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Abstract

A method to estinate variance components with missing data is presented. A
typical application is in aquaculture genetics, in which Lreeding procedure may pro-
duce thousands of individuals. This method enables us to estimate genetic variance
components when ouly a small proportion of individuals. those with extreme pheno-
types, have been identified. In aquaculture populations the individuals available for
reasurement will often be selected, i.e. will come from the upper tail of a size-at-age

distribution, or the lower tail of an age-at-maturity distribution etc.

Standard analysis of variance or maximum likelihood estimation cannot be used
when missing data is not missing at random because of the biased nature of the
estimates, In our model-based procedure a full likelihood function is defined, in
which the missing information has been taken into account. This likelihood function
is transformed into a cemputable function which is maximized to get the estimates.

The computational methodology is outlined and a program is available.

This method 1s applied to simulated data and aquacultural data. The vesults
oblained are significantly and uniformly more accurate than those obtained by any of
the standard methods. Different issues concerning the method (such as the existence,
uniqueness, confidence intervals, robust procedure, and random effects estimation)

have been discussed in the thesis.
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Chapter 1
Introduction

(‘onsider the general linear mixed model
Y=a042Zvy+e¢, (1.1)

where Y is an n x 1 vector of observed responses, X,x, and Z,x, are known design
matrices, j#is a px 1 vector of fixed effects, v is a ¢ x 1 unobservable vector of random
effects assumed to be distributed as N(u, ¥), and € is an n x 1 vector of error terms,
distributed as N(0,021), and cov(y,¢) = 0. The mean and variance of ¥ can be
written as
EYy=Xp+Zpu
and
V=Var(Y)=V(Zy+) = 2527 4 o2l

Although the form of ¥ is often known, it usually contains unknown parameters.

Traditionally, this model’s domain of application has included survey sampling
(Yates and Zacopancy, 1935; Clochran, 1939), the analysis of designed experiments
(Yates, 1940; Rao, 1947), genetics (Fairfield and Smith, 1936; Henderson, 1950) and

industrial problems (Brownlee, 1953).

In the sctting of interest for our problem, we assume that -y has the form 47 =

(71ve v oa70)s where each 7, is a ¢ X | vector distributed independently as N(0, o1y, xq,)

l




and Y0, ¢, = ¢. so that Var(y) is diagonal. Likewise, Z is partitioned ax /4
(Z1,....Z.) where Z; is an n x ¢; matrix, so the model 1.1 can be wriden ay,
Y=X34) Zn +c
1=1
and also
14
- 2oyl 2
V"= ZO‘Z' Zg(z{,') + ()'0[.
=]
The variances oi....,02, and ¢ are cai'ed variance componeuts.

Given Y, some of the usual problems associated with the model 1.1 are;

1. estimation of g, the fixed vector parameter.,
2. prediction of 7, the vector of latent variables,

3. estimation of ¥ (which is referred to as variance components estimation), e

dispersion matrix of ~.

The estimation problem in the model 1.1 centers on V. The BLUP (Best Liucar

Unbiased Prediction) of 8 and « can bhe found using
3= [X'VX)TXY Y,

§= By |y, 8,V)=Var() 2V y — XB)
which Harville (1970) derived hy extending the GGauss-Markov theorem to cover ran
dom effects.

Unfortunately, finding the BLUE requires knowledge of V which is rarely available.
Currently, the best procedure available is to estimate V and then act as il the estimate
is the rcal value of V. In other words, if V is estimated with V then 3 and ~ are
estimated with

g=[XVXT XYy,

a

5 =By |y.8,V)=S2V"(y ~ Xp).




Accordmg to Christensen (1987), if V is close to V. the estimates 3 and 4 should be

close to the BLUP of 4 and 4.

FFurthermore, estimation of V' is also of interest in its own right. In quantitative
genetics, the interest is in the variabilities of different genetic and environmental
factors which are the vari. nice components. For example, it is important for a breeder
to know which traits have some degree of heritability if he wants to make improvement
10 his livestock. The heritability is the ratio of genotypic variance to total variance.

For sxample, the variance-covariance matrix of a two-way nested model is defined as
S =0t 207 + 02 2y Zh + ol

The heritability is a function of variance components

2
2 _ 4o
W= e
gy - 0'2 + U'O

The literature on variance components is quite immense and there are various ways
to estimate variance components, such as ANOVA (Analysis of Variance Estimators)
or MLE (Maximum Likelihood Estimators). It has been common practice to estimate
variance components by ANOVA for balanced data and by MLE for unbalanced data.

But either approach requires the following to get good estimates:
o complete data,

e or data with values missing at random (in the sensc that the observed units are

a wdom subsample of the sampled units).

Statistical inferences are based only in part upon the observations. An equally
important base is formed by prior assumptions about the underlying situation. The
standard statistical metnods are developed with an assumption, either implicit or

explicit. that the process that caused the missing data can he ignored (Rubin, 1976).



If the missing data is nonignorable, analyses on the reduced sample that do not allow

for this feature are subject to bias (Little and Rubin, 1987).

The following example provides some motivation.

A total of 1260 Atlantic salmon offspring were produced by a nested mating design
(7 sires with 3 dams nested within each sire). It is supposed that the largest 200
were analyzed by DNA fingerprinting in the Gene Probe Lab at Dalhousic University
so that their parentage is known. In fact, the true population values of mean and
vartances are known for 1260 simulated fish, but this would not be the case tn an actual
expetiment. If the parentage of the remaining 1060 is considered to be unknown, the

objective is to estimate the variance components of sires, dams and individuals with

the 200 ohservations.

This is a two-way nested breeding experiment,

-3

r=1,2,.
yijk:/~I/+ai+/3](z)+€k(z‘7)a j: 1,2.....,3
k=1,2,...,60
where
e  is an unknown constant,
o o; ~ N(0,03).
o 3,0~ N(0,03),

o and ¢(,y) ~ N(0, o).

Analyzing the 200 data by standard ANOVA and MLE produce severe biases as
shown in Table 1.1. The estimates of ¢? and o2 as shown in lines 2 and 3 of the table
underestimate the estimates based on complete sample by factors of 10 or more in

some case.



Table 1.1: Estimo'cs by two standard methods compared with estimates based on
complelc sample

2 P 2
% 93 72 K

True(1260)  100.75 29.05 18.70 28.17
ANOVA(200) 26.43 2.69 -1.019 47.10
MLE(200)  25.83 1.89 0.082 46.30

The natural questions concerning this example becomes how to use the data ob-
served and the partial information on the missing data (i.e. the fact that only largest

200 are observed) to get sensible estimates.

There are other setting where missing data occurs and missing data are not missing

randomly, the same questions need to be asked. Here are some examples

e the respondents in a household survey may refuse to report income when income

1s the variahle of interest

e in an industrial experiment some results are missing because of mechanical

Irreakdowns
e some paticnts will survive to the end of a clinical trial

e in animal hreeding procedure, selection typically occurs by size grading during

grow-oul and/or choice of superior ones as brood stock

Typical fish genetic experiments involve hundreds of thousand of individuals, only
a small proportion of which will be identified by DNA fingerprinting. These fish will
typically be selected, e.g. will come from the upper tail of a size-at-age distribution,
or the lower tail of an age-at-maturity distribution etc. Estimation of genetic and
environmental variance components using DNA fingerprint pedigrees will therefore
involve a high proportion of missing and selected data. We will not have a complete

data set in this situation.
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Figure 1.1: Observed and population distributions. The blank area under curve
represents missing data.

Since the probability of y,;; observed depends on the value of y,k, the missing
data is not missing at random. Our data came from a relatively small proportion of
the population. The histogram in Figure 1.1 illustrates an observed distribution and
population distribution.

The ANOVA and MLE estimaticn in above example produced severe hiases he
cause of ignoring missing data which are nol missing randomly (ecacl of 1060 non
sampled offspring is smaller than any of the sampled offspring). This indicates (hat

we can not ignore this pattern of missing data.

Finding a method to analyses such data is the focus of this thesis. A method is
presented to estimate the variance components with high proportion of mssing data
both for one-way and two-way nested models. In our model-based procedure, a full

likelihood function is defined in which the information about missing data has been



-1

taken into account. This function is transformed into a computable function which

can he maximized to gel the estimates.

The mechanisms that lead to missing data is a key element in choosing an appro-
priate analysis and in interpreting the results. Sometimes the mechanism is under
the control of the statistician, The case of censoring is a si*uation where the mech-
anism leading to missing data may not be under the control of the statistician, but
is understood. The data consist of times to the occurrence of an event (e.g., death
of an experimental animal, birth of a child, failure of a light bulb). For some units
in the sample, time to occurrence is censored because the event had not occurred be-
fore the termination of the experment. If the time to censoring is recorded, then we
have the partial information that the failure time exceeds the time to censoring. The
analysis of the data needs to take account of this information to avoid biased results.
In Type I censoring, the cause of censoring is the planned ending of follow-up at a
predetermined time. In Type II censoring, observation ceases after a predetermined
number of failures. The type of censoring handled in the thesis is Type I censoring
(we consider the fixed cutoff). This is to keep the problem manageable. In our mo-
tivaling example, the type of censoring is Type II censoring (the cutoff is random).

Random cutoff will be considered in future work.

In Chapter 2, several methods of variance components estimation are reviewed for
hoth point and interval estimates. Methods for doing statistical analysis with missing
dala are also listed in this chapter. Chapter 3 and Chapter 4 present the new methods
for one-way model and two-way nested model respectively. Much of the chapters is
devoted 1o the details of the full likelihood function and the resalts of the estimates.
The theoretical basis of the present method is organized in Chapter 5. To transform
the full likelihood function to a computable function is the key step in developing
the method and this transformation is described in chapter 5. The existence and
uniqueness of the maximum of the transformed function are also crucial for the new

techuique. Chapter § includes these proofs. The confidence intervals of variance



components with missing data are also constructed in (hapter 5. Robust procedures
for the one-way model are proposed in Chapter 6. Finally, Chapter T discusses the

estimation of random effects.

The new method is applied to both aquicultural examples and simulated data sets
showing that our estimates are significantly and uniformly more accurate than those

obtained by any of the standard procedures.



Chapter 2

Review

The problem of estimation of variance components in random and mixed linear mod-
cls has received much attention in the statistics literature, as for instance in Khuri
and Sahai (1985). There are several approaches to this problem, such as the analy-
sis of variance (ANOVA) estimator (reviewed by Searle, 1971 ), and the maximum
likelihood estimator (MLE) (Hartley and Rao, 1967). It has been common practice
to estimate the variance components by ANOVA for balanced data and by MLE for

unbalanced data.

The ANOVA estimates are obtained by equating observed and expected mean
squares in the analysis and solving the resulting equation for the estimators. These
estimators are unbiased and can be expressed as quadratic functions of the obser-
vations. The main desirable feature of these estimators is their simple computation.
Under normality and balanced data, they have minimum variance among all unbiased
estimators (Graybill, 1954). However they can yield negative estimates and even un-
der normality assumptions their distributions are intractable. For unbalanced data,
the choice of appropriate quadratic forms poses a difficult problem. The estimates

oblained may be not unbiased.

Another approach to variance components estimation is that of maximum likeli-

hood. The maximum likelihood approach is based on assuming density of the data

9
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and then maximizing the likelihood function over the parameter space under nonneg-
ative constraints on the variance components. The maximum likelihood estimators
are a function of the sufficient statistics. are consistent and are asymptotically nor
mal and efficient (Harville, 1977). In particular, the maximun likelihood approach
is “always” well-defined since nonnegative constraints on the variance componeuts
or other constraints on the parameter space or incompleteness in the data cause no
conceptual difficulties. In spite of their good statistical properties. maximum likeli-
hood estimators of variance components have not been used much in practice, The
most important reason for this is the computation of the ML estimate requires the
numerical solution of a constrained nonlinear optimization problem. Prior to the ad-
vent of the computer, this requirement presented a virtually iusurmountable barrier
to their use. Even after computer became commonplace, a constrained nonlincar
optimization problem is, in general, a difficult numerical problem. The maxima can
occur on the boundary of the paramecter space and the log likelihood surlace can have
local maxima. Unfortunately, no known techniques guaranice convergence to a global

maximurm from arbitrary starting values.

We proceed with the ML estimates for variance components as follows. For bal-
anced data or unbalanced data in model 1.1, we assume that Y,.«; is nadtivariate

normal and that V is nonsingular, so that the density of ¥ exists and is given by

(2m)™/* det(V) /2 exp[—%(y = XBYVTHY - Xp)].

4

The log likelihood is
log L(B,V) = -—glog(%’) - -;-log[det(V)] - %(Y —XpYVHY - Xp) (1)
By definition, maximum likelihood estimates 3 and V are values salis{ying

A A

L(B, VYY) =margvyL(3,V;Y).

To obtain ML estimates, the asual approaches are either to maximize the like

lihood function directly or to solve the first order equations. Explicit solutions to
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ML equations are available only in special cases. In general one has to use iterative
method to get solutions.

Several papers evaluate «lgorithms for variance components estimation (Dempster
¢l al, 1984; Jennrich and Schlucher, 1986; Laird et al, 1988; Lindstrom and Bates,
1988). While is no consensus on the best method, some general conclusions seem to

be as follows.

e The Newton-Raphson method often converges in the fewest iterations, followed
by scoring method and then the EM algorithm. In some cases the EM algorithm

requires a very large number of iterations.

¢ The robustness of the metheds to their starting values (ability to converge given

poor starting values) is the reverse of the rate of convergence.

e The EM algorithm automatically takes care of inequality constraints imposed
by the parameter space. Other algorithm need specialized programmiug to

incorporate constrains.

One criticism of the M1, approach to the estimation of variance component is that
the MLE takes no account of the loss in degrees of freedom that results from estimating
f. A modification due to Patterson and Thompson (1971) is known as restricted
maximum likelihood estimate (REML). REML finds maximum likelihood estimates
from the distribution of the residuals. In other words, REML maximizes the part
of the likelihood which is said to be location invariant. Harville (1974) showed that
REML is equivalent to marginalizing the likelihood over the fixed effect parameters.
For example, if we take X3 = g, the REML can be obtained by maximizing the

marginal likelihood
Lie?,....0% | V) = /L(;L,ag,...,af | ¥)dp.

In general, a REML is the values of (of,...,¢?) that maximizes L;.
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MLE provides estimators of fixed effects. whereas RIXML does not. But with bal-
anced data REML solutions are identical to ANOVA estimators which have optimal
minimum variance properties. How does the REML compare with the MLE with
regard to mean squared error (MSE)? In general, the answer depends on the specifies
of the underlying model. For ordinary fixed ANOVA or regression models the MLE
has uniformly smaller MSE then the REML when rank(X) < 4; however, the REML
has smaller MSE when rank(X) > 5 and n — rank(X) is sulliciently tarze. MSL
comparisons between MLE and REML were made by Corbeil and Searle (1976) and

by Hocking and Kutner (1975) i{or several mived and random ANOVA model.

Besides ANOVA, MLE and REML, there are Bayesian methods (1ll, 1965, 1967),
minimum norm quadratic unbiased estimate (MINQUE) (Rao, 1970, 1972, 1971,

1979), and minimum variance quadratic unbiased estimate (MIVQUE).

Several comparative studies on variance component estimators have been made,
The main criterion for comparison was MSE, and the model used was the | way ran
dom model (Townsend and Searle, 1971; Swallow and Monahan, 1931), the 2 way
crossed classification mixed model, or the 2-way nested random model (Corbeil and
Searle, 1976). In Corbeil and Searle’s paper, a comparison was made between MLE,
REML, and ANOVA. On the basis of this comparison, MLE was favored. A com-
parison of ANOVA and MINQUE for the 1-way was made by Ahrens ¢f al (1981).
They determined that ANOVA was favored. Swallow and Monahan (1934) have
made a Monte Carlo comparison of five estimators for 1-way model. The five estima
tors, namely ANOVA, MLE, REML, MIVQUI(0) and MIVQUE(A), were compared
through their MSE, estimated by Monte Carlo simulation. Their results indicate that
unless the data are severely unbalanced and o?/62 > 1, the ANOVA are adequate.

The MLE is preferred when o7/0 < 0.5

Wald (1940, 1941) was the first to obtain exact confidence intervals on the ratio

of two variance comp.aents for I-way and 2-way crossed classification model without

-
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interaction. Burdick and Graybill (1984) developed a procedure for obtaining exact
confidence intervals on certain positive linear combinations of the variance compo-
nents for the 1-way random model. In general, approximate procedures have been
used more frequently. Several methods (mostly approximate) for finding confidence

intervals are reviewed in Burdick and Graybill (1988).

The literature on the analysis of incomplete data is comparatively recent. Methods
proposed in this literature can be roughly grouped into the following categories (Little

and Rubin, 1987):

o Procedures Based on Completely Recorded Units. In this approach the incom-
pletely recorded units are discarded and only the units with complete data are
analyzed. It is generally easy to carry out and may be satisfactory with small

amounts of missing data but can lead to serious bias in other cases;

¢ Imputation-Based Procedures. The missing values are estimated and the resul-
tant comnpleted data are analyzed by standard method. Commonly used proce-
dures for imputation include mean imputation, hot deck imputation, regression

imputation and so on;

o Weighting Procedures. Let y; be the value of a variable Y for unit ¢ in the

population. Then the population mean is often estimated by

2 (m) T/ 3w

where the sums are over sampled units, 7; is the probability of inclusion in the
sample for unit 7 and (7;)7! is the design weight for unit 7. Weighting procedures

are then used modify the weight in an attempt to adjust for nonresponse.

o Model-Based Procedures. Define a model for the partially missing data and
base inferences on the likelihood under that model, with parameters estimated

by procedures such as maximum likelihood.



There is extensive literature for multivariate normal models with incomplete ob-
servations, including Wilks (1932), Anderson (1957). Afifi and Elashofl (1966). Hart
ley and Ho ‘king (1971). For generalized linear models (GLM's), C('hen and Fienberg
(1974) discussed parameter estimation for two-dimensional contingency table with
partially cross-classified observations. Fuchs (1982) analyzed the problem ol incom-
plete data in log-linear models. Shafer (1987) examined the covariate measurement
error in GLM's. Ibrahim (1990) worked on the problem of incomplete data for any
GLM with discrete covariates, in which incompleteness is due to patiially missing

covariates on some observations.

The EM algorithm is a very general itcrative algorithm for ML estimation in
incomplete-data problems. Each iteration consists of two steps: the E-step (expecta-
tion step) and the M-step (maximization step). Formally, let ¢ denote the current
guess to the mode of the observed likelihood P(0 | yous), let P(O | Yobsy Ynus) denote
the augmented posterior, and let P(yms | 6°, Yous) denoie the conditional predictive

distribution of the unobserved data y,,;;. The E-step consists of compuling,

Q(H ‘ 91') = /log P(9 | .7/obsaymis)P(3/7ms | 0‘,3/(,b.9)(l.i/mz.q-

i.e. the expectation of 10g P(8 | Yobss Ymss) with respect to Pymis | 0% yurs). In the
M-step the @ function is maximized with respect to 8 to obtain 01, The algorilthm
is iterated until ||§i? — 01| is sufficiently small,

The EM algorithm has been used to obtain ML estimates of variance components
and more generally covariance components (Dempster ¢f al, 1977; Dempster of al,
1981). They treated the unobserved random variables (random cffects) as missing

data (with all Y observed) and use EM algorithm to obtain ML estimates.

Despite recent advances in the analysis of data with missing values, very little
work has been done on variance components estimation with missing data. The

major difficulty of this subject is that the observations are not independent. We can



.
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not write the full likelihood as we usually do in survival analysis

ik =T] f(t;6) TI F(c; 6).

obs mts

It will be also hard to apply EM algorithm to this subject because P(6 | yobs, ¥mis) can
not be written as linear in the unobserved data yp,,s (Little and Rubin pointed out
that estimates can be severely biased when EM approach is applied in general, 1983).
Chapter 3 (section 3.5) gives more details about the difficulty of using EM algorithm
o estimate variance components with incomplete ¥. In this thesis, new methods of
point estimates and approximate confidence intervals of variance components with a
high proportion of data missing have been derived in the situation where the type of

missing data 1s censoring.



Chapter 3

The 1-Way Classification

In Chapter 2 we reviewed several methods for variance components estimation and
methods for statistical analysis with missing data. This chapter deals with variance
components estimation with missing data trom one-way model. Section 2 covers MLE
for complete data. A result of an analytic expression of the inverse of a matrix will
help us to avoid computing the inverse of a matrix at cach iteration when we use
a numerical procedure to find the MLE. A model-based method for estimation of
variance components with missing data which we developed is described in seetion
3, and some examples are in section -}, Since the EM algorithm is a very general
iterative algorithm for ML estimation in missing-data problems. we especially discuss

EM algorithm for our case in section 5.

3.1 The Model

The one-way classification model is defined as

where g1 is a general mean, the unobservable random variables ¢, and ¢, have indepen

dent N(0.0%) and N(0.02) distributions. respectively. It follows that (yi.... y40,)

16



are jointly normally distributed with mean p = (u,...,¢) and
Var(Y)=V =dtZ,7] + o2

where 2,20 is a T4 ng x T n, matrix

J0 ... 0

R R AR
ZIZ]:: . R . 3

0 0 ... J

and J, denotes an n; x n, matrix consisting of 1’s.

17

The unknown parameters are g, o2, of, the last two of which are the variance

components.

3.2 MLE for Complete-Data

According 1o ( 2.1), we need to evaluale the determinant and inverse of V' to compute

log L(u,ad, oY), If Y; denote the vector of observations of those from 7th group, ¥;

and Y are independent for any 7 # i/, We use the notation ¥, to denote the variance

of Y;. then det V = []7.; det &,, and
vt 0
— 0 ;! 0
-1
0 0 5

where ¥, = afl, + ofJ.

Phe {ollowing proposition enables us to compute det V and 17! analytically (Rao

and Klefle, 1988).



Proposition 1 Let $; = oll; + +2J,, then

(1) ‘-‘i = zI 64—%22 IJi;

+mno5a

(2) det(%;) = (o, 2)"'“1(0'0 + n;od).

Therefore the log-likelthood function for one-way model becomes

logl = ¢ *_Zl"g (03)™ (o5 + nioy)]
1 4 1 0'2
;2 (Yi— Lm0 T(Y —
2 g( 2 (0'0 0§ + nirr(?;a'fJ’)(Y‘ #3)

log[(ag)™ (05 + nio?)]

il

)

I
[A N
.Mm

|

i
A ny A 1,

1 .
ZZ yii — 1)’ + 5 i 312 (i = 0]

uU'O =1 j=1 Ay (fu n 0'(}(7'1 J=1

(3.1)

The derivalives of the log-likelihood with respect to o2, a2, and g, respectively,

yield the following equations for the MLE’s.

dlogL 1 A niod + ni(ng — 1)o?
ot 2% [(0d)(of + niod)]
A n A I

1 1 ) .
+ 7,322 Yij — “§ZW%3)‘[L(UU ~ )}

i=1 =1 =1 (06 + nuodor 7=1

: 1A o i 2
s+ 5 Z —wi—;[Z(!/u - /’)]

(05 + niogoi )

and

dlog L 1 L& A . .
gi = > D (i—p) = = Lg;g[;(?/,J~;t)]

0 =1 j=1 )
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For halanced data (n; = ny = ... = n4) , the maximum likelihood estimates of
variance components are 03 = MSE and o = [SSTr/A — MSE]/n, where

Z;‘A:I Jl-.:l(yij - y—1)2

MSE = FICES

and

4
SSTr=n> (y: — 7).

=1
For unbalanced data, the maximizing equations do not yield a explicit solutions

and the MLE inust be obtained by nonlinear optimization.

