INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

Parallel Generation of ROLAP Data Cubes

by
Ying Chen

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
at

Dalhousie University
Halifax, Nova Scotia
June, 2005

© Copyright by Ying Chen, 2005

(bd

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON'K1A ON4

Bibliothéque et 0-494-08421-9

Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4

Canada

NOTICE:

Canada

The author has granted a non-
exclusive license allowing Library

and Archives Canada to reproduce,
publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet

loan, distribute and sell theses

worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other

formats.

- The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's

permission.

1

Your file Votre référence
1SBN:
Our file Notre retérence
ISBN:

AVIS:
L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives

- Canada de reproduire, publier, archiver,

sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer-et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése.ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

in compliance with the Canadian
Privacy Act some supporting
forms may have been removed

from this thesis.

While these forms may be included

in the document page count,
their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
it n'y aura aucun contenu manquant.

DALHOUSIE UNIVERSITY

To comply with the Canadian Privacy Act the National Library of Canada has requested
that the following pages be removed from this copy of the thesis:

Preliminary Pages
Examiners Signature Page (pii)
Dalhousie Library Copyright Agreement (piii)

Appendices
Copyright Releases (if applicable)

To all who love me.

iv

Table of Contents

Listof Tables X
List of Figures xi
Abstract xvii
List of Abbreviations xvii
Acknowledgements xix
Chapter 1 Introduction 1
1.1 Motivation - The Need for High Performance Computing 3
1.2 Contributions 5
1.3 Organization 7
Chapter 2 An Introduction to Data Warehousing 9
2.1 Data Warehousing 9
2.1.1 The Architecture of Data Warehousing 10

212 ETL 11

2.1.3 DataManagement 12

2.1.4 Decision Support Tools 16

22 OLAPandDataCubes. 17
221 OLTPandOLAP 17

222 OLAP Categories v o v v i it s 18

223 TheCubeOperator 20

2.24 OLAP Operationson Data Cubes 21

2.25 Aggregate Functions' 23

2.3 Sequential Data Cube Algorithms 25
2.3.1 Three Typesof Data Cubes 25

232 PipeSort 27

24
2.5

233 PipeHash e e e e e e i e 33

234 OVERLAP 35
2.3.5 Partitioned-Cube and Memory-Cube 36
2.3.6 Array-Based Cube 38
2.3.7 PipeSort for Partial DataCubes 40
238 Bottom-UpCube 42
2.3.9 Generation of Data Cube with Dimensional Hierarchies 45
Shared-Nothing Clusters 47
SUMMAIY 49

Chapter 3 In-Memory Parallel Generation of Full and Partial RO-

3.1
3.2

3.3
3.4

3.5

LAP DataCubes. 50
Introduction L 50
Full Data Cube Generation on Shared-Nothing Clusters 51
3.2.1 Algorithm Outline 52
3.2.2 Data Partitioning L. 53
3.2.3 Computation Of Local D;-Partitions 55
3.2.4 Merge Of Local D;-Partitions 57
Partial Data Cube Construction On Shared-Nothing Clusters 59
Performance Evaluation 61
3.4.1 RelativeSpeedup 62
3.4.2 Local vs. global schedule trees 64
343 DataSkew 65
3.4.4 Cardinality of Dimensions 66
3.4.5 Data Dimensionality 68
3.4.6 BalanceTradeoffs 69
Summary . .o ... e, 70

Chapter 4 External Memory and Parallel Generation of Full and

4.1
4.2

Partial ROLAP Data Cubes. 72
Introduction 72
External Memory Sequential Data Cube Generation 74
4.2.1 Shared Prefix Pipeline Processing 74

vi

4.3

4.4

5.1
5.2

5.3

5.4

5.5

4.2.3 Sequential Relative Improvement 84
External Memory Parallel Data Cube Generation 85
43.1 Algorithm Outline 86
4.3.2 Approach of Adaptive Data Partitioning 88
433 TheCostModel. 90
434 Algorithm of Adaptive Data Partitioning 92
4.3.5 Experimental Evaluation of Adaptive Data Partitioning 94
4.3.6 Experimental Evaluation of Combined Enhancements 97
Performance Bvaluation 99
441 Speedup 101
442 Scaleup 103
443 Sizeup L 104
444 Data Dimensionality _ 105
44.5 Cardinality of Dimensions 106
446 DataSkew 107
Summary ... 107
Chapter 5 External Memory and Parallel Generation of ROLAP

Iceberg Data Cubes _. 109
Introduction L 109
The Sequential PnP Algorithm 111
5.2.1 PnP: Sequential In-Memory Version 111
5.2.2 PnP: Sequential External Memory Version 113
The Parallel And External Memory PnP Algorithms 115
9.31 Data Partitioning 117
5.3.2 Parallel Iceberg Cube Computing 119
Performance Evaluation 120
5.4.1 Sequential Experiments. 121
5.4.2 External Memory Experiments 124
543 Parallel Experiments 125
Summary ... 129

Chapter 6 The CgmOLAP System 133

6.1 Introduction 133
6.2 Software Architecture and Hardware Platform 134
6.3 Query Processing in cgmOLAP 136
6.4 Experimental Evaluation of cgmOLAP on Real Data Sets 138
6.5 Experimental Evaluation of cgmOLAP on Large Data Sets 144
6.6 Summary 144
Chapter 7 Conclusions and Future Work 147
Bibliography, 148
Appendix A Parallel Data Cube Generation Library 153
Al Modules and Classes 153
All DataModule 154

A.12 Memory Manage Module 155

A13 Utility Module 155

A.l4 Plan Generation Module 155

A.1.5 Pipeline Processing Module 156

A.1.6 Parallel Full/Partial Data Cube Module 156

A.L.7 Sequential Full/Partial Data Cube Module 156

A.1.8 Iceberg Data Cube Module. 156

A19 Applications Module 156

A.2 Implementation of Algorithms 157
A.2.1 External Memory Full/Partial Data Cube Generation 157

A.2.2 External Memory Parallel Full/Partial Data Cube Generation 157

A.2.3 In-memory Iceberg Data Cube Generation 158

A.2.4 External Memory Iceberg Data Cube Generation 160

A.2.5 External Memory Parallel Iceberg Data Cube Generation . . . 160

A3 BuildtheLibrary 161
A.4 Execute Applications of the Library 162
Ab Summary 163

List of Tables

Table 2.1 The Tradeoffs between RDBMS and MDDB [54] 13
Table 2.2 The Star Schema V.S. The Snow-flake Schema [50] 15
Table 2.3 A Comparison of OLTP and OLAP Systems [62] 18
Table 24 A Comparison of ROLAP and MOLAP 19
Table 2.5 The Eight Group-by Queries 20
Table 2.6 The Fact Table “salefact” 21
Table 2.7 The Result of the Cube Query in ROLAP 22
Table 2.8 An Example of the Pipelined Fashion 34
Table 2.9 The “Plan” Variables 42
Table 4.1 An Example of Shared Prefix Pipeline Processing 75
Table 4.2 The Costs of Shifting Partitions 91
Table 4.3 The Costs of Computing Data Cubes 91
Table 4.4 The Costs of Merging Data Cubes 92
Table 5.1 PnP Processingof ABCDE 113

ix

List of Figures

Figure 1.1 An Example Table with Eight Rows and Three Dimensions. . 1

Figure 1.2 Eight Possible Views. 2
Figure 2.1 Data Warehousing Architecture. [22] 10
Figure 2.2 A Star Schema. 14
Figure 2.3 A Snow-Flake Schema. 15
Figure 2.4 The Galaxy Schema. 16
Figure 2.5 A Data Cube with Three Dimensions. 18
Figure 2.6 The Result of the Cube Query in MOLAP. 21
Figure 2.7 The Original Cube. 23
Figure 28 OLAPRoll-up 23
Figure 2.9 OLAP Drill-down. 24
Figure 2.10 OLAP Slice. 24
Figure 2.11 OLAP Dice. 24
Figure 2.12 OLAP Pivot. 24
Figure 2.13 A Lattice with Four Dimensions. 26
Figure 2.14 Transformed Search Lattice. [59] 29
Figure 2.15 The Best Paths with the Minimum Total Cost. [59] 29
Figure 2.16 A PipeSort Spanning Tree [59] 30
Figure 2.17 The Pipelines. [59] 33
Figure 2.18 A Minimal Spanning Tree of PipeHash. [59] 35
Figure 2.19 Subtrees of PipeHash. [59) 36
Figure 2.20 A OVERLAP Spanning Tree with Estimated Partition Size in
Memory Pages. [17) 37
Figure 2.21 Partitions in Partitioned-Cube. [57] 38
Figure 2.22 A Three Dimension Array. [65] 39

X

Figure 2.23
Figure 2.24
Figure 2.25
Figure 2.26

Figure 2.27

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5
Figure 3.6

Figure 3.7

Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11

Figure 3.12

Figure 3.13

A Three Dimension MMST in Dimension Order of “ABC”. 65
A Four Dimension BUC Processing Tree. [20]

A Lattice with Hierarchy. [59]

Cluster Computer Architecture. [21]

A Shared-Nothing Cluster.

......................

..........

lustration of Cases in Algorithm. MergePartitions

......

Partitions of a Four Dimension Partial Data Cube.

Experimental Evaluation of Parallel Full Data Cube Genera-
tion: Running Time and Relative Speedup

Experimental Evaluation of Parallel Partial Data Cube Gener-
ation: Running Time and Relative Speedup.

&

Experimental Evaluation of Parallel Full Data Cube Generation
for local schedule trees and global schedule trees: Running Time
and Relative Speedup.

Experimental Evaluation of Parallel Full Data Cube Generation
on Skew Data Sets

Experimental Evaluation of Parallel Full Data Cube Generation
on Skew Data Sets: Running Time and Relative Speedup.

Experimental Evaluation of Parallel Full Data Cube Generation

for Various Cardinalities: Running Time and Relative Speedup.

Experimental Evaluation of Parallel Full Data Cube Generation
for Various Dimensions: Running Time and Relative Speedup.

Experimental Evaluation of Parallel Full Data Cube Genera-
tion for various Balance Tradeoffs: Running Time and Relative
Speedup.
Experimental Evaluation of Parallel Full Data Cube Generation
for Various Balance Tradeoffs on Skew Data Sets: Running
Time and Relative Speedup

xi

40
44
46
48
49

52
53
59
61

63

64

65

66

67

68

69

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Experimental Evaluation of Shared Prefix Pipeline Processing

on Dense Data Sets: Running Time and Relative Improvement.

Experimental Evaluation of Shared Prefix Pipeline Processing

on Sparse Data Sets: Running Time and Relative Improvement.

Experimental Evaluation of Shared Prefix Pipeline Processing
with Various Dimensions: Running Time and Relative Improve-

Buffer layouts

Experimental Comparison of SSEMPP and MSEMPP on Dense
Data Sets: Running Time and Relative Improvement.

Experimental Comparison of SSEMPP and MSEMPP on Sparse
Data Sets: Running Time and Relative Improvement.

Experimental Comparison of SSEMPP and MSEMPP with Var-
ious Dimensions: Running Time and Relative Improvement.

Experimental Evaluation of the Two Enhancements on Dense
Data Sets: running time and relative improvement.

Experimental Evaluation of the Two Enhancements on Sparse
Data Sets: Running Time and Relative Improvement.

Experimental Evaluation of the Two Enhancements with Vari-
ous Dimensions: Running Time and Relative Improvement. . .

Data Partitioning and Pivots.

Experimental Evaluation of the Adaptive Partitioning on Dense
Data Sets: Running Time and Relative Improvement.

Experimental Evaluation of the Adaptive Partitioning on Sparse
Data Sets: Running Time and Relative Improvement.

Experimental Evaluation of the Adaptive Partitioning on Sparse
Data Sets: Running Time and Relative Improvement.

Experimental Evaluation of the Adaptive Partitioning with Var-
ious Dimensions: running time and relative improvement. . . .

Experimental Evaluation of Combined Enhancements for Par-
allel Full Data Cube Generation: Running Time and Relative

xii

76

7

78

78

80

83

84

85

86

88
89

94

95

96

97

98

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Figure 5.1
Figure 5.2

Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6

Experimental Evaluation of Combined Enhancements for Paral-
lel Partial Data Cube Generation: Running Time and Relative
Speedup. 99

Experimental Evaluation of Combined Enhancements for Par-
allel Full Data Cube Generation on Skewed Data Sets: Running
Time and Relative Speedup. 100

Experimental Evaluation of External Memory Parallel Full Data
Cube Generation: Running Time and Relative Speedup. . . . 102

Experimental Evaluation of External Memory Parallel Partial
Data Cube Generation: Running Time and Relative Speedup. 103

Experimental Evaluation of External Memory Parallel Full Data
Cube Generation: Scaleup. 104
Experimental Evaluation of External Memory Parallel Full Data
Cube Generation: Running Time and Sizeup. 105
Experimental Evaluation of External Memory Parallel Full Data
Cube Generation for Various Dimensions: Running Time and
Relative Speedup. 106
Experimental Evaluation of External Memory Parallel Full Data
Cube Generation for Various Cardinalities: Running Time and
Relative Speedup. 107
Experimental Evaluation of External Memory Parallel Full Data
Cube Generation on Skew Data Sets: Running Time and Rel-
ative Speedup. 108
APoP Operator. 111
A PnP Tree. (Plain arrow: Top-Down Piping. Dashed Arrow:
Bottom-up Pruning. Bold Arrow: Sorting.) 112
Five Dimension Sub-lattices. 118
APnPPForest., 119

Experimental Comparison of Sequential Full Data Cube Gener-
ation using Star-cubing, BUC and PnP: Varying Cardinalities
and Data Size.. 121

Experimental Comparison of Sequential Iceberg Data Cube Gen-
eration using Star-cubing, BUC and PnP: Varying Cardinalities. 122

xiii

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Experimental Comparison of Sequential Iceberg Data Cube Gen-
eration using Star-cubing, BUC and PnP: Using Cardinalities
of 22and 70. 122

Experimental Comparison of Sequential Iceberg Data Cube Gen-
eration using Star-cubing, BUC and PnP: Varying Data Size. . 124

Experimental Comparison of Sequential Iceberg Data Cube Gen-
eration using Star-cubing, BUC and PnP: Varying Cardinalities. 125

Experimental Comparison of Sequential Iceberg Data Cube Gen-
eration using Star-cubing, BUC and PnP: Varying Minimal
Support. 126

Experimental Comparison of Sequential Iceberg Data Cube Gen-
eration using Star-cubing, BUC and PnP: Varying Data Skew. 127

Experimental Evaluation of External Memory Iceberg Data Cube
Generation of PnP: Varying the Number of Dimensions and the

Size of Memory. 128
Experimental Evaluation of Parallel Iceberg Data Cube Gener-
ation of PnP: Running Time and Relative Improvement. . . . 1929
Experimental Evaluation of Parallel Iceberg Data Cube Gener-

ation of PnP with Various Numbers of Dimensions: Running

Time and Relative Improvement. 130
Experimental Evaluation of Parallel Iceberg Data Cube Gen-
eration of PnP with Various Cardinalities: Running Time and
Relative Improvement. 131
Experimental Evaluation of Parallel I‘ceberg Data Cube Gen-
eration of PnP with Various Minimal Support: Running Time
and Relative Improvement. 131
Experimental Evaluation of Parallel Iceberg Data Cube Gener-
ation of PnP on Skew Data Sets: Running Time and Relative
Improvement. 132
The cgmOLAP System Architecture. 135
A Shared-Nothing Cluster with a Disk Array. 136
The Process of Resolving Queries Against Materialized Views. 137
The Star Scheme for the Web Log Data Set. 138
The Star Scheme for the World Hydrologic Data Set. 138

Xiv

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Experimental Evaluation of Parallel Full, Partial Data Cube
Generation on a Real Data Set of the Web Logs: Running Time
and Relative Speedup.

Experimental Evaluation of Iceberg Data Cube Generation on
a Real Data Set of the Web Logs: Running Time and Relative
Speedup.

Experimental Evaluation of Parallel Full, Partial Data and Ice-
berg Data Cube Generation on a Real Data Set of the Web
Logs: Running Time and Relative Improvement

Experimental Evaluation of Parallel Full, Partial Data Cube
Generation on a Real Data Set of the World Hydrologic Data:
running time and relative speedup.

Experimental Evaluation of Iceberg Data Cube Generation on
a Real Data Set of the World Hydrologic Data: Running Time
and Relative Speedup.

Experimental Evaluation of Parallel Full, Partial Data and Ice-
berg Data Cube Generation on a Real Data Set of the Hydro-
logic Data: Running Time and Relative Improvement

Experimental Evaluation of Parallel Full Data Cube Generation
on Large Data Sets

Xv

Abstract

More and more organizations, such as business, health care providers and scientific
enterprises, rely on Online Analytical Processing (OLAP) to analyze massive data sets
at a variety of summary levels and in a multidimensional way. In OLAP systems, one
of the most computationally intensive tasks is to execute the Cube query, which was
proposed by Gray et al. in 1997 as an extension of the Structured Query Language
(SQL). A cube query generates a set of group-bys/views over all combinations of a
set of attributes/dimensions from a table. The result of the query is a collection
of multidimensional data, called a Data Cube. Pre-computing of data cubes can
dramatically reduce the response time of other queries. Recently many sequential
algorithms have been proposed to generate data cubes efficiently, however as the size
of data sets grows, there is a need for even more scalable algorithms. Currently, for
large data sets, the cube queries may require hours or even days to run on standard
sequential machines. Parallel Computing can provide two key ingredients for dealing
with large data size: 1) increased computational power through multiple processors
and 2) increased I/O bandwidth through multiple parallel disks.

