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Abstract

This thesis focuses on improving existing FDTD methods and time-domain modeling of
active devices.

In this thesis, four methods are proposed to improve the efficiency of FDTD. First, a
new compact two dimensional (2D) FDTD method is proposed to analyze the waveguide
discontinuities along the direction of wave propagation, which is uniform in one of the
transverse directions; it reduces the original three-dimensional (3D) problems to two-
dimensional (2D) problems. Second, a compact one-dimensional (1D) FDTD formula is
proposed for uniformly filled waveguide; it has the same numerical dispersion as the
original 3D FDTD formula and can be used as an efficient incident wave generator and
perfect absorbing boundary condition for the single mode. Then, a 1D modal Perfectly
Matched Layers (PML) is developed by applying the proposed 1D FDTD to the
traditional PML formula. Finally, a new 2D FDTD subgridding method is proposed that
is not only very simple with controllable low reflections but also has been proven to be
stable.

When the FDTD method is used to simulate RF/microwave circuits with active
devices, the governing voltage-current equations of a device can be incorporated into the
FDTD marching equations. However, the parameters of most electronic components are
often given or measured in the frequency-domain and are band-limited. For instance, S-
parameters of a field-effect transistor are usually given or obtained only in the frequency-
domain and over a limited frequency range or band of interest.

Obtaining a causal time-domain model from the band-limited frequency-domain
parameters is a challenge. In this thesis, three methods are proposed to solve this problem.
The first two methods are iterative methods based on Fast Fourier Transform (FFT). One
applies the FFT in combination with the error feedback principle and the second applies
the Hilbert transform in conjunction with FFT. The third method uses the rational
function fitting technique. The extracted time-domain parameters using the three methods
not only are causal but also contain almost the same frequency-domain information as the
original parameters over the given limited frequency range.

Xiii



1 Introduction

Competition in science and technology today is intense, both between businesses and
states. Industries and governments are dedicating more and more resources to research
and development. New systems are becoming increasingly complex at the same time as
the development period is becoming ever shorter. Because of the advance of computer
technology, numerical simulation has become a very important and valuable tool in
reducing the cost and time of prototyping and testing. In the fields of electromagnetic and
microwave engineering, computational electromagnetics is very popular and provides a
practical solution to large complex electromagnetic system problems. For example, the
designers of high speed and very large scale integrated circuits and complex microwave
integrated circuits must use numerical simulation tools for functional verification and
signal integrity analysis before commitments are made to mass manufacture the products.
Computational electromagnetics also provides a powerful tool for research in

electromagnetic fields and microwave technology theory.

The success of computational electromagnetics depends on two factors. One is the
advance of computer hardware; the other is the availability of good algorithms and
computer software. Development of computer hardware is very rapid now, and is
characterized by high performance and low prices. The hardware developed provides a
powerful platform for software, and contributes to making the computational
electromagnetics software practical and widespread. Low price and high performance
hardware also enables more people to conduct their research on their personal computers.
However, computer hardware, no matter how advanced, is inherently limited in its
capability. Therefore, the availability of efficient software always plays a role in speeding

up computations.

Maxwell’s equations and the related boundary conditions are often used to solve
electromagnetic problems directly. Computational electromagnetics use all kinds of
numerical methods to approximate the differential or integral Maxwell’s equations and
the related boundary conditions. The electromagnetic problems can be described in

frequency-domain or time-domain. The numerical methods to solve them are often called



frequency-domain methods and time-domain methods.

Frequency-domain formula states the electromagnetic problem for a given frequency.
Numerical methods for frequency-domain problems do not suffer from stability problems
and can use non-uniform meshes easily, so they are very efficient in solving large system
problems with very fine structures and a narrow working frequency band. They are also

very good at solving systems containing frequency-dependent materials.

However, if nonlinear elements are present in the systems being modeled or the
working frequency band is very wide, then frequency-domain methods are not efficient.
In these situations, time-domain methods provide better solutions because time-domain
methods can include the nonlinear elements directly. If using a wideband exciting source,
one simulation of a time-domain method can provide wideband frequency-domain results

using the Fast Fourier transform (FFT).

Today, a number of efficient numerical methods for solving electromagnetic
problems are available. Each method has its particular advantages and disadvantages, and
is well-suited for a certain type of problems but not for others. In the following sections,
the frequency-domain methods are discussed first, after which the time-domain methods

are introduced.
1.1 Frequency-domain methods

Frequency-domain methods solve the electromagnetic problems in the frequency-domain
and obtain the frequency-domain results directly. They can be based on differential
Maxwell’s equations or related integral equations. Many kinds of frequency-domain
methods exist. The most popular methods are Method of Moments (MoM), Finite
Element Methods (FEM), and Finite-Difference Methods (FDM).

1.1.1 Method of moments

Method of Moments (MoM) is a numerical procedure to solve a linear operator equation
by transforming it into a system of simultaneous linear algebraic equations. The linear
operator can be differential, integral, or integro-differential. This method can also be

called Moment Method (MM). It solves the original operator equations by using weighted



residuals. Harrington has played an important role in popularizing this method in
electromagnetic engineering, describing it in a detailed and systematic fashion [1]. As a
powerful numerical method, the MoM has been used extensively for more than three
decades. It is very suitable for radiating and scattering problems [1]-[19], for example,
antenna analysis, waveguide discontinuity analysis, and Radar Cross Section (RCS)
analysis.

The general procedure of the method of moments can be described as follows.

Assume that an electromagnetic problem can be modeled with the linear operator

equation below.
IJ=F (1.1)
where L is the linear operator, F is the known force or source function, and J is the

unknown quantities need to be solved.

The first step is to expand J as a finite sum of basis functions:

— M P,
7=X7b (1.2)

i=1

where J, are the expansion coefficients that need to be determined and b, are the known

basis functions pre-selected by a user.

By substituting (1.2) into (1.1), the following equation is obtained:
F=LYJb=) JLb (1.3)
i=] i=1

The second step is to test the error of the above equation with another pre-selected M
linear independent weighting functions w; (j=1,2,...M). More specifically, the following
equations are obtained by taking the inner product of each weighting function on both

sides of equation (1.3).

_ M _ M -
<w,F>=<w,y JLb>=)J <w,Lb >

i=1 i=1

(1.4)
j=12,...M

The above equations can be used to find the unknown coefficient J,.

Equation (1.4) can be rewritten in a matrix form as:



[Vi=I[Z]I] (1.5)
where:
Z,=<w,Lb > (1.6)
V,=<w,F> (1.7)
1=, (1.8)

1.1.2 Finite element method

In general, MoM is very good for analyzing unbounded radiation problems of perfect
electric conductor configurations and homogeneous dielectrics. For problems with
complicated geometries and many arbitrarily shaped dielectric regions, however, MoM is
not very efficient due to the possible fast change of the medium properties. The finite
element method (FEM), by contrast, is good at modeling inhomogeneous dielectric
bodies as it requires the entire volume of the solution domain to be meshed. Therefore
each mesh element may have completely different material properties from those of
neighboring elements and this makes FEM excellent at modeling complex
inhomogeneous configurations. However, FEM may not model unbounded radiation
problems as effectively as MoM because of the potential errors due to the absorbing
boundaries introduced.

The FEM has become one of the most popular frequency-domain methods in
computational electromagnetics [20]-[30]. One way to construct the FEM formulation is
to use variational techniques and work by minimizing or maximizing an expression that is
known to be stationary about the true solution. For example, solutions of Maxwell's
equations always require that the energy within a structure is minimized; the finite
element method can solve for the unknown field quantities by minimizing the energy
functional.

The finite element method involves the subdivision of the problem region into
subdomains or finite elements and approximation of the field in each element in terms of

the linear combinations of basis functions. The basis functions usually are simple



functions (often linear) defined over each element. The element model contains
information about the geometry, material properties, excitations and boundary constraints.
For a three-dimensional time-harmonic problem, the energy functional can be written as:

UVHI? +g|E|2 _olEP

)dv (1.9)
2 2 20

F=[7(

The first two terms in the integrand are the energy stored in the magnetic and electric
fields, and the third term is the energy dissipated due to conductivity.

Expressing H in terms of E, the functional F becomes a function of E . The field
region is then divided into a number of small homogeneous element areas. The elements
can be small in regions with geometric details and much larger in uniform regions. The
electric field E can be expanded as a linear combination of known basis functions with
unknown coefficients. F then becomes a functional about these unknown coefficients.
Setting the derivative of this functional with respect to unknown coefficients to zero, a

system of equations with all the unknown coefficients is obtained:

-le _)’11 Yo = - ﬂ—El—
J, Ya Yn - || E

= . .. ) (1.10)
__Jn_‘ L . . . . ynn _En—

where J, (i=1,2,..,n) are the sources term, E, (i=1,2,..,n) are the unknown coefficients, and
y; (i=1,2,...,n; j=1,2,....n) are functions of the target geometry, material properties, and

boundary constrains.

After solving equation (1.10), the field distribution is known and other physical
quantities of interest can be computed from the known field distribution.

The major advantage of FEM over other numerical methods is that the geometric and
material properties of each element can be defined independently and flexibly. This
makes FEM competitive in modeling problems with complicated geometries and many
arbitrarily shaped dielectric regions, since FEM can use small elements in regions of

complex geometry and big elements in large uniform regions.

1.1.3 Finite difference method



Finite difference method was one of the first numerical methods to be used in
computational electromagnetics because of its simplicity in concept [31]-[34]. Similar to
the FEM, the finite difference method is based on the differential equations of the
electromagnetic problems. The finite difference method uses the difference operator to
approximate the original differential operator and convert the original differential
equations into a system of algebraic equations. With the advance of computer technology,
the finite difference method developed extensively, and has become one of the numerical
methods used currently [35]-[39]. However, it is not as popular as the finite element
method for frequency-domain problems. This may result from the fact that finite element
method attracted much attention in civil and mechanical engineering.

The general procedure of finite difference method consists of three steps:

a) Divide the problem domain into grids and use the node values of fields as
unknowns.

b) Replace the differential equation by the approximate difference equations, which
relate the field value in a node to the field values at neighboring nodes. This
converts the original differential equation into a system of linear algebra equations
in the unknown field values at the discretized nodes.

c) Solve the system of linear algebraic equations with the known boundary

conditions.
1.2 Time-domain methods

The frequency-domain formulae are not good at handling nonlinear elements and
materials; they can obtain the result about one frequency point for each simulation and
are efficient only for narrow band applications. Time-domain methods, however, can
obtain the results of wide band frequencies with only one simulation and handle the
nonlinear elements and materials easily. Today, wideband applications are very popular.
Time-domain methods are very good options to obtain the wideband results efficiently,
and they are becoming more and more competitive. Usually, each frequency-domain
method has a time-domain counterpart. For example, there are time-domain FEM [40]
and MoM [41] associated with the frequency-domain FEM and MoM. However, the most

popular time-domain methods are finite-difference time-domain method (FDTD) and



transmission line method (TLM). In the FDTD and TLM, the simple and explicit
updating formulations make the FDTD and TLM relatively easy to program. However,
the explicit time-domain updating methods can experience numerical stability problems.
To ensure the time-domain computation to be stable, the time step has to be smaller than
an upper limit which is related to spatial steps. For fine structures that require small
spatial steps, the time step has to be small. This will reduce the efficiency of the explicit

time-domain marching methods.
1.2.1 FDTD

The FDTD is one of the most popular time-domain methods. It was proposed by K. S.
Yee [42] in 1966. Like the FEM, it uses the partial differential equations which describe
the target electromagnetic system. Unlike the FEM, the FDTD method does not use
variational concepts or weighted residuals; instead, it directly approximates the time and
space derivatives in the time dependent Maxwell curl equations by simple 2™ order
central differences. FDTD uses a staggered grid in time and space, and the electric and
magnetic fields are computed on the staggered grid with a marching-on-in-time technique.
It provides a direct solution of Maxwell’s curl equations and is very flexible at solving

complicated electromagnetic problems.

Although the FDTD method was proposed in 1966 [42], it began to garner public
attention only after the 1980s. The early FDTD methods needed to discretize the whole
problem domain by uniform grids. For complex practical problems, this required a huge
amount of computer memory and CPU power, more than computers could provide at the
time. From the 1980s on, two factors pushed forward the development of FDTD. One
was the swift advance in computer performance, including CPU speed and computer
memory, which provided the enabling technology and hardware base. The other factor
was application requirements. Practical electromagnetic engineering problems methods
became more and more complicated; take, for example, the electromagnetic compatibility
analysis of complex electronic systems and the signal integrity analysis of large-scale
integrated circuits. These complex electromagnetic problems require flexible and
powerful electromagnetic simulation tools. As a direct solution to Maxwell’s curl

equations, using a simple and explicit updating formula, the FDTD method became one



of the most popular numerical methods [43]-[54]. After Berenger proposed the perfectly
matched layer absorbing boundary conditions [50], the method could be made accurate

on smaller meshes.

When using the FDTD method, there are two constraints [55]: one is the Courant-
Friedich-Levy (CFL) limit that guarantees stability; the other is to sufficiently resolve the
problem to reduce the numerical dispersion resulting from the discretization. The first
limit can be removed by the unconditionally stable alternating direction implicit finite-
difference time-domain (ADI-FDTD) method [56][57]; the second limit can be removed
by the application of high-order schemes such as the Multi-Resolution Time-Domain

(MRTD) method [58] and the Pseudo-Spectral Time-Domain (PSTD) method [59].
1.2.2 TLM

The transmission line method (TLM) is another popular time-domain method proposed
by Johns [60]. TLM is a numerical technique for solving field problems using circuit
equivalent. It employs the analogy between the Maxwell’s equations for electric fields
and magnetic fields and the equations for voltages and currents on a mesh of continuous
transmission lines [61]. By computing the voltage and current in the networks, the
electric and magnetic fields can be solved. The symmetrical condensed node formula

introduced by Johns [62] has become the standard for 3D TLM methods.

Like other numerical methods, the TLM method solves the electromagnetic problem
by approximating the original continuous problem using a discretized system. However,
the transmission line matrix method uses a physical discretization process; the other
numerical methods, such as the finite difference method and the finite element method
use the mathematical discretization process. Because of the simplicity in formula and
programming, the TLM method obtained much attention in many applications and

became one of the most popular time-domain methods [63]-[69].

The general procedure of TLM methods includes two basic steps:



a) Replace the field region by an equivalent transmission line network and derive the
equivalence between the field and the network quantities.
b) Solve the equivalent transmission line system through the repeated scattering and
transmission of voltage waves.
TLM shares both the major advantages and disadvantages of FDTD. On one hand,
they both used explicit update formula and easily can handle complex structures and
nonlinear elements and materials; on the other hand, they both suffer from the numerical

dispersion problem [70] and a tight time-step constraint.
1.3 Motivation and contributions

Although the FDTD method is simple in concept and programming as well as robust and
flexible in applications, it still requires intensive computer resources, especially for
complex and electrically large structures. Therefore, efforts in improving computational
efficiency and accuracy continue unabated. There are many techniques to achieve high
computational efficiency [55]; for example, semi-analytical methods were applied to
reduce the problem dimensions, incident wave generator and absorbing boundary
conditions were developed with high performance and efficiency, and subgridding

method were formulated for complex structures with fine geometric details.

