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Figure 6.1

Bi and Poo’s (1998) weight-dependent data may reflect the po-
tentiation of subsets of synaptic populations in cultured cells.
Synapses within each population are assumed on or off prior to
STDP, where the potentiation protocol turns on (potentiates)
some number n of the off synapses. The depression protocol is
assumed to turn off an average of 20% of synapses. Means of 40
synapses per group and 15pA per synapse are assumed in B, C
and D where all groups have a minimum population of 3. (A) A
histogram of initial weights in Bi and Poo’s weight-dependent
data suggests that population sizes may be approximated with
an exponential distribution. (B) Results when all on synapscs
are equal in strength. Populations are initialised with 50% of
synapses on and 50% off, consistent with Bi and Poo’s max-
imum percentage change of ~ 100%. Stars show results for
1 < n <4 where n is uniformly distributed at random. Pluses
show results when 20% of synapses are turned off, rounded
to the nearest integer. Circles show Bi and Poo’s data. (C)
Weights within each population are given a Chi Squared distri-
bution, 70% of synapses begin in the on state and 1 < n < 10.
For depression, synapses are turned off with probability 0.2.
(D) Synapses are again given a Chi Squared distribution, but
are turned on by the potentiation protocel with probability 0.5,
and turned off by the depression protocol with probability 0.2.
All synapses are on prior to STDP with probability 0.7.. . . .
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Abstract

Computational models have a long and fruitful history in neuroscience, addressing the
information-theoretic properties of neural substrates and making predictions to guide
physiological and psychological enquiry. Computational analyses and simulations
have been extensively applied to the study of memory and are rightly considered core
methods of this broad research field. Here, we study memory at two levels of analysis,
investigating neural representations in cerebral cortex and synaptic plasticity.

Neural field models have been used to study numerous cortical regions and func-
tions. Their use is thus compatible with the view that cortex is, in gencral, architec-
turally and mechanistically uniform, regardless of the function of specific cortices. In
this regard, we use neural field models to investigate interactions within and between
regions of cortex. We demonstrate parameter regimes that correlate with experi-
mental findings on the active maintenance of short term memorics and the spatial
distribution of selective visual attention, making predictions for further experimental
rescarch.

Innumerable computational models show that learning results from activity-dependent
changes in synaptic strength. In this regard, we extend earlicr analyses of correlations
between pre- and post-synaptic spike timing to the case of highly correlated spikes,
showing a unique relationship between the contributions of spike timing and spike
rate to plasticity. We also demonstrate that the common use of weight-dependent
terms in spike-time dependent learning rules is not supported by experimental data,
and we show that the data on which these terms are based may reflect experimental
artifacts. Our research addresses important questions about cortical processing, and
our results are compatible with theories of cortex in which attention and novelty-
detection emerge from activity-dependent plasticity between hierarchically-arranged,

bidirectionally-connected cortical regions.
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Chapter 1

Introduction

The brain is an intricate set of interacting, heterogenous structures, the functions of
which are mediated by an equally intricate set of physiological processes. The role of
computational methods in neuroscience is to determine how information processing
arises from these myriad details. Our methods are applied at the levels of physi-
ology and psychology, but also serve to mediate these two ends of the spectrum of
neuroscience. In this regard, it is not enough to correlate anatomy and physiology
with cognition and behaviour. To understand brain function, we must determine how
anatomy and physiology mediate these psychological phenomena.

Biophysical explanations of psychology are most generally addressed by the ficld
of cognitive neuroscience. Among computational methods, abstract systems-level
models are sometimes grouped under the more general heading of cognitive science,
such as connectionist models [102] that do not address (or very vaguely address) the
biological mechanisms underlying their function. These models have been influential
in cognitive psychology because they make predictions about cognitive function that
guide experimental research. At their level of abstraction, detailed biology misscs
the point. At the other end of the spectrum, more detailed, biophysical modecls have
a long history in neuroscience, perhaps best exemplified by the pioncering work of
Nobel Laureates Alan Hodgkin and Andrew Huxley [56]. Such gencric categorics will
of course overlap. Regardless of their level of abstraction, models are only uscful
if they make predictions. In the work below, we use computational methods to
study memory and memory-serving processes at a number of levels. In all cases, our

investigations serve biophysical, mechanistic explanations of psychological function.

1.1 Memory as a Biological and Psychological Phenomenon

Memory refers to the acquisition, storage and retrieval of information. The brain

achieves these three aspects of memory by associating neural representations with one
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another. In this way, organisms learn the causal relationships of the world by exposure
to events, continually adjusting and augmenting their internal represcntations when
learned associations do not match reality. Virtually all views of learning share this

common thread, from simple conditioning paradigms to cognitive theorics [118].

A common mechanism does not imply a single, monolithic memory system. Such
a view was dispelled long ago by observations of spared and impaired learning abili-
ties in patients with hippocampal damage [97]. Modern thceories of learning typically
divide memory into multiple psychological systems supported by different neural sub-
strates. From a psychological perspective, different systems learn different kinds of
information, performing their functions for different lengths of time. From a biological
perspective, memory systems are interconnected neural structures suited to particu-
lar information processing demands, either storing information or participating in its
storage in other structures. Similarities between these perspectives are presumed to
reflect the same phenomena at different levels of analysis, where obscrvations from

one perspective serve to validate those of the other [63).

Virtually all experimental paradigms for the study of memory reveal specialized
components serving different functions. Even basic, associative conditioning involves
multiple memory systems, as the cerebellum, hippocampus and amygdala are known
to contribute differentially to classically conditioned responses [118]. Such compo-
nents have been extensively studied, with computational methods especially promi-
nent in explaining the information-theoretic properties of biological structures [82, 7|.
A multiple memory systems framework, however, does not imply interactions are
limited to those between clearly defined components. To begin with, the anatomical
and systemic boundaries between memory systems are blurry. For example, the hip-
pocampus and MTL are often considered together as a system supporting declarative
memory, but interactions between structures within this system are extremely com-
plex and include cooperative and competitive relationships [63]. In cortex, bottom-up,
top-down and lateral interactions occur at every processing stage, providing the foun-
dation for information processing in this memory system. Cortical intcractions and

the processes that shape them are the focus of the work below.



1.2 Short Term and Long Term Memory in Cortex

In the present context, I draw a fundamental distinction between short term and
long term memories. By short term memory (STM), I simply refer to active neural
representations. The activity of a group of neurons represents something, so the
memory lasts as long as the representation. By long term memory (LTM), I refer to
the encoding of information in the strength or weight of synapses. LTM’s may last
different lengths of time, but regardless of their longevity, learned weights facilitate
the retrieval of previously active neural representations. That is, LTM’s serve retrieval
of STM’s.

Cortex is a hierarchical, bidirectional memory system. Detailed, low-level in-
formation flows uphill from sensory cortices and is combined hicrarchically as these
representations converge on higher cortical regions. For instance, in visual processing,
V1 neurons respond to basic features such as edges, which are combined to represent
increasingly complex forms until objects are represented in inferior temporal cortex
(IT). The formation of LTM’s ensures that features that regularly occur together are
represented by cell assemblies.

A bottom-up description of cortical processing captures compositionality, but it
does not capture the neural mechanisms enabling expectations and attention. For
these phenomena to emerge, top-down processing is required. Connectivity in cortex
is highly bidirectional. Not only do inputs converge on higher cortices from lower
cortices, but higher regions project back down to lower regions. These feedback con-
nections are just as abundant as compositional pathways. The formation of LTM’s
occurs in both directions, ensuring that higher cortical representations favour activa-
tion of the components that define them. For instance, when an object is represented
in IT, it projects to V4, V2 and V1 where activity represents increasingly detailed
components of the object. Top-down activity thus represents learned expectations
that prime bottom-up features for detection, consistent with ‘biased competition’
models of attention [33], discussed in Chapter 3.

While the function of cortex is specialized by region, its structure is remarkably
uniform. This observation has lead to the belief that cortical regions process infor-
mation in the same way, regardless of their respective functions {89, 132]. This belicf

is supported by numerous experiments showing functional adaptation in cortex [16].
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Consistent with these observations, in Chapters 2 and 3, we use the same class of
model to simulate processing in prefrontal cortex (PFC) and posterior parietal cor-
tex (PP) respectively. The former addresses the active maintenance of STM’s. The
latter addresses the influence of PFC on PP. The context of Chapter 3 is provided
by a model of visual attention [31, 26] that is consistent with theories of cortex more
generally {21, 44], in which attention is an inherent property of layered, bidirectional
processing. According to this view, cortical STM’s compete with each other by virtue

of bottom-up, top-down and lateral interactions.

1.2.1 Centre Surround Neural Field Models and Short Term Memory

The model we use in Chapters 2 and 3 is most generally labeled as a centre surround
neural field (CSNF) model. CSNF’s have been used to model information processing
in a number of brain regions, including head direction cells in the limbic system
[136], place fields in the hippocampus [10, 100, 116], and the initiation of saccadic
eye movements in the superior colliculus [122]. Their applicability to such a wide
variety of processing tasks suggests they capture a fundamental property of neural
computation.

In Chapters 2 and 3, we use CSNF’s to model cortex. CSNF’s are commonly used
in cortical simulations, including the modelling of hypercolumns in sensory cortex [51],
decision fields in frontoparietal cortex [23], active maintenance of STM’s in PFC [25,
121] and topographic maps in PP [31]. Within the scope of cortical modelling, CSNF's
capture the properties of a small patch of cortex representing some feature space, the
size of which is thought to be about 1mm? [51]. In this regard, hypercolumns in lower
sensory cortices are no different than small patches of higher sensory and association
cortices that mediate more complex feature spaces. This view is consistent with
Wilson and Cowan’s (1973) proposal that different parameterizations of CSNF’s foster
dynamic regimes suited to specific cortical functions [131], with Grossberg’s usc of
CSNF’s in Adaptive Resonance Theory (ART) [46, 47, 21], and with the model of
selective visual attention by Deco et al. [31, 26], providing the context for Chapter
3. It is also consistent with the view that a common algorithm operates throughout
cortex.

Our CSNF model is a fully connected network with a shift invariant Gaussian
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weight profile and activity-dependent inhibition. Under this configuration, the weight
between any two nodes is a Gaussian function of their distance. We subtract a con-
stant value from this positive-valued weight matrix, yielding local excitatory weights
and distal inhibitory weights (from the perspective of any node). Nodes thus support
each other locally and inhibit each other distally. This weight profile may be criticized
on the grounds that connections in the brain tend to have the opposite arrangement,
but the model captures the effect of local cooperation and distal competition. This
effect may be achieved in several ways, including nonselective inhibition in response
to selective excitation [31, 21] and laminar circuitry [48].

CSNF’s can operate in several parameter regimes [6], but an important conse-
quence of our configuration is that a single region of activity will dominate the network
following transient input. This winner-take-all (WTA) property is not necessarily
the case for other weight profiles. Under our configuration, the long range inhibition
provided by Gaussian weights (minus the constant of inhibition) serves distal, com-
petitive interactions throughout the field. CSNF’s are most commonly used in this
WTA manner, clearly appropriate for the modelling of hypercolumns, decision fields
and head direction cells, among their uses cited above.

With respect to terminology, please note that we refer to our model as a continuous
attractor neural network (CANN) in Chapters 2 and 3 because each node in the
network corresponds to one of a quasi-continuous manifold of point attractors. A
description of attractor dynamics is beyond the scope of this document, but can be
found in a number of books and articles, including [119, 55]. Additionally, we refer
to an active region of our model as an ‘activity packet’ in Chapter 2 and an ‘activity

bubble’ in Chapter 3. These terms refer to the same thing.

1.2.2 Stabilization of Short Term Memories in Centre Surround Neural

Field Models

The symmetric, shift-invariant weight profile of our model poses a problem. Any noise
in the weights leads a to drift of the activity bubble, corresponding to an inaccuracy of
the STM. Because information processing in the brain is noisy, a perfectly symmetric,
shift-invariant weight profile is unrealistic. A number of studies have addressed this

issue [136, 75, 121] and several means of stabilization have been proposed, including
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intrinsic cellular mechanisms [19] and the voltage dependence of NMDA receptors
(75, 121]. Stabilization, however, comes at the expense of the WTA property of
CSNF models, crucial to their use in so many domains.

In Chapter 2, we address the relationship between stabilization and the WTA
property of the model. This work can be viewed from two perspectives. As a model
of a small patch of cortex, we require CSNF’s to support non-drifting STM’s and to
implement a WTA function. At a higher level of abstraction, multiple representations

in a CSNF model can represent a number of interacting STM’s.

1.2.3 Interactions in Prefrontal Cortex, Posterior Parietal Cortex, and

Attentional Processing

The active maintenance of STM’s in strategic tasks is sometimes referred to as working
memory (WM). I prefer to think of WM as a kind of workspace, not unlike the
role of random access memory in digital computers. According to this old analogy,
LTM'’s equate with read-only memory, accessed and buffered during performance of
a task. Interim calculations required for successful performance of the task are also
cached in the buffer, and may be subject to long term storage. Not surprisingly, WM
tasks require active maintenance of STM’s. These STM’s may represent transicnt
sensory stimuli, task instructions, goals, calculations and so forth, but in each case,
the information is required for completion of the task.

Numerous experiments correlate pre-frontal cortex (PFC) with active maintenance
of STM’s in WM tasks. PFC is reciprocally connected to sensory, motor and asso-
ciation cortices, as well as a number of subcortical structures, so is well positioned
to buffer different types of information and to influence different types of processing.
Regions within PFC are also highly interconnected. In this regard, the long range
inhibition in our model allows us to equate activity bubbles in a single network with
STM’s in different regions of PFC, mimicking the interaction between coupled nct-
works. This approach was taken by Trappenberg (2003) [121], where the number of
STM'’s in a stabilized CSNF model was shown to be consistent with the observed con-
straints of WM. With respect to the influence of PFC on processing in other cortical
regions, these constraints have important implications. It is well known that rccep-

tive fields broaden at increasingly higher levels of cortical processing, creating greater
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interference between representations. As described above, higher level representa-
tions propagate downward to their contributing features, giving them an advantage
in their ongoing competition. That is, lateral competition at higher cortical levels
influences feature processing at lower levels [31, 21]. This fundamental property of
cortical processing provides an explanation for Desimone and Duncan’s (1995) {33]
biased competition model of attention, as demonstrated by Deco and colleagues [31].
PFC is particularly influential because well-positioned, sustained STM’s have a com-
petitive advantage.

In Chapter 3, Deco’s model provides the context for our investigation of the in-
fluence of PFC on the spatial distribution of selective visual attention (SVA). In this
case, STM’s in PFC are equated with task instructions and foreknowledge of stimu-
lus characteristics in laboratory experiments (8, 90]. We simulate PP with a CSNF
model, showing that the ability to actively maintain STM’s in PFC can explain psy-

chophysical and electrophysiological evidence for noncontiguous allocation of SVA.

1.3 Synaptic Plasticity and Long Term Memory

I have stated that LTM’s serve retrieval of STM’s, but the relationship betwcen these
two categories of memory is not unidirectional. Long term memory is the result of
activity-dependent change in synaptic strength, or synaptic plasticity, as originally
proposed by Hebb [54]. STM’s thus serve the encoding of LTM’s. We demonstrate
this fundamental learning principle in Chapter 2, training the recurrent weights of
our CSNF model with a Hebbian rule.

According to Hebb’s postulate, when pre-synaptic activity contributes to post-
synaptic spiking, the strength of synapses mediating this activity increases. The
corollary of this hypothesis, also anticipated by Hebb, is that negatively corrclated
pre- and post-synaptic spiking leads to a decrease in synaptic strength. Plasticity is
now well established in the forms of long term potentiation (LTP) [15] and long term
depression (LTD) [79]. Early experiments showed LTP and LTD as a function of the
rate of pre-synaptic stimulation, where high- and low-rate stimulation were shown to
yield potentiation and depression respectively. Subsequent experiments using pairing
protocols showed LTP as a function of pre- and post-synaptic activity (80, 28]. These

protocols provide a more direct model of Hebbian learning than pre-synaptic rate
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protocols, though they manipulate post-synaptic depolarization and not spiking per

se.

More recent experiments demonstrate plasticity as a function of the timing of
pre- and post-synaptic spiking [72, 81, 99]. When pre-synaptic stimulation is repeat-
cdly paired with a post-synaptic spike, the direction of synaptic change (potentia-
tion or depression) typically depends on the order of pre- and post-synaptic onsct.
When pre-synaptic stimulation precedes a post-synaptic spike (pre-post), synapscs
are potentiated. When the post-synaptic spike comes first (post-pre), synapses arc
depressed. The magnitude of synaptic change depends on the latency of pre- and
post-synaptic stimulation in either direction, within a time window on the order of

tens of milliseconds [99, 109, 41].