The work presented in this thesis combines 1) the design of efficient parallel cube
generation algorithms for the three basic types of data cubes: full cubes, partial cubes
and iceberg cubes, with 2) careful system work associated with parallelism and ex-
ternal memory issues, and 3) extensive experiments and evaluation. The proposal
algorithms are both external memory and parallel. They are designed for shared-
nothing clusters, and use explicitly represented cost models which aid in performance
tuning and portability. Our experiments show that the relative speedup of the algo-
rithms is close to optimal/linear speedup for a wide range of input parameters, and
the scalability is almost linear on large data sets. The proposed algorithms have been
carefully implemented in our cgmOLAP prototype, which is to our knowledge the
first fully functional parallel OLAP system able to build data cubes at a rate of more
than half terabyte per hour.

xvi

List of Abbreviations

BESS
BI

BUC
DSS

ER
ETL
HOLAP
MDDB
MMST
MOLAP
MPI
MSEMPP
MST
ODBC
OLAP
OLTP
PnP
RDBMS
ROLAP
SMP
SQL
SSEMPP

Bit-encoded Spare Storage
Business Intelligence

Bottom-Up Cube

Decision Support Systems
Entity-Relationship

Extract, Transform and Load
Hybrid OLAP

Multidimensional Databases
Minimum Memory Spanning Tree
Multidimensional OLAP

Message Passing Interface
Multiple Scan External Memory Pipeline Processing
Minimum Spanning Tree

Open Database Connectivity
Online Analytical Processing
Online Transaction Processing
Pipe 'n Prune

Relational Database Management System
Relational OLAP

Symmetric Multiprocessors
Structured Query Language

Single Scan External Memory Pipeline Processing

xvil

Acknowledgements

Thanks to Dr. Bipin C. Desai, Dr. Qigang Gao, Dr. Michael Shepherd and Dr.

Milios for your time and your patience.
Thanks to Frank and Todd for your help with my research.
Thanks to Mechelle for correcting grammar errors in this thesis.

And great thanks to Andrew for your patience and your commitment. Without your

help, this thesis would never be finished.

Xviii

Chapter 1

Introduction

The management and extraction of knowledge from data is central to the modern
enterprise. More and more organizations rely on Decision Support Systems (DSS)
to analyze their data and make better and faster decisions. For example, a retail
store may analyze transaction records to decide promotion strategy. A health care
organization may analyze patient treatment records to understand the effectiveness of
treatment. While scientific institutions and enterprises may analyze huge amount of
raw data, such as geographical data or biology data to discovery new knowledge. To
analyze data efficiently, we need appropriate technologies, such as data warehousing.
Data Warehousing is “a collection of decision support technologies, aimed at enabling
the knowledge worker to make better and faster decisions [22)". In data warehousing,
data from multiple operational data sources, such as operational databases, flat files
and web logs, are transformed into “an object-oriented, integrated, time-varying, non-
volatile collection of data that is used primarily in organizational decision making

[46]”. This collection of data is called a Data Warehouse.

Date | Store Product Quantity
2003 | Montreal Computers 2
2003 | Montreal Sofeware 2
2003 | Toronto Computers 2
2003 | Toronto Software 2
2004 | Montreal Computers | 2
2004 | Montreal Software 2
2004 | Toronto Computers 2
2004 | Toronto Software 2

Figure 1.1: An Example Table with Eight Rows and Three Dimensions.

One of the core decision support tools in data warehousing is Online Analytical
Processing (OLAP). It provides decision makers the ability to analyze data in a multi-

dimensional way. For a given table, R, with n rows and d dimensions, a view/group-by

1

Date| Store Product Quantity
2003 | Montreal Computers | 2
2003 | Montreal Sofeware 2
2003 | Toronto Computers 2
2003 | Toronto Software 2
2004 | Montreal Computers 2
2004 | Montreal Software 2
2004 | Toronto Computers 2
2004 { Toronto Software 2
Date | Store Quantity Date | Product Quantity Store Product Quantity
2003 | Montreal 4 2003 | Computers | 4 Montreal Computers { 4
2003 | Toronto 4 2003 | software 4 Toronto Software 4
2004 | Montxeal 4 2004 | Computers | 4 Montreal Computers | 4
2004 | Toronto 4 2004 | Software 4 Toxronto Software 4
Date | Quantity Store Quantity Product Quantity
2003 8 Montreal 8 Computers 8
2004 8 Toxonto 8 Software 8

Quantity

16

Figure 1.2: Eight Possible Views.

is generated by aggregating R along a subset of dimensions. For example, a table
with eight rows, three dimensions and one measure is showed in Figure 1.1. In this
table, the three dimensions are “date”, “store” and “product”, and the last attribute
“quantity” is a measure to be aggregated in the query. In OLAP systems, one of the
most popular queries is to generate the set of views over all combinations of a set of
dimensions from a table. This query allows the original data to be viewed from differ-
ent perspectives. Figure 1.2 shows the eight possible views generated from the table
in Figure 1.1. In 1997, Gray et al. proposed the Cube operator as an extension to the
Structured Query Language (SQL) in order to support this query directly in relational
databases [42]. The result of a cube query is a collection of multidimensional data or
views, called a Data Cube. The Full Data Cube consists of all 2¢ possible views, while

a Partial Data Cube consists of a subset of the 2¢ possible views. Another type of

3

cube is called an Iceberg Cube. In an iceberg cube each view consists of those rows,
whose measures are greater than a minimal support parameter, which is predefined
by the users. For example, this cube query,

'SELECT date, store, product, SUM(quantity)

FROM salefact

GROUP BY CUBE(date, store, product),
generates a full data cube, and this one,

SELECT date, store, product, SUM(quantity)

FROM salefact

GROUP BY date, CUBE(store, product),
generates a partial data cube, which consists of the only four views like “date, store,
product”, “date, store”, “date, product” and “date”. The next cube query,

SELECT date, store, product, SUM(quantity)

FROM salefact

GROUP BY CUBE(date, store, product)

HAVING SUM(quantity) > 5,
generates a partial data cube, where 5 is the minimal support value. The pre-
computation of full/partial data cubes is often used to support the fast execution
of subsequent queries [42] in which subsets of dimensions have been selected for ag-
gregation. In this case, the queries are not answered from the original tables, but from
the pre-computed views directly. The computation of iceberg data cubes can speed
iceberg cube queries and some data mining tasks, such as association rules mining
[56].

The efficient computation of data cubes is a challenging task, which has attracted
a great deal of research [59, 17, 57, 65, 38, 20, 64]. A large number of sequential
algorithms have been proposed for efficiently computing full data cubes [59, 17, 57, 65],
partial data cubes [59, 38] and iceberg data cubes [20, 64]. However in the face of

ever increasing data sizes, more efficient and scalable techniques are required.

1.1 Motivation - The Need for High Performance Computing

For large input tables, current sequential techniques often require days to generate

large data cubes. Therefore a critical challenge in the OLAP area is how to meet

4
the scalability needs of large scale data warehouses, in which the amount of data is

constantly growing. In the Winter Corporation’s report [63], the largest three data
warehouses exceed 20 terabyte in size. More importantly, it is expected that as of
2005, the storage requirements of more than 40% of production data warehouses will

exceed one terabyte [31]. Inevitably, new solutions and new algorithms have to be
proposed to meet the scalability needs of OLAP systems.

An OLAP system is considered scalable if it can maintain consistent response
time by adding hardware, such as processors, proportionally to the workload added.
For a single OLAP query, the increased workload comes from increased table sizes or
increased number of dimensions in tables. Most of the response time for answering a
query is composed of two parts: computation time and disk I/O time. One approach
to meeting the scalability requirements is parallel computing. Parallel Computing
is the use of multiple computer resources to solve a computational problem. The
computer resources can be processors in a computer or computers in a network.
Therefore, parallel computing can provide two key ingredients for dealing with the
large data size: 1) increased computational power through multiple processors and

2) increased I/O bandwidth through multiple parallel disks.

In recent years, there has been a trend in parallel computing to move away from
specialized super computing platforms to cheaper general purpose clusters made from
single or multiple computing PCs or workstations. A cluster is a collection of inter-
connected nodes, working as an integrated computing resource. The nodes in a cluster
can be single-processor machines or Symmetric Multiprocessors (SMPs). If neither
memory nor disks are shared among the nodes in a cluster, it is called a shared-
nothing cluster. A popular, low cost shared-nothing cluster is the Beowulf Cluster
[1], which consists of standard PCs connected via a data switch. To exchange data
among nodes in a shared-nothing cluster, we may use message passing libraries, such
as the Message Passing Interface (MPI) [15], a standard interface for message passing

implementations among processors in a cluster.

In this thesis, we design and implement parallel data cube generation algorithms
for shared-nothing clusters. We analyze the efficiency of our algorithms using the
CGM model of computation which has been shown to be a good predictor of parallel

performance [37]. Our experimental platform is a Linux cluster, which consists of a

5
number of Linux PCs, connected via a high speed network. However, our implemen-

tations are platform independent and can be ported without any substantial change

to other cluster platforms, such as IBM SP2 clusters or Windows NT clusters.

1.2 Contributions

This thesis makes contributions in the following areas: 1) the design of efficient
parallel cube generation algorithms for the three basic types of data cubes: full cubes,
partial cubes and iceberg cubes, 2) careful system work associated with parallelism
and external memory issues in QLAP systems, and 3) extensive experiments and

evaluation.

Specifically, the algorithms presented in this thesis are as follows:

1. Parallel Generation of Full/Partial Data Cube: We present a novel parallel
full and partial data cube generation algorithm for shared-nothing clusters,
described in Section 2.4. The algorithm accepts as input a data set with n rows
and d dimensions, which is distributed evenly over the p nodes in a cluster,
and a list of views to be selected from the 2¢ possible views. It computes and
outputs the selected views to a set of p disks, one per processor. The output
data of each view is distributed evenly across the nodes/disks of a cluster. Our
experiments show that the speedup of the algorithm is close to optimal/linear
speedup. For example, the speedup for a data set with 8 million rows and
8 dimensions on 16 nodes is 14.3, 15.5 and 13.6 for the full cube, the partial
cube with 756% selected views and the partial cube with 50% selected views,

respectively. We have described these methods previously in (23, 25].

2. External Memory and Parallel Generation of Full /Partial Data Cube:
We present an external memory adaptation of our basic parallel cube generation
methods and a set of algorithmic enhancements that address the I /O challenges
that arise with such increases in data size. We solve two critical problems: 1)
how to compute data cubes efficiently in external memory and 2) how to reduce
the high cost of disk I/O and network I/O. For the first problem, we introduce a
shared prefix pipeline processing technique that speeds up pipeline processing by

reducing the size of blocks that must be sorted. We also compare two approaches

6
to external memory pipeline processing. For the second problem, we design an

adaptive data partitioning scheme, which uses a cost model to estimate the cost
of computation, disk I/O and network I/O based on a given parallel machine and
computes a “best data partitioning” to reduce the global cost. Our experiments
show that the adaptive data partitioning method reduces the parallel running
time by up to 40% and increases the speedup by up to 50%. For example, in
experiments with a data set of 8 million rows and 8 dimensions on 16 nodes,
linear speedup was achieved for both the full cube and the partial cubes. More
importantly, with these enhancements our external memory method can handle
huge data sets, such as a data set with 250 million rows and 8 dimensions. Our
method generates the full cube from this data set in 70 minutes and outputs 7
billion rows or 200 gigabyte of data on 16 nodes. The time for reading input
data from disks is about one second and the time for writing output data to
disks is about 853 seconds or 14 minutes. Therefore the disk I/O time is about
20% of the total time for generating the full cube. For the partial cube with
25% selected views, it generates 752 million rows or 20 gigabyte of data in just

35 minutes. We have described these methods previously in [24].

3. Parallel Generation of Iceberg Data Cube: We present a novel PnP operator
and “Pipe 'n Prune” (PnP) algorithm for the computation of iceberg cube
queries. The novelty of our method is that it completely interleaves a top-down
piping approach for data aggregation with bottom-up Apriori data pruning. A
particular strength of PnP is that it is very efficient for sequential iceberg-cube
queries, external memory iceberg-cube queries and parallel iceberg-cube queries
on shared-nothing clusters. This makes PnP an interesting new alternative
method, especially in applications where performance stability over a wide range
of input parameters is important. For parallel iceberg cube generation, parallel
PnP is the first parallel algorithm that shows good speedup on 16 or 32 node
shared-nothing clusters. For example, the average speedup observed for a data
set of 8 million rows and 11 dimensions, is 15.2 on 16 nodes. Since our parallel
algorithm is based on the external memory PnP, it can handle large data sets
easily. For example, for a data set with 250 million rows and 8 dimensions, it

generates the iceberg cube in 25 minutes and outputs 28 million rows or 832

7
megabyte of data on 16 nodes. We have described these methods previously in

[26].

Besides the design of parallel cube generation algorithms, our contributions also
include significant system work. We have developed a software architecture that inte-
grates all three basic cubing tasks and have realized this architecture in our cgmOLAP
prototype. The task of generating full, partial and iceberg data cubes is not separate.
In practice, the cube queries are handled by a single Structured Query Language
(SQL) command with different options [12]. In the default case, it generates a full
cube. If there is a required subset of views in the command, it generates a partial
cube. Or if a “having” clause specifies a minimal support, it generates an iceberg
cube. Our approach has been to integrate these three algorithms into a single system
to fully support data cube queries in OLAP systems.

In this thesis, we also report on extensive experiments. Parallel algorithms are al-
ways more complicated than sequential algorithms because there are multiple proces-
sors which work on different partitions of data sets. The performance of parallel
algorithms is effected by many factors, such as the size of data sets, the number of
dimensions, the data skew, the number of processors, the speed of disk I/O and the
speed of the network. Therefore, the performance of a systematic set of experiments
is key to evaluating the performance of parallel algorithms. We provide extensive
experiments with a variety of both synthetic and real data sets. These experiments
show that in most cases our algorithms exhibit good speedup and scalability on a

wide variety of data sets using up to 16 or 32 processors.

1.3 Organization

This thesis is organized as follows: Chapter 2 introduces basic concepts in data ware-
housing, OLAP and data cubes, as well as principal sequential data cube generation
algorithms that have been described in the literature. Chapter 3 describes our in-
memory parallel generation algorithm for full and partial data cube on shared-nothing
clusters. In Chapter 4 we present the external memory and parallel data cube gener-
ation algorithms and an adaptive load-balancing technique. Chapter 5 describes our

PnP algorithm for generating iceberg cubes. Chapter 6 introduces our cgmOLAP

8
system. Lastly, Chapter 7 presents a summary of contributions and suggesting future

work.

Chapter 2
An Introduction to Data Warehousing

In this chapter, we introduce basic concepts of data warehousing, OLAP and data
cubes. We also review a wide range of sequential data cube algorithms. Some algo-
rithms which are keys to understanding our parallel methods are discussed in more
detail. Finally, we introduce the shared-nothing cluster architecture, which is the

experimental platform used in this thesis.

2.1 Data Warehousing

‘Today, more and more organizations rely on Decision Support Systems (DSS) to an-
alyze their data to help make better and faster decisions. For example, a retail store
may analyze transaction records to decide promotion strategy, a health care organi-
zation may analyze patient treatment records to understand the effect of treatment,
and scientific institutions may analyze huge amount of raw data, such as geographi-
cal data or biology data to discovery new knowledge. To analyze data efficiently, we
need appropriate technologies, such as data warehousing. Data Warehousing is “a
collection of decision support technologies, aimed at enabling the knowledge worker to
make better and faster decisions” [22]. A key difference between databases and data
warehouses is that data warehouses are primarily used as data sources for analysis,
instead of operational needs. A data warehouse is “an object-oriented, integrated,
time-varying, non-volatile collection of data that is used primarily in organizational
decision making” [46].

Recently a new term, Business Intelligence (BI), has become widely used in in-
dustry (3, 53, 16]. Business Intelligence (BI) is “a broad category of applications and
technologies for gathering, storing, analyzing, and providing access to data to help
enterprise users make better business decisions” [2). BI has three advantages for busi-
ness data analysis [53]. First, BI focuses on both technologies and applications while

data warehousing focuses on technologies only. Second, BI is involved in all phases of

9

10
the data processing chain, from gathering and storing to analyzing and access, while

data warehousing focuses on building data warehouses mainly. Third, BI can access
all possible business information sources, not just data in data warehousing.
However data warehousing can be used in many more areas for data analysis,
such as health care and science. It is not only for enterprise users to analyze business
data like BI. Moreover, most of the decision support technologies used in BI are from
data warehousing. Therefore, in this thesis we focus on data warehousing, but the

algorithms discussed in this thesis are applicable for both data warehousing and BI.

2.1.1 The Architecture of Data Warehousing

Serve i
OLAP

Administration \

. Data Management
Metadata
Repository —
Data Marts

Data Warehouse Server

Extract
Clean
Transform
Load
Refresh

DO T

Operational Databases External Sources

ETL

g

Figure 2.1: Data Warehousing Architecture. [22]

Figure 2.1 illustrates the architecture of a typical data warehousing system. In this
architecture, there are four layers: Extract/Transform/Load tools, data management,
decision support tools, and front-end tools. In the following, we will give more details

for these layers.

11
2.1.2 ETL

The data in a data warehousing system can come from almost all possible information
sources, such as operational databases, flat files, web pages and even the output of
applications. Useful data is extracted from these data sources, transformed into
target formats and loaded into the data warehouse. These processes are called ETL,
the abbreviation for Extract, Transform and Load.

The first step in ETL is to extract data from all kinds of sources. We may use
some standard interfaces, such as Open Database Connectivity (ODBC) [11], or tools
provided by database vendors, to extract online data from operational databases. For
file sources, we may use FTP or HTTP tools to download files from remote hosts.
For particular application sources we may use special interfaces.

The second step is to clean and transform inconsistent source data into consis-
tent data formats. These include field lengths, field descriptions, value assignments,
missing entries and integrity constrains [22]. We may also need to normalize data
and convert continuous or categorical data into discrete data. For example, we may
define a set of age arranges: 1-12, 13-17, 18-22, 23-35, ... , and then use integers to
represent the arranges: 1, 2, 3, 4 and so on. Another example is using “1” to represent
“male” and using “2” to represent “female”, instead of using text strings. For some
complicate fields, we need to parse them to get more delicate sub-fields. For example,
an address may consist of the street number, the street name, the apartment number,
the city name, the province or state name, the post code and the country name. An
IP address may consist of the network address and the network mask.

The last step in the ETL process is to load the processed data into data ware-
houses. Before loading, we may need to sort, aggregate the data, and pre-compute
some materialized views in order to improve the performance of data warehouses [22].
[t may take a long time to load massive data sets into a large scale data warehouse.
To decrease the load time, we may use parallel loading, multiple storage disks and
data partitioning.

ETL can be done only once or be executed periodically. If we need to execute
ETL more than once, we may refresh data warehouses instead of re-loading all the
data again. The updated data could include the basic tables, and materialized views

computed from the basic tables. Replication servers can be used to refresh data

12
warehouses. There are two basic replication technologies [22]. One is data shipping

[22]. Tt uses the snapshots of tables in the remote source databases. The other is

transaction shipping [22]. It uses the transaction logs in the remote source databases.

