ESTIMATION OF VARIANCE COMPONENTS WITH MISSING DATA

By
Xiaowei Li
SUBMITTED IN PARTIAL FULFILLMEN'T OF 'TIE REQUREMENTS FOR THE IDEAREF OF
DO'TOR OF PHILOSOP'HY
AT
DALHOUSIE UNIVERSITY
HALIFAX, NOVA SCOTIA
NOVEMBER 1995

(c) C'opyright by Xiaowei I.i, 1995

Acquisitions and Biblographic Services Branch
395 Wellington Street
Ottawa, Onlario
KIAON4

Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington
Othawa (Ontario)
K1A ON4

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

Name X/AOWE L LI
Dissertation Abstracts Intemational is arranged by broad, general subject categ, ries. Please select the one subject which most nearty describes the content of your dissentation. Enter the corresponding four-digit code in the spaces provided.
statistics
SUBRCT IERM

- 16 UMM , MCT CODE

Subject Categories

THE HUMARITIES AND SOCIAL SCIENCES

Contents

List of Tables vi
List of Figures vii
Abstract viii
Acknowledgements ix
1 Introduction 1
2 Review 9
3 The 1-Way Classification 16
3.1 The Model 16
3.2 MLE for (omplete-Data 17
3.3 MLE for Incomplete Data 19
3.4 Examples 22
3.5) Ithe EM Algorithm 25
4 The 2-way Nested Classification 28
4.1 The Model 28
1.2 The Complete-Data 29
4.2.1 Balanced data 29
4.2.2 Unbalanced data 35
4.3 MLE for Incomplete Data 3!)
4.4 Computation 12
4.5 examples 15
5 Properties of the Estimator 54
5.1 Proofs of Proposition 2 and Proposition 5) 51
5.2 The Existence of ML estimate 58
5.3 Confidence Intervals 61
6 Robust Procedures 64
6.1 The Need for Robust Statistics 61
6.2 The Influence Function (i6)
6.3 A Robust Proredure 72
6.4 Examples 81
7 Estimation of Random Effects 85
7.1 Introduction 85
7.2 Estimation with C'omplete Data 86
7.3 Estimation with Missing Data $x 7$
7.4 Example 90
8 Concluding Remarks 92
A Source Code of Programmes Used 94
A. 1 One-Way 91
A. 2 One-Way Robust 103
A. 3 Two-Way Nested 112
A.3.1 Header File 112
A.3.2 Two Source Files 114
Bibliography 141

List of Tables

1.1 Estimatts by tuo standard methods compared with estimates bastd oncomplete sample53.1 Complele Ott's data. 23
3.2 Incomplele Ott's data 23
3.3 Estimales by tu'o methods compared with MLE with complete data 24
3.4 ('omparison of MLE and MLE $E_{m i s}$ for 10 Simulations 24
4.1 ('omparison of the three methods 51
1.2 ('omparison of the three methods 51
1.3 Point stimates and confidence intervals $(\alpha=0.05)$ 52
(6.1 $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0$ and $\mu=0.0$ with complete data 65
(6.2 $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0$ and $\mu=0.0$ with data which are greater than 0.0 66
$6.3 \sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0$ and $\mu=0.0$ with complete data 82
(6.4 $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0$ and $\mu=0.0$ with data which are greater than 0.0 82
(6.5) $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0, \mu=0.0$ with data which are great than 0.0 84

List of Figures

1.1 Observed and population distributions 6
4.1 Box-plot for each component and μ by the three methods 17
4.2 Box-plot with four different missing rates 19

Abstract

A mothod to estimate variance components with missing data is presented. A typical application is in aquaculture genetics, in which breeding procedure may produce thousands of individuals. This method enables us to estimate genetic variance components when only a small proportion of individuals, those with extreme phenotypes, have been identified. In aquaculture populations the individuals available for measurement will often be selected, i.e. will come from the upper tail of a size-at-age distribution, or the lower tail of an age-at-maturity distribution etc.

Standard analysis of variance or maximum likelihood estimation cannot be used when missing data is not missing at random because of the biased nature of the estimates. In our model-based procedure a full likelihood function is defined, in which the missing information has been taken into account. This likeiihood function is transformed into a computable function which is maximized to get the estimates. The computational methodology is outlined and a program is available.

This method is applied to simulated data and aquacultural data. The results obtained ari significantly and uniformly more accurate than those obtained by any of the standard methods. Different issues concerning the method (such as the existence, unicueness, conficlence intervals, robust procedure, and random effects estimation) have been discussed in the thesis.

Acknowledgements

I wish to express my sincere thanks to my supervisor, Dr. (hristopher Findd, for his invaluable advice and continual encouragement during my geaduate st udies. 1 am particularly indebted to him for his excellent guidance and patience throughout the thesis work. Without his help and encouragement, the completion of this work would have been impossible.

I would also like to express my sincere thanks to Dr. Roger Doyle. The idea of the thesis was initiated by his very interesting fish breeding problem. He introwluced me to cquantitative genetics and has spent many hours discussing with me various issucs related to the new ideas which I have explored in the thesis.

I would like to thank my external examiner, Dr. Jerald Lawless. for his ituvalu able suggestions and comments, Dr. David Hamilton, Dr. Rajendra (inpta and Dr. Bruce Smith for reading the manuscript and providing many excellent suggestions and stimulating comments. Their input has greatly improved the quality of my work.

My gratitude goes to Chiwen, for his technical assis:tance and support, and to my parents for their love and support.

Chapter 1

Introduction

(onsider the general linear mixed model

$$
\begin{equation*}
Y=\lambda \beta+Z \gamma+\epsilon, \tag{1.1}
\end{equation*}
$$

where Y is an $n \times 1$ vector of observed responses, $X_{n \times p}$ and $Z_{n \times q}$ are known design matrices, β is a $p \times 1$ vector of fixed effects, γ is a $q \times 1$ unobservable vector of random effects assumed to be distributed as $N(\mu, \Sigma)$, and ϵ is an $n \times 1$ vector of error terms, distributed as $N\left(0, \sigma_{0}^{2} I\right)$, and $\operatorname{cov}(\gamma, \epsilon)=0$. The mean and variance of Y can be written as

$$
E(Y)=X \beta+Z \mu
$$

and

$$
V=\operatorname{Var}(Y)=V\left(Z_{\gamma}+c\right)=Z \Sigma Z^{T}+\sigma_{0}^{2} I .
$$

Although the form of V is often known, it usually contains unknown parameters.
Traditionally, this model's domain of application has included survey sampling (Yates and Zacopancy, 1935; (ochran, 1939), the analysis of designed experiments (Yates, 1940; Rao, 1947), genetics (Fairfield and Smith, 1936; Henderson, 1950) and inclustrial problems (Brownlee, 1953).

In the setting of interest for our problem, we assume that γ has the form $\gamma^{T}=$ $\left(\gamma_{1}, \ldots \gamma_{\mathrm{c}}\right)$, wher each γ_{2} is a $q_{i} \times 1$ vector distributed independently as $N\left(0, \sigma_{i} I_{q_{2} \times q_{t}}\right)$
and $\sum_{i=1}^{c} q_{2}=q$. so that $\operatorname{Lar}(\gamma)$ is diagonal. Likewise. $Z Z$ is partitioned as Z $\left(Z_{1}, \ldots, Z_{c}\right)$ where Z_{i} is an $n \times f_{i}$ matrix, so the model 1.1 cam be wruten as.

$$
Y=\lambda 3+\sum_{i=1}^{i} Z_{i} \gamma_{i}+e
$$

and also

$$
V^{\prime}=\sum_{i=1}^{c} \sigma_{i}^{2} Z_{i}\left(Z_{i}\right)^{I^{\prime}}+\sigma_{0}^{2} I
$$

The variances $\sigma_{1}^{2}, \ldots, \sigma_{c}^{2}$, and σ_{0}^{2} are cai'red variance components.
Given Y^{*}, some of the usual problems associated with the model 1.1 are:

1. estimation of β, the fixed vector parameter.
2. prediction of γ, the vector of latent variables,
3. estimation of Σ (which is referred to as variance components estimation), . Wh dispersion matrix of γ.

The estimation problem in the model 1.1 centers on V. The BLUP (Best Linear Unbiased Prediction) of β and γ can be found usiug

$$
\begin{gathered}
\hat{\beta}=\left[X^{\prime} V^{-1} X\right]^{-1} X^{\prime} V^{-1} V^{\prime} \\
\hat{\gamma}=E(\gamma \mid y, \hat{\beta}, V)=V^{\prime} \operatorname{ar}(\gamma) Z^{\prime} V^{-1}(y-X \hat{\beta})
\end{gathered}
$$

which Harville (1976) derived by extending the Causs-Markov theorem to rover ran dom effects.

Unfortunately, finding the BLUE requires knowledge of V which is rarely availathe. Currently, the best procedure available is to estimate V and then act as il the estimate is the real value of V. In other words, if V is estimated with \hat{V} then β and γ are estimated with

$$
\begin{gathered}
\hat{\beta}=\left[X^{\prime} \hat{V}^{-1} X\right]^{-1} X^{\prime} \hat{V}^{-1} Y, \\
\hat{\gamma}=E(\gamma \mid y \cdot \hat{\beta}, \hat{V})=\hat{\Sigma} Z^{\prime} V^{-1}(y-X \hat{\beta}) .
\end{gathered}
$$

According to (hristernsern (1987), if \hat{V} is close to V, the estimates $\hat{\beta}$ and $\hat{\gamma}$ should be dosse to the BLUP of β and γ.
lurthermore, estimation of V is also of interest in its own right. In quantitative genetics, the interest is in the variabilities of different genetic and environmental factors which are the vari nce components. For example, it is important for a breeder to know which traits have some degree of heritability if he wants to make improvement 10 his livestock. The heritability is the ratio of genotypic variance to total variance. For example, the variance-covariance matrix of a two-way nested model is defined as

$$
\Xi=\sigma_{1}^{2} Z_{1} Z_{1}^{\prime}+\sigma_{2}^{2} Z_{2} Z_{2}^{\prime}+\sigma_{0}^{2} I
$$

The heritability is a function of variance components

$$
h^{2}=\frac{4 \sigma_{1}^{2}}{\sigma_{1}^{2}-1 \sigma_{2}^{2}+\sigma_{0}^{2}}
$$

The literature on variance components is quite immense and there are various ways to estimate variance components, such as ANOVA (Analysis of Variance Estimators) or MLE (Maximum Likelihood Estimators). It has been common practice to estimate variance components by ANOVA for balanced data and by MLE for unbalanced data. But either approach requires the following to get good estimates:

- complete data,
- or data with values missing at random (in the sense that the observed units are a indom subsample of the sampled units).

Statistical inferences are based only in part upon the observations. An equally important lase is formed by prior assumptions about the underlying situation. The standard statistical metnods are developed with an assumption, either implicit or explicit, that the process that caused the missing data can be ignored (Rubin, 1976).

If the missing data is nonignorable, analyses on the reduced sample that do not alluw for this feature are subject to bias (Little and Rubin, 1987).

The following example provides some motivation.
A total of 1260 Atlantic salmon offspring were produced by a nested mating design (7 sires with 3 dams nested within each sire). It is supposed that the largest 200 were analyzed by DNA fingerprinting in the (iene Probe Lab at Dallhousic Wniversity so that their parentage is known. In fact, the true population values of mean and variances are known for 1260 simulated fish, but this would not be the case in an actual experiment. If the parentage of the remaining 1060 is considered to be unknown, the objective is to estimate the variance components of sires, dams and iudividuals with the 200 observations.

This is a two-way nested breeding experiment.

$$
y_{\imath \jmath k}=\mu+\alpha_{i}+\beta_{3(2)}+\epsilon_{k(3)} \cdot\left\{\begin{array}{l}
i=1,2, \ldots, 7 \\
j=1,2, \ldots, 3 \\
k=1,2, \ldots, 60
\end{array}\right.
$$

where

- μ is an unknown constant,
- $\alpha_{i} \sim N\left(0, \sigma_{1}^{2}\right)$.
- $\beta_{J(2)} \sim N\left(0, \sigma_{2}^{2}\right)$,
- and $c_{k(\jmath)} \sim N\left(0, \sigma_{0}^{2}\right)$.

Analyzing the 200 data by standard ANOVA and MLE produce severe biases ats shown in Table 1.1. The estimates of σ_{1}^{2} and σ_{2}^{2} as shown in lines 2 and 3 of the table underestimate the estimates based on complete sample by factors of 10 or more in some case.

- .-

Table 1.1: Estima'cs by two standard methods compartd with estimates based on complets sampls

	σ_{0}^{2}	σ_{1}^{2}	σ_{2}^{2}	μ
True(1260)	100.75	29.05	18.70	28.17
ANOVA(200)	26.43	2.69	-1.019	47.10
MLE(200)	25.83	1.89	0.082	46.30

The natural questions concerning this example becomes how to use the data observed and the partial information on the missing data (i.e. the fact that only largest 200 are observed) to get sensible estimates.

There are other setting where missing data occurs and missing data are not missing raudomly, the same questions need to be asked. Here are some examples

- the respondents in a household survey may refuse to report income when income is the variable of interest
- in an industrial experiment some results are missing because of mechanical breakdowns
- some paticnts will survive to the end of a clinical trial
- in animal breeding procedure, selection typically occurs by size grading during grow-out and/or choice of superior ones as brood stock

Typical fish genetic experiments involve hundreds of thousand of individuals, only a small proportion of which will be identified by DNA fingerprinting. These fish will typically be selected, e.g. will come from the upper tail of a size-at-age distribution, or the lower tail of an age-at-maturity distribution etc. Estimation of genetic and envirommental variance components using DNA fingerprint pedigrees will therefore involve a high proportion of missing and selected data. We will not have a complete data set in this situation.

Figure 1.1: Observed and population distributions. The blank area uuder curve represents missing data.

Since the probability of $y_{2 j k}$ observed depends on the valuc of $y_{2 j k}$, the missing data is not missing at random. Our data came from a relatively small proportion of the population. The histogram in Figure 1.1 illustrates an observed distribution and population distribution.

The ANOVA and MLF estimation in above example produced severe biases be cause of ignoring missing data which are not missing randomly (cact of 1060 non sampled offspring is smaller than any of the samplecl offspring). This indicates that we can not ignore this pattern of missing data.

Finding a method to analyses such data is the forus of this thesis. Λ methorl is presented to estimate the variance components with high proportion of m.ssing data both for one-way and two-way nested models. In our model-based procedure, a full likelihood function is defined in which the information aboul missing data has bern
taken into accoment. This function is transformed into a computable function which can be maximized to get the estimates.

The mechanisms that lead to missing data is a key element in choosing an appropriate analysis and in interpreting the results. Sometimes the mechanism is under the control of the statistician. The case of censoring is a situation where the mechanism leading to missing data may not be under the control of the statistician, but is understood. The data consist of times to the occurrence of an event (e.g., death of an experimental animal, birth of a child, failure of a light bulb). For some units in the sample, time to occurrence is censored because the event had not occurred before the termination of the experment. If the time to censoring is recorded, then we have the partial information that the failure time exceeds the time to censoring. The analysis of the data needs to take account of this information to avoid biased results. In Type I censoring, the cause of censoring is the planned ending of follow-up at a predetermined time. In Type II censoring, observation ceases after a predetermined number of failures. The type of censoring handled in the thesis is Type I censoring (we consider the fixed cutoff). This is to keep the problem manageable. In our motivating example, the type of censoring is Type II censoring (the cutoff is random). Random cutoff will be considered in future work.

In ('hapter 2, several methods of variance components estimation are reviewed for both point and interval estimates. Methods for doing statistical analysis with missing data are also listed in this chapter. Chapter 3 and Chapter 4 present the new methods for one-way model and two-way nested model respectively. Much of the chapters is devoted to the details of the full likelihood function and the results of the estimates. The theoretical basis of the present method is organized in Chapter 5. To transform the full likelihood function to a computable function is the key step in developing the method and this transformation is described in chapter 5. The existence and uniqueness of the maximum of the transformed function are also crucial for the new technique. (Chapter 5 includes these proofs. The confidence intervals of variance
components with missing data are also constructed in (hapter 5. Robust procelures for the one-way model are proposed in Chapter 6. Linally, (hapter \hat{i} discusses the estimation of random effects.

The new method is applied to both aquicultural examples and simulated data seds showing that our estimates are significantly and uniformly more acourate than those obtained by any of the standard procedures.

Chapter 2

Review

The problem of estimation of variance components in random and mixed linear mod(ds has reccived much attention in the statistics literature, as for instance in Khuri and Sahai (1985). There are several approaches to this problem, such as the analysis of variance (ANOVA) estimator (reviewed by Searle, 1971), and the maximum likelihood estimator (MLE) (Hartley and Rao, 1967). It has been common practice to estimate the variance components by ANOVA for balanced data and by MLE for unbalanced data.

The ANOVA estimates are obtained by equating observed and expected mean squares in the analysis and solving the resulting equation for the estimators. These estimators are unbiased and can be expressed as quadratic functions of the observations. The main desirable feature of these estimators is their simple computation. Under normality and balanced data, they have minimum variance among all unbiased estimators (Graybill, 1954). However they can yield negative estimates and even under normality assumptions their distributions are intractable. For unbalanced data, the choice of appropriate quadratic forms poses a difficult problem. The estimates obtained may be not unbiased.

Another approach to variance components estimation is that of maximum likelihood. The maximum likelihood approach is based on assuming density of the data
and then maximizing the likelihood function over the parameter space under nomegative constraints on the variance components. The maximum likelihood estimators are a function of the sufficient statistics, are consistent and are asymptotically nor mal and efficient (Harville, 1977). In particular, the maximum likelihood approach is "always" well-defined since nonnegative constraints on the variance componeuts or other constraints on the parameter space or incompleteness in the data canse no conceptual difficulties. In spite of their good statistical properties, maximum likelihood estimators of variance components have not been used much in practice. The most important reason for this is the computation of the NL estimate requires the numerical solution of a constrained nonlinear optimization problem. Prior to the advent of the computer, this requirement presented a virtually insurmontable barrie to their use. Even after computer became commonplace, a constrained nonlincar optimization problem is, in general, a difficult numerical problem. The maxima can occur on the boundary of the parameter space and the log likelihood surlace can have local maxima. Unfortunately, no known techniques guarantee convergence to a global maximum from arbitrary starting values.

We proceed with the ML estimates for variance components as follows. For bal. anced data or unbalanced data in model 1.1, we assume that $Y_{n \times 1}$ is nultivariate normal and that V is nonsingular, so that the density of Y cxists and is given by

$$
(2 \pi)^{-n / 2} \operatorname{det}(V)^{-1 / 2} \exp \left[-\frac{1}{2}(Y-X \beta)^{\prime} V^{-1}(Y-X \beta)\right]
$$

The log likelihood is

$$
\begin{equation*}
\log L(\beta, V)=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \log [\operatorname{det}(V)]-\frac{1}{2}\left(Y-X^{X} \beta\right)^{\prime} V^{-1}(Y-X \beta) \tag{2.1}
\end{equation*}
$$

By definition, maximum likelihood estimates $\hat{\beta}$ and \hat{V} are values satislying

$$
L(\hat{\beta}, \hat{V} ; Y)=\max _{(\beta, V)} L(\beta, V ; Y) .
$$

To obtain ML estimates, the asual approaches are either to maximize the like lihood function directly or to solve the first order equations. Explicit solutions tos

ML cquations are available only in special cases. In general one has to use iterative method to get solutions.

Sceveral papers evaluate algorithms for variance components estimation (Dempster (l al, 1984; Jemmich and Schlucher, 1986; Laird et al, 1988; Lindstrom and Bates, 1988). While is no consensus on the best method, some general conclusions seem to be as follows.

- The Newton-Raphson method often converges in the fewest iterations, followed by scoring method and then the EM algorithm. In some cases the EM algorithm requires a very large number of iterations.
- The robustness of the methods tu their starting values (ability to converge given poor starting values) is the reverse of the rate of convergence.
- The EM algorithm automatically takes care of inequality constraints imposed by the parameter space. Other algorithm need specialized programming to incorporate constrains.

One criticism of the ML approach to the estimation of variance component is that the MLE takes no account of the loss in degrees of freedom that results from estimating B. A modification due to Patterson and Thompson (1971) is known as restricted maximum likelihood estımate (REML). REML finds maximum likelihood estimates from the distribution of the residuals. In other words, REML maximizes the part of the likelihood which is said to be location invariant. Harville (1974) showed that REML is equivalent to marginalizing the likelihood over the fixed effect parameters. For example, if we take $X \beta=\mu$, the REML can be obtained by maximizing the marginal likelihood

$$
L_{1}\left(\sigma_{0}^{2}, \ldots, \sigma_{c}^{2} \mid Y\right)=\int L\left(\mu, \sigma_{0}^{2}, \ldots, \sigma_{c}^{2} \mid Y\right) d \mu
$$

In general, a REML is the values of $\left(\sigma_{0}^{2}, \ldots, \sigma_{c}^{2}\right)$ that maximizes L_{1}.

MLE provides estimators of fixed effects, whereas RLMML does nut. But with balanced data REML solutions are identical to ANOVA estimators which have optimal minimum variance properties. How does the REML compare with the MLIN with regard to mean squared error (MSE)? In general, the duswer depends on the sperifies of the underlying model. For ordinary fixed ANOVA or regression models the MLE has uniformly smaller MSE then the REML when $\operatorname{rank}\left(\mathrm{N}^{\mathrm{X}}\right) \leq 4$; however, the RLML has smaller MSE when $\operatorname{rank}(X) \geq 5$ and $n-\operatorname{rank}(X)$ is sufficiently tar,re. MSL comparisons between MLE and REML were made by Corbeil and Searle (1976) and by Hocking and Kutner (1975) ior several mived and random ANOVA model.

Besides ANOVA, MLE and REML, there are Bayesian mothods (IIill, 19655, 1967), minimum norm quadratic unbiased estimate (MINQUE) (Kao, 1970, 1972, 1971, 1979), and minimum variance quadratic unbiased estimate (MIVQUE).

Several comparative studies on variance component estimators have been makle. The main criterion for comparison was MSE, and the model used was the I way ran dom model (Townsend and Searle, 1971; Swallow and Monahan, 1984), the 2 way crossed classification mixed model, or the 2-way nested random model (Corbeil and Searle, 1976). In Corbeil and Searle's paper, a comparison was made between MLF, REML, and ANOVA. On the basis of this comparison, MLE was favored. Acomparison of ANOVA and MINQUE for the 1 -way was made by Ahrens al al (1981). They determined that ANOVA was favored. Swallow and Monahan (19x4) have made a Monte Carlo comparison of five estimators for 1 -way model. The five estima tors, namely ANOVA, MLE, REML, MIVQUE(0) and MIVQUE(A), were compared through their MSE, estimated by Monte Carlo simulation. Their results indicate that unless the data are severely unbalanced and $\sigma_{1}^{2} / \sigma_{0}^{2}>1$, the $\Lambda N() V A$ are aderquate. The MLE is preferred when $\sigma_{1}^{2} / \sigma_{0}^{2}<0.5$

Wald (1940, 1941) was the first to obtain exact confidence intervals on the ratio of two variance comp nents for 1 -way and 2 -way crossed classification model withont
interaction. Burdick and Graybill (1984) developed a procedure for obtaining exact confidence intervals on certain positive linear combinations of the variance components for the 1 -way random model. In general, approximate procedures have been used more frequently. Several methods (mostly approximate) for finding confidence intervals are reviewed in Burdick and Graybill (1988).

The literature on the analysis of incomplete data is comparatively recent. Methods proposed in this literature can be roughly grouped into the following categories (Little and Rubin, 1987):

- Procedures Based on Completely Recorded Units. In this approach the incompletely recorded units are discarded and only the units with complete data are analyzed. It is generally easy to carry out and may be satisfactory with small amounts of missing data but can lead to serious bias in other cases;
- Imputation-Based Procedures. The missing values are estimated and the resultant completed data are analyzed by standard method. Commonly used procedures for imputation include mean imputation, hot deck imputation, regression imputation and so on;
- Weighting Procedures. Let y_{i} be the value of a variable Y for unit i in the population. Then the population mean is often estimated by

$$
\sum\left(\pi_{i}\right)^{-1} y_{i} / \sum\left(\pi_{i}\right)^{-1}
$$

where the sums are over sampled units, π_{i} is the probability of inclusion in the sample for unit i and $\left(\pi_{i}\right)^{-1}$ is the design weight for unit i. Weighting procedures are then used modify the weight in an attempt to adjust for nonresponse.

- Model-Based Procedures. Define a model for the partially missing data and base inferences on the likelihood under that model, with parameters estimated by procedures such as maximum likelihood.

There is extensive literature for multivariate normal models with incomplete observations, including Wilks (1932), Anderson (1957), Afifi and Elashoff (1906), Hart ley and Ho king (1971). For generalized linear models (GLM': $)$, (hern and Fienberg (1974) discussed parameter estimation for two-dimensional contingency table with partially cross-classified observations. Fuchs (19*2) analyzed the problem of incomplete data in log-linear models. Shafer (1987) examined the covariate mensurement error in GLMs. Ibrahim (1990) worked on the problem of incomplete data for any GLM with discrete covariates, in which incompleteness is clue to patially missing covariates on some observations.

The EM algorithm is a very general itcrative algorithm for ML estimation in incomplete-data problems. Each iteration consists of two steps: the E-step (expectation step) and the M-step (maximization step). Formally, let 0° denote the curreut guess to the mode of the observed likelihood $P\left(\theta \mid y_{o b s}\right)$, let $P\left(0 \mid y_{n t s}, y_{m i s}\right)$ denot" the augmented posterior, and let $P\left(y_{m ı s} \mid \theta^{t}, y_{o b s}\right)$ denote the conditional predictive distribution of the unobserved data $y_{\text {mis }}$. The E-step consists of compuling

$$
Q\left(\theta \mid \theta^{i}\right)=\int \log P\left(\theta \mid y_{o b s}, y_{m i s}\right) P\left(y_{m u s} \mid \theta^{i}, y_{w w s}\right) d l_{m 2 s}
$$

i.e. the expectation of $\log P\left(\theta \mid y_{a b s}, y_{m z s}\right)$ with respect to $P\left(y_{m i s} \mid \theta^{2}, y_{u s}\right)$. In the M-step the Q function is maximized with respect to θ to obtain θ^{2+1}. The algorilhm is iterated until $\left\|\theta^{i+1}-\theta^{i}\right\|$ is sufficiently small.

The EM algorithm has been used to obtain ML estimates of variance componenth, and more generally covariance components (Dempster al al, 1977; Dempster a al, 1981). They treated the unobserved random variables (random effects) as missing, data (with all Y observed) and use EM algorithm to obtain ML estimates.

Despite recent advances in the analysis of data with missing values, very little worl: has been done on variance components estimation with missing, data. 'The major difficulty of this subject is that the observations are not independert. We can
not write the full likelihood as we usually do in survival analysis

$$
l i k=\prod_{o b s} f(t ; \phi) \prod_{m \imath s} F(c ; \phi) .
$$

It will be also hard to apply EM algorithm to this subject because $P\left(\theta \mid y_{o b s}, y_{m i s}\right)$ can not be written as linear in the unobserved data $y_{m ı s}$ (Little and Rubin pointed out that estimates can be severcly biased when EM approach is applied in general, 1983). (hapter 3 (section 3.5) gives more details about the difficulty of using EM algorithm to estimate variance components with incomplete Y. In this thesis, new methods of point estimates and approximate confidence intervals of variance components with a high proportion of data missing have been derived in the situation where the type of missing data is censoring.

Chapter 3

The 1-Way Classification

In Chapter 2 we reviewed several methods for variance components estimation and methods for statistical analysis with missing data. This chapter deals with variance components estimation with missing data trom one-way model. Section 2 covers MLE for complete data. A result of an analytic expression of the inverse of a matrix will help us to avoid computing the inverse of a matrix at each iteration when we nese a numerical prucedure to find the MLE. A model-based method for cstimation of variance components with missing data which we developed is describerl in section 3, and some examples are in section 4 . Since the EM algorithm is a very general iterative algorithm for ML estimation in missing-data problems, we esperially discuss EM algorithm for our case in section 5 .

3.1 The Model

The one-way classification model is definced as

$$
y_{i J}=\mu+\alpha_{i}+\epsilon_{i J},\left\{\begin{array}{l}
i=1,2 \ldots, \Lambda \\
j=1,2, \ldots, n_{i}
\end{array}\right.
$$

where μ is a general mean, the unobservable random variables x_{2} and τ_{2} have indepen dent $N\left(0, \sigma_{1}^{2}\right)$ and $N\left(0, \sigma_{0}^{2}\right)$ distributions, respectively. It, follows that ($/ 11, \ldots, \psi_{n_{2}}$)
are jointly normally distributed with mean $\mu=(\mu, \ldots, \mu)$ and

$$
\operatorname{Var}(Y)=V=\sigma_{1}^{2} Z_{1} Z_{1}^{\prime}+\sigma_{0}^{2} I
$$

where $Z_{1} Z_{1}^{\prime}$ is a $\sum_{t=1}^{A} n_{i} \times \sum_{t=1}^{A} n_{i}$ matrix

$$
Z_{1} Z_{1}^{\prime}=\left(\begin{array}{cccc}
J_{1} & 0 & \ldots & 0 \\
0 & J_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & J_{p}
\end{array}\right)
$$

and J_{2} denotes an $n_{i} \times n_{i}$ matrix consisting of $1^{\prime} s$.
The unknown parameters are $\mu, \sigma_{0}^{2}, \sigma_{1}^{2}$, the last two of which are the variance components.

3.2 MLE for Complete-Data

According to (2.1), we need to evaluate the determinant and inverse of V to compute $\log L\left(\mu, \sigma_{0}^{2}, \sigma_{1}^{2} ; Y^{-}\right)$. If Y_{i}^{*} denote the vector of observations of those from i th group, Y_{i} and Y_{i} are independent for any $i \neq i^{i}$. We use the notation Σ_{2} to denote the variance of Y_{i}, then det $V^{\prime}=\prod_{i=1}^{p} \operatorname{det} \Sigma_{i}$, and

$$
V^{-1}=\left(\begin{array}{cccc}
\Sigma_{1}^{-1} & 0 & \ldots & 0 \\
0 & \Sigma_{2}^{-1} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \Sigma_{p}^{-1}
\end{array}\right)
$$

where $\nu_{2}=\sigma_{0}^{2} I_{2}+\sigma_{1}^{2} J_{2}$.

[^0]Proposition 1 Let $\Sigma_{i}=\sigma_{0}^{2} I_{i}+\tau_{1}^{2} J_{2}$, then

$$
\begin{aligned}
& \text { (1) } \Sigma_{i}^{-1}=\frac{1}{\sigma_{0}^{2}} I_{i}-\frac{\sigma_{1}^{2}}{\sigma_{1}^{4}+n_{i}^{2} \sigma_{0}^{2} \sigma_{1}^{2}} J_{i} \\
& \text { (2) } \left.\operatorname{det}\left(\Sigma_{i}\right)=\left(\sigma_{0}^{2}\right)^{1}\right)^{1-1}\left(\sigma_{0}^{2}+n_{i} \sigma_{1}^{2}\right) .
\end{aligned}
$$

Therefore the log-likelihood function for one-way model becomes

$$
\begin{align*}
\log L= & C-\frac{1}{2} \sum_{i=1}^{A} \log \left[\left(\sigma_{0}^{2}\right)^{n_{1}-1}\left(\sigma_{0}^{2}+n_{i} \sigma_{1}^{2}\right)\right] \\
& -\frac{1}{2} \sum_{i=1}^{A}\left(Y_{i}-\mu_{\mathbf{i}}\right)^{\prime}\left(\frac{1}{\sigma_{0}^{2}} \mathbf{I}_{\mathbf{i}}-\frac{\sigma_{1}^{2}}{\sigma_{0}^{4}+n_{\mathbf{i}} \sigma_{0}^{2} \sigma_{1}^{2}} \mathbf{J}_{\mathbf{i}}\right)\left(\mathbf{Y}_{\mathbf{i}}-\mu_{\mathbf{i}}\right) \\
= & C-\frac{1}{2} \sum_{i=1}^{A} \log \left[\left(\sigma_{0}^{2}\right)^{n_{\mathbf{t}}-1}\left(\sigma_{0}^{2}+n_{i} \sigma_{1}^{2}\right)\right] \\
& -\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{A} \sum_{j=1}^{n_{i}}\left(y_{i j}-\mu\right)^{2}+\frac{1}{2} \sum_{i=1}^{A} \frac{\sigma_{1}^{2}}{\sigma_{0}^{4}+n_{2} \sigma_{0}^{2} \sigma_{1}^{2}}\left[\sum_{j=1}^{n_{1}}\left(y_{i j}-\mu\right)\right]^{2} . \tag{3.1}
\end{align*}
$$

The derivatives of the log-likelihood with respect to $\sigma_{0}^{2}, \sigma_{1}^{2}$, and μ, respectively, yield the following cquations for the MLE's.

$$
\begin{aligned}
\frac{\partial \log L}{\partial \sigma_{0}^{2}}= & -\frac{1}{2} \sum_{i=1}^{A} \frac{n_{i} \sigma_{0}^{2}+n_{i}\left(n_{i}-1\right) \sigma_{1}^{2}}{\left[\left(\sigma_{0}^{2}\right)\left(\sigma_{0}^{2}+n_{i} \sigma_{1}^{2}\right)\right]} \\
& +\frac{1}{2 \sigma_{0}^{4}} \sum_{i=1}^{A} \sum_{j=1}^{n_{2}}\left(y_{i j}-\mu\right)^{2}-\frac{1}{2} \sum_{\imath=1}^{A} \frac{\sigma_{1}^{2}\left(2 \sigma_{0}^{2}+n_{2} \sigma_{1}^{2}\right)}{\left(\sigma_{0}^{4}+n_{i} \sigma_{0}^{2} \sigma_{1}^{2}\right)^{2}}\left[\sum_{j=1}^{n_{1}}\left(y_{\imath, l}-\mu\right)\right]^{2} \\
= & 0,
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \log L}{\partial \sigma_{1}^{2}} & =-\frac{1}{2} \sum_{i=1}^{A} \frac{n_{i}}{\sigma_{0}^{2}+n_{i} \sigma_{1}^{2}}+\frac{1}{2} \sum_{i=1}^{A} \frac{\sigma_{0}^{4}}{\left(\sigma_{0}^{4}+n_{i} \sigma_{0}^{2} \sigma_{1}^{2}\right)^{2}}\left[\sum_{j=1}^{n_{i}}\left(y_{l_{1}}-\mu\right)\right]^{2} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \log L}{\partial \mu} & =\frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{A} \sum_{j=1}^{n_{i}}\left(y_{i j}-\mu\right)-\sum_{i=1}^{A} \frac{\sigma_{1}^{2}}{\sigma_{j}^{4}+n_{i} \sigma_{0}^{2} \sigma_{1}^{2}}\left[\sum_{j-1}^{\prime \prime}\left(y_{i j}-\mu\right)\right] \\
& =0
\end{aligned}
$$

For balanced data ($n_{1}=n_{2}=\ldots=n_{A}$), the maximum likelihood estimates of variance components are $\hat{\sigma_{0}^{2}}=M S E$ and $\hat{\sigma_{1}^{2}}=[S S T r / A-M S E] / n$, where

$$
M S E=\frac{\sum_{i=1}^{A} \sum_{j=1}^{n}\left(y_{2 j}-\overline{y_{2}}\right)^{2}}{A(n-1)}
$$

and

$$
S S T r=n \sum_{i=1}^{A}\left(y_{i}-\bar{y}\right)^{2}
$$

For unbalanced data, the maximizing equations do not yield a explicit solutions and the MLE must be obtained by nonlinear optimization.

3.3 MLE for Incomplete Data

If

$$
P\left(y_{i j} \text { observed } \mid y_{i j}\right)= \begin{cases}1 & \text { if } y_{i j}>c \\ 0 & \text { otherwise }\end{cases}
$$

the mechanism leading to missing data here is called censoring, with observed values censored from below, or left censored, at c. This missing data mechanism is nonignorable because the probability that $y_{i j}$ is observed depends on the value of $y_{i j}$ (Little and Rubin, 1987).

If c is known, then we have the partial information about the random variable of interest. We know the distribution of the missing data and we also know that the missing value is less than c. The analysis of data needs to take this information into account to avoid biased results.