For waveguide structure, a semi-analytical method, called compact 2D FDTD, was
proposed [71][72]. It can obtain the propagation characteristics of waveguide structure by
reducing a 3D FDTD problem to a 2D FDTD problem, but it cannot be used to analyze
the discontinuity along the direction of wave propagation. To solve the issue, a new
compact 2D FDTD method is proposed in the third chapter of this thesis; it can be used to

analyze the discontinuity along the direction of wave propagation.

During the application of waveguide structures, an incident wave as the source and
absorbing boundary condition as the matching load are often required in order to obtain
the S-parameters [73]. Usually, the incident wave is obtained by simulating a long
uniform waveguide and it needs a large amount of computer memory and long run time.
There are many kinds of absorbing boundary conditions in waveguide applications

[50][74]-[86]; however, they can not provide good absorption for frequencies around the
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cut-off frequency. To solve the issue, a compact 1D FDTD formula is proposed in the
fourth chapter, which can provide very good absorption performance for the full
frequency spectrum including the cut-off frequency. When applied to the Complex
Frequency Shifted Perfectly-Matched Layer (CFS-PML) methods [83][84], an efficient
modal based PML is produced in the fifth chapter.

In order to solve complex problems with fine geometric details, many FDTD
subgridding methods have been proposed [87]-[98]. However, these subgridding schemes
have suffered the problems of late-time instability or uncontrollable reflections from the
interfaces. To overcome the problem, a new subgridding formula is proposed in the sixth

chapter, which is robust and has controllable low reflection.

When the FDTD method is used to simulate RF/microwave circuits with active
devices, it is necessary to consider how to combine the FDTD with active devices. One
approach is to use the time-domain lump-element circuit model of the active device
directly [99][101]; another approach is to use the frequency-domain parameters of the
active device [102]{103]. The time-domain lump-element circuit model of an active
device is not available often and only the frequency-domain parameters are available. In
such a case, the frequency-domain parameters should be converted into causal time-

domain parameters.

However, the frequency-domain parameters of many electronic components are
often given or measured in a band-limited frequency range. Direct application of the
inverse Fourier transform to the band-limited frequency-domain parameters usually leads
to non-causal parameters in the time-domain. Such non-causal time-domain parameters
are neither physical nor compatible with, or capable of, being incorporated into a
simulator based on a causal mathematical model such as the FDTD method. To obtain a
causal time-domain model from the band limited frequency-domain parameters, three

methods have been used in this thesis.

First, two iterative methods based on the Fast Fourier Transform (FFT) are presented
in the seventh chapter: one applies the FFT in combination with the error feedback
principle; the other applies the Hilbert transform in conjunction with the FFT. These

methods are conceptually simple and easy to implement. The extracted time-domain



parameters are not only causal but also contain almost the same frequency-domain

information as the original parameters over the given limited frequency range in both

magnitude and phase.

However, the time-domain parameters extracted using the iterative methods are only
in numerical form and are computationally time consuming when a convolution is
performed with them in a time-domain simulation. To solve this problem, a rational
function fitting technique is introduced in the eighth chapter, which extracts the causal
time-domain parameters of an active device from their known band-limited frequency-
domain counterparts. One of the major advantages of this technique is that the resulting
time-domain parameters can be expressed in the form of exponential functions. The
convolution with these exponential functions can then be performed in a recursive
fashion without requiring a complete past history of the time-domain parameters, and the
CPU time for each time-marching step is constant. The total CPU time and memory of a
convolution will increase linearly with the time steps. Therefore, computational
efficiency is improved significantly, especially for a simulation with a large number of

iterations.

Finally, it is worth to mention that the most work of the thesis has been published in

[104]-[112).
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2 Concept of FDTD

2.1 Introduction of classical FDTD

The FDTD method is a direct approximation of Maxwell's curl equations in the time-
domain. It discretizes the differential form of Maxwell’s equations directly by using 2™
order central finite difference approximation. In the FDTD, the electric field E-grid is

offset both spatially and temporally from the magnetic field H-grid. The resulting update

formulae for the E and H fields are known as the leap-frog scheme.
2.1.1 Yee’s grid and FDTD formula

In a linear and isotropic medium, Maxwell's curl equations can be written as:

U—=-VxE—-p'H 2.1)

e—=VxH-0E 2.2)

where £ is the electrical permittivity, 4 is the magnetic permeability, ¢ is the
conductivity, and p' is the magnetic conductivity respectively.
In Cartesian coordinates, (2.1) and (2.2) can be rewritten as the following six scalar

equations:

oH, 1 OE, OE
* = ‘- p'H 2.3
Y #( % o ” <) (23)

0H, 1 JE, O

= i p'H. 2.4
o o e MY 4
0H, 1 O0E, OE,

z y _ 'H 2.5
” #(a = p'H,) (2.5)

1 0H, oH .
aE‘ =— (a ) - 0oE)) 2.6)
ot € dy Iz
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0E., 1 oH. oH
L= X L -oF 2.7
5 e o o OFY @D

o, =_1_(8H, _oH
or € ox Oy

X _GF,) (2.8)

Using 2™ order central finite difference to approximate the spatial and temporal

derivatives in (2.3) - (2.8), Yee’s FDTD formulae can be obtained as follows [55]:

' At
l_pr,j+‘3,k+—;
n+d _ 2ﬂf,f+"2',k+Ji n-3
X+t k43 ,0'. i ,At xli,j+li+d
1+ 2:,;+7, +4
'ui,j+J2-,k+Jz- (2 9)
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+ -
Py e B Az Ay
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21, it et
1
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1_p|+-;-,j,k+-%
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ylivdjk+d o AT i+d.jkd
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At
n+/2 n+1/2 n+l/2 n+l/2
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where U\|?., =U(iAx, jAy,kAz,nAt) represents the value of U(x,y,zt) at the point

(x,y,2) =(iAx, jAy,kAz) at time t=nAr . Ax, Ay, Az and Ar are the spatial and
temporal increments respectively.

The corresponding field components in the Yee’s grids are shown in Fig. 2.1.
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Figure 2.1 Positions of the field components in Yee’s grids.

It can be seen from equations (2.9) - (2.14) and Figure 2.1 that the components of
electric and magnetic fields are interlaced within the FDTD grid and computed at
alternate half time steps. Given the initial values and boundary values of electric and
magnetic fields, equations (2.9) - (2.14) can be updated explicitly. It is, therefore, an
explicit time-domain method. There is no need to solve systems of linear algebraic
equation, each field component value can be evaluated directly from the neighboring
field components and its own value in the last time step. The simplicity of concept and
ease of programming makes FDTD one of the most popular electromagnetic numerical

methods.
2.1.2 Numerical stability

FDTD is an explicit update formula in the time-domain. Usually, explicit update

formulae have stability problems. For the given spatial increments Ax, Ay, and Az, in
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order to keep the simulation stable, the time step size Ar must satisfy the following
stability condition [55]:
1

At <
1 1 + 1 + 1
'/,lg AxZ Ayz AZZ

This stability condition is called CFL stability condition because the analysis method

(2.15)

was presented by Courant, Friedrich, and Levy (CFL).
2.1.3 Numerical dispersion

When using FDTD to simulate electromagnetic wave propagation, the numerical phase
velocity of the simulated wave mode in the FDTD lattice can differ from the actual wave
velocity c ; this phenomenon is called numerical dispersion of FDTD ([55]. The numerical
dispersion causes the numerical phase velocity to differ from the actual wave velocity,
and it will reduce the accuracy of computed results. Hence it is desirable to understand
numerical dispersion’s operation and its effect on accuracy, especially for electrically
large structures.

Considering a plane monochromatic traveling wave in a uniform lossless medium,

Taflove derived the following numerical dispersion relationship for FDTD [55]:
e 1 kAT [ kay ] Tt kAT
in®2h | ol Lain®25 | ] sinx 2y | 4| —sinX2% (2.16)
cAt 2 Ax 2 Ay 2 Az 2

where IEX , Ig‘. ,

and IEZ are, respectively, the x, y, and z components of the numerical

wavevector, and @ is the wave angular frequency.
In contrast to the numerical dispersion relationship of FDTD, the analytical

dispersion relationship of plane wave in uniform lossless medium is much simpler [122]:

2
© ok wk 2k, (2.17)
- \

where k_, k., and k, are, respectively, the x, y, and z components of the analytical

wavevector.
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It can be seen from equations (2.16) and (2.17) that the numerical dispersion is
different from the analytical dispersion. In contrast to the numerical dispersion
relationship of FDTD, the analytical dispersion relationship of plane wave in a uniform
lossless medium is much simpler. In order to have an acceptably small error from
numerical dispersion, the spatial increments Ax, Ay, Az should be less than one tenth of

the smallest wavelength [55].
2.2 Lumped Elements in FDTD

When the FDTD is used to analyze structures including lumped circuit elements, one way
to account for the lumped circuit element is to add a lumped electric current density term
in the Maxwell’s equations. The process can be described as follows.

Maxwell’s curl equations applied to the cells that contain the device are:

e9E _vuH-T7, (2.18)
ot
LRy (2.19)
ot

where J is the additional current density term resulting from the lump-element device.

To compute Ja, for simplicity, consider an one-port lump-element device that is

oriented in the z-direction as shown in Figure 2.2. Suppose that the current flowing

through the device is , . Then the current density J 4 can be obtained as

J, =l (2.20)
AxAy

where Ax and Ay are the space increments of the FDTD mesh that covers the cross

section of the device.
I, can be determined through the known device I-V relationship,

L= FO) (2:21)

where v, is the device voltage oriented in the z-direction. For instance, for a resistor of
resistance R, i, =v,/R .

The device voltage v, can be obtained from its relations to the electric field:
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v, =E Az (2.22)
Combination of (2.20)-(2.22) reads
j, = 1ELD (2.23)
AxAy

The above equation can be substituted into (2.18), forming the Maxwell’s equations that
include the lump device model for FDTD computations. The unknowns are the field

quantities to be solved.

lump-element
l y device

X -

)
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I
k

_g‘yvd il ;/ ______ JL

Figure 2.2 The position of a one-port lump-element device in the FDTD grid.

The above concept can be extended to multi-port device models. Figure 2.3 shows a
two-port transistor in the FDTD grid and Figure 2.4 presents the extracted two-port

network representation of the device.

lump-element device
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Figure 2.3 A two-port lump-element device (transistor) in the FDTD grid.
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Figure 2.4 The equivalent two-port network of an active device.

v, (t) andv,, (1), and i, (¢) and i,,(¢) are the voltages and currents at the two ports

of the network. They can be related by the known device admittance parameters (Y-

parameters):

[idx(t)i] _ {)’11(1‘) v, (O+y,O®v,, (t)}

= (2.24)
Yu @) ®v, () +y,, ) ®v,,(t)

i,()

where ® represents time-domain convolution, and y,,(t), y,,(t), ¥,,(¢) and y,,(z) are

the time-domain Y-parameters.
v, () andv,,(t), and i,(¢) and i ,(¢) are also related to electric fields and current

densities in a way similar to that described before for the case of one-port device. For

instance, voltages v,, and v,, are related to electric fields as shown below:

v, =— f E-dl i=1,2 (2.25)

where Py is the voltage reference point (for example, the grounded via) and P; is the point
need to be computed. i ,(¢) and i ,(t) are related to the current densities through (2.20),

or more specifically,

i,
J = di =12 2.
di A i=1, (2.26)

Combination of (2.24)-(2.26) reads:
J i :fi(E’ Yas Yia) i=12 (2.27)
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Substitution of the above equation into (2.18) forms the Maxwell’s equations that include
the lump device model for FDTD computations. Again, the unknowns are the field
quantities to be solved.

Once the Maxwell’s equations including lump-element devices are formed, they can

be solved with details described in [55][99]-[103].

2.3 Conclusion

This chapter has reviewed the basic concepts and formulas associated with FDTD and
introduced briefly the stability condition and numerical dispersion of FDTD. Finally, the
method incorporating the governing voltage-current equations of a device into the FDTD

frame was discussed.
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3 New Compact 2D FDTD Method for 3D

Waveguide Structures

31 Introduction

Computational efficiency still remains a challenge with the FDTD method. For a three-
dimensional guided-wave structure, three-dimensional numerical FDTD grids are
generally needed. To reduce the memory and CPU time requirements, two-dimensional
compact FDTD methods have been developed [71][72] where field variations along the
propagation (or longitudinal) direction are assumed to be complex exponential functions.
The methods are very useful and effective in analyzing the dispersion characteristics of
guided-wave structures, such as microstrip lines or coplanar waveguides.

However, the compact 2D FDTD methods developed so far assume the structure
uniformity along the propagation direction and cannot be used for computing geometric
or material discontinuities in the propagation direction. Therefore, an efficient method is
desired that can account for waveguide structure discontinuities. Among many
waveguide structures, structure uniformity does exist in one of the transverse directions.
For example, many rectangular waveguide connectors and filters popular in industry
[113]-[115] have such a feature. Navarro et al. studied these types of structures partially
[116], but only considered the TE10 mode in the H-plane waveguides. Field variations in
one of the transverse directions (for example, the y direction in this case) are assumed to
be non-existent. Such an assumption is not suitable for many applications where higher-
order modes exist. Therefore, a more general compact 2D FDTD method is needed. Since
the structures are uniform in one transverse direction, field distributions in this direction
can be expanded with sine or cosine functions in space. Based on this, we propose a new
compact 2D FDTD method.

First, we can classify the traveling modes based on the number of periods of field
variations in this uniform direction; then, we can use this fact to reduce the 3D waveguide
problems to a 2D problems and solve them with the new 2D compact FDTD formulation.

In contrast to the 2D compact FDTD methods reported before [71][72], the proposed
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method can be applied to discontinuity problems in the longitudinal direction.
This chapter is organized in the following way. First, the derivations of the proposed
2D compact formulae are given. Two numerical examples are then presented to

demonstrate the validity and effectiveness of the proposed technique. Finally, discussion

and conclusions are presented.
3.2 Formula of the New Compact 2D FDTD

Without losing generality, we assume that the geometry of the waveguide structures
under study are uniform in the y direction. We also assume that the modes under
consideration have n standing waves in the y direction; we can call them T, modes for
simplicity.

Since the perfect conductors are placed at the end walls of the y-direction, the

normal magnetic field component H_and tangent electric field components E, and E,
have to be zero at y=0 and b. As a result, variations of the field components along y-
direction can be expanded in terms of sin(zy/b) OF cos(zy/b). More specifically, the six

field components can be expressed as:
E (x,y,2,0)=E (x, z,t)sin(-r%)i)
E (x,y,z.0)= E}. (x,2,1) COS(E?)

EZ ('x’ Y, Z’t) = Ez ('xy Z,t) Sin(n_n'b__)i)

(3.1)
H (x,y,2,0)= l:lx(x,z,t) cos(?)

