL1 and HF2 also occupied the top four positions 

based on this criterion. However, the low value of Kendall's 

W for both sample sizes were not significant enough to support 

the hypothesis of a systematic ranking of the six estimators. 

The ranking of the estimators was the strongest for model 3 

wherein the two autoregressive parameters assumed opposite 

signs. In this case HF1 emerged as the overall winner for both 

sample sizes, with its limited-information counterpart HL1 

followed as a close second and this, in tr was followed by 

HF3 and HL3. HF2 and HL2 occupied the last two positions. This 

ranking was the strongest for T=30 (W=0.721) and for T=60 (W 

= 0.584). The rankings remained basically the same for the 

other models. Thus, despite the rather weak rankings of 

estimator performance for models 1, 2 and 4, there was no 

doubt that based on the MSE criterion, HF2 and HL2 

(occasionally HL3) performed consistently worse. However, HF2 

performed surprisingly well in model 2, sample size 60, where 

the coefficient of the lagged dependent variable assumed a 

lower value. Kendall's W (0.089) for this particular case led 

to a clear rejection of the hypothesis of a systematic ranking 

among the estimators. Thus the strongest ranking was obtained 

in cases where the difference in the autocorrelation 
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coefficients was larger. Incidentally, HF2 and HL2 ranked last 

according to this criterion. Similar observations are valid 

of the ranking statistics for the autoregressive coeflicients 

indicated in Table 5.3-2. Except for model 3, the ranking was 

very weak for T = 60. The fact that significant differences 

among the estimators occurred in small samples can be seen 

from the results for the autoregressive coefficients in model 

4. Again HF1 « nd HF3 and their limited information 

counterparts occupied the top four positions with HF2 and its 

limited information counterpart HL2 occupied the last two 

positions. HF1 performed relatively the best in estimating the 

structural parameters. Again the ranking was the strongest 

for model 3. Note that significant differences among the 

estimators emerged only when the autocorrelation coefficients 

were larger and when the sample size was smaller. This 

suggests that the choice among these estimators becomes 

important when either the sample size is small or when the 

magnitudes of the autocorrelation coefficients are relatively 

large. 

Ranking statistics for predictions 

Table 5.3-3 gives the ranking statistics for the 

predictions based on MSEP. The last column of the table gives 

the values of Kendall's Coefficient of Concordance, W. The 

sums of the ranks relate to both yl and y2 combined over the 

five forecast periods. 



TABLE 5.3-1: RANKING STATISTICS FOR STRUCTURAL PARAMETERS BASED ON MSE 

128 

a)Sum of the ranks of the structural coef(icients(excludmg the intercept) 

T - 3 0 

T - 6 0 

Model 1 
Model 2 
Model 3 
Model 4 
All Models 

Model 1 
Model 2 
Model 3 
Model 4 
All Models 

HF1 
24 
14 
11 
16 
65 

23 
20 
16 
22 
81 

HF2 
24 

27.5 
39 

29.5 
120 

23 
27 
40 
33 

123 

HR. 
26 

21.5 
22 

21.5 
91 

29 
29.5 

20 
24.5 
103 

HL1 
30 
23 
20 
26 
99 

29 
27.5 
19.5 
22.5 
96.5 

HL2 
32 
44 
45 
29 

160 

31.5 
32 
43 

31.5 
138 

HL3 
32 
38 
31 
36 

137 

32.5 
32 

29.5 
34.5 

128.5 

W 
0.067 

0.561* 
0.721* 
0.339* 

0.327 

0.076 
0.089 

0.584* 
0.143 
0.129 

W denotes Kendall's Coefficient of Concordance 
* Significant at the 5 percent level of significance 

b) Ranking of estimators based on the sums in 5.3-1 a(Best to worst) 