Suppose we have a one-way model in which the factor has A classes with n_{i} member of each class

$$
\begin{array}{cccc}
y_{11} & y_{12} & \ldots & y_{1 n_{1}} \\
y_{21} & y_{22} & \ldots & y_{2 n_{2}} \\
\vdots & \vdots & \ldots & \vdots \\
y_{A 1} & y_{A 2} & \ldots & y_{A n_{A}},
\end{array}
$$

let $A_{\text {obs }}$ denote the number of observed classes, and m_{2} denote uncensored observations in class i. If we define $L\left(y_{21}, \ldots, y_{i m_{2}}, y_{i m_{4}+1}<c, \ldots, y_{m_{1}}<c\right)$ as

$$
\begin{aligned}
& L\left(y_{i 1}, \ldots, y_{i m_{2}}, y_{l m_{\mathrm{l}}+1}<c, \ldots, y_{i n_{\mathrm{t}}}<c\right)= \\
& \quad \lim _{\Delta-0} P\left(y_{i 1}<Y_{i 1} \leq y_{i 1}+\Delta, \ldots y_{i m_{t}}<Y_{i m_{1}} \leq y_{i m_{4}}+\Delta \ldots,\right. \\
& \left.Y_{i m_{2}+1}<c, \ldots, Y_{i n_{t}}<c\right)
\end{aligned}
$$

The overall likelihood function of $Y=\left(y_{11}, \ldots, y_{A n_{A}}\right)$ can be written as

$$
L=L\left(y_{11}, \ldots, y_{1 m_{1}}, y_{1 m_{1}+1}<c, \ldots, y_{1 n_{1}}<c\right.
$$

$$
\ldots ;
$$

$$
\begin{aligned}
& y_{A_{\text {obs }} 1}, \ldots, y_{A_{o b s} m m_{A_{o b s}},} y_{A_{c b s} m_{A_{\text {obs }}}+1}<c, \ldots, \eta_{A_{m b t}, n_{\text {thb }}}<c ; \\
& y_{A_{\text {obs }}+11}<c, \ldots, y_{A_{\text {obs }}+1 n_{A_{\text {dobs }}+1}}<c, y_{A 1}<\left(, \ldots y_{A n_{A}}<c\right)
\end{aligned}
$$

where c is a known constant and L represents likelihood.
Let Y_{i} denote the vector of observations of those from i th class. Y_{i} and $Y_{z^{\prime}}$ are independent for any $i \neq i^{\prime}$. The likelihood of $Y=\left(Y_{1}, \ldots, Y_{1}\right)$ becomes

$$
\begin{aligned}
L(Y)= & \prod_{i=1}^{A} L\left(Y_{i}\right) \\
= & \prod_{i=1}^{A_{o b s}} L\left(y_{i 1}, \ldots, y_{i m_{\mathrm{t}}}, y_{l m_{\mathrm{i}}+1}<c, \ldots, y_{l n_{\mathrm{i}}}<c\right) \\
& \prod_{i=A_{o b+}+1}^{A} L\left(y_{i 1}<c, \ldots, y_{i n_{\mathrm{t}}}<c\right) .
\end{aligned}
$$

The log-likelihood is then

$$
\begin{aligned}
\log L(\mu, V ; Y) & =\sum_{i=1}^{A} \log L\left(Y_{i}^{\prime}\right) \\
& =\sum_{i=1}^{A_{o b *}} \log L\left(y_{l 1}, \ldots, y_{l m_{i}}, y_{l m m_{t}+1}<r, \ldots, y_{l u_{i}}-r\right)
\end{aligned}
$$

$$
\begin{equation*}
+\sum_{i=A_{o b s}+1}^{A} \log L\left(y_{i 1}<c, \ldots, y_{i n_{i}}<c\right) \tag{3.2}
\end{equation*}
$$

In theory, $\sigma_{0}^{2}, \sigma_{1}^{2}$ and μ can be estimated by maximizing function (3.2). But

$$
\begin{gathered}
\lim _{\Delta \rightarrow 0} P\left(y_{i, o b s .}<Y_{i, o b s .} \leq y_{2,0 b s .}+\Delta, Y_{i, m i s .}<c\right)= \\
\int_{-\infty}^{c}, \ldots, \int_{-\infty}^{c} f\left(y_{i, o b s .}, y_{2, m i s .}\right) d y_{i, m i s .}
\end{gathered}
$$

is difficult to compute because of the dimension of $Y_{\imath, m i s}$. For the example in Chapter 1, the dimension of $y_{7, \text { mis. }}$ is 174 .

Since each Y_{\imath} is a multivariate normal with mean μ and variance-covariance matrix

$$
V_{i}=\sigma_{0}^{2} I_{i}+\sigma_{1}^{2} J_{i},
$$

the following proposition can be used to transform the $L\left(y_{i, o b s .}, y_{i, m i s}<c\right)$ into a computable function.

Prcposition 2 If

$$
\left(\begin{array}{c}
y_{i 1} \\
y_{i 2} \\
\vdots \\
y_{i n_{i}}
\end{array}\right) \sim N\left(\mu, \sigma_{0}^{2} I_{i}+\sigma_{1}^{2} J_{i}\right)
$$

then

$$
\begin{aligned}
& L\left(y_{i 1}, y_{12}, \ldots, y_{i m_{1}}, y_{l m_{1}+1}<c_{1} \ldots, y_{i n_{2}}<c\right) \propto \\
& \quad \int_{-2}^{\infty} \sigma_{0}^{-m_{2}} \Phi(w)^{n_{1}-m_{i}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{1}}\left(y_{i j}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}-z_{0}^{2}\right]\right\} d z_{0}
\end{aligned}
$$

where $w=\frac{t-\mu-\sigma_{1} z_{0}}{\pi_{0}}$.
For the proof see Chapter 5 .

Applying the Proposition 2 to function (3.2) gives

$$
\begin{align*}
& \log L(\mu, V ; Y)=\sum_{i=1}^{A} \log L\left(Y_{2}\right) \\
& \quad=\sum_{i=1}^{A_{0, s}} \log \int_{-\infty}^{\infty} \sigma_{0}^{-m_{i}} \Phi(w)^{n_{1}-m_{i}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{i}}\left(y_{1 j}-\mu-\sigma_{1} y_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{i 1}^{2}\right]\right\} d d_{i l} \\
& \quad+\sum_{i=A_{\text {obs }}+1}^{A} \log \int_{-\infty}^{\infty} \Phi(w)^{n_{i}} \exp \left(-\frac{z_{0}^{2}}{2}\right) d z_{0} \tag{3.3}
\end{align*}
$$

where $\Phi(w)=\int_{-\infty}^{w} \phi(x) d x$ and $w=\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}$.
It is important 'o note that the likelihood (3.3) now is one dimension integration which can be evuiluated by Gaussian quadrature method. The $\sigma_{0}^{2}, \sigma_{1}^{2}$, and μ can be estimated by maximizing the above function in a given parameter space. To maximum the function, we can use a global search or an optimization rontine.

The existence of a unique ML estimate for likelihood (3.3) is proved in chapter 5.

3.4 Examples

In this section, we apply the procedure which we developed above to two examples, The first example involves a one-way data set with and without missing data. 'The second example is based on a group of simulated data in which we have known parameters.

Example 1. A data set in Ott (p355) that involves a study of starch content of tomato plants grown in three different nutrients has been considered. The original data set is one with complete data as in table 3.1

The MLE with the complete data are

$$
\hat{\sigma_{0}^{2}}=8.289, \hat{\sigma_{1}^{2}}=24.365, \hat{\mu}=11.89
$$

(both by SAS (PROC VARCOMP) and our own program).

Table 3.1: Complete Ott's data

A	22	20	21	18	16	14
B	12	14	15	10	9	6
C	7	9	7	6	5	3

'Ihern four observations (<6.99) were deleted as if they were missing where the missing pattern is

$$
P^{\prime}\left(y_{2 J} \text { obstrved } \mid y_{i_{J}}\right)= \begin{cases}1 & \text { if } y_{2_{2}}>6.99 \\ 0 & \text { otherwise } .\end{cases}
$$

The incomplete data are in table 3.2
Using 14 data. estimates by our method ($M L E_{m i s}$), and MLE are listed and compared with MLE with completc data as in table 3.3

As can be seen our method is more accurate in that it gives results very close to those of the MLE for the complete data.

Example 2. In this example, 10 groups of simulation data were randomly generated using $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0$, and $\mu=0.0$. The complete data are assumed to have five classes with each class having eight observations. In each simulation, the data whic ${ }^{\prime}$ are less then -0.5 were removed from data set as if they were missing data (there is about 35% of the data missing). The estimates and their mean squared errors (MSE) are given in the table 3.4

As we know, that MLE and ANOVA will subject to bias when observed values

Table 3.2: Incomplete Ott's data

A	22	20	21	18	16	14
B	12	14	15	10	9	
C	7	9	7			

Table 3.3: Estimates by two methods compared with .WLE with complete data

	σ_{0}^{2}	σ_{1}^{2}	μ
MLE(18 data)	8.289	24.365	11.89
MLE(1.4 data)	6.92	18.13	12.83
$M L E_{\text {mus }}(14$ data $)$	8.93	24.17	11.91

	MLE			MLE ${ }_{\text {m } 2 \text { s }}$		
	$\hat{\sigma}_{0}^{2}$	$\hat{\sigma}_{1}^{2}$	$\hat{\mu}$	$\hat{\sigma}_{0}^{2}$	$\hat{\sigma}_{1}^{2}$	$\hat{\mu}$
1	0.5016	0.0992	0.6007	1.2098	0.2613	0.0100
2	0.3598	0.1819	0.8531	0.7349	0.0100	0.63382
3	0.9496	0.3217	1.3234	1.4501	0.8.545	0.63386
4	0.5378	0.1786	0.6719	1.1515	0.1603	0.1500
5	0.2554	0.0114	0.3475	0.6511	0.0271	0.0100
6	0.9811	0.3464	1.4959	1.3114	0.9202	1.1128
7	0.6834	0.3382	0.9286	0.7068	0.8986	0.5780
8	0.4563	0.3419	0.6280	1.0176	0.908 .4	0.0100
9	0.5229	0.0488	0.4806	0.7090	0.1268	0.0100
10	0.7239	0.0806	0.3673	0.9127	0.2117	0.0100
MSE	0.2129	0.6641	0.7272	0.0738	0.1608	0.2181

Table 3.4: Comparison of MLE and MLAEmes for 10 Simulations
censored from below (or left censored). The reasons that I compared our mothorl with MLE and ANOVA are

- no method is available to this variance components estimation with censoring data;
- biologists use MLE or ANOVA to estimate the variance components when only the incomplete data can be obtainecl.

Compared with MLE, MSE are improved by using the present method, reducing the MSE by 66% for $\sigma_{0}^{2}, 31 \%$ for σ_{1}^{2}, and 66% for μ respectively. Significant improvememts
are obtained through our method.

3.5 The EM Algorithm

An iterative algorithm for calculating ML estimates in missing-data problem is EM algorithm. Its name stands for Expectation-Maximization, and it is so named because it alternates between E step and M step (Little and Rubin, 1987).

The lis step finds the conditional expectation

$$
Q\left(\theta \mid \theta^{t}\right)=\int l(\theta \mid Y) f\left(Y_{m i s} \mid y_{o b s}, \theta=\theta^{t}\right) d Y_{m i s}
$$

where $l(\theta \mid Y)$ is the function of $Y_{\text {mis }}$ and $Y_{\text {obs }}$ appearing in the complete-data loglikelihood.

The M step performs maximum likelihood estimation of parameters just as if there were no missing data. Thus the M step of EM uses the identical computational methods as ML estimation from likelihood $l(\theta \mid Y) . \theta^{t+1}$ is determined by

$$
Q\left(\theta^{t+1} \mid \theta^{t}\right)=\max _{\theta} Q\left(\theta \mid \theta^{t}\right)
$$

We now show how to use EM steps to estimate variance components with missing data. To do so, consider the model, observed data and missing data in section 3 .

Whether we can apply the EM algorithm to get variance components estimation with missing data is based on our ability to calculate the conditional expectation. For this we need the joint distribution of ($Y_{o b s}, Y_{m i s}$) and the condition distribution of $Y_{m i s}$ given $Y_{o b s}$. From section 2, we obtain the joint density

$$
\begin{aligned}
\log L= & \left(-\frac{1}{2} \sum_{i=1}^{A} \log \left[\left(\sigma_{0}^{2}\right)^{n_{t}-1}\left(\sigma_{0}^{2}+n_{i} \sigma_{1}^{2}\right)\right]\right. \\
& -\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{A}\left(\left(Y_{i o b s}-\mu_{i o b s}\right)^{\prime}\left(Y_{i o b s}-\mu_{i o b s}\right)+\left(\left(Y_{i m i s}-\mu_{i m s s}\right)^{\prime}\left(Y_{i m i s}-\mu_{i m i s}\right)\right.\right. \\
& +\frac{\sigma_{1}^{2}}{2\left(\sigma_{0}^{4}+n_{i} \sigma_{0}^{2} \sigma_{1}^{2}\right)} \sum_{i=1}^{A}\left(1_{m_{t} \times 1}^{\prime}\left(Y_{i o b s}-\mu_{i o b s}\right)+1_{\left(n_{t}-m_{1}\right) \times 1}^{\prime}\left(Y_{i m i s}-\mu_{i m i s}\right)\right)^{2} .
\end{aligned}
$$

From the following properties which Searle (1992) and many other texts have shown, we can get conditional distribution and some conditional expectation straight forward.

On writing

$$
\binom{Y_{i o b s}}{Y_{i m i s}} \sim N\left(\binom{\mu_{i o b s}}{\mu_{i m i s}} \cdot\left(\begin{array}{cc}
V_{11} & V_{12} \\
V_{21} & Y_{22}
\end{array}\right)\right)
$$

- the marginal distribution of $Y_{\text {inis }}$ is

$$
Y_{i m i s} \sim N\left(\mu_{i m z s}, \Gamma_{22}\right)
$$

- the conditional distribution of $Y_{i m i s}$ given $Y_{i o b s}$ is

$$
Y_{i m i s} \mid Y_{i o b s} \sim N\left(\mu_{i m i s}+V_{12} V_{22}^{-1}\left(Y_{i o b s}-\mu_{i o b s}\right), V_{22}^{\prime}-V_{21} V_{11}^{r-1} V_{12}^{\prime}\right) ;
$$

- and

$$
E\left(Y_{i m i s}^{\prime} Y_{i m i s}\right)=\operatorname{tr}\left(V_{22}^{\prime}\right)+\mu_{i m i s}^{\prime} \mu_{2 m i s} .
$$

Therefore the E step here calculates

$$
\begin{aligned}
& E\left(\log L \mid Y_{o b s}\right)= \\
& \quad C-\frac{1}{2} \sum_{i=1}^{A} \log \left[\left(\sigma_{0}^{2}\right)^{n_{i}-1}\left(\sigma_{0}^{2}+n_{i} \sigma_{1}^{2}\right)\right] \\
& \quad-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{A}\left(\left(Y_{i o b s}-\mu_{i o b s}\right)^{\prime}\left(Y_{i o b s}-\mu_{i v b s}\right)+\left(t r\left(V_{22}^{\prime}+\mu_{i m L s}^{\prime} \mu_{i m u s}\right)\right)\right. \\
& \quad+\frac{\sigma_{1}^{2}}{2\left(\sigma_{0}^{4}+n_{i} \sigma_{0}^{2} \sigma_{1}^{2}\right)} \sum_{i=1}^{A} E\left(\left(1_{m_{t} \times 1}^{\prime}\left(Y_{z u b s}^{\prime}-\mu_{2 b b s}\right)\right.\right. \\
& \left.\left.\quad+1_{\left(n_{t}-m_{i}\right) \times 1}^{\prime}\left(Y_{i m i s}^{\prime}-\mu_{i m i s}\right)\right)^{2} \mid Y_{i b s s}\right),
\end{aligned}
$$

and the M step calculates

$$
\max _{\left(\sigma_{0}^{2}, \sigma_{1}^{2}, \mu\right)} E\left(\log L \mid Y_{o h_{s} s}\right)
$$

After the details of computing have been outlined above, we can ser that the last term of $E\left(\log L \mid Y_{o b s}\right)$

$$
E\left(\left(1_{m, \times 1}^{\prime}\left(Y_{i o b s}-\mu_{i o b s}\right)+1_{\left(m_{t}-m m_{t}\right) \times 1}^{\prime}\left(Y_{t m n s}-\mu_{i m m s}\right)\right)^{2} \mid Y_{2 u b s s}\right)
$$

can be terribly complicated. Let us look one term of above condition expectation
$\left.E\left(1_{\left(n_{1}-m_{1}\right) \times 1}^{\prime}\left(Y_{2 m u s}-\mu_{2 m ı s}\right)\right)^{2} \mid Y_{c o b s}\right)=\int\left(\sum_{j=m_{1}+1}^{n_{1}}\left(y_{i j}-\mu_{i j}\right)\right)^{2} f\left(y_{i m \imath s} \mid y_{i o b s}, \theta=\theta^{t}\right) d y_{i, m i s}$
which involves multidimensional integration. The computation is difficult when dimension of $Y_{t, \text { mus }}$ is large. We can see it is hard to apply EM algorithm to estimate variance components with incomplete Y even with one-way model.

Chapter 4

The 2-way Nested Classification

Detailed results of variance components estimation with missing data from 2 way nested model are provided in this chapter. In section 2 , we derive a log likeliluoed without the inverse of a matrix. That enables us to evaluate the log likelihood more accurately and efficiently, especially for large data sets. Section 3 is the cent ral section of this chrpter, presenting the new method. Examples are given in section 4.

4.1 The Model

Two-way nested designs are used widely in applied breeding (Henderson, 19xd). ('on sider the following breeding experiment

There are S sires. D_{2} dams were mated to the ith sire, and n_{2} offspring resulted from each $i-j$ mating. If $y_{i j k}$ is a characteristic (such are length, weight. (il.)
measured on the k th offspring of the $i j$ th mating, the structure of $y_{\imath j k}$ is

$$
y_{\imath j k}=\mu+\alpha_{\imath}+\beta_{\jmath(2)}+\epsilon_{k(\imath)},\left\{\begin{array}{l}
i=1,2 \ldots, S \\
j=1,2, \ldots, D_{i} \\
k=1,2, \ldots, n_{\imath 3}
\end{array}\right.
$$

where μ is an unknown constant, $\alpha_{\imath}, \beta_{\partial(2)}$, and $\epsilon_{k\left(i_{j}\right)}$ are mutually independent $N\left(0, \sigma_{1}^{2}\right), N\left(0, \sigma_{2}^{2}\right), N\left(0, \sigma_{0}^{2}\right)$ respectively. α_{2} is the contribution due to the i th sire. $\beta_{J_{(2)}}$ is due to the j th dam mated to the i th sire, and $\epsilon_{k(2)}$ is the effect due to the k th offspring of the $i j$ th sire-dam mating. The quantities $\sigma_{1}^{2}, \sigma_{2}^{2}$ and σ_{0}^{2} are called variance components. The heritability $h^{2}=\frac{4 \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{0}^{2}}$ is a function of variance components (Falconer, 1981).

4.2 The Complete-Data

4.2.1 Balanced data

Whern $D_{1}=D$ for all i, and each $i j$ cell contains the same number of offspring ($n_{i j}=n$ for all \mathbf{i} and \mathbf{j}). the data shall be described as balanced data. Estimating variance components from balanced data is, generally speaking, much easier than from unbalanced data.

Follow the same notation from previous context, so the linear model is given by

$$
Y=\mu+Z_{1} \gamma_{1}+Z_{2} \gamma_{2}+e
$$

where μ is an $S^{\prime} D_{n} \times 1$ vector of unknown constants;
Z_{1} is an $S^{\prime} D n \times S$ design matrix of zeros and ones;
γ_{1} is an $s \times 1$ vector of independent variables from $N\left(0, \sigma_{1}^{2}\right)$;
Z_{2} is an $S D n \times S D$ design matrix of zeros and ones;
7_{2} is an $\left.s^{\prime} D\right) \times 1$ vector of independent variables from $N\left(0, \sigma_{2}^{2}\right)$;
(is an s' $D_{n} \times 1$ vector of independent variables from $N\left(0, \sigma_{0}^{2}\right)$.

The random vectors γ_{1}, γ_{2}, , are mutually independent and

$$
V=V a r(Y)=Z_{1} Z_{1}^{T} \sigma_{1}^{2}+Z_{2} Z_{2}^{T} \sigma_{2}^{2}+I \sigma_{0}^{2}
$$

$Z_{1} Z_{1}^{T}$ and $Z_{2} Z_{2}^{T}$ are $S D_{n} \times S D_{n}$ block-diagonal matrices:

$$
Z_{1} Z_{1}^{T}=\left(\begin{array}{cccc}
J & 0 & \ldots & 0 \\
0 & J & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & J
\end{array}\right)
$$

and

$$
Z_{2} Z_{2}^{T}=\left(\begin{array}{cccc}
E & 0 & \ldots & 0 \\
0 & E & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & E
\end{array}\right)
$$

where J and E denote respectively $D n \times D_{n}$ and $n \times n$ matricses consisting of $I^{\prime} s$. Therefore we can write

$$
Y=\left(\begin{array}{cccc}
\Sigma & 0 & \ldots & 0 \\
0 & \Sigma & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \Xi
\end{array}\right)
$$

where $\Sigma=\sigma_{0}^{2} I+\sigma_{1}^{2} I+\sigma_{2}^{2} K^{\prime}$ and

$$
K=\left(\begin{array}{cccc}
E & 0 & \ldots & 0 \\
0 & E & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & E
\end{array}\right)
$$

Thus the log-likelihood function of Y is given by

$$
\begin{equation*}
\log L\left(\mu, V_{;} ; Y^{\prime}\right)=c-\frac{1}{2} \sum_{i=1}^{S}\left[\log \left(\operatorname{det}\left(S^{S}\right)\right)+\left(Y_{t}-\mu_{t}\right)^{\prime} \because{ }^{1}\left(Y_{t}-\mu_{t}\right)\right] . \tag{4.1}
\end{equation*}
$$

In order to procecel witll finding the maximum likelihood, the following proposition on the determinant and the inverse of Σ is needed. When we use an iterative numerical procedure io find the maximum of $1 \cdot g L$, often the computational effort is dominated by the cost of evaluating $\log L$. I'sing the analytical expression below for the inverse of V, we do not need to compute the inverse of a matrix to evaluate $\log L$ at each iteration (Rao and Kleffe, 1988). This has advantages both in accuracy and efficiency.

Proposition $3 L_{\wedge} / \Sigma_{D n \times I D_{n}}=\sigma_{0}^{2} I_{D n \times D_{n}}+\sigma_{1}^{2} J_{D_{n \times D n}}+\sigma_{2}^{2} L_{D n \times D_{n}}$, then

$$
\begin{aligned}
& \text { (1) } \because_{I n \times I n}^{-1}=\frac{1}{\sigma_{0}^{2}} I_{D n \times D n}-\frac{\sigma_{1}^{2}}{\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)} J_{D n \times D n}-\frac{\sigma_{2}^{2}}{\sigma_{0}^{2}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)} K_{D n \times D n} \\
& \left(\therefore d \rho(\Sigma)=\left(\sigma_{0}^{2}\right)^{D u-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)\right. \\
& \text { where } J_{D_{n \times} D_{n}}=1_{D_{n \times 1}} 1_{D n \times 1}^{I} \text { and }
\end{aligned}
$$

$$
K_{D n \times D_{n}}=\left(\begin{array}{cccc}
J_{n \times n} & 0 & \ldots & 0 \\
0 & J_{n \times n} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & J_{n \times n}
\end{array}\right)
$$

PROOF. (1):
Let

$$
\begin{aligned}
A_{D_{n \times D n}} & =\Sigma_{D n \times D n}-\sigma_{1}^{2} J_{D n \times D n} \\
& =\sigma_{0}^{2} I_{D n \times D n}+\sigma_{2}^{2} K_{D n \times D n}^{\prime}
\end{aligned}
$$

Hicon

$$
\begin{aligned}
\Xi & =\Sigma-\sigma_{1}^{2} J_{D n \times D_{n}}+\sigma_{1}^{2} J_{D n \times D_{n}} \\
& =\left(\Sigma-\sigma_{1}^{2} J_{\left.D n \times D_{n}\right)}\right)\left[I+\left(\Sigma-\sigma_{1}^{2} J_{D n \times D_{n}}\right)^{-1} \sigma_{1}^{2} J_{D n \times D_{n}}\right] \\
& =A_{D n \times D_{n}}\left[I_{D n \times D_{n}}+A^{-1} \sigma_{1}^{2} J_{D n \times D_{n}}\right] .
\end{aligned}
$$

We can write

$$
\begin{equation*}
\Sigma_{D n \times D n}^{-1}=\left[I_{D n \times D n}+\sigma_{1}^{2} A_{-1} J_{D n \times D_{n}}\right]^{-1} A_{\overline{1}}^{1} A_{n \times D_{n}} . \tag{1.2}
\end{equation*}
$$

Since

$$
A_{D n \times D n}=\left(\begin{array}{cccc}
\sigma_{0}^{2} I_{n \times n}+\sigma_{2}^{2} J_{n \times n} & 0 & \cdots & 0 \\
0 & \sigma_{0}^{2} I_{n \times n}+\sigma_{2}^{2} J_{n \times n} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \ldots & \sigma_{0}^{2} I_{n \times n}+\sigma_{2}^{2} J_{n \times n}
\end{array}\right)
$$

we have

$$
A^{-1}=\left(\begin{array}{cccc}
\frac{1}{\sigma_{0}^{2}} I_{n \times n}+\frac{\sigma_{2}^{2} J_{n \times n}}{\sigma_{0}^{2}+n \sigma_{2}^{2} \sigma_{0}^{2}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma_{0}^{2}} I_{n \times n}+\frac{\sigma_{2}^{2} J_{n \times n}}{\sigma_{0}^{2}+n \sigma_{2}^{2} \sigma_{0}^{2}} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sigma_{0}^{2}} I_{n \times n}+\frac{\sigma_{2}^{2} J_{n \times n}}{\sigma_{0}^{2}+\mu \sigma_{2}^{2} \sigma_{0}^{2}}
\end{array}\right)
$$

or

$$
A^{-1}=\frac{1}{\sigma_{0}^{2}} I_{D n \times D_{n}}-\frac{\sigma_{2}^{2}}{\sigma_{0}^{4}+n \sigma_{2}^{2} \sigma_{0}^{2}} K_{D n \times D n}
$$

by Proposition 1.

Also

$$
\begin{aligned}
\sigma_{1}^{2} A^{-1} J_{D n \times D n} & =\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}} J_{D n \times D n}-\frac{n \sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{0}^{2}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)} J_{I n \times D n} \\
& =\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}+n \sigma_{2}^{2}} J_{D n \times D n} .
\end{aligned}
$$

It is easily seen that

$$
\begin{aligned}
\Sigma^{-1} & =\left[I_{D n \times D n}+\sigma_{1}^{2} A^{-1} J_{D n \times D_{n}}\right]^{-1} A^{-1} \\
& =\left[I_{D n \times D n}+\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}+n \sigma_{2}^{2}} J\right]^{-1}\left[\frac{1}{\sigma_{0}^{2}} I_{D n \times D n}-\frac{\sigma_{2}^{2}}{\sigma_{0}^{4}+n \sigma_{2}^{2} \sigma_{0}^{2}} \kappa_{1 n n \times D n}\right] \\
& =\left[I_{D n \times D_{n}}-\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}} J\right]\left[\frac{1}{\sigma_{0}^{2}} I_{I n \times I n}-\frac{\sigma_{2}^{2}}{\sigma_{0}^{1}+\mu \sigma_{2}^{2} \sigma_{0}^{2}} \kappa_{D n \times I n n}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{\sigma_{0}^{2}} I_{D_{n \times D} \times D_{n}}-\frac{\sigma_{1}^{2}}{\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)} J_{D n \times D_{n}} \\
& -\frac{\sigma_{2}^{2}}{\sigma_{0}^{2}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)} K_{D n \times D n} .
\end{aligned}
$$

PROCF. (2):
From equation 4.2, we have

$$
\Xi_{I n \times D n}=A_{D n \times D_{n}}\left[I_{D_{n \times D}}+\sigma_{1}^{2} A_{D n \times D n}^{-1} J_{D n \times D_{n}}\right]
$$

It follows : hat

$$
\operatorname{det}(\Xi)=\operatorname{det}(A) \operatorname{det}\left(I_{D n \times D_{n}}+\sigma_{1}^{2} A^{-1} J_{D n \times D n}\right)
$$

Note that

$$
\begin{aligned}
\operatorname{det}(A) & =\left[\operatorname{det}\left(\sigma_{0}^{2} I_{n \times n}+\sigma_{2}^{2} J_{n \times n}\right)\right]^{D} \\
& =\left[\left(\sigma_{0}^{2}\right)^{n-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)\right]^{D}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{lct}\left(I+\sigma_{1}^{2} A^{-1} J_{D n \times D_{n}}\right) & =\operatorname{det}\left(I+\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}+n \sigma_{2}^{2}} J_{n \times n}\right) \\
& =\left(1+\frac{D n \sigma_{1}^{2}}{\sigma_{0}^{2}+n \sigma_{2}^{2}}\right)
\end{aligned}
$$

by Proposition 1, det(y) becomes

$$
\left(\sigma_{0}^{2}\right)^{D n-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D_{i n} \sigma_{1}^{2}\right)
$$

Tsing Proposition 3 to function 4.1 , we obtain

$$
\begin{align*}
\log l= & \left(-\frac{S}{2} \log \left[\left(\sigma_{0}^{2}\right)^{D n-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\left(\sigma_{0}^{2}+n c_{2}^{2}+D n \sigma_{1}^{2}\right)\right]\right. \\
& -\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{S} \sum_{j=1}^{D} \sum_{k=1}^{n}\left(y_{2 j k}-\mu\right)^{2} \\
& +\frac{\sigma_{1}^{2}}{2\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)} \sum_{i=1}^{S}\left\{\sum_{j=1}^{D} \sum_{k=1}^{n}\left(y_{i J k}-\mu\right)\right\}^{2} \\
& +\frac{\sigma_{2}^{2}}{2 \sigma_{0}^{2}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)} \sum_{i=1}^{S} \sum_{j=1}^{D}\left[\sum_{k=1}^{n}\left(y_{i j k}-\mu\right)\right]^{2} \tag{4.3}
\end{align*}
$$

The differentiation of (4.3) with regard to $\sigma_{0}^{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$ and μ yidds the following equations for the MLE's.
$\frac{\partial \log L}{\partial \sigma_{0}^{2}}=$

$$
\begin{aligned}
& \frac{-S}{2\left(\sigma_{0}^{2}\right)^{D n-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)} \\
& {\left[(D n-D)\left(\sigma_{0}^{2}\right)^{D n-D-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)\right.} \\
& \left.+\left(\sigma_{0}^{2}\right)^{D n-D}(D-1)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-2}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)+\left(\sigma_{0}^{2}\right)^{n n \cdot-n}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{n-1}\right] \\
& +\frac{1}{2 \sigma_{0}^{4}} \sum_{i=1}^{S} \sum_{j=1}^{D} \sum_{k=1}^{n}\left(y_{i j k}-\mu\right)^{2}-\frac{\left.\sigma_{1}^{2}\left(2 \sigma_{0}^{2}+2 n \sigma_{2}^{2}+D\right)_{n \sigma_{1}^{2}}^{2}\right)}{2\left[\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+I n \sigma_{1}^{2}\right]^{2}\right.} \\
& \times \sum_{i=1}^{S}\left[\sum_{j=1}^{i} \sum_{k=1}^{n}\left(y_{i j k}-\mu\right)\right]^{2}-\frac{\sigma_{2}^{2}\left(2 \sigma_{0}^{2}+n \sigma_{2}^{2}\right)}{2\left[\left(\sigma_{0}^{4}+n \sigma_{0}^{2} \sigma_{2}^{2}\right)\right]^{2}} \sum_{l=1}^{S} \sum_{j=1}^{D}\left[\sum_{k=1}^{n}\left(y_{l j k}-\mu\right)\right]^{2}
\end{aligned}
$$

$$
=0
$$

$$
\begin{aligned}
\frac{\partial \log L}{\partial \sigma_{1}^{2}}= & \frac{-S D n\left(\sigma_{0}^{2}\right)^{D n-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}}{\left.2\left(\sigma_{0}^{2}\right)^{D n-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+I\right) n \sigma_{1}^{2}\right)} \\
& +\frac{\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{2}}{2\left[\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right]^{2}\right.} \sum_{i=1}^{i}\left[\sum_{j=1}^{D} \sum_{k=1}^{n}\left(y_{l, k}-\mu\right)\right]^{2} \\
= & 0,
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \log L}{\partial \sigma_{2}^{2}}= \\
& \quad-\frac{S\left[\left(\sigma_{0}^{2}\right)^{D n-D} n(D-1)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-2}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+I n \sigma_{1}^{2}\right)\right.}{2\left(\sigma_{0}^{2}\right)^{D n-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)} \\
& \quad+\frac{\left.n\left(\sigma_{0}^{2}\right)^{D n-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\right]}{2\left(\sigma_{0}^{2}\right)^{D n-D}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)^{D-1}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)} \\
& \quad-\frac{n \sigma_{1}^{2}\left(2 \sigma_{0}^{2}+2 n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)}{2\left[\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right]^{2}\right.} \sum_{z=1}^{S}\left[\sum_{j=1}^{D} \sum_{k-1}^{n}\left(1 \mu_{j k}-\mu\right)\right]^{2} \\
& \quad-\frac{\sigma_{0}^{4}}{2\left[\sigma_{0}^{4}+n \sigma_{0}^{2} \sigma_{2}^{2}\right]^{2}} \sum_{\imath=1}^{S} \sum_{j=1}^{D}\left[\sum_{k=1}^{n}\left(y_{i j k}-\mu\right)\right]^{2} \\
& =
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \log L}{\partial \mu}= & \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{S} \sum_{j=1}^{D} \sum_{k=1}^{n}\left(y_{l \jmath k}-\mu\right) \\
& -\frac{\sigma_{1}^{2}}{\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)\left(\sigma_{0}^{2}+n \sigma_{2}^{2}+D n \sigma_{1}^{2}\right)} \sum_{\imath=1}^{S} \sum_{j=1}^{D} \sum_{k=1}^{n}\left(y_{\imath j k}-\mu\right) \\
& -\frac{\sigma_{2}^{2}}{\sigma_{0}^{2}\left(\sigma_{0}^{2}+n \sigma_{2}^{2}\right)} \sum_{i=1}^{S} \sum_{j=1}^{D} \sum_{k=1}^{n}\left(y_{\imath \jmath k}-\mu\right) \\
= & 0 .
\end{aligned}
$$

Solutions to the above equations will give the ML estimates of the variance components.

4.2.2 Unbalanced data

Inbalanced data are those in which the numbers of observations in the subclasses of the model are not all the same, including cases where there are no observations in some subclasses. The estimation of variance components from unbalanced data is more complicated than from balanced data.

For unbalanced data, the variance of Y is

$$
\mathfrak{V}=\operatorname{I}^{\top} \operatorname{ar}(Y)=Z_{1} Z_{1}^{T} \sigma_{1}^{2}+Z_{2} Z_{2}^{T} \sigma_{2}^{2}+I \sigma_{0}^{2}
$$

where $Z_{1} Z_{1}^{T}$ and $Z_{2} Z_{2}^{T}$ are $\sum_{i=1}^{S} \sum_{j=1}^{D_{1}} n_{i j} \times \sum_{i=1}^{S} \sum_{j=1}^{D_{i}} n_{i j}$ block-diagonal matrices:

$$
Z_{1} Z_{1}^{T}=\left(\begin{array}{cccc}
J_{1} & 0 & \ldots & 0 \\
0 & J_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & J_{S}
\end{array}\right)
$$

and

$$
Z_{2} Z_{2}^{T}=\left(\begin{array}{cccc}
E_{11} & 0 & \ldots & 0 \\
0 & E_{12} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & E_{1 D_{1}} & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & E_{S D}
\end{array}\right)
$$

J_{\imath} and $E_{i J}$ denote respectively $\sum_{j=1}^{D_{2}} n_{\imath \jmath} \times \sum_{j=1}^{D_{2}} n_{\imath \jmath}$ and $n_{\imath \jmath} \times n_{\imath \jmath}$ matrices consisting of 1 's. Therefore we can write

$$
V=\left(\begin{array}{cccc}
\Sigma_{1} & 0 & \ldots & 0 \\
0 & \Sigma_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \Sigma_{s}
\end{array}\right)
$$

where $\Sigma_{\imath}=\sigma_{0}^{2} I_{i}+\sigma_{1}^{2} J_{i}+\sigma_{2}^{2} H_{\imath}$ and

$$
K_{\imath}=\left(\begin{array}{cccc}
E_{\imath 1} & 0 & \ldots & 0 \\
0 & E_{\imath 2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & E_{2 D_{1}}
\end{array}\right) .
$$

The following are results about $\operatorname{det}\left(\Sigma_{2}\right)$ and Σ_{2}^{-1}. For the same reason as we mentioned in the previous section, an analytical expression for the inverse of I' an avoid the heavy computational burden when we use numerical techniques to calculate the estimates (Rio and Kleffe, 1988).