HJ, (x,y,2,t)= 1-7), (x,2,t) sin(mTy)

~ Vs

H, (x,y,z.6)=H (x, z,t)cos(n—by)
where b is the width of the waveguide in the y direction, £, - A, represent the remaining
part of each field value function after the term including the variations along the y
direction is extracted.

By inserting (3.1) into Maxwell’s equations in the Cartesian coordinates, the

following equations are obtained:
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Removing the common terms on both sides of (3.2), we can reduce (3.2) to 2D
Maxwell’s equations:
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ot e b 9z
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By replacing the derivatives with their 2" order central finite-difference counterparts,

the discretized equations shown in (3.4) - (3.9) are obtained:

BG40 = B+ -2 A e B
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(3.6)

3.7

(3.8)

(3.9)

The grid positions and field components for the 2D FDTD method is shown in

Figure 3.1.
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Figure 3.1 The electric and magnetic fields positions in a unit cell of the compact 2D FDTD grid.
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Equations (3.4) - (3.9) are two-dimensional and easy to program. In the following

sections, two numerical examples are given to show the efficiency of this new method.
33 Numerical Validation

To validate the proposed method, we first apply it to a rectangular waveguide cavity with
length d=0.04m in the z direction, width a=0.03m in the x direction, and height b=0.02m
in the y direction (which is assumed to be the geometry uniform direction). The analytical
resonant frequencies were documented in [117]. The cavity structure is shown in Figure

3.2 and the numerical grid plane is in the x-z plane.

X

d/
r'g

z

Figure 3.2 The rectangular waveguide cavity of length d=0.04m in the z direction, width a=0.03m in the x

direction, and height b=0.02m in the y direction.

In order to facilitate the comparisons, a reference 3D FDTD simulation is also run
for the same cavity structure. The mesh sizes with both the proposed method and the

reference method are taken to be the same: Ax=0.001m, Ay=0.001m, and Az=0.001m. The

=1.9245%x107"%s, and the Ar

time step size iS Ar=At, -

rL is the CFL time step limit computed
for the conventional 3D FDTD. The total number of iterations taken is 8192. The source
for 2D FDTD is a point source with E, and H,. The source for 3D FDTD is a line source
with E, that varies as sin(zy/b) along y direction (for TM, mode), and with H, that varies
as cos(ry/b) along the y direction (for TE; mode). The source in the time-domain is two

pulses, which are equal to 1 at time step 1 and equal to -1 at time step 2. There are two
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reasons to select this kind of source: one is that it is easy to be implemented, the other is
that it includes all the possible frequencies needed. Hy and E, are recorded and Fourier-
transformed to obtain the resonant frequencies by identifying the amplitude peak points.
Table 3-1 shows the analytical resonant frequency of the first five modes of T, and
the relative errors of numerical results computed with the proposed 2D FDTD and the

reference 3D FDTD methods.

Table 3-1 The comparison between numerically computed and analytical resonant frequencies

The Analytical errors errors

resonant results with the with the
modes proposed | reference

method FDTD

TEo1 8.3853GHz -0.15% -0.15%
TMi1p 9.0139GHz -0.08% -0.08%

TE111/TM114 9.7628GHz 0.06% 0.06%
TEo12 10.607GHz -0.13% -0.13%

TE112/TM112 11.726GHz 0.07% 0.07%

Table 3-2 shows the respective memory and CPU time used with the 2D FDTD and
the 3D FDTD for the first example. The running platform is the Matlab on a laptop
Pentium-IV PC with 1.8-GHz CPU and 512-MB RAM.

Table 3-2 The memory and CPU time needed for the 2D FDTD and 3D FDTD corresponding to the first

example
The reference 3D The Proposed
FDTD Method
Memory 1507KB 316KB
CPU time 399s 9s

It can be seen from Table 3-1 that the proposed method yields almost the same
results as those with the reference 3D FDTD method. However, the proposed 2D FDTD
method uses about 1/44 of the CPU time (including FFT) of the reference 3D FDTD and
about 1/5 of the memory (including FFT) of the reference 3D FDTD.

The second example is to validate the discontinuity in a waveguide structure. It is a
rectangular waveguide cavity of the same size as the previous example but with a groove
in the middle of the z direction as shown in Figure 3.3. The width of the groove is
0.006m and the depth is 0.01m.

The mesh size, the time step size, and the source are the same as in the first example.

The total number of iterations is 16384. H, and E, are again recorded and Fourier
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transformed to obtain the resonant frequencies by identifying the amplitude peak points.
Table 3-3 shows the values of resonant frequency of the first five modes of T; computed
by the proposed 2D FDTD and the reference 3D FDTD methods. Table 3-4 shows the
computation resources used with the two methods.

Once again, it can be seen from Table 3-3 that the proposed method gives almost the
same results as the reference 3D FDTD. However, the proposed 2D FDTD method uses
about 1/42 of the CPU time (including FFT) of the reference 3D FDTD and about 1/3 of
the memory (including FFT) of the reference 3D FDTD.

Table 3-3 The comparison of resonant frequencies obtained by 2D FDTD and the 3D FDTD in the second

example
The reference The Proposed
3D FDTD Method
Mode 1 8.0873GHz 8.0873GHz
Mode 2 9.0387GHz 9.0387GHz
Mode 3 9.4827GHz 9.4827GHz
Mode 4 10.720GHz 10.720GHz
Mode 5 11.988GHz 11.988GHz

Table 3-4 The memory and CPU time needed for the 2D FDTD and 3D FDTD in the second example

The reference 3D The Proposed

FDTD Method

Memory 1763KB 572KB

CPU time 786.5s 18.8s
Iy
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Figure 3.3 The rectangular waveguide cavity with a groove in the middle of the z direction.
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34 Discussion and Conclusion

In this chapter, a new compact 2D FDTD method for 3D waveguide problems has been
proposed. Numerical examples presented in this chapter show that this method has the
same accuracy as the traditional 3D FDTD method, but with much less memory
requirements and CPU time. Nevertheless, it should be noted that the numerical analysis
is not a theoretical one; more comprehensive analytical studies are needed on the exact
stability condition and numerical dispersion relationship of the proposed compact 2D
FDTD. In addition, further applications to complicated waveguide structures are needed.

These will be left for future work.
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4 Compact 1D FDTD Method for Waveguide

Structures

4.1 Introduction

When using the FDTD method to compute waveguide structures, two things are often
needed: a known incident wave for calculating electrical parameters (e.g., scattering
parameters) and effective absorbing boundary conditions for terminating open structures.
To obtain an incident wave, a separate simulation of a long waveguide structure is
usually run [73]. However, for a three-dimensional (3D) structure, such a simulation is
often inefficient because it requires a large amount of memory and CPU time. In order to
solve the problems as well as to develop efficient absorbing boundary conditions, many
one-dimensional (1D) methods have been proposed [74]-[81]. Most of them use
analytically or semi-analytically generated Green’s functions. However, these analytical
continuous Green’s functions often have characteristics quite different from those of the
3D FDTD formulations of a discrete domain, for instance, at the cut-off frequencies.
Consequently, they do not offer highly accurate results, for instance, near or below the

cut-off frequency of a waveguide mode.

To solve the problem, we propose a new simple 1D FDTD method in this chapter.
Unlike other methods developed so far, this method is derived directly from the FDTD
formulae; therefore, it has the same numerical characteristics as that of the 3D FDTD
method with which it interfaces. As a result, it not only allows efficient computation of
an incident wave due to its 1D nature, but it also enables an extremely high absorption of

numerical incident waves (e.g. better than -200dB even at or below a cut-off frequency).

This chapter is organized as follows. Section 4.2 presents the derivation of the
proposed 1D method, while Section 4.3 illustrates the dispersion analysis of the proposed
method. Section, 4.4 describes the two applications of the proposed method: generation
of the incident wave and absorption of waves. Section 4.5 sets forth the numerical results
that demonstrate the validity and effectiveness of the proposed technique. Further

discussion and conclusions relating to the proposed method follow in Section 4.6.
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4.2 Formula of the Proposed 1D FDTD Method

For linear and lossless medium, the conventional 3D FDTD formulae can be written as:

E.t, =E, o
n+g i+t
(H r L jedk H ‘,_J.J-.Lk) (41)
_I(H\ :’—+ 4,k _H) I:,%]k {-)
H‘ l:'+:]k .L ¥ ‘:l_—f]k_.%
+E(E I,,k—l -E! I:'uk—*) 4.2)

non n o\
- (E l:-ljk_EA |1—11kl)

x

The equations for the other field components can be expressed similarly.

For a homogeneously filled waveguide, field distribution pattern of a given mode on
a cross-section do not change with time or frequency or with the longitudinal coordinate.
They can be found analytically or numerically (e.g. [71][72]). Supposing that the mode is
traveling in the z-direction and Yee’s grid is applied as shown in Figure 4.1, the
discretized form of equations (4.1) - (4.2) can then be rewritten as:

E |u+l _E In

x ,—l jk xi=d gk
At red
* 2y (@ by DH T, 4.3)
At et ntl
~_EA_Z(H.v bfine ~H )
"+ ""L
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+E(1 'BJ I'J)E~ ll}k’—L (4.4)
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HG-12,k-172

Figure 4.1 The electric and magnetic field positions in Yee’s lattice for a waveguide structure, with Z the

wave propagation direction.

The equations for other field components can be written similarly as follows:
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(4.8)

4.9)

(4.10)

4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Coefficients @ and g are ratios of field quantities on the nodes of a cross section of

the waveguide. They are constant and can be found from the known unchanged field

distributions of a given mode. Each mode has its own set of coefficients « and B . Note

that in computing « and S, one should choose non-zero field points for the

denominators in equations (4.9) - (4.16) for a given mode.
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Careful examination of the equations reveals that equations (4.3) - (4.8) are
essentially 1D FDTD recursive formulae. Computations need to be carried out only along

the z-direction (or the k-direction) with the specified i and j for each mode. At any other

i and j, the field quantities can be obtained from the known field distributions on the

same Cross section.
4.3 Numerical Dispersion of the Proposed Method

In order to compare the numerical dispersion of the proposed method with the
conventional FDTD method, we consider the TE;, mode in a rectangular waveguide as
an example. For the TMp,, mode, a similar analysis can be made and similar conclusions
reached.
Suppose the rectangular waveguide has width a in x direction and height b in y
direction. The field components for the TE,, mode along z-direction can be written as:
E, = E, cos(k,x)sin(k,y)e’ "™

E, = E ,sin(k,x) cos(k,y)e’ "
E =0

: 4.17
H, = H ysin(k,x)cos(k,y)e’ " (4.17)
H, = H , cos(k,x)sin(k,y)e’ ™
H_ = H ,cos(k,x)cos(k,y)e! "<
where k, =z k = % , k. is the spatial frequency in the z direction, and o is the
a )
temporal angular frequency.
Substituting (4.17) into (4.3) - (4.8), we obtain:
i k A
—J—sin(%L)Exo ———gAl—sin( -“2y )H.,
A v 4.18)
__J_sin(k’zAZ)Hyo =0
Jj . WAt J . kAz
=—sin(—)E,, +——sin(—)H,,
At 2 Az 2 4.19)

1 . kAx
+ ——sin(—=~
EAx 2

)H:o=0
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1 . kAz 1 . At

——sin( 5 )E,, +thm(T)on =0 4.20)
1 . kAz 1 . At

—SIH(T)EXO —ESln(T)HN =0 (421)
1 . kAy 1 . kAx

—/J-A—ySID( 2 )EXO ———-—sm( "2 )Eyo

(4.22)

J . wAr
+-==sin(—)H , =0
ar MG

The above equations form a system of five homogeneous equations with unknowns
Ey, Eyo, Hyp, Hyp, and Hy. Because the solutions of the system must be nontrivial, the

determinant of its coefficient matrix should be equal to zero. This leads to:

. At
Sln(—z—) =0 4.23)
sin” (. 5 ):,ussm(z) (4.24)

AZZ AtZ

-zﬁg o kDY .5 k Az .o WAL
sin”( 5 )+sm( 5 )+sm( 2)=,u<€sm(2) (4.25)
AX? Ay? AZ? Ar’
where k, =% and k, =17

a

Equation (4.23) corresponds to w=0, and represents the static solution. Equation
(4.24) will lead to H_ =0, which does not agree with the assumption of TE modes.
Therefore, the remaining equation (4.25) is the numerical dispersion relationship of the
TE modes. More details on the numerical dispersion relationship can be found in
Appendix A.

It is obvious that equation (4.25) is the same as the numerical dispersion relationship

of the 3D FDTD method [55] for TEy,, mode with k, = 7 and k, =% .

a
To verify the above claim numerically, we considered a rectangular waveguide with
width a=0.02m in x direction, height »=0.01m in y direction and z was the wave traveling

direction. The mesh size was Ax=0.001m, Ay=0.001m, and Az=0.00im for the 3D FDTD

mesh that discretizes the waveguide. The time step size was taken as Ar=Ar, Where
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At is the CFL time step limit of the 3D FDTD formulae. TE,gmode was excited with a
modulated Gaussian pulse sin(27zf,1)e"*" /" in the center of the structure. Parameter T
equaled 20Ar , 1, equaled 60A:, f equaled 60.465GHz and the correspbnding
wavelength 1 in the waveguide was about 5Az =0.005m. The recording point was 3004z
or 604, away from the source plane. Such a long distance between the source and the

field recording point allows us to observe effects of the numerical dispersion on the field

solutions. Figure 4.2 shows the E,s computed with the 3D FDTD and the proposed 1D

FDTD. The difference of the two E s computed with the 3D FDTD and the proposed 1D
FDTD is shown in Figure 4.3.

As can be seen, two E,s overlap completely. The maximum difference between the
two E s 1s less than 2x10™ (V/m), whereas the maximum field value is around 0.5 (V/m).

Such small differences suggest that they are due to computer rounding-off errors. Note
that the selection of the specified i and j in equations (4.3) - (4.8) has very little effect on
the error level. These verify experimentally the claim we had before: the numerical
dispersion relationship of the proposed 1D FDTD is the same as that of the original 3D
FDTD.

0.5 - T T T v T —
proposed 1D FDTD
0.4r ~ -~ 3DFDTD

0.3r

0.2}

0.1} i
° [
o1l d

0.2

Ey (V/m)

-0.3+

0.4+

-0.5

: L . s n 5 :
1 11 i2 1.3 14 1.5 16 1.7 1.8
t(ns)

Figure 4.2 The E, recorded at a point 300Az or 604, away from the source plane.
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Figure 4.3 The difference between the two Eys produced by the 1D FDTD and the reference 3D FDTD.

44 Applications of the Proposed Method

The proposed method as represented by equations (4.3) - (4.8) have two major
applications in simulating a waveguide structure: to efficiently generate numerical
incident waves that are required for computing electrical parameters such as scattering
parameters and to serve as a wideband absorbing boundary that is computed only in one

dimension.