2.1.3 Data Management

The data management in Figure 2.1 consists of the data warehouse server, data marts,
metadata repository and data administration. The core of the data, management is
the data warehouse, which stores all the data for analysis in a data warehousing
system. The data marts are small data warehouses, which store the departmental

data only. The data marts copy data from the data warehouse.

RDBMS and MDDB

Most of data in a data warehousing system is organized in a multidimensional way.
Two basic types of database systems can be used to store multidimensional data sets.
They are Relational Database Management System (RDBMS) and Multidimensional
Databases (MDDB) [54]. RDBMS uses rational tables to store multidimensional data
sets. The advantage of RDBMS is that it can handle huge amount of data sets, and
is supported by most database vendors. The disadvantage of RDBMS is that its

performance is not as good as MDDB.

MDDB uses multidimensional arrays to store multidimensional data sets directly
and takes less time to access arrays than tables in RDBMS. The disadvantage of
MDDB is that it could need huge memory to store the multidimensional arrays even
for small data sets due to the empty cells in arrays. When the memory is not enough,
MDDB has to swap the data between memory and disks, which degrades the perfor-
mance of MDDB. Therefore MDDB is not suitable for large scale data sets. Table 2.1
illustrates the tradeoffs of RDBMS and MDDB.

Considering the tradeoffs, we may use both RDBMS and MDDB in a data ware-
housing system at the same time. For example, we can use RDBMS to store the data

warehouse and big data marts, while use MDDB to store small data marts, which

support OLAP applications.

RDBMS

MDDB

Size

Up to terabyte

Up to 100 gigabyte

Source Data

Handle volatile source data
well

Take long time to update

tems

Aggregate Compute aggregate slow Compute aggregate fast on
small data
Investment Reuse the previous tools and | Need new tools and skills
skills
Management | Easy to manage complex sys- | Hard to manage complex sys-

tems

13

Table 2.1: The Tradeoffs between RDBMS and MDDB [54]

Data Warehouse Modelling

Data warehouse modelling is an important step before ETL. In this step, a data
warehouse architect determines what data is to be stored in the data warehouse, how
the data is to be stored in the data warehouse and which schema is to be used in the
data warehouse. This information is called metadata. Metadata is the data about the
data, and typically is shared by all other components in a data warehousing system.
A popular type of data warehouse modelling is called dimensional modelling [50].
In the dimensional modelling, there are two basic ob jects: facts and dimensions. Facts
are numeric measures and can be aggregated by a function, such as SUM. An example
of facts is the sale quantity of products or the sale dollar amount of products. Dimen-
sions are used to determine the granularity of facts. In other words, the intersection
of a set of dimensions determines a measurement of facts. For example, the dimen-
sions “Date”, “Product” and “Store” can determine the sale quantity of a certain
product on a certain day at a certain store. A dimension may consists of some levels,
which can determine the different granularity of facts. For example, the levels in a
“Date” dimension can be “Year", “Month”, “Day” and “Weekday”. The relationship
of a set of levels is called a hierarchy. The common relationship between two levels in
a hierarchy is one-to-many, which means the granularity becomes finer. Two possible
hierarchies in a “Date” dimension can be “Year-Month-Day” and “Weekday-Day” .
MDDB Data warehouses use multidimensional arrays to store facts directly. In
a multidimensional array, each dimension consists of a set of unique values as the

indexes for the dimension. The intersection of the indexes from all the dimensions

14
determines a storage cell in the array. The cell stores the measures responding to the

dimension indexes. The key challenge for MDDBs is how to store such multidimen-
sional arrays efficiently, since the most proportion of cells may be empty, and it adds

too much overhead to retrieval.

Schemas in RDBMS Data Warehouses

The most common approach of modelling used in traditional RDBMS is Entity-
Relationship (ER) modelling [19]. In ER modelling, there are two basic objects: enti-
ties and relationships between entities. To store multidimensional data in a RDBMS,
we need to map the dimensional model to a ER model. The approach is to treat
dimensions as entities and to treat facts as many-to-many relationships.

To convert entities and relationships into tables in RDBMS, we need to determine
what schema is used. A schema is “a collection of database ob jects, including tables,
views, indexes and synonyms” [4]. Two fundamental schemas in RDBMS data ware-
houses are Star Schema and Snow-flake Schema. Their names are derived from the

shapes of their ER diagrams.

Date Dimension Product Dimension

Date Key (PK) Product Key (PK})
Month Department Description

Year Category Description

Sale Fact

Date Key (FK)
Product Key (FK)
Store Key (FK)
Sale Quantitiy
Sale Dallor Amount

Store Dimension

Store Key (PK)
city

Province
Country

Figure 2.2: A Star Schema.

Figure 2.2 illustrates an example of a star schema. In this example, there are
three dimension tables and a fact table, where “PK” denotes primary keys and “FK”
denotes foreign keys. In a star schema, each dimension has only one table and di-

mension tables are connected by exactly one fact table. Since there is only one table

15

Date Dimension Product Dimension

Date Key (PK) Product Key (PK)
Month Category Key (FK)
Year e
Sale Fact
Date Key (FK) Category Table
Product Key (FK)
Store Key (FK) Category Key (PK)
Sale Quantitiy Category Description
Sale Dallor Amount Department Key {FK)
Store Dimension
Store Key (PK) Department Table
Cicy
Province Department Key (PK)
Country Department Description

Figure 2.3: A Snow-Flake Schema.

The Star Schema The Snow-flake Schema
Complexity Simple structure Complex structure
Joins Less joins in quiries More joins in quiries
Disk Space More disk space Less disk space
Browsing Easy to browse in a dimension | Hard to browse in a dimension
Bitmap In- | Easy to use bitmap indexes Prohibit the use of bitmap in-
dexes dexes

Table 2.2: The Star Schema V.S. The Snow-flake Schema [50]

for each dimension, the star schema may consist of some redundant data. For exam-
ple, in the product dimension table, many rows may include the same descriptions of

departments and categories.

We may normalize the dimension tables by using more than one table to represent
a dimension to extend a star schema. In this case, it becomes a snow-flake schema,
as illustrated in Figure 2.3. In a snow-flake schema, some hierarchies in dimension
tables are normalized using several tables. For example, in Figure 2.3 the hierarchy

“department-category-product” is normalized using three tables.

A comparison of star schema and snow-flake schema is given in Table 2.2. The
main advantage of the snow-flake schema is that it can save disk space. However the
space saved in dimension tables may be very small relative to the size of the fact
table. Therefore, some experts [50] and database inventors [4] recommend the star

schema, for use in RDBMS data warehouses.

16
In practice, there may be several facts tables sharing one or more dimension tables

in a data warehouse. We may organize these tables as the galazy schema or the fact
constellation, since the shape of the ER diagram is like a galaxy. We may view
a galaxy schema as a combination of multiple star schemas or snow schemas. An
example of a galaxy schema is illustrated in Figure 2.4. In this figure, there are two
fact tables: the sale fact table and the repository fact table. They share the date

dimension and the product dimension.

Date Dimension Product Dimension

Date Key (PK) Product Key (PK)
Month Department Description

Year Category Description

Sale Fact

Date Key (FK)
Product Key (FK)
Store Key (FK)
Sale Quantitiy
Sale Dallor Amount

Store Dimension

Repository Dimension

Store Key (PK)
city Repository Fact Repository Key (PK)
Province Repository Description
Country Date Key (FK)
Product Key (FK)
Repository Key (FK)
Stock Quantitiy
Stock Dallor Amount

Figure 2.4: The Galaxy Schema.

2.1.4 Decision Support Tools

The three main types of decision support tools used in data warehousing systems are

as follows:

Query and Reporting Query and reporting use Structured Query Language (SQL)
to execute ad-hoc queries in relational data warehouses, and generate formatted

reports from query results. They are easy to use and suitable for almost all kinds

of users.

OLAP OLAP is “category of software technology that enables analysts, managers
and executives to gain insight into data through fast, consistent, interactive ac-

cess to a wide variety of possible views of information that has been transformed

17
from raw data to reflect the real dimensionality of the enterprize as understood

by the user” [10]. It is suitable for high level users in organizations.

Statistical Analysis and Data Mining Statistical analysis and data mining use
mathematical, financial and statistical methods to analyze data. Data mining
focuses on using data analysis and discovery algorithms to find out patterns
from data [35]. They are tools and techniques suitable for experts only, such as

data analysts.

Based on the above three decision support tools, a data warehousing system can
provide front-end tools, which are the top layer of Figure 2.1. These tools can present
the results of queries in user friendly format, such as reports and forms, or visualize
the multidimensional data of OLAP. They also provide necessary interfaces between
users and data warehousing systems.

Among the three decision support tools, query and reporting are the easiest ones to
use, but they can not present data in a multidimensional way. Statistical analysis and
data mining require users to have professional knowledge. Only OLAP can provide
powerful multidimensional analysis on data sets for most decision makers. This makes

OLAP an essential component in a data warehousing system.

2.2 OLAP and Data Cubes

One of the most powerful and prominent technologies in a data warehousing system
is OLAP. By exploiting multidimensional views of the underlying data warehouses,
the OLAP server allows users to drill-down or roll-up on hierarchies, slice and dice
on particular dimensions, or perform various statistical operations such as ranking
and forecasting. To support this functionality, OLAP relies heavily upon the data
cube. In the remainder of this section, we introduce basic concepts of OLAP and

data cubes.

2.2.1 OLTP and OLAP

Online Transaction Processing (OLTP) systems [60] record and constantly update
day-to-day operations, such as store transactions in a superstore, account transactions

in a bank or calling information in a telecom company. The goal of OLTP is to process

18
as many transactions as possible in a unit time. The data in OLTP is the source data,

for a data warehousing system. After we execute ETL processing on this online data,
it is stored in data warehouses for analysis by OLAP in a multidimensional way.
Table 2.3 lists the differences between OLTP and OLAP systems.

OLTP OLAP
Typical User Regular employees | Managers and analysts
Usage of System Day-to-day operation Business analysis
User Interface Pre-determined Ad-hoc
Data Current data Historical data
Data Characteris- | Atomic Summarized
tics
Work Characteris- | Read/Write Read (except off-line up-
tics dates)
Unit of work Transaction Query
Processing Process-oriented Subject-oriented
Updates One record at a time Several records at a time

Table 2.3: A Comparison of OLTP and OLAP Systems [62]

2.2.2 OLAP Categories

The data in OLAP systems is organized in multidimensional data sets, called Data

Cubes. An example of a data cube with three dimensions is illustrated in Figure 2.5.

Mon::eal/ / / /
Store Toronto/ / / /

Boston

New Yor]

Computers

Software
Product

Electronics

Appliances

2001 2002 2003 2004
Date

Figure 2.5: A Data Cube with Three Dimensions.

Data cubes can be stored as relational tables, such as in RDBMS. The OLAP
based on relational tables is called a Relational OLAP (ROLAP). Data cubes can

19
also be stored as multidimensional arrays, such in MDDB. The OLAP based on

multidimensional arrays is called a Multidimensional OLAP (MOLAP). If data cubes
in a OLAP system are stored as both relational tables and multidimensional arrays,
this kind of OLAP is called a Hybrid OLAP (HOLAP).

ROLAP stores data cubes in relational tables. In most cases, ROLAP accesses
fact tables to answer queries. This makes the query response of ROLAP slower than
MOLAP or HOLAP. The pre-computed data cubes can be used to dramatically speed
up the query response of ROLAP. In this case, queries are not answered from fact
tables but from the pre-computed views directly. The advantage of ROLAP is the
ability to handle large data sets that are infrequently queried, such as terabyte his-
torical data. The ROLAP products include ROLAP Informix’s MetaCube, ROLAP
Option for the Informix Dynamic Server [7] and MicroStrategy 7i OLAP [9)].

MOLAP stores data cubes in multidimensional arrays. The main problem in
MOLAP is how to operate on sparse data cubes, where many cells are empty. Some
special technologies can be used to compress data cubes, such as Bit-encoded Spare
Storage (BESS) [58]. Generally MOLAP can provide the most rapid query response
in three types of OLAP on small data sets. The MOLAP products include Essbase
OLAP Server [6] and Oracle 9i OLAP [12].

Table 2.4 [62] lists the main differences between ROLAP and MOLAP .

ROLAP MOLAP
Storage and | Tables/tuples Proprietary arrays
Access SQL access language Lack of a standard language
Third party tools Sparse data compression
Usage Variable performance Good performance
Relational engine Multidimensional engine
Database Up to terabyte Up to gigabyte
Size Large space for indexes 2% index space
Easy updating Difficult updating

Table 2.4: A Comparison of ROLAP and MOLAP

HOLAP combines attributes of both MOLAP and ROLAP. It stores aggregate
data in multidimensional arrays and basic fact tables in RDBMS. For queries only
related to aggregate data, the response time is almost equal to that in MOLAP.
Queries that access basic fact tables from RDBMS will be slow. The problem of

20
HOLAP is that it is more complicated to implement and administer than ROLAP

and MOLAP. The HOLAP products include Microsoft SQL Server OLAP Services
8] and Pilot Decision Support Suite [14].

2.2.3 The Cube Operator

In OLAP systems, one of popular queries is to generate a set of group-bys over all
combinations of a set of dimensions from a fact table. The query allows us to view
the original data from different perspectives. In order to execute the query in one
Structured Query Language (SQL) command, Gray et al. proposed the Cube operator
to extend the SQL standard in the paper [42]. A cube operator query is similar to 2¢
group-by queries, where d is the number of dimensions in the query. For example, a
cube query based on the fact table in Figure 2.5 is: “SELECT date, store, product,
SUM(salequantity) FROM salefact GROUP BY CUBE(date, store, product).” The

result of this cube query is equal to those of the eight group-by queries listed in
Table 2.5.

SELECT

date, store, product,

date, store,

date, product,

store, product,

date,

store,

product,

NULL

SUM(salequantity)
FROM salefact
GROUP BY

date, store, product

date, store

date, product

store, product

date

store

product

NULL

Table 2.5: The Eight Group-by Queries

Each of the group-bys in a cube query is called a view or a cuboid. The view
including all the dimensions is called core/base view or core/base cuboid. For example,
the view of “date, store, product” in the above example is the core/base view. The
set of the views in a cube query is called a Data Cube. Therefore, to answer a cube
query is to generate a data cube from the input table.

We may use a special value “ALL” to represent any value in a dimension. Then
the data cube from a cube query can be stored in only one table in ROLAP. For

example, for the fact table “salefact” shown in Table 2.6, the resulting data cube is

21
listed in Table 2.7. It can also be stored as a multidimensional array in MOLAP,

illustrated in Figure 2.6.

The results of cube queries can be stored in data warehouses. These data sets are
called pre-computed data cubes. The views in the pre-computed data cube are called
pre-computed views, materialized views or aggregate tables. Using pre-computed data
cubes, data warehouses and OLAP systems can answer queries much faster than

computing them from fact tables.

Date | Store Product | Sale Quantity
2003 | Montreal | Computers 2

2003 | Montreal | Software
2003 | Toronto | Computers
2003 | Toronto { Software
2004 | Montreal | Computers
2004 | Montreal | Software
2004 | Toronto | Computers
2004 | Toronto | Software

D DODNDND DD NN

Table 2.6: The Fact Table “salefact”

Monexeal /" / yayd
Toronto /S / / /

Store sston /S S 7
v vork f 7

ALL

Computers

Software

Product Electronics

Appliances

NN NN

ALL

2001 2002 2003 2004 ALL
Date

Figure 2.6: The Result of the Cube Query in MOLAP.

2.2.4 OLAP Operations on Data Cubes

Most OLAP systems provide five major operations on data cubes to analyze data in
a multidimensional way [48]. We use a set of examples to illustrate these operations.

In these examples, the original cube, in Figure 2.7, consists of three dimensions:

Date | Store Product | Sale Quantity
2003 | Montreal | Computers 2
2003 | Montreal [Software 2
2003 | Toronto | Computers 2
2003 | Toronto Software 2
2004 | Montreal | Computers 2
2004 | Montreal | Software 2
2004 | Toronto | Computers 2
2004 | Toronto Software 2
2003 | Montreal ALL 4
2003 | Toronto ALL 4
2004 | Montreal ALL 4
2004 | Toronto ALL 4
2003 ALL Computers 4
2003 ALL Software 4
2004 ALL Computers 4
2004 ALL Software 4
ALL | Montreal | Computers 4
ALL | Montreal | Software 4
ALL | Toronto | Computers 4
ALL | Toronto Software 4
2003 ALL ALL 8
2004 ALL ALL 8
ALL | Montreal ALL 8
ALL | Toronto ALL 8
ALL ALL Computers 8
ALL ALL Software 8
ALL ALL ALL 16

Table 2.7: The Result of the Cube Query in ROLAP

22

“store”, “product” and “date”. In the “store” dimension, the hierarchy is “country-

city”, where “country” is the high level or coarser level, and “city” is the low level

or finer level. In the “product” dimension, the hierarchy is “department-category”,

where “department” is the high level and “category” is the low level.

The five operations are as follows:

Roll-up: It merges values along a particular dimension based on hierarchical rela-

tion to a coarser level of granularity. For example, in Figure 2.8, the level of

“stores” is changed from “city” to “country”.

23
Drill-down: 1t splits values along a particular dimension based on hierarchical re-

lation to a finer level of granularity. For example, in Figure 2.9, the level of
“products” is changed from “department” to “category”. Drill-down is the

reverse operator for roll-up.

Slice: It extracts a single value of a dimension from the original data cube. For

example, in Figure 2.10, the value “Electronics” is extracted from the dimension
of “Product”.

Dice: It extracts a subset of values of some dimensions from the original data cube
to generate a small data cube. In Figure 2.11, we extract “Montreal” and
“Toronto” from the dimension of “stores” and extract “2003” and “2004” from

the dimension of “dates” to generate a small data cube.

Pivot It rotates the data cube to change the dimensional orientation in order to
visualize cubes in more natural or intuitive ways. Figure 2.12 is an example of

the pivot operation.

Montxeall / /S / canada
Store TctontoL / / / Stora
Boston / / / / / UsA
New Yor!
Computers / Computers /
Software / Software /
Product Product
Electronics / Electronics /
Appliances Appliances
2001 2002 2003 2004 2001 2002 2003 2004
Date Date
Figure 2.7: The Original Cube. Figure 2.8: OLAP Roll-up

2.2.5 Aggregate Functions

In the previous examples, we use SUM as the aggregate function. However, in the data
cube generation there are many other aggregate functions, such as COUNT, MIN,
MAX, AVG and customized functions. We may classify aggregate functions into three

categories [42]: distributive functions, algebraic functions and holistic functions.