STDP has made a huge impact in the neuroscience community, largely because
the temporal asymmetry of STDP data captures the causality of neural firing. That
is, STDP is truly Hebbian. Learning rules based on these data have become a staple
of the computational community. In simulations with spiking neurons, each pre- and
post-synaptic spike pairing provides a potential ‘event’ for the enaction of these rules.
Furthermore, the asymmetry of STDP rules readily lends itself to sequence learning,
believed to underlie important aspects of hippocampal {82, 73, 59, 74, 129, 78, 5, 38§]
and cortical [13, 3, 132] function.

A known problem for Hebbian rules is that weights ‘runaway’ without a means to
limit their growth. Unbounded weights are not only biologically unrealistic, but they
lead to unconstrained post-synaptic activity and the consequent breakdown of infor-
mation processing [52]. Several approaches to this problem appear in the literature,
including activity-dependent plasticity thresholds [14, 117] and synaptic scaling [108].
More commonly, Hebbian rules include a weight-dependent term, where plasticity is

not only a function of neural activity, but also of initial weight.

Hebbian rules with a weight-dependent potentiation term are supported by scveral
experiments showing a dependence of LTP on initial synaptic strength [99, 30, 87],
including one STDP study [99]. The asymptotic consequences of weight-dependent
STDP rules have been extensively studied, but this body of work is limited to the
case of uncorrelated or weakly correlated pre- and post-synaptic spiking. This state

of affairs is surprising, given that Hebbian learning results from correlated pre- and
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post-synaptic activity. In Chapter 4, we address this shortcoming, fitting two weight-
dependent STDP rules to data and determining their asymptotic consequences for cor-
related spiking. Our two rules capture different assumptions about weight-dependent
STDP data.

With respect to plasticity, we also address the relationship between spike rate and
spike timing in Chapter 4. This relationship is an important one. It is widely believed
that different plasticity protocols address a common physiology. When rules derived
from data do not accurately predict plasticity under other protocols, they not only
identify gaps in our knowledge, but they also indicate the conditions under which
laboratory protocols may serve to model activity in the brain. In cases where no data
exist for comparison, predictions call for future experiments.

By fitting our rules to data, we also address the biological realism of weight-
dependent STDP rules as they commonly appear in the literature [66, 128, 49, 17].
While there is a general consensus that STDP is not fully understood as it relates
to spike trains more complex than simple pairings at low frequency, the literature
gives the general impression that weight-dependent STDP is a fait accompli for this
simplified case. Chapter 4 shows that the biological realism of these rules is ques-
tionable. We extend this work in Chapter 5, demonstrating several problems for
weight-dependent STDP rules in simulations of associative learning and identifying
issues for the interpretation of weight-dependent plasticity data more generally. In
Chapter 6 (unpublished), we show that these data may be confounded by the effects
of populations of synapses.

In Chapter 7, I summarise Chapters 2 to 6 and discuss some implications of this
work for models of cortical memory and the interdependent roles of Hebbian learning,

attention, and competitive interactions in cortex.
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Multi-Packet Regions in Stabilized Continuous Attractor
Networks

Thomas P. Trappenberg and Dominic I. Standage, Neurocomputing, 65-66:617-622,
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Abstract

Continuous attractor neural networks are recurrent networks with center-surround
interaction profiles that are common ingredients in many neuroscientific models. We
study realizations of multiple non-equidistant activity packets in this model. These
states are not stable without further stabilizing mechanisms, but we show they can
exist for long periods. While these states must be avoided in winner-take-all applica-
tions, they demonstrate that multiple working memories can be sustained in a model

with global inhibition.
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2.1 Introduction

Wilson and Cowan [131] derived a description of the population dynamics of neurons
with excitatory and inhibitory pools coupled with center-surround interaction profiles.
They identified various dynamical regimes in these networks and speculated that
these regimes might map to different brain areas, including thalamic nuclei, visual
neocortex, and prefrontal cortex. Continuous attractor neural networks (CANNs)
are now common ingredients in models of information processing in the brain and
are regarded as the principle model of cortical hypercolumns [51}, place and head
direction cells in the limbic system [136], and working memory [25].

The CANN model is most often used in a parameter regime where a single activity
packet (also called bubble or bump) can be sustained without external input. The
model then implements a winner-take-all function, which is appropriate for the mod-
elling of place fields and feature representations in hypercolumns. Samsonovich [103]
and Battaglia and Treves [10] have extended the model to multiple feature spaces,
and our group has shown that many activity packets can be sustained simultancously
when the model is augmented with biologically realistic stabilization mechanisms
[115). Multiple bubbles can also be sustained within a single topographic feature
map with such stabilization mechanisms [121], which is relevant to the modelling of
working memory. Here, we limit our study to a single feature space, and study the
dependence of multiple activity packets on the amount of activity dependent global
inhibition and the strength of the stabilization. We also show that multiple bubbles

can be sustained for a considerable length of time without stabilization.

2.2 Methods

We consider a basic recurrent rate model with N nodes, though corresponding net-
works with spiking neurons have similar properties. The time evolution of the mem-
brane state u; of a node with index 7 is given by

dui (t)
dt

T = —u(t) + Z wiir; () Az + IF(2), (2.1)

where 7 is a time constant, I is the external input applied to the network, Az =

2w /N is a scale factor, and r; is a rate that is related to u; by sigmoidal gain function
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g(u) = 1/(1 + exp(—f(u — «))) with a slope parameter 3 = 0.1 and firing threshold
a. The weight matrix w is determined in a learning phase with Hebbian learning,
wi; < X, T8 7";‘ on patterns with index p. Such recurrent models are often studied
after training on random patterns, resulting in networks with discrete attractors. In
contrast, we study this model trained with well organized Gaussian patterns, where
each pattern is centered around a different node in the network, 4 = 1,..., N. This

results in an excitatory Gaussian weight matrix with width o, = V20,
= Aem(-wAz)?/207 W = A/moe(imiwha)?faal. (2.2)

which is then augmented by an inhibition constant C' describing the activity depen-
dent inhibition of an inhibitory pool of neurons and scaled by global strength constant
Ay,

wiy = Au( - 0), (2.3)

1 cX
Ao,
A well known problem in CANN models is that noise in the weight matrix leads
to a drift of the activity packet [124]. It has been argued that drift slows down
with increasing network sizes [136, 25|, and activity depcendent bistabilitics in the
excitability of neurons have also been shown to stabilize activity packets {19]. We

implement the stabilization by a change of the threshold,
Ao = apO(u), (2.4)

where ©(u) is the Heaviside function. This stabilization mechanism is sufficient to
sustain neural activity after transient external stimuli without further (excitatory
or inhibitory) support by other nodes in the neural layer [75]. A network without
the lateral connections typical of CANN modecls, however, cannot implement the
competition between stimuli that is essential to much of the brain processing for which
CANNs were proposed. Here we follow our previous speculation that competition is
the basis for the limited capacity of working memory {121}, and study the dependence
of the strength of the stabilization on multiple simultaneous activity packets in CANN

models.

2.3 Results

First, we consider the model without stabilization. Appropriate values for C' and

A, must be chosen to sustain an activity packet following transient input. This is
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illustrated in Figure 2.1A which shows the maximum node activity within the activity
packet at time t = 1007 for various values of C' and A,,. If inhibition is too weak then
the entire network becomes active; too much inhibition shuts off all network activity.
Additionally, the scaling parameter A, must be strong enough to sustain an activity
packet, but this constraint does not apply when a threshold activation function is

used, as in the studies by Amari [6].
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Figure 2.1: (A) The maximal value of node activity u as a function of weight scal-
ing factor A, for different values of inhibition constant C. The curved solid line
shows results with an inhibition constant of C = 0.4 for simulations with sigmoidal
gain function g(u) = (1 + exp(—0.1u))~*. The straight solid line shows results from
simulations with a threshold gain function g(u) = ©(u) with otherwise unchanged
parameters. Results from simulations with the sigmoidal gain function and different
equidistant values for inhibition constant C are shown as dashed lines, from C = 0.2
(top) to C' = 0.7 (bottom). (B) Time () required for two activity packets to merge
as a function of global inhibition (C) in the 1000 node network with input activity
around nodes 100 and 580.

Amari’s analysis shows that a single activity packet is a stable attractor state
in CANN networks [6], however, considerable time can be required before two or
more cxternally driven activity regions merge or until one activity packet becomes
dominant. The time required for a single maximum to emerge from two activated
regions is shown in Figure 2.1B. The activity profile u was measured at each iteration
of dt/7, where only two changes in direction of this curve determined a one-bubble
state in the periodic network. The network was initialized with binary input bands
around nodes 100 and 580, where one input band was 1% stronger than the other to
brake the symmetry of input activity.

An example of 4 meta-stable asymmetric activity packets is shown in Figure 2.2A
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for a simulation with parameters o, = 27/80, A, = 300, and C = 0.05. No stabilizing
bistability was implemented in this simulation. The results of a simulation with
slightly increased inhibition constant, C = 0.08, are shown in Figure 2.2B. Inhibition
is now strong enough to introduce sufficient competition in the network such that
one activity packet disappears within the time of t = 1007 following removal of the
external stimulus.

We now consider the network with stabilization, and refer to the area where n
equidistant activity packets do not considerably decay within time ¢ = 1007 as an
n-phase. The results of several simulations with varying values of ag and C are
summarized in Figure 2.2C for different numbers of initial activity bands. Stabilizing
more than 4 activity packets with the current parameters is impractical.

A. C=0.05 B. €=0.08 C.
1000 1000 0.14

1-phase

01 2-phase

! 3-phase
400! P
2004 ) 200 ) ) sephase
I P oo

0 200 400 600 8OO 100 0 200 400 600 800 1000 0 2 4 6 8 10

Time Time o

Figure 2.2: (A) Network activity over time for a simulation with asymmetric external
input at nodes 100, 300, 500, and 700 in a 1000 node network until ¢ = 1007 with
inhibition constant C' = 0.05. (B) Corresponding simulations for C = 0.08. (C)
Transitions between n-phases dependent on inhibition C' and threshold adjustment
ap. The transitions between the n and n 4 1 phases were thereby studied with n + 1
of the original 4 input bands.

2.4 Discussion and Conclusion

The results of the simulations shown in Figure 2.2 seem to contradict theoretical
proof by Laing et al. [70, 20] that without stabilizing mechanisms, more than one
asymmetric activity packet cannot be sustained in the CANN model. However, our
results simply show that multiple asymmetric bubbles can be sustained for consider-

able periods of time.
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Figure 2.2C indicates that the effect of inhibition in the model is approximately
inverse to that of stabilization. Increasing stabilization (increasing ag) can lead to the
stabilization of multiple activity packets, while increasing competition (increasing C)
can destroy the existence of multiple activity packets. While this relationship appears
linear, there are other parameters that effect stabilization in our model. Firstly, in
the infinite time limit, we know there can be only one stable activity packet in the
oo = 0 limit. The relationship must therefore deviate considerably from the lincar
case for longer simulation times close to the «q limit. Secondly, the width of the
weight profile and the strength of connectivity effects the number of activity packets
sustained by the network, here modelled as o, = 27/80 and A,, = 200 respectively. A
wider weight profile and weaker connectivity serve to impede stabilization. Increasing
the asymmetry of activation bands will further diminish stability of multi-packet
solutions. Thirdly, the spatial discreteness inherent in numerical simulations has
a stabilizing effect on the model. This effect increases with the sharpness of the
activity packet profile, as only a Gaussian profile can be moved continuously with
constant support over an equidistant lattice. This effect is directly related to strength
parameter A, as increasing A, saturates the activity packet profile.

While much recent attention has been paid to stabilizing activity packets in CANN
models, little research has focused on balancing stabilization such that the model
retains its winner-take-all functionality. Strong stabilization effectively partitions the
network into a series of local networks with winner-take-all characteristics similar
to networks with short range inhibition [127]. As such, it is possible to stabilize
large numbers of activity packets under the CANN model. Alternatively, the use of
low levels of global inhibition permits the co-existence of a small number of activity
packets for finite periods in the absence of stabilization. We speculate that unlike
models with short range inhibition, global inhibition in the CANN model parallels
the effect of interaction between brain areas, limiting the number of simultanecous

activity packets in accordance with the limited capacity of working memory.



Chapter 3

Modelling Divided Visual Attention with a Winner-Take-All
Network

Dominic I. Standage, Thomas P. Trappenberg and Raymond M. Klein, Neural Net-
works, 18(5-6):620-627, 2005
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3.1 Addendum to Standage, Trappenberg and Klein (2005)

In this paper, we model the spatial distribution of selective visual attention with a
centre surround neural field (CSNF) model, here referred to as a continuous attractor
neural network (CANN). From the perspective of hierarchical, bidirectional cortical
processing, this paper addresses the interactions between cortical regions, where top-
down and bottom-up activity converge on higher sensory cortex. Specifically, we
model posterior parietal cortex (PP), where a topographic map of the visual field is
hypothesized to determine the location of visual attention [123]. The context of this
work is provided by the work of Deco et al. [31] who instantiate the biased competition
hypothesis of attention [33], where representations compete at all processing levels.
Competition is believed to be necessary due to limited processing resources, and
is biased at lower cortices by activity propagating downward from higher cortices
(described in Chapter 1).

In the context of hierarchical, bidirectional memory, biased competition is un-
avoidable. Bottom-up learning provides composite representations at higher levels of
the cortical processing hierarchy. Top-down learning provides expectations. Higher
level representations thus propagate activity to the features than define them, pro-
viding a bias in the ongoing competition at the lower processing level. In this regard,
we do not differentiate the spatial dimension from other feature dimensions. In the
spatial dimension, the widening of receptive fields at higher levels of visual processing
reflects spatial composition, just as complex objects are composed of other kinds of
features. Described in this way, attention is an emergent property of hierarchical,
bidirectional processing and its ‘allocation’ is the outcome of cortical interactions.

The majority of experimental evidence supports the theory that visual attention is
a unitary phenomenon, limited to one region of space at a time. Here, we model two
experiments showing a more flexible allocation of visual attention. At a minimum,
to provide support for this kind of flexible attentional processing, measurcments of
visual attention must be recorded at three contiguous locations. If visual attention
is spatially contiguous, then measurements at the middle location will be as high as
those at the outer locations. If measurements are higher at the outer locations than
in between, then to the degree that these measurements differ, visual attention may

be said to be divisible under the conditions of the experiment.
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Awh and Pashler [8] provided psychophysical evidence for the noncontiguous al-
location of attention. Their general experimental procedure was as follows, where
differences between the specific experiments of their study are described below. Sub-
jects were shown five consecutive screens on a computer monitor, where a 25x25 grid
determined the layout of a fixation point and target and distracter locations. The
grid itself was not seen. The first screen contained a dot at the centre of the grid and
subjects were instructed to fixate their gaze at this location. Two ‘equals’ signs (=)
were flashed either side of fixation on the sccond screen, offset by a single grid square,
and subjects were instructed to attend to these cued locations. On the third screen,
2 digits appeared at the attended locations on 80% of trials (valid trials). On the
remaining 20% of trials, one of the digits appeared in between the attended locations
and the other was offset from this location by two grid squares, perpendicular to the
direction of the cues (invalid trials). The subjects’ task was to identify the 2 digits.
The first three screens of their study are depicted in Figures 3.4 and 3.5. The fourth
screcn showed a mask of ‘hash’ symbols (#) and the fifth screen showed a dot at each
of the 23 locations that did not contain a digit, and a question mark at each digit

location (postcues).

Experiment 1 showed 23 distracter letters on the third screen, accompanying the
2 target digits. Thus, distracters appeared over the entire non-target grid, illustrated
in Figure 3.4. They used a full-field noise mask on the fourth screen, so all grid
squares were covered by a ‘hash’ symbol. In their Experiment 4, thcy removed all the
distracter letters. In their Experiment 4a, they further removed the ‘hash’ symbols
at all non-target locations, illustrated in Figure 3.5. These manipulations of their ex-
perimental paradigm addressed a central question posed by their study: does visual
attention enhance processing at attended locations or does it suppress noise at unat-
tended locations? By removing the distracter letters in Experiment 4, they aimed
‘to preclude the need for attentional gating’. The removal of the non-target mask in

Experiment 4a aimed to further identify the role of noise in attentional processing.

‘To measure visual attention, Awh and Pashler recorded the accuracy of their
subjects in identifying the two digits. In Experiment 1 (with noise) they found that
subjects performed significantly better at the cued locations (valid trials) than at

the invalid locations. In the present context, the location of primary interest is the
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invalid location between the two cues. Their measure of visual attention was higher
at the outer locations than at the intervening location, satisfying our general criteria

for experimental evidence for divided attention.

In Experiment 4 (removal of distracters) the difference between the subjects’ ac-
curacy at the outer and middle locations was significantly reduced. In Experiment 4a
(removal of the non-target mask) subjects performed as well at the middle location
as at the surrounding cued locations. Indeed, they performed slightly better. Awh
and Pashler thus concluded that their subjects were able to allocate their visual at-
tention non-contiguously in space, and that this flexible allocation of attention may
reflect the suppression of noise at distracter locations, rather than the enhancement

of processing at target locations.