Efficient generation of an incident wave

Because of its 1D nature, the proposed method can be used to obtain an incident wave by
computing a long waveguide structure; the waveguide is long enough that the wave
reflected by any imperfect termination at the ends cannot return to the measurement point
and contaminate the incident wave [73]. In the numerical example presented in Section
4.5, the incident wave obtained with the proposed method is found to be fundamentally
the same as that obtained using the conventional 3D FDTD method; the differences was
less than -200dB. In other words, the proposed method can produce an incident wave for
all intents and purposes identical to that obtained with the conventional 3D FDTD. This
stems from the fact that the proposed 1D method is derived from the 3D FDTD method
and therefore has the same numerical characteristics as that of the 3D FDTD method, as

proven before.
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Absorbing boundary condition

Since the proposed method can easily simulate a long waveguide structure, it can also be
used to terminate a waveguide structure as illustrated in Figure 4.4. In Figure 4.4, a
waveguide is connected to a discontinuity where both of them are modeled using the
conventional 3D FDTD grid. The waveguide is then terminated with the absorbing
boundary that is modeled using the proposed 1D FDTD method. Field components
E\,,,and E | .  areused to pass the field values from the 3D FDTD grid into the

proposed 1D FDTD grid, while field components E, I and E, |y, are used to pass

the field values in the proposed 1D FDTD grid into the 3D FDTD grid.
Waveguide discontinuity 3D FDTD mesh

\
31 / 3D waveguide

Proposed 1D FDTD
mesh

y 3
Ediyvdixa 1 Ex\lillrz.j):

\ A Hiinjean
N

—
Interface iaver between the 3D FDTD and 1D FDTD

Figure 4.4 The proposed absorbing termination using the 1D FDTD mesh [76][77].

Multi-modes generally exist in the waveguide. However, equations (4.3) - (4.8) are
valid only for a single mode. To solve the problem, each mode has to be extracted at the
interface between the 3D FDTD mesh and the proposed 1D FDTD mesh. The mode
extraction can be performed using the orthogonality of modes as described in [76][77].
Figure 4.5 illustrates such extraction operations. For the computation of the total field
value in the 3D FDTD from the known mode field values obtained by the 1D FDTD, it

just needs to add the field values of different mode together. The 3D field values of each
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mode can be obtained by the 1D FDTD field values and the field distribution pattern of
this mode.

In Figure 4.5, each mode corresponds to an independent 1D FDTD mesh line. The
positioning of the 1D FDTD mesh lines, i.e. the specific values of i and j in (4.3) - (4.8),
can be the same or can be different. The requirement for the positioning of each 1D

FDTD mesh line is that it should not be at the null field points of the mode it simulates.

3D ¥DTD mesh in 3D wavegnide Proposed 1D FOTD mesh
for each mode
z;l
ES sgiE Mode 1
Zl
Ef wufE, Mode 2
’
1
’
E, '
E:\ H:LI; Mode N-1
E
ES %I:iiz Mode N

Interface laver between the 3D ¥FDTD and 1D FDTD
Figure 4.5 The mode extraction and combination diagram at the interface between the waveguide and the

1D FDTD absorbing termination [76][77].

In the numerical example presented in Section 4.5, it is shown that the proposed
termination provides an absorption of better than -200dB even at or below the cut-off

frequencies in both the single and multi mode case.
4.5 Numerical Examples

We considered again the same waveguide as that used in Section 4.3: a rectangular

waveguide with width a=0.02m in x direction, height 5=0.01m in the y direction and z as
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the wave propagating direction. The mesh size is Ax=0.001m, Ay=0.001m, and Az=0.001m .
The time step size is taken as Ar=A:__. The total number of the iterations is 4096 (which

amounts to 7.8808ns of the real time). The source used in the FDTD simulation is the
Dirac impulse function §(n). Matlab was used to program the methods and the simulations
were run on a laptop Pentium-I1V PC with 1.8-GHz CPU and 512-MB RAM.

For the first application, we computed the incident waves for TE;; mode. The
waveguide is long enough to ensure there is no reflection from the far end to the

recording points. The time-domain signatures of E , obtained with a reference full-wave

3D FDTD simulation and the proposed 1D FDTD simulation, were recorded at a point
1Az away from the source plane. The result are shown in Figure 4.6 (for clarity, only first
0.5ns is shown). It can be seen that they overlap completely. The corresponding
frequency-domain relative errors of the incident waves, obtained by the proposed 1D
FDTD simulation compared with the results obtained by the reference full-wave 3D
FDTD simulation, is shown in Figure 4.7. The maximum relative error in the frequency-

domain is less than -200dB, which is due to computer rounding-off errors.

0.2 T T T T T T T T
— proposed 1D FDTD
- -- 3DFDTD

0.15

0.1

> 0.05H .

0.05} J

e ) L ) : L L ) )
0 005 01 015 02 025 03 035 04 045 05
t(ns)

-0.1

Figure 4.6 The E, values of the first 0.5 ns recorded at a point 1Az away from the source.
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Figure 4.7 The relative errors of E, at a point 1Az away from the source obtained by the proposed 1D

FDTD.

Table 4-1 shows the computational expenditures used for a waveguide of length
206.8cm, which was the waveguide length used in all the numerical examples. It is long
enough to ensure the reflection from the far end would not reach the interface of 1D and
3D regions during the simulation time. As can be seen, the memory used by the proposed
1D method is about 0.6% of that used by the 3D FDTD, while CPU time is about 0.23%.

The proposed method, therefore, saves significant amounts of memory and CPU time

usage.

Table 4-1 The memory and CPU time used by the proposed 1D method and the referenced 3D FDTD

method
The reference 3D | The Proposed 1D
FDTD FDTD
Memory 2334KB 14KB
CPU time 4271s 9.9s

For the second application, we used the proposed method as the absorbing
boundaries to terminate the rectangular waveguides at both ends. We then measured the
effectiveness of the absorption. The source was placed 2Azaway from the absorbing

boundary and the E, was recorded at a point 1Az away for the computation of the

reflection coefficient. Such placements of the source and recording points allow us to

measure the absorption of evanescent modes by the absorbing boundary. The reflection
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coefficient I'caused by the 1D FDTD termination was calculated using the following

formula:

_ ref

T I=20log| —‘Tmf—‘—l (dB) (4.26)

y
where E is the incident wave and obtained with a separate reference simulation where a

long waveguide had been computed with the conventional full-wave 3D FDTD method.
Figure 4.8 illustrates the calculated reflection coefficient when only the single
dominant mode TE;; was excited in the rectangular waveguide, while Figure 4.9 shows
the calculated reflection coefficient when only the mode TEgs was excited. Figure 4.10
shows the calculated reflection coefficient when multi-modes of TE o, TE3o, TE30, TEa40,
TEi1, TE;;, TEsy, and TE4; were excited simultaneously with equal magnitude (the worst

case in which multiple modes exist).

IGamal{dB)

310 . L L :
0 50 100 150 200 250

f{GHz)

Figure 4.8 The reflection coefficient from 1D FDTD termination for TE;; mode.
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Figure 4.9 The reflection coefficient from 1D FDTD termination for TEg, mode.
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Figure 4.10 The reflection coefficient from 1D FDTD termination for multi-mode case.

It can be seen from Figure 4.8 to Figure 4.10 that the proposed 1D FDTD method
provides almost perfect absorbing terminating conditions in the entire frequency
spectrum from DC to 250GHz. In all the cases, the absorptions are better than -200dB
even at or below the cut-off frequencies (the cut-off frequency of TEq is 7.5GHz and the
cut-off frequency of TEgs is 84.85GHz).

It should be noted that in the above numerical experiments the numbers of modes
excited were chosen arbitrarily to test the performance of the proposed method. In

solving a realistic structure, the number of modes to be considered can be decided in the
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same manner as that employed in the mode matching techniques or in the techniques

described in [74][75][771[(81](73][118][119].
4.6 Discussion and Conclusion

In this chapter, a new compact 1D FDTD method for uniformly filled waveguide
structures has been proposed. It has the same numerical characteristics as the
conventional 3D FDTD method. Therefore, it can be used to either efficiently generate an
incident wave or to effectively serve as a perfect absorbing termination for specified
mode. The errors or the reflections with the proposed method were found to be extremely
small, less than -200dB even at or below the cut-off frequencies. In addition, despite such
a high degree of effectiveness, the programming of the proposed method is very easy and

little analytical pre-processing is required.
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5 FDTD-Based Modal PML

5.1 Introduction

For an unbounded structure, an absorbing boundary condition is necessary to reduce the
size of the simulation domain and thus, the CPU time. PML is a very efficient and
flexible absorbing boundary condition, and it can be used for full open problems or
waveguide problems. The PML scheme was initially proposed by Berenger in 1994 as an
electromagnetic absorbing boundary condition [50]. Since then, other variations of the
PML have been developed and proven to be very effective [82]-[84]. In particular, the
complex-frequency-shifted (CFS) PML was shown to be effective for arbitrary media
[84]. In terminating waveguide structures, modal PMLs were proposed, which reduce 3D
PML operations or 2D PML operations to 1D PML operations [85][86]. They save
significant amounts of computational memory and CPU time. However, these modal
PML formulae are not derived directly from conventional FDTD grids and therefore have
numerical dispersion characteristics different from those of the FDTD. As a result, when
connected with a FDTD grid, they do not perform as well as the original 3D PML. Based
on the 1D FDTD formulae in chapter 4, a new 1D modal PML scheme is proposed in this
chapter that has almost the same absorption performance as the original PML for single

mode situations.
5.2 Derivation of the Proposed 1D Modal PML

For a homogeneously filled waveguide, field distributions (modal solutions) of a given
mode on the cross-section do not change and can be found analytically or numerically.
Using this information, a 1D FDTD scheme is obtained for modeling the waveguide in
chapter 4. This idea can be similarly applied to the PML formulae.

Now, consider a waveguide with z-direction as the wave traveling direction and the

CFS-PML scheme described in [84] withs =1, § =1, and S, =x, +__°}7__. Hers s, s,
: a, + jwe, ’

and s _are the stretched coordinate and ¢, is a damping factor that can be optimized for

better absorption performance for a specific mode. For simplicity, £, is considered here.
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The updating formula of E, in CFS-PML is described in equation (5.1) and (5.2):

At
n+l _ n n+i/2 n+l/2
Px itk T P itk + Ay (Hz i bk _H: i——%,j—':,k)
5.1)
At n+l/2 n+l/2 (
__é‘A—z(H‘r ik H.v :‘—g.j.k—g)
gk, ak +o0,
E n+l - At 2 n
x|tk eok: a, k: +0, ¢ -5k
At 2
£ « g « (5.2)
ha' R +—= &0 s
Ar 2 n+l _ At 2 n
£k, N ak +o, Tl gk, N ak +o, *litik
At 2 At 2

where P, is an auxiliary or intermediate variable.

Comparing (5.1) with (4.1), it can be readily seen that the same 1D formula in (4.3)
can be applied to (5.1) in the same manner. This results the 1D modal CES-PML equation

for E, :
plm =P,"_' =R
¥ ik Y i3k my U e 1 T ik
Ar (5.3)
n+/2 n+l/2
—E(Hy i, j ket ‘Hy f—g,j,k-g)
&k, ok +0o,
n+l - At 2 E n
ik ok, N ak, +o, ik
At 2
&, 2 &_a, G4
At 2 [ At 2 Pl
gk, ok +o, Ik gk ok +o, FliHdk
At 2 At 2

where the definition ¢, is the same as (4.9).

The PML in a waveguide acts like a waveguide filled with a lossy medium. The
medium is uniform on the cross section of the waveguide and therefore it does not change
the cross-sectional field patterns of a mode. In other words, the cross-sectional field
distribution pattern in the PML region is the same as that in the waveguide for a given
mode.

The equations for other field components can be found in a similar manner and are

listed in appendix B. They form the new 1D modal PML. Since it is derived directly from
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the FDTD grid, it should have numerical characteristics similar to the original FDTD grid.
It should also perform at least the same level as the original 3D PML for a single mode.
Numerical results presented in the next section serve to validate these claims.

Note that like other modal PMLs, the proposed modal PML can be applied to one
mode only. In a multimode situation, the interesting modes can be extracted using the

method described in chapter 4 and then terminated with the modal PML associated with it.
53 Numerical Examples

To validate the proposed 1D modal PML, a rectangular waveguide was considered. The
waveguide had a rectangular cross section with a width of a=0.04m in the x-direction, a
height of b=0.02m in the y-direction, and the wave propagation direction was in the z-
direction. The mesh sizes for FDTD simulation were Ax=0.00im , Ay=0.001m , and
Az=0.001m. The time step was taken as Ar=Ar__ =1.9245ps wWhere Ar  was the CFL time
step limit of the FDTD formulae. The total number of the iterations was 8192. One end of
the waveguide was terminated with a 10-layer PML and another end was connected to a

very long waveguide. The conductivity profile for the PML was o ,(z)=0,,(1-2z/d)',

x,(z)=1, and @ (z)=a,,(1~z/d)* for 0sz<d (d was the total length of the PML). The

source plane was placed 2 Azs away from the PML. £ was recorded at a point 1 Az
from the PML. The source in the time-domain was the Dirac impulse function §(n).
e, =27,f. With f, being the cut-off frequency of the considered mode.

Two modes, TE|q and TE;;, were excited in the waveguide, respectively. Two
separate simulations were run: one with the proposed 1D modal CFS-PML and the other

with the original 3D CFS-PML. The relative differences between the E s of the two

simulations are shown in Figure 5.1 and Figure 5.2. Figure 5.1 is for the TE;o mode,

while Figure 5.2 is for the TE;; mode.
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Figure 5.1 The difference between the E, obtained by the proposed 1D modal CFS-PML and that

obtained by the original 3D CFS-PML for TE;q mode.
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Figure 5.2 The difference between the E_s obtained by the proposed 1D modal CFS-PML and that

obtained by the original 3D CFS-PML for TE,,.

As can be seen from Figure 5.1 and Figure 5.2, the differences between the proposed
1D PML and the 3D PML are extremely small, less than -220dB across the whole
frequency spectrum, including those frequencies at and below cutoff. We therefore
conclude that the proposed 1D modal PML has numerical properties very close to those
of the original 3D PML of FDTD grid.

To assess the absorption performance of the proposed modal PML in a general

multimode situation, inductive fins were inserted into the waveguide (see Figure 5.3).
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The TE o mode was excited with a modulated Gaussian pulse sin2zf,t)e """ in the
- center of the structure. Parameter T was equal to 150Ar and ;, to 600Ar. The 10-layer
CFS-PML was 5Azs away from the closest fins. E, field was recorded at a point 1Az

before the PML and 2 Axaway from the side wall. In this case, the presence of the fins

caused the E field to consist of many higher order modes. For conventional CFS-PML,

f. is the cut-off frequency of the TE;o mode; for 1D modal CFS-PML, £, is the cut-off

frequency of each mode considered. In this example, the modes considered in the 1D

modal CFS-PML include TE g to TEoqg,

A Source line for E,
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Figure 5.3 The waveguide structure with two strips under study.

