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ABSTRACT 

The van der Waals constants C3 and the coefficients for the 
long range part of the substrate-mediated dispersion energy between two 

identical adparticles have been calculated for the rare gases and 

hydrogen on 20 semiconductors, using the experimental data for their 

dynamic dielectric functions. 

The adsorption of the rare gas atoms on metal surfaces can be 

greatly enhanced by strong electric fields, such as those occurring at 

field ion emission tips. The field induced charge transfer can be so 

large that above critical fields of several volts per angstrom 
desorption of positively charged rare gas ions, such as He+, Ne+, Ne++, 

etc., occurs. An ASED~Mo (Atom Superposition and Electron Delocalization-

Molecular Orbital) cluster programme, suitably modified to include 
electric field effects, has been used to calculate potential energy 

curves, binding and activation energies, bond-lengths, and charge 

transfers of He, Ne, and Ar field-adsorbed on a W(111) surface. 

The one-electron potential energy is also evaluated to 

facilitate the calculation of the ionization probabilities and eventually 

the ion yield at the field ion emission tip. A detailed procedure to 

calculate three-centre Coulomb integrals over the Slater orbitals is 
given for this purpose. 

Adsorption, field adsorption, dissociation, etc., of H2 and H3 

onto W( 111) have also been studied. The most probable configuration and 

the adsorption site have been found. Vibrational frequencies are 
determined for the adsorbed species as a function of electric field 
strength. 

In very strong fields, the field ion tips themselves evaporate. 

Effects of field penetration, Friedel oscillations, polarization, and 
hyperpolarization are investigated. 
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INTRODUCTION 

A brief account of the contents of this thesis is given in this 

introduction. Each chapter starts with a separate and detailed 

introduction. Part of the thesis is based on the recent work by Nath et 

1 1-6 a . 

In the last decade there has been increasing use of rare gases 

as probes of surface structure, reconstruction, defects, etc. Helium 

scattering and field ion microscopy are just two examples involving 

these gas atoms. 

The long range attractive part of the interaction between a 

physisorbed gas atom and a solid is given by the van der Waals dispersion 

force, for which the energy of interaction is inversely proportional to 

the cube of the separation between the surface and the adsorbed particle 

(Dzyaloshinskii, Lifshitz and Pitaevskii, Ref. 6, Chap.I), the 

proportionality constant being known as C3 • In this work, C3 and the van 

der Waals constants for the long range part of the substrate-mediated 

dispersion energy (McLachlan, Ref .1 O, Chap.I) between two identical 

adparticles have been calculated for the rare gases and hydrogen on 20 

semiconductors. The dynamic dielectric function used for this purpose has 

been calculated from the measured reflectivity data using a Kramers-

Kronig analysis. For the dynamic polarizability of the adparticles, an 

approximate expression, given by Langhoff and Karplus (Ref.60, Chap.I), 

has been used. The results obtained for these van der Waals constants 

are similar to those for the metals and graphite. C3 and other van der 

Waals constants help estimate the binding energy and equilibrium distance 

1 
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for the adsorbing particle on the substrate, provided one knows the 

repulsive part of the surface potential. The latter can be calculated by 

summing the two-body repulsion energy between the adparticle and the 

substrate atoms. 

The field ion microscope (FIM) uses rare gases, ionized in 

strong fields, to image the surface atoms of the solids (see for example 

Muller and Tsong, Ref .1, Chap.III). Theory is not adequate to explain the 

adsorption phenomena of these gases in strong electric fields. An ASED-

MO (Atom Superposition and Electron Delocalization - Molecular Orbital) 

cluster calculation of Anderson (Ref .15-1 8, Chap.II) has been used, in the 

present work, to obtain the binding energies, the bond-lengths and the 

charge transfers (in terms of the Mulliken (Ref ,30, Chap.II) definition) 

of the adsorbed species on the metal. The results for the binding 

energies thus obtained are comparable to those obtained using the van 

der Waals constants C3 • The ASED-MO programme has been suitably 

modified, for the first time, to include the field effects such as the 

penetration of the field, Friedel oscillations, polarization, 

hyper polarization (Forbes, Ref. 4, Chap.II), etc. It is found that the 

activation energy increases many-fold in the presence of strong electric 

fields of several volts per angstrom and at the same time there is a 

considerable charge transfer to the adsorbed species. The distance of 

the (local) equilibrium position decreases about 30 % before the 

activation energy barrier disappears completely at higher field 

strengths. The mixing of the p-orbitals of the rare gases (empty for He, 

and occupied for Ne and Ar) and the (partially occupied) d-band of the 

transition metal (tungsten) is one of the factors responsible for the 

binding of the rare gases on this metal. The increase in the total energy 
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due to the unoccupied destabilizing orbitals has been taken care of by 

the two-body repulsion energy. ASED-MO is a modification of the extended 

Huckel molecular orbital theory (essentially due to Hoffmann (Ref .22, 

Chap.II)) mainly in the sense that the ASED-MO takes into account the 

electrostatic Coulomb repulsion due to the nuclei of the cluster atoms. 

The penetration of the field is based on the jellium model calculations 

of Schmickler and Henderson (Ref .27, Chap.II), of Gies and Gerhardts 

(Ref.28, Chap.II), and of Lang and Kohn (Ref.37, Chap.II). Their 

calculations are based directly on the Hohenberg-Kohn-Sham (Ref.36, 

Chap.II) density functional theory. 

The one-electron potential energy curve has been obtained for a 

rare gas atom field-adsorbed on a tungsten cluster in order to consider 

WKB electron tunnelling rates (from the adatom to the cluster). The 

present calculations are compared to the results of model calculations 

which use a simple Coulomb-like potential for the adsorbed atom (Haydock 

and Kingham, Ref .10, Chap.II). Several three-centre Coulomb integrals are 

required for this purpose since the Slater orbitals (used as the basis 

function in the ASED-MO) are centered around different nuclei of the 

atoms of the cluster. Based on a prescription of Harris and Michels 

(Ref .31, Chap.II), a detailed procedure is given to evaluate these 

integrals. 

Hydrogen is commonly observed in the FIM. Sometimes it is 

advantageous to mix a few atomic percent of hydrogen with the imaging 

gas. The field adsorption of H2 and H3 on a tungsten surface has also 

been considered, in the present work, in the ASED-MO formalism. As H2 

approaches from the gas phase to the metal surface, the H2 physisorbs 

weakly with an energy barrier of about 1.5eV between this physisorbed 
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precursor state and the chemisorption (or the dissociation) phase. 

Several equipotential contour maps are presented for the ground-state 

energy surface for different configurations of H2 on the W( 111) surface. 

Vibrational frequencies of H2 are determined as a function of field 

strength. H3 does not form in free space. However, the formation of the 

linear H3 is possible in the vicinity of a surface with the binding energy 

of about 2.0eV. The formation and the dissociation of H3 is discussed 

with and without the field. The adsorbed linear H3 has the most stable 

configuration when the ratio of the distances between the outer H atoms 

and the inner H atoms (adjacent to the surface) is 0.75. 

In very strong electric fields the FIM tips themselves 

evaporate. This phenomena is of particular interest in smoothening of the 

tips and also in obtaining the best image voltage. To conclude the 

present work, the mechanism of the field evaporation has also been 

considered theoretically. The inclusion of the electric field is not 

self-consistent, i.e., it does not take into account the distortion of the 

equipotential surfaces due to the presence of the field itself and due 

to the presence of the kinks, steps, edges, etc., on the surface. 

Nevertheless, the numerical results on field evaporation closely 

approximate the experimental results. 

In summary, in this thesis, besides adsorption of rare gases and 

hydrogen on semiconductor surfaces, we discuss field adsorption -

desorption phenomena in the framework of an ASED-MO cluster calculation 

in order to achieve insight into mechanisms which determine the surface 

structure in a FIM. 
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CHAPTER I 

van der Waals Interaction of Rare Gases and Hydrogen on Semiconductor 

Surfaces: 

The simplest adsorption phenomena are connected with 

physisorption 1 of rare gases and hydrogen onto a variety of surfaces 

such as graphite, alkali halides and metals. Since the advent of helium 

scattering2-" as a surface probe there has been a need for detailed 

calculations of the surface potential. Whereas the short range repulsion 

of this potential must be obtained from detailed microscopic models, 

such as cluster or local density functional calculations,5 its long range 

attractive part can be described by the van der Waals dispersion force 

V(z) 

where 

C = Joo 
3 4'JT 

0 

a(iw) diw)- 1 dw 
£(iw)+1 

( 1.1) 

( 1 • 2) 

Here a is the polarizability of the adsorbing particle and E: is the 

dielectric function of the solid, both taken at imaginary frequencies. 

In obtaining equation (1.2) from the general expression of 

Dzyaloshinskii et al. 6 for the force of attraction between two 

dielectrics separated by a third (the distance of separation assumed to 

be much less than the corresponding wavelength of dipole transitions), 

use has been made of the fact that the medium containing the adsorbing 

particle is rarefied, so that its dielectric function is close to unity. 8 • 9 
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McLachlan10 obtains the same expression (1.2) for C3 , using an 

image-dipole approach. He has also determined the long range part of 

the substrate-mediated dispersion energy between two identical 

adparticles 

v ( r r ) _ C 2 + 3cos2 <P + 3cos2 8 C 1 
2 i' 2 - s1 6 lr-r' 13 lr -r 13 - s2 lr'-r Is 

1 1 2 1 2 

( 1 • 3) 

where r and r are the positions of the two particles above the 
1 2 

surface, r' is the position of the image of particle "1", 8 is the angle 
1 

between (r -r) and the surface, and 4> is the angle between (r'-r) and 
1 2 1 2 

the surface (see Fig.1.1). The coefficients Cs1 and Cs2 are given by 

31Tl1 I Ooo a2(iw) E:(iw)-1 d 
diw)+1 w 

and 

- . -2 
2c• ) lE:(1w)-1J d a lW (. ) 1 W £ lW + 

I 
I 

<P 

I 

I 
I 

Fig.1.1: As mentioned in the text. 

( 1. 4) 

( 1. 5) 
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These van der Waals constants for the rare gases and hydrogen 

interacting with semiconductors have been calculated after evaluating 

the dielectric function from optical data on 20 different materials; 

these optical data are listed in Table 1.1. For anisotropic solids, such 

as CdSe, CdS, etc., where data are available for the electric vector E 

of the incident beam perpendicular and parallel to the c-axis of the hep 

structure, e:(iw) has been replaced by£ (iw) in equations (1.2), (1.4) and 

(1.5), following the prescription of Bruch and Watanabe: 11 

( 1. 6) 

Results are presented below and are compared with the values 

obtained by Vidali and Cole. 12 Recent analysis of the He-GaAs interaction 

by Laughlin 13 has also been used to estimate the binding energy. 

a) The dielectric function of semiconductors: 

The dielectric function of solids, e:(i w), at the imaginary 

frequency, iw, can be calculated from the imaginary part, e: 2 , of the 

dielectric function at the real frequency w (e:(w) = e: 1(w)+ie: 2(w)) as: 1" 

e: (i w) 1 + ; [ ( 1. 7) 

The real and imaginary parts of the dielectric functions of 

solids can be obtained experimentally by the Kramers-Kronig analysis of 

normal incidence reflectance data. 15- 36 The Kramers-Kronig analysis of 

non-normal incidence reflection is also available." 

According to Phillip and Ehrenreich, 21 three spectral regions 

may be distinguished, as illustrated in Fig.1.2. The first region, 



Table 1.1: 

Material 

Si 

Ge 

GaP 

InP 

GaAs 

InAs 

InSb 

Mg0 

Zn0 

Cd0 

Summary of optical data for semiconductors. R 

reflectivity; e: = e: 1 + ie: 2 = dielectric function; n + ik 
2wk refractive index; a= = absorption coefficient. 

C 

Eg (eV) Temp(K) Data 

1.14 300 R,e:i,e:2 

300 R,n,k, a, e:i, e: 2 
0.67 300 R,e:ue:2 

300 R,n,k,a 

300 R,n,k, a, e:i, e: 2 
2.26 300 R,e:i,e:2 

300 R,a,n 

300 R,n,k, a, e:i, e: 2 

1.35 300 R,n,k, 

300 R,a,n 

300 R,n,k,a,e:i, e: 2 

1.43 300 R,e:i,e:2 

300 R,a,n 

300 R,n,k,a, e:1, e:2 

0.35 300 R,e:i,e:2 

300 R,a,n 

300 R,n,k,a, e:1, e:2 

0.18 300 R,e:ue:2 

300 R, a,n 

300 R,n,k,a, e:i, e: 2 
100,300 R 

400 R 

1 00 E:2 

3.2 300 R,e:1,e:2 
100,400 R 

300 R,e:i,e: 2 
100,400 R 

Frequency 

Range(eV) 

0 - 21 

1 .5 - 6 

0 - 21 

0 - 10 

1 .5 - 6 

0 - 25 

15 - 35 

1 .5 - 6 

0 - 20 

15 - 35 

1.5 - 6 

0 - 25 

15 - 35 

1 .5 - 6 

0 - 25 

15 - 35 

1 .5 - 6 

0 - 25 

15 - 35 

1 .5 - 6 

6 - 29 
6 - 25 
0 - 30 

1 .5 - 25 
4 - 26 

- 30 

4 - 30 

Refer-

ence 

21 

48 
21 

16 

48 
21 

31 

48 
29 
31 

48 
21 

31 

48 
21 

31 

48 
21 

31 

48 
33 

33 

33 

33 

33 
33 
33 

8 



9 

Table 1.1 (continued): 

Material Eg (eV) Temp(K) Data Frequency Refer-

Range(eV) ence 

ZnS 3.6 300 R, E:i, £2 1 .5 - 25 33 
100,400 R 4 - 25 33 
300 a.(film) 55 - 150 30 
300 R,n,k 3 - 20 25 

CdS 2.42 300 R,£1,£2 0.5 - 25 33 
100,400 R 4 - 25 33 
300 a(film) 40 - 150 30 
300 R,£1,£2,a 0 - 20 26 

300 R,n,k 0 - 12 25 

PbS 0,34 - 0,37 300 R,n,k - 18 24 

300 a.(film) 35 - 150 30 
ZnSe 300 R,£u£2 1 . 5 - 23 33 

100 R 4 - 23 33 
300 a.(film) 35 - 150 30 
300 R, £1, £2 1 - 10 17 

CdSe 1.74 300 R,£1,£2 0.5 - 23 33 
100,400 R 4 - 23 33 
300 a(film) 35 - 140 30 

300 R,n,k 0 -10 25 

HgSe 12,300 R 4 -12 23 
2 R, £2 0 - o. 1 35 
95,300 R 0 - o. 1 35 
10 - 300 a,n, £1 0.05 - 0.25 47 

PbSe 0.27 300 R - 21 24 

300 n,k 0 - 15 24 
ZnTe 300 R,£1,£2 - 25 33 

100,400 R 4 - 25 33 
300 a(film) 40 - 150 30 
300 R 2 - 23 22 

300 n,k 0 - 20 27 



10 

Table 1. 1 (continued): 

Material Eg (eV) Temp(K) Data Frequency Refer-

Range(eV) ence 

CdTe 1.45 300 R,e:i,e:2 0.5 - 25 33 
100,400 R 4 -23 33 
300 n,k 0 - 20 27 
300 a(film) 40 - 150 30 
115 R 2 - 8.5 36 
300 R 2 - 23 22 

300 E:2 0 - 9 28 
15 R 2 - 8 32 

HgTe 12,300 R 4 - 1 2 23 
115 R 2 - 8.5 36 
10 R 2 - 9 32 
300 R(arb. unit) 2 - 23 22 

-0.3 - 0.15 8 - 300 R,e:1,e:2 0.01 - 0.1 34 
300 n' e:1 0.05 - o. 1 5 47 

SnTe o. 18 300 R,n,k 1 - 20 24 

PbTe 0.3 300 R,n,k, e: 1, e: 2 0.5 - 17 24 

300 a(film) 35 - 150 30 
CdxHg1_xTe 11 5 R 2 - 8.5 36 
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I In Sb 
I 

REGION 2 I REGION 3 I 
I 
I 
I 
I 
I 
I 

R(¾) I 
I 

REGION I 
I 
I 
I 

20 

R 

I 
I 

0 

25 
1.2 ,.,, 

I \ I 
1 \ -Imc' 
I \ I 

,' \ I 

15 I \ ' 
I \ : 0.8 

I \ I -Imc1 I \ I 
I \ I 

EI, E 2 I \ I 
5 I \ I 

I / \ I 
I \ I 0.4 

0 
i.-... -----

I --- ----5 I 
I 
I 

0 5 10 15 20 25 
0 

w(eV) 

Fig. 1 . 2: The spectral dependence R, the real and imaginary 

parts of the dielectric constant, E: 1 and E: 2 , and the energy-
loss function, -ImE:-1, for InSb (from Phillip and Ehrenreich21 ). 
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extending to about 8 to 10 eV in most semiconductors, is characterized 

by sharp structures associated with valence to conduction interband 

transition and, in particular, in polar materials, with the lattice 

polarizability. Methods are available to calculate the band structures 

of the semiconductors, e.g., those based on Kane's model, 38 the tight-

binding method, etc. 

In Kane's model, one calculates the band structure using the 

k.p perturbation approach, assuming that the conduction and valence band 

extrema are at k=O. The small band gap requires an accurate treatment 

of conduction and valence band interactions, while higher bands can be 

treated by perturbation theory. In a great many semiconducting materials 

the spin-orbit interaction plays an important role. The spin-orbit 

interaction is very small for the light elements but increases rapidly 

as one moves to the right or downward in the periodic table. 

In the tight-binding approximation, one assumes that the crystal 

wave function is close to that of the free atoms of which it is 

composed. Thus the Bloch functions are represented in terms of a 

periodic function and a Wannier function, which itself is approximated as 

a linear combination of atomic orbitals (LCAO). Because of this 

approximation, the tight-binding method is also known as the method of 

the LCA0. 

In the second spectral region, 21 which extends to about 20 eV, 

the reflectance decreases monotonically. This behaviour can be 

associated with collective excitations of essentially free valence 

electrons. In the third region, beyond 20 eV, the reflectance may rise 

again to some extent, due to transitions between filled d-bands, which 

lie below the valence band, and empty conduction band states. 
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Most optical data on semiconductors have been taken in the 

first region where a detailed knowledge of the band structure is needed 

for their interpretation. 15- 29 , 32- 36 • 39• " 0 Extensive tight binding and ab 

initio calculations within the local-density-functional formalism have 

been performed for this purpose for a variety of semiconductors. 32 •" 1-"6 

A detailed study of zero-gap semiconductors, based on the effective mass 

approximations exists for the region below eV. 3"• " 7 , " 9 The low 

frequency 50 and long wavelength dynamic dielectric function 51 for those 

materials have been studied extensively. 