3.3 MLE for Incomplete Data

If
1 ify >
P(y;jobserved | yii) = Ly;>c
0 otherwise,

the mechanism leading to missing data here is called censoring, with observed values
censored from below, or left censored, at ¢. This missing data mechanism is nonig-
norable because the probability that y;; is observed depends on the value of y;; (Little
and Rubin, 1987).

If ¢ is known, then we have the partial information about the random variable of
interest. We know the distribution of the missing data and we also know that the
missing value is less than ¢. The analysis of data needs to take this information into
account to avoid biased results.

Suppose we have a one-way model in which the factor has A classes with n;

meinber of each class

Yuin Y2 - Yimg

Y1 Y22 -+ Yomy

Yar YAz -« Yadn,
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let A,ps denote the number of observed classes, and m, denote uncensored ohservations

in class 7. If we define L{¥i1n. . . Yimy Yimp41 < CoevviYin, < €) as

L{ya. s Yimes Yomyr1 < CoueeiYim, <€) =
kﬁ% P(yil < };1 < yin+ Aa o dhm, < Yzm, < U, + A

Yim41 < ¢, ..., Y, <0)
The overall likelihood tunction of ¥ = (y11..... yan,) can be written as

L = L(y11~""y1m13y1m1+1 <C$"'sy1n1 <«

YAgpels -+ yAcb,onbs . yAab_,onba-i'l < Cyeensy YA,y <o

oba

Ydopst11 < Ly 1YAopstlna, 41 <G Yar <O Yan, < c)

where ¢ 1s a known constant and L represents likelihood.
Let Y; denote the vector of observations of those from ith class. Y, and Yy are

independent for any ¢ £ {'. The likelihood of ¥ = (V],...,Y}4) hecomes

Lyy = [IL¥)

= H LQyits - s Yimes Yomodr < Cee in, < 9
1=1
A
H L{ya < cyeoiyYm, <€),
1=Aphgt1

The log-likelihood is then

A
log L(p, V;Y) = Y log L(Y;)
i=1
Aabn
= Z 10?; L(yu, s Yoo Yoy +1 S Cye v sty 7 )

1=1



A
+ . logL{yan<c,... ¥in <) (3.2)
i=Agps+1

In theory, o3, 0% and g can be estimated by maximizing function (3.2). But

E%P(yi,abs. < Y%,obs. ..<_ Yi,0bs. + A» }fi,mis. < C) -
c c
/ IR a/ f(yi,obs.a yz,mis.)dyi,mis.
- —co

is difficult to compute because of the dimension of Y, ;5. For the example in Chapter
1, the dimension of y7 mis, is 174.

Since cach Y, is a multivariate normal with mean y and variance-covariance matrix
2 2
‘/i = GDIi + 0-1']“

the following proposition can be used to transformn the L{yiobs., ¥imis. < c) into a

computable function.

Preposition 2 If
Yia
Yi
2| N, o2+ 02),
yi'nt

then

L{yinsYaze oo oy Yimy s Ymgtt < Covvo 3 Yin, <€) X

AN - 1 7_"'_: PYR — oz 2
/ a, mc(I)(w)n;—mt eXI,{_‘_)_[Z]_1(yU 2# 1 0) _ 32]}d:0
—— 5 .
where w0 = ,_:zt_”-o_cu_o

For the proof see Chapter 5.
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Applying the Proposition 2 to function (3.2) gives

log L(y, V;Y) ZlogL

A m
°’5 1w ~ Ty}
= Ylos [ o™ oty expl = = SIS P
o2
+ log/ )y e‘(p(—~7)9)dzu (3.3)
i=Appst1 =

where ®(w) = [Z ¢(r)dr and w = =250,

It is important ‘o note that the likelihood (3.3) now is one dimension integration
which can be ev.luated by Gaussian quadrature method. The of, af, and p can be
estimated by maximizing the above function in a given parameter space, To maximum
the function, we can use a global search or an optimization routine.

The existence of 2 unique ML estimate for likelihood (3.3) is proved in chapter 5.

3.4 Examples

In this section, we apply the procedure which we developed above (o two examples,
The first example involves a one-way data set with and without missing data. The
second example is based on a group of simulated data in which we have known

parameters.

Example 1. A data set in Ott (p355) that involves a study of starch content of
tomato plants grown in three different nutrients has heen considered. The original
data set is one with complete data as in table 3.1

The MLE with the complete data are
of = 8.289, 0% = 24.365, i = 11.89

(both by SAS (PROC VARCOMP) and our own program ).



Table 3.1: Complete Ott's data

A 22 20 21 18 16 14
B 12 14 15 10 9 6
cT™ 9 7 6 5 3

Then four observations (< 6.99) were deleted as if they were missing where the

missing pattern is

1 if g, > 6.9

0 otherwise.

Py, observed | y;)) = {

The incomplete data are in table 3.2

Using 14 data. estimates by our method (MLE,,;), and MLE are listed and
compared with MLE with complete data as in table 3.3

As can be seen our method is more accurate in that it gives results very close to

those of the MLE for the complete data.

Example 2. In this example, 10 groups of simulation data were randomly generated
using 02 = 1.0, 6 = 1.0, and p = 0.0. The complete data are assumed to have five
classes with each class having eight observations. In each simulation, the data whic’
are less then -0.5 were removed from data set as if they were missing data (there is
about 35 % of the data missing). The estimates and their mean squared errors (MSE)
are given in the table 3.4

As we know, that MLE and ANOVA will subject to bias when observed values

Table 3.2: Incomplete Ott’s data

22 20 21 18 16 14
B 12 14 15 10 9
T9 7




Table 3.3: Estimates by two methods compared with MLE with complete data

2 2
Ty ay M

MLE(13 data) 8280 24365 I1.89
MLE(14 data) 6.92 1813 12.83
MLEp (14 data) 893 2417 11.91

MLE MLE,,..
667 f o & i
1 0.5016 0.0992 0.6007 1.2098 0.2613 0.0100
2 0.3598 0.1819 0.8531 0.7349 0.0100 0.6382
3 0.9496 0.3217 1.3234 1.4501 0.8545 0.6386
4 0.5378 0.1786 0.6719 1.1515 0.1603 0.1500
5 0.2554 0.0114 0.3475 0.6511 0.0271 0.0100
6 0.9811 0.3464 14959 L3114 0.9202 L1128
7 0.6834 0.3382 0.9286 0.7068 0.8986 0.5780
3 0.4563 0.3419 0.6280 1.0176 0.9084 0.0100
9 0.5229 0.0488 0.4806 0.7090 0.1268 0.0100

10 0.7239 0.0806 0.3673 0.9127 0.2117 0.0100
MSE 0.2129 0.6641 0.7272 0.0738 0.1608 0.218]

Table 3.4: Comparison of MLE and M LE,,,, for 10 Simulations

censored from below (o1 left censored). The reasons that I compared our method

with MLE and ANOVA are

¢ no method is available to this variance components estimation with censoring,

data;

e biologists use MLE or ANOVA to estimate the variance components when only

the incomplete data can he obtained.

Compared with MLE, MSE are improved by using the present method, reducing the

MSE by 66% for o2, 31% for o2, and 66% for u respectively. Significant improvements



are obtained through our method.

3.5 The EM Algorithm

An iterative algorithm for calculating ML estimates in missing-data problem is EM
algorithm. Its name stands for Expectation-Maximization, and it is so named because
it alternates hetween E step and M step (Little and Rubin, 1987).

The I step finds the conditional expectation
Q10 = [101 V) (Yoia | Yorss 0 = )Y

where {(0 | Y') is the function of ¥;; and Yy appearing in the complete-data log-
likelihood.

The M step performs maximum likelihood estimalion of parameters just as if
there were no missing data. Thus the M step of EM uses the identical computational

methods as ML estimation from likelihood I(6 | Y). 81 is determined by

QO™ | 0) = mazeQ(0 ] 6°)

We now show how Lo use EM steps to estimate variance components with missing
data. To do so, consider the model, observed data and missing data in section 3.

Whether we can apply the EM algorithm to get variance components estimation
with missing data is based on our ability to calculate the conditional expectation.
For this we need the joint distribution of (Yois, Ymis) and the condition distribution
of Y5 given Yy, From section 2, we obtain the joint density

A
gL = 0—ézmg[(oé)"'*(aé+n1~af>}

==l
A
0_2 Z Sobs — ,uzobs (Y;'obs - ﬂiobs) + ((Y;'mis h ,uimzs)l(yimis - ,uimis)
0 =1
U'l A

Z m.xl(ywbs Piobs) + 12n,—m,)x1(Yz‘mz‘s - #imz‘s))z-

2(ay + njoda?) P
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From the following properties which Searle (1992) and many other texts have

shown, we can get conditional distribution and some conditional expectation straight

( Yiohs ) oy (( Hiohs ) | ( Vi Vi )) ’
Yimis Himis "{21 Vau

¢ the marginal distribution of Yi,;; is

forward.

On writing

Yimis ~ N(ftimus. Va2 )
e the conditional distribution of Y5 given Y., is
Yimis | Yiobs ~ N(ttimis -+ VizVi3' (Yiobs — ftiobs)s Va2 — Var 117 Via)s
¢ and
B(YiisYimis) = tr(Vaz) + Lo amis-
Therefore the E step here calculates
E(log L | Yobs =

- —Zlog ag)™ " (o5 + nia})]
= i=1
1 A

2 ((y;'ubs — Miohs ),(Y;'obs — ﬂiubs) + (’T(VZ’Z + /':nmﬂinus))
UD =1

A
a7 4 9 9y E m s 7 Haobs
+2(0(,-{—7100471 21 m'XI b Huo)
+l(n, _ml)xl(Yz:mis - ﬂ'imzs t }wbv
and the M step calculates
ma;c((,gyaflﬂ)ﬁ(log L| Yos).

After the details of computing have been outlined above, we can see that the last

term of E(log L | Yops)

E((lin,xl(}/id’ﬂ - /LiObS) + ll(n,—qu,)xl(Y;sz - ,uz'mm))z | Y;nbs)
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can be terribly complicated. Let us look one term of above condition expectation
Ty
/'/'( ?n,qn,)xl(ymus_/lzmw})z I Y;obs) = /( Z (yi]_/‘ijj)zf(yimzs | yiobsao = gt)dyi,mz's
J=m+1

which involves multidimensional integration. The computation is difficult when di-
mension of Y, . 1s large. We can see it is hard to apply EM algorithm to estimate

variance components with incomplete Y even with one-way model.



Chapter 4

The 2-way Nested Classification

Detailed results of variance components estimation with missing data from 2 way

nested model are provided in this chapter. In section 2, we derive a log likeliliood

without the inverse of a matrix. That enables us to evaluate the log likelihood more

accurately and efliciently, especially for large data sets. Section 3 is the central section

of this chrpter, presenting the new method. Examples are given in section 1.

4.1 The Model

Two-way nested designs are used widely in applied breeding (Ienderson, 1984). Clon

sider the following hreeding experiment

Sire ! S
Dam JI1 h l
OffSpring | & | | l l l
1 N g

sy

There are S sires, D, dams were mated to the it sire. and n,, offspring resulied

from each i — j mating. If y;x is a characteristic (such are length, weight. «/c.)

28



measured on the kth offspring of the /jth mating, the structure of y,; 1s

i=1,2.....8
Yk =t + 4 +/Hj(z) +6k(1_])3 J= 1,2,-..,Di

E=1,2,....ny

where g is an unknown constant, a,, B,q), and €g;) are mutually independent
N0, %), N(0,02), N(0,03) respectively. a, is the contribution due to the ith sire.
A,y is due to the jth dam mated to the ith cire, and ex(,)) is the effect due to the Ath
offspring of the ijth sire-dam mating. The quantities 0%, o2 and of are called vari-
ance components. The heritability h? = is a function of variance components

{ Falconer, 1981).

401
oitolto}

4.2 The Complete-Data

4.2.1 Balanced data

When D, = D for all i, and each 7j cell contains the same number of offspring
(ny, = n for all i and j). the data shall be described as balanced data. Estimating
variance components [rom balanced data is, generally speaking, much easier than

from unbalanced data.

I'ollow the same notation from previous context, so the linear model is given by

Y =pu+ 21+ Zoya + e,

where gt is an SDn x ] vector of unknown constants;
Zyis an SDn x S design matrix of zeros and ones;
71 is an S x 1 veetor of independent variables from N(0, o%);
Zyis an SDn x S design matrix of zeros and ones;
72 is an S x 1 vector of independent variables from N (0, 02);

¢ is an SDn x | vector of independent variables from N(0, 0¢).
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The random vectors 91,7, ¢ are mutually independent and
d - - T TS . .
Vi=Var(Y) = Z1 2l al + 2y 2 ol + 162,

7, ZF and Z,Z% are SDn x SDn block-diagonal matrices:

J 0 ... 0
T 0 J ... 0
hey =
0 0 ]
and
E 0 0
0 FE 0
Zng‘Z . .
o 0 ... K

where J and E denote respectively Dn X Dn and n x n matrices consisting ol s,

Therefore we can wrile

where & = 021 + 02.J + oK and

E 0 ()

, 0 K 0
A =

0 0 I

Thus the log-likelihood function of ¥ is given by

7

[ e 1
log L{p, Vi¥) == 5 > log(det(S)) + (¥, = oy S Y, - ). (1.1)

==l

Fal
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In order to proceed with finding the maximum likelihood, the following proposition
on the determinant and the inverse of ¥ is needed. When we use an iterative numerical
procedire to find the maximum of log L, often the computational effort is dominated
by the cost of evaluating log L. Using the analytical expression below for the inverse
of 1. we do not need to compute the inverse of a matrix to evaluate log L at each

teration (Rao and Kleffe, 1988). This has advantages both in accuracy and efficiency.

et - 2 2 -
Proposition 8 Ll Epuxpn = 04 lpuxpn + 03 JDaxDn + 03 KpuxDr, then

2

2
A [ __] o Ty _ o5 I3
(1) Nneim = ﬂ"g[[)nxl)n (”g+,hd§)(a(2’+n(,3+p,l,,%)JanDn ] p ) Kpnxpn

(2 det(X) = (a2)P"P(of + no?)P~Y o2 + no? + Dno?)

where Jpycpn = lnnxllf)nm and

Jusxn 0 ... 0O
. 0 ']an O
[‘anl)n =
PROOF. (1):
Let
. 2
Al)nan = YpuxDn — a; JanDn
— 2] 2['
= OydpnxDn + TN DuxDns
then
N o= Yeai] 2
o= L= paxbe T 01 DnxDn

= (E - Uf']anDn)[] + (E - U'fJanDn)—lo'fJanDn]

-1 2
= ApaxbulIDaxps + A7 07 IDuxDa)-
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We can write
~—1 _ 2 =1 =1 N
LanDn - [IanDn + 0'1"1—-1tll)nxl)n] —'\1)”\1)n~ (1..3
Since
2 2
U()Lan +0'2Jnxn 0 0
2 2
0 o5luxn + 05 uxn - 0
ADTIXDTL = . s .
Y b
0 0 ve ‘70]”\71 '+" 0311”\71
we have
Tuxn + ofitxn 0 0
“Zinxn oftnolas
0 1 + ‘T"s‘]nxn 0
A—l — ﬂé nxn (ré-}«najn’é v
1 ol
0 0 . [ nxn b u}“’:;)fa"'l“"“
or
1 o2
-1 2
A7 = '_-Z'IanDn - '—'—“—"‘Tj[\l)nxbn
g5 og + noso,
by Proposition 1.
Also
2 2
2 41 ”1 naya,
0'1A JanDn = ]anDn B PR TN /I)nxl)n
7y oj(od + nai)
(T2
== ]1)7L><I)n
o2 o2 +no
It is easily seen that
-1 2 4-1 -1 41
r = [IanDn + 0'1/1 ]I)nxl)n] A
2
- 7
= [Ipnxpn + ——J] [ Ipuspn = =" 1 s u]
U + (72 +“ llﬂ'l
2 2
(71 1 0‘2
= [IDnXDn -y ) D 2']][”71']])10(/)” Y N AI)/L/I)W]
gy + nos + Unop og oy -+ noiad
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- 1 J Jf 7
- 0_(2) DyxDn (U§+7103)(0§+7103+Dn0f)' DnxDn
et K s D
(Té((fé i TZ(T%) DuxDn
O
PROOL. (2):
From equation 1.2, we have
EI)nan = A])nan[IanDn + Uf““j—")lnanJI)nan]‘
It follows thal
det(¥) = det(A)det(Ipnxpn + 02 A" Tpnxpn).
Note that
det(A) = [det(aélnxn + UéJnxn)]D
= [(05)"" (og + na)l”
and
241 o}
det(/ + ot A" Ipuxpn) = det(l + ————2~]nxn)
of + no.
Dno?
= (1 ) : 2)
as + nos
by Proposition L. det(X) becomes
(‘70)[)“ D(Uu + ”‘72)13 l(aé + nonf + Dnof).
0
Using Proposition 3 to function 4.1, we obtain
S . .
log . = (" — log[(ao)D" D(oe 4+ n02)P~Y (02 + ne? + Dno?))
K n
- ;FZZZ 313 *ﬂ
=YY =1 =1 A=

2 S D

+ . pho» Sk

20p + nat)(od + noj + Dnot) & J=1 k=1

z

S D =n
ZZ Z (Yisk -l (4.3)

5
20¢(03 + no3) + noi) oo i
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The differentiation of ( -.3) with regard to oj.o7. 03 and g vields the following

cquations for the MLE's.

dlog L
do2

-5
2(68)Pr=D (62 + noi)P-Y o + noi + Dna?)
[(Dn — D)(02)P" =P (62 + nod)P~Y (o2 + not + Dno?)

+(UO)D"" (D 1)(og + na2)P 20 + nos + Do) + (62)™ V(o 4 nad)P’1
02202 + 2nol + Dnot)

ZZ Z l/uk - ll [(00 + na-z)(a'u + ””3 + ])n(rl]

Oz 1 g=1 k=1

S D n 2¢9 .2 2 S D =n

Aree o5(205 + nos) )

x> Yije — )] I D (e = p))*
z " S+ ndfdP 2 2
= 0,

dlog L _ —SDn(o2)P P02 + no)P-!

doi 2(03)Pn=P(g + no3)P- 1(00—l—n(72+1)nrrf)

A

ol + no?)? , "
t 552 goz Z-z wLLL‘/uk

2[(08 + no3)(0g + nos + Dnot)? = vty
= 0,

dlog L
oz
S[(e)Pr=Pn(D - 1)((70 + nal)P- (0‘0 + nrr2 [)IIfJ’l)
- 2(a3)Pr=P(0g + anz)D i(_;r_() +1 nes + ])nrr.l)
n(ag)P"P(af + nof)P )
203)Pn=D(a2 + no)P-1(of + nof + [)nor{')
not(202 4+ 2not + Dnot) & L g
B 2[(af + no2)(ad + no? + Dnoi)? ;;; Yok = 1)

_.|_

S n

‘—“’O‘O—_TZZZ’/H*M

2oy + nogo]? 2 i
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and

og I R
"“'OL’ = ZZZZ Yuk — 4
1 =1 k=1

f)/{ Tq -

n
Z Yjk —

1 k=1

s D
_ & >
(o'g + 720’%)(0'3 + no% + Dno’% z=1 =

n

= ZZZ (Yase — 1)

0'0‘+720‘21111A1

Solutions to the above equations will give the ML estimates of the variance com-

ponents,

4.2.2 TUnbalanced data

Unhalanced data are those in which the numbers of observations in the subclasses
of the model are not all the same, including cases where there are no observations
in some subclasses. The estimation of variance components from unbalanced data is

more complicated than from balanced data.

For unbalanced data, the variance of ¥ is
V=Var(Y) = 2,27 0? + 2,ZT 02 + Il

where 7, ZF and Z,Z] are 33, Z 2o x 1ZJ 1 Ny, block-diagonal matrices:

Ji0 ... o\

0 J ... 0
ZIZE‘Z 2

60 0 ... Js

and

’1
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En 0 0
0 F. ... 0

ZoZT =
0 0 Ep 0

. ) . P
J, and E;, denote respectively ZJD;I Ny, X Zf;l n,, and n,, x ny, matrices consisting

of 1’s. Therefore we can write

500 .0
Ve 0 X, ... 0
0 0 ... ¥s

where £, = 62I; 4+ oiJ; + 02K, and

Eis 0 ... 0
0 E, ... 0
K, = i .2 i .
0 0 ... Ep,

The following are results about det(¥,) and 7', For the same reason as we
mentioned in the previous section, an analytical expression for the inverse of V7 can
avoid the heavy computational burden when we use numerical {echniques to caleulale

the estimates (Rao and Kleffe, 1983).

Proposition 4 Let &, = 021, + 02, + 02K, then

(1) det(El) = (gg)(zf;fl iy ) =D, i

(2) S7'=%I-BJ-

D,

(o 4 o))+ ot Tk

J=1 ng+n.}aj
* J K

1
2 ¥7] Ty
1+”! Z}:fl

p)
Tyt 7y



where
2
L
nﬁ(n§+n.m;§)‘]m1 X1y 0 ... 0
0 0 ... 0
BJ =
2
0'2
0 0 te 0’0(00+n,D'0'2) ']n'Dt XD,
and
ﬂ']
oj+n,103
D= : * a1 Taes — .
JH ' ( ogtnaed " ogtmp, 03 )
(71
Gg—i—n'[)'(?:_,
PROOF. (1):
Let A, = ¥; — o2J,, then

= AT+ o2(A)"1 ).

This gives
det T, = det A;det [ 4+ o3(A4;)™"

Note that
D,

D, .
det A; = (Ué)ZFln”—D' [1(ed + n;03)

s=1

by Proposition | and

ngj

of + nijo}

detI+of(A) " i=1+0l) j=1P

tlus
D,

det(%,) = ((fé)(zj 1Tz} —=Dy H(UO + ntJG2 1 + oy Z

J=1 =1 0 + n” 02
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PROOF. (2):

Since
%I W‘]"ﬂ X7 0
=1
(407 = X s
0 0 ! 1
and
1
I + o2 17
[ 1 ) l] 1 + 0_1 Z 7y

we obtain

J=1 (r2+nl,n-

0
0

+n.p rrorr" I”ll‘, Mub,

)
L T
P T
oitngos

: 1!

ot

e 5
ﬂu+1l‘1)’ rr;

_ 1 l .
R —1 — T 4 JK
og ! + ot P -—-L~;”” 7
Where
2
[«
aé(ag+n,1n§)']nxlxnd 0 0
0 0 ()
BJ = _ , ,
2
7
0 0 ”o(“n"i'ﬂvl),”))']n‘“l X7y,
and
(T
Tptr10;5
T— ) ay
JH = * ( odnnal?’ " altng, 0} ) '
a1
ag+mp, o3

The log likelihood function now becornes
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- . 1 S D, ) D,
loglh = ("= Y A3 ni;) — Dillogog + > log(ag + nyyo3)
R | j=1 =1
Dl T

D, ; 1 A
Hlog[l +02 3 2]k — 3 S (e — 1)

p3 . o2
o5+ niy03 00 121 ket

J=1
<L ff-"z! % p)
- *‘—*-—-'~——[ (yi~k~;z
L Tt gl o ek~ 1)
o U D (S~ )P (4)
2 D, Ty lag-i-mjag Yigk — | .

=1 alin, 05 J=1 k=1

The ML estimates of 3,02 53, and u can be obtained by maximizing the above

constrained nonlinear function.