T - 3 0 

T - 6 0 

Model 1 
Model 2 
Model 3 
Model 4 
All Models 

Model 1 
Model 2 
Model 3 
Model 4 
All Models 

HF1 / HF2 
HF1 HF3 
HF1 HL1 
HF1 HF3 
HF1 HF3 

HF1 / HF2 
HF1 HF2 
HF1 HL1 
HF1 HL1 
HF1 HL1 

HF3 / HL1 
HL1 HF2 
KF3 HL3 
HL1 HF2 
HL1 HF2 

HF3 / HL1 
HL1 HF3 
HF3 HL3 
HF3 HL2 
HF3 HF2 

HL2 HL3 
HL3 HL2 
HF2 HL2 
HL3 HL2 
HL3 HL2 

HL2 HL3 
HL2/HL3 

HF2 HL2 
HF2 HL3 
HL3 HL2 

/ between two estimators denotes a tie between these estimators 
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TABLE 5.3-2: RANKING STATISTICS FOR THE AUTOREGRESSIVE PARAMETERS BASED ON MSE 

a)Sum of ranks of non-zero elements of R and £ 

30 

T - 6 0 

Model 1 
Model 2 
Models 
Model 4 
All Models 

Model 1 
Model 2 
Model 3 
Model 4 
All Models 

HF1 
10 
11 
7 

11 
39 

11 
13 
10 
16 
50 

HF2 
15 
15 
20 
16 
66 

18 
22 
24 
23 
87 

HF3 
13 
12 
10 
6 

41 

14 
14 
14 
12 
54 

HL1 
21 
24 
20 
25 
90 

18 
20 
13 
14 
65 

HL2 
24 
27 
29 
26 

106 

23 
24 
27 

24.5 
98.5 

HL3 
22 
16 
19 
21 
78 

21 
12 
17 

15.5 
65.5 

W 
0.36 

0.488* 
0.717' 
0.726* 
0.511* 

0.223 
0.301 

0.506* 
0.293 
0.258 

W denotes Kendall's Coefficient of Concordance 
* Significant at the 5 percent level of significance 

b) Ranking of estimators based on the sums in 5.3-2a(Best to worst) 

Model 1 HF1 HF3 HF2 HL1 HL3 HL2 
Model 2 HF1 HF3 HF2 HL3 HL1 HL2 

T - 30 Model 3 HF1 HF3 HL3 HF2 / HL1 HL2 
Model 4 HF3 HF1 HF2 HL3 HL1 HL2 
All Models HF1 HF3 HL3 HL1 HF2 HL2 

Model 1 HF1 HF3 HF2 / HL1 HL3 HL2 
Model 2 HL3 HF1 HF3 HL1 HF2 HL2 

T - 6 0 Model 3 HF1 HL1 HF3 HL3 HF2 HL2 
Model 4 HF3 HL1 HL3 HF1 HF2 HL2 
All Models HF1 HL1 HF3 HL3 HF2 HL2 

/ between two estimators indicates a tie between these estimators 
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TABLE b.3-3: RANKING STATISTICS BASED ON MSEP 

a)Sum of the ranks for all the 5 forecast periods 

Model 1 
Model 2 
Model 3 
Model 4 
All Models 

HF1 
24 
25 
21 
19 
89 

HF2 
47 
38 
47 
29 

161 

HF3 
18 
12 
18 
22 
70 

HL1 
36 
49 
38 
45 

168 

HL2 
58 
60 
60 
55 

233 

HL3 
27 
26 
26 
40 

119 

W* 
0.656* 
0.881* 
0.768* 
0.563* 
0.636* 

Model 1 
Model 2 
Model 3 
Model 4 
All Models 

25 
22 
17 
19 
83 

42 
43 
49 
28 

162 

32 
14 
21 
33 

100 

28 
39 
29 
35 

131 

51 
59 
60 
50 

220 

32 
33 
34 
45 

144 

0.304* 
0.726* 
0.787* 
0.311* 
0.423* 

W denotes Kendall's Coefficient of Concordance 
* Significant at the 5 percent level of significance 

b)Ranking of estimators based on the rank sums in 5.3-3a (Best to worst) 

Model 1 HF3 HF1 HL3 HL1 HF2 HL2 
Model 2 HF3 HF1 HL3 HF2 HL2 HL2 
Model 3 HF3 HF1 HL3 HL1 HF2 HL2 
Model 4 HF1 HF3 HF2 HL3 HL1 HL2 

T = 30 All Models HF3 HF1 HL3 HF2 HL1 HL2 

Model 1 hR HL1 HF3 HL3 HF2 HL2 
Model 2 HF3 HF1 HL3 HL1 HF2 HL2 
Model 3 HK1 HF3 HL1 HL3 HF2 HL2 
Model 4 HF1 HF3 HF2 HL3 HL1 HL2 