It turns out that the calculation for the van der Waals 

interaction of atoms in semiconductors for this first region contributes 

little. The polarizability at imaginary frequency, a(iw), drops to only 

10% of its static value for w ranging between 60 eV and 100 eV, 

depending on the adsorbed particle (H, H2 , He, Ne, Ar, Kr and Xe). Thus 

one needs diw) up to about 100 eV to calculate C3 , Cs1 or Cs2 . In 

w' . eqn.( 1. 7) the factor w2+w' 2 rn the integrand has a peak at w' = w, making 

it desirable for the reliability of the value of diw), to have £i w') up 

to about w' 1 00 eV, where little is known either experimentally30 or 

theoretically, so that some extrapolation of data is needed. Fortunately 

the Kramers-Kronig relations provide a check on such extrapolations. 

The procedure is recounted briefly. 15 • 16• 22 • 29• 52- 57 At normal 

incidence, the Fresnel equation for the reflection of radiation from an 

absorbing medium of complex index of refraction ft ( = n+ik) is 

n+ik-1 r = n+ik+1 ( 1 • 8) 

giving the reflectance (or reflectivity) R, which is the measured 

quantity, in terms of the complex reflection coefficient r as 
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R ( 1. 9) 

The phase, 8, of r defined by 

r = I r I ei8 (1.10) 

or, 

ln r = 1 ln R + i 8 (1.11) 

can be detrmined at any single frequency from the Kramers-Kronig 

relation 58 

f oo 

2w 
s(w) = -"'ir o 

2 ln R(w') 
dw' 

which can be written in the alternative form as 59 

8(w) = __ 1 f oo 

21T 0 
d ln R(w') ~'+w , d, ln , dw w w -w 

(1.12) 

(1.13) 

From eqns (1.8) and (1.10) one can write the index of refraction, n, and 

the absorption coefficient, k, as 

1 - R n = (1.14) 
1 - 2v'Rcos8 + R 

and 

21'Rsin8 
k (1.15) 

1 - 21Rcos8 + R 

These in turn determine the real and imaginary parts of the dielectric 

function E = E +iE 
l 2 

E ( w) = 2 n ( w) k ( w) 
2 

for which Kramers-Kronig relations hold 1 " 

(1.16) 

(1.17) 
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2w [ E: ( w' )- 1 
E: ( w) 1 

w' 2_ w2 dw' 2 1T 
(1.18) 

~r w' E: (w') 
E: (w) = 2 

dw' 1 + w' 2_ w2 1 1T 0 
(1.19) 

In eqns (1.18) and ( 1. 19) the usual dw= 00 ) terms have been replaced by 

unity, since, for the present purposes, w extends to far ultraviolet or 

soft x-rays where this approximation suffices. 

Because reflectance data are only taken over a limited range of 

frequencies, to an upper limit wu, say (typically of the order of 

20-30 eV), one needs to specify the asymptotic behaviour in eqn.(1.12) 

for wu < w < 00 • Cardona 30 finds reflectance to be well below 0.01 

between w = 35 eV and 150 eV, justifying the asymptotic diminishing 

assumption for reflectance in this region. Typically one chooses a power 

law 2 .. , 33 , 56 behaviour R - w-n , and fixes n such that the low frequency 

behaviour of £ 2, as calculated from (1.17), matches the values obtained 

directly from absorption measurements around the band gap. 

After little manipulation, the equation (1.12) can be 

transformed into a form which is more convenient to handle numerically. 

It can be written as 

8(w) ln ( R(w' )/R(w) ) dw' 
w' 2-w 2 

( 1. 20) 

where the integrand is finite for lim w' w, provided the reflectivity 

spectrum does not have an infinite slope at w, and it does not vanish at 

w, as well. Such an adverse situation never occurs experimentally. 

Writing R w-n beyond wu (the proportionality constant is 

chosen such as to maintain the continuity in R), one writes eqn.( 1.20) as 



a sum: 

8(w) ln (R(w')/R(w)) dw' 
w' 2_ w2 

2 1T ln (R(wu)IR(w)) ln 

dw' 
w' 

Wu -w 

16 

( 1. 21) 

The last integral in eqn.(1.21) can be expressed in terms of an infinite 

sum: 

00 

- 2 L 1 (wlwu /t+1 W ( Wu cn+1) 2 
t=O r ln~ 

00 

dw' 1T2 
+ 2 L 1 Cwu I w)n+1 W) Wu w'+w 7 2 (n+n2 

Wu t=O 

1T2 
( 1 • 22) 4 ; W = Wu 

Even if it is possible to get 8 for all w from eqn.(1.21), one usually 

calculates it and thereafter E1 and E2 for the frequency range for which 

data on R is available. The reliability of the values of 8 decreases as 

one goes beyond this range, since the factor , 21 2 , appearing in the w -w 

integrand of eqn.(1.12), is sharply _peaked at w'= w. 

Because data so obtained for E1 (w) and E2 (w) are only given for 

a finite range O < w we ( == wu) (see Table 1 .1), the asymptotic behaviour 

for Ei{w) ~ w-m is assumed (for w > we) to calculate diw) in eqn.( 1. 7). m 

is chosen such that E1(w), as calculated from the Kramers-Kronig relation 

(1.19), matches the value given from the reflectance analysis (1.13) 

through (1.16). 
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The eqn. (1.19) can be written as 

w' 2- w2 
( 1. 23) 

or, 

~t w' Eiw') - w E: 2C w) 2A [ 1-m w' E: l (w) 1 + w' L w2 dw' + w' 2_ w2 dw' 
1T 0 1T 

Eiw) w + w 
C ln (1.24) 

1T We - W 

where A is given by 

E:2(w) = A w-m ( 1. 25) 

for w;;:w0 • The second integral in eqn.(1.24) can be written as 

[ I 1-ly I 
+ 2tan-• ly - •] ln 

2/w I I 
1 m=-2 

[ 1-m w' dw' ln w' 2_ w2 2w y m=1 

ln y 
w2 m=2 (1.26) 

where y 

For some materials these fits for E: 1(w) are not easy if Eiw ) 
C 

is still appreciably different from zero. Such a bad example is given in 

Fig.1. 3; a good fit is presented in Fig.1. 4. For most materials best fits 

can be obtained with 1 m 2. The fact that Eiw) satisfies a sum rule, 

unfortunately, does not help in determining its asymptotic behaviour. As 

an exact statement (i.e. involving an integration over frequency up to 

infinity), it cannot be tested, and, as an approximation (i.e. integrating 
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Fig.1 .3: Real part £ 1 of the dielectric function for PbSe. 
Solid line obtained from reflectivity data24 via eqns (1 . 13) -

(1.16). Dashed line obtained using eqn.(1.19) with £ 2 from 

eqn.(1.17), assuming, in addition, an asymptotic behaviour E: 2 (w) 

- w- 2 for w > 15 eV. 
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Fig.1 .4: Real part £ 1 of the dielectric function for CdTe. 
Solid line obtained from reflectivity data33 via eqns (1.13) -
(1.16). Dashed line obtained using eqn.(1.19) with £ 2 from 
eqn.(1.17) assuming, in addition, an asymptotic behaviour £ 2 (w) -

l 

w - 2 for w > 25 eV. The asymptotic behaviour £ 2 ( w) - w- 2 , used 
in the calculations of the van der Waals constants, is 
indistinguishable from the solid line. 
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up to some cut-off frequency), it merely serves to define the effective 

number of valence electrons. 

b) The Polarizability of the adsorbing particles: 

The polarizability of a particle at imaginary frequency is given 

by 

where f no and 

a.(i w) 
f , no 

L w2 + w2 
no n 

( 1 • 27) 

are the oscillator strength and the transition 

frequency of the particle, respectively. Langhoff and Karplus 60 give 

expressions for the bounds to the polarizability using Padi approximants: 

a.(i w) N 
N/a. 0 + w2 ( 1. 28) 

where N f is the number of electrons in the particle, via the no 
n 

sum rule. 

The Cauchy coefficients a. 0 (the static polarizability) and a. 1 

are quoted in Table 1.2. For the rare gas atoms, Langhoff and Karplus 60 

give an approximate expression for the polarizability which is similar to 

the one given in reference 62 : 

a.(iw) 

where 

w 

a. w2 
0 

C 4 aa 
3 a7"" 

( 1. 29) 

(1.30) 

The dipole dispersion force coefficients Caa are quoted in Table 1. 3. In 



Table 1.2: 

H 
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Cauchy coefficients a. 0 (static polarizability) and a. 1 (in 

atomic units) for H, H2 , He, Ne, Ar, Kr and Xe. These have 

been taken from tables I and IV of Ref.60. They are exact 

for H but have been calculated for the remaining elements 

from refracti vi ty data. 61 

He Ne Ar Kr Xe 

4.5 5.439 1.3838 

1.55 

2.668 

2.863 

11 .091 

28. 16 

1 6. 74 

55.53 

27. 34 
11 6. 2 26.5833 20.02 

Table 1,3: 

He 

1,47 ± 0.02 

Dipole dispersion force coefficients Caa (in atomic units) 

for the rare gas atoms as given in table V of Ref .60. 

Ne Ar Kr Xe 

7.03 ± 0.55 69,3 ± 5,7 1 40 ± 1 6 423 ± 66 
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Fig.1.5: Polarizability of He (1 a.u. = 0.1482 i. ) at imaginary 

frequency as a function of real frequency (1 a.u. = 27.2 eV). 

The solid curve is obtained from eqn.(1.29) and has been used 

to calculate the van der Waals constants. The dashed curves 

are the two bounds as given by eqn.(1.28). 
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Fig.1.5 the polarizability a(iw) for He is plotted as a function of w 

using eqn.( 1.29) and the upper and lower bounds from eqn.( 1.28). The 

curve, as obtained using the approximate expression ( 1. 29), lies in 

between the two bounds, showing that the expression ( 1.29) is indeed a 

good approximation for the present purposes. The situation for other 

rare gas atoms is similar. 

c) Results: 

The van der Waals coefficients C3, Cs1 and Cs2 of eqns (1.2), 

(1.4) and (1.5) have been calculated for H, H2 and the rare gases 

interacting with any of the 20 semiconductors listed in Table 1.1, except 

the mercury compounds. For the polarizability of the rare gas atoms, 

eqn.(1.29) has been used. For H and H2 , as well as for He, the upper and 

lower bounds for the polarizability in eqn.( 1.28) are used to calculate 

the van der Waals coefficients. For He, the variations in these results 

from those obtained using the approximate expression ( 1.29) are less 5 % • 

For Hand H2 the mean of the two values is taken. 

To demonstrate the sensitivity of the van der Waals 

coefficients to the asymptotic behaviour of e:iw) for w>w two examples 
C 

are discussed in detail. Table 1.4 lists C3 values for the above gases 

interacting with CdTe for m=0.5, 1 and 2 and the cut-off at ~we= 25 eV. 

There is a considerable variation in C3 across m values. However, from 

Fig.1. 4, one knows that one should choose 1 ~m~2, amounting to an error 

in C3 of less than 15%. Table 1.5 gives C3 for PbSe (~we = 15 eV). In 

this case the asymptotes of e:iw) are difficult to establish, as one 

sees in Fig.1.3. However, C3 is less sensitive to the m values chosen. 



Table 1 .4: 

m 

H 

H2 

He 

Ne 

Ar 

Kr 

Xe 

Table 1 .5: 

m 

H 

H2 

He 

Ne 

Ar 

Kr 

Xe 

Van der Waals coefficients C3 (in 
o3 

meV A ) 

24 

for CdTe, 

calculated using (1.2) for different asymptotic behaviour 

of e: 2( w) ex: w-m beyond iiwc = 25 eV. In the last column 

e:2(w) = 0 for w > we· 

0.5 2 cut-off 

523 454 417 386 
757 639 577 526 
294 227 195 171 
672 498 414 356 
1899 1542 1361 1219 
2631 2173 1938 1749 
4696 3811 3362 3010 

The same as in Table 1 .4 but for PbSe. ii.we 15 eV. 

0.5 2 cut-off 

370 333 316 304 
508 446 419 400 
173 1 41 127 11 9 
374 292 260 242 
1194 1015 939 889 
1702 1467 1366 1297 
2954 2507 2318 2193 
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For semiconductors, such as Si, GaAs, PbTe, GaP and InSb, the maximum 

uncertainty in C3 as a result of varying m from 0.5 to 2, is less than 

1 o % ; Si, having no d levels, shows no dependence on the extrapolation 

because e: 2 drops to zero within the experimentally accessible frequency 

range. 

All the data on C3 , Cs 1 and Cs2 calculated at T = 300 K (except 

for Mg0 at T = 100 K), are listed in Tables 1.6 - 1.8. Choosing m=2 for 

all materials, the numbers should be accurate to within 10 % • It is 

amazing that for a given gas particle the variation in the van der Waals 

constants for different semiconductors is less than 50 % , i.e. also 

within the range for metals and for graphite. 11 • 63 • 6 " The van der Waals 

constants for metals and graphite, as taken from Bruch, 63 are quoted in 

di w)-1 Table 1.9 for comparison purposes. In Figs 1.6 and 1.7, diw) and diw)+ 1 

have been plotted, respectively, for a metal with a typical plasma 

frequency wp = 10 eV and two semiconductors, namely CdTe and PbSe, for 

comparison purposes. The dependence of Cs2 on different materials is 

more noticeable because of the quadratic dependence of the integrand on 

di w)-1 
diw)+ 1 in eqn.(1.5). 

With so little variation, no trustworthy trends can be 

established. For example, increasing the polarity by going from a III - V 

compound to a II - VI compound in the same row of the periodic table, 

one might expect larger van der Waals interaction. However, this is not 

the case because the frequency range in the dielectric response due to 

optical phonons does not contribute significantly to the van der Waals 

constants. Similarly, any structure around the band gaps is too low in 



Table 1.6: 

H 

Si 406 

Ge 449 

GaP 416 
InP 41 4 

GaAs 409 
InAs 419 

InSb 399 
MgO 310 

ZnO 322 
CdO 357 
ZnS 376 
CdS 354 
PbS 355 
ZnSe 377 
CdSe 367 
PbSe 31 6 
ZnTe 398 
CdTe 41 7 

SnTe 422 
PbTe 318 

3 
Van der Waals coefficients C3 (in meV i ) 

H2 He Ne Ar 

550 174 360 1261 

615 201 421 1 429 

570 187 393 1329 

569 188 397 1 329 

558 1 81 377 1290 

574 188 395 1 335 
541 1 73 360 1244 

435 1 51 325 1043 

450 155 332 1072 

495 168 359 11 71 

51 9 1 74 369 1222 

487 1 62 343 11 42 

476 149 306 1080 

520 174 367 1220 

505 169 356 11 85 

419 127 260 939 
545 180 378 1271 

577 195 41 4 1 361 

573 184 383 1 31 9 
420 126 257 937 

26 

Kr Xe 

181 8 311 3 

2047 3529 
1902 3282 

1900 3283 
1852 3186 

1 911 3296 
1790 3071 

1475 2576 

1519 2648 

1665 2894 
1742 3019 

1 631 2822 

1563 2667 

1 741 3014 
1691 2927 

1366 2318 

1819 3140 

1938 3362 
1897 3256 

1365 2312 
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Table 1. 7: Coefficients C5 1 (in meV !6) in eqns (1,3) and (1.4) 

H H2 He Ne Ar Kr Xe 

Si 2449 41 65 365 1495 20292 43407 123583 

Ge 2625 4507 407 1692 22258 47331 1 35592 

GaP 2419 4163 378 1574 20611 43781 125562 

InP 2400 4127 375 1 571 20443 43407 124540 

GaAs 2416 4133 369 1528 20310 43280 123714 

InAs 2452 4203 379 1578 20733 44103 126300 

InSb 2397 4066 357 1470 19805 42358 120622 

MgO 1 688 2975 288 1233 151 75 31826 92492 

Zn0 1776 3109 297 1266 15751 33124 95991 

Cd0 2012 3488 326 1 381 17478 36920 1 06498 

ZnS 2136 3704 343 1446 1 8518 39169 112832 

CdS 2037 3509 321 1 349 17435 36971 106219 

PbS 2198 3681 313 1275 17662 38009 107543 
ZnSe 2157 3729 343 1 443 18585 39361 11 3233 
CdSe 2109 3636 333 1400 18075 38320 11 0123 
PbSe 2025 3340 269 11 05 15756 34146 95917 
ZnTe 2314 3975 360 1503 19658 41774 11 9758 
CdTe 2368 4099 380 1606 20485 43327 12481 3 
SnTe 2541 4304 378 1557 20946 44805 127569 
PbTe 2053 3376 275 11 03 15862 34436 96556 
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Table 1.8: Coefficients C8 2 (in meV X6) in eqns (1.3) and (1.5) 

H H2 He Ne Ar Kr Xe 

Si 1677 2728 213 830 12578 27547 76539 
Ge 1886 3099 248 978 1 4465 31 511 88039 
GaP 1592 2624 211 836 12296 26747 74840 
InP 1574 2586 208 823 12094 26323 73610 
GaAs 1 612 2636 209 820 12240 26722 74488 
InAs 1652 2707 21 6 851 12603 27481 76704 
InSb 1623 2625 203 793 12044 26418 73282 
MgO 744 1265 11 0 448 6155 13180 37485 
ZnO 831 1399 11 9 482 6734 14482 41006 
CdO 1090 1806 1 49 597 8547 18506 52031 
ZnS 1223 2035 168 669 9639 20871 58680 
CdS 11 28 1858 150 597 8716 18947 53054 
PbS 1 422 2264 170 656 1 0216 22560 62148 
ZnSe 1255 2078 170 676 9801 21259 59658 
CdSe 1208 1992 1 61 641 9350 20317 56912 
PbSe 1280 2004 1 45 556 8888 19765 54056 
ZnTe 1465 2406 193 762 11238 24474 68398 
CdTe 151 0 2502 205 820 11 81 8 25614 71943 
SnTe 1 839 2963 228 891 13556 29766 82480 
PbTe 1 331 2079 150 573 91 93 20466 55906 



Table 1. 9: 

C3: 
H 

H2 
He 
Ne 

Ar 
Kr 

Xe 

Cs1: 
H 

H2 
He 
Ne 

Ar 
Kr 

Xe 

Cs2: 
H 

H2 
He 
Ne 

Ar 
Kr 

Xe 

Cu 

o. 124 

o. 1 69 

29 

Coefficients C3, Cs1 and Cs2 (in a.u.) for some metals and 

graphite (basal plane surface) as taken from Bruch. 63 For 
3 

C3, 1 a.u. 4032 meV A ; for Cs1 and Cs2, 1 a.u. = 
597.5 meV A6 • 

Ag Au Al Pd Gr 

0.126 0.135 0.123 o. 11 2 0.090 

o. 174 o. 188 0.166 0.152 o. 121 

0.0583 0.0618 0.0678 0.0544 0.0523 0.043 

o. 1 21 0.130 0.143 o. 11 0 o. 108 0.086 

0.402 0.420 0.458 0.384 0.362 0.30 

0.569 0.602 0.642 o. 546 0.512 0.43 

o. 841 0.871 o. 941 0.812 o. 758 0.61 

4.72 4.66 4.90 4.87 4.31 3.55 

7.88 7.85 8.33 8.07 7. 1 6 5.80 

0.754 o. 773 0.837 0.744 0.680 0.57 

3.02 3. 1 3 3.41 2.93 2.72 2.23 

39. 4 39.7 42.5 39.7 35.7 29. 7 
82. 1 82.2 87.6 83.3 74.5 63 
1 91 1 91 202 195 1 74 1 42 

3.76 3.62 3-93 4.06 3.20 2. 16 

5.99 5.81 6.39 6.43 5.04 3.30 
0.503 o. 501 0.568 0.527 0.417 0.31 

1.93 1.94 2.22 2.01 1.60 1.18 

28. 3 27.8 31.0 30.2 23. 7 17.6 

60.8 59.3 65.5 65.0 51.1 38 
146 1 41 155 156 123 89 
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frequency to be important. The main contribution to the van der Waals 

constants is given by the frequency region in which the collective 

excitations of the valence electrons contribute most significantly to the 

dielectric function. Thus it is not surprising that the simple metallic-

like model used by Vidali and Cole 12 gives reasonable results. 