24

Monr.real[J/ / /
Store Tcron:ch / / /
Boston L / / /

New Yor!

Desktop
Laptop
os Mcmr.reay / / /
Applications Store Torontg, /
Product Cassette 95“‘“\4 / / /
CD Player New York
Dryers Electronics
Washers Product
2001 2002 2003 2004 ' 2001 2002 2003 2004
Date Date
Figure 2.9: OLAP Drill-down. Figure 2.10: OLAP Slice.
Computers / / / /
Product Software
stoze Montreal Electronica /
Toronto Appliances /
Computers 2001 ///
Software 2002 / /
Product Date / /
Electronics 2003 //
Appliances 2004 /
2003 2004 Montreal Toronto Boston New York
Date Store
Figure 2.11: OLAP Dice. Figure 2.12: OLAP Pivot.

An aggregate function, agg(), is distributive, if a function f() exists and agg(SUS’) =
f(agg(8S),agg(S")), where S and S’ are data sets. For example, SUM is distributive
because SUM(SUS') = SUM(SUM(S), SUM(S")). COUNT is distributive be-
cause COUNT(SUS") = SUM(COUNT(S), COUNT(S")). MIN is distributive be-
cause MIN(SUS') = MIN(MIN(S), MIN(S")). And MAX is distributive because
MAX(SUS") = MAX(MAX(S), MAX(S")).

An aggregate function, agg(), is algebraic, if a M-tuple valued function f() and
a function g() exist and agg(SUS') = g(£(S), £(S')), where S and S’ are data sets.
“The key to algebraic functions is that a fixed size result (a M-tuple) can summarize
the sub-aggregate.” [42] For example, AVG is algebraic because f() calculate the sum
and count of S and S’ and the g() adds the sum and divides by the total count to

get the average of two data sets. Here, f() is a two-tuple function: the sum and the

count.

25
An aggregate function, agg(), is holistic, if there is no constant bound on the size

of the storage needed to describe a sub-aggregate. MEDIAN and RANK are common
examples of holistic functions.

The data cubes using distributive and algebraic aggregate functions are easy to
compute by using other views instead of raw data. For the data cubes using holistic
aggregate functions, there are no more efficient algorithms than regular group-by
queries [42]. In this thesis, we focus on the distributive and algebraic aggregate

functions, and always use SUM in our examples and experiments.

2.3 Sequential Data Cube Algorithms

The computation of data cubes is critical to improve the response time in OLAP
systems and can be instrumental in accelerating other applications in a large scale
data warehousing system, such as ad-hoc queries and data mining [45]. Even in
the processing od Extract, Transform and Load (ETL), we also need to pre-compute
some data cubes (materialized views) before we load them into data warehouses [50].
For most of data cube computation problems, we may design efficient algorithms to
compute a set of views together, rather than compute individual views using separate
group-by queries. In this section, we will introduce the most popular data cube

algorithms.

2.3.1 Three Types of Data Cubes

For a given raw data set, R, with n rows and ¢ columns. The ¢ columns include d
dimensions and m measures, a view is computed by an aggregate of R on m mea-
sures along a set of dimensions. The total number of possible views is 2¢. For each
dimension D;, 1 < i < d, there are |D;| unique values. |D;| is called the cardinality
of D;.

We may use English letters as the identifiers of dimensions, such as A for the first
dimension Dy, B for the second dimension D, and so on. Then we may use letter
strings as the identifiers of views, such as AB for the view grouped by D; and D,.
The order of letters in the string represents the order of group-by dimensions in the
view. We use raw to represent the raw data set. The dimension order in raw can be

in any order, and we use all to represent the view without group-by dimensions.

26
We may put all 2¢ view identifiers in a graph and use edges to connect them. This

graph is called the Lattice, where an edge between two view identifiers indicates that
the short view can be computed from the other by aggregating along one dimension.
Figure 2.13 shows a lattice with four dimensions 4, B, C, and D. In a lattice, we put
the same length views on the same level, put the long views on the upper level and
put the short views on the lower level. The top level is Level d, and the bottom level
is Level 0. Therefore a lattice consists of d + 1 levels, and the length of each view on
Level k is k.

all

Figure 2.13: A Lattice with Four Dimensions.

We may compute the entire data cube, which is the set of all 2¢ views. This data
cube is called a full data cube. A full data cube may be too huge to be stored on
disks, or OLAP users may require to compute a part of a full cube. Therefore we
may select a subset of 2¢ views to compute. The subset of 2¢ views is called a partial
data cube. Another type of data cube is called an iceberg data cube. In an iceberg
data cube, we still compute all the 2¢ views, but for each view, we only output the
rows whose measures are above specific thresholds. In a iceberg cube query, there is

a “having” clause to indicate the thresholds. The following query is an example of

27
an iceberg cube query: “SELECT A, B, C, D, SUM (measure) FROM R GROUP BY

CUBE(A, B, C, D) HAVING SUM(measure) > 10.”

There are a number of algorithms for computing three types of data cubes: the
full data cube [59, 17, 57, 65], the partial data cube [59, 38] and the iceberg data cube
[20]. These algorithms can be categorized into ROLAP algorithms [59, 17, 57, 38, 20]
and MOLAP algorithms [65] according to OLAP implementation, or be categorized
into sort based algorithms [59, 17, 57, 38, 20], hash based algorithms [59] and array
based algorithms [65] according to methods used.

Most algorithms begin with a lattice, and then tries to search for the best path in
the lattice to compute all the views. If the search direction is from the upper level to
the lower level, this method is called a Top-down method, such as PipeSort [59]. If
the search direction is from the lower level to the upper level, this method is called a
Bottom-up method, such as Bottom-up CUBE [20].

In the rest of this section, we introduce the most popular algorithms for each
category of data cube algorithms, and give more details on PipeSort and PipeSort for

partial data cubes [38], since they are the sequential base for our parallel algorithms.

2.3.2 PipeSort

PipeSort is proposed in the paper [59] to compute a full data cube. The PipeSort
algorithm includes two steps: generating a plan and executing the plan. In the first
step, PipeSort searches the lattice for a spanning tree with the minimal cost using a
top-down method. In the second step, PipeSort converts the spanning tree into a set

of pipelines, and execute them to generate views.

Generate a Plan

In PipeSort, each view is computed by sorting or scanning one of its parent views. If
one view shares a prefix with one of its parent views, we may scan the sorted parent
view to compute this view without sorting. This method is called share-sort. If there
is no shared prefix between a view and any of its parent views, we have to sort and
scan a parent view to compute this view. For example, we may compute ABC by
scanning ABCD, but we have to compute BC'D by sorting ABCD. Since sorting

spends much more time than scanning, Pipesort tries to use share-sort as much as

28
possible.

On the other hand, a view always has several parent views, which have different
sizes. The smallest parent view is always the better choice than other views for
computing a view, because we may sort or scan less data. This method is called
smallest-parent. For example, we may use ABCD or ABD to compute AB. Since
ABD is smaller than ABCD in size, we should choose ABD.

In practice the methods of share-sort and smallest-parent often conflict with each
other. For example, if we use the method of share-sort, we may compute AB from
ABC, but if we use the method of smallest-parent, we may choose BDA because BDA
might be smaller than ABC. Therefore, PipeSort tries to combine both methods in

a cost model and searches for a spanning tree with the minimal global cost.

Algorithm 1 Generate-Plan
Input: A d dimension lattice with sort costs and scan costs on each edge.

Output: A PipeSort spanning tree with the minimal global cost.

l: fork=0tod—1do

2. Duplicate nodes on the k + 1 level and add new edges between duplicates and
the nodes on the & level.

3: Assign sort costs to the original edges, and scan costs to the new edges.

4: Use the weighted bipartite matching algorithm to find out the best paths be-
tween the two levels.

5: For each node on the k + 1 level, fix the order as the node connected by the
scan edge on the k level.

6: end for

Algorithm 1 outlines steps to generate a spanning tree in PipeSort. The input of
Algorithm 1 is a d dimension lattice with sort costs and scan costs on each edge. We
will introduce the cost estimation in the later part of this section. PipeSort searches
for the spanning tree level by level. In order to find out the best paths between two
levels, PipeSort duplicates the nodes on the upper level, and adds new edges between
duplicates and the nodes on the lower level. Afterwards, PipeSort assigns the sort
costs to the original edges and scan costs to the new edges. Figure 2.14 illustrates the
two levels with new nodes and new edges. The solid edges represent sorts, and the

dash edges represent scans. The costs of sort and scan are shown above the nodes of

29
the upper level. Then Pipesort uses the weighted bipartite matching algorithm (59]

to find out the best paths between the two levels. The best paths have the minimal
total costs among all possible paths. PipeSort also fixes the orders of the nodes of
the upper level based on the nodes of the lower level. Figure 2.15 illustrate the best
paths generated from Figure 2.14. After the best paths for all levels are found, the

lattice are transformed to a spanning tree, illustrated in Figure 2.16.

12 13 20
AC BC BC

Figure 2.15: The Best Paths with the Minimum Total Cost. [59)

Cost Estimation

In the plan generation step, we need to estimate scan costs and sort costs on each
edge. Suppose the number of rows is n and the number of dimensions is m for a view
V. The cost of generating V' by scanning its parent view is n(m+1) [32], and the cost
of generating V' by sorting its parent view is nlogn 4 n(k/2) [32]. In the scan cost,

n(m+1), nm is the cost for checking a row of V, and n is the cost for aggregating and

30

raw
1
1
1
)
Y
CB
7\
7 o
/ \ ~ <
/4 A NN
CBA BAD ACD DBC

all

Figure 2.16: A PipeSort Spanning Tree [59]

moving a row. In the sort cost, nlogn + n(k/2), nlogn is the cost of the quicksort
algorithm. And n(k/2) is the cost of finding the position of the first dimension that
differs in the sorted parent view. The position can be any value between 1 and &, so we
choose the average value k/2 for simplicity. It is easy to get the number of dimensions,
m, whose value is the level of the view. However, we cannot find the number of the
rows, n, before we compute the view. Therefore we estimate the number of rows
by using a number of algorithms, such as cardinality-based estimation [59], sample
scaling [44] and probabilistic methods [49].

In the PipeSort paper [59], the authors used a cardinality-based method to esti-
mate the sizes of views. For a view V, the initial estimate size is MIN([Ip,cv | Dil,
Nraw), Where [Tp.cy |D;] is the product of the cardinalities of dimensions in V, and
Nrew 1S the size of raw data. The result was refined in two methods. The first way is

to compute a view V,, then fix all the estimate size of views derived from V}, to be

31
smaller than V,. The other way is to fix the estimate size using the last two levels.

For example, once we compute ABCD, ABC, ABD, then we refine the size of AB
by

\ABCD| _ |ABD)| |ABD||ABC]
< R
[ABC] = 4Bl " MBS 1o

By this way, we may update the estimate cost on the fly. However it is still not
accurate for meaningful pipeline computation [32].

Sample scaling is proposed in the paper [44]. This method randomly selects some
sample data from the raw data, and builds a small data cube from the sample data.
After that, the size of sample cube may be scaled up by the ratio of the size of the raw
data to the size of the sample data. Sample scaling gives a more accurate estimation
than the cardinality-based method. However, it could underestimate the duplicates
in large raw data [32].

A probabilistic method is proposed in the paper [49]. It is based on the prob-
abilistic counting algorithm {36]. The counting algorithm scans the raw data once,
concatenates the dimensions into bit-vectors of length L, and hash the bit-vectors
into a range of [0,2% — 1]. After that, it counts the number of distinct rows that are
likely to exist in each view. The probabilistic method in the paper [49] improves the
estimate accuracy by using a universal hashing function [61], to guarantee a bound
error for skewed data sets. The experiments in the thesis [32] shows the probabilistic
method works well for small problems, but takes a long time for high dimensional
data sets. Even though we optimize the implementation of the algorithm and the
new codes are a factor of 30 times faster, the running time for estimating the sizes of
views is longer than that for computing data cubes itself [32].

Todd Eavis proposed our own probabilistic approach in his thesis [32]. The ap-

proach is based on the theorem [32]:

“For an input set of size n, and a view V with a potential space of
size S,, we may estimate the number of records r in V by performing the

summation
Sy

T = -
im0 v — i

and terminating in one of two possible cases:

1. 2 >= 8, in which caser = §,,.

32
2. £ >=n, in which case r = 3.”

In this theorem, the potential space S, = [Ip,cv |Ds|, which is the product of the
cardinalities of dimensions in V. In the first terminating case, ¢ >= §,, it means
Sy has been fully saturated. Therefore, we can estimate the size of V as S,. In the
second case, £ >= n, we have used all n records without saturating S,, so we estimate
the size of V as i.

In this approach, we assume that the data distribution is approximately uniform.
Even though it is not always true, its accuracy and efficiency are suited to the costing

model in PipeSort used in our parallel algorithms [32].

Execute the Plan

In the second step, PipeSort converts the spanning tree into a set of pipelines, and
executes them. Two optimizations are implemented in this step: cache-results and
amortize-scans. The optiinization of cache-results tries to cache the views in memory,
from which some other views can be computed to reduce disk I/O. The optimization
of amortize-scans tries to compute as many as possible views from the views already
in memory to reduce disk reads.

A pipeline consists of a number of views, connected by one sort edge and several
pipeline edges. The sort edge connects the first two views, and the pipeline edges
connect the rest of the views. Except for the first view, the other views in a pipeline
share the prefix with each other. For example, in a pipeline raw = ABCD —
ABC — AB — A, the sort edge “=" connects raw and ABCD, and the pipeline
edges “—” connect the remaining views. Figure 2.17 illustrates the pipelines from
the spanning tree in Figure 2.16.

Algorithm 2 outlines steps to execute the plan in PipeSort. In Algorithm 2, the
spanning tree is converted into a set of pipelines, and then the pipelines are executed
one by one in a pipelined fashion [59]. Using a pipelined fashion, we first sort the
first view into the order of the second view. Then we scan the sorted data and
check the row for the second view. Once a row of the second view is found, we
aggregate it and check the row for the third view. This continues until the last view
in the pipeline. Table 2.8 shows how to execute a pipeline in a pipelined fashion,
raw = ABCD — ABC — AB — A. In the table, the numbers before the commas

33

CBAD CBAD CBAD CBAD
'

- - - —
—— - -

1
1
1
i
'
CBA BAD ACD DBC ACD ACD BAD

/
' t
' 1
! 1
: 1
| | Y |]
CB BA AC AD CD DB
\ |
c B A D

all

Figure 2.17: The Pipelines. [59]

are the values of dimensions and the numbers after the commas are the values of
the measure. In this example, the aggregate function is “SUM”. The blanks in the
table represents no operation, and “Check” represents checking whether a row can be
generated by aggregating.

To compute a full data cube with d dimensions, PipeSort needs (f d‘/iﬂ) sorts at
least [41]. It is exponential with d, so PipeSort does not scale well with very high
dimensional cubes. However in most OLAP applications, the number of dimensions
is below ten [50]. The advantage of PipeSort is that it can handle huge data sets up
to terabyte if external memory sorts are used. Therefore PipeSort is a suitable se-
quential data cube .generation algorithm for designing a parallel data cube generation

algorithm based on it.

2.3.3 PipeHash

PipeHash is also proposed in the paper [59] to compute a full data cube. PipeHash

is a hash based ROLAP algorithm. To compute a view, PipeHash scans one of its

34

Algorithm 2 Execute-Plan
Input: A PipeSort spanning tree.

Output: The views in the spanning tree.

1: Convert the spanning tree into a set of j pipelines.

2: fori=1to jdo
3: Sort the first view into the order of the second view in the ith pipeline.
4: Scan the sorted data to generate the rest of the views in the ith pipeline.
5

: end for

Sorted Raw | ABCD | ABC | AB A
11111 Check
1111,1 [1111,2] Check
11121 1112111113 11,3 | Check
12121 Check
12121 [12122]121,2| Check
12211 Check
1221,1 1221,2 Check
12221 [12221[1223| 125 | 1,8
2111,1 Check
2111,1 Check
21111 2111,3| Check
21121 2112112114 | 21,4 | Check
22121 Check
2212, 221221]221,2 | Check
22221 Check
22221 [22222(2222]| 224 | 28

Table 2.8: An Example of the Pipelined Fashion

parent views to build a hash table of the view in memory to order to implement
aggregates. PipeHash generates a minimum spanning tree (MST) by choosing the
parent view with the smallest estimated size for each view in the lattice, illustrated
in Figure 2.18. Since memory is not always enough to hold all the hash tables in one
MST, PipeHash partitions a big MST into small subtrees on one or more dimensions.
In each subtree, the target views can be computed by scanning the root view once
from the disk, and the hash tables of target views can fit in memory. PipeHash uses a
heuristic method to find the best partitioning so that the scanning cost of root views
is minimized. Figure 2.19 illustrates the subtrees generated from Figure 2.18, and

the first subtree is partitioned on A. To compute a subtree, PipeHash scans the root

35
view only once to generate all the hash tables in memory for its children views, and

then saves the view to disks and releases the memory. Next it computes the next

subtree until all the subtrees are finished.

Raw Data
|
ABCD
AN

C AB ACD D

/N

c
B C
all

AB

AB D BC
AC AD B BD CD
A

D
Figure 2.18: A Minimal Spanning Tree of PipeHash. [59]

2.3.4 OVERLAP

OVERLAP is proposed in the paper [17] to compute a full data cube. It is a sort based
algorithm. OVERLAP tries to minimize the number of disk accesses by overlapping
the computations of different views and reduces the number of sort steps by using
partially matching sort orders. Suppose a view, V, and its parent view, V}, share the
same prefix Dy Ds...D;. OVERLAP partitions Vpon Dy D,...D;, and computes V from
these independent partitions. Therefore, the memory required to compute V' depends
on the biggest partition of V,, instead of V,. OVERLAP begins with a sorted raw data

on the specific dimensional order, and keeps the order when it computes all the views

36

Raw Data

/ALBC wyD BCD ABC
AB\AC i BD D BC AB

A c

—————

all

Figure 2.19: Subtrees of PipeHash. [59)

in the lattice. First, it generates a spanning tree from the lattice to minimize the size
of the partitions of views. Figure 2.20 illustrates a possible spanning tree for the four
dimension lattice. In this step, OVERLAP estimate the sizes of views and partitions,
which uses the estimation technologies mentioned in the previous section. If the
partition of a view can be allocated in memory, the view is marked as Partition state,
or it is marked as SortRun state. Overlap scans the parent view once to compute
a Partition state view, and uses pipelines to compute more views if possible. For
SortRun state views, OVERLAP reads data into memory, sorts them and outputs to
disks block by block, and then merges them externally. The paper [57] points out the
I/O cost of OVERLAP is at least O(d?) for sparse data sets, where d is the number

of dimensions.