Our simulations do not consider the fourth and fifth visual screens used in this
study. We model the realtime interaction of top-down (volitional) and bottom-up
(sensory) inputs to PP, governed by the network dynamic, and we assume that their
masking and postcue screens invoke the requirement of trace activity for the identi-
fication of the digits, in addition to object-recognition processing. Activity in PP is
hypothesized to determine the location of selective visual attention, not short term
memory and object recognition. Our simulations arc also limited to the case of hor-
izontal target locations, not vertical locations. In our model, there is no difference
between these two cases, but the results of Awh and Pashler described here pertain
to the former case only. These authors attribute differences between these two cases

to interhemispheric and intrahemispheric interactions.

Where Awh and Pashler provide psychophysical evidence for the division of visual
attention over hundreds of milliseconds, Miiller et al. [90] provide electrophysiological
evidence for a more sustained division of attention (~ 3s). They recorded stcady
state visual evoked potentials (SSVEP’s) mapped to four noncontiguous locations in
the visual field. The SSVEP is an electroencephalographic (EEG) measurement in
response to a flickering visual stimulus. In the present context, this measurement
has two key properties. Firstly, the EEG waveform has the same frequency as the
flicker rate. Secondly, the waveform is amplified when the location of the stimulus
is attended. In their experiment, a rectangle at each location flickered at a different

rate, providing an EEG signature for its corresponding location.
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Within the flickering rectangles, a randomised sequence of symbols was flashed in
synchrony, depicted in Figure 3.1. Subjects were instructed to attend to two of the
four locations and to press a button when the same symbol occurred simultaneously
at the attended locations. Importantly, the frequency of the changing symbols was
high enough to rule out the possibility that subjects were switching their attention
from one location to the other, according to generally accepted time constraints for
reallocation of visual attention. Clearly, on trials when subjects were instructed to
attend to two locations either side of an intervening location, our general criteria for

experiments investigating the division of visual attention are again satisfied.

Additionally, to strengthen their results, Miiller et al. recorded target detection
rates (TDR’s) at each of their four locations in the visual field. They found that
SSVEP amplitudes and TDR’s were significantly lower at locations between sur-
rounding attended locations. Indeed, for both electrophysiological and psychophysi-
cal measurements, the relative difference between measurements at the attended and
unattended locations in these ‘split’ trials was similar to measurements in ‘adjacent’
trials, where the attended locations were next to each other in the hemisphere oppo-

site to the unattended locations.

Given the description of CSNF models in Chapters 1 and 2, our model makes
several predictions a priori. We can expect enhanced processing at attended loca-
tions and suppression of noise at unattended locations, as investigated by Awh and
Pashler, due to the local cooperation and distal competition in the model. That is,
enhancement and suppression are inextricably linked in the CSNF model. Further-
more, in the context of biased competition, the role of a topographic map in PP is
to integrate bottom-up and top-down signals and to propagate activity downward to
lower visual processing areas, enhancing processing at regions in space mapped by
PP. Once again, enhanced processing in these regions will suppress activity in other

regions by lateral inhibition.

We can also expect a contiguous allocation of attention in the case of transient
inputs, due to the winner-take-all nature of the network, bearing in mind our results
in Chapter 2 showing that the time required for a winner to emerge is parameter-
dependent. Chapter 2 also shows that the model can sustain a bubble indefinitely

following transient input, a feature commonly used to model the active maintenance
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of representations in prefrontal cortex (PFC). In this way, top-down, volitional signals
from PFC may be expected to determine the flexible allocation of visual attention in
the present framework of biased competition. Our simulations assume these signals
are maintained in PFC, representing the locations to which Awh and Pashler and
Miiller et al. instructed their subjects to attend. Finally, our model does not make
quantitative predictions about human performance data. Rather, we make qualitative
predictions based on the premise that activity propagating downward from PP biases

the competition between representations of stimuli in lower visual cortices.
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Abstract

Experimental evidence on the distribution of visual attention supports the idea of a
spatial saliency map, whereby bottom-up and top-down influences on attention are in-
tegrated by a winner-take-all mechanism. We implement this map with a continuous
attractor neural network, and test the ability of our model to explain experimental
evidence on the distribution of spatial attention. The majority of evidence supports
the view that attention is unitary, but recent experiments provide evidence for split
attentional foci. We simulate two such experiments. Our results suggest that the
ability to divide attention depends on sustained endogenous signals from short term
memory to the saliency map, stressing the interplay between working memory mech-

anisms and attention.
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3.2 Introduction

Attention is an old concept in psychology correlated with enhanced processing of
objects or regions in space [98]. While attention is a multi-modal phenomenon [22,
135], the majority of research has focused on selective visual attention (SVA). The
limited capacity of the visual system necessitates a mechanism to select stimuli from
the visual field, and Tsotsos pointed out that attention solves the complexity problem
of sensory processing [125].

A distinction can be drawn between pre-attentive and attentive visual processing
[91]. Pre-attentive processing refers to bottom-up (BU) feature saliency of visual
stimuli whereby items that differ from their surroundings ‘pop cut’ to the viewer.
Attentive processing refers to top-down (TD) influences on perception of stimuli de-
termined by object and locational bias such as task instructions or foreknowledge of
stimulus characteristics. Determining saliency, then, is both a BU and TD require-
ment, and computational models of SVA include maps that integrate BU salience
across object features [67], TD bias [123], and the interplay of both [134, 31].

Koch and Ullman (1985) [67] provide a necural network model of SVA in which
topographic feature maps are integrated by a winner-take-all (WTA) saliency map of
BU stimuli. In their model, inhibiting the selected location causes a shift to the next
most salient location. Wolfe (1994) [134] builds on Neisser’s pre-attentive/attentive
distinction [91], integrating BU and TD saliency criteria in his Guided Search model.
Treisman (1998) [123] provides a model of spatial attention to solve the Binding
Problem, in which a TD saliency map determines object features selected for further
processing, and suggests parietal cortex as the biological correlate of her ‘master’
map. Deco et al. (2002) [31] use inhibition to mediate BU and TD influences in an
instantiation of Duncan and Humphreys’ biased competition model [36], simulating
saliency in posterior parietal cortex (PP) with a Continuous Attractor Neural Network
(CANN). Spatial saliency in PP interacts with BU feature maps to converge on a
winning location. See Shipp (2004) [107] and Itti and Koch (2001) [57] for a review
of these and other models.

There is long-standing debate about the distribution of SVA. Many cognitive
models propose a unitary focus of attention, likened to a roving spotlight over the

visual field [98]. Variants of the spotlight metaphor include gradient [34, 69] and zoom
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lens [39] models, suggesting that attention may be a graded phenomenon, attenuated
around a central focus. A large body of evidence supports such unitary models 98,
84], but several more recent experiments have provided evidence for non-contiguous

allocation of SVA (50, 8, 90].

Here, we study how split attention can be achieved by a dynamic implementation
of a WTA map. Despite their WTA nature, CANNs are able to account for split
attention when network dynamics facilitate long transition states between regimes
[120] and when dominated by sustained inputs {111]. We simulate the experiments
of Muller et al. (2003) [90] with a 1-dimensional (1D) CANN model. We build
on simulations presented in Standage et al. (2005a) [113] that use a narrow weight
profile, facilitating steeply sloped regions of activity that occupy a small portion of the
network. Because we don’t know the size of the active region of PP and its relation to
coordinates in the visual field, we run similar experiments with a wide weight profile,
resulting in activity that spans the majority of the network. We demonstrate that the
ability of the model to account for divided attention doesn’t depend on fine tuning

this network parameter.

We simulate two experiments by Awh and Pashler (2000) [8] with a 2-dimensional
(2D) CANN model, demonstrating how the model accounts for their finding divided
attention in one experiment and unitary attention in the other. Preliminary sim-
ulations in 1D arc reported in Standage et al. (2005a) [113]. Our simulations arc
consistent with their experimental findings, but our model offers an alternative con-

clusion.

3.3 Methods

In 1D and 2D simulations, we use a fully connected recurrent rate model with N
nodes, where N = N;N,. We model only PP from the model by Deco et al. (2002)
[31]. WTA is implemented by local cooperation and long distance competition in the

laterally connected network. The average state u; of a node with index i is given by

Tt
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where 7 is a time constant, I is external input to the network, a = 27 /N, is a scalc
factor, and r; is a normalized square of u; given by
’UJ1‘2

9(w) = TS las w2 (3.2)
2 J

We use this normalization through divisive normalization (shunting inhibition) to
force more biologically realistic smooth (Gaussian) bubbles [32].

The weight matrix w is determined by a shifted Gaussian function
Wi; = Aw 8—d2/2a’%’ - C (33)

between node ¢ and node j where d is given by

d = J2+d& (3.4)

dy = min(|ty — jzla, 21 — liy — jz|a) (3.5)
dy

min(|ty — jyla, 27 — |1y — jyla), (3.6)

and i, and ¢, are the x and y components of node i, d, = 0 in the 1D case, C is an
inhibition constant describing the activity dependent inhibition of an inhibitory pool
of neurons, and A, is a scale factor.

The external input I£** is Gaussian shaped around input location j, dctermined
by

2

I = ¢ ¥ /2% (3.7)

where d is given by Equation 3.4.

In 1D, N, =100, N, = 1 (N = 100). In 2D, N, = N, = 30 (N = 900). In all
simulations, C' € {0.1,0.3}, A, =10, ¢t =1, 7 = 10, and 0, = 1.2 (1D) and 1.3 (2D),
Oezt € {0.3,0.5}.

We classify our inputs along exogenous (exo) and endogenous (endo) dimensions.
Exo inputs refer to neural responses to stimuli, here representing visual cues. Endo
inputs refer to voluntary control of attention, here representing task instructions in
behavioural studies. Exo and endo inputs thus correspond to BU and TD signals
respectively.

Simulations are run with transient and sustained inputs. We equate network ac-

tivity with SVA. Because transient inputs elicit WTA behaviour in CANN models, we
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start by demonstrating one-bubble attractor states as models of a unitary attentional
focus. Transient input stimuli are the norm in biological networks, as evidenced by
high firing rates at stimulus onset followed by lower rates when stimuli are sustained
in experimental settings. In the exo case, this initial burst of activity serves as input
to higher cortical areas such as PP. Sustained firing after transient stimulation is
a property of highly specialized neural assemblies [43], and as such is the exception
among biological networks, not the norm. Where we simulate exo stimuli as sustained
inputs, the stimuli being modelled are spatially static, rapidly changing symbols. We
interpret these changes as providing continual ‘refreshment’ of neural representations
due to novelty effects [24]. We interpret sustained endo inputs as STM represcntations
of task instructions in PFC.

We use a Gaussian shaped input profile to approximate typical tuning curves
of neurons, so their firing profiles are well approximated by smooth curves. In the
case of transient input, the specific shape of localized input is unimportant because
the network dynamic dominates after cessation of input. With sustained input, a
Gaussian input profile leads to a good approximation of a Gaussian output profile,
achieving the biological realism of our input profile described above.

Finally, we compare our CANN model of SVA to one with no lateral interaction,

modelling the latter by simply adding together its Gaussian inputs.

3.4 Simulations

Muller et al. (2003) [90] provide evidence for sustained division of visual attention
by recording steady state visual evoked potentials (SSVEP) while subjects viewed
a horizontal array of four stimulus elements following instructions to attend to two
locations. On separate blocks of trials, subjects attended to adjacent and separated
positions. The SSVEP is the electrophysiological response in visual cortex to a rapidly
flickering stimulus, and has been shown to increase in amplitude when attention is
paid to the location of the stimulus [90]. They found that SSVEPs were lower at the
location between separated targets in a detection task. Additionally, they showed that
split locations were attended just as well as adjacent locations in their experiment.
We model these experiments in Simulations 1 and 2, however, we widen the net-

work weight profile from our earlier work, increasing o, from 0.4 to 1.2 and C from
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0.1 to 0.3. This change results in an increase in the width of a stable post-stimulus
bubble from ¢ = 4% a to o = 8 *xa, demonstrating that our findings are robust in this
respect.

Awh and Pashler (2000) [8] use a partial report procedure to test subjects’ ability
to divide spatial attention. Subjects viewed a 5x5 array of alpha-numeric characters
containing 23 letters and 2 digits. Subjects fixated a central location before the
presentation of two cues, either side of fixation, indicating the probable location of
the digits. The character array was subsequently presented, and the subjects’ task
was to identify the digits. During eighty percent of trials, digits appeared at the
cued (valid) locations. During the remaining twenty percent of trials, digits appearcd
either side of fixation in the orthogonal direction. Thus, on invalid trials, one of the
digits appeared dircctly between the cued locations. Performance at the cued and
intervening locations was compared. To the extent that SVA can be divided, subjects
should perform better at the cued locations than in the middle. If division of attention
were perfect, performance on the two unattended locations would be equal. Subjects’
ability to divide SVA was found to depend on the presence of a subsequent noise mask,
but the removal of array noise alone was sufficient to significantly reduce division of

attention, regardless of subsequent masking. We model this work in Simulation 3.

3.4.1 Simulation 1

Adopting Miller’s terminology, we refer to the locations of stimuli as 1, 2, 3 and 4.
where 1 is the left-most location and 4 is the right-most location (Figure 3.1A). A
1+2 trial refers to trials in which subjects were instructed to direct their attention
to locations 1 and 2, a 2+4 trial refers to instructions to attend to locations 2 and 4,
and so forth for other combinations of the four locations.

In these transient-input trials, we give the network exo and endo inputs for 300
iterations of dt/7, simulating the changing symbols in the visual field and task in-
structions respectively. This input activity is followed by 300 iterations without either
source of input. These iterations are sufficient for the network to stabilize under both
dynamic regimes (both during and after input). In adjacent trials (1+2 and 3+4)
and split trials (143 and 2+4), network activity merges into a single winning bubble

between target locations, predicting a unitary focus of attention. These results are
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shown in Figure 3.1.

In comparison to our earlier study, the wider activity profile predicts a more even
distribution of attention once two bubbles merge into onc. Specifically, in the 1+2
trial, activity at locations 1 and 2 is 67% and 90% of maximum activity respectively,
compared to 21% and 37% in Standage et al. (2005a) [113]. The wider activity profile
also effects split trials. The bubble drifts into the area between attended locations,

shown in Figure 3.1F and G. Both WTA effects conflict with Miiller’s findings.

3.4.2 Simulation 2

Network configuration and the shape and location of inputs is identical to Simulation
1. Exo and endo inputs are sustained simultaneously for 500 iterations, sufficient for
the network to stabilize.

Under sustained inputs, our model replicates Miiller’s findings in split trials, as
network activity is greater at locations 1 and 3 than in between (Figure 3.2B). Two
distinct bubbles are also seen in adjacent trials (Figure 3.2A) suggesting that Miiller’s
subjects may have divided their attention between adjacent locations. Because Miiller
et al. didn’t test subjects’ attention between adjacent stimuli, this effect doesn’t
conflict with their results. Having found similar results with a narrow weight profile
in Standage et al. (2005a) [111], results here show that sustained inputs dominatc
the network regardless of the width of its weight profile.

To achieve a single bubble in adjacent trials, we increase the overlap between
representations of input stimuli from g,y = 0.3 to 0y = 0.5. The model predicts
divided attention in split trials (Figure 3.2D, but no longer in adjacent trials (Figure
3.2C).