T = 60 All Models HF1 HF3 HL1 HL3 HF2 HL2 
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A comparison of the entries in table 5.3-3 with those in 

tables 5,3-1 and 5.3-2 suggests that the rankings of the 

estimators according to the MSEP were much stronger than the 

rankings of the estimators based on the structural parameters 

for both sample sizes. However, the rankings were stronger 

for T = 30 than for T = 60. Again, for all models, HL2 came 

dead last with HF2 not very far behind. The full information 

estimators HF1 and HF3 occupied spots 1 and 2 interchangeably 

with their limited information counterparts following 

immediately behind. The ranking was extremely strong for model 

3 where there is a substantial difference in the 

autoregressive coefficients. The rankings were fairly 

consistent for all the four models. Thus using the MSEP 

criterion HL2 should possibly not be considered seriously for 

purposes of prediction. The rankings of the estimators on the 

basis of all the four models produced weak rankings (W=0.327 

for sample size 30 and W = 0.129 for sample size 60). As for 

the reliability of asymptotic covariance formulae, the full 

information estimators completely dominated in model 4 where 

one of the autocorrelation coefficients is zero. Accordingly 

the full information estimators tended to be relatively better 

for prediction if the autocorrelation coefficient was low. 

This ranking is what we would expect from asymptotic theory. 

However, the relatively low value of W for model 4 (T=60) 

precludes the advantage which the full information estimators 

might have over the limited information estimators for testing 
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hypotheses about predictions. Also the weak overall ranking 

of the estimators suggest that we should be concerned with the 

choice of the estimators either when the sample size is very 

small or when the differences in the autocorrelation 

coefficients are large as in model 3. 

5.4 Density estimates 

The kernel density estimates of the sampling 

distributions of the structural parameters and the forecasts 

are reported below in separate sections. 

To facilitate comparison of the estimators all the 

density estimates of the structural estimators/forecasts are 

drawn to the same scale. Also, in reporting the density 

estimates, the horizontal scale consists of the difference 

between the estimated value and the true value of the 

corresponding structural coefficient. However, it turns out 

that the direction of the biases are not very apparent from 

the density estimates. To avoid the complication which would 

arise in summarizing all the information regarding each 

experiment in a single diagram, the diagrams are presented in 

sets. Each set consists of 8 diagrams, each depicting the 

results of one of the eight sub-experiments corresponding to 

a particular structural coefficient or forecast, namely: 1A, 

IB, 2A, 2B, 3A, 3B, 4A and 4B. For example, for a particular 

structural coefficient or forecast, experiment 1A, depicts 

the result, for that structural parameter or forecast, for 
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model l, sample size 30. The A refers to sample size 30 and 

B refers to sample size 60. Similar interpretations are made 

for experiments 2, 3 and 4. Because of the similarities in 

the densities of the six estimators studied here, we chose to 

make general observations concerning the behaviour of the 

density estimates rather than venture into ranking the 

estimators on the basis of such density estimates. 

Density estimates of structural parameters 

Since the density estimates are quite similar and due to 

the space limitations we only report the density estimates of 

the coefficient of one lagged endogenous variable (coefficient 

number 2) and 2 exogenous variables (coefficients number 4 and 

10). A major limitation of the density estimates is that the 

degree of comparability depends on the scale used. For this 

reason we chose to interpret the skewness and kurtosis 

statistics together with the density estimates. Although the 

results for other structural parameters are not reported here, 

it must be mentioned that they are as suggested by the 

skewness and the kurtosis statistics presented in tables 

5.1-5 to 5.1-8. 

Density estimates of coefficient number 2 

The set of 8 diagrams, referred to as set 1, provides 

the density estimates of coefficient number 2, the coefficient 

of the lagged endogenous variable in the first equation. 
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A careful inspection of the density estimates indicates 

a great deal of similarity among the six estimators. As noted 

from the summary statistics above, the biases of coefficient 

number 2 were generally negative and significant. Although 

this information was not very apparent from the density 

estimates (because of the scale used) there was nevertheless 

a slight evidence of negative bias, especially in experiments 

2, 3 and 4. Also the dispersions of the estimators were 

generally greater for model 3 than for other models. 

Furthermore, the distributions appeared to be almost symmetric 

and exhibited sharper peaks. However, as the sample size was 

increased from 30 to 60, the peakedness of the distributions 

of the structural parameters increased considerably thus 

confirming the information provided by the skewness and 

kurtosis statistics. The vaiue of the kurtosis statistic 

increased as we increased the sample size from 30 to 60 and 

that all values were greater than 3 indicating that the 

distributions were more peaked than the standard normal 

distributions. 