To estimate the binding energy or heat of adsorption of a 

particle on a semiconductor, one needs, in addition to C3, the equilibrium 

distance Zm of the surface potential minimum. The latter can only be 

determined via an accurate calculation of the repulsive part of the 

surface potential (see Chap.II). Laughlin 13 has analysed the He-GaAs 

system and finds that Zm ~ 3,5 $. • One would then estimate the binding 

energy of He on GaAs to be of the order of 50 K, i.e. only one third of 

its value on graphite or on metals. This is in agreement with a 

suggestion by Vidali and Cole, 12 who argued that the rather extended 

valence electron charge density will repel ad particles at relatively 

large distances from the surface of the semiconductor. 

Esser and Gopel 65 have studied physical adsorption of C0 2, CO, 

02, Xe and H2 on ZnO. They find a broad distribution of adsorption 

energies from which heats of adsorption Q of 3,5 kJ/mol 

36.4 meV/particle for H2 and 24.1 kJ/mol = 250 meV/partcle for Xe can be 

determined. Equating Q C3/z 3 , one estimates zm = 2.3 $. for H2 and z = m m 
2.2 $. for Xe, as the equilibrium distance of adsorption. The value for H2 

is certainly acceptable but that for Xe is far too small, indicating that 

binding due to interactions other than the van der Waals are important 

for the heavy rare gases. This is not surprising in view of the fact 

that, for example, Xe on W shows a non-negligible charge transfer. 66 
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Unfortunately, data on zero-gap and narrow-gap Hg 

alloys, 32 , 36 • 39 • 43 • 46 such as Hg Cd1 Te and Hg Cd1 Se, are not sufficient 
X -x X -x 

for a reliable calculation of van der Waals constants to establish 

trends as a function of the Hg mole fraction. 
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CHAPTER II 

1. Field Adsorption of Rare Gases 

The lighter rare gases (He, Ne, Ar) are the most frequently 

used imaging gases in field-ion microscopy.~ 5 Little seems to be known 

theoretically about the adsorption properties of rare gases at metal 

surfaces in the presence of a strong electric field of the order of 

several volts per angstrom. To introduce the subject, the models that 

have been developed for rare gas adsorption on metals without a field 

present are reviewed. As mentioned in chapter I, the long-range 

attraction of a rare gas atom several angstroms above a surface is given 

by the van der Waals potential that varies as z- 3 • The short range 

repulsion is due to a combination of increasing electron overlap and 

Coulomb repulsion of nuclear charges as the rare gas atom approaches 

the surface. A frequently employed model to calculate the interaction 

of a rare gas atom with a graphite or an alkali halide surface consists 

of summing two-body potentials between the adsorbing atom and the 

individual atoms or ions of the solid; a number of correction potentials 

are usually added. 6 A more microscopic approach is taken in the jellium 

model to describe He adsorption on metals. 7 It must be stressed that 

these models rest on a number of assumptions that are rather difficult 

to assess, such as separating the total energy into an attractive and a 

repulsive part which are calculated individually. 

Theoretical work on field adsorption has been mostly 

phenomenological in nature. 2-s For field ionization, one assumes model 

potentials and calculates electron tunnelling rates to account for the 
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ionization probability of an atom approaching a surface. 8 - 12 To calculate 

the binding energy in field adsorption, one estimates the polarizability, 

hyperpolarizabili ty, and field gradient contributions due to local field 

variations. Microscopic approaches to the problem of field adsorption are 

the j ellium model employed by Kahn and Ying, 13 and a recent AS ED-MO 

study for N2 field-adsorbing on Fe(111). 1 " In this chapter the latter 

approach is followed. 

The study of field adsorption of rare gases on metals will 

start by modelling the adsorption of rare gases (in Sect.1a), within the 

ASED-MO theory, 15- 18 as due to the formation of covalent bonds between a 

rare gas atom and a cluster of metal atoms. In Sect.1a the field effects 

are also dealt with, and a single particle potential seen by an electron 

is defined. In Sect.1 b the numerical results for the adsorption of He, 

Ne, and Ar on W(111) in the presence of an electric field are presented. 

Here the electric field is assumed to be constant outside the metal, 

dropping to zero at the plane of the upper-most layer of the metal 

nuclei. 

In Sect.2 of this chapter, a method is described in great detail 

to evaluate multicentre Coulomb integrals as used in Sect.1a. Some 

computational details and an integration technique are included, to save 

the computer time and memory involved in evaluating about 2000 such 

integrals to obtain one point on the electron-potential curve. 

In Sect.3 the field penetration and oscillation of this field 

inside the metal due to the Friedel oscillation of the induced surface 

charge density is considered. Polarizability, hyperpolarizability and the 

field gradient terms are considered in the ASED-MO formalism. 
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a) Model 

(i) ASED-MO Approach 

The atom superposition and electron de localization molecular 

orbital (ASED-M0) 15- 18 method is based on a molecular charge density 

partitioning model. For the sake of simplicity, the method is outlined 

for a diatomic molecule a+ 8; the results can be generalized immediately 

to polyatomics and solids. One writes the electronic density, p, as 15 

p(r,Ra,R8) = pa(r,Ra) + p 8(r,R8) + pnpf(r,Ra,R8) (2.1) 

where Pa and p 8 are the electronic densities of the isolated atoms a and 

8, respectively. The remainder, Pnpf• is called the non-perfectly-

following density. According to electrostatics, the total energy of the 

molecule can be written as 16 

(2.2) 

where 

1 
Pa ( r) I r - R 8 I dr (2. 3) 

is the energy of nucleus 8 in the presence of a fixed atom a, and 

I r - R' 8 I dr dR' 8 ( 2. 4) 

accounts for the energy due to the rearrangement within the atoms in the 

presence of each other. Za and z8 are the nuclear charges of the atoms 

a and 8, respectively. For infinite separation of the nuclei, E(Ra,R 8) is 

the energy of the isolated atoms a and 8. The size of Er and Enpf• of 

course, depends on which of the two nuclei is fixed as the reference 
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point; the total energy is, however, invariant. Er is readily calculated 

from available single particle atomic wavefunctions. Enpf requires 

knowledge of Pnpf• which is not available. It has been found 17 that a 

one-electron molecular orbital delocalization energy is generally a good 

approximation. A Hamiltonian that works well for this purpose shares 

some features common with the extended Ruckel Hamiltonian. 19- 21 The 

Extended Ruckel Molecular Orbital (EHMO) method is a gradual 

modification of the Simple Ruckel Molecular Orbital (SHMO) method and, 

in its present standard form, it is chiefly due to Hoffmann. 22 The major 

differences between this method and the SHMO method (originally 

developed to study the hydrocarbons) are: all valence orbitals on all 

atoms are included, not just 2pz orbitals on sp 2 hybridized atoms of the 

w-framework; all off-diagonal elements are retained and the overlap is 

fully included; and energies are obtained as numerical quantities and not 

in terms of a = Hii) and i ( = Hij) units. (Hij is the Hamiltonian matrix 

element.) 

(l(l The diagonal elements Hii are set equal to the negative of 

the measured ionization energy of level i on atom a. The off-diagonal 

elements on the same atom are zero by orthogonality, i.e. 

ClCl Cl Hij = Ei 0ij (2.5) 

The remaining off-diagonal elements are a modification of the extended 

Hiickel formula 

with 

H .. af3 
lJ 

K (H __ aa + H .. 1313 ) s __ af3 exp(-aRaf3) 
11 JJ lJ (2.6) 

(2,7) 

being the overlap integral between the i-th atomic orbital on atom a and 

the j-th orbital on f3, the latter being a distance Raf3 away. The 
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exponential term, not present in the standard extended Hiickel theory, 

has been introduced to improve predictions on molecular bond strengths; 

bond lengths and force constants are barely affected by this 

modification. Fitting bond strengths and lengths of first row diatomics, 

one determines the parameters in eqn.(2.6) to be K = 1.125 and a= 

O. 13 r 1• When this approximation to Enpf is used, results are generally 

more accurate if the two-body energy is calculated using the charge 

density of the more electronegative atom. 

Summarizing, one can write the Hamiltonian, from which Enpf in 

eqn.(2.2) is calculated by diagonalization, as 

H :[ H __ aa I ljJ.a >< ljJ.a I + 
11 1 1 

ia 
ljJ. a >< ljJ. 8 

1 J 
(2.8) 

where a and 8 enumerate the atoms in the cluster and i and j label the 

participating atomic orbitals. 

There is an interesting additional consequence in partitioning 

the molecular charge density as discussed above. If one models Pnpf as a 

set of fixed point charges, its contribution to the divergence of the 

electrostatic force on nucleus 8 is zero and one gets for the harmonic 

force constants 16, 18 

(2.9) 

where Re is the equilibrium distance. These, and higher order force 

constants, are typically within a few percent of experimental values. 
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(ii) Field Effects 

The next task is to incorporate the effect of an electric field 

applied to a field emission tip. From the capacitance of parallel plates, 

one can estimate the charge q per surface atom, accumulated on a metal 

surface in the presence of a field F, to be of order 

q Ae: 0F 0.055 e F(V/A) (2.10) 

Here A is the area per adsorption site, typically of the order of 1 0 12• 

Such surface charges are, indeed, generated in the present calculations. 

To incorporate field effects in the ASED-MO approach, one adds 

the locally varying field energy of electrons and nuclei in the 

Hamiltonian (2.8) 

(2.11) 

where the field potential is given by 

e r. F(r')•dr' (2.12) 

Additionally, one also adds the field energy of the nuclei 

(2.13) 
a 

where Za is the charge of the a-th nucleus at position Ra. 

In eqn.(2.11) one writes 

( 2. 1 4) 

and gets 

(2.15) 
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The diagonal parts of the first term in eqn.(2.15) lead to the raising of 

the ionization energies in eqn.(2.5) by the field energy. With a varying 

electric field the field energy at a given nuclear position R0 must be 

integrated out explicitly using eqn.(2.12). The off-diagonal parts of the 

first term in eqn.(2.15) are obviously proportional to the overlap 

integrals between atomic orbitals on different atoms. They, and the a.l8 

contributions in the second term of eqn.(2.15), have been accounted for 

in the present model by modifying the Hiickel-type hopping matrix 

elements in eqn.(2.6) by again raising the ionization energies via the 

field energy. This approximation seems to be the most natural in the 

context of an extended Hiickel model and will be adopted throughout. For 

a=B, the contributions due to the second term in eqn.(2.15) account for 

the atomic polarization. 

In this section, it is assumed that the electric field is 

constant outside the metal, dropping to zero at the surface. The position 

of the vanishing of the field could be the classical image plane, 

assumed to lie about half an inter-planar lattice distance above the 

top-most ion cores and moving inward as the field increases. In Sect.3, 

the effect of the local field variations, relying on a recent jellium 

model calculations, have been studied in great detail. To emphasize 

electronic effects in field adsorption, namely, the changing character of 

the electronic bonds between the metal and the adsorbed species, one 

will, in this section, simplify the field aspect as far as possible by 

assuming that the electric field is given by a step function. The 

contributions due to the polarization term are also set aside for the 

moment. Although there is thus no direct effect of the electric field on 

the metal atoms, their electronic structure will be changed dramatically 
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by the redistribution of electrons from the adsorbed species. This alone 

immediately leads to field-enhanced binding of rare gases. 

Thus, to incorporate field effects in the ASED-MO model, one 

simply adds the energy term eFz (the origin of z being taken as the 

point where the field is supposed to drop to zero) to the Hamiltonian 

( 2. 8) , s o that 

(2.16) 

where 

K(H __ aa+H .. 88 F F )s __ as ( R) 11 JJ + e z a + e z 8 lJ exp - a a 8 ( 2. 17) 

and Za and z 8 are the z components of the center of mass coordinate of 

the atoms a and 8, respectively. 

(iii) Rare Gases 

To model the interaction between rare gas atoms and between a 

rare gas atom and some other species, the closed electronic shells are 

opened up by including 2p orbitals for He, 3d for Ne and Ar, 4d for Kr, 

and 5d for Xe. The oscillator strengths between these atomic orbitals 

are the greatest. These orbitals are taken to be of Slater type, to be 

discussed in detail in Sect .2. Ionization energies and Slater 

exponents 23 • 2 " are adjusted to account for the dimer properties. 25 The 

data are listed in Table 2.1. 



Table 2.1a: 

He 1s 
2p 

Ne 2s 
2p 

3d 

Ar 3s 

3P 
3d 

Table 2.1b: 

6s 
6p 

5d 

Er (ev) 

8.0 

5.6 

9.0 
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Ionization energies, Er, and Slater exponents, o, for the 

atomic orbitals of rare gases. Calculated and experimental 

dimer bond lengths, d, and binding energies, Es, are also 
listed. 

Er (eV) o(r 1 ) dCi) Es (eV) 

Expt. Theor. Expt. Theor. 

24.59 1.6875 2.96 2.92 0.001 0.001 
3,5 1.4 

48.47 2.4792 3,03 2.91 0.004 0.0015 

21.56 2.4792 
4.0 2.0 

29.24 2.086 3,7 3.6 0.01 2 0.01 3 
15.85 2.086 

1.0 1.5 

Ionization energies, Er, and Slater exponents, o, for the 

atomic orbitals of a tungsten atom. The exponential terms 
in the d-orbi tals are expressed as C 1exp(-0 1r )+C 2exp(-o~ ). 

Also given is the initial occupation of the various 
orbitals. 

2. 641 

1 • 841 

4.982 2.068 o.6685 0.5424 

initial 
occupation 

0 

5 
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(iv) Electron Potential 

So far, the calculation of the total interaction energy of a 

rare gas atom with a metal cluster in the presence of an electric field 

has been outlined. To eventually compute the ionization probability for a 

rare gas atom at a field-ion emission tip, one also needs the potential 

energy of an electron. This is readily calculated from the molecular 

orbitals according to 

p( r I) I r-r' I dr' + e F rcos 0 0(rcos 0) (2.18) 

where 0 is the angle between F and r, and 0(x) is a step function. The 

cluster charge density is given by 

p(r') L n j 4> (r') I 2 
V V 

(2.19) 
V 

Thus one gets 

- e L 
a 

+ e F rcos 0 0(rcos 0) (2.20) 

The summation over v includes all molecular orbitals 4>-v which are 

obtained by diagonalizing the Hamiltonian (2. 8) or (2.16); nv is the 

molecular orbital occupation number. It is interesting to note that there 

is no noticeable numerical difference whether one sums in eqn.(2.2O) over 

all electrons in the cluster or excludes the one associated with the 

tunnelling process. The molecular orbitals can be expressed in terms of 

the atomic orbitals as 



(r) 
\) 

r C v ai ijJi a(r-Ra) 
ai 

44 

(2.21) 

Because the Slater orbitals of atom a are centered around the nucleus a 

at position Ra, it is necessary in eqn.(2.20) to evaluate two- and three-

center Coulomb integrals. This will be outlined in detail in Sect.2. 

b) Results 

(i) He - W 

For He adsorption on one-fold sites (i.e., on top of W atoms), 

there is a relatively strong covalent donation bond between the filled 

He 1 s orbital and the empty W 6p band. There are two additional weaker 

but stabilizing donation interactions, this time from the W 5d to the 

empty 2p orbitals on He. As a He atom approaches the surface, these 

interactions increase, as shown in Fig.2.1 for the W-He dimer (similar 

interactions occur with W.,). The total orbital energy for the dimer is 

plotted as a function of distance in Fig.2.2. Clearly, as the height of 

the He atom above the surface decreases, the overlap giving rise to 

these interactions increases (as shown in Fig. 2.1), with the result that 

the orbital energy stabilization accelerates rapidly. The stabilization 

of each of the orbitals is in a manner proportionate to the overlap in 

the second-order expression 

E ( 2) = I < 1jJ a I H' I ijJb > I 2 
Ea - Eb 

( 2. 22) 

where ijJa and ijJb are the basis functions for the separated atoms, H' is 
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Fig.2.1: Dependence of energy levels of filled orbitals on 
internuclear distance for diatomic He-W. 
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Fig.2.2: Two-body repulsive (Er) and orbital (EMo) energies of rare 
gas-tungsten diatomics as a function of internuclear distance. 
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the perturbation between them, and Ea and Eb are the respective 

eigenvalues. In the case of He 1s donation E( 2) is negative because 

E1 s < E6p. For each of the bonding interactions shown in Fig.2.1, there 

will be an anti-bonding counterpart orbital which is destabilizing 

because the sign of the energy denominator changes. For example, the 

anti-bonding counterpart to the He 1s + W 6p cr donation stabilization is 

shifted up within the empty W 6p band and, being empty according to the 

low-spin assumption, does not detract from the binding stabilization. 

When the extravalent (empty) He 2p orbitals are excluded from 

the basis set, there are only small changes in the binding. The 

equilibrium height of He is unchanged within 0.1 l, and the dissociation 

energy decreases by about 5 percent. The participation of the 

extravalent orbitals is small because of the large energy denominator in 

the perturbation expansion and the weak overlap of these orbitals with W 

orbitals. 

The two-body repulsion energy increases as the height above the 

surface decreases, as shown in Fig.2.2. In this case, Er is calculated 

using the charge density function of Wand the nuclear charge of He. The 

increase is a consequence of the penetration of the electronic charge 

cloud of W by the He nucleus so that the influence of the nuclear 

repulsion term increases. The total potential energy of He interacting 

with a W(111) cluster, as calculated in the ASED-MO approximation, is 

given in Fig.2,3 for four different clusters, and also for the He-W 

dimer. The w., cluster has a near tetrahedral structure with He adsorbed 

above its apex. In the W7s cluster, all the seven W atoms are from the 

surface layer, i.e. six atoms surrounding one in the cent er. The W7b is 

enlarged by adding three below the base plane of the w., tetrahedron. In 
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Fig.2.3: Potential energy of He interacting with various W clusters 
(as described in Sect.1 b(i)) in zero field. Numbers in the 

parentheses give the charge on the He atom at the equilibrium 
position. 
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the w1 .. cluster, one has included seven more atoms to the W7b cluster, 

with six from the surface layer, surrounding the top-most atom, and 

adding one W atom from the fourth layer nearest to it. In chapter III an 

arrangement of the W( 111) surface atoms is shown. W 1 .. is the cluster 

which includes considerable amount of surface atoms close to the 

adsorbing atom, and the nearest, next nearest and next-next nearest 

atoms of the surface W atom nearest to the adsorbing atom. The good 

agreement between the w .. and the w1 .. results justifies the use of the w .. 

cluster for the most of the text. The potential energy for He has a 
0 

minimum at a distance of 3-33A, with a depth of 5 meV, in good agreement 

with experimental results for He adsorption on metal surfaces. One 

should stress that binding energies calculated within the ASED-MO theory 

are not too accurate and may be off by as much as a factor of two; 

however, bond lengths are quite accurate. One notes that at the minimum 

there is a charge transfer of about -O.OO2e to the He atom. 