Because network output so closely resembles the shape of sustained inputs, we
investigate the contribution of the network dynamic to the output profile. In the
extreme case, complete neglect of the network dynamic reduces the model to a simple
addition of Gaussian (AOG) input curves. To test if an AOG provides a model of
CANN behaviour under sustained inputs, we measure the reduction or ‘dip’ in activity
between bubbles at different distances between inputs, comparing it to peak activity
in the bubbles. Correspondingly, we measure the height of the midpoint between two

Gaussian curves as a function of the distance between them, comparing it to their
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Figure 3.1: (A) Subjects in Miiller’s experiment attended two of four horizontal loca-
tions, here labelled 1, 2, 3 and 4. Rectangles were flashed at different rates, creating
SSVEPs. Random sequences of five symbols were provided at all locations. Subjects’
task was to report simultaneous occurrence of a target symbol at two attended loca-
tions. The figure depicts a 1+3 trial with target symbol ‘8’. (B) Nodes 20, 37, 54
and 71 correspond to locations 1, 2, 3 and 4 respectively. Exo inputs are applied to
all locations. Endo inputs are applied to locations 1 and 2 only. Combined exo and
endo input activity shown on bottom. Gaussian width factors o, = 1.2, 0.y = 0.3,
constant of inhibition C' = 0.3. Dashed vertical lines run through target locations.
(C) Stable bubble following transient input. The bubble is centred on node 31, re-
flecting the merge between locations 1 and 2. (D) Network activity over time. Input
is stopped after 500 iterations, followed by transition to a one bubble (merged) state
by approximately 550 iterations. (E) All parameters are identical to B except endo
inputs are applied to locations 1 and 3. (F) Stable bubble following transient input,
centred on node 42 (location 3). (G) Network states over time. A merged bubble is
stable by approximately 550 ms.
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Figure 3.2: Network configuration as described in Figure 3.1B. Activity conforms to
the sustained input profile, sharpened by lateral inhibition. For clarity, input (dashed)
and output (solid) are normalized to 1. Dashed vertical lines show target locations.
(A) 142 trial, o¢ye = 0.3 (B) 143 trial, 0¢pe = 0.3. (C) 142 trial, 0. = 0.5. Wider
input profile abolishes divided attention in adjacent trials. (D) 143 trial, . = 0.5.
Under sustained wide inputs, the CANN model still predicts divided attention in split
trials.

maxima. The solid line in Figure 3.3A represents the CANN model. The dotted linc
represents AOG. Both curves predict unitary attention when targets arc spatially
proximal (=~ 10 nodes) and divided attention between more distant targets (=~ 30
nodes). In between, the slight difference between curves reflects the effect of lateral
inhibition, reminiscent of Mountcastle’s two-point discrimination [88]. In contrast,
the effect of local excitation is not evident in the figure, as the onset of a divided

activity is not right-shifted for the CANN curve.

Figure 3.3A shows results of our analysis for only one value of o..,. Figure 3.3B
shows how the AOG curve in A depends on the width of Gaussian inputs. The same
effect is observed for the CANN. Our model predicts that attention cannot be divided
at close distances, but without a means to map . to physical parameters, we do

not predict specific distances over which attention may be divided.
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Figure 3.3: (A) Dip between CANN bubbles (max. - intervening min.) plotted against
the distance between peaks (solid line). ¢, = 0.8,0¢; = 0.3,C = 0.3. Dip between
peaks of summed inputs, plotted against distance between them (dashed line). (B)
AOG distance vs. dip (as in A). From left to right, o; = 0.1,0.3,0.5,0.7. Dashed line
shows curve in A.



33

3.4.3 Simulation 3

We simulate Awh and Pashler’s experiments in 2D. In keeping with our 1D simulations
above, we use a wide weight profile in our 2D model (o, = 1.3,C = 0.1). The
effects of a sustained input profile are similar to the 1D case. In the 2D CANN
model, the number and location of inputs are arranged to reflect Awh and Pashler’s
experimental conditions (described in Figure 3.4). Inputs are centred on every fourth
node (horizontally and vertically) in a square bounded by nodes (7,7) and (23,23)
in the 900-node 2D network. Exo inputs at these locations represent the character
array in Awh and Pashler’s Experiments 1, 4 and 4a. In all trials, endo inputs
centred on nodes (11,19) and (19,19) represent subjects’ attention to the probable
location of the digits. In valid trials, digits are represented by exo inputs centred
on these nodes. In invalid trials, digits are represented by exo inputs centred on
nodes (15,11) and (15,19). Subjects’ fixation is represented by an exo input centred
on node (15,15). In these simulations, we model Awh and Pashler’s cxperiments
only as far as the presentation of the character array. The effect of noise masks
and subsequent identification of target digits presumably involve STM and object
recognition processing not included in our model.

To model Awh and Pashler’s Experiment 1, we provide an exo input to the fixation
point for 500 ms. This exo signal is then accompanied by endo inputs to target
locations for 750 ms. Finally, exo inputs are centred on all character locations and
endo inputs are continued for 118 ms, where dt/7 = 1 ms. These iterations model
the duration of input screens in Awh and Pashler’s study.

Our results replicate those of Awh and Pashler’s Experiment 1. The sustained
endo inputs dominate the network, facilitating the activity profile shown in Figure
3.4C.

Our simulation of Awh and Pashler’s Experiments 4 and 4a uses the same nctwork
configuration and width and duration of inputs as Experiment 1, except the character
array is provided for only 62 ms, as in Awh and Pashler’s Experiment 4.

We simulate removal of non-target characters during valid trials by removing
all exo inputs except at attended locations. Similarly, we simulate removal of non-
target characters during invalid trials by limiting exo inputs to the middle and far

locations. Results of our invalid trials (Figure 3.5B) coincide with those of Awh and
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Figure 3.4: Simulation of Awh and Pashler’s Experiment 1. Subjects fixate on the
central dot for 500 ms, then fixate on the dot and attend to the ‘equals’ signs for
750 ms before presentation of a 5x5 character array for 118 ms. On 80% of trials,
digits appear at the attended locations (valid trials). On invalid trials, digits appear
at the locations shown in Figure 3.5B. Here, the full character array is presented on
all trials. The 2D CANN'’s response to corresponding input signals is shown on the
right.
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Pashler. The middle location is more active than the attended locations. Results
of our valid trials (Figure 3.5A) paint a different picture. The absence of letter
noise reduces competition between stimuli in the character array, so that activity
at attended locations is more cleanly divided than in our simulation of Experiment
1. Our interpretation of these results is that the probe stimulus may have been
responsible for the reduction of divided attention in Awh and Pashler’s Experiment

4 and its abolition in their Experiment 4a.

A

Figure 3.5: Simulation of Awh and Pashler’s Experiments 4/4a. Awh and Pashler’s
partial character arrays are shown on the left (valid array top, invalid array bottom).
The 2D CANN predicts divided attention on valid trials (top right). On invalid trials
(bottom right), the model predicts unitary attention over the target and middle loca-
tions, with less attention focused on the ‘far’ vertical location. This output coincides
with Awh and Pashler’s results on invalid trials.

3.5 Discussion

In our simulations of Miiller’s experiments, we address a parametric issue raised
in Standage et al. (2005a) [113]. By increasing the width of the model’s weight
profile, and comparing network output with similar experiments in Standage et al.
(2005a) [113], we show that under transient input, the model outputs a flatter bubble,
predicting that the magnitude of subjects’ attention in Miller’s adjacent trials was

more evenly distributed across attended locations than predicted in Standage et al.
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(2005a) [113]. This input/output paradigm still supports a unitary gradient model.

but with a much less extreme slope.

In Simulation 2, we show that under sustained inputs, network output capitulates
to input, regardless of the width of our weight profile. Under this paradigm, we no
longer need the CANN to account for divided attention. A simple AOG model suf-
fices when inputs are Gaussian shaped. In this case, our ability to model divided
SVA is mediated by the width and proximity of input activity. Because inputs to PP
are highly pre-processed, coming from PFC and V4 in Deco’s model (in addition to
less pre-processed input from V1), we believe these inputs may be characterized by
considerable overlap, given the expansion of receptive fields in hierarchical process-
ing. We conjecture that the overlap between integrated object representations may
increase as a function of their number of common features. For example, neural rep-
resentations of a red circle and a red square may overlap more than those of a red

circle and a blue square, and attention may be more difficult to divide between them.

Simulation 2 predicts that attention should be easier to divide as foci become more
distant (within a reasonable visual area). This prediction is parameter-dependent, as
a stiffer gain function would still predict divided attention, but in all-or-nonc fashion.
With a Sigmoid gain function, the model no longer resembles an AOG. These pre-
dictions could be tested by a probe stimulus between adjacent locations in Miiller’s
experiment, and the addition of a 144 trial. Such experiments are important to fur-
ther constrain computational models of attention. Additionally, although Miiller et
al. recorded target detection rates (TDR) in their experiment, the subjects’ task was
to detect simultaneous occurrence of the target symbol at the attended locations only.
TDRs at adjacent locations were no better than at split locations (indeed, they were
slightly worse), but without testing subjects’ ability to detect simultaneous occur-
rence of target symbols at any two locations while subjects attended to two specific
locations, TDRs provide no direct psychophysical evidence of divided attention. For
example, we don’t know that TDRs would be better at positions 1 and 3 during a
143 trial than at position 2. We believe that adding a task rcquiring subjects to
detect simultaneous occurrence of a target symbol at any two locations during the

same trial block would strengthen Miiller’s conclusions.

A parameter largely unexplored in these simulations is the strength of connectivity
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in the network. By greatly reducing input strength in comparison to the network’s
connection strength, connectivity dominates sustained input and the WTA nature of
the model re-emerges. It is also likely that the strengths of exo and endo inputs are
not equal. If we assume a model that tends to WTA in the gencral case, that is, that
attention is unitary ‘by default’, and that strong endo inputs are able to override this
tendency in unusual cases, then perhaps exo inputs to the model should be weak and
wide, and endo’s should be strong and narrow. In this regard, our model suggests
that an understanding of the modulation of signals from PFC to PP is crucial to

understanding SVA.

Awh and Pashler found the ability to divide SVA was greatly reduced following
removal of noise surrounding target stimuli. We believe the model can account for
this result if their probe stimuli on invalid trials dominated voluntary attention. That
is, in the absence of competition from letter noise in the character array, exo signals
at the invalid locations dominated subjects’ attention. In valid trials, exo and endo
signals were directed to the same locations, so attention may have been divided when

Awh and Pashler weren'’t testing for it, only to be unified by the testing procedure.

Simulations 2 and 3 show that the CANN model is able to account for divided
SVA under sustained inputs. As such, we believe that divided SVA may be possible
for as long as endo and/or exo signals are provided to PP, and that differences in
behavioural findings may reflect differences in experimental conditions rather than
subjects’ ability to divide their attention. The nature of these conditions is largely
unexplored. This conjecture echoes that of Schneider [104] that different experimental

paradigms may facilitate measurements of different attention-related phenomena.

Because we interpret endo inputs as subjects’ representations of task instructions
in WM, our model predicts that interference with STM should abolish split attention
in both Miller’'s and Awh and Pashler’s experimental conditions. This prediction
could be tested in a dual task paradigm. By equating task instructions in behavioural
studies with STM representations in WM, and by modelling these represcntations as
sustained endo inputs to the CANN, we revisit the relationship between WM and
attention. Attention has often been cited as the primary constraint on WM capacity

[27], but here we view WM representations as the driving force behind attention.

Our focus has been on stable attractor states in this paper. Transitions between
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dynamic regimes tend to be rapid, and given the large number of paramecters that
effect the model, stable states provide a better foundation for our simulations. As
we show in Standage et al. (2005a) [113], parameter adjustments effect transitions
between regimes. A possible explanation of the findings of Miiller et al. and Awh
and Pashler is that divided SVA corresponds to the transition between two-bubble
and one-bubble states in a WTA model. Thus, subjects may only be able to divide
attention during these meta-stable states; given sufficient time for the network to

settle, subjects may be unable to divide their attention.

3.6 Conclusions

The model of SVA by Deco et al. (2002) [31] implements a salicncy map in PP with
a CANN network. This instantiation of biased competition [36] integrates BU and
TD influences in a biologically realistic computational architecture. Our simulations
test this promising model’s ability to explain behavioural and physiological evidence

on the spatial distribution of SVA.

Our results demonstrate that CANNs provide a model of spatial attention in PP
capable of explaining divergent experimental findings. With transient inputs, the
model’s WTA nature predicts a unitary attentional focus. With sustained inputs, the
model accounts for divided SVA. As such, our predictions depend on the nature of exo
and endo signals in attentive phenomena. Here, the use of sustained inputs replicates
the findings of Muller et al. (2003) [90] and some of the findings of Awh and Pashler
(2000) [8]. Where Awh and Pashler interpret unitary attention on invalid trials as
demonstrating unitary attention on valid trials, we believe subjects’ attention may

have been divided on valid trials, only to be unified by their probe stimulus.

The interplay between WM and SVA is paramount to our model. If divided
attention is facilitated by STM representations providing endo inputs to PP, then
disruption of STM should abolish divided attention. We believe further rescarch
in this area would improve our understanding of the relationship between WM and

attention.
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4.1 Addendum to Standage, Jalil and Trappenberg (2007)

The present chapter marks a change in the focus of my research. Chapters 2 and 3 use
neural field models to investigate mechanisms of cortical short term memory, focusing
on the active maintenance of neural activity and attentional processing respectively.
As described in Chapter 1, neural field models capture the properties of a small region
of cortex mediating a feature space, such that activity in the network represents a
feature value (or values) from that space. On a larger scale, cortex is a hierarchy of
bidirectionally-connected regions, where the strengths of connections between regions
are determined by neural activity. Activity-dependent change in synaptic strength,
or synaptic plasticity, is the focus of the next three chapters.

Earlier, in Chapter 2, we used a Hebbian covariance role to learn the internal
connections of our neural field model. The rule extracts the statistics of input activity,
yielding a shift-invariant weight-profile from shift-invariant inputs. In this case, the
statistics of input activity are described by the firing rates of nodes in the network,
where nodes are representative of populations of neurons with similar tuning curves.
At this level of description, positive correlations in the variance of pre- and post-
synaptic rates yield an increase in weights, and negative correlations yield a decrease
in weights. In the following three chapters, we address the effect of spike timing on
synaptic strength. As above, the role of Hebbian learning is to extract the statistics
of pre- and post-synaptic activity. We also consider the dependence of plasticity on
the initial strength of a synapse, a common method for limiting weights under rate-
and timing-based Hebbian rules.

In the present chapter, we study the asymptotic consequences of pre- and post-
synaptic spike timing for learning rules fit to experimental data. These ‘consequences’
are theoretical, quantifying the expected strength of a synapse for a given (unchang-
ing) statistical profile of spiking activity. Such steady statc activity should not be
expected in the brain, but allows an analysis of the implications of the data for a
common form of learning rule. While the paper shows asymptotic weights as a func-
tion of spike rate, our rules do not extract pre- and post-synaptic rate correlations.
Here, pre- and post-synaptic spike rates are perfectly correlated in all cases.

The principle finding of this paper is that asymptotic weights decrcase with in-

creasing rate with correlated pre- and post-synaptic spike timing. We thus show a
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novel form of synaptic scaling, offering a potential mechanism for regulation of post-
synaptic activity during and after learning. This effect would appear to conflict with
data from rate-based experiments, where high-rate pre-synaptic stimulation yields
potentiation. These experiments have not measured post-synaptic spike rates, how-
ever. The scaling shown here also conflicts with rate-based learning rules such as
the one used in Chapter 2. With the benefit of hindsight, the effect should not be
surprising. According to spike time dependent plasticity (STDP) data, potentiation
results when a post-synaptic spike repeatedly follows a pre-synaptic spike (pre-before-
post). Conversely, depression results when a pre-synaptic spike repeatedly precedes
a post-synaptic spike (post-before-pre). Because the magnitude of synaptic change is
reduced with increasing spike latency, in the case of repeated, time-locked pre-before-
post spikes, by increasing our spike rate, we simply shorten the post-before-pre time
window, resulting in more depression. Whether this kind of scaling occurs in wvivo

requires further investigation.
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Abstract

We present two weight- and spike-time dependent synaptic plasticity rules consis-
tent with the physiological data of Bi and Poo (1998). One rule assumes synaptic
saturation, while the other is scale free. We extend previous analyses of the asymp-
totic consequences of weight-dependent STDP to the case of strongly correlated pre-
and post-synaptic spiking, more closely resembling associative learning. We further
provide a general formula for the contribution of any number of spikes to synaptic
drift. Asymptotic weights are shown to principally depend on the correlation and rate
of pre- and post-synaptic activity, decreasing with increasing rate under correlated
activity, and increasing with rate under uncorrelated activity. Spike train statistics
reveal a quantitative effect only in the pre-asymptotic regime, and we provide a new

interpretation of the relation between BCM and STDP data.
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4.2 Introduction

Change in synaptic efficacy is believed to underlie learning and memory and has
long been established in the forms of long term potentiation (LTP) [15] and long
term depression (LTD) [79]. Experimental and theoretical work on plasticity has
addressed the dependence of plasticity on pre-synaptic firing rates [14, 35, 64}, the
timing [72, 81, 99] and interaction [109, 11, 41, 58, 130, 42, 106] of pre- and post-
synaptic spikes, and initial synaptic strength or weight [99, 30, 87, 130]. Theoretical
studies have further investigated the relationship between rate bascd and spike-time
dependent plasticity (STDP) frameworks [58, 17} and the conditions under which
STDP rules transduce correlations among pre-synaptic spike trains into correlations
between pre- and post-synaptic activity [61, 66, 68, 49] as required by Hebb’s postulate
[54].