Proposition 4 Let $\Sigma_{2}=\sigma_{0}^{2} I_{2}+\sigma_{1}^{2} J_{2}+\sigma_{2}^{2} K_{2}$, then
(1) $\operatorname{det}\left(\Sigma_{i}\right)=\left(\sigma_{0}^{2}\right)^{\left(\sum_{j=1}^{D_{2}} n_{2}\right)-D_{1}} \Pi_{j=1}^{1)_{2}}\left(\sigma_{0}^{2}+n_{2 j} \sigma_{2}^{2}\right)\left[1+\sigma_{1}^{2} \sum_{j=1}^{D_{2}}-\bar{\sigma}_{i}^{2}+n_{1}, \sigma_{2}^{2}\right]$
(2) $\Sigma_{3}^{-1}=\frac{1}{\sigma_{0}^{2}} I_{1}-B J-\frac{1}{1+\sigma_{1}^{2} \sum_{j=1}^{\nu_{i}} \frac{\pi_{1}}{\sigma_{1}^{2}+n_{y} \sigma_{2}^{2}}} * J K$
wher

$$
B . J=\left(\begin{array}{cccc}
\frac{\sigma_{2}^{2}}{\bar{\sigma}_{10}^{\left(\sigma_{0}^{2}+n_{1} \sigma_{2}^{2}\right)}} J_{n_{11} \times n_{11}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \frac{\sigma_{2}^{2}}{\sigma_{0}^{2}\left(\sigma_{0}^{2}+n_{1} D_{\mathrm{t}} \sigma_{2}^{2}\right)} J_{n_{1} D_{1} \times n_{2} D_{2}}
\end{array}\right)
$$

and

$$
J K=\left(\begin{array}{c}
\frac{\sigma_{1}}{\sigma_{0}^{2}+n_{1} \sigma_{2}^{2}} \\
\vdots \\
\frac{\sigma_{1}}{\sigma_{0}^{2}+n_{1} D_{1} \sigma_{2}^{2}}
\end{array}\right) *\left(\frac{\sigma_{1}}{\sigma_{0}^{2}+n_{1} \sigma_{2}^{2}} \ldots, \frac{\sigma_{1}}{\sigma_{0}^{2}+n_{t} D_{1} \sigma_{2}^{2}}\right)
$$

PROOF. (1):
Let $A_{l}=\Xi_{i}-\sigma_{1}^{2} J_{l}$, then

$$
\Sigma_{2}=A_{i}\left[I+\sigma_{1}^{2}\left(A_{i}\right)^{-1} J_{i}\right] .
$$

This gives

$$
\operatorname{det} \Sigma_{\imath}=\operatorname{det} A_{i} \operatorname{det} I+\sigma_{1}^{2}\left(A_{i}\right)^{-1} J_{\imath}
$$

Note that

$$
\operatorname{det} A_{i}=\left(\sigma_{0}^{2}\right)^{\sum_{j=1}^{D_{i}} n_{t 3}-D_{i}} \prod_{j=1}^{D_{1}}\left(\sigma_{0}^{2}+n_{i j} \sigma_{2}^{2}\right)
$$

by Proposition 1 and

$$
\operatorname{det} I+\sigma_{1}^{2}\left(A_{i}\right)^{-1} J_{i}=1+\sigma_{1}^{2} \sum j=1^{D_{2}} \frac{n_{i j}}{\sigma_{0}^{2}+n_{i j} \sigma_{2}^{2}}
$$

thus

$$
\operatorname{det}\left(\Sigma_{\imath}\right)=\left(\sigma_{0}^{2}\right)^{\left(\sum_{\jmath=1}^{D_{2}} n_{3}\right)-D_{1}} \prod_{j=1}^{D_{i}}\left(\sigma_{0}^{2}+n_{i j} \sigma_{2}^{2}\right)\left[1+\sigma_{1}^{2} \sum_{\jmath=1}^{D_{i}} \frac{n_{i j}}{\sigma_{0}^{2}+n_{i j} \sigma_{2}^{2}}\right]
$$

PROOF. (2):
Since

and

$$
\left[I+\sigma_{1}^{2}\left(A_{2}\right)^{-1} J_{2}\right]^{-1}=I-\frac{1}{1+\sigma_{1}^{2} \sum_{j=1}^{D_{1}} \frac{n_{11}}{\sigma_{0}^{2}+n_{1}, \sigma_{2}^{2}}}\left(\begin{array}{c}
\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}+n_{11} \sigma_{2}^{2}} \\
\vdots \\
\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}+n_{1 n_{1}} \sigma_{2}^{2}}
\end{array}\right) 1^{l}
$$

we obtain

$$
\Sigma_{\imath}^{-1}=\frac{1}{\sigma_{0}^{2}} I-B J-\frac{1}{1+\sigma_{1}^{2} \sum_{J=1}^{D_{1}} \frac{n_{1}}{\sigma_{0}^{2}+n_{3} \sigma_{2}^{2}}}+J \Lambda
$$

Where

$$
B J=\left(\begin{array}{cccc}
\frac{\sigma_{2}^{2}}{\sigma_{0}^{2}\left(\sigma_{0}^{2}+n_{11} \sigma_{2}^{2}\right)} J_{n_{11} \times n_{11}} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \cdots & \frac{\sigma_{2}^{2}}{\sigma_{0}^{2}\left(\sigma_{0}^{2}+n_{1} p_{\mathrm{t}} \sigma_{2}^{2}\right)}, J_{n_{1} D_{1} \times n_{2} J_{1}}
\end{array}\right)
$$

and

$$
J K^{\prime}=\left(\begin{array}{c}
\frac{\sigma_{1}}{\sigma_{0}^{2}+n_{41} \sigma_{2}^{2}} \\
\vdots \\
\frac{\sigma_{1}}{\sigma_{0}^{2}+n_{t} D_{1} \sigma_{2}^{2}}
\end{array}\right) *\left(\frac{\sigma_{1}}{\sigma_{0}^{2}+n_{i 1} \sigma_{2}^{2}}, \ldots \frac{\sigma_{1}}{\sigma_{0}^{2}+n_{t} \mu_{2} \sigma_{2}^{2}}\right)
$$

The log likelihood function now becomes

$$
\begin{align*}
\log L= & \left({ }^{\prime}-\frac{1}{2} \sum_{i=1}^{S}\left\{\left[\left(\sum_{j=1}^{D_{i}} n_{i j}\right)-D_{i}\right] \log \sigma_{0}^{2}+\sum_{j=1}^{D_{i}} \log \left(\sigma_{0}^{2}+n_{2 j} \sigma_{2}^{2}\right)\right.\right. \\
& +\log \left[1+\sigma_{1}^{2} \sum_{j=1}^{D_{2}} \frac{n_{i j}}{\sigma_{0}^{2}+n_{i j} \sigma_{2}^{2}}\right]+\frac{1}{\sigma_{0}^{2}} \sum_{j=1}^{D_{i}} \sum_{k=1}^{n_{i j}}\left(y_{i j k}-\mu\right)^{2} \\
& -\sum_{j=1}^{D_{2}} \frac{\sigma_{2}^{2}}{\sigma_{0}^{2}\left(\sigma_{0}^{2}+n_{i j} \sigma_{2}^{2}\right)}\left[\sum_{k=1}^{n_{i j}}\left(y_{i j k}-\mu\right)\right]^{2} \\
& -\frac{\sigma_{1}^{2}}{1+\sigma_{1}^{2} \sum_{j=1}^{D_{2}} \frac{n_{2 j}}{\sigma_{0}^{2}+n_{i j} \sigma_{2}^{2}}}\left[\left(\sum_{j=1} D_{i} \frac{1}{\sigma_{0}^{2}+n_{i j} \sigma_{2}^{2}}\left(\sum_{k=1}^{n_{1 j}}\left(y_{i j k}-\mu\right)\right)\right]^{2}\right\} \tag{4.4}
\end{align*}
$$

The ML estimates of $\sigma_{0}^{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$, and μ can be obtained by maximizing the above constrained nonlinear function.

There are many numerical procedures for the constrained nonlinear optimization problems, such as the steepest ascent algorithm and Newton-Raphson algorithm. There is no single iterative numerical algorithm for MLE that will be the best for every applications. Several computational algorithms are discussed by Harville (1977).

4.3 MLE for Incomplete Data

This section considers the estimation of variance components in the presence of censoring data.

Suppose $y_{i, k}$ are observed for $i=1, \ldots, S_{o b s .} ; j=1, \ldots, D_{i, o b s . ;} ; k=1, \ldots, m_{i j}$ and missing for $i=\varsigma_{\text {ubs. }}+1, \ldots, S ; j=D_{i, o b s .}+1, \ldots, D_{i} ; k=m_{i j}+1, \ldots, n_{i j}$ in each $i-j$ mating. The missing-data mechanism is

$$
P\left(y_{i j k} \text { obscrved } \mid y_{i j k}\right)= \begin{cases}1 & \text { if } y_{i j k}>c \\ 0 & \text { otherwise } .\end{cases}
$$

The missing data here is non-ignorable since the probability of response depends on the value of $y_{i j k}, n_{i j}$ is the number of complete data in the $i j$ th mating and $m_{i j}$
is the number of observed responses in the $i j$ th mating, so that $n_{2,}-m_{t, j}$ will be the number of missing observations in the $i j$ th mating. To characterize the data, we define

$$
\begin{aligned}
& =\lim _{\Delta \rightarrow 0} P\left(y_{i 11}<Y_{i 11} \leq y_{i 11}+\Delta, \ldots, y_{i 1 m_{i 1}}<\eta_{i 1 m_{21}} \leq y_{11 m_{11}}+\Delta\right. \text {, } \\
& Y_{i 1 m_{11}+1}<c, \ldots, Y_{i 1 n_{1}}<c ; \ldots ; y_{i D_{1,0 b s} 1}<Y_{i D_{1}, t l_{1} 1} \leq y_{i I_{1, \ldots b 9} 1}+\Delta_{, \ldots}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{i D_{1, o b *} n_{t} D_{t, o b s}}<c: Y_{2 D_{t, o b s}+11}<c, \ldots, Y_{i D_{t} \text { obw }+1 m_{i D_{1}, \ldots b x}}<c, \ldots, \\
& \left.Y_{2 D_{1, o b s} n_{1, D_{1}, o b s}}<c\right),
\end{aligned}
$$

then the full likelihood function can be written as

$$
\begin{aligned}
& L\left(\mu, \sigma_{0}^{2}, \sigma_{1}^{2}, \sigma_{2}^{2} ; Y^{*}\right)=\prod_{i=1}^{S_{o b s}} L\left(y_{i 11}, \ldots, y_{i 1 m_{11}}, y_{11 m_{11}+1}<c, \ldots, y_{l 1 n_{11}}<c_{;}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \ldots, y_{l D_{1}, \text { obs } n_{1} D_{1, c b}}<c ; \\
& \left.y_{i D_{1, o b_{s}}+11}<c, \ldots, y_{i}\right)_{1, b b \varphi}+1 m_{i} D_{1, b l}<c, \\
& \left.\ldots, y_{i D_{2}, o b s} n_{2} D_{1, t b} .<c\right) \\
& \prod_{\imath=S_{\text {obs }}+1}^{S} L\left(y_{2 j k}<c ; j=1, \ldots, D_{2} ; k=1, \ldots, n_{2,}\right)
\end{aligned}
$$

If Y_{i} denote the vector of observations of those from ith sire, Y_{i} and Y_{i} are inda pendent for any $i \neq i^{\prime}$. The log-likelihond of $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{s}^{\prime}\right)$ beromess

$$
\begin{aligned}
& \log L\left(\mu, \sigma_{0}^{2}, \sigma_{1}^{2}, \sigma_{2}^{2} ; Y\right)=\sum_{i=1}^{S_{o b s}} \log L\left(y_{i 11}, \ldots, y_{l 1 \pi_{11},}, y_{l 1 m_{t 1}+1}<c, \ldots, y_{1 n_{11}}<r ;\right.
\end{aligned}
$$

$$
\begin{aligned}
& \ldots, y_{y} D_{2, \text { obb }} n_{1} D_{1} \text { ab } . ~<c ; \\
& y_{L D_{1, n b},+11}<c, \ldots, y_{2 D_{1, o b s}+1 m_{1, D_{1, o b s}}<c,}, \\
& \left.\ldots, y_{l} D_{1} \text { obb } n_{1} D_{1, \text { obs }}<c\right) \\
& +\sum_{i=S_{\text {obs }}+1}^{S} \log L\left(y_{i \jmath k}<c ; j=1, \ldots, D_{i} ; k=1, \ldots, n_{\imath j}\right)
\end{aligned}
$$

where c is a known constant.
In theory, the $\sigma_{0}^{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$, and μ can be estimated by maximizing the above loglikelihood function. However, the typical component for sire i has the form

$$
L\left(y_{2, \Delta b s .,} y_{2, m i s .}<c\right)=\int_{-x}^{c} \ldots \int_{-\infty}^{c} f\left(y_{2, o b s .,} y_{2, m i s .}\right) d y_{i, m \imath s}
$$

where $y_{t, \text { whs }}$, is the vector of observed data for i while $y_{i, m i s}$. is the vector of missing data for i . Because the dimension of the integration is the length of $y_{\imath, m a s}$. the direct computation of $P\left(y_{2, o b s .}, y_{2}\right.$, mis. $\left.<c\right)$ is practically impossible when there are more then a few missing data. The following proposition is necessary to transform $P\left(y_{l}\right.$, chs. $\left.. y_{l}, m t s .<c\right)$ into a computable likelihood function.

Proposition 5 Assume that Y_{i}^{*} is multivartate normal

$$
\left(\begin{array}{c}
y_{i 11} \\
y_{212} \\
\vdots \\
y_{2 D_{2} n_{2} D_{1}}
\end{array}\right) \sim N\left(\mu, \Sigma_{\imath}\right)
$$

where μ is a $\sum_{j=1}^{D_{i}} n_{i j} \times 1$ rector, and varlance-covariance matrix Γ_{i} has form

$$
\Xi_{2}=\sigma_{0}^{2} I+\sigma_{1}^{2} J_{2}+\sigma_{2}^{2} h_{i}^{r} .
$$

Then the log-likelihood function can be written as

$$
\log L=\sum_{i=1}^{S_{\text {obs }}} \log \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right)
$$

$$
\begin{align*}
& \left\{\prod _ { l = 1 } ^ { D _ { 1 , a b * } } \int _ { - \lambda } ^ { \alpha } \operatorname { e x p } \left\{\frac { - 1 } { 2 } \sum _ { k = 1 } ^ { m _ { 2 j } } \left(\frac{\left.\left.y_{1, k}-\mu-\sigma_{1} \hat{0}_{0}-\sigma_{2 \ddot{2}}\right)^{2}\right\}}{\sigma_{0}}\right.\right.\right. \\
& \Phi\left(w_{j}\right)^{n_{4}-m_{2}} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right)\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{1}} d z_{j} \\
& \left.\prod_{j=D_{2,0 b_{2}}+1}^{D_{i}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right) \Phi\left(w_{j}\right)^{n_{1}} d z_{j}\right\} d l_{i \omega} \\
& +\sum_{i=S_{o b s}+1}^{S} \log \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \prod_{j=1}^{D} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2} \pi} \exp \left(-z_{j}^{2} / 2\right) \\
& \Phi\left(w_{j}\right)^{n_{1}} d z_{j} d z_{0} . \tag{1.5}
\end{align*}
$$

where

$$
w_{j}=\frac{c-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}}{\sigma_{0}}, h j=1,2, \ldots, l_{2} .
$$

It is important to note that the likelihood now involves integration only over two dimensions rather than integration over the number of dimensions corresponding to the length of the missing data. Hence $\sigma_{0}^{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$ and μ can be estimated by maximizing above function which is computable. For proof see ('lapter.5.

4.4 Computation

Ordinarily, we must resort to an iterative numerical procedure to obtain a ML es timate of variance components. There are simple cases where the estimate can be found by analytical means (for example, balanced onc-way randon-effects model). The likelihood equations for full ML do not admit an explicit solution for all models, (Hartley and Rao, 1967).

There are many iterative unmerical algorithms that can be regarded as candi dates for computing ML estimates of variance components. Some werre developed specifically for special cases, others are general procedures for the mumerical solution of broad classes of constrained non-linear optimization problems. 'I here is no simgla
itcrative mumerical algorithm for ML estimation of variance components that will be best, or perhaps even satisfactory, for every application. An algorithm that requires relatively few computations to converge to a ML estimate in one setting may converge slowly or even fail to converge in another. In deciding which among available algorithms to try in a particular application, we must make some judgments about their computional requirements and their other properties as applied to a given setting (Harville, 1977).

It is noteworthy that the above likelihood function must be evaluated with two levels of integration, both of which have infinite range. This infinite range can cause numerical inaccuracies and a transformation is usually required. To obtain a better result, the following transformation has been applied to convert the infinite interval to the interval $[-1,1]$:

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1}\left[f\left(\frac{1-t}{t}\right)+f\left(\frac{-1+t}{t}\right)\right] \frac{1}{t^{2}} d t
$$

Gaussian quadrature method is used to evaluate the two levels of integration above.

To locate an ML estimate of variance components, we can use Newton-Raphson algorithm, stecpest ascent algorithm, or Simplex method. Since the gradient of our likelihood function is too difficult to get (we confront with a situation that the derivative of the integration of a product of integration will be needed), I am forced to give up all the gradient procedures. The two methods which requires only funtion evaluations have been tried by using subroutines in NAG and IMSL, none of them works due to the nature of our likelihood function. The method I use here is global search of the parameter space. The maximum function value in a given parameter space is found by using a global search of the parameter space. It is not efficient in terms of the number of function evaluations that requires. However it can give the results with tolay's computer. A better maximization of likelihood function is needed.

For two-way nested model, the parameter space is a four dimensional space. The search strategy which I used in my program is

- I start at one-dimensional space. With three parameters (say, $\sigma_{1}^{2}, \sigma_{2}^{2}$ and μ) fixed and coarse gricl, it is easy to find out the maximum of the function of σ_{0}^{2} :
- repeat above step for other three parameters. The four one-dimensional max imums will help us to localize a small four-dimensional space which usually: include the four-dimensional maximum:
- with a fine grid and four-dimensional global search, the maximum function is usually located.

A typical problem as our motivating example needs roughly (65 function cualuations for localizing the final search space, and needs roughly 10000 function craluations for finding the maximum.

A graphical data presentation programme for estimating $\sigma_{0}^{2}, \sigma_{1}^{2}$. σ_{2}^{2} and μ was developed during this research on a personal computer systems taking advantage of 80 -bit floating computation. With the aid of graphical data presentation, the user can visually determine the proper upper and lower bounds on the parameters and carry out an effective search.

By using the programme on an i486/50X P(!, a modest problem like the example in Chapter 1 can be solved in few minutes.

For computing confidence intervals for variance components (say, for σ_{0}^{2}) ly the likelihood ratio statistic, I will

- first use global search of the parameter space to find the estimates of varince components and μ as we developed before,
- replace the parameters in the likelihood function exerpt σ_{0}^{2} by the estimates,
- Then calculate

$$
i\left(\hat{\mu_{\sigma_{j}^{2}}^{2}}, \sigma_{0}^{2}, \hat{\sigma}_{1 \sigma_{i}^{2}}^{2}, \hat{\sigma}_{2 \sigma_{0}^{2}}^{2} ; y\right)>L\left(\hat{\mu}, \hat{\sigma_{0}^{2}}, \hat{\sigma_{1}^{2}}, \hat{\sigma_{2}^{2}} ; y\right)-\frac{l_{1, \alpha}^{2}}{2}
$$

b. the same glowal search routine (the search space is one dimension now).

4.5 examples

In this section, the preceding procedure is illustated with five examples. The first 'xample is the one introduced in chapter 1 as a motivating example. In chapter 1 , we have sern the severe bias when we applied classical ANOVA and MLE methods to the largest 200 obervations. Now we will use the same 200 data to estimate the variance components by our new procedure and we will see that the estimates are very close to true values. Based on simulated data. Example 2 gives the estimates by MLE and MIS for complete data sets. I want to use it to show 'ho moliability of our programme. The hox-plots for each component by three methods (ANOVA, MLE, and our method) are in the third cxample. As will be seen the MLE and ANOVA estimates have substantial hias for all four components while our estimates is approximately unbiased. In Example 1, we compute the confidence intervals. Example 5 shows the boxplot of the thee methods with four different missing rates.

Example 1: The mating design had 7 sires with 3 dams nested within each sire, sixty uffspring per female. 1260 offspring (sibs) are grown together in a rommon pool. At the end of the experiment all fish have been weighed, so their sizes ($=$ growth rates because they ars all the same age) are known. The largest 200 fish have been analyzed in the (iene Probe Lab so their parentage (sire and dam) is known. The parentage of the remaining 1060 fish is unknown. We have listed the estimates obtained by our method (MIS), compared with ANOVA and MLE in Table 4.1. As can be seen our method gives results very close to the true results.

Example 2: 3 simulated date sets with $\sigma_{0}^{2}=\sigma_{1}^{2}=\sigma_{2}^{2}=1.0$ are used (the mumber of sires, dams and offspring are randomly generated). The estimates oltained by MLE and MIS with no missing data are compared in Table 4.2.

We can see that MLE and MS are very close when there is no missing data. Sinere the results of MLE with no missing data have been checked by SAS and BMDP, we can put trust in our programme. We also note that $L_{a L L E m_{n a 1}}>L_{A I S_{m a 2}}$ for the thres simulated data sets. This indicates the error of momerical computation (evaluation the two levels of integration and optimization).

Example 3: 50 simulated data sets werc generated with $\sigma_{0}^{2}=2.0, \sigma_{1}^{2}=1.0$ and $\sigma_{2}^{2}=0.5$, and $\mu=0.0$ respectively. In each simulation, the number of sires, dams, and offspring were randomly generated and used to generate $y_{\nu, k}$ for a completeset of data. After the complete set of data was generated, the largest 30% was user for variance component estimation by ANOVA, MLE, and our method. The box plot for each component by the three methods are shown in Figure 4.1. As can be seen the MLE and ANOVA estimates had substantial bias for all four components while our estimates are approximately unbiased.

Fig 1.1. Box-plot for each component and μ by the three methods

It is not enough to report the point estimate. We have to know alho what is the precision of the estimate. (ienerally. confidence interval formulates the precision of the estimate. The following example gives the confidence intervals for variance components with missing observations based on simulated data. The construction and computation of the confidence interval for variance components with missing observations are described in ('hapter 5.

Example 4: We generated 25 groups of clata using $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0, \sigma_{2}^{2} \quad 1.0$ and $\mu=0.0$. In each simulation, the number of sires is randomly chosen between in and 10 (some of the long confidence intervals for σ_{1}^{2} reflect the lact that the eflective sample size for estimating σ_{1}^{2} is small), the number of dams within $i t h$ sire is raudomly: chosen between 5 and 8 (overall sample size for dams is between 25 and 80), and the number of offspring is randomly chosen between 15 and 30 (overall sample size for offspring is between 375 and 2400). The largest 30% of the data were used for variance component estimation (both point and confidence interval) ($x=0.05$). The results are reported in Table 4.3. The coverage rates of our confidence intervals for $\sigma_{0}^{2}, \sigma_{1}^{2}$. σ_{2}^{2}, and μ are $100 \%, 96 \%, 96 \%$, and 96%, respectively.

Example 5: 12 data sets were generated with $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0, \sigma_{2}^{2}=1.0$, and $\mu=0.0$. In each simulation, $100 \%, 70 \%, 40 \%$ and 10% largest data werre used for variance components estimation. Figure 4.2 shows the boxplots of $\hat{\mu}$ with different missing rates. We observe that bias of ANOVA and MLE increase as missing rate increase while our estimate is comparatively stable.

Fig 4.2 Box-plot with four different missing rates

Based on the simulation, we observed that

- When there is no missing observations, the results of three methods are quite similar.
- When missing rate increase from 30% to 60%, the bias of 1 NO)VA and Mllt: increase. But our estimate does not seem to be affected.

Table 4.1: Comparison of the thret methods

	σ_{0}^{2}	σ_{1}^{2}	σ_{2}^{2}	μ
True(1260)	$100.75)$	29.05	18.70	28.17
ANOVA(200)	26.43	2.69	-1.019	47.10
MLE(200)	$25.8: 3$	1.89	0.082	46.30
MIS(200)	95.00	26.60	18.05	28.00

Table 4.2: Comparison of the three methods

	MLE	MIS	MLE	MIS	MLE	MIS
σ_{0}^{2}	1.04	1.04	1.04	1.04	1.04	1.04
σ_{1}^{2}	1.98	2.06	2.07	2.50	0.92	0.67
σ_{2}^{2}	1.12	1.36	1.25	1.40	0.66	0.63
$\mu)$	-0.40	-0.42	0.00	0.00	0.49	0.45
$L_{\text {max }}$	297.41	289.12	294.54	286.20	286.66	278.94

Table 4.3: Point tstimates and confide net intereals (o $=0.05$)

	$\hat{\sigma}_{0}^{2}$	$\hat{\sigma}_{1}^{2}$	$\hat{\bar{a}}_{2}^{2}$	$\hat{\mu}$
1	1.04	0.68	1.10	-0.55,3
	(0.81. 1.34)	(0.02, 3.08)	(0.699, 3.71)	(1.16, 0.35)
\bigcirc	1.27	5.34	0.59	0.28
	(0.98. 1.63)	(1.29, 10.15)	(0.31, 2.59)	(-2.18, 1.40)
3	0.875	1.16	1.372	-1.12
	(0.66. 1.15)	(0.32, 8, 51)	(0.48, 3.61)	(-1.23, 0.68)
4	1.04	1.55	1.0 s	0.78
	(0.83, 1.37)	(0.29, 20.98)	(0.16, 3.39)	(-0.77, 2.31)
5	1.01	1.04	0.93	0.0
	(0.80, 1.32)	(0.0, 5.58)	(0.62, 3.93)	(-1.20, 0.633)
6	1.04	0.86	0.60	0.8i
	(0.79. 1.39)	(0.24, 5.83)	(0.53, 1.99)	(-1.60, 0.16)
7	1.08	1.97	2.67	1.0
	(0.88, 1.46)	$(0.0,15.38)$	(0.85. 8.1)	(-0.27, 2.43)
8	1.03	1.50	0.41	-0.53
	(0.74, 1.30)	(0.56, 9.37)	(0.18, 1.76)	$(-1.39,0.80)$
9	1.12	1.13	0.36	0.59
	(0.85, 1.51)	(0.37, 6.56)	(0.12, 1.38)	(-0.32, 1.59)
10	1.00	0.75	0.70	0.46
	(0.78, 1.30)	(0.25, 4.15)	(0.30. 2.01)	$(-0.42,1.21)$
11	0.83	0.541	0.77	0.00
	(0.65, 1.13)	(0.07, 3.07)	(0.32, 1.96)	(-0.63, 0.68)
12	0.93	0.69	1.38	0.44
	(0.78, 1.29)	(0.19, 5.88)	(0.67, 4.78)	(-0.32, 1.44)
13	1.04	0.91	1.13	1.33
	(0.83, 1.36)	$(0.26,4.87)$	(0.53, 2.0.03)	$(0.60,2.099)$
14	0.88	0.91	3.35)	0.52
	(0.80, 1.24)	(0.46, 4.3.3)	(1.11, 7.57)	(-1.02, 0.68)
15	1.13	0.62	(0.57	-(0.36
	(0.79, 1.33)	(0.02, 4.21)	(0.27, 1.73)	$(-1.04,0.29)$
16	0.87	0.88	1.37	0.49
	$(0.67 .1 .11)$	$(0.34,3.69)$	(0.81, 3.67)	$(-0.23,1.17)$
17	0.92	1.61	$2.8{ }^{\prime} 2$	1.11
	$(0.70,1.20)$	$(0.49,9.19)$	(0.78, 6.49)	$(-0.63,1.91)$
18	0.99	2.15	0.96	1.10
	(0.76, 1.28)	(0.57, 9.37)	(0.44, 3.31$)$	$(-2.11,0.23)$
19	1.10	1.72	1.10	0.00
	$(0.88,1.44)$	(0.40, 7.23)	(0.60, 4.08)	(-0.76, 1.26)

(continued)

	$\hat{\sigma}_{0}^{2}$	$\hat{\sigma}_{1}^{2}$	$\hat{\sigma}_{2}^{2}$	$\hat{\mu}$
20	0.98	2.24	0.98	0.38
	$(0.79,1.34)$	$(0.59,14.19)$	$(0.32,3.08)$	$(-0.81,2.18)$
21	1.15	2.05	0.85	-0.59
	$(0.92,1.51)$	$(0.39,7.96)$	$(0.29,2.24)$	$(-1.63,0.49)$
22	0.92	1.40	0.92	-1.01
	$(0.78,1.22)$	$(0.26,4.59)$	$(0.51,1.50)$	$(-1.46,0.04)$
23	1.03	2.71	0.36	0.42
	$(0.80,1.37)$	$(0.86,18.20)$	$(0.26,2.21)$	$(-1.47,1.74)$
24	0.98	0.77	0.78	0.56
	$(0.80,1.33)$	$(0.09,4.72)$	$(0.29,1.98)$	$(-0.43,1.22)$
25	1.00	0.66	0.85	0.00
	$(0.77,1.36)$	$(0.02,4.31)$	$(0.57,1.44)$	$(-0.19,0.46)$

Chapter 5

Properties of the Estimator

This chapter contains proofs for two propositions in ('hapter 3 and 4 which are im portant in enabling us to transform the full likelihood functions into the computable functions. We also provide proofs for the existence of ML estimates of the parameters. Construction of confidence intervals is included in section 3 .

5.1 Proofs of Proposition 2 and Proposition 5

We shall give the proof for Proposition 2 first. The proposition states that if

$$
\left(\begin{array}{c}
Y_{21} \\
Y_{i 2} \\
\vdots \\
Y_{2 n_{1}}
\end{array}\right) \sim N\left(\mu, \sigma_{0}^{2} I_{n_{1} \times n_{i}}+\sigma_{1}^{2} J_{i}\right),
$$

then

$$
\begin{aligned}
& L\left(y_{i 1}, y_{i 2}, \ldots, y_{2 m_{i}}, y_{i m_{1}+1}<c, \ldots, y_{i n_{1}}<c\right) x \\
& \left.\quad \int_{-\infty}^{\infty} \sigma_{0}^{-m_{2}} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{t}-m_{2}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j_{1}}^{m_{1}}\left(y_{1}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{U}^{2}}-z_{0}^{2}\right]\right\} d z_{10}\right)
\end{aligned}
$$

where J_{i} is a $n_{i} \times n_{i}$ matrix consisting of $1^{\prime} s$ and L is defined as in Chapior 3.

PROOF. $\mathrm{I}_{\mathrm{c}} \mathrm{t} Z_{0}, Z_{Z_{1} 1}, \ldots, Z_{i n_{1}}$ denote independent normally distributed variables with \%ero means and unit variances, and define

$$
Y_{2 j}=\mu+\sigma_{0} Z_{2, j}+\sigma_{1} Z_{0} .
$$

Then the joint distribution of $Y_{i 1}, Y_{i 2}, \ldots, Y_{i n_{1}}$ is a n_{i}-variate normal distribution with mean μ and variance-covariance matriy

$$
\operatorname{Var}\left(\begin{array}{c}
Y_{i 1} \\
Y_{i 2} \\
\vdots \\
Y_{i n_{1}}
\end{array}\right)=\sigma_{0}^{2} I_{n_{1} \times n_{1}}+\sigma_{1}^{2} J_{i}
$$

We define

$$
\begin{aligned}
& I\left(\mu+\sigma_{0} Z_{i j}+\sigma_{1} Z_{0} \mid Z_{0}=z_{0}\right)= \\
& \quad \lim _{\Delta \rightarrow 0} P\left(\mu+\sigma_{0} z_{\imath j}+\sigma_{1} Z_{0} \leq \mu+\sigma_{0} Z_{i j}+\sigma_{1} Z_{0} \leq \mu+\sigma_{0}\left(z_{i j}+\Delta\right)+\sigma_{1} Z_{0} \mid Z_{0}=z_{0}\right)
\end{aligned}
$$

Substituting $Y_{2 j}$ as $\mu+\sigma_{0} Z_{i j}+\sigma_{1} Z_{0}$, we obtain

$$
\begin{aligned}
& L\left(Y_{i 1} Y_{i 2} \ldots, Y_{i m_{1}}, Y_{i m_{\mathrm{t}}+1}<c, \ldots, Y_{i n_{\mathrm{t}}}<c\right)= \\
& L\left(\mu+\sigma_{0} Z_{i 1}+\sigma_{1} Z_{0}, \mu+\sigma_{0} Z_{i 2}+\sigma_{1} Z_{0}, \ldots, \mu+\sigma_{0} Z_{i m_{4}}+\sigma_{1} Z_{0} ;\right. \\
& \left.\mu+\sigma_{0} Z_{m m_{1}+1}+\sigma_{1} Z_{0}<c, \ldots, i \mu+\sigma_{0} Z_{i n_{1}}+\sigma_{1} Z_{0}<c\right) \\
& =\int_{-\infty}^{\infty} L\left(\mu+\sigma_{0} Z_{i 1}+\sigma_{1} Z_{0}, \mu+\sigma_{0} Z_{i 2}+\sigma_{1} Z_{0}, \ldots, \mu+\sigma_{0} Z_{i m_{1}}+\sigma_{1} Z_{0} ;\right. \\
& \left.\mu+\sigma_{0} Z_{2 m_{1}+1}+\sigma_{1} Z_{0}<c_{1} \ldots, \mu+\sigma_{0} Z_{i n_{2}}+\sigma_{1} Z_{0}<c \mid Z_{0}=z_{0}\right) f\left(z_{0}\right) d z_{0} \\
& =\int_{-\infty}^{\infty} L\left(\mu+\sigma_{0} Z_{i 1}+\sigma_{1} Z_{0} \mid Z_{0}=z_{0}\right) L\left(\mu+\sigma_{0} Z_{i 2}+\sigma_{1} Z_{0} \mid Z_{0}=z_{0}\right) \\
& \ldots L\left(\mu+\sigma_{0} Z_{i m_{1}}+\sigma_{1} Z_{0} \mid Z_{0}=z_{0}\right) P\left(\left.Z_{i m_{4}+1}<\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}} \right\rvert\, Z_{0}=z_{0}\right) \\
& \ldots P\left(\left.Z_{i n_{1}}<\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}} \right\rvert\, Z_{0}=z_{0}\right) f\left(\tilde{z}_{0}\right) d z_{0} \\
& =\int_{-x}^{x} \prod_{j=1}^{m_{1}} f\left(Y_{i j} \mid Z_{0}=z_{0}\right) \prod_{j=m_{1}+1}^{n_{1}} P\left(\left.Z_{i j}<\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}} \right\rvert\, Z_{0}=z_{0}\right) f\left(z_{0}\right) d z_{0} \\
& =\int_{-\infty}^{\infty} \sigma_{0}^{-m_{1}} \Phi\left(\frac{c-\mu-\sigma_{i} z_{0}}{\sigma_{0}}\right)^{n_{i}-m_{2}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{1}}\left(y_{i j}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0} .
\end{aligned}
$$

This proposition allows us to transform the full likelihood as a one-dimensiunal function which can be evaluated easily.