Again, two separate simulations were run: one with the proposed 1D modal PML and
another with the original 3D CFS-PML. Figure 5.4 shows the reflected E s obtained with
the proposed 1D modal PML and with the original 3D CFS-PML. Figure 5.5 shows the
corresponding reflection coefficients in the frequency-domain with the total number of
the iterations in the time-domain being 4096.

As can be seen from Figure 5.4 and Figure 5.5, the 1D CFS-PML method actually

performs better than the original 3D PML with smaller numerical reflections.
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Figure 5.4 The reflected E, obtained by the proposed 1D CFS-PML for the first 9 modes and the original

CFS-PML.
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Figure 5.5 The computed reflection coefficients by the PML in the corresponding frequency-domain.

54 Discussion and Conclusion

In this chapter, a new efficient FDTD-based 1D modal PML method was proposed. It
was derived directly from the original FDTD formulae and therefore has numerical
characteristics very close to those of the original 3D PML of FDTD. Numerical results
show that:
a) The relative differences between the results of the proposed method and the
original PMLs are extremely small (less than -220dB) for specified modes.

b) The proposed method performs at least as well as the original PMLs, if not better.



50

6 A New Subgridding Method for 2D FDTD

6.1 Introduction

For complex problems with a large solution domain and fine geometry, FDTD
simulations still require a large amount of memory and a long CPU time. One of the
principal reasons is that fine geometry requires small mesh sizes to resolve the fields
around them. In order to solve the problem, many subgridding schemes have been
developed for the FDTD method [87]-[98]. Fine meshes are employed only in the regions
that contain fine geometry while coarse meshes are used as much as possible. Schemes
are then developed to interface the fine mesh regions and the coarse mesh regions.
However, these subgridding schemes suffer from two problems: A) long-term or late-
time instability and B) uncontrollable reflections from the interfaces. In certain cases,
long-term stability is achieved but at the cost of high complexity of the subgridding
algorithms [89][90]{92][96]. The schemes presented in [94][97] are simple and of low
reflections, but they do not guarantee long term stability.

In this chapter, a simple and stable subgridding scheme with low reflection is
proposed for 2D FDTD simulations. It is not only very simple with controllable low
reflections but also proven to be stable.

The chapter is organized as follows. First, we present the proposed simple and stable
subgridding scheme and discuss how low reflections are achieved. Two numerical
examples are then computed to demonstrate the validity and effectiveness of the proposed

schemes. Finally, discussions and conclusions concerning this method are presented.
6.2 Derivation of the Stable Subgridding Scheme

In a linear and lossless medium, the spatially discretized Maxwell’s equations can be

expressed as follows:

E
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hIrpkey ot Az Ay

7



aH“, i+l jk+d e i+1,j k3 _Ez|i,j,k+-ll xivd, k41 _Ex i+1,j.k
Hlivt sy ot B Ax Az
L aH: i+d, ik E, i+L, 41k —E, i1k y{id), j+hk —E_‘, i i+ k
i+d, i+l k - ] -
RERAE: ot Ay Ax
aEx i+5. ).k
€ i+3,j.k ot
o |ivd, j+ik _Hz i+d,j—d.k H_v i+-|2-,j,k+%—H_v i+d, k-1
Ay - AZ s i+1,j.k
aE.v i j+y.k
€ jsti -
T o
x i,j+%,k+%_Hx ij+d k-4 zlivd, j+ik - Z\i—%,j%,k
' Az Ax vli itk
OE, ;s
g o —1 =
z,j,k+3 at
¥+ ket _H,v i—%,jk+d H, Ll T Mokt
Ax Ay Bk

Equations (6.1)-(6.6) can be rewritten as:
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(6.2)
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(6.6)
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Equations (6.7)-(6.18) can be rewritten as:
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Here ¢ is denoted as an electric voltage along the edge of the mesh and 5 is the magnetic
flux through a mesh cell facet. The definitions of % and 4 are the same as ¢ and5 except
they refer to magnetic voltage and electric flux. 7 is the current through a mesh cell facet.

Equations (6.19)-(6.44) can be written as a matrix form:

h=—+]
5, (6.46)

where ¢ is a vector containing all electric voltages, k is a vector containing all magnetic
voltages, d is a vector containing all electric fluxes, b is a vector containing all magnetic

fluxes, 7 is a vector containing all the currents through mesh cell facets. The matrices C

and € contain the signs for the summation of the field quantities. The diagonal matrices

D, and p, contain material properties and mesh dimensions.

Equation (6.46) can also be obtained by discretizing the following integral form of

the Maxwell’s equations directly, especially for non-uniform meshes:

éa? j j BedS =~q E-dl (6.47)
S C
% j [Deds = <§ Hedl - ﬂ JedS (6.48)

It is shown in [120] that the following equation is a sufficient condition to ensure the

stability of (6.46):
C=C"T (6.49)

This stability condition can only ensure that the spatially dicretized system is stable.
When the temporal discretization is also applied, an additional stability condition is

needed.
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The above concept is now applied to the construction of a new 2D FDTD
subgridding scheme. For a subgridding structure with a ratio of 3:1 shown in Figure 6.1,
by discretizing (6.47) directly and using equation (6.49) (with the help of Maple), the

following simple subgridding formulations are obtained:

H'™M@QD=H"(@, 1)+7A——[E"(2 1) - E"(2,0)]
(6.50)
——[E;Z @1~ E(1D]
HAX
H'(1,2)=H'(, 2)+ﬂ—A—[E" (1,2)— E"(1,1)]
(6.51)
- A B a2 -E0,2)
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KAL) =R, 1)+ 20 L e (L) - E"(2,1)]
#A (6.52)
——[ YLD -E;(1,2)]
' |
AR = K7, D+2 2,1 - E'@2.1)]
#A (6.53)
_ A "2, -e" (L)
pax
n+d n—t At n
R (1,2) = B (L2) + ——[e!(1,2) — e (1,1)]
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—E’x-[e_'; 1L,2)~E1(1,2)]
EMQ2,)=E'Q2,DH+
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Atk WLD+EERD+RE H )
Ay 3
EM(1,2)=E(1,2)-
AL HEAD T H A3 (6.56)
—[= . < . 2(1,2)]
eAx 3

where E_E , and H, are field components in coarse meshes, ¢, ¢, and h, are field components
in subgridded meshes, AX =3Ax, and AY =3Ay.
Although the subgridding formulations as derived above are stable when the CFL

stability condition for fine meshes is satisfied, numerical experiments have shown that

the reflection from the interface between the coarse meshes and the fine meshes is too
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large for general applications. In order to reduce the reflection from the interface while

retain the simplicity and stability, a parameter o is introduced as follows:

H'™M@Q,)=H7 (21
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Figure 6.1 A subgridding structure with a mesh ratio of 3:1 in a FDTD lattice.

It can be verified using the Maple that the new subgridding formulations (6.57)-(6.63)
still satisfy the stability condition (6.49). If the time step size Ar is determined by the
CFL stability condition of fine meshes, the time-domain marching should be stable. This
has been verified by numerical examples. Therefore, the focus now is to minimize the
reflections due to the subgridding. The trial-and-error technique is used to obtain a by
minimizing the reflection from the interface based on the geometry shown in Figure 6.2.
Table 6-1 gives the optimized values of « we found for subgridding ratios 3:1, 5:1 and
7:1.

Table 6-1 The values of « for subgridding ratios K=3:1, 5:1, and 7:1.

subgridding ratio K | The valueof «

3:1 0.718
5:1 0.5875
7:1 0.509

It should be noted that only a single « was introduced for the reflection
minimization. More parameters may be introduced in (6.57)-(6.63) with increased

complexity of the optimization process.
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6.3 Numerical Example

To verify the proposed method, we first apply the proposed method to a perfect parallel
plate waveguide for the TM mode that propagates in the x direction (see Figure 6.2). The

width between two plates is 10mm.

Source point Observation Subyridded
v A forH, line for H, region

; N

[ Omm

Source point for H,

Figure 6.2 The parallel plate waveguide with width of 10mm and coarse mesh size of

Ax=1mm and Ay=1mm.

The coarse mesh size iS Ax=1mm and Ay=1mm . 2x2 =4 coarse meshes in the center
are then replaced by a subgridded fine mesh of Ax=Lmmand Ay=4mm . K is the
subgridding ratio. The time step for both the coarse mesh and the fine mesh is the same,
and Ar=At,, At is the maximum time step determined for the fine mesh region based
on the CFL stability condition. The source is a Gaussian pulse in time-domain. In order to
contruct propagating mode before the subgridded fine region, the source points are

located in two symmetric points just beside the two plates and are 20 mesh sizes away

from the subgridded fine region. The observation points are a line 5 mesh sizes away
from the fine region. The coarse mesh size is equal to %at the maximum frequency
considered (15GHz in this case); the maximum reflections produced by the subgridded
fine meshes are recorded and shown in Figure 6.3. As can be seen, the reflections are
below -63dB for the three given subgridding ratios, K =3:1,5:1,7:1. This is a strong
indication that the proposed method is effective.

The second example computed is a 2D resonator of 6mmx5mm with a fin of length
2mm in the middle (see Figure 6.4). The coarse mesh size iS Ax=1mm and Ay=lmm . 2x2=4

coarse mesh around the end of the fin are replaced by a subgridded mesh of Ax=-Lmm
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and Ay=+mm. The time step for both coarse mesh region and fine mesh region is the same,

and Ar

At=At -, 18 the maximum time step determined for the subgridded fine mesh

crL
region based on the CFL stability condition. The point source used in the FDTD
simulation equals 1 at n=1 and equals 0 when n>1 in time-domain. Table 6-2 shows the
relative errors of the computed resonant frequency of the first mode in comparisons with
the results of the subgridding method presented in [94]. It can be seen from Table 6-2 that
the proposed method gives almost the same results compared with the low reflection

subgridding method.

-60

70k

-804+

90+

subgridding ratio=3:1
-100 - - - - subgritding ratio=5:1 1

subgridding ratio=7:1
-110 i

|Gammal(dB)

-120 b
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-150 b

-160

0 5 10 15
f(GHz)

Figure 6.3 The reflection coefficient from the subgridded meshes in the center corresponding to the

parallel plate waveguide in Figure 6.2.
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Figure 6.4 The rectangular resonator of 6mmx Smm with a fin of length 2mm in the middle.

It can also be found that the relative error of the computed resonant frequency
decreases as the subgridding ratio increases. However, this decrease will level off when
the subgridding ratio increases beyond a certain value. This is due to the fact that there
are two types of errors in the subgridding scheme: the error due to the interface between
the coarse mesh and fine mesh and the error due to the approximation errors of the FDTD
method in computing fine geometric structures. When the error due to the FDTD
approximation is prominent, increase in the subgridding ratio can reduce the overall error.
When the error due to the interface is prominent, increase in the subgridding ratio will
have no effect in reducing the overall error.

To check the long time stability, we have tried different positions of the fin and
different sizes of the subgridded meshes around the end of the fin with iterations larger
than 500,000. In all cases, the method is found to be stable. This has verified the stability

of the proposed method numerically.

Table 6-2 The relative errors of the computed resonant frequency of the fin structure.

subgridding Errors of the method | Errors of the method | The total time step
ratio K in this chapter in [94] numbers used

31 -2.05% -2.05% 1x8192

5:1 -1.26% -1.26% 2% 8192

7:1 -0.47% -0.47% 2x8192
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6.4 Conclusion

In this chapter, a simple and stable 2D FDTD subgridding scheme is proposed. The term
stable doesn’t mean the method is absolutely stable for any time step size Ar. It just
means it is stable when the time step size Ar is determined by the CFL stability condition
of the fine mesh. This scheme adapts the stability condition proposed in [120] and
introduces a controlling parameter that minimizes the reflections due to the subgridding.
Numerical experiments were performed to confirm the stability and effectiveness of the
proposed subgridding scheme. However, further study is required to study the sensitivity
of « to different structures. Because of its low reflection and stability, this new 2D
subgridding scheme is a very good option for the optimization of 2D photonic crystal

structures and H-plane filters.
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7 Extraction of Causal Time-Domain Parameters

Using Iterative Methods

7.1 Introduction

Recent interest in the time-domain modeling methods has been largely motivated by the
demands for broadband electronic systems and high-speed digital circuits. When FDTD
is used to analyze circuits including active devices, the most convenient way is to solve
the time-domain lump-element circuit model of the active device directly. However, the
time-domain lump-element circuit model of an active device is often unavailable and
only the frequency-domain network parameters are available. The frequency-domain
parameters need to be converted to time-domain parameters and the parameters in the

time-domain have to be causal in order to be compatible with the FDTD simulator.

Under normal circumstances, network parameters are given or measured only in the
frequency-domain and over a limited frequency range. For instance, most manufacturers
provide the S-parameters for a FET transistor over only a limited frequency range under
certain biasing conditions. To convert these frequency-domain parameters to their time-
domain counterparts, transformation techniques such as the inverse Fourier Transform
can be applied. However, direct application of these transformation techniques usually
leads to non-causal time-domain parameters. For instance, the S-parameters of
NE425S01 were given by manufactures over the frequency range of 0.5GHz — 18GHz
[121]. One can supposedly obtain the frequency-domain Y-parameters from the given
frequency-domain S-parameters [122] and then apply the inverse Fourier transform
directly to obtain the time-domain Y-parameters. Figure 7.1 shows the time-domain
y,, () obtained as such for NE425S801. As can be seen, y, (t) has some significant values
at <0 and therefore is non-causal. In other words, the simple inverse Fourier transform is
not adequate. Therefore, schemes need to be developed that can extract the causal time-
domain parameters from the band-limited frequency-domain parameters.

It should be noted that the proposed methods do not guarantee the obtained

frequency-domain parameters outside the given frequency range are close to actual
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values; however, it is not of concern to a user.
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Figure 7.1 The time-domain y,,(¢) obtained with the direct inverse Fourier transform of the frequency-

domain Y-parameters.

Perry et al. [123] and Chen [124] studied such phenomena and proposed the use of
the Hilbert transform to tackle the problem. The method proposed by Perry er. al
achieves the causality by maintaining the magnitudes of the original parameters but
modifying their phases for the minimum-phase systems [123]. The technique proposed by
Chen has difficulties in handling the singularity of the Hilbert transformation integrals
[124]. The errors were found to be somewhat large because of the simple direct

extrapolation.

To obtain causal time-domain parameters from the band-limited frequency-domain
parameters with good accuracy in the given frequency range, two iterative techniques to
extract causal time-domain parameters are explored. They are conceptually simple and
easy to implement. The extracted time-domain parameters not only are causal but also
contain the same frequency-domain information as the original parameters over the given
limited frequency range in both magnitude and phase. Comprehensive numerical studies

on the effectiveness and validity of the proposed approach are presented.
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7.2 The Error Feedback Based FFT Method

Suppose that Y, .(f)=Y,. .(f)+jY,. .(f) is the given frequency parameter that is

known over a finite frequency range of interest. We propose the following procedure to

obtain its causal time-domain counterpart:

Step 1:

Step 2:

Step 3:

Let the values of the target frequency-domain Y-parameters, denoted

as () =Y ,(f)+jY_(f), be equal to ¥,

ori

(f) within the given
frequency range and equal to zero outside the given frequency range.
Transform Y, (f) to its time-domain counterpart, denoted as y(z) , with a
straightforward inverse fast Fourier transform (IFFT). y(#) is usually

non-causal.