He adsorption on the w .. cluster in the presence of an electric 

field is discussed next. Within the current field model, the 1s and 2p 

ionization potentials decrease as the height above the surface increases 

(see eqn.(2.16)). The result is that the He 1s orbital level moves closer 

to the resonance with the W 5d band so that, according to the energy 

denominator in eqn.(2.22), the binding stabilization will increase. 

Similarly, the W s-d back-donation to the empty He 2p orbitals 

decreases. The strengthened o interaction in the presence of a field is 

the cause of the strengthening of the bond to the surface, as shown in 

Fig.2. 4. This strengthening is manifested in the increased activation 

energy, the decreased equilibrium internuclear distance, and the 

increased curvature near equilibrium, i.e. the force constant. The 
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Fig.2.4: Potential energy of He interacting with a w .. cluster for 

various electric field strengths F in V 111... The broken lines are the 

potential energy for a He ion. Numbers in parentheses give the 

charge on the He atom at the equilibrium position. 
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activation energy is defined as the energy difference between the bottom 

of the adsorption energy well and the top of the activation barrier 

(also known as the Schottky barrier). In zero field it is equal to the 

binding energy of the adsorbed species. The dashed portion of the energy 

curves for large distances represents the energy for a He+ ion. An ion 

can form at a distance at which the He 1 s ionization energy is raised by 

the field energy eFz above the W 5d level. Whether ionization, indeed, 

occurs at that distance depends, in addition, on the ionization 

probability connected with the ability of an electron initially located 

on the He to tunnel through the potential barrier separating it from the 

metal band. We will return to this point in a moment. 

To quantify the discussion of He field adsorption further, the 

position, Zmin• of the (local) minimum in the energy curves (as shown in 

Fig.2.4), the activation energy Q, and the charge transfer, tiq, to or 

from the adsorbed He have been plotted in Fig.2,5. Fig.2.5a shows a 
0 drastic decrease in Zmin around field strengths of 1.5 - 2 VIA, from 

3, 3 X to less than 2 l Ignoring the dotted curves for the moment, one 

sees that this is accompanied by a substantial increase in activation 

energy, from 5 meV in zero field to more than 600 meV at a field of 

5 V it decreasing rapidly beyond that point. Concurrently, the He atom 

acquires a charge of about 0.5 e. The reasons for this transition of He 

physisorption in zero field to chemisorption in a strong field have been 

analysed above. 

In setting up a model for field adsorption in Sect.1a, it has 

been assumed that the electric field is totally excluded from the metal 

cluster. This is obviously oversimplified as such a situation should, for 

instance, not allow for field evaporation of metal ions. There must be 
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some field penetration into the metal which should, in principle, be 

included self-consistently. 26- 28 Instead, one resorts here to a simple 

prescription by putting the origin of the electric field a distance on 

the inside of the top-most metal atom of the cluster rather than at its 

center. To get an estimate of aF, one notes that the field strength for 

field evaporation of W is about 5.5 V/A. Therefore, if one demands that 

the activation barrier for He field adsorption disappears at this field 

strength rather than at about 7 V /A, as suggested by the present 

calculations, one gets aF of the order of 0.6 l The resulting 

equilibrium positions, activation energies and charge transfers for He 

field adsorption on a W14 cluster are given in Fig.2.5 as dotted curves. 

One notes in particular that the increase in activation energy is only of 

the order of maximally 200 meV and that the charge transfer also 

remains much smaller. This ad hoe procedure clearly demonstrates the 

importance of field penetration and points to the necessity to develop a 

self-consistent theory. 

In field-ion emission microscopy, one usually defines a best 

image potential or field Fb at which the image is clearest. Within a 

theoretical framework, it would be identified with the field at which 

the break in the potential energy curve from neutral atom to ion occurs 

close enough to the surface to insure a high electron tunnelling 

probability and a clear image at the same time. As the present theory 

provides, so far, only adiabatic energy curves, one resorts to 

identifying the best image field as that at which the Schottky barrier is 

located at the distance of the potential minimum in the field-free case. 

For He this field is around 4.7 V/A, in good agreement with experimental 

estimates of somewhat larger than 4 VIA. 
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It has been hinted repeatedly that for a full understanding of 

the field-ion emission process, it is mandatory to calculate the 

tunnelling probability of an electron initially located on an atom 

approaching a surface from the gas phase into the valence band of the 

metal. In the simplest model, this calculation would be performed in a 

crude single particle picture. The single electron potential energy 

curves have therefore been calculated for the He-W,. system according to 

eqn.(2.20). The results are presented in Fig.2.6. In zero electric field 

the ASED-MO theory predicts a single electron potential around the He 

nucleus that is very close to an unscreened Coulomb potential. Near the 

surface of the metal cluster, a potential trough appears around the 

nucleus of the top-most W atom. Note that in a jellium type model one 

would expect the bottom of the conduction band to rise within an 

angstrom or so at a distance of about half an interplanar distance above 

the top-most layer. The dashed curve in Fig.2.6a represents such a 

simple model, with the electron potential rising abruptly at the metal 

surface and becoming a Coulomb potential around the He nucleus. Fig.6b 

shows the electron potential in a field of 3 v;K; nothing unexpected 

happens. However, a drastic change occurs at the critical field of 

4. 7 v;t Just below this field strength there is still a well-defined 

potential barrier between the He and metal regions, thus localizing an 

electron on the adsorbed He atom. At the critical field this barrier 

disappears completely as a result of hybridizing and delocalizing the He 

wavefunction. It has also been found that at the positions of the 

potential minima in the activation energy curves in Fig. 2. 4 there is no 

potential barrier for the electrons. One thus concludes that, in the 

critical field, a He atom at the critical distance will ionize instantly. 
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A small distance further out, or at a field slightly below critical, 

however, the electron has to penetrate a barrier. For example, at a 

field of 4.65 VIK an electron on a He atom 3.3 A above the surface 

encounters a barrier depicted in Fig.2.6c. The tunnelling probability in 

the WKB approximation has been calculated to assess the quality of the 

model barrier consisting of a stepped jellium edge, a linear electric 

potential and a Coulomb potential around the He nucleus. It is found 

that the tunnelling rate through this model barrier is too small, by an 

order of magnitude, indicating that some care must be taken to set up 

such phenomenological models. 10- 12 

(ii) Ne and Ar 

Ne and Ar adsorption onto the W cluster are similar to one 

another, but somewhat different from He. Again, the inert gas filled 

valence s orbital donates to W s-p-d hybrid orbitals, as shown in Figs 

2. 7 and 2.8. Over most of the range of z values this is a stabilizing 

interaction. The filled Ne and Ar valence p orbitals are involved in 

important p + W-d n donation interactions. The gas Pz orbital donates to 

the W 6s-5d, and its anti-bonding counterpart is empty at all but small 

z values. The gas Px and p orbitals donate to W d,p hybrid orbitals and y 

there is a weak cS stabilization of the W dx2...y2 and d orbitals by the xy 

high-lying empty gas d orbitals at small z. Two electrons go into an 

anti bonding orbital, a n* composed of W 5d and a Ne 3d ,2p hybrid. This 

rises rapidly at small z values, causing the total orbital energy in 

Fig.2. 2 to begin to rise slowly at a value of 2.5 $., but at 1.6 A this 

orbital crosses the more slowly rising a* and donates its electrons into 



57 

TT 
. Ne-W 

-8.40 
~-Ne3d-2p 

-8.50 

~-WSd (T. 

-8 .60 

-8.70 

-8.80 

-W 5d-6s 
-8.90 

-9.00 5d 

> '-.._ ct/J::) Oeyj} - Ne 3d 

>, 0 
Dt!!§)-W5d Cl ap ... 

<1> 
C 

UJ 2p 

-21.60 

-21.70 

TT 

2s 

-4650 
"-.0-Ne2s 

-48.58 
(T 

§-W5d+6s 

1.5 2.0 2.5 3.0 3.5 4.0 
0 

Distance (A) 

Fig.2. 7: Dependence of energy levels of filled orbitals on 

internuclear distance for diatomic Ne-W. Doubly degenerate ir* 
orbitals are half filled. 



-> (l) -

-8.9 

-9.0 

>-e -1s.9 
(l) 
C w 

-29.3 

58 

Ar-W 

3s 

2.0 3.0 4.0 
0 

Distance (A) 

Fig.2.8: Dependence of energy levels of filled orbitals on 

internuclear distance for diatomic Ar-W. Doubly degenerate ,r* 

orbitals are half filled. 



59 

the latter. This allows the total orbital energy to begin to drop again, 

as shown in Fig.2. 2. The o* orbital shows its rise with decreasing z 

because the high-lying Ne 3dz2 orbital begins to mix in a stabilizing 

way. The orbital interactions are greater for Ar than for Ne because of 

the greater size of Ar valence s and p orbitals, as evident by comparing 

Figs 2. 7 and 2.8. The total orbital stabilization energy is therefore 

larger for Ar, as evident from Fig.2.2, but the two-body repulsion energy 

is also higher for Ar. The total binding energy curves have depths 

35 meV for Ne and 33 meV for Ar. Whereas the He and Ne binding energies 

at their equilibrium distances are in good agreement with experimental 

values, the binding energy for Ar is too small by a factor of three. 

Binding energies for He, Ne and Ar on metals are approximately 5 meV, 

30 meV and 100 meV, respectively. 29 

For Ne and Ar, the presence of a field strengthens the 

adsorption bonds, for reasons similar to those discussed for He. As the 

field is increased, the equilibrium distances from the surface decrease 

for all these inert gas molecules, but as each bond is stretched at high 

field strengths, dissociation to ions takes place, as shown in Figs 2. 9 

and 2.10, for the potential energy curves. Despite the dissociation, the 

covalent bonds are strong if one considers their strengths from the 

point of view of overlap populations. Table 2.2 shows how the reduced 

overlap populations,21 • 30 defined with the help of eqns (2.7) and (2.21), 

as 

2 L n 
\) 

ijv 
c ai c Sj S . . aS 

\I \) lJ ( al- 8) (2.23) 

increase for each gas for the short equilibrium heights which one 
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Table 2.2: Reduced overlap populations, a8 
p ' from eqn.(2.23) between 

rare gases and the nearest W atom for various fields in 
the equilibrium configurations. 

F(V ;Jb Zmin(i) p a8 

He 0 3.33 -0.0047 

2.0 2.18 0.0542 
4.0 1.92 0.1368 

4.7 1.87 0.1481 

5.8 1.83 0. 1485 

7.0 1.85 0.1492 

Ne 0 3.08 -0.0158 

3.0 2.86 -0.0134 

4.0 2.70 0.0121 
4.2 2.72 0.0243 

Ar 0 3.39 -0.0287 

0.5 2.95 -0.0054 
1.0 2.60 o. 1 085 

1.5 2.48 0.2104 
2.0 2.39 0.3384 
2.6 2.37 0.4897 

The values are good only to two significant figures. However, these 
figures are retained for comparisions. 
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predicts for high field strengths. Reduced net atomic orbital (AO) 

population for the atom a is defined as 

a 
q net L 

iv 
n jc ai I 2 

\} \} 
(2.24) 

The charge on the atom a, as calculated in the text, is obtained from 

Mulliken' s defini tion 21 • 30 of reduced gross AO population which is given in 

terms of reduced AO and overlap populations as 

a 
q gross 

a + 
q net 

af3 p (2.25) 

To survey the field-adsorption characteristics of Ne and Ar, one 

again plots in Figs 2.11 and 2.12 the equilibrium positions, activation 

energies, and charge transfers for Ne and Ar, respectively, as a function 

of field strength. Again one notes that the equilibrium distance 

decreases drastically for fields around 3 and 1 v;K for Ne and Ar, 

respectively, but not as much as for He. For Ne the activation energy 

rises by a factor of 2, for Ar by a factor of 10; recall that it was a 

factor of 100 for He without field penetration and a factor of 40 with 

field penetration. The effect of the latter on the adsorption of Ne and 

Ar is again indicated by dotted curves in Figs 2. 11 and 2.1 2. The charge 

transfer for Ne is significantly smaller than for He. This stunning 

difference in field adsorption between He and other rare gases has a 

very simple explanation in the much larger ionization potential for He. A 

He atom remains field adsorbed to much higher fields before its valence 

levels get lifted above the empty W levels, so that the hybridization 

can take place, leading to typical chemisorption features. 
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In Fig.2. 13, the one-electron potential (2. 20) for the Ne-W,. 

system in zero field and at F 4 v;R is plotted. One notes that a model 

potential, jellium plus Coulomb, is a very poor approximation, as a 

simple Coulomb potential does not take into account the large size of 

the Ne atom. One notes again that at the critical field there is no 

potential barrier between the Ne p orbitals and the W d-band. 

c) Summary 

In this section we have dealt with the adsorption of rare gases 

on a metal surface in the presence of a strong electric field as it 

occurs at the tip of a field ion microscope. Employing the ASED-MO 

method, we have been able to calculate the static properties of field-

adsorption such as the field dependence of activation energies, 

equilibrium positions, etc. A surprising transition for He from 

physisorption in zero field to chemisorption in fields above 3 V 1K is 

explained as a consequence of its large ionization energy. One recalls 

that the activation energy of field-adsorbed He rises to - 0.6 eV with a 

charge transfer of 0.3 e in the field of 4.5 v;R. This hundredfold 

increase in the activation energy over that in zero field is not found 

for Ne and Ar. Ne, indeed, field-adsorbs rather weakly, whereas Ar shows 

features of chemisorption again as the electric field strength rises. 

This taking account of the field penetration, even in an ad hoe manner, 

is convincing evidence that the penetration is an important effect that 

eventually must be included in the theory in a self-consistent way. 
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2. Multi-centre Coulomb Integrals 

In this section the main task is to evaluate the second term on 

the right hand side of eqn.(2.20), which is denoted by V~(r) 

I~ (r')l2 dr' 
\/ lr-r'I 

( 2. 26) 

Here the molecular orbitals (r') are expressed in terms of Slater type 
\I 

orbitals (the superscript a is dropped from STO throughout in this 

section - compare eqn.(2.21)) 

where 

lji.(r'-R ) 
1 a 

(r') 
\I 

n·-1 N· lr'-R I l exp(-o· lr'-R I) Yn .. (e ,._) 1 a 1 a . Jt, 1 m1 ' 'I' 

(2. 27) 

( 2. 28) 

Ni is the normalization constant, and ni, ii and mi are the principal, 

orbital and magnetic quantum numbers, respectively, and oi is the Slater 

exponent. Thus one can rewrite eqn.( 2.26) as 

e2 
\/CL 8ij 

C Sj '". (r' -R ) * ,,, ( ' R ) dr' 
v '1'1 a 'l'j r - 8 I r-r' I ( 2. 29) 

The above equation contains several two- and three-centre one-electron 

three-dimensional Coulomb integrals of the type: 

f ljJ (r' -R' )* ljJ (r' -R' ) dr' 
a a b b I r-r' I ( 2. 30) 

The above integral is converted analytically to a one-centre, 

one-dimensional integral before integration is performed numerically. The 
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method described here is based on a prescription of Harris and Michels 31 

and is general as far as the choice of the positions of the three 

centres and the orientations of the axial frames are concerned. The 

procedure involves: (i) rotation of an STO around its centre, (ii) its 

translation to another centre, followed by (iii) its rotation to coincide 

with the axes of another STO, and (iv) the rotation of the product 

function to the fixed spatial frame of reference, in which the 

integration over r' is performed. Here the term rotation will be 

interpreted as a rotation of the frame of reference about its origin, the 

field points (i.e. the physical system) being assumed to be fixed. The 

same is true for the term translation, i.e. the frame of reference is 

being translated. 

The most general expression to expand the Coulomb potential in 

terms of the spherical harmonics is: 

00 

lr-r' I 
(l- m )! r m m im(,1,-,1,,) 

Pn (cose) Pn (cose') e 't' 't' ( l+ m )! -r l ,., ,., 
l=O m,;,-l + 

(2.31) 

where r denotes (r,e,cp), and r+ and r refer to the greater and lesser, 

respectively, of r and r'. 

However, a more elegant and 1 ess expensive (computation-wise) 

choice is used to evaluate the integral (2.30) by choosing r as the 

origin of the system. Thus one does not need the expansion (2. 31), and 

the integral lab takes the form 

j (2.32) 
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A schematic diagram for the coordinate systems is drawn in 

Fig.2.14. P is the origin, A and B are the positions of the nuclei of the 

two atoms, and Q is a field point. For simplicity all the x-axes are 

taken parallel and so are they- and the z-axes. One takes the real form 

of STO (r-Ra = ra) 

(2. 33) 

where (ra, 6a, <Pa) are the' spherical polar coordinates, centred on the 

nucleus of atom a. P~(x) is an associated Legendre function with the 

definition 

satisfying the orthogonality relation 

d 1+ Im I (x 2- 1) 1 
dxl+lml 

2 
21+1 

( 1+ m )! 
( 1- m )! 

(2.34) 

(2.35) 

and the normalization constant, N (dropping the subscripts a) ,is given by: 

N 21+1 
, 21r(1+0 ) om 

0,- m )! 
( 1+ m )! 

(20)2n+1 
(2n)! (2.36) 

To simplify the subsequent formalism, the sine and cosine 

appearing in eqn.(2.33) are expressed in their complex forms (omitting 

the normalization constant everywhere, unless it is necessary) as 

(2.37) 

i (eima<Pa - e-ima<Pa) 2 ; ma <O 

There is a similar expression for ljlb (rb). 
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The procedure, in detail, is as follows 

(i) Rotation about A 

The form of ijla(ra), as expressed by eqn.(2.37), is in the axial 

frame with the origin at A and the axes parallel to those of the fixed 

spatial frame of reference. One wants to express 1jl (r a) in an axial a 

frame with origin at A and the polar axis directed towards the origin P. 

In this rotated frame, the coordinates of point Q are taken to be 

(r ,e',<P'), and the Euler angles (in they-convention), responsible for a a a 

the rotation, are (aa, Sa, Ya) (see Appendix A for tips on Euler angles). It 

is shown in Appendix A that (aa, Sa, Ya) = ( 1r+4>a, 1r-0a, 0), since the 

coordinates of the point Pin the axial system, with origin at A and axes 

parallel to those of the fixed axial system, are (Ra, 1r-0a, 1r+cl>a). 