Let us consider the Proposition 5,

$$
\text { If }\left(\begin{array}{c}
Y_{i 11} \\
Y_{i 12} \\
\vdots \\
Y_{i D_{2} n_{t} D_{1}}
\end{array}\right) \sim N\left(\mu, \Sigma_{\imath}\right)
$$

then

$$
P\left(y_{i, 0 b s .}, y_{2, m ı s}<c\right)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) h\left(z_{0}, m_{t}, n_{2}\right) d \tau_{0}
$$

where

$$
\begin{aligned}
h\left(z_{0}, m_{i}, n_{i}\right)= & \prod_{k=1}^{D_{i}} \int_{-\infty}^{\infty} \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{i j}}\left(\frac{y_{i j_{k}}-\mu-\sigma_{1} z_{0}-\sigma_{2} \ddot{z}_{j}}{\sigma_{0}}\right)^{2}\right\} \\
& \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}}{\sigma_{0}}\right)^{n_{i}-m_{1}}\left(\sqrt{2 \pi} \sigma_{0}\right)^{m_{i}} d \tilde{z}_{j},
\end{aligned}
$$

$j=1,2, \ldots, D_{i}$,

$$
\Sigma_{i}=\sigma_{0}^{2} I+\sigma_{1}^{2} J_{i}+\sigma_{2}^{2} K_{i}
$$

J_{i} denotes a $\sum_{\jmath=1}^{D_{i}} n_{i j} \times \sum_{j=1}^{D_{i}} n_{i j}$ matrix consisting of $I^{\prime} s$ and

$$
K_{i}^{\prime}=\left(\begin{array}{cccc}
1_{i 1} 1_{\imath 1}^{\prime} & 0 & \ldots & 0 \\
0 & 1_{22} 1_{\imath 2}^{\prime} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1_{2 D_{1}} 1_{z D_{i}}^{\prime}
\end{array}\right)
$$

where $1_{i j}$ is a vector of ones of length $n_{2 j}$.
PROOF. Let $Z_{0}, Z_{1}, \ldots Z_{D_{1}}, Z_{i 11}, . ., Z_{2 D_{1}, n_{1} D_{2}}$ denote independent normally dis tributed variables with zero means and unit variances, and leit

$$
Y_{\imath j k}=\mu+\sigma_{0} Z_{i j k}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j} .
$$

Then the joint distribution of $Y_{i 11}, Y_{i 12}, \ldots, Y_{i D_{i t_{i} D_{t}}}$ is a $\sum_{j=1}^{D_{i}} n_{i j}$ variate normal distribution with mean μ and the variance-covariance matrix

$$
\operatorname{Var}\left(\begin{array}{c}
Y_{i 11} \\
Y_{i 12} \\
\vdots \\
Y_{i D_{i} n_{1} D_{2}}
\end{array}\right)=\sigma_{0}^{2} I_{n_{2} \times n_{\mathrm{a}}}+\sigma_{1}^{2} J_{i} \sigma_{2}^{2} K_{i}
$$

Let $y_{2,0,6, \text { s. }}$ represents the observed part of Y_{i} and $y_{2, \text { mis }}$. denotes the missing values. As before we define

$$
\begin{aligned}
& L\left(\mu+\sigma_{0} Z_{2 j k}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j} \mid Z_{0}=z_{0}, Z_{j}=z_{j}\right)= \\
& \quad \lim _{\Delta \rightarrow 0} P\left(\mu+\sigma_{0} z_{i j k}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j} \leq \mu+\sigma_{0} Z_{i j k}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j}\right. \\
& \left.\quad \leq \mu+\sigma_{0}\left(z_{i j k}+\Delta\right)+\sigma_{1} Z_{0}+\sigma_{2} Z_{j} \mid Z_{0}=z_{0}, Z_{j}=z_{\jmath}\right)
\end{aligned}
$$

and substitute $Y_{i j k}$ as $\mu+\sigma_{0} Z_{i j k}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j}$. The density of $\left(Y_{i, \text { obs, }}, Y_{i, \text { mis. }}<c\right)$ would be

$$
\begin{aligned}
& L\left(Y_{2, \text { olbs. }}, Y_{l, \text { mis. }}<c\right)= \\
& L\left(\left(\mu+\sigma_{0} Z_{u, k}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j}\right)_{i, 0 \mathrm{bs} .},\left(\mu+\sigma_{0} Z_{i j k}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j}\right)_{i, \text { mis. }}<c\right) \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\mathrm{x}}^{\infty} L\left(\left(\mu+\sigma_{0} Z_{i j k}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j}\right)_{i, \mathrm{obs},},\right. \\
& \left.\left(\mu+\sigma_{0} Z_{u_{1 k}}+\sigma_{1} Z_{0}+\sigma_{2} Z_{j}\right)_{\text {i,mis. }}<c \mid Z_{0}, \ldots, Z_{D_{\mathrm{t}}}\right) f\left(Z_{0}, \ldots, Z_{D_{\mathrm{i}}}\right) d \tilde{z}_{0}, \ldots, d z_{D_{\mathrm{i}}} \\
& =\int_{-\infty}^{\alpha} \cdots \int_{-\chi}^{\alpha} \prod_{j=m_{1}+1}^{n_{1} D_{2}} P\left(\left.Z_{2 j k}<\frac{c-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}}{\sigma_{0}} \right\rvert\, Z_{0}, \ldots, Z_{D_{1}}\right) \\
& f\left(Z_{0} \ldots, Z_{I I_{2}}\right) \prod_{j=1}^{m_{1}} f\left(Y_{i j k} \mid Z_{0}, \ldots, Z_{D_{1}}\right) d z_{0} \ldots, d z_{D_{1}} \\
& \times \int_{-\infty}^{\sim} \ldots \int_{-\infty}^{\sim} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{1}}\left(y_{i j k}-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}+z_{j}^{2}\right]\right\} \\
& \sigma_{0}^{-m_{1}} \Phi\left(w_{t}\right)^{n_{t}-m_{t}} d z_{0}, \ldots, d z_{D_{1}} \\
& =\int_{-x_{1}}^{N} \exp \left(-z_{0}^{2} / 2\right) \prod_{j=1}^{D_{2}} \int_{-\infty}^{\infty} \exp \left(-z_{j}^{2} / 2\right) \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{1 j}}\left(\frac{y_{i j k}-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}}{\sigma_{0}}\right)^{2}\right\} \\
& \Phi\left(u_{j}\right)^{n_{1}-m_{1}}\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{s}} d z_{j} d z_{0}
\end{aligned}
$$

This proposition enables us to have a likelihood which involves integration only over two dimension rather than integration over the number of dimensions corre sponding to the length of the missing data．This is the key step of our mothod．

5．2 The Existence of ML estimate

ML estimates may not always exist（Rao and Kieffe，1988）．Ilowever，we have proved

Theorem 1 For model（4．5），there is a ML cstimate．
PROOF．Let $\theta=\left(\sigma_{0}, \sigma_{1}, \sigma_{2}, \mu\right) \in[0, \infty)^{3} \times(-\infty, \infty)$ and

$$
\begin{aligned}
& f_{g}=L(\mu, V ; Y) \\
& =\prod_{i=1}^{S_{o b s}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \\
& \left\{\prod_{j=1}^{D_{1,0 b e}} \int_{-\infty}^{\infty} \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{2 j}}\left(\frac{y_{i j k}-\mu-\sigma_{1} z_{0}-\sigma_{2} \tilde{j}_{j}}{\sigma_{0}}\right)^{2}\right\}\right. \\
& \Phi\left(w_{j}\right)^{n_{t}-m_{t}} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right)\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{t}} / l z_{j} \\
& \left.\prod_{j=D_{2,0 b s}+1}^{D_{1}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right) \Phi\left(w_{j}\right)^{n_{2 j}} d z_{j}\right\} d l_{\tilde{w}_{0}} \\
& \left.\prod_{i=S_{o b, s}+1}^{S} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \prod_{j=1}^{D_{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right) \Phi\left(\omega_{l}\right)^{\mu_{1}} d:, d z_{i}\right) .
\end{aligned}
$$

where $\Phi(w)=\int_{-\infty}^{w} \phi(x) d x$ and $w_{j}=\frac{\left(-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{2}\right.}{\sigma_{0}}$ ．
We are going to show that if $\hat{0}$ is the MLIE of f_{0}, them $] N \sim x$ and $\theta+[0, N]^{\prime \prime}$, $[-N, N]$ ．
$f_{\theta} \geq 0 \mathrm{implies}$ that $\exists \delta>0$ and $\exists 0^{\prime} \in[0 . x)^{3} \times(-\infty, x)$ s．t． $\int_{\theta^{\prime}} \quad \delta$.
 bounded and $\frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right)\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{1}}$ goes to zero．．eecan oltain that limn，．．．$f_{1 \prime}$
0. Taking any $6=\delta$. we should have

$$
\exists V . \forall 0 \in\left([0 . N]^{3} \times[-N, N]\right)^{c} \cdot f_{\theta} \leq \epsilon=\delta .
$$

It is easy to see that f_{θ} is continuous on $[0, N]^{3} \times[-N, N]$. Therefore we know that f_{θ} takes on its maximum valuc at least once in $[0, N]^{3} \times[-N, N]$ by the result in any calculus text book(Swokowski, 1979).

The uniqueness of ML estimates of the parameters has not well proved yet, but we have showed two properties which related to the convexity of the likelihood f_{θ}. I hope these will help us to establish uniqueness in further research.

- f_{t} is closed: Suppose

$$
f_{\theta_{n}} \rightarrow f_{0} . \forall\left\{\theta_{n}\right\} \subset[0, N]^{3} \times[-N . N]
$$

We can show that we have $j_{0} \in \Gamma$ as following.
Since $[0, N]^{3} \times[-N, N]$ is closed, we always can find a subsequence $\left\{\theta_{n_{k}}\right\}$ s.t.

$$
\theta_{n_{k}} \longrightarrow \theta_{0} \in[0, N]^{3} \times[-N, N]
$$

and moreover

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} f_{\theta_{n_{i}}}= \\
& =\lim _{i \rightarrow \infty}\left\{\prod_{t=1}^{S_{o b s}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right)\right. \\
& \quad h\left(\theta_{n_{i}} ; z_{0}, m_{i}, n_{i}\right) d z_{0} \\
& =\prod_{t=1}^{S_{o b s}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \\
& \quad h\left(\lim _{\imath \rightarrow \infty} \theta_{n_{i}} ; z_{0}, m_{i}, n_{i}\right) d z_{0} \\
& =f_{\theta_{0}}=f_{0}
\end{aligned}
$$

where

$$
h\left(\theta_{n} ; \tilde{z}_{1}, m_{\imath}, n_{\imath}\right)=\left\{\prod_{j=1}^{D_{1, b b s}} \int_{-\infty}^{\infty} \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{12}}\left(\frac{y_{i j k}-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}}{\sigma_{0}}\right)^{2}\right\}\right.
$$

$$
\begin{aligned}
& \Phi\left(u_{j}\right)^{n_{t}-m_{2}} \frac{1}{\sqrt{2 \pi}} \operatorname{cxp}\left(-z_{j}^{2} / 2\right)\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{1}} d z_{1}, \\
& \left.\prod_{J=D_{1 c b s}+1}^{D_{1}} \int_{-}^{2} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{1}^{2} / 2\right) \Phi\left(u_{1}\right)^{n_{t}} d_{i_{3}}\right\} d_{i_{0}} \\
& \prod_{=s_{o b s}+1}^{s} \int_{-\alpha}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \\
& \prod_{j=1}^{D_{i}} \int_{-1}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right) \Phi\left(u u_{1}\right)^{n_{i_{1}}} d_{z_{j,}} .
\end{aligned}
$$

- f_{θ} is bounded: Notice that

$$
\begin{aligned}
& \Phi\left(w_{j}\right)^{n_{2}-m_{1}}\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{1}} \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{2 j}}\left(\frac{\left.y_{2 j k}-\mu-\sigma_{1} \dot{v}_{1}-\sigma_{2 i}\right)_{1}}{\sigma_{0}}\right\}\right. \\
& \leq\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{1}} \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{12}}\left(\frac{y_{l_{j k}}-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}}{\sigma_{0}}\right)^{2}\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \\
& \left\{\prod_{j=1}^{D_{2, \text { obs }}} \int_{-\infty}^{\infty} \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{2 j}}\left(\frac{y_{2, k}-\mu-\sigma_{1} \ddot{n}_{0}-\sigma_{2} z_{1}}{\sigma_{0}}\right)^{2}\right\}\right. \\
& \Phi\left(w_{j}\right)^{n_{2}-m_{1}} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right)\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{2}} d z_{j} \\
& \left.\prod_{j=D_{i, o b s}+1}^{D_{i}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right) \Phi\left(w_{j}\right)^{n_{i}} d z_{j}\right\} d \tilde{\sim}_{\| l} \\
& \leq \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \prod_{j=1}^{D_{2}} \int_{-\infty}^{\infty}\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{1}} \\
& \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{12}}\left(\frac{y_{2 j} k-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}}{\sigma_{0}}\right)^{2}\right\} d z_{d} d z_{i j} .
\end{aligned}
$$

Also note that the function at right hand side is the likelihood with completer data. It then follows that

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \prod_{j=1}^{D_{2}} \int_{-\infty}^{\infty}\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{1}}
$$

$$
\begin{aligned}
& \operatorname{} \operatorname{xp}\left\{\frac { - 1 } { 2 } \sum _ { k = 1 } ^ { m _ { i j } } \left(\frac{y_{\imath j k}-\mu-\sigma_{1} \dot{\sim} 0}{}-\sigma_{2} \tilde{\sim}_{j}\right.\right. \\
\sigma_{0} &)^{2}\right\} d z_{j} d z_{0} \\
= & (2 \pi)^{\frac{-\sum_{j} m_{i j}}{2}}\left|\Sigma_{\imath}\right|^{-1 / 2} \exp \left\{\frac{-1}{2}\left(Y_{i}-\mu_{\imath}\right)^{\prime} \Sigma_{2}^{-1}\left(Y_{i}-\mu_{\imath}\right)\right\}
\end{aligned}
$$

where $\Sigma_{t}=\sigma_{0}^{2} I_{n_{2} \times n_{t}}+\sigma_{1}^{2} J_{t}+\sigma_{2}^{2} K_{2}$. By Rao and Kleffe (1988),

$$
(2 \pi)^{\frac{-\sum_{1} m_{2 j}}{2}}\left|\Sigma_{2}\right|^{-1 / 2} \exp \left\{\frac{-1}{2}\left(Y_{i}-\mu_{2}\right)^{\prime} \Sigma_{i}^{-1}\left(Y_{i}-\mu_{i}\right)\right\}
$$

is bounderl. Thus

$$
\begin{aligned}
& \sum_{i=1}^{S_{c, b u}} \log \int_{-x}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \\
& \left\{\prod_{j=1}^{D_{1}, b *} \int_{-a}^{x} \exp \left\{\frac{-1}{2} \sum_{k=1}^{m_{2 j}}\left(\frac{y_{2 j k}-\mu-\sigma_{1} z_{0}-\sigma_{2} z_{j}}{\sigma_{0}}\right)^{2}\right\}\right. \\
& \Phi\left(u_{j}\right)^{n_{1}-m_{2}} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right)\left(\sqrt{2 \pi} \sigma_{0}\right)^{-m_{t}} d z_{j} \\
& \left.\prod_{I=D_{1,0 b 4}+1}^{D_{2}} \int_{-x}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right) \Phi\left(w_{j}\right)^{n_{13}} d z_{j}\right\} d z_{0} \\
& +\sum_{i=S_{o b s}+1}^{S} \log \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{0}^{2} / 2\right) \prod_{j=1}^{D_{i}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{j}^{2} / 2\right) \\
& \Phi(u)^{n_{t y}} d z_{\jmath} d z_{0}
\end{aligned}
$$

is bounded as well.

By an argument similar to that of Theorem 1, we have a simpler case

Theorem 2 For model (3.3), therf is a ML estimate.

5.3 Confidence Intervals

('alculating point estimates for variance components with missing data is usually not cnough. We must give the user an idea of the precision or possible error of the
estimates. In many estimation situations, it is of substantial interest to compule confidence intervals for parameters.

Approximate confidence intervals for variance components can be obtained from the likelihood-ratio statistic. Let us assume that (Y_{1}, \ldots, I_{s}) is a two-way nested sample where $Y_{2}^{\prime \prime}$ denote the vector of observations of those from i th sire. Y_{i} is a $\sum_{j=1}^{D_{1}} n_{i j}$ dimensional normal distribution with mean μ_{2} and nonsingular covariance matrix

$$
\sigma_{0}^{2} I_{2}+\sigma_{1}^{2} J_{1}+\sigma_{2}^{2} K_{2} .
$$

Then the likelihood is given by expression (4.5) of (hapter 1 . If we denote (4.5) as $l(\theta ; Y)$ where

$$
\theta=\left(\mu, \sigma_{0}^{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)
$$

the likelihood-ratio statistic will bc
where Ω is the parameter space and ω is the subspace corresponnmg to the mull hypothesis. The large-sample distribution theory of likelihood statistics implies that $-2 \ln \lambda$ has approximate distribution ${\underset{m}{2}(m+1) / 2}_{2}$ where m is the number of parameters tested (McCullagh and Nelder, 1989).

Let $l(\theta ; Y)_{m_{\text {ax }}^{\theta \in \Omega}}$ be $l\left(\hat{\mu}, \hat{\sigma_{0}^{2}}, \hat{\sigma_{1}^{2}}, \hat{\sigma_{2}^{2}} ; Y\right)$. For fixed σ_{0}^{2},

$$
l\left(\mu, \sigma_{0}^{2}, \sigma_{1}^{2}, \sigma_{2}^{2} ; y\right)
$$

is maximized at $\left(\hat{\mu}_{\sigma_{0}^{2}}, \sigma_{0}^{2}, \hat{\sigma_{1 \sigma_{0}^{2}}^{2}}, \hat{\sigma_{2 \sigma_{0}^{2}}^{2}}\right.$). Thus

$$
2 l\left(\hat{\mu}, \hat{\sigma_{0}^{2}}, \hat{\sigma_{1}^{2}}, \hat{\sigma_{2}^{2}} ; y\right)-2 l\left(\hat{\mu}_{\sigma_{0}^{2}}, \sigma_{0}^{2}, \hat{\sigma}_{1 \sigma_{0}^{2}}^{2}, \hat{\sigma}_{2 \sigma_{1}^{2}}^{2} ; y\right) \sim(\chi 1, \alpha)^{2}+o\left(n^{1}\right) .
$$

These approximations are often quite accurate for small values of S evern when Normal approximations for parameter estimates are unsatisfactory (McCullagh and Nelder, 1989).

The set of all σ_{0}^{2}-values satisfying

$$
2 l\left(\hat{\mu} \cdot \hat{\sigma}_{0}^{2} \cdot \hat{\sigma}_{1}^{2} \cdot \hat{\sigma}_{2}^{2}: y\right)-2 l\left(\hat{\mu}_{\sigma_{0}^{2}}, \sigma_{0}^{2}, \hat{\sigma}_{1 \sigma_{0}^{2}}^{2}, \hat{\sigma_{2}^{2}} \sigma_{0}^{2} ; y\right) \leq \chi_{1, \alpha}^{2}
$$

is an approximate $100(1-\alpha) \%$ confidence set for σ_{0}^{2}.

Similarly we could get approximate $100(1-\alpha) \%$ confidence sets for μ, σ_{1}^{2} and σ_{2}^{2}.

Chapter 6

Robust Procedures

This chapier provides robust procedures for variance components estimation with missing data from the one-way model.

6.1 The Need for Robust Statistics

As we mentioned in Chapter 1, statistical infenences are based only in part upon the observations. An equally important base is formed by prior assumptions about the underlying situation. There are explicit or implicit assumptions about raudonness and independence, about distributional models, perhaps prior distributions for some unknown parameters, and so on. These assumptions are not supposed to be exactly true, but we would like to ensure that a minor deviation from the assumptions canses only a small change in the final conclusions. Robustness means insemsitivity to mall deviations from the assumptions.

In the one-way model, we have

$$
y_{2 J}=\mu+\varepsilon_{t}+c_{1},\left\{\begin{array}{l}
i=1,2, \ldots, A \\
j=1,2 \ldots, n_{2}
\end{array}\right.
$$

where α_{1} and ϵ_{13} are assumed to be independent $N\left(0, \sigma_{1}^{2}\right)$ and $N\left(0, \sigma_{1}^{2}\right)$. Both the random effects α_{2} and the random errors c_{2} car be contaminated. In prime iple.
robust procedures should be able to withstand contamination in both components (Rocke 1983, Fellner 1986). Other departures from the underlying model, such as non-additivity or lack of independence of errors and/or random effects, will not be considered here.

The following simulated examples illustrate the need for robustness for our estimates.

Example 6.1: Assume that data is collected from a one-way model with 5 classes and γ observation each class. In the simulation, we set mean $\mu=0, \alpha_{i} \sim N(0.1)$, and $c_{1} \sim 0.95 N(0,1)+0.05 N(0,50)$, respectively. α_{i} and c_{2} are independent. The estimates by ANOVA. MLE and $M L E_{m s s}$ with complete data are summarized in table 6.1.

	σ_{0}^{2}	σ_{1}^{2}	μ
ANOVA	4.7694	2.5854	-0.0388
MLE	4.7973	1.9174	-0.0348
$M L E_{\text {mıs }}$	4.7173	2.3957	-0.0206

Table 6.1: $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0$ and $\mu=0.0$ with complete data

For complete data (40 observations). it can be seen that ANOVA, MLE and our estimate $M L F_{m, s}$ could give very poor estimates when $\epsilon_{i j}$ has a contamination distribution.

Example 6.2. Taking the same data set in Example 6.1 and only using data which are great than 0.0 (the largest 22 obscrations have been used), we list the results by three methods in the following table 6.2.

The numerical results in table 6.2 shows that with missing data the three methods all could give very poor estimates wher the $\epsilon_{2 j}$ are contaminated.

Table 6.2: $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0$ and $\mu=0.0$ with data which art greater than 0.0$)$

	σ_{0}^{2}	σ_{1}^{2}	μ
ANOVA	3.2895	0.1251	1.3212
MLE	3.0862	0.1702	1.2178
MLE	$3.04{ }^{\text {mis }}$	3.041	0.4506

6.2 The Influence Function

The influence function gives us a precise idea of how the estimator responds to a small amount of contamination at any point. Those estimators which are very susitive to the form of F will be most influenced by small amounts of contamination.

Formally: consider observations x_{1}, \ldots, x_{n} from an underlying density $f_{\theta}(x)$ where $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$. Note that the $x_{i}^{\prime} s$ may be univariate or multivariate. Any estimate T_{π} is defined by a minimum problem of the form

$$
\rho\left(x_{i} ; T_{n}\right)=\min !
$$

or by an implicit equation

$$
\sum_{i} \psi_{k}\left(x_{i} ; T_{n}^{\prime}\right)=0 \quad k=1 \ldots, p
$$

where ρ is an arbitrary function and $\psi(x ; \theta)=(\partial / \partial \theta) \rho(x ; \theta)$, is callod an $M-\mathrm{estimator}$ (Field, 1982).

In the setting of interest for our 1-way problem, we consider olscervations Y_{1}, \ldots, r_{A} from a multivariate normal distribution $f_{\theta}\left(Y_{2}\right)$ where $\theta=\left(\mu, \sigma_{0}^{2}, \sigma_{1}^{2}\right)$ and $i=1, \ldots, \Lambda$. As we have developed in ('hapter 3, the MLE ${ }_{\text {mas }}$ "stimates $\ddot{T}_{3}=\left(\hat{\sigma_{0}^{2}}, \hat{\sigma_{1}^{2}}, \dot{y}\right)$ are the solutions of

$$
\begin{align*}
& \log L(0 ; Y)=\sum_{i=1}^{A} \log L\left(0 ; Y_{2}\right) \\
& =\sum_{i=1}^{A_{i, b v}} \log \int_{-\infty}^{\infty} \sigma_{0}^{-m_{t}} \Phi(w)^{n_{t}-m_{2}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{t}}\left(y_{2 j}-\mu-\sigma_{1} y_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0} \\
& \quad+\sum_{z=A_{a b}+1}^{A} \log \int_{-\infty}^{\infty} \Phi(w)^{n_{1}} \exp \left(-\frac{z_{0}^{2}}{2}\right) d z_{0}=\min ! \tag{6.1}
\end{align*}
$$

where ρ is $\log L\left(\theta ; Y_{2}\right), \psi_{k}\left(\theta ; Y_{\imath}\right)=\left(\partial / \partial \theta_{k}\right) \log L\left(\theta ; Y_{2}\right), k=1,2,3, w=\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}$. Therefore the variance components estimate with missing data by our method T_{n} is an M-estimator.

Since the influence function of an M-estimator is proportional to ψ (Staudte and Sheather, 1990), it is easier to study the influence function of an M-estimator through its score function ψ. The relationship

$$
I F(x ; F, T)=\frac{\psi(x ; T(F))}{-\int(\partial / \partial \theta) \psi^{\prime}(x ; T(F)) F(d x)}
$$

shows that an M-estimator can in principle be defined by choice of ψ function to have desirable properties of efficiency and robustness. Robustness would be achieved by choosing ψ that is smooth and bounded to reduce the influence of extrem observations.

To examine the influence function of our $M L E_{m i s}$ estimator, we derive ψ_{k} from the log-likelihood function of the 1-way model with missing data. Each term in the function (3.3) of Chapter 3 is of one of two forms. Either

$$
\begin{equation*}
\log \int_{-\infty}^{x} \sigma_{0}^{-m_{t}} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{t}-m_{t}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{i}}\left(y_{i j}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0} \tag{6.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\log \int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{1}} \exp \left(-z_{0}^{2} / 2\right) d z_{0} \tag{6.3}
\end{equation*}
$$

We demote term (6.2) as $L_{f i}$ and term (6.3) as $L_{\Phi i}$. Note that $L_{\Phi i}$ is independent of η_{2} and also is bounded by $\log \sqrt{2 \pi}$. When we look at the influence function as $y_{t,} \rightarrow \infty$, we only need to consider $L_{f i}$ for the $\lim _{y_{t h} \rightarrow \infty} \psi_{k}\left(Y_{i} ; \theta\right)$.

We begin with the derivative

$$
\begin{aligned}
& \psi_{\sigma_{0}^{2}}=\frac{\partial L_{f i}\left(\theta ; Y_{i}^{\prime}\right)}{\partial \sigma_{0}^{2}}= \\
& \left\{\int_{-\infty}^{\infty}\left(d \sigma_{0}^{-m_{2}} / d \sigma_{0}^{2}\right) \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{1}-m_{1}} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{m_{1}}\left(\frac{y_{2}-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{2}+z_{0}^{2}\right]\right\} d_{0}\right\} \\
& /\left\{\int_{-\infty}^{\infty} \sigma_{0}^{-m n_{2}} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{i}-m_{i}} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{m_{1}}\left(\frac{y_{i j}-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{2}+i_{0}^{2}\right]\right\} d z_{i 0}\right\} \\
& +\left\{\int_{-\infty}^{\infty} \sigma_{0}^{-m_{\mathrm{t}}}\left(d \Phi\left(\frac{c-\mu-\sigma_{1} \tilde{z}_{0}}{\sigma_{0}}\right)^{n_{\mathrm{t}}-m_{\mathrm{t}}} / d \sigma_{0}^{2}\right)\right. \\
& \left.\times \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{1}}\left(y_{i j}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0}\right\} \\
& /\left\{\int_{-\infty}^{\infty} \sigma_{0}^{-m_{1}} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{i}-m_{2}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{i}}\left(y_{i_{j}}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d_{z_{0}}\right\} \\
& +\left\{\int_{-\infty}^{\infty} \sigma_{0}^{-m_{1}} \Phi\left(\frac{c-\mu-\sigma_{1} \Sigma_{0}}{\sigma_{0}}\right)^{n_{\mathrm{t}}-m_{t}}\right. \\
& \left.\times\left(d \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{1}}\left(y_{i j}-\mu-\sigma_{1 \sim 0}\right)^{2}}{\sigma_{0}^{2}}+\sim_{0}^{2}\right]\right\} / d \sigma_{0}^{2}\right) d \approx 0\right\} \\
& \left.\iint_{-\infty}^{\infty} \sigma_{0}^{-m_{1}} \Phi\left(\frac{c-\mu-\sigma_{1} \approx 0}{\sigma_{0}}\right)^{n_{i}-m_{t}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{i}}\left(y_{i j}-\mu_{1}-\sigma_{1 \sim 0}\right)^{2}}{\sigma_{0}^{2}+2} \underset{\sim}{2}\right]\right\} d \sim 0\right\} \\
& =g_{1}+g_{2}+g_{3}
\end{aligned}
$$

where

$$
g_{1}=\frac{-m_{i}}{2 \sigma_{0}^{2}} L_{f i} / L_{f i}=\frac{-m_{i}}{2 \sigma_{0}^{2}}
$$

$$
\begin{aligned}
g_{2}= & \\
& \left\{\int_{-\infty}^{\infty}\left(n_{1}-m_{i}\right) \Phi\left(\frac{c-\mu-\sigma_{1} \sim_{0}}{\sigma_{0}}\right)^{n_{2}-m_{2}-1} \phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)\right. \\
& \left.\left(-\frac{c-\mu-\sigma_{1} z_{0}}{2 \sigma_{0}^{3}}\right) \exp \left\{-\frac{1}{2}\left[\frac{\sum_{-j=1}^{m_{i}}\left(y_{i j}-\mu-\sigma_{1} \tilde{\sim}_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0}\right\} \\
& \left./\left\{\int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{i}-m_{i}} \exp \right)\left\{-\frac{1}{2}\left[\frac{\left.\sum_{j=1}^{m_{1}}\left(y_{1 j}-\mu-\sigma_{1} \ddot{y}_{0}\right)\right)^{2}}{\sigma_{0}^{2}}+\ddot{z}_{(j}^{2}\right]\right\} d z_{0}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{3}= \\
& \left\{\int_{-\infty}^{\infty_{1}} \Phi\left(\frac{c-\mu-\sigma_{1} \tilde{\sim}_{0}}{\sigma_{0}}\right)^{n_{i}-m_{2}} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{m_{2}}\left(\frac{y_{i j}-\mu-\sigma_{1 z_{0}}}{\sigma_{0}}\right)^{2}+z_{0}^{2}\right]\right\}\right. \\
& \left(\frac{1}{\sigma_{0}} \sum_{j=1}^{m m_{1}}\left(\frac{\eta_{1 j}-\mu-\sigma_{1} z_{0}}{\sigma_{0}^{2}}\right)^{2} d z_{0}\right\} \\
& /\left\{\int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1 \sim} \sim_{0}}{\sigma_{0}}\right)^{n_{i}-m_{i}} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{m_{2}}\left(\frac{y_{i j}-\mu-\sigma_{1} z_{0}}{\sigma_{0}^{2}}\right)^{2}+z_{0}^{2}\right]\right\} d z_{0}\right\} .
\end{aligned}
$$

We dral with each term separately. It is obvious that $g_{1}=\frac{-m_{2}}{2 \sigma_{0}^{2}}$ is bounded. Let $\left.g(0), Y_{i}, z_{0}\right)=\frac{1}{2}\left[\sum_{j=1}^{m_{1}}\left(\frac{y_{2}-\mu-\sigma_{1} z_{0}}{\sigma_{0}^{2}}\right)^{2}+z_{0}^{2}\right]$ and $\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}=t$. Then

$$
\begin{aligned}
g_{2}= & \left\{(n _ { i } - m _ { i }) (\frac { \sigma _ { 0 } } { \sigma _ { 1 } }) \left\{\int_{-\infty}^{\infty} \Phi(t)^{n_{i}-m_{i}-1} \phi(t)\right.\right. \\
& \left.\times\left(\frac{t}{2 \sigma_{0}^{2}}\right) \exp \left(-g\left(\theta, Y_{i}, t\right)\right) d t\right\} \\
/ & \left\{\int_{-\infty}^{\infty} \bar{\Phi}(t)^{n_{2}-m_{i}} \exp \left(-g\left(\theta, Y_{i}, t\right) d t\right\}\right.
\end{aligned}
$$

Using $\Phi(l) \leq 1$ and $\exp \left(-g\left(\theta, Y_{i}, t\right)\right) \leq 1$, we obtain

$$
0 \leq g_{2} \leq \frac{\frac{\left(n_{t}-m_{1}\right)}{2 \sigma_{1} \sigma_{0}} \int t \phi(t) d t}{\int \Phi(t)^{n_{t}-m_{t}} \exp \left(-g\left(\theta, Y_{2}, t\right)\right) d t}
$$

The RHS is bounded as $y_{i j} \rightarrow \infty$, so that g_{2} is bounded.
We now consider g_{3}. Note that

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \sum_{j=1}^{m_{2}}\left(\frac{y_{l_{J}}-\mu-\sigma_{1} z_{0}}{\sigma_{0}^{2}}\right)^{2}= & \frac{1}{\sigma_{0}} \sum_{j=1}^{m_{1}}\left(\frac{y_{i j}-c}{\sigma_{0}^{2}}+t\right)^{2} \\
& =\frac{1}{\sigma_{0}} \sum_{j=1}^{m_{1}}\left(\left(\frac{y_{i j}-c}{\sigma_{0}^{2}}\right)^{2}+t^{2}+2 t\left(\frac{y_{i j}-c}{\sigma_{0}^{2}}\right)\right)
\end{aligned}
$$

Now the first term of g_{3} becomes

$$
\frac{\frac{1}{\sigma_{0}} \sum_{j=1}^{m_{1}}\left(\frac{y_{i j}-c}{\sigma_{0}^{2}}\right)^{2} \int_{-\infty}^{\infty} \Phi(t) \exp \left(-g\left(\theta, Y_{i}, t\right)\right) d t}{\int_{-\infty}^{\infty} \Phi(t) \exp \left(-g\left(\theta, Y_{i}, t\right)\right) d t}
$$

Further reduction of the first term of g_{3} gives

$$
\frac{1}{\sigma_{0}} \sum_{j=1}^{m_{1}}\left(\frac{y_{2 j}-c}{\sigma_{0}^{2}}\right)^{2} .
$$

As $y_{i j} \rightarrow \infty$, we obtain

$$
\lim _{y_{t_{J}} \rightarrow+\infty} \frac{1}{\sigma_{0}} \sum_{j=1}^{m_{1}}\left(\frac{y_{l_{J}}-c}{\sigma_{0}^{2}}\right)^{2}=\infty .
$$

We can show (as we did for g_{2}) that

$$
\frac{m_{2} \int_{-x}^{x} t^{2} \Phi(t) \exp \left(-g\left(\theta, Y_{i}, t\right)\right) d t}{\sigma_{0} \int_{-\infty}^{\alpha} \Phi(t) \exp \left(-g\left(\theta, Y_{2}, t\right)\right) d t}
$$

and

$$
\frac{2 \sum_{j=1}^{m_{1}}\left(\frac{y_{1}-c}{\sigma_{0}^{2}}\right) \int_{-\infty}^{\infty} t \Phi(t) \exp \left(-g\left(\theta, Y_{i}, t\right)\right) d t}{\int_{-\infty}^{\infty} \Phi(t) \exp \left(-g\left(\theta, Y_{i}, t\right)\right) d t}
$$

are bounded when $y_{2 j}$ goes to infinity.
It follows that $\lim _{y_{1,} \rightarrow \infty} g_{3}=\infty$, so that the influence function for $\hat{\sigma_{0}^{2}}$ is not bounded.

Next consider $\lim _{y_{1}, \rightarrow \infty} \psi_{\sigma_{1}^{2}}$.

$$
\begin{aligned}
& \frac{\partial \log f\left(\theta ; Y_{i}\right)}{\partial \sigma_{1}^{2}}= \\
& \left\{\int_{-\infty}^{\infty}\left(d \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{2}-m_{2}} / d \sigma_{1}^{2}\right) \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{n_{1}}\left(y_{L_{j}}-\mu-\sigma_{1} \dot{m}_{1}\right)^{2}}{\sigma_{0}^{2}}+i_{0}^{2}\right]\right\} d z_{n}\right\} \\
& /\left\{\int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{2}-i n_{1}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{I-1}^{m_{2}}\left(y_{1,}-\mu-\sigma_{1} \ddot{\mu}_{0}\right)^{2}}{\sigma_{0}^{2}}+i_{i 1}^{2}\right]\right\} d_{i_{0}}\right\} \\
& +\left\{\int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{2}-m_{2}}\left(d \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{2}}\left(y_{2}-\mu-\sigma_{1} \tilde{0}_{0}\right)^{2}}{\sigma_{10}^{2}}+z_{i 1}^{2}\right]\right\} / d \sigma_{1}^{2}\right) d z_{0}\right\} \\
& /\left\{\int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1} \tilde{z}_{0}}{\sigma_{0}}\right)^{n_{2}-m_{1}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{2}}\left(y_{1}-\mu-\sigma_{1} ;_{1}\right)^{2}}{\sigma_{0}^{2}}+:_{01}^{2}\right]\right\} d d_{0}\right\} \\
& =v_{1}+v_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
v_{1}= & \\
& \left\{\int _ { - x } ^ { \wedge _ { x } } \left(\left(\mu_{2}-m_{\imath}\right) \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{2}-m_{2}-1} \phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)\left(-\frac{z_{0}}{\sigma_{0}}\right)\right.\right. \\
& \left.\quad \operatorname{xp}\left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{2}}\left(y_{2 j}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0}\right\} \\
& \left\{\int_{-\infty}^{x} \Phi\left(\frac{\left(1-\mu-\sigma_{1} z_{0}\right.}{\sigma_{0}}\right)^{n_{i}-m_{2}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{2}}\left(y_{\imath_{j}}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{\int_{-x}^{x} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{2}-m_{1}} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{m_{1}} \frac{y_{\imath \jmath}-\mu-\sigma_{1} z_{0}}{\sigma_{0}^{2}}\right)^{2}+z_{0}^{2}\right]\right\} \\
& \left.\frac{\ddot{0}_{0}}{\sigma_{0}}\left(\sum_{j=1}^{m_{1}}\left(\frac{y_{2 j}-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)\right) d z_{0}\right\} \\
& \left\{\int_{-x}^{x} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{2}-m_{1}} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{m_{1}}\left(\frac{y_{2 J}-\mu-\sigma_{1} z_{0}}{\sigma_{0}^{2}}\right)^{2}+z_{0}^{2}\right]\right\} d z_{0}\right\}
\end{aligned}
$$

As before, we can show that v_{1} is bounded and v_{2} goes to infinity as $y_{i j}$ increases. Inence our $\hat{\sigma}_{\hat{1}}^{2}$ does not have a bounded influence function.