Here, we focus on weight-dependent STDP rules. In Section 4.3, we derive para-
meters for two weight-dependent STDP rules from experimental data. We calculate
asymptotic weights resulting from these rules in Section 4.4. Where earlier studies
of the asymptotic consequences of STDP rules consider uncorrelated or weakly cor-
related pre- and post-synaptic spike trains [61, 66, 110, 128, 101, 49, 17], we extend
these analyses to the case of strongly correlated spikes, where pre-synaptic activity
‘repeatedly and persistently takes part in firing’ the post-synaptic cell, as proposed
by Hebb. Our analysis shows that the means of equilibrium weight distributions arc
principally determined by the correlation and rate of pre- and post-synaptic spik-
ing, where weights decrease with increasing rate in the correlated case. In Section
4.5, we show that our qualitative results do not depend on our choice of spike train
statistics or correlation model. Furthermore, we derive a general formula for the
contribution of any number of individual spikes to synaptic drift, proving that our
results do not depend on a specific implementation of spike interactions, in contrast
to the interpretation of Izhikevich and Desai (2003). We end Section 4.5 by showing
a novel instance of rate-based BCM curves [14] under STDP. These curves emerge
when temporal constraints prevent weights from reaching asymptotic values at lower

spike rates.



45

4.3 Weight Dependence of STPD

Weight-dependent plasticity has been shown by several groups [99, 30, 87, 130], but
only Bi and Poo (1998) have done so under the STDP pairing protocol. Not only did
they use the same protocol in their weight- and spike-time-dependent experiments,
but they controlled spike timing in their weight-dependent experiment, allowing us to
relate these two data sets. We therefor derive our weight-dependent plasticity rules
from their data.

For simplicity, our analysis of weight- and spike-time-dependent plasticity assumes

these two factors arc independent. A learning rule of this form may be written as
Awp gy = kfrpay(w)e wn s, (4.1)

where Awy, 4y is the change in weight for potentiation (index p) or depression (in-
dex d), At = tpost — tpre is the difference between the times of post-synaptic (tpst)
and pre-synaptic (tpr) firing, and ¢ parameterizes the timescale of the plasticity win-
dow. The experimental data are commonly shown in relative terms (%) whereas our
formulations express absolute changes in synaptic strength.

We consider two forms of the weight dependent factor f. Bi and Poo (1998)
hypothesized a log-linear rule by drawing a line through these data in the semi-

logarithmic plot. This hypothesis yields

f{p‘d}(w) = (a{p,d} — b{p,d} log w)w 9(’11)), (4.2)

where 6(w) is the Heaviside function, keeping weights positive, and the parameters a
and b differ for potentiation and depression. A maximum weight implicit in this rule
agrees with evidence for saturable synapses [96, 95]. We contrast the above rule with

a power rule of the form
fopay(w) = apgutd. (4.3)

A power law more closely approximates the data plotted on a log scale, and, unlike
the log rule, imposes no maximum weight. While synapses must surely have intrinsic
limits, we include this rule for comparison with the limited case. We hereafter refer
to Equation 5.1 with weight-dependence determined by Equations 5.2 and 4.3 as the

Log and Power rules respectively.
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The constants in Equations 5.2 and 4.3 were determined by first fitting the weight-
dependent STDP data shown in Figure 4.1B. The fitted curves for the Log rule arc
shown as solid lines alongside the potentiation data (circles) and depression data
(stars) of Bi and Poo (1998). The equivalent curves for the Power rule are shown as
dashed lines. The fits to the depression data are nearly indistinguishable. The fits to
the potentiation data agree similarly with the data, but the intrinsic limit in the Log

rule generates a marked difference for large weight values.

4.3.1 Detailed Fitting Procedure

Bi and Poo (1998) controlled spike timing in their weight-dependent experiment by
limiting their pre-before-post (LTP) time interval to 5 < At < 15ms and limiting
their post-before-pre (LTD) interval to 3 < At < 30ms. For the weight-dependent fit,
we replaced these intervals with their midpoint values (At, = 10, Aty = 17.5). We
then fit their spike-time dependent data (Figure 4.1B) to determine the remaining
parameter ¢ in Equation 5.1, capturing the time course of spike-time dependence for
each of potentiation and depression. Because of the wide range of initial synaptic
strengths in Bi and Poo’s spike-time dependent experiment (30 < w < 500pA) we
assumed that for a given At, the largest relative changes in weight represent synapses
with the smallest initial values. Thus, consistent with their initial weights, we assign
an initial weight w = 30pA to the data showing the largest STDP values, and only
include these data in our time-dependent fit determining ¢. The resulting parameter
values are afpqy = {208, —54}, bpay = {26.4,3.5}, cpay = {0.054,0.042} for the
Log rule and ag,qp = {431, -59}, bipay = {0.4,0.1}, cgpay = {0.039,0.043} for the
Power rule. We further assume that each of the 60 pre-before-post pairings in the
experiment contributed equally to the overall synaptic change. This assumption is
common in computational studies [128]. A deviation from this linear assumption
results in an altered learning rate that does not effect the means of equilibrium weight
distributions. As the above parameters are deduced by fitting the percentage data,
we include a factor of 100 in the learning rate to yield a fractional scale. The learning
rate used in our analyses and simulations is therefore ¥ = 1/6000 unless otherwise
stated.

Fitted curves for the Power rule are shown as solid lines in Figurc 4.1A for our
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Figure 4.1: (A) Fit of the Power rule to Bi and Poo’s (1998) spike-time dependent
data for estimates of different initial weights w. Circles and squares represent w = 30
for potentiation and depression respectively. Solid curves show fits to these data.
Dashed curves for the potentiation data show fits for w = {70,200, 500}pA top to
bottom. The Log rule leads to similar fits. (B) Log and power fits to Bi and Poo’s
weight-dependent STDP data. A log fit imposes a maximum synaptic weight where
the upper solid line meets the x-axis. A power fit (dashed curve) imposes no such
maximum. These two fits are nearly indistinguishable for the LTD data.

estimates of the data representing initial weights of 30pA (open symbols). The large
scatter in the figure is commonly interpreted as noise, but we interpret it accord-
ing to the weight-dependence shown in Figure 4.1B. For potentiation, we include
dashed lines representing initial weights set to 70, 200 and 500 pA respectively (top
to bottom). The fit of the Log rule leads to qualitatively similar plots.

4.4 Equilibrium Weights for Uncorrelated and Time-Locked Pre- and
Post-Synaptic Poisson Spike Trains

While the above plasticity rules are deterministic, they yield a stochastic drift of
weights with stochastic spike trains. If this drift is driven by a novel correlation be-
tween pre- and post-synaptic spiking, weights will undergo considerable change from
an initial random state. When weights have been driven for long periods by pre- and
post-synaptic spiking with a given statistical profile, they begin to fluctuate around a
mean value where the average potentiation equals the (negative) average depression.
In this section, we calculate the means of these equilibrium weight distributions for

the Log and Power rules. The drift of weights can be calculated with Fokker-Planck
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Figure 4.2: (A) Hlustration of uncorrelated and time-locked spike trains. (B) Equilib-
rium weights as a function of spike rate under the Log rule for analytic (curves) and
numeric (symbols with error bars) calculations. For time-locked spiking, the solid
and dashed curves correspond to At = 4 and At = 10ms respectively. In numeric
simulations, weights were averaged over 5000 trials following an equilibrating 5000
trials.

mean field theory [61, 66, 128, 101, 17], but we are concerned with the means of equi-
librium distributions and adopt the simplified methodology of Izhikevich and Desai

(2003). We refer to these asymptotic values as equilibrium weights w*.

First, we present our basic analysis for the cases of uncorrelated and time-locked
pre- and post-synaptic spike trains (see Figure 4.2A) where these spike trains are Pois-
son distributed [9] (exponential inter-spike intervals) and where only nearest neighbour
spikes contribute to plasticity. Under nearest neighbour STDP, each pre-synaptic
spike triggers LTP with the next post-synaptic spike and triggers LTD with the pre-
vious post-synaptic spike, as described by Izhikevich and Desai (2003). In Section
4.5, we show that our qualitative results do not change for partially correlated spike

trains or for other spike train distributions or spike interactions.

4.4.1 Equilibrium Weights for Uncorrelated Poisson Spiking

The average synaptic increase (LTP) for each pre-synaptic spike is given by

(Awy) = /0 ~ po(A8) Aw,dAt, (4.4)
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where p,(At) is the probability density of a post-synaptic spike following a pre-
synaptic spike with time lag At. Similarly, the average depression for each pre-

synaptic event is given by
(Awg) = / pa(At) AwgdAt, (4.5)
0

where pg(At) is the probability density of a post-synaptic spike preceding a pre-
synaptic spike with time lag At. Thus, independent pre- and post-synaptic Poisson

spike trains have an average depression and potentiation of

(D) = Tpaw) [ reoatndany (46)
T

= _— 4.7

f{p,d}<w)c{pyd}+r (4.7)

where 7 is the rate of the spike trains. We only consider the case where rpre = 7posy = 7
An equilibrium weight w* is reached when the average potentiation equals the

(negative) average depression. For the Log rule this value is given by

w* = exp ap(ca+ 1)+ aqlc, +1) (43)
by(cg + 1) + balc, +7) '

and for the Power rule by

1
w* = (_%w)bd—bp. (4.9)
Q4 Cp + 71

Equilibrium weights for independent pre- and post-synaptic Poisson spike trains arc
shown as a function of rate in Figure 4.2B for the Log rule. Symbols represent the
results of simulations where weights were averaged over 5000 spike pairings following

5000 equilibrating pairings.

4.4.2 Equilibrium Weights for Time-Locked Poisson Spiking

The above analysis of uncorrelated pre- and post-synaptic spikes is relevant if events
represented by pre-synaptic firing are not associated with a post-synaptic responsc.
In contrast, associative learning is achieved if a neuron becomes responsive to (corre-
lated with) a pre-synaptic spike pattern. Studies have shown that STDP rules capturc
correlations among input spikes driving a model neuron [66, 110], as synapses me-
diating correlated pre-synaptic activity learn to provide the strongest, fastest {110]
and most precisely timed [66] inputs to the post-synaptic cell. Alternatively, plastic-

ity may ‘piggyback’ other sources of activity driving pre- and post-synaptic neurons.
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In this section, we assume associations have been formed by one or both of these
mechanisms, labelled self-organisation and associativity respectively under the termi-
nology of Hasselmo [53]. We investigate the ongoing effect of these associations on

the asymptotic strength of weights for rules grounded in Bi and Poo’s data [99].

For analytic simplicity and to illustrate the limiting case for informative spike
timing, we consider the case where a post-synaptic spike is triggered with a short
but fixed delay At following a pre-synaptic spike. We do not suggest that a single
pre-synaptic spike should drive a post-synaptic neuron in this way. Rather, our pre-
synaptic spikes represent the activity of one of many inputs from pre-synaptic neurons
participating in an established association. We later relax this condition by varying

the probability of a time-locked post-synaptic spike in Section 4.5.1.

Time-locked pre- and post-synaptic spikes result in an ongoing potentiation of

weights given by

(Awp) = fy(w)e™#> (4.10)

for each pre-synaptic event. However, every pre-synaptic event can also trigger de-
pression in conjunction with a previous (uncorrelated) post-synaptic spike (Equation
4.6). An equilibrium weight w* for correlated pre- and post-synaptic spikes under the

Log rule is therefore given by

ape” "8 (cq + 1) + agr
bpe=»8t(cq + 1) + bgr

w" = exp (4.11)

and for the Power rule by

w* = (—%le’q’m (r+ cd))ﬁ. (4.12)

agr
The rate-dependence of equilibrium weights for time-locked pre- and post-synaptic
Poisson activity under the Log rule is shown in Figure 4.2B, where the solid and
dashed lines represent analytic solutions for At = 4ms and At = 10ms respectively.
Symbols represent corresponding numeric simulations. The figure shows that cquilib-
rium weights decrease with increasing spike rates in the strongly correlated Poisson

case, but quantitatively, these values exceed biologically realistic values.



4.5 Equilibrium Weights for Alternative Conditions

In the previous section, we determined equilibrium weights for the Log and Power
rules under the specific conditions of Poisson-distributed pre- and post-synaptic spike
trains, uncorrelated and time-locked pre- and post-synaptic spikes, and nearest neigh-
bour spike interactions. Here, we show in Section 4.5.1 that partially correlated pre-
and post-synaptic spike trains interpolate between the extreme cases of uncorrelated
and time-locked pre- and post-synaptic spikes. We show in Section 4.5.2 that our
results do not qualitatively depend on Poisson-distributed spike trains. In Scction
4.5.3, we show that our results do not depend on nearcst neighbour spike interac-
tions, in contrast to the claims of Izhikevich and Desai (2003). Finally, in Section
4.5.4, we demonstrate learning under a finite number of spike pairings, and discuss

how BCM-like curves [14] are generated by the Log and Power rules.

4.5.1 Equilibrium Weights for Partially Correlated Pre- and Post-Synaptic
Poisson Spiking

The cases of uncorrelated and time-locked pre- and post-synaptic spike trains define
the extreme cases of possible spike train relations. Here we extend this analysis to
some more realistic cases with partially correlated pre- and post-synaptic activity.
We discuss two examples of correlation models, providing a biological interpretation

of each. In both models, we again consider Poisson pre-synaptic spiking.

Correlation model 1: Post-synaptic spikes are generated with a probability given
by constant p with a fixed time delay At = 4ms. In the (1 — p) cascs where
there is no time-locked post-synaptic spike the time delay is distributed exponcn-
tially. This methodology approximates the biological case where pre-synaptic input
generates a post-synaptic spike with a finite probability, but otherwise the post-
synaptic neuron emits Poisson background activity. Figure 4.3A shows mean weights
over 10,000 pairings following 10,000 equilibrating pairings under the Log rule for
p = {0,0.2,04,0.6,0.8,1}. Low values of p lead to rate-dependent curves qualita-
tively similar to the perfectly time-locked case (p = 1) where lower means reflect the

lower likelihood of correlated pre- and post-synaptic spikes.
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Figure 4.3: (A) Correlation model with varying probability p of a time locked post-
synaptic spike. Weights were averaged over 5000 trials following 5000 equilibrating
trials. (B) Correlation model with varying exponential distribution for different cor-
relation parameters s where A; = r/(1 — s). The dashed line shows the time looked
case discussed in section 4.4.2 with At = 1ms.

Correlation model 2: We consider the case where correlations between pre- and
post-synaptic spikes are expressed by an altered probability of a post-synaptic spike
within a time At of a pre-synaptic event. Specifically, we consider an exponential
distribution of delay times At, where the decay parameter is modulated for different
correlations between pre- and postsynaptic spikes. The alteration of the probability
density of At is accomplished by parameter s in Equation 4.13. The mean delay At
is sct to be (1 — s)A, where A = 1/r is the inverse of the spike rate. For s = 0, this
parameter yields the uncorrelated case discussed above. When s tends to 1, we expect
a post-synaptic spike with a very short average time delay. The average potentiation

(and similarly for depression) and the corresponding equilibrium weights are given by

Aw, = (ap— bylogw)w /OOO 1 i Se_(l%s“”)AtdAt (4.13)
. _ ap(1/((1 — s)cp + 1) + ag(1/(cqg + 7))

S w (4.14)

bp(1/{(1 = $)ep + 1) + ba(1/(ca + 1))

Analytic equilibrium weights for this correlation model are plotted in Figure 4.3B
for different values of s, where s = 0 is equivalent to the uncorrelated case in Figure
4.2B and s = 1 is close to the time looked case with At = 1ms, shown with a dashed
line in the figure. Both correlation models show that partial pre- and post-synaptic

correlations interpolate the extreme cases discussed in Section 4.4.
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Figure 4.4: Equilibrium weights as a function of rate for pre- and post-synaptic
spike trains with different ISI distributions. (A) Time-locked (top) and uncorrelated
(bottom) spiking with the Log rule. (B) Time-locked spiking with the Power rule.

4.5.2 Equilibrium Weights for Spike Trains with Non-Poisson Statistics

We have thus far shown results for Poisson spike trains in our analysis, but similar
derivations can be made for other spike distributions. While the specific values of
equilibrium weights for a given rate depend on the distribution model, their qualitative
dependence on rates and the correlation between pre- and post-synaptic spiking does
not change. Examples from simulations for several ISI distributions are shown in
Figure 4.4. Figure 4.4A shows the cases of uncorrclated and time-locked pre- and
post-synaptic spikes under the Log rule. Figure 4.4B shows the time-locked casc
under the Power rule. The dependence of equilibrium weights on rate is similar for
these distributions, but could possibly differ for very different distributions such as

those corresponding to bursting behaviour.

4.5.3 Equilibrium Weights Beyond Nearest Neighbour Interactions

In the nearest neighbour case, we only consider the first post-synaptic spike following
a pre-synaptic spike for potentiation and the first pre-synaptic spike following a post-
synaptic spike for depression. While the first spike makes the greatest contribution
to plasticity due to the decaying exponential term in STDP rules, it is possible that
the sum of subsequent spikes has a pronounced effect on synaptic strength, as argued

by Izhikevich and Desai (2003).

