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Abstract

A consequence of variable oxygen partial pressures in aquatic
environments, is that all fish sharc some degree of hypoxia tolerance.
The hierarchical recruitment of physiological and biochemical
defence mechanisms and the degree of their success in protecting the
animal against losses of oxygen to vital tissues, appears to be species
dependent. Animals, like the goldfish (Carassius auratus) tnat thrive
in low oxygen environments, employ a whole host of mechanisms to
ensure continued viability. The two major strategies are (1)
metabolic depression and (2) maintenance of intracellular ion
homeostasis via channel regulation.

Goldfish and trout red blood cells display similar metabolic
and ionic responses to an acute hypoxic exposure. However, goldfish
RBC’s incubated in nitrogen for 60 minutes prior to sampling do not
display changes of energy concentrations (ATP) or intracellular
sodium and potassium ions typical of the less hypoxia-tolerant trout.
Even when adrenergically challenged, these red cells maintained their
metabolic-membrane coupling. This sugges*s a reduced metabolism
as energy consumption and energy production are matched. The
absence of an adrenergic response is also typical of animals that are
‘good animal anaerobes’.

Red cells incubated with ouabain (a sodium-potassium ATPase
blocker) do not show the changes in intracellular ion concentrations
seen in the rainbow trout. This supports the notion that channel
arrest is integral to survival in Jow ambient oxygen concentrations for
the goldfish.

Another evolutionary adaptation for a lifestyle which requires
an ability to survive extended hypoxia is an organism’s ability to deal
with acid-base imbalances. This is reflected in their buffering

capacity and Haldane effect.

xii
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GENERAL INTRODUCTION



I. Preface

All fish share some degree of hypoxia tolerance due to the
variability of oxygen partial pressures inherent in aquatic
environments. Hypoxia-tolerant animals exhibit a variety of
physiological and biochemical strategies which ensure that adequate
supplies of oxygen reach critical tissues when ambient levels become
limiting. Should inadequate oxygen be available, alternative
measures (e.g. reduced ion permeabilities and metabolic depression)
can be elicited. Exposure to hypoxia evokes a hierarchical
recruitment of defense mechanisms. The degree to which these
mechanisms are recruited, and the success of the particular strategy,
is dependent on the severity and the duration of the oxygen
deprivation. Hypoxia tolerance also appears to be species dependent,
since some animals are far more capable of surviving severe,
extended periods of oxygen lack.

Defense strategies against hypoxia fall into two categories;
those operating at the systemic level and those operating at the
cellular level. Regulation of oxygen delivery to the tissues can be
maintained by the animal through systemic mechanisms until
environmental oxygen concentrations reach a critical partial
pressure. Beyond this point, oxygen consumption decreases in
proportion to PO,. Survival then depends on the initiation of cellular

defenses, such as lowering the aerobic metabolic rates of certain
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tissues. It is often at this point that anaerobiosis is recruited into the
overall energy budget of the animal.

Systemic mechanisms of hypoxia tolerance include changes in
ventilation and perfusion of the gill (Randall, 1982), changes in (otal
haemoglobin content (Murad er al, 1990), haemoglobin isomorphs
(Houston and Murad, 1992) and Hb-O, affinity (Weber and Jensen,
1988), in addition to rate-limiting changes in enzymes of
intermediary metabolism (Hochachka and Somero, 1984). Systemic
mechanisms are adequate for short-term bouts of moderate hypoxia,
but will not provide protection against severe exposure. Boutilier e
al. (1988) examined the metabolic and respiratory adaptations of
rainbow trout (Oncorhynchus mykiss) exposed to acute graded levels
of hypoxia. Although generally considered to be a highly aerobic and
‘hypoxia-sensitive’ animal, the trout were able to successfully recruit
anaerobic metabolism when exposed to 24 h of acute graded hypoxia.
Oxygen consumption (My) remained unchanged over a broad range
of ambient POZ’ however, a significant decrease in M02 was detected
when environmental O, was lowered to severe levels of
approximately 30 Torr. As well, the animals were able to offsct an
initial plasma lactacidosis and to maintain red blood cell pH at a
constant level. At the most severe levels of hypoxia, anaerobic
metabolism was well advanced, as muscle lactate increased and

cellular adenosine triphosphate (ATP) levels began to fall. This study



indicated that the initiation and hierarchical order of responses to
hypoxia were dependent upon the duration of exposure and the
severity of the oxygen deprivation.

