

18567

NATIONAL LIBRARY

 Ortawa Otrawa

daLhousie university

> Title

The harbome sen, Fhoea vituling concolor, in enstern

Canada.

Department or School \qquad Biology
Degree Fho D. Convocation Fall

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions.

Signature of Author

THE AITHOR RESERVES OTIER PUELICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S WRITTEN PERMISSION.

Pago

Abatract viii
List of tables ix
List of figures
Introduction xdit 1
Material and methods 4
collection of samples and field observations 4
proatient of saxples 7
Age deternination 7
Reproductive organs 8
fibryos and footuses , 8
Stomach content 8
Population eatimates: 9
Distribution and abundance 10
Fresent status 10
Past distribution 14
Natural factors controlling the distribution 14
Growth 20
Prenatal grơoth 20
Length 20
Weight $21-$
Grouth from birth to yeaning 24
Hursed pupa 24
Deserted pups 24
Growth after weaning 28
Longth 28
weight 28

Techaiques to estimate woight
28
Iength-weight relationshdp
31
Iength-girth-meight relationship
32.
Cosparison of the two methodsReproduction34
Age at sexual maturity 34
Males 34
Females 39
Fertility of females 43
Aninul reproductive eycle 4. 4
Hales 44
Fomaies 46 -52
Annual cycle of the population
52
Winter
57
57
Spring
Spring 57
Whelping 57
Ianugo and umbilicus 61
Prostaning mortality 61
Weaning
Mating 66
Sumar and fall 67
Monilt 67
Predators 67
fegional differences in aiurnal metivity pâtterns 68
Popralation dynaulics 71
Saripling 71Page
Sex ratio 75
Popalation atructure 75
Fourcha 75
Charlotte County 78
Maritimes 82
Population changes in the Maritimes 87
The bounty 87
Population estimates 90
Natural mortality 92
Rate of increase 93
Prediction 96
Case 1: bounty mipintained 96
Case 2; bounty discontimued 97
Case 3: sustainabla yield 98
Discussion 98
Faeding and production 101
Consumption in nature 101
Foods consumed 101
Changes in feeding with age 104
How. ie fish eaten 104
Seasonal changes in condition 105
Quantity of food ingested per meal 109
Consumption in captivity 110
Production 123
Population model 113
Deacription of terms used 134
Enargy flow table 116

This repoirt on the diftibution, mibers and bioloer of the hrobome

 Suint-Fior: ot Mifquelon. ibout 13,000 harbour seala occur in enterrin Canadia nni wre dietributed in mail popalations. Vaxiations in the mamere
 poprintions. The abradince of harbowr menls in ar ared mang to be ralated to the availability of islets or stmibars. Growth rates of pupe during pursing are greater than the growith rate of the pronital easi (0.58 ca day Fe $0.36 \mathrm{~g} / \mathrm{dmy})$; pupa increase thedr woight on the arrorage from 10 lyg at'bixth to 25 kg at weaning. Fully grom malow and fomalot avorage reapeotively 159 cm anil 115 cm in nowe-tatil longth, ind 91 kg and 72 kg In wedent. Techalques to ertimate medeht from Iength anil dirth are dixcussed. Host males becoma secuilly mature at 6 years old whine most femalea ovalate at 4 years old. The ago apecific fortility rates of fomales are giren. Heles are potent from early Miv to late july, posaibly earlier but data are Imclaing for March and April. Noot adelt fonloa ovilute around add-June and inplantation is delayed for about 88 dara. Letire geaterion laste 8 mopthe. In wintar, the Sable Ialand popalation forms large horda and becomes more polagie; in cold wenther, these seals do not generally baul-tout on 1and at air temporntures bolow $-15^{\circ} \mathrm{C}$. Tho large hordis bronk down juot bofore whalping which starts in JidHin in moot areas. The bixth senacn gonerally lasts ona month. Premaaring pup mortality avoragos 17\% during the first month of life on Sable Irland. Pupe are maned about 31 days aftor birth. Noulting tnkes place during driy and lngust and can be. completed in about 20 dare for indiridual seals. On Sthe Inland, meals generally spond the nigit at vea, buviliggout during the diy, wille on the mainiand, hailing-out appeare more clowely related to low tidoe. Fualas live oldor than males (30 va 25 years old) and constitute 52% of the semp aged 1 year old or moro. Life tables for fomales from a monted and monmanted poppalation suggests that the see speciflc fortilitrates of the fommar do not apply to the Intter. The harbour-seals in The Branaticic, Hovia SGotila and Prince Bhrard Island wase eutimated to movier 12,000 in 1949 and 4,800 in 1972. These two eatimates eombinod with knom hunting mortality and puo prodoction retes pornit a colcuintion of an ancual mortality of 0.364 and a menlised anmul zeto of increase of 0,03 . The ocnsequonces of maintaining or discontinoing the bority are arnadned. an anmel sustainmble yield of 5% of the total postarbiping popeintion coald be schiered with the preseat popriation. The diet consista mainit of herring, flovender and equid. There is no indication of a docrease in feeding intensity droing the oumer monlt. The drop in the condition inder of the seal in spoing and annmar socma to parallat the drop in comitition of a good proportion of the flam eaten at that time. The quantities of food found eaten in nature agree woll with feoding rates of captive semis. of thia apecias with controlled dieta. 120 kg and a 100 kg hartocur seal can Live mall on a diet of food equivilent rempectively to 5% and 2.2% of thoir bodr woight por diem. In emergs Hor table is doweribed for a harbow seal population; it indicites an ecological officions of 6% besuing that the reals eat on the nerago oniy once ia d.

Table 1. Numbers of harbour seals alged one year or more collected for this study, per month and per Iocality of sampling, for males and females.

2. Variations in the numbers of post-canine teeth (premolars and molars) on the lower jaw of harbour seals

 in seven areas of eastern canada.1.3. Relation between the total mumber of pups killed during the years 1951, 1959, 1962-64, 1966-70 and the numbers of islats, 500 yards long or less, coumted on hydrographic charts of Nova Scotia.
4. Age at maturity of male and age at maturity with age specific fertility rates of female harbour seals in eastern Ganada. ${ }^{\circ}$

5. Percentage of the folijicle luteinized in females callected in June ánd July in northèastern Nova Scotia.
 47

6. Presence or absence of an implanting blastocyst : indicated by the presence or absence of a bulbows swelling on the cormua of harbour seals collected during T September and October in northeastern Kova Scotia 50

LIST OF TABLES

Table 1. Numbers of harbour seals aged one year "or more collected for this study, per month and per locality of sampling, for males and females.
.2. Variations in the numbers of post-canine teeth (premolars and molars) on the lower jaw of harbour seals

In seven aress of eastern Canada.

11

3. Relation betiveen the total number of pups killed
during the Jears 1951, 1959, 1962-64, 1966-70 and
the numbers of islatis, 500 7ards long or less, counted.
on lydrographic charits of Nova Scotia.
16
L. Age at maturity of male and age at maturity with age spectfic fertility rates of female harbour seals in eastern Canada. 38
4. Percentage of the follicle luteinized in females collected in Jum and July in northeastern Nova Scotia. 47
5. Presence or absence of an smplanting blastocystIndicated by the presence or absence of a bulbousswelling on the cormua of harbour seals collected duringSeptenber and October in northoastern Hora scotia, $\therefore \quad 50$

Nable 7. "Annal cycle of adult fomale harbour seala in
northoastem Nova Scotia.

9. Details of the 1971 and 1972 whelping seasons of
harionr seals on Sable Islañ.
10. Number of seals reported killea tor bounty in the Fourcha area, Cape Breton and in Charlotte Gounty, southern Neor Brunswick from 1959 to 1971. 72
11. İife table for the population of harbour seals in
Fourcha, ${ }^{\circ}$ Cape Bretoni.
77
12. Ifife table for the population of harbour seals in. Charlotte County, New Bronsrick. 79
13. Iffe table of female harbour seals from data cumilated
for the period 1966-1971 and obtained from the bownty
kill in the Maritimea.
14. Lffe table of male harbour seals from datie cumulated for the period 1966-1971 and obtained Irom the bounty kill in the Maritimes. ${ }^{\circ}$

Table 15. Calculation of a correction factor to account for mult soala likely killed for, bounty but not retrieved, mainly due to sinking. 89
16. Mumber of harboir sede killed for bounty in the Maritimes betweion 19\%0 and 1971. 91
17. Calculated changes in in numbers of harbour seals in the karitirnes between 1950 and 1971.

95
18. Percentage of differente food items found in 279 harbour seals.102
19. Seasonal variations in feeding intensity of harbour seals in eastern Canada? 107
20. Spawning time of the fish species regutariy eaten by the harbour seal in eastern canada. 108
21. Peeding rates of harbour seals in captivity. 11222. . Energy flow table for a population of 1,000 harbourseald in eastern canada.117
23. Water content and calorific values of the edible, portion of "various fishes eaten by the harbọur seal. " 178

TIT OF FIGURES

'Fig. -1. Harbour seals resting on the beach of' Sable Island, $\%$

0
2. Naris showing location of sampling localities.
3. Mart shoving areas of abundance of the harbour seal
$\%$
$\therefore \quad \therefore$ "in eastern canada.

Nova scotia.

.
. . 4. Harbour seals haul out many on ledges and sand
5. Relation between the numbers of puri killed for bounty per coastal county in nova Scotia and the number of islets 5 mas long, or less, in the corresponding comity.
6. Growth in nose-tail length of harbour seal foetuses in eastern Canadian. 8
\because 7. Growth in which of harbour seal foetuses in eastern Gan ida.

9 0. Growth in length of harbour seal puns on Sable f Island. 25

Fiss. 9. Gnouth in weight of male and female fiarbour seal pups on Sable Island.
10. Increase and lost in weight of individual pups, nursed and deserted, on Sable Isiand.27
11. Growti in nose-tail lenth of harbour seats in eastern Canada.
12. Growth in neipht of härbour séals in eastern Canada.
13. Length-weight relationship for harbour seals in * eastern Gahada. 32

I4. Comparison of two techniques for calculating the weight of harbour seals from nose-tail length and fram nose-tail length and naximum eirth. 33
45. Fhotomicrographs of male testis and epididymis. , 35
16. "Increase with ape of tubule diameter of testis and epididynis in hale harbour seals taken during the breeding season in eastern canada.
17. Sections of left and right ovaries of a four-year-. old harbour seal collected on January 18, j11ustrating
the cormus albicans and the corrus lutevin.

FiE. 18. Changes in diameter of the corpus luteum and of the corpus albicans of harbour seals in eastern canada.

19. Total nubers of corpora albicantia found in the tro ovaries of harbour seals at various agas.
20. Amual variations in the dianeter of the testis and epidiadymis tuhnies.
21. Relation between the number of seals hay ${ }^{2}$. sable Island in winter and the corresponding air temperature corrected for windchill.
22. Konthly changes in the number of herds and in the mean number of harbour seals ner herd on Sable Island.
23. Six weeks premature pup, healthy and covered with a firm lamugo.
24. Fercentage of harbour seal pups born with the lanugo on Sable Island, 1971, retaining it at giren ages." 62
25. Percentape of harbofrr seal pupsifitn a healed unbilicus at given age, on Sable Island, 1971.
xivi

Fig. 26. Percentage of harbour seal pups yeaned on a given date on Sable Island, 1971.
27. Houling out of harbour seals on Sable İland on morrings when the weather is grod.
28. Ma-fitted line indicating the chunges in sex ratio with age of harbour seals in eastern cänada.
29. Smoothed age frequency, distribution of harbour seals in an area of low hunting intensity, Fourchu, Cape Breton and in an area of high munting intensity, Chariotte Gounty, New Brunswick.
30. Age- $\log _{10}$ frequency distribution showing survival of meles and females.
31. Age-log 10 fraquency distribution of the total bounty kill from 1966 to 1971 in New Brunswick, Hova Scotia and Prince Edrand Island.86
32. Hunting mortaltity of harkour seals in the three maritime provinces for the period 1950-1971. 94
33. Honthly changes in the condition index (maximum girth x 100)/ nose-tail length, of harbour seals, in eastern Canada. 106
${ }^{\circ}$ Fig. 34. Relationship between the estimated stomach content's weight before digestion in nature and the weight of the corresponding harbour seal. 131
35. Diagran of energy flow in a population of 1,000

- harbour seals in eustern canada.

Thrroducrion

The hurbour aen, Phoca Jitilina, Kinné (Fig. 1), has a wide dirtuibution, occurringin coastal areas of the north itilantic and of the north fivific, ranging south to California and north to gllasione Ialand in the Canadian Arctie (yansiliad; 1967a)-It.is a sedontary apocies and is genorally fopma yoar round near/iten breeding sites. The first extensive derconption of the harbour seel in North Amorici wal given by flion (1880) who also rewiewed mosit of the literature then availuble on this species. Later, studies have been. prolishad in Frurope and North America on its general blology (Haringa, 1933; Doutt, 1942; Scheffer and S1ipp, 1944; Twler and Sarber, 1947; F1shar, 1952 and 1954; Sergiant, 1951) but theae were 11mited by the absince of at propar agoing tachniqua. Mansifield and Fisher (1960) confirmed thit this seal decild be aged by counting annual layars in the emmantum of canime teeth. Since then, three publications (Bishop, Ms 1968; Bigg, 1969as shito and Mishivali, 1972) have prosonted rosults of age determination of amples from populations of harborw seala.

- Thare be been no genarial accomat publiahed of tilis apacies in enotrin Ganada and onstern United States othor than Allen's (1880) ertmative desieription. Information whe priblishod on Iocal abondanoe (Cilpin, 1874; Comoan, 1945; Fishar, MS 1949; Temploman; Squire and Fleming, 1957; Yastield, 19670 and 1967c3 Caldwell and Caldwall, 1969;
 1957), puppling sanson (Bigg, 29696; Bowlra; 1973) and on the inportance of these seale at the IInil hoat of the codnorm (Scott, 1953; Fisher and Kackansie, 1955; Scott and Fishor, 1958).
Fig. 1. Harbour seals resting on the beach of sable
Island, Nova Scotia.

In Nora Scotia, Now Brmosick and Prince Edsard Igland, hare reforred to as the Maritimes fr the Maritime provinces, a bonnty has been in effect on the harbour seal since 1927 and since 1952 the boimty has been extended to Nerroumdland and Labrador. Even though the mumers of aeals palled for bounty has been recorded from year to year, there has been no publication examining the consequences of this humt on the popilation, with the result that iittle has been known on the muibers of harbour seals left in eastern Canada and on the stabilits of the population. Theopresent study was initiated in 1971 for the Arctic Biological Station of the Fisheries Research Board of Canada, in an attempt to obtain information on these questions as well. as on the general biology of these seals and oa their present Interactions with man.

MATERIAL AND MBTHODS

Collection of aamples and field observations

This study uses samples collected mainly by the Arctic Blological Station of the Fisheries Research Board of Canada since 1968, either by their oim personnel or by trainad fishagman. The author added to this collection specimens obtained from the population which he studied fron 1969 to 1972° on Sable Island, Nova Scotia.

Table I gives the monthly numbers of males and fentiles aged one year old or wore collected in each locality of samping. The localities of sampling are indicated on Fig. 2; the circled numbers on the map refer to the map numbers in Table 1 . It can be seen from the table that the sample is strongly biased towards sumer and fall months, the fer winter samples coming mainly from Sable Island. Thas is because fishemon generally pull thair boat out of the water for the winter and because seals are seldom seen in cold weather on the islets and ledges where they normally haul out, thus making collection of winter samples very difficult.

Infomation noted in the field consisted of: locality and date of capture, nose-tail length measured in a straight line and not including body cmrature, and sex. The following measuroments, were taken occasionaly: blubber thickness measurad through a narrow incision over the posterior end of the sternun and not including the skin, the maximus girth and the total weight with no allowance for blood loss. Formaldehyde ram added to the stomach content which was generally kept for exmination in the laboratory. Ovaries, reproductive tracts and footoses were preserved in a formaldelyde solution while transverse

Table 1. Numbers of harbour seals aged one year or more, collected for this study, per month and per locality of sampling, for males (M) and females (F). The map numbers refer to the numbers on Fig. 2.

Flg. 2. Sampling localities are 1: Fourchu, Gape Breton; 2; Sable Island; 3: Ecum Secum; - 4: Port Mouton; 5: Grand Manan and Elacks' Harbour; 6: Magdalen Islands (left) and Saint-Plerre et Miquelon'(right) in the Gulf of St. Lawrence; 7: Escoumins.
sactions of one testis and epididymis, about 1 cm in thickness, were cut with a scalpel and pireserved in Bovin's solution.

Canine teeth were extracted from the boiled lower or upper jaw bone and a note was made of the numbers of postcanine teeth present in some specimens. Data on the numbers of postcanine teeth or tooth sockets were also obtained from the lower jaw bones submitted in support of bounty claim. Canine teeth were also extracted from these jaws and allowed the ageing of the seals killed for bounty.

Information on the seals' activity throughout the year was noted during the nomerous field trips on Sable Island. The techfilques used for ageing and studying the pups from birth to weaning were described elvewhere (Boulva, 1971 and 1973). Weather data for Sable Island were supplied by Naritime Weather Centrial of the Department of the Enviromment of Ganada.

Treatment of samples
Age determination - One of the two canines was cut longitudtnally to obtain a section about 0.4 mm thick, aind the annual lines in the cementum were counted (Mansfield and Fisher, 1960; Bishop, MS 1968; Bigg, 1969a). This tecmique for ageing harbour seals was validated by Mansfield and Fisher (1960). Each seal was given an age in years and tenths of years. The starting date is May 24 which corresponds to the average birth dite for Sable Island harborr seals (Boclva, 1973); because of the absence of adequate information on birth time olsewhere in the area covered by this study and because of the need, to age each animal, it is asgumed that the other sampled populations whelp at the same tima as the Sable Island seals. A possible exception might be in the eiturary of the st. Lawrence River where hartour aeals are said to give bifth mainly in

June.
Beproduative cregans - Sections of the thatis and of the apididyade reve mointed and ecainined as described by Sulth (US 1970). Ovaries were hand cut transvergely in zilicea approximately 2 man thick. For ench or the tro ovaries, the mumbers of follionies, divided in-three classes, loss than 3 min, between 3 and 6 m , and more than 6 min in diameter wore noted 23 woll as the numbers and sises of the corpora albicuntia and of the cospus interm.

Babryos and foetuses - Preserved prenatal seals were monsored as to noso-tail longth and woight. The length in simall eubryos vena obtained by draning a silhovatte of the embryo on paper as deacribed by ${ }^{\text {s }}$ Howrer and Bacichouse (1968) for' groy senle; the Iength of the line running from the nose through the eye and following approximitely the vortebral columan to the tail was usod as the nose-tiail length.'s

Stomach contents - The food items foumd in the stomachs wore fientiriad by comparison with skeletons of fish kept in a collection at the Aretic Biological Station. Invertebrates were keyed to apecies if possibie, except for cephalopod remains which were forwariod to the Biological station in St. Johns, Nemifoundland, for identificication. Stomach contents which could be identified only as far as fandly were distributed among the apecies identified positively, according to the frequoncy of occurrence of theidontified spocies. For eccumple, if only cod and hake were identified in the stonacks in a ratio of 2 to 1 , and If there was 30% midentified gadids in the stomachs, then 20% and 10% were added respectively to the percentages for cod and hake.

The state of digeation was subjectively coded as follows: 0 : stomach empty; 1: 90\% digested; 2: 50-90\% digested; 3: 10-50\% digested
and 4: 0-10\% digested. The weight of stomach contents given code 3 and 4 was generally noted. The volumetric importance of each food species found in a given stomach was visually assessed and attributed a fraction so that the total amount of food in the stomach would have a ralue of 1. If only species A was found, it was given a value of 1_{i} if species A and B were found in about equal quantity, they were given each a value of Q. 5.

Population eatimates

Questionnaires were sent by the Arctice Biological Station to Fishories Officers in eastern Canada, to obtain information on local abundance, movements, dintes of whelping and interference with fishing operations by the grey seals and harbour seals. These questionaires provided the author with basic information on the distribution and numbers of the harbour seals in eastern Canada. Interviews with fisherman in most fishing commuities of Nova ${ }^{\circ}$ Scotia, New Binuswick, Prince Edrard Tsland and Québec provided additional data on numbers and dastribution.