The effect of rotational transformations upon spherical 

harmonics is well known. 32 Spherical harmonics are the eigenfunctions of 

the orbital angular momentum operator L 2• This operator is invariant 

under a rotation of the frame of reference; it follows that the 

spherical harmonics in the rotated frame are still eigenfunctions of L 2 

with the same t-values. Thus the spherical harmonics transform under a 

rotation according to 

y (8' ,1,1) iao a•'f'a (2.38) 

where 

( 2. 39) 

with 
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( 2. 40) 

where x',y',z', are the rotated cartesian axes. 

The properties of the operator D( aa Ba Ya) are determined by the 

algebraic properties of the operators Lx,, Ly, and Lz'; i.e. by their 

commutation relations. Using eqns(2. 39) and (2. 40), eqn.(2. 38) can be 

written as 

Y Q, m ( Ba' <Pa) a a 

where 

(2. 41) 

Q, d a (cos Ba) 
ma a 

Ba 
<Q,a ma I exp(i 1r Ly,) I Q,a a> (2.42) 

Q, Expressions for d (t) are given in Appendix B. The most efficient way, ma 
however, is to generate the d-matrices for various Q,, m and a by 

recurrence methods outlined in Appendix B. 

Thus, using eqns (2.37) and (2.38), one can write 

ljia (ra) n -1 -oa ra r a e X a 

Q,a 

[oQ,amao(aa Ba Ya)+DQ,a-ma o<aa Ba Ya)]Pt (cose~) 1 i O q> I 

2 e a ;ma ;;:o 
a=-Q,a 

X (2.43) 

Q,a 

[o iama o( aa Sa Ya)-D Q,;ma o( aa Ba Ya)]P ~a (cos e~) 
i r i O q> I 

; ma <0 2 e a 
o=-ta 



(ii) Translation along the z'-axis 

The next task is to expand ijJ' (ra), which is defined as a 
n -1 -o r o iocj>' ijJ'(ra) = r a e a a Pn (cosS') e a a a Jva a 
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(2.44) 

in terms of STO's expressed in the axial system with origin at P and the 

polar axis along AP, keeping the azimuthal angles the same in both 

systems. Suppose, in this system, the coordinates of the point Q changes 

from (ra, S', <P') to (r, Sa, <Pa), for which the following relations hold a a 
(see Fig. 2. 1 5) 

2 2 2 -ra =Ra+ r + 2 r Ra cosSa 
-

ra sin Sa r sin Sa 
-

ra cos Sa Ra+ r cos Sa 
-

<Pa = <Pa ( 2. 45) 

The general form for the expansion of the orbital ijJ~ (ra) about 

the point P is taken as 

00 -
otna :[ v0 2, . (oa r Ra) PJ~(cos 6a) ei o<Pa 

j= I ol na aJ 
( 2. 46) 

v0n n . ( oa r Ra) is obtained by using the orthogonality relations of P~. 
alt,~ J 

Multiplying the right hand side of eqns (2. 44) and (2. 46) by 
(J - - -

P.(cosSa)·sinSa and integrating over Sa from Oto ir, one has 
J 

giving 

n -1 r a 
a P~ (cosS') P~(cos6a) sin6a d6a Jva a J X 

(2. 47) 
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a Ra) ona -1 2j+1 (j- a )! 
V i . (oa r -2- (j+ ) ! X 

na aJ a a 

x[, d(cos Sa) n -1 -oa ra a a - (2.48) r a e Pi (cosS') P.(cosSa) a a a J 

The recurrence formulae to evaluate the V-functions are given in 

Appendix c. 

where 

w. 0(r) Ja 

Thus, with help of eqn.(2.46), eqn.(2.43) can be written as 

00 -
L 

j= I 0 1 

a a - io<l>a W. (r) P.(cosSa) e 
Ja J 

(2.49) 

(2.50) 

; ma <O 

Similarly ljlb (rb) can be expressed in the axial frame with the 

origin at P and the polar axis along BP : 

(2.51) 

with 

( 2. 52) 

(,r+4>b, ,r-0b, 0), analogous to (aa, 8a, Ya) as shown 

in Appendix A. 
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(iii) Rotation again 

Until now, l/la(ra) and lj.,b(rb) have been expressed in the axial 

frames with common origins but different orientations. The next task is 

to re-express l/la(ra) in the axial frame in which lj.,b(rb) is currently 

expressed, i.e. the axial frame with the origin at P and the polar axis 

along BP. In this frame, point Q (see Fig.2. 14) has the coordinates 

(r, eb, <Pb). Assume the Euler angles necessary to rotate the axes from 

convenient method to evaluate (aab, Bab, Yab) is given in Appendix A, 

together with the special meaning of the direction used here. Thus one 

can write 

with 

(J 
W . b(r) Ja, 

t. TO 1 
DJ. ( <lab Bab Yab) W · (r) Ja ,c:-j 

From eqn.(2.50) one finds that 

w. 0crt Ja 

since (using eqns (2.34) and (2.48)) 

(2.53) 

(2.54) 

(2.55) 

( 2. 56) 

With the help of a Clebsch-Gordan expansion, the product of two 

associated Legendre polynomials can be expressed in terms of one 

C OA P o-).(x) 
µjk µ (2.57) 



And thus one can write 

00 j ib 00 

* o 1-na 1-nb L r: r: r: 1jJ a Cra) ij,b(rb) ob X a 
k=I >-I j=0 a=-j >.=-ib 

X 

or, in a simpler notation, 

where 

-L fµ~(r) P~(cossb) eivcj>b 
µv 

00 

L L L 
j=0 k a 

C a, v+ a - a v+ a 
µjk wja,b (r) wkb (r). 
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(2.58) 

(2.59) 

(2.60) 

The Clebsch-Gordan coefficients with their recurrence relations are given 

in Appendix D. The summations over µ in eqn.(2.58), and over k and a in 

eqn.(2.60), include all values for which the coefficients Cµjka>. do not 

vanish. 

(iv) Expressing the Product Function in the Spatial Frame of Reference 

Finally, one wants to express the product (2.59) in the axial frame 

in which the integration over r is performed in eqn.(2. 32). This is the 

frame in which the coordinates of the point Q are (r, e, cj>). Euler angles 

to rotate the axial frame from the direction ( ,r+<t>b, 1r-0b, 0) to the 

direction (0, 0, 0) are 

w rite e qn • ( 2. 5 9 ) as 
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* f v (r) \I iv<P $a (ra) 1jlb (rb) P (cose) e (2.61) µ µ 
µ\/ 

where 

µ 
f v (r) 0nv('IT, r0b, -!f>b) fµ~(r) (2.62) µ µ 

n=-µ 

(v) Conversion to the one-variable integral 

Using eqn.(2.61) one can write eqn.(2.32) as 

Iab<Ra,na, ia ,ma, oa; Rb,nb, ib ,mb, ob; 0) 1ab 

La La r r 2dr d0 d<j) sine f v (r) \I ivq> (2.63) = P (cos e) e r µ µ 
<P=O 

or, 

1ab ~2'1To [ rdr f \I (r) J: sinect e P v(cos e) (2.64) 
0\/ µ µ 

µ\/ 

or, 

(2.65) 

or, 

(2.66) 

In going from eqn.(2.64) to eqn.(2.65) one has used 33 

2 iµ o (2.67) µo 

Using eqn.(2.62), eqn.(2.66) can be written as 
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lab (2.68) 

since, 

00 D ( ,r ir-0b -4>b) = 1 0 ' ' 
(2.69) 

Using eqn (2.60) and putting back the normalization contants, eqn.(2.68) 

can be written as 

Since, C is zero if lj-kl:::o is not satisfied, one can replace C0 j~cr by 

cr cr Cojj ojk and write eqn.(2.70) as 

1ab 41rNaNbotna otnb Jo(X) rdr to ~cojlcr wja,~cr(r) wj~(r) 
J= cr 

(vi) Back from imaginary to the real form 

(2.71) 

One should remember that the wave functions are real to start 

with and the conversion to the complex form was employed to simplify 

the mathematical analysis. At this stage, one can revert to the real 

form again for the convenience of the computations. 

where 

With the help of eqn.(2.54), one can rewrite eqn.(2.71) as 

(X) 

:[ [Z] 
j=0 

(2.72) 
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[Z] (2.73) 

Using eqns (2.39), (2.40), (2.42) and (2.52), the above equation can be 

written as 

[Z] 

o r Rb) e -ioYab dj (cos 8ab) i ,a.ab 
X V .Q, • (ob e X 

nb bJ ,,-o 

1(i) [o ma'( 8 Ya) -m ' J 1" r Ra) (2.74) x 2 t a.aa ± Dia a (a.a 8a Ya) v i .<oa 
a na aJ 

In the above equation, the factor of ½ before, and the +ve sign in the 

middle of the square brackets are for the positive or zero m-values. 

These are replaced by ½ and the -ve sign, respectively, for the negative 

m-values. Replacing cos8ab by tab• etc., and using eqns (2.39), (2.40) and 

(2.42) again, the above equation is replaced by 

[Z] 

- - - (2. 75) 

Using the equalities (t) = dj (t), Vm O .(o r R) = V-m O .(o r R) and , o - , , - o n ..,J n ..,J 
C oo 

ojj 
-o -o C .. ' (see Appendices B, C and D, respectively), the above OJJ 

equation can be written as 
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[Z] 
o=o 

o o 
X ( 1 - O )( 1 - 1 ) ( [ X] +[ Y]) (2.76) 

Here [X] is given by 

[X] 

- - - (2. 77) 

Expanding the right hand side of the above equation and combining the 

proper pair of the exponential terms, [X] can be written as a purely 

real function of sines and cosines : 

[X] 
1 . 
2 d~ ,-/tab) x 

x ldib (tb) dia (ta) fun 1 (mbett+o(Yb-Yab)+maa.a+1(Ya+a.ab)) + L mbo ma, 

+ d.\!.~mb/tb) d.\!.~ma/ta) funi-mbett+cr(Yb-Yab)-maa.a+,(Ya+a.ab)) + 

+ d.\!.~bcr(tb) d.\!.~ma/ta) funimba.b+cr(Yb-Yab)-maa.a+,(Ya+a.ab)) + 

+ d .\!.~mb/tb) d .\!.~a .(ta) fun.,(-mbett+ a( yb-Yab)+ma a.a+,( Ya+a.ab) 

(2.78) 
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where the functions, fun, are defined as: 

fun 1(r,:) = cos(r,:) ma 0 and mb ;;: 0 

-cos(r,:) ma < 0 and mb < 0 

sin( r,:) ma ;;: 0 and mb < 0 

sin( r,:) ma < 0 and mb ;;: o, 

funi( r,:) cos(r,:) ma;;: 0 and mb 0 

-cos ( r,:) ma < 0 and mb < 0 

-sin( r,:) ma ;;: 0 and mb < 0 

-sin( r,:) ma < 0 and mb 0, 

fun3' r,:) cos(r,:) ma;;: 0 and mb 0 

cos(r,:) ma < 0 and mb < 0 

sin( r,:) ma ;;: 0 and mb < 0 

-sin( r,:) ma < 0 and mb ;;: 0, 

and 

fun .. ( r,:) cos ( r,:) ; ma;;: 0 and mb;;: 0 

cos ( r,:) ma < 0 and mb < 0 

-sin( r,:) ma ;;: 0 and mb < 0 

sin(r,:) ma < 0 and mb 0 (2. 79) 

Similarly [Y], as appearing in eqn.(2.76), is given by 

[Y] 
1 . 

= -2 dJ (tab) x 
'!(J 

x ldib (tb) dla _ (ta) fun 1 (mbab+cr(Yb-Yab)+maaa-,<Ya+etab)) + L mbcr ma, ' 
+ dtb (tb) dla (ta) fun 2(-mbett+cr(Yb-Yab)-maaa-,<Ya+aab)) + -mbcr -ma,-, 

+ dtb (tb) dla (ta) fun 3(mbett+cr(Yb-Yab)-maaa- ,<Ya+aab)) + 
mbcr -ma,-' 

+ dtb (tb) dla (ta) fun .. (-mbab+cr(Yb-Yab)+maaa- ,<Ya+aab)J -mbcr ma,-, 'j 
- - - (2.80) 
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Finally, using eqns (2,72) and (2,76) one can write 

4 N N 01-na 01-fit r lb la CX) 6 6 
rdr L L L 00 01 (1--)(1--) X 1Taba b 2 2 

0 O=O 1=0 j=o 

x ([X]+[Y]) C 00 o 1 
ojj V 1 . (ob r Rb) V 1 . (6a r Ra) 

nb bJ na aJ 
(2.81) 

In this equation, the integration is performed numerically using 

Lobatto quadrature, 35 of order 64. This technique requires conversion of 

the limits of integration to the interval (-1, 1). Making the change of 

. 1 +x variable r = -1 - eqn.( 2. 81) converts to -x 

11 lb 
4,rN N 61-na 61-nb 2(1+y)d 

a b a b ( 1 _ )3 Y L 
-1 Y o=o 1=0 

CX) 

L 
max(o,1) 

6 6 00 01 (1--)(1--) X 
2 2 

(2.82) 

which can be written approximately as 

o=o 1=0 

6 6 , oo 01 L (1--)(1--) x 2 2 
max(o,1) 

CX) 

(2.83) 

The abscissae y k and the corresponding weights Hk of the Lo bat to 

quadrature of order 64 are given in Appendix E. Since the integrand in 

eqn.(2.82) vanishes at both limits, the summation in eqn.(2.83) is 

performed only from k=2 to k=63. 

To calculate V~(r) . in eqn.(2.29), about 2000 multi-centre 

Coulomb integrals of type (2.83) are required. Computational details 

concerning the saving of computer memory and time are given in 

Appendix F. 
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3- Effects of Field Penetration, Friedel Oscillations and Atomic 

Polarization on Adsorption of He onto W: 

In Sect.1, the electric field has been assumed to be given by a 

step function, i.e. constant outside the metal and zero inside, and the 

penetration of this field has been included in an ad hoe manner. In this 

section, this model is improved in a number of ways, most importantly by 

including the field penetration (taking the Friedel oscillations into 

account) and the atomic polarization effects (which were not included 

previously, in order to keep the analysis simple). These modifications of 

the theory do not lead to qualitatively new results for the field 

adsorption of rare gases. However, they are absolutely essential to 

describe field evaporation of metal atoms (see Chap. IV). Obviously, if 

neither polarization of the top-most metal atom nor the penetration of 

the electric field into the metal are considered, no field evaporation 

can occur. 

Inclusion of atomic polarization effects is straightforward 

within the framework of the ASED-MO model (see Sect.1a(ii)). In dealing 

with field penetration effects, the present work is guided by recent 

jellium model results 27• 28 in strong electric fields, that have shown that 

the effective metal surface shifts inward with increasing electric fields 

by as much as half an angstrom, and that the region over which the 

electric field drops to zero, i.e., the region of the induced surface 

charge density, is about an angstrom wide (FWHM) and narrows with 

increasing field. 
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a) Field Penetration 

A proper theory of field adsorption must include a self-

consistent determination of the externally applied electric field in the 

vicinity of the adsorbing particle. This has not been done so far. What 

are available are model calculations, using functional density methods 

within the jellium model of a metal, of the excess charge induced by a 

sheet of charges located a large distance away from the metal 

surface. 27128 Schmickler and Henderson 27 minimize the Hohenberg-Kohn-Sham 

energy functional 36 with respect to a family of density trial functions 

n(z) 

az 1-Ae cos(Yz+o) ;z<0 

-sz B e ; z > 0 

(2.84) 

Here z is taken to be zero for the jellium edge. Their main conclusion is 

that the centre of mass, z 0 , of the induced charge density (i.e., the 

effective image plane of the charge situated outside the jellium) lies 

one-half to one angstrom outside the jellium edge, and it (z 0 ) moves 

inward with increasing surface charge, i.e., the applied electric field. 

Recall that the jellium edge is typically put half an interplanar 

distance outside the top-most lattice plane. 

Gies and Gerhardts 28 produced self-consistent calculations of 

the electron distribution at a (flat) jellium surface in a strong static 

electric field. They found that the centre of mass, z 0 , of the induced 

charge density shifts, again, towards the jellium with increasing fields, 

eventually penetrating at the unrealistically high electric field of 10.8 

Vil, some 0,35 X into the jellium (for a metal with a Wigner-Seitz radius 

rs=3). rs is defined as the radius, in units of the Bohr length 
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(a 0=0.529i), of a sphere whose volume is equal to the volume per 

conduction electron. Field emission of ions is expected to precede such 

dramatic field penetration. They also found that the width, n, of the 

induced charge density decreases slightly with increasing field, from 

some 1.9i, in zero or weak fields, to 1.1.&. for large fields. n and z 0 

have been reported in Table 2.3 for various values of electric fields. n, 
z 0 and >. (the wave length of the Friedel oscillations) for a weak 

inducing fields are given in Table 2. 4 for various rs values. 

It should be stressed once more that these model calculations 

are for a flat, structureless metal (jellium) surface. The major 

additional complication in the case of field adsorption and field 

evaporation arises from the fact that electric fields are greatly 

enhanced at the adsorption sites, namely at kink sites, at terraces, and 

around small atom clusters on top of extended planes. Such 

inhomogeneities are extremely difficult to calculate reliably. All one 

can do at present is to incorporate some of the insight gained in the 

above jellium calculations, together with the calculations of Lang and 

Kohn, 37 into the cluster calculations of Sect.1. The findings below will 

highlight the necessity to perform a self-consistent calculation. 

In an attempt to incorporate field penetration effects in the 

present cluster calculations, a number of simplifying assumptions are 

made. First of all, it is assumed that the electric field has only a z-

component that, in addition, only depends on z. Employing a 

parametrization of the excess charge density, similar to eqn.(2.84) with 

Friedel oscillations on the metal side and an approximate exponential 

decay on the vacuum side, one can use Poisson' s equation (one-

dimensional) to calculate the electric field in the surface region (see 
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The width (FWHM), n, and the centre of mass, z 0 , of the 

induced surface charge density for various external static 

electric fields, F0 , for rs = 3 as obtained from Ref.28. z 0 

is measured from the jellium edge, which itself is 

separated from the first lattice plane by half an 
interplanar spacing. Positive z-direction is towards the 

vacuum. 