There are many numerical procedures for the constrained nonlinear optimization
problems, such as the steepest ascent algorithm and Newton-Raphson algorithin.
There is no single iterative numerical algorithm for MLE that will be the best for every

applications. Several computational algorithms are discussed by Harville (1977).

4.3 MLE for Incomplete Data

This section considers the estimation of variance components in the presence of cen-

soring data.

Suppose yir are observed for i = 1,..., 83 j = 1.... . Dighs; k= 1,...,my; and
missing for ¢ = Sppe. +1,...,87 J = Dibs. + 1,..., Dis k= mij + 1....,nyj in each

¢ — J mating. The missing-data mechanism is
I iy >c
0 otherwise.

Py, kobscrved | yir) = {

The missing data here is non-ignorable since the probability of response depends

oun the value of yix. nyj is the number of complete data in the ijth mating and m;;
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is the number of observed responses in the /jth mating, so that n,, ~ m,, will be
the number of missing observations in the 7jth mating. To characterize the data, we
define

L(yilla e Yilmy s Yitmg +1 < Cyov s Yilng <0y 3/11)"(.,,« | RN .llzl)l‘,.,,, Dy,

Jotia

YD, gbe Mo, +1 < Cov v v Ui, gy, D, b L OYD, e +11 ~ Coeiny
YiD,gos +1mip, . < Covo o YiDygps map, . <€)

= ilg%) P(yzll < };'11 S Y + -—&7 <oy Yilmy < );lm,l § Yiimy, + A\
Yitma+1 < Cvvey Yitmy <0 5D ame t <UD, g t SHDpe1 A0

le:,obs m‘Dt,ubs < }ZD obs "D, S yil)t,nb"l My n + A: }1“:,-%1 7'l|13”+‘1 RS

Jobs t,aba

},ZDx,obﬂ nlDz'obs <c }’levubﬂ 411 < Ca LECEIE) Yl’l)‘ obs e < (‘1 ‘e

t by

Y;Dz,obs D, oba < C)?

then the full likelihood function can be written as

2 2,

Subs
2
L(p, 00,017,035
1

¥ ) == H L(yill\ e Yitmgs el 1 << €y ey Yidmy <08
et

LRI

VeDyobe 1o s HaDy s,y Y2 D bs g #1055 G

»

* yiD:,ubs D, b« < &

«lliDhr/b‘q +11 < Clnny Yl obe +1n,p <

1,0bs

< YD, obs D, L < (')
S

II Ly <ei=1.....Dgk=1,...n,)
t=Spps +1

If Y; denote the vector of observations of those from ith sire, ¥, and Y, are inde
pendent for any i # /. The log-likelihood of ¥ = (Y1, Ya, ..., ¥;) becomes

Sobs
2 2 2, — . P
1OgL(/L700701~O-27Y) - Z 10?; L(yilla'"7.'/1117L,1~"/1111L,1+] < (1---:?/111“1 <0
=1

ce g e

YD, ops 1y v o o s YaDy o myps Yaddy e o, +1 <0

1 ubn
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s .I/zD,,,,p,g np < ¢

1 abs

lex.nbw +11 < Cyeres lev,obs +1im,p <e¢

t,0bs
A 7y1I)| uba "lD,'nb, < C)
N
+ Z log Ly <c;j=1,.... Dk =1.....n,)
l=—‘.qobg 41

where ¢ is a known constant.

In theory, the 02,0202, and p can be estimated by maximizing the above log-

likelihood function. However, the typical component for sire i has the form

L(U:,ubs.a!/z,mis. < C) = / .- [_ f(!/z,obs., yz,mzs.)dyz,mzs.

whore ¥, 18 the vector of observed data for i while y; s is the vector of missing
data for i. Because the dimension of the iategration is the length of y, .. the
direct computation of P(Y,ebs.. Yomes. < ¢) 18 practically impossible when there are
more then a few missing data. The following proposition is necessary to transform

Py obs.s Yo,mes. < €) into a computable likelihood function.

Proposition 5 Assume that Y, is multivariate normal

Y

Yuaz

~ N(p, %),

LI/thn,Dv

. D, , .
where pis a 32,2 ng, x 1 vector, and varance-covariance matrix ; has form
¥, =04l + ol + o2 K;.

Then the log-likelihood function can be written as

1 S"b‘l - ;
ogl = ) og/_(\‘\/z?exp(—:o/Z)
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D, ot m,,

{ H / (“(P{ ; Z Yk — L — Tt ”_n’“’._) }

Ty

Bw, ) exp(— 2/') WV 2rey) "z,

Jon

P

H /x. '—‘”-G‘xp(——: /3)‘1’(‘%)"”‘[:J}d:u

j Dtoba +1
$ 2 2

b 5 s gl [ ot

i=Spps +1 e -
(I)(lLij)"udZJ(lZQ. (1.5)

where
C— Il — 0129 — T2 .
w, = —F TS i D,
Jg

It is important to note that the likelihood now involves integration only over two
dimensions rather than integration over the number of dimensious corresponding to
the length of the missing data. Hence of, 0%, 02 and g can be estimated by maximizing

above function which is computable. For proof see (‘hapter 5.

4.4 Computation

Ordinarily, we must resort to an iterative numerical procedure to obtain a ML es
timate of variance components. There are simple cases where the estimate can be
found by analytical means (for example, balanced one-way random-eflects model),
The likelihood equations for full ML do not admit an explicit solution for all models
(Hartley and Rao, 1967).

There are many iterative unmerical algorithms that can be regarded as candi
dates for computing ML estimates of variance components. Some were developed
specifically for special cases, others are gencral procedures for the numerical solution

of broad classes of constrained non-linear optimization problems. There is no single
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iterative numerical algorithm for ML estimation of variance components that will be
best, or perhaps even satisfactory, for every application. An algorithm that requires
relatively few computations to converge to a ML estimate in one setting may converge
slowly or even fail to converge in another. In deciding which among available algo-
rithms to try in a particular application, we must make some judgments about their
computional requirements and their other properties as applied to a given setting
(Harville, 1977).

It is noteworthy that the above likelihood function must be evaluated with two
levels of integration, both of which have infinite range. This infinite range can cause
numerical inaccuracies and a transformation is usually required. To obtain a hetter
result, the following transformation has been applied to convert the infinite interval

to the interval [-1, 1]:

-1+2..1
)]

" = [+

—00
Gaussian quadrature method is used to evaluate the two levels of integration

ahove.

To locate an ML estimate of variance components, we can use Newton-Raphsen
algorithm, steepest ascent algorithm, or Simplex method. Since the gradient of our
likelihood function is too difficult to get (we confront with a situation that the deriva-
tive of the integration of a product of integration will be needed), I am forced to give
up all the gradient procedures. The two methods which requires only funtion evalu-
ations have been tried by using subroutines in NAG and IMSL, none of them works
due to the nature of our likelihood function, The method I use here is global search
of the parameter space, The maximum function value in a given parameter space is
found by using a global scarch of the parameter space. It is not efficient in terms
of the number of function evaluations that requires. However it can give the results

with today’s computer. A better maximization of likelihood function is needed.



For two-way nested model, the parameter space is a four dimensional space, The

search strategy which [ used in my program is

e I start at one-dimensional space. With three parameters (sav. af, o5 and p)

fixed and coarse grid, it is easy to find out the maximum of the function of ag;

o repeat above step for other three parameters. The four one-dimensional max
imums will help us to localize a small four-dimensional space which usually

include the four-dimensional maximurn;

e with a fine grid and four-dimensional global search, the maximum function is

usually located.

A typical problem as our motivating example needs roughly 65 function evaluations
for localizing the final search space, and uneeds roughly 10000 funetion evaluations for

finding the maximum.

A graphical data presentation programme for estimating o2, af. i and g was
developed during this research on a personal computer systems taking advantage of
80-bit floating computation. With the aid of graphical data presentation, the user
can visually determine the proper upper and lower bounds on the parameters and
carry out an effective search.

By using the programme on an i486/50X PC, a modest problem like the exaniple

in Chapter 1 can be solved in few minutes.

For computing confidence intervals for variance components (say, for a3) by the

likelihood ratio statistic, I will

o first use global search of the parameter space to find the estimates of varince

components and g as we developed before,

e replace the parameters in the likelihood function except af by the estimates,



¢ then calenlate

\;

o]

T ) 3 . A T2 Ty )
L{pae 05,0152 03,2:9) > L(fi 0,01, 03 y) —

v |-

by the same glohal search routine (the search space is one dimension now).

4.5 examples

In this section, the preceding procedure is illust.ated with five examples. The first
example is the one introduced in chapter 1 as a motivating example. In chapter 1,
we have seen the severe bias when we applied classical ANOVA and MLE methods
{o the largest 200 observations. Now we will use the same 200 data to estimate the
variance components by our new procedure and we will see that the estimates are
very close to true values. Based on simulated data. Example 2 gives the estimates by
MLE and MIS flor complete data sews. I want to use it to show “h~ »aliability of our
programme. The hox-plots for each component by three methods (ANOVA, MLE, and
our method) are in the third example. As will be seen the MLE and ANOVA estimates
have substantial bias for all four components while our estimates is approximately
unbiased. In Example I, we compute the confidence intervals. kxample 5 shows the

boxplot of the thiee methods with four different missing rates.

Example 1: The mating design had 7 sires with 3 dams nested within each sire,
sixty oilspring per female. 1260 offspring (sibs) are grown together in a common pool.
At the end of the experiment all fish have been weighed, so their sizes (= growth rates
hecause they are all the same age) are known. The largest 200 fish have been analyzed
in the Gene Probe Lab so their parentage (sire and dam) is known. The parentage
of the remaining 1060 fish is unknown. We have listed the estimates obtained by our
method (MIS), compared with ANOVA and MLE in Table 4.1. As can be seen our

method gives results very close to the true results.
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Example 2: 3 simulated date sets with o = ¢f = o} = 1.0 are used (the number
of sires, dams and offspring are randomly generated). The estimates obtained by
MLE and MIS with no missing data are compared in Table -L.2.

We can see that MLE and MIS are very close when there is no missing data. Since
the results of MLE with no missing data have been checked by SAS and BMDP, we
can put trust in our programme. We also note that L., > Larrsm., for the three
simulated data sets. This indicates the error of numerical computation (evaluation
the two levels of integration and optimization).

Example 3: 50 simulated data sets were generated with af = 2.0, a¥ = 1.0 and
ol = 0.5, and g = 0.0 respectively. In cach simulation, the number of sives, dams,
and offspring were randomly generated and used to generate y,,p for a complete set
of data. After the complete set of data was generated, the largest 30% was used for
variance component estimation by ANOVA, MLE. and our method. The box plot for
each component by the three methods are shown in Figure 1.1, As can be seen the

MLE and ANOVA estimates had substantial bias for all four components while our

estimates are approximately unbiased.
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sigma0n2 = 2.0 sigmair2 =1.0

2.5
2.0

2.0
1.5
I
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MIS MLE ANOVA MIS MLE ANOVA

Iig L.1. Box-plot for each component and u by the three methods
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[t is not enough to report the point estimate. We have to know also what is
the precision of the estimate. Generally. confidence interval formulates the preeision
of the estimate. The following example gives the confidence intervals for variance
components with missing observations based on simulated data. The construction
and computation of the confidence interval for variance components with missing

observations are described in Chapter 5.

Example 4: We generated 25 groups of data using of = 1.0, ¢f = 1.0, of 1.0
and p = 0.0. In each simulation, the number of sires is randomly choser between 5
and 10 ( some of the long confidence intervals for af refleet the lact that the eflective
sample size for estimating o7 is small), the number of dams within ith sire is randomly
chosen between 5 and 8 (overall sample size for dams is between 25 and 80), and the
number of offspring is randomly chosen between 15 and 30 (overall sample size for
offspring is between 375 and 2400). The largest 30% of the data were used for variance
component estimation (both point and confidence interval) (o = 0.05). The results
are reported in Table 4.3. The coverage rates of our confidence intervals for ag, af,

ol and p are 100%, 96%. 96%. and 96% respectively.

Example 5: 12 data sets were generated with af = 1.0, of = 1.0, o2 = 1.0, and
i =0.0. In each simulation, 100 %, 70 %, 40 % and 10 % largest data were used for
variance components estimation. Figure 1.2 shows the boxplots of ji with different
missing rates. We observe that bias of ANOVA and MLE increase as missing rate

increase while our estimate is comparatively stable.
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Based on the simulation. we observed that

e When there is no missing observations, the results of three methods are quite

similar.

e When missing rate increase from 30 % to 60 %. the hias of ANOVA and MLE

increase. But our estimate does not seem to be affected.



Table 4.1: Comparison of the three methods

2 P 2
99 91 72 [

True(1260) 100.75 29.05 18.70 28.17
ANOVA(200) 26.43  2.69 -1.019 47.10
MLE(200) 2583 1.89  0.082 16.30
MI5(200) 95.00 26.60 18.05 28.00

Table 4.2: Comparison of the three methods

MLE MIS MLE MIS MLE MI5

o 104 104 104 104 104 1.04
o 198 206 207 250 092  0.67
o2 112 136 125 140 066  0.63
p) 040 042 000 0.00 049 045
Limar 20741 280.12 20454 286.20 286.66 278.94




Table 43: Point estimates and confidenee intereals (o = 0.05)

52 &2 ol i
1 1.04 0.6% 1.10 053
(0.81. 1.34)  (0.02, 3.08)  (0.69. 3.71)  ( 1.16. 0.35)
D) 1.27 5.3.1 0.59 028
(0.98. 1.63)  (1.29,10.13)  (0.31, 2.50)  (-2.18, 1.40)
3 0.875 1.16 1372 NN
(0.66. 1.15)  (0.32.8.51) (018, 3.61) (-1.23. 0.68)
1 1.04 .55 .08 078
(0.83. 1.37)  (0.29, 20.98)  (0.16, 3.39)  (-0.77. 2.51)
5 1.01 .04 0.93 0.0
(0.80, 1.32) (0.0, 5.58)  (0.62. 3.93)  (-1.20, 0.63)
6 1.04 0.86 0.60 087
(0.79. 1.39)  (0.24. 5.83)  (0.53, 1.99) (-1.60. 0.16)
7 1.03 1.97 2.67 1.0
(0.83, 1.46) (0.0, 15.38)  (0.85,8.1)  (-0.27, 2.13)
8 1.03 1.50 041 053
(0.74. 1.30)  (0.56, 9.37)  (0.18, 1.76) (-1.39, 0.80)
9 1.12 1.13 0.36 059
(0.85, 1.51)  (0.37, 6.56)  (0.12, 1.38) (-0.32, 1.59)
10 1.00 0.75 0.70 0.16
(0.78, 1.30)  (0.25, 4.15)  (0.30. 2.01) (-0.£2, 1.21)
11 0.33 0.541 0.77 0.00
(0.65, 1.13)  (0.07, 3.07)  (0.32, 1.96) (-0.63, 0.68)
12 0.93 0.69 1.38 0.44
(0.78, 1.29)  (0.19, 5.88)  (0.67, 4.78) (-0.32, 1.44)
13 1.04 0.91 1.13 .33
(0.83, 1.36)  (0.26, 4.87) (0.53, 2.03)  (0.60, 2.09)
14 0.88 0.91 3.35 0.52
(0.80, 1.24)  (0.46, 4.33) (1.1, 7.57)  (-1.02, 0.68)
15 1.13 0.62 0.57 036
(0.79, 1.33)  (0.02, 4.21)  (0.27, 1.73) (-1.04, 0.29)
16 0.87 0.88 1.37 0.49
(0.67.1.11)  (0.34, 3.69) (0.81, 3.67) (-0.23, L.17)
17 0.92 1.61 2.82 L
(0.70, 1.20)  (0.49, 9.19)  (0.78, 6.49) (-0.63, 1.91)
18 0.99 2.15 0.96 1.10
(0.76, 1.28)  (0.57,9.37) (044, 3.31) (-2.11, 0.23)
19 1.10 1.72 1.10 0.00
(0.88, 1.44)  (0.40, 7.23)  (0.60, 4.08) (-0.76, 1.26)




(continued)

2

ah Eh o% it
0.98 2.24 0.98 0.38
(0.79. 1.34) (0.59, 14.19) (0.32, 3.08) (-0.8L, 2.18)
1.15 2.05 0.85 -0.59
(0.92, 1.51)  (0.39, 7.96) (0.29, 2.24) (-1.63, 0.49)
0.92 1.40 0.92 -1.01
(0.78,1.22)  (0.26, 4.59) (0.51, 1.50) (-1.46, 0.04)
1.03 2.71 0.36 0.42
(0.80, 1.37) (0.86, 18.20) (0.26, 2.21) (-1.47, 1.74)
0.98 0.77 0.78 0.56
(0.80,1.33)  (0.09, 4.72) (0.20, 1.98) (-0.43, 1.22)
1.00 0.66 0.85 0.00
(0.77.1.36)  (0.02,4.31) (0.57, 1.44) (-0.19, 0.46)




Chapter 5
Properties of the Estimator

This chapter contains proofs for two propositions in Chapter 3 and 1 which are im
portant in enabling us to transform the full likelihood functions into the computable
functions. We also provide prools for the existence of ML estimates of the parameters.

Construction of confidence intervals is included in section 3.

5.1 Proofs of Proposition 2 and Proposition 5

We shall give the proof for Proposition 2 first. The proposition states that il

Yu

-
t2

~ ]V(ﬂ) Ugfrz,xn, + O'If']z)»
Yin,
then

L(yilayi% e s Yme Yomg 41 < Ceen sy Uan, < (!) X

o Co— [l — Oz 1.5 (g, — i — 7129)?
/ o5 ™ (=T e, CXP{—-—[ZJ” Jy I ) - ) bl
—00

Ty 2 {75

where J; is a n, x n; matrix consisting of 1’s and L is defined as in Chapter 3.

54



PROOF. Let Zy, Z,. .., Zin, denote independent normally distributed variables

with zero means and unit variances, and define
Yj=p+00Z;+o12.
Then the joint distribution of Y, Yis, ..., Y, is a nj-variate normal distribution
with mean g and variance-covariance matrix
Ya

v
i2

Var _ = ag]n,x,l' + alzJi.
Yin,
We define
L([l, -+ (J'()Z;J + 0'1Z0 | ZQ = :,'0) =
ilil}) [)(/L + ouz; + O'IZO <p+ O'QZ,'J + o017 < i+ 0'0(35]' -+ A) + 012y I Zg = Zo).
Substituting Y;; as i + 09Z;; + 0120, we obtain

LYY oo Yim, Yoma1 < €.y Yin, <€) =
Lipp+ 002y + o1Zo, pp + 00Zig + 0120, .. ., b + 00 Zim, + 01205
f+ 00 Zm st 0120 < ¢y ip+ 00Ziy, + 0120 < )

I

f’ Lip+ o0Ziy + 0120, + 00Zia + 0120, - . t + 00 Zim, + 01205

Y

t+ 0ol g1 + 0120 < €y o oyt + G0 Zin, + 01720 < ¢ | Zo = 20) f20)d20
/ L(/l + (T()Zil + UlZo | Zo = Zo)L(,lL + G'()Z{g -+ U']Zo | Z() = ::0)

it

— M — 0129

¢
e L+ 09Zim, + 0120 | Zy = ZU)P(Zim,+1 < - l Zy =)
. T
o P, < SEZIE0 2o ) Fz0)de
oo
o T o 7y c — — 012
= / [ Ze==) J[ P(Z;< Sl e | Zo = 20)f(20)dz0
- =1 J=m+1 %o

N e C— = Oy % 1 X0 (i — p— o12)?
/ o5 z.(p(__/%__‘ﬁ)n; m exp{~3[ J 1(%is 2'“ 1%) +32]}d50.
Ladu ¥l 4] &

ap

It
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This proposition allows us to transform the full likelihood as a one-dimensional

function which can be evaluated easily.

Let us consider the Proposition 5,

Yin
X Yiie
If ) ~ N(p. X)),
‘;:Dlnll)l
then
O 1 9
P(Yi,obs. Ya,mis. <€) =/ — oxp(—=24/2)h (0., 0, )dzg
- 2T
where

D, e} _.1 My .l/ijk e /[ — (T{Zy — (Tg"f_, 2
h(zgymiyn;) = H/ eXP{TZ( )
p=1Y T

k=1 oy
C— [l — 0120 — 023

o

- )n,—-m,( 27]_0_()) ln,(l’.-,-“
0

2 2 27
J; denotes a Ef:'l Ny % ZJD=‘1 n,, matrix consisting of 1's and
1111;1 0 e 0
0 Inly ... 0
]\’i = i . i
!
0 0 ‘e 111)'111)'

where 1;; is a vector of ones of length n,;.

PROOF. Let Zg. Z1,....Zp,, Zitt,y -« 5 ZiDynyy, denote independent normally dis
H

tributed variables with zero means and unit variances, and let

Yo = pt + 0oZijp + 0120 + 027,
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o 3

Then the joint distribution of ¥y, Vi, ... .hD,,L'D' is a "=y ny; variate normal dis-
tribution with mean g and the variance-covariance matrix
7
Yin
Yire
2 27 2y
Var ] = Uoln,xn, + Ult]iUgAi-
’
iDinyp,

Let iy 15, represents the observed part of ¥; and y, mis. denotes the missing values.

As hefore we define

L([l + U(JZz]k +0'1Z0 + Ung ‘ ZQ = ZU,ZJ‘ = L’J) =
iin(x) P(p + ooziji + 0120 + 022, S jt+ 002y + 0120 + 027
<A oolzin + A) + o1Zo + 0225 | Zo = 20, 45 = z),

and substitute Y, as ¢ 4+ 0oZiji + 0120 + 022Z;. The density of (¥ obs. Yimis. < €)

would he

LY ob.Yimie. <€) =
L((pt + 00Zyk + 0170 + 0225 )iobs., (1t + 00Zijr + 01720 + 0325 )i mis. < €)
= /_i o [—-\x L(( + 00Ziji + 0120 + 022 )i obs..
(Wt ooZy + o1 Zo + azzj)i,mfs. <cl|Zoy.s Zv)f(Zos. .., Zp,)dz0, . .., dzp,

mp,

- H— 120 — 022
- / / [ P(Z<® L\ Zo,..., Zp,)
TR =Em g0
m,
‘/‘(Z() ..... .71) Hf ;JL l ‘Z(),...,ZD‘)(I..".'()....,(l.'.’Dl
J e ‘7130“”2:j)2 9 2
X / / oxp{— > + 25+ 2]}
99

o ”“(b(u{,)”'”"“(l"g, coedzp,

N D, —1 &8 Yip — o — 0150 — 025
= / exp(—22/2) H/ exp(— exp{T }:(J”k FZ 1%~ o 121

It < k=1 g0

B(ur, ) (VIr o)™ dzd



This proposition enables us to have a likelihood which involves integration ouly
over two dimension rather than integration over the number of dimensions corre

sponding to the length of the missing data. This is the key step of our method.

5.2 The Existence of ML estimate

ML estimates may not always exist (Rao and Kielle, 1938). However, we have proved

Theorem 1 For model ( 4.5), there is a ML cslimalc.