These two sources of information were completed by a study of the data supplied by the bounty kill, with the assumption that areas" where intense killing occurs correspond to areas where harbour seals are abudant. The Sable Island population was surveyed as described in an ${ }^{\circ}$ earliex paper (Boulvà, 1971).
distribution am abundance.

Present status

The harbour seals in easter Canada are not grouped in one contimous population; but are rather distributed in numerous small populations apparently isolated one from the other. For example, FIeld comments, colour patterns of the pelage and cranial evidence suggest that the F 1,200 to 1,500 harbour seals inhabiting Sable Ísiand, located 90 miles from marshland Nova Scotia, are isolated from the mainland populations with little or no emigration or immigration taking place (Boulva 1973 and kicaren 1973).
:. The examination of the bounty kill elsewhere in eastern Canada also indicates that the seals killed always come from certain specific areas, while reports of kill are never'recoived from certain other areas also inhabited by fishermen, thus indicating a probable -discontinuity in the distribution of these seals. The variation in the numbers of post-canine teeth (premolars and molars) suggests furthermore that hartorior seals from one population do not commonly six with seals of a「 nearby population. The normal complement of these teeth is 5, varying ${ }^{*}$ between 3 and 7 in the lowe' jaws which I examined. This variation is fairly consistent in certain areas as can be soon in Table 2. | "Area no: I is geographically' closest to area no. 2, with the Bay Oof Fundy acting as a barrier. No seal with less than 5 post-canine teeth on at least one of the two lower jaws have been found in area I, , While 54 are found in area 2 ; there is also a 50% decrease (but not significant) from area 1 to aram 2 in the number of animals having more

Table 2. Variations in the nubers oi nost-canine teeth (premolars and molars) on the lower jua of har four neals in seven areas of eastern canada. The area nymbers refer to the circied numbers on Pif. 3. There are three classes of teeth in the table: animals havinf, either less than five postcanines on at least one of the tro jar dones; five on both jaw bones; more than ive on at least one of the two jair bones.

Fig. 3. Areas of abundance of harbour seals*业 Eastern Canada, indicated by hatching. The estimated numbers of animals are given with the current trend for each population. The trend is indicated by a circled arrow: pointing down $=$ decreasing; pointing horizontaly $=$ stationary. \& circled I indicates an area from which the harbour seal is reported to have disappeared during the last 15 years. Question marks mean sbsence of information. Circled mumbers refer to area numbers in Table 2.
than 5 poot-canine teeth.
Similarly, Sable Island is closest to area-3; however, it has six times more seals with less than 5 post-canines (difference significant at the 0.001 level) and no seal with more than 5 post-canines compared to 3 in area 3. Areas 5, 6 and 7 have their om typical variations in nubers of post-canines. Assuraing that the number of post-canine teeth is at least partly genetically controlled, these variations suggest that gene exchange between these small populations of harbour seals is somerihat restricted.

An examination of the distribution of seals killed for bounty and of quastionnaires retwrned by Flisheries Officers in eastern Canaday as well as ay own conversations with fishermen in all areas covertd by this study, with the exception of Newfoundland, Labrador and the north side of the Gulf of St. Lamence, from Sept-Iles to the QuebecLabrador border, have supplied sufficient information for the preparation of a map showing the distribution and the estimated muibers of seals in each of these popuzations (Fig. 3). The trend of each population, according to local residents, is also given, whether decreasing or stationary; nowhere are the harbour seals said to be increasing. The disappearance of this species in an area during the last 15 years is indicated by a circled x; absence of information from an area is shown by a question mark.

The estinates of mumber of seals can be grouped by prowinces, providing a total estimate of about 12,700 harbour seals at present in the area covered by this report:

4 :	
Wewtoumdiand (Iabrador excluded)	2015
Hova Scotia (inolvding Sable Island)	5247
Prince ghturd Island	478
Saint-Plorre et Miquolon	300
Arvas visited	1380
Quibec	
Estimate for areas not risited	2300
Total for area corered by this study	12698

Pant distribution

It is likoly that the present discomtinuons distribation of the harbour seal is a consequence of oncroaching civilisation combined with many decades of hafing for bounty, the species having survived only in the most favourable arous.

In the last century, for exarple, their range extanded much further weat than at present. Harbour seals once occured in lake Ontario and Inke chapisin (Allem, 1880). In more recent times, a feif have been seen - in the Lachine llapids and in Beauharnois near Hontreal (David Sorgoant, parsonal communcation).

Since 1960, there has been no report of thoir presence in areas whece they used to be killed for bounty: the lover St. John Rdver in southern Wow Brumerick, from Piotor to Coorges Bay on the north const of Mora Scotia and from mperons locelities of Mewfoudland, manly in the porth-eantorn regions. In most of the other areas, winntioned abore, they are reported by Fisheries officers and fisheximan to be decremating in rumbers.*

Hatural factors oontrolling the detribution

Horbour seals are genorally considored to be animels of baý and
fnilets. Thoir absence from the north shore of the Gaspe Peninsula could be explained by the lack of beys along that coast; this area is also poor

In 1slots and ledges. These seals also are for in bays which have no Iedges or isletest On the other hand; thoy are found ireund small offshore Islands anch as Eeal Island in south-western Hova Seotia where thore are no baghent where musarous lodges are available at low tide. I have crutinod the phasical charncteristics of the areas of Norra Seotia where harbonr senls are concentrated and of the areas where they are fow. It is assuned that the totai abundance of harbour seels in a county is: proportional to the number of pups kilied in that county, as pups are ensily captured and are generaly borm in a fixed proportion to the numbér of sadulte present (Bigg 1969a and Bonlva, 1973). The mumeris of pups killed per comnty in 1951, 1959, 1962 to 1964 and 1966 to 1971 sere cumplated and a count of the nombers of islets 50 yards in length or ahorter per country, was done from nautical chrirts for the coast of Norra Scotia. The data are spmexised in Table 3. The assumption is that areas with numerous islets offer good protection from seal hunters because of the navigation hazards oren with small craft and also provide the seals with adequate areas to hall out (FIg. 4).

A regression was mude of the nuber of pups lilled on the number of islets per county (Fig. 5). The regreasion cosfficient is highily ofgniflcant ($P<0,001$). Kost paints are relatively close to the Ine except the point inariced A which represents data from Guysborough County; in thistease, 138 islets are located in or at the entrance of Canso Harbour where the permanont presence of man and an intense boat traffic belp keep the seals any, thas providing very fer pups for the nuber of islets. If point i is mored 138 woits to the left on Fig. 5, it coses well in line

Teble 3. Rolation between the total number of pups kdiled during the yeare 1951; 1959; 1962-64; 1966-70 and the numbers of 1siats, 50. yards long or less, counted on hydrographic charts of Hows Scotin (excluding Sable Island). The data are illustrated on Fig. 5.

Fig. 4. Harbour seals hawl out mainly on ledges and sand bars exposed at low tide.

δ

(fg. 5. Relation between the numbers of paps killed for bounty per cosstal county in Nova Scotia and the number of islets 50 yards long or less, in the corresponding county, using the data in Table 3. The regression coefficient differs significantly froa 0 ($\mathrm{P}<0.001$) while the intercept of the line with the ordinate does not differ significantly from 0 ($P>0.05$). Point i is data from Guysborough County (see text).
with the other points.
There is therefore a strong relation suggesting that the availability of islets in Nova Scotia might affect the abundance of harbour seals in 2 given area. In other regions such as the Miramichi estuary in eastern Hew Brunswick, where rocky islets are fewer, the availability of sand bars might in turn limit the abundance of the harbour seal.

growth

The growth of the harbour seal is well docunented for most areas where the species occurs. For the eastern Pacific, growth has been described by scheffer and Slipp (19h4), Fisher (1952), Bishop (MS 1968) and Bigg (2969a); Naito and Mishiwaki (1972) gave an account of the comparative growth of two species of harbour seals, phoca largha and P. stejnegeri (Furilensis and insularis) in the western Pacific. Whether these two species are races of P. Vitulina is in dispute (McLaren, 1973). For the eastern atlantic, information on grouth is given by Havinga (1933), Venables and Venables (1955) and Harrison (1960 and 1963). For the northrest Atlantic, Boulva (1971 and 1973) has given details on the growth of pupe fron birth to weaning.

Information is presented here on the growth in size of the harbour seal In eastern Canada during gestation, nursing and after weaning. The age of the embryos and foetuses is calculated in days, the mean weaning date Jume 24 being taken as day 0 due to lack of accurate dation on the mean date of fertilisation of the orum; this will be dicusged in more details in the section on the annual cycle. Pups were aged when tagged, the age being estinated from the condition of the umbilicus as described in Boulva (1973).

Prenatal growth

[^0]visible. Three females collected each on different days, September 15, 25 and 26, had an implanting blastocyst located in a swelled knob on the cornu while six out of seven females obtained during the first half of October had a small embryo present, the seventh having a new corpus Iuteum but showing otherwise no sign of pregnancy. Thus, in eastern Canada; the growth of the embryo begins in mid-September.
\therefore The increase in length of eribryos and foetiuses is illustrated on Flg. 6. The first measurable embryo, 7 mm in length, was found on october $1^{s t}$. The equation of the regression line for grouth in length indicates that the embryo and footuses increase at a rate of 0.36 cm per day. The regression line intercepts the 0 cm line on day 102 (October 4). The point of intercept with the Iine of mean birth date on May 24 suggests a mean birth length of about $85^{\circ} \mathrm{cm}$. This differs by 9 cm from the mean birth length of 76 cm for live pups (Boulva, 2973); the discrepancy may be accounted for by the fact that live pups contract themselves slightly when measured and by a possible slowdown of growth during the ferr days preceeding and following birth.

Weight - The increase in weight of the foetus can be related to time with rectilinear regression, if the cubic root of the weight $1 s^{\circ}$ paired with the age of the foetus (Fugget and Widdas, 1951). The regression tine (Fig. 7) intercepts the 0 kg line on day 97 (Sept. 29) and indicates a. moan birth melght, of $11.7 \mathrm{~kg}\left(22.7^{3} \mathrm{~g}\right)$. The mean birth weight of live* , pups on'sable Island has been recorded as 10 kg (Boulva, 1973). The difference between thes two birth weights, if not a result of the small number of footuses available, is likely explained as for the difference in birth lengths betyeen foetuses and live pups, by a slowdown in growth around the time of birth.
Fig. 6. Growth in nose-tail length of harbour seal footuses in eastern Canada. The equation for the regression line is given, indicating a growth rate of 0.36 cm per day. The regression lin intercepts the 0 cm line 102 days after the mean weaning date (June 24). The diamonds Indicate for comparison the growth rate of liye pups betiween birth and maaning.

Fig. 7. Growth in weight of harbour seal foetuses in eastern Canada. The regreasion equation describes the daily increment of the cubic root of the weight, The regresision line intercepts the 0 gine on day 97 after the mean weaning date (Jume 24). The diamonds indicate for comparison the increase in welight of live pups between birth and weaning.
$\hat{\rho}$
Genoth from birth to weaning
Hursod pups - Following birth, the average rate of grouth in length increases from the 0.36 cm per day value in utero, to 0.58 cm par day. during nursing. The differences in wean birth lengths and moan grouth rates (Fig. 8) da noit differ significantly between sexes ($P>0.05$). At waning, both sexes are about 90 cm in length and the ond of nursing iresults in a slowdown in growth at that time.

The increase in weight is correspondingly more rapid frombirth to weaning than in utero. During pestation for exampla, the foetus dovbles its weight from 5 to 10 kg in about 55 days; after ifirth, the nursing pup fitcreases its weight from 10 to 20 kg in less than 18 days (Fig. 9). The vaight increases at a fairly constant rate during nursing but drops notichably at weaning as shown by recaptured tagged pups (Fig. 10). in poserted pups - It was observed on Sable Island that numerous pups 2 are deserted by the female at an early stage in ilfé, These pups lose ') reach a weight of 7 kg , the lowest weight recorded for a live starveling foing 5 kg .

Conoarison of sursed and deserted pups (Fig. 10) suggests that a minimal weight of about $\mathcal{l}_{4} \mathrm{~kg}$ must be reachod for a pup to survive. This. is illustrated by one male which was weaned prematurely at 12 days of age, woighing then 14 kg . His weight dropped to 11 kg on day 21 but had increased to 12 kg on day 37 . He had become very active by then and was iopton seen foeding in calm shallow water close to shores Howevar, another pup was deserted at $\dot{6}$ days of age, weighing at that time almost 15 kg . He ' Iost weight constantly and died 24 days later. These observations sugeest that, possibly, the condition for survival of pups in nature require an

Fig. 8. Growth in length of harbour seal pups on Sable Island. The two regressión lines do not differ significantly in slope or position; they include data froa day 0 to day 30 . Young after day 30 are considered to be weaned.

Pig. 9. Growth in weight of male and female harbour seal pups on Sable Island. The regression lines do not differ significantiy either in slope or position. The line for males is reproduced as a dotted lino in the fomale mection for comparison. Closed circles indicate nursed pups, open circles, weaned pups. The regression line includes data from day 0 to day 30.

Fig. 10. Inorease and loss in moight of individual pups, mursed and daverted; on sabla Ioland. Circles indicate meles, triangies indicate rmales and X indicate death. In the lort portion of the graph, cloged asmbola are of nursed pupe and opein agmbole of woaped pupm.
increnst in wefight up to about 74 kg combined with a minimum nursing time of about 10 days.

Growth after meaning
Length - From one year of age on, males arerage longer than females (Fig. 11). Maximut length is reached in males when about seven years old and in fomeles whon about five years old. Fully grown meles average in noseutail length 159 cm and females 145 cm .

Weight - The increase in weight follows a pattern similar to the growth in length, with males reaching their maximum weight when aporminately seven years old, and females when about six years old (fig. 12). Fully grown males average 91 kg and females 72 kg ; the males thus being on average 26% heavier than females.

Bigg (1969a) obtained values for fully 'grom males' of 161 cm and 87 kg and for females, of 748 cm and 65 kg in harbour seals of 'the, northeast pacific. Naito and Nishiwaki. (1972) give avorages for fully $\$$ grown Phoca Largha of 170 cm and 161 cm respectively for males and remales and for P. stajnegexi (kirilensia and Insularis) of 186 cm and 169 crivespactively for males and fomsles.
θ
Techaiques to estimate weight
It is often paseful to obtain rapidiy weight of seals in the field when acales and moans of lifting dead seals are seldom available. Dracing thise study, data were collected on the length, maximum girth and woight of' 43 seals and' these moasurements can be related with tro equations,'

Iength-weipht relationship -This is a stendard technique used in fisheries to obtain welght fron fish of know length, waing an equation

Fig, 11. Growth in nose-tail length of harbour seals in eastern Canada, The vertical bars, solid for males and open for fomales, are oce standard deriation and the vertical lines are range around the moan (central horizontal line). Rumbers of animals in the sample are given below the bar. Data is combined for ages 9-15 and 16 or more - (yoars-old.

Fig. 12. Growith in welght of harbour seals in eastern Canada. Circles are specimenín from Sable Island, triangles from Fourchar, Cape Breton. Closed symbols and solid line indicate males, open and dotted line indicate fomales. The lines are dram through the annual averages, $7-9,12-13$ and 16 plus being conbined for femsies, and 8-9 being ecobined for males.
of the types $W=a f$, a and b being constants determined for each apecies (Hicker, 2968). The paired woight-length data for harbour seals in onstern Canada were tranoforned to $\log 10$ and linear regression was enlculated, pfining the constants for the equation:

Hoight of aeal (kg) $=0.000159$ Length $(\mathrm{cm})^{2.602}$
The data are plotted on Fig. 13. The equation allows the calculation of an estimate of the weight of a harbon meal when only the nose-tain
length is known.
Yength-girth-waight relationship - If the maximumgirth is lonom, a more precise estimate of the seal's woight may be obtained, using an equation described by Poulter (MS 1965) : $W=\left(a^{2} \mathrm{I}\right) / \mathrm{x}$, where w is the weight of the seal, G is the maximu girth, I is the nose-tail length and \boldsymbol{K} a constant daternined for each species. An equation of this type is also described in more detail by usher and Church (1969). Data from 22 male and 21 female harbour seals of eastern Canada were used to calculate the constant: X for males is $20.59 \mathrm{~cm}^{3} / \mathrm{g}$ and for femsles is $20.88 \mathrm{~cm}^{3} / \mathrm{g}$. The difference between the two sexes is not significant (P > 0.05). The average value of K is $20.735 \mathrm{~cm}^{3} / \mathrm{g}$; these values are comverted to inch ${ }^{3} / \mathrm{lb}$ if multiplied by 27.675.

Comparison of the two methods - The calculated weight was compared to the observed weight and a correlation coefficient was calculated for each of the two techniques to find which one provides the best estimate of the seal's weight. The weight calcnlated from length when compared to the actual weight gives a correlation coefficient of 0.856 while the weight obtained iram girth and length gives a corrolation coerficient of 0.973 (Fig. 14). The length-girth-weight equation ahonld tharefore be used in preforence to the length-weight aquation when both girth and length are available.

- ,

Fig. 13. tenigth-teight relationship for harbour seals in eastern Canada. W is weipht in kg and L is longth in co. Symbola wre at . in Fig. 12.

Fig. 3h. Comparison of two techniques for calculating the weight of harbour seals from nose-tail length (A) and from nose-tail length and maxim girth (E), using equations described in the text; I is the coefficient of correlation.

Information ic given hore on the age of soxuml maturity of male and fomale harbour soals in oustern Canada, on the ago apeciflic fortility rates of females and on the annual reproductive cycie of both sexes. The structural changes in the reproductive glands of each seax have been found to be genorally sinilar to those described by Bishop (MS 1968) and Bifg (2969) for the pacific harbour seal. A detailed description of the macroscople and microscopic changes of the testis and of the ovary with ape and with the seisons is given by McLaren (1958) for the ringed seal, Phoca (Pusa) hispida, and similar changes have beon observed in harbour seals collected for this study even though the cyole has a difforent annual schedule; the reader is referred to the work by Mclarent for more details.

Age at sexusl maturity
Males - The exanination with a microscope of thin sections of seal testis and epididymis yields information on the reproductive condition of the animal from which the samples were obtained. In marmels which have a limited breeding season much as harbour seals, the testes are active only for a limited time during the year. The production of spery during the breeding season is detected by the presence of sperm visible in the lumon of the teatis and epididymis tubules (Fig. 158) while outside that season the testex are inactive and no aperm ia produced (Fig. 15C). Therefore, to find out at what age the malo harbour seal becomes sexually mature, samples must be collected

Yig. 15. Photonicrograph of male testis (left), and epididymis (right) from a 3-years-old imnature taken on July 3 (A), a 7-yearsold adult with sperm present in the tubules of both the testis and the epididymis, taken on June 6 (B) and a 14 -yrears-old adult with mumerous spermatogenetic cells in the Imen of tha testis and empty tuboles in the epididynis, taken on Jamary 22 (C). Horizontal bara represent on the left 0.1 and on the right 0.5 nma,
during the breading season whan those beals producing aperm can be distinguithed eabily from jmationes (Fig, 15A).

Nale herbour seals in astern Ganada becomo soxually mature at six yearsold, as indicated by the presence of aporin in at least one of the ten epididymis tuibules examinad during the breeding sesson. The presence or absence of sperm in the epididynuis tuhules is used as criterion for sexnal maturity because this is where sperm complote their maturation (Bishop and Welton, 1962). of all the sacpies collected during the breeding season, no spors were obserwed in the opididymis of the 13 males aged one to three yews old, some was found in a 137 cm long four years old while the "forr romaning form yearsolds hid no sperm. The timee five yeans olds examined more imature while all animals six or more years old were potent,y with the exception of two eight yeats olds collected, accorting to the information supplied by the ilsherman who shot the seals; near the island of Grand Hanan in late May and early june; of thesie two seals, one shot on 9 June had sperm in oniy the testis tubulea while in the other shot on May 24, no spefin was present. However, a twelve yeaws old collected there on Hay 29 had its apididymal tubules fllled with spern. an other indication of sexual maturity is obtained if the moan sise of the testis and epididymis tubules is calculated for, each age group. It is found that there is a very rapid increase in the diameter of these tribiles between ages 5 and 6 (Fige 16); at older ages, the dianeter of the tubules remains fairly constant.

