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Abstrac t 

A consequence of variable oxygen partial pressures in aquatic 

environments, is that all fish share some degree of hypoxia tolerance. 

The hierarchical recruitment of physiological and biochemical 

defence mechanisms and the degree of their success in protecting the 

animal against losses of oxygen to vital tissues, appears to be species 

dependent. Animals, like the goldfish (Carassius auratus) tinat thrive 

in low oxygen environments, employ a whole host of mechanisms to 

ensure continued viability. The two major strategies are (I) 

metabolic depression and (2) maintenance of intracellular ion 

homeostasis via channel regulation. 

Goldfish and trout red blood cells display similar metabolic 

and ionic responses to an acute hypoxic exposure. However, goldfish 

RBC's incubated in nitrogen for 60 minutes prior to sampling do not 

display changes of energy concentrations (ATP) or intracellular 

sodium and potassium ions typical of the less hypoxia-tolerant trout. 

Even when adrenergically challenged, these red cells maintained their 

metabolic-membrane coupling. This suggests a reduced metabolism 

as energy consumption and energy production are matched. The 

absence of an adrenergic response is also typical of animals that are 

'good animal anaerobes'. 

Red cells incubated with ouabain (a sodium-potassium ATPase 

blocker) do not show the changes in intracellular ion concentrations 

seen in the rainbow trout. This supports the notion that channel 

arrest is integral to survival in low ambient oxygen concentrations for 

the goldfish. 

Another evolutionary adaptation for a lifestyle which requires 

an ability to survive extended hypoxia is an organism's ability to deal 

with acid-base imbalances. This is reflected in their buffering 

capacity and Haldane effect. 

x i i 
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I . Preface 

All fish share some degree of hypoxia tolerance due to the 

variability of oxygen partial pressures inherent in aquatic 

environments. Hypoxia-tolerant animals exhibit a variety of 

physiological and biochemical strategies which ensure that adequate 

supplies of oxygen reach critical tissues when ambient levels become 

limiting. Should inadequate oxygen be available, alternative 

measures (e.g. reduced ion permeabilities and metabolic depression) 

can be elicited. Exposure to hypoxia evokes a hierarchical 

recruitment of defense mechanisms. The degree to which these 

mechanisms are recruited, and the success of the particular strategy, 

is dependent on the severity and the duration of the oxygen 

deprivation. Hypoxia tolerance also appears to be species dependent, 

since some animals are far more capable of surviving severe, 

extended periods of oxygen lack. 

Defense strategies against hypoxia fall into two categories; 

those operating at the systemic level and those operating at the 

cellular level. Regulation of oxygen delivery to the tissues can be 

maintained by the animal through systemic mechanisms until 

environmental oxygen concentrations reach a critical partial 

pressure. Beyond this point, oxygen consumption decreases in 

proportion to PO2. Survival then depends on the initiation of cellular 

defenses, such as lowering the aerobic metabolic rates of certain 
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tissues. It is often at this point that anaerobiosis is recruited into the 

overall energy budget of the animal. 

Systemic mechanisms of hypoxia tolerance include changes in 

ventilation and perfusion of the gill (Randall, 1982), changes in total 

haemoglobin content (Murad et al., 1990), haemoglobin isomorphs 

(Houston and Murad, 1992) and Hb-02 affinity (Weber and Jensen, 

1988), in addition to rate-limiting changes in enzymes of 

intermediary metabolism (Hochachka and Somero, 1984). Systemic 

mechanisms are adequate for short-term bouts of moderate hypoxia, 

but will not provide protection against severe exposure. Boutilier et 

al. (1988) examined the metabolic and respiratory adaptations of 

rainbow trout (Oncorhynchus mykiss) exposed to acute graded levels 

of hypoxia. Although generally considered to be a highly aerobic and 

'hypoxia-sensitive' animal, the trout were able to successfully recruit 

anaerobic metabolism when exposed to 24 h of acute graded hypoxia. 

Oxygen consumption (MQ2) remained unchanged over a broad range 

of ambient P02 , however, a significant decrease in M Q 2 was detected 

when environmental 0 2 was lowered to severe levels of 

approximately 30 Torr. As well, the animals were able to offset an 

initial plasma lactacidosis and to maintain red blood cell pH at a 

constant level. At the most severe levels of hypoxia, anaerobic 

metabolism was well advanced, as muscle lactate increased and 

cellular adenosine triphosphate (ATP) levels began to fall. This study 
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indicated that the initiation and hierarchical order of responses to 

hypoxia were dependent upon the duration of exposure and the 

severity of the oxygen deprivation. 