Force the causality into the obtained y(#) by simply setting all the values

to zero for < 0. Thatis, let y(r) =0fort<0.

Fourier Transform the time-domain parameters obtained in Step 2 back

into frequency-domain and obtain the corresponding frequency-domain

parameter, denoted as Y _,(f)=Y_, (f)+jY. .. (f) . Compute

differences or errors between Y, ,(f) and the original Y,

ort

(f)over the

frequency range of interest. The difference is defined as

AY(f) =Yoo (f) =T, (f) (7.1)

The error functions are defined as

_ max(AY, (f))
errorl = ———max (JY,,,i, (f)l) (7.2)

_ max(AY,(f))
error2 = —————max (lYa,i,» (f)l) (7.3)
error = max(errorl,error2) (7.4)

Here max means the maximum value within the frequency range of
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interest. If error is acceptably small, the time-domain parameters
obtained in Step 2 are the causal time-domain parameters that we can

accept and the computations terminate here; otherwise, go to the next

step.

Modify the target frequency-domain Y-parameters

Y .(f)=Y. .(f)+jY ,(f)in the frequency range of interest as follows:
Y () =Y (f)-AY(f) (7.5)

AY(f) =AY, (f)+ j(eAY(f)) (7.6)

where @ is a coefficient used to balance the convergence speed between
the real part and imaginary part. « is selected empirically in the
following manner: the initial & is set to be 1; in the subsequent

iterations, it is given by

a =a+ (error2—errorl) .7
Extrapolate the target frequency-domain Y-parameters

Y, (f)=Y. (f)+jY; ;(f) outside the frequency range of interest with

the following formulas:

Y. (f) =Y (f)-AY(f) (7.8)

n=m+l, .., N. f, is the FFT frequency point. n is the index in the

FFT. The first frequency point f, is the border frequency point inside
and outside of the frequency range of interest. N is the FFT index of the
highest frequency point used in FFT. AY(f,) is obtained with the

following recursive formulas:

AY(f,) =0.9*AY(f,.,), m+1<n<N (1.9)

The factor 0.9 is used to smooth the change of the parameter values

outside the given frequency range. It is selected empirically.
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Step 5:  Take the inverse Fourier Transform of the frequency-domain parameters

obtained in Step 4 and go back to Step 2.

In the procedure described above, the error AY(f) is introduced into the iterative loop.
Therefore, we call the method the error feedback based method. The flow chart in Figure
7.2 illustrates the iterative procedure.

Our numerical experience shows that the above iterations normally lead to the
convergence. However, if the known parameters are not the frequency-domain
parameters of causal parameters, the iterations may not converge. To deal with the
problem, like in any other iterative methods, a prescribed number can be introduced into
the iterations such that the computation will be terminated once the number of iterations
exceeds the prescribed number. In the numerical examples later, the prescribed number is

set to be 500 with errors in (7.4) set to be less than 1%.

Let Y () be equal to Y_(f) within the
freguency range

!

Inverse Fourier-transfarm Y (f) and obtain

the time domain ¥ (0
Farce causality by settingy(t)=0 for t<0
1 Carrect the Y. (f}
Fourier-transform y;(t) to abtain its with the errors

frequency domain counterpart Y, ()

Y

Compute the errors between Y (f) and
Y () within the frequency range.
Are the errors small eneugh?

1 YES

v(t) is the causal time-domain parameter

Y

Figure 7.2 The flow chart of the error feed-back based FFT method.
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7.3 The Hilbert Transform Based FFT Method

Hilbert transform can also be used with FFT to form another iterative method for
extracting the causal time-domain parameters. For a real causal signal y(¢), let Y(f)be

its Fourier transform or the frequency-domain counterpart:

Y(f)=F{y®)} (7.10)

where F{} represents the Fourier transform. Then the real part of Y(f) and the

imaginary part of Y(f) should satisfy the following Hilbert transform relation [125]:

V()= IY(f) = Y(f) 711
nn=-1 Py - Ler) 1.12)

where Y, (f)=realY(f)) , Y, (f)=imag¥(f)) and Y(f)=Y.(HH+jY,(f) . ®

represents the convolution in the frequency-domain.

J

The inverse Fourier transform of —-— is a sign function:
0=1" £>0 (7.13)
S )= .
& -1 t<0
or simply,
J
——=F{sgn(?)} (7.14)
b/

Consequently, the Hilbert transform (7.11) and (7.12) can be rewritten as:

v.(f)=FIFY=L® jr,(H1 (71.15)
xf

() =FE Loy () (7.16)
xf

or,
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Y,(f) = F{sgn(t)F"'{ jY,(f)}} (7.17)

JY.(f)=F{sen(OF {Y.(H}} (7.18)

With the application of FFT, equation (7.17) and (7.18) can be expressed as
Y.(f) = FFT{sgn()IFFT{jY,(f)}} (7.19)

JY.(f) = FFT{sgn()IFFT{Y,(f)}} (7.20)

The above relations are used as the basis for the iteration method; therefore, the

method is named the Hilbert transform-based FFT method.

In the following paragraphs, the procedure for the Hilbert transform-based FFT
(f) and Y,

ori_i

method is described. To do so, let Y.

ori_r

(f) be denoted again as the real and
imaginary parts of the original frequency-domain?, (f)=Y,. (f)+jY,, ;(f) that is

known over a finite frequency range of interest. The procedure involves five steps:

Step 1: Set Y,(f) to be equal to ¥,  (f) within the given frequency range and

equal to zero outside the range. Use equation (7.20) to compute the

imaginary part Y, (f) of the frequency-domain Y parameter

Step 2: Force Y,(f) to be equal to Y, .(f) within the frequency range of interest.

For the values outside the range, an extrapolation technique similar to that
used in the previously discussed error feedback FFT method is applied.

That is, Y,(f) outside the interest frequency range are updated with the

recursive formula:

Y.(f)=Y(f)-AY.(f) (7.21)

where n=m+1, ..., N. f, is a FFT frequency point that lies outside the
frequency range of interest. n is the FFT index. The first frequency point
f,, is the border frequency point of the frequency range of interest. N is the
FFT index of the highest frequency point used in FFT. AY;(f,) is updated

with the following recursive formulas:
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Step 4:
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AY.(f,)=0.9*X (f,) =Y, (f,-)) (7.22)

Note that Y;(f,) in the right-hand side of (7.21) and (7.22) is the value
obtained in the previous iteration. The factor 0.9 is used to smooth the
change of the parameter values outside the given frequency range. It is
selected empirically.

Compute the causal time-domain parameter y(¢) and check the errors of

its frequency-domain counterpart:

A) Store the values of Y, (f) in ¥, ,(f) as temporary values and use

r

equation (7.19) to compute the new valuesY, . (f).

B) Set Y.(f)=(, ,(f)+Y, ., (f)/2 and take the inverse Fourier

Transform of Y(f)=Y.(f)+jY,(f) to obtain the corresponding time-

domain parameter y(t) .

0] Force the causality into the obtained y(¢)by setting all the values

to zero for t <0 and then transform it back into the frequency-domain and
obtain the corresponding frequency-domain parameter that becomes the
new Y(f)=Y,(f)+jY,(f).

D) Compute differences or errors between the frequency-domain
parameter Y(f) and the originally specified or given frequency-domain
parameters Y . (f) within the frequency range of interest. If the differences
or errors are acceptably small, the time-domain parameters y(t) are the
causal time-domain parameters we can accept and the computations
terminate here; otherwise, go to the next step.

Force Y,(f) to be equal to Y, .(f) within the frequency range of interest.

To update the values outside the range, an extrapolation technique similar

to that used in Step 2 is applied. That is, Y, (f) outside the interest

frequency range are updated with the recursive formula:
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Y (f)=Y.(f)-AY.(f) (7.23)

where n=m+1, ..., N. f, is a FFT frequency point that lies outside the

frequency range of interest at the FFT index of n. The first frequency point

£, is the border frequency point of the frequency range of interest. N is the

FFT index of the highest frequency point used in FFT. AY.(f,) is obtained

with the following recursive formulas:

AY (f)=09*X.(f)-Y,(f,.) (7.24)

Note that Y, (f,) in the right-hand side of (7.23) and (7.24) is the value

obtained in the previous iteration. The factor 0.9 is used to smooth the
change of the parameter values outside the given frequency range. It is

selected empirically.
Step 5: Use equation (7.20) to compute the new Y,(f) and go to Step 2.

The factor 0.9 in step 2 and step 4 is used to smooth the change of the parameter

values outside the given frequency range. It is a trial and empirical selection.

The error functions must be defined in Step 3 to assess the differences between the
computed frequency-domain Y parameter and the prior-known or -specified frequency Y
parameter within the frequency range of interest. In our case, we take following error

functions, with the note that the other error functions can be used depending on a user’s

preference:
Y -Y .
errorl = max(ir, (/) 0""(f)l) (7.25)
max(|¥,,_.(f))
rrors =LY (P (7.26)
max((Y,,,_,(f)]) '
error = max(errorl,error2) .27

The iterative procedure above is illustrated by the flow chart in Figure 7.3. As
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described above for the error feedback method, the above iterations should be halted if
the computations cannot converge after the number of iterations becomes too large or
exceeds a prescribed number. In our computations described in the following section, the

pre-set number is 500 and the error in (7.27) is set to be less than 1%.

Let Y (f) be equal to Y _ (f) within
the frequency range
and use (7.21) to compute Y (f)

Y
ForceY(fytobeequal to Y  (f) within
the frequency range and apply an _
exirapolation fechnique to obtain Y(fy [
outside the range )

'

Store Y0 in Y, (0
Use (7.20) to obtain Y, . {f) Use (7.21) to compute Y (£
Set Y (D=[Y (D+Y (D} fi pre 70

. f

Inverse Fourier-transform
Y(H=Y (fi+jY,(f} and obtain ¥(t)

Force the causality by setting Force Y (f) to beequal to Y . (f) within
v{t)=0 for t<0 the freguency range and apply an
* extrapolation technique to obtain Y (f)
outside the range
Fourier-transform v{f) and

obtain the new Y(f)
Compute the errors between Y(fy and Y _(f} NO
within the frequency range.
Are the errors small enough?

YES

¥
v{f)is the causal
time-domain parameter

Y

Figure 7.3 The flow chart of the Hilbert transform based FFT method.
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7.4 Numerical Validation

To validate the two proposed methods, we first apply them to two theoretically known
cases: a temporal triangular pulse and a temporal rectangular pulse with their spectra only
partially known. Once the methods are proven valid, they are applied to a real FET

amplifier.

A) Triangular pulse

The triangular pulse considered is expressed as follows:

1]
yoO=4" T
0 otherwise

=T (7.28)

where T = 0.1(ns) is the duration of the pulse in time. By taking the Fourier transform, a
complete spectrum of the triangular pulse is obtained as

. .2
Y(f)= (e ATy I 1T

7.29
Tr): (7:29)

The pulse has a finite duration in the time-domain but extends to infinity in
frequency-domain.

Suppose now that Y(f)is only given or known over OHz -6GHz. That is, we now

have
_j24T sin”(If)
Y(f)= e _——(Tf)2 0< f £6GHz (7.30)
unknown f >6GHz

To extract the pulse in the time-domain with the above limited information, the
simplest approach is to directly take the inverse Fourier transform of Y(f) with
assumption of Y(f) being zero beyond 6GHz. The resulting time-domain signal is found
to be not causal. To ensure the causality, one can simply cut off the time-domain values
for t<0 (i.e. set the values for t<0 to be zero). We call the approach the direct cut-off
method. The causal time-domain signal obtained with the direct cut-off method can be
converted to the frequency-domain to check its spectrum. The results are shown in Figure

7.4, which demonstrates that there is a big difference between the computed spectrum
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and the original value within the frequency range of 0-6GHz. The maximum relative

error is nearly 100%.

Figure 7.4 The time-domain pulse and its Fourier transform obtained with the direct cut-off method.
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Figure 7.5 The time-domain waveforms and its spectra extracted with the proposed two iterative methods

when the known frequency range is from 0 to 6GHz for the triangular pulse.
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Now the two methods proposed in this chapter are applied. Figure 7.5 shows the
results. Because the extracted time-domain signals are fully causal, their values for
negative time are equal to zero and are not plotted in the figures for space limitation.

As can be seen, there is big difference between the extracted time-domain pulse and
the original triangular pulse. The reason is that the proposed methods only warrant the
frequency-domain parameters are close to the actual values within the given frequency
range but not outside the given frequency range. The differences in the frequency-domain

within the range of 0 to 6GHz are less than 1%.

B) Rectangular pulse

The second example of a rectangular pulse is defined as

1 0<t<T
y(1) ={ (7.31)

0 otherwise

where T = 0.1(ns) is the duration of the pulse. Fourier transform of the rectangular pulse

gives

Y(f) T sin(Tf)

7 (7.32)

Now suppose that Y(f) is known only from O to 6GHz, application of the direct

cut-off approach as described in the last section leads to the results shown in Figure 7.6.
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Figure 7.6 The time-domain waveform and its spectra extracted with the direct cut-off approach.

It can be seen from Figure 7.6 that the difference between the computed spectrum
and the original value is large, especially the real part. However, the results from the
proposed methods are much closer to the original values within the concerned frequency
range of 0 to 6GHz. They are shown in Figure 7.7.

From the two examples relating to triangular and rectangular pulses, we can see that
although the extracted time-domain pulses are different from the original shapes, the
corresponding frequency spectra are very close to the original values within the
concerned frequency range. Therefore, the extracted time-domain pulses shown in Figure
7.6 and Figure 7.7 can be used to adequately represent the original triangular and
rectangular pulses in terms of the frequency range of interest.

In summarizing the above results, we can conclude that the proposed iterative
methods are effective and useful in extracting time-domain signals from the given
frequency-domain information in a limited frequency range of interest. The time-domain
signals extracted as such are causal and can be used to represent the original pulses in

light of the frequency range of interest.
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Figure 7.7 The time-domain waveforms and their spectra extracted with the two proposed iterative method

methods when the known frequency range of interest is from 0Hz ~6GHz for the rectangular pulse.

In the following section, we apply the proposed iterative methods to a linear FET

amplifier.

C) FET amplifier

The FET amplifier used NE425S01 as its active device [121]. As indicated before,
the S-parameters of the active device are given by the manufacturer only over the
frequency range of 0.5GHz to 18GHz. They can be easily converted to the Y-parameters
in the frequency-domain. Since the given frequency data is quite sparse and not suitable
for FFT directly, the spline interpolation was applied.