For $\hat{\mu}$, we lind

$$
\begin{aligned}
& \frac{\partial \log f\left(0 ; Y_{i}\right)}{\partial \mu}= \\
& \left\{\int_{-2}^{\lambda}\left(d \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{i}-m_{3}} / d \mu\right) \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{i}}\left(y_{2}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0}\right\} \\
& /\left\{\int^{x} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{1}-m_{1}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{2}}\left(y_{\imath_{j}}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0}\right\} \\
& +\left\{\int_{-}^{2} \Phi\left(\frac{c-\mu-\sigma_{1} \tilde{\sim}_{0}}{\sigma_{0}}\right)^{n_{1}-m_{\mathbf{1}}}\left(d \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{1}}\left(y_{v_{j}}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} / d \mu\right) d z_{0}\right\} \\
& /\left\{\int_{-\infty}^{2} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{2}-m_{1}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{1}}\left(y_{i_{3}}-\mu-\sigma_{1} z_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0}\right\} \\
& =u_{1}+u_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
w_{1}= & \\
& \left\{\int _ { - \infty } ^ { \infty } \left(\left(n_{2}-m_{i}\right) \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{i}-m_{t}-1} \varphi\left(\frac{\left(1-\mu-\sigma_{1} z_{0}\right.}{\sigma_{0}}\right)\binom{1}{\sigma_{0}}\right.\right. \\
& \left.\exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{1}}\left(y_{i j}-\mu-\sigma_{1} \tilde{z}_{0}\right)^{2}}{\sigma_{0}^{2}}+z_{0}^{2}\right]\right\} d z_{0}\right\} \\
& \left\{\int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{2}-m_{2}} \exp \left\{-\frac{1}{2}\left[\frac{\sum_{j=1}^{m_{2}}\left(y_{2 j}-\mu-\sigma_{1.0}\right)^{2}}{\sigma_{0}^{2}}+{ }_{-0}^{2}\right]\right\} d_{-1}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
w_{2}= & \\
& \left\{\int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{1}-m_{2}} \exp \left(-\frac{1}{2}\left[\sum_{j=1}^{m_{2}} \frac{y_{2}-\mu-\sigma_{1} z_{0}}{\sigma_{0}^{2}}\right)^{2}+z_{0}^{2}\right]\right) \\
& \left(\frac{1}{\sigma_{0}} \sum_{j=1}^{m_{2}}\left(\frac{y_{i j}-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right) d z_{0}\right\} \\
& 1\left\{\int_{-\infty}^{\infty} \Phi\left(\frac{c-\mu-\sigma_{1} z_{0}}{\sigma_{0}}\right)^{n_{1}-m_{1}} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{m_{1}}\left(\frac{y_{2 j}-\mu-\sigma_{1} z_{0}}{\sigma_{0}^{2}}\right)^{2}+\sigma_{0}^{2}\right]\right\} d_{: 0}\right\} .
\end{aligned}
$$

Clearly, w_{1} is bounded and w_{2} increases to infinity as $y_{1_{j}}$ goes to infinity. The influence function of $\hat{\sigma_{1}^{2}}$ is not bounded.

To have robustness, we need to modify our estimation procedure to ensure that unbounded terms g_{3}, v_{2} and w_{2} become bounded.

6.3 A Robust Procedure

Suppose that α_{i} and $\varepsilon_{i j}$ are contaminated in the model $y_{4,}=\mu \mid \alpha_{i}+\tau_{4}$. As noted above, the variance components estimates given by our mothod are semsilive to deviations from the assumed distribution. A robust procedure for limiting the influence of the deviation on the estmates is needed.

We propose an approach to obtaining resistant estimates by using, Huber, lene, favourable density for location estimation and Huber's least favourable density fon scale estimation as follows.

Using the same notation as for the 1-way model in (hapler 3. we could write the
likelihood $L\left(0: Y_{2}\right)$ as

$$
L\left(\theta ; Y_{i}\right)=\int \prod_{j=1}^{m_{i}} f\left(y_{i_{j}} \mid x\right) \prod_{J=m_{i}+1}^{n_{2}} P\left(y_{i_{j}}<r \mid x\right) f(x) d x
$$

where $x=\mu+\left(x_{t}\right.$ and $x \sim N\left(\mu, \sigma_{1}^{2}\right)$.
Replacing the normal $N\left(\mu, \sigma_{1}^{2}\right)$ density with Hubers least favourable density for location estimation for the distribution of x, we obtain

$$
f_{x}(x)= \begin{cases}\frac{1-c_{1}}{\pi_{1} \sqrt{2 \pi}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma_{1}}\right), & \text { if }|x| \leq k_{1} \\ \frac{1-\epsilon_{1}}{\pi_{1} \sqrt{2 \pi}} \exp \left(\frac{k_{1}^{2}}{2}-k_{1}\left|(x-\mu) / \sigma_{1}\right|\right), & \text { if otherwise }\end{cases}
$$

Rep, lacing the normal $N\left(0, \sigma_{0}^{2}\right)$ density with Huber's least favourable density for scale estimation for the distribution of $\epsilon_{i j}$, we obtain

$$
f_{\epsilon_{2},}(t)= \begin{cases}\frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-t^{2}}{2 \tau_{0}^{2}}\right), & \text { if }|t| \leq k \\ \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2 \sigma_{0}^{2}}\right)\left(\frac{k}{|t|}\right)^{\left(k^{2}\right)}, & \text { if }|t|>k\end{cases}
$$

(Ituber, lgsi).

Note that $y_{1 j}=x+\epsilon_{i j}$, so we have the form below for $f\left(y_{i j} \mid x\right)$ instead of the normal distribution $V\left(x, \sigma_{0}^{2}\right)$ for $f\left(y_{i j} \mid x\right)$ in Chapter 3

$$
f\left(y_{2 j} \mid x^{\prime}\right)= \begin{cases}\frac{1-c}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{12}-x}{\sigma_{11}}\right)^{2}\right), & \text { if } x-\sigma_{0} k \leq y_{1}<x+\sigma_{0} k \\ h_{1}, & \text { if } \infty>y_{l_{2}}>x+\sigma_{0} k \text { or }-\infty<y_{l_{1}}<x-\sigma_{0} k\end{cases}
$$

where

$$
h_{1}=\frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0}{ }^{k}}{\left|y_{l j}-r\right|}\right)^{\left(k^{2}\right)} .
$$

Fiuther we obtain $P\left(y_{2}<c \mid x\right)$ (if $k>1$)

$$
\begin{cases}-\frac{1-c}{\left(1 . k^{2}\right) \sqrt{2 \tau}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left|\frac{c-x}{\sigma_{0}}\right|\right)^{1-k^{2}}, & \text { if } c<x-\sigma_{0} k \\ g_{2} . & \text { if } x-k \sigma_{0}<c<x+\sigma_{0} k \\ g_{3} . & \text { if } c>x+\sigma_{0} k\end{cases}
$$

where

$$
g_{2}=\frac{1-c}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}}+(1-\epsilon)\left[\Phi\left(\frac{c-x}{\sigma_{0}}\right)+\Phi(k)-1\right],
$$

and

$$
\begin{aligned}
g_{3}= & \frac{2(1-\epsilon)}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(1-k \mid)^{1-k^{2}}+(1-c)\left[2 \Phi\left(k^{2}\right) \quad 1\right] \\
& +\frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right) k^{k^{2}}\left(\left(\left|\frac{\left(-x^{2}\right.}{\sigma_{0}}\right|\right)^{1-k^{2}}-|k|^{1-k^{2}}\right) .
\end{aligned}
$$

The modified $\log L\left(\theta ; Y_{2}\right)$ becomes

$$
\begin{cases}\log q_{1}, & \text { if }\left|\frac{y_{1}-x}{\sigma_{0}}\right| \leq k \text { and } c<x-\sigma_{0} k \\ \log q_{2}, & \text { if }\left|\frac{y_{2}-x}{\sigma_{0}}\right| \leq k \text { and }\left|\frac{-r}{\sigma_{0}}\right| \leq k \\ \log q_{3}, & \text { if }\left|\frac{y_{2}-x}{\sigma_{0}}\right| \leq k \text { and } c>x+\sigma_{0} k \\ \log q_{4}, & \text { if }\left|\frac{y_{4}-x}{\sigma_{0}}\right|>k \text { and } c<x-\sigma_{0} k \\ \log q_{5}, & \text { if }\left|\frac{y_{2}-x}{\sigma_{0}}\right|>k \text { and }\left|\frac{c x}{\sigma_{0}}\right| \leq k \\ \log q_{6}, & \text { if }\left|\frac{y_{2}-x}{\sigma_{0}}\right|>k \text { and } c>x+\sigma_{0} k\end{cases}
$$

where

$$
\begin{aligned}
& \log q_{1}=\log \left\{\int_{-x}^{-k_{1}} \prod_{j=1}^{m_{2}} \frac{1-t}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{23}-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{j=m_{2}+1}^{n_{2}} \frac{1-c}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left|\frac{c-x}{\sigma_{0} k^{k}}\right|\right)^{1-k^{2}} \\
& \frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left(\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right) \| d x\right\} \\
& +\left\{\int_{-k_{1}}^{k_{1}} \prod_{j=1}^{m_{1}} \frac{1-c}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{2}-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{J=m_{2}+1}^{n_{2}} \frac{1-c}{\left(1-k^{2}\right)} \sqrt{2 \pi} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left|\frac{c-r}{\sigma_{0} k}\right|\right)^{1} k^{2} \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{-1}{2}\left(\frac{x-\mu}{\sigma_{1}}\right)^{2}\right] d x\right\} \\
& +\left\{\int_{h_{1}}^{\infty} \prod_{j=1}^{m_{2}} \frac{1-t}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{1},-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{j=m_{t}+1}^{n_{2}} \frac{1-c}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left.\right|^{r} \frac{x^{r}}{\sigma_{1} k^{2}}-1\right)^{1-h^{2}} \\
& \frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left(\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right) \| d x\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \log q_{2}=\log \left\{\int_{-\infty}^{-k_{1}} \prod_{j=1}^{m_{1}} \frac{1-c}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{i j}-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{j=n_{i}+1}^{n_{i}} \frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}}+ \\
& (1-c)\left[\Phi\left(\frac{c-x}{\sigma_{0}}\right)+\Phi(k)-1\right] \\
& \frac{1-c_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right) \| d x\right\} \\
& +\left\{\int_{-k_{1}}^{k_{1}} \prod_{j=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{i j}-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{\mu=m_{i}+1}^{n_{1}} \frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}}+ \\
& (1-\epsilon)\left[\Phi\left(\frac{c-x}{\sigma_{0}}\right)+\Phi(k)-1\right] \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{-1}{2}\left(\frac{x-\mu}{\sigma_{1}}\right)^{2}\right] d x\right\} \\
& +\left\{\int_{k_{1}}^{\infty} \prod_{j=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{i j}-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{J=n_{1}+1}^{n_{1}} \frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(1-k \mid)^{1-k^{2}}+ \\
& (1-c)\left[\Phi\left(\frac{c-x}{\sigma_{0}}\right)+\Phi(k)-1\right] \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right)\right] d x\right\} \\
& \log 4_{3}=\log \left\{\int_{-\infty}^{-k_{1}} \prod_{j=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{i j}-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{נ=m_{+}+1}^{n_{1}} \frac{2(1-\epsilon)}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}}+(1-\epsilon)[2 \Phi(k)-1] \\
& +\frac{1-c}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left(\left|(c-x) / \sigma_{0}\right|\right)^{1-k^{2}}-(|k|)^{1-k^{2}}\right) \\
& \left.\frac{1-t_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{k_{1}^{2}}{2}-k_{1}\left|\left(\frac{x-\mu}{\sigma_{1}}\right)\right|\right] d x\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{\int_{-k_{1}}^{k_{1}} \prod_{J=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{2,}-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{J=m_{t}+1}^{n_{1}} \frac{2(1-\epsilon)}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(1-k \mid)^{1-h^{2}}+(1-\epsilon)[2 \Phi(k)-1] \\
& +\frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left(\left|(c-x) / \sigma_{0}\right|\right)^{1-k^{2}}-(|k|)^{1-k^{2}}\right) \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{-1}{2}\left(\frac{x-\mu}{\sigma_{1}}\right)^{2}\right] d x\right\} \\
& +\left\{\int_{k_{1}}^{x} \prod_{j=1}^{m_{1}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-1}{2}\left(\frac{y_{i j}-x}{\sigma_{0}}\right)^{2}\right)\right. \\
& \prod_{J=m_{2}+1}^{n_{2}} \frac{2(1-\epsilon)}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}}+(1-\epsilon)[2 \Phi(k) \quad 1 j \\
& +\frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left(\left|(c-r) / \sigma_{0}\right|\right)^{1-k^{2}}-(|k|)^{1-k^{2}}\right) \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{k_{1}^{2}}{2}-k_{1}\left|\left(\frac{r-\mu}{\sigma_{1}}\right)\right|\right] d r\right\} \\
& \log q_{4}=\log \left\{\int_{-\infty}^{-k_{1}} \prod_{j=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k_{2}^{*}}{2}\right)\left(\frac{\sigma_{0} h^{\prime}}{\left|y_{1}-x\right|}\right)^{\left(h^{2}\right)}\right. \\
& \prod_{j=m_{2}+1}^{n_{2}} \frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(k^{2}\right)^{k^{2}}\left(\left|\frac{(-k}{\sigma_{0} k^{2}}\right|\right)^{1-k^{2}} \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{k_{1}^{2}}{2}-k_{1}\left|\left(\frac{x-\mu}{\sigma_{1}}\right)\right|\right] d r\right\} \\
& +\left\{\int_{-k_{1}}^{k_{1}} \prod_{j=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k^{2}}{\left|y_{2 j}-x\right|}\right)^{\left(h^{2}\right)}\right. \\
& \prod_{j=m_{1}+1}^{n_{2}} \frac{1-c}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(k^{2}\right)^{k^{2}}\left(1-\frac{c-r^{r}}{\sigma_{0} k_{i}} \|\right)^{1-k^{2}} \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{-1}{2}\left(\frac{x-\mu}{\sigma_{1}}\right)^{2}\right] d r\right\} \\
& +\left\{\int_{k_{1}}^{\infty} \prod_{j=1}^{m_{2}} \frac{1-c}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{2,}-x\right|}\right)^{\left(k^{2}\right)}\right. \\
& \prod_{\jmath=m_{t}+1}^{n_{1}} \frac{1-c}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left|\frac{c-x^{2}}{\sigma_{0} k_{i}}\right|\right)^{1-k^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{1-\iota_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left(\frac{k_{1}^{2}}{2}-k_{1}\left|\left(\frac{x-\mu}{\sigma_{1}}\right)\right|\right] d x\right\} \\
& \log q_{5}=\log \left\{\int_{-\infty}^{-k_{1}} \prod_{j=1}^{m} \frac{1-\epsilon}{\sigma_{0}} \sqrt{2 \pi} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{i j}-x\right|}\right)^{\left(k^{2}\right)}\right. \\
& \prod_{j=m_{+}+1}^{n_{1}} \frac{1-c}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k_{i}^{2}}{2}\right)\left(n^{2}\right)^{k^{2}}(|-k|)^{1-k^{2}} \\
& \left.+(1-\epsilon)\left[\Phi\left(\frac{c-x}{\sigma_{0}}\right)+\Phi(k)-1\right] \frac{1-c_{1}}{\sigma_{1}} \sqrt{2 \pi} \exp \left[\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right) \|\right] d x\right\} \\
& +\left\{\int_{-k_{1}}^{k_{1}} \prod_{j=1}^{n_{2}} \frac{1-t}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{i_{3}}-x\right|}\right)^{\left(k^{2}\right)}\right. \\
& \prod_{J=m_{1}+1}^{n_{1}} \frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}} \\
& \left.+(1-\epsilon)\left[\Phi\left(\frac{c-r}{\sigma_{0}}\right)+\Phi(k)-1\right] \frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{-1}{2}\left(\frac{x-\mu}{\sigma_{1}}\right)^{2}\right] d x\right\} \\
& +\left\{\int_{k_{1}}^{N} \prod_{j=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{\imath j}-x\right|}\right)^{\left(k^{2}\right)}\right. \\
& \prod_{j=n_{t}+1}^{n_{1}} \frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}} \\
& \left.+(1-\epsilon)\left[\Phi\left(\frac{c-x}{\sigma_{0}}\right)+\Phi(k)-1\right] \frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right) \|\right] d x\right\} \\
& \log q_{6}=\log \left\{\int_{-\infty}^{-k_{1}} \prod_{j=1}^{m_{1}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{2 J}-x\right|}\right)^{\left(k^{2}\right)}\right. \\
& \prod_{J=m_{1}+1}^{n_{1}} \frac{2(1-\epsilon)}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}}+(1-\epsilon)\left[2 \Phi\left(n^{\prime}\right)-1\right] \\
& +\frac{1-1}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(n^{n}\right)^{k^{2}}\left(\left(\left|(c-x) / \sigma_{0}\right|\right)^{1-k^{2}}-(|k|)^{1-k^{2}}\right) \\
& \frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left(\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right) \| d x\right\} \\
& +\left\{\int_{-k_{1}}^{k_{1}} \prod_{j=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{2_{\jmath}}-x\right|}\right)^{\left(k^{2}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{1=m_{1}+1}^{n_{2}} \frac{2(1-\epsilon)}{\left(1--k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}}+(1-\epsilon)[2 \Phi(k)-1] \\
& +\frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left(\left|(c-x) / \sigma_{0}\right|\right)^{1-k^{2}}-(|k|)^{1-k^{2}}\right) \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{-1}{2}\left(\frac{r-\mu}{\sigma_{1}}\right)^{2}\right] d x\right\} \\
& +\left\{\int_{k_{1}}^{\infty} \prod_{j=1}^{m_{2}} \frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{13}-x\right|}\right)^{\left(k^{2}\right)}\right. \\
& \prod_{\jmath=m_{1}+1}^{n_{2}} \frac{2(1-\epsilon)}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}(|-k|)^{1-k^{2}}+(1-c)[2 \Phi(k)-1] \\
& +\frac{1-\epsilon}{\left(1-k^{2}\right) \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)(k)^{k^{2}}\left(\left(\left|(c-x) / \sigma_{0}\right|\right)^{1-k^{2}}-(|k|)^{1-k^{2}}\right) \\
& \left.\frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right) \|\right] d x\right\}
\end{aligned}
$$

The modified \log-likelihood function can be expressed $L_{r}=\sum_{i=1}^{4} \log L\left(0 ; Y_{i}\right)$. The estimates for $\theta=\left(\sigma_{0}^{2}, \sigma_{1}^{2}, \mu\right)$ can be found by maxinizing the above function L_{r}.

To check the influence functions of the cstimates, we need to calculate $\psi_{a_{i}^{2}}, \psi_{\sigma_{1}^{2}}$ and ψ_{μ}. Since $P\left(y_{i_{J}}<c \mid x\right)$ and $f(x)$ are independent of $y_{i_{\nu}}$, we can write log $L_{r}\left(\theta ; Y_{2}\right)$ as

$$
\left.\log L_{(} \theta ; Y_{2}\right)= \begin{cases}\log P_{1}, & \text { if } x-\sigma_{0} k \leq y_{2 J}<x+\sigma_{0} k \\ \log P_{2}, & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& P_{1}=\left\{\int_{-\infty}^{-k_{1}} \prod_{\jmath=1}^{m_{1}} \exp \left(\frac{-1}{2}\left(\frac{y_{2}-x}{\sigma_{0}}\right)^{2}\right)\left(f^{\prime}(0, x) d x\right\}\right. \\
& +\left\{\int_{-k_{1}}^{k_{1}} \prod_{j=1}^{m_{2}} \exp \left(-\frac{-1}{2}\left(\frac{y_{1}-x}{\sigma_{0}}\right)^{2}\right)\left(i^{\prime}(\theta, x) d x\right\}\right. \\
& +\left\{\int_{k_{1}}^{\infty} \prod_{j=1}^{m_{2}} \exp \left(\frac{-1}{2}\left(\frac{y_{2 j}-x^{x}}{\sigma_{0}}\right)^{2}\right)\left(f^{\prime}\left(0 . x^{\prime}\right) d x^{\prime}\right\},\right. \\
& P_{2}=\left\{\int_{-\infty}^{-k_{1}} \prod_{j=1}^{m_{i}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{\imath j}-x\right|}\right)^{\left(k^{2}\right)}(j(\theta, x) d x\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+1 \int_{-k_{1}}^{k_{j}} \prod_{j=1}^{m_{2}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{t},-x\right|}\right)\right\}^{\left\{k^{2}\right\}} G(\theta, x) d x\right\} \\
& +\left\{\int_{k_{1}}^{\sim} \prod_{j=1}^{m_{2}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left.\mid y_{2}-x\right)^{2}}\right)^{\left(k^{2}\right)} G(\theta, x) d x\right\},
\end{aligned}
$$

and $c^{\prime}(\theta, x)=\left\{\frac{1-r}{\omega_{0} \sqrt{2 \pi}}\right)^{\left(m_{2}\right)} \prod_{j=m_{2}+1}^{n_{2}} P\left(y_{y_{j}}<c \mid x\right) f(x)$. We can rewrite $G(\theta, x)$ as

$$
G(\theta, x)=\left\{\begin{array}{l}
G_{1}, \text { if } c<x-\sigma_{0} k \\
G_{2}, \text { if }\left|\frac{c x}{\sigma_{0}}\right| \leq k \\
G_{3}^{\prime} .
\end{array}\right.
$$

where

$$
\begin{aligned}
\left(_{1}=\right. & \left(\frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi}}\right)^{n_{1}} \prod_{j=m_{2}+1}^{n_{1}} \frac{1-\epsilon}{\left(1-k^{2}\right) \sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\sigma_{0} k\right)^{k^{2}}\left(\frac{c-x}{\sigma_{0} k}\right)^{1-k^{2}} \\
& \frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{x-\mu}{\sigma_{1}}\right) \|\right] \\
\epsilon_{r_{2}}= & \left(\frac{1-\epsilon}{\sigma_{0} \sqrt{2 \pi} \pi^{2}}\right)^{m_{2}} \prod_{j=m_{t}+1}^{n_{2}} \frac{2(1-\epsilon i}{\left(1-k^{2}\right) \sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\sigma_{0} h\right)^{k^{2}}(-k)^{1 \sim k^{2}} \\
& +(1-\epsilon)[2 \Phi(k)-1]+\frac{1-c}{\left(1-k^{2}\right) \sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\sigma_{0} k\right)^{k^{2}} \\
& \left((c-x)^{1-k^{2}}-\left(\sigma_{0} k\right)^{1-k^{2}}\right) \frac{1-\epsilon_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\frac{k_{1}^{2}}{2}-k_{1}\right)\left(\frac{x-\mu}{\sigma_{1}}\right) \| .
\end{aligned}
$$

and

$$
\begin{aligned}
\left(r_{1}=\right. & \left(\frac{1-t}{\sigma_{0} \sqrt{2 \pi}}\right)^{m_{i}} \prod_{j=m_{1}+1}^{n_{1}} \frac{2(1-\epsilon)}{\left(1-k^{2}\right) \sigma_{0} \sqrt{2 \pi}} \exp \left(\frac{-k^{2}}{2}\right)\left(\sigma_{0} k\right)^{k^{2}}(-k)^{1-h^{2}} \\
& +(1-\epsilon)[2 \Phi(k)-1]+\frac{1-\epsilon}{\left(1-k^{2}\right) \sigma_{0} \sqrt{2 \pi}} \exp \left(-\frac{k^{2}}{2}\right)\left(\sigma_{0} k\right)^{k^{2}} \\
& \left((c-r)^{1-k^{2}}-\left(\sigma_{0} k\right)^{1-k^{2}}\right) \frac{1-t_{1}}{\sigma_{1} \sqrt{2 \pi}} \exp \left[\left.\frac{k_{1}^{2}}{2}-k_{1} \right\rvert\,\left(\frac{k-\mu}{\sigma_{1}}\right) \|\right.
\end{aligned}
$$

When y_{4}, and x are large, the derivative of $\log L_{r}\left(\theta ; Y_{3}\right)$ with respect to σ_{0}^{2} will be

$$
\begin{aligned}
& \frac{\partial \log L_{r}\left(\theta, Y_{r}\right)}{\partial \sigma_{0}^{2}}= \\
& \left\{\int _ { - \infty } ^ { - k _ { 1 } } (d \prod _ { j = 1 } ^ { m _ { 2 } } \operatorname { e x p } (\frac { - k ^ { 2 } } { 2 }) (\frac { \sigma _ { 0 } k } { | y _ { i j } - x ^ { 2 } | }) ^ { (k ^ { 2 }) } / d \sigma _ { 0 } ^ { 2 }) \left(i(\theta, x) d x / L\left(\theta, Y_{i}^{\prime}\right\}\right.\right. \\
& +\left\{\int_{-\infty}^{-k_{1}} \prod_{j=1}^{m_{1}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{2 J}-x^{2}\right|}\right)^{\left(k^{2}\right)}\left(d\left(x_{1}(\theta, x) / d \sigma_{0}^{2}\right) d x / L\left(\theta, \lambda_{2}\right)\right\}\right. \\
& =u_{1}+u_{2}
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{\partial \log L_{r}\left(\theta, Y_{2}\right)}{\partial \sigma_{0 .}^{2}}= \\
& \quad\left\{\int_{k_{1}}^{\infty}\left(d \prod_{j=1}^{m_{2}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{2 j}-x\right|}\right)^{\left(k^{2}\right)} / d \sigma_{0}^{2}\right)\left(\gamma(\theta, x) d x / L\left(\theta, Y_{\imath}\right)\right\}\right. \\
& \quad+\left\{\int_{k_{1}}^{\infty} \prod_{j=1}^{m} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{\imath_{j}}-r\right|}\right)^{\left(k^{2}\right)}\left(d\left(\zeta_{r}(\theta, x) / d \sigma_{0}^{2}\right) d x / L(0,\}_{1}\right)\right\} \\
& \quad=u_{3}+u_{4}
\end{aligned}
$$

where

$$
u_{1}=\left\{\int_{-\infty}^{-k_{1}} \frac{m_{i} k^{2}}{\sigma_{0}} \prod_{j=1}^{m_{2}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{i j}-x\right|}\right)^{\left(k^{2}\right)}(\dot{ }(0, x) d x\} / L\left(\theta, \xi_{2}\right)=\frac{m_{2} k^{2}}{\sigma_{0}}\right.
$$

and

$$
\begin{gathered}
u_{2}=\left\{\int_{-\infty}^{-k_{1}} \prod_{j=1}^{m_{2}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{l_{2}}-x\right|}\right)^{\left(k^{2}\right)} \cdot\left(d\left(C_{i}^{\prime}(0, x) / d \sigma_{0}^{2}\right) d l_{1}\right\} / L\left(0, y_{i}\right)\right. \\
u_{3}=\left\{\int_{k_{1}}^{\infty} \frac{m_{i} k^{2}}{\sigma_{0}} \prod_{j=1}^{m_{i}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{2}-x\right|}\right)^{\left(k^{2}\right)}\left(r^{\prime}(\theta, x) d x^{2}\right\} / L\left(0, Y_{i}\right)-\frac{m_{2} h^{2} \cdot{ }^{2}}{\sigma_{0}}\right.
\end{gathered}
$$

and

$$
u_{4}=\left\{\int_{\dot{k}_{1}}^{\infty} \prod_{\jmath=1}^{m_{1}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{l j}-x\right|}\right)^{\left(k^{2}\right)} \cdot\left(d\left(\xi(\theta, x) / d \sigma_{0}^{2}\right) d x\right\} / L\left(0, \gamma_{i}\right)\right.
$$

u_{1} and u_{3} are independent of y_{2} and x. Let us louk at u_{2} and u_{1}. We can see that $G(0, x)$ is not zero. Say there is $m_{1} \neq 0 m_{1} \leq C^{\prime}(0, x)$. d $\left.c^{\prime}(\theta), r\right) / d r_{0}^{2}$ involves, $d\left(\frac{1-\varepsilon}{\sigma_{0} \sqrt{2 T}}\right) / d \sigma_{0}^{2}, d \Phi\left(\frac{c-x}{\sigma_{0}}\right) / d \sigma_{0}^{2}$, and $\left.d\left(\frac{c-x}{\sigma_{0} k}\right)^{\left(1-k^{2}\right)}\right) / d \sigma_{0}^{2}$. They are all i,emended. 'I herefore $d G(\theta, x) / d \sigma_{0}^{2}$ is bounded. Say $d G^{\prime}(\theta, x) / d \sigma_{0}^{3} \leq M$. Thus
and

$$
0 \leq u_{4} \leq \frac{M \int_{\mu+k_{1} \sigma_{1}}^{\infty} \prod_{j=1}^{m_{1}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{1}-x\right|}\right)^{\left(k^{2}\right)} d x}{m_{1} \int_{\mu+k_{1} \sigma_{1}}^{\infty} \Pi_{j=1}^{m_{1}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|y_{1},-x\right|}\right)^{\left(k^{2}\right)} d x}=\frac{M}{m_{1}}
$$

Sincer u_{1}, u_{2}, u_{3}, and u_{1} are all bounded, $\psi_{\sigma_{0}^{2}}$ is bounded when $y_{i j}$ and x increase.
To get $\psi_{\sigma_{1}^{2}}$ and ψ_{μ}, we consider

$$
\frac{\partial \log L\left(\theta, Y_{i}\right)}{\partial \sigma_{1}^{2}}=\frac{1}{L\left(\theta, Y_{i}\right)} \frac{\partial L\left(\theta, Y_{i}\right)}{\partial x} \frac{\partial x}{\partial \sigma_{1}^{2}}
$$

and

$$
\frac{\partial \log L\left(\theta, Y_{i}^{*}\right)}{\partial \mu}=\frac{1}{L\left(0, Y_{i}^{\prime}\right)} \frac{\partial L\left(\theta, Y_{i}\right)}{\partial x} \frac{\partial x}{\partial \mu}
$$

It is casy to see that

$$
\frac{\partial L\left(\theta . Y_{2}^{\prime}\right)}{\partial x^{\prime}}=\frac{\partial \int_{-\infty}^{-k_{1}} \Pi_{j=1}^{m_{2}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left[y_{13}-x \mid\right.}\right)^{\left(k^{2}\right)} G(\theta, x) d x}{\partial x}=0
$$

and

$$
\frac{\partial L\left(\theta, Y_{2}\right)}{\partial x}=\frac{\partial \int_{k_{1}}^{a} \prod_{j=1}^{m m_{2}} \exp \left(\frac{-k^{2}}{2}\right)\left(\frac{\sigma_{0} k}{\left|g_{1}-x\right|}\right)^{\left(k^{2}\right)} G(\theta, x) d x}{\partial x}=0 .
$$

Note that $\frac{1}{L\left(\theta, Y_{1}\right)}$ is bounded, $\frac{\lambda x}{i \sigma_{1}^{2}}=z_{0}$, and $\frac{\lambda x}{\partial \mu}=1$. We have that $\psi_{\sigma_{1}^{2}}$ and ψ_{μ} are bounded.

We will have a bounded influence function as $y_{\imath \jmath}$ and x both increase if we use the modified likelihood function L_{r}.

6.4 Examples

We implemented a small simulation study to investigate the performance of the estimators presented above.

Example 6.3. Using the data in Exam, le 6.1, we give the estimates by our robust procedure ($M / h_{r, b}, k=2.46$, and $k_{1}=1.399$). Table 6.3 illustrates the results, compared with those three methods in Example 6.1

It can be seell that $M I S_{\text {rob }}$ gives better estimates with complete data.

Table 0.3: $\sigma_{0}^{2}=1.0 . \sigma_{1}^{2}=1.0 \mathrm{md} \mu=0.0$ with complet data

	σ_{0}^{2}	σ_{1}^{2}	μ
ANOVA	4.7694	2.5851	-0.0388
MLE	1.7973	1.9174	-0.0348
MIS	1.7173	2.3957	-0.0206
MIS $_{\text {rob }}$	1.3258	0.7779	-0.0252

Example 6.4. Using the same largest 22 observations as in Example 6.2. we list the results by four methods in Table (6.1) $\left(k=2.46\right.$, and $k_{1}=1.399$ for $\left.M / S_{r, 1}\right)$

Table 6.4: $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0$ and $\mu=0.0$ with data which are grealer than 0.0

	σ_{0}^{2}	σ_{1}^{2}	μ
ANOVA	3.2895	0.1251	1.3242
MLE	3.0862	0.1702	1.2478
MIS	3.0441	0.4506	0.0100
MIS $S_{\text {rob }}$	0.9968	0.450 .4	0.0100

It appears from the table 6.4 that the $M I s_{r a b}$ improves the estimates.

Example 6.5. 11 groups of data are generated using the same model and the same parameters as in Example 6.1. The ϵ_{23} have distribution

$$
0.95 N\left(0, \sigma_{0}^{2}\right)+0.0 .5 N\left(0,50 \sigma_{0}^{2}\right)
$$

The observations which are less then 0.0 are removed as missing datat 'Fable 6.5 gives the numerical results of four methods ($k=1.81$, and $k_{1}=1.399$)

The mean squared error (MSE) for cach estimates by MIS and MIS', methorls are summarized as follows

- $M S E_{M I S}\left(\sigma_{0}^{2}\right)=13.866, M S E_{M I S_{r o b}}\left(\sigma_{0}^{2}\right)=0.2398$,
 M.S'EMis, $S_{r o b}(\mu)=0.0309$.

We can see that $M I S_{\text {rob }}$ gives better estimates when contamination is present. The numerical results are consistent with the influence function study.

Table 6.5: $\sigma_{0}^{2}=1.0, \sigma_{1}^{2}=1.0, \mu=0.0$ with data which art greti than 0.0

	σ_{0}^{2}	σ_{1}^{2}	μ		σ_{0}^{2}	σ_{1}^{2}	μ
ANOVA	3.8945	1.0607	1.5604	ANOVA	1.4187	1.210!	1.8213
MLE	4.1514	0.3790	1.5725	Mle	1.4873	8.3308	2.85 .58
MIS	6.1759	1.0069	0.0100	MIS	3.962 c	0.3600	0.0100
MIS ${ }_{\text {rob }}$	0.8227	0.5989	0.0100	MIS ${ }_{\text {rob }}$	1.8779	1.2219	0.0100
ANOVA	0.4832	11.7475	1.8647	ANOVA	0.6309	0.2109	T.2636
MLE	0.4841	20.7956	3.0528	MLE	0.6139	0.1117	1.16013
MIS	1.2876	0.9155	0.0100	MIS	0.9983	0.37 .45	0.3319
MIS $_{\text {rob }}$	1.2863	0.9084	0.0100	M $S_{\text {rob }}$	1.0190	0.3711	0.3117
ANOVA	8.3405	0.6433	1.6960	ANOVA	0.3116	2.2732	1.408
MLE	8.4691	0.0000	1.6939	MLE	0.3171	2.7455	1.8468
MIS	11.3359	0.0232	0.0100	MIS	0.812 .1	0.2082	0.0100
MIS $S_{r o b}$	2.0091	0.0000	0.0100	MIS $S_{\text {rob }}$	0.842.3	0.6270	0.0100
ANOVA	1.1426	0.0611	1.0758	ANOVA	1.1653	9.0148	1.6228
MLE	1.0655	0.0623	1.0932	MLE	1.1736	24.03:14	3.5973
MIS	2.4233	0.1625	0.0100	MIS	3.1263	0.1399)	0.5402
MIS ${ }_{\text {rob }}$	0.9419	0.0000	0.0100	MIS ${ }_{\text {rub }}$	0.7785	0.7187	0.08 .51
ANOVA	0.7296	0.002 ${ }^{\prime}$	0.8799	ANOVA	1.7174	0.7022	1.9607
MLE	0.6805	0.0101	0.8716	MLE	1.6772	0.1799	1.748:
MIS	1.3110	0.0236	0.0100	MIS	2,8349	1.2763	0.02 .53
MIS ${ }_{r, t b}$	0.6451	0.0236	0.0100	MIS $S_{r o,}$	1.6168	1.27 .1	0.0100
ANOVA	0.8399	0.0798	1.1710				
MLE	0.8139	0.0799	1.1418				
MIS	1.1246	0.2096	0.6969				
MIS $S_{\text {rob }}$	1.1045	0.2094	0.4847				

Chapter 7

Estimation of Random Effects

('hapter 1 has introduced the general linear mixed mode]

$$
Y=X \beta+Z \gamma+\epsilon,
$$

where Y is the vector of observations. X and Z are known design matrices. β is a vector of lixed effects, γ is a vector of random effects, assumed to be distributed as $N(\mu, \Xi)$, and , is a vector of error terms, distributed as $N\left(0, \sigma_{0}^{2} I\right)$, and $\operatorname{cov}(\gamma, \epsilon)=0$.

This chapter will discuss a practical problem associated with the model - prediction of γ (or estimation of random effects).

7.1 Introduction

('onsider measuring intelligence in humans. Each of us has some level of intelligence. It can never be measured exactly. As a substitute, we have test scores which are used for putting a value to an inclividual's IQ. Psychologists use test scores to predict a person's intelligence. Here y is the vector of test scores and γ is the unknowable true value of a person's intelligence. If $\hat{\gamma}$ denotes the estimate of $\gamma, \hat{\gamma}$ will be the prediction of a person's intelligence. There are many situations similar to that of the people's I($)$ where we want to quantify the realization of an unobservable random variable.

In particular in our examples, the unobservable random variable ts the genetio merit in our fish breeding set-up. Each individual fish has its own genesic merit which can not be measured. We have the length (or weight) of his (or hert offipming. We want to prediet an individual's genetic merit les using the observable lengeth (or weight).