Although anaerobic glycolysis can generate ATP, it cannot 

provide sufficient ATP to maintain cellular function at pre-hypoxic 

rates over long periods of time. Falling ATP concentrations result in 

the failure of active transport processes involved in the maintenance 

of ionic homeostasis. Such failure leads to a dissipation of ion 

gradients across most cell membranes, eventually resulting in cell 

death. Anaerobiosis also leads to a marked lactacidosis, and the 

decreased pH can compromise the action of certain pH-sensitive 

enzymes (Hochachka and Somero, 1984). Because anaerobic 

metabolism is much less energetically efficient than aerobic 

metabolism, animals that attempt to defend pre-hypoxic rates of ATP 

production must use vast quantities of glycogen and/or glucose, thus 

threatening the long-term viability of the organism (Hochachka, 

1986; Hansen, 1987). 

Animals that thrive in environments of low oxygen are said to 

be hypoxia-tolerant and have been referred to as 'good animal 

anaerobes' (Hochachka and Somero, 1984). They employ a whole 

host of mechanisms to ensure continued viability: (1) the 

conservation of limited glycolytic stores through metabolic 

suppression (Sick et al, 1982), (2) the maintenance of intracellular 
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ionic homeostasis by down-regulation of ion channels (Ching-Ping et 

al., 1989), (3) changes in the levels and activity of 'second 

messengers' (Nilsson etal., 1991) which mediate the lowering of 

brain activity and cellular energy consumption, and (4) stabilization 

of acid-base balance through increased buffering capacity, H+ 

consuming metabolism and/or the production of novel metabolic end 

products such as ethanol (Shoubridge & Hochachka, 1980). One or 

more of these mechanisms are employed by all hypoxia-tolerant 

species. This thesis will examine the processes involved in 

extending the hypoxia-tolerance of ectotherms, with particular 

emphasis on the cyprinids, the so-called champions of hypoxia-

tolerance in water breathing fish. 

I I . The 'Metabolic Arrest' Hypothesis 

Normal rates of aerobic metabolism are impossible to maintain 

during periods of low oxygen availability. ATP synthesis can no 

longer be derived from energetically efficient oxidative 

phosphorylation, but must rely instead on less efficient anaerobic 

glycolysis (Pasteur Effect). If energy consumption remains the same, 

anaerobiosis will lead to a rapid depletion of the limited cellular 

glycogen stores (Hochachka, 1986; Hansen, 1987). Potentially large 

and life-threatening carbohydrate depletion may be minimized in 

f 
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hypoxia-tolerant species in a number of ways: 1) by storing larger 

quantities of glycogen, 2) by utilizing more efficient fermentation 

pathways, or 3) by reversing the Pasteur Effect. 

The first two mechanisms in principle could not extend hypoxia 

tolerance by more than a factor of 3- to 4-fold (Hochachka, 1986). It 

can be argued that a greater anaerobic scope, and thus a larger 

anaerobic capacity, can be supported with high concentrations of 

substrate for conversion into metabolic energy, and indeed many 

studies have shown that anoxia tolerant species have substantially 

higher levels of glycogen than their hypoxia-sensitive counterparts. 

Goldfish and turtles have liver glycogen stores four to six times 

higher than those observed in various anoxia-sensitive animals 

(Hochachka and Somero, 1984). Glycogen levels in the brain of the 

bullhead catfish (Ictalurus nebulosus), another anoxia-tolerant 

species, are five times higher than those of the rainbow trout (Heath, 

1988). Hansen (1985) suggested there was a potential for high 

energy production in the anoxia-tolerant turtle brain because of 

unusually large glycogen stores (eight times that of the rat). 

Even though many hypoxia-tolerant animals possess high 

levels of glycogen, this strategy alone cannot provide the energy 

required for prolonged periods of 0 2 lack. Thus, although catfish 

survive five times longer than the trout under anoxia, lactate 

accumulation and glycogen depletion in the bullhead occurs much 
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more gradually than in the more hypoxia-sensitive animal. ATP 

generation in anoxic catfish was also much lower (20%) than in trout 

suggesting a slowing down of glycolysis (Heath, 1988). Similarly, 

Sick et al. (1982) found nc dependence on cellular stores of high 

energy compounds (e.g. glycogen) for extended anoxia tolerance in 

turtle brain tissue. Glycogen utilization in the anoxic goldfish also 

does not occur to the extent of that observed in less tolerant species 

(Van Waversveld etal, 1989). The decrease in ATP production and 

gradual accumulation of anaerobic end-products in these hypoxia-

tolerant organisms suggests other factors may be involved. 