2.3.5 Partitioned-Cube and Memory-Cube

Partitioned-Cube and Memory-Cube are proposed to compute a full sparse data cube
in the paper [57). The main idea in this algorithm is divide-and-conquer. Partitioned-
Cube partitions large views into small blocks which can fit in memory. Then Memory-

Cube computes a set of views from the blocks in memory. Partitioned-Cube partitions

37
ABCD

ABC[1] ABD[1] ACD[10] BCD[50]

7 I\

AB[1] ACI[1] AD[5] BC[1] BD[1] cD[40]

=T

A1l Bf1] c[1] DI5]

~

all(1]

Figure 2.20: A OVERLAP Spanning Tree with Estimated Partition Size in Memory
Pages. [17]

views on the first dimension, and recursively partitions views on the rest of dimensions
one by one until all partitions can fit in memory. Figure 2.21 illustrates partitions
for a four dimension data cube. In this example, Partitioned-Cube partitions the
raw data on A first, and computes the views from these partitions in memory. The
dashed lines in Figure 2.21 represents in-memory sort, and the solid line represents
in-memory scan. After all the views with the prefix A are finished, Partitioned-Cube
partitions ABCD on B, while A dimensions are projected out. Then after all the
views with the B prefix are finished, Partitioned-Cube stops partitioning, because
BCD can fit in memory. It projects out B and computes the rest of views. Memory-
Cube uses a similar pipeline fashion as PipeSort to compute data cube in memory,
and needs to process Cfid/ﬂ pipelines. The paper claims this algorithm is linear on
I/O cost, while other algorithms, such as PipeSort or OVERLAP are quadratic at
least on I/O cost.

38

raw (Partitioned by A)

ABCD
(Partitioned by B,
A projected out)

»

BCD
(In memory,
B projected out)

N
IR

Figure 2.21: Partitions in Partitioned-Cube. [57)

2.3.6 Array-Based Cube

The paper [65] proposed an array-based algorithm to compute a full data cube for
MOLAP. We call it the array-based cube. Instead of using tables in ROLAP, the
array-based cube uses multidimensional arrays to store data cubes, and partitions
cubes into chunks which can fit in memory. For sparse data cubes, the array-based
cube uses “chunk-offset compression” to compress them. This method converts an
address of a cell in an uncompressed multidimensional array into an integer offset in
a one-dimensional array, where compressed data cubes are stored. And for a given
dimension order, the array-based cube indexes the chunks using a sequence integer.
Figure 2.22 illustrate a three dimension array with the order ABC. The number in
the cells indicates the indexes of chunks.

In the array-based cube, each view is computed from one of its parent views by
scanning chunks of the parent in the order of indexes. To store the aggregate results
in memory, the minimal number of memory units for each view must be allocated
for each view. The array-based cube generates a minimum memory spanning tree

(MMST) to minimize the total memory for a given dimension order. Figure 2.23

39
illustrates a three dimension MMST in dimension order of ABC. In this figure, the

size of a chunk is 4x4x4 memory units. We begin with ABC, which needs only one
chunk memory, and reads and scans ABC chunk by chunk. For AB, we need 4x4
chunks or 16x16 memory units for the aggregate buffers, because we have to scan all
the 64 chunks of ABC before we can output one chunk of AB to disks. For AC, we
need 4x1 chunks or 16x4 memory units, because we have to scan 16 chunks of ABC
before we can output one chunk of AC to disks. And for BC, we need 1x1 chunk or
4x4 memory units, because we have to scan 4 chunks of ABC before we can output
one chunk of BC to disks. For different dimension orders, the array-based cube
generates different MMSTs, which need different sizes of memory. The optimal order

is incremental in the cardinalities of dimensions, such as |D1| < |Do| £ ... < |Dyl.

After the array-based cube generates a MMST, it computes child views from the
root view first. As soon as a chunk of a child view finished, it recursively computes
child views of this child view. After that, the chunk is written to disks and reused
for further data. If the memory is insufficient for the whole MMST, some subtrees in

MMST need to generate intermediate results and swap them between memory and
disks.

The array-based cube is very efficient on low dimension dense cubes. It needs

too much memory for sparse cube, and does not scale well in the number of high

dimensions.

3/ 61/ 62 /63 / ea
oimension 8 2/ 45 /a5 /a7 /us
LS Lol 2
13 /14 15 / 18

b3
b2 9 10 11 12 :
bl 5 6 7 8 Dimension C
bo 1 2 3

a0 al a2 a3

Dimension A

Figure 2.22: A Three Dimension Array. [65]

40

ABC

4x4x4
AB AC BC
16X16 16X4 4X4
A C
16 4 4

all

1

Figure 2.23: A Three Dimension MMST in Dimension Order of “ABC”. [65]

2.3.7 PipeSort for Partial Data Cubes

A partial data cube includes a subset of 2¢ views in a full cube. Even though both
Top-down methods and Bottom-up methods can be designed for computing partial
data cubes, Bottom-up methods cannot efficiently compute an arbitrary subset of
views and they are not good for low dimensional views [38]. The popular Top-down
method, PipeSort, is a good choice to develop partial data cube algorithms.

In the PipeSort paper [59], they proposed a PipeSort algorithm for partial data
cubes. The main idea of their algorithm is to convert the lattice into an augmented
lattice first, then create a spanning tree from the augmented lattice by using a mini-
mum Steiner tree approximation algorithm. In an augmented lattice, there are some
Steiner nodes and Steiner edges, which are not in the original lattice. An augmented
lattice can be built by adding all possible permutations of each dimension’s ordering
and edges, which connect every permutation with every possible descendant. The
problem of this algorithm is that there are too many Steiner nodes and Steiner edges.
For example, for a ten dimension augmented lattice, there are almost ten million

nodes and 40 trillion edges [32]. It takes forever to generate a spanning tree.

41
In the paper [38], we proposed two methods based on PipeSort to compute partial

data cubes. They are Tree Partial Cube and Lattice Partial Cube. The difference
between them is that the tree partial cube generates a spanning tree from the spanning
tree for a full cube, and the lattice partial tree generates a spanning tree directly from
the lattice of 2¢ views. Algorithm 3 describes the main steps of the tree partial cube

algorithm. Algorithm 4 describes the main steps of the tree partial cube algorithm.

Algorithm 3 Tree Partial Cube
Input: A lattice of d dimensions with sort costs and scan costs on each edge; A set

of selected views, S.
Output: A PipeSort spanning tree with minimal global cost.

1: Compute the Pipesort spanning tree for a full data cube, L , and prune it by
deleting all nodes which have no descendent in S. Let G denote the result.

2: Call PartialCubeSchedule(S, G, T), where T is an output spanning tree for the
partial data cube.

3: Call FixPipelines(T’). |

4: Build the partial data cube PC according to the schedule tree 7.

Algorithm 4 Lattice Partial Cube
Input: A lattice of d dimensions with sort costs and scan costs on each edge, L; A

set of selected views, S.
Output: A PipeSort spanning tree with minimal global cost.

1: Prune all nodes in the lattice L, which have no descendent in S. Let G denote
the result.

2: Call PartialCubeSchedule(S, G, T), where T is an output spanning tree for the
partial data cube.

3: Call EstablishAttributeOrderings(T).

4: Build the partial data cube PC according to the schedule tree 7.

In both algorithms, the core procedure is PartialCubeSchedule, which is defined
in [38]. This procedure includes two steps [38]: first it organizes the nodes of S into a
tree with the minimum total cost, and second, it tries to add intermediate nodes from
G — T to the tree to further minimize the total cost by using the “plan” variables

for a given node v, listed in Table 2.9. In the first step, the procedure begins with

42

Name Meaning

Node The node v to be inserted into the spanning tree.
Parent The parent node of v.

Parent Mode Sort or scan between v and its parent.

Scan Child The child node of v, computed by scanning v.

Insertion Scan Child | The inserted node v, computed by scanning from a node in
the spanning tree.

Sort Children The child node of v, computed by sorting v.

Benefit The improvement in the total cost by inserting v.

Table 2.9: The “Plan” Variables

an empty T. Then from S it selects the best node and the best plan, which generate
the biggest benefit. Next it inserts the node into T based on the plan, and removes
it from S. This repeats until S is empty. In the second step, the procedure uses the
similar methods to add nodes into T from G — S, instead of S.

After the the procedure PartialCubeSchedule, Algorithm 3 executes a post-processing
procedure FizPipelines, which identifies nodes that have no scan child, creates a scan
child for such nodes, and fixes the dimension orders. Algorithm 4 executes a post-
processing procedure EstablishAttributeOrderings, which identifies pipes of possible
scan orders, and fixes the dimension orders if possible. Both algorithms then compute
the pipelines using the same methods as the full cube PipeSort algorithm.

The experiments in the paper [38] show that the tree partial cube and the lattice
partial cube have the similar shapes of curves most of the time, while the lattice
partial cube is a little faster than the tree partial cube. And the lattice partial cube
is very close to the PipeSort algorithm when we generate a full data cube, even
though they are based on fundamentally different schedule tree generation methods.
The paper [38] suggests that the lattice partial cube is a general purpose replacement
for PipeSort for full data cubes, with the ability of generating partial data cubes
efficiently.

2.3.8 Bottom-Up Cube

For an iceberg data cube, we compute all the 2¢ views, but for each view, we only
keep the rows, whose measures are above specific thresholds. In a iceberg cube query,

there is a “having” clause to indicate the thresholds. The thresholds are also called

43
minimal support in some of the literature. Bottom-Up Cube (BUC) is designed to

compute sparse iceberg cubes in the paper [20]. We have our own ice-berg cube
algorithm, which is more suitable for all kinds of iceberg cubes, where we will discuss
it in the later chapter of this thesis.

BUC is a bottom-up algorithm, which computes the small views first, and then
large views. In a lattice it processes views from lower(bottom) levels to higher(up)
levels, so it is called Bottom-Up Cube. Algorithm 5 outlines the main steps of BUC. It
combines I/O efficiency by using partitioning and pruning using the anti-monotonicity

to recursively compute views in the lattice from the bottom to the top.

Algorithm 5 BUC
Input: The input data R; the first dimension D ¢ of R.

Output: The rows in R, whose measures are greater than minsup.
1: Aggregate R along D 5, and output the tuples, whose measures are greater than
MINSUP.
2. for D =Dy to D; do
3: Partition R into |D| partitions on D.
4 fori=1to |D| do
5 if The measure of the partition R; is greater minsup then
6: Call BUC(R;, Dy +1).
7 end if
8 end for
9:

end for

Figure 2.24 illustrates a four dimension BUC processing tree. BUC begins with
the sorted raw data and computes “ALL” first, and then partitions the data on A.
For each partition of A, BUC checks if the measure is greater than minsup. If so,
BUC outputs the results and continues to partition it on B, and then calls the same
procedure on these AB partitions. If the measure is not greater than minsup, the
partition is pruned. After A dimension is processed, BUC partitions on B, C and D.
In this way, BUC walks through the processing tree in a depth-first fashion. Even
though BUC can work in a breadth-first fashion like Apriori 18], the paper [20] points
out that the breadth-first fashion needs more memory and shows poor performance on

high skewed input. In order to pruning views as early as possible, BUC arranges the

44
dimensions in the descent order on their cardinalities, such as |A] > |B| > |C| > |D|

in the above example.

Figure 2.24: A Four Dimension BUC Processing Tree. [20]

BUC takes advantage of monotonic aggregate functions to prune views. For an ag-
gregate function agg(), if agg(S) > agg(T), where S D T, then agg() is monotonically
decreasing; if agg(S) < agg(T), where S D T, then agg() is monotonically increas-
ing. COUNT, SUM , MIN and MAX are monotonic, but AVG is not monotonic. The
above BUC algorithm works for monotonically decreasing aggregate functions. If the
aggregate function is monotonically increasing, BUC will work for the queries, where
measures are smaller than thresholds, like: “SELECT A, B, C, D, SUM(measure)
FROM R GROUP BY CUBE(A, B, C, D) HAVING SUM(measure) < 10.”

The experiments in the paper [18] demonstrated that BUC was faster at computing
full sparse data cubes that other full data cube algorithms. And for iceberg cube

queries, BUC improves upon its own performance.

45
2.3.9 Generation of Data Cube with Dimensional Hierarchies

In Section 2.1.3, we described the concepts of levels and hierarchies in dimensional
tables. Levels in a dimensional table can determine the granularity of facts and a hier-
archy is a set of levels whose granularity becomes finer each step down the hierarchy.
For example, in Figure 2.2, the hierarchy in the “date” dimension is “Year-Month-
Day”, the hierarchy in the “store” dimension is “Store-City-Province-Country” and
the hierarchy in the “product” dimension is “Product-Department-Category”.

In data cube generation, if we consider dimensional hierarchies, the total number
of views to be generated will be much greater than the number of views without hier-
archies considered. For examples, if we do not consider hierarchies for the dimensions
of “date”, “store” and “product”, the total number of view in a full data cube is
2% = 8. If we consider hierarchies and the number of levels are three, four and three
for “date”, “store” and “product” respectively, then the total number of views in a
full data cube is (3+1)(4+1)(3+ 1) = 80. These are ten times more views than we
would have if we did not consider hierarchies.

Suppose the total number of dimensions is d and the number of levels in each

dimensions are Ly, Ly, ..., Ls—1. Then the total number of views for a full cube is

ﬁ(Li + 1),

=0

where we consider “all” is a special level for every dimension, so that the total number

of level for each dimension is (L; +1). If L = Ly = L, = ... = Ly4_;, then the total
number of views is o
[T(Z+1),
i=0
or
(L+1)%

If we do not consider hierarchies, then L = 1 and the number of views is 2¢.

Most of the previous sequential data cube generation algorithms [59, 17, 57, 65, 38,
20, 64] do not consider the hierarchies on each dimension, so that they generate only
2% views. However, these algorithms can be extended to compute all possible views
with hierarchies defined on dimensions. For example, in the PipeSort algorithm, we

may extend the lattice to include all possible views with different levels. Figure 2.25

46
shows a lattice of two dimensions with hierarchy, where A has three levels Al, A2

and A3 and B has two levels Bl and B2. In the lattice, we connect any two views
where only one dimension has the next higher level in the hierarchy.

AlBl

N\

AlB2 A2B1

NN

Al A2B2 A3B1

all

Figure 2.25: A Lattice with Hierarchy. [59)

In the PipeSort paper [59], they points out that we may apply the PipeSort
algorithm on the extended lattice with only one modification, which is that when we
sort data on Az, we sort for all higher levels of the hierarchy, i.e., Ai, A(i+1), ..., all.
In this case the complexity of PipeSort with dimensional hierarchies is O((rd%])Ld),
where L is the number of levels in every dimension.

Since the total number of views with hierarchies is often too large to handle in
practice, we may choose not store all the possible views in a data warehouse. For
example, for a data warehouse with ten dimensions and three levels on each dimension,
the total number of views is (3 + 1) = 1048576 or 1 million roughly. In practice, we
may choose to only generate the data cubes on the base levels of each dimension, and
then use roll-up operators to transform base level views to high level views at query
time. This is the case that most of data cube generation algorithms are designed for
generating base level data cubes. In this thesis, our parallel data cube algorithms
are also designed for base level data cubes, however they can be easily extended to
handle the data cubes with hierarchies by using simple parallel sorting to implement

the required roll-up operators.

47
2.4 Shared-Nothing Clusters

Parallel Computing is using multiple computer resources to solve a computational
problem simultaneously. The computer resources can be processors in a computer or
computers in a network or networks connected with each other. A cluster [21] is a
type of parallel or distributed processing system. In this system there is a collection
of interconnected nodes working as an integrated computing resource. The nodes in a
cluster can be PCs, workstations or Symmetric Multiprocessors (SMPs). An SMP is
one computer with multiple processors which share memory, disks and one operating
system.

In recent years, there has been a trend in parallel computing to move away from
specialized super computing platforms to cheaper general purpose clusters made from

single or multiple processor PCs or workstations. The advantages of clusters are: [21]

o Workstations are becoming increasingly powerful and the performance doubles

every 18 to 24 months.

e The bandwidth of networks for clusters is increasing while the latency is de-

creasing.

o Workstation clusters are easier to integrate into existing networks than special

parallel computers.
e Typical low user utilization of personal workstations.

® The development tools for workstations are more mature than special tools for

parallel computers.
o Workstations are much cheaper than parallel computers.
e Clusters can be easily grown. The processors and memory can be easily doubled.

Figure 2.26 shows a cluster computer architecture. In this architecture, high
speed networks can be Gigabit Ethernet. Nodes can be PCs, workstations or SMPs.
Operation systems can be Linux, Solaris, Windows NT, AIX or HP-UNIX based on
different hardware. However, high speed networks are expensive, so the commonly

used networks for clusters are those networks with small bandwidth and high latency,

48

| Parallel Application I

Sequential Application I I Parallel programming Application |

Cluster Middleware

Single System Image and Availability Intrastructure

Share Disk Arrays PC/workstations PC/workstations
{Option)
Communacation Communacation
software | fp Ut software
Network Interface Network Interface Network Interface
I High Speed Network/Switch

Figure 2.26: Cluster Computer Architecture. [21]

such 10M or 100M LANSs. Clusters of workstations with slow networks are suitable for
only those applications which need only light communications. To deal with huge data
movement among nodes, we have to design specific parallel algorithms for clusters to

decrease communications across the network.

The cluster middleware in Figure 2.26 are the tools or interfaces to hide the vari-
ous hardware and networks from the applications and to provide a standard way to
share data among nodes or processors. One popular piece of middleware is the Mes-
sage Passing Interface (MPI) [15], which is a standard interface for message passing
implementations among processors in a cluster. MPI supports both shared memory
systems and distributed memory systems. In shared memory systems, MPI sends
messages by using shared memory. In distributed memory systems, MPI sends mes-
sages by using standard network protocols, such as TCP/IP. MPI is the most widely

used message passing model on various operation system platforms in industry.