A statement of the general problem is casy. Suppose I^{\prime} and γ are jointly dis tributed vectors of random variables, with those in \sum ' being ohservable but those in γ not being observable. The problem is to estimate of from observed value of Y. Usually Y contains more elements than γ.

7.2 Estimation with Complete Data

Three methods of prediction are of interest:

- Bect prediction (BP);
- best linear prediction (BLP);
- best linear unbiased prediction (BLLIP).

The best predictor of γ is the conditional mean of γ given γ

$$
B P(\gamma)=E\left(\gamma \mid \rho^{\prime}\right) .
$$

If (Y, γ) is multivariate normal

$$
\binom{Y}{\gamma} \sim N\left(\binom{\mu_{Y}}{\mu_{\gamma}},\left(\begin{array}{ll}
\gamma^{\prime} & \Gamma \\
\gamma^{\prime \prime} & \vdots
\end{array}\right),\right.
$$

with $C=\Sigma Z^{\prime}$.

$$
B P(\gamma)=E(\gamma \mid Y)=\mu_{\gamma}+\gamma^{\prime} V^{-1}\left(\gamma-\mu_{\gamma}\right) .
$$

We can see that the predictor cannot be estimated without having values for $\mu_{\text {. }}, \mu_{1}$, (. and V. Thus the best predictor is available when we know all the patameters of the joint distribution of Y^{\prime} and γ.

For best linear prediction, we assume predictor is lincar in 1 , of the form

$$
\hat{\gamma}=a+B)^{\circ}
$$

for some vector " and matrix B. Minimizing

$$
\iint(\hat{\gamma}-\gamma)^{\prime} A(\hat{\gamma}-\gamma) f\left(\gamma, \gamma^{\prime}\right) d \gamma^{\prime} d \gamma
$$

leads (without any assumption of normality) to

$$
B L P(\gamma)=\mu_{\gamma}+\left(V^{-1}\left(Y^{-}-\mu_{\gamma}^{-}\right) .\right.
$$

We still need knowledge of $\mu_{\gamma}, \mu_{Y^{\prime}},($, and I but without anoming nornality. $B L P(\gamma)$ is identical to $B P(\gamma)$ under normality. Thus the beat linear predictor is available when we know all the parameters.

The BLUP (Best Lincar Unbiased Prediction) of γ is a statistical methocklog.y that has been used extensively. Harville (1976) derived this estimate by extemding. the Gauss-Markov theorem to cover random effects

$$
\operatorname{BLUP}(\gamma)=E\left(\gamma \mid Y, \hat{B}, V^{\prime}\right)=V^{\prime} a r(\gamma) Z^{\prime} V^{-1}(y-X \hat{\beta})
$$

where

$$
\hat{\beta}=\left(X^{-\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} Y
$$

(Robinson, 1991). It can be see that BLLLP is available when we know V (V is replaced by an estimate in practics).

7.3 Estimation with Missing Data

When Y is observed as $\left(y_{1}, \ldots, y_{m}, y_{m+1}<r \ldots, y_{n}<r\right)$, we could not apply the formulas which are given in the last sertion to estimate γ because of not having a
complete data vector Y. It is of interest to develop a method to estimate γ with ($y_{1}, \ldots, y_{n}, y_{n+1}<c_{,}, \ldots, y_{n}<c$). To do this use a Bayesian approach as follows.

- The prior density of γ

We regard γ as a parameter which has a prior distribution $N(0, \Sigma)$. The prior density for γ is

$$
\pi(\gamma)=(2 \pi)^{-\eta / 2}(\operatorname{det} \Sigma)^{-1 / 2} \exp \frac{-1}{2}(\gamma)^{\prime} \Sigma^{-1}(\gamma) .
$$

- The conditional densisty of $\left(Y^{*} \mid \beta, \gamma\right)$

Model 1.1 can easily be rewritten as

$$
y_{2}=\sum_{j=1}^{p} x_{\imath j} \beta_{3}+\sum_{k=1}^{q} z_{2 k} \gamma_{k}+\epsilon_{2}
$$

for $i=1, \ldots, n$.
Under normality, the distribution of ($y_{2} \mid \beta, \gamma$) will be

$$
N\left(\sum_{j=1}^{p} x_{j j} \beta_{j}+\sum_{k=1}^{q} \tilde{z}_{i k} \gamma_{k}, \sigma_{0}^{2}\right) .
$$

Since y_{1}, \ldots, y_{n} are independent when γ is given, the conditional density of $\left(Y^{*} \mid \beta, \gamma\right)$ can be written as

$$
\begin{aligned}
f\left(Y^{\prime} \mid \beta, \gamma\right)= & \prod_{i=1}^{m} f\left(y_{\imath} \mid \gamma\right) \prod_{i=m+1}^{n} P\left(y_{i}<c \mid \gamma\right) \\
= & \prod_{i=1}^{m}\left(2 \pi \sigma_{0}^{2}\right)^{-1 / 2} \exp \frac{-1}{2 \sigma_{0}^{2}}\left(y_{i}-\sum_{j=1}^{p} x_{2 j} \beta_{j}-\sum_{k=1}^{q} \tilde{z}_{i k} \gamma_{k}\right)^{2} \\
& \prod_{i=m+1}^{n} \Phi\left(\frac{\left.c-\sum_{j=1}^{p} \frac{x_{i j} \beta_{j}-\sum_{k=1}^{q} z_{i k} \gamma_{k}}{\sigma_{0}}\right) .}{} .\right.
\end{aligned}
$$

- The posterior density of γ

Therefore the posterior density of γ is

$$
\pi(\gamma \mid Y) \times \frac{f(Y \mid S, \gamma) \pi(\gamma)}{f(Y)} .
$$

We get

$$
\begin{aligned}
& \pi\left(\gamma \mid Y^{\prime}\right)=\left\{\prod_{i=1}^{m}\left(2 \pi \sigma_{0}^{2}\right)^{-1 / 2} \exp \frac{-1}{2 \sigma_{0}^{2}}\left(y,-\sum_{j=1}^{p} x_{i j} \lambda_{l}-\sum_{k=1}^{n} i_{i k} \gamma_{k}\right)^{2}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\exp \left(\frac{-1}{2} \gamma^{\prime} \mathrm{\Sigma}^{-1} \gamma\right)\right\} / f(\xi) \text {. } \tag{î.1}
\end{align*}
$$

whre $f(Y)$ is the density function of $\left(y_{1}, \ldots, y_{m}, y_{m+1}<c, \ldots, y_{n}, c\right)$ (Robin son, 1991). For the one-way model, $f\left(Y^{\prime}\right)$ is function (3.3) as we have herived in Chapter 3, and $f(Y)$ will be function (4.5) of Chapter 4 for two way nested model.

Estimation of γ can be accomplished by maxmizing the posterior $\pi(\gamma \mid \gamma)$ where Y is $\left(y_{1}, \ldots, y_{m}, y_{m+1}<c, \ldots, y_{n}<c\right)$.

If $\beta, \sigma_{0}^{2}, \sigma_{1}^{2}$, and σ_{2}^{2} are known, we could estimate γ by mur $\gamma \pi\left(\gamma \mid \gamma^{\prime}\right)$. The com putation is straightforward since we do not really need to consider the denominator of (7.1). It is just a function of Y and so, given Y^{\prime}, is effectively a constant. Fon numerical calculations, one of the optimization routines in $\mathrm{N} \Lambda(\mathrm{i}$ can be used lo ged the results. With $\sigma_{0}^{2}, \sigma_{1}^{2}$, and σ_{2}^{2} unknown, a common practice is to replace them by the estimates $\hat{\sigma_{0}^{2}}, \hat{\sigma_{1}^{2}}$, and $\hat{\sigma_{2}^{2}}$ in expressions in $\pi(\gamma \mid Y)$. The estimates of $\sigma_{0}^{2}, \sigma_{1}^{2}$, and σ_{2}^{2} which we have developed in the previous chapters would be reatonable estimates. here.

If we let $\beta, \sigma_{0}^{2}, \sigma_{1}^{2}$, and σ_{2}^{2} be unknown parameters in $\pi(\gamma \mid Y)$, the calculation of

$$
\max _{\gamma, \beta, \beta, \tau_{0}^{2}, r_{1}^{2}, \sigma_{2}^{2} \pi(\gamma \mid Y)}
$$

can be extremely difficult to carry out due to the high-dimension maximization.

7.4 Example

Io illustrate (7.1) we use the 1 -way model of Chapter 3. It has model equation $y_{2 \jmath}=\mu+x_{2}+c_{13}$. Suppose $Y=\left(y_{11}, y_{12}, y_{21}, y_{22}<c\right), \mu=0$, and $\sigma_{0}^{2}=\sigma_{1}^{2}=1$, the conditional density becomes

$$
\begin{aligned}
f\left(Y^{\prime} \mid \gamma\right)= & \frac{1}{(2 \pi)^{(3 / 2)}} \exp \frac{-1}{2}\left[\left(y_{11}-\alpha_{1}\right)^{2}+\left(y_{12}-\alpha_{1}\right)^{2}+\left(y_{21}-\alpha_{2}\right)^{2}\right] \\
& \Phi\left(c-\alpha_{2}\right)
\end{aligned}
$$

where $\gamma=\left(\alpha_{1},\left(\alpha_{2}\right)^{\prime}\right.$.
Note also that the prior of γ is

$$
\pi(\gamma)=\frac{1}{2 \pi} \exp \frac{-1}{2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)
$$

Hence the posterior density (7.1) is proportional to

$$
\begin{align*}
& \pi(\gamma \mid Y) \propto \frac{1}{(2 \pi)^{5 / 2}} \exp \frac{-1}{2}\left[\left(y_{11}-\alpha_{1}\right)^{2}+\left(y_{12}-\alpha_{1}\right)^{2}+\left(y_{21}-\alpha_{2}\right)^{2}+\alpha_{1}^{2}+\alpha_{2}^{2}\right] \\
& \Phi\left(c-\alpha_{2}\right) . \tag{7.2}
\end{align*}
$$

Taking \log of the right-hand side of (7.2) and ignoring terms that are not functions of γ, we oltain

$$
l=\frac{-1}{2}\left[\left(y_{11}-\alpha_{1}\right)^{2}+\left(y_{12}-\alpha_{1}\right)^{2}+\left(y_{21}-\alpha_{2}\right)^{2}+\alpha_{1}^{2}+\alpha_{2}^{2}\right]+\log \left(\Phi\left(c-\alpha_{2}\right)\right) .
$$

Differentiating this expression with respect to α_{1} and α_{2} will yield

$$
\begin{aligned}
& \frac{\partial l}{\partial \alpha_{1}}=\left(y_{11}-\alpha_{1}\right)+\left(y_{12}-\alpha_{1}\right)-\alpha_{1}, \\
& \frac{\partial l}{\partial \alpha_{2}}=\left(y_{21}-\alpha_{2}\right)-\alpha_{2}-\frac{\phi\left(c-\alpha_{2}\right)}{\Phi\left(c-\alpha_{2}\right)} .
\end{aligned}
$$

Equating these two expressions to zero gives

$$
y_{11}+y_{12}-3 \alpha_{1}=0
$$

and

$$
y_{21}-2 \alpha_{2}-\frac{\phi\left(c-\alpha_{2}\right)}{\Phi\left(c-\alpha_{2}\right)}=0
$$

$\hat{\alpha_{1}}=\left(y_{11}+y_{12}\right) / 3$ and the solution of $y_{21}-2 a_{2}-\frac{y\left(c-x_{2}\right)}{\left(a_{1}-\cdots \alpha_{2}\right)}=0$ are the estimates of the random effects $\gamma=\left(\alpha_{1}, \alpha_{2}\right)^{\prime}$.

Chapter 8

Concluding Remarks

In this thesis, point estimates and approximate confidence intervals of variance components with a high proportion of missing data have been derived yoth for one-way and two-way nested models. Despite recent advances in the analysis of data with missing values, very little work has been done on variance components estimation with missing data. The major difficulty of this subject is that the observations are not independent. We can not write the full likelihood as we usually do in survival analysis

$$
l i k=\prod_{o b s} f(t ; \delta) \prod_{m i s} F(c ; \phi) .
$$

It will be also hard to apply the EM algorithm to this subject because $P\left(\theta \mid y_{o b s}, y_{m u s}\right)$ can not be writien as lincar in the unobserved data $y_{m a s}$ (Little and Rubin pointed out that estimates can be severely biased when the EM approach is applied in general, 1983). (Chapter 3 (section 3.5) gives more details about the difficulty of using the EM algorithm to estimatc variaice components with incomplete Y. Therefore, our results are particularly useful.

In our model-based procedure, a full likelihood function is defined, in which the missing information has been taken into account. This likelihood function is transformed into a computable function which is maximized to get the estimates. Our
method is applied to simulated data and afuacultural data. The rewulte obtained are significantly and uniformly more accurate than those obtaned by any of the standard methods. Different issues concerning the metho. (such as the existence, uniquenews. confidence intervals, robust procedure, and random effects estimation) have been studied in the thesis.

Future work will continue in several directions. Kinowledge, or absence of knowl edge, of the mechanisms that led to certain values being missing from an observed distribution is a key element in choosing an appropriate analysis and in int"rpret ing the results. The mechanism that led to missing data in the selective genotyping method which we describe here is a form where the 'hreshold is fixed. In some sil uations, the threshold may not be known exactly. Probabilistic thresholds may be a characteristic of many populationsi, where the probability that data is olmerved increases as the value of data increases. This situation will arise, for example, when grading and scoring procedures are imperfect. Thus most of the observed data are large ones. We are currently working on this.

An assumption is being made in our procedure that the family size $\left(n_{2}\right)$ is known. If the family sizes are unknown, the problem will be murh more difficull. If we treated all $n_{2 j}$ as unknown parameters, there will be $\sum_{2 j} n_{2 j}+1$ parametcrs for the two-way model. The computation of the constrained nonlincar optimization will be very difficult due to the large number of parameters. An alternative is to estimate $n_{i j}$ first, thereby decreasing the number of parameters being optimized. How this will effect the estimates of variance components has to be investigated.

Future investigation includes extending our method to different designs and pet ting robust procedure for different designs. In ardition the global search of the pa rameter space to solve our optimization problem is not very effective.

Appendix A

Source Code of Programmes Used

Three programmes were used for all the compuation in this thesis. The source code of these programmes are in $\mathrm{C}+++$. Several source files may involve for a programme. These programmes are listed below with the name(s) of source file involved:

- one-way (ow.cpp),
- one-way robust (owrub.cpp),
- two-way nested (mutw.hpp, mutw.cpp, and tw.cpp).

These source codes were written for the Borland $\mathrm{C}++(3.0 / 3.1)$ compiler under P(1/DOS.

A. 1 One-Way

\#include <conio.h>
\#include <math.h> \#include <graphics.h> \#include <stdio.h> \#include <stdlib.h> \#include <string.h> \#include <time.h>

```
#define NUMB_OF_GROUP
5
```

\#define NUMB_PER_GROUP 8

```
    typedef signed char Boolean;
    typedef unsigned char UCHAR;
#ifdef EIGHTY_BITS
    #define HÜGE 4900
    #define H_VAL 1.0E+4900
    #define EP }\quad1.0\textrm{E}-490
    #define TINY -4900.0
    #define Exp(x) expl(x )
    #define LOG(x) logl( }x\mathrm{ ( )
    typedef long double MY_TYPE;
#else
    #define HUGE 300
    #define H_VAL 1.0E+300
    #define ED = 1.0E-300
    #define TIN: -300.0
    #define EXP(x) exp(x)
    #define LOG(x) log(x)
    typedef double MY_TYPE;
#endif
    #define NUMB_OF_NODE 10
    #define NUMB_SEARRCH_STEP 5
\begin{tabular}{rlrl} 
const & UCHAR & OW_ANDVA & \(=0 \times 01 ;\) \\
const & UCHAR & DWMLE & \(=0 \times 02 ;\) \\
const & UCHAR & OW_MM & \(=0 \times 04 ;\)
\end{tabular}
    void fatal_err( char *msg )
    {
    printf( "Error: %s!\n", msg );
    exit(1);
    }/* end of fatal_err(...) */
```



```
    short data_struct[ 5 ] = {8, 5, 3, 7, 2};
    MY_TYPE Erf( MY_TYPE X )
    static MY_TYPE a[] = { 0.0705230784, 0.0422820123, 0.0092705272,
    0.0001520143, 0.0002765672,0.0000430638 f;
    MY_TYPE y = 1.0, xx = x;
    short i;
    for ( i=0;i<6;i++ ) {
        y += a[i]*xx;
        xx *= x;
        }
    retumn pow( y, -16.0);
    }/* end of MY_TYPE Erf(...) for Phi(...) */
```

```
MY_TYPE Phi( MY_TYPE u )
{f (u>=15.0)
    return 1.0;
if (u<<-15.0)
    return 0.0;
if ( u>0.0)
    return 0.5*( 2.0 - Erf( u*0.7071067812 ) );
return 0.5*Erf( -u*0.7071067812);
}
class JNEWAY
public:
    ONEWAY( float *_Obs, short *_DataStruct );
    ~ONEWAY( void );
    virtual void SetData( float *..Obs, short *_DataStruct );
    float *GetResult( UCHAR opt=OW_ANOVA);
    void ShowResult( UCHAR opt=OW_ANOVA|OW_MLE );
protected:
    virtual void DOIT( void);
    void anova( void);
    float mle( float *xx );
    float Dptimize( float *lx, float *dx );
    char *FileName, IsDONE;
    shoru NoDfData. *DatainGrp;
    float *Data;
    float x[10'];
};
ONEWAY: :ONEWAY( float *_Obs, short *_ObsinGrp )
{
DatainGrp = NULI;
Data = NUIL;
SetData( Obs, ObsinOrp );
FileName \equivNULL;
IsDONE = O;
}//Lnd of ONEWAY::ONEWAY(...)
ONEWAY::"ONEWAY( void )
{
delete [] Data;
delete [] DatainGrp;
if (FileName)
    delete }\square\mathrm{ FileName;
else
    fclose( in );
}//ENd of ONEWAY:: ONEWAY()
void ONEWAY::SetData( float *_Obs, short *_ObsinGrp )
if
f (DatainGrp)
    delete [] DatainGrp;
DatainGrp = new short[ NU'iB_OF_GROUP ];
```

```
if (!DatainGrp)
    fatal_err( "No Memory" );
NoOfData = 0;
for ( short i=0;i<NUMB_OF_GROUP;i++ ) {.
    DatainGrp[i] = _ObsinGrp[i ];
    NoOfData += DatainGrp[ i ];
    }
if (Data)
    delete [] Data;
Data = new float[ NoOfData ];
if (!Data)
    fatal_err( "No Memory");
for ( i=0;i<NoDfData;i++ )
    Data[i]] = _Obs[i];
IsDONE = 0;
}//End of ÓNEWAY::SetData(...)
float *ONEWAY::GetResult( UCHAR opt )
{
if ( IIsDONE )
    DOIT();
if (opt&OW_ANOVA)
    return x;
if (opt&OW_MLE )
    return &x[3];
else
    return &x[6];
}//End of ONEWAY::GetResult(...)
void ONEWAY::ShowResult( UCHAR opt )
{
    (!IsDONE )
        DOIT():
printf("ANÓVA sigma_o %f sigma_1 %f mu %f\n", x[0], x[1], x[2] );
printf("MLE sigma_o %f sigma_1 %f mu %f\n", x[3], x[4], x[5]);
if ( opt&OW_MM)
    printf("MM sigma_o %f sigma_1 %f mu %f\n", x[6], x[7],
x[8] );
}//End of DNEWAY::ShowResult(...)
void ONEWAY::DDIT( void)
void
short i;
float lx[4], ux[4], dx[4], oldoptf, optf, c;
IsDONE = 1;
anova();
1x[0] = Ix[1] = Ix[2] = 0.01;
for ( i=0;i<3;i++) {
    ux[i]
    dx[i] = (ux[i] - Ix[i] )/NUMB_SEARCH_STEP;
oldoptf = 1.0; optf = 0.0;
```

```
while (fabs( optf - oldoptf)>0.0001 ) {
    oldoptf = optf;
    optf = Optimize( lx, dx );
    for ( i=0;i<3;i++ ) {
        c =(ux[i]-1x[i])/NUMB_SEARCH_STEP;
        1x[i] = x[ 3+i] - C;
        if (1x[i]<0.01)
            1x[i] = 0.01;
            ux[ij = x[3+i] + c.
            dx[i] = (ux[i] - 1x[i])/NUSB_SEARCH_STEP;
            }
    }
}//End of ONEWAY::DOIT()
```

```
void ONEWAY::anova( void)
```

short i, j, k;
float s1, s2, s3, a;
$\mathrm{k}=0$;
$\mathrm{s} 1=\mathrm{s} 2=\mathrm{s} 3=\mathrm{x}[0]=\mathrm{x}[1]=0.0$;
for ($i=0 ; i<\mathrm{NUMB}-0 \mathrm{~F}$ GROUP; $\mathrm{i}++$) \{
$x[0]+=$ Dataingrp [i] ;
$x[1]+=$ Dataingrp[i]*DatainGrp[i];
$\mathrm{a}=0.0$;
for ($j=0 ; j<$ Dataingrp $[i] ; j++$) $\{$
$\mathrm{s} 1+=\mathrm{obs}[k+j] * o b s[k+j]$;
a $+=$ obs $[k+j]$;
\}
$\mathrm{k}+=$ DatainGrp[i];
s2 $+=\mathrm{a}$ *a/DatainGrp[i];
s3 += a;
$\mathrm{x}[5]=\mathrm{x}[2]=\mathrm{s} 3 / \mathrm{x}[0]$;
s3 $3=\mathrm{s} 3$;
s3 $/=x[0]$
$a=(x[0] *(N U M B-O F-G R O U P-1)) /(x[0] * x[0]-x[1])$;
$\mathrm{x}[0]=(\mathrm{si}-\mathrm{s} \overline{2}) 7(\times[0]-$ NUMB 0 OF GROUP $) ;$
$x[1]=a *\left((s 2-s 3) /\left(N U M B-0 F_{-G R O U P}^{-1}-1\right)-x[0]\right)$;
f//End of ONEWAY: :anova()

```
float ONEWAY:mle( float *x: )
```

sho
short j, i, 1;
float $a, b, c, d, e, f ;$
$\mathrm{a}=1.0 / \mathrm{xx}[0]$;
$\mathrm{f}=1=0$;
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{NUMB}$ _OF_GROUP; $\mathrm{i}++$) \{
$\mathrm{f}+=\log (\operatorname{pow}(\mathrm{xx}[0]$, DatainGrp[i]-1)*
(xx[0] + DatainGrp[i]*xx[1]));
$\mathrm{b}=\mathrm{xx[1]/(xx[0]*xx[0]}+\operatorname{DatainGrp[i]*xx[0]*x[1])}$;
$\mathrm{d}=\mathrm{e}=0.0$;
for ($j=0 ; j$ DatainGrp[i]; $j++$) \{
$c=\operatorname{Data[} 1+j]-\operatorname{xx[2];}$
$\mathrm{d}+=\mathrm{c} * \mathrm{c}$;
${ }^{e}+=c ;$
$\stackrel{e}{\}}$
f $+=\mathrm{a}$ *d $-\mathrm{b} * \mathrm{e}_{\mathrm{e}}$;
$1+=$ DatainGrp[i];
\}
return f;
3/Rand of onenay::mle()
float ONEWAY::Optimize (float Ix, float *dx)
โ
float $\operatorname{xx}_{\text {short }}[4], f$, optí;
optf $=1.0 \mathrm{E}+8$;
$\mathrm{xx}[0]=1 \mathrm{x}[0] ;$
for ($i=0 ; \mathrm{i}<=$ NUMB_SEARCH_STEP; $\mathrm{j} .++$) \{
/* loop for sigma_o */ $\mathrm{xx}[1]=1 \mathrm{x}[1] ;$
for ($j=0 ; j<=$ NUMB_SEARCH_STEP; $j++$) \{
/* loop for sigma_1 */
$\mathrm{xx}[2]=1 \mathrm{x}[2]$;
for ($k=0$; $k<$ NTMMB_SEARCH_STEP; $k++$) \{ $\mathrm{f}_{\mathrm{if}}=\binom{\mathrm{mie}(\mathrm{xx}}{\mathrm{f}<\mathrm{optf}} ;\{$
optf =f; $x[3]=\operatorname{xx}[0] ;$
$\left.x[4]=\operatorname{xx[}\left[\begin{array}{l}1] \\ x \\ x[\end{array}\right]=\operatorname{xx[} 2\right] ;$ $\operatorname{xxx}^{[2]}+=\mathrm{dx}[2] ;$
$\operatorname{xxx}^{\left.\frac{\mathrm{Ex}}{}\right]^{[2]}+=\mathrm{dx}[1] ;}$
$x x[0]+=d x[0]$;
\}
return optf;
\}//End of ONEWAY::Optimize(...)
class ONEWAY_MM : public ONEWAY
\{
public:
ONEWAY_MM (float *_Obs, short *_ObsinGrp, float _TruncateV); ONEWAY MM (void); void DOIT(void);
protected:
float Optimize(float *lx, float *dx); void SetNodes(void); float func (float *xx); MY_TYPE IntgrT(float *xx, short ith_grp); short *missing, *GrpPtr; flout TruncatedValue; MY_TYPE gx [NUMB_OF_NODE], gw [NUMB_OF_NODE]; MY_TYPE NOde[NUMB_OF_NODE], dv [NUMB_OF_NODFT;
\};

ONEWAY_MM: : ONEWAY_MM (float *_Obs, short *obs_per_grp,
float _TruncatedV):
ONEWAY (_Obs, obs_per_grp)
$\{$
missing = new short[NUMB_OF_GROUP];

```
GrpPtr = new short[ lvUMB_OF_GROUP ];
if (!missing || !GrpPtr)
    fatal_err( "No Memory");
for (short i=0;i<NUMB_OF_GROUP;i++)
    missing[i] = NUMB_PER_GROUP'- obs_per_grp[i];
GrpPtr[0] = 0;
for ( i=1;i<NUMB_OF GROUP;i++)
    GrpPtr[i] = GrpPtr[i - 1] + obs_per_grp[i - 1];
TruncatedValue = _TruncatedV;
SetNodes();
}//End of ONEWAY_MM::ONEWAY_MM(...)
ONEWAY_MM::~ONEWAY_MM( void)
{
delete [] GrpPtr;
delete [] missing;
}//End of ONEWAY_MM: : ONEWAY_MM()
void ONEWAY_MM::DOIT( void )
short i;
float Ix[4], ux[4], dx[4], oldoptf, optf, c;
DNEWAY::DOIT();
lx[0] = lx[1] = Ix[2]=0.01;
for ( i=0;i<3;i++) {
    ux[i] = x[3+i]*2.0;
    dx[i] = (ux[i] - ix[i] ).'NUMB_SEARCH_STEP;
oldoptf = 1.0; optf = 0.0;
while ( fabs( optf - oldoptf )>0.0001 ) {
    oldoftf = optf;
    optf = Optimize( lx, dx );
    for ( i=0;i<3;i++) {
        c=(ux[i] - lx[i])/NUMB_SEARCH_STEP;
        1x[i]=x[6+i] - C;
        if ( lx[i]<0.01)
            lx[i] = 0.01;
            ux[i]=x[6+i]}+c
            dx[i] = (ux[i] - Ix[i])/NUMB_SEARCH_STEF,
    }
}//End of ONEWAY_MM::DNIT()
```

float ONEWAY_MM: : Optimize (float *lx, float *dx)
float $x \times[4]$, f, optf;
short j, i, k;
optf $=1.0 \mathrm{E}+8$;
$\mathrm{xx}[2]=1 \mathrm{x}[2]$;

```
    for ( k=0;k<=NUMB_SEARCH_STEP;k++ ) {
    xx[0] = lx[0];
    for ( i=0;i<=NUMB_SEARCH_STEP;i++ ) {
* loop for sigma_o */
            xx[1] = Ix[1];
            for ( j=0;j<=NUMB_SEARCH_STEP;j++ ) {
/* loop for sigma_1 */
                        f =func( xx );
                if (f<optf) {
                    optff=f;
```



```
            xx[1] += dx[1];
        xx[0] += dx[0];
    xx[2] += dx[2];
    }
return optf;
}//End of ONEWAY_MM::Optimize(...)
```

```
void ONEWAY_MM::SetNodes( void )
```

void ONEWAY_MM::SetNodes(void)
{
{
gx[0] = 0.98695326; gw[0] = 0.033335672;
gx[0] = 0.98695326; gw[0] = 0.033335672;
gx[1] = 0.93253168; gw[1] =0.07472567;
gx[1] = 0.93253168; gw[1] =0.07472567;
gx[2] = 0.83970478; gw[2] =0.10954318;
gx[2] = 0.83970478; gw[2] =0.10954318;
gx[3] = 0.71669770; gw[3] =0.13463336;
gx[3] = 0.71669770; gw[3] =0.13463336;
gx[4] = 0.57443717; gw[4] = 0.14776211;
gx[4] = 0.57443717; gw[4] = 0.14776211;
gx[5] = 0.42556283; gw[5] = 0.14776211;
gx[5] = 0.42556283; gw[5] = 0.14776211;
gx[6] = 0.28330230; gw[6] = 0.13463336;
gx[6] = 0.28330230; gw[6] = 0.13463336;
gx[7] = 0.16029522; gw[7] = 0.10954318;
gx[7] = 0.16029522; gw[7] = 0.10954318;
gx[8] = 0.06746832; gw[8]=0.07472567;
gx[8] = 0.06746832; gw[8]=0.07472567;
gx[9] = 0.01304674; gw[9] = 0.033335672;
gx[9] = 0.01304674; gw[9] = 0.033335672;
for (short i=0;i<NUMB_OF_NODE;i++)
for (short i=0;i<NUMB_OF_NODE;i++)
dv[i] = (1.0- gx[i]) / gx[i];
dv[i] = (1.0- gx[i]) / gx[i];
Node[i] = LOG(gw[i]) - 0.5*dv[i]*dv[i] - 2.0*LOG(gx[i]);
Node[i] = LOG(gw[i]) - 0.5*dv[i]*dv[i] - 2.0*LOG(gx[i]);
}
}
}// End of void ONEWAY_MM::SetNodes()
}// End of void ONEWAY_MM::SetNodes()
float ONEWAY_MM::func(float *xx)
{
short i;
float f}=0.0
MY_TYPE ff;
xx[0] = sqrt(xx[0]);
xx[1] = sqrt(xx[1]);
for (i=C; i<NUMB_OF_GROUP;i++)

```
```

f -= LOG(ff);
f == TINY;
}
xx[0] *= xx[0];
return f;
}//End of ONEWAY_MM::func(...)

```
```

 MY_TYPE ONEWAY_MM::IntgrT(float *xx, short ith_grp)
    ```
    MY_TYPE ONEWAY_MM::IntgrT( float *xx, short ith_grp )
    {
    {
    short j, node_i;
    short j, node_i;
    float * y_ij = &Data[ GrpPtr[ith_grp]];
    float * y_ij = &Data[ GrpPtr[ith_grp]];
    MY_TYPE W, z, invxx0, phi, d, e, S;
    MY_TYPE W, z, invxx0, phi, d, e, S;
    invxx0 = 1.0/xx[0];
    invxx0 = 1.0/xx[0];
    e = DatainGrp[ith_grp];
    e = DatainGrp[ith_grp];
    e *= L.OG( xx[0] );
    e *= L.OG( xx[0] );
    s=0.0;
    s=0.0;
for (node_i = 0; node_i < NUMB_OF_NODE; node_i++)
for (node_i = 0; node_i < NUMB_OF_NODE; node_i++)
    w = ( xx[2] + xx[1] * dv[ncde_i] ) * invxx0;
    w = ( xx[2] + xx[1] * dv[ncde_i] ) * invxx0;
    phi = Phi (TruncatedValue * invxx0 - w );
    phi = Phi (TruncatedValue * invxx0 - w );
    if (phi > 0.0)
    if (phi > 0.0)
            {
            {
            z=0.0;
            z=0.0;
                        d = y-ij[j] ] invxx0 - w;
                        d = y-ij[j] ] invxx0 - w;
                        z += (d * d);
                        z += (d * d);
                d = Node[node_i] + missing[ith_grp] * LOG( phi )
                d = Node[node_i] + missing[ith_grp] * LOG( phi )
-0.5*z - e;
-0.5*z - e;
            if (d > TINY)
            if (d > TINY)
                s t= EXP( d );
                s t= EXP( d );
            else
            else
            s += EP;
            s += EP;
            }
            }
        w = ( xx[2] - xx[1] * dv[node_i] ) * invxx0;
        w = ( xx[2] - xx[1] * dv[node_i] ) * invxx0;
        phi = Phi( TruncatedValue * invxx0 - w );
        phi = Phi( TruncatedValue * invxx0 - w );
        if (phi> 0.0)
        if (phi> 0.0)
            { = 0.0;
            { = 0.0;
            zor (j j = 0; j< DatainGrp[ith_grp]; j++)
            zor (j j = 0; j< DatainGrp[ith_grp]; j++)
                        d = y_ij[ j ] * invxx0 - w;
                        d = y_ij[ j ] * invxx0 - w;
            z +=(d*d);
            z +=(d*d);
        d = Node[node_i] + missing[ith_grp] * LOG( phi )
        d = Node[node_i] + missing[ith_grp] * LOG( phi )
-0.5 * z - e;
-0.5 * z - e;
    if (d > TINY)
    if (d > TINY)
        d);
```

 d);
    ```
```

 else
 s += EP;
 }
 F
 return 0.5*s;
}// End of MY_TYPE ONEWAY_MM:.IntgrT(...)
main()
{
ONEWAY_MM *OW = new ONEWAY_MM(obs, data_struct, -1.0);
ow->ShowResult(OW_MM);
delete ow;
return 0;
}

```

\section*{A. 2 One-Way Robust}
```

\#include <assert.h>
\#include <conio.h>
\#include <math.h>
\#include <graphics.h>
\#include <Si,dio.h>
\#include <stdlib.h>
\#include <string.h>
\#include <time.h>

```
typedef signed char Boolean;
typedef unsigned char UCHAR;
\#ifdef EIGHTY BITS
    \#define HÜGE 4900
    \#define \(H_{-}\)VAL \(\quad 1.0 E+4900\)
    \#define EF \(\quad 1.0 \mathrm{E}-4900\)
    \#define TINY -4900.0
    \#define \(\operatorname{EXP}(x) \quad \operatorname{expl}(x)\)
    \#define \(\operatorname{LoG}(x) \quad \log 1(x)\)
    \#define SQRT(x) sqrtl( \(x\) )
    typedef long double MY_TYPE;
\#else
    \#define HUGE 300
    \#define \(H_{-}\)VAL
    \#define EP
    \#define TINY
    ;define EXP (x)
    \#define LOG(x)
    \#define SQRT( \(x\) ) sqrt ( \(x\) )
    typedef double MY_TYPE;
\#endif
\begin{tabular}{|c|c|c|c|}
\hline nst & UCHAR & OW_ANOVA & 0x01; \\
\hline const & UCHAR & OW_MLE & = 0x02; \\
\hline const & UCHAR & OW_MM & = 0x04; \\
\hline
\end{tabular}
```

/* Parameters for robust estimate */
MY_TYPE Alpha = 0.05;
MY_TYPE Beta = 1.345;
MY_TYPE G1 = (1.0 - Alpha) / 2.5066283;
MY_TYPE Ci = (1.0 - Alpha) / (Beta * 2.5066283);
MY_TYPE C2 = C1 * EXP(0.5* Beta * Beta);
MY_TYPE C3 = C1 * EXP(-0.5 * Beta * Beta);
\#define NUMB_SEARCH_STEP 5
\#define NUMB_OF_NODE }15
const float UpperBound = 20.0;
const float LowerBound =-20.0;
\#define NUMB_OF_GROUP
5
\#define NUMB_PER_GROUP 8
const float TruncatedValue = =0,0;
short data_struct[NUMB_OF_GROUP] }={2,8,1,8,2}
float obs[NUMB_OF_GROUP * NUMB_PER_GROUP] =
1.236, 1.081,
1.624, 1.718, 2.131, 3.661, 3.352, 1.899, 2.695, 1.486,
0.110,
0.821, 1.225,
void fatal_err(char *msg)
{
printf("Error: %s!\n", msg);
exit(1);
}/* end of fatal_err(...) */
MY_TYPE Erf(MY_TYPE X)
static MY_TYPE a[] = { { 0.0705230784, 0.0422820123,0.0092705272, 隹,
MY_TYPE y = 1.0, xx = x;
short i;
for (i=0;i<6;i++) {
y +=a[i]*xx;
}x *= x;
return pow(y, -16.0);
}/* end of MY_TYPE Erf(...) for Phi(...) */

```
```