Alternative fermentation pathways exist within certain groups 

of good invertebrate anaerobes such as the bivalve molluscs (De 

Zwaan, 1977). The only vertebrate known to employ such novel 

fermentative pathways is the goldfish (Carassius auratus ) (Van den 

Thillart and Van Waarde, 1985) which utilize one or more of these 

pathways at different times during anoxia. This enables the goldfish 

to increase ATP yields two or four times above that of the classic 

glucose - lactate fermentation. Nevertheless, there is still an order of 

magnitude difference in energy production between anaerobic 

glycolysis and oxidative glucose metabolism. 

In contrast, reversing the Pasteur Effect (i.e. suppressing 

metabolic rate) so as to allow ATP turnover rates to drop appears to 

be the most effective strategy for solving the problem of substrate 
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conservation. This not only reduces the rates of substrate depletion, 

but also automatically reduces the rates of formation of potentially 

deleterious anaerobic end products. Comparisons of energy 

production/utilization between hypoxia-sensitive and hypoxia-

tolerant animals indicates a reduced dependence upon high ATP 

turnover rates to sustain cellular metabolism (Hochachka, 1986; 

Hochachka and Guppy, 1986; Sick et al, 1982). For instance, 

metabolic arrest in diving turtles increases anoxia tolerance by 60-

fold, as compared to the hypoxia-sensitive rat (Sick et al, 1982) and 

Maginnis and Hitzig (1987) have shown that, when compared with 

control values, submerged anoxic turtles undergo a 77% reduction in 

ATP production. In addition, Robin et al. (1979) also reported no 

appreciable increase in the rate of anaerobic energy production 

during anoxia in turtles, concluding that energetic balance must 

result from an overall decrease in energy consumption. While the 

results of many such studies support the general notion of the 

metabolic arrest concept, stabilized membrane function must also 

occur during 0 2 deprivation in order to prevent ions from drifting to 

their electro-chemical equilibrium. Energy production cannot be 

reduced unless energetically expensive ion pumping (Na+/K+-

ATPase) also declines. 
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III . The 'Channel Arrest' Hypothesis 

Studies of ischemic mammalian brain (Hansen, 1985), reveal a 

massive efflux of K+from the neurons and a corresponding influx of 

Na+into the intracellular space. Similar K+efflux from the brain of 

the hypoxia-sensitive rainbow trout has al .o bien reported (Girard, 

1989) when animals were deprived of ambient O^. Comparable 

studies, using hypoxia-tolerant ectotherms, have shown that the 

massive K+efflux typical of hypoxia-sensitive animals either does 

not occur at all (Surlykke, 1983) or develops much more slowly (Sick 

et al, 1982). For example, Ching-Ping et al. (1989) measured passive 

ion leakage rates in turtle brains treated with ouabain (a Na+/K+-

ATPase inhibitor). They found that the rates of K+leakage were 50% 

lower in brains subjected to 2 h of anoxia than in their normoxic 

counterparts. Suppression of EEG activity was also noted, indicating 

reduced ionic traffic across the neuronal membranes. 

There is evidence that certain species of hibernating mammals 

may also display channel arrest. Hall and Willis (1984), for example, 

characterized the effect of temperature on the ouabain-insensitivc 

fluxes of K+ions in red blood cells in the hibernating ground squirrel 

and the non-hibernating guinea pig. Cold-adapted erythrocytes from 

t 
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the ground squirrel retain K+ions better than cells from the guinea 

pig. Potassium flux was resolved into three components; basic leak, 

co-transport and Gardos channels (Ca sensitive K channels). They 

conclude that ion stabilization could not all be accounted for by the 

first two components, but that the more efficient regulation of 

9+ cytoplasmic Ca in the hibernator was largely responsible for 

reduced channel movement of K+. Lowered Na+/K+-ATPase activity 

also appears to be a contributing factor to reduced K+loss (Willis et 

al, 1980). 