This information indicates that generally maie harbour seals in eastern Canada reach sexual maturity at ajx years of age (Table 4). Bishop (MS 1968) and Fifg (1969a) found that harborre seals in the exstem Pacific also become sexualrmature at six years old. Howevor, the male

Fig. 16. Increase with age of tubule diameter of testis and epididygis in male harbour seals taken during the breeding season in eastern Canada. The Iines are drawn through the annual means; values fof animals 9 years old or older are coubinod. The numbers at the base of the graph are the sample size for each age.

*) adjusted for females of unknown ages (see text).
pragophilic harbour soal Phoca largha, appears to reach sexual maturity at three to four years of age (Tikhomiror, 1966; Naito and Nishriwak, 1972).

- Famales - Seals like other mamals have in their ovaries follicles which once a year enlarge near time of mating. In mature seals, one of the follicles releases an orm. The structure of the follicle then changes and it becomes larger and yollowish-tain, taking the name of corpus Iutern. This corpus is maintained until the ond of lactation when it dagenerates and becomea a white scar in the ovary and is then called a corpus, albicans (Fig. 17 and 18). It is not known in this species if the corpus Iuteum persists in the absence of fertilization of the ovum. A corpus Iuteum will form, whether mating takes place or not, in the grinea-pig and in the pig; this luteal phase is called pseudopregnancy and occurs in most species (Perry, 1971).

In eastern Canada, 30% of the female harbour seals ovalated for the firat time at three years of age, 50% at $4,6 \%$ at 5 and 14% at-gix years of age (Ta Ble 4), the evidence for a first ovulation being the presence eitherf of a follicle with a diameter of 6 mm or more, or a corpus Iutoum and no corpus albicans. Horrever, as the corpus albicans (Fig. 17) is retained generally for at least one year (Fig. 19) and up to 14 years in the case of an eighteen-years-old non pregnant female from Sable Island, the four years olds with one corpus albicans were addad to the group ovulating for the first time at three years old while those ovulating for the first time at four years of age were added to the portion of seals not ovalating at three years old. This procedure was not wed on "five years old females as the corpus albicans of flrst ovalation might. have disappeared by then.

Fig. 17. Sections of left and right ovaries of a four-years-ind harbour seal collected on Jamary, 18, illustrating the corpus albicans (ca) in the left ovary and the corpus luteum (cl) in the right ovary.

Fig. 18. Changes in diameter of the corpus luteum (closed symbols, solid line) and of the corpus, albicans (open symbols, dotted line) of harbour seals in eastern Ganada. The lines are drawn through the monthly means. Closed symbols in June are for the largest follicles found. *

Fig, 19. Total mubers of corpora albicantia found in the tro ovaries of harbour somls at various ages. The point marked A refers to an 18-yoar-old female which had 14 corpora albicantia and which was not pregnant. doneraily, corpora albicantia are eavily found only for one year after their formation.

Bishop (MS 1968) foud that femalo harbour seals from Alavikn mature at 3 to 4 years of age while Bigg's (1969a) results indicate that the majority of females in British Columbia ovalate for the Plist time at 2 to 4 -ypary of age. In phoca 1argha, some fomales ovrlate at three Fidile most (93\%) are mature at four (Tikhondrov, 1966; Maito and Mishivald, 1972).

Fortinity of femalos - It is possible to say whathor a seal is pregnant during mast of the yoar, except during the period from ovalation to Implantation, when a corpous luteum is present but when the fate of the ovwa, whether fertilized or not, is unknown. In harbour seals of eastern Canada, this delay in implantation has been reported to last about $2 \frac{1}{2}$ months (fisher, 1954). Therefore the females collected during this poriod of delay were not used for the determation of fertillity rates of each age group. A problem also arose when teeth used for ageing were. accidently destroyed; one milliparous female with follicles, five peimiparous and two moltiparous females wore without age. Ignoring these eight seals would have introduced a bias, thus undarrepresenting the proportion of pregrant females in the total female sample. To avoid the bias, the proportion of mulliparous females with follicles, priniparous and multiparons females in each age group was calculatodand the samples without age were distributed in each age group according to these proportions. This explains the valuas with decimals in Table 4 where the age specific fertility rates are given. It is soen from this table that fertilitiy increases steadily from 33\% at age four to 100\% at age seven and eight, with the 50% level being reached at five years of age. The average fertility for the 25 seals agod nine or more years in the sample, is 92\%. Female harbour seals in British Columbia
ave fortile about one jear younger with the 50% fertile fomale level being reached at four years of age (BLige, 1969a).

Annaal roproductive cycle"
Males - The changes in reproductive condition of the adult male were followed by the examination of the testis and epididyats tubries for presence or absence of aperm, and by measuming the diametor of these tubules. OnIy seals six-yyars-old or more were exandned hare. The results are 1ilustrated on Fig. 20. No data are available for Narch-April and November-December. The lines joining the monthly means Indicate the major trend.

As can be seen, sexual activity is at its lowest level in january but slowly increases afterwards, with sperm first appearing in the teatis in latso February (closed symbols indicate the presence of sperm). The diameter of the tubules becomes maximal in May-Junie with aperm then befing present in both the testis and the epididymis of most males examined. From, mid-duly to mid August, sexual activity in the testis is almost completely inhibited. However, in September and october, the testis becomes somewhat active, as indicated by the increase in the diameter of the tubules and by the presence of sperm in one seal. Afterwards, the activity probably, decreases until mid-January when the cycle resumes.

It is not known certainily when harbour seals cópulate as this is generaliy accomplished in the rater in this species and is therefore very seldom observed. I have seen what was without quald $\phi_{\text {n }}$ meer play" betreen two seals as early as April 10 on Sable Island; this is six weeks before the mean whelping date of Hay 24. Harmison (1963) has

Fig. 20. Annual variations in the diameter of the testis and epididyyus tubules. Each point represents the mean of 10 tubules in one seal. Closed symbols are tubules with sperm, open aymbols are tubules without sporm. The lines indicating the major trend are dram "through the monthiy means:
found that malliparous females in the Wash, Bogland, ean orrilate and have a corpue Inteum five to six weelos befoce purturition so that there likely are some fanea in ometrow at that time. Fating on land was soan once, by D. Wolsh (permomil commaiontion) on jniy. 10, 1972 on Sable Island, half an horm before a total eclipee of the ama; he dameribes seaing numprow polvic thrests of a male laying en a fomale a four. metoris from the water's adge. Yinting on sund bars is also reported by Harrison (in Verables and Venables, 1957). Because of the acarcity of these sightings, the tiwe when moth matinge take place reanins unknom. On Sable Island, asswned males are asen mocorting" assumed females in the water from oarly April until late July. 'The incroased activity of the teatis in Soptember and October deacribed above dight explain the reneral of manx play* noted by seal hinters in Angust and September in eastern Canada (Fishor, 1954).

Pumales - The ammal cycle of the fomale is beat deacribed atarting at the end of the lactation period, which on Sable Island onds about these weeks after birth of the pups. On this isiand, nost births occur around May 24; the mean, data for the end of lactation is approximately Jun 14. 4 series of 16 orraries collected from early sume to late July on Sable Island and in north-eastern Mova Scotia whore, according to local seal hunters, the whelping season occurs at about the same tive as on Sable Island, supplies an approximate date of ovalation. The data (Table 5) auggest that most aralation must take place betreen jum 12 and 25. Mid-Jnne (median, June 19) is likely a good approcinition of the moan orviation time of those females having ovilated in the pest. Those ovalating for the first time might do so somewhat earlier in the moason, as suggested by apecimen PV 107, a maliparous temele with a Iutelnising

Table 5. Porcentage of the follicle 1uteinized in females collected In June and July in northeastern Noya Scotia. Percentage obtained from examination of transwerse sections.

follicle, captured on June 2. It was rentionad eariler that joung fomales can orrilate before the whelping seasion as deacribed by Harmison (1963); Venable and Venibles (1959) also describe some copulation before whelping in harbour seals fomd in Shetland, Mogland.

It does appear that in north-asatern Nova Scotia, ovulationy (median dato: June 29) occure in parous females soon after the ond of lactation (median dato: June 14). This is suggested by specimen PV 409 , a fomale still with her prop shot on June 12; in one ovary, a large ruptured follicle just starting to luteinize was found. Unfortunately, the pup escaped and the condition of the mamary gland was not noted; it is thus unionom if the pup was still being nursed or just accompanying the female. One fomale (IV 371) shot on June 25 had an unruptured mature follicle and no corpus Iuteum while the latest fenale (FV 135) without a completely luteinized corpus Iuteum was collected on duly 22; she had probably weaned a pup recently as sugeested by the large regressing corpus Iutewn and had a new corpus Iuteum 80% luteinized,

These sainples, and information published elsewhere refered to above (Venables and Venables, 1959; Harrison, 1963) thus' Indicate that ovniation can occur during a period extending from a month before parturition for Foung females, to a month and a half after parturition for older females. In north-eastern Nova Scotia, ovulation appears to take place generally at the end of Iactation, in mid-June, or about three weeks to a month after pupping. This agrees with earlier results by Flsher (1954) who stadied harbour seals in eastern canada. Slightiy difforent reanits vere obtained by Harrison (1963) with harbour seals in the Wash, England; he found that orulation occurs generally two to three weeks after the end of, Jactation, or"six weeks after birth.

After oralation, the corpus luterm is formed but no sign of pregnancy is noted until about mid-Sentember then a small bulbous swalling becowes noticeable on the cornu. In eastern canada, such swellings have been found from September 15 owrand (Tåble 6). It is difficult to say frow preserved specinens; when the blastocyst dioes implant in the uterine wall. It is assumed here that implantation takes place when the buibous swelifing becomes noticeable on the cornua. If this assumption is correct, implantation of the blastocyst in morth-eastern Nova Scotia is completed around September 15 or on the arerage three months after ovulation. Fisher (1954) reported a delay of about three months in eastern Canada; Harrison (2963) estimated the delay to last two to three months in the Wash while in British Columbia, Bigg (1969a) found two months. The data available for . eastern Canada supgest an active gestatation of eight months. The annual cycle of the adplt fomale harbour seal in north-eastern Nova Scotia is summarized in Table 7.

Table to Presence or ansmee of an implant blachomst indicated by the presence or macince on * bunbous suelling on the cormu of hariour seals collected darinf Sentomer and cotoner in northeastern Nova seotia. Sonls rithout swolied comma bal ovalated earlier in the year as indicated oy the resence of a corrus Iutewn in one of the two ovaries*

Table 7. Ammal cycle of adult female harbow seal in northeastern Hova Scotia, from data obtained in this study. Values are approrimate.

MAUAL CTCLE OF TES POPULATIOK

The activitios of the harbour weals in autern Canade during the year dapand largely on the reproductive cycle describad proviously. Emrironmatal factors auch as metacrological conditions, " arailabilitity of food and presence of predatore also modity the behaviour of the seals during the yoar. Some of tifo effects of thase, enviromental factors are described in relation to the soasons. Unless othervise noted, thacervations described belor were made on sable Island.

winter

) Numerotis, reports frow fishermon, Fisheries officers and acientiats contributed in the past to the beliaf that harbour seals disappoar Irom eastern Ganady duying the wintor months, although othier works had clearly stated that this species is a permanent resident of the localities which"it inhabita (Allen, 1880; Templeman ot al.; 1957). f This belief was based on the rarity of sightings of these seals along the coast during the cold season. Mansifield (1967b) stated that marbour seals disappear from Sable Island in the winter, after sooing 긱 two seals there in January and February of four consecutive years. "Since then, more winter counts around the whole island have shown that this apeciea is to be found regularly there dming the cold season. prom these winter observations, I came to belleve that harbour seals would
\therefore havi out on the beach if the air temperatury was below a cortain Mtigal level. Weathor data were obtained from the Sable Island
weather station for those days when counts were done. The date consisted of the mean air terperature and wind velocities in morning (07:00h. - 12:00h. A.S.T.); by using a formula provided by the Atmospheric Enviroment Service of Canada, the air temperature was corrected for windchill. The morning data were used as harbour seals on the island generally haul, out in early morning. The mabors of seals counted on the beach on winter days, the temperatures and the winds are given in Table 8. These data suggest that when the air tamporature corrected for windchill drops below $-15^{\circ} \mathrm{C}$, harbour seals prefor to stay in the water (FIg. 21). As this temperature often occurs in eastern Ganad from Decembar to March, seals would rarely be seen on their normal hauzing grounds during these months. A Another factor responsible for the rare sightings of harbour seals in winter is that most bays and inlets which they frequent during spring, summer and fall freeze up during the cold season. As this species does not, like the ringed seal, fusa hispidg, maintain a breathing hole in the ice, the most likely assumption is that they move to areas of open water as they do in the Arctic (Mansfield, 1967a). On mild winter, days, they hanil out on the ice, as sometimes noted in St. Margarets Bay, Nova Scotia (Dr. E. T. Garside, personal communication). On Sable Island, herds of this species will rest for hours on snow, without apparent discomfort from the cold substrate.

The structure of herds is modifled during the winter months. The number of seals per herd increases from an average of 30 in June to an average of 160 sealis in January while the average number of herds during the same months, decreases from 40 to about 7 (Fig. 22). often during very cold weather very few seals are seen in the water around

Tatile 9. Wumbers of seals havied out on vable Tslmad, in winter, and weather conditions observou on the morninfs of the counts: The corrected air termmatue ($\% / \%$) is talculated fron a formula incorporating the observed air temerature in O_{F} (TA) and the wind velocity in riles ner hour (vi):

$$
T / t=91.4-[(0.230 \sqrt{v A}+0.35-0.019 \times v A)(91.4-T A)]
$$

\square

Fig. 21. Relation between the numbers of seals hauled out
' on Sable Island in winter and the corresponding air
temperature corrected for windchill, from the data in Table 8.

Fig. 22. Monthly changes in the number of herds and in the mean number of harbour seals per herd on Sable Island, from data collected during 1971-1972. The eye-fitted lines indicate the trend.
the island. For coxample, during a complete ground census of Sable Fsland on a cold Jamuary 28,1972 , only 30 harbour seala were counted, ill in the rater; while 3 days before on a milder der, 1204 seals distributed in seven herds all on the beach, had been counted (Table 8). Probably the seals often move offahore during cold days, possibly to feed on inshore fish which are said to nigrate to doeper warmer water during winter month (Haringa, 1933; Leim and Scott, 1966; Sergeant, 1951); lso, whon molding the colder inshore water, the seals would diminish. their energy requirement for the maintenance of the body temperature by decreasing the heat Ioss.

Spring

Yovamonts of seals - As warner days return to eastern Canada in April and May, the harbonr seals appear more often in bays and inlets. ${ }^{\circ}$ Numorous fisherwon interviewed stated that the seals disappear in the winter and return in May to have their pup on sand bars and islets at the head of bays.

On-gable Island, the large hords are maintained until early to mid-Hay when, coincident with the onsetio of parturition, they break dom in munerows small hords (Fig. 22). At the sauae time, muinorous prognant females cross the south beach of the island to thres brackish lakes called the Wallace fakes, probably seelcing the calm waters whore they can safely give birth and taise thoir pup away frofin the heary breakers (see also Kansfield, 19676).

Wholping - Parturition appears to startin infd-May throughout the area covered by this study, with the exception of the St. Lawrence estuary whore the firat pups are born in late Nay (David Sergeant,
personal comunication) The time of birth can also change from year to year in a locality; in 1971 on Sable Island, the moan date of birth was on May 21 while in 1972, it was on May 26 (Table 9).

Abortions occur at times. Duxing a 10 day Fisit on the island In late February 1971, two aborted foetuses were found, respectively 46 and 51 cm in nose-tail length. The former was still alive when found and died half an hour later while the other one was dead. In each case, a'herd of seals "on the beach had been scared by wy approach and possibly the births were a rasalt of the commotion created by the disturbance, A similar situation occured on Aprill 11, 1972 when a six week premature pup was found. It was filly developed, 70 cm long, but thin and completely covered with a firm white coat called lanugo (Fig. 23); vocalisation was as in the newborm pup. No seal was seen waiting for the pap in the way that fomales of ten do during the whelping season. The pup wanderid on the island for two days, covering some distarics, and was then killed as gulls were attacking it. Newby (1966) obtained by Cassarean section á four week premature, lanugo covered Pacific hariour seal which appeared as healtif as normal newborn pups. Sable Island was also visited by the author for two weeks in late Jamary 1972 but no aborted foetus was found at that time.

The pups can swim at birth but generally do not attempt to escape from approaching humans when newborn. However, some of the females with a pup will adapt to regular disturbance during consecutive years by carrying their pup to sea. After three years of continuons disturbance" chuting pupping on Sable Island, caused mainly by the present study, I saw in the third year; for the first time, females grabbing the pup with

Table, 9. Details of the 1971 and 1972 whelping seasons of harbour seals on Sable Island

FIE. 23. Six weeks pronature pup, healthy and covered with a firm lanugo. It survived for two days and was hilled as gulls were attacking it.
thoir mouth either by its fore or hind flipper and towing it in the sea, pest the bseakcors, where the water is calmer and where the newborn pup can swim safoly; often riding on the back of its mother. In areas where bounty hunting has been taking place for many years, huntors report that often the fomale will tow her pup under water in trying to evade them.

Lamug and mbilicas - On'Sable Island, muneroius or few pups can be borm with a uhite coat dopending on uhather the birth season is early or late (Boulva, 1973). In 1971, when the birth season was eariy, 25\% of the pups ware born with lanugo. Most of these retainod it for nine days after which shedding started (Fig. 24). After the loss of the natal fur, the young pup has a pelage of a gray colour with varying spotted patterns similar to the pelage of the ffeshly moulted actult. The umbilical cord in newborn pups is generally severed at about 3 cm from the umbilicus. The remains of the cord on the pup dry up and shrink; in nursed pupe, the umbilicus can heal completely betweon four and nine days with an average of six days (Fig. 25). The condition of the umbilitcus can be used to estimate the age of the pups until they are about five days old (Boulva; 1973).

```
xo-reaning mortality - In a previous paper (Boulva, 1973), I
``` indicated that, apparently, on sable Island a higher mortality of pups prior to weaning was associated with an earlier mean birth date and that the types of mortality changed slightly with different mean birth dates. The mortality and population size for 1971 and 1972 are given in Table"9. There are three major causes of mortality in pups: desertion by the wher, stilibirth and shark kill. It is difficult to asseso what, proportion of the desertion should be attributed to human disturbance;


Fig. 25. Percentage of harboưr seal pups with a healed umbilicus at given-gge, on Sable Island,
1971. The sample size for each age is given along the abscissia.
it is assumed honever that this disturbance has been constant from year to year during this study. The major difference in mortality patterns between 1971 and 1972 was the alnost threafold proportional Increase in stilibirths, possibly related to a larger mean, size of. pups at birth in the latter year (Table 9). However the overall mortality was significantly less (\(P<0.01\)) in 1972 (\(13 \%\) \% 21\% in 1971) possibly because the pups, being better developed at birth, were able to follow their mother more easily, thus decreasing the mortality due to accidental separation of pup and mother. The toll taken by sharks might be underestimated as most, piops attacked are probably entixely eaten; however, it is felt that the cold water in May and June probably keep most sharks away from the area of Sable Island until later in the summer.

Heaning - Heaned pups are first solitary but rapidly associate together forming small herds as the season progresseis and are then easily told apapt from nursing lups who generally are accoupanied by their mother. Host pups are weaned 31 days after birth according ta field counts (Fig. 26). The diata on the praps' growth in weight (Fig. 9) also suggest that lactation ceases about 10 days befors weaning. As can be seen on this fleure, there are numerous recaptiores of nursed pups from age 0 to 20 days, very few recaptwres between ages 21 and 30 days and a stibstantial increase in recaptures of weaned pups (open circles) older than 30 days. These data conbined with ry obseryations of the seals at the time of weaning are interpreted as follows: nursed pups are -sleepy" when digesting a milk feed and do not waike up rapidiy enough to escape with the fleeing female as the observer approachersiz pros, still with their mother between age 22 and 30 are not as sleepy, having little

Flg: 26. Percentage of harbowr seal pups weaned on Given date on Sable Tsland, 1971. The assumed rate of weaning is indicated by the eye-fitted line.
or no milk to digest; as soon as the female escapes to the water, the , pup follows and is then difficult to catch; when weaned; the pop loses : Ins clue to danger, having no mother to follow, and is more readily -caught. It has been seen that 20 days of nursing is sufficient for the \({ }^{\circ}\) (average pip to more than double its weight (Fie. 9): This short nursing \(f\) period is related to the high fiat content of the milk of the female, W5\% in the harbour seal (Harrison, 1960) as, compared to only 3.4\% in bovines (Pilson and Kelly, 2962).