MY_TYPE Phi(MY_TYPE u)

```
MY_TYPE Phi( MY_TYPE u )
if ( u>=15.0)
if ( u>=15.0)
    return 1.0;
    return 1.0;
if ( u<=-15.0)
if ( u<=-15.0)
        return 0.0;
        return 0.0;
if (u>0.0)
```

if (u>0.0)

```
return \(0.5 *(2.0-\operatorname{Erf}(u * 0.7071067812))\);
```

returr 0.5*Erf(-u*0.7071067812);
}/* end of MY_TYPE Phy(...) */

```
```

class ONEWAY
{

```
public:
        ONEWAY ( float *_Obs, short *_DataStruct );
        ONEWAY ( void );
        vartual void SetData( float *_Obs, short *_DataStruct );
        float *GetResult ( UCHAR opt=OW_ANOVA);
        vold ShowResult ( UCHAR opt=OW_ANOVA|OW_MLE );
protected:
    virtual void DOIT( void );
    void anova(vold);
    float mle( float *xx );
    float Optimize( float *lx, float *dx );
    char *FileName, IsDONE;
    short NoOfData, *DatainGrp;
    float *Data;
    float \(x\left[10^{\prime}\right]\);
子;
ONEWAY: : ONEWAY ( float *_Obs, short *_ObsınGrp )
DatainGrp = NULL;
Data \(=\) NULL;
SetData( Obs, _ObsinGrp );
FileName \(\equiv\) NULL;
IsDONE \(=0\);
子//End of ÓNEWAY:. ONEWAY (...)
ONEWAY: : ONEWAY ( void )
delete [7 Data;
delete [] DatainGrp;
if (FileName)
    delete \(\square\) FileName;
else
    fclose (in);
\}//End of ONEWAY: : ONEWAY()
void ONEWAY: •SetData( fıoat *_Obs, short *_ObsinGrp )
\{f
if (DatainGrp)
    delete \(\square\) Datainfirp;
DatainGrp = new short[ NUMB_OF_GROUP];
if (!DatainGrp)
    fatal_err( "No Memory");
NoOfData \(=0\),
for (short \(i=0 ; i<N U M B\) _OF_GROUP \(; i++\) ) \(\{\)
    DatainGrp[i] = - ObsinGrp[i];
    NoDfData \(+=\) DatainGrp[ \(i]\);
```

 }
 if (Data)
delete
Data;
Data = new float[NoDfData];
if (!Data)
fatal_err("No Memory");
for (i=0;i<NoOfData;i++)
Data[i] = _Obs[i];
IsDONE = 0;
}//End of ONEWAY::SetData(...)
float *ONEWAY::GetResult(UCHAR opt)
{f
(!IsDONE)
DOIT();
if (opt\&DW_ANOVA)
return x;
if (opt\&OW_MLE)
return \&x[3];
else
return \&x [6];
}//End of DNEWAY::GetResult(...)
void ONEWAY::ShowResult(UCHAR opt)
\&
if (!IsDONE)
DOTT();
printf("AN'כ\A sigma_0 %f sigma_1 %f mu %f\n", x[0], x[1], x[2]);
print,f("MLE sigma_o %f sigma_1 %f mu %f\n", x[3], x[4], x[5]);
if (opt\&OW_MM)
printf("MM sigma_o %f sigma_1 %f mu %f\n", x[6], x[7],
x[8]);
}//End of ONEWAY::ShowResult(...)
void ONEWAY::DOIT(void)
short i;
float lx[4], ux[4], dx[4], oldoptf, optf, c;
IsDONE = 1;
anova()
1x[0] =1x[1] = 1x[2] = 0.01;
for (i=0;i<3;i++){
ux[i] = x[i]]*2.0;
dx[ij] = (ux[i] - ix[i])/NUME_SEARCH_STEP;
}
oldoptf = 1.0; optf = 0.0;
while (fabs(optf - oldoptf) > 0 0001) {
oldoptf = optf;
optf = Optimize(lx, dx);
for (i=0;i<3;i++) {
c = (ux[i] - lx[i])/NUMB_SEAARCH_STEP;
lx[i] = x[3+i] - C;
if (1x[i]<0.01)

```
```

 \x[i]=0.01;
 dx[i]=(ux[i] - Ix[i])/NUMB_SEARCH_STEP;
 }
 }//End of ONEWAY::DOIT()
void ONEWAY::anova(void)
{
short i, j, k;
float s1, s2, s3, a;
k=0;
s1 = s2 = s3 = x[0] = x[1] = 0.0;
for (i=0;i<NUMB_OF_GROUP;i++) {
x[0] += DatainGrp[i];
x[1] += DatainGrp[i]*DatainGrp[i];
a = 0.0;
for (j=0;j<DatainGrp[i];j++) {
s1 += obs[k+j]*obs[k+j];
a += obs[k+j];
}
k += DatainGrp[i];
s2 += a*a/DatainGrp[i];
s3 += a;
x[5] = x[2] = s3/x[0];
s3 *= s3;
s3 /= x[0];
a =(x[0]*(NUMB OF GROUP-1))/(x[0]*x[0] - x[1]);

```

```

x/1]=a*(s2-s3)/(N',
float ONEWAY::mle(float *xx)
{
short j, i, l;
float a, b, c, d, e, f;
a = 1.0/xx[0];
f = 1 = 0;
for (i=0;i<NUMB_OF_GROUP;i++) {
f += 10g(pow(xx[0], Da,tainGrp[i]-1)*
(xx[0] + DatainGrp[i]*xx[1.]));
b}=\operatorname{xx[1]/(xx[0]*xx[0] + DatainGrp[i]*xx[0]*xx[1]);
d = e = 0.0;
for (j=0;j<DDatainGrp[i];j++) {
c = Data[1+j] - xx[2];
d += c*C;
e+=c;
f += a*d - b*e*e;
1 += DatainGrp[i];
}
return f;
}//End of ONEWAY::mle()
float ONEWAY::Optimize(float *lx, float *dx)
{

```
```

 float xx[4], f, optf;
 short j, i, k;
 optf = 1.0E+8;
 xx[0] = 1x[0];
 for (i=0;i<=NUMB_SEARCH_STEP;i++) {
 /* loop for sigma_o */
 xx[1] = lx[1];
 for (j=0;j<=NUMB_SEARCH_STEP;j++) {
 /* loop for sigma_1 */
 xx[2] = 1x[2];
 for (k=0; k<=NUMB_SEARCH_STEP;k++) {
 f = mle(xx); {
 optf = f;
 x[[3] = xx[0];
 xx[2] += dx[2];
 xx[1] += dx[1];
 xx[0] += dx[0];
 }
 return optf;
5//End of ONEWAY::Optimize(...)
class ONEWAY_MM : public ONEWAY
{
public:
ONEWAY_MM(float *_Obs, short *_ObsinGrp, float .TruncateV);
~ ONEWAY MM(void);
void DOIT(void);
protected:
float Optimize(float *lx, float *dx);
void SetNodes(void);
float func(float *xx);
MY_TYPE IntgrT(float *xx, short ith_grp);
shori *missing,*GrpPtr;
float TruncatedValue;
MY_TYPE interval;
};
ONEWAY_MM::ONEWAY_MM(float *_Obs, short *obs_per_grp,
float _TruncatedV) :
ONEWAY(_Obs, obs_per_grp)
{
missing = new short[NUMB_OF_GROUP];
GrpPtr = new short[NUMB_DF_GROUP];
if (!missing || !GrpPtr)
fatal_err("No Memory");
for (short i=0;i<NUMB_OF_GROUP;i++)
missing[i] = NUMB_PER_GROUP - obs_per_grp[i];

```
```

GrpPtr[0] = 0;
for (i=1;i<NUMB_OF_GROUP;i++)
GrpPtr[i] = GrpPtr[i - 1] + obs_per_grp[i - 1];
TruncatedValue = _TruncatedV;
SetNodes();
}//End of ONEWAY_MM::ONEWAY_MM(...)
ONEWAY_MM:: ONEWAY_MM(void)
{
delete [] GrpPtr;
delete [] missing;
}//Erd of ONEWAY_MM:: ONEWAY_MM()
void ONEWAY_MM::DOIT(void)
{
short i;
float lx[4], ux[4], dx[4], oldoptf, optf, c;
ONEWAY::DOIT();

```
```

lx[0] = 1x[1] = lx[2] = 0.01;

```
lx[0] = 1x[1] = lx[2] = 0.01;
for ( i=0;i<3;i++) {
for ( i=0;i<3;i++) {
    ux[i] = x[3+i] ]*2.0i
    ux[i] = x[3+i] ]*2.0i
    dx[i] = (ux[i] - ix [i] )/NUMB_SEARCH_STEP;
    dx[i] = (ux[i] - ix [i] )/NUMB_SEARCH_STEP;
oldoptf = 1.0; optf = 0.0;
oldoptf = 1.0; optf = 0.0;
while ( fabs( optf - oldoptf ) > 0.0005 ) {
while ( fabs( optf - oldoptf ) > 0.0005 ) {
    oldoptf = optf;
    oldoptf = optf;
    optf = Optinize( lx, dx );
    optf = Optinize( lx, dx );
    for { }i=0;i<3;i++
    for { }i=0;i<3;i++
        printf( "%.6f", x[6 + i] );
        printf( "%.6f", x[6 + i] );
        c = (ux[i] - Ix[i])/NUMB_SEARCH_STEP;
        c = (ux[i] - Ix[i])/NUMB_SEARCH_STEP;
        lx[i] = x[ 6+i i] - c;
        lx[i] = x[ 6+i i] - c;
        if (1x[i]<0.01)
        if (1x[i]<0.01)
            1x[i]}=0.01
            1x[i]}=0.01
            ux[i] = x[6+i] +c;
            ux[i] = x[6+i] +c;
            dx[i] = (ux[i] - 1x[i])/NUMB_SEARCH_STEP;
            dx[i] = (ux[i] - 1x[i])/NUMB_SEARCH_STEP;
    printf( "\n");
    printf( "\n");
}//End of ONEWAY_MM::DOIT()
}//End of ONEWAY_MM::DOIT()
float ONEWAY_MM::Optimize( float *lx, float *dx )
{loat xx[4], f, optf;
short j, i, k;
optf = 1.0E+8;
xx[2] = 1x[2];
for ( k=0;k<=NUMB_SEARCH_STEP;k++) {
    xx[0] = 1x[0];
    for ( i=0;i<=NUMB_SEARCH_STEP;i++ ) {
/* loop for sigma_o */
```

```
    xx[1] = 1x[1];
    for ( j=0;j<=NUMB_SEARCH_STEP;j++ ) {
/* loop for sigma_1 */
        f= func( xx );
            optf = f;
            x[\mp@code{6 ] = xx[ 0 ] ];}
            xx[1]}+=dx[1]
            xx[0] += dx[0];
        xx[2] += dx[2];
return optf;
}//End of ONEWAY_MM::Optimize(...)
void ONEWAY_MM:SetNodes(void)
interval = (UpperBound - LowerBound) / NUMB_DF_NODE;
}// End of void ONEWAY_MM::SetNodes()
fluat ONEWAY_MM::func( float *xx )
{
short i;
float f = 0.0;
MY_TYPE ff;
\operatorname{xx}[0]=SQRT{ ( xx[0] = SQRT (0;
for ( i=0; i<NUMB_OF_GRDUP;i++ )
    ff = IntgrT( xx, i );
    if (ff > EP)
        f -= LOG( ff );
    else
        f -= TINY;
    }
xx[0] *= xx[0];
xx[1] *=
}//End of ONEWAY_MM::func(...)
MY_TYPE ONEWAY_MM::IntgrT( float *xx, short ith_grp )
{
short j, node_i;
float * y_ij = &Data[ GrpPtr[ith_grp]];
MY_TYPE d, f1, f2, f3; /* variables */
MY_TYPE s; /* result */
MY_TYPE w;
MY_TYPE X; /* X for f(x) */
MY_TYPE invxx0, invxx1;
```

```
    invxx0 = 1.0 / xx[0];
    invxx1 = 1.0 / xx[1];
    s = 0.0;
    x = LowerBound;
    for (node_i = 0; node_i <= NUMB_OF_NODE; node_ir+)
    w = Beta * (TruncatedValue - x) * invxx0;
    f1 = 1.0;
    for (j= 0; j < DatainGrp[ith_grp]; j++)
            d = (y_ij[j] - x) * invxx0;
            if (x-xx[0] * Beta <= y_ij[j] && y_ij[j] <= x
+ xx[0] * Beta)
            elsef1 *= c1 * invxx0 * EXP( -0.5 * d * d );
            else
            f1 *= c1 * invxx0 * Exp( 0.5 * Beta * Beta
    - Beta * fabs(d));
        if (0 != missing[ith_grp])
            if (TruncatedValue <=x - Beta * xx[0])
                d =C1*EXP(0.5* Beta * Beta+W);
            else if (%& (TruncatedValue < <= x + Beta * xx[0])
                d = C3 + (1.0 - Alpha) * (Phi (w/Beta) +
Phi( Beta ) - 1.0);
            else
                        {/
                if Truncatenvalue => x + Beta * xx[0] )
                d =2.0 * C3 + (1.0 - Alpha) * (2.0 * Phi(Beta)
- 1.0)-C2 f
            f2 = pow(d, (MY_TYPE) missing[ith_grp] );
            }
        else
            f2 = 1.0;
        d = (x - xx[2]) * invxxi;
        f3 = EXP(-0.5 * d * d) * 0.7071067 * invxx1;
        s += interval * f1 * f2 * f3;
        } += interval;
return s;
}// End of MY_TYPE ONEWAY_MM::IntgrT(...)
main()
{
ONEWAY_MM *OW = new ONEWAY_MM( obs, data_struct, TruncatedValue );
ow->ShowResult( OW_MM);
delete ow;
```

```
return 0;
```


A. 3 Two-Way Nested

There are three source file involved in this progranme.

A.3.1 Header File

\#include <stdio.h>
\#ifdef EIGHTY_BITS
\#define HÜGE 4900
\#define H_VAL $\quad 1.0 \mathrm{E}+4900$
\#define EP 1.0E-4900
\#define TINY -4900.0
\#define EXP (x) $\operatorname{expl}(x)$
\#dofine LOG(x) logl(x)
typedef long double MY_TYPE;
\#else
\#define HUGE 300
\#define H-VAL $\quad 1.0 \mathrm{E}+300$
\#define EP $\quad 1.0 \mathrm{E}-300$
\#define TINY -300.0
\#define $\operatorname{EXP}(x) \quad \exp (x)$
\#define LOG(x) $\log (x)$
typedef double MY_TYPE;
\#endif
\#define MAXDIM 100
\#define NUMB_OF_SIR 8
\#define NUMB_OF_DAM 3
\#define NUMB_DF_SIB 20
typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef char Boolean;

const USHORT	MLEMode	$=0 \times 0001 ;$
const USHORT	MisSSirIncl	$=0 \times 0002 ;$
const USHORT	MisSDamIncl	$=0 \times 0004 ;$
const USHORT		
const USHORT	BadMemory BadFile	$=0 \times 0001 ;$

Boolean PlotResults(float *obs,int nobs, float lb, float ub);
class UTW_ANOVA // unbalanced two-way
analysis of variance
\{
public:

```
    UTW_ANOVA( char *DataFileName);
    ~UTW_ANOVA( void );
    float *GetResults( void );
protected:
    virtual void DoIt( void );
    short NoOfSir, NoOfDam, NoOfOffspring:
    short *SirToDain, *DamToOffspring;
    float *0bs, x[10]:
    Boolean IsDone;
    FILE *in;
};
    class UTW_MLE : public UTW_ANOVA //unbalanced two-way
    max. likelihood est.
    {
    public:
        UTW_MLE( char *DataFile, USHORT _flag=0U ):
            UTW_ANOVA( DataFile ), SearchStep(4), flag(_flag){}
        void DOANOVA( void);
        void GetPlotData(float *g,short n,float *x,float
Ix,float ux, short Obs);
    USHORT GetFlag(void ) { return flag; }
    void SetFlag( USHORT _flag ) { flag=_flag; }
protected:
    virtual MY_TYPE func( float *xx );
    USHORT flag;
private:
    short SearchStep;
};
    class UTW_MM : public UTW_MLE
{
public:
    UTW_MM(char *DataFile, USHURT _flag=0U);
    ~UTW_MM( void);
    const float * GetTargetParameters(void)
            { return &target_parameters[0]; }
    protected:
    MY_TYPE func( float *xx );
private:
    MY_TYPE IntgrV( float *xx, short ithSir, short Dam_i );
    MY_TYPE IntgrT( MY_TYPE dv, float *xx, short miss,
short Dam_ij );
    MY_TYPE Intgry( float *xx );
    MY_TYPE IntgrT( MY_TYPE dv, float *xx );
    void SetNodes(void);
    MY.TYPE Node[10], dt[10];
    float TruncatedValue, *Sum_Yij, target_parameters[5];
    short *missing,*Obsptr, NoOfNode;
    short FullNo0fSir, FullNODfDam, FullNoOfSib;
};
class TWG
{
public:
```



```
    TWGG( float _sigma0, float _sigma1, float _sigma2, float _mean,
        float TrimRate=0.25, short _RandSeed=0);
    TTWG( void );
    Boolean DoIt( void );
    void SetTrimRate( float _TrimRate );
    void Write( char *FileName=NULL );
    void WriteMis( char *FileName=NULL );
private:
    void GenerateIt( void );
    short Trim( void);
    float NrmiGen(float _var);
    void sort_f( float *x, short n );
    float *Sir, *Dam[MAXDIM];
    float *Obs[MAXDIM] [MAXDIM] , *Tmp;
    float sigma0, sigma1, sigma2, mean, tv, TrimRate;
    UCHAR *SirToDam, *SirDamChild[MAXDIM];
    UCHAR *sirtodam, *sirdamchild[MAXDIM], noofsir;
    short NoOfSir, NoDfDam, NoOfOffspring, NoTrimmed;
    short RandSeed;
    FILE *io;
};
void Fatal Error( char *msg );
extern USHORT TW_Error;
```


A.3.2 Two Source Files

This is the primary source code for computation.

```
#include "mutw.hpp"
#include <conio.h>
#include <graphics.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
##define TRUE 
USHORT TW_Error;
void Fatal_Eiror( char *msg )
f
printf("Error: %s!\n", msg);
putch(7);
exit(1);
}/* end of Fatal_Error(...) */
MY_TYPE Erf( MY_TYPE x )
{
static MY_TYPE a[] ={ 0.0705230784, 0.0422820123,0.0092705272,
                        0.0001520143, 0.0002765672, 0.0000430638};
```

```
    MY_TYPE y = 1.0, xx = x;
    short i;
    for ( i=0;i<6;i++) {
        y +=a[i]*xx;
        ix
    return pow( y, -16.0);
    }/* end of MY_TYPE Erf(...) for Phi(...) */
    MY_TYPE Phi( MY_TYPE u )
    if ( u>=15.0)
    return 1.0;
    if ( u<=-15.0)
        return 0.0;
    if ( u>0.0)
        return 0.5*( 2.0 - Erf(u*0.7071067812)));
    return 0.5*Erf( -u*0.7071067812);
    }/* end of MY_TYPE Phi(...) */
    MY_TYPE phi( MY_TYPE w )
    {
    }
    MY_TYPE phi_deriv( MY_TYPE w )
    {
    return ( -w * phi( w ) );
    } // phi_deriv()
    TWG::TWG( float _sigma0, float _sigma1, float _sigma2,
        float mean, float _TrimRate, short _RandSeed ):
        sigma0(_sigma0), sigma1(_sigma1), sigma2(_sigma2),
                        mean(_mean), RandSeed(_RandSeed)
    {
    short i, j, k;
    if (RandSeed<=0 ) {
        randomize();
        RandSeed = rand();
        }
srand( RandSeed );
SetTrimRate( TrimRate);
    NOOfSir = 5: /l + rando
NoOfSir = NUMB_OF_SIR;
SirToDam = new UCHAR[ NoOfSir ];
sirtodam = new UCHAR[ NoOfSir ];
Sir = new float[ NoOfSir ];
NoDfDam = NoOfOffspring = 0;
for ( i=0;i<NOOfSir;i++ ) &
    j = 5; // + random( 4 );
    j = NUMB_OF_DAM;
    SirDamChild[i] = new UCHAR[ j ];
```

```
        sirdamchild[i] = new UCHAR[ j ];
        Dam[i] = new float[ j ];
        NOOfDam += j;
        SirToDam[i] = j;
        }
for ( i=0; i<NoOfSir;i+++)
        k = 16; // + random( 15);
        k = NUMB_DF_SIB;
        NoOfOffspring += k;
        Obs[i][j] = new float[k];
        SirDamChild[i][j] = k;
        }
Tmp = new float[ NoOfOffspring ];
}// End of I'WG::TWG(...)
TWG::~TWG( void )
short i, j;
delete [] Tmp;
for ( i=No!fSir-1;i>=0;i-- )
    for ( j=SirToDam[i]-1;j>=0;j-- )
            delete [] Obs[i][j];
for ( i=NoOfSir-1;i>=0;i-- ) {
    delete [] Dam[i];
    delete [] sirdamchild[i];;
    delete [] SirDamChild[i];
    }
delete
delete
delete [] SirToDam:
}// End of TWG::"TWG()
void TWG::SetTrimRate( float _TrimRate )
{
TrimRate = _TrimRate;
if (TrimRate<0.0)
    TrimRate = 0.0;
if (TrimRate>0.95)
    TrimRate = 0.95;
}//End of TWG::SetTrimRate(...)
Boolean TWG::DoIt( void )
{
short j = 0;
float c;
do {
    GenerateIt();
    c = NoDfOffspring;
    c *= TrimRate;
    NoTrimmed = (short)c;
    if (NoTrimmed<1)
        tv = Tmp[0]-0.1;
```

```
    else
        tv = Tmp[ NoTrimned-1 ];
j ++;
} while ( Trim()==FALSE && j<100) ;
if ( j>=100)
    return FALSE;
Write();
WriteMis();
return TRUE;
}// End of TWG::DoIt(...)
void TWG::GenerateIt(void )
{
short kkk, k, j, i;
for ( i=0;i<NoOfSir;i++)
    Sir[i] = NrmlGen( sigma1 );
for ( i=0;i<NoOfSir;i++)
    for ( }\textrm{j}=0;j<SirToDam[i];j++
    Dam[i][j] = NrmlGen( sigma2 );
kkk = 0;
for ( i=0;i<NoOfSir;i++)
    for ( j=0;j<SirToDam[i];j++ )
        for ( k=0;k<SirDamChild[i][j];k++ )
            Tmp[kkk++] = Obs[i][j][k] =
                mean + Sir[i] + Dam[i][j] + NrmlGen( sigma0 );
sort_f(Tmp, NoOfOffspring);
}// End of TWG::GenerateIt()
short TWG::Trim()
{
short i, j, k;
noofsir = NoOfSir;
for ( i=0;i<NOOfSir;i++ ) {
    sirtodam[i] = SirToDam[i];
    for ( j=0;j<SirToDam[i];j++ )
        sirdamchild[i][j] = SirDamChild[i][j];
    }
for (i=0;i<NoOfSir;i++ )
    for ( j=0;j<SirToDam[i];j++)
        for (k=0;k<SirDamChild[i][j];k++)
            if ( Obs[i][j][k]<=tv )
                sirdamchild[i][j] --;
            if (sirdamchild[i][j]<2)
                {
                sirdamchild[i][j] = 0;
                sirtodam[i] --;
                }
            }
```

```
for (i=0;i<NoOfSir;i++)
    if (sirtodam[i]<2) {
        sirtodam[i] = 0;
        noofsir --;
        ?
if ( noofsir<2)
        return FALSE;
return TRUE;
}///End of TWG::Trim(...)
float TWG::NrmlGen( float var )
{
float b = 1.0 + rand();
float c = 1.0 + rand();
b /= 32767.0;
c/= 32767.0;
return( sqrt(-2.0*log(b))*\operatorname{cos(6.2831853*c)*sqrt(var) );}
}/* end of normal random number generation */
void TWG::Write( char *FileName )
{
short i, j, k;
float min, max;
if (FileName )
    io = fopen( FileNarne, "w+t");
else
    io = fopen( "tw.dat", "w+t");
fprintf( io, " %2d\n", NoOfSir );
for (i=0;i<NoOfSir;i++ )
fprintf( io, "\n");
for ( i=0;i<NOOfSir;i++ ) { {
        fprintf( io, " %/2d", SirDamChild[i][j] );
    fprintf( io, "\n");
    }
min = 1.0E+30;
max = -1.0E+30;
for ( i=0;i<NOOfSir;i++)
    for ( j=0;j<SirToDam[i];j++ ) {
        for ( k=0;k<SirDamChild[i][j];k++ )
            fprintf( io, " %6.2f", Oos[i][j][k]);
            if (min > Obs[i][j][k])
                        min = Obs[i][j][k];
            if ( max < Obs[i][j][k])
                        max = Obs[i][j][k];
                }
            fprintf( io, "\n");
            }
for ( i=0;i<NoOfSir;i++ )
    for ('j=0;j<SirToDam[i];j++ )
```

```
    fprintf( io, "o\n");
fprintf( io, "%d %d %d\n", NUMB_OF_SIR, NUMB_OF_DAM, NUMB_OF_SIB );
fprintf( io, "%.2f %.2f %.2f %.2f\n", sigma0, sigma1, sjgma2,
mean);
fprintf( io, "%.2f\n", min - 0.1);
fprintf(io, "-------------------------------\n");
fprintf( io, "FullSir: %d FullDam: %d FullSib: %/d\n",
NUMB_OF_SIR, NUMB_OF_DAM, NUMB_OF_SIB );
fprintf( io, "min: %.2f max: %.2f TotalData: %d\n", min, max,
NoOfOffspring);
fprintf(io, "RandSeed: %d\n", RandSeed );
fprintf( io, "sigma0"2: %.2f sigma1"2: %.2f sigma2"2: %.2f
mean:%.2f\n", sigma0, sigma1, sigma2, mean );
fclose( io );
}// End of TWG::Write(...)
void TWG::WriteMis( char *FileName )
short i, j, k;
if (FileName)
    io = fopen( FileName, "w+t");
else
    io = fopen( "tw.mis", "w+t");
fprintf( io, " %2d\n", noofsir );
for ( i=0;i<NoOfSir;i++ )
    if (sirtodam[i]>0)
    fprintf(io, "%2d", sirtodam[i]);
fprintf( io, "\n");
for ( i=0;i<NoOfSir;i++ )
    if (sirtodam[i]>0)
    for ( j=0;j<SirToDam[i];j++ )
                    if ( sirdamchild[i][j]>0)
                    fprintf( io, " %2d", sirdamchild[i][j] );
        if (sirtodam[i]>0)
            fprintf( io, "\n");
        }
    }
for (i=0;i<NoOfSir;i++)
    if (sirtodam[i]>0)
    for ( j=0;j<SirToDam[i];j++ )
        if ( sirdamchild[i][j]>0)
                        for ( k=0;k<SirDamChild[i][j];k++ )
                        if (Obs[i][j][k]>tv)
                            fprintf( io, " %6.2f", Obs[i][j][k] );
            fprintf( io, "\n");
            }
```

```
            }
        }
    for (i=0;i<NoOfSir;i++)
        for ( }j=0;j<SirToDam[i];j++ 
            if ( sirtodam[i]>0 && sirdamchild[i][j]>0 )
                fprintf( io, "%2d\n", SirDamChild[i][j]
-sirdamchild[i][j]);
fprintf( io, "%d %d %d\n",NUMB_OF_SIR, NUMB_OF_DAM, NUMB_OF_SIB);
fprintf( io, "%.2f %.2f %.2f %.2f\n", sigma0, sigma1, sigma2,
mean);
fprintf( io, "%.2f\n", tv );
fprintf( io, "-------------------------------n");
fprintf( io, "Before Trimmed -- Sir: %d Dam: %d Sib: %d\n",
NUMB_OF_SIR, NUMB_OF_DAM, NUMB_OF_SIB );
fprintf( io, "TruncatedValue %.2f-TrimRatio: %.2f TotalData:
%d\n", tv, TrimRate, NoOfOffspring-NoTrimmed);
fprintf( io, "sigma0"2: %.2f sigma1^2: %.2f sigma2^2: %.2f
mean:%.2f\n", sigma0, sigma1, sigma2, mean);
fclose( io);
}// End TWG:{WriteMis(...)
void TWG::sort_f(float *ra, short n)
{
~unsigned loj,ir,i;
l=(n>>1)+1;
irzn;
for (;;) {
        if (l>>1)
            rra=*(ra+(--1)-1);
        else {
            rra=*(ra+ir-1);
            *(ra+ir-1) =*(ra);
            if (-ir == 1) {
                    *(ra)=rra;
                        return;
                }
            }
        i=1;
        j=1 << 1;
        while (j<< ir) {
            if (j< ir && *(ra+j-1)< *(ra+j)) ++j;
            if (rra<*(ra+j-1)) {
                *(ra+i-1)=*(ra+j-1);
                j += (i=j);
                }
            else j=ir+1;
            }
        *(ra+i-1)=rra;
}/* end of TWG::sort_float(...) */
Boolean PlotResults(float *obs,int nobs, float lb, float ub)
```

```
int x1,y1,x2,y2,i,j,k,1,11, nvaxi=20;
float ystp, ymin, ymax, a, hstp, vstp, v, vv;
char p[20];
int graphdriver=DETECT, graphmode;
registerbgidriver(EGAVGA_driver);
initgraph(&graphdriver,&graphmode,"");
cleardevice();
x1=0.1*getmaxx();y1=0.1*getmaxy(); x2=9*x1; y2=9*y1;
hstp=x1*8.0; hstp /= (nobs-1);vstp=y1*8.0/nyaxi;
ymax=-1.5E8;ymin=1.5E8;
for (i=0;i<nobs;i++) {
    a=*(obs+i);
    if (a>ymax) ymax=a;
    if (a<ymIn) ymin=a;
    }
if ( fabs(ymax-ymin )<1.0E-16 ) {
    closegraph();
    }eturn FALSE;
ystp=(ymax-ymin)/nyaxi;
a=8*y1-2.;
a/=(ymax-ymin);
if ( obs[0] != ymin && ymin != obs[i - 1] )
    {inef-_, y2 - 1.92 * a - 1, x2, y2 - 1.92* a - 1);
    ymax = ub-lb;
    ymax /= nobs;
        i=0;
        while (i < nobs)
        if (obs[i] <= ymin + 1.92)
            {
            v = x1 + + ((float)i - 1.0) * hstp + hstp *
    (ymin + 1.92-obs[i - 1])
            / ( obs[i] - obs[i - 1] );
            line( v, y1, v, y2);
            vv = lb + ((float)i - 1.0) * ymax + ymax *
    (ymin + 1.92 - obs[i - 1])
                /(oos[i] -obs[i - 1]);
            sprintf(p,"%.2f", vv);
            outtextxy( v + 10, y2 - 2.0 * a - 20, p );
            break;
        }
        while (i < nobs)
```

```
        if (obs[i ++] == ymin )
        break;
    while (i< nobs)
        if (obs[i] >= ymin + 1.92)
        v = x1 + ((float)i - 1.0) * hstp + hstp *
(ymin + 1.92 - obs[i - 1])
        /( obs[i] - obs[i - 1]);
        line( v, y1, v, y2);
        vv = lb + ((float)i - 1.0) * ymax + ymax *
(ymin + 1.92 - obs[i - 1])
                / (obs[i] -obs[i - 1]);
            sprintf( p,"%.2f", vv );
            outtextxy( v + 10, y2 - 2.0* a - 20, p );
            break;
        i ++;
    }
for (i=0;i<nobs;i++)
    *(obs+i)=(*(obs+i)-ymin)*a;
setlinestyle(0,0xfffff,1);
setcolor(15);
rectangle(x1,y1,x2,y2);
    /* draw frame */
for (i=0;i<=nyaxi;i++) {
    /* draw vertical axis & scales */
        l=4;j=y1+vstp*i;
        if (i%5==0) {
        l=6;if(i%10==0) l=8;
        sprintf(p,"%,2f",ymin+(nyaxi-i)*ystp);
        outtextxy(1,j,p);
        }
        line(x1-1,j,x1,j);
        }
    k=1+nobs/12;
    v = ub-lb;
    v /=nobs;
for (i=0; i<nobs;i+=k) {
    /* draw horizontal axis & scales */
        l=5;j=x1+hstp*i;
        sprintf(p,"%.2f", lb+i*v);
        outtextxy(j-15,y2+0.125*x1,p);
        line(j,y2,j,y2+1);
        }
line(x2,y2,x2,y2+1);
sprintf(p,"%.2f",ub);
outtextxy(x2-5,y2+0.125*x1,p);
```

```
sprintf( p, "Min at = %.3f", obs[nobs]);
outtextxy( 4*x1, y1 - 20, p );
setcolor(10);
a = k = x1;
for ( j=1; j<nobs; j++ )
    {
    l= y2-*(obs+j-1 );
    11 = y2-*( obs+j );
    line(k, l, k+hstp, ll );
    a += hstp;
    k =a;
getch();
closegraph();
return TRUE;
}/* end of function linecht */
UTW_ANOVA::UTW_ANOVA( char *DataFile )
{
short i, j;
float c;
in = fopen( DataFile, "rt" );
fscanf( in, "%d", &NoOfSir);
if ( NoOfSir<2)
    Fatal_Error("(UTW_ANOVA) Illegal NoOFSir" );
SirToDam = new short[ NoOISir ];
if (SirToDam==NULL )
    Fatal_Error("UTW_ANOVA): Memory Allocation(SirToDam)");
NoDfDam = i = 0;
while (i<NoOfSir) {
    if (feof(in))
            Fatal_Error("(UTW_ANOVA): DataFile incorrect(SirToDam)");
    fscanf(in, "1/d", &j);
    if ( j<1 || j>1000)
            Fatal_Error("([!י" ANOVA): Illegal NoOfDam");
    SirToDam[i] = j;
    NoOfDam += j;
    i ++;
    }
DamToOffspring = new short[ NoOfDam ];
if ( DamToDffspring==NULL )
    Fatal_Error("(UTW_ANOVA) : Memory Allocation(DamTo0ffspring)");
NoOfOffspring = i = 0;
while ( i<NoOfDam ) {
    if (feof(in) )
            Fatal_Error("(UTW_ANOVA):
DataFile incorrect(DamTo0ffspring)");
    fscanf( in, "%d", &j );
    if ( j<1 || j>1000)
    Fatal_Error("(UTW_ANOVA): Illegal NoOfOffspring");
    DamToOffspring[i] = j;
    No0fOffspring += j;
    i ++;
    }
```

```
Obs = new float[ NoOfOffspring ];
if ( Obs==NULL)
    Fatal_Error("(UTW_ANOVA): Memory Allocation(Obs)");
i=0;
while'( i<NoOfOffspring ) {
    if (feof(in))
        Fatal_Error("(UTW_ANOVA): DataFile incorrect(Offspring)");
    fscanf(in, "%f", &c );
    Obs[ i ] = c;
    i ++;
IsDone = FALSE;
}// End of UTW_ANOVA::UTW_ANOVA(...)
UTW_ANOVA:: `UTW_ANOVA(void)
{
fclose(in );
delete [] Obs:
delete [] DamToOffspring;
delete [] SirToDam;
}// End of UTW_ANOVA::"UTW_ANOVA()
void UTW_ANOVA::DoIt( void )
{
short i, j, k,m,mm, n;
MY_TYPE GrandTota1, SS, SSsubgr, SSgroups, CT, a, b, c;
MY TYPE MSgroups, MSsubgr, MSwithin;
MY-TYPE q2, q3, q4;
GrandTotal = SS = SSsubgr = SSgroups = CT = q2 = q3 = q4 = 0.0;
m=mm = 0;
for ( i=0;i<NoOfSir;i++ ) {
    a = 0.0;
    n = 0;
    for ( j=0;j<SirToDam[i];j++) {
        b = 0.0;
        for ( k=0;k<DamToOffspring[mm];k++) {
                b += 0bs[m];
                SS += Obs[m]*Obs[m];
                m ++;
            SSsubgr += b*b/k;
            a += b;
            n += k;
            mm ++;
        SSgroups += a*a/n;
        GrandTotal += a;
}
CT = GrandTotal*GrandTotal/NoOf0ffspring;
m=0;
for (i=0;i<NoDfSir;i++ ) {
    a=b=0.0;
    for ( j=0;j<SirToDam[i];j++ ) {
        a += DamToDffspring[m];
        b += DamToOffspring[m]*DamToDffspring[m];
        m ++;
```

```
    q2 += b;
    q3 += a*a;
    q4 += b/a;
MSgroups = (SSgroups-CT)/(NoOfSir-1);
Musubgr = (SSsubgr-SSgroups)/(NoDfDam-NoOfSir);
MSwithin = (SS-SSsubgr)/(NoOfOffspring-NoDfDam);
a = (q4 - q2/NoOfOffspring)/(NoOfSir-1);
b = -q4;
b += NoDfOffspring;
b /= NoOfDam-NoOfSir;
c = -q3;
c /= NoOfOffspring;
c += NoOfOffspring;
c /= NoOfSir-1;
x[0] = MSWithin;
x[2] = (MSsubgr-MSwithin)/b;
x[1] = (MSgroups-MSwithin-a*x[2])/C;
x[3] = GrandTotal/No0fOffspring;
IsDone = TRUE;
}// End of void UTW_ANOVA::DoIt()
float *UTW_ANOVA::GetResults(void )
if
    ( !IsDone)
    DoIt();
return &x[0];
}// End of fioat *UTH_ANOVA::GetResults()
MY_TYPE UTW_MLE::func( float *xx )
\
short k, io, j, id, i, m, ic;
MY_TYPE b, c, aa, bb, bbb, d, u, vo, v1, v2, z, det;
u = xx[3];
id = io = 0;
det = vo = v1 = v2 = 0.0;
for ( i=0;i<NOOfSir;i++) {
    m = -SirToDam[i];
    aa = 1.0;
    bb = bbb = 0.0;
    for ( j=0;j<SirToDam[i];j++ ) {
        ic = DamToDffspring[id++ ];
        m += ic;
        c = xx[0] + ic*xx[2];
        z=1.0/c;
        aa *= c;
        bb += ic*z;
        b = 0.0;
        for ( k=0;k<ic;k++ ) {
            d = Obs[io++] - u;
            vo += d*d;
            b += d;
        bbb += z*b;
        v2 += z*b*b;
        }
```

```
    b=m*LOG(xx[0] ) + LOG( aa*( 1.0+xx[1]*bb ) );
    if ( b< b -150.0)
        b = -150.0;
    det += b;
    v1 += bbb*bbb/( 1.0+xx[1]*bb );
vo f=
*1 = xx[0];
v1 *= xx[1];
v2 /= xx[0];
return(0.5*( det + vo - v1 - v2) ) ;
}// End of MY_TYPE UTW_MLE::func(...)
void UTW_MLE::DoANOVA( void )
{
UTW_ANOVA::DoIt();
}// End of UTW_MLE::DOANOVA()
void UTW_MLE::GetPlotData( float *g, short n, float *xx,
    float lx, float ux, short Obs )
{
float dx, c;
dx = (ux-1x )/0bs;
xx[n] = Ix;
g[Obs] = -1.0E+6;
c}=1.0\textrm{E}+10
for ( short i=0;i<0bs;i++ ) {
    g[i] = func( xx );
    if (g[i]<c) {
        g[0bs] = xx[n];
        c = g[i];
        xx[n] += dx;
}// End of void UTW_MLE::GetPlotData(...)
UTW_MM::UTW_MM( char *DataFile, USHORT _flag ):
UTW_MLE( DataFile, _flag)
{
short i, j, sum;
flag |= MLEMode;
missing = new short[ No0fDam ];
Dbsptr = new short[ NoOfDam ];
Sum_Yij = new float[ NoOfDam ];
if ( !missing || !Obsptr || !Sum_Yij ) {
    TW_Error = BadMemory;
        return;
        }
for ( i=0, sum=0;i<NoOfDam;i++ )
    Sum_Yij[ i ] = 0.0;
    for ( j = 0; j< DamToOffspringL i ]; j ++ )
            Sum_Yij[i] += Obs[ sum + j ];
```

```
    Obsptr[ i ] = sum;
    sum += DamToOffspring[i];
    if (feof( in) ) {
        TW_Error = BadFile;
        return;
    fscanf( in, "%d", &j );
    if ( j<0 || j>1000)
        TW_Error = BadFile;
        return;
    missing[i] = j;
}
fscanf( in, "%d", &FullNoOfSir);
if (FullNGこfSir<0 || FullNoOfSir>1000 )
    {W_Error = BadFile;
    return;
    }
fscanf( in, "%d", &FullNoDfDam );
if (FullNoDfDam<0 || Ful1NoDfDam>1000)
    {
    TW_Error = BadFile;
    return;
fscanf( in, "%d", &FullNoDfSib );
if (Ful1NoDfSib<0 || FulINo0fSib>1000)
    {
    TW_Error = BadFile;
    return;
for (i = 0; i < 4; i++)
    fscanf( in, "%f", &TruncatedValue );
    target_parameters[i] = TruncatedValime;
    }
fscanf( in, "%f", &TruncatedValue);
SetNodes(); ;
}// End of UTW_MM::UTW_MM(...)
UTW_MM:: "UTW_MM( void )
delete [] Sum_Yij;
delete [] Obsptr;
delete [] missing;
}i/ End of UTW_MM::"UTW_MM()
void UTW_MM::SetNodes( void)
MY_TYPE gx[10], gw[10];
NoÖfNode = 10;
```

```
gx[0] = 0.98695326; gw[0] = 0.033335672;
gx[1] = 0.93253168; gW[1] = 0.07472567;
gx[2] = 0.83970478; gw[2] = 0.10954318;
gx[3] = 0.71669770; gw[3] = 0.13463336;
gx[4] = 0.57445717; gw[4] = 0.14776211;
gx[5] = 0.42556283; gw[5] = 0.14776211;
gx[6] = 0.28330230; gw[6] = 0.13463336;
gx[7] = 0.16029522; gw[7] = 0.10954318;
gX[6] = 0.06746832; gw[8] = 0.07472567;
gx[9] = 0.01304674; gw[9] = 0.033335672;
for ( short i=0;i<NoOrNode;i++) {
    dt[i]=(1.0-gx[i])/gx[i];
    Node[i] = LOG(gw[i] )-0.5*dt[i]*dt[i] - 2.0*LOG(gx[i] );
}// End of void UTW_MM::SetModes()
MY_TYPE UTW_MM::func(float *xx )
if ( flag&MLEMode)
    return UTW.,MLE::func( xx );
short j.thSir, Dam_i, i;
MY_TYPE f, ff;
for ( i=0;i<3;i++ ) // to easy computation below
    xx[i] = sqrt(xx[i]);
f= Dam_i = 0;
for (ithSir=0; ithSir<No|fSir; ithSir++ )
    ff = IntgrV( xx, ithSir, Dam_i );
    if (ff > EP)
        f == LOG( ff );
    else
        f = TINY;
    Dam_i += SirTóDam[ithSir];
    }
if ( flag&MissSirIncl && FullNoOfSir > NoOfSir )
    ff = (NY_TYPE) (FullNoOfSir - NoOtSir) * IntgrV( xx );
    if (ff > EP
        f == LOG(ff);
    else
        f == TJNY;
    }
for ( i=0;i<3;i++ ) // recovered to sigma`2
    xx[i] *= xx[i];
return f;
}// End of MY_TYPE UTW_MM::func(...)
```