For Poisson spike trains, we use the following method to analytically calculate



K

04

the average contribution to potentiation of the n-th spike following a specific pre-
synaptic spike (the method is the same for depression, where pre-synaptic spikes
follow a specific post-synaptic spike). The first post-synaptic spike is expected to
occur on average at At; = 1/r for uncorrelated pre- and post-synaptic activity, and

Aty

at At; = const in the time locked case, and is weighted by e~ 2%, The second spike,

which we expect on average at At, = At; + 1/r, contributes less to potentiation

~%8t  To calculate the average potentiation, we determine the

because e”*Ah < e
density function of the n-th spike by convolving the density functions of all random
variables in the sum. This convolution can be done analytically for Poisson spike
trains by independently summing exponentially distributed random variables with
equal mean A. The resulting random variable is gamma distributed with mean A\ =

1/r and parameter n,
(At//\)n—le-At/)\
Al(n)

where n is the number of spikes considered. Thus, the average potentiation for un-

p(Atn) -

(4.15)

correlated pre- and post-synaptic spike trains is given by

—(r+cp)At

N oo
Aw,) = k |t i —dn 41
(@) = Efpay () 3 [ a0 (4.16)
and similarly for depression. Using the definition of the Gamma function,

[(z) = /Ooo e 't dt, (4.17)

we can evaluate this integral as

>" (4.18)

generalizing equation (4.7) to multiple spike contributions. Thus, equilibrium weights

(Awp) = kfpay(w Z (

T+ Cp

for the uncorrelated case are given for the Log rule by

ap Zg:l(cd +7)" + aq ery:l(cp +7)"

O T e+ 1)+ ba S (eg 1) 419
which reduces to equation (4.8) for n = 1. Furthermore, since
ad 1
an:w——l for x <1, (4.20)
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where z = r/(r+cqp,qy), the all-to-all case for uncorrelated spike trains is independent

of r,
apCq + agcp

w*(n = 00) = exp boca + bacy’

(4.21)

in agreement with [61]. This value is also equivalent to the = 0 limit for n = 1 (eq
4.8).

A similar evaluation for the time-locked casc yields

. ap,AP +aqAD
YT P Y AP+ byAD (4.22)
with
N -1
n=L(n — 2)!
AP = =841 4 r_n 4.93
e ;::2 (6 + 7T 1) (4.23)
and
"(n — 1)
D= "2 4.
ap-3 I 424

Equilibrium values for interaction models with different n (nearest-n interactions)
are shown in Figure 4.5 for the time-locked and independent Poisson cases. These
curves correspond to values of n = {1, 2, 4, 10, 50, 100} (from top to bottom) although
results between n = 50 and n = 100 become indistinguishable. As expected, an
increasing number of neighbouring spikes will only influence equilibrium valucs at
high rates due to the exponential decay of the STDP time window. Furthermore,
increasing the number of neighbours n quickly converges to an asymptotic value. We

reached machine precision around n = 150.

4.5.4 Convergence to Equilibrium: BCM-Like Curves in the Pre-Asymptotic

Regime

The analysis above concerns the asymptotic regime, where equilibrium weights cor-
respond to the infinite limit of pairings, and simulations approximate this limit with
many thousands of pairings. Experiments in vitro are temporally constrained in
that a plasticity-inducing stimulus is applied for a short time, after which synaptic
responses are measured and compared to pre-stimulus measurements. While the du-
ration of plasticity-inducing stimuli typically varies across protocols and the nature of

experiments, the number of repetitions is typically on the order of 10 to 100 for STDP
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Figure 4.5: Equilibrium weights under nearest-n interactions for time-locked and
uncorrelated Poisson spike trains. In each case, curves correspond to values of n =
{1,2,4,10,50,100} (top to bottom). Curves between n = 50 and n = 100 become
indistinguishable and approximate the infinite (asymptotic) case.

[99, 41] and pairing protocols [96, 94] and 100 to 1000 repetitions for rate-based pro-
tocols [35, 64]. We now consider the effects of the Log and Power rules under similar

conditions.

Figure 4.6A shows mcan percentage weight changes following n = 100 spike pair-
ings where weights were initialised in the middle range of possible values (700pA) and
means were calculated over 100 trials. In this simulation, we use Poisson spike trains
under the Log rule with nearest neighbour spike interactions. Results for uncorre-
lated pre- and post-synaptic spikes correspond to the case studied by Izhikevich and
Desai (2003). While we can generate BCM-like curves in this limited case of finite
pairings and uncorrelated spiking, the effect is small and not found in the time-locked
case. Results for time-locked spikes resemble those in the asymptotic regime (eg.
Figure 4.2B) though here, percentage weight change is reduced by several orders of

magnitude.

We can, however, show BCM-like curves with different spike train statistics. Fig-
ure 4.6B shows that BCM-like curves resembling those measured by Dudek and Bear
(1992) and Kirkwood and Rioult (1996) are produced with time-locked, periodic pre-
and post-synaptic spiking (At = 1—g%gms). Results arc shown for the Log rule. The
solid line represents weight changes after 1000 pairings for a synapse initialised to

700pA. Performing the same experiment with 10,000 spike pairings results in the
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Figure 4.6: Mean percentage weight change under the Log rule for limited numbers
of spike pairings. Weights were initialised to mid-range values (700pA) and means
were calculated over 100 trials. (A) Results for time-locked and uncorrelated Poisson
spike trains for 100 pairings at rate r with nearest neighbour spike interactions. (B)
Results for periodic, time-locked pre- and post-synaptic spike trains where pre- and
post-synaptic spikes are 180 degrees out of phase. The solid line shows changes after
1000 pairings for a synapse initialised to 700pA. The same experiment with 10,000

spike pairings results in the dashed line. The dotted curve shows analytic cquilibrium,
corresponding to an infinite number of pairings.
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dashed line. The dotted line corresponds to weight changes for an infinite num-
ber of pairings (equilibrium weights). As shown in the figure, the depression valley
becomes deeper and shifts to the left with an increased number of pairings, while
changes in the potentiation portion of the curve are much smaller. Our investigation
shows that BCM-like curves may be produced by STDP rules in the pre-asymptotic
regime, but these curves depend on the precise form of pre- and post-synaptic firing.
Further experiments are required to investigate this and other possible explanations
for BCM-like curves, as experiments investigating BCM [35, 64] have not controlled
post-synaptic firing, crucial to the BCM hypothesis.

4.6 Discussion and Conclusions

Weight-dependent STDP rules are commonly used in modelling studies. We have
presented two such rules with parameters fit to physiological data [99] and studicd
their consequences in both the asymptotic and pre-asymptotic regimes. Qur analysis
includes the case where synapses are driven by noisy spike trains with little or no
correlation between pre- and post-synaptic spikes, as done in previous studies, and
also the case of highly correlated pre- and post-synaptic spike trains more closely
resembling the case of associative learning. We found that ‘runaway’ synapses [4]
are still a problem for these rules, at least under parameters suggested by weight-
dependent STDP data [99].

In the pre-asymptotic regime, we show that BCM-like curves [14] can be gener-
ated by weight-dependent STDP rules when low-rate activity prevents weights from
reaching equilibrium values in finite time. While this effect is parameter dependent,
it provides a novel instance of these curves and highlights the need for rate-based
plasticity experiments that control post-synaptic spiking.

In the asymptotic regime, we find that for all spike train statistics considered,
equilibrium weights for correlated spike trains decrease with increasing spike rate, a
novel form of synaptic scaling. We prove this relationship for an arbitrary number
of contributing spikes in the Poisson case, providing a general formula for the drift
of potentiation and depression in the steady state. We further demonstrate this

relationship for partially correlated Poisson spiking, showing that partial correlations
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interpolate between the extreme cases of time-locked and independent pre- and post-
synaptic activity.

Equilibrium weights for uncorrelated spike trains increase with rate for a finite
number of contributing spikes. This increase approaches 0 in the infinite limit of
spike contributions, showing rate independence in this specific case, consistent with
the analysis of Kempter and Gerstner (1999). Correlated and independent equilibrium
weights converge at around 100Hz. This effect suggests that low to intermecdiate
rates provide a better regime for associative learning than high rates, or, stated
differently, high rates may prevent weights from distinguishing between correlated
and uncorrelated activity.

Under a rule imposing no maximum weight (the Power rule) synapses do not rcach
infinite values because depression balances potentiation, but the resulting equilibrium
values under both rules (with and without maxima) are too large to be useful in a
biologically realistic regime. This problem has an additional, unwanted consequence.
Weight-dependent STDP rules implicitly assume that a synapse can span the entire
range of values in Bi and Poo’s weight-dependent STDP data [99}, suggesting changes
in synaptic efficacy of around 10,000%. No synapse in their experiments, however,
changed in strength by more than around 100%. Many more pairings than the 60 of
their protocol would be required to traverse this range, assuming their synapses could
in fact be further strengthened. Alternatively, it is possible that the large variation in
their initial weights (Figure 4.1B) reflects varying populations of synapses. Neurons
in culture often make multiple post-synaptic contacts [29] and this possibility must

be carefully addressed in future experiments on weight-dependent STDP.
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5.1 Addendum to Standage and Trappenberg (2007)

In this chapter, we use the Log rule from Chapter 4 in a neural simulation. As de-
scribed below, the simulation demonstrates that the common formulation of weight-
dependent STDP rules is not supported by experimental data, and that rules consis-
tent with the data lead to slow learning. Perhaps more importantly, we demonstrate
that noise causes forgetting with STDP rules. We may conclude from this work that
STDP rules are of limited utility without a means of protecting learned associations
from noise. This conclusion speaks to the very nature of plasticity, assumed by STDP
rules to occur in realtime, such that synaptic strengths are continually adjusted with
ongoing spiking activity. If so, associations learned during periods of highly correlated
pre- and post-synaptic spiking must be frequently ‘refreshed’. Otherwise, background
noise will lead all weights to noise-dependent values, regardless of prior learning.

[ believe it is unlikely that plasticity works this way. If the role of plasticity is
to capture correlations between pre- and post-synaptic spiking, it seems more likely
that a statistical burden of proof should be established before a synapse changes in
strength. This (possibly all-or-none) change may also reflect the level of correla-
tion ‘proved’. Positively correlated pre- and post-synaptic activity should therefor
lead to potentiation, negatively correlated activity should lead to depression, and un-
correlated activity should not cause synaptic change. According to this hypothesis,
asymptotic weights for uncorrelated activity, so extensively studied in the literature
(see Chapter 4), may tell us little about plasticity and learning. It is worth noting
that studies of asymptotic weights for STDP rules have only considered correlated pre-
and post-synaptic spike rates. Plasticity is presumably a function of spike rate and
spike timing correlations. Understanding the respective roles of spike rate and timing
is of fundamental importance not just to plasticity and learning, but to information
processing in the brain more generally.

I'have stated that a burden of proof should be established before a synapse changes
in strength. This proof does not preclude so-called one-shot learning in the hippocam-
pus. One-shot learning need not refer to plasticity resulting from one instance of
correlated pre- and post-synaptic activity, but rather, to plasticity resulting from one
instance of an event to be learned. Hippocampal representations are believed to be

repeated at theta frequency [59, 40|, providing multiple instances of the to-be-learnced
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correlation.

I have also stated that the common formulation of STDP rules implies that
synapses continually change in strength with ongoing spiking activity. This implica-
tion is most constructively considered a prediction. As such, it calls for experiments
to test it. Systematically varying the number of pairings in STDP experiments would
appear a reasonable first tack in this regard. A specific prediction of STDP rules with
a global maximum weight (discussed at length in this chapter) is that repeated pre-
before-post pairings at medium latency (say 40ms) will eventually lead to synapses as
strong as those resulting from low latency pairings. Experiments arc needed to test
this prediction. If synapses do in fact determine the level of pre- and post-synaptic
correlation before changing to reflect that correlation, the called-for experiment will

not lead to equally strong synapses.
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Abstract

We fit a weight-dependent STDP rule to the classic data of Bi and Poo (1998).
showing that this rule leads to slow learning in a simulation with an intcgrate-and-
fire neuron. The slowness of learning is explained by an inequality between the range
of initial weights in the data and the largest relative potentiation. We show that slow
learning can be overcome with an increased learning rate, but that this approach
leads to rapid forgetting in the presence of realistic levels of background spiking. Our
study demonstrates that weight-dependent STDP rules, commonly used in neural
simulations, have biologically unrealistic consequences. We discuss the implications
of this finding for several interpretations of weight-dependent plasticity and STDP

more generally, and recommend directions for further research.
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5.2 Introduction

Activity-dependent change in synaptic strength, or synaptic plasticity, is widely be-
lieved to provide the basis for learning and memory, as originally proposed by Hebb
[54]. Countless physiological data reveal Hebbian plasticity, and similarly vast num-
bers of neural simulations show associative learning from activity-dependent rules.
While early experiments showed potentiation [15] and depression [79] of synaptic
strength as a function of pre-synaptic firing rates, more recent experimental meth-
ods reveal similar changes based on the timing of pre- and post-synaptic activity
[72, 81, 99]. Experiments showing spike-time dependent plasticity (STDP) reveal
that the direction (potentiation or depression) and magnitude of synaptic change
depend on the order and latency of pre- and post-synaptic activity, within a time
window on the order of tens of milliseconds [99, 133].

Weight-dependent STDP rules provide the additional constraint that changes in
synaptic strength or weight are a function of the initial strength of a synapse. Such
rules have been widely studied [66, 128, 49, 17], largely because they provide a cap
on synaptic strength while leading to asymptotic weight distributions that compare
favourably with experimental data [128] and that are believed to preserve the statistics
of input activity [49]. As such, weight-dependent STDP rules are now commonly used
in modelling studies.

While several experimental studies have shown weight-dependent plasticity [99,
30, 87, 130], only Bi and Poo’s (1998) study [99] has done so under the STDP pairing
protocol. In recent work [112] we fit a weight-dependent STDP rule to the data of Bi
and Poo, showing how asymptotic weights depend on the correlation and rate of pre-
and post-synaptic activity. Here, we use this rule in a neural simulation, demonstrat-
ing that self-organisation of weights and associative learning are achieved, but that
learning is slow. While an increased learning rate accelerates the learning process,
it also leads to rapid forgetting in the presence of biologically realistic background
spiking.

Our study shows that the common formulation of weight-dependent STDP rules
[66, 62, 49] has biologically unrealistic consequences in rules fit to data. These conse-
quences result from the assumption that weights may traverse the full range of initial

values shown in weight-dependent studies (Bi and Poo’s weight-dependent data are
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shown in Figure 5.1B). This assumption is inconsistent with Bi and Poo’s data, and
also with weight-dependent data resulting from other plasticity protocols [30, 130].
Given the common inclusion of weight-dependent terms in learning rules, this issue is
an important one, and poses questions about experimental methods, data and their

interpretation.

5.3 A Weight-Dependent STDP Rule Fit to Data

For simplicity, we assume that weight- and spike-time-dependencies are independent.
Under this assumption, the general form of a weight-dependent STDP rule may be

expressed as

Awgpay = kf(pay(w)e s, (5.1)

where Awgy,q; is the change in weight (p for potentiation, d for depression), At =
tpost — tpre is the time between pre- and post-synaptic firing, ¢ capturcs the timescale
of the STDP window, and k is a learning rate.

A log-linear fit to Bi and Poo’s weight-dependent STDP data, hypothesized by Bi
and Poo and reproduced in Figure 5.1B, yields the following form of f(w):

fway(w) = (a(pay — bip,ay log w)w O(w), (5.2)

where 6(w) is the Heaviside function, keeping weights positive, and the parameters a
and b are different for potentiation and depression.

Bi and Poo controlled spike timing in their weight-dependent expcriment by lim-
iting their spike latencies At. We used the midpoints of these latencies in our weight-
dependent fit (At, = 10, Aty = 17.5) and assumed that for a given At, the largest
absolute values for Aw/w represent synapses with the smallest initial weights. We
therefor assign an initial weight w = 30pA to the largest STDP data (open symbols
in Figure 5.1A) and only include these data in our spike-time fit for c. The resulting
parameter values are ag, 4y = {208, =54}, bpqy = {26.4,3.5}, c(pay = {0.054,0.042}.
Because these parameters were fit to data expressed in percentage terms, and be-
cause we make the common assumption that each of the 60 pairings in Bi and Poo’s

experiment contributed equally to synaptic change [128], we use a learning rate of
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Figure 5.1: (A) Reproduction of Bi and Poo’s (1998) spike-time dependent data.
Circles and squares represent estimates of w = 30pA for potentiation and depression
respectively. Stars represent estimates of w > 30pA. (B) Log-linear fit to Bi and
Poo’s weight-dependent STDP data, imposing a maximum weight where the upper
solid line meets the x-axis. Open circles and solid stars show data obtained under
potentiation (pre-before-post) and depression (post-before-pre) protocols respectively.