Mating - It has been mentioned that ovulation occurs a few days after the end of lactation (Table 7). What the social structure of the population is at that time and "Whether territoriality and polygyny occur during the breeding season are difficult to ascertain because inst of the sexual activity of the harbour seal takes place in the water forever, two small points of evidénce'suggest that adult males may engage in sone form of territorial behaviour, 1- from early .June on, numerous Les are seen with bleeding cuts on the head and neck, suggesting LEtting; 'some of these cuts are quite deep' and it seems unlikely that \(\rightarrow\) wore made by females reluctant to copulate, \(2-\) during June and fury, solated large males often with scarred i head and neck are scattered at * fgular intervals, about every half mile, along the beach often in the meany of one on more females with rap or with one or two other smaller 0
ale of 'unknown sex. These males may occupy the same area of beach for - consecutive days \({ }^{2}\) often in "places where the seals do not normally \(\therefore\) lout at other times during the year. This suggests a form of istoriality but at this point, one 6 an only speculate on the role of 3 - scattered large males. Fen "without direct evidence for polygyny, can be noted that the average adult hale of this species must mate
with almost two females for all to be impregnated. The ratio of mature females to adult males is, in eastern canada, \(1.79: 1\).

Summer and fall
- During these two seasons which, because of the maritime cilmate, tend to be little differentiated in eastern Canada, Sable Island hariónr seals appear to live a very quiet life, sunning themselves or sleeping on the beach. They remain in numerous small herds (Fig. 22) often with a few grey seals, Ealtchoorus grypus, amongoty thome There is "however a small reduction in mumbers of herds in mid to late July, possibly associated with moulting which takes place at that time.

Moult - The moult starts in eariy July on Sable Island. A yearling captured there on July 5 and just starting to moult was fully moulted on July 20. The onset of moulting might start at different times elserwere 'as 9 of a samplé of 13 harbour seals collected in mid-August on the islañ of Minquelion, just south of Newfoundland, had moulted. Harbour seals do not appear to change their way of Iife during this moulting period and seem' to feed normally (see section on feeding).

Predátors - During late summer and early fall, predation by sharks appeara to intensify, possibly aute to a greater number of sharks moring northward because of warmer waters. Most" kills of harbour seals by sharks 10 S Sable Island take place from late July to late October as evidenced by the greater numbers of dead seals with shark bites found on the beach duning therse months (B. Beck and D. Welsh, personal commuicationi'. Sharks appear to be a regular predator of seals in eastern Canada; Fred Brudmer (personal communication) examined breeding grey seals on Sable Island fir \(1972^{*}\) and fourid that about 10 of the meles
had doep crescent shaped scurs that were most likely shark bites. Templeman (1963) pives evidences of predation by the white shark, Charcharodon carcharias, on harbour seals in eastern Canada while Sergeant (MS 1961) indicate that the kíler whale, orcinus orca, may occasiondily eat seals.

As the weather turns colder in Movember and December, the harbour seal starts forming larfe herd 5 and becomes more reluctant to come on the shore. slowly, its way of life becones, nore pelapic as the winter season sets in.

Regional differences in durnal activity patterns
On Sable Island, harbour seals haul out independently of the tides. wumerous trips on the beaches at night indicate that almost no seals stay out of the water during the dark period, with the exception of some of the females with rup during the whelping season. This was true in rinter as well "as in sumer, sugfesting that these animals are more active during the night. The seals haul out at dawn when the weather is farourable. The first"seals generally come out of the water some 30 to
 well established two hours after sunrise eventhough numerous seâls are seen in the water throughout the day. Bxcept for some warm winter and early spring days, the whole population is never out of the water all at once. An exemple of the exception is on March 26,1972 when \(95 \%\) of the poprlation was hauled out on the beaches of \$able Island:

Whether or not most feeding takes place at night is not knorm; vision is not essential for feeding as healthy blind females with pup 'have been, fourd in tlashington state (iferiby et al., 1970). Lay feeding

Fig. 27. Havling out of harbour seals on Sable Island on morrings when the weather is good. Time 0 is 60 hinutes bafore sunrise. The number of seals present on the beach at 150 minutes is taken as \(100 \%\) for comparison even though more seals might have hauled oxt later during the day. During bad weather, fesw or no 'seals may havi out.
occurs: a large male (F W09) collected at 13:00h. on July 9, 1971 had a stomach foll of freshly infested flounders and gadids; the seals are often seen in mid-day being very active in shallow waters where terns are taking small fish, and are probably also feeding. However, it is dificult to establish whether most seals feed at night or during the day without an adequate sanple from all hours of the day.

Blsewhere in eastern canada, hauling out is nrobably related to low tides, as this is uben many ledges become exposed for the seals. Unjer these conditions, seals would be expected to haul out at night to benefit from nocturnal lox tides. In numerous areas, fishermen report hearing growls during the night, coming from ledpos where harbour seals often haul out durinf the uay; these somus are attributed by the fishernen to seals anending the nifht on the ledge.

\section*{fopulation dymancs}
- In the section on distribution, it was mentioned that the harbour seals in eastern Canada form small discrete populations. Theoretically, separate analysis should made of each of these groups, but data are not adequate for this. However; it is poissible to follow the changes of two typical populations by using data from the bounty returns. One of these populations is located in the Fourcha area in southem Cape Breton and the other in Charlotte County in southern New Brunswick. These two populations differ strongly, the fomer having been left relatively unharmed until 1968 when sampling for this study was initiated; the latter popplation has been hunted intensively for bounty during the last ten years and before (Table 10). It will thuis be possible to see how constant lanting modifies the age"structure of a populatiorf of harbour seals. This will be related to the age structure of the overall population' of these seals found in Nova Scotia, New Brunswick and Prince Edward Tsland. Estimates of population size in 1950 and 1971 combined with known honting mortalities and fertility rates will allow calculation of natural mortality and permit determination of a sustainable yield.

\section*{Sampling}

The age distributions obtained from shot samples are assumed to represent the age structure of the poptriation at the time of sampling. Howpver as indicated by Caughley (1966), shot samples tend, in most wild mamal populations, to be biased towards the younger age classes which, being less aware of danger, are more easily collected. Fiturthermore,

Table 10．，wher of seals remomed higled for boutry in the Fourchu area，Cane freton and in tharlot te Gowty，southern＂fou Rrunswick： from \(199^{\prime 9}\) to 2971．＂hereare mo data for 1060 ， 1061 and 19 ne．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{Sharrotte County} & \multicolumn{3}{|c|}{Fourchi－} \\
\hline & adults & －P＇4＂9 & adut 6 & ： & Puns \\
\hline 1929 & 136 & 135 & 3 & & 12 \\
\hline \(19+2\) & － & －I为 & 1 & & 11 \\
\hline 2963 & \({ }^{1}\) & （1） & 3 & & 17. \\
\hline 10．4 & 28 & 10： & 2 & & 11 \\
\hline inds & \(\because\) & 根 & 6 & & 4 \\
\hline 20\％ & \(\div 10\) & 23 & 1 & & 1 \\
\hline 18゙ & H\％ & 7 & 16 & & 17 \\
\hline 1069 & 8.4 & 112 & \(35^{\prime}\) & & ． 56 \\
\hline 1970 & 74 & 93 & 1.0 & & 56 \\
\hline 397 & ． 63 & 77 & ＇ & & 35 \\
\hline
\end{tabular}
a population should be sampled at a given time; as the age structure changes during the gear because of mortality. If the population is mumerically stable from year to year and if the age structure remains the same with time, than a random sample from that population will provide an age distribution which parallels that of a cothort born at a given time. If amall samples are taken from such a population at the samie time each year, they can be added to provide a better estimate of the actual age composition.

Such a poprulation is raxe, but foy knowing that the poppulation is not rapid7y increasing or decreasing, one may derive a reasonable estimate of' a stable age distribution: In thits study, the raw data were obtained from the bounty kill information of Fourchu and Chariotte Comnty combined respectively from 1968 to 1971, and" from the bounty kill of the three maritine provinces of eastern Canada combinéd from 1966 to 1971, thus providing two groups of data for individual localities and one group of data for the overall Maritimes. The young of the year are greatit overrapresented in the sample. This problem is eliminated by assuming that this age distributions are those of the population just at the onset of the pupping season. This assumption is reasonable as most honters operate from the beginning of the pupping season until 3-4 months, after, with few seals being shot in late fall and atmost none during winter.

A theoretical muber of pups born is calculated. from the known pup production of harbour peãls on Sable Island, where fleld counts indicate that a population of 100 seals at the onset of pupping will produce 25.7 pupe (Boulva, 2973). By adding the total muber of seals aged one year or more in the samile and multiplying by 0.257, the theoretical pup production is ealculated and serves as the initial size of the cohort.

The Fourcibu and charlotie county sauples are small and the relation of the log 10 of the mumber present in each age to the corresponding age gate an ixregular. Iine which was smoothed by'Innear regression. In the overall sample Prom the Maritimess, due to a larger sample, the line becones Irregular onliy after age 11, and linear regression was then used to obtain a smooth age distribution for older seals. This corrects the situation for acanple where there would be 60 dinimals of age 5 and 65 of age 6 , an impossible situation if the age distribution is assumed to be equivalent to the survivorship of à cohort.

It was mentioned earlier that the bounty kill is a shot sampleand is assumod to represent the structure of the population alive at the time of sampling. This differs from a sample of animals hating died of natural causes, and constitutes a survivorship series (\(1_{\dot{k}}\)) while the latter is a death series (\(d_{k}\)), the two being treated differentiy in the: analysis. This point is confused by Quick (1963) and others using his sugcested format but' is clarified by Caughley (1966):

Because the seals were shot by hunters receiving a bounty independent of age or size for animals over 2 year of age, it is assumed that the age distributions to be described were obtained from samples randomily collected. As mentioned earlier, there might be a bias towards the younger age classes \({ }^{\text {b }}\) but it shquid be fairly snazll in animals aged one year old or nore. The fertility rates calculated in the section on reproduction are from samples collected mainly in Fourchu and on Sable Island where the populations have been little munted prior to 1968 . Therefore, these fartility rates may not apply to othyr areas of eastetn Canada where bounty bunting has been intexsive for many years, such as Chaxiotte County.

Sex ratio
"The data from the bounty kill do not include the sex of the animals. However, the sex has been noted in the 246 seals aged one year oid or more collected for the biplogical study and it was \({ }^{\text {found }}\) that thins sample.
 (1969a) for harbour seals of same ages in British Columbin. The females are more numérous in older ages and ho males older than \(25^{\circ}\) yeaz's ware found in eastern Canada while one fenale aged 29 years and another" aged 30 years were collected. The "decreasing proportion of males with age is \({\underset{T}{t}}^{i l l u s t r a t e d ~ i n ~ F i g . ~ 28 ; ~ t h e ~ e y e m i t t e d ~ l i n e ~ w a s ~ u s e d ~ t o ~ o b t a i n ~ a g e-~}\) specific sex ratios which were applied to the bounty kill data and thus supplied different male and female age structures. It is importańt to take into account this, changing sex ratio with age as it will give a number of pups born to the population different from the number calculated "if the sex ratio is assumed to be unity throughout the age distribution. Blgg (1969a) obtained similar results with the oldest male reaching only 20 years of age and the females living as old as 29 years. It seems unifkely that the differential mortality of males and females noted here and in Bigg (1969a) might be the result of samnling error unless old males of this'specitg have a behaviour keeping them away fron the hunting' areas, an improbable - wpososition.

Population structure
Fourchu - Data for ponulation parapeters, \(\mathrm{kI}_{x}, \mathrm{kI}_{x}, \mathrm{~m}_{\mathrm{x}}, \mathrm{ex}_{\mathrm{x}}\) and \(q_{\mathrm{x}}\) are biest presented in the form of a life table asi described by Deevey; (1947). The data for the Fourchu population are given in Table 11. The .observed number of animals in each "age class" Ix are' moothed as" explained

Fig. 28. Eyr-fitted line indicating, the changes in sex ratio with age of harbour seals in eastern canada. The numbers (aliong the abscissa indicatie the sample size for each age or group of ages.

Table 11. "Life table for the population of harbour seals in
Fourchu, Cape Breton.

above, to obtain the "adjusted \(1 x\) " collum. The total number of seals "for ages 1 to 23 is calculated (total of B5.2) and matipilied by 0.257 to give an estimate of the numbers of pups born (22). The number of pops is thein set equal to 1,000 and the other age frequencies are adjusted proportionaly to the age class \(O_{2}\) giving the \(k l_{x}\) colvm. The age specific' sex ratios (Fig. 28) are then used to calculate the age structure of the female segment of the population which is given in a \(k]_{x}\) series. The kLx series provides the number of seals in the age Rroup alive halnay through the age period while ma is the age specific fecundety rate for the production of female pups only. This value multiplied by the corresponding \(k I_{x}\) value will therefore provide the number of female props born (\(k I_{x} M_{x}\)) while \(e_{x}{ }^{2}\) and \(q_{x}\) are respectively the expectation of further life for an animal reaching age \(x\) and the proportion of animals dying during the age intionval \(x\) "to \(x+\) 1. As can be seen from the table, suming column kixill will give the total female pup production for one year, or 1,074. This value is obtained from fertility rates deduced from the ovaries of seals originating mainly froa Fourchu and" Sable Igland. This value of 1,074 is very close to the 1,000 pups in age class 0 which was calculated from the known pup production in the stable Sable Island pepulation. Therefore these two partly independent values (they both depend in part on the assumed age. determination) are in good agreenent and this suggests that-ber Fourcha popnlation is allso in a stable state.

Chariotte County - If this age frequency distribution (1x) is. treated as above, the pup production, 755, is found to be well below the 1,000 pups expected from the Sable-Island pup production data (Table, 72). There are three possible explanations for this low pup production.

Table 12. Ifife table for the population of harbour seale in Charlotte County, New Birunswick.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{melem and femules} & \multicolumn{6}{|c|}{Fexalos only} \\
\hline Age : 18 & \[
\begin{gathered}
\text { Adtrusted } \\
\mathbf{I}_{x}
\end{gathered}
\] & & Proportion of forales & \({ }^{\mathbf{k l}} \mathrm{x}\) & \({ }^{k}{ }^{2}\) & \({ }^{3}\) & & \({ }^{\text {c }}\) & \(\underline{9}\) \\
\hline 0 & 53.78 & 1000 & . 50 & 1000 & 892 & - & & 4.56 & . 236 \\
\hline 160 & 12.07 & 764 & . 50 & 76. & 639 & & & 4.8 & . 196 \\
\hline 243 & 33.06 & 63. & . 50 & 614 & 560 & & " & 4.9 & 1778 \\
\hline 3 37 & 26.62 & 494 & . 51 & 505 & 4.56. & & & 4.8 & . 196 \\
\hline 4 2in & '21.43' & 398 & . 51 & 406 & 370 & . 167 & 62 & -4.9 & . 173 \\
\hline \(5{ }^{\circ} 23^{\circ}\) & 17.25 & 320 & ; 52 & 334' & 302 & C. 297 & 90 & 408 & . 195 \\
\hline 610 & 33.89 & 258 & . 52. & 269 & 245 & . 1007 & 100 & 4.9 & \(182)\), \\
\hline 713 & ¢ 17.18 & \({ }^{2} 803\) & . 53 & 220 & 200 & . 500 & 800 & 4.8 & .182 - \\
\hline 8 & 9.00 & 167 & . 54 & 180 & 164 & .500 \({ }^{\text {" }}\) & 82 & 4.8 & . 173 \\
\hline 94 & 7.25 & 135 & . 55 & 149 & ' 234 & . 460 & 62 & 4.7 . & . 189 \\
\hline 10.5 & 5.84 & 109 & , 55 & 120 & & .1460 & 50 & \(44_{8} 7\) & \({ }^{\text {P }} .183\) \\
\hline 12. 3 & 4.70 & 日 7 & . 56 & 98 & 89 & +460 & 4 & 4.6 & . 134 \\
\hline 12. & 3.78 & 70 & . 57 & \(80^{\circ}\) & 73 & . 1460 & 34 & 4.6 & . 175 \\
\hline 132 & 3.05 & - 57 & -58 & 66 & 60 & . 460 & 28 & Lut 4 & . 197 \\
\hline \({ }_{4}\) & 2. 45 & 46 & .59' & 53 & 49 & . 460 & 23 & 4.4 & . \(170^{\circ}\) \\
\hline 15' 1 & 1.97 & 37 & . 60 & 4 & 20 & . 1.60 & 318 & 4.2 & . \(182 \times\) \\
\hline 16 & 1.59 & 30. & . 61 & 36 & 3 & . 460 & 15 & 4.0 & . 167 \\
\hline 17. 0 & 1.28 & 24 & . 62 & 30 & 27 & -460 & 12 & 3.7 & . 200 \\
\hline 18 & 1.03 & 19 & . 63. & 24 & 22 & 4160 & 10 & 3.5 & .163 \\
\hline \(19 \cdot 0\) & . 83 & 15 & . 64 & \(20^{\circ}\) & 18 & . 480 & 8 & 3.2 & . 200 \\
\hline .20*0 & . 67 & 12 & . 66 & 16 & & : 1.160 & 7 & 2.8 & . 125 \\
\hline 21. & . 54 & 10 & . 68 & 14 & 13 & 2, 2,60 & 6 & 2.2 & . \(\mathrm{D}_{13}\) \\
\hline 22 & . 43 & 8 & . 70 & 12 & 21 & ,260 & 5 & 1.3 & .250 \\
\hline 23' 1 - & . 35 & 6 & . 73 & & 5. & 4,4020 & 2 & 0.6 & 1,000 \\
\hline 5otalas & 263.01 & & - & & & & 75 & . & - \\
\hline
\end{tabular}
\[
\begin{array}{cc}
2 & 2 \\
\square
\end{array}
\]

First, it is possible that the value of 25.7 pups produced for 100 older seals present at the onset of whelping does not apply and that \({ }^{63}\) the charlotte County value would be below 25.7 pups, a result of the change In age structure due to hunting; however, Bigg's (1969a) study of a hunted population of harbour seals in British Columbia also provided a value of 25.7 which tends to refute the above argument. overhunting might constitute a' second explanation if the fecundity rates are assumed to be the same as in Fourchu. It can be, seem from Fig. 29 that survival is better in the younger age classes in Charlotte County (c), but mortality higher in older age classes than in Fourchu (F); this results in a shortage of reproducing females in charlotte county. The thind and most likely explanation is that fecundity rates from Fourchu do not apply to Charlotte County if we consider the possibility of females, becouing sexually mature at a younger age in that county, as the population there bas been munted fairly heavily for many decades. Sergeant, (1966) has indicated a lowering of the mean age at which sexual maturity takes place in the female harp seal, Pagophilus groenlandicus, following a decrease in population size because of hunting. The same has been observed in the elephant seal, Mirounga leonina (Carrick, Csordas and Ingham, 1962). In British Columbia, the hunted female harbour seals mature one year earlier than those in Fourchu. If the fecundity rates given by Bigg (1969a) for the British Columbia females ara applied to Charlotte County female harbour seals, the female pup production becones \(1,01 I\) animals. Hence, this suggests that if the fertility rates of the Charlotte County population have shifted; as a consequence of . bunting, from the Fourcion tyre of rates to the British columbia rates, a balanced population could be natntained, as a sufficient number

n

Fig. 29. Smoothed age frequency distribution (\(\mathrm{kl}_{\mathrm{x}}\)) of harbour soals in an area of low hunting intensity, Fourchu, Cape Breton (F) and in an area of high hunting intensity,

Gharlotte County, New Brunswick (C).
of pups would be born.
The possibility that the pup production is lower in Charlotte County than on Sable Island as explained above, should be retained. A sample of females from the county would indicate the age at sexual maturity and give fecundity rates for that area and would allow a better comparison with the Fourchu and Sable Island data. If this possibility were verified, it woold be a sign that the population is greatly overhmoted.