Density estimates of coefficient number 4 

Set 2 summarizes the density estimates of the coefficient 

of the exogenous variable (coefficient no. 4). An inspection 

of the density estimates reveals marked differences in the 

distributions of this coefficient, especially for model 3 

where the autocorrelation coefficients differed widely between 
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the two equations. Again the distributions of the six 

estimators were almost symmetric. The density estimates also 

reveal that the peakedness of this distribution was not as 

high as for the corresponding values of coefficient No. 2. For 

model 3 we note that HF1 and HF2 have the most peaked 

distributions. Once aqain the density estimates have confirmed 

the information provided by the skewness, the kurtosis and the 

ranking statistics. 

Density estimates of coefficient number 10 

Set 3 presents the density estimates for the coefficient 

of the exogenous variable (coefficient number 10). The density 

estimates revealed near symmetry of the distributions of 

estimators in all models. The pronounced peakedness of the 

distributions relative to the standard normal distribution was 

also confirmed. Again the biases were not very apparent from 

the density estimates (due to the scale) but the most 

significant differences among the estimators occurred in model 

3. For both sample sizes, the estimators had the largest 

dispersions for model 1 and this was picked up by the density 

estimates. Also the peakedness of the distributions of the 

estimators increased and the MSE decreased as the sample size 

was increased. This information, as provided by the density 

estimates, was also contained in the descriptive statistics. 



136 

Prediction 

For prediction we only present the results for the 

three-step ahead and the five-step ahead forecasts for each 

of the two endogenous variables. 

Density estimates of three-step ahead forecasts 

Set 4 presents the density estimates of the three-step 

ahead forecast errors for the first endogenous variable, yl. 

Again the direction of the biases is not easy to see from the 

density estimates. An inspection of the density estimates, 

however, reveals that the distributions were almost symmetric. 

However, there was little change in the shape of the 

distributions of the estimators as we increased the sample 

size from 30 to 60. 

Referring to the skewness statistics in tables 5.2-7 and 

5.2-8, the absolute value of the skewnwess was fairly close 

to zero indicating near symmetry. Increasing the sample size 

from 30 to 60 resulted in almost near symmetry of the 

distributions as the skewness statistics decreased. The 

kurtosis, however, was fairly constant as the sample size was 

increased. This information was also revealed by the density 

estimates. 

Set 5 presents the density estimates of the three-step 

ahead forecast errors for y2. The density estimates of the 

three step ahead forerecast for y2 were almost identical to 

the three-step ahead forecast for yl and hence not discussed 

in detail. 
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b) Density estimates of five-step ahead forecasts 

Set 6 presents the density estimates of the five-step 

ahead forecast errors for yl. Again as noted above the biases 

were quite significant although it was not apparent from the 

density estimates. The density estimates became more 

symmetric as the sample size was increased from 30 to 60. 

However, the value of the kurtosis statistic decreased as the 

sample size was increased. This information was also contained 

in the density estimates. 

Set 7 presents the density estimates of the five-step 

ahead forecast errors for y2. Again the observations are quite 

similar to that of the five period ahead forecast for yl. 

5.5 Summary of major observations: 

a)Structural estimation 

1. The null hypothesis that the bias is equal to zero was 

rejected at the 5 percent level of significance for all 

estimators irrespective of the parameter, sample size or the 

model. The bias and the MSE generally decreased as the sample 

size was increased from 30 to 60. These observations were 

also true of the elements of R and S. The biases of the 

autoregressive parameters were generally negative. 

Furthermore, r„ and ra had relatively smaller biases than 

the elements of S. The absolute values of the biases tended 

to decrease with the absolute magnitudes of the 

autocorrelation coefficients. 
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2. For structural estimation the full information estimators 

HFl and HF3 and their limited information counterparts 

performed relatively better than HF2 and HL2 according to the 

MSE criterion. However, the performance of HF2 and HL2 

improved in cases where the differences between the 

autocorrelation coefficients were not very large. Considering 

the limited information estimators in isolation we note that 

HL2 performed consistently worse than HL1 and HL3. These 

results were similar to the findings of Moazzami and 

Buse(1986). 

3. The rankings of the estimators were very strong for model 

3 in which there was a large difference between the 

autocorrelation coefficients of the first and the second 

equation. Thus it seems that differences in the relative 

performances of estimators emerge in cases where the 

autocorrelation coefficients of the different equations in a 

model vary considerably. The rankings became weaker as we 

increased the sample size suggesting that the choice among 

estimators is relatively more important when the sample size 

is small. 