The nodes in a cluster may share memory or disk arrays. If there is neither
memory nor disks shared among nodes in clusters, they are called shared-nothing
clusters, such as the popular, low cost, Beowulf style clusters (1], which consist of
standard PCs connected via a data switch without any expensive shared disk array;

see Figure 2.27.

In this thesis, we implement and test our algorithms on a Beowulf cluster (1], which
consists of 16 nodes, with 1.8 GHz Intel Xeon processor, 512 MB RAM and two 40
GB 7200 RPM IDE disk drives on each node. Every node is running Linux Redhat

49

R.
B neworkor swith =
kor S|

Figure 2.27: A Shared-Nothing Cluster.

7.3 with gee 2.96 and MPI/LAM 6.5.6 as part of a ROCKS cluster distribution. All

nodes were interconnected via an Intel 100 Megabyte Ethernet switch.

2.5 Summary

Data Warehousing provides a collection of decision support technologies to analyze
data and make better and faster decisions. In data warehousing, data warehouses
are used as data sources for analysis. OLAP is one of the essential decision sup-
port tools in data warehousing as it can analyze data in a multidimensional way.
Data cubes are the core of OLAP systems. A lot of sequential algorithms have been
proposed to compute the three types of data cubes: full cubes, partial cubes and
iceberg cubes. However, new challenges are constantly arising in the OLAP area.
One of these challenges is how to meet the scalability needs in large scale data ware-
houses. Parallel Computing can provide two key ingredients for dealing with the large
data size: increased computational power through multiple processors and increased
I/O bandwidth through multiple parallel disks. In recent years, it has been a trend
in parallel computing to move away from specialized super computing platforms to
cheaper general purpose shared-nothing clusters. In the following chapters, we will
present our novel parallel algorithms for computing all the three types of data cubes

for shares-nothing clusters.

Chapter 3

In-Memory Parallel Generation of Full and Partial ROLAP
Data Cubes

In this chapter, we present parallel algorithms for generating both full and partial
ROLAP data cubes. First we present algorithms and design issues, and then we

describe a systematic evaluation of these algorithms.

3.1 Introduction

In recent years, the size of data warehouses has been increasing constantly. Many
commercial data warehouses contain terabytes of data. This makes the size of the
associated data cubes potentially very large. In order to meet the scalability needs on
large data sets, parallel solutions for generating data cubes have become increasingly
important. The current parallel approaches can be grouped into two broad categories:
1) work partitioning [28, 33, 52, 55, 56] and 2) data partitioning [39, 40].

Work partitioning methods assign different view computations to different proces-
sors. Consider, for example, the lattice for a four dimensional data cube as shown in
Figure 2.13. From the raw data set ABCD, 15 views need to be computed. Given
a parallel computer with p processors, work partitioning schemes partition the set
of views into p groups and assign the computation of the views in each group to a
different processor. The main challenges for these methods are load balancing and
scalability, which are addressed in different ways by the different techniques studied
in [28, 33, 52, 55, 56]. One distinguishing feature of work partitioning methods is
that all processors need simultaneous access to the entire raw data set. This access is
usually provided through the use of a shared disk system (available e.g. for SunFire
6300 and IBM SP systems). Todd Eavis presented extensive parallel algorithms based
on work partitioning methods in his thesis [32]. Since in this thesis, we are interested
in algorithms for shared-nothing parallel systems, we are forced to pursue the more

challenging data partitioning approach.

a0

51
Data partitioning methods divide the raw data set into p partitions and store each

partition locally on one processor. All views are computed on every processor but
only with respect to the partition of data available at each processor. A subsequent
“merge” procedure is required to aggregate data across processors. The advantage of
data partitioning methods is that they do not require all processors to have access to
the entire raw data set. Each processor only requires a local copy of a portion of the
raw data which can be stored on its local disk. Therefore, data partitioning method is
very suitable for a shared-nothing cluster. The main problem with data partitioning
methods is that the “merge”, which has to be performed for every view of the data
cube, has the potential to create massive data movements between processors with
serious consequences for performance and scalability of the entire system. A data
partitioning method for MOLAP representations has been presented in [39, 40]. This
method is based on a space partitioning of the multidimensional array and a spatial
“merge” between different sub-cubes of the MOLAP cube. The spatial “merge”
operation can be reduced to g parallel prefix which is a well studied operation for
parallel computers.

In this chapter, we present our data partitioning method for computing ROLAP
data cubes. The principal advantage of ROLAP is that it allows for tight integration
with current relational database technologies. Another advantage of ROLAP is that
it requires only linear space and is therefore particularly suitable for the construction
of very large data cubes. Our algorithm is, to our knowledge, the first parallel RO-
LAP data cube generation method for shared-nothing clusters. Our method has the
additional advantage that it can be extended to the partial cube case where not all
views, but only a subset of views, selected by the user, are to be created. This case
occurs frequently in practice because the user often knows that some views will not

be required for OLAP queries on a given data set.

3.2 Full Data Cube Generation on Shared-Nothing Clusters

We consider a shared-nothing cluster consisting of p processors Fy, P, ... P,_;, each
with its own local memory and local disk, connected via a network or switch; see
Figure 2.27. There is no shared memory or shared disk available. As input, we

assume a raw data set, R, with n rows and d dimensions Dy, Dy ... Dy distributed

52
evenly over the p disks; see Figure 3.1.

Disk for Disk for Disk for

PO Py Pp_1
(OO 3
INPUT [[esiy L. [izssi) ABCD (raw data set, R)

OUTPUT [[EZE] [FE]ABC
| [EElaBD
2%} ACD

Figure 3.1: Distributed Data Sets.

Without loss of generality, let |Do| > |Dy| > ... > |Dy_;|, where |Dj| is the
cardinality for dimension D;, 0 < i < d—1 (i.e. the nufnber of distinct values for
dimension D;). Let S be the set of all 2¢ view identifiers. Each view identifier consists
of a subset of {Dy, D; ... Dy_;}, ordered by the cardinalities of the selected dimensions
(in decreasing order). The goal is to create a data cube DC containing the views in
S. We ensure that, when our algorithm terminates, every view is distributed evenly
across the p disks; see Figure 3.1. It is important to note that, for the subsequent use
of the views by OLAP queries, each view needs to be evenly distributed in order to
achieve maximum I/O bandwidth for subsequent parallel disk accesses.

The basic communication operation used by our data cube algorithm is the A-
relation (method MPI_ALL_TO_ALL_v in MPI). The basic computation operations used
in this chapter is in-memory scan, in-memory sort and in-memory PipeSort. In the
next chapter, we will present an extension to the in-memory algorithm for the external

memory case.

3.2.1 Algorithm Outline

Let S; C S be the subset of view identifiers in S that start with D;, and let DC; be the
data cube for S;. We call DC; the D;-partition of the data cube DC. Furthermore, we
refer to the view consisting of all dimensions contained in views of S; as the D;-root;
see Figure 3.2.

Algorithm 6 describes the global structure of our parallel data cube algorithm for

53

A-Partition

~ . N .
R A-root ‘\ B-Partition
Pab D
R ~=.ABCD . S RN
. Sea . . ~
’ .o e N ’ N
P /; Seal TSl 4" B-xoot C-Partition
' T =~ N _—
;] ABC ABD ACD | T~ ~a.BCD, Y R .
' [} S ’ A
' ‘ ‘/; v /\ <, "4-.) C-xoot ', D-Partition
H [Ny Tl [}
., AB AC AD t : BC BD ' t “aCD . AN
‘ ! ' .1 .
' * ! ‘ . ‘ ~. / D-root
\ ’ \) “ 1 s'l Yy
! ~
YA Y -} ' - N !
N . \ ’ [y A s]
N ’ \ ’ . . ' ‘ '
N , Ny ’ Sae’ \ ’
. . . ’/ \ K
S .’ A . ‘. all s

Figure 3.2: Partitions of a Four Dimension Data Cube.

shared-nothing clusters. The algorithm consists of three main phases: data partition-
ing, computation of local D;-partitions, and merge of local D;-partitions. Subsequent

sections will discuss each phase in more detail.

3.2.2 Data Partitioning

Good data partitioning is a key factor in obtaining a good load balance and, conse-
quently, good performance. Some researchers partition data on one or several dimen-
sions [55, 58]. In order to achieve sufficient parallelism, they assume that the product
of the cardinalities of these dimensions is much larger than the number of processors
[58]. The advantage of their method is that they do not need to merge data of views
among processors. For example, if we partition on A, then ABC and AC do not need
to be merged, or if we partition on A and B, then ABC and ABD do not need to be
merged. However, in practice, this assumption is often not true. The cardinality of
some dimensions may be small, such as gender, months and intervals for a numeric
attribute. The number of processors in a cluster may be large, especially for low-
cost clusters of PCs. Therefore, those methods are often not scalable. Our method
avoids these problems by partitioning on all dimensions and then applying a merge
procedure. As our experiments show, the cost for the additional merge is more than
compensated for by better overall performance and scalability.

To partition data, we use parallel sample sort [51]. As discussed in [51], one

global data movement via one single h-relation is often sufficient to obtain sorted and

54

Algorithm 6 ParallelSharedNothingDataCube

Input: Raw data set R with n rows and d dimensions, distributed arbitrarily over

the p processors, n/p records per processor.

Output: Data cube, DC, distributed over the p processors. Each views is evenly

distributed over the p processors’ disks.
I: for i=0 TO d-1 do
2: (1) Data Partitioning:

(a) Each processor P; (j =0...p— 1) computes locally the D;-root for
its subset of data. (Essentially a sequential sort followed by a sequential
scan.) Let Dj;-root|; denote the D;-root created by processor P;.

(b) Call AdaptiveSampleSort(D;-root]y, . .oy Diroot|p—q; D, ..., Dy_q;
v = 1%), to sort Uj=0,..p—1Ds-T00t|; by D;;y... Dyy.

(c) Each processor P; (j =0,...p—1) computes locally the D;-root for
its subset of data received in the previous step. Let D;-root||; denote

the D;-root created by processor P;.

6: (2) Computation Of Local D;-Partitions:

(a) Processor By locally computes, by applying the first phase of a
sequential top-down data cube method, the schedule tree 7, for building
the D;-partition with respect to D;-root||o.

(b) Processor P, broadcasts T} to P; ... Py

(c) Each processor P; (j = 0,...p—1) computes locally the D;-partition
with respect to D;-root|{; by applying the second phase of a sequential
top-down data cube method to the schedule tree T} received in the

previous step.

10: (3) Merge Of Local D;-Partitions:

11:
12: end for

(a) Call MergePartitions(D;).

55
well balanced data. The subsequent “global shift” operation, which needs another

h-relation, is not always necessary. In our implementation of parallel sample sort we
measure the imbalance of the sizes of the local data sets after the first h-relation and
perform a second “global shift” h-relation only if necessary. Let Yo, - -+ Yp—1 be the
sizes of the sets Yy, ..., Y,_; created on processors P, ..., P,_,, respectively, after the
first A-relation. We calculate the relative imbalance Z(yy, . .. ' Yp—1) = MaZ{(Ymaz —
Yavg)/Yavg: (Yaug = Ymin) /Yavg }> WHEre Ymaz, Ymin, aNd Yy, are the maximum, minimum
and average of y,...,yp—1, respectively. If Z(yo,.. .y Yp—1) > 7 for some threshold
value 7, we apply a subsequent “global shift” operation. In our implementation we
use a threshold value of v = 1%. As discussed in [51], the imbalance after the first
h-relation is less if there are no duplicate keys. However, in most data, there are many
duplicate values. Therefore, in Step la of Algorithm 6, we first compute locally on
each processor P; (j =0,...p— 1) the D;-root for its subset of data. This eliminates
all duplicate keys D;...Dy_; for the sort in the subsequent Step 1b.

We refer to our sample sort implementation as AdaptiveSampleSort. Since there
are so many “folk” versions of parallel sample sort in the literature, we briefly review
in Algorithm 7 the exact sequence of steps implemented in our system.

Following the above global sort, each processor P; (=0,...p— 1) applies in
Step lc of Algorithm 6 a sequential scan to its data set in order to compute the
D;-root (Dj-root||;) for its local data.

3.2.3 Computation Of Local D;-Partitions

In this section, we discuss Step 2 of Algorithm 6. The goal of this step is to compute
on each processor P; the D;-partition with respect to D;-root||;. For this, we apply on
each processor the sequential partial data cube construction method [38], introduced
in Section 2.3.7. In the paper [38], two algorithms are proposed: Tree Partial Cube
and Lattice Partial Cube. Since the lattice partial cube is a little faster than the
tree partial cube and it is very close to PipeSort in the full cube running time [38],
we choose the lattice partial cube algorithm, described in Algorithm 4 to compute
D;-partition from D;-root||;.

For shared-nothing parallel data cube construction, a problem that arises is that

each processor F; has a different data set, namely D;-root||;, and that the schedule

56

Algorithm 7 AdaptiveSampleSort(Xy, ..., Xp—1; Dy, ..., Di;)

Input: Sets Xo, ..., X,—1 stored on processors P, ... y Pp_1, respectively;

Output: Sets Xy, ..., Xp—1 globally sorted by dimensions D;,,..., D
1:

Tt
Each processor P; (j =0,...p — 1) locally sorts X; by D;,,...,D;, and selects a
set of p local pivots consisting of the elements with rank 0, (n/p?), ... ((p—1)n/p?).

Each processor P; then sends its local pivots to processor F.

: Processor Py sorts the p? local pivots received in the previous step. Processor

Py then selects a set of p — 1 global pivots consisting of the elements with rank

(p+1p/2]), 20+ [p/2]) ... ((p—1)p+ |p/2]) and broadcasts the p global pivots
to all other processors.

: Using the p — 1 global pivots received in the previous step, each processor P;

(=0,...p— 1) locally partitions X; (sorted by Dy, ..., D;, from Step 1) into

p — 1 subsequences X7 ... XJT-’_I.

: Using one global hA-relation, every processor Pj, § = 0...p — 1, sends each XJ’?,

k=0...p—1, to processor FP.

: Bach processor P;, j =0,...p—1, receiving p sorted sequences X,Z, k=0...p~1,

in the previous step, locally merges those sequences into a single sorted sequence

Y; and sends the size y; of Y; to processor Pp.

. if Z(yo, ..., Yp-1) > 7, as determined by processor Py then

all processors Fy, ..., Pp,—1 balance the sizes of Yp, . .., Yp~1 via a “global shift”,

implemented by one A-relation operation.

. end if

57
trees can be different for these different sets. Indeed, the computation of the sched-

ule tree is usually very much data driven. PipeSort and most other methods make
statistical estimates of the view sizes, based on the data available, and schedule tree
construction is based on those view sizes. In our case, we could allow each processor
P; to build its own local schedule tree for its local data set D;-root|; and build its
D;-partition accordingly. However, different local schedule trees for different proces-
sors imply that views of the D;-partition created on different processors may be in
different sort orders. This creates a problem during the subsequent merge phase in
Step 3 of Algorithm 6. When views of the same partition but for different subsets of
data (i.e. on different processors) need to be merged, they need to have the same sort
order or some of them have to be re-sorted. That re-sort creates a large amount of
additional computation. Another possibility is to let one processor, say Fy, build the
schedule tree for its data set D;-root||o, broadcast that schedule tree, referred to as
the global schedule tree, and then let all processors use the same global schedule tree
for their local cube construction. The advantage of this method is that we do not
need to change the sort order of views during the merge. A potential disadvantage is
that the sequential, local, top-down data cube methods (e.g. PipeSort) may not be
using the “optimal” schedule tree for their data set. Recall that, the schedule trees
generated by PipeSort and other top-down sequential methods are based on size es-
trmates. As discussed in Section 3.4, the experiments indicate that, among the above
two approaches, the latter method is far superior. For the data sets that we tested,
the additional work on some processors because of non-optimal global schedule trees
was much less than the overhead created through the need to re-sort views during the
merge in Step 3. Therefore, Steps 2a, 2b and 2c of Algorithm 6 implement the latter
global schedule tree method. And in the next chapter, where we present our external
memory parallel data cube generation algorithm, the global schedule tree method is

also used instead of the local schedule tree method.

3.2.4 Merge Of Local D;-Partitions

At the end of Step 2 of Algorithm 6, each processor P; has computed the D;-partition
for its local data set. For a view v of the D;-partition, let v; be the view created by

processor P;. In Step 3 of Algorithm 6 we need to merge, for each view v in the

58
D;-partition, the p different views v; created on the p different processors P;. This

merge is performed in Algorithm MergePartitions(D;) which will be discussed in the
remainder of this section.

Consider Algorithm 6 for i = 0 and the A-partition shown in Figure 3.2. In Step
1 of Algorithm 6, the A-roots are globally sorted by ABCD. Then, in Step 2, each
processor P; computes locally the A-partition for its data set. Consider the views
ABCDj;, ABCj, AB;, and A; computed in Step 2. All these views are in the same
sort order as the global sort order created in Step 1 because they are a prefix of
ABCD. We shall refer to these views as the prefiz views. The other views, ABD;,
ACj, ACD; and AD;, are not a prefix of ABCD and are therefore in a sort order

that is different from the global sort order. We shall refer to them as the non-prefix
views.

Consider a prefix view v and the problem of merging vy, ..., Up—1 stored on
processors Fy, ..., Pp_1. For example, consider the view v = AB in Figure 3.2 and
the problem of merging AB,, ..., AB,_,. The goal is to obtain a global AB order for
AByUAB, ... UAB,_; and then agglomerate those items that have the same values
for dimensions A and B. Since AB is a prefix of the global sort order, ABCD, the
first part is already done and the only items that, potentially, need to be agglomerated
are the last item of v; and the first item if vj+1 for each 0 < j < p— 1. Therefore, in
Algorithm MergePartitions(D;), for each prefix view v every processor P, simply
sends the first item of v;4; to processor P; which compares it with the last item of
v;. Nothing else needs to be done in order to merge all v;. Figure 3.3 illustrates the

case of a prefix view v as “Case 1”.