Ion homeostasis and cellular energy metabolism has also been 

investigated in the red cells of common carp (Cyprinus carpio) 

subjected to acute hypoxia. Nikinmaa et al., (1987) observed slow 

changes of intracellular ion concentrations (increased Na+and 

decreased K*) over the six hour time course of their experiment, in 

blood samples withdrawn from chronically catheterized animals. 

Exposure of the fish to decreasing environmental oxygen saturations 

(from 100% to 15-20%) had no effect on erythrocyte ATP 

concentrations. Clearly, the coupling of metabolic arrest with channel 

arrest allows good animal anaerobes to maintain cellular viability in 

potentially hypoxic environments. 
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IV. Chemical Messengers 

Hormones, neurotransmitters and cellular 'second messengers1 

are essential for the regulation and integration of cellular, tissue and 

system activity. For example, the nervous system provides the body 

with a rapid means of internal communication that is critically 

important in regulating and coordinating the activities of the cells. 

As a result, neural activity is essential to an organism's ability to 

maintain homeostasis. Chemical transmission of information across 

synapses from one neuron to another is accomplished with 

neurotransmitters. The action of these substances may be altered by 

neuromodulators. Anoxia-tolerant vertebrates, like the loggerhead 

sea turtle (Caretta caretta), the freshwater turtle (Pseudemys 

scriptaelegans) and the crucian carp (Carassius carassius), display 

changes in brain neurotransmitter levels in response to reduced 

concentrations of environmental oxygen (Nilsson et al, 1991). When 

exposed to 4 h of nitrogen, levels of the inhibitory amino acids 

gamma-aminobutyric acid (GABA), taurine and glycine increased, 

while the level of the excitatory amino acid glutamate decreased. It 

is suggested that the combined effects of an increase in inhibitory 

amino acids and a corresponding decrease in the excitatory 

neurotransmitter, may facilitate a lowering of brain activity and 

therefore energy consumption. In anoxia-intolerant species (the 

I 
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anole lizard, Anolis sagrei, and the dog) GABA levels increase to only 

a moderate extent while glutamate levels either remain unchanged 

or increase slightly. Anoxia-induced increases of the inhibitor GABA 

may act to protect the brain from immediate ischemic damage. 

However, the corresponding increase of the excitatory amino acid, 

glutamate, predominates and prohibits long-term protection for 

these more sensitive organisms. 

Other neuronal inhibitors such as norepinephrine and serotonin 

(Nilsson, 1989, 1990) may play a similar role in protecting the brain 

against anoxia damage. Serotonin synthesis and degradation 

requires the simultaneous reduction of molecular oxygen and should 

therefore be strongly affected by anoxia. Species which exhibit 

extreme anoxia tolerance (e.g. cyprinid fish and turtles) display little 

or no decrease in serotonin, which suggests they have developed 

effective mechnisms for the uptake or storage of monoamines. For 

example, serotonin levels were maintained for up to 13 h of anoxia in 

both Pseudemys and Caretta , but fell by 40% in the anole lizard after 

only 40 min of similar treatment (Nilsson et al, 1991). In an earlier 

study, Nilsson (1989) measured serotonin levels in the brain of the 

crucian carp subjected to anoxia (oxygen levels less than 0.1 mg L" ). 

Serotonin decreased only 15%, while the two main metabolites of 

serotonin, 5-HIAA and 5-HTOH, decreased 80-90%. Crucian carp are 
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therefore capable of conserving this inhibitory neurotransmitter 

responsible for lowering activity levels in the brain. 

Phosphorylation is a major mechanism of ion channel 

regulation (Rossie et al, 1987). Cyclic AMP-mediated 

phosphorylation is known to be involved in modulating the 

behaviour of calcium, potassium and sodium ion channels in nerve, 

muscle and heart tissues (Costa and Catterall, 1984). 

Adenosine is known to initiate transmembrane signals which 

influence the activity of adenylate cyclase, phospholipase C or K+ion 

channels (Stiles, 1991). Recently, it has been implicated in Na+ 

channel regulation (M. Rosenthal, pers. comm.). Their results indicate 

that exposure of isolated turtle cerebellum to anoxia leads to a 

decrease in the density of voltage-gated sodium channels. Ion 

homeostasis, under this condition, is only lost when adenosine 

receptors are blocked. It should be noted, however, that it is still 

unclear if reduced ion movement is a function of channels being 

removed from the plasma membrane by endocytosis or that channel 

activity rate is affected. 