Although anaerobic glycolysis can generate ATP, it cannot
provide sufficient ATP to maintain cellular function at pre-hypoxic
rates over long periods of time. Falling ATP concentrations result in
the failure of active transport processes involved in the maintenance
of ionic homeostasis. Such failure leads to a dissipation of ion
gradients across most cell membranes, eventually resulting in cell
death. Anaerobiosis also leads to a marked lactacidosis, and the
decreased pH can compromise the action of certain pH-sensitive
enzymes (Hochachka and Somero, 1984). Because anaerobic
metabolism is much less energetically efficient than aerobic
metabolism, animals that attempt to defend pre-hypoxic rates of ATP
production must use vast quantities of glycogen and/or glucose, thus
threatening the long-term viability of the organism {Hochachka,
1986; Hansen, 1987).

Animals that thrive in environments of low oxygen are said to
be hypoxia-tolerant and have been referred to as ‘good animal
anaerobes’ (Hochachka and Somero, 1984). They employ a whole
host of mechanisms to ensure continued viability: (1) the
conservation of limited glycolytic stores through metabolic

suppression (Sick et al., 1982), (2) the maintenance of intracellular



5

ionic homeostasis by down-regulation of ion channels (Ching-Ping et
al, 1989), (3) changes in the levels and activity of ‘second
messengers’ (Nilsson et al, 1991) which mediate the lowering of

brain activity and cellular energy consumption, and (4) stabilization
of acid-base balance through increased buffering capacity, HY

consuming metabolism and/or the production of novel metabolic end
products such as ethanol (Shoubridge & Hochachka, 1980). One or
more of these mechanisms are employed by all hypoxia-tolerant
species. This thesis will examine the processes involved in
extending the hypoxia-tolerance of ectotherms, with particular
emphasis on the cyprinids, the so-called champions of hypoxia-

tolerance in water breathing fish.

II. The ‘Metabolic Arrest’ Hypothesis

Normal rates of aerobic metabolism are impossible to maintain
during periods of low oxygen availability. ATP synthesis can no
longer be derived from energetically efficient oxidative
phosphorylation, but must rely instead on less efficient anaerobic
glycolysis (Pasteur Effect). If energy consumption remains the same,
anaerobiosis will lead to a rapid depletion of the limited cellular
glycogen stores (Hochachka, 1986; Hansen, 1987). Potentially large

and life-threatening carbohydrate depletion may be minimized in



hypoxia-tolerant species in a number of ways: 1) by storing larger
quantitics of glycogen, 2) by utilizing more efficient fermentation
pathways, or 3) by reversing the Pasteur Effect.

The first two mechanisms in principle could not extend hypoxia
tolerance by more than a factor of 3- to 4-fold (Hochachka, 1986). It
can be argued that a greater anaerobic scope, and thus a larger
anaerobic capacity, can be supported with high concentrations of
substrate for conversion into metabolic energy, and indeed many
studies have shown that anoxia tolerant species have substantially
higher levels of glycogen than their hypoxia-sensitive counterparts.
Goldfish and turtles have liver glycogen stores four to six times
higher than those observed in various anoxia-sensitive animals
(Hochachka and Somero, 1984). Glycogen levels in the brain of the
bullhead catfish (Ictalurus nebulosus), another anoxia-tolerant
species, are five times higher than those of the rainbow trout (Heath,
1988). Hansen (1985) suggested there was a potential for high
energy production in the anoxia-tolerant turtle brain because of
unusually large glycogen stores (eight times that of the rat).