We now study the case of merging the views vy, ..., Up-1 stored on processors
Py, ..., P, for a non-prefix view v. For example, consider the view v = AC in
Figure 3.2 and the problem of merging ACy, ..., AC,_y. Again, the goal is to obtain
a global AC sort order for ACyU AC; ... UAC,-1 and then agglomerate those items
that have the same values for dimensions A and C. However, AC is not a prefix
of ABCD and, therefore, the different v; can have considerable overlap with respect
to AC order. Figure 3.3 illustrates the case of a non-prefix view v as “Case 2” and
“Case 3”. The rectangles represent the v; with respect to AC order. The shaded

areas represent the overlap which, in contrast to Case 1 (prefix view), can now be

59

P
|
Yi N/
P
j+1 e
"in\
p
j+2 L_'
2]
Case 1 Case 2 Case 3

Figure 3.3: Illustration of Cases in Algorithm. MergePartitions

considerably more than just one element. In Algorithm MergePartitions(D;), for
each non-prefix view v every processor P; sends its last element to every other other
processor. Each processor P, then determines its overlap with each P; and sends that
overlap to P;. For each processor P; let v} be the view v; plus all the overlap received
by processor P;. We distinguish two cases which are both illustrated in Figure 3.3.
“Case 2": IF Z(|vg), [v}], .. vi_;]) <7 for a non-prefix view v THEN each P; locally
sorts v; and agglomerates the items with same values for dimensions in v. “Case 3"
IF Z(Jvgl, [val, - - - [ugl) > for a non-prefix view v THEN the v, are merged by a global
sort. The distinguishing criterion between Cases 2 and 3 is the balance between the
v;. If the imbalance is smaller than v (Case 2) then we proceed similar to Case 1.
If the imbalance is larger than y (Case 3) then we need to completely re-balance via
a global sort. In fact, for Case 3 we do not wish to even route the overlap between
processors. We rather re-sort immediately. Hence, in order to determine whether
Case 2 or Case 3 applies, each processor P first determines the size of its overlap
with each P; and sends only the information about the size of that overlap to P;.

Algorithm 8 is an outline of Algorithm MergePartitions(D;).

3.3 Partial Data Cube Construction On Shared-Nothing Clusters

Algorithm 6 has the advantage that it is easily extended to the case where not the
entire data cube but only a subset of selected views are to be computed. This case

occurs frequently in practice because the user often knows that some views will not

60

Algorithm 8 MergePartitions(D;)
1: For each view v € DC;, each processor P; broadcasts the last item of v; to every

other processor P and receives back the seizes of all overlaps.

2: For each view v € DC;, every processor P; determines |v}| and sends all of its |vj]
values to processor Fy.

3: Processor Py determines for each view v € DC; whether it is a “Case 17, “Case
2", or “Case 3.

4: Every processor Pj1; sends for each “Case 1” view v € DC; the first item of Vjt1
to processor P;, and P; compares/agglomerates that item with the last item of
v;.

5: Every processor Py sends for each “Case 2” view v € DC; its overlap with every
v; to the respective processor P;. Every processor P; merges/agglomerates all
received overlaps with v;.

6: All remaining “Case 3" views v € DC; are merged via global sort, using Algo-
rithm 7 with v = 3%.

be required for the subsequent OLAP queries that are executed on the data cube.

For the purpose of computing a partial data cube, we redefine S. Instead of
being the set of all 2¢ view identifiers, we define S to be the view identifiers of the
subset of selected views. The definitions of S;, DC;, etc. are then all with respect
to the new set S of selected views. For each S, if it is empty, we skip the ith loop
in Algorithm 6. If it is not empty, we generate D;-root from the last available D;-
root, where 0 < j < i. Note that, for optimal performance, some “intermediate”
views need to be constructed in addition to the selected views. These intermediate
views are determined by a greedy view selection method [38], which was introduced

in Section 2.3.7. The other steps in Algorithm 6 remain completely unchanged.

Figure 3.4 illustrates an example of partitioning a partial data cube. In this ex-
ample, the selected views, S, are ABCD, AB, A, AC, AD and C. In A-partition,
two intermediate views, ABC and ACD are added into the partition in order to min-
imize the total cost. In C-partition, the intermediate view, CD, is added arbitrarily,
because CD is the C-root. There is no selected view for B-partition or D-partition,

so they are skipped.

61

A-Partition

Figure 3.4: Partitions of a Four Dimension Partial Data Cube.

3.4 Performance Evaluation

We have implemented our parallel shared-nothing data cube generation method using
C++ and the MPI communication library. This implementation evolved from the
code base for a fast sequential Pipesort [28] and the sequential partial cube method
described in [38]. Most of the required sequential graph algorithms, as well as data
structures like hash tables and graph representations, were drawn from the LEDA
library [47]. Our experimental platform is a Linux cluster, described in Section 2.4.

In the following experiments all sequential times were measured as wall clock times
in seconds. All parallel times were measured as the wall clock time between the start
of the first process and the termination of the last process. We will refer to the latter
as parallel wall clock time. All times include the time taken to read the input from
files and write the output into files. Furthermore, all wall clock times were measured
with no other user except us on the Linux cluster.

In our experimentation we generated a large number of synthetic data sets which
varied in terms of the following parameters: n - number of records, d - number of
dimensions, |Dy|,|D1|...|Dg-1| - cardinality in each dimension, and o - skew in the
data. Experiments using “real” (non-synthetic) data are described in Section 6.4.

Our experiments explored the following five performance issues:

1. Relative Speedup: We investigated the effect of increasing the number of proces-

sors on the time required to solve data cube generation problems and measured

62
the relative speedup, i.e. the ratio between observed sequential time and ob-

served parallel time. Sequential times for computing full cubes and partial cubes
were measured on a single processor of our parallel machine using our sequential

implementations of PipeSort [28] and partial cube [38], respectively.

2. Local vs. global schedule trees: We compared the effect on parallel wall clock

time of using local vs. global schedule trees.

3. Data skew: We investigated the effect on parallel wall clock time of data sets
with varying skew distributions. We used the standard ZIPF [66] distribution
with ¢ = 0 (no skew) to @ = 3 (high skew) and explored the relationship

between data skew and the amount of data that must be communicated.

4. Cardinality of dimensions: We investigated the effect of varying dimension
cardinalities on parallel wall clock time for both skewed and non-skewed data

sets.

5. Data dimensionality: We investigated the effect of varying dimensionality, and

therefore the effects of relative density or sparsity, on parallel wall clock time.

6. Balance Tradeoffs: Lastly, we investigated the effect of varying the balance
threshold parameter . As 7 is decreased we improve the balance in the distri-

bution of views across processors, but at the cost of more data movement.

3.4.1 Relative Speedup

Speedup experiments are at the heart of the experimental evaluation of our parallel
shared-nothing data cube generation method. It is one of the key metrics for the
evaluation of parallel database systems [30] as it indicates the degree to which adding
processors decreases the running time. The relative speedup for p processors is defined
as Sp = %:;, where ¢; is the running time of the parallel program using one processor,
all communication overhead having been removed from the program, and t, is the
running time using p processors. An ideal S, is equal to p, which implies that p
processors are p times faster than one processor. That is, the curve of an ideal Sy is

a linear diagonal line.

63

2500 : i] ' .
n=2M wedonne R=2M oo e
g o 16} =M X P
2000 + n=8M —— n=8M -- G- o
\ 12+ Linear ---@-- P

1500 \

1000 -

Seconds
Relative Speedup
@

500

0 2 4 6 8 10 12 14 16
Processors Processors

(2) (b)

Figure 3.5: (a) Parallel wall clock time in seconds as a function of the number of
processors for the data size n = from 1 million to 8 million rows and (b) corresponding
speedup. (Fixed parameters: Dimensions d = 8. Cardinalities |D;| = 256, 128, 64,
32, 16, 8, 4, 2. Skew a = 0. Percentage of views selected k = 100%. The balance
threshold parameter v = 5%)

Figure 3.5 shows for full cube construction the parallel wall clock time observed
for data sets of varying sizes as a function of the number of processors used, and the
corresponding relative speedup. We observe that the speedup is in general better
when the input data is larger for the same number of processors, or when we use less
processors for the same size of input data. This is not surprising because sequential
computing time will increase when each processor gets more data. For example, we
observe that the speedup is close to the linear line for 8M rows of data. In general, we
observe reasonable speedup when we have at least 0.5M rows of data per processor.
The speedup for smaller problems is lower as there is insufficient local computation
over which to amortize the cost of communications. On the other hand, our method

works well on very large data sets.

Figure 3.6 shows for partial cube construction the parallel wall clock time observed
for a range of different percentages of selected views as a function of the number of
processors, and the corresponding relative speedup. We observe that for up to 8
processors, the speedup of 75% and 50% selected views is better than the full cube.
This is because the running time is not proportionally increased with the number of
selected views, but at a faster rate. See Figure 3.6a. We also observe that when we

use 16 processors, the speedup for 50% selected views drops below the speedup of full

64

2500 e 18 % —+
k=25% —— K=25% —F— =
K=50% +mveIorem 14t K=50% "
o K=75% - K=75% - %

2000 F K=100% —{3— 1 12 K=L1'00% —G—
N [Linear ---B--

1500 F

Seconds

1000

Relative Speedup
o«

500

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors

(a) (b)

Figure 3.6: (a) Parallel wall clock time in seconds as a function of the processors
for a range of different percentages of selected views and (b) corresponding speedup.
(Fixed parameters: The data size n = 8 millions. Dimensions d = 8. Cardinalities
|D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew o = 0. The balance threshold parameter -y
= 5%)

cube. This is because the computation for each processor is decreased faster for 50%
selected views. However, for 50%, 75% selected views and full cubes, the speedup
obtained is still close to the linear line. The reason for that is when the number of
views selected gets very small, speedup falls off, as the local work within partitions
is too small relative to the parallel overhead. In such cases, when there are only a
handful of selected views, creating each view from an independent sort of the original

data set may be preferable.

3.4.2 Local vs. global schedule trees

As described in Section 3.2.3, for shared-nothing parallel data cube construction it
is possible for each processor to use either a local or a global schedule tree. Local
schedule trees are built by each processor P; relative to their own data set Dj-root|;,
whereas a global schedule tree is built by a single processor, say P, relative to its
data set D;-root||y, and then broadcast to all other processors.

The use of local schedule trees might appear at first preferable, since they are
optimized relative to a processor’s own data set. However, they have one serious
drawback. When views of the same partition but for different subsets of data (i-e.

on different processors) need to be merged, they need to have the same sort order or

65

2500 T T v r T 16 ~ v T - —
Global Schedule Tree ~—+— Global Schedule Tree ~——
Local Schedule Tree --)--- 14 | Local Schedule Tree ----X----
Linear Speedup -
2000
12+ »
Q
3 10 b
o 1500 g
2 o
<1 w8
@ 2
® 1000 | K 6t
2
4 ¢+
500
2t
0 N) . PR N " 0 \ . N N L A A
0 2 4 6 8 10 12 14 16 (4] 2 4 6 8 10 12 14 16
Processors Processors
(a) (b)

Figure 3.7: (a) Parallel wall clock time in seconds as a function of the number of
processors for local schedule trees and global schedule trees and (b) corresponding
speedup. (Fixed parameters: The data size n = 8 millions. Dimensions d = 8.
Cardinalities |D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew « = 0. The balance threshold
parameter y = 5%)

one of them has to be re-sorted. That re-sort creates a large amount of additional
computation. As can be seen in Figure 3.7, our experiments indicate that global
schedule trees offer better performance in practice. For the data sets that we tested,
the additional work on some processors because of non-optimal schedule trees was
significantly less than the overhead created through the need to re-sort views during
Algorithm MergePartitions(D;).

3.4.3 Data Skew

Data sets with skewed distributions can pose an interesting challenge to parallel data
cube generation methods. As skew increases, data reduction tends also to increase,
particularly in top-down generation methods [59, 17]. Data reduction is typically
positive, as it reduces the total amount of work to be performed. However, if data
reduction is not large and unevenly spread across the processors, it may unbalance
the computation and cause the amount of data that has to be communicated to rise.
To explore this issue we generated data sets using the standard ZIPF [66] distribution
in each dimension with o = 0 (no skew) to a = 3 (high skew).

Figure 3.8a shows the impact of skew on parallel wall clock time and Figure 3.8(b)

shows, for the same data sets, the rows of the base view, which indicates the data

66

160— Running Time ~—f— 9
140 | Communication Time - | 8
7 -
120 + é
6 -
o 100 o
g & 5}
g 80} 2
@ E 4t
. 6o £
............. . g 3¢
40 e x a2t
20 ¢ 0
0 s N 0 . L
0 1 2 3 0 1 2 3
Skew (Zipf) Skew (Zipf)
©)

Figure 3.8: (a) Parallel wall clock time in seconds as a function of the skew of o=
0,1,2,3 for the running time and the communication time and (b) the corresponding
size of the aggregated raw data. (Fixed parameters: The data size n = 8 millions.
Dimensions d = 8. Cardinalities |D;| = 256, 128, 64, 32, 16, 8, 4, 2. The number of
processors p = 16. The balance threshold parameter y = 5%)

reduction due to the skew data. We observe that, from @ = 0 to & = 1 there is a rise
in the communication time, which offsets gains from the reduced local computation
time, so that the total running time of o = 1 is almost equal to the time of o = 0.
For @ > 1 the data reduction is so significant that only very little data needs to be
computed and communicated, so that the running time and the communication time
drop significantly.

Figure 3.9 shows the running time of full cube generation with the skew for o =
0,1,2,3, and the corresponding relative speedup. We observe that the speedup for
skewed data sets is close to linear on small numbers of processors, such as two or four
and it drops sharply on 8 and 16 processors. The reason for this is both the data

reduction for high skewed data sets and the insufficient local computation on each

Processor.

3.4.4 Cardinality of Dimensions

The cardinality of the dimensions in a data set can affect the performance of our
method. As cardinalities increase so does the sparsity of the data set and this may
adversely effect parallel time especially given that top-down methods [59, 17] are

designed primarily for dense data cubes.

67

2500 r v v T r v v 16

2000

1500

Seconds

1000 ¢

Relative Speedup
©

500

0 2 4 6 8 10 12 14 16 [4] 2 4 6 8 10 12 14 16
Processors Processors

() (b)

Figure 3.9: (a) Parallel wall clock time in seconds as a function of the number of
processors for the skew of o = 0,1,2,3 and (b) the corresponding relative speedup.
(Fixed parameters: The data size n = 8 millions. Dimensions d = 8. Cardinalities
|D;| = 256, 128, 64, 32, 16, 8, 4, 2. The number of processors p = 16. The balance
threshold parameter v = 5%)

In Figure 3.10, we test our algorithm on four data sets: one dense data set (1D
= 256, 128, 64, 32, 16, 8, 4, 2) and three sparse data sets (|D;] = 64, 128, 256 for
all dimensions respectively). In Figure 3.10(a), we observe the dense data set(Set
A) requires less time than the sparse ones (Set B,C,D), because the sparse data
sets generate much larger data cubes, and therefore cause larger I/O costs. We also
observe that all three sparse data cubes require approximately the same amount of
time. The reason for this is that each of these data sets includes only 8 million rows
within a vastly large data space, there is little aggregation and therefore the resulting

cubes are of approximately the same size.

In Figure 3.10(b), we observe that the speedup for Sets A, C, D is better than
that observed for Set B, and close to linear. For Sets C, D, the carnalities are much
larger than the number of processors, so that the workload associated with Sets C,
D is better balanced, and less time is used in merging and shifting. For Set A, the
carnalities of first two dimensions are much larger than the number of processors,
and even though the carnalities of the rest dimensions are small, the views from the
rest dimensions are also small, so that the workload of Set A is better balanced, and
again less time is used in merging and shifting. For Set B, the carnalities are not

much larger than the number of processors. In this case, it is hard to balance the

6000 f——— S U T [e — z.j
5000 L B 14} 2
S D B D -
\ 12 - Linear ~--M-~

4000

3000 b

Seconds
Relative Speedup
(-]

2000 7

1000 |

12 3 456 7 8 91011121314 15 16 12 3 45 6 7 8 9 101112 13 14 15 16
Processors Processors
(a) (b)

Figure 3.10: (a) Parallel wall clock time in seconds as a function of the number
of processors for data sets with different cardinality mixes, and (b) corresponding
relative speedup. (Fixed parameters: Data size n = 8 million rows. Dimensions d
= 8. Cardinalities and skews (A)|D;| = 256, 128, 64, 32, 16, 8, 4, 2. (B)|D;| = 64,
1<:1<d. (C)|Dil =128,1<i<d. (D)|D;| =256, 1 <i < d. Percentage of views
selected k£ = 100%. Skew a = 0. The balance threshold parameter v = 5%)

data across the processors, so the speedup is somewhat reduced. In general, as long
as there is at least one dimension in which the cardinality is significantly greater than

the number of processors, the algorithm appears to performance well.

3.4.5 Data Dimensionality

Figure 3.11(a) shows parallel wall clock time in seconds as a function of the dimen-
sionality of the raw data set. Note that, the number of views that must be computed
grows exponentially with respect to the dimensionality of the data set. In Figure
3.11a, we observe that the sequential running time grows faster than the linear speed.
However, the parallel running time grows essentially linearly with respect to the in-
creasing dimensions. The reason is that the data on each processor is smaller when we
use more processors, and the memory size is the same as in the sequential version. So
we benefit from more in-memory local computing. These factors cause the speedup
to go up in Figure 3.11b as the dimensions increase. This experiment suggests our

algorithm scales well on high dimensions.

6000 T T T v T y v 16

d=5 —+— d=5 ——
o d=6 «--Ne- 14 d=6 ---H-eee
5000 b d=7 e d=7 Yo
\ d=8 —@- d=8 —F—
\ o 12 Linear ---R -~
- i
4000 \ 2 1wl
3 ! 2
& 3000} @\ o g
3 a 2
20001 X - § &r
. 4
% 3.
1000 } RN
000 1 5, =~ ", ~g 2
- cenn 0

0 2 4 6 8 10 12 14 16
Processors Processors

(a) (b)

Figure 3.11: Parallel wall clock time in seconds as a function of the the number of
dimensions. (Fixed parameters: Data size n = 8 million rows. Cardinalities |D;| =
256, 1 < i < d. Percentage of views selected k = 100%. Skew o« = 0. The balance
threshold parameter v = 5%)

3.4.6 Balance Tradeoffs

One important feature of our shared-nothing data cube generation algorithm is that
it balances each view in the generated data cube over the processors within a balance
threshold 7. The more balanced each view is across the processors (i.e. the smaller
7) the more balanced any subsequent parallel computation on each view will be.
However, the cost of selecting a small + is that it may cause more data movement
and therefore increase the time required for data cube generation.