O(limit)a 

1.0 
2.0 

3,0 

4.0 

5.0 
6.0 
7,0 

7,5 

0,75 

0.50 
0,35 

0.23 

o. 15 

0.05 
-0.03 
-0.11 

-0.15 

1. 90 

1.80 
1.74 

1.70 
1 .66 

1.64 
1. 64 

1.63 
1.63 

a. The weak field results are similar to those of Lang and Kohn. 37 

Table 2.4: n, z 0 and >. for a weak inducing field for different rs 
values as taken from Ref,37, See Table 2,3 for the 

details.>. is the wavelength of the Friedel oscillations. 

rs(a.u.) 0 
Zo(A) nCX) 0 >. (A) 

2 0,85 1.64 1.73 
4 0.69 2.20 3,46 

6 0,63 2.65 5,20 
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Appendix G). The field again features oscillations, decaying into the 

metal, and an exponential rise to the asymptotic constant value, F0 , in 

vacua. Examples of electric fields, F, and associated field potentials, 

VF (see eqn.(2.12)), are depicted in Fig.2.16 for the Wigner-Seitz radius 
0 rs = 3 and F O = 1, 3 and 5 V /A. It is important to note that, al though 

the electric field has reached its maximum value, F0 , some 2 X above the 

surface where adsorption typically takes place, the associated energy is 

only a fraction of its value had the field been approximated as being 

constant all the way to the position of the top metal atom, as done in 

Sect .1. On the other hand, taking the field constant up to the image 

plane at z 0 , identified as the centre of mass of the field-induced 

surface charge (also known as the position of the effective metal 

surface), yields a very good approximation to the field energy a few 

angstroms above the surface. 

b) Atomic Polarization Effects 

To improve the previous account of the electric field effects 

(in addition to its penetration), within the framework of the cluster 

calculations, one should also consider the a.= S terms in eqn.(2.15), 

J (2.85) 

which account for the atomic polarization. Expressions for VF(z) are 

given in Appendix G for both z < z 0 and z > z 0 • To evaluate the matrix 

elements (2.85) analytically, it is convenient to express VF(z) as a 

power series in z. 
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Fig.2.16: The inducing field, F (solid curve), and the 
associated field potential, VF (dashed curve), as obtained from 
the prescription of Appendix G. Small circles denote the 

positions of the lattice planes parallel to the W(111) surface. 

Zoi, Zo3 and z 05 are the centres of the induced surface charge 
0 • density for F0 = 1, 3 and 5 VIA, respectively. 
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For the surface W atoms (see Fig.2.16) VF(z) is approximated as 

(2.86) 

where Zm is the position of the first minimum (on the left of z 0), in the 

VF curve. E0 is the energy at Zm and E 2 is determined from the best fit. 

E0 , Zm, and E2 are given in Table 2.5 for different field strengths, F0 • 

For the adsorbed He atom (- 2 i away from the surface W atoms), one 

should note that over the extent of its orbitals, the electric field, F, 

varies little. Therefore, one can employ a Taylor expansion to get 

(2.87) 

ASED-MO theory takes (2.85) to be Slater type 

orbitals. The matrix elements of z, z 2 , etc., between different orbitals 

on the same atom, are given in Appendix H. To check the appropriateness 

of these wavefunctions and the corresponding matrix elements for the 

present situation, the polarizability of free atoms is calculated. To 

demonstrate the method and to make connection with the phenomenological 

approaches, a two-level atom, for example, helium with only 1s and 2p 

levels included, is considered. The Hamiltonian matrix then reads 

(2.88) 

with 



Table 2. 5: 

2 

3 
4 

5 

6 

7 

-o. 01 8 

-0.034 

-0.050 
-0.065 

-0.079 

-0.092 

-o. 1 05 
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E0 , E2 and zm, as appearing in eqn.(2.86), for the W(111) 

surface. z 0 is the centre of mass of the induced charge 

density and z 1 is as obtained from eqn.(2.99). z=0 has been 

taken for the surface W atoms. 

0. 1 8 

0.40 
0,63 

o.86 
1.1 0 

1.34 

1.59 

0.96 
o. 81 

0.69 
o. 61 

0.51 

0.43 
0,35 

-0.16 

-0.30 
-0.41 
-0.46 

-0.55 

-0.59 
-0.62 

0.30 

0,33 
0,34 

0,33 

0.33 

o. 31 
0.28 

1.26 

1. 11 

0.99 
0. 91 
o. 81 

0,73 

o.65 

0.42 

0.28 
0.1 6 
o. 11 

0.01 

-0.04 

-0.08 

o. 16 

o. 17 
0. 1 8 

0. 18 
o. 1 8 

0.17 
o. 15 
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Hu H1s,1s = E1s + VF(za) + 2 e F '(z 0 ) x 1 

H 12 H21 = H1s,2p = e F(z 0 ) X3 

H22 1 
H2p,2p = E2p + Vf(Za) + 2 e F '(z 0 ) x 2 (2.89) 

where 

2 
X1 <1sl(z-z 0 ) l1s> 

Xz <2p I (z-za)2l 2p> 

X3 <1s I (z-z 0 ) I 2p> (2.90) 

Diagonalizing (2. 88), one finds that the lowest eigenvalue (which for He 

corresponds to the state occupied by two electrons) is 

( 2. 91 ) 

This is a highly non-linear function of the electric field and its 

derivative. In a weak and slowly varying field F, the change in total 

energy due to this field is 

from which one can determine the polarizability, 

K = 

the hyperpolarizability, 

2 e 4 X34 

(E2p-E1s)3 

and the constants in the field gradient correction terms 

(2.92) 

( 2. 93) 

( 2. 94) 



3 2 e (x 2-x1) X 3 
2 (E2p-E1s) 

4 2 2 e (x 2-x 1 ) X 3 

2(E2p-E1s)3 

94 

(2.95) 

(2.96) 

(2.97) 

The present theory thus includes all the contributions to the binding 

energy usually considered in phenomenological models." Note, however, 

that the weak field approximation in the present numerical work is not 

invoked. The size of the various terms in eqn.(2.92) for He field 

adsorption will be commented upon later. At this stage, it should be 

pointed out that the inclusion of only 1s and 2p Slater orbitals for 

helium in the basis set gives a polarizability that is about a factor 

four too large for He; the case for W is the same, with a basis set of 

6s, 6p and 5d orbitals. Therefore, the matrix elements of z have been 

2 reduced by a factor of two and those of z by four before including the 

polarizability effects in the cluster calculations. 

For rs = 1.5, z 0 is replaced by z 0 +0,3 l, 37 Zm for rs 

obtained using the following simple prescription 

1 .5 is 

(2.98) 

The values of Q's are obtained using Table 2.4. E0 and E2 are kept the 

same. The corresponding z 1 values (see Appendix G), which match the field 

potentials at z = z 0 , and as obtained from the equation 
2 E0 + E2 (z 0-zm) = e F0 z 1 ln2 

are also given in Table 2.5, together with z 0 and Zm for rs 

( 2. 99) 

1.5. 
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c) Results of Field Adsorption of He 

The numerical results of the cluster calculations in which the 

field penetration and the polarization effects have been included are 

now presented. Fig.2.17 shows the adsorption energy of helium adsorbed 

on a W cluster in a field, F0 , of 4 V/A. For a big cluster, the total 

energy, E, is several hundred eV, whereas the adsorption energy, or the 

activation energy, as obtained from the difference of the two E's taken 

at Zmin and at the activation barrier, varies on a scale less than an eV. 

This fact signals an inherent difficulty for (big) cluster calculations 

to produce accurate numerical results for adsorption energies. 

Fig.2.17 shows the adsorption energy curves of He adsorbed on 

the apex of the near tetrahedral w .. cluster (as described in Sect.1b(i)). 

In curve (a), all the polarization effects have been neglected, i.e., the 

energies in eqns (2.5) and (2.8), for the adsorbing He and also for the 

top-most W atom, have been shifted only by the local field energy. A 

reduced activation energy of about 0.2eV is obtained, as compared to 

o. 6eV in the previous calculation (of Sect. 1), in which the asymptotic 

field is taken constant all the way to the position of the top-most W 

atom. The difference is due to the reduced field energy at the position 

of the He atom and to the shift on the top-most W atom. These latter 

two effects decrease the influence of the bonding due to the second-

order perturbation expression (2. 22), while affecting the two-body 

repulsive energy very little. Upon including the linear polarization term 

for the He atom (curve (b)), the activation energy is reduced and the 

adsorption potential widens. Including the linear polarization term for 

the top-most W atom, as well (curve (c)), reduces the activation energy 
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further. Finally, the inclusion of the z- and z2-matrix elements (curve 

(d)) for He and for the top-most W, results in an activation energy of 

only 0.04eV in a field F0 = 4V/K. The complete field dependence of the 

activation energy, the position of the adsorption potential minimum, and 

the charge transfer on the He atom is depicted in Fig.2.18 for rs = 3. 

The activation energy is a maximimum in fields between 6 and 7V/A.. This 

maximum should not be observable experimentally because the underlying 
0 W substrate starts to field evaporate around 5.5V/A. The cluster size 

dependence has also been checked, by calculating a few points for He 

adsorbed on a W1,. cluster. The results are within 20% of those in 

Fig.2.18. The adsorption properties for He on W( 111), based on the rs = 

1.5 model of the jellium metal, and as given in Fig.2.19, vary within 

similar bounds. The results of the two rs values can also help estimate 

the variation in the activation energy due to uncertainty in the jellium 

model calculations, which would not be more than 20%. The change in 

other quantities will be much smaller. These results clearly indicate 

that a reliable theory of field adsorption must include a very detailed 

treatment of the electric field at the metal surface around the 

adsorption site, preferably in a self-consistent manner. 
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Fig.2.18: The position Zmin of the adsorption potential minimum 

for the He-w .. cluster, the activation energy Q, and the charge 

transfer ~q on the He atom as a function of the field 

strengths, F0 • (a), (b), (c) and (d) denote the inclusion of 

different terms in the Hamiltonian, as discussed in Sect.3c. 
The x - marks are for the He-w 1 .. cluster (for the (d) curves). 
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CHAPTER III 

Field Adsorption of H2 and H3 

Hydrogen is the simplest of all the atoms in structure, but at 

the same time it is probably the most interesting as far as its 

adsorption properties are concerned. An addition of a few percent of 

hydrogen to helium as the image gas in a field ion microscope (FIM) 

surprisingly produces a very sharp helium ion image at the two-thirds of 

the normal best image voltage (BIV). 1 This strange effect is of practical 
+ + use for imaging the less refractory metals. H , H2 and metal hydride 

ions are also occasionally detected in the field desorption spectrum of 

FIM. This chapter deals with the relatively simple and basic phenomena 

of adsorption of H2 and H3 onto a metal surface (W( 111)), and their 

formation and dissociation in the absence of, and also in the presence 

of, an electric field. These properties of H2 and H3 are studied using the 

ASED-MO theory and its formulation, as described and used in the first 

section of the previous chapter. Only the 1 s orbital for the hydrogen 
0-1 

atom is included in the calculation as the basis for which 1 .2 A is 

taken as the Slater exponent 2 and -1 3.6 eV for the ionization energy of 

this 1 s level. The choice of these parameters gives the right bond-

length of 0.74£ for a free H2 molecule, but the predicted binding energy 

is twice as great as the experimental value of 4.75 eV. It is hoped that 

the following results thus obtained will represent the character of the 

system qualitatively and to some extent quantitatively. 
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As the H2 molecule approaches the W(111) surface, from the gas 

phase, it physisorbs weakly. The energy of adsorption is in the range 0.3 

- 0.6 eV, depending upon the site of the surface and the orientation of 

the molecule. The adsorption is physisorption in the sense that the 

molecular bond length, t;;, of H2 , varies only about 2% from its free 

space bond length, and the charge transfer to the H2 , molecule is 

negligible, as given in Table 3.1. There is an energy barrier of 1.0 to 

1.8 eV, again depending on the configuration of the system, between this 

physisorbed precursor state 3 and the chemisorbed phase, where the H2 

molecule dissociates into two H atoms which are then trapped by the 

surface. This is in agreement with the evidence of a physisorbed 

molecular layer over the primary chemisorbed state (the energy of 

chemisorption is about 1.5 eV/particle).~ Table 3.1 also lists the energy 

required for the molecule to go through these two channels, from its 

physisorbed state, namely, the separation channel (H2 molecule going back 

to the gas phase) and the dissociation channel (the chemisorbed state). 

In presence of an electric field, the activation energy for the 

separation channel increases about ten-fold while the dissociation energy 

on the surface is greatly reduced (except in the case when the H2 

molecule approaches the surface upright). There is a gradual change from 

the physisorbed state to the chemisorbed state as the field strength is 

increased. 

Fig.3.1 represents the arrangements of W atoms for the (111) 

surface and Fig.3.2 shows the different orientations of H2 molecule on 

this surface at various sites. Configurations (1) and (2) (see Fig.3.2) 



Table 3. 1: 

Config-
uration 

(1) upright 
1 8 9 10 

(2) flat 

1 3 4 8 

102 

Activation energy, Q, for the two channels for H2 

adsorption onto W(111), for various configurations (as 
given in Fig.3.2). z 1 is the separation of the closest H 
atom from the surface W atoms plane, z is the distance of 
the centre of mass of the H2 molecule from this plane and 

is the bond length of the two H atoms. ~q 1 and ~q 2 are 
charge transfers on the two H atoms at the (local) 

minimum position (in the H2 - upright configuration ~q 1 is 
the charge on the H atom closest to the surface). The 

numbers appearing below the configuration number are the 

atom numbers which constitute the W-cluster (see Fig.3.1). 
Results are also presented for linear W-H-H (see Fig.3.7). 

F Q (eV) 

(VIK) Se par. Dis so c. 

0 

2 

0 

Chann. Chann. 

0.3 
3.5 
1.6 

0.3 
4.2 

1.7 
2.0 

0.4 

1.5 
0.4 

2.24 

1.83 
1 • 71 

min z 

2.60 
2.21 

2.13 

2. 11 
1.47 

o. 722 

0.753 
0.843 

0.745 
0. 766 

- 0.02 

-0.07 
-0.12 

-0.04 
-0.06 

-0.05 

0.01 
0,3 

-0.04 
-0.06 

141517 2 

(3) flat 0 

1 2 3 8 
101417 2 

( 4) flat 

1 2 3 8 
10 11 14 

0 

2 

0.3 
4.4 

0.6 

5.6 
5.6 

1.0 
0.2 

1.0 

0.4 
0.2 

2.07 

0.93 

o. 74 -0.04 -0.04 

o. 795 -0.06 -0.06 

0.904 o. 756 -0.08 -0.08 
0.07 0. 795 -0.15 -0. 15 

-0.05 0.808 -0.15 -0.15 
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Table 3. 1 (continued): 

Config- F Q (eV) min min i;min t.q 1 t.q 2 Z1 z 

uration (V 1K) Separ. Dissoc. (i) (i) (i) (e) (e) 

Chann. Chann. 

(5) flat 0 0.3 1.5 2.01 0.756 -0.03 -0.03 
1 3 4 8 4.4 0.6 1.14 o. 768 -0.09 -0.09 
1 4 1 5 17 2 3.6 0.2 0.74 0.822 -0.06 -0.06 

(6) flat 0 0.4 1.3 2.26 0.74 -0.06 -0.06 
1 2 5 9 4.0 0.8 2.09 o. 781 -0.04 -0.04 
1 0 1 4 1 5 2 2.4 0.2 1.89 o.849 0.02 0.02 

(7) flat 0 0.3 1. 4 2.23 0.746 - 0.05 -0.05 
2 3 5 3.8 0.8 2.08 0.782 -0.04 -0.04 

6 9 1 4 2 2.2 0.2 1.88 0.843 0.02 0.02 

( 8) upright 0 0.5 1.8 0.74 1.12 o. 754 -0.03 -0.05 
1 2 3 8 5.0 1.4 0.373 o. 746 0.747 -0. 11 -0.08 
1 0 11 1 4 2 4.4 2.8 -0.06 0.311 o. 746 -0.15 -0.04 

(9) upright 0 o.4 1.7 1.26 1. 64 0.746 -0.03 -0.06 
1 3 4 8 4.2 2.2 1. 16 1.54 0,761 -0.08 -0.03 
1 4 1 5 21 2 3,0 2.4 1.08 1. 4 7 0. 781 -0.12 0.05 

H2 - W 0 0.2 1.7 2.42 2.80 0.754 -0.01 -0.03 

The values are good to only two significant figures. However, these 

figures are retained for comparisions. 
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Fig.3.1: Arrangement of atoms for the W(111) surface. The lattice 
constant, a, for the b.c.c. structure is 3.16K. The full circles 
represent the surface atoms ( 1 to 7 and 22), the dashed circles 
represent the atoms from the second layer (8 to 13), and the 
dotted circles represent the atoms from the third layer (14 to 16 
and 21). The fourth layer atoms are below the surface atoms, for 
which the atom numbers have been circled (e.g. atom 17 is below 
atom 1, 18 below 2, etc.). The separation between adjacent layers 

is a/2/3 and the nearest neighbour distance is l3a12. 
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Fig.3.2: Different configurations of H2 molecule approaching the 
W( 111) surface. AX and a bar (-) show the centre of mass of a 

flat molecule and the orientation of the H-H bond, respectively. 
AX with a dashed circle represents H 2 upright on the surface. The 

circled numbers represent the configuration numbers as referred to 
in the text and in Table 3.1. Table 3.1 also gives the molecule 
numbers (as given in Fig.3.1) for these configurations. 
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will be discussed in more detail below, where the H2 molecule approaches 

the surface as upright and as flat, respectively. The results for other 

configurations are also presented and analysed on the basis of those for 

configurations (1) and (2). 

In configuration (1), the H2 molecule approaches the surface as 

upright above a W atom and is trapped in the surface potential with the 

energy of adsorption - 0.3eV in the absence of a field (Fig.3.3). The 

contour plots of the ground state energy for this configuration are 
0 given in Fig.3.4 for F = 0, 1, and 2V/~ The bond length, t, between the 

two H atoms increases from 0. 72A to 0. 75 and 0.84A in the presence of 

the field of 0 and 2V/A, respectively. The distance, zu between the top 

W atom and the closest H atom decreases greatly from 2.37A to 1.84 and 

1. 7A, respectively, in these fields (see Table 3.1 ). At a higher field of 

- 2.2V/A the H-H bond is broken and the farthest H atom is ripped off by 

this field, leaving behind the other H atom to be chemisorbed. The force 

constants for the H2 molecule have been calculated using eqn.(2. 9) for 

the equilibrium positions (the physisorbed states) and have been 

presented in Table 3.2, together with the corresponding wave numbers for 

various fields. With an increase of the field, the force constant 

decreases and the potential well becomes shallower. The perspective view 

of the ground state energy surface of H2 , corresponding to the contour 
0 of Fig.3.4, is given in Fig.3.5, for F=0 and F=1V/A. The contour plots, 

similar to the ones in Fig.3.4, are given in Fig.3.6 but this time these 

show z 1 vs. t as compared to the z (the distance between the centre of 

mass of the H2 molecule and the plane containing the surface W atoms) 

vs. t. The range of t is also increased considerably to study the 

dissociation property of H2 on the W surface. The contour plot of the 
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Table 3,2: Force constant and the corresponding wave numbers for H2 • 

Free H2 H2/W(111) (Config.1) 
Expr. (a) Present F=0 F=1V/A F=2V/A 

theory 

Force const. 5.23 7.98 8.72 8.23 2.94 
( milli dyne/A) 
Wave no. 4200 5180 5420 5270 3150 
(cm- 1 ) 

(a) G. Herzberg, Molecular spectra and molecular structure I. Spectra 
of Diatomic Molecules (Van Nostrand Reinhold Company, N. Y., 1950) 
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Fig.3.3: Surface potential V for 
upright 

tetrahedral 
(Config. 1). 
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Fig.3.4: Contour plot of the 
ground-state energy surface of 
H2 interacting with a tungsten 
cluster (Config.1) for (a) F=O, 
(b) F=1V!K_ and (c) F=2V/£. z is 
the distance of the centre of 
mass of the H2 molecule from the 
surface (top W atom) and I; is 
the H-H bond length. 
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Fig.3_5, Perspective View or the ground-state energy surrace 
corresponding to the contour map of Fig.3_4 for (a) F•o and (b) F•1v1,!, 
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Fig.3.6: Contour plot of the 
ground-state energy surface of 
H2 interacting with a tungsten 
cluster (Config.1) for (a) F=O, 
(b) F=1V/A and (c) F=2V/A. z 1 is 
the distance between the top 
surface atom and the closest H 
atom and f, is the H:-'-H bond 
length. 