Even though many hypoxia-tolerant animals possess high
levels of glycogen, this strategy alone cannot provide the energy
required for prolonged periods of O, lack. Thus, although catfish
survive five times longer than the trout under anoxia, lactate

accumulation and glycogen depletion in the bullhead occurs much



more gradually than in the more hypoxia-sensitive animal. ATP
generation in anoxic catfish was also much lower (20%) than in trout
suggesting a slowing down of glycolysis (Heath, 1988). Similarly,
Sick et al. (1982) found nc dependence on cellular stores of high
energy compounds (e.g. glycogen) for extended anoxia tolerance in
turtle brain tissue. Glycogen utilization in the anoxic goldfish also
does not occur to the extent of that observed in less tolerant spccies
(Van Waversveld et al, 1989). The decrease in ATP production and
gradual accumulation of anaerobic end-products in these hypoxia-
tolerant organisms suggests other factors may be involved.

Alternative fermentation pathways exist within certain groups
of good invertebrate anaerobes such as the bivalve molluscs (De
Zwaan, 1977). The only vertebrate known to employ such novel
fermentative pathways is the goldfish (Carassius auratus ) (Van den
Thillart and Van Waarde, 1985) which utilize one or morc of these
pathways at different times during anoxia. This enables the goldfish
to increase ATP yields two or four times above that of the classic
glucose - lactate fermentation. Nevertheless, there is still an order of
magnitude difference in energy production betwcen anaerobic
glycolysis and oxidative glucose metabolism.

In contrast, reversing the Pasteur Effect (i.e. suppressing
metabolic rate) so as to allow ATP turnover rates to drop appears (o

be the most effective strategy for solving the problem of substrate
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conservation. This not only reduces the rates of substrate depletion,
but also automatically reduces the rates of formation of potentially
deleterious anaerobic end products. Comparisons of energy
production/utilization between hypoxia-sensitive and hypoxia-
tolerant animals indicates a reduced dependence upon high ATP
turnover rates to sustain cellular metabolism (Hochachka, 1986;
Hochachka and Guppy, 1986; Sick et al, 1982). For instance,
metabolic arrest in diving turtles increases anoxia tolerance by 60-
fold, as compared to the hypoxia-sensitive rat (Sick er al., 1982) and
Maginnis and Hitzig (1987) have shown that, when compared with
control values, submerged anoxic turtles undergo a 77% reduction in
ATP production. In addition, Robin et al. (1979) also reported no
appreciable increase in the rate of anaerobic energy production
during anoxia in turtles, concluding that energetic balance must
result from an overall decrease in energy consumption. While the
results of many such studies support the general notion of the
metabolic arrest concept, stabilized membrane function must also
occur during Oy deprivation in order to prevent ions from drifting to

their electro-chemical equilibrium. Energy production cannot be
reduced unless energetically expensive ion pumping (Nat/K*

ATPase) also declines.
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III. The ‘Channel Arrest’ Hypothesis

Studies of ischemic mammalian brain (Hansen, 1985), reveal a

massive efflux of K¥from the neurons and a corresponding influx of

Natinto the intracellular space. Similar K¥efflux from the brain of

the hypoxia-sensitive rainbow trout has al.o bien reported (Girard,
1989) when animals were deprived of ambient O,. Comparable

studies, using hypoxia-tolerant ectotherms, have shown that the
massive K'efflux typical of hypoxia-sensitive animals either does

not occur at all (Surlykke, 1983) or develops much more slowly (Sick

et al., 1982). For example, Ching-Ping et al. (1989) measured passive

ion leakage rates in turtle brains treated with ouabain (a Na'/K™

ATPase inhibitor). They found that the rates of K*leakage were 50%

lower in brains subjected to 2 h of anoxia than in their normoxic
counterparts. Suppression of EEG activity was also noted, indicating
reduced ionic traffic across the neuronal membranes.