Aldosterone is a well known regulator of passive sodium 

movements and affects recruitment of pre-existing Na+channels in 

the toad bladder through a mechanism involving aerobic metabolism 

(Palmer et al, 1982). Under anaerobic conditions, permeability is 

*• 
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impaired through inactivation of these channels. 

It is clear from these examples that a myriad of hormones, 

neurotransmitters and neuromodulators may effect ion channel 

densities and activity, thereby enhancing the tolerance capabilities in 

some species. The complexity of the interactions makes it virtually 

impossible to generalize direct cause and effect mechanisms, but 

their importance in anoxia tolerance is apparent. 

V. Novel Metabolic End Products 

In 1980, Shoubridge and Hochachka suggested that lactate 

produced during anaerobiosis in the glycolytic tissues of the goldfish 

could be metabolized further to ethanol. They reasoned that this 

could account for the discrepancy they saw between the rate of 

glycogen utilization and the low accumulation of lactate, as well as 

the presence of the enzyme alcohol dehydrogenase in red and white 

muscle tissues. Johnston and Bernard (1983) also found that lactate 

accumulation could only account for 18.5% of the glycogen stores 

utilized, with the major end-product of anaerobic metabolism being 

ethanol. Ethanol is freely diffusible, is easily removed across the 

gills, and therefore never reaches toxic levels in the fish. However, 

this strategy is quite wasteful of carbon and is probably called upon 

only in life-threatening conditions. 

Further studies by Van den Thillart and colleagues (1983), 
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found a significant 'gap' between the amount of glycogen utilized as 

substrate and the amount of ethanol produced after lactate 

concentrations were taken into account. Tnis would suggest still 

another factor involved in substrate depletion. Van den Thillart et 

al. (1983) observed anaerobic carbon dioxide production in goldfish. 

Under hypoxic conditions, carbon dioxide and ethanol were 

presumed to be produced in a 1:1 ratio according to the combined 

action of pyruvate dehydrogenase and ethanol dehydrogenase (Van 

den Thillart, 1982). The excretion rates would be slightly different 

because bicarbonate and carbonic anhydrase facilitate C0 2 diffusion, 

while ethanol equilibration is a function of blood perfusion and 

diffusion distances across the gill. Assuming a time constant for 

ethanol equilibration of approximately 15 minutes as opposed to 2 

minutes for C02 , Van den Thillart (1982) reasoned that steady states 

should still be reached within 1 hour after anoxic exposure. 

However, C02 excretion stayed well above that of ethanol, suggesting 

the existence of other C0 2 producing pathways. One explanation is 

anaerobic tricarboxylic acid (TCA) cycle activity, as long as there was 

a mitochondrial sink available for reducing equivalents. The 

discrepancy between C0 2 and ethanol excretion could also simply be 

explained by the generation of C02 from dehydration of plasma 

bicarbonate stores by protons of anaerobic origin. 

The mitochondria of anoxic goldfish are also known to be the 

r 
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site of decarboxylation of pyruvate to form acetaldehyde instead of 

acetyl coenzyme A (Mourik et al, 1982). Alcohol dehydrogenase 

would further reduce acetaldehyde to ethanol. If total ethanol 

excretion cannot be explained by glycogen depletion alone, the 

balance may be comprised from protein as a substrate (Van den 

Thillart, 1983). Protein is normally catabolized under aerobic 

conditions resulting in ammonia production; however, anaerobic 

ammonia excretion has been described in goldfish by Van den 

Thillart and Kesbeke (1978), and in crucian carp by Johnston and 

Bernard (1983). 

Crucian carp also excrete small amounts of acetic acid 

(Holopainen et al, 1986). The origin of this material is thought to be 

through an intermediate pathway involving acetate. Acetate is not 

easily converted to acetaldehyde and so is excreted, which may 

aleviate the problem of acid accumulation during long-term anoxia. 

The acetate pathway also has the energetic advantage of forming one 

additional ATP (Van den Thillart, 1982). 

VI. Goldfish Strategies 

As already mentioned, the goldfish is remarkably resistant to 

anoxia, surviving from 22 h at 20°C (Van den Thillart etal, 1983) to 

several days at 2-3°C (Shoubridge & Hochachka, 1980). Goldfish 