Fig.3.7: Contour plot of the 
ground-state energy surface of 
H2 interacting with a W atom in 
zero field. 
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ground-state energy of H2 and W (linear configuration) is presented in 

Fig.3.7, The similarity between Figs 3.6a and 3.7 facilitates the study of 

the adsorption of H2 onto W. For z 1 ~2A the closed shell of the 1s orbital 

of the H2 molecule remains almost intact. If z 1 is decreased at the 

expense of an energy of about 1.5eV, the covalent bonding between the H 

atoms is broken, and instead there is a formation of a stronger bond 

between the W and the closest H atoms, giving rise to a tungsten 

hydride. 

In configuration (2), a H2 molecule approaches the surface with 

the H-H bond parallel to it. The contour maps of the energy of the 

system as a function of z and !; are given in Fig,3.8 for F = O, 1 and 

2v;l, Three dimensional perspective views of the energy surfaces are 
0 

depicted in Fig.3.9 for F=O and 1V/A. In Fig.3.9a (F=O), an adsorbing 

molecule approaches the surface through the entry valley (arrow in the 

left upper corner in Fig.3.8a) first encountering a shallow minimum 

where it can be trapped in a weakly physisorbed precursor state P. 

Eventually it will t _ry to climb over the saddle point, S, by streching 

its bond length !;. If successful, the bond will break and the two 

dissociated H atoms will be trapped at the surface at D. They can even 

diffuse into the metal. For energetic reasons, the system will try to 

hug the path of steepest ascent and descent; this path is commonly 

parametrized by a reaction coordinate; the path's energetics are 

illustrated in Fig.3.1 O. Basically the same thing happens for 

F=1V/A where dissociation is energetically more favourable. This barrier 

from physisorption to chemisorption disappears for the field strength 
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Fig.3.8: Contour plot of the ground-state energy surface of H2 

0 interacting with a tungsten cluster (Config.2) for (a) F=O, (b) F=1V/A, 
and (c) F=2V/l. z is the distance of the centre of mass of the H2 
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Fig.3.9: Perspective view 
of the ground-state energy 
surface corresponding to 
the contour map of Fig.3.8 
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Fig.3.10: Change in ground-
state energy of H2 

interacting with a tugsten 
cluster (Config.2) along the 
reaction coordinate as 
shown in Fig.3.8a. 
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Essentially, for configurations ( 3 to 7), the description for 

configuration (2) also applies. Looking at Fig.3.2 and the energy surface 

contour maps (Figs 3. 11 to 3. 15), one observes that unlike the rare 

gases, H has a tendency to bind more on three fold sites. In 

configuration (3) one H atom prefers the site close to W atoms, numbered 

1, 8 and 14, and the other H prefers the site close to 1, 8 and 15. A 

similar thing happens for configuration (4). In configurations (8) and (9) 

( the energy surface contour maps of z 1 vs. are given in Figs 3. 16 and 

3.17), the stretching of the bond is relatively small (as compared to the 

H2 molecule approaching the surface as flat) as one increases the field 

strength. The reason is: the H atom, adjacent to the surface, sits in the 

groove of the three-fold site, allowing the farthest H atom to move even 

closer due to an increased orbital overlap. (Remember that at the three-

fold site the H-W two-body repulsion energy is small.) 

In free space H3 does not form. Energetically, it is more 

favourable to dissociate into a H2 molecule (the calculated binding 

energy is 9.63eV) and an H atom. This phenomenon is illustrated in 

Fig.3.18 for a linear arrangement of three H atoms where, for the saddle 

point ~1=~ 2=1K. the binding energy is 8.98eV. In Fig.3.19, a non-linear 

configuration of three H atoms has been considered and a contour map is 

presented as a function of~ (the separation between two H atoms) and z 

(the distance between the third H atom and the centre of mass of the 

other two). Again the most probable configuration is H2+H. Fig.3.19 shows 

also that a linear configuration is preferred to a non-linear one with a 
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F" ig.3.12: Same as F" ig.3.8, but fo r configuration 4. 
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Fig.3.13: Same as Fig.3.8, but for configuration 5. 



5.0 

z<.i.> 

0.5 

7 .5 ... 

t<X> 3.0 0 . 5 

l,tO .. 
H2 - W(111) 
conflg.6 (Flg.3.2) 
F • 1 Vil 
cont. 1nt. 0.2eV 

Fig.3.14: Same as Fig.3.8, but for configuration 6. 

118 

3. 0 



o.s 

o.s 

t<X> 3.0 

t cX> 3.0 

7. S 

z<!> 

0 

o.s 

"' 

H2 • W(111) 
config. 7 (Fig.3.2) 
F • 1 Vil 
cont. int. 0.2eV 

Fig.3.15: Same as Fig.3.8, but for configuration 7. 

119 

3.0 



120 

F" ig.3.16: Same as F" ig.3.6, but for configuration 8. 
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Fig.3.17: Same as Fig.3.6, but for configuration 9. 
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Fig.3.18: Contour plot of 
the ground-state energy 
surface of the linear H3 in 
zero field. Energetically it 
is favourable to form 
H + H2 (with bond length of 
0.74K). S is the saddle 
point corresponding to 

Fig.3.19: Contour plot of 
the ground-state energy 
surface of the non-linear H3 

in zero field. Energetically 
it is favourable to form 
H + H2 (with bond length of 
0.14K). The linear 
configuration is more likely 
than the non:-linear 
configuration. s is the 
saddle point corresponding 
to the equilateral triangle 
of side 1 . 45l 



123 

saddle point, S, representing the situation when all the three H atoms 
0 

form an equilateral triangle with side of length 1.45A. Liu 5 and Siegbahn 6 

have obtained similar results with their E;; 1=E;; 2=0.93K being the saddle 

point. 

Next the adsorption of linear H3 onto W~(111) (configuration 1 of 

Fig.3.2) is considered, increasing from zero field to a field where the 

local minimum disappears. The existence of linear H3 is confirmed in the 

presence of a surface. 7 • 8 The calculations are presented in Table 3.3. z 1 

is the distance between the surface atom and the closest H atom. f,; 1 is 

the distance between the middle H atom and the one adjacent to the 

surface, and f,; 2 is the distance between the middle H atom and the outer 

one.Mis defined as 

M (3.1) 

Table 3. 3 lists the activation energy for the two channels, namely the 

separation channel and the dissociation channel, for various M-values. 
0 

For the field of about 1. 7V / A the desorption occurs sideways; that is, 

the path is in between these two channels. Figs 3.20 to 3.24 give contour 

maps for the ground state energy surface as a function of z 1 and f,; 1 for 

different M-values and for different fields. The most stable 

configuration for H3 onto W( 111) is when M =0. 75, for which the 

calculated energy of adsorption is about 2.0eV as comapred to 1.8eV 

(Ernst and Block7 ) and 3.oev (Tsong and Kinkus 8 ). The plots as presented 

in Figs 3.20 to 3.24 give a general feeling of H3 adsorption and its field 

desorption. However, most likely there will be formation of H2 and H (to 

be chemisorbed on the surface) pairs instead of all three H dissociating 

through the dissociation channel as considered above. 
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Table 3.3: Activation energy, Q, for various channels for H3 (linear and 

upright) adsorption onto W,.(111). z 1 is the separation of the 

closest H atom from the top W atom, 1; 1 is the distance bet-

ween this H and the middle one, and M is the ratio of 1;2 to 

/;i, where 1;2 is the separation between the two H atoms far-
thest from the surface. tiqi, tiq 2 and tiq 3 are the charges on 

the H atoms closest to the surface, the middle one and the 
farthest one, respectively, at the (local) minimum position. 
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0.7 

o.8 

0.9 

1 .o 

1. 1 

0 

1.0 

1. 8 

2.0 

0 

1.0 

1.7 
1.8 

0 

1.0 

1.7 
1.8 

0 

1.0 

1.7 
1. 8 

0 

1.0 

1.7 
1.8 

Q(eV) 
Separ. Dissoc. Side-

Chann. Chann. ways 

2.0 

5. 1 

2.0 
4.4 

1. 8 
4.0 

1.7 

3.5 

1. 4 

3.0 

3.3 
4.2 

3.0 

3.8 

2.6 

3.6 

2.5 

3.3 

2.3 

3.0 

0.4 

0.8 
0.4 

0.65 

0.25 

0.35 
0.05 

0.08 

1 • 61 

1.55 
1.51 

1 • 61 

1.55 

1. 53 
1.54 

1.63 

1.56 
1.56 

1.56 
1.64 

1.58 
1.59 
1.6 

1 .67 

1.59 
1.62 

1.24 

1.23 
1.25 

1.14 

1.13 
1. 1 4 

1.14 

1.06 

1.05 
1.06 

1.06 
1.01 

0.99 
1.0 
1.0 

0.96 
0.94 

0.95 

-0.41 0.016 -0.1 

-0.32 -0.023 -0.02 

-0.23 -0.075 0.12 

-0.39 

-0.31 
-0.23 
-0.21 

-0.37 

-0.28 
-0.21 

-0.19 
-0.34 

-0.26 
-0.18 

-0.17 

-0.32 
-0.24 

-0.16 

0.016 -0.15 

-0.024 -0.044 

-0.073 0.075 

-0.08 0.11 
0.017 -0.2 

-0.02 -0.094 
-0.067 0.11 

-0.072 0.15 
0.016 -0.26 

-0.01 4 -0.12 
-0.056 0.11 

-0.051 0.19 
0.017 -0.32 

-0.008 -0.16 
-0.042 0.11 

The values are good to only two significant figures. However, these 

figures are retained for comparisions. 
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Fig.3.20: Contour plot of the ground~state energy surface of the 
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of Fig.3.2) for various field strengths. z 1 is the distance between 
the surface atom and the closest H atom; F;: 1 is the distance 
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CHAPTER IV 

Field Evaporation: 

The process of field desorption is commonly known as field 

evaporation when the desorbing particles are the metal ions themselves. 

In field ion microscopy, the field ion tip itself evaporates in very 

strong fields. The ASED-MO theory of Chapt.II. 1 has been used to study 

the field evaporation properties of the tungsten metal. The effects of 

field penetration, Friedel oscillations and polarizations, as described in 

Sect.3 of Chapt.II, have been considered, as they are very important for 

a correct description of the phenomenon of field evaporation. 

An electric field at the surface of the metal induces an excess 

charge which, by way of Poisson's equation, results in a spatially 

varying field that penetrates into the metal in an oscillatory way. In 

jellium model calculations one allows the electrons and the electric 

field to adjust self-consistently, keeping the ionic contribution smeared 

out as a uniform positive background. In a real metal, the ion cores in 

the surface region will, of course, also adjust their positions. They 

move inward (outward) if the excess surface charge leads to enhanced 

(decreased) occupation of bonding orbitals or to decreased (enhanced) 

occupation of antibonding orbitals. As the ion cores adjust their 

position, the electrons and the electric field have to follow in a self-

consistent manner. This latter self-consistency can, unfortunately, not 

be accounted for in the jellium model calculations. The numerical 

cluster calculations below, however, indicate that the adjustment of the 

ion cores is minimal. 
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Experiments suggest that field evaporation of metal atoms most 

likely occurs at steps, kinks and edges, or for small clusters of atoms, 

on larger planes. Theory should calculate the electric field, the 

electron density, and the geometry of the ion cores for such 

configurations self-consistently. It is not presently possible to do 

this. To demonstrate, however, the interesting effects to be expected 

from such a calculation, the results of the cluster calculations are 

presented, in which the self-consistency requirement of the electric 

field has been neglected, and, rather, it has been again taken from the 

jellium model calculations. 

In Fig.4.1, the energy of a W atom on the three-fold site of a 

tetrahedral w~ cluster is plotted, with the electric field applied in the 

direction perpendicular to the plane containing the three atoms (compare 

with Fig.2. 17). It is noted first that in the absence of a field the 

binding energy of the top-most W atom is about 6.8eV as compared to the 

experimental cohesive energy of 8.2eV per particle. (The position of the 

fourth atom nearest to the top W atom has been adjusted to give the 

correct equlibrium position of the top W atom with respect to the three 

W atoms of the tetrahederal in zero field.) 

In Fig.4.2, the results of the calculation with polarization 

effects on the top-most W atom included or absent (see Sect. 3c of 

Cha pt .II) have been compared. Of significance is the fact that in all of 

these calculations, the equilibrium position of the top-most atom does 

not shift as a function of field strength. Note also that in any of these 

approximate schemes the activation barrier dissappears between 4 and 

about 7V ;l_ It is felt that an at tempt to fit the experimental data 

accurately by adjusting the local electric field would detract from the 
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Fig.4.1: The inducing field, F, the associated field potential, VF 

(defined in eqn.(2.12)), and the total energy, E, of the W cluster. 
Small circles denote the positions of the lattice planes parallel to 

the W(111) surface. z=O corresponds to the second layer atoms. The 
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process. z 0 is the centre of the induced charge density for F0 =4v/K. 
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Hamiltonian, as described in Sect.3c. (See Figs 2.16 and 2.17 also.) 
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message of these model calculations, which is that a better and 

quantitative understanding of field adsorption and field evaporation can 

only come about once the local electric field at a field ion emission tip 

has been calculated microscopically and, above all, self-consistently 

with the local electron density and ion geometry. 
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Appendix A 

Euler Angles and Rotation Operations 

The Euler angles, ( a, B, Y), refer to the following ordered 

operations on a set of coordinate axes: ( 1) rotation by an angle, a., 

about the z-axis; ( 2) rotation by an angle, B ( 0~ e:;;'IT), about the new y-

axis; and (3) rotation by an angle, Y, about the new z-axis. This 

convention is called the y-convention, and is the one adapted to this 

work. (In the x-convention, one performs the second rotation about the 

new x-axis.) It should be noted that the polar coordinates 8, (with 

respect to the original frame) of the final rotated z-axis are identical 

with the Euler angles B,a, respectively. In other words, the rotation, 

carrying the polar-axis from its reference position to the ray or the 

direction defined by (8,~), has the Euler angles (~,8,x). Here x is 

arbitrary and, for simplicity, will always be set equal to zero. 

In connection with the evaluation of the D - matrices, as 

appearing in eqn.(2.39), one frequently needs the Euler angles, (a, B, Y), 

which rotate the axial system. They are obtained according to the 

following scheme. Suppose a point has the polar coordinates ( 81, ~1) in 

the first axial system and ( 82, ~2) in the second. The first axial system 

is defined here as having the orientation given by the Euler angles, 

(a1,B1,Yi) = (~1,81,0), and the second as having the orientation given by 

(a2,B2,Y2) =(~2,82,0). The Euler angles, which take the axial system from 

the orientation (a1,B1,Yi) to the orientation (a2,B2,Y2), are (a, B, Y). 

Symbolically 

(a.2,B2,Y2) (A1) 



The inverse operation is given according to the following scheme 

-1 ( a, 8, Y) (rr-Y, 8,rr-a.) 
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(A2) 

(a.,8,Y) are obtained in terms of (a.1,81,Y) and (a.2,82,Y2), using the 

following set of equations: 

where 8 and x are given by the following set of equations: 

cos 8 

cosx = 

. sin82 sin(a.ra.i) 
sins= 8 sin 

- sin81 cos82 + cos81 sin82 cos(a.2-a.1) 
sin8 

sinx 
sin81 sin(a.2-a.i) 

sine 

cos 81 sin82 - sin81 cos 82 cos(a.2-a.1) 
sins 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

Using the pair of eqns (A6) and (A7), one can precisely know in which 

quadrant the value of 8 lies. Similarly, the use of eqns (A8) and (A9) 

gives a single value of x between 0 & 2rr. 

If sin8 = 0, eqns (A4) to (A9) are replaced by the following two 

equations: 

(A 1 0) 

(A11) 
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Appendix B 

d - Matrices and their Recursion Relations 

The d - matrices, as defined in eqn.(2.42), are given by 

(81) 

To get the d - matrices for all possible combinations of +ve and -ve 

values of m and o, one uses 

(82) 

The sum over s in eqn.(81) includes all values for which the binomial 

coefficients are defined. The use of eqn.(81) is very inefficient for 

computation, relative to recurrence relations, which hold for these d -

matrices. One starts with 

and 

d 0 (t) 
00 

d 1 (t) = t 00 

and finds d! 0 (t) for all i,m,o~O using the following three equations 

do (t) mo 
(l-t)(o-m)/2 (l+t)(o+m)/2 

2 ° ( o-m)! 

(83) 

(84) 

(85) 



(-1)m- 0 ( 2m )! ( 1-t) (m- o)/2 ( 1 +t/m+ o)/2 
2m (m+o)! 