There is evidence that certain species of hibernating mammais
may also display channel arrest. Hall and Willis (1984), for example,

characterized the effect of temperature on the ouabain-inscnsitive
fluxes of K*ions in red blood cells in the hibernating ground squirrcl

and the non-hibernating guinea pig. Cold-adapted erythrocyics from
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the ground squirrel retain K'ions better than cells from the guinea
pig. Potassium flux was resolved into three components; basic leak,
co-transport and Gardos channels (Ca2+ sensitive Kt channels). They

conclude that ion stabilization could not all be accounted for by the
first two components, but that thec more efficient regulation of

2+

cytoplasmic Ca“™ in the hibernator was largely responsible for

reduced channel movement of Kt. Lowered Na%/K™ATPase activity

also appears to be a contributing factor to reduced K*loss (Willis et

al., 1980).

lon nhomeostasis and cellular energy metabolism has also been
investigated in the red cells of common carp (Cyprinus carpio)

subjected to acute hypoxia. Nikinmaa et al, (1987) observed slow

changes of intracellular ion concentrations (increased Na*and

decreased K% over the six hour time course of their experiment, in

blood samples withdrawn from chronically catheterized animals.
Exposure of the fish to decreasing environmental oxygen saturations
(from 100% to 15-20%) had no effect on erythrocyte ATP
concentrations. Clearly, the coupling of metabolic arrest with channel
arrest allows good animal anaerobes to maintain cellular viability in

potentially hypoxic environments.
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IV. Chemical Messengers

Hormones, neurotransmitters and cellular ‘second messengers'
are essential for the regulation and integration of cellular, tissue and
system activity. For example, the nervous system provides the body
with a rapid means of internal communication that is critically
important in regulating and coordinating the activities of the cells.
As a result, neural activity is essential to an organism’s ability to
maintain homeostasis. Chemical transmission of information across
synapses from one neuron to another is accomplished with
neurotransmitters. The action of these substances may be altered by
neuromodulators.  Anoxia-tolerant vertebrates, like the loggerhead
sea turtle (Caretta caretta), the freshwater turtle (Pseudemys
scriptaelegans) and the crucian carp (Carassius carassius), display
changes in brain neurotransmitter levels in response to reduced
concentrations of environmental oxygen (Nilsson et al, 1991). When
exposed to 4 h of nitrogen, levels of the inhibitory amino acids
gamma-aminobutyric acid (GABA), taurine and glycine increased,
while the level of the excitatory amino acid glutamate decreased. It
is suggested that the combined effects of an increase in inhibitory
amino acids and a corresponding decrease in the excitatory
neurotransmitter, may facilitate a lowering of brain activity and

therefore energy consumption. In anoxia-intolerant species (the
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anole lizard, Anolis sagrei, and the dog) GABA levels increase to only
a moderate extent while glutamate levels either remain unchanged
or increase slightly. Anoxia-induced increases of the inhibitor GABA
may act to protect the brain from immediate ischemic damage.
However, the corresponding increase of the excitatory amino acid,
glutamate, predominates and prohibits long-term protection for
these more sensitive organisms.

Other neuronal inhibitors such as norepinephrine and serotonin
(Nilsson, 1989, 1990) may play a similar role in protecting the brain
against anoxia damage. Serotonin synthesis and degradation
requires the simultaneous reduction of molecular oxygen and should
therefore be strongly affected by anoxia. Species which exhibit
extreme anoxia tolerance (e.g. cyprinid fish and turtles) display little
or no decrease in serotonin, which suggests they have developed
effective mechnisms for the uptake or storage of monoamines. For
example, serotonin levels were maintained for up to 13 h of anoxia in
both Pseudemys and Caretta , but fell by 40% in the anole lizard after
only 40 min of similar treatment (Nilsson et al, 1991). In an earlier

study, Nilsson (1989) measured serotonin levels in the brain of the
crucian carp subjected to anoxia (oxygen levels less than 0.1 mg L- 1).