Maṛitimes - Having looked at age structures in two different situations, it is of interest to know what type of age structure the overall Maritime population exhibits compared with the two well defined cases just examined. Table 13 is a life table for female harbour seals in Hova Scotia, New Brunswick and Prince Edward Island. In this case, the pup production is slightly below 1,000, suggesting that for these three provinces, the age structure of the population might not be very different from that of the Fourchu population. Hosever, there is still a deficit in the number of pups born from such a population, which can be explained as with the charlotte County population by either overhunting or different fecundity rates. The Fourchu population differs from this more general model in having a higher mortality during the first year of life.
- The age structure of males is given in table 34. "The expectation of life at birth, 4.14 in males, is less than the 4.7 years for females. This is a consequence of the higher mortality rates of males as illustrated in Fig. 30. The combined male and female age frequency curve (Fig. 31) which has not' been smoothed by linear regression before age whows that mortality decreases from age 3 to 7, suddently increases at age 7 and 8

Table, 13. Hife table of fomale harbour seals from data cumalated for the period 1966-1971 and obtainad from the bounty kill in the Maritimes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{minn mail oxto} & \multicolumn{7}{|c|}{manlew onk} \\
\hline 44 & \({ }^{3}\) & \[
{ }_{3}{ }_{3}^{4}+1
\] & \({ }^{43}\) & mopertion of trales & \(\mathrm{Hz}_{3}\) & \({ }^{\text {H2 }}\) & \({ }^{n}\) & \(\mathrm{kf}^{\text {cher }}\) & * & \(4 x\) \\
\hline 0 & & 37 & & . 50 & 1000 & 860. & & & 4.66 & - 28 \\
\hline 1 & 175 & 123 & & . 50 & 71 & 633 & & & 5.3 & .24* \\
\hline 2 & 308 & 33 & 36 & . 90 & \(5 \times 6\) & 605 & c & & 5.6 & .23 \\
\hline 3 & \(n\) & n & 425 & . 51 & 123 & 391 & & & 6.3 & . 15 \\
\hline 4 & 60 & 69 & 358 & . 51 & 350 & 317 & .167 & 50 & 6.4 & .06 \\
\hline 5 & 55 & 35 & 322 & .58 & 335 & yea & .297 & 95 & 5.0 & \(\pm 08\) \\
\hline 6 & 50 & 50 & 29 & . 52 & 30\% & 301 & . 407 & 123 & 5.3 & . 02 \\
\hline 7 & 48 & 4 & 26 & . 53 & 29\% & 213 & . 500 & 122 & 4.4 & .37 \\
\hline 8 & 28 & 29.5 & 173 & ,54 & 107 & 164 & . 500 & 82 & 5.7 & . 25 \\
\hline & 29 & 21.9 & 126 & . 55 & - 241 & 126 & . 460 & 58 & 6.5 & ,21 \\
\hline 10 & 21. & 17.3 & 101 & . 53 & 12 & 101. & . 460 & 16 & 7.1 & . 18 \\
\hline 11 & 13 & 13.9 & b & .56 & 91 & 86 & . 160 & 10 & 7.5 & . 12 \\
\hline 12 & In & 12,0. & 70 & . 57 & 80 & 7 & . 460 & 35 & 7.5 & . 13 \\
\hline - 23 & 2 & 10.2 & 60 & . 58 & \% & 6 & . 460 & 30 & 7.5 & .23 \\
\hline 11 & 9 & 8. \({ }^{\text {a }}\) & 52 & . 59 & 61 & 57 & . 460 & 26 & Trix & . 13 \\
\hline 25 & 6 & 7.6 & 4 4 & . 60 & 53 & 5 & .160 & 23 & 7.5 & . 09 \\
\hline . 16 & 6 & 6.6 & 39 & . 62 & 48 & -45 & . 160 & 21 & 7.3 & .14 \\
\hline 17 & 6 & 5.6 & 33 & . 62 & 41 & 35 & . 460 & 215 & 7.4 & .10 \\
\hline -18 & 5 & 4.8 & 28 & . 69 & 35 & 34 & -460 & 16 & 7.6 & . 09 \\
\hline 15 & 4 & h. 2 & 25 & . 64 & 32 & 30 & - 4 to & 24 & 7.3 & .13 \\
\hline 20 & 5 & 3.6 & 21 & . 66 & 28 & 26 & .1460 & 12 & -782 & . 14 \\
\hline 21 & 2 & 3.1 & 13 & .68 & 24 & 23 & . 460 & 12 & 7.3 & . 08 \\
\hline 22 & 1 & 2.7 & 16 & . 70 & 22 & 21 & . 460 & 10 & 06.9 & . 09 \\
\hline 23 & - 3 & 2.3 & \({ }_{3}\) & . 13 & 20 & 19 & .160 & 9 & 6.6 & . 10 \\
\hline 2. & 2 & 2.0 & 22 & . 17 & 18 & 17 & .160 & 8 & 6.3 & .12 \\
\hline 25 & 2 & 1.7 & 10 & .er & 26 & 16 & . 160 & 7 & - '6.0 & . 06 \\
\hline 26 & 1 & 1.5 & 8.3 & .a7 & 15 & 15 & .160 & 7 & 5.3 & . 07 \\
\hline 27 & 1 & 1.3 & 7.6 & .93 & 14 & 14 & . 160 & 6 & 4.6 & . 24 \\
\hline 20 & 2 & 2.1 & 6.4 & 1.00 & 13 & 12 & . 450 & 5 & 4.3 & -08 \\
\hline 29 & 1 & 1.0 & 5.6 & 1,00 & 11 & 21 & . 460 & 5 & 3.5 & . 09 \\
\hline 30 & 0 & . 3 & \(40{ }^{4}\) & 1.00 & 13 & \(1)^{1)}\) & .150 & 5 & 2.8 & 20 \\
\hline \(\geqslant 31\) & 0 & 1.7 & & 1.m & 8 & 8 & . 4.40 & 4 & 2.3 & . 23 \\
\hline 32 & 0 & . 6 & 3.6 & 1.05 & 7 & 7 & . 460 & 3 & 1.4 & . 14 \\
\hline 33 & 2 & 5 & 3.9 & 1.03 & 6 & 3 & . 40 & 1 & 0.5 & 1.00 \\
\hline Tok & & & & & & & & 900 & & \\
\hline
\end{tabular}

Table Ih. Life table of male harbour seals from data
1 cumalated for the period 1966-1971 and obtained from the bounty kill in the Maritimes.

\(-\frac{2-2}{3}\)
* Fig. 30. Age- \(\log _{10}\) frequency distribution showing aurvival of males (closed" symbols) and females (open symbols). "Datä from Table 13 and 14 .

Fig. 31. Age-logio frequency distribution of the total
bounty kill fro ll 1966 to 1971 in New Brunswick, Nova
Scotia and Prince Edward Island. Data are from Table 13.
to become afterwards somenthat constant. If the uinadjusted age irequencies (\(1_{x}\)) of Fowrcha and Charlótte County are examined, similar indreasea in mortality are found respectively at age 4 and 7. These are the ages anound which most males and fomales mature. The incroased mortality then might indicate that transition into adulthood is mariked by a noticeable death toll-for the population. Bigg's (196\%a) data show that only males ane affected by a higher mortality at age of sexual maturity, possibly the result of flghting during the breeding season. This explanation could well apply to most of the Maritimes and to Charlotte County but not to Fourcim where the increased mortality takếs place at age four (\(I_{x}\). colum, Table 17), when most females bear a pup for the first time. Other evidence also suggest however that males might have a higher mortality at age 7: the age specific lengths given on Fig. 11 show that males reach a maximur length at 7 years of age and become smaller on the average from age 8 to 12 even though the differences from year to year do not differ signiflcantly. If Bigg's data for age speciflc lengths of males are examined (1969a, p. 22), a peak is noted at age 5 which is also the age before male fortality starts increasine in British Columbia harhour seals. The decrease in length after age 7 and 5 reapectively in eastern and western Ganad is explajned if the increase an mortality noted to occur at these two ages, affects mainly the large newly matured males, perhaps the first to attempt ageressive encounters with fully adult males.

Population changes in the Maritimes
The bounty - Having examined how hunting affects the structure of harbour, seal populations, it is of interest to examine more closely
what the consequences of the bounty have been on the overall population of harbour seals in the Naritimes. The bounty was inplemanted around 1927 to reduce the number/of "gealis" harassing, fishermen. However, in the three maritime provinces, even though the bounty was aimed at harbour seals, an unknown proportion of grey seals, Halichoorus grypus, was killed each year until 1949 and included in the catch. Before 1949, only the snouts were required to justify the claim and numerous fishermen became very clever at manufacturing seal snouts out of the skin. The catch of seals before 1949 is therefore considereduseless for the purpose of analysing the changes in the population of harbour seals in the Maritimes.

In 1949, the lower jaws becarie the required proof of seal destruction - for bounty and this change made it passible to verify the species. Identity and also to eventually age the catch. Since that year, the exact number of harbour seal adults and pups reported killed annually for bounty has been recarded and this provides the basis for examiningpossible changes in the total population of harbour seals in New Brunswick, Prince Edward Island and Nova Scotia excliuding Sable Island.

The number of adults reported killed each year needs to be correctied as most seal hunters stated that they always lose a few seals because of sinking. Twelve of them gave an indication of the number of seals they lose and which are assumed to die (Table 15) * An average of \(65 \%\) of the seals one-year-old or more shot were retrieved. The number of seals one-year-old or older reported killed was thus multiplied by 1.54 (or 100/65) to correct for sinking. All munters stated that few or no pups are lost as they are killed ashore or float well because of their thick blubber layer. The corrected annual bounty kill of harbour seals in the :

Table 15. Caiculation of a correction factor to account for adult seals likely ldilled for bounty but not retrieved, mainly due to sinking. All huntors agreed that most pups were retrieved as thoy float well after being killed. Thus no correction factor was calculated for pups. Corrected number of adults killed anumber of adults reportod killed, \(\times 1.54 ; 1.54^{\circ}=1 / 0.65\).
\begin{tabular}{lllll}
\hline & \\
\hline
\end{tabular}
three maritime provinces is given in Table 16 for the period 1950 to 197.
popniation estimates - Bstimates of the number of harbour seals in the three provinces are available for 1949 and for 1971. Fisher (WS-1949) assessed the population to mumber betreen 10,000 and 15,000 harbour seals. Hy own estimate for 1971 is 5,500 in the corresponding areas (data from Fig. 3), and it may be considered as an average, value for that year. However, in a stable popolation of seals, the number of animals present fluctuates ammally between a high value just after the pupping season and a low value just before that season. Comparison of population estimates for different years should be from the same month of the year; the mumber of seals present just before pmpping will provide a comparison. of the lowest mmbers of seals present in the population during the year. If an average value is available, then the size of the prewhelping population is needed. Bigg (1969a) and Boulva (1973) gave evidence that 100 harbour seals just before whelping will yield about 26 pups. If the population is near stable, about 26 animals will die during the year. Then the average muber of seals in this population is \((126+100) / 2\) \(=113\), and mattiplying the average of 5,500 seals for 1971-72 by 0.885 (or 100/113), will give the estimated size of the prewhelping population for 1972 or 4,850. Assuming that Fisher's highest estimate of 15,000 seals was that of the, postwhelping pqpuiation, the prewhelping population size in 1950 would have béen \(15,000 \times(100 / 126)\) \(=\) about 12,000 harbour sêals. Assuming the above two population estimates to be relatively correct, the numbers of harbow seals in Hew Bruswick, Nova Scotia and Prince Eduard Island during eafly way would have dropped Irom about 12,000 in 1950 to about 5,000 in 1972.

Table 16 . Imider of mothour seals nilleci sor bounty in the Maritimes betueen 2950 and 197, correcked or acults (1-rear-old on more) by twkine the mroduct of the nutut elsined killed, and of 1.54 (Table 15).

Natural mortality - If the reproductive rate of 25.7 pups per 100 sealis present just before whelping (Bige, 1969a; Boulva, 1973) is applied to harbour seals in the llaritime for the last 22 years, and if the innting mortality accounts for all the deaths during, the year, theily the population should incupase. obviously, there is an additional natural mortality with animals dying of old age or being attacked by " predators. For simplicity, this natural mortality is assumed to be constant during these 22 years. Eurthernore, it is assumed that most-s pups that died along the shore before weaning were found by fishermen or hunters and reported in the bounity kill; this fis suggested by some. weathered jaw bones of pups included in the bounty returns.

The 'pup production, honting and natural mortalities can be related to the prewhelping population size to obtain the prewhelping population size of the following year. An estimate of the natural mortality can be derived from the estimatyed population size in 1950 and 1972, the knowif hunting mortality during these '22 years and the known mp production rate of 0.257 . The following equation gives the number of seals present oat the beginning of the next pupping season (\(\mathrm{H}_{\mathrm{t}_{0}+1}\)), using the minber present at the begining of the pupping season on year \(t\left(H_{0}\right)\) and the total number of seals killed for bounty \(n\) that year \(\left(M_{\xi}\right)\) :
\[
N_{t+1}=\left[N_{0}(1+0.257)-K_{t}\right] \quad c_{1}
\]
a By starting with a \(N_{0}\) value of 12,000 for 1950 , and using the annual bounty kills in table 17, the equation was run by computer first for a value of the natural survivorship \(C_{1}\) equal to 1.0000 and then decreasing at each iteration by 0.0001 until a prewhelping population in May 1972 having between 4,800 and 4,900 seals was obtatned. A prewhelping population of 4,972 was produced on the 1636 th fteration with a
correspondine annual survivorship to natural mortality of 0.8365 ; the annual natural mortality is therefore \(1=0.8365=0.1635\). This is an estimate of natural mortality and is only as accurate as the 1950 and 1972 population estimates and is dependent on several implicit assumptions about unchanging age structure and lack of seasonality and density dependence of survivorship rates. The annual numerical changes in the population from 1950 to 1972 based on this estimate of natural mortality are given in Table 17. When the future anmual bounty mortalities become available from year to year, it will be possible to revise the population size in the three provinces.

Rate of increase - It is possible to forecast approximately the numerical changes which will take place if the mortality due to bounty can be averaged. The annual hunting mortality, defined as the ratio of the total mumbers of seals killed in a year to the estimated postwhelping population on that year, has declined since 1950 (Fig. 32). This drop in munting effort is probably a result of a lower return for the honting effort because of the diminishing population size. Therefore if average hunting mortalities specific to adults and to pups are calculated, it is preferabie to use the average of 1961 to 1971 rather than the \(22-\)-jear mean to obtain a better approximation of the current bunting effort. The ten-year average survivorship from hmting mortality for adults (\(\mathrm{C}_{2}\)) and for pups \(\left(C_{3}\right)\) can be obtained from the formulas:

The constants \(C_{2}\) and \(C_{3}\) can be related to the annual survitrorship from natüral mortality, \(\mathrm{Cl}_{1}\), and to the prewhelping population size (\(\mathrm{N}_{0}\)) to calculate the prewhelpint population size of the following year \(\left(\mathrm{H}_{\mathrm{t}}+1\right)\) :

Fig. 32. Funting mortality of harbour seals in the three maritime provinces for the pertod 1950-1971, calculated from the number of seals reported killed for bounty each year and corrected for sinking loss and from the estimated numbers of seals in the postwhelping population in the corresponding year. Sustainable yield would be obtained with a hunting mortality of 0,049 . The marked increase in muting during the period 1969-1971 is attributed to a greater reward per seal to obtain scientific specimens. The eye-fitted line indicates the main trend.
- Table 17. Caicuated cimpos in aumars of hebour seals in the

 annua survivosolin mas obained by combuter iterntions. The nuaber of •tres bome "as andoulawe by natirlviar the nuber of seals in the rrethelnine romation fach year by 0.957.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Year & Prewhelping population & rups born & \[
\left[\begin{array}{l}
\text { Postwhelming } \\
\text { population }
\end{array}\right]
\] & \[
-\left[\begin{array}{l}
\text { Total } \\
\text { kill }
\end{array}\right]
\] & & \[
\left[\begin{array}{l}
0.8365 \text { or annuai } \\
\text { survivorship to } \\
\text { natural mortalitur }
\end{array}\right.
\] \\
\hline & 1950 & 12,000 & 3,084 & 15,084 & 1,458 & & 21,398 \\
\hline & 1951 & 11,398 & 2,929 & 14,327 & 1,530 & & 10,705 \\
\hline & 1952 & 10,705 & 2,751 & 13,456 & 1,566 & & 9,946 \\
\hline & 1953 & 9,946 & 2,556 & 12,502 & 1,347 & & 9,332 \\
\hline & - 11954 & 9,332 & 2,398 & 11.730 & 1,183 & & 8,822 \\
\hline * & 1955 & 8,822 & .2,267 & 11,089 & 1,160 & & 8,306 \\
\hline & 1956 & 8,306 & .2,134 & 10,141 & 1,747 & & 8,114 \\
\hline & 1957 & 8,174. & 2,085 & 10,199 & 1,003 & & 7,693 \\
\hline & 1959 & 7,693 & 1,977 & 9,670 & 982 & & 7,267 \\
\hline & 1959 & 7,267 & 1,867 & 9,135 & 848 & & 6,932 \\
\hline & 1960 & 6,932 & 1,781 & 8,714." & 637 & & 6,756 \\
\hline & 1961 & 6,756 & 1,736 & 8,492 & 703 & & 6,516 \\
\hline & 1962 & 6,516 & 1,674 & 8,191 & 780 & & 6,191 \\
\hline & 1963 & 6,199 & 1,593 & 7.792 & 683 & & 5,946 \\
\hline . & 1964 & 5,946 & 1,528 & 7,474 & 311 & & 5,926 \\
\hline & 2965 & 5,926 & 1,523 & -7,449 & 504 & & 5,809 \\
\hline & 106 & 5,809 & 1,1493 & 7,302 & 496 & & 5,593 \\
\hline - . & \[
367
\] & 5,693 & 1,463 & 7,156 & 273 & & \[
5,757
\] \\
\hline - & . 968 & 5,757 & 1,480 & 7,237 & 508 & & 5,629 \\
\hline & 4769 & 5,629 & 1,447 & \(\bigcirc 8,076\) & 675 & & 5,354 \\
\hline & \[
\begin{aligned}
& 19 \% 0 \\
& 19 \% 1
\end{aligned}
\] & \[
\begin{aligned}
& 5,354 \\
& 5,053
\end{aligned}
\] & \[
\begin{aligned}
& 1,376 \\
& 1,299
\end{aligned}
\] & \[
\begin{aligned}
& 6,730 \\
& 6,352
\end{aligned}
\] & \[
\begin{aligned}
& 690 \\
& 527
\end{aligned}
\] & & \[
\begin{aligned}
& 5,053 \\
& 4,072
\end{aligned}
\] \\
\hline 1 & & & & 。 & & & \\
\hline
\end{tabular}
\[
\mathrm{N}_{t}+1=\mathrm{C}_{1}\left(\mathrm{C}_{2} \mathrm{~N}_{0}+0.257 \mathrm{C}_{3} \mathrm{H}_{0}\right)
\]

Fncm this equation, a more general one is found, allowing calculation of the number of seals present in the popviation after \(t\) years \(\left(N_{t}\right)\) when the size of the prewhelping poprulation on year 0 (\(\mathrm{N}_{\mathrm{O}}\)) is known:
\[
\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \mathrm{C}_{1}^{t}\left(\mathrm{C}_{2}+0.257 \mathrm{C}_{3}\right)^{t}
\]
or
\[
N_{t}=N_{0} e^{\ln \left[C_{2}\left(C_{2}+0.257 C_{3}\right)\right]} t_{;}
\]
this equation is identical to the equation of population growth, \(H_{4} \pm N_{0} e^{r t}\), whore \(r\) is the realized intrinsic rate of increase, also called instantaneous rate of increase, as defined in Wilson and Bossert (1971) and therefore:
\[
r=\operatorname{In} C_{1}\left(G_{2}+0.257 \mathrm{C}_{3}\right)=-0.030
\]
for the ciurrent values of \(\mathrm{C}_{1}, \mathrm{C}_{2}\) and \(\mathrm{C}_{3}\). It is now possible to examine how the population of harbour seals in the three provinces wili increase or decrease if monting conditions change and assuming that natural mortalify is constant and equal for adults and weaned pups. Prediction

Case 1: bounty maintained - If the bounty is maintained, then the average survivorships to munting mortality, \(\mathrm{C}_{2}\) and \(\mathrm{C}_{3}\), can be used to predict in approximately how nany years the following numbers of seals will occur:
\begin{tabular}{cc}
Number . & Years after \\
& 1972 \\
4,000 & 7 \\
3,000 & 16 \\
2,000 & 30
\end{tabular}

97
\[
1,000
\]

However, it is possible that at low population density, a famale in oestrus will not find a potent male; this would decrease the reproductive rates and mould accelerate the extinetion of the species in an axea. The minimal permissible popuiation density required to maintain the present reproductive rate is unknom but it is felt that if the population in the three provinces drops below the level of 2,000 scattered seals, it will face a serious danger of extinction,

Case 2: bounty discontinued - If hiunting is stopped entirely, the intrinsic-rate-af increase may reach lts maximal value for this species in nature:
\[
r=\ln \left[6_{1}(1+0.257)\right]=0.050
\]

This assumas that pups before weaning suffer the same natural mortality* as the adults because the pomulation of harbour seals in the Mamitimes is considered to be at presént well below its maxinum size. However, as \(\checkmark\) the population increases, the pup mortality before weaning would also probably increase as reported for grey seals, Halichoerus grypus, in fangland (Bonner and Hickling, 1971). On Sable Island, where the harbour seal popriation is remaining at a fairly constant levali, which is assuned to be, the maximun level, the mortality of pups during the first month of life is 17.2\% (Boulva, 1973); If the survivorship to this early mortality, \(1-0.172=0.820\), is included in the equation to replace the survivorship of mps to the ranting mortality, we find that:
\[
r=\ln C_{1}(1+(0.257 \times 0.828))=0.014_{4}
\]
which suggests a very slow exorth of the population.
However, in the absence of information on the increase of preweaning pup mortality with the density of the population, the maximum rate of

Increase, \(r=0.050\), can be used to estimate the muber of years required before the population reaches its 1950 size of 12,000 seals. Ey transforming the equation \(N_{t}=\mu_{0} e^{r t}\) to find \(t\), 18 years wovid be needad for the population to muber 12,000 seals. This differs by 4 years from the 22 years needed for the popalation to drop from about 12,000 to about 5,000 seals. The difference is explained by a rate of increase after the suspension of the bounty highor than the rate of decrease (natural mortality plus hunting) while the bounty was in effect.