5.4 STDP and Spike Interactions

STDP rules are fit to data from experiments in which pairings of pre- and post-
synaptic spikes occur at low frequency, typically 0.5-6Hz. The long inter-spike in-
tervals (ISI’s) of these spike trains effectively isolate spike pairings from the effects
of previous and subsequent spikes. How to apply STDP rules to spike trains more
realistic than temporally isolated pairings of pre- and post-synaptic spikes is the sub-
ject of great research interest {109, 11, 41, 58, 130, 42]. Here, we usc a model we
call closest pair interactions, where only the pair of pre-synaptic spikes closest to the
surrounding post-synaptic spikes contributes to plasticity, as shown in Figure 5.2.
When exactly one pre-synaptic spike falls between two post-synaptic spikes, this

model is equivalent to the nearest neighbour model suggested in [58]. These two
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Figure 5.2: Cartoons depict spike interaction models described in the text. It is
unclear how the nearest neighbour model extends to the case where multiple pre-
synaptic spikes fall between two post-synaptic spikes. We define the closest pair
model for this case.

interaction models are depicted in Figure 5.2, Because the analysis in [58] does
not consider spike trains beyond this simplified case, we compare asymptotic weights
calculated with their analytical method to asymptotic weights from simulations under
closest pair interactions.

To this end, we numerically approximate the means of equilibrium weight dis-
tributions (equilibrium weights w*) for closest pair interactions, comparing them to
analytic values for the nearest neighbour case. In the simulations, post-synaptic spikes
were time-locked to Poisson-distributed pre-synaptic spikes at At = 4ms. Weights
were averaged over 5000 pairings following 5000 equilibrating pairings at spike rates
r={1,2,4,8,16,32,64,128}Hz. Analytic calculations for the nearest neighbour case
with the same spiking statistics were calculated in [112]. The relative difference be-
tween numeric and analytic asymptotic weights for these spike interaction models is
shown in Figure 5.3. There is a systematic difference that increases with increasing

spike rate, but the relative difference is very small.

5.5 Simulations with a Neuron

To test the effectivencss of Equation 5.1 for associative learning, we drive an integrate-
and-fire (IF) node with two groups of synapses. Before learning, synchronous input
from one group is strong enough to sporadically drive the node in combination with
background activity from all synapses. The other group cannot drive the node. We
test whether repeated synchronous activation of the high-strength group allows self-
organisation of these weights, and whether synchronous activation of both groups

(following self-organisation) is sufficient for the low-strength group to ‘piggyback’ the
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Figure 5.3: The relative difference between mean weights w* under nearest neighbour
(analytic) and closest pair (numeric) spike interactions (see text). There is a very

small (but significant) relative difference at high rate. Error bars show standard
deviations.

high-strength group. If so, the low-strength group will have learned to drive the node

by associativity.

5.5.1 Model and Parameters

The membrane potential of the IF node is described by

do(t)

Tm—-d?— = Viyest — U(t) + Ge(‘/e — U(t)) -+ Gl(VL — U(t)) (53)
with membrane time constant 7,,, = 20 ms and reversal potentials V,ei = —70mV,

V. = 0mV and V; = —70mV where subscripts e and i refer to cxcitatory and inhibitory
potentials respectively. When the membrane potential crosses threshold ©, it is reset
to —60mV with an absolute refractory period of 2mS. A relative refractory period
is implemented by increasing ©® = —54mV by v = 20mV when the neuron fires,
after which « decays exponentially with half width 10mS. Excitatory and inhibitory
conductances G, and G; are described (as in [110]) by

dGe(t
Te dt( ) - —Ge(t) + ’Tezj gj 5(t - tjf) (54)
and
dGy(t
T; dt( ) = —Gi(t) + TiZj g (5(t — t]f), (55)

where 7, = 7; = bms, 6 refers to the Dirac delta function and t;-‘ is the time of firing

of inputs mediated by conductance synapses g; (excitatory for G, and inhibitory for

Gy).
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EPSC’s as Conductances

There is no obvious way to translate Bi and Poo’s EPSC measurements to synap-
tic conductances. To begin with, we do not know the amplitudes of corresponding
EPSP’s and so cannot determine conductances with Ohm’s law. Morc problematic is
the variation in these data (~ 25 — 2500pA) and the size of the larger EPSC’s. Be-
cause our objective is to study the implications these data for STDP rules, we cannot
simply ignore the larger currents. Rather than usec current synapses (independent of
v), we use a linear transformation, allowing a range of 30-3000pA to corrcspond to
10-150pS. A maximum conductance of 150pS is used in [110]. Inhibitory synapses
are not subject to plasticity and are uniformly allocated conductances of 500pS (also
from [110]).

The simulation was run with 1000 excitatory synapses and 200 inhibitory synapses.
We initialised the high-strength synapses (trainers) to uniformly distributed random
values between 800 and 1200pA. The low-strength synapses (piggybackers) were ini-
tialised to 50pA, providing sub-threshold input. All other excitatory synapses were
given uniformly distributed random values between 500 and 900pA. Poisson back-
ground firing with mean 10Hz was mediated by all synapses throughout the simu-
lation. Synchronous inputs mediated by the trainers and piggybackers were given a
uniformly distributed random jitter of 1-5ms, superimposed on the Poisson activity.
Under our transformation to conductances, these weights are too weak for background
activity to drive the node, but are able to elicit occasional firing when the trainers
fire synchronously on top of background activity. Axonal delays AD were assigned
uniformly distributed random values (to the nearest integer) from AD = 4 — 17ms
for excitatory synapses and AD = 3 — 6ms for inhibitory synapses. Equation 5.1 was

applied under the closest pair spike interaction model.

5.5.2 Associative Learning under Equation 5.1

The IF node was first driven by Poisson activity alone, establishing a baseline mcm-
brane potential. This activity was followed by a period of self-organisation by the
trainer synapses, driven by periodic synchronous activity at 10Hz. Periodic 10Hz ac-

tivity provides a sufficiently long ISI to isolate neural activity in cach cycle from the
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effects of the previous cycle. Following this activity, the piggybackers were simulta-
neously activated with the trainers for the associative task, again at 10Hz. The node
was subsequently driven by Poisson activity for comparison with the pre-training

response to noise.

Figure 5.4A shows the trajectories of three trainer synapses and three piggyback
synapses over the course of the simulation. The lower solid curve depicts a fast
trainer synapse with a small initial weight [AD = 4ms, w(t = 0) = 800pA], the
upper solid curve shows a slow trainer with a large initial weight [AD = 17ms,
w(t = 0) = 1200pA] and the middle curve shows an intermediate case [AD = 9ms,
w(t = 0) = 1000pA]. Early during self-organisation, the trainer group is not strong
enough to regularly fire the node, but in combination with background activity, input
synchrony generates enough post-synaptic firing for weights to increase until the group

regularly drives the node.

Post-synaptic firing during early and late self-organisation is depicted by the upper
and lower insets of the figure respectively. All three weights initially increase because
they all contribute to post-synaptic activity. As faster weights gain in strength,
EPSC onset of slower weights occurs after post-synaptic firing, subjecting them to
LTD. As expected, this effect is first exhibited by the slow synapse and later the by
mid-latency synapse. The former is effectively inactivated, with final value w(t =
4 .105ms) = 2.4pA. The latter assumes an intermediate value [w(t = 4 - 10°ms) =
1009pA] determined by an ongoing cycle of ‘promotion’ and ‘relegation’ to and from
the effective input group. This cycle is governed by the interaction of background
firing and post-synaptic activity, and the overlap between the jitter in synchronous
input and axonal delay. The fast synapse rcaches an asymptotic value close to the

log rule cut-off.

The dashed curves in Figure 5.4A show the trajectories of three piggyback synapses.
The arrow at the top of the figure shows onset of associative learning. At this point,
these small synapses are climbing toward equilibrium weights determined by their
background firing and the now-periodic post-synaptic firing generated by the trainer
group. With the onset of associative activity, the fast piggyback synapsc follows the
fast trainer synapse toward an asymptotic weight, the mid-latency synapse assumes

a value similar to that of the mid-latency trainer synapse, and the slow piggyback
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Figure 5.4: (A) Self-organisation and associativity under Equation 5.1 with an
integrate-and-fire node. Curves show weights over time for three synapses with large
initial weights (trainers, see text) and three synapses with small initial weights (pig-
gybackers, see text). Curves to the left of the arrows show weights as the trainers
self-organise during periodic synchronous activity (10Hz, uniform-distributed random
jitter 1-5ms) on top of Poisson background activity (mean 10Hz). Arrows depict the
onset of associative learning when the piggyback synapses fire synchronously with the
trainers, also at 10Hz. A range of 30-3000pA is linearly compressed to 10-150pS for
use by the node (see text). The upper solid curves show the weights of three trainers
with axonal delays of AD =17, AD = 9 and AD = 4ms respectively, top to bottom
on the left of the figure. During self-organisation, all synapses increase in weight until
the faster trainers drive the node without the slower ones, rendering slower synapses
subject to depression. The same effect is seen for the piggyback synapses during
associative learning. Self organisation and associativity are achieved, but learning is
very slow with learning rate k& = 1/6000. The fast (AD = 4ms) piggyback synapse
is still converging to the log rule cut-off after 200,000ms (2000 pairings). The firing
of the node during early and late self-organisation is shown by the top and bottom
insets respectively. (B) An increased learning rate (kK = 1/200) accelerates learning,
but background noise soon causes forgetting.
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synapse is effectively inactivated.

Learning is Extremely Slow under Equation 5.1

Self-organisation and associativity have been achieved, as synchronous input by either
group consistently drives the node. Furthermore, Equation 5.1 has selected the fastest
weights within the groups and shown the ability to recruit and discard slower weights
as and when needed, as shown in [110]. The mean membrane potential ¥ in responsc
to background noise has increased from ¥ = —62.7mV (standard deviation sd = 1.1)
before learning to ¥ = —60.7mV (sd = 1.2) after learning, rendering the node more
responsive to the timing of its inputs.

Unfortunately, the figure also shows that learning is extremely slow. The fast
synapses are still experiencing net potentiation after 400,000ms. While 400s may
not be considered slow on a behavioural timescale, our simulations are based on in
vitro data. This interval accounts for around 3000 pairings for the trainers and 2000
for the piggybackers, approximately 50 times the number of pairings in Bi and Poo’s
experiments. Relating plasticity data to behavioural learning is fraught with difficulty
[83] but the frequency of periodic, synchronous input in our simulations is within the
theta range, consistent with the hypothesis that the theta rhythm provides an optimal
pairing frequency for LTP during learning tasks [18].

5.5.3 Fast Learning Implies Fast Forgetting under Weight-Dependent
STDP

To combat the slowness of learning shown in Figure 5.4A we raise k from k& = 1/6000
to k = 1/200. With this learning rate, weights begin to asymptote after around 60
pre- and post-synaptic pairings, the same number of pairings used in Bi and Poo’s
experiments [99]. It is unclear what a learning rate k& # 1/6000 represents, but an
accelerated learning rate is required due to the large variation in synaptic strength
in Bi and Poo’s weight-dependent data (Figure 5.1), allowing weights to make the
transition from low to high values in a reasonable period of time.

Figure 5.4B shows the weight of a synapse mediating the same pre-synaptic spike
statistics as the trainers did in the learning task, but over a much shorter timespan

(10,000ms). The post-synaptic response is time-locked to At = 2ms after pre-synaptic
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activity, again superimposed on Poisson spiking at 10Hz. Learning is stopped at
time t = 10,000ms (top arrow), after which pre- and post-synaptic spike trains are
given independent Poisson distributions at 10Hz. The synapse forgets the learned

association within 10s.

5.6 Discussion and Conclusions

It is possible to parameterize weight-dependent STDP rules to accomplish various
learning tasks, but our study shows these rules have unwanted consequences when
fit to data. The main consequence is due to the range of initial weights in the
only weight dependent STDP data available [99], shown in Figure 5.1B. Weight-
dependent STDP rules implicitly assume that a synapse can span this entire range of
values, suggesting changes in synaptic efficacy around 10,000%. No synapse in these
experiments, however, changed in strength by more than around 100% (see Figure
5.1A,B).

This issue suggests several possibilities. One possibility concerns the standard
computational interpretation of weight-dependent plasticity, in which there is an im-
plicit assumption that weight-dependent data do not reflect saturated synapscs. As
an example, consider a synapse in Bi and Poo’s weight-dependent experiment with
an initial strength of 25pA. According to their data, this synapse would not have
been potentiated by more than around 100% of control following their potentiation
protocol. It would therefor be no larger than around 50pA after 60 pairings, much
less than their largest initial weights. If all synapses have the same maximum, then
for all but the largest synapses, an additional 60 pairings in Bi and Poo’s experiment
would have lead to weight changes on the same order as the 60 pairings they per-
formed. The consequences of this assumption are far reaching. For instance, STDP
data typically suggest a gradient of weight changes in cither direction as a function of
the time between pre- and post-synaptic spikes {99, 41]. In the case of potentiation,
the standard interpretation dictates that given enough pairings, all weights will reach
the same maximum, regardless of the latency between pre- and post-synaptic spikes.

Alternatively, Bi and Poo’s potentiation data may reflect saturated synapses. If
so, to be consistent with the data, weight-dependent STDP rules must implement

intrinsic synaptic maxima rather than a global maximum. For instance, a synapsc
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with an initial weight of around 25pA should have an intrinsic limit of around 50pA,
regardless of the size of the larger initial weights. We are unaware of any weight-
dependent Hebbian rule that operates under this premise and the utility of such a
rule is unclear. Certainly, large and small synapses would have different roles under
this scheme.

These possibilities suggest that weight-dependent learning rules with a global
maximum must be supported by weight-dependent data in which the largest relative
change in weight is roughly equal to the relative difference between the largest and

smallest initial weights. We may express this relationship as

wl™ init

_ wz:nit winit —w
1 1 ~ max MmN
maz( ) i , (5.6)
2 mn
where wi™ and wif " represent the weight of a synapse ¢ before and after poten-
tiation respectively, and w% and w™ are the largest and smallest initial weights

respectively. The data of Montgomery et al. (2001) [87], produced by a pairing pro-
tocol with no spike-time-dependence, are roughly consistent with this equation for
synapses with initial weights less than 50pA.

The weight-dependent data of Debanne et al. (1999) [30] are intriguing in this
regard. These authors paired pre-synaptic spikes with post-synaptic bursts in organ-
otypic hippocampal slice cultures. Their CA3-CA1l data are reminiscent of Bi and
Poo’s in that the relative difference in initial weights is much greater than the nor-
malized weight change, suggesting (as above) that these synapses have widely varying
instrinsic maxima or that they have not reached saturation. Their CA3-CA3 synapses,
however, appear to show the opposite effect (the left side of Equation 5.6 is greater
than the right). Their combined data fit roughly with Equation 5.6. The degrec to
which plasticity data from different protocols may be related under computational
rules is an open question and is currently receiving considerable attention [108. 58].

We show in Section 5.5.2 that a weight-dependent STDP rule fit to weight-
dependent STDP data leads to slow learning. As shown in Section 5.5.3, speeding
up learning with an increased learning rate leads to rapid forgetting in the pres-
ence of noise. Learning thresholds [105] and hysteretic weight dynamics [65] provide
potential solutions to this problem, but our study focuses on the standard weight-

dependent STDP formulation defined by Equation 5.1 and investigated in numerous
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studies [66, 128, 49, 17]. An unexplored solution to the problem may be grounded
in pre- and post-synaptic mechanisms if we (quite happily) abandon the assumption
that the effects of spike pairings sum linearly. Consider the insertion and removal of
AMPA receptors (AMPAR'’s) in the post-synaptic membrane, correlated with plas-
ticity in hippocampal regions CA1l and CA3 [86]. It seems likely that potentiation
should be harder to initiate as the number of AMPAR'’s increases. Pre-synaptically,
plasticity is expressed at least in part by changes in the probability of transmitter
release [114]. Weight-dependence is implicit in such a mechanism, where synapscs
with a low probability of release have greater scope for potentiation, and synapses
with a high probability of release have greater scope for depression. A convolution
of pre- and post-synaptic plasticity mechanisms could protect learned associations
if pre-synaptic plasticity were to precede post-synaptic plasticity in both directions.
Under such a scheme, AMPAR’s may not be inserted in the post-synaptic density
until a sufficiently high probability of release has been achieved, providing an initial
resistance to post-synaptic learning. In reverse, AMPAR’s may not be removed from
the post-synaptic density until the probability of release is sufficiently low, providing

initial resistance to forgetting. Such a scheme requires further study.