Now the proposed methods are applied to extract the causal time-domain parameters
of the device. Figure 7.8 and Figure 7.9 show that the extracted time-domain parameters
are causal. The spectra of the extracted time-domain parameters and their comparisons
with the original parameters are shown in Figure 7.10. The parameters extracted with the

two methods are similar in general shapes in the time-domain but different in details. For

example, y,,(t) extracted with the Hilbert transform based FFT iterative method has one

more small ripple at the initial time than the y,,(f) extracted with the error feedback FFT
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method. These differences can be attributed to the fact that the different values of ¥, (f)

outside the frequency range with the two methods.

x10°
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~— 1' |
S sv—
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o X10 - -
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0 0.6 1.2 1.8
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O =W

0 0.6 1.2 1.8
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Figure 7.8 The time-domain Y-parameters extracted with the error feedback FFT method for the FET used

in the amplifier.
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Figure 7.9 The time-domain Y-parameters extracted with the Hilbert transform based FFT method for the

FET used in the amplifier.

Figure 7.11 shows the results of the S-parameters converted from the Y-parameters.
As can be seen, the S-parameters extracted from the direct cut-off approach are vastly
different from the original data but the results from the proposed methods are very close
to the original data within the frequency range of interest with their time-domain

counterparts being causal and compatible with the FDTD modeling.
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Figure 7.10 The Y-parameters in frequency-domain after using the iteration methods.

After the causal time-domain Y-parameters of the FET are obtained, they are
included into an in-house time-domain simulator that is based on the modified central
difference method (MCD) [126] for modeling the overall amplifier. Figure 7.12 shows
the layout of the amplifier. The characteristic impedances of main transmission line TL1
and open-circuited stub line TL2 are both 50Q . The phase velocities on TL1 and TL 2
are both 2.12535%10% (m/s). The length of TL1 is 6.4(mm) and the length of TL2 is
3.6(mm).
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Figure 7.11 The S-parameters after using the iteration methods and direct cut-off.
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Figure 7.12 The Layout of the FET amplifier circuit.
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Figure 7.13 is the computed overall S21 of the whole amplifier circuit. For reference,
the Agilent Advanced System Design (a frequency-domain simulator) was also employed
to simulate the circuit. The results are also plotted in Figure 7.13. As can be seen, the
results from MCD that employs the extracted causal time-domain Y-parameters are very

close to the results from ADS.

i"\i — result from ADS

@ 10| --- error feedback FFT 1
T4 Rl Hilbert transform based FFT |
207 |
-25 )
-3%.5 5 10 15 .

f (GHz)
Figure 7.13 The computed S21 of the amplifier in Figure 7.10 from different methods.

7.5 Discussion and Conclusion

In this chapter, two iterative approaches were proposed for extracting causal time-domain
parameters from their frequency-domain counterparts that are known only over a
frequency range of interest. Both methods are shown to be effective and useful with a
good degree of accuracy of less than 1%. The time-domain parameters extracted as such
can be included in a time-domain simulator that has a stringent requirement for time
causality.

It should be noted that the method described in this chapter can only be applied to
small signal linear parameters. Extension to large signal nonlinear situations is the subject

of future research.
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8 Extraction of Causal Time-Domain Parameters

Using Rational Function Approximation

8.1 Introduction

Network parameters of a lump-element device are usually given in a limited frequency
band of interest, or an operation frequency range. To include them in time-domain
simulations, they need to be converted to their causal time-domain counterparts. In
chapter 7, two iterative methods were discussed. However, the resulting time-domain
parameters are in numerical data format. The convolution with them in the time-domain
is very time consuming for long simulations. In [127], various rational function fitting
techniques except the vector fitting (VF) were discussed. In [128], the vector fitting was
developed with the aim of better curve fitting of frequency-domain data, but only

considered passive structures in frequency-domain.

In this chapter, we propose the use of the rational fitting technique to extract the
causal time-domain parameters of a lumped device, in particular an active device, from
their known band-limited frequency-domain counterparts. One of the major advantages
of this approach is that the resulting time-domain parameters can be expressed in the
form of exponential functions. The convolution with these exponential functions can then
be performed in a recursive fashion without requiring a complete past history of the time-
domain parameters. The CPU time for each time-marching step is constant, and the CPU
time and memory can therefore be significantly reduced, especially for a simulation with

a large number of iterations.

In the following sections, the proposed rational fitting technique is described and the
recursive convolution is shown. Finally, a numerical example is presented to

demonstrate its validity and effectiveness.
8.2 Causal Time-Domain Extraction With The Rational Fitting Technology

The objective in this section is to find rational functions in the frequency-domain that

match the original parameters within the frequency range of interest. Suppose that
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Y(s)’ s=jo 18 an admittance parameter known at frequency points w,(n=1,2,..., NF) over a

specified frequency range of interest. A rational function Y is used to approximate Y . It

should differ little or not at all from the original parameter Y(s) on the known

s=ja
frequency points.

The rational function can then be expressed as [127]:

> N(s)
Y(s)=Y(s)=
(s)=Y(s) D(s) 8.1
N(s)=ag+a;s+ays® +..+ays" (8.2)
D(s)=by +bs+bys* +...+bys" (8.3)

where s = jo= j2af . a;, _,,, ,and b, ., , , are the coefficients to be determined; N
is the order of approximation and (N+1) is not bigger than the number NF.

To find the coefficients 4, and b,, one may force Y(s) to be equal to the original

parameter Y(s)l at the given or known NF frequency points f, . That is,

Y()l_, =Y., (8.4)

or
Y(s)l_, *D(s)I_, ~N(®)l._, =0, (8.5)

with s, = jw, = j2xf,and n=1,2,..., NF.

Equation (8.5) contains NF complex equations, or equivalently, 2NF real equations.
However, equation (8.5) is homogeneous. An additional condition is needed to make
(8.5) inhomogeneous so the solutions will not be trivial. To do so, we can set b, =1 [127].
As long as (N+1) < NF is set, the remaining (2N+1) coefficients can then be solved by
using the least squares technique.

After the coefficients are found, the rational function is determined. To obtain the

corresponding time-domain expression, the poles of the rational function need to be

decided. Many software packages can be used. In our case, MATLAB was employed.

Once all the poles are found, Y(s) can be rewritten as:
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N

- R
Y(5)=) —t—+k, (8.6)

n=1 §— }/n

where 7, is the pole and R, is the residue of Y(s) at s=7y,.

In order to ensure the stability of the time-domain counterpart of ¥Y(s) and to

express it in an exponential form, any poles that are in the right half s-plane need to be
removed or flipped to the left half plane, followed by a refitting of the residues.

Although the above procedure appears theoretically feasible, there are two
drawbacks in practice: first, the process may suffer from numerical problems such as ill-
conditioning of the system matrix for high-order approximations, and secondly,
multiplication with the denominator in (8.5) may result in a frequency-domain weighting
that induces large errors or limits the method to a low-order approximation when the
frequency range is wide. To overcome these problems, the vector fitting proposed in [128]

is then applied. The procedure is summarized below.

right half s-plane are discarded. The resulting Y (s) becomes:

M '

Y(s)=), Ko vk, (8.7)

n=l S—an

where R', is the residue of Y(s) at s=a,.

Let @,, ,_,, , be the starting poles. Then the following three steps are taken:

Step #1: an unknown auxiliary function o(s)is introduced and o(s) and o(s)Y(s) are

approximated with rational functions with the poles a,, ., ,:

M

M H(S—Zn)

o‘(s)Y(s)=Z]sf"E +d=d"ﬁ=‘—— (8.8)
= S —a, (s—a,)

n=]

M
v H(s—zn
- n 1= n= .
o(s) ;s—ﬁn+ M(S_E) (8.9)

where c,, ¢,, and d are the unknown coefficients to be found. z, and z, are the zeros of
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o(s)Y(s) and o(s), respectively. They can be found once ¢, ¢,,and d are determined.

Equation (8.9) is then multiplied with the original Y (s) and the resulting equation is

set equal to (8.8):

M c M
)

n=l $— a4, n=1

. f"_ +1]¥(s) (8.10)

an

Equation (8.10) is enforced at the known frequency points and solved for

c,, ¢, and d with the least squares techniques.

Step #2: (8.8) is divided with (8.9) :

H(s—zn)

Y(s)=d—— (8.11)

[T6-2z)

n=1

Equation (8.11) shows that the poles of Y(s) are equal to the zeros of o(s) in (8.9),
which can be calculated from the solution of (8.10) by solving an eigenvalue problem
[128].

Step #3: If Y(s)l 4=jo Obtained in (8.11) is not sufficiently close to the original parameters

within the frequency range of interest, a, is replaced with Z, and another iteration can be

started by going back to Step #1.

The fina] approximating function can be rewritten in the following form:

M

Y(s)=Y(s)=),

i=t § f

Y.
] (8.12)

where r, is the residue at pole p,. & is a constant.

Using the inverse Laplace transform [129], the time-domain form of (8.12) can be

expressed as:

M
() = §(1) = ad(t) +u(t) Yy re” (8.13)

i=1
where 6(¢)is the Dirac Delta function and u(¢)is the unit step function that ensures the
causality. y(¢) is the causal time-domain representation of the original

parameter Y (s)‘

s=jw *
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Since (8.13) is in exponential form in the time-domain, its convolution in time-
domain can be computed very efficiently in a recursive fashion [130]{131]. More
specifically, a current i(¢) can be found as:

(1) |oa = [Y @) @ V(D]

=[O V(O] |y (8.14)

M
= av(t) Ir:kAt +z ';'//: (t) It=kAr

i=1

where v(r)is a voltage , ® is the convolution in time-domain, At is the time step used in
a time-domain simulator and k is the iteration number, and
() =" ®v(D]_,4,
= ep;Afl//’_ 63 |,=(k_1)A, (8.15)
+ J:A’ " Iy (n)dT

~1Ar

By using the trapezoidal rule, the integration in the above equation can be numerically

evaluated as:

fN e A Dy (rYd

k-1)Ar

A (8.16)
= _2-[6 VO s TV ]

The above recursive convolution takes a total of 3-M -k additions and (4M +1)-k

multiplications to reach the k-th time step (i.e. the computation time for each time step is
constant), while the numerical convolution involving a whole past history of a parameter
needs 0.5-k-(k—1) additions and 0.5k - (k +3) multiplications (i.e. the computation time
for each time step increases with the iteration number). In other words, the computation
time with the recursive convolution is proportional to the number of iteration, while the
regular convolution is proportional to the square of the number of iterations. That is, for a
simulation with a large number of iterations, the computation time with the recursive

convolution will be much smaller than that with the regular convolution.
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8.3 Numerical Validation

In order to verify the efficiency of the proposed method, it is tested with the same
amplifier shown in Figure 7.12 in chapter 7. As in chapter 7, the frequency-domain Y
parameters of the FET transistor need to be converted into causal time-domain Y
parameters. In this case, N in (8.1) is taken to be 12 for Y11(f), Y12(f), Y21(f), and
Y22(f). The number of frequency points provided by the manufacturer is NF =21. The
computed poles for the rational approximations of Y11(f), Y12(f), Y21(f), and Y22(f),
before the application of the vector fitting as expressed by (8.7), are shown in Table 8-1.
The poles, residues, and the constant term ¢, after application of the vector fitting as
shown in (8.12), are listed in Table 8-2 and Table 8-3.

The frequency-domain differences between the Y-parameters obtained with the
proposed method and the original data are less than 1.3% within the frequency range of

interest. The difference or error is defined by:

Y -Y .
errorl = max(}t, (/) m”’(f)b 8.17)
max(|¥,; .(f))
Y. -Y ..
error2 = max(l /) On"l(f)|) (8.18)
max(Y,,_,(f)])
error = max(errorl,error2) (8.19)

where max means the maximum value within the frequency range of interest.Y , .(f)

ori_r

and Y

. :(f) are the real part and imaginary part of the original frequency-domain data.
Y.(f) and Y,(f) are the real part and imaginary part of the rational approximation data.

Figure 8.1 shows the causal time-domain Y-parameters obtained with the proposed
technique (d(r) term is not plotted for clarity), while Figure 8.2 shows their frequency-
domain correspondents that includes the ad(r) term. For comparison, the original data
are also plotted on the same figure. For further validations, the corresponding S-
parameters are also compared in Figure 8.3

As can be seen, the parameters obtained with the proposed method are basically

overlapping the manufacturer’s data, while the results obtained with the direct cut-off
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method show significant differences within the frequency range of 0.5GHz to 18GHz.
Therefore, we conclude that the causal time-domain responses represented in an
exponential form by (8.13) are valid and can be used to model the FET in the time-
domain, with little frequency-domain information inaccuracy.

Once the causal representation of the Y-parameters of the FET are obtained with the
proposed method, they can be put into a FDTD based simulator for modeling the overall
amplifier as shown in Figure 7.12. In our case, the modified central difference method
(MCD) [126] was employed in constructing the simulator. Figure 8.4 is the computed
overall S21 of the amplifier. For reference, the Agilent Advanced System Design was
employed to simulate the circuit. The results are also plotted in Figure 8.4. As can be

seen, the two curves are VErYy.