PROOF. Let 8 = (g9, 01,02, 1) € [0.00)* x (—00,00) and

Jo L(p, Vi Y)

Sobs

x|
= expl—=z
I]:E /—oo \/27'(' I 0/

Dy ope m:; _ . o
{ H / exp{ l/i]k I g1<0 Ty J)z}

=1 Y7 0y

Q(w,;)" ™™ —=exp(— /) \/Ea(; Mz,

1
\/27r
H / —exp 2/ (10, )" dz, Yz

J'—D! obs +1
D,

/ \/_exp —z H/ \/*.(‘Xp 2w, ) d dzy,

where @(w) = [Y_ ¢(z)dr and w, = ‘"“"”;;"‘””

We are going to show that if § is the MLE of f3, then 3N « ~c and § ¢ [0, N|*
[N, N].

fo > 0 implies that 36 > 0 and 30" € [0.50)® # (~00, %) s.d. [y &,

Since ®(w) is bounded, as # goes to infinity exp{=h Yo (1 7 7 T2y,

217}

l'_bnb +1

hounded and \/_exp J/Z )(V2rap)™™ goes Lo zero, ve can obtain that limy ... [y
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). Taking any ¢ = 4. we should have
ANV € ([0.NP x [-N,N)) . fs<e=4.

It is casy to sce that fj is continuous on [0, N]* X [=N, N]. Therefore we know that
fa takes on its maximum value at least once in [0, NJ? x [~ N. N] by the result in any

calenlus text book(Swokowski, 1979).

The uniqueness of ML estimates of the parameters has not well proved yet, but
we have showed two properties which related to the convexity of the likelihood fp. I

hope these will help us to establish uniqueness in further research.
o [y is closed: Suppose
fon = fo.¥{0,} C [0, N]* x [-N.N]

We can show that we have jy € I' as following.

Since [0, NP x [N, N] is closed. we always can find a subsequence {8y, } s.t.
9'”-k —_ 90 E [ ] X [ N ]
and moreover

lim fg, =

[Zgade @

= lim ﬁ/ \/z_e\(p (—=2/2)

z-—mo

h(0,,; =0, m;,n;)dzg

B

h(lim 0,,,,~0, m;,n;)dzg
OO0
= f@o = fO

where

nubﬂ

h(0n,:20.mn) = | H / exp{ Juk —§i— 0120 — agzj)z}

ap




Y

] b R
(I)( w])n,—m, ’\79:; (‘Xp(——:;/:z)(\//271'(7(])“"“ ({fl

=

—‘Dx obs +1°

i /\,

=9 ube 41

D, 1
~2 n
== exp(—z,/2)®(w,)"dz,
J:l‘/_\ 2

o [ is bounded: Notice that

e\p 2200, ) ds, Mg

p(=3/2)

.._.1 LUZY) 1 N AR s P - ,
O(w, )™ ™ (V2ra0)™™ exp{—- 3t BT T Ty
= k=l o
~1 My, Y U — g — s
\/‘)7'0-0 —-m, pr{ Z( ik} 1<0 22, }2}
2 k=1 )

Hence

x 1 9
e €XP(— 25 /2
Dy obs mt]

{H/ eXp{——

"‘kl

l/z;k —H 0129 — 0% )2}
i

(I)(w )n,—ml

IR

1 2 ~ 1y
\/ﬁ exp(— / 2mag) Mz,

e‘xp 2/2 (w, )™ dz, Yz

—Dc obs +1
< ~z / ) Ty
< /_ _9 exp( /2) H - 2oy)
~1 = Yok — H— 0120 — 032,
exp{—;— S Y Vdz,dz,.
k=1 0

Also note that the function at right hand side is the likelihood with complete

data. It then follows that

e 1 —~ T
/_\/——9=7Tex1) ~u/ H/ 2may)™
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(>\I){ Z(ywk £ =170~ 0-2:'] )2}(13]()[30
Ty
—*Z 77)., _
= (2r)7 gy 1/zexp{—-— Yo— ST (Y — )}

where ¥, = 021, <, + 0iJ, + 0K,. By Rao and Kleffe (1988),

*Z

- -1, 1,
(2m) = S T 2 exp{ S (¥ — VST (Y - )}
is bhounded. Thus

Sop

i logv/—X

1=

_ exp(—=3/2)

l)b

l/ E— M — 0129 — 027
(I [ et Sty
L

1 %0

(I)(ll’ )n,--m.

IR

1
\/_)_e*q)( 2/ WV 2mag) ™ dz,

exp 22 [2)0(w,)™ dz, bz

1=Dy b +1
S X 1
by log / = exp(=53/2) / —=exp(=}/2)
1=54ps +1 - H
)™ dz,dzo

is bounded as well.

By an argument similar to that of Theorem 1, we have a simpler case

Theorem 2 For modd { 3.3), there is a ML estimate.

5.3 Confidence Intervals

(‘alculating point estimates for variance components with missing data is usually

not enough. We must give the user an idea of the precision or possible error of the
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estimates. In many estimation situations, it is of substantial interest to compnte

confidence intervals for parameters.

Approximate confidence intervals for variance components can be obtained from
the likelihood-ratio statistic. Let us assume that (Yi,....Y%) is a two-way nested
sample where Y, denote the vector of observations of those {rom ith sive. Y, is
ZJD=‘1 ni; dimensional normal distribution with mean g, and nonsingular covariance
matrix

ool + atJ, + o3k,
Then the likelihood is given by expression ({.5) of Chapter L. Il we denote (L.5) as
[(6;Y) where

g = (/1,03,0‘%,05’),

the likelihood-ratio statistic will be

— [(9; Y )marge.
l(es }’)Tllﬂl‘ge”

where (1 is the parameter space and w is the subspace corresponang to the null

A

hypothesis. The large-sample distribution theory of likelihood statisties implies that
—2[nA has approximate distribution \3n(m+1)/2 where m is the number of parameters
tested (McCullagh and Nelder, 1989).
Let 1(6; ¥ )mazpen be (it 02, 02,03 Y). For fixed o,
2

(g, 09,01, 0%: )

is maximized at ({2, 0, 0152+ 0352). Thus

SN n ~2 T2 91 4 2 -, 2 1
2(j1. 08, 0%, 031 y) = 2(ftz, 75. 0153, T3agi y) ~ (1) Holn 7).

These approximations are often quite accurate for small values of 8 even when Normal
approximations for parameter estimates are unsatisfactory (MeCullagh and Nelder,

1989).
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The set of all og-values satisfying
oign o2 2 o, T 2 T2 Tu o 2
2105 01 03:y) = 2l fioz. 05. 0152, 7521 4) S\ Ta
is an approximate 100(1 — o)% confidence set for o2.
Pl 0

Similarly we could get approximate 100(1 — )% confidence sets for g, o? and o2.



Chapter 6
Robust Procedures

This chapter provides robust procedures for variance components estimation with

missing datn from the one-way model.

6.1 The Need for Robust Statistics

As we mentioned in Chapter 1, statistical inferences are hased only in part upon the
observations. An equally important base is formed by prior assumptions about the
underlying situation. There are explicit or implicit assumptions about randomuness
and independence, about distributional models, perhaps prior distributions for svme
unknown parameters. and so on. These assumptions are not supposed to be exactly
true, but we would like to ensure that a minor deviation from the assumptions caises
only a small change in the final conclusions. Qobustness means insensitivity to small

deviations from the assumptions.

In the one-way model, we have
p= 124
Yy =+ 0+ G0y
J=12....,n
where o, and ¢,; are assumed to he independent N(0.7f) and N(0,a8). Both the

random effects a, and the random errors ¢,, can be contaminated. In principle.

6!
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robust procedures should be able to withstand contamination in both components
(Rocke 1983, Fellner 1986). Other departures from. the underlying model. such as
non-additivity or lack of independence of errors and/or random effects, will not be
considered here.

The following simulated examples illustrate the need for robustness for our esti-

nates.

Example 6.1: Assvme that data is collecled {from a one-way model with 5 classes
and 8 observation each class. In the simulation, we set mean y = 0, a; ~ N(0.1),
and ¢, ~ 0.95N(0,1) 4 0.05.5(0,50), respectively. a; and ¢,, are independent. The
estimates by ANOVA. MLE and MLE,,,s with complete data are summarized in
table 6.1.

a3 of #
ANOVA  1.7694 2.5854 -0.0383
MLE 47973 1.9174 -0.0343
MLE,,, 47173 2.3957 -0.0206

Table 6.1: 0§ =1.0. 0} = 1.0 and p = 0.0 with complete data

For complete data (10 observations). it can be seen that ANOVA, MLE and our
estimate M LI, could give very poor estimates when ¢;; has a contamination dis-

tribution.

Ixample 6.2. Taking the same data set in Example 6.1 and only using data which
are great than 0.0 (the largest 22 observations have been used), we list the results by
three methods in the following table 6.2.

The numerical results in table 6.2 shows that with missing data the three methods

all could give very poor estimates wher the ¢,, are contaminated.




e

Table 6.2: 0§ = 1.0, of = 1.0 and p = 0.0 with dala which are greater than 0.0

a5 o7 H
ANOVA  3.2895 0.125]
MLE 3.0862  0.1702 !

MLE,; 3.0441 0.1506 0.0100

6.2 The Influence Function

The influence function gives us a precise idea of how the estimator responds to a small
amount of contamination at any point. Those estimators which are very s nsitive to

the form of F will be most influenced by small amounts of contamination.

Formally. consider ohservations r1, ..., &, from an underlying density fy(x) where
§ = (01.....0,). Note that the ris may be univariate or multivariate. Any estimate

T, is defined by a minimum problem of the form
p(ri;Ty) = min!
or by an implicit equation

ZT/’k(J'i;Tn) =0 k=1...,p

1

where p is an arbitrary function and v (2: 0) = (9/00)p( 25 0). is called an M-estimator

(Field, 1982).

In the setting of interest for our 1-way problem, we consider observations Yi,..., ¥y
from a multivariate normal distribution fg(Y;) where § = (y1,0¢,08) and 7 == 1,..., A,
As we have developed in Chapter 3, the M LE,,,, estimales T, = (02,0, /1) are the

solutions of
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log L(6;Y) Zlog,[ (0.Y,)
1]
Aya . 15 ™ (y, _ 2 ’
- Z logf U(-)—m,q)(w)n‘—m, (‘XI){—‘—)'[ j l(y,) :1 0'1y0) +33}}d£’u
ezl - ~ 7o
A 2
1 log/ P(w)™ exp(— 5 DYdzy = min! (6.1)
1= 1
whete p is log L(0:Y;), (03 Y,) = (9/00)log LB Yo). k = 1,2.3, w0 = e=t=oa,

Therefore the variance components estimate with missing data by our method T}, is

an M-estimator.

Since the influence function of an M-estimator is proportional to > (Staudte and
Sheather, 1990), it is easier to study the influence function of an M-estimator through
its score function ¥. The 1‘elation.;hip

p(a; T(F))
= J(8/00)y (x; T(F)) F(dr)

shows that an M-estimator can in principle be defined by choice of 4 function to have

IF(ze; F\T) =

desirable properties of efficiency and robustness. Robustness would be achieved by

choosing i that is smooth and bounded to reduce the influence of extrem observations.

To examine the influence function of our M LE,,;; estimator, we derive ¥ from
the log-likelihood function of the 1-way model with missing data. Each term in the

funetion {3.3) of Chapter 3 is of one of two forms. Either

—2 1 ; —o1p)?
g [ oLy e e = ol | Az (62)
or
log/ /l—JINO) texp(—25/2)d= (6.3)

We denote term (6.2) as Ly; and term (6.3) as Lg;. Note that Lg; is independent
of y,, and also is bounded by logv27. When we look at the influence function as

Uiy = 2¢. we only need to consider Ly; for the limy, oo 1 (Y5;6).



We begin with the derivative

L8 77)
A= "oq -
i
— - 02 RGN a2
([ dog oo~ S exp{ 53 R sl do)
—m ~ 0120\, — 1 & Uiy — 1 — T1Zn .o
| A oama(tHE TR e e[y (L “’)~+~¢,]}¢1~(,}
-0 0o =1 To
o _ ~
+ A g aa(C Ty g3
—-00 Ty
Z i —0179)? ;
x exp{— [ 21l = 02 1%0) + 2] }d=}
0
® € H 010, 130 iy — g = o)
/ {/ o5 -q)( H (o5 ] 0) . mtexp{_.")'[ ) 1( J zl 10 +~()]}([~()}
o0 To 2 oG
> c — 01Z
+ {/ U_O—m,q)( ,ua 1 O)n.-ml
o o
1 Ui —0120)% . .
< (dexpl -~y ZAE T EZOEE |y i)
0
0 C— L — 012 1 iy — e~ o)
| A o TRy e g [RE b 2]} do)
= gitg+ys
where
—m; —m;
IL i/ Ly = ‘1,
9= 52 sil Lyi = 207
c—-;t-—alzg g~y —1 (‘“/L‘—UI'U
_.7”? 1 1
{ / N T
¢ -0y LS (g — = onzo) |
("—#.—“3‘1—0)@{1){* (== + za] i}
200 2 af
— 0120 o N I S (T TR 15 A
/ {/ 1O)n‘ ’(xp{——z[ A ~ ’ + ZE) =},
0

and
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3 =

MO = 130 1 &8 ¥ij — B — 0170

([ o T e, gy LSBT ET Oy
- To 4=t ap

] i Yy — H — 0120,9

- e )

(O'UJ-l( 0_8 ) 0}

= 0129 . e R
f e e (g [ (LT )
J=1

We deal with cach term separately. It is obvious that g; = 35+ is bounded. Let
0

gl0.Y,, z) = %[er;l(ﬂ_z_—%gﬂ)z + 23] and =222 = ¢, Then

g2 = {(ni - 7711')(?){_/_0; (1)l B(t)
()t2)exp( g(0.Y,.1))dt}
/ {A/%‘P £ exp(—g(6, ¥i, t)dt }

Using ©({) < 1 and exp(—g{8, ¥i.1)) < 1, we obtain

f=md roainde
0 S g2 S 2010’0 f ¢( ) .
JO(t)m—m exp(—g(0.Y,.1))dt

The RIS is bounded as y;; — oo, so that gy is bounded.

We now consider gs. Note that

ne m
1 z‘:(yu - H (71~0 Zl .l/u
> —
o Ty
1 my

= =SBy 2 MYy,
o} o

Now the first term of g3 becomes

oo L2 (#2)2 [22, () exp(—g(6, ¥, 1)) dt
f{—xx )(’Xp(—g(&,}’,,f))(lt
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Further reduction of the first term of gs gives

mi §
1 Yoy ~ ¢ )2
3 .
a0 J=1 il

As y;; — oo, we obtain
J L q” - (*

lim ——Z = 0.

Yoy (T() 0'()

We can show (as we did for g;) that

m, [2, 2O exp(—g(8. Y, 0)dt
oo 25 @) exp(—g(0. Y, 1))t

and
27 (B27) J 25, (1) exp(—g (0. Y., 1))t
JZ5 @(t)exp(—g(0, Y., 1))dt

are bounded when y,; goes to infinity.

It follows that lim, . ¢s = oo, so that the influence function for (r(‘} is not
bounded.
Next consider limy, —.o ¥'52.
dlog f(6;Y7) _
dol B
- 1 ny v, Ty ] .
{/ d@ — 21 0)"'_7"'/610 (’}\p{m—[;’ 21l = ?,2 o) F Az )
2 0
e Cm H— 0120y, lzn’(’/z ‘n,’,‘,)),
/ {/ q)(___u_._l_g)z, n‘(‘(]){ [ J=1 z 10 ' :‘(z‘ }d«lu}
Jy ]
—G m, Ue (- o
+ {/ CI) 10)'l“m’((l(’xp{~;-[w-ﬁ J*'[’) tozd)Hdafidz )
0
c — =0z 1o (n -
/ {/ ,L 1 U)n,—m. (‘XI){ [ZJ Wy 2 i- ” ]}([ ()
2 ag
= v+

where
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) =
{/ (11, —m,) (F —£= 01~U)n'_m'_1<f>(—“—“"“c —f 0130)(_2)

09 )
1y, — 01"0)2
(‘Xp{ 2[ J=1\du a.é +33}}(120}
— 01z 1.5 (Yo, — £ — 0120)?
[ TR e xR 0 gy,
g
and
Uy =
—J1%0 Ty, - Yoy — 170, -
IR up{——[z o BT )
0
%0 e Yoy — L= 0170
- e Y [
%g; ) 0)
= 0120, m, L &8 iy — 1 — 0120
[ (TR e exp (o[> (P I TR g ).
=1 i

As before, we can show that vy is bounded and vy goes to infinity as y,, increases.

[lence our af does not have a bounded influence function.

For i, we find

dlog f(0:Y])

I

T e R e 720 1 1))
fAf e ”1'“)"-*m'exp{ sl Jg‘””‘“)ﬁzéndso}
b e "“">"'-mt(dexp{—.l[zygl‘y“ = A duo)
YR = ‘U:"‘”"“)"'—m'exp{ P L R P

=y f oy

where



wy =

{/ nz —m )q)((' ,“ - T30 )n‘»mlu-l(:)((‘ = ,[l:f[i())( l )
a0 o) Ty
l Zm' (yi, — 0‘130)‘2 .
exp{— )[ = + 28] dzo}
0'0
= 0120\, —m 1 zm, (l/z L~ (7.
/ {/ (D _— )™ "exp{~~3[ L 0] t o)
2 ad
and
Wy =
— 012 ny—-m, l o Yoy — I (71~()
{/ 7 — ) exp( [Z} 72 ~u]
138 i — 1= 015
— ) (=—))d=
(= z 2020,
— 01z - L&y, —p—~o0
/ {/ 1 <0 by =111, "XP{——[L %] L ()) m”(l “}
%o 2 b

Clearly, wy is bounded and w; increases to infinity as y,; goes to infinity. The influence
function of ¢ is not hounded.
To have robustness, we need to modify our estimation procedure to ensure that

unbounded terms gs, v9 and wy hecome hounded

6.3 A Robust Procedure

Suppose that a; and ¢;; are contamina ed in the model y, = p f oy 1 ¢, As
noted above. the variance components estimates given by our method are sensitive
to deviations from the assumed distribution. A robust procedure for limiting the
influence of the deviation on the estimates is needed.

We propose an approach to obtaining resistant estimates by using Huber’s least
favourable density for location estimation and Huber’s least favourable density for
scale estimation as follows.

Using the same notation as for the [-way model in Chapter 3. we could write the
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likelihood L(0:Y,) as
L(6;Y,) /Hfuuu T Pl <clo)fie)de
J=m,+1
where & = g + «, and & ~ N(p, 07).
Replacing the normal N(g, o) density with Huber's least favourable density for

location estimation for the distribution of r. we obtain

l—e; -g-r—u}z : < I
Lole) = “—ﬁm“?( ) el < by
i-\-/(f? JXP — kil(« = ¢)/a1]). il otherwise

Replacing the normal N(0, 05) density with Huber's least favourable density for

scale estimation for the distribution of ¢;,, we obtain

2 .
fott) = | v Pl s
=0 exp( 55 ; )(M)(k Vot ] >k

(Huber, 1981).

Note that y,, = & + ¢,;. so we have the form below for f(y,, | r) instead of the

normal distribution N(r.a3) for f(y,, | r) in Chapter 3

iy | 4 { = exp(FHPE), if o~ aok <y, <@+ ook
3]

I, if ;o >y, > &+ oghk or —oc < y,; < — ook
where
1 —¢ ~l\2 ook 2
hy = oxp( (+%)
ouVIT ’Ju |

Further we obtain Py, < c|2) (if &> l)

s S exp(FR) RS2, ife <o — ook

TR ifo—koyg <e<x+ogk
JIEN ife>ur + UOk
where
1~ ¢ —k2 .
B - kDR %)+ @(k) — 1],

gy = ‘U - A'?)\/'EOXP( 2 )(}f)
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21=¢) —k e -kt .
= T ryyar SR R BT (= a2k
I—e¢

— K 2 2
exp( 5 (=) ),

T

The modified log L(8;Y;) becomes

' loggr, if [P2=5] <k and ¢ < & - ok
log g, if |M) < kand 2R <4
loggz. if "2 <k and ¢ > & + ook
log gs. il [*2] > k and ¢ < & — ook
log g5. if l"—’;—gf{ >k and |25 <k
log ¢, if |ifr—0‘-i| > kand ¢ > x4+ opk

where

=k T~ ~ g, -
loggr = log{ / 0 5= expl 7;('“ )
O a—
= l—c -

e )R
~,InT+1(1—A2)F xp( =) (k) (]

2
1 -
exp[—~ -k | —F

e —)ljar)

bl
[\
=~

“ I -« ~k? L, 0=

J=m,+1
I —¢ —~l r—u
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The modified log-likelihood function can be expressed L, = 321 log L{0;Y,). The

estimates for 6 = (03,07, 1) can be found by maximizing the above function L,.

To check the influence functions of the cstimates, we need to caleulate Vi l,",,lz and

¥,. Since P(y;, < ¢| &) and f(r) are independent of y,,, we can write log L.(#; ;) as

log L(G; Y) = log Py, ifr—ook <y, <ax+ ok
log P, otherwise
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When y,, and » are large, the derivative of log L,(6;Y,) with respect 10 o will be
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and 2 @
(< < M ]u+k1rrl Hj =1 exp(T)(|y”_r|) )d‘l M
< U4 _—
7n1f#+k101 HJ—":l exp(-ng)Hyj_d)(“)d‘r my
Since wuy, uy, wy, and vy are all bounded, ‘c;”,,g is bounded when y;; and & increase.
To get i, and ¥,. we consider
dlog L(0,Y:) 1 9L(0,Y,) o«
dot COL0Y))  or do?
and
dlog L(0,Y;) 1 0L(6,Y; )dr
du LY Or (‘),u
It is casy to see that
OL(0.Y,) O3 Ty exp(=5)(52) )G9, 2)da
. = " =0
da dx
and ,
oL(0.v,) 0 J Th2y exp(=5) (k) ¥9G(0, 2)de .
dr O T
Note that L(ol,)',)' is bounded, = 2 = 2p, and :,'fi = 1. We have that ¥,z and ¥, are
hounded.

We will have a bounded influence function as y,, and x both increase if we use the

modified likelihood function L,.

6.4 Examples

We implemented a small simulation study to investigate the performance of the esti-
mators presented above.

Lxample 6.3, Using the data in Exam_le 6.1, we give the estimates by our robust
procedure (M5, 5. k == 2,46, and by = 1.399). Table 6.3 illustrates the results,
compared with those three methods in Example 6.1

It can be scen that A1S,,, gives better estimates with complete data.



i

Table 6.3: 02 = 1.0, ¢ = 1.0 and u = 0.0 with complete duta

o%____ o J
ANOVA L7694 25851 -0.0388
MLE L7973 19174 -0.0348
MIS L7173 23957 -0.0200
MIS, 13258 07779 -0.0252

Example 6.4. Using the same largest 22 observations as in Example 6.2, we list

the results by four methods in Table (6..1) (k = 2.16, and &y = 1.399 for M/S.)

Table 6.4: 08 = 1.0, 0% = 1.0 and p = 0.0 with data which are grealer than 0.0

of ot p
ANOVA 3.2895 0.1251 1.3242
MLE 3.0862  0.1702  1.2478
MIS 3.0441  0.4506  0.0100
MIS,,, 0.9968 0.4504 0.0100

It appears from the table 6.4 that the A 1.5, improves the estimates.

Example 6.5. 11 groups of data are generaled using the same model and the same

parameters as in Example 6.1. The ¢,; have distribution
0.95N(0.05) + 0.05N(0, 5003).

The observations which are less then 0.0 are removed as missing data, Table 6.7 gives
the numecrical results of four methods (A = 131, and £ = 1.399)
The mean squared error (MSE) for cach estimates by M IS and M 1S, methods

are summarized as {ollows

o MSEps(o2) = 13.866, MSEns,, (o) = 0.2398,
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L A/[,C)']'/,M]S((T;Z) = {).4986. j\’[‘S’EMI&' Jb(UIZ) = (.4076, ilem JUSEMjs(,u) = 0.0808,
MS Enrs,, (1) = 0.0309.