Finally, it is possible that weight-dependent plasticity data reflect the statistics of
non-weight-dependent plasticity in populations of synapses, as discussed by Debanne
et al. (1999) [30]. This possibility suggests that tissue preparations and stimulation
methods must be carcfully considered when interpreting experimental data. Extracel-
lular stimulation is commonly used to mimic pre-synaptic activity in STDP paradigms
[133], but this method may stimulate hundreds if not thousands of synapses [94].
While intracellular stimulation of pre-synaptic neurons (used in Bi and Poo’s exper-
iments) eliminates the potential involvement of multiple pre-synaptic cells, neurons
in culture (also used in Bi and Poo’s experiments) typically make multiple contacts
with the post-synaptic cell [29]. It is safe to say that single synapses do not mediate
currents on the order of Bi and Poo’s larger data (~ 2500pA). This issue overlaps
with debates concerning pre- and post-synaptic contributions to plasticity [37, 92]
and the degree to which plasticity is a graded phenomenon [96, 86, 94]. Varying the
number of pairings in STDP experiments would directly address the latter. STDP

protocols are clearly promising for the investigation of weight-dependent plasticity,
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but the potentially confounding effects of populations of synapses must be carefully
addressed.
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Chapter 6

A Population-Based Explanation of Bi and Poo’s (1998)
Weight-Dependent STDP Data

6.1 Introduction

The extrapolation of learning under the Log and Power rules by Standage, Jalil and
Trappenberg (2007) [112] points to a fundamental problem with Bi and Poo’s (1998)
[99] weight-dependent STDP data and their interpretation. While the qualitative
dependence of equilibrium weights on rate and correlation will hold for any weight-
dependent STDP rule of the form discussed, the quantitative results suggest unreal-
istically large asymptotic weights, particularly for time-locked pre- and post-synaptic
spiking at low rate (as in the STDP pairing protocol). Weights for the Power rule
depend largely on the balance between potentiation and depression because this rule
includes no maximum, but for the Log rule, these values correspond to the maximum
weight determined by the log-linear fit in Section 2. The data show initial excitatory
post-synaptic currents (EPSC’s) ranging from around 25pA to 2500pA. The former

is a realistic value of the strength of a single synapse. The latter is clearly not.

The effects of the larger initial weights on weight-dependent STDP rules are two-
fold. Firstly, the maximum weight is too big. The second effect is more subtlec.
An unwanted consequence of STDP rules grounded in these data is that individual
synaptic strengths may traverse the full range of initial values, despite the fact that
no synaptic currents in [99] changed by more than ~ 100% of control. Thus, if 60
pairings elicit weight changes on the order of 100%, many more pairings are requircd
to elicit weight changes spanning the full range of initial weights (~ 10,000%). In

effect, learning is very slow.

In this report, we provide an interpretation of the data bascd on a population ar-

gument. We demonstrate this interpretation with several variations of a simple model
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based on two premises discussed in [30]: the range of initial EPSC measurements re-
flects the number of synapses recorded, and not all synapses are plastic. Evidence
for non-plastic synapses in culture is found in [30]. We do not claim that plasticity is
not weight-dependent, but only that Bi and Poo’s weight-dependent data has been
misinterpreted in weight-dependent STDP rules.

6.2 Simulations of Synaptic Populations

To the best of our knowledge, the only studies showing weight-dependent plasticity
[99, 30, 87, 130] have used cultured preparations. Whereas axons in vivo typically
make one or two synaptic contacts with a post-synaptic cell, axons in cultured prepa-
rations can make multiple contacts [29]. It is therefore possible that in culturcd
neurons, the percentage increase in strength following the application of potentiation
protocols reflects the proportion of synaptic contacts activated relative to the popula-
tion size. Under this hypothesis, potentiation protocols effectively identify ‘functional’
synaptic contacts. Conversely, the lack of substantial (percentage) weight-dependent
change under depression protocols suggests that such functional synapses are equally
likely to be deactivated.

We start by assuming that the number of synaptic contacts contributing to cach
of the data in Bi and Poo’s weight-dependent experiment varies for each datum.
We choose an exponential distribution in the examples below because a histogram of
initial values of their data is reasonably approximated by this distribution, as shown in
Figure 6.1A. In all simulations, we assign a mean of 40 synapses per population. Data
on this issue are mixed, with [29, 30] citing ‘several’ and [95] citing ‘order ten’. Because
Bi and Poo’s data show initial weights as high as ~ 2500pA and single EPSC’s are
generally in the range of 10 — 30pA, a mean number of forty bouton terminals secns
fairly conservative, but changes to this mean value do not qualitatively effect our
results. In the following experiments, each population has a minimum of 3 synapscs
and a mean EPSC of 15pA.

The basic model is as follows. We assign synapses within each population the
status of on or off. These states may be equated with high and low strength states
respectively per the findings of O’Connor et al (2005) [95] or, perhaps morc closely,
with potentiated and silent states per the findings of Montgomery and Madison (2002)
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Figure 6.1: Bi and Poo’s (1998) weight-dependent data may reflect the potentiation
of subsets of synaptic populations in cultured cells. Synapses within each population
are assumed on or off prior to STDP, where the potentiation protocol turns on (po-
tentiates) some number n of the off synapses. The depression protocol is assumed to
turn off an average of 20% of synapses. Means of 40 synapscs per group and 15pA per
synapse are assumed in B, C and D where all groups have a minimum population of
3. (A) A histogram of initial weights in Bi and Poo’s weight-dependent data suggests
that population sizes may be approximated with an exponential distribution. (B)
Results when all on synapses are equal in strength. Populations are initialised with
50% of synapses on and 50% off, consistent with Bi and Poo’s maximum percentage
change of ~ 100%. Stars show results for 1 < n < 4 where n is uniformly distrib-
uted at random. Pluses show results when 20% of synapses are turned off, rounded
to the nearest integer. Circles show Bi and Poo’s data. (C) Weights within each
population are given a Chi Squared distribution, 70% of synapses begin in the on
state and 1 < n < 10. For depression, synapses are turned off with probability 0.2.
(D) Synapses are again given a Chi Squared distribution, but are turned on by the
potentiation protocol with probability 0.5, and turned off by the depression protocol
with probability 0.2. All synapses are on prior to STDP with probability 0.7.
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[85]. While these studies show evidence for intermediate states, we assume that the
60 pairings in [99] are sufficient to fully navigate any such series of states. The
computational implications of discrete state synapses are explored in [2]. We simulate
the potentiation protocol by turning on some number n of the off synapses, where n
is a random number. We simulate the depression protocol by randomly turning off on
average 20% of the on synapses because Bi and Poo’s weight-dependent depression

data show this approximate change, regardless of initial EPSC amplitude.

6.2.1 Simulation 1

Figure 6.1B shows results for the simplest case where all on synapses are equal in
strength. Because the data [99] (circles) show a maximal percentage change of ~ 100%
we initialise populations with 50% of their synapses on and 50% off. Stars show
results for 1 < n < 4 where n is uniformly distributed. The qualitative effects of
weight-dependent relative potentiation and a constant average relative depression are
reproduced by the model, but for the depression data in particular, the variance in

relative change is systematically greater for small weights than for large weights.

Simulation 2

Figure 6.1C shows rcsults when the strengths of synapses within each population
are allowed to vary. This variation may either be equated with intrinsic maxima
among potentiated synapses or with synaptic strengths following graded plasticity.
We give these values a Chi Squared distribution, as found by measurements of minia-
ture EPSC’s [126] and quantitative immunofluorescence [93] in cultured cells, but
this distribution is not crucial to our results. With non-uniform weights, initialising
populations with half their synapses on allows percentage change to exceed 100%
control, but the qualitative effect of weight-dependence remains. In Figure 6.1C, 70%

of synapses begin in the on state and we allow greater variation in n with 1 < n < 10.

Simulation 3

In the previous two simulations, a greater proportion of synapses are activated in small
populations than large populations because n is small compared to mean population

size. In the final simulation shown in Figure 6.1D, we abandon this assumption. That
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is, for potentiation, all synapses in all groups are turned on with equal probability
(0.5 in the figure) regardless of group size. Similarly for depression, all synapses
are turned off with equal probability (0.2 as above). Population sizes again follow
an exponential distribution and individual weights follow a Chi Squared distribution.
Synapses begin in the on state with a probability of 0.7. Under this set of assumptions,
the weight-dependence in the relative potentiation data is explained by the variation
in intrinsic maxima, which scales away in large populations. This variation is less
noticeable for depression because individual synapses are less likely to be depressed
than potentiated in the simulation, consistent with experimental findings that LTP
requires fewer pairings than LTD under a pairing protocol [94]. LTD has also been
shown to require prolonged activation under extra-cellular stimulation and calcium

uncaging, as described in [133].

6.3 Conclusions

Under all three sets of assumptions, the above simulations account for the weight-
dependence in {99]. Our analyses rest on the assumptions that synaptic populations
vary in size and that not all synapses are potentiated in experiments. The last
simulation makes the assumptions that weight dependence may be explained by the
variability in synaptic strength relative to population size, discussed by Dcbanne et
al. (1999) [30] in relation to their potentiation data, and that potentiation is more

readily achieved than depression.



Chapter 7

Discussion

In the chapters above, we have addressed two fundamental aspects of cortical memory:
interactions within and between cortical regions and synaptic plasticity. In Chapter
3, we investigate the influence of bottom-up and top-down processing on the spatial
distribution of selective visual attention. The model of Deco and colleagues [31, 26]
provides the context for this work, where the location of visual attention is determined
by hierarchical, bidirectional processing in the dorsal and ventral visual pathways.
This instantiation of the biased competition model of attention [33] need not be
limited to the visual system. Indeed, if a common algorithm operates throughout
cortex, as originally proposed by Mountcastle (1978) [89], then biased competition
may rightly be considered a modus operandi of cortex. In this regard, the dorsal and
ventral visual streams are just two of a vast number of cortical pathways converging
on higher association cortices such as prefrontal cortex (PFC). In the context of visual
processing, the resolution of competition in PFC strongly influences featurc sclection
in V1. With a uniform cortical algorithm, this competition influences processing in

association cortices and across modalities.

This general framework for understanding cortex is not new. In Grossberg’s Adap-
tive Resonance Theory (ART) [46, 47, 21], feature representations converge on a centre
surround neural field (CSNF) model, where the winner-take-all (WTA) property of
the model ensures the integration of these featurcs. That is, the CSNTF model ensurcs
bottom-up compositionality. Because cortical processing is bidirectional, coactive
representations at both levels of this simplified hierarchy facilitatc Hebbian learning
in both directions. Bottom-up learning ensures that features that regularly occur
together consistently activate the same representation. Top-down activity therefor
represents learned expectations, serving to predict lower level activity. Under ART,
learned expectations and attention are synonymous. Top-down representations prop-

agate their activity back to feature layers, priming the features that have consistently

83



84

activated them in the past. A mismatch between learned expectations and sensory
reality is effectively a novelty signal and leads to new learning. In a more exten-
sive hierarchy, the principles of ART fit biased competition like a glove. In Chapter
3, we equate short term memories (STM’s) in PFC with forcknowledge of stimulus
characteristics (features). Active maintenance of these representations serves their in-
fluence on higher sensory cortices, wherc representations prime the expected features

for detection.

In Chapter 2, we balance the competing factors of inhibition and stabilization in a
CSNF model. This work addresses two crucial aspects of cortical function. As a modecl
of interference between STM’s in PFC, it addresses the competition that biases lower-
level feature detection. Additionally, if a CSNF model represents a small patch of
cortex responding to a particular feature space [51], then retaining the WTA property
of the model is crucial to its function as an integrator of lower level features, serving
bottom-up composition in hierarchical processing. It is also crucial for matching
top-down expectations to sensory features. In this regard, an important direction
for future work concerns the relative strengths of bottom-up, top-down and lateral
signalling in CSNF models. The WTA property of the model is not only reclevant to
the active maintenance of STM’s, but also to the integration of convergent bottom-up
and top-down activity when network parameters do not necessarily support sustained
representations. For instance, in Chapter 3, lateral inhibition sharpens the input to
our model of posterior parietal cortex (PP), but not cnough to force a winning bubble
during the life of these inputs. Under the present framework, a winning bubble may be
required while inputs are converging on the centre surround network. This hypothesis

requires further study.

In the context of a model such as ART, cortex cannot function without Hebbian
learning. Our studies of spike time dependent plasticity (STDP) in Chapters 4, 5 and
6 address this aspect of memory. While Chapter 4 makes important contributions to
our understanding of weight-dependent plasticity under the standard STDP pairing
protocol, it also highlights that the common formulation of weight-dependent STDP
rules [66, 62, 49] is not supported by experimental data. Chapter 5 investigates
the consequences of this finding on associative learning. The focus of this work is

not ‘negative’ in this respect. Quite the contrary, it specifically identifies problems
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requiring further study, both experimentally and computationally. One such problem
is addressed in Chapter 6, where we show that weight-dependent STDP data [99] may
reflect non-weight-dependent plasticity in populations of synapses. The consequences
of this possibility are far-reaching, as similar tissue preparations have been used in

numerous plasticity experiments.

As a model of learning, STDP has had an immense impact on the neuroscience
community. Perhaps most notably, it has lead to extensive research on the interac-
tions between pre- and post-synaptic signals [76]. Many of these interactions have
tight temporal constraints, revealing the dependence of plasticity on spike rate and
spike timing on both short and long timescales [12]. STDP is consistently demon-
strated in cortical preparations [133] and the recent theory of Hawkins (2004) [132]
suggests that sequence learning may be crucial to cortical function, explaining how
invariant representations develop across modalities and in association cortices. The
temporal asymmetry of STDP would appear well suited to this learning task. Hicrar-
chical, bidirectional, spatiotemporal learning provides an exciting dircction for future

research on cortical memory.

As a final word on STDP, I wish to distinguish between STDP as an experimen-
tal protocol and as a basis for computational learning rules. As an cxperimental
protocol, STDP reveals that the order and latency of repetitive, low-frequency pre-
and post-synaptic spike pairings determines the sign and magnitude of plasticity, but
this spike-timing arrangement is highly artificial. Recent experiments have therefor
extended STDP pairings to temporally overlapping triplets, quadruplets and quin-
tuplets of spikes [109, 11, 130, 42], showing that STDP (as described above) breaks
down under more ‘natural’ conditions. These extended protocols would appear to
provide a model of oscillatory spiking activity, long correlated with learning in the
hippocampus. Experiments have shown that rhythmic stimulation in the theta fre-
quency range (4-12Hz) may provide optimal conditions for LTP in CA3-CA1 synapses
[71, 45, 18], and recent experiments show that a minimum frequency of 5Hz is nec-
essary for LTP in CA3-CAl synapses under an STDP protocol, as is post-synaptic
bursting [133]. However, these STDP data are qualitatively different than the tempo-
rally asymmetric data discussed above, showing that a tight temporal coincidence of

pre- and post-synaptic activity yields potentiation and a more loose coincidence yields
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depression. Given that CA3 and CA1l pyramidal ncurons are intrinsically bursting
cells, it seems unlikely that the exact timing of individual spikes should matter un-
der these conditions. Indeed, experiments using cortical preparations also show that
when post-synaptic spike quintuplets lead pre-synaptic quintuplets at burst frequen-
cies, LTP is the result [109].

Extended STDP experiments raise other questions not yet addressed in the lit-
erature. For instance, plasticity has long been known to be a pre-synaptic phenom-
enon as well as a post-synaptic phenomenon. Pre-synaptically, the probability of
transmitter release [P(rel)] is highly plastic, where LTP and LTD are manifest as
an increase and decrease in P(rel) respectively [114, 37]. In Chapter 5, we conjec-
ture that pre-synaptic plasticity may shield post-synaptic plasticity from noise, but
given that P(rel) is also subject to short term potentiation (STP) and depression
(STD), what role is played by long term plasticity of P(rel) in burst firing? With
each pre-synaptic spike in a burst, P(rel) increases by STP mechanisms [77]. Con-
versely, P(rel) decreases by STD mechanisms once release has been achieved. Thus,
if only one spike per burst is transmitted, as suggested by Lisman [77], then plas-
ticity of P(rel) may sharpen oscillatory activity by reducing the latency of releasc.
This hypothesis requires further investigation. Recent experiments in Alan Fine’s lab
(personal correspondence) show that P(rel) can be potentiated to values close to 1
with a very small number of pre- and post-synaptic pairings (~ 10). If pre- and post-
synaptic plasticity mechanisms do indeed follow different timecourses, the respective

computational roles of these processes are largely unexplored.

With respect to computational learning rules, it is important to note that STDP
rules are phenomenological, and as such, do not directly address the physiological
mechanisms underlying plasticity. These rules are also grounded in a single plasticity
protocol and do not easily translate to data obtained with other methods. Theo-
reticians have investigated so-called spike interaction models, where the contribution
of individual spikes to STDP is subject to attenuation and recovery [41, 42]. Such
models attempt to capture the effect of interactions between pre- and post-synaptic
signals. In this regard, they provide a legitimate means of addressing plasticity under
different protocols, but I believe pre- and post-synaptic spike interactions may be

better captured with a dynamic variable, most often correlated with calcium flux in
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the post-synaptic density [60, 108, 1]. Such generative models have the potential to
address the common physiological processes believed to underly plasticity under ali

protocols.
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