Table 8-1 The initial poles (Hz) of Y11, Y12, Y21, and Y22 as in (8.7)

Y, ()

Y, (f)

YZI (f)

Y ()

-1.6390e+08 ¥ j1.0627e+11

-2.1594e+08 *j1.0652e+11

-2.2991e+06 X j1.1302e+11

9.7073e+07 £ j1.0656e+11

-2.6371e+08 +j9.6443e+10

-2.8411e+08 £9.7359¢+10

-1.7657e+06 1 11.063%e+11

-1.5727e+08 £ j9.7509e+10

-7.8294e+08 1 j8.5994e+10

-6.4923e+08 +j8.6824e+10

9.5890e+07_tj9.6994e+10

-5.8508e+08 1 j8.6887e+10

-2.3385e+08 1j7.8650e+10

-3.4879%e+08 ti7.9242e+10

-5.5625e+08 T i8.6497e+10

-3.4192e+08 % j7.9307e+10

-8.9298e+07 I j6.5207e+10

-3.3949¢+08 +i7.9156e+10

-6.9017e+06 * j6.5179¢+10

Table 8-2 The final poles and residuals of Y11, Y12, Y21, and Y22 as in (8.12)

Y11(H) Yi2(f)

Poles (Hz) Residues (Hz) Poles (Hz) Residues (Hz)

-3.9005e+10 7.2486e+07 4.6629e+09 +i6.3163e+10 | 1.9162e+05 ¥ j4.8670e+05
2.7216e+11 -8.8473e+09

-1.2964e+10 Tt j6.9695¢+10

1.6009e+06 Fj2.2171e+06

-6.1162e+09 T j 6.2023e+10

-5.1316e+06 T j3.0844e+06

2.2396e+09 *j7.4970e+10

1.6074e+05 ¥ j4.1186e+04

-6.5318e+09 X j7.4647e+10

-3.8004e+06 *j2.9213e+06

-5.1509e+09 *i8.2227e+10

-7.9590e+07 F 2.1019e+06

-5.1854e+09 T j8.2233e+10

6.7926e+08 T j4.1983e+07

-6.4961e+09 *j1.3625e+11

4.1183e+06 Fj1.1193e+07

Y21(D)

Y22(f)

Poles (Hz)

Residues (Hz)

Poles (Hz)

Residues (Hz)

-3.4487e+09 1 j4.2532e+10

6.7096e+06 F j1.3006e+06

2.5779+10 *j4.5645e+10

4.9684e+06 T j5.2463e+07

-7.3245e+09 *j6.3089¢+10

3.7669e+07 T j8.6430e+06

-1.0385¢+10 *j6.7829e+10

-8.8947e+06 T j4.6101e+05

-1.3942e+09 ¥ j6.9142¢+10

4.9240e+06 *j2.3011e+04

-5.2475e+09 * j8.2188e+10

3.2774e+08 £ j1.3077e+08

-1.8947e+10 X j7.5759e+10

1.5974e+08 * j1.7481e+08

-6.6450e+09 *j1.1915e+11

-2.4210e+07 =+ j2.1270e+07

-5.1568e+09 ¥ j8.2266e+10

-2.8295e+09  j8.0159e+08

-6.9454e+10 T j1.0174e+11

2.0019e+09 ¥ j1.3756e+09

Table 8-3 The constant term of Y11, Y12, Y21, and Y22 as in (8.12)

Y11(f)

Y12(f)

Y21(f)

Y22(f)

a 2.6856e-002

-1.3213e-004

8.8978e-003

1.2232e-002
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Figure 8.1 The Y-parameters in the time-domain corresponding to Table 8-2 and (8.13) but without the

od(t) term.



real(Y21) real(Y12) real(Y11)

real(Y22)

0.2
original data
————— vector fitting
0.1 1
0
0.5 5 10 15 18
0.01
0 |
-0.01 original data
————— vector fitting
-0.02 —
0.5 5 10 15 18
0.5
0 —‘—’—‘\ \/—
0.5 original data
————— vector fitting
-1 =~
0.5 5 10 15 18
f (GHz)
0.1
original data
————— vector fitting
0.05
o]
0.5 5 10 15 18
f (GHz)

Figure 8.2 The Y-parameters in the frequency-domain obtained with the proposed.
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Figure 8.3 S-parameters in the frequency-domain obtained with the proposed method and direct cut-off.
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Figure 8.4 The overall S21 of the amplifier.

To show the advantage of the proposed method in convolution, Figure 8.5
demonstrates the computation time versus the number of iterations using recursive
convolution formulas. For comparison, the CPU time using non-recursive convolutions
is also plotted. As can be seen, the total computation time with recursive convolution
using (8.14) and (8.15) is proportional to the number of iterations (i.e., the CPU time for
every time-marching step of the MCD computation is the same). However, the
computation time with non-recursive convolution is proportional to the square of the
number of time-marching steps (i.e., the CPU time for an MCD time-marching step is
increased as the number of time-marching steps increases). In other words, as the
number of time-marching steps becomes larger and larger, the computation with non-
recursive convolutions becomes slower and slower and will eventually come to stand-still.
When the number of MCD time-marching steps reaches the order of 10°, the saving in
CPU time with the recursive convolutions is approximately thirty times.

Nevertheless, from observing Figure 8.5, one can see that there is a threshold of the
number of time-marching steps when the recursive convolution starts to use less

computation time than the non-recursive convolutions. This is because at the beginning,



94

non-recursive convolutions only involve a short history of data while the recursive

convolutions always involve M terms (see (8.14) ). In this case, the threshold number is

approximately 1500.

900 T T T T T T T T T
800 o
700 - ,/ _
T 600~ .
8 //
g/ 500 —— MCD using recursive convolution ,,’
g i - -- MCD using numerical conwolution T
2 400 .
=] o
[=% .
E 300} 7
(8] e
200} ]
100+ e ]
0 PP T + T T T 1 | 1 1
0 1 2 3 4 5 6 7 8 9 10
iteration number x 10"

Figure 8.5 The computation time versus the number of iterations for the amplifier.

8.4 Conclusion

In this chapter, a method using rational approximation was proposed for extracting casual
time-domain network parameters. It results in a time-domain parameter in an exponential
form, which leads to an efficient recursive time-domain convolution computation. The
saving in the CPU time in comparison with the non-recursive convolutions can be tens,
hundreds and even thousands of times, depending on the number of time-marching steps.
Numerical examples have been provided to numerically verify the effectiveness and
accuracy of the proposed method.

It should be noted that the method described in this chapter can only be applied to
small signal linear parameters. Extension to large signal nonlinear situations is the subject

of future research.
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9 Conclusion and Future Work

9.1 Summary

The FDTD method is one of the most flexible and powerful numerical time-domain
techniques to be widely used to simulate complex electromagnetic systems and
RF/microwave circuits, including passive structures and active devices. The focus of this
work can be divided into two parts: the first relates to bringing about some
improvements to the FDTD method and the second relates to time-domain modeling of
active device.

In order to improve the efficiency of the FDTD method, four methods were proposed.
First, in chapter 3 a new compact 2D FDTD method was proposed, which can reduce a
3D waveguide problem into a 2D problem that is uniform in one of the transverse
directions. Second, a compact 1D FDTD method was proposed in chapter 4 that can be
used as incident wave generators and modal absorbing boundary conditions in uniformly
filled waveguides. Third, a new 1D modal PML was proposed in chapter 5 that utilizes
the proposed 1D FDTD formula to reduce the 3D PML into a 1D modal PML. Finally, a
new 2D FDTD subgridding method was proposed in chapter 6 that is not only stable and
simple, but also has low reflections.

When the FDTD method is used to analyze RF/microwave circuits with element
active devices, it needs to convert the frequency-domain parameters into time-domain
parameters because the network parameters of many element active devices are given by
the manufactures or measured in frequency-domain and are band-limited. In order to
extract the causal time-domain parameters from the band-limited frequency-domain
parameters, three methods were proposed.

First two iterative methods based on FFT were proposed in chapter 7: one uses the
negative feedback and another uses the Hilbert transform technique. Then, the rational
function fitting technique was used to obtain a time-domain model from the band-limited
frequency-domain in chapter 8. The time-domain model obtained from the iterative
methods is in numerical data format, while the time-domain model extracted from the

rational function fitting is in exponential function form.
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When the extracted time-domain model are used in the time-domain simulator, for
example, FDTD, there exists time-consuming numerical convolution with these extracted
time-domain parameters. Because the convolution with the exponential function can be
realized very efficiently by a recursive form, the time-domain model extracted from
rational function fitting is more useful. However, the rational function fitting technique
has some limitation on applicable functions, the shape of target function must be suitable
for the rational function approximation; while the iterative methods do not have this

limitation.

9.2 Future Work

There are some aspects for methods proposed in this thesis that are worthy of further
research:

a) For the compact 2D FDTD method, only a few simple examples were used. The
next step can use this method in the optimum design of waveguide devices. A
comprehensive analytical study of its stability condition and numerical dispersion
relationship is also needed.

b) For the compact 1D FDTD method and the 1D modal PML, hybrid absorbing
boundary conditions can be obtained by using the proposed 1D methods to absorb
a few of the lower order modes and the traditional PML to absorb the other higher
order modes.

c¢) For the 2D FDTD subgridding method, further study on the extension to 3D
FDTD and on the sensitivity of « on different structures is needed.

d) The three methods in chapter 7 and 8 can only be used for time-domain modeling
of active devices in small signal situations. However, active devices can also work
in a large signal mode such as a transistor in a power amplifier or mixer. Further

study is needed to extend these methods to time-domain large signal modeling.
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Appendix A: The Numerical Dispersion of
Compact 1D FDTD for TE,, mode

in a Rectangular Waveguide

Suppose the rectangular waveguide has width a in x direction and height b in y direction.
The field components for the TEn,, mode along z-direction can be written as:

E, = E,q cos(k,x)sin(k, )’

Ey = E),0 sin(kxx) COS(kyy)ej(kzz‘“")

E =0

H, =H ,sin(k x) COS(kyy)ej(kzZ‘“")

H, =H ,cos(k,x)sin(k, y)el ka0

H, =H cos(k x)cos(k,y) ol tz=an)

(A1)

where k =25 | &, =% , k. is the spatial frequency in the z direction, and o is the
p ;

temporal angular frequency.

Substitution of (A.1) into (4.3) reads
EXO COS[kX (i — —;—)Ax] Sil’l(kyjAy)ej[k:kAz‘”’("”)A’]

= E,, cosk,(i— -;—)AX] sin(k, jAy)e/thkaz-ant)

At
+—(a, |
Ay -~

j[kzkAz—a)(n%)Ar]
)| 1
=7
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By substitution of (A.3) into (A.4), (A.4) can be rewritten as:
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= A fcoslk, (j+=)A k(-2 H
= Ey—{cos[ LU 5) y]—coslk, (j 5) y1}1H (A.5)
At . i kiAr kA
~-—H , sm(k‘,JAy)(ej 27 e 2 )
By applying the following identities:
e’® =cos(0) + jsin(@)
_ A6
cos(A) — cos(B) = —2sin A+B sin A-B (A.6)
2 2
Equation (A.5) can be simplified to:
i oAt 1 . kAy i . kAz
—Aj—tsm( 5 VE , - Ny sin( ’2 YH ,, — . sin( 5 )H ,, =0 (A7)



Equations (4.4)(4.8) can be treated similarly. They become:

wAt k Az

Altsin( 5 E o+ giz sin( ‘2 YH , + gixsin(k*'zAx)Hzo =0
ﬁsm(kﬁz JE , + Xlgsin(wTAt)on =0
ﬁSin(kzzAZ)Exo -zAl*tSi“(wTAt)Hyo =0

1 k,Ay 1 k Ax

——sin(——)E , — sin(

p E,o +-Lsin®2LH =0
Ay 2 phx 2 D0 A 2
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(A.8)

(A.9)

(A.10)

(A.11)

The above equations form a system of five homogeneous equations with unknowns

Eyo, Eyo, Hxo, Hyp, and H,. Because the solutions of the system must not be trivial, the

determinant of its coefficient matrix should be equal to zero. This leads to:
. WAL
sin(——) =0
( 5 )

'2szZ '2%_{
sin“( > ):;tgsm( 2)

AZZ Atz
kA
sin (%) i &) ginr %) ()
2 2 . 2 _ 2
Ax2 Ay2 AZZ At?.
where k, =% and k, =1z
a b

Equation (A.12a) corresponds to w=0, and represents the static solution.

From equation (A.12b), it can be obtained that
k,Az

At? sin*(
2

) = A sin%—“’?’—)

From equation (A.10), it can be obtained that

(A.12a)

(A.12b)

(A.12¢)

(A.13)
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WAt

/UAZ SIH(T)
Ey=———F=—H, (A.14)
At sin(kz;Az)
2
Substitution of (A.14) into (A.7) results in:
EUAZ sinz(wTAt)—Atz sinz(kzzAz) L kA
j Hyo—;A—)—)sin( "2 YH,, =0 (A.15)

eAZAL? sin(%z—)

Because of equation (A.13), the first term in equation (A.15) equals zero. This will

lead to H_, =0, which does not agree with the assumption of TE modes.
It can be seen that equation (A.12c) approaches the analytical dispersion relationship,

@' e =k +k; +k;, when Ax, Ay, Az and At approach zero. Therefore, equation (A.12c)

is the numerical dispersion relationship of the TE modes for the compact 1D FDTD.
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Appendix B: The Formula of 1D Modal CFS-PML

The complete formulae of 1D modal CFS-PML scheme with S,=1, 8§ =1, and

S, =x, +—% __ can be written as:
o, + joE,
At 41
P =P\, t—— (@, ~DH I}
mq ik i3k eAy P rimy Lk
_ At ( nti/2 n+1/2 )
Az ¥ li-tjk+d yli-d k-4
Ek, ok t+o0,
E, |  =-AL 2 __E|,,
X 1—%,_],k gokz N azkz +O-Z x 1——%—,],k
At 2
& & & _&
At 2 nl At 2 n
'_L, ik x ~_l,~’k
£k, +oczkz+0'Z i £k, +ozzkz+0'Z ol
At 2 At 2
At n+dl n+i
n+l n 2 —
ylij-3k = Ty i,j—l,k+ €AZ (H, ij-tk+d x ,J-—k—{)
n+—
- EA ( 2x 1——] l)EIZ 1——] -Lk
&K, oK +o,
n+l — At 2 E [
vtk g K, oK +o, ik
+ <
At 2
& O & _@,
At 2 n+l _ At 2 P n
¥ i -tk y i j-tk
z;"01<z+azl<z+crZ o £0Kz+asz+0'Z bimy
At 2 At 2
At ntl
n+l —_ n —_— 2
ziijk-+ 7 Tz i,j,k—%+ eAx (a.vx Ii——;—,j I)Hy Ii—%,j,k—‘;
At n+l
~oar @ by DH T

EAYy

(B.1a)

(B.1b)

(B.2a)

(B.2b)

(B.3a)



&L _&%
n+l _ At 2 n
z|ijk4 £ . @, z i jk—L
At 2
€0Kz asz +o.z 80Kz — asz +az
+ At 2 n+l _ At 2 n
i, jh—t ijk—L
o & S %
At 2 At 2
n+d _ n—1 At n n
Qx i,j—’z-,k—'z - Qx i,j—'z,k--l- lqu (E‘ Ii j-ik E; I, j—lk—l)
At
-———0-=-4_1. )E I
,UAy zy i z i, j k-t
&K, aK +o,
1 L
H ™ = 2 g7
* ,,J_z’k_l EOKZ + ale +O.z L zvk 2
At 2
A A
At 2 ol 3 _ At 2 0 n—
s S
&K, oK o ™ bk g K, LK o bipk—3
At 2 At 2
n+% _ n—% At _ n
Q.v i~Ljk=L T Q,\' i—%,j,k_{*' LAX (1 :Bu Ii,j)Ez Ii,j,k—%
At n .
o (E 0y ~Ecl )
&K, oK +o,
H ntl A\ 2 n—
gt L jad
"Neies o g K, K +o, Tt
Ar 2
&, @ &_a
At 2 0 ko At 2 0 nt
it e vy [id k=
€0Kz asz +az ! Rl EOKZ + aZKz +o.z VI
At 2 At 2
n+—] _ n At n
QZ ,—lzj—%k Qz ,~—1-zj—lk+ /lAy (1 - ﬂxy ,__L])Ex -1k
At
- (l _ﬂvx Ii J—l) y I:nj——‘k
#A J s )

115

(B.3b)

(B.4a)

(B.4b)

(B.5a)

(B.5b)

(B.6a)
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&_&
IH—% _ At 2 n—;
H: it -tk T z|i-t Lk
273 80 0{1 Y
Ar 2 (B.6b)
£K, + oK +o, &K, 3 oK, +o,
At 2 n+g At 2 n—
+ e - 2
PO S - e S
At 2 At 2

where Coefficients « and g are defined in (4.9) - (4.16).