We can see that M15,,5 gives better estimates when contamination is present. The

numerical results are consistent with the influence function study.



Table 6.5: 0 = 1.0, 0% = 1.0, g = 0.0 with data which arc great than 0.0

od a? I ol o} «f/iﬁ )
ANOVA 3.8045 1.0607 1.5601 |ANOVA L1187 L2100 8213
MLE 11514 0.3790  1.5725 MLE LART 83308 28508
MIS 6.1759  1.0069  0.0100 |MIS 3.9628  0.3600  0.0100
MIS,» 0.8227  0.5989  0.0100 [MIS,,, 18779 12219 0.0100
ANOVA 0.4832 11.7475 1.8647 |ANOVA 0.6309 0.2109  1.2636
MLE 0.4841  20.7956 3.0528 |MLE 0.6139 0.1117T  1.1603
MIS 1.2876  0.9155  0.0100 |MIS 0.9933 03745 0.3319
MIS,, 1.2863  0.9084  0.0100 [AIS., 1.0190 0.3711  0.3117
ANOVA 8.3105 0.6433 1.6960 ANOVA 0.3116 2.2732 1108
MLE 8.4691  0.0000 1.6939 IMLE 0.3171 27455  1.8168
MIS 11.3359 0.0232  0.0100 MIS 0.8121 0.2082  0.0100
MIS,,, 2.0091 0.0000 0.0100 |MIS,..,, 0.8423 0.6270  0.0100
ANOVA 1.1426 0.06:1 1.0758 ANOVA 1.1653 9.0148  T1.6228
MLE 1.0655 0.0623  1.0932 MLE 11736 240341 3.5973
MIS 24233  0.1625  0.0100 MIS 31263 0.1399  0.5102
MIS,, 0.9419  0.0000 0.0100 MIS., 0.7785 0.7187  0.0851
ANOVA 0.7296  0.002% 0.8799 JANOVA L7078 0.7022  1.9607
MLE 0.6805 0.0101 0.8716 MLI L6772 04799 1.7489
MIS 1.3110  0.0236  0.0100 |MIS 2.8349  1.2763  0.02h3
MIS,, 0.6451  0.0236 0.0100 |MIS,, 1.6168 1.2751  0.0100
ANOVA 10.8399 0.0798 1.1710 o
MLE 0.8139  0.0799  1.1418
MIS 1.1246  0.2096  0.6969
MIS,,, 1.1045  0.2094  0.4847

I \
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Chapter 7

Estimation of Random Effects

(‘hapter 1 has introduced the general linear mixed model
Y =Xpg4 Zy+e,

where Y is the vector of observations. X and 7 are known design matrices, g is a
vector of fixed effects, 4 is a vector of random effects, assumed to be distributed as

N(p, X)), and ¢ is a vector of error terms, distributed as N(0.021), and cov(y.€) = 0.

This chapter will discuss a practical problem associated with the model - predic-

tion of v (or estimation of random effects).

7.1 Introduction

(‘onsider measuring intelligence in humans. Each of us has some level of intelligence.
[t can never be measured exactly. As a substitute, we have test scores which are used
for putting a value to an individual’s 1Q. Psychologists use test scores to predict a
person’s intelligence. Here y is the vector of test scores and 4 is the unknowable true
value of a person’s intelligence. If 4 denotes the estimate of v, 4 will be the prediction
of a person’s intelligence. There are many situations similar to that of the people’s

[Q where we want to quantify the realization of an unohservable random variable.

89
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In particular in our examples, the unobservable random variable is the genetic
merit in our fish breeding set-up. Each individual fish has its own genctic merit
which can not be measured. We have the length (or weight) of his (or her) offspring.
We want to predict an individual's genetic merit by using the observable length (or

weight).

A statement of the general problem is easy. Suppose Y and 5 are jointly dis
tributed vectors of random variables, with those in ¥ heing observable hut those in 4
not being observable. The problem is to estimate 4 from observed value of Y . Usually

Y contains more elements than .

7.2 Estimation with Complete Data
Three methods of prediction are of interest:
e Best prediction (BP);
e best linear prediction (BLP);
e best linear unbiased prediction (BLUP).
The best predictor of v is the conditional mean of 4 given Y
BP(y) = k7 |Y).

If (Y,~) is multivariate normal
Y Voo
~ N Hy ’ |
o ey (DY

BP(y)=E(7 1Y) = py + CVHY =y ).

with ("= 77,



We can see that the predictor cannot be estimated without having values tor g, oty o
(", and V. Thus the best predictor is available when we know all the parameters of

the joint distribution of ¥ and 4.
For best linear prediction, we assume predictor is linear in Y, of the form
i=a+ BY
for some vector « and matrix B. Minimizing,
| [G =G =r6a0d
leads (without any assumption of normality) to
BLP(3) = i + CV=1(Y = 1y).

We still need knowledge of y,. py. €', and V' but without assuming norniality.
BLP(7) is identical to BP{y) under normality. Thus the best linear predictor is

available when we know all the parameters.

The BLUP (Best Lincar Unbiased Prediction) of 4 is a statistical methodology
that has been used extensively. Harville (1976) derived this estimate by extending

the Gauss-Markov theorem to cover random effects
BLUP(y) = E(y | Y, 3. V) = Var()4'V " (y - X73)
where
A= XV xynyy
(Robinson, 1991). It can be see that BLUP is available when we know V (Vs

replaced by an estimate in practice).

7.3 Estimation with Missing Data

When Y is observed as (y1...., ¥ m: Yma1 < CovoosYu < ¢)y we could not apply the
J1 s dms Yl ! R

formulas which are given in the last section to estimate v becanse of not having a



complete data vector Y. It i of interest to develop a method to estimate 5 with

(ive ooy s Yas1 < Creeesln < ¢). To do this use a Bayesian approach as follows.

o The prior density of v

We regard 4 as a parameter which has a prior distribution N(0,%). The prior
density for + is
i

7(2) = (2r) /2 {det B 2 exp (1S (7).

o The conditional density of (Y | 3,9)

Moaodel 1.1 can easily be rewritten as

P 1
Uy = Z Iz]ﬁ_] + Z SV T 6
J=1 k=1

fori=1.....n.

Under normality. the distribution of (y, | 4.v) will be

P q
I’V(Z ‘Fuﬂj + Z Sk Yk O'é)-
7=1 k=1

Since yy,....y, are independent when < is given, the conditional density of

(Y| 4,7) can he written as

FY189) = JIfwiv) I Ply<elw)

=1 i=m+1
m

= H(Qwag)'l/zexp Zl’uﬁ Z:zlﬂk):z
i=1 k=1

H (ID ]-—-1 11/3 Zk 1’*11»')’1»)

=m-+1 0o

o The posterior density of




8Y
Therefore the posterior density of 4 is
n L S 3R(0)
(Y x et
| )
We get
i m g -—1/) ""1 B q ,
wly [ V) = {I12rod) ™ Pexp  ln = Y aud, - 3 sl
1=1 “00 =1 k=1
1 =Y a3, =50 A , ,
H (D( Z_]»l e L/\‘-IHL‘W\ )(Bﬁ)ﬁq/h((l(‘t \;) 172
~=m41 09
-1, , .
exp (5=7'S71)}/ F(T). (7.1)

&

where f(}") is the density function of (y1,.. .. ¥ms¥me1 < €oovv vt < ¢) {Robin
son., 1991). For the one-way model, f(Y") is function ( 3.3) as we have derived
in Chapter 3, and f(Y") will be function ( -1.5) of Chapter | {or {wo way nested

model.

Estimation of 4 can be accomplished by maxmizing the posterior w(y | Y ) where

Yis (Y1se ey Ums Ymar < CyevnyYn < ).

If B, 03, o1. and o3 are known, wc could estimate 4 by mar (7 | ¥). The com
putation is straightforward since we do not really need to consider the denominator
of (7.1). It is just a function of ¥ and so, given Y7, is eflectively a constant, For
numerical calculations, one of the optimization routines in NAG can he used to get
the results. With o2, 02, and o3 unknown, a common practice is to replace them by
the estimates o2, oﬂlz, and o2 in expressions in (v | ¥). The estimates of af, of, and
o2 which we have developed in the previous chapters would be reasonable estimates

here.

If we let §, o, 02, and @2 be unknown parameters in w(y | ¥), the calculation of

(v 1Y)

MAT 552t o2

can be extremely difficult to carry out due to the high-dimension maxiniization.
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7.4 Example

To illustrate (7.1) we use the l-way model of Chapter 3. It has model equation
Yoy = p+ ¢y Suppose Y = (i1, Yz Y21 Yoz < ¢), g = 0. and 02 =0? =1, the
conditional density becomes

’ 1 .—-lr
Y [q) = RN Sl — ) + (12 — 1)’ + (g2~ @2)’]

Ole— a,)

where v = (aq, ;).
Note also that the prior of v is
1 -1 .
(1) = 5= exp (a7 +aj).
2

4

Hence the posterior density ( 7.1) is proportional to

- l "l 2
iy ]Y) e P Tz"[(yll — 1)’ 4 (g2 — )’ + (21 — a2)? + o + 0]
B(c — az). (7.2)

Taking log of the right-hand side of (7.2) and ignoring terms that are not functions

of 7, we obtain

-1 .
[ = '.'5“[(!/11 — )’ + (Y12 — a1)’ + (y21 — @) + af + o] + log(®(c — o).

F4

Differentiating this expression with respect to ¢y and ay will yield

dJl

;)—(;1’=(?/11—01)+(y12—01)—017
ol #(c — asg)
(-)m—(yzl ag) — a B(c—ag)

Lquating these two expressions to zero gives
yi+yz —3a; =0

and

c—a
Yo — 209 — *———¢( 2) = 0.

(P(C - (12)




Wt

ay = {y11 + y12)/3 and the solution of y — 20, — f&%—}{l = ) are the estimates of

the random effects 4 == (a1.2)".
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Chapter 8

Concluding Remarks

In this thesis, point estimates and approximate confidence intervals of variance com-
ponenis with a high proportion of missing data have been derived “oth for one-way
and two-way nested models. Despite recent advances in the analysis of data with
missing values, very little work has been done on variance components estimation
with missing data. The major difficulty of this subject is that the observations are
not independent. We can not write the tull likelihood as we usually do in survival
analysis

lik =TI f(t: ) I] Fie; 9).

obs mis

it will be also hard to apply the EM algorithm to this subject because P(8 | Yobs, Yrmus)
can not be written as linear in the unobserved data o, (Little and Rubin pointed out
that estimates can be severely biased when the EM approach is applied in general,
1983). Chapter 3 (section 3.5) gives more details about the difficulty of using the
IEM algorithm to estimate variauce components with incomplete Y. Therefore, our

results are particularly useful.

[n our model-based procedure, a full likelihood function is defined, in which the
missing information has been taken into account. This likelihood function is trans-

formed into a computable fun~tion which is maximized to get the estimates. Our
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method is applied to simulated data and agquacultural data. The results obtained are
significantly and nniformly more accurate than those obtained by any Hf the standard
methods. Different issues concerning the metho. (such as the existence, uniqueness,
confidence intervals, robust procedure, and random effects estimation) have been

studied in the thesis.

Future work will continue in several directions. Knowledge, or absence of knowl
cdge, of the mechanisms that led to certain values being missing [rom an observed
distribution is a key element in choosing an appropriate analysis and in interpret
ing the results. The mechanism that led to missing data in the seleetive genotyping
method which we describe here is a form where the threshold is fixed. In some sit
uations, the threshold may not he known exactly. Probabilistic thresholds may he
a characteristic of many populationsi, where the probability that data is observed
increases as the value of data increases. This situation will arise, for example, when
grading and scoring procedures are imper{ect. Thus most of the observed data are

large ones. We are currently working on this.

An assumption is being made in our procedure that the family size (n,,) is known.
If the family sizes are unknown, the problem will be much more difficult. If we
treated all n,, as unknown parameters, there will be 3=, n,, + 1 parameters for the
two-way model. The computation of the constrained nonlinear optimization will he
very difficult due to the large number of parameters. An alternative is to estimate
n;j first, thereby decreasing the number of parameters being optimized. ITow this will

effect the estimates of variance components has to be investigated.

Future investigation includes extending our method to different designs and get
ting robust procedure for different designs. In addition the global search of the pa

rameter space to solve our optimization problem is not very effective.
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Appendix A
Source Code of Programmes Used —

Three programmes were used for all the compuation in this thesis. The source code
of these programines are in ("4+-. Several source files may involve for a programme.

These programmes are listed below with the name(s) of source file involved:

o one-way (ow.cpp),
s one-way robust (owrub.cpp),

o two-way nested (mutw.hpp, mutw.cpp, and tw.cpp). -

These source codes were written for the Borland C+4 (3.0/3.1) compiler under —

PC/DOS.

A.1 One-Way

#include <conio.h>
#include <math.h>
#include <graphics.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.§>

#define NUMB_OF_GROUP 5
#define NUMB_PER_GROUP 8
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typedef signed char Boolean;
typedef unsigned char UCHAR;

#ifdef EIGHTY_BIT3

#define HUGE 4900
#define H_VAL 1.0E+4900
#define EP 1.0E-4900
#define TINY -4900.0 —
#define EXP(x) oxpl( x )
#define LOG{x) lo%l( x )
typedef long double MY_TYPE;
#else
#define HUGE 300
#define H_VAL 1.0E+300
#define EP 1.0E-300
#define TINY -300.0
#define EXP(x) exp( x )
#define LOG(x) log( x )
typedef double MY_TYPE;
#endif
#define NUMB_OF_NDDE 10
#define NUMB_SEARCH_STEP 5
const UCHAR OW_ANOVA = 0x01;
const UCHAR OW_MLE = 0x02;
const UCHAR OW_MM = 0x04;

void fatal_err( char *msg )
printf( "Error: %s!'\n", msg );

exit(1);
}/* end of fatal_err(...) */

float obs[ 40 ] = {

1.632, 1.974, 2.411, 1.370, 1.381, 2.419, 2.841, 3.341, —

0.691, 0.777, 2.202, 2.206, 0.983,
0.883, 1.279, 0.702,
0.232, 1.292, 3.529, 1.644, 1.545, 0.679, 1.444,

short data_struct[ 5] = {8, 5, 3, 7, 2};
}IY_TYPE Erf( MY_TYPE x )

static MY_TYPE a[] = { 0.0705230784, 0.0422820123, 0.0092705272
0.0001620143, 0.0002765672, 0.0000430638 };

MY_TYPE y = 1.0, xx = x;

short i;

for ( i=0;i<6;i++ ) {
y += alifsxx;
Xx %= x;

}
return pow( y, -18.0 );
}/* end of MY_TYPE Erf(...) for Phi(...) */
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MY_TYPE Phi( MY_TYPE u )

if ( u>=15.0 )
raturn 1.0;
if ( u¢=-15.0 )
return 0.0;

if ( w0.0 )

return 0.5%( 2.0 - Erf( ux0.7071067812 ) );
return 0.54Erf( ~ux0.7071067812 );
} /¥ Phi(...) #*/

?lass JINEWAY

public:
ONEWAY( float *_0Obs, short *_DataStruct );
“ONEWAY( void );
virtual veid SetData( float #_.0bs, short *_DataStruct );
float  *GetResult( UCHAR opt=0W_ANOVA );
void ShowResult( UCHAR opt=0W_ANOVA|OW_MLE );

protected:
virtual void DOIT( void );
void anova( void );

float mle( float *xx );
Float Dgtimize( float *1x, float *dx );
char *FileName, IsDONE;
shor. NoOfData #DatainGrp;
float ¥Data;
float x[ 10 ];
) FILE *in;

ONEWAY: :ONEWAY( float *_0Obs, short *_0bsinGrp )

{

DatainGrp = NULL:

Data = NULL;

SetData( _Obs, _ObsinCrp J;
FileName = NULL;

IsDONE = 0;

}//Cnd of ONEWAY::ONEWAY(...)

ONEWAY: : “ONEWAY( void )

delete E} Data;
delete DatainGry;
if ( FileName )
delete [l FileName;
else
fclose( in );
}//End of ONEWAY::~ONEWAY{)

void ONEWAY::SetData( float #_0Obs, short *_ObsinGrp )

{
if ( DatainGrp )
delete [] DatainGrp;
DatainGrp = new short[ NUwB_OF_GROUP ];
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if (!DatainGrp)
fatal_err( "No Memory" };

NoOfData = 0;
for ( short i=0;i<NUMB_OF_GROUP; L++ Y £
DatainGrp[i] = _ObsinCrpl i

NoOfData += DatainGrpl i ];

}
if ( Data )
delete [] Data;

Data = new float[ NoOfData ];
if (!'Data)
fatal_err( "No Memory" );

for ( i=0;i<No0fData;i++ )
Data[ il = _0bsl i1];

IsDONE = 0;

}//End of DNEWAY :SetData(...)

float *ONEWAY::GetResult( UCHAR opt )

{
if ( YIsDONE )
DOIT();

if ( opt&OW_ANOVA )

return x;
if ( opt&OW_MLE )

return &x[2];
else

return &x[6];
}//End of ONEWAY::GetResult(..

void ONEWAY::ShowResult( UCHAR opt )

{
if ( 'IsDONE )

DoIT();
printf ("ANOVA sigma_o 4f sigma.l %f mu %f\n", x[0], x[1], x[2] );
printf("MLE sigma o 4f sigma_1 %f mu %f\n", x[3], x[4], x[8] )
if ( opt&OW_MM )

printf ("KM sigma_o f sigma_1 %f mu %f\n", x[6], x[7],

s
}//End of ONEWAY::ShowResult(...)

%oid ONEWAY: :DOIT( void )

short 1i;
float 1x[4] ux[4], dx[4], oldoptf, optf, c;

IsDONE = 1;
anova()
1x[0] = 1x[1] 1x[2] = 0.01;
for ( 1— 1143, 1++
ux[i] = xf
gx i] = ux[l] - 1x[1] Y/NUMB_SEARCH_STEP;

oldoptf = 1.0; optf = 0.0;



while ( fabs( optf - oldoptf )>0.0001 ) {
oldoptf = optf;
optf = Optlmlze\ 1x, dx );
for ( 1-0 i<3;i++ ) 1
¢ = (ax[i] - 1x[i])/NUMB_SEARCH_STEP;
lx[ 1 =x[3+i ] - ¢;
( lx[1_;<0 01 )

1x[i] = 0.01;
ux[ij = x[ 3+1 ] +
gx[i] = (ux[i] - 1x[1])/NUhB SEARCH_STEP;
g

}//Eid of DNEWAY::DOIT()

zoid ONEWAY: :anova( void )

short i, j, k;
float sl, s2, s3, a;
k = 0;
sl = 82 = g3 = x[0] = x[1] =
for ( i=0;i<NUMB_O0F_GROUP;i++ ) {
x[0] += DatainGrp[i];
x[1] += DatainGrp[il*DatainGrp[il;
a = 0.0;
for ( j=0;j<DatainGrpl[il;j++ ) {
sl += obs[ k+j J*obs[ k+j 1;
a += obs[ k+j 1;

¥
k += DatainGrp[il;
§2 += axa/DatainGrp[i];
§3 += a;

¥
x[5] = x[2] = s3/z[0];
83 *= 83;
s3 /= x[0];
a ( x[O]*(NUMB OF_GROUP-1) )/( x[01#*x[0] - x[i] Y;
x[0] = ("si - 82 )7( x[0] - NUMB_OF_GROUP
x[1] = a*( ( s2 - s3 )/( NUMB_OF_GROUP - 1 ) - x[0] );
}//End of ONEWAY::anova()

%loat ONEWAY::mle( float *xx )

short j, i, 1;

float a, b, ¢, d, e, f;

a=1.0/xx[0];

f=1=0;

for ( i=0;i<NUMB_OF_GROUP;i++ ) {
f += log( pow( xx[0], DatalnGrp[i]-l )E:

( xx[01 + D ta1nGrp[1]*xx[1] ) )

g = x[l]/( xx[O]*xx[O] + DatainGrep[il*xx[0]*xx[1] );
for —O J<Data1nGrp[1] 0 1

J
= Data[ 1+ 1 - xx[ 21];
+= ckC;

+

f += a*d - b*e%e:
1 4= DatalnGrp[lj
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¥

return T;
}//7nd of ONEWAY::mle()

float ONEWAY::Optimize( float 1x, float *dx )
{

float xx[ 4 ], £, optf;

short j, 1, k;

optf = 1.0E+8;
xx[0] = 1x[o0];
for ( i=0;i<=NUMB_SEARCH_STEP;i++ ) {
/* loop for sigma_o */
xx[1] = 1x[1];
for ( j=0;3j<=NUMB_SEARCH_STEP;j++ ) { '
/* loop for sigma_l */
xx[2] = 1x[2];
for ( k=0; k<=NUMB_SEARCH_STEP;k++) {
£ =mle( xx );
it ( f<optf ) {

optf = f;

x[3]=xx[0];

x[4]=xx[1%;

xL 5] =xxC{21; —_—

X [2% += dx[2];
xx[1] += dx[1];
§XEOJ += dx[0];

return optf;
}//End of ONEWAY::Optimize(...) -

class ONEWAY_MM : public ONEWAY

{
public:
ONEWAY_MM( float *_Obs, short *_ObsinGrp, float _TruncataV );
“ONEWAY_MM( void );
void DOIT( void );
protected:
float Optimize( float *1x, float *dx );
void SetNodes( void ):
float func( float #*xx );
MY_TYPE IntgrT( float *xx, short ith_grp );
short *missing, *GrpPtr;
flout TruncatedValue;
MY_TYPE gx[NUMB_OF_NODE], gw[NUMB_OF_NODE];
3 MY_TYPE Node[NUMB_OF_NODE], dv{NUMB_UF_NODFE];

ONEWAY_MM: :ONEWAY_MM( float *_Obs, short *obs_per_grp,
float _TruncatedV ) :
ONEWAY( _Obs, obs_per_grp )
{

missing = new short[ NUMB_OF_GROUP 1;

q



GrpPtr = new short[ NUMB_OF_GROUP I;

if ('missing || !GrpPsr)
fatal_err( "No Memory" );

for ( short i=0;i<NUMB_OF_GROUP;i++ )
mlSSlng[l] NUMB_PER_GROUP - obs_per_grp[il;

Gertr[O]
for ( i=1; 1<NUMB OF_GROUP;i++ )

GrpPtr[il] = GrpPtr[i - 1] + obs_per_grp[i - 11;
TruncatedValue = _TruncatedV;
SetNodes();
}//End of ONEWAY_MM::ONEWAY_MM(...)
ONEWAY_MM: : “ONEWAY_MM{ void )

delete [] GrpPtr;

delete [] missing;

}//End of ONEWAY_MM::~ONEWAY_MM()
¥oid ONEWAY _MM: :DOIT( void )

short i;
float lx[4] ux[4], dx[4], oldoptf, optf, c;

ONEWAY: :DOIT();

1x[0] = 1x[1] = 1x[2] = 0.01;
for ( i=0;i<3;i++ ) {
ux[i] = x[ 3+i ]%2
gx[l] = (ux[i] - lxtl] ) /NUMB_SEARCH_STEP;

oldoptf = 1.0; optf = 0.0;
while ( fabs( optf - oldoptf )>0.0001 ) {
oldoptf optf;
optf = Optimize( 1x, dx );
for ( i=0;i¢3;i++ ) {
¢ = (ux[l% - 1x[i])/NUMB_SEARCH_STEP;
1x[i] = x[ 6+i ] - c;
if ( lx[1]<0 01 )
1x[i] = 0.01;
wx[il = x[ 6+i 1+
%x[l] (ux[i] - lx[l])/NUMB SEARCH_STEF,

+
}//End of ONEWAY_MM::PDIT()

float ONEWAY_MM::Dptimize( float *1x, float xdx )

{

float xx[ 4], f, optf;
short j, i, k;

optf = 1.0E+8;

xx(2] = 1x[2];
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for ( k=0;k<=NUMB_SEARCH_STEP;k++ ) {
xx[0] = 1x[0];
for ( i=0;i<=NUMB_SEARCH_STEP;i++ ) {
/* loop for sigma_o */
xx[1] = 1x[1];
for ( j=0;3j<=NUMB_SEARCH_STEP;j++ ) {
/% loop for sigma_1 */
2 = func( xx );
if ( f<optf ) A

optf = f;

x[ 6] =xx{[07;
L 7] =xx[1];
?E 81 =xx{21];

xx[1] += dx[1];
xx[0] += dx[0];
xx[2] += dax[2];
retuin optf;

}//End of ONEWAY_MM::Optimize(...)

void ONEWAY_MM: :SetNodes( void )

gx[0] = 0.98695326; gwl[C] = 0.033335672;
gx[1] = 0.93253168; gwl[1] = 0.07472567;
gx[2] = 0.83970478; gw[2] = 0.10954318;
gx[3] = 0.71669770; gwl[3] = 0.13463336;
gxl[4] = 0.57443717; gw[4] = 0.14776211;
gx[5] = 0.42556283; gw[5] = 0.14776211;
gx[6] = 0.28330230; gwl[6] = 0.13463336;
gx[7] = 0.18029522; gw[7] = 0.10954318;
gx[8] = 0.06746832; gwl[8] = 0.07472567;
gx[9] = 0.01304674; gwl[9] = 0.033335672;

for % short 1=0;i<NUMB_0F_NODE;i++ )

dv[i] = ( 1.0~ gx[i] ) / gx[il;
Node[i] = LOG( gw[i] ) - 0.5%dv[il*dv[i] ~ 2.0+L0G( gx[i] );

}
}// End of void ONEWAY_MM::SetNodes()

float ONEWAY_MM: :func( float *xx )
short i;

float £ = 0.0;

MY_TYPE £f;

xx[0] = sqrt( xx[0] );
xx[1] = sqrt( xx[1] );

for ( i=G; i<NUMB_OF_GROUP;i++ )

ff = IntgrT( xx, 1 );
if (ff > EP)

n
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£ -= L0G( ££ );
alse

f -= TINY;
}

xx{0] *= xx[0];

xxEl] *= xxEl%;

return f;

}//End of ONEWAY_MM::func(...)