4. The number of type I errors encountered in each experiment 

was zero for all the six estimators. This anomalous result 

questions the reliability of the asymptotic standard errors 

computed from the asymptotic covariance matrix of estimators 

for testing hypotheses in small sample situations. More 

specifically, there is need to make significant small sample 
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adjustments in tests of hypotheses concerning structural 

parameters if the tests are to be of the right power. 

Prediction 

1. Both positive and negative biases were observed. The biases 

and the MSEP's generally decreased as the sample size was 

increased. In addition, the MSEP increased as the forecast 

period was extended. 

2. Using the MSEP criterion we found that the full 

information estimators HFl and HF3 performed as well as their 

limited information analogues. The ranking remained basically 

the same even if we considered each endogenous variable 

separately. However, the ranking became weaker as the sample 

size was increased as evidenced by a low value of Kendall's 

W. In par cular the ranking became extremely weak for model 

4 in which the autocorrelation coefficient in the second 

equation was zero. These were the only cases in which the 

relative performance of HF2 showed dramatic improvement. 

Considering the limited information estimators in isolation 

(i.e. HL1, HL2 and HL3) , our results corroborated the findings 

of Moazzami and Buse (1986) who found that HL2 performed worse 

than HL1 and HL3. It must be mentioned, however, that 

Moazzami and Buse ranked the estimators on the basis of 

structural estimation. Thus there is some reason to believe 

that the ranking of the two step estimators is the same in 

both structural estimation and prediction. However, the 
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ranking of the estimators according to MPB alone was mixed. 

Since the MSEP incorporates both the bias and the variance, 

it seems quite reasonable to rely on the MSEP results. Noting 

that HFl, HF3 and their limited information counterparts HL1 

and HL3 performed superior to HF2 and HL2 and that HFl, HF3, 

HL1 and HL3 used the unrestricted reduced form predictions in 

the second stage (whereas HF2 and HL2 used restricted reduced 

form predictions in the same stage) provide some support for 

the use of the unrestricted reduced form predictions rather 

than the restricted reduced form predictions in the second 

stage. 3. Regarding the reliability of the asymptotic 

covariance matrix of the dynamic simulation forecasts, the 

limited information predictors tended to perform, in general, 

better than the full information predictors as evidenced by 

the number of type I errors for yl and y2. This result is 

especially true in cases where the autocorrelation 

coefficients in both equations were large. This result (for 

model 1) is not surprising as the computation of the 

asymptotic covariance matrices for the full information 

predictors involve a greater number of matrix inversions and 

this increases the cumulative effect of rounding errors, and 

lead to an increased possibility of near singularity of the 

relevant matrices. Although there were too many rejections 

for the 1 step ahead forecasts, the results tended to 

stabilize as the forecasts were made further ahead into the 

future. Even HF2 and HL2 performed well according to this 
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criterion. Thus, if the main purpose of structural estimation 

is for testing hypothesis and constructing confidence 

intervals for forecasts, the limited information estimators 

should be used as they performed relatively better. 
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Experiment 1B:3 step ahead forecast for y1 
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bET 7. Experiment 1A:5 step ahead forecast for y2 
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Experiment 3B:5 step ahead forecast for y2 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

In this study we sought to understand the relative small 

sample properties of several two-step estimators of dynamic 

simultaneous equations models with autocorrelated erroj.j using 

the Monte Carlo approach. The six estimators studied were 

proposed by Hatanaka and include three full information 

estimators denoted by HFl, HF2 and HF3 and three limited 

information estimators denoted by HL1, HL2 and HL3. All the 

six estimators have the desirable asymptotic properties of 

consistency and asymptotic efficiency. If asymptotic 

properties of the estimators reflect their performance in 

small samples, we would expect the full information estimators 

to perform relatively better than their limited information 

counterparts. However, since asymptotic properties of the 

estimators are not necessarily a reflection of their 

performance in small samples, we examined the relative 

performances of these estimators using typical samples of 

sizes 30 and 60. For purposes of experimentation, a 

two-equation model was chosen which roughly reflects the 

characteristics of a real-world model and, in addition, 

satisfied the standard assumptions usual?y made for models of 

this type. The changes in the parameters were made to reflect 

varying degrees of autocorrelation and changes in the 

coefficients of the lagged endogenous variables. To this end, 
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four different structures depicting these changes were 

considered. As it turned out the performance of the estimators 

were sensitive to changes in the magnitudes of the 

autocorrelation coefficients as well as the coefficients of 

the lagged endogenous variables. 