(1+o+1)(1-m+1) d(1+1) (t) _ (21+1)[l _ mo J d1 (t) + 
1+1 mo Ic1+1) mo 
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;m~o~O (B6) 

0 (1-1) (m,o) 0 (B7) 

Here d1 (t) is defined as zero whenever 1<m or 1<o. Situations may arise ma 
where one can have o=m and t=1. In these cases the first term in the 

numerator of eqn.(B5) is defined as 1, or t is replaced by a number 

infinitesimally different from t. 
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Appendix C 

The V - Functions and their Recurrence Relations 

To obtain the m 
V n~_/o,r,R), as given by eqn.(2.48), in a more 

amenable form, and to develop recurrence relations between them, 

extensive use is made of relations (2.45) and Fig.2.15. For brevity, the 

subscript a is dropped and, subsequently, the argument of the V -

functions will also be omitted in this appendix. In certain limiting 

situations eqn.(2.48) may be integrated to give 

and 

v0 .(o,r,R) = (2j+1) k.(or) i.(or ) OOJ J + J - (C2) 

where r + and r _ are the greater and lesser, respectively, of R and r. 

k.(x) and i.(x) are spherical Bessel functions and A (x) is a function 
J J n 

closely related to them. The following relations hold for these 

functions 

i.(x) X J ij+ 1(x) - i. 1 (x) J- (C3) 

k.(x) = kj+l (x) - k. 1(x) X J J- (C4) 

with i (x) x- 1 sinhx 
0 

i_ 1Cx) -x- 1 coshx 

k (x) x-1 -x e 
0 

k_ 1(x) x-1 -x 
= e (C5) 

Also 

A (x) n An_ 1(x) + A (x) n X 0 
(C6) 



with A (x) 
0 
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(C7) 

For larger j values, eqn.(C3) fails to give correct values (on 

computation) for i.(x). Instead, a method due to Corbato (Ref.34, Chap.II) 
J 

is used and i/x) is generated from higher to lower values by assuming 

that: (i) iJ+l (x) = 0 for sufficiently large J, and (ii) the ratio r J(x) = 

iJ+l (x) 
is zero for this J (presently J has been set to 200). Using eqns iix) 

(C3) and (C5), one gets 

r. 1(x) -x 
J- 2j + - X r. (x) 

J 
(C8) 

where rj (x) = 
ij+l (x) 

i.(x) 
J 

(C9) 

r. (x) is generated by downward recurrence until one reaches r . Then, 
J o . 

starting from the computationally convenient formula for i , 
0 

(C 10) 

one succesively determines the i.(x) for increasing j by use of the 
J 

previously obtained r . (x) values (using eqn . (C8)) and eqn . (C9) 
J 

Using eqns (C2) and (C1 0), one can obtain a relatively simple 

0 recurrence relation for V . : 
00J 

Vo 2j+3 Vo r . (x ) + 2j+3 Vo r . (x ) r. ,ex ) oo,j+1 x+ ooj J - 2j-1 oo,j-1 J - J- - (C 11) 

-x 
With Vo e l 

000 x+ ( 1 + x+ - X r 1(x_)) -
(c 12) 

r-x -x] r 1(x_) 
Vo 3 

e l e l + -2- x_ - x_ r 1(x_ ) 001 x+ 1 + 
x+ 

(C 13) 
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X 0 r+ (x+ -I 0) + 

X o r 

X1 0 IR-r I 

X2 0 (R+r) (C 1 4) 

The recurrence relations for Vo are noo 

n+1 -x n+1 -x 
Vo Vo X1 e l - X2 e 2 

(n+ 1) + n+1,oo noo 2 c2 r R 
(C 15) 

with Vo -x e-x2] 
c2 r 

[e l -
000 2 R 

(C 16) 

Both expressions (C1 2) and (C16), although completely different in form, 

give the same value for v 0 
000 . 

As mentioned earlier, using relations (2. 45) and Fig.2.15, one 

can have various recurrence relations holding true for the V - functions 

m -m 
for all possible values of n, i, m and j .(Note that V ntj = V ntj , from 

eqns (2.34) and (2.48)). Those needed for present purposes are : 

vm ..,2( 8 2 2)Vm 2 R[j-m vm + j+m+1 m ] 
n+2, tj = u +r ntj + 20 r 2j-1 n1,j-1 2j+3 V n1,j+1 (C 17) 

1-m+1 vm + 1+m vm 
21+1 n+1, 1+1 ,j 21+1 n+1, 1-1 ,j 

= oR v~1j + or[ij--~ v~1,j_ 1 
j+m+1 + ---2j+3 (C 1 8) 

vm+1 _ vm+1 
n+1, 1-1,j+1 n+1, 1+1,j+1 

< 21+1) oR [2j1+5 v~1,j+2 - 2j+1 v~1J (C 1 9) 



_1_vm 
c2Rr n+1 ,mj 

and 
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2m-1 m-1 
"R V 1 . u n,m- ,J 

(n-m) vm - vm . 
n-1, mj nmJ 

(C20) 

(n-m) [vm . + vm .] - vm 
nmJ n-1 ,m,J n+1,mj 

(C21) 

[ 1 m 1 m J - n-m --V - --v + ( ) 2j+3 n-1 ,m,j+1 2j-1 n-1 ,m,j-1 

+ [-1-vm - - 1-vm ] (C22) 2j+3 nm,j+1 2j-1 nm,j-1 

vm 
m+1,mj 

2m-1 [ m-1 m-1 J 
-~ V m,m-1 ,j + V m+1,m-1,j 

2j+m+n+3 vm + n+m+1-2j vm + 
2j + 3 nm ,j + 1 2j - 1 nm ,j -1 

(C23) 

+ vm - 1 vm (C24) 
2J+3 n+1,m,j+1 2j-1 n+1,m,j-1 
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Appendix D 

Clebsch-Gordan Coefficients 

The Clebsch-Gordan coefficients, as used in eqn.(2.57), are 

determined from the properties of the associated Legendre function 

(2.34). For these coefficients 

C OT 
µjk 

C TO 
µkj (D1) 

Note that Cµj~T = O if j < lo!, if k < ITI, ifµ< IT-crl, if µ+j+k is not 

even, or if lj-kl µ lj+kl is not satisfied. However, relatively simple 

combinations of µ, j, k, er and T are required for the present purposes, 

as is evident from eqn.(2. 71). They are 

C . er 
OJJ 

C er er 
o er er 

(2cr)! 
2 cr+1 

2j-1 j+cr C crcr 
T-o 2J+T o,j-1,j-1 

(D2) 

(D3) 
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Appendix E 

Abscissae and Weights of Lobatto Quadrature 

The Lo bat to Quadrature formula (Ref .35, Chap. II) of order n for 

an integral (normalized to the interval (-1,1)) is 

11 
f(x) dx = H1n f(-1) 

-1 

n-1 
+ L 

k=2 
(E1 ) 

where the abscissae xkn are the zeroes of the first derivative of the 

Legendre polynomial of order n-1, i.e. they are solutions to the equation 

(E2) 

The weight coefficients Hkn are given by 

(E3) 

The formula (E1) is exact for all polynomials f(x) of degree :;:; 2n-3. This 

can be written in an alternative and symmetric form as 

11 
f(x) dx 

-1 
H f(-1) + -m,n 

m-1 r: (E4) 
k=-m+1 

with x k - ,n = - X and H k kn - ,n Hkn· For odd n, n=2m+1, and for even n, 

n=2m. The positive abscissae xkn and the corresponding weights Hkn are 

given in Table E1 for n=64. The weight coefficients satisfy the sum rule 

m 

r: 8 kn 2 (E5) 
k=-m 



Table E1: 
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The abscissae and the corresponding weights of the Lobatto 
quadrature for n=64 (from Ref.35, Chap.II). 

Abscissae Weights 

1.000000000000 0.000496031746 

0. 99817 9871 502 0.003056008245 

o. 993902726703 0.005496016204 

0.987192676603 0.007921289790 

o. 978066662831 0.010327002367 

0.966547110369 0.012707399197 

0.952662235789 0.015056683988 

0.936446027476 0.01 7369116385 

o. 91 79381 7351 0 0.01 9639040723 

o.897183967846 0.021860903512 

0.874234200658 0.024029268144 

o. 849145034543 0.026138828614 

o. 821 977867308 0.028184422666 

o. 792799181826 0.030161 044499 

o. 761 680383408 0. 03206385 7058 

o. 728697625089 o. 033888203884 

0.693931621291 0. 035629620524 

o.657467450313 0.037283845460 

0.619394346138 0.038846830538 

0.579805480068 0.040314750882 

o. 53879773271 7 0.041684014251 

0.496471456936 0.042951269834 

0.452930232232 0.044113416447 

0.408280611290 0.045167610126 

o. 362631859226 0.046111271084 

o. 31 60956861 96 0.046942090027 

0.268785974019 o. 04 7658033802 

0.22081 8497497 0.048257350376 

0.172310641088 0.048738573122 

0.123381111 650 0.049100524408 

o. 074149647946 0.049342318477 

0.024736727622 o. 049463363621 
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Appendix F 

Computational Details 

The position, where the potential for an electron is required, 

is chosen as the origin, and with respect to this point, say P, the 

spherical polar coordinates (Ra, 0a,4>a) and (Rb, 0b,4>b) of the atoms A and 

B, respectively, are obtained. These angles give (cxa,Sa,Ya) and 

(cxb, Sb, Yb), where Ya and Yb are arbitrary and are presently set to zero. 

(However, the final results have been checked to be independent of the 

choice of Ya and Yb.) Thus (cxab• Bab• Yab) are obtained easily (see 

Appendix A) and are stored in a common block to be passed over to other 

subroutines and functions where they are required. For the present 

purposes, the number of Clebsch-Gordan coefficients required is 

3(jmax+1 ), where jmax is the number where one wants to stop summing the 

infinite series in eqn.(2.81) or (2.83). It turns out that the choice of 

j = 25 gives numerical results good up to at least three significant max 

figures. For large Ra and Rb ( > 10 t, the convergence is not good and 

one needs j greater than 25. The numerical results have been tested max . 

by obtaining the simple overlap integrals, i.e. without .l term in the r 

integrand of eqn.(2,32). The Clebsch-Gordan coefficients are also put in 

a common block. Similarly, the rotation d-matrices and other functions, 

not including r, are calculated before integration is performed and are 

put in a common block. The V-functions depend on rand these are the 

only functions, combined with some simple polynomial of r, are 

calculated in a function program over which integration is performed. 
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For a particular r, the V-functions are generated using 

recurrence relations (Appendix C) for all possible values of m, n, 1 and 

j, and then summations over o, -r and j are performed before integration 

is done. In the whole operation, the most time consuming step is the 

calculation of the V-functions. During the integration process, these v-
functions are calculated several times for both Ra and Rb and for 

several values of r. For the electron-potential (2.29), one needs to 

calculate about 2000 multi-centre Coulomb integrals of type ( 2. 32). 

Among these 2000-odd integrals there will be some having the same value, 

depending on the choice of the axial frame, but to keep track of these 

and put them back into the calculations is a formidable task and is 

subject to error. Thus they are all calculated systematically. (The 

matrix, containing these integrals, is symmetric about the diagonal.) 

To make the whole operation feasible and more efficient at the 

cost of a little less accuracy, integration is performed using Lobatto 

quadrature of the order 64. This is done after making a transformation 

by a change of variable to the limit (-1,1). 

Once it was decided to use the Lobatto quadrature for the 

integration, the V-functions were calculated for 62 values of r ( the 

two end points are excluded since the integrand is zero at these points) 

for all values of R (Ra, Rb, etc., depending on the number of atoms in 

the cluster), m, n, 1 and j, and stored in computer's memory. The V-

functions are symmetric for ± m. It turns out that, for the present 

purposes of a rare gas atom on the near tetrahedral structure of W., one 

needs to store (letting V go to V') 

V'(3,4,26,3,62) 
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where the first index corresponds to three possible magnetic quantum 

numbers for the d-orbitals; the second index is for the combination of n, 

the principal quantum number and the Slater exponent, cS (remembering 

that there are two values of cS for the contracted d-orbi tals for 

tungsten). The number 26 is equal to j +1. (jmax is 25 in the present max . 

case.) The next number, 3, gives the possible values of R (due to the 

symmetry of the W-cluster) with respect to the point P, where the 

electron-potential is needed. Finally, the number 62 corresponds to the 

1 +y 
different values of rk = l-y k (k=2 to 63) for which the V are calculated 

. k 

for the Lobatto quadrature method (see eqn.(2.83)). 

Lastly, the coefficients C appearing in eqn.(2.29), and which are 

the outcome of the diagonalization of the ASED-MO hamiltonian, are 

evaluated using the new coordinate system, where the origin coincides 

with the point P. 
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Appendix G 

Electric Field and the associated Field Energy 

For an asymptotic field of F 0 =5V ;X, the width, ~, of the induced 

surface charge density for rs=3 is the same as the width in a weak field 

for rs=2 (refer to Tables 2. 3 and 2. 4). In the absence of further 

information, one may assume that the nature of the induced surface 

charge densities for these two configurations is similar, i.e., the 

wavelength, >., and the relative heights of the Friedel oscillations are 

the same, except that now z 0 is taken as given in Table 2. 3. This induced 

surface charge density can then be approximated reasonably well as 

p(z) a: sin(kz) 
z for -o, < z < z 0 ( G1) 

where k = 2>.TT Thus, using Poisson' s equation, the field between -o, and 

z 0 can be given as 

F(k,z) f kz 
Fo 

= c' 
-o, 

sin(kz') d(kz') 
kz' Z < Zo (G2) 

where .the constant, c', in the above equation is obtained from the fact 

that F(k,z 0 ) is half its maximum value, F0 • i.e., 

giving 

sin(kz') d(kz') 
kz' 

f kz 0 

c' = 2 -o, si~~,z') d(kz') 

(G3) 

(G4) 

Because of the Friedel oscillations on the metal side, the peak, zp, of 
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the induced surface charge density is shifted towards the metal from its 

centre of mass z 0 • Eqn.(G2) can be written as 

[ r:p r d(kz') ] F(k,z) 
Fo sin(kz') d(kz') sin(kz') 
c' kz' + kzp kz' (G5) 

or, Fo [ w Si(kz-kzp) ] F(k z) = - - + ' c' 2 (G6) 

For other field strengths, it is assumed that ). and (z 0-zp) are 

proportional to the corresponding n (as given in Table 2. 3). A and Zp 

thus obtained are given in Table G1, together with z 0 and n for the 

W(111) surface, taking rs = 3. 

Using eqn.(2.12), the field potential is given as 

VF(r) = V (z) = Jkz F(k,z') d(kz') F k 
-oo 

(G7) 

. sin(kz) In the above equation, F(k,z) can again be approximated by c'' kz . The 

prefactor, c' ', is determined by minimizing the variation in VF for the 

different choices of zc (see below). Thus one can write 

VF(Z) [ f kzc 

-oo F(k,z') d(kz') + Jkz F(k,z') d(kz') ] == 
kzc 

for - 00 < z < zc, with zc a reasonably large negative (say zc ~ -2).). 



Table G1: 

3 
4 

5 
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The centre of mass, z 0 , the peak, zp, the width, n, and 
the wavelength, >., of the induced surface charge density 

for the W( 111 ) surface, taking rs = 3, for various inducing 
fields, F0 • z = 0 corresponds to the surface atoms. 

zoCX) Zp(X) ncX) ACX) 

0.96 0.39 1.80 1. 94 

0.69 0.15 1.70 1.83 
0.61 0.09 1.66 1.78 

0.51 -0.01 1.64 1.76 

The values are good to only two significant figures. However, these 

figures are retained for comparisions and computations. 
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For z > z 0 , a convenient analytic form is adopted for the field: 

F(z) z-zo 
1 + exp(---) 

Z1 

Z ) Z 0 , 

This field results from an induced surface charge density 

p(z) dF 1 
4,r dz = 4,r 2 z-zo 

4z 1cosh (-2-) 
Z1 

with centre of mass at z 0 and width, A, given by 

The field potential corresponding to the field (G9) is 

(G9) 

(G10) 

(G11) 

(G 12) 

Both eqns (G6) and (G9) give the same value for the field, F, at 

Fo 
z = z 0 , which is 2 . The field potentials, as obtained using eqns (G8) and 

(G12), can be matched at z= z 0 by adjusting z 1 in eqn.(G12). F and VF thus 
0 obtained are plotted in Fig.2.16 for F0 = 1, 3 and 5 V/A. The unrealistic, 

small kinks around z z 0 in the F-curves, as a result of the matching 

of the two functions, have been smoothed out. 
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Appendix H 

Matrix elements of the operator zq between different orbitals 

Using eqns (2.33), (2.34) and (2.36), the matrix element of the 

operator z (= rcos 8, for the z-axis as taken to be the polar axis) 

between 1s and 2Pz orbitals of He can be written as: 

-(63+6 )r 4 . o N(1,0,0,o3)N(2,1,0,opHffe P r sins coss dSd<jldr P1(coss) 

( ) 3 ( )s f 2,r f oo f 1 3 2°s 2op -(o +o )r 4 o l6,r2 21 41 d<jl e s P r dr P1(y)ydy = 
0 0 -1 

32(63+op)- 5 03312 op 512 (H1) 

The values of 63 and op are given in Table 2.1. Various matrix elements 

of zq have been calculated, between the He orbitals, in a similar way, 

and are given in Table H1. It should be noted that the matrix elements 

of zq are zero unless the following selection rules are satisfied: 

L'lm lmi-mjl = 0 

M., ltctjl = 2k for even q, and 2k+1 for odd q; k=0,1,2,·· (H2) 

For tungsten, it should be noted that the exponential terms in 

the 5d orbital expansions are replaced by 

-odr C -0 1r C -62r e = 1e + 2e (H3) 

The normalized coefficients C 1 and C2 are obtained from the unnormalized 

c's (Ref.24, Chap.II) as follows 



154 
Table H1 : The matrix elments of zq for the He orbitals. 

q=1 q=2 q=3 q=4 
(i) (i2) (i3) (i4) 

<1slzql2Pz;m=O> 0,57983 0 1.0949 0 
<1s lzql 1s> 0 o. 3511 7 0 0,55493 
<2px;m=1 lzql2Px;m=1> 0 o. 76531 0 2.3428 
<2py;m=-1 lzql2Py;m~-1> 0 0,76531 0 2.3428 
<2pz;m=Olzql2Pz;m=O> 0 2.2959 0 11 • 71 4 

Table H2: The matrix elments of zq for the W orbitals. 

q=1 q=2 q=3 q=4 
(i) <Jh (13) (14) 

<6s lzql 6s> 0 2.1745 0 11.223 
<6px;m=1 lzql6Px;m=1> 0 2.6849 0 20. 370 
<6py;m=-1 lzql6Py;m=-1> 0 2.6849 0 20.370 
<6pz;m=Olzql6pz;m=O> 0 8.0548 0 1 01 • 85 
<5dx2-y2; m=2 I z q I 5ctx2-y2; m=2> 0 o. 50744 0 1 • 3220 
<5dz2;m=Olzql5ctz2;m=O> 0 1. 8606 0 11.898 
<5dxy;m=-2lzql5dxy;m=-2> 0 o. 50744 0 1.3220 
<5dxz;m=1 lzql5dxz;m=1> 0 1.5223 0 6. 61 01 
<5dyz;m=-1 lzql5ctyz;m=-1> 0 1.5223 0 6. 61 01 
<6s I z q I 6pz; m=0> 1 • 3568 0 8. 51 01 0 
<6pz;m=Olzql5dz2;m=O> o. 84587 0 8.0551 0 
<6px;m=1 lzql5dxz;m=1> 0. 73254 0 3,4880 0 
<6py;m=-1lzql5dyz;m=-1> 0.73254 0 3,4880 0 
<6slzql5dz2;m=O> 0 1 . 331 5 0 9. 7746 
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(H4) 

with a similar expression for c 2• For W atoms, the various Slater 

exponents and the normalized C's are given in Table 2.1. To calculate the 

matrix elements of zq between the W orbitals, the procedure is the same 

as described above for the He atom. Some of the typical matrix elements 

are 

(H7) 

<5dxyim=-2lz 215dxy;m=-2> = 

270/ 36 [c~ol\201)- 13 + c~o! 1<202)- 13 +2C1C2<0102) 1112<01+02)- 13 ] (H8) 

Various matrix elements of z q have been calculated in a similar way and 

the results are shown in Table H2. 
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