MY_TYPE ONEWAY_MM::IntgrT( float *xx, short ith_grp )

short j, node_i;
float * y.ij = &Datal GrpPtr[ith_grpl 1;
MY_TYPE w, 2, invxx0O, phi, d, e, s;

invxx0 = 1.0/xx[0];
e = DatainGrp[ith_grpl;
e *= LOG( xx[0] );

s = 0.0;
for (node_i = 0; node_i < NUMB_OF_NODE; node_i++)

w = ( xx[2] + xx[1] * dv[nede_i] ) * invxx0;
phi = Phi( TruncatedValue * invxx0 - w );

if (phi > 0.0)

{
z = 0.0;
for (j = 0; j < DatainGrplith_grpl; j++)
{
d =y ijl j 1 * invxx0 - w;
z += (d * d);
d = Node[node_i] + missing[ith_grp] * LOG( phi )

~0.5%2z - ¢;

if (d > TINY)

s += EXP( d );
else

g += EP;

w= ( xx[2] - xx[1] * dv[node_i] ) * invxx0O;
phi = Phi( TruncatedValue * invxx0 - w );
if (phi > 0.0)

{

z = 0.0;

for (j = 0; j < DatainGrp[ith.grpl; j++)

=y ij[ § 1 * invxx0 - w;
+= (4 * d);

N

d =
- 0.5 xz - g3

if (d » TINY)
s += EXP( d );

ode[node_i] + missing[ith_grp] * LOG( phi )
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else
s += EP;

return 0.5%s;
}// End of MY_TYPE ONEWAY_MM:.IntgrT(...)

main()
ONEWAY_MM *ow = new ONEWAY_MM( obs, data_struct, -1.0 );
ow->ShowResult( OW_MM );

delete ow;
return O;

A.2 One-Way Robust

#include <assert.h>

#include <conio.h>

#include <math.h>

#include <graphics.h>

#iaclude <sidio.h>

#include <stdlib.h>

#include <string.h>

#include <time.g>

typedef signed char Boolean;

typedef unsigned char UCHAR;
#ifdef EIGHTY_BITS

#define HUGE 4900

#define H_VAL 1.0E+4900

#define EP 1.0E-4900

#define TINY -4900.0

#define EXP(x) expl( x )

#define LOG(x) logl( x )

#define SQRT(x) sartl( X )

typedef long double MY_TYPE;
#else

#define HUGE 300

#define H_VAL 1.0E+300

#define EP 1.0E-300

#define TINY -300.0

ftdefine EXP(x) exp( x )

#define LOG(x) log( x )

#define SQRT(x) sgrt( x )

typedef double MY_TYPE;
#endif

const UCHAR OW_ANOVA = 0x01;

const UCHAR OW_MLE = 0x02:

const UCHAR OW_MM = 0x04;
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/* Parameters for robust estimate */
MY_TYPE Alpha = 0.05;
MY_TYPE Beta = 1.345;

MY_TYPE ci = (1.C - Alpha) / 2.5066283;

MY_TYPE C1 = (1.0 - Alpha) / (Beta * 2.5066283);
MY_TYPE C2 = C1 % EXP(0.5 * Beta * Beta);
MY_TYPE C3 = C1 % EXP(-0.5 * Beta * Beta);

#define NUMB_SEARCH_STEP 5
#define NUMB_OF_NODE 150

const float UpperBound = 20.0;
const float LowerBound = -20.0;
#define NUMB_OF_GROUP 5
#idefine NUMB_PER_.GROUP 8

const float TruncatedValue = -0.0
short data_struct[NUMB_OF_GROUP] = {2 8, 1, 8, 2};

%loat obs [NUMB_OF_GROUP * NUMB_PER_GROUP] =

1.236, 1.081,
i1.624, 1.718, 2.131, 3.681, 3.352, 1.899, 2.695, 1.486,

0.110
0.807, 1.772, 3.587, 3.119, 2.474, 3.086, 2.705, 2.573,
0.821, 1.225,

void fatal_err( char *msg )

printf( "Error: Ys!\n", msg );
exit(1);
}/* end of fatal_err(...) */

%Y_TYPE Erf( MY_TYPE x )

static MY_TYPE a[] = { 0.0705230784, 0.0422820123, 0.0092705272
0.0001520143, 0.0002765672, 0.0000430638 };

MY_TYPE y = 1.0, xx = x;

short i;

for ( i=0;i<6;i++ ) {
y += alil*xx;
XX %= x;

by
return pow( y, -16.0 );
}/* end of MY_TYPE Erf(...) for Phi(...) %/

%Y_TYPE Phi( MY_TYPE u )

if ( u>=15.0 )
return 1.0

if ( u<=-18.0 )
return 0.0;

if ( w0.0 )



return 0.5%( 2.0 - Erf( ux0.7071067812 ) );
return 0.5*%Erf( -ux0.7071067812 );
}/* end of MY_TYPE Phi(...) */

ﬁlass ONEWAY

public:
ONEWAY( float *_0bs, short *_DataStruct );
“ONEWAY( void );
virtual void SetData( float *_0bs, short *_DataStruct );
float  *GetResult( UCHAR opt=0W_ANOVA );
void ShowResult ( UCHAR opt=0W ANDVAIOW MLE J;
protected:
virtual void DOIT( veid );
void anova( void );
float mle( float *XX )
float gtlnlze( float *lx float *dx );
char ileName, IsDONE;
short NoOfData, *DatalnGrp,
float *Data;
float x[ 10 J;
) FILE *in;

ONEWAY: :ONEWAY( float *_0bs, short *_0ObsinGrp )

{
DatalnGrB NULL;
Data = NULL

SetData( Dbs, _ObsinGrp );
FlleName = NULL;

IsDONE =

}//End of DNEWAY LONEWAY(...)

ONEWAY: : "ONEWAY( void )

delete [] Data;
delete [] DatalnGrp,
if ( FileName )
delete [] FileName;
else
fclose( in );
}//End of ONEWAY : "ONEWAY ()

void ONEWAY:-SetData( float *_0bs, short #_0bsinGrp )

Ef ( DatainGrp )

delete [] DatainGrp;
DatainGrp = new short[ NUMB_OF_GROUP 1;
if (!DatainGrp)

fatal_err( "No Memory' );

NoOfData = O,
for ( short 1=0;i<NUMB_OF_GROUP;i++ ) {
DatainGrp[i] = _ObsinGrpl i 1;

NoOfData += DatainGrp[ i J;
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¥
if ( Data )
delete [] Dataj

Data = new float[ NoOfData J;
if (!Data)
fatal_err( "No Memory" );

for ( i=0;i<NoOfData;i++ )
Data[ 1 ] = _Obs{ i J;

ISDONE = 0;

¥/ /End of DNEWAY :SetData(...)

float *ONEWAY::GetResult( UCHAR opt )

{
if ( !'IsDONE )
DOITQ)
if ( opt&OW_ANOVA )
return Xx;
if ( opt&0OW_MLE )
return &x[3];
else
return &x[6];
}//End of ONEWAY::GetResult(...)

void ONEWAY::ShowResult( UCHAR opt )

{
if ( VIsDONE )
DOIT();

printf ("ANJVA sigma_o Uf sigma_ 1 %f mu %f\n", x[0], x[1], x[2] );
printf("MLE sigma.o %f sigma_1l f mu %f\n", x[3], x[4]1, x[5] );

if ( opt&OW_MM )

printf ("MM sigma_o #f sigma_l %f mu %£f\n", x[6], x[7],

x{8] );
}//End of ONEWAY::ShowResult(...)

¥oid ONEWAY: :DOIT( void )

short i;
float 1x[4], ux[4], dx[4], oldoptf, cptf, c;

IsDDNE = 1;

1x[0]
for (

oldoptf = 1.0; optf = 0.0;
while ( fabs( optf - oldoptf ) > 0 0001 ) {
oldoptf = optf;
optf = Optlmlze( 1x, dx );
for ( i=0;i<3;i++ ) {
¢ = (ux[i] - 1x[i1)/NUMB_SEARCH_STEP;
1x[i] = x[ 3+i 1 - c;
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1x[i] = 0.01;
ux[i] = x[ 3+1 1+ c;
%x[ﬂ = (ux[i] - 1x[i])/NUMB_SEARGH_STEP;

}
}//End of ONEWAY::DOIT()

%oid ONEWAY: :anova( veid )

short i, j, k;
iloat si, s2, s3, a;
sl =82 = = x[0] = x[1] =
for ( i=0; 1<NUMB OF_GROUP; i++ ) {
x[0] += DatainGrp[il;
x[1] += DatalnGrp[l]*DatainGrp[i];
a =0.0;
for ( j=0;j<DatainGrp[il;j++ ) {
gl += obs[ k+j J*obs[ k+j 1;
a += obs[ k+j 1;

}
k += DatainGrp[il;
s2 += a*a/DatainGrp[i];

?3 += a;
x[5] = x[2] = s3/x[0];
5375 S,
la =( x[0]*(NUMB_OF_GROUP-1) )/( x[0]#*x[0] - x[11);
x[0] = (st - 82 )7( x[0] - NUMB_OF_GROUP
x[1] = a*( ( s2 - s3 )/( NUMB_OF_GROUP - 1 ) - x[0] );
}//End of ONEWAY::anova()

float ONEWAY::mle( float #xx )

short j, i, 1;
float a, b, <, d, e, f;

% = i.o/xx 01;
for ( i=0;i<NUMB_QF_GROUP;i++ ) {
f += log( pow( xx[0], DatainGrpl[i]-1 )*
xx[0] + Data1nGrp[1]*xx[1] ) )
3 = xx[i%/( xx [0]*xx [0] + DatalnGrp[l]*xx[O]*xx[lj )
=@
for ( j=0;j<DatainGrpl[il;j++ ) {
c = Data[ 1+5 1 - xx[ 21;
d += cxc;
g += C;
¥
f += a*d - bkexe;
1 += DatalnGrp[lj
}
return f;

}//End of ONEWAY::mle()

float ONEWAY::Optimize( float #1x, float *dx )
{



float xx[ 4 ], f, optf;
short j, i, k;

optf = 1.0E+8;
xx[0] = 1x[0];
for ( i=0;i<=NUMB_SEARCH_STEP;i++ ) {
/* loop for sigma_o */
xx[1] = 1x[1];
for ( j=0;j<=NUMB_SEARCH_STEP;j++ ) {
/* loop for sigma_1 */
xx[2] = 1x[2];
for ( k=0; k<=NUMB_SEARCH_STEP;k++) {
f =mle( xx );
if ( f<optf ) {

optf = £

x[ 3] =xx[01];
x[4]=xx[1%,
xL 5] =xx[21];

xx[1] += dx[1];
ﬁx[O] += dx[0];

return optf;
}//End of ONEWAY::Optimize(...)

class ONEWAY_MM : public ONEWAY

{

public:
ONEWAY_MM( float *_0Obs, short *_0bsinGrp, float _TruncateV );
“ONEWAY_MM( void );
void DOIT( void );

protected:
float Optimize( float *1x, float *dx );
void SetNodes( void );
float func( float *xx );
MY_TYPE IntgrT( float *xx, short ith_grp );
short *missing, *GrpPtr;
float TruncatedValue;

3 MY_TYPE interval;

H

ONEWAY_MM: :ONEWAY_MM( float *_Cbs, short xobs_per_grp,

float _TruncatedV ) :
ONEWAY( _.Obs, obs_per_grp )
{

missing = new short[ NUMB_OF_GROUP ];
GrpPtr = new short[ NUMB_OF_GROUP ];
if (!missing || !GrpPtr)

fatal_err( "No Memory" );

for ( short i=0;i<NUMB_OF_GROUP;i++ )
missing[i]l = NUMB_PER_GROUP - obs_per_grplil;



Gertr[O]
for ( i=1; 1<NUMB OF _GROUP; i++ )

Grpptr[i] = GrpPtr[i - 1] + obs_per_grpl[i - 11;

TruncatedValue = _TruncatedV;
SetNodes();
}//End of ONEWAY MM::ONEWAY_MM(...)

%NEWAY_MM::”DNEWAY_MM( void )

delete [] GrpPtr;
delete [] missing;
}//End of ONEWAY_MM:: ONEWAY_MM()

Xoid ONEWAY_MM: :DOIT( void )

short i;
float 1x[4], ux[4], dx[4], oldoptf, optf, c;

ONEWAY: :DOIT();

1xf0] = 1x[1] = 1x[2] = 0.01;
for ( i=0;i<3;i++ ) {
ux [ b 341 %2
[ ( ux[i] - 1xt1] ) /NUMB_SEARCH_STEP;

] lI

oldoptf = 1.0; optf = 0.0;

while ( fabs( optf - oldoptf ) > 0.0005 ) {
oldoptf = optf;
optf = Optlmlze( 1x, dx );

for ( i=0;i<3;i++ )

prlntf( ooy .efr, x[6 + il );
(ux[i] - IXEl])/NUMB SEARCH_STEP;
1x[ 1 =x[6+1 ] ~ c;
if ( 1x[1]<0 01 )
1x[i] = O .01;
[ i1+ ¢
(ux[1] - 1x[17])/NUMB_SEARCH_STEP;

}
print£( "\n" );
}//Eid of ONEWAY_MM::DOIT()

ux[i
dx[i

L]

float ONEWAY_MM::Optimize( float *1x, float *dx )

{
float xx[ 41, f, optf;
short j, i, k,

optf = 1.0E+8;
xx[2] = 1x[2];
for ( k=0;k<= NUMB SEARCH_STEP;k++ ) {
xx[0] = 1x[0];
for ( i=0; 1<-NUMB SEARCH_STEP;i++ ) {
/* loop for sigma_o */

109
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xx[1] = 1x[1];
for ( j=0:j<=NUMB_SEARCH_STEP;j++ ) {
/* loop for sigma_1 */
f = func( xx_ );
if ( f<optf ) {

optf = f;

xE 6] = xxE 01];
x[ 7] ==x[1];
x[ 81 =xx[21];

xx[i% += dx[1];
xx[0] += dx[0];
xx[2] += dx[2];
retuin optf;
}//End of ONEWAY_MM::Optimize(...)
void ONEWAY_MM::SetNodes( void )

interval = (UpperBound - LowerBound) / NUMB_OF_NODE;
}// End of void ONEWAY_MM::SetNodes()

%luat ONEWAY_MM: :func( float *xx )

float £ = 0.0;
MY_TYPE f£ff;

xx[0 SQRT( xx[0] );
xx[i} SQRTE xin% ),
for ({i=0; i<NUMB_OF _GROUP;i++ )
ff = IntgrT( xx, 1 );
if (ff > EP)
f -= LOG( ££ );

else
f -= TINY;

g

xxEO] *= xxEO];
xxl1] *= xx[1];

return f;

}//End of ONEWAY_MM::func(...)

MY_TYPE ONEWAY_MM::IntgrT( float #*xx, short ith_grp )

short j, node_i;
float * y_ij = &Datal GrpPtr[ith_grp]l 1;

MY_TYPE 4, f1, f2, £3; /* variables */
MY_TYPE s; /% result */
MY_TYPE w;

MY_TYPE x; /* x for £(x) */

MY_TYPE invxxO, invxxi;



1.0 / xx[0];
1.0 / xx[1];

invxx0
invxxi

0.0;
LowerBound
for (node.i = 0; node_i <= NUMB_OF_NODE; node_i+)

wn

S

= Beta * (TruncatedValue - x) * invxx0;

f1 = 1.0;
for (j = 0; j < DatainGrp[ith_grpl; j++)

= (y_ij[j] - %) * invxx0;
1f (x - xx[0] * Beta <= y_ 13[3] & y_ 1j[j] <= x
+ xx[0] * Beta)
fi #= ¢l * invxx0 * EXP( -0.5 * d * d };

f1 %= cl * invxx0 * EXP( 0.5 * Beta * Beta
- Bet? * fabs( d ));

if (0 != missingl[ith_grp]l)

if (TruncatedValue <= x - Beta * xx[0])
d = C1 * EXP( 0.5 * Beta * Beta + w );
else if ( x - Beta % xx[0] < TruncatedValue
&& TruncatedValue <= x + Beta x xx[0])
d=0C¢3+ (1.0 - Alpha) * (Phi{ w / Beta) +
Phi( Beta ) - 1.0);
elsge

// if ( TruncatedValue => x + Be t * xx[0] )
d=2.0%C3+ (1.0 - Alpha) * (2.0 * Phi( Beta )
- 1.0) - C2 * EXP(- w);

}

£2 = pow( d, (MY_TYPE) missing[ith_grp] );

¥

else
f2 = 1.0;

d = (x - xx[2]) * invxxi;

3 = EXP(-0,5 * d % d) * 0,7071067 * invxxi;
s +— interval * f£f1 * £2 % £3;

x += interval;

return s;
}// End of MY_TYPE ONEWAY_MM::IntgrT(...)

main()

ONEWAY_MM #ow = new ONEWAY_MM( obs, data_.struct, TruncatedValue );

ow->ShowResult{ OW_MM );

delete ow;



return 0;

A.3 Two-Way Nested

There are three source file involved in this programme.

A.3.1 Header File

#include <stdio.h>

#ifdef EIGHTY_BITS

#define HUGE 4900
#define H_VAL 1.0E+4900
#define EP 1.0E-4900
#dafine TINY -4900.0
#define EXP(x) expl( x )
#define LOG(x) %l( x )
typedef long double MY_TYPE;
#else
#define HUGE 300
#define H_VAL 1.0E+300
#define EP 1.0E-300
#define TINY ~300.0
#define EXP(x) exp( x )
#define LOG(x) log( x )
typedef double MY_TYPE;
#endif
#define MAXDIM 100

#define NUMB_OF_SIR 8
#define NUMB_OF_DAM 3
#define NUMB_OF_SIB 20

typedef unsigned char  UCHAR;
typedef unsigned short USHDRT
typedef char Boolean,

const USHORT MLEMode = 0x0001;
const USHORT MissSirIncl = 0x0002;
const USHORT MissDamIncl = 0x0004;
const USHORT BadMemory = 0x0001;
const USHORT BadFile = 0x0002;

Boolean PlotResults(float *obs,int nobs, float 1lb, float ub);

class UTW_ANOVA // unbalanced two-way
analysis of variance

public:



UTW_ANOVA( char #DataFileName );
“UTW_ANOVA( void );
float *GetResults( void );

protected:
virtual void DoIt( void );
short NoOfSir, NoOfDam, NoOfOffspring:
short *SirToDam, *DamToOffspring;
float *0bs, x[10]:
Boolean IsDone;

) FILE ¥in;

class UTW_MLE : public UTW_ANOVA //unbalanced two-way
max. likelihood est.

public:

UTW_MLE( char *DataFile, USHORT _flag=0U ):

UTW_ANOVA( DataFile ), SearchStep(4), flag(.flag){}

void  DoANOVA( void );

void  GetPlotData(float *g,short n,float #x,float
1x,float ux, short 0bs);

USHORT GetFlag( void ) { return flag; }

void SetFlag( USHORT _flag ) { flag=_flag; }
protected:

virtual MY_TYPE func( float *xx );

_ USHORT flag;

private:

short  SearchStep;

};

class UTW_MM : public UTW_MLE
{

public:
UTW_MM(char *DataFile, USHURT _flag=0U);
“UTW_MM( void );
const float * GetTargetParameters{void)

{ return &target_parameters[0]; }
protected:

~ MY_TYPE func( float *xx );
private:
MY_TYPE IntgrV( float #*xx, short ithSir, short Dam.i );
MY_TYPE IntgrT( MY_TYPE dv, float *xx, short miss,

short Dam_ij );

MY_TYPE IntgrV( float *xx );
MY_TYPE IntgrT( MY_TYPE dv, float *xx );
void SetNodes( void );
MY_TYPE Node[10], dt[10];
float TruncatedValue, *Sum_Yiﬁ, target_parameters[5];
short *missing, *0bsptr, NoOfNode;
N short FullNo0fSir, FullNoOfDam, FullNoOfSib;

class TWG
public:
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TWG( float _sigma0, float _sigmail, float _sigma2, float _mean,
float _TrimRate=0.25, short _RandSeed=0 );
“TWG( void );
Boolean Dolt{ void );
void SetTrimRate( float _TrimRate );
void Write( char *FileName=NULL );
void WriteMis( char *FileName=NULL );
private:
void Generatelt( void );
short Trim( void );
float NrmlGen( float var );
void sort_f( float *x, short n ):
float *Sir, *Dam[MAXDIM];
float *0Obs (MAXDIM] [MAXDIM], *Tmp;
float sigma0, sigmal, 51gma2 mean, tv, TrimRate;
UCHAR #SirToDam, *SeramChlld[MAXDIM]
UCHAR #sirtodam, *sirdamchild{MAXDIM], noofsir;
short NoOfSir, NoOfDam, NoOfOffsprlng, NoTrimmed;
short RandSeed
} FILE xio;

void Fatal_Error( char msg );
extern USHORT TW_Error;

A.3.2 Two Source Files

This is the primary source code for computation.