Gase 3: gustainable yield - Tha munting mortality required to maintain the popalation at its present level can be calculated from one of the above formalas:
\[
N_{t+1}=C_{1} N_{0}\left(C_{2}+0.257 \mathrm{C}_{3}\right)
\]

If no distinction is made between adults and pups, the survivorship to hanting (\(C_{4}\)) will be, when \(H_{t+1}=N_{0}\) :
\[
C_{4}=I\left(1.257 C_{1}\right)=0.951
\]
which corresponds to an annal hunting mortality of 0.049. To inlustrate, 300 seals would have to be taken from the 1972 postwhelping popnlation of \(4,872+(4,872 \times 0.257)=6,124\) seals, for the population to remain at its present level. Given constant natural mortality and birth rates, the sustainable yield would be about 5\% of any postwhelpini population size. These seals could be prups, adults or a combination of both. If only pups are taken, then \(24 f^{\prime}\) of the pups born in one year would constitute the sustainable yield.

\section*{Discussion}

Even though based on the overall population of harbowr seals found

In Now Brunsifick; Nova Scotia and Prince Bchrard Island, the prodiction of the three cases ecamined here are dependent on the accuracy of the numerous ássuntions discussed above. Furthermore, when it is remembered that the seals in these three provinces are grouped in small disicrete populations, the danger is then greater of having one small colony exteminated rather than seals in all areas destroyed at once, as the hunting pressure seems to be Migher in some localities depending on the enthusiasm of the local seal hunter. fowerer; examination of the overall catch of harbour seals, as done in this chapter, suppliés a. useful knowledge of the general trends of the population as a wholes for the present time, this trend appears to be a decreasing one with a realized rate of increase of \(\mathbf{r}=0.030\).

Should the bounty be discontimued, the age struature of numerous populations presently hunted would change considerably. In those populations, the age whon sexual maturity occurs in the female would probably increase but the overall pup production rata can be expected to remain around 26 pups per 100 seals present at the onset of pupping; it was mentioned that this rate is found in both a regulariy hunted population in British Columbia (Bigg, 1969a) and in an unhanted poprlation on Sable Island (Boulva, '1973). The mechanism which maintains this rate of pup production in a heavily manted popriation appears to consist in a decrease in the age when sexual, maturity in females is reached possibly because of a more rapid growth of individuals; this earlier maturity would counterbalance the diminution in mubers of older females.

If the pup production rate is assumed constant and independeat of the age structure in a large population of harbour seals, then the
increasing population possibly limits itself through a higher preweaning mortality of pups at high population density. Such a density-dependent mortality of pups has been described in the grey seal, Halichoerus grypus (Bonner and Hickiling, 1971). In the harbour seal, the availability of sand bars or islets for females to haul-out undisturbed with their pup could control thergrowth of the population. Even though pups can swim at birth, they generally. have to come on land to be nursed. In large nurging herds as found on Sable Island, there is a higher probability of a female losing her pup after a period of disturbance because of the great number \(+\) of pups present and, as often seen, not accepting to nurse another abandoned pup. At high population density, enoügh pups could become deserted and die before weaning to stop the growth of the population as seems to be the cáse on Sable Island.

Sufficient qualitative and quantitative data on the feeding of wild manmals are necessary for the realisation of adequate studies of mamal production. In seals, most past feeding studies have emphasized qualitative descriptions of stamach contents and on the Irequency of occurrence of the various foods without attempting a careful ecamination of the quantity of food being eaten per meal by seals of known size in nature. This aspect is stressed in the present study, using approximations to obtain an estimate of the feeding rates of harbour seals under natural conditions. The results'thas obtained allor quantitative, estimations of energy flow through a theoretical population of harbour seals.

Conswaption in nature
Foods consumed - Harbour ceals in eastern Canada rely mainly on fish for their diet, and to a lesser extent, on invertebrates. Data on 189 stomachs exarnined by Fishar (NS 1950 and MS 1951), on 61. stomachs examined by the Arctic Biological Station (Mansfield, personal commulcation)-were added to my own data from 352 stomachs, giving a total of 602 harbour seal stomachs-examined from eastern Canada. of these, 299 (49.78) were erapty, 24 contained milk and the remaining 279 (46.4\%) contained food in various stages of digestion.

The food species are listed in their order of importance in Table 18 and probably give a good indication of the food preferences of this seal in eastern Canada, even though there are doubtless some geographic

Table 18. Percentire of diererent food itens found in 279 harbour seals.

and possibly temporal variations in abundance of a given food item. For example, Fisher' 3 samples which came predoninenty from the lower Bay of Fundy, contained a much higher proportion of squid (15\%) than uy sample which originates mainly from Sable Island and zoutheastern Gape Breton (7\%). Flounders, were reported by Fisher to be a comon food itiem (288) in all areas while ry data give them as representing only' \(2 \%\) of the diet. As there has been 20 years between Fisheris work and this study, a change in abundance of this group of fish during that period of tine could explain the change in Irequency.

Herring is the most common species in the seal's diet (24\%). It is followed by squid (21\%), the 6 specimens examined being identified as M1ex inlecebrosus, then flownders' (14\%), mainly Pseudoplewronectes americanus, alerife (\(7 \%\)) and hake (6,6). These five types of fish constitute the main part of the diet of the harbour seal in eastern Canada. Other fishes have a percentage of occurrence below \(4 \%\). The last items on Table 18, limet, scallop and clams, probably originate because of their small size, from the stomach of the flish ingested by the seal. On the average, the aiet of the harbour seal in eastern Canada consists chiefly of \(73 \%\) fish, \(26 \%\) invertebrates and 1\% alga

The food of this species has been relatively well studied elsewhere. In the eastern Atlantic, seals in Holland have been found to feed mainly on flatfish, pleuronectes flesus (30\%), cod (17\%) and herring (15\%) (Havinga, 1933). In eastern Scotland, 47\% of the stomachs contained Gadoids, mainiy gadus virens and G. marlangus, \(17 \%\) contained flatfishes and 13\% clupeids (Rae, 1960). In the Flash, England, Sergeant (1951) found the seals feeding latgely on the whelly, Buccinum undatum
(94が of diet).
In the eastern Pacific, harbour seals of the Washington State have been reported to eat" minily Mounder, Pacific herring and toncod, Listed here In decreasing order (Scheffer and Slipp, 19ll)'. British Coluribia seals feed chiefly on salmon (23\%), octopus (20\%), squid (10\%) and rockfish (12\%) (Spalding, 1964). In southesstern Alasica, food consisted mainly of gadids (22ر), heming (16\%), flounders (17\%) \()_{\mathrm{za}}^{*}\) and shrimps (.57) (Imiler and Saber, 1947), while in the Aleutian area, Atka mackerel and octopus are the main part of the diet (Kenyon, 1964 and Wilke, 1957). Thus, with the exception of the population in the Wash, specialised on whelk, the most comon food items found in harbour seal stomachs are herring, Ilatrish, and aither cod or cephalopods.

Changes in feeding with age - After weaning; the young harbour seal first nibbles on small amphipods (one specimen from Sable Island aged five weeks), then turns to the larger shimps for its subsistence. One pup from Fourchi, Cape Breton, aged approcinately five weeks had in Its stomack 95\% Decapods (73\% Lebbeus Eroenlandicus and 22\% Pandalus sp.) and 5\% midentified amphipods. Interestingly, this seal was already host of fiye codnorms, porrocaecum decipiens, ranging in length from 0.8 to 1.5 am and their mouth was lipped, a characteristic of worms having reached the final host stage; thelefore, they must have been in the seal's stomach already for some time (G. HcIellan, personal commanication). From Crostacea, the young seal eventually changes to a flish and cephalopod diet which it retains into adult life.

Hon fish is eaten - From the examination of the food renains in "stomachs, it was noted that fish can be eaten" in all possible wrys: swallowed whole, bitten in pouthiuls, swallowed without tail and head.

The heads are probably seldom eaten as very few otoliths were found in the stomachs. Snall fish are swallowed under water but larger ones can be taken to the surface and bititen in piecea while held with the fore flippers as I have seen it done on a few occasions. The largest intact fish found in stomachs were herrifygs, up 乍 30 cm in length.

Seasonal changes in concition - The deposition of blubber in seals is probably related to the intake of food. Changes in blubber thickness can be monitored with the condition index which is calculated with the formola: girth Xfion / nose-tail length. In this study, this index (FiE. 33) is high in winter and early spring; variable and decreasing in late spring and low from earily sumer until late autum. The percentage of empty stomachs (Table 19) remains relatively constant, from May to September, increasing slightly during the period October to Jamuary. No data are available for the period February to late April, but the difference in blubber thickess in sumer and winter appears not to be caused by, a reatuction in the frequency of feeding.

Sergeant (1973) published a similar curve for harp seals in the north-west Atlantic and the trends are almost parallel to those of the harbour seal except that the rapid decrease phase folloning weaning and mating occurs in late April. During this decrease phase in the harp seal, there is a corresponding increase in feeding rates as indicated by the occürrence of empty stomachs, which graduaily drops from 73\% in Narch to \(4 \%\) in May.

A possible explanation for this variation of the condition index might be the change in condition of the flishes following winter and spawning. An examination of the seven species of fish which nepresent 61\% of the normal diet of the harbour seal (Table 20) Indicates that

Fig. 33. Monthly changes in the condition index (maximma girth \(\times 100\))/nose-tail length, of harbour seals in eastern Canada. Solid circles are matys, open are females.

Table 20. Spawning trine of the fish species regularly eaten by \(\qquad\) कम the harbour seal in eastern Canada. Spawning data from Leim and Scott (1966).

these fish spom from April to September with the monn spawing occurring in late Nay. Folloring spaming, Itish are generally in a' very lean condition and probably build up thoir fat reserves during the summer and fall months.

An example of this is glvan by Ifackinnon (1972) who has show that the energy content of the amorican plaice, fippogiossoides platessoides reaches a marimum in Norember and December, then decreases slowly until late April, representing at that time \(79 \%\) of the maxiun late fall value. ufter this time, the energy content incrieases rapidy for one month until early thene when, following spawning, it drops sucidenly to a minimu (7ly of maximun). The condition of the fish inproves afterwards until the maximum is reachod. The curve for seasonal energy content of the plaice thus greathy resembles the curve describing tie seasonal charices of the condjtion index of harbour seals.

Aninals relying on fish for their tiet and keeping their consumption constant during spring and sumer with respect to stomach canacity, would therefore be affected by a sharp drop around Nay and June in the food's cilorific value. The protable corrective mechanism for the senl would be to borrow/on its accumiated blubber reserves and this would yield lower values of the condition index. Another explanation would be a decrease in the average size of a meal, which is very difficult to measure because of the scarcity, of data.

3mentity of food infested per meal - This measurement is essential in the study of energy flow in seals. luring the examination of stoxachs, the weight of the content was noted when it was estimnted to be \(30 \%\) or less digested, along with on estimate in percent of the mannt of food
already digested. An estimate of the welght of the food consumed was calcylated: (weight of food as found in stbmach / \% not digested) \(\mathbf{x} 100\), and this weight was plotted against the seal.'s weight (FIG.'34). In the absence of the latter information, the seal's meight was approximated by means of the equation describing the lengthneight relationship (Fig. 13). A Iinear regression was fitted to the \(\log _{10}\) transformed data and an exponantial equation was derived to predict the amount of food eaten in one meal bry a harbour seal of a given weight:

Weight of food \((\mathrm{g})=228.26\) Weight of seal \((\mathrm{kg})^{0.49 / \mathrm{L}_{4}}\) From this equation, it is seen that the average meal of a 20 kg seal represents \(5 \%\) of its body weight, while for a 100 kg seal, it represents about \(2.2 \%\) of \(i t s\) body weight.
\(\forall\)

Consumption in captivity
Replies to questionnaires distributed in Februawy 1973 to institutions keeping marine namais supplied information on the feeding rates of harbour seals in captivity. The answers received indicate two attitudes among seal keepers. Some give just enough food to satisfy the energy requirements of the moderately active seal. This type of controlled diet is more conmon in research institutions where seals fed the proper maintenance ration perform better, than when overfed. on the other hand, muerous public aquaria and zoological gariens are obriously overfeeding their seals. The information from these latter institutions is therefore left out of this analysis, as the aim here is to detbmine the minimum ration required daily for a moderately"active geal.

Table 2l lists the information received from those institutions giving a controlled diet to their seals. The seals are Eenerally fed

Fig. 34. Relationship between the estimated stomach content's weight before digestion (F) in nature and the weight of the corresponding harbour seal (W). Solid symbols are from Havinga (1933). Open symbols are from this study: triangles indicate food estimated to have been \(5 \times\) digested at the time of examination; cirales, \(30 \%\) digestisd; squares, no data on state of digestion.

Table 2l. Feeding rates of harbour seals in captivity. The 1aşt two colums before the referenceis give meal weigit calculated from the equation on Fig. 34, and the meal weight ecpressed as \(\%\) of body weight. Asterisks in the first colvm indicate captive animals suriving on daily rations close to those calculated for wild animalo.

thawed fish, mainly herring or mackerel. The data of those sample numbers in Table 21 marked with an asterisk indicate that captive harbour seals can survive and be activo on a daily diet consisting of 4.9\% of the body weight for a 32 kE seal, of \(3.2 \%\) of the body weight for a 50 kg seal and of \(2.6 \%\) of the body weight in the casse of a 77 kg seal.

Fron the measurement of the welipht of the stomach content described above for wild seals, it seems possible that harbour seals in nature eat on the average one meal per day and that the quantity eaten is a function of the seal's weight as described by the equation in Fig. 34. This equation gives for the above three captipe harbour seals, a theoretical meal weight which is close to, but slightly smaller than their actual daily food consumption (Table 21).

Production
Having obtained data on the afe distribution of the population of harbour seals in eastern Canada, on the growth in weight and an estimate of the daily fonsunption rates for given seal weights, it is possible to attempt a detailed calculation of the flow of energy through a seal population and simultaneously of the production from such a population.

Population model - A model is built of a population of 1000 harbour seals, which is stable, has an assumed stable age distribution and which is isolated with no emigration or immigration. Data on age distribution and growth in weight are takenrespectively fron Table 13 and Fig. 12; numbers and weights of males and females are averaged for each age and only ane model, independent of sex differences, is prepared. This model
is estimated to be typical of an average population of harbour seals in eastern Canada.

With the population being assumed stable and having a stable age distribution, the biomass of that population at a given time each year, for example, halfway between two birth dates, should be a constant Value from year to year. The only energy intake is the food consumed while the energy output is threefold, consisting of rejecta (faeces plus excreta), respiration (heat lost and energy dissipated throügh activity) and production (\(P\)) which in this case consists of the animals dying because of old age, illness or accident, and consumed by decomposers, or because of predators. This approach to estimation of production is described by Mann (1969).
'Description of terms used - The following symbols and concepts related to biological production "are taken fron Ricker (1968): N Population size, in this case taken halfway between one birth period and the next.

C Consumption, in this case the total intake of food during one year. s F Faeces.

U Excreta, including urine and epidernal secretions.
UF Rejecta \((=\boldsymbol{U}+\boldsymbol{F})\)
A Assimilation (\(=C-F-J=P+R\)) the food absorbed less rejecta.
R Respiration (\(=C-F-U-P\)) that part of assimilation which is converted to heat or mechanical energy and is used in life processes.

In this model, \(C, F, U, A\) and \(R\) will be expressed in Cal: or koal., or metric tons (met.). One Gal. equals 1,000 cal., one kCal. equals 1,000 Cal. and ona m. \(\mathrm{t}_{\text {. }}\) equals \(1,000 \mathrm{~kg}\). Other concepts are slso required:
\(L_{x} \quad\) Aga specific number of seals in the population at a time halfray between two birth periods. The \(I_{x}\) series used here is calculated for a population of 1,000 animals, from the "adjusted \(\mathbf{1}_{x}\) " series in Table 13.*
\(\Sigma I_{x} \quad\) Population size, here 1,000 seals (\(=\mathrm{N}\)).
\(W_{x} \quad\) Age specific mean weight of the seals in a given age group, obtained from the growth curve for weight (Mg. 12).
\(\mathrm{B}_{x}\) Biomass of the afo Eroup.
EBx Population biomass.
\(F_{x} \quad\) age specific datiy fomdine rates, expressed as proportion of body wetant: \(F_{x}=0.22826 W_{x}^{0.4944} / W_{x}\). The equation is the one used to celcalate the weight of food (kg) consumed in nature, from the welght of the seal (Fig. 34).
\(C_{x} \quad\) Consumption by age group during one year (\(=365 I_{x} W_{x} F_{x}\)).
\(\dot{\Sigma} C_{x}\) Population consupption during one year (E G).
Mb Basal metabolism, or minimal energy required to maintain in life, a resting animal in a neutral temperature enviypment and in a.post absortive state.
\(\mathrm{Mb}_{\mathrm{x}}\) Age specific basal metabolism, in Calories per day, for one seal without blubber (\(0.64 \mathrm{~W}_{\mathrm{X}}\)), the blubber constituiting \(36 \%\) of the seal's weight (Dorofeev and Freimann, 1935; Slijper, 1958). The equation for basal metabolism is taken from Brody (1945): cal. \(=70.5 \mathrm{~kg}^{0.734}\).
\(\mathrm{SH}_{x}\) Basal metabolisri of age group in kcal. per year \(\left(=365 \mathrm{I}_{\mathrm{x}} \mathrm{Mb}_{x}\right)\).
ISHbx Population basal metabolism in W6al. per year.
\(D_{x}\) Seals dying fin each age group per year.
Bdx Biomass oif seals dying in each age group per year.
[Bdic Total biomass of seals dying per year (in this cases \(=P\))

Energy flow table - Having now defined the variables, we can prepare an energy flow table which is presented in a format similar to the more common life table. The energy flow table (Table 22) consists of: Age, \(I_{x}, W_{x}, B_{x}, F_{x}, C_{x}, M_{x}, S M B_{x}, D_{x}\) and \(B d_{x} ;\) at the bottom of the table are found \(\Sigma B_{x}, C\left(=\Sigma C_{x}\right)\), \(\Sigma S_{M 1} b_{x}\) and \(P\left(=\Sigma B d_{x}\right)\).