MY_TYPE UTW_MM: :IntgrV (float *xx, short ithSir, short. Dam_i)

```
{
short j, i;
MY_TYPE ss, c0, c1, s;
ss=0.0;
for ( i=0;i<NoOfNode;i++)
    c0 = c1 = Node[i];
    for ( j=0;j<SirToDam[ithSir];j++ )
        { = IntgrT( dt[i], xx, missing[Dam_i+j], Dam_i+j);
        if (s>EP)
            c0 += LOG( s );
        else
            cO t= TINY;
        s = IntgrT( -dt[i], xx, missing[Dam_i+j], Dam_i+j );
        if (s > EP)
            c1 += LOG( s );
        else
            c1 += TINY;
        }
    if (flag&MissDamIncl && FullNoOfDam > j)
        s = IntgrT( dt[i], xx );
        if ( s > EP )
                c0 += (MY_TYPE) (FullNoOfDam - j) * LOG( s );
        else
            cO += (MY_TYPE) (FullNoOfDam - j) * TINY;
        s = IntgrT( -dt[i], xx );
        if ( s > EP)
        c1 += (MY_TYPE) (FullNOOfDam - j) * LOG( s );
        else
            c1 += (MY_TYPE) (FullNoOfDam - j) * TINY;
        }
    if (c0> TINY )
        ss += EXP(. c0 );
    else
        ss += EP;
    if (c1 > TINY )
        ss += EXP( c1 );
    else
        ss += EP;
    }
return 0.5*ss;
}// End of MY_TYPE UTW_MM::IntgrV(...)
MY_TYPE UTW_MM::IntgrV( float *xx )
{
short j, i;
MY_TYPE ss, s, c;
ss = 0.0;
```

```
for ( i=0; i<NoDfNode; i++)
    c = Node[i ];
    s = IntgrT( dt[i], xx );
    If ( s > EP )
        c += (MY_TYPE) (FullNoOfDam) * LOG( s );
    else
        c += (MY_TYPE) (FullNoOfDam) * TINY;
    ss += EXP(c);
    c=Node[ i ] ;
    s = IntgrT( -dt[i], xx );
    if (s > EP )
        c += (MY_TYPE) (FullNoOfDam) * LOG( s );
    else
        c += (MY_TYPE) (FullNoOfDam) * TINY;
    ss += EXP(c);
return 0.5*ss;
}// End of MY_TYPE UTW_MM::IntgrV(...)
MY_TYPE UTW_MM::IntgrT( MY_TYPE dv, float *xx )
short node_i;
MY_TYPE p, d, s;
s = 0.0;
for (node_i=0; node_i < NoOfNode; node_i++ )
    p = Phi( (TruncatedValue - xx[3] - xx[1]*dv -
xx[2]*dt[node_i] ) / xx[0] );
            d = Node[node_i] + FullNoOfSib * LOG( p );
            if (d > TINY )
            s += EXP( d );
            else
                s += EP;
            }
    p = Phi( ( TruncatedValue - xx[3] - xx[1]*dv +
xx[2]*dt[node_i] ) / xx[0] );
    If(p
        d = Node[node_i] + FullNoOfSib * LOG( p );
        if (d> TTNY)
            s += EXP( d );
        else
            s += EP;
        }
    }
```

return 0.5*s;
\}// End of MY_TYPE UTW_MM::IntgrT(...)
MY_TYPE UTW_MM: :IntgrT(MY_TYPE dv, float *xx, short miss,

```
    short Dam_ij )
{
short k, node_i;
short obs_by_Dam_ij = DamToOffspring[ Dam_ij ];
float * y_ij = &Dbs[ Obsptr[Dam_ij]];
MY_TYPE w, z, invxx0, c, d, e, s;
invxx0 = 1.0/xx[0];
e = obs_by_Dam_ij;
e *= LOG( xx[0] );
s = 0.0;
for (node_i=0; node_i<NoOfNode; node_i++ )
    W = ( xx[3] + xx[1]*dv + xx[2]*dt[node_i] )*invxx0;
    c = Phi( TruncatedValue*invxx0 - w );
    if ( c>0.0)
            z = 0.0;
            for (k=0; k<obs_by_Dam_ij; k++ )
                        d = y_ij[k] * invxx0 - w;
            z += (d * d);
            d = Node[node_i] + miss * LOG( c ) - 0.5 * z - e;
            if (d>TINY
                        s += EXP( d );
            else
                    s += EP;
            }
        W = ( xx[3] + xx[1]*dv - xx[2]*dt[node_i] )*invxx0;
        c}=\mathrm{ Phi( TruncatedValue*invxx0 - w );
        if (c>c 0.0)
            z = 0.0;
            for (k=0; k<obs_by_Dam_ij;k++ )
                    d = y_ij[ k ] * invxx0 - w;
                    z += (d * d);
            d = Node[node_i] + miss * LOG( c. ) - 0.5 * z - e;
            if ( d>TINY
            s += EXP(d );
            else
                    s += EP;
            }
        }
return 0.5*s;
}// End of MY_TYPE UTW_MM::IntgrT(...)
```

This source file is for users interface only and not necessary for computation.

```
#include "\emx\ui\ui.hpp"
#include "mutw.hpp"
#include <conio.h>
#include <io.h>
#include <math.h>
#include <stdio.h>
```

```
    #include <stdlib.h>
    #include <string,h>
    TEXT *msg;
    char * names[4] =
        {"sigmaon2"},
        {"sigma1~2"},
        {"sigma2"2"},
        {"mean"}
    };
    class MUTW_ICON : public WINMANAGER
    {
    public:
        MUTW_ICON( char *_FileName);
        MUTW_ICON( float Earget_parameters[], float _TrimRate,
        int _Randseed );
            MMUTW_ICON( void );
            short Event( const EVENT& event );
    void Show(const Boolean DrawIt=TRUE );
    private:
    void MUTW_SETUP( void );
    WRAP_BUTTON *mode;
    EMX_WIINDOW *plotwin;
    COMBQX *pIot;
    COMBOX *options;
    NUMBER *sigmal[4], *sigmau[4], *vsigma[4], *intv;
    EMXXWINDOW *genwin;
    BUTTON *gen;
    NUMBER *Sigma[4], *Ratio, *RandSeed;
    STRING *savefile;
    UTW_MM *mlem;
    TWG *twg;
    char buf[256];
    float lx[5], ux[5], xx[5], tmpx[5], vRatio, vIntv, *g;
    short plotpts, rSeed;
    Boolean gen_locked;
};
    MUTW_ICON::MUTW_ICON( char * _FileName)
        ; WINMANAGE\overline{R}( 6, " Unbalanced Two Way Nested Classification
(Maximum Likelihood) " )
    if (!_FileName || (_FileName && *_FjIleName &&c
    access( -FileName, O)) )
        Fatal_Error('"Bad File Name" );
    gen_locked = TRUE;
mlem = new UTW_MM( _FileName );
if (TW_Error>0)
    if (TW_Error&BadFile)
            Fatal_Error( "DataFile is Bad");
        else
            Fatal_Error( "No Memory" );
```

```
                }
        MUTW_SETUP();
        MUTW_ICON::MUTW_ICON( float _xx[], float _TrimRate,
    int _RandSeed
        : WINMANAGER( 6, " Unbalanced Two Way Nested
Classification (Maximun Likelihood) ")
    gen_locked = FALSE;
    vRatio = _TrimRate;
    rSeed = _- RandSeed;
    twg = new TWG( -xx[0], _xx[1], _xx[2], _xx[3], vRatio, rSeed );
    if (twg->DoIt()
        mlem = new UTW_MM( "tw.mis" );
    else
        Fatal_Error("Trim Too Heavy");
    MUTW_SETUP() ;
    }
    void MUTW_ICON::MUTW_SETUP( void )
    {
    short i, j;
    float c;
    const float * x = mlem->GetTargetParameters();
    msg = new TEXT( "", 5, 65, 17, 10, 256, " Message Board ");
    vIntv = 0.375;
    for ( i=0;i<4;i++ )
        c}=x[i]*vIntv
        if (c<0.0)
        xx[i] = -c; ; % ;
        lx[i] = x[i] - c;
        ux[i] = x [i] + + cij< (i<3 &&& lx[i]<=0.005)
        lx[i] = 0.005;
            if (i<3 && ux[i]<=0.01)
                ux[i] = lx[i] + 0.01;
    if (ffabs(x[3] )<0.05)
        Ix[3] = -5.0;
        ux[3] = 5.0;
        }
    strcpy( buf, " MIS ");
    i = 1;
    strcpy( &buf[ 8 * i ++ ], " MLE " );
    strcpy( &buf[ 8 * i ++ ], " ANOVA ");
    mode = new WRAP_BUTTON( i, buf, 1, 8, 21 );
    for ( i=0, j=0; i< 4; i++, j += 8)
```

```
    sprintf( &buf[j], " %s ", names[i] );
plotwin = new EMX_WINDOW( 20, 10, 50, 6, 4, " Op"timization");
*plotwin
    +(plot = new COMBOX(" P"lot ", buf, 6, 8, 10, 0))
    +( sigmal[0] = new NUMBER( lx[O_, "%.2f", 1, 14, 10, 7, 7,
" low ") )
    +( sigmau[0] = new NUMBER( ux[0], "%.2f", 1, 14, 10, 22, 7,
    " high "))
        +(vsigma[0] = new NUMBER( xx[0], "%.2f", 1, 14, 10, 37, 7,
buf ) )
            +( sigmal[1] = new NUMBER( lx [1], "%.2f", 1, 14, 11, 7, 7,
" low ") ) (1, (1],
    +( sigmau[1] = new NUMBER( ux[1], "%.2f", 1, 14, 11, 22, 7,
    " high " ) )
            +(vsigma[1] = new NUMBER( xx[1], "%.2f", 1, 14, 11, 37, 7,
    &buf[8]) )
        +( sigmal[2] = new NUMBER( lx[2], "%.2f", 1, 14, 12, 7, 7,
        " low "))
            +( sigmau[2] = new NUMBER( ux[2], "%.2f", 1, 14, 12, 22, 7,
        " high "))
            + (vsigma[2] = new NUMBER( xx[2], "%.2f", 1, 14, 12, 37, 7,
        &buf [16] )
            +( sigmal[3] = new NUMBCR( lx[3], "%.2f", 1, 14, 13, 7, 7,
            " low ") )
            +( sigmau[3] = new NUMBER( ux[3], "%.2f", 1, 14, 13, 22, 7,
            " high ") )
            +(vsigma[3] = new NUMBER( xx[3], "%.2f", 1, 14, 13, 37, 7,
            &buf[24]) );
strepy( buf, "MissSir ");
strcpy(&buf[ 10 ], "MissDam ');
*plotwin
    + (options = new COMBOX( " Op tion ", buf, 4, 8, 29, 0) )
    + ( intv = new NUMBER( vIntv, "%.3f", 1, 9, 8, 40, 5, " "r") )
        + mode;
buf[0] = buf[1] = 1;
options->SetItemStatus( buf );
*this + plotwin;
for ( i=0, j=0; i < 4; i++, j += 8)
    sprintf( &buf[j], " %s ", names[i] );
if (!gen_locked) {
        genwin = new EMX_WINDOW( 9, 13, 29, 2, 42,
    " "Data Generation ");
        *genwin
            +(gen = new BUTTON(" Re~generate Data ", 1, 4, 46))
            +(Sigma[0] = new NUMBER( xx[0], "%.2f", 1, 16, 6, 49,
            7, buf) )
                +(Sigma[1] = new NUMBER\ xx[1], "%.2f", 1, 16, 7, 49,
    7, &buf [8] ))
```

```
                +( Sigma[2] = new NUMBER( xx[2], "%.2f", 1, 16, 8, 49,
7, &buf[16] ) )
            +( Sigma[3] = new NUMBER( xx[3], "%.2f", 1, 16, 9, 49,
7, &buf[24] ) )
            +( RandSeed = new NUMBER( rSeed, 1, 16, 10, 49, 5,
            +(Ratio) = new NUMBER( vRatio,"%.2f", 1, 16, 11, 49,
" R"andSeed ")
4, " M"isRatio ") )
            + ( savefile = new STRING( "a001", 1, 16, 12, 49,
8, " Sa"ve as" ) );
        *this + genwin;
        }
SetUp();
wrefresh( CmdWin );
plotpts = 18;
g = new float[ plotpts+2 ];
}// End of MUTW_ICON::MUTW_ICON()
MUTW_ICON:: MUTW_ICON( void )
{
delete mlem;
if (!gen_locked)
        delete twg;
delete [] g;
delete msg;
}// End of MUTW_ICON::"MUTW_ICON()
void MUTW_ICON::Show( const Boolean DrawIt )
WINMANAGER::Show( DrawIt );
msg->Show( DrawIt );
wrefresh( CmdWin);
}// End of void MUTW_ICON::Show(...);
short MUTW_ICON::Event( const EVENT& event )
{
switch( event.rawKey ) {
    case Key_DOWN:
    if (CurTask()==0 &&
            ( plotwin->CurTask()>=1 &&
                    plotwin->CurTask()<=9 ) ) {
            WINMANAGER: :Event( event);
            WINMANAGER::Event( event );
            }
        break;
        case Key_UP:
        if (CurTask()==0 &&
            (plotwin}->>CurTask()>=4 &&
                plotwin->CurTask()<=12) ) {
            WINMANAGER::Event( event );
            WINMANAGER::Event( event );
            }
        break;
```

```
    default:
    break;
    }
EVENT tevent;
short ccode = WINMANAGER::Event( event );
float c;
short i, curTask = CurTask();
switch ( ccode) {
    case Key_SELECTED:
    if (curTask==0)
        for ( i=0;i<4;i++)
                lx[i] = atof(sigmal[i]->GetData());
                ux[i] = atof(sigmau[i]->GetData());
                tmpx[i] = atof(vsigma[i]->GetData());
                if ( i<3 && lx[i]<=0.005)
                lx[i] = 0.005;
                if (i<3 && ux[i]<=0.01)
                    ux[i] = Ix[i] + 0.01;
                    }
        if (fabs(tmpx[3])<0.05) {
                    lx[3] = -5.0;
                    ux[3] = 5.0;
            }
        if ( mode->GetItem()==0 )
            Char * ptr = options->GetItemStatus();
                    i =0;
                    if (jtr[0])
                i I= MissSirIncl;
                    if (ptr[i] )
                    i |= MissDamIncl;
                    mlem->SetFlag( i );
                    }
        if ( mode->GetItem()==1)
            mlem->SetFlag(MLEMode);
                if ( plotwin->CurTask()==0) {
            sprintf( buf, "Searching for %s ....",
names[ plot->GetItem()->code] );
    msg->SetData( buf );
    msg->Show();
            i = plot->GetItem()->code;
            mlem->GetPlotData( g, i, tmpx, lx[i], ux[i], plotpts );
            if ( PlotResults(g, plotpts, lx[i], ux[i]) ) {
                    if ( g[plotpts]!=-1.0E+6) {
                    sprintf(buf, "%.2f", g[plotpts]);
                        vsigma[i]->SetData(buf );
                        vIntv = atof( intv }->\mathrm{ GetData() );
                        c=g[ plotpts ]*vIntv;
```

```
        if ( c<0.0) c = - c;
        lx[i] =g[ plotpts ] - c;
        sprintf(buf, "%%.2f", 1x[i]);
        sigmal[i]->SetData(buf );
        ux[i] = g[ plotpts ] + c;;
        sprintf(buf, "%.2f", ux[i] );
        sigmau[i]->SetData( buf );
        if ( i==3 && fabs( g[plotpts] )<0.05 ) {
        ux[i]=1.0;
        }
        }
        msg->SetData("');
        }
        else
        msg>SetData("Object function values cann't be
differentialized!");
    Show();
        // generate a new data set
        if ( !gen_locked && curTask==1 && genwin->CurTask()==0)
    {
    delete mlem;
    delete twg;
    vIntv = atof( intv->GetData() j;
    for (i=0;i<4;i++)
        xx[i] = atof(Sigma[i]->GetData() );
        if ( i<3 && xx[i]<=0.005 )
            xx[i] = 0.005;
        c = xx[i]*vIntv;
        if ( c<0.0)
        c=-c;
        lx[i] = xx[i] - c;
        ux[i] = xx[i] + c;
            if (fabs( xx[3] ) < 0.05)
                Ix[3] = -5.0;
                ux[3] = 5.0;
            }
        sprintf( buf,"%.2f", lx[i] );
        sigmal[i]->SetData( buf );
        sprintf(buf,"%.2f",ux[i] );
        sigmau[i]->SetData( buf );
        }
    Show(); atoi( RandSeed->GetData() );
    vRatio = atof( Ratio->GetData());
    twg = new TWG( xx[0], xx[1], xx[2], xx[3], vRatio, rSeed );
    if (twg->DoIt())
            mlem = new UTW_MM( "tw.mis");
        else
            Fatal_Error("Trim Too Heavy");
```

```
        tevent.rawKey = Key_WINMANAGER;
        WINMANAGER: :Event( tevent );
        tevent.rawKey = Key_RETURN;
        WINMANAGER::Event( tevent );
        tevent.rawKey = 't';
        WINMANAGER: :Event( tevent );
        }
    break;
    case Key_RETURN :
    if (curTask==0 && mode->GetItem()==2 )
    {
    mlem->DOANOVA()
    sprintf( buf,"ANOVA: sigmao^2=%.2f sigma1 2 2=%.2f
sigma2^2=%.2f mu=%.2f\rHit <Enter> to continue...",
                mlem->GetResults() [0], mlem->GetResults() [1],
                mlem->GetResults()[2], mlem->GetResults() [3]);
    msg->SetData( buf );
    msg->Show();
    mode->SetItem( 1 );
    mode->Show();
    Wgetch( CmdWin );
    msg->SetData( """);
    msg->Show();
    wrefresh(CmdWin );
    }
                                    // reset trim rate
if ( !gen_locked && curTask==1 && genwin->CurTask()==6 ) {
    if (fabs( vRatio-atof( Ratio->GetData() ) ) <0.001)
            return ccode;
    else
        vRatio = atof( Ratio->GetData() );
    twg->SetTrimRate( vRatio );
    if (twg->DoIt() ) {
        delete mlem;
        mlem = new UTW_MM( "tw.mis");
        }
    else {
            msg->SetData("Error: Trim Too Heavy");
            msg->Show();
            flash();
            return ccode;
            }
    msg->SetData("Data's missing number has been changed.");
    msg->Show();
    tevent.rawKey = Key_WINMANAGER;
    WINMANAGER::Event( tevent);
    tevent.rawKey = Key_RETURN;
    WINMANAGER::Event( tevent );
    tevent.rawKey = 't';
    WINMANAGER::Event( tevent );
    }
    if (!gen_locked && curTask==1 && genwin->CurTask()==7) {
        char buf[60];
        sprintf( buf, "%s.dat", savefile->GetData() );
        twg->Write( buf );
```

```
sprintf( buf, "%s.mis", savefile->GetData());
twg->WriteMis( buf );
sprintf( buf, "Data are saved into %s.dat & %s.mis!",
                                    savefile->GetData(), savefile->GetData() );
msg->SetData( buf );
msg->Show();
}
break;
default:
break
}
return ccode;
}// End of short MUTW_ICON::Event()
main( int argc, char *argv[])
{
int i;
MUTW_ICON *icon = NULL;
// This part is necessary for any modules in EMX involved
    curses.lib!
initscr();
if ( start_color() != 0K )
    fatal_error("Couldn't Start Color");
cbreak();
noecho():
nonl();
SetUpColors();
CmdWin = newrin( 1, SCRCOL, 24, 0 );
keypad( CmdWin, TRUE);
wmove( CmdWin, 0, 0);
//********************************** END
if (argc == 2)
    if (strncmp( argv[1], "-f", 2) == 0)
        icon = new MUTW_ICON( &argv[1] [2] );
    }
else if (argc > 5)
    {
    int _RandSeed = 0;
    float_TrimRate = 0.7;
    float target_parameters[4];
    Boolean good_argv = TRUE;
    for (i = 0; i < 4; i ++)
            target_parameters[i] = atof( argv[i + 1]);
    for (int i = 5; i < argc; i++)
        {
        if (0 == strncmp( argv[i], "-r", 2 ))
            {
                _RandSeed = atoi( &argv[i] [2] );
                if (_RandSeed < 0 || 32766 < _RandSeed)
```

```
                    good_argv = FALSE;
                    }
Else if (0 == strncmp( argv[i], "-t", 2 ))
            {
            _TrimRate = atof( &argv[i][2] );
            if (_TrimRate < 0.0 || 0.95 < _TrimRate)
                    good_argv = FALSE;
            }
                }
    if (good_argv)
            icon = new MUTW_ICON( target_parameters, _TrimRate,
    _HandSeed);
    }
if (!icon)
    printf( "\n\n%s -fxxxx OR\n", argv[0] );
    printf( "%s (sigmaon2 sigma1"2 sigma2^2 mean [-rt])\n",
argv[0] );
    printf( " -f: datafile (e.g. -ftw.dat)\n" );
    printf( " -r: randseed (e.g. -r1000, from 0 to 32766)\n" );
    printf( " -t: TrimRate (e.g. -t0.0, from 0.0 to 0.95)\n");
    printf( "Note: when with -f option, other arguments are
ignored\n");
    printf( " randseed = 0 forces to randomize the
generation\n");
    exit( 1 );
    }
short ccode;
EVENT
event;
do {
    event.rawKey = wgetch( CmdWin );
    ccode = icon->Event( event );
    } while( ccode!=Key_EXIT );
delete icon;
// Always delete any curses.lib related objects before
    endwin()!!!!!
refresh();
endwin();
Teturn 0;
}// End of main()
```


Bibliography

[1] Afifi, A. A., and Elashoff, R. M. (1966). Missing observations in multivariatc statistics I: Review of the literature. J. Amer. Stat. Assoc. (i) 595 (i0) 1.
[2] Ahrens, H., Kleffe, J \& Tenzler, R. (1981). Mean square error comparison for MINQUE, ANOVA and two alternative estimators under the unbalaneed one way random model. Biometrical J. 23, 32:3-342.
[3] Anderson, T. W. (1957). Maximum likelihood estimates for the mullixariate normal distribution when some observation are missing. J. Amer. S'tal. Assor. 52, 200-203.
[4] Anderson, T. W. (1984). An Introduction to Multivariate Analysis, zurd cdn. John Wiley \& Sons, New York.
[5] BMDP (1988). BMDP Statistical Software, Inc., 14.10 Sepulveda Blvd, Lero Angeles, California.
[6] Borardman, T. J. (1974). Confidence intervals for variance components at com parative Monte Carlo study. Biometrics 30, 251-262.
[7] Brownlee, K. A. (1953). Industrial Experimentation. ('hemical Publishing ('o.
[8] Burdick, R. K. and Graybill, F. A. (1981). (ionfiderece intervals on linear combi nations of variance components in the unbalanced one-way classification, 'leech nometrics 26, 131-136.
[9] Burdick, R. K. and Graybill, F'. A. (1988). The present status of confidence interval estimation on variance components in balaneed and mbalaneed matom models. Commun. Stat.: Theory \& Methods (Sperial Issue on Analysis of the Tinbalanced Mixed Model) 17, 1165-119\%.
[10] Chen, T. and Fienberg, S. E. (1974). Two-dimensional contingency tatble, with both completely and partially classifierl data. Biomedrics 30 , 62.29642.
[11] C'orbeil, R. R. and Searle, S. R. (1976). A comparison of variance component estimators. Biometrics 32, 779-791.
[12] Davis. P. and Rabinowitz. P. (1984). Methods of Numerical integration. Academic Press, New York.
[13] Dempster, A., Laird, N. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal statistical society, B, 39, 138.
bibitemDic:1991 Di('iccio.'I. J. and Field. ('. A. (1991). An accurate method for approximate conditional and Bayesian inference about linear regressio' models from censored data. Biometrika. 78, 903-910.
[11] Fellner, W. II. (1986). Robust Estimation of Variance Components. Technometrics 28. 51-60.
[1.)] Fuchs, ('. (1982). Maximum likelihood estimation and model selection in contingency tables with missing data. J. Ame.. Stat. Assoc. 77, 270-278.
[16] Graybill, F. A. (1976). Theory and Application of the Linear Statistical Model. Duxbury, North Scituate, Massachusetts.
[17] (Graybill, F. A. and Wang, C. M. (1980). Confidence intervals on non-negative linear combinations of variance. J. Amer. Stat. Assoc. 75, 869-873.
[18] Hampel, F. R., Ronchetti. E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Wiley, New York.
[19] Hartley, H. O. and Hocking, R. R. (1971). The analysis of incomplete data. Biometries 27. $783-8: 23$.
[20] Hartley, H. (). and Rao, J. N. K. (1967). Maximum likelihood estimation for the mixed analysis of variance model. Biometrika 54, 93-108.
[21] Marville, I. A. (1976). Extension of the Gauss-Markov theorem to anclude the estimation of random effects. Amnals of statistics 4, 384-395.
[22)] Harville, I). A. (1977). Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems. J. Amer. Stat. Assoc. 72, 320-340.
[23] Henderson, ('. R. (1973). Maximum Likelihood Estimation of Variance Components. V'npublished manuscript, Department of Animal Scierice. Cornell University, Ithaca, New York.
[24] Hill, B.M. (1965). Inference about variance components in the one-way model. J. Amer. Stat. Assoc. 60, 806-825.
[25] Hill, B.M. (1967). Correlated errors in the random model. J. Amer. Stat. Assoc. 62, 1387-1400.
[26] Hocking, R. R. and Smith. W. B. (1968). Estimation of parameters in the mul tivariate normal distribution with missing observations. J. Amer. Slat. Asser. 63, 159-173.
[27] Huber, P. J. (1981). Robust Statistics. Wiley, New York.
[28] Ibrahim, J. G. (1990). Incomplete data in generalized linear models. J. Amer. Stat. Assoc. 85, 765-769.
[29] Khuri, A. I. and Sahai, H. (1985). Variance components analysis: a sele tive literature survey. Int. Stat. Rev., 53, 279-300.
[30] Laird, N. (1982). Computation of variance components using the EM algorithm. J. Stat. Comput. Simul. 14, 295-303.
[31] Lindsay, B.G. (1983.) The geonetry of mixing likelihoods: A general theory. Annals of Statistics 11, 86-94.
[32] La Motte, L. R. (1973). Quadratic Estimation of Variance ('omponents. Biometrics 29, 311-330.
[33] Little, R. and Rubin, D. (1987). Statistical Analysis with missing data, Johm Wiley \& Sons, New York.
[34] McCullagh, P. and Nelder, J. A. (1989). (ieneralized Linear Models 2nd erln, Chapman and Hall, London.
[35] Miller, J. J. (1973). Asymptotic properties and computation of maximum likeli hood estimates in the mixed model of the analysis of variance. Technical Report No. 12, Department of Statistics, Stanford University, Stanford, Califormia.
[36] Miller, R. (1980). Survival Analysis. Wiley, New York.
[37] Patterson, H. D., and Thompson, R. (1971). Recovery of Interbluek Information When Block Sizes are Unequal. Biometrika $58,545-554$.
[38] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. 'T. (1986). Numerical Recipes. ('ambridge: (Jambridge Niniversity Press.
[39] Pukelsheim, F. (1981). On the Existence of Unbiased Non-negative Estimates of Variance Covariance ('omponents. Ann. Stat. 9, 293-299.
[40] Rao, (${ }^{\prime}$. R. (1970). Estimation of Heteroscedastic Variances in Linear Models. J. Amer. S'tat. Assoc. 655, 161-172.
[11] Rao, (. R. (1971a). Estimation of Variance and Covariance Components. J. of Multivariate Analysis 1, 257-275.
[42] Rao, (. R. (1971b). Minimum Variance Quadratic Unbiased Estimation of Variance ('omponents. J. of Multivariate Analysis 1, 445-456.
[13] Rao, (1. R. (1972). Fstimation of variance and covariance components in linear models. J. Amer. Stat. Assoc. 67, 112-115.
[44] Rao, (. R. (1973). Linear statistical inference and its applications. Wiley, New York.
[45] Rao, (.. R. (1979). MINQUE theory and its relation to ML and MML estimation of variance components. Sankhya B 41, 138-153.
[16] Rao, ('. R. and Kleffe, J. (1980). Estimation of Variance Components. Krishnaiah, P. R. Handbook of Statistics. North-Holland, Amsterdam, 1-40.
[17] Rao, C. R. and Kleffe, J. (1988). Estimation of Variance Components and Applications. North-Holland, Amsterdam.
[18] Robinson, G. K. (1991). That BLUP is a good thing- the estimation of random effects. Stat. Sci. 6, 15-51.
[19] Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
[50] Schafer, D. W. (1987). Covariate measurement error in generalized linear modcls. Biometrika 74, 385-391.
[51] Searle, S. R. (1970). Large sample variances of maximum likelihood estimators of variance components using unbalanced data. Biometrics 26, 505-524.
[52] Searle, S. R. (1971). Topics in variance components estimation. Biometrics 27, 1-76.
[53] Searle, S. R. (1982). Matrix Algebra Useful for Statistics. Wiley, New York.
[54] Searle, S. R. (1989). Variance components-some history and a summary account of estimation methods. J. Animal Breeding \& Genetics 106, 1-29.
[55] Searle, S. R.. (asella, G. and Mc(ulloch, ('. F.. (1999). Varience components. John Wiley \& Sons. New York.
[56] Swallow, W. H. and Monahan, J. F. (198t). Monte-('arlo comparison of ANOVA, MIVQLE,REML, and ML estimators of variance components. Tech nometrics 26, 17-57.
[57] Tanner, M. A. (1991). Tools for statistical inference: observed data and ang mentation methods. Springer-Verlag. Now York.
[58] Townsend, E. C. and Searle. S. R. (1971). Best quadratic mbiased estimation of variance components from unbalanced data in the one way chassification. Biometrics 27, 643-657.
[59] Westfall, P. (1987). A Comparison of Variance ('omponent listimates for Arbi trary U'nderlying Distributions. J. Amer. Stat. Assoc. ©:2, s66-sit.
[60] Yates, F. (1940). The Recovery of Inter-Block Information in Balanced Incom plete Block Designs. Ann. Eugenics 10, 317-325.
[61] Yates, F., and Zacopancy, I. (1935). The Estimation of the Efficioncy of Sam pling with Special Reference to Sampling for Viold in Cereal Experiments. J. Agric. Sci. 25. 545-577.
[62] Yu. H., Searle. S. R. and McCulloch, C. E. (1991). Properties of maximum like lihood estimators of variance components in the onc-way classification morlel, balanced data. Technical Report BU-1134-M, Biometrics Unit, ('ornell Univer sity, Ithaca, New York.
[63] Zielinski, W. (1986). On Robust Estimation of Variance ('omponents. Probah. Stat. T, 95-102.

[^0]: 'he following proposition enables us to compute $\operatorname{det} V$ and V^{r-1} analytically (Rao and Kleffe. 198s).