#include "mutw.hpp"

#include <cnnio.h>
#include <graphics.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
¥include <time.h>

#define TRUE 1
#define FALSE 0
USHORT TW_Error;

void Fatal _E.ror( char *msg )
{

printf( "Error: ¥s!\n", msg );
putch(7);
exit(1);
}/* end of Fatal_Error(...) %/

%Y_TYPE Exf{ MY_TYPE x )

L] static MY_TYPE a[] = { 0.0705230784, 0.0422820123, 0.0092705272,
0.0001520143, 0.0002766672, 0.0000430638 };




/!

/!

MY_TYPE y = 1.0, xx = Xx;
short i;

for ( i=0;i<6;i++ ) {
y += al [i]%*xx;
ZX k= X;

return pow( y, -16.0 );
}/% end of MY_TYPE Erf(...) for Phi(...) %/

MY_TYPE Phi( MY_TYPE u )

if ( u>=15.0 )
return 1.0;
if ( u<=-15.0 )
return 0.0;

if ( u»0.0 )

return 0.5%( 2.0 - Erf( ux0.7071067812 ) );
return O. S*Erf( -ux0.7071067812 );
}/* end of MY_TYPE Phi(...) %/

MY_TYPE phi( MY_TYPE w )

{
return ( 0.398942280401433 % EXP( -0.5 * w * w ) );
by /1 phiQ)

MY_TYPE phi_deriv( MY_TYPE w )

return ( -w * phi( w ) );
} // phi_deriv()

TWG: :TWG( float _sigma0, float _sigmal, float _sigma2,
float _mean, float _TrimRate, short _RandSeed ):
sigma0(_ 31gma0), sigmai(_sigmal), sigma2(_ 51gma2),
mean{_mean), RandSeed(_RandSeed)

short i, j, k;

if ( RandSeed<=0 ) {
randomize();
RandSeed = rand();

srand( RandSeed );

SetTrimRate( _TrimRate );
No0fSir = 5; // + random( 6 );

NoOfSir = NUMB 0F_SIR;

SirToDam = new UCHAR[ NoOfSir 1

sirtodam = new UCHAR[ NoOfSir ];

Sir = new float[ NoOfSir 1;

NoOfDam = NoOfOffsprlng

for ( i=0;i<No0fSir;i++ ) i
J 5- /] + random( )
j= NUMB OF .DAM;
SirDamChild[i] = new UCHAR[ j 1;
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gsirdamchild[i] = new UCHARL j ];
Dam[i] = new float[ j 1;
NoOfDam += j;

SirToDam[i] = j;

}

for ( i=Q;i<NoOfSir;i++ )
for ( j=0;j<SirToDam[i];j++ ) {
k = 16; // + random( 15 );
k = NUMB_OF_SIB;
NoOf0ffspring += k;
Obs[i][j] = new float[ k ];
SirDamChild[i] [j] = k;

}
Tmp = new float[ NoOfOffspring 1;
}// End of TWG::TWG(...)

TWG: : "TWG( void )

short i, j;
delete [] Tmp;
for ( i=NoOfSir-1;i»=0;i-- )
for ( j=SirToDam[ij-1;j>=O;j-- )]
delete [J Obs[i][i];

for ( i=NoOfSir-1;i»>=0;i-- ) {
delete [] Damlil;
delete E% sirdamchild[i};;
delete SirDamChild[i

delete E} Sir;

delete sirtodam;
delete [] SirToDam;
}// End of TWG::"TWG()

.
3

%oid TWG: :SetTrimRate( float _TrimRate )

TrimRate = _TrimRate;
if ( TrimRate<0.0 )
TrimRate = 0.0;
if ( TrimRate>»0.95 )
TrimRate = 0.95;
}//End of TWG::SetTrimRate(...)

Boolean TWG::DoIt{ void )

short j = 0;

float c;

do {
Generatelt();

¢ = NoOfOffspring;
¢ *= TrimRate;
NoTrimmed = (short)c;
if ( NoTrimmed<i )

tv = Tmp[0] - 0.1;



else
tv = Tmp[ NoTrimmed-1 J;
j o+
} while ( Trim()==FALSE && j<100 );
if ( §>=100 )
return FALSE;
Write();

WriteMis();
return TRUE;
}// End of TWG::DoIt(...)

¥oid TWG: :GenerateIt( void )
short kkk, k, j, i;

for ( i=0;i<No0fSir;i++ )
Sir[il = NrmlGen( sigmal );

for ( i=0;i<No0fSir;i++ )
for ( j=0;j<SirToDam[i];j++ )
Dam[i][j]1 = NrmlGen( sigma2 );

kkk = 0;
for ( i=0;i<No0fSir;i++ )
for ( j=0;j<SirToDam[i];j++ )
for ( k=0;k<SirDamChild[i][j];k++ )
Tmp [kkk++] = 0bs[i]1[j]1[x] =
mean + Sir[i] + Dam[i][j] + NrmlGen( sigmaO );

sort_f( Tmp, NoOfOffspring );
}// End of TWG::GenerateIt()

%hort TWG: : Trim()
short i, j, k;

noofsir = NoOfSir;
for ( i=0;i<No0fSir;i++ ) {
sirtodam[i] = SirToDam[i];
for ( j=0;j<SirToDam[i];j++ )
sirdamchild[i][j] = SirDamChild[i][jl;
¥

for ( i=0;i<NolfSir;i++ )
for ( j=0;j<SirToDam[i];j++ )

{
for ( k=0;k<SirDamChild[i][j];k++ )
it ( Obs[il 3] [Kl<=tv )
gsirdamchild[i][j] --;
if ( sirdamchild[i][jl<2 )

{
sirdamchild[i][j] = 0;
iirtodam[i] -~
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for ( i=0;i<No0fSir;i++ )
if ( sirtodam[if<2 ) {
sirtodam[i] = O;
goof31r -—;

»

if ( noofsir<2 )
return FALSE;

return TRUE;

}// End of TWG: :Trim(. .

float TWG: :NrmlGen( float var )

float b = 1.0 + randg);
float ¢ = 1.0 + rand();
b /= 32767.0;

c /= 32767.0;
return( sqrt( 2.0%log(b))*cos(6.2831853*c)*sqrt(var) );

}/* end of normal random number generation */

gn

¥oid TWG: :Write( char *FileName )

short i, j, k;
float min, max;

if ( FileName )

io = fopen( FileName, "w+t" );
else

io = fopen( "tw.dat", "wit" );
fprintf{ io, " %2d\n", NOO£Sir Ys;

for ( i=0;i<No0fSir;i++ )
fprlntf( io, " %2d", SirToDam[i] );
fprintf( io, “\n" bR

for ( i=0;i<NoO0fSir;i++ ) {
for (’ j=0; J<SeroDam[1] e+ )
fprlntf( io, " 72d”, SirDamChild[i][j] );
fprintf( io, "\n" );
}

min = 1.0E+30;
max = -1, OE+30
for ( i=0; 1<N00f81r i+ )
for ( j=0; J<S1rToDan[i];j++ )y {
for ( k=0;k<SirDamChild[i][j];k++ )

§printf( io, " %6.2f", Obs[il[311x] );
if (min > Obs[il1[j]1[k] )

min = 0bs[i][j][k];
if ( max < Obs[il[jI1[x] )

max = Obs[i][j][k];

)
fprintf( io, "\n" );

}
for ( i=0;i<No0fSir;i++ )
for ('j=0;j<SirToDam[i];j++ )
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fprintf( io, "0\n" );

fprintf( io, "4d %d %d\n", NUMB_OF_SIR, NUMB_OF_DAM, NUMB_QOF_SIB );
fprinvf( io, "4.2f %.2f %.2f %.2f\n", sigma0, sigmal, sigma2,
mean );

fprintf{ io, "%.2f\n", min - 0.1 );

fprintf( io, M-mmmmmmmm e \n" );

fprintf( io, "FullSir: %d FullDam: %d FullSib: %d\n",
NUMB_OF_SIR, NUMB_OF_DAM, NUMB_OF_SIB );

fprintf( io, "min: %.2f max: %.2f TotalData: %d\n", min, max,
NoOf0ffspring );

fprintf( io, "RandSeed: %d\n", RandSeed );

fprintf( io, "sigma0~2: %.2f sigmal~2: %.2f sigma2~2: Y.2f

mean:%.2f\n", sigma0, sigmal, sigma2, mean );

fclose( io );

}// End of TWG::Write(...)

void TWG::WriteMis( char #FileName )
short i, j, k;

if ( FileName )

io = fopen( FileName, "w+t" );
else

io = fopen( "tw.mis", "w+t" );
fprintf{ io, " %2d\n", noofsir );

for ( i=0;i<No0fSir;i++ )
if ( sirtodam[i]>0 )
fprintf( io, " %2d", sirtodam[i] );
fprintf( io, "\n" );

for ( i=0;i<No0fSir;i++ )
if ( sirtodam[i]>0 )

for ( j=0;j<SirToDam[i];j++ )
if ( sirdamchild[i][j]»>0 )
fprintf( io, " %2d4", sirdamchild[il[jl );
if ( sirtodam[i]>0 )
fprintf( io, "\n" );

¥

for ( i=0;i<No0fSir;it++ )
if ( sirtodam[1]>0 )

for ( j=0;j<SirToDam[i];j++ )
if ( sirdamchild[i][j]1>0 )

%or ( k=0;k<SirDamChild[i] [j] ;k++ )
if ( obs[il[j]kI>tv )
fprintf( io, " %6.2f", 0bs[il[jI[k] );
fprintf( io, "\n" );
}



}
}

for ( i=0;i<NoQfSir;i++ )
for ( j=0;j<SirToDam[i];j++ )
if ( sirtodam[il>0 && sirdamchild[i][j1>0 )
fprintf( io, "}2d\n", SirDamChild[i][j]
-sirdamchild[i] [ );

fprintf( io, vYd %d %d\n", NUMB_OF_SIR, NUMB_OF_DAM, NUMB_OF_SIB );
fprintf( io, "%.2f %.2f ¥.2f %.2f\n", sigmald, sigmal, sigma2,

mean )

fprint%( io, "A.2f\n", tv );

fprintf( io, "--==mmemcommeemc e \n" J;

fprintf( io, "Before Trimmed -- Sir: %d Dam: %d Sib: %d\n",
NUMB_OF_SIR, NUMB_OF_DAM, NUMB_OF_SIB );

fprintf( io, "TruncatedValue %.2f TrimRatio: %.2f TotalData:

%d\n", tv, TrimRate, NoOfOffspring-NoTrimmed );

fprintf( io, "sigma0~2: %.2f sigmal~2: }.2f sigma2~2: }.2f
mean:¥%.2f\n", sigma0, sigmal, sigma2, mean );

fclose( io );

}// End TWG::WriteMis(...)

%oid TWG: :sort_f(float *ra, short n)

unsigned 1,j,ir,i;
float rra;

1=(n »> 1)+1;
ir=n;
for (;;) {
if (1> 1)
rra=#{(ra+(~-1)-1);
aelse {
rra=k(ra+ir-1i);
*(ratir~1)=+(ra);
if (--ir == 1) {
*(ra)=rra;
return;

}
i=l;
j=l <K 4
while (j <= ir) {
if (§ < ir && *(ra+j-1) < *(ra+j)) ++j;
if (rra < *(ra+j-1)) {
*(rati-1)=*(ra+j-1);
i += (i=j);

else j=ir+l;
*(ra+i-1)=rra;

}/* end of TWG::sort_float(...) */

Boolean PlotResults(float #obs,int nobs, float 1lb, float ub)



{

int x1,y1,x2,y2,1,3,k,1,11, nvaxi=20;
float ystp, ymin, ymax, a, hstp, vstp, v, vv;
char p[20];

int  graphdriver=DETECT, graphmode;

registerbgidriver (EGAVGA_driver) ;
initgraph(&graphdriver,&graphmode,”");
cleardevice();

x1=0. 1*getmaxx () ;y1=0.1xgetmaxy () ; x2=04x1; y2=0+y1l;
hstp=x1%8.0; hstp /= (nobs-1);vstp=y1%8.0/nyaxi;

ymax=-1.5E8;ymin=1.5E8;
for (i=0;i<nobs;i++) {
a=%(obs+i);
if (adymax) ymax=a;
if (adymin) ymin=a;

¥

if ( fabs( ymex=-ymin }<1.0E-16 )} {
closegraih();
return FALSE;

ystp=(ymax-ymin) /nyaxi;
a=8%yl-2.;
a/={ymax-ymin) ;
if ( obs[0] !'= ymin && ymin != obs[i - 1] )
linef- ., y2 - 1.92 % a ~ 1, x2, y2 - 1.92 % a - 1);

ymax = ub-1b;
ymax /= nobs;
i=0;
while (i < nobs)
if ( obs[i] <= ymin + 1.92 )

{
v = x1 + + ((float)i - 1.0) * hstp + hstp *
(ymin + 1.92 - obs[i - 11D
/ C obs[i] - obs[i -~ 1] );

line( v, y1, v, y2 );

vv = 1b + ((float)i - 1.0) * ymax + ymax *
(ymin + 1.92 - obs[i - 1])
/ Cobs[i] - obs[i - 1] );
sprintf{ p,"%.2f", vv );
outtextxy( v + 10, y2 - 2.0 * a - 20, p );

break;
) }
1+t
}
while (i < nobs)



if ( obs[i ++] == ymin )
break;

while (i < nobs)
if ( obs[i] >= ymin + 1.92 )

v = x1 + ((float)i - 1.0) * hstp + hstp *
(ymin + 1.92 - obs[i - 1])
/ Cobs[i] - obs[i - 11 );
line( v, yi, v, y2 );

vv = 1b + ((fleat)i - 1.0) * ymax + ymax *
(ymin + 1.92 - obs[i - 1])
/ ( obs[i] - obs[i - 11 );
sprintf( p,"%.2f", vv };
outtextxy( v + 10, y2 - 2.0 % a - 20, p );

break;
}

% ++;
3

for (i=0;i<nobs;i++)
*{obs+i)=(*(obs+1)-ymin)*a;

gsetlinestyle(0,0xffff,1);
setcolor(15);
rectangle(x1,y1,x2,y2);
/* draw frame %/

for (i=0;i<=nyaxi;i++) {
/* draw vertical axis & scales */
1=4; j=y1+vstp*i;
if (i%5==0) {
1=6;if (i%10==0) 1=8;
sprintf(p,"%.2f" ,;ymin+(nyaxi-i)*ystp);
outtextxy(l,j,p);

1
line(x1-1,i,x1,j);
}

k=1+nobs/12;

v = ub-lb;

v /=nobs;

for (i=0; i<nobs;i+=k) {

/% draw horizontal axis & scales */
1=5; j=x1+hstp*i;
sprintf(p, . 28", 1b+i*v);
outtextxy(j-15,y2+0,125*x1,p);
line(j,y2,j,y2+1);

}

line(x2,y2,x2,y2+1);
sprintf(p,"%.2f",ub);
outtextxy(x2-5,y2+0.125%x1,p);

o
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sprintf( p, "Min at = %.3f", obs[nobs] };
outtextxy( 4*x1, y1 - 20, p );

setcolor(lo);
k = x1;
for ( j=1; j<nobs; j++ )

1 = y2-x( obs+j~1 );

= y2-%( obs+] );
line( k, 1, kt+hstp, 11 );
a += hstp;

R

getch();

closegraph();

return TRUE;

}/* end of function linecht */

%TW_ANOVA::UTW_ANDVA( char *DataFile )

short i, j;
float c;

in = fopen( DataFile, "rt" };
fscanf( in, "%d", &NoOfSir );
if ( NoOfSir<2 )
Fatal_Error("(UTW_.ANOVA) Illegal NoOfSir" );
SirToDam = new short[ NoOfSir ];
if ( SirToDam==NULL )
Fatal Error("UTW ANOVA) : Memory Allocation(SirToDam)® );
NoOfDam = i = 0;
while ( 1<NoOfSlr) {
if ( feof( in )
Fatal Error(“(UTW ANOVA) : DataFile incorrect(SirToDam)" );
fscanf( in, "%4d", &j );
if ( j<t || 3>1OOO )
Fatal Error(”(U*” ANOVA) : Illegal NoOfDam" );
SirToDam[i] =

NoOfDam += j;
i +4;

DamToOffspring = new short[ NoOfDam J;
if ( DamToOffspring==NULL )
Fatal Error("(UTW_ANOVA): Memory Allocation(DamToOffspring)" );
NoOfOffspring = i = 0;
while ( i<NoOfDam ) {
if ( feof( in
Fatal_Error("(UTW_ANOVA):
DataFile incorrect(DamToOffspring)'" );
fscanf( in, "%d", &j );
if ( j<i |l 3>1000 )
Fatal Error(”(UTW ANOVA): Illegal NoOfOffspring" );
DamToOffspring[i] =

Nonfosprlng += J,
i+



Obs = new float[ NoOfOffspring J;

if ( Obs==NULL )
Fatal Error (" (UTW_ANOVA) : Memory Allocation(Obs)" );

i
whlle ( 1<N00f0ffspr1ng )y {
if ( feof( in
Fatal Error(“(UTW ANOVA): DataFile incorrect(0ffspring)" );
fscanf(_in, "Uf", &c );
Obs[ i ] = c;
1 ++;

IsDone = FALSE;
}// End of UTW_ANOVA::UTW_ANOVA(...)

UTW_ANOVA: : "UTW_ANOVA( void )

fclose( in );

delete [] Obs;

delete [] DamToOffspring;

delets [] SirToDam;

}// End of UTW_ANOVA::~UTW_ANOVA()

Eoid UTW_ANOVA: :DoIt( void )

short i, j, k, m, mm, n;

MY_TYPE GrandTotal S8, SSsubgr, SSgroups, CT, a, b, c;
MY_TYPE MSgroups, MSsubgr MSwithin;

MY_TYPE q2, q3, q4;

GrandTotal = S5 = SSsubgr = SSgroups = CT = q2 = g3 = q4 = 0.0;
m=mm = 0;
for ( i=0;i<No0fSir;i++ ) {

a=0.0;
n=0;
for é j=0; 8<SeroDam[1] 34+ ) o
= 0.
for ( k=0;k<DamToOffspring[mm];k++ ) {
b += Dbs[m]
S8 += Obs [m]#0bs[m] ;
m ++;
SSsubgr += b¥b/k;
a += b;
n += k;
mm ++;

SSgroups += a*a/n;
GrandTotal += a;

CT OGrandTotal*GrandTotal/Nonfosprlng,
m =
for ( i= <N08f81r jiv ) {
a=
for 0:j<SirToDam[il;j++ ) {
DamToOffsprlng[m],
DamToOffspring [m]*DamTo0ffspring [m] ;

T T

+ nnman

!
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q2 += b;
q3 += a%a;
q4 += b/a;

MSgrgups = (SSgroups-CT)/(No0£fSir-1);

Mssubgr = (SSsubgr-SSgroups)/(NoOfDam-NoOfSir);

MSwithin = (SS-SSsubgr)/(NoOf0ffspring-NoOfDam) ;
= ( 24 ~ q2/No0f0ffspring )/(NoOfSir-1);

a
b = ﬁ
b + onOffsprlng,

b /= NoOfDam-NoOfSir;
c = =-q3;

c /= NoOf0ffspring;

¢ += NoOf0ffspring;

¢ /= NoOf3ir-1;

X MSw1th1n

X

2] = (MSsubgr-MSwithin)/b;
x[1] = (MSgroups-MSwithin-a*x[2])/c;
x[3] = GrandTotal/NoOfOffspring;

TRUE;
¥/ End of void UTW_ANOVA: :DoIt ()

float *UTW_ANOVA::GetResults{ void )
if ( !'IsDone )
DoIt();
return &x[O]
}// End of float *UTW_ANOVA::GetResults()
%Y_TYPE UTW_MLE: :func( float *xx )

short %k, io, j, id, i, m, ic;

MY_TYPE b, ¢, aa, bb, bbb, d, u, vo, vi, v2, z, det;

u = xx[3];

id = io = 0;

det = yvo = vl = v2 = 0.0;

for ( 1—0 i<NoOfSir;i++ ) {
m -SeroDam[l R

b = 0.0
T ( J =0; J<SeroDam[1] g+ ) {
DamTonfsprlng[ id++ J;
m +— ic;
c = xx[O] + ickxx[2];
z = 1.0/c;
aa *= ¢
ickxz;

0.0;
for ( k= O;k<ic;k++ ) {
d = Dbs[10++] - u;
vo += d*d;
b +=d;

}
bbb += z¥b;
v2 += zxb%*b;



b = m*LOG( xx[0] ) + LOG( aa*( 1.0+xx[11%bb ) );
if ( b<=-150.0 )
b= —150 0;
det +=
vl += bbb*bbb/( 1.0+xx{1]*bb );

}
vo /= xx[0];
vi *= xx[i]
v2 *= xx[2
v2 /= xx0
return{ O. 5*( det + vo -~ vl - v2 ) );
}/] End of MY_TYPE UTW_MLE::func(...}

void UTW_MLE::DoANOVA( void )

{
UTW_ANOVA: :DoIt();
}// End of UTW_ MLE: :DoANOVAQ)

void UTW_MLE::GetPlotData( float *g, short n, float *xx,
float 1x, float ux, short Obs )

{
float dx, c;
(ux-1x )/Obs,

xx[ n] = 1x
g[Dbs] = -1, OE+6
1.0E+10;

for ( short i=0;i<0bs;i++ ) {
glil = func( Xx );
£ ( glilec ) {
globs] = xx[n];
= glil;

xx[n] += dx;

}// End of void UTW_MLE::GetPlotData(...)

UTW_MM: :UTW_MM( char *DataFile, USHORT -flag )
UTW_MLE( DataFile, _flag )

short i, j, sum;
flag |= MLEMode;

missing = new short[ NoOfDam ];
Obsptr = new short[ NoOfDam J;
Sum_Yij = new float[ NoOfDam J;

if ( !missing || 'Obsptr || !Sum.Yij ) {
TW_Error = BadMemory;
return;

for i=0, sum=0;i<NoOfDam;i++ )

Sum_Yij[ i ] = 0.0;
for ( j = 0; j< DamToOffspringl i 1; j ++ )
Sum_Yij[ i ] += Obs[ sum + j I;
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Obsptr[ i ] = sum;
sum += DamToOffspringl i ];

if ( feof( in ) ) {
TW_Error = BadFile;
return;

fscanf( in, "%d", &j );
if ( <0 || 3>1000 )
{

TW_Exrror = BadFile;
return;

missing[i] = j;

fscanf( in, "%d4", &FullNoOfSir );
if ( Ful1Nco£5iT<0 || FullNoOfSir>1000 )

{
TW_Exrror = BadFile;
return;

fscanf( in, "%d", &FullNoOfDam );
if ( FullNonDam<0 11 FullNonDam>1000 )

TW_Error = BadFile;
return;

fscanf( in, "%d", &FullNo0fSib );
if ( FullNon81b<0 I FullNoOfSlb>1000 )

TW_Error = BadFile;
return;

for (i = 0; i < 4; i++)

fscanf( in, "%f", &TruncatedValue );
target_parameters[i] = TruncatedValie;

fscanf( in, "%f", &TruncatedValue );
SetNodes () ;

flag &= “MLEMode;

}// End of UTW_MM::UTW_MM(...)