To prepare the diagram of energy flow, we need to know also the calorific value of the food consumed by the population and the calorific value of the dying seals. Approximations for these values are given by Altman and Dittmer (1968). Table 23 gives the water content and the calorific value of eleven species of fish eaten by the harbour seal in eastern Canada. The calorific values are for the raw edible portion of the figh and it is assumed that these values do not differ greatly from those of the whole fish. A mean value is calculated for water and calorie content and the value of \(120.7 \mathrm{Gal} . / 100 \mathrm{~g}\) (wet weight) of fish is used to convert the food consumption from metric tons to calories. Squid is included in the table and has a calorific content comparable to those of fish.

The calorific value of seals which have \(36 \%\) of their weight in blubber, can be apnroximated by the mean calorific value of three types of meat consisting of 63\% lean and 37\% fat (Table 24); this value is \(396 \mathrm{Gal} . / 100 \mathrm{~g}\) (raw, wet weight),

Also required for the diagram, is the assimilation efficiency of the seals. As was the case for the calorific valiue of a seal, this information is not avaifable for seals to my knowledge, and has to be approximated with values from other manmals. Data are available.

Twble 22. Bnergy Now table for popolation of \(\mathbf{2 0 0 0}\) harbour geala
in eastern canada. See text for dataile.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Are & \(L^{4}\) & \[
\begin{aligned}
& \mathrm{K}_{\mathrm{x}} \\
& (\mathrm{~kg})
\end{aligned}
\] & \[
\begin{gathered}
B_{x_{1}} \\
\left(m_{-t_{+}}\right)
\end{gathered}
\] & \(\mathrm{F}_{\mathrm{X}}\) & \[
\left(\mathrm{c}_{\mathrm{x}}\right.
\] & \[
(\mathrm{can} / \mathrm{san} x)
\] & \[
\underset{(\operatorname{sca}=1 / y x)}{\sin _{x}}
\] & \({ }_{\substack{10 \\ 0}}\) & \[
\bmod _{\left(\mathrm{n}_{\mathrm{x}} \mathrm{C}_{\mathrm{L}}\right)}
\] \\
\hline 0 & 194 & 27.6 & 5.354 & .0026 & 83.25 & 579.6 & 30012 & 50 & 1.380 \\
\hline 1 & 114 & 37.9 & 5.458 & .0363 & 72.31 & 739.2 & 52560 & 35 & 1.327 \\
\hline 2 & 109 & 22.6 & L.643 & . 0342 & 57.96 & 796.4 & 39786 & 22 & 0.937 \\
\hline 3 & 87 & 50.9 & 4.129 & . 0313 & 50.59 & 909.6 & 37756 & 10 & 0.509 \\
\hline 4 & 77 & 60.9 & 4.689 & . 0286 & L4, 95 & 1057.1 & - 32230 & 7 & 0.426 \\
\hline 5 & 70 & 65.0 & 4.550 & . 0277 & 46.00 & 1037.9 & 25551 & 5 & 0.325 \\
\hline 6 & 65 & 74.6 & \(4.8849^{\circ}\) & . 0258 & 45.66 & 1202.9 & 23726 & 13 & 0.970 \\
\hline 7 & 52 & 74.9 & 3.895 & . 0257 & 36.53 & 1206.6 & 19931 & 18 & 1.348 \\
\hline 8 & 34 & 75.0 & 2.555 & . 0257 & 23.97 & 1208.4 & 1241 & 8 & 0.600 \\
\hline 9 & 26 & 68.7 & 1.736 & .0269 & 17.53 & 1133.7 & 10753 & 5 & 0.314 \\
\hline 10 & 21 & 76.5 & 1,606 & , 0254 & 14.89 & 1226.9 & 9404 & 4 & 0.306 \\
\hline 14. & 17 & * & 1.301 \({ }^{\circ}\) & * & 12,06 & * & 7613 & 2 & 0.153 \\
\hline 12 & 15 & " & 1.143 & * & 10,64 & " & 677 & 2 & 0.153 \\
\hline 13 & 13 & * & 0.925 & * & 9.22 & * & \(5822{ }^{\text {² }}\) & 2 & 0.153 \\
\hline 14 & 11 & * & 0.341 & * & 7.00 & \(\cdots\) & 4926 & 1 & 0.076 \\
\hline 15 & 10 & * & 0.755 & * & 7.09 & * & 1473 & 1.8 & 0.138 \\
\hline 16 & 8.2 & * & 0.627 & * & 5.31 & n & 3672 & 1.2 & 0.091 \\
\hline 17 & 7.0 & " & 0.536 & " & 4.97 & , & 3135 & 0.9 & 0.069 \\
\hline 18 & 6.1 & , & 0.L.67 & " & 4.33 & * & 2731 & 0.9 & 0.069 \\
\hline 19 & 5.2 & * & D. 393 & * & 3.69 & * & 2329 & 0.7 & 0,054 \\
\hline 20 & 4.5 & * & 0. 314 & \(n\) & 3.19 & * & 2015 & 0.6 , & 0.045 \\
\hline 21 & 3.9 & * & 0.293 & * & 2.76 & * & 1746 & 0.5 & 0.039 \\
\hline 22 & 3.4 & . & 0.260 & " & 2.41 & * & 1523 & 0.5 & 0.038 \\
\hline 23 & 2.9 & * & 0.232 & * & 2.06 & * & 1299 & 0.4 & 0.031 \\
\hline 24 & 2.5 & - & 0.191 & * & 1.77 & * & 2120 & 0.2 & 0.153 \\
\hline 25 & 2.3 & - & 0.175 & " & 1.62 & - & 1030 & 0.4 & 0.031 \\
\hline 26 & 1.9 & " & 0.143 & * & 1.33 & * & 850 & 0.3 & 0.023 \\
\hline 27 & 1.6 & * & 0.122 & * & 1.13 & * & 727 & 0.2 & 0.153 \\
\hline 28 & 2.4 & - & 0.307 & * & 0.99 & * & 627 & 0.2 & 0.153 \\
\hline 2 & 1.2 & * & 0.091 & * & 0.84 & * & 517. & 0.2 & 0.253 \\
\hline 30 & 1.0 & * & 0.076 & * & 0.70 & * & 山7 & 0.1 & 0.076 \\
\hline 31 & 0.9 & * & 0.068 & \(\cdots\) & 0.63 & * & 403 & 0.2 & 0.153 \\
\hline 32 & 0.7 & * & 0.054 & " & 0.50 & * & 313 & 0.4 & 0.031 \\
\hline 33 & 0.3 & * & 0.029 & * & 0.21 & - & 134 & 0.3 & 0.023 \\
\hline \multicolumn{2}{|l|}{\(1=1000\)} & \multicolumn{2}{|l|}{\[
x \dot{\mathrm{~B}}_{x}=\overline{53.0 n}
\]} & \multicolumn{2}{|l|}{\[
c=\overline{503.15}
\]} & \multicolumn{2}{|l|}{\[
\text { Istrox }=\overline{372158}
\]} & \multicolumn{2}{|l|}{\[
\begin{array}{r}
\mathrm{F}=\overline{20.529} \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

Table 23. Hater content and calorific values of the edible portion - of various fishes eaten by the hartour seal (from Altman and Dittmer, 2968)

noso it in

Thble 24, Calorific value of three tyees of raw mat (from Altman and Dittrer, 1963)

for three camivores, the dog, the weasel and the bobcat and for one herbivore specialised on- Iipid-xich food (Table 25). The assimilation efficiency is defined for Table 25 as follows: \((C-F-V) / C\), and the mean efficiency for the four species is \(84.6 \%\).

Mnergy flow diagram - The above information can be summarised in an energy flow diagram for the population of 1,000 harbowr seals (Fig. 35). The value for rejecta is: C (1 - assimilation efficiency), while nespiration is (c - rejecta - production). The metabolic ratio: metabolism under active ficondition / basal metabolism, equivalent here . to \((R+P) / \Sigma S M b_{x}\), can be a useful figure, for exaniple to compare the the energy requirements of various species in their respective enviroment or to establish the food ration for captive animals of known weight. In this case, the metabolic ratio is 1.6 . This compares to a ratio of 1.56 for a modierately active man, for example operating a desk calculator (data from Aron and Grassé, 1966).

The information contained in the energy flow diagram also allows the calculation of the ecolpgical efficiency defined as production / consumption (Petrusericz and HacFadyen, 1970). Harbour seals thars have \(\Rightarrow\) ani ecological efficiency of \(41,695 \mathrm{kcal} . / 704,224 \mathrm{kcal} .=5.9 \%_{0}\). This ts half the usual \(10 \%\) value given for lower trophic levels.

\section*{Discussion}

The values given in the preceeding sections might be modified slightiy in the future, as more reflned data become available on the seasonal changes of the calorific values of the food species taken by seals, on the seasonal variations in feeding, mainly from famary to May, "and on the assimilation efficiency and energy content of seals.

Table 25 . issinilation efficiency (AE) in forr mamals. \(A E=\) (energy consumed - enerpy of facces - energy of urine)/energy consumed.

ज

Fig. 35. Diagram of energy flow in a pópulation of 1,000 harbour soala in eastern Canada. See text for details.

In the absence of this infornation, it is felt that the above calculations give a fairiy accurate description of the flow of energy through a seal popnation.

It does appear that seals are normally efficient food converters. The motabolic ratio of 1.6 indicates that they are as efficient as man in utilising the consuned enerfy. This can be expected of an animal which is well insulated against heat loss, which, because of its aquatic iife, is subjected to a reduced gravity force and therefore reduced mascular work, and which is specialised on one type of food, fish, in the same way a land camivore is.

The statement by Sergeant (1973) that harp seals, Pagophilus groenlandicus, are inefificient converters of fish flesh may be inexact. The calculations are based on the assumption that wild harp seal pups eat \(10 \%\) and, 100 kg adults \(5 \%\) of their body weight per day. The basis for this assumption was information received from two institutions feeding captive harp seals ad libitum rations and two highest weights of stomach contents from wild seals compared to their estimated body. weight. From the evidence presented in this study, it is possible that the feeding rates surgested for harp seals are twice the rates of animals in nature, if wild seals eat on the average only one meal per day. This is an iyportant difference when attempting to assess the quantity of eormercial fish eaten by seals. Should wild seals feed on the average trice daily, anmal consumption would be doubled while production would remain the same; thus ecological efficiency for harbour seals would become 36 instead of \(6 \%\).

Having established the food consumption of 1,000 harbour seals, it is possibile to extrapolate the amount of connercial Nish eaten by
harbour seple in the area corigred by this study. It is assumod that Nerfownw if hartome seals, for which little information is available, have a food preference sinilar to that of the seals from the areas which supplied the stomach samples.

As an example, the, amomit of herring taken by the estimated 12, 1000 harbour seals in the area covered by this study is calculated as follows:
(0.242 herring \(X 583.45 \% m_{0} t_{0} /\) yr. X 12,400 seals)/ 1,000 seals
\(=1,750 \mathrm{~m} . t\) of herring per year.
This quantity is doubled if harbour seals feed on the average twico daily. For comparison, 100,000 tons of herring were taken by comercial. fisheries in 1968 in the Gulf of St. Lawrence (Anon., 1970).

\section*{ACKNOWLEDGAESNIS}

I wish to express my gratitude to Dr. I. A. MoLaron, Departwent of Blology, Dalhousis University, for accepting to supervise this work and for his constint intereat and useful guggestions during all phases of this study. I am most indebted'to munerous persons for their assistance, mainly to: Mr. D. A. Welsh, Department of Biology, Dalhousie University, for his very close association with the field work on Sable Island and for his conuments during the preparation of the text; Mr. B. Beick and G. Sleno of the Arctic Biological Station of the Fisheries Research Board of Ganada, for thoir belp with the fleld work and for the preparation of the samples sent by the seal hunters; Mr. K. Ross, Department of Biology, Dalhousie Unfersity for his assistance with the identification of the stomsch contents; Dr. M. C. Kercer, St. John's Biological Station, Fisheriea Research Board of Ganada, who identified the cephalopod remains. Thds research would not have been completed without the collaboration of the seal hanters who supplied a good part of the samples used in this work, and of Dr. M. Stobo and' the personnel of the seather station of Sable Island who belped at sone stage of this work.

I woild like to thank, also the Fisheries Officers who kindly answered to the questionnaire on the distribution and abundance of seals, and the folloming persons or institutions who replied to a request for ; information on the feeding rates of captive harbour aeals: Dr. W. N. Bonner, Seals Research Divísion, U.K.; Mr. L. F. Bryñarsky, kquarium of Miagara Falls; Dr. A. A. Dieterich, Institute of Arctic Biology, Umiversity of Alaska; Mr. J. P. Gardner, Cleveland Aquarium; Wr. L.

Caribaldi, Now England Aquariw; Yr. I. Kang, Sea Iife Park; Dr. P. Montrenul, Montreal Aquarivis; Dr. G. Morin, Aquarive de Quebecs The Norfolk Hildiffe Paric; Hr. J. M. Qlpuin, Gabrillo Beach Harine Museum; Dr. T. C. Poniter; Blological Sonar Laboratory; Ir. J. H. Prescott, New England Aquarivm; Dr. K. Fonald, College of Biological. Science, Univerrity of GueIph; Dr. J. Sweeney, Sea World Inc.; the Vancouver Aquariw; Mr. J. F. Watkins, Iincolnshire, England; Mr. W. !
R. Welch and C. L. Wheeler, U.'S. National Marine Plshories; 佔. J. J. Wright, Scripps Institute of Oceanography.

The following persons offered useful criticism of the manuscript: Dr. B. K. Hall; Dr. K. H. Mann and Dr. D. E. Sergeant.

This research was supported by the Fisheries Research Board of Canada and by the National Reseanch Council through a grant to Dr. ' I. A. McLaren, and used the facilities of the Department of Hology of Dalhousie University. The author was supported by a National Resoarch Council of Canada post-graduate scholarship.

Allon, J. A. 1880. History of north american Pimipods. Washington, V.S. Geol. and Ceogr. Surv. Terr., Hisc. Publ. 12. xvi +785 p.

Altana, P. L. and D. S. Dittmer. 1968. Hetabolisme Committee on biological handbooks, Federation of American Societies for Enperimental Biology, Bethesda, Karyland. 737 p.

Anon. 1970. International commission for the Northvest Atlantic Fisheries. Statistical Bulletin 18 for the year 1968. Dartmouth, N.S. Ill p. . Aron, M. et P. Grassé. 1966. Précis de biologie animale. Masson, Paris. 1121p.

Bigg, M. A. 1969a. The hariour seal in British Columbia. Fish. Res. Board Can. Bull. 172. 33 p.

196\%. Clines in the pupping season of the harbour seal Phoca * vitulina. J. Fish. Res. Board Can. 26 : 449-4555.

Bishop, M. W. H. and A. Ualton. 1962. Spernatogenesis and the structure of mannalian spermatozoa, p. 1-101. In A. S. Farkes (od.) Marshall's physiology of reproduction. Vo1. 1. Pt. 2. Iongmans. 877 p.

Bishop, R. H. YS, 1968. Reproduction, age determination, and behavior of the harbor seal, Phoca vitulina I., in the Gulf of Alaska. WSc. Thesis. Univ, Alaska, College, Alaska. 121 p.

Bonner, W. N. and G. Hickling. 1971. The grey seals of the Farne Island. Transactions of the Natural History Society of Roxthmberland 17 : 140-162.

Boulva, J. 1971. Observations on a colony of whelping harbour seals, Phoca vitulina concolor, on Sable Island, Nova Scotia. J. Fish Res. Board

Can, 28 : 755-759.
Boulva, J. 1973. Temporal variations in birth periód and characteristics of newborn harbour seals. In Proc. Symp. Biol. of the Seal, Rapports et Proces Verbauc, International Council for the faploration of the Sea. In press.

Brody, S. 1945, Bioenergetics and growth, Reinhold, New York. 1023 p. Galdwell, D. K. and M. C. Caldwell. 1969. The harbor. seal Phoca vitulina concolor in Florida. J. Mamal. 50: 379-380.
Carrick, R, S.E. Cpordas and S. E. Ingham. 1962. Studies on the southarn elephant seal, Mirounga leonina (L.) IV - Breeding and development. C.S.I.R.O. Wildlifé Research 7 : 161-197.

Gaughley, G. 1966. Hortality patterns in mamaals. Ecol. 47 : 906-918. comeau, N, A. 1945. La vie et le sport sur la cote nord du bas saintLaurent et du colfe, Garneau, Quêbec. 372 p . Deevey, E. S. 1947. İfe tables for natural populations of animals. Quart. Rev. Biol. 22 : 283-314. Dorofeev, S. V. and S. J. Freinann. 1935. The marine mamalia of U.S.S.R. far east. Trans. U.S.S.R. Tnst. Fish. Ocean. (V.N.I.R.O.), 3. Doutt, J. K: 1942. A review of the genus Phoca. Ann. Camegie lus. 29 : 61-125.

Fisher, H. D. MS, 1949. Harbour seals. Annu. Rep. 1949, Atlantic Bio1. Sta., Fish. Res. Board Can. p. 104-106. MS, 1950. Stomach contents of harbour seals. Annu. Rep. 1950, Aţ̦antic Biol. Sta., Fish. Res. Board Can. p. 111-113. MS, 1951. Food habits of harbour seals. Anmu. Rep. 1951, Atlantic Biol. Sta., Fish, Res. Board Can. p. 11l.

1952．The status of the harbour seal in British Columbia，with particular reference to the Skeena River．Fish．Res．Board Can． Bul．172． 33 p．

1954．Delayed implantation in the harbour seal，Phoca Titulina． Nature（London） 173 ：979－880．

Fisher，H．D．and B．A．Mackenzie．1955，Food habits of seals in the Maritime．Fish．Res．Board Can．Progr．Rep．Abl．Coast Sta． \(61^{\prime}\) ： 5－9．

Gilpin，J．B．1安74．On the seals of Nova Scotia．Proc，and Trans，Nova Scotia Inst．Sci， \(3: 377-384\).

Coley，F．B．1960．Energy dynamics of a food chain of an old field －community．Ecol．Monogr．30：187－206．

Coley，F．B．et al．1965．Food intake and assimilation by bobcats under

Harrison，R．J．1960．Reproduction and reproductive organs in common seals（Phoca vituline），in the Hash，East Anglia．Mammalian 24；＂ 372－385．

Harifson，R．J．1963．a comparison of factors involved in delayed Implantation in badgers and／seals in Great Britain，p．99－114．In A．C．Enders（ed．）Delayed Inqulantation．Univ．Chicago Press， Chicago，I11． 318 p．

Having，B．1933．Der Seehund（Phoca Vitulina L．）in den Hollandischen Gewassern．Tljdschr．Nod．Dlerkundige Vex．（Leiden）3：79－111． Hewer，H．R．and K．M．Backhouse．1968．Embryology and total＂growth of the grey seal，Halichoerus grypus．J．2001．London 155：507－533．

Huggett，A．St G．and W．F．Midas．1951．The relationship between mammalian foetal weight and conception age．J．Physiol．114：306－317．
*Tmler, R. H. and H. R. Sarber. 1947. Harbor seals and sea lions in Alaska. U. S. \({ }^{\text {K Dept. Inter., Fish and Wildl. Serv.; Spec. Sci. Rept. 28. } 22 \text { p. }}\) Kenyon, K. W. 1965. Food of harbor seals at Amchitka Island, Alaska. J. Marmal. 46 : 103-104.

Leim, A. H. and W. B. Scott. 2966. Fishes of the Atlantic coast of canada. Fish: Res. Board Can. Bull. 155. 485 p.

Mackinnon, J. C. 1972. Sumbr storage of energy and itw use for winter metabolism and gonad maturation in American. Plaice (filppoglossoidess platessoides). J. Fish. Res. Board Can. \(29: 1749-1759\).
Hann, K. H. 1969. The dynamics of aquatic ecosystems. Advances in Ecol. Hes. \(6: 1-81\).

Mansfield, 'A. W. 1967a. Distribution of the harbour seal, phoca vitulina Iinnaeus, in Canadian arotic waters. J. Hanmal. \(48:\) 249-257. 1967b. The nammals of sable Island. Canad. Field-Nat. 81 : 40-49. 1967c. Seals of arctic and eastern Canada, Fish. Res, Board Can. Bu71. 137. 35 p.

MS, 1968. Seals as vectors of Porrocaecum in the Maritine Provinces. Annū. Rep, 1967-68, Arctic Biol. Sta., Fish. Res. Board Gan. p. 31-33.