Serotonin decreased only 15%, while the two main metabolites of

serotonin, 5-HIAA and 5-HTOH, decreased 80-90%. Crucian carp are
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therefore capable of conserving this inhibitory neurotransmitter
responsible for lowering activity levels in the brain.

Phosphorylation is a major mechanism of ion channel
regulation (Rossie et al, 1987). Cyclic AMP-mediated
phosphorylation is known to be involved in modulating the
behaviour of calcium, potassium and sodium ion channels in nerve,
muscle and heart tissues (Costa and Catterall, 1984).

Adenosine is known to initiate transmembrane signals which

influence the activity of adenylate cyclase, phospholipase C or K*ion

channels (Stiles, 1991). Recently, it has been implicated in Na*

channel regulation (M. Rosenthal, pers. comm.). Their results indicate
that exposure of isolated turtle cerebellum to anoxia lecads to a
decrease in the density of voltage-gated sodium channcls. Ion
homeostasis, under this condition, is only lost when adenosine
receptors are blocked. It should be noted, however, that it is still
unclear if reduced ion movement is a function of channels being
removed from the plasma membrane by endocytosis or that channecl
activity rate is affected.

Aldosterone is a well known regulator of passive sodium
movements and affects recruitment of pre-existing Na'channels in

the toad bladder through a mechanism involving acrobic metabolism

(Palmer et al, 1982). Under anaerobic conditions, permeability is
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impaired through inactivation of these channels.

It is clear from these examples that a myriad of hormones,
neurotransmitters and neuromodulators may effect ion channel
densities and activity, thereby enhancing the tolerance capabilities in
some species. The complexity of the interactions makes it virtually
impossible to generalize direct cause and effect mechanisms, but

their importance in anoxia tolerance is apparent.

V. Novel Metabolic End Products

In 1980, Shoubridge and Hochachka suggested that lactate
produced during anaerobiosis in the glycolytic tissues of the goldfish
could be metabolized further to ethanol. They reasoned that this
could account for the discrepancy they saw between the rate of
glycogen utilization and the low accumulation of lactate, as well as
the presence of the enzyme alcohol dehydrogenase in red and white
muscle tissues. Johnston and Bernard (1983) also found that lactate
accumulation could only account for 18.5% of the glycogen stores
utilized, with the major end-product of anaerobic metabolism being
ethanol. Ethanol is freely diffusible, is easily removed across the
gills, and therefore never reaches toxic levels in the fish. However,
this strategy is quite wasteful of carbon and is probably called upon
only in life-threatening conditions.

Further studies by Van den Thillart and colleagues (1983),
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found a significant ‘gap’ between the amount of glycogen utilized as
substrate and the amount of ethanol produced after lactate
concentrations were taken into account. This would suggest still
another factor involved in substrate depletion. Van den Thillart et
al. (1983) observed anaerobic carbon dioxide production in goldfish.
Under hypoxic conditions, carbon dioxide and ethanol were
presumed to be produced in a l:1 ratio according to the combined
action of pyruvate dehydrogenase and ethanol dehydrogenase (Van
den Thillart, 1982). The excretion rates would be slightly different
because bicarbonate and carbonic anhydrase facilitate C02 diffusion,
while ethanol equilibration is a function of blood perfusion and
diffusion distances across the gill. Assuming a time constant for
ethanol equilibration of approximately 15 minutes as opposed to 2
minutes for COy, Van den Thillart (1982) reasoned that steady states
should still be reached within 1 hour after anoxic exposure.
However, CO, excretion stayed well above that of ethanol, suggesting
the existence of other CO, producing pathways. One explanation is
anaerobic tricarboxylic acid (TCA) cycle activity, as long as there was
a mitochondrial sink available for reducing equivalents. The
discrepancy between CO, and ethanol excretion could also simply be
explained by the generation of CO, from dehydration of plasma
bicarbonate stores by protons of anaerobic origin.

The mitochondria of anoxic goldfish are also known to be the