The study covered the econometric issues of structural 

estimation, prediction and hypothesis testing. In particular, 

the following questions were addressed: 

1. How do the small sample properties of these estimators 

compare for purposes of structural estimation and for dynamic 

simulation forecasting? 

2. How reliable are the formulae for the asymptotic covariance 

it, 'ices of the estimators of structural coefficients and the 

dynamic simulation forecasts for purposes of testing 

hypotheses in small sample situations? 

3. How do the kernel density estimates of the samplinq 

distributions of the structural parameters and the forecasts 

compare when small samples are used and what are the effects 

of changing the sample size on the shapes of these 

distributions? 

The first issue was analysed using the basic measures of 

bias, dispersion, skewness and kurtosis. 

We present below a summary of the conclusions arrived at 

in this study. We categorize the conclusions into specific 

conclusions and general conclusions. 

Specific conclusions 



n: 
a)Structural estimation 

Biases: 

All the six estimators were significantly biased. The 

absolute values of the biases were very large in cases where 

the degree of autocorrelation in the model was also large. 

In such cases the biases were mainly positive. However, as 

the degree of autocorrelation was reduced the biases became 

mostly negative. In general, the limited information 

estimators had lower absolute values of the biases than the 

full information estimators in estimating the parameters of 

the equation with high autocorrelation and the reverse was 

true in cases of low absolute values of the autocorrelation 

coefficient. The most consistent rankings of the estimators 

according to the bias criterion seemed to occur only if the 

difference between the autocorrelation coefficients in the 

two equations was relatively large. 

Referring to the absolute values of the biases, the 

ranking of the estimators according to this criterion was 

almost impossible, except for the fact that HF2 and HL2 tended 

to have larger biases. The biases generally decreased as the 

absolute values of the magnitudes of the autocorrelation 

coefficients were decreased and in this case the differences 

among the estimators became less pronounced. The biases of the 

autoregressive coefficients were generally negative and tended 

to decrease as the sample size was increased. Furthermore, the 

absolute values of the biases of the elements of 2 were 
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relatively larger than those of r„ and r^. 

Mean Square Errors: 

In general the limited information estimators tended to 

have larger MSE's than the full information estimators when 

autocorrelation was high. However, the reverse was true when 

autocorrelation was low. Also the MSE's of the elements of Z 

were generally higher than those of the non-zero elements of 

R. The MSE's generally decreased as the sample size was 

increased. In terms of overall ranking of the estimators 

according to the MSE criterion, the full information 

estimators HFl and HF3 and their limited information 

counterparts performed marginally better than HF2 and HL2. 

Perhaps, the only useful conclusion that could be reached is 

that HL2 performed consistently worse. This suggests that HL2 

should possibly not be considered as a serious candidate for 

structural estimation. The ranking became extremely weak 

except in cases where there were no significant differences 

in the autocorrelation coefficients of the two equations. The 

ankings of the estimators according to the MSE's were only 

strong with sample size 30. The rankings became weaker as the 

sample size was increased. In fact, most of the time the 

estimators tended to perform better with an increase in sample 

size. Thus, as the sample size was increased the differences 

amongst the estimators became negligible. Except for HF2 and 

HL2, the differences among the estimators were not all that m 

pronounced. 
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Hypothesis testing: 

The asymptotic covariance matrices of the estimates of 

the structural parameters produced anomalous results for all 

the six estimators. The failure to find any rejections 

indicates the need to make significant small sample 

adjustments to the computed covariance matrix of errors, which 

in turn, might: increase the power of the test. The exact 

nature of the small sample adjustments required needs to be 

explored. 

Density estimates, skewness and kurtosis: 

The ranking of the six estimators according to the 

density estimates is almost impossible. However, an inspection 

of the density estimates reveals that these are more or less 

symmetric. This observation remained invariant to the model 

used and was also supported by the skewness statistics. In 

relative terms, the full-information estimators tended to be 

more skewed than their limited information counterparts when 

autocorrelation was high and the reverse was true when 

autocorrelation was low. Also if the autocorrelation 

coefficient for a particular equation was high, the 

distribution of the estimates of the parameters of that 

particular equation tended to be more skewed than those of the 

other equation, for any given estimator. The kurtosis 
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statistics show that the density estimates were leptokurtic. 