Mansfield, A. W. and H. D. Fisher. 1960. Áge determination in the harbour seal, Phoca viturina. Ilature (Icndon) \(186: 192-193\). MS, 1962. Grey and harbour seals at Sable Island. Annu. Rep. 1961-62, Arctic Biol. Sta., Fish. Res. Board Can. p. 29-36. McLaren, I. A. 1958. The biology of the ringed seal (Phoca hispida Schreber) in the eastern Canadian Arctic. Flsh. Res. Board Can. Bul1. 118. 97 p.
1973. A speculative overview of phocid erolution. In Proc. Syap. Biol. of the Soal, Rapports ef Procda Verbaux, International Council for the Exploration of the Sea. In press. Neito, I. and M. Mishivali. 1972. "The growth of two species of the harbour seals in the waters around Hokkaido. Sci. Rep. Whales Res. Inst. 24: 127-1 14.

Newty, T. C. 1966. Viability of premature fotal harbor seal. Hurrelet 47 : 46.

Newby, T. C., F. F. Kart and R. A. Arnold. 1970. Weicht and blindness of harbor seals. d. lamal. \(51: 152\).

Perry, J. S. 1971. The ovarian cycle of mamals. Oliver and Boyd, Univ. Review in Biol. 13. 219 p.
Petrusewicz, K. and A.: Macfadyen. 1970. Froductivity of terrestrial animals. IBP Handbook 13, Blackwell, Oxford, Eagland. 190 p. Pilson, M. E. २. and A. I. Kelly. 1962. Composition of the milk from zalophus californianus, the California sea Iion. Science 135 : 104-105.
Poulter, T. C. MS, 1965. Derivation of a simple equation for determination + of the weight of a seal or sea lion from measurements of its length and girth. Stanford Res. Inst., Prog. Rep., Chapt. 1. Quick, H. F. 1963. Animal population analysis, p. 190-228. In H. S. Mosby (ed.), wildife investigational techaiques. The wildife Society, Washington, D. C.
Rae, B. B. 1968. The food of seals in Scottish waters. Dept. "Agric. Fish, Scottiand, Mar, Hes. 2. 23 p.
Ricker, W. E. 1968. Methods for assessment of flsh production in fresh waters. IBP Handbook 3, Blackwell, Criord, Kngland. 313 p.

Hobinson, H. E. et al. 1953. Hutrients requirements for dowestic amimals. No. 5. Hutrients requirements for dogs. Agricultural Board, Mational Research Gomeil Pubilication 300, Washington, D. C. 30 p, Scheffer, V. B. and J. W. Slipp. 19/4. The harbor seal in Washington State. Mmer. kidl. Natur. 32 : 373-416.

Scott, D. H. 1953. Krperiments with the haribour seal, Phoca vituling, a definite host of a marine Hematode, Porrocaecm decipiens. J. Fish. Res. Board Gañ. \(10: 539-547\).

Scott, D. M. and H. D. Fisher. 1958. Incidence of the Ascarid Porrocaecua decipiens in the stomach of three species of seals along the southern Canadian Atiantic mainland. J. Fish. Fees. Board Can. \(15: 495\) Fíl6. Sergeant, D. F. 1951. The status of the coumon seal (Phoca vitulina) on the east Anglian coast. J. Marine Biol. Assoc. U. K. 29 "' 701-717. HS, 1961. Whales and dolphins of the Canadian east coast. Arctic Unit, Fish. "les. Board Can. Circ. 7. 17 p. 1966. Reproductive rates of herp seals, Pagophilus groenlandicus (Firxleben). J. Fish. Res. Board Cam. \(23: 757-766\). 1973. Feeding, Eroyth and productivity of northrest Atlantic harp seals (Pagophilus groentandicus). J. Fish. Res. Board Gen. \(30: 17-29\).

S1ijper, E. J. 1958. Organ weights and symmetry problems in porpoises and seals. Arch. Néer. Zool. 13, suppl. \(1: 97-113\). Swith, G. and D. Follner. 1972. Food preferences of squirrels. Ecol. \(53: 82-97\).
Smith, T. G. Ns, 1970. Population dymarics of the ringed seal in the Canadian eastern Arctic. Ph. D. Thesis, He Gill Doive, Montreal. 168 p.

Spaiding, D. J. 1964. Comparative feeding habits of the fur seal, ses jion and harbour seal on the British Columbla coast. Fish. Res. Board Can. Bull. 146. 52 p .
Templaman, 'W. 1966. Répartition des requins dans 1'Atlantique canadien et plus particulièrement dans les eaux de Terre-Meuve. Hish. Res. Board Can. Bull. 740 . 83 p.
Templeman; U., H.. S. Squires and A. M. Fleming. 1957. Hematodes in the fillets of cod and'other fishes in the Nenfoundland and neibourghing areas. J. Fish, Res. Board Gan, 14 : 831-897. Tikhomirov, E. A. 1966. 0 razmozhenili tyuyenei seareistva Phocidae severnoi chasti tikhogo okeana. (reproduction of seals of the family Phocidae in the north Pacific). zool. zh. \(45: 275-281\). (Trans1, from Russian by Fish, Res. board Can. Transl. Sfr. Ro. 1889, 1971).

Ushor, P. J. and M. Church. 1969. On the relationship of weight; length and girth of the ringed seal (Pusa hispida) of the Canadian Arctic. Arctic 22 : 120-129.

Venables U. M. and L. S. V. Venables. 1955. Observations on a breeding colony of the seal phoca vitulinia in Shetland. Froc. Zool. Soc. London 125 : 521-532.
1957. Kating behaviour of the seal phoca vitulina in shetland. Proc. Zool. Soc. Londion 128 : 307-396.
1959. Vernal coition of the seal, phoca viturina in Shetland. Froc. Zool. Soc. Iondon 132 : 665-669.
Wilke, F. 2957. Food of sea otters and harbor seal at Anchitika Island. J. Wildi. Kanage. 21 ; \(241-242:\)

Wilson, E. O. and W. H. Bossert. 1971. A priner of population biology.

Wilson, E. O. and W. H. Bossert. 1971. A primar of population biology. Sinaver, Stamford, Conn. 192 p.

\section*{APFIMDIB}
mwporll vartations in bifir frerod and

\author{
by \\ seen Boultra \\ Depertment of Blologrs \\ Dalhowie Doivere \\ Bolifur, H.S.
}

ABSIRIGT

Ixom 1970 to 1972, the Sable Island harbowilin popolation showed variation in the period of whelping. Hesviar and longer pupe, a 1bss Irequent occurrence of whitecost pupa and a better survival between birth and woaning were associated with a Iater moan bixth date. Colder emriromental temperatires or possibiy heman disturbances covid have caused the dalay in whelping in 1972.

Paper presented at the Symposive on the Biology of the Seal hold at Oroiph, Ontario, Cansde, 14 to 17 august 1972. This papar is now in press, and will be priblished in 1973.

Fen quantitative data have ,been pubilished on anmal variations in mabers, birth period and characteristics of newborn harbowr seale, Phoca vitulina, mainly because of the difficuity of finding a diacrete poprilation of this species which can be studied easily, and accurately counted at all times of the year, and where the absence of inmigration or emigration can be assumed during the period of stuct. Boulva (1971) gave an account of such a population on Sable Island, located about \(165^{\circ} \mathrm{km}\) south of "the nearest Nova Scotia mainland, and which he studied from Nay 14 to June 19, 1970. The island is a wegetated sand bar, 37 kn long; and seals on its continuous beach are easily surveged from Wa vehicle." Following this first study, I revisited the laland mainly Irom April 12 to July 12, 1971 and from May 8 to June 13, 1972.

MEIHDOS
Groma censuses were mado regularly during the whelping period and duxing shorter visits to the island at other times in the year. Counting techniques were similar to that described earlier (Boialva, 1971). During the whelping period, a constant daily effort was made to catch as many pups as possible around the island. Gaptured pups were tagged with numbered cattle ear tags placed trrough the web between the hind flippex and the tail. Sex, nose-tail length, weight, condition of the umbilicus, condition of pelage, and status of the pup wheter attended, deserted or weaned, were recorded. The measurements were also taken on recaptured pups.

The mbilicus was classed in one of five categories : \(0=\) newborn; \(1=\) fresh, red moilical cord with bloody tip \(=1-d a y-0 l d ; 2 x\) fresh, red umbilical cord, but extrcmety whitiah and dried out \(=3\)-dny-old;

3 =dried ont umbilical cond \(=5\)-day-olds 4 - hamlod ubilicus - no age estimate. Thase agos corresponding to the condition of the mbilicus are avorages dotermined during the 1971 Ileld soason from recaptmed tagsed prape.
gach pup captimed for the first time with an wilicus of category three or less was assignod birth date. Waing the is information, it was possible to calculate the daily numbers of births for tagged pups. Assuaing that the birth rate recorded from tageing is proportional to the overall birth rate on a given year, tha' fagging data can be used to calculate the mean birth date, when \(50 \%\) of the pups are born. In 1971 and 1972, more than 70\% of the total pup production was tagged.

The total mumber of pups born-in one season sas estimated from the tagging data, mubers of tagged and untagged animals captured after the end of whelping, and from field counts. Notea were kept on pups found dead. Post-camine teeth were counted on dead seals. Other samples of lower jaws from harbour seals shot in the Maritimes, in Labrador and in Eastern Arctic Canada were supplied by the Arctic Biological Station of the Fisheries Resaarch Board of Canada.

The dajly grouth rate in weight and length was found to be relativeiy constant during the first 20 dayrs of life in nursed pups (Boulva, unpublished data). Therefore, linear regressions of weight and length on age for captured and recaptured pups aged from 0 to 20 days were made to obtain the man birth weight and length, which respectively is the value whore the line crosses the I axis. All regression coefficionts were highly significant (\(P<0,001\)). The positions and slopes of the lines were compared statisticaly as described by Mather (1964), to detect any differences between sex and between years of sampling.

RESUTHS
Population Sise
The Sable Island harbow seals appear to form a discrete popniation, with no eridence of efferation or imalgration baving been obtained. Ovar 550 pups have been tagged and 50 branded in 1971 and 1972, and none of these have been reported from elsewhere in the maritime prowinces where a bounty on this species is in effect. Animals branded in ame 197 have been seen on the island regalarly during visits in Jamaxy, April, Wer and Jume 1972. The popalation has remained relatively constant during the Last three years, oscillating arcund 1200 animals before wholping (Higure 1). This likely qeographic isolation is supported also by a charcteristic of the Sable Island harbour seals which is rarely noted elsewhere : there, if a high proportion of anfmals haring only four post-canine teeth on at least one of the two mandibles instead of the normal complement of five. I have obtained values from the Haritimes, Labrador and Eastern Arctic - Canada which are compared to those of Sable Island:

hlghar porcentage of harbour seal skulls from sable Island with teath set wiraight, compared with amples from olsowhore in muritime fand eastern arctic canada also auggests isolation of this population.

For the three years of etudy, the prowhelping populations and the eatimated numbers of pupe born were respectively 1223 and 262 in 1970, 1329 and 331 in 1971, and 2147 and 359 in 1972. The average of these three yeara gives a proportion of 20.47\% pups in the total postwbelping popalation. This compares to the value of \(20.45 \%\) obtained from Bigg's (1969) theoretical population of 308 westcoast harbour eeals at the close of whelping, including 63 pups. The percentage of pups with respect to the prewhelping popalation would be from data and Bigg's data 25.75. The value of \(32 \%\) given by Bishop (1967) for hartowe seals in the crolf of Alaska seems high.

\section*{Mean Birth Dates}
.. The mean birth date (50 g born) occurred on Hay 24 in 1970, on Hey 21 in 1971 and on May 26 in 1972. In 1970, the birth perigd was spread Irom approxdnately kay 8 to June 8, or 32 days. In the following two years, the spread was respectively from Hay 11 to Jume 7 or 28 days, and from Yay 7 to June 10 or 35 days. The averages for the three years are Yay 24 for the mean birth date and 31 days for the duration of the birth period.

Neonatal Polage
(0)

The difference in mean birth datea duming the three years of studr was reflected by different frequencies of occurrence of lanugo in newtorm
pupa. Figure 2a suggests an inverse relation betroen the percentrege of pups born with lamugo and the corresponding mean birth dite. In 1971; when there was the highest occurrence of whitecost pups, \(50 \%\) of those born with the lamugo, retained it for more than nine days, one individual ghedding it onily after 15 days. The length of the longest lamugo hair in A sample obtained from these pups was 21 mm .

Neonatal Weight and Length
The mean birth woight and mean birth length in 1970, 1971 and 1972 both searn to be related to the corresponding mean birth dates as 111 ustrated In Figure 2b and 2c. Although the differences are not significant, the males were consistently heavier at birth (1971: \(9.53 \mathrm{~kg} ; 1972: 10.59 \mathrm{~kg}\)) than the females (1971: \(9.49 \mathrm{~kg} ; 1972: 10.40 \mathrm{~kg}\)), and longer at birth (1971: 75.94 cm; 1972: 78.16 cm) than female pups (1971: \(75.76 \mathrm{~cm} ; 1972\) : 77.27 cm). However, the mean birth woight and Iength for 1971 differ algnificantly at the 0,001 level from the corresponding values in 1972.

Mortality
The effect of annual variations of mean birth dates on pup mortality prior to weaning was assessed in 1971 and 1972. The \(12 \%\) mortality figure for 1970 (Boulva, 1971) is considered low due to a less completo coverage of the island on that year. A better survival of the pups which were born later in 1972 is evident from Figure 2d. The average mortality before meaning for these two years 4 s \(17.2 \%\) of the total number of pups borm. Possibly due to the pups' larger mean birth size in 1972, stillbirths accounted on that year for \(29 \%\) of the total preweaning mortality, as compared to only 10\% in 1971. .

DISCussion
The grephic relations presented in these reaults would beneift Irom further data, but are givan bera because they may provide some orientation in Iuture strdies of these and other seals.

The data seem to imply that in the three years of study, raydations InClime of Implantation of the blastocyst were not reponsible for the observed variations in the time of birth Had this been 80 , we could heve expected similar mean birth leagth and weleht as well as a sindiax occurrence of whitecout props, irrespective of the mean birth dates in the three years of study, Instead, the later-born pups were larger at birth and thera wera more whitecoats in 1971. It appears, rather, that the length of gestation was longer in 1972. This of coumse asmmas that the average fetal growth rate does not change from year to year.

This longer gestation time in 1972 is further supported by the difference of 1.85 cm in mean birth length between the 1971 and 1972 pups. Using Bigg'a (1969) graph for fetal growth of harbour senl, I calculated an approximate prenatal growth rate of 0.404 cm per day. At this rate, the shorter 1971 pups should have spent an average of 4.6 additional days in utero to average as large at birth as the 1972 pups. In view of the observed difference of flve days betreen tho 1971 and 1972 mean birth dates, there is here also a strong suggestion of jdentical mean implantation dates during these two years.

What mechanism controls the time of implantation with an apparentily high precision has yet to be dotermined. Air or sea water temperatures are malikely controls as they' iluctuate from year to year at the time of inplantation. Inconclugive experiments on the effect of
external temperatures on implantation in the european badger (yales neles) have been reported by Notini (1948) and by Canivenc and Bomin-Laffargue (19\%3). However, nomal dates of implantation in the marten have been modified by appropriate photo-period manipulation (Pearson and Enders, 1944). A high regularity in time of implantation could be insured in a species like the harbour seal by a photoperiodic control mechanism, such a regulatory mechanism at time of implantation soems essential in this seal to reset the synchrony of the annual cycle, in view of its long mating sesson which appears to spread from prior whelping to after the weaning of the pups (Venables and Venables, 1957 and 1959; Harrison, 1963; Boulva, personal observations), or over almost four months.

Two possible explanations are suggested for the later mean birth date in 1972. For three consecutive years, the Sable Island harbour seals have been, someuhat by beach traffic, disturbed during parturition. The seals could have responded by delaying the onset of parturition, as observed in hunted populations of this species, where a delay of seven days was noted in two localities in Shetland, J.K., betreen 1962 and 1967 (Tickell, 1970); this compares to the five day delay observed on Sable Island between 1971 and 1972. Such a delay has also been reported in an exploited population of elephant seals at South Georgia (Lans, 1956). However; the disturbance of the Sable Island soals started in 1970, and in 1971, the mean birth date was earlier than on the previous year; it would have been later if the above explanation were correct.

The other explanation is a possible dependance of time of birth on environmental conditions, in this case air or sea water tamperature. The Iatter data are not available, but mean monthly air temperatures for Sable

Island have been obtained for May 1970, 1971 and 1972 from the Haxitime Weather Central of the Department of Emririoment of Canada, and they are sompared to the corresponding mean birth dates on IIgure 3. There soama -o be a relation between these two variablez, but again addjtionim dathe urold be needed to verify its significalice. It should be remembered that on a small island, air temperatures closely follow the surrounding som water temperatures.

Finally, in vier of its temporal variation, the high percentage of occurrence of whitecoat pups among the Sable Island harbour seals should not be used as a taxonomic criterion, for example to link the Sable Island seal to phoca I. largha. The data presented here suggest that these whitecoata could disqppear completely, should the mean birth date be delayed increasingly in the future. Furthermore, the lanugo of these whitecoat press is the same length as the prenatal lamugo of Phoca \(y\). Tichardi which in turn is mach shorter than the 30 mm long lanugo of P. Y. lareha (Stutz, 1966).

\section*{AKHOWLEDGENIS}

While in the field, I received considerable help from Mr. D. A. Helsh, of the Department of Biology at Dalhousie University. Dr. I. A. McLaren offered useful criticism of the manuscript. The field-work was supported by the Arctic Piological Station of the Fisherles Research Board of Canada.

\section*{RESHERTMCES}

Bigg, M. A. 1969. The harbour seal in British Colvabia. Fish. Hes. Board Can. BuII. 172: 33 p.

Bishop, R. H. MS 1967. Reproduction, aga deternination and behaviour of the harbour seal, phoca vitulina Lo, in the Guif of Alaska. Mo Sc. Thesis. Univ. of Alaska, College, Alaska. 121 p.

Boulya, J. 1971. Ohservations on a colony of whelping harbour seals, phoca Vitulina concolor, on Sable Island, Nova Scotia. J. Pish Res. Bd. Canads 28: 755-759.

Canivenc, R. and M. Bomin-Laffargue. 1963. Inventory of problems raised by the delayed ova implantation in the european baidger (Meles meles L.). In Allen \(\dot{C}\). Enders (Editor), Delayed implantation. The Thiversity of Chicago Press. \(x+318 \mathrm{p}\).

Harrison, R. J. 1963. A comparison of factors involved in delayed implantation in badgers and seals in Great Britain. In Allen C. Endars (Editor), Delayed implantation. The University of Chicago Press. \(x+318\) p.

Laws, R. M. 1956. The elephant seal (kirounga leonina Linn.). II. General, social and reproductive behaviour. Scient, Rep. Falkland Isl. Depend. Surve, 13, Iondon.

Hather, K. 1964. Statistical analysis in biology. 2nd ed. Kethuen, Iondon. 267 p.

Motini, G. 1948. Biologiska Endersokrigar over Gravilingen. Uppsala. Pearson, O. P. and I. K. Enders. 194h. Duration of pregnancy inveertain mostelids. J. Yxp. zool. 95: 21-35.

State, S. S. 2966. Foetal and postpartum whitocoat pelage in Phooa vitulina. J. Fish. Res. Bd. Canada 23: 607-609.

Tickell, W. L. N. 1970. The exploitation and status of the common sonl.
(Phoca vitulina) in Shetland. Biological Conservation 2: 170-184.
Venubles, "U. M. and L. S. Venables. 1957. Mating behaviour of the seal Phoca vitulins in Shetland. Froc. Zool. Soc. London 128: 387-396. 1959. Vernal coition of the seal phoca vitulina in Shotland. Proc. Zool. Soc. Londón 132: 665-66\%.
?

Fig. 1. Number of harbour seals counted on Sable Island, Nova Scotia.

Fig. 2. Annual variations in the percentage of occurrence of harbour seal 'pups born with lanugo (A), in mean birth weight. (B), in mean birih length (C), and in preweaning mortality of pups (D), with respect to mean birth pate.

*Fig. 3. Relation between mean birih date of harbour seal pups and mean monthiy tumperature foi viy 1970 to 197\%, Sable Island, Nova Scolia.```

[^0]: Kength - Numerous reproductive tracts obtained in Augast and two in early September, were examined for the presence of embryos but even though a ner corpis Iutem was obserfed in most cases, no sign of pregnancy was