%TW_MM::”UTW_MM( void )

delete [] Sum_Yij;
delete [] Dbsptr;
delete [] missing;
}7// End of UTW_MM::~UTW_MM()

void UTW_MM::SetNodes( void )

{
MY_TYPE gx[lO] gwl10];
NoOfNode = 10;



gx[0] = 0.98695326; gw[0] = 0.033336672;
gx[1] = 0.93263168; gu[1] = 0.07472567;
gx[2] = 0.83970478; gw[2] = 0.10954318;
gx[3] = 0.71669770; gu[3] = 0.13463336;
gx[4] = 0.57443717; gwl4] = 0.14776211;
zx[5] = 0.42556283; gu[5] = 0.14776211;
gx[6] = 0.28330230; gw[6] = 0.13463336;
gx[7] = 6.16029522; gw[7] = 0.10954318;
gx[6] = 0.06746832; gw[8] = 0.07472567;
gx[9] = 0.01304674; gu[9] = 0.033335672;

for ( short i=0;i<NoOfNode;i++ ) {
dtfi] = ( 1.0~ gx[i] )/gx[il;
Node[i] = LOG( gw[il ) - 0.5%dt[il*dt[i] - 2.0*LOG( gx[i] );

¥
}// End of void UTW_MM::SetNodes()

%Y_TYPE UTW_MM: :func{ float #xx )

if ( flag&MLEMode h)
return UTW_MLE::func( xx );

short ithSir, Dam_i, 1i;
MY_TYPE £, £f;

for ( i=0;i<3;i++ )
xx[i] = sqrt(xx[il]);

// to easy computation below

f = Dam_i = O;
for ( ithSir=0; ithSir<NoDfSir; ithSir++ )

ff = IntgrV( xx, ithSir, Dam_i );
if ( ff > EP )
f -= L0G( ££ );
else
i -= TINY;
Dam_i += SirToDam[ithSir];

if ( flag&MissSirIncl && FullNoOfSir > NoOfSir )

{
ff = (MY_TYPE) (FullNoOfSir - NoOfSir) * IntgrV( xx );
if ( ff > EP )
f -= LOG( £f );
else
f -= TINY;

for ( i=0;i<3;i++ ) // recovered to sigma~2

xx[i] *= xx[i];

return f;
}// End of MY_TYPE UTW_MM::func(...)

MY_TYPE UTW_MM::IntgrV( float *xx, short ithSir, short Dam_i )
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{
short j, 1i;
MY_TYPE ss, c0, cl, s;

ss = 0.0;
for ( i=0;i<NoOfNode;it++ )

c0 = ci = Nodel[il;
for ( j=0;j<SirToDam[ithSir];j++ )

= IntgrT( dt[i], xx, missing[Dam_i+j], Dam_i+j );
if ( 5 > EP )
c0 += LOG( s );
else
c0 += TINY;

s = IntgrT( -dt[i], xx, missing[Dam_i+j], Dam_i+j );
if (s> EP)

cl += LOG( s );
else

cl += TINY;

if ( flag&MissDamIncl && FullNoOfDam > j)

Intng( dt[i], xx );
1f (s >EP)
1 cO += (MY TYPE) (FullNoOfDam - j) L0G( s J);
else

c0 += (MY_TYPE) (FullNoOfDam -~ j) * TINY;

Intng( -dt[i], xx );
1f (s » EP)
L cl += (MY TYPE) (FullNoOfDam ~ j) * LOG( s );
eise

cl += (MY_TYPE) (FullNoOfDam -~ j) % TINY;
by

if ( cO0 > TINY )

ss += EXP( ¢0 );
else

ss += EP;

if ( ¢1 > TINY )

ss += EXP( cl );
else

ss += EP;

5*

*

+

return 0.65%*ss
}// End of MY TYPE UTW_MM: : IntgrV(...)

MY_TYPE UTW_MM::IntgrV( float *xx )
{

short j, i;
MY_TYPE ss, s, c;

= 0.0;
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i=0; i<NoOfNode; i++ )

Node[ i 1:
Intng( dt[il, xx );
1f (s P )
c +— (MY TYPE) (FullNoOfDam) * LOG( s );
else

c += éMY TYPE) (FullNoOfDam) * TINY;
ss += EXP

Nodel i 1;
Intng( -dt[i], xx );
1f (s> EP)
c +‘ (MY_TYPE) (FullNoOfDam) * LOG( s );
else

c 4= EMY _TYPE) (FullNoOfDam) * TINY;
is += EXP )

for

C

|| S}

return 0.b%ss
}// End of MY_ typE UTW_MM: :Intgrv(..

MY_TYPE UTW_MM::IntgrT( MY_TYPE dv, float #*xx )

short node_i;
MY_TYPE p, d, s;

s = 0.0;
for ( néde_i=0; node_i < NoOfNode; node_i++ )

= Phi( ( TruncatedValue - xx[3] - xx[1]*dv -
xx[2]*dt[node_il ) / xx[0] );
if (p > 0.0)

{
d = Node[node_i] + FullNoOfSib * LOG( p );
if ( 4 > TINY )
s += EXP( d );
else
s += EP;
}

= Phi( ( TruncatedValue - xx[3] - xx[11*dv +

xx[2]*dt [node_i] ) / xx[0] );
t(p>0.0)

{
d = Node[node_i] + FullNoO£Sib * LOG( p J;
if (4> TINY )

s += EXP( d );
else

g += EP;
}

}

return 0.5%s
}// End of MY TYPE UTW_MM::IntgrT(...)

MY_TYPE UTW_MM::IntgrT( MY_TYPE dv, float #*xx, short miss,
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short Dam_ij )

short k, node_ij;

short obs_by Dam_ij = DamToOffsprlng[ Dam_ij J;
float * y_i1j = &0bs[ Obsptr[ Dam.ij ] 1;
MY_TYPE w, z, invxx0, c, d, e, s;

1nvxx0 1.0/xx[0];

= obs_by.Dam_ij;
e #= LOG( xx[0] );
= 0.0;
or E node_i= 0; node_i<NoOfNode; node_i++ )
v = ( xx[3] + xx[1]*dv + xx[2]*dt[node_.i] )*invxx0;
¢ = Phi( TruncatedValue*invxx0 - w );
if (¢ >0.0)
{
z = 0.0;
for ( k=0; k<obs_by_Dam_ij; k++ )
{
d=y_ijl k ] % invxx0 - w;
% += (d * d);
d = Nodelnode_i] + miss * LOG( ¢ ) - 0.5 * 2z - @a;
if ( d>TINY )
s += EXP( 4 );
else
s += EP;
w ( xx[3] + xx[1]1*dv - xx[2]*dt[node_i] )*invxxO0;

Phi( TruncatedValue*invxx0 - w );
1f ({c >0.0)

= 0.0;
or ( k=0; k<obs_by_Dam_ij; k++ )
{
d =y _ijL k ] * invxx0 - w;
§ += (d * d);

d = Nodel[node_i] + miss * LOG( ¢ ) - 0.5 * z ~ e;
if ( d>TINY )

s += EXP( d );
else

s += EP;

return 0.5%s;
}// End of MY_TYPE UTW_MM: ;IntgrT(. .

This source file is for users interface only and not necessary for computation,

#include "\emx\ui\ui.hpp"
#include "mutw.hpp"
#include <conio. E
#include <io.h>

#include <math.h>
#include <stdio.h>


file:///emx/ui/ui.hpp
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#include <stdlib.h>
#include <string.h>

TEXT *msg;
char * names[4] =

{"sigmao~2"},
{"'sigmal~2"},
{"sigma272"},
{Ilmeanli}

?

class MUTW_ICON : public WINMANAGER

{
public:
MUTW_ICON( char *_FileName );
MUTW_ICON( float target_parameters[], float _TrimRate,
int _Randseed );
“MUTW_ICON( void );
short Event{( const EVENT& event );
void Show( const Boclean DrawIt=TRUE );
private:
void MUTW_SETUP( void );
WRAP_BUTTON *mode;
EMX_WINDOW *plotwin;
COMBOX #plot;
COMBOX *options;
NUMBER #*sigmall4], *sigmaul4], *vsigmal[4], *intv;
EMX_WINDDwg$genwin; & &
BUTTON *gen;
NUMBER *Sigma[4], #Ratio, *RandSeed;
STRING *savefile;
UTW_MM *mlem;
TWG *twg;
char buf([256];
float 1x[5], ux([5], xx[5], tmpx[5], vRatio, vIntv, *g;
short plotpts, rSeed;
Boolean gen_locked;

};

MUTW_ICON: :MUTW_ICON( char * _FileName )
: WINMANAGER( 6, " Unbalanced Two Way Nested Classification

(Maximum Likelihood) " )
if ( V'_FileName |} (_FileName &% %_FileName &&
access( _FileName, 0)) )
Fatal_Error( "Bad File Name" );

gen_locked = TRUE;
mlem = new UTW_MM( _FileName );

if (rTW_Error>O )

1
if ( TW_Error&BadFile )
Fatal_Error( "DataFile is Bad" );

e
Fatal_Error( "No Memory" );



}
¥UTW_SETUP();

MUTW_ICON::MUTW_ICON( float _xx[], float _TrimRate,
int _RandSeed )
: WINMANAGER( 6, " Unbalanced Two Way Nested

Classification (Maximwn Likelihcod) " )
gen_locked = FALSE;
vRatio = TrlmRate,
rSeed = _RandSeed
twg = new TWG( xx[O], xx[1], _xx[2], _xx[3], vRatio, rSeed );

if ( twg->Dolt() )
mlem = new UTW_MM( "tw.mis" );

Fatal_Error("Trim Too Heavy");

%UTW_SETUP();

%oid MUTW_ICON: :MUTW_SETUP( void )

short 1, i

float ¢
const float * x = mlem->GetTargetParameters();
meg = new TEXT( "V, &, 65, 17, 10, 256, " Message Boaxrd " };

vIintv = 0.375;
for ( i=0;i<4;i++ )

¢ = x[il*vIntv;
it ( c<O 0 )

il
1
0
.o

xx[1]

1x[i] ] - c;

ux[i] x[i] +

if (i<3 & 1x[1j< =0.005 )
1x[i] = 0.0

if ( i<3 &% ux[1]< 0.01 )
ux[i] = 1x[i] + 0.01;

if ( fabs( x[3] )<0.05 )

{
1xE3] -5.0;
ux[3] 5.0;

ll 1na
[
e =

i

strcpy( buf, " MIS " );

strcpy( gbuf{ 8 * 1 ++ 1, " MLE " );
strepy( &buf[ 8 * i ++ ], " ANOVA " );
mode = new WRAP_BUTTON( i, buf, 1, 8, 21 );

for ( i=0, j=0; i < 4; i++, j += 8)
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sprintf( &buf[jl, " %s ", names[i] );
plotwin = new EMX_WINDOW( 20, 10, 50, 6, 4, " Op“timization " );

*plotwin

+ ( plot = new COMBOX( " P"lot ", buf, 6, 8, 10, 0 ) )

+ ( sigmal[0] = new NUMBER( 1x[o., "4.2£", 1, 14, 10, 7, 7,
0 Jjow M ) )

+ ( sigmau[0] = new NUMBER( ux[0], "%.2f", 1, 14, 10, 22, 7,
" high ] ) )
+ ( vsigma[0] = new NUMBER( xx[0], "}.2f", 1, 14, 10, 37, 7,
buf ) )
+( sigmal[1] = new NUMBER( 1x[1], “%.2£", 1, 14, 11, 7, 7,
1] lOW " ) )
+ ( sigmaul1] = new NUMBER( ux[1], "%.2f", 1, 14, 11, 22, 7,
1] high 1 ) )
+ ( vsigmal1l = new NUMBER( xx[1], "%.2f", 1, 14, 11, 37, 7,
Zbuf[8] ) )
+ ( sigmal[2] = new NUMBER( 1x[2], "}.2f", 1, 14, 12, 7, 7,
1 1°w {l ) )
+ ( sigmau[2] = new NUMBER( ux[2], "%.2f", 1, 14, 12, 22, 7,
" high " ) )
+ ( vsigma[2] = new NUMBER( xx[2], "%.2f", 1, 14, 12, 37, 7,
&bufgisj ) )
+ ( sigmalf3] = new NUMBZR( 1x[3], "%.2f", 1, 14, 13, 7, 7,
1 low " ) )
+ ( sigmau[3] = new NUMBER( ux[31, "%.2f", 1, 14, 13, 22, 7,
1 high i ) )
+ ( vsigma[3] = new NUMBER( xx[31, "%.2f", 1, 14, 13, 37, 7,

gbuf[24] ) );

strepy( buf, " MissSir " };
strepy( &buf[ 10 ], " MissDam " );

*plotwin
+ ( options = new COMBOX( " Op~tion ", buf, 4, 8, 29, 0 ) )
+ ( intv = new NUMBER( vIntv, "%.3f", 1, 9, 8, 40, 5, " ~“r" ) )
+ mode;

buf[0] = buf[1] = 1;
options->SetItemStatus( buf );
*this + plotwin;

for ( i=0, j=0; i < 4; i++, j += 8)
sprintf( gbuf[j1, " %s ", names[i] );

if ( tgen_locked ) {
genwin = new EMX_WINDOW( 9, 13, 29, 2, 42,
' “Data Generation " );

*genwin
+ ( gen = new BUTTON( " Re"generate Data ", 1, 4, 46 ) )
+ ( Sigmal0] = new NUMBER( xx[0], "%.2f", 1, 16, 6, 49,
7, buf ) )

+ ( Sigmal1] = new NUMBER( xx[1], "%.2f", 1, 16, 7, 49,
7, &ouflsl ) )



+ ( Sigmal2] = new NUMBER( xx[2], "%.2f", 1, 16, 8, 49,
7, &oufl[16] ) )
+ ( Sigma[3] = new NUMBER( xx[3], "%.2f", 1, 16, 9, 49,
7, &buf[24] ) )
+ ( RandSeed = new NUMBER({ rSeed, 1, 16, 10, 49, 5,
" R"andSeed v ) )
+ ( Ratio = new NUMBER( vRatio,'"%.2f", 1, 16, 11, 49,

4, V" M~isRatio " ) )
+ ( savefile
8, " Sa“ve as" ) );
#this + genwin;

new STRING( "a001", 1, 18, 12, 49,

SetUp();
wrefresh( CmdWin );
plotpts = 18;

g = new float[ plotpts+2 1;
}// End of MUTW_ICON::MUTW_ICON()

MUTW_ICON::"MUTW_ICON( void )

delete mlem;

if ( !§en_locked )
delete twg;

delete [] g;

delete msg;

}// End of MUTW_ICON::"MUTW_ICON()

void MUTW_ICON: :Show( const Boolean Drawlt )

{

WINMANAGER: :Show( DrawIt );
msg->Show{( Drawlt );

wrefresh( CmdWin );

}// End of void MUTW_ICDN::Show(...);

short MUTW_ICON::Event( const EVENT%Z event )

switch( event.rawKey ) {
case Key_DOWN:
if ( CurTask()==0 &&
( plotwin->CurTask()>=1 &&
plotwin->CurTask()<=9 ) ) {
WINMANAGER: :Event( event );
WINMANAGER: :Event( event );

break;

case Key UP:
if ( CurTask()==0 &k
( plotwin->CurTask()>=4 &&
plotwin->CurTask()<=12 ) ) {

WINMANAGER::Eventg event );
?INMANAGER::Event event );

break;
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default:
break;

EVENT tevent;
short ccode = WINMANAGER::Event( event );
float c;

short i, curTask = CurTask();
switch ( ccode
case Key SELECTED:

if ({curTask==0 )
for ( i=0;i<4;i++ )

1x[i] = atof(sigmall[i]->GetData());
ux[i] = atof(sigmauli]->GetData());
tmpx[i] = atof( vsigmal[il->GetData());
if ( i<3 && 1x[i]<=0.005 )

1x[i] = 0.005;
if (i<3 && ux[ii<=0.01 )

ux[i]l = 1x[i] + 0.01;

if (}fabs( tmpx[3] )<0.05 ) {
1x[3] -5.0;
ux[3] 5.0;

wn

if ( mode->GetItem()==0 )
4
char * ptr = options->GetItemStatus();

i=0;
if ( ptrlo] )

i |= MissSirIncl;
if ( ptr[11 )
i }= MissDamIncl;

mlem->SetFlag( i );
T

if ( mode->GetItem()==1 )
mlem->SetFlag( MLEMode );

// plot graphics
if ( plotwin->CurTask()==0 ) {
sprintf( buf, "Searching for %s ....",
names [ plot->GetItem()->code ] };
msg->SetData( buf );
msg->Show () ;
i = plot->GetItem()->code;
mlem->GetPlotData( g, i, tmpx, 1x[il], ux[i], plotpts );
if ( PlotResults( g, plotpts, 1x[il, ux[i] ) ) {
if ( glplotpts]!=-1.0E+6 ) {
sprintf( buf, "}.2f", glplotpts] );
vsigma[i]->SetData( buf );
vIntv = atof{ intv->GetDatal) );
c = gl plotpts J*vIntv;



137

if ( ¢<0.0
1x[i] = gl plotpts j - c;
sprintf£( buf, "%.2f", 1x[i] );
sigMal[i]->SetData( buf );
ux[i] = gl plotpts ] + ¢;;
sprintf( buf, "}.2f", ux[i] );
sigmau[i]l->SetData( buf );
if ( i==3 && fabs( g[plotpts] 3<0.05 ) {
ux[;} 1.0;
%X[l = -1.0!

n

}
msg->SetData("");
¥

else
msg->SetData("Object function values cann’t be

differential%zed!“ );

Show();
¥

// generate a new data set
if ( !gen_locked &% curTask==1 && genwin->CurTask(}==0 )
{

delete mlem;
delete twg;

vIntv = atof( intv->GetData() J);
for ( i=0;i<4;i++

{
xx[i] = atof( Sigmal[il->GetData() );
if ( i<3 && xx[i]<=0.005 )
xx[i] = 0.005;
¢ = xx[il*vIntyv;
if ( c<0.0 )

= -c;
1x[1] xxfi] - c;
ux[i]

xx[i] + c;
if ( fabs( xx[3] ) < 0.05 )

1x[3] -5.0;
ux[3] 5.0;

sprigtf( buf,"%.2f", 1x[i] );
sigmal[i]->SetData( buf );
sprintf( buf,"%h.2f", uwx[i] );
sigmau[i]->SetData( buf );

¥
Show() ;
rSeed = atoi( RandSeed- >GetData() Y
vRatio = atofé Ratio->GetData() );
twg = new TWG( xx[0], xx[1], xx[2], xx[3], vRatio, rSeed );
if ( twg->DoIt() )
mlem = new UTW_MM( "tw.mis" );
else
Fatal_Error("Trim Too Heavy");
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tevent .rawKey = Key_WINMANAGER;

WINMANAGER: :Event( tevent );
tevent.rawKey = Key_RETURN;

WINMANAGER: :Event( tevent );

tevent.rawKey = ’t’;
WINMANAGER: :Event( tevent );
break;

case Key_RETURN :
if ( curTask==0 && mode->GetItem()==2 )

mlem->DoANOVA();
sprintf( buf,"ANOVA: sigmao~2=Y.2f sigmal~2=),.2f
sigma2~2=%.2f mu=Y%.2f\rHit <Enter> to continue...",

mlem->GetResults() [0], mlem->GetResults{()[1],
mlen->GetResults() [2], mlem->GetResults() [3] );

msg->SetData( buf );

msg->Show() ;

mode->SetItem( 1 );

mode->Show() ;

wgetch( CmdWin );

msg->SetData( "" );

msg->Show () ;

¥refresh( CmdWin );

// reset trim rate
if ( 'gen_locked &% curTask==1 && genwin->CurTask()==6 ) {
if ( fabs( vRatio-atof( Ratio->GetData() ) )<0.001 )
return ccode;
else
vRatio = atof( Ratio->GetData() );
twg->SetTrimRate( vRatio );
if ( twg->DoIt() ) {
delete mlem;
mlem = new UTW_MM( "tw.mis'" );

else {
msg->SetData("Error: Trim Too Heavy");
msg->Show() ;
flash();
return ccode;

msg->SetData(''Data’s missing number has been changed.");
msg->Show() ;

tevent.rawKey = Key_ WINMANAGER;

WINMANAGER: :Event( tevent );

tevent.rawKey = Key RETURN;

WINMANAGER: :Event( tevent );

tevent.rawKey = ’t’;

?INMANAGER::Event( tevent );

. // save data t
if ( !'gen_locked && curTask==1 && genwin->CurTask(

char buf[60];
sprintf( buf, "Y%s.dat", savefile->GetData() );

twg->Write( buf );

files

7)) A

(o}
)=
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sprintf( buf, "¥s.mis", savefile->GetData() );
twg->WriteMis( buf );
sprintf( buf, "Data are saved into Y%s.dat & Ys.mis!",

savefile->GetData(), savefile->GetData() );
msg->SetData( buf );

msg->Show () ;
}

break;

default:
break;

return ccode;
}// End of short MUTW_ICON::Event()

main( int argc, char xargv([] )

{
int i;
MUTW_ICON *icon = NULL;

// This part is necessary for any modules in EMX involved
curses.lib!

initscr();

if ( start_coler() '= OK )
fatal_error('Couldn’t Start Color" );

cbreak();

noecho() ;

nonl();

SetUpColors();

CmdWin = newwin( 1, SCRCOL, 24, 0 );

keypad( CmdWin, TRUE );

wnmove( CmdWin, 0, 0 );

[ 7 %x%kskdokok dkokok kokok ok ko kokskokkkokoskokokok D sokoksk ook ok sk sk skokok s deok ok ok ok sk ok ok ok ok ke ke sk o ok

if (arge == 2)

if (strnemp( argv[i], "-£f", 2 ) == 0)
icon = new MUTW_ICON( &argv[1]1[2] );

¥

else if (argec > 5)
int _RandSeed = 0;
float _TrimRate = 0.7;
float target_parameters[4];
Boolean good_argv = TRUE;

for (1 =0; i<4; i ++5
target_parameters[il = atof( argv[i + 1] );
for (int i = 5; i < argc; i++)
if (0 == strocmp( argv[i], "-r", 2 ))

{
_RandSeed = atoi( &argv[i]l[2] );
if (_RandSeed < 0 || 32766 < _RandSeed)
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good_argv = FALSE;
glse if (0 == strncmp( argvlil, "-t", 2 ))
{
_TrimRate = atof( &argv[il[2] );

if (_TrimRate < 0.0 || 0.95 < _TrimRate)
good_argv = FALSE;

3

if (good_argv)
icon = new MUTW_ICON( target_parameters, _TrimRate,

_Ran%Seed );

if (ticom)

printf( "\n\n%s -fxxxx OR\n", argv{0l );
printf( "%s (sigmao~2 sigmal~2 sigma2~2 mean [-rtl)\n",

argv[0] );
printf( " ~f: datafile (e.g. -ftw.dat)\n" );
printf( " -r: randseed (e.g. ~r1000, from O to 32766)\n" );
printf( " -t: TrimRate (e.g. =-t0.0, from 0.0 to 0.95)\n" );

printf( "Note: when with -f option, other arguments are
ignored\n" );

printf( *® randseed = 0 forces to randomize the
generation\n" );

§Xit( 1);

short ccode;

EVENT event;

do {
event.ravKey = wgetch( CmdWin );
ccode = icon->Event( event );
} while( ccode!=Key_EXIT );

delate icon;

// Always delete any curses.lib related objects before
endwin() 11t

refresh();

endwin() ;

return 0;
}// End of main()
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