The value of the kurtosis statistic was greater than 3 for all 

coefficient parameters in all models suggesting that the 

distributions were more peaked than the standard normal 

distribution. The skewness and kurtosis increased as the 

sample size was increased. However the density estimates 

provided us with visual descriptions of the distributions of 

the two-step estimators. It must also be mentioned that the 

skewness and kurtosis statistics of the non-zero elements of 

S were relatively larger than the non-zero elements of R and 

these values tended to increase as the sample size was 

increased. 

In relative terms the full information estimators tended 

to be more skewed than their limited information analogues 

when autocorrelation was high and the reverse was true when 

autocorrelation was low. If autocorrelation was high for a 

particular equation the distribution of the estimates of the 

coefficients of that equation tended to be more skewed. 

b)Prediction 

The conclusions that have emerged from our analysis of 

the sampling distributions of the dynamic simulation forecasts 

of estimators are given below. 

Like the structural parameters the biases of the 

prediction errors of all the six estimators were significant 

at the 5 percent level. Although the direction of the biases 
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was not clear, the biases of the prediction errors became 

generally negative as the gap between the autocorrelation 

coefficients of the two equations was widened. It is 

impossible to make a meaningful ranking of the estimators 

according to the magnitude of the prediction biases. Generally 

HF2 and HL2 were the most biased though the results were 

rather mixed. The biases were smallest for model 4 compared 

to the corresponding forecast periods in models 1, 2 and 3 

suggesting that decreasing the autocorrelation coefficients 

might reduce the prediction biases. However, the rankings of 

the estimators became fairly consistent when the difference 

between the autocorrelation coefficients of the two equations 

was large. 

Significant differences amongst the estimators emerged 

only if there were large differences in the autocorrelation 

coefficients and when the sample size was small. In general, 

the limited information estimators tended to outperform the 

full information estimators according to the MSEP criterion 

when autocorrelation was low. Overall, there seemed to be no 

substantial differences among the predictors HFl, HL1, HF3 

and HL3. However, HF2 and HL2 performed consistently worse. 

Thus, for forecasting purposes, HF2 and HL2 should not be 

used. The MSEP behaved as expected from theory (i.e., 

decreased as the sample size was increased) , except for HT?2 

and HL2 which tendec to behave erratically as the sample size 

was increased. In general, the full information estimators 
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dominated the limited information analogues when 

autocorrelation was low and imited information estimators 

performed marginally better when autocorrelation was high. 

Most of the times the estimators performed better with an 

increase in sample size and the differences among the 

estimators became less pronounced. 

Hypothesis testing: 

A major conclusion with respect to the use of the 

asymptotic standard errors is that inferences concerning 

pr»dictions is not very reliable unless the sample sizes were 

fairly large. As noted above, the number of type I errors were 

generally larger for T = 30 than for T = 60. When T = 30, the 

asymptotic formulae resulted in too many rejections as 

indicated by the number of type I errors. As the sample size 

was increased the number of type I errors generally decreased. 

For these formulae to be reliable, samples of at least size 

60 are required for valid inferences to be made. This is 

likely to be a stringent requirement since applied researchers 

work typically with sample sizes that are, in most cases, 

considerably less than 60, except in cases where the data are 

either quarterly or monthly. In particular, the asymptotic 

formulae were extremely unreliable when the absolute values 

of the autocorrelation coefficients are close to unity. Thus, 

if the autocorrelation coefficients r.re high, fairly large 

samples are required. 
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Returning to the relative performances of the six 

estimators considered in this study we note that when 

autocorrelation was very high, the limited information 

estimators HL1, HL2 and HL3 tended to perform relatively 

better than the full information estimators HFl, HF2 and HF3 

in tests of hypotheses and construction of confidence 

intervals for predictions. This result is not surprising as 

the computation of the asymptotic covariance matrices of the 

full-information estimators involve a greater number of matrix 

inversions than the limited information estimators. This 

enhances the possibility of rounding errors to accumulate 

which might result in near singularity of the matrices 

involved. As it turned out the singularity problem mentioned 

above was relatively more frequent with the full-information 

estimators than with the limited information estimators. Even 

in cases where the autocorrelation was high, the ranking of 

the estimators was not consistent for all the forecast 

periods. However, as the absolute values of the 

autocorrelation coefficients were reduced, the full 

information estimators regained their dominance over the 

limited information estimators and that the predictors in 

small samples behaved as suggested by asymptotic theory. 

Though the differences between HFl and HF3 and their 

limited information counterparts HL1 and HL3 were marginal, 

the limit jd information estimators seem preferable for 

purposes of testing hypotheses about predictions and for 
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constructing confidence intervals of forecasts when 

autocorrelation was high. The fact that the limited 

information estimators performed quite well when 

autocorrelation was high is of practical significance, because 

they are computationally easier to apply. 

Density estimates, skewness and kurtosis 

The kernel estimates of the sampling distributions 

suggest that the distributions of the prediction errors were 

almost symmetric and that they remain invariant to changes 

in the autoregressive coefficient and/or the coefficient of 

the lagged endogenous variable. It should be emphasized that 

the density estimates become extremely useful when used in 

conjunction with the skewness and the kurtosis statistics. It 

turned out that the density estimates of the six two-step 

estimators considered here were quite similar. The most 

significant differences amongst the estimators occurred only 

in cases where the differences between the autocorrelation 

coefficients of the two equations were quite high, i.e., in 

model 3 where r„ and r^ were 0.9 and -0.6, respectively. 

The skewness and the kurtosis of the sampling 

distributions of the dynamic simulation forecast errors 

generally decreased as the sample size was increased. 

General conclusions 

1. No estimator emerged as the universal winner in all the 
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three aspects, i.e., structural estimation, prediction and 

hypothesis testing. This is partly because the relative small 

sample properties of the estimators depended to some extent 

on whether the models were used for structural estimation and 

hypothesis testing or prediction and hypothesis testing. More 

specifically, the relative small sample properties of the 

estimators for structural estimation tended to differ from 

their properties in prediction. Furthermore, the relative 

performances of the estimators were sensitive to the degree 

of autocorrelation, as well as to changes in the coefficients 

of the lagged endogenous variables. However, if the sample 

sizes are fairly large, there is no reason to choose one 

estimator over the other as the rankings became extremely 

weak, except in cases where the differences in the 

autocorrelation coefficients across equations were large. 

2. The rankings of the estimators based on prediction 

performances are much stronger than their rankings in 

structural estimation as measured by Kendall's W. This is not 

surprising since prediction involves more steps than 

structural estimation thus leaving more room for differences 

amongst the estimators to emerge. 

3. Density estimates should be used in conjunction with other 

descriptive statistics like skewness and kurtosis. A plot of 

the density estimates enables us to examine visually the 

shape of the sampling distributions and their sensitivity to 

changes in the sample size. In particular, the information 
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about the sampling distributions of the estimators, which are 

conventionally provided by the skewness and the kurtosis 

statistics, are also apparent from the density estimates. 

However, the density estimates may not facilitate the ranking 

of estimators in cases where the sampling distributions of 

these estimators are very similar in shape. 

An important criterion for evaluating the alternative 

estimators is their relative robustness to changes in the 

values of the parameters. The ideal requirement is for an 

estimator to be able to perform quite well in the parameter 

space that is most likely to be encountered in actual 

empirical work. Although Monte Carlo studies are often 

criticized for concentrating on a few selected points in the 

appropriate parameter space, nevertheless, the results of such 

studies provide us with some useful clues regarding the shapes 

of the small sample distributions of the estimators. 

Clearly, the foregoing discussion suggests that the 

choice among different estimators is not an easy one as their 

performances were similar in many respects. There were no 

significant differences among the estimators when large sample 

sizes were used, except in cases where there are large 

differences in the autocorrelation coefficients of the two 

equations. Nevertheless, the results of the sampling 

experiments presented here provide useful information 

regarding the relative small sample performances of the 
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estimators for models of the type used in this study. We hope 

that these results will be of some use to applied researchers 

as well as a guide to those who might wish to pursue this 

problem using analytical techniques. Furthermore, we were able 

to corroborate some of the results of Moazzami and Buse 

(1986). The computational convenience of Hatanaka's estimators 

render them quite attractive in empirical work and any effort 

to understand their relative performances in small samples is 

fruitful. Finally, it must be noted that the results presented 

in this study are subject to correct specification. The effect 

of specification errors on the relative performances of these 

estimators is an area for future research. 
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