Figure 3.12 shows parallel wall clock time in seconds as a function of the number
of processors for a range of different balance thresholds, as well as the corresponding
speedup curves. We observe that increasing the balance threshold 7 has little effect
on the parallel time. The reason for this is that our synthetic data sets are generated
without skew (@ = 0), causing Algorithm 7 to partition the raw data sets evenly.
Therefore the generated views are distributed across processors almost evenly, and
the imbalance of most views is less than 5%, so that the larger v does not effect the
running time greatly.

Figure 3.13 shows parallel wall clock time in seconds as a function of the number of
processors for a range of different balance thresholds on a skewed data set, as well as
the corresponding speedup curves. We observe that increasing the balance threshold

7 reduces the parallel time for this skewed data set. The reason for this is that data

2500 T 2 r T T T v 16 v T
5% ——
14 10% ~ee3emer
20% oo Heeonn
2000 | 50% -l
12} Linear ---B--
g
w 1500 g 10r
2 o
5 I
o [
B 4000 | 2
g 8f
(04
4+
500 |
2
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors

(a) (b)

Figure 3.12: (a) Parallel wall clock time in seconds as a function of the number of
processors for, a range of different balance thresholds 7 and (b) corresponding speedup.
(Fixed parameters: Data size n = 8 million rows. Dimensions d = 8. Cardinalities

|D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew a = 0. Balance threshold v = 5%, 10%,
20%, and 50%.)

skew causes Algorithm 7 to partition the raw data sets unevenly, and then the output
views are distributed across processors unevenly either, so that less views need to be
shifted among processors when we choose larger 7.

From Figure 3.12 and Figure 3.13, a v of 5% appears to be a good threshold in
practice. However, individual applications may want to tune this parameter according

to their needs and the performance characteristics of their parallel machines.

3.5 Summary

In this chapter, we have presented the parallel algorithms for generating both full
and partial data cubes that can be executed on shared-nothing clusters. We have
implemented our parallel data cube algorithms and evaluated them on a Linux cluster,
exploring relative speedup, local and global schedule trees, data skew, cardinality
of dimensions, data dimensionality, and balance tradeoffs. These algorithms have
achieved near linear speedup for a wide range of large input data sets. In the next
chapter, we will extend our algorithms to handle much larger data data sets which

are stored in extended memory.

71

800 . T T T T T T 16 T . T : T T v . |
I
o)(....
700 W 20% o
12 L‘50% —{3—
600 + g inear -k~ -
=l 10 -
€ 500} g
5 %]
& o0} 2
o R,
Q
300 | o
200 |
100 2 s
0 12 14 16
Processors Processors
(a) (b)

Figure 3.13: (a) Parallel wall clock time in seconds as a function of the number of
processors for a range of different balance thresholds « and (b) corresponding speedup.
(Fixed parameters: Data size n = 8 million rows. Dimensions d = 8. Cardinalities
|D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew a = 0. Balance threshold v = 5%, 10%,
20%, and 50%.)

Chapter 4

External Memory and Parallel Generation of Full and
Partial ROLAP Data Cubes

In the first half of this chapter, we present a sequential external memory adaptation
of PipeSort. We introduce a shared prefix pipeline processing technique that speeds
up pipeline processing by reducing the size of blocks that must be sorted. We also
compare two approaches to external memory pipeline processing. In the second half
of this chapter, we present a parallel external memory data cube generation method
based on the sequential external memory PipeSort and parallel partitioning techniques
described in Chapter 3. With the addition of external memory, the typical data
sizes to be addressed increase very significantly. This makes the merge stage of the
parallel algorithm even more critical. To improve the efficiency of the merge stage,
we introduce an adaptive partitioning technique and evaluate the parallel algorithm

extensively.

4.1 Introduction

Generating data cubes from large data sets entails reading and writing huge amounts
of data, which cannot all be fit in memory. For example, for a fact table with 256
million rows and 8 dimensions the input data size is 9.2 gigabyte, and the output
data size, assuming a full cube with 28 = 256 views, is up to 200 gigabytes or 7 billion
rows [24]. Available memory for generating data cubes is typical not large enough
to hold complete data sets. For example, on our shared-nothing cluster, the memory
on each node is only 512 megabyte. Therefore external memory parallel data cube
generation algorithms are very important for OLAP systems in practice.

In the previous chapter, we presented our basic in-memory parallel data cube
generation algorithm. In this chapter, we present an external memory adaptation
of this method and a set of algorithmic enhancements. The enhancements address

the I/O challenges that arise with the increases in data size associated with external

72

73
memory computations. We address two critical problems: 1) how to compute data

cube efficiently in external memory and 2) how to reduce the associated high cost of
disk I/O and network I/0.

In the sequential computation of data cubes, most of the time is spent executing
a large number of pipelines. For example, to compute a d dimension data cube, we
have to execute at least (f d‘/iz]) pipelines. Therefore the number of pipelines to be
executed is exponential with d. For each pipeline, we need to read the input view from
disk, sort and scan it to generate output views, and then output the results to disk.
When available memory is not large enough, we have to read data block-by-block,
and then output data block-by-block, plus perform time-consuming external merges.
To compute the data cube efficiently in external memory, we introduce a shared prefix
pipeline processing technique that speeds up pipeline processing by reducing the size
of blocks that must be sorted. We also evaluate two approaches to external memory
pipeline processing that differ in how to divide up the memory betweens views in

pipelines and identify the approach that is more efficient in practice.

Partitioning is a key factor in achieving a good load balance in parallel algorithms.
In our basic parallel data cube algorithm described in Chapter 3, we partition the
input data evenly over processors. This leads to a merge stage in which a small amount
of data must be communicated and merged using an in-memory merge procedure. In
external memory data cube generation, the data to be communicated and merged may
be much greater than the size of main memory. The merge stage has the potential to
introduce high cost of disk I/O and network I/O due to the large amounts of data.
For example, in internal memory data cube generation, to merge the data of a single
view, we need to execute only one MPI_ALL_TO_ALL_v operation to exchange the data
among processors and then execute only one in-memory merge. In external memory
data cube generation, we need to read the data of a single view chunk-by-chunk, and
for each chunk we have to execute one MPI_ALL_TO.ALL_v operation. After that, we
shall need to execute external memory merge. Reducing the size of the data to be

communicated and merged is clearly critical in the external memory case.

We observe that partitioning the input data evenly may actually increase the
total time in situations where an even partitioning leads to more data than necessary

being involved in the merge stage. To reduce the associated high cost of disk I/O and

74
network I/0, we may choose a slightly unbalanced partitioning in external memory

parallel data cube generation. The unbalanced partitioning can reduce the merging
time dramatically at the cost of a bit more sequential running time, and as a result the
global running time may be reduced. In this chapter, we describe an adaptive data
partitioning scheme, which uses a cost model to estimate the cost of computation,
disk I/O and network I/O based on different parallel machines, and computes a “best

partitioning” to reduce the the total running time.

4.2 External Memory Sequential Data Cube Generation

Recall from Chapter 3 that in the sequential computation of data cubes, most of
the time is spent on executing pipelines. A pipeline consists of a number of views,
connected by one sort edge and some pipeline edges. The sort edge connects the
first two views, and the pipeline edges connect the rest of the views. In most cases,
except perhaps for the first view, the other views in a pipeline share a prefix with each
other. For example, in Figure 2.17 a pipeline raw = CBAD — CBA — CB - C
is shown, where the sort edge “=” connects raw and CBAD, and the pipeline edges
“—" connect the rest of views. Recall that, our general approach for processing a
pipeline is to initially sort the first view to transform it into the second view, and
then to scan the whole of second view to generate the other views in the remainder
of the pipeline. As will be demonstrated in this section, this may not be the most
efficient approach.

In the remainder of this section, we first introduce a shared prefix pipeline process-
ing technique and give performance evaluation for this technique. Then we compare
two approaches to external memory pipeline processing by both complexity analysis
and experimental evaluation. Lastly, we combine the two techniques and give further

experimental evaluation.

4.2.1 Shared Prefix Pipeline Processing

The first step in processing a pipeline is to sort the first view to the second view. In
our implementation, we chose to use the quicksort algorithm. Its average complexity
is O(nlog(n)), where n is the number of rows to be sorted. The value of n is typically

very large in OLAP applications. Our goal here will be to avoid sorting the whole set

75

ABDCE | ABCD | ABC | AB A
11111,1| Check
111121{1111,2| Check
111221[11121|111,3| 11,3 | Check
12121,1| Check
121211112122 (121,2]| Check
122121 Check
122121]1221,2] Check
12221,111222111223]| 125 1,8
21111,1| Check
211111 Check
211121{2111,3| Check
21121121121 211,44 214 | Check
22121,1| Check
22121,1(2212,2(221,2]| Check
222221 | Check
222221(122222(22221] 224 2,8

Table 4.1: An Example of Shared Prefix Pipeline Processing

of n rows at once. Instead, we will exploit the shared prefixes of view in a pipeline
so as to only have to sort smaller blocks at any one time. Consider for example, the
pipeline ABDCE = ABCD — ABC — AB — A illustrated in Table 4.1. Observe
that the first two views share a common prefix namely AB. Instead of sorting all
n=16 rows at one time we will partition the data set by AB and sort each partition
individually. In this case, instead of having to sort 16 rows at once, the maximum
partition size we have to sort is five for the partition where AB=12. Clearly, this does
not benefit us much on such a tiny input view, however when applied to a input view
containing perhaps millions of rows we can have a very significant positive effect on
running time. The other benefit here is that partitions will often fit in main memory
where whole views will not. This approach is similar to the OVERLAP approach
described in [17].

Suppose in a pipeline, the first two views, A;...AA;...4; and A1 AjAy. . A; have
the same prefix, A;...4,, and 4;...A;A; ... A; is sorted. We first partition A;...A;4;...4;
on Aj...A;. Then for each partition, we sort A;...A4}A;...4; into Ay AjA; L Aj and
scan the sorted partition to generate the other views at the same time. We call this
approach Shared Prefiz Pipeline Processing.

If the prefix shared by the two views is A;...A;, and then the size of a partition

76

2200 T T v — " 50%
No Shared Prefix Pipeline Processing -
2000 Shared Prefix Pipeline Processing 4%t~
1800 | ; 40% |
1600 + <
L £
, 1400 £ 30%
B 12001 g
g 10t £
10/ -
800 z 20%
600 4
400 10%
2003
0 : : - s - : 0%
1 2 3 4 5 6 7 8
Rows (Millions) Rows (Millions)

(a) (b)

Figure 4.1: (a) Sequential running time in seconds as a function of the size of raw
data, n = from 1 million to 8 million rows and (b) corresponding relative improvement.
(Fixed parameters: Dimensions d = 8. Cardinalities |D;| = 256, 128, 64, 32, 16, 8, 4,
2. Skew a = 0. Percentage of views selected £ = 100%. The memory size M = 100
Megabytes.)

can be roughly estimated by —=2— and the complexity of sorting a partition is

H;= [Ail
T 1t i 1og(nl nIIA'I)' The complexity of finding partitions is O(n)
i=117" i=11"%

as we use a simple linear scan. So the complexity of shared prefix pipeline processing

approximately O(

is
n
O(nlog(=———) + n).
s Ay

It is in practice smaller than O(nlog(n)).

Table 4.1 shows an example of executing a pipeline by shared prefix pipeline
processing. In this example, the pipelineis ABCDE = ABCD — ABC — AB — A.
The first view ABCDE and the second view ABCD share the prefix of AB. We first
partition ABCDE on AB. Then for each partition, we sort ABCDE into ABCD,
and scan ABCD to generate the other views.

Using the same experimental platform as in the Chapter 3, we implemented the
shared prefix pipeline processing and compared it with the original method. We use
a measure, called the relative improvement, to capture the effect of improvement. If
the running time of the original method is ¢, and the running time of new method is
tnew, then the relative improvement is defined as

t— tnew

t

77

6000

: - : . 9
No Shared Prefix Pipeline Processing ~—+- 50%
Shared Prefix Pipeline Processing -+
5000 | 40%
H
4000 | 2
8 g 30% |
§ 3000 g ?
] - ol
? 220% t S
2000 + 3
Q
'3 R
% b 2
1000 10% 2
0 0%
1
Rows (Millions) Rows (Millions)

(@) (b)

Figure 4.2: (a) Sequential running time in seconds as a function of the size of raw data,
n = from 1 to 8 million rows and (b) corresponding relative improvement. (Fixed
parameters: Dimensions d = 8. Cardinalities |D;| = 256, 1 < i < d. Skew o = 0.
Percentage of views selected k = 100%. The memory size M = 100 Megabytes.)

Figure 4.1(a) shows the running time of generating a full data cube using and
not using shared prefix pipeline processing. Figure 4.1(b) shows the corresponding
relative improvement. Overall we observe a relative improvement of between 20%
and 30%. Note that the curve of relative improvement drops between 2M and 4M
rows in Figure 4.1(b). This is likely because with a total memory of 100 megabytes,
the maximal data which can fit in memory, is 100M/(8+1)/4=2.78M rows, assuming
four bytes per dimension or measure. Therefore for 1M and 2M data sets, data fits
in memory, while for 4M and 8M data sets, the sort must be done externally. The
extra disk I/O reduces the improvement gained by shared prefix pipeline processing,
although it still decreases the total running time.

Figure 4.2 shows the running time for using and not using shared prefix pipeline
processing and the relative improvement for a full sparse data cube, when the cardi-
nalities of all dimensions are 256. Again, we observe an overall average improvement
of 20%-30%. Because of the same reason for Figure 4.1, we observe the curve of
relative improvement drops between 2M and 4M rows.

Figure 4.3(a) shows the running time of generating a full data cube with different
dimensions using and not using shared prefix pipeline processing. Figure 4.3(b) shows
the corresponding relative improvement. We observe an overall average improvement

for a range of number of dimensions. We observe the improvement for 9 dimensions

78

1000

y T 0%
No Shared Prefix Pipeline Processing S0%
900 Shared Prefix Pipeline Processing «--)¢-4-
40%
€
[
5
0 = 30%
E g
g E
« L o0% |
=]
Q
4
10%
0%
7 8 10
Dimensions Dimensions
(a) (b)

Figure 4.3: (a) Sequential running time in seconds as a function of the dimensions
of raw data, d = 6, 7, 8, 9 and (b) corresponding relative improvement. (Fixed
parameters: The size of raw data n = 1 million rows. Cardinalities |D;| = 256,
1 <i<d. Skew a = 0. Percentage of views selected k& = 100%. The memory size M
= 100 Megabytes.)

drops. The reason for this is that because the running time increases so fast that

reduce the improvement of shared prefix pipeline processing.

4.2.2 External Memory PipeSort

raw

ABCDE

ABCD

ABC raw

AB

A

(a) (b)
Figure 4.4: (a) Buffer layout for SSEMPP and (b) Buffer layout for MSEMPP.

In data cube generation, the input data is often in practice too large to fit in
memory. In such cases we have to read it from disk block-by-block, and then write
the output views to disk block-by-block. After that, we also have to merge these

blocks externally. These operations involve a lot of disk I/0, both for reading and

79
writing. Disk I/O is typically very slow compared with computation, so we must op-

timize our algorithms for their I/O efficiency as well as their computational efficiency.
In the following, we compare two approaches to external memory PipeSort: Single
Scan External Memory Pipeline Processing (SSEMPP) and Multiple Scan External
Memory Pipeline Processing (MSEMPP).

Recall that our general approach for processing a pipeline of [views is to sort the
first /input view to transform it into the second view and then to scan the whole of
the second view to simultaneously generate the other views in the remainder of the
pipeline. This approach can be applied almost directly in external memory. The idea
is to divide the available memory M into a set of [buffers B, ... B;. Buffer B; will be
used to store a portion of the ith view in the pipeline. The sizes of the buffers being
chosen such that each buffer stores the same number of rows of its corresponding view.
We call this approach Single Scan External Memory Pipeline Processing (SSEMPP).
See Figure 4.4(a) for the buffer layout of SSEMPP.

Let ¢; denote the number of bytes required to store a row of the ith view in
a pipeline. Then the maximal number n,,,; of rows for each view to be stored in

memory is

M
Nmaz = I

i=1Ci

If the number of rows of the input view n < Mg, all the data can fit in memory

and then SSEMPP uses in-memory pipeline processing. If n > nimgz, SSEMPP is
extended to process pipelines externally. See Algorithm 9 for the steps of SSEMPP.

The advantage of SSEMPP is that it sorts and scans the input view only once to
generate the rest of views in a pipeline simultaneously. The disadvantage is that each
view in a pipeline is allocated a small part of the total available memory and [files
have to be open at the same time.

In Multiple Scan Egzternal Memory Pipeline Processing (MSEMPP), the total
available memory is allocated to the first/input view as its data buffer. After a
block of data for the first view is read into memory, we sort and scan it to generate
the second view, and then output the data of the second view to disk. Next we scan
the second view to generate the third view and output the result to disk. It continues
until all the views in a pipeline are generated. This approach needs one sort and [— 1

scans to generate views one by one. Figure 4.4(b) for the buffer layout.

80
The maximal number 7,4, of rows for the input view to be stored in memory is

M

1

nmaz

If the number of rows of the input view n < np4,, all the data can fit in memory
and then MSEMPP uses in-memory pipeline processing. If n > nuaz, MSEMPP is
extended to process pipelines externally. See Algorithm 10 for the steps of MSEMPP.

The advantage of MSEMPP is that each view in a pipeline shares the total avail-
able memory and only two files are open at the same time. The disadvantage is that
it needs to scan data multiple times.

Using the same experimental platform described in Section 2.4, we implemented
SSEMPP and MSEMPP, and then compare them using the relative improvement

defined as
ts—~tm
t,
where ¢, is the running time of SSEMPP and t,, is the running time of MSEMPP.

2200

20%

[SSEMPP —— y T T . %
2000 MSEMPP ----3eemn
1800 |
1600 £ 15% f
£
3 1400 | 5
§ 1200} S o
] -
1000 s
800 - 5
o 59 -
600 }
400 +
200 . o
2 3 4 5 8 7 :
Rows (Millons) Rows {Millions)

(a) (b)

Figure 4.5: (a) Sequential running time in seconds as a function of the size of raw
data, n = from 1 to 8 million rows and (b) corresponding relative improvement.
(Fixed parameters: Dimensions d = 8. Cardinalities |D;| = 256, 128, 64, 32, 16, 8, 4,
2. Skew o = 0. Percentage of views selected k = 100%. The memory size M = 100
Megabytes.)

Figure 4.5(a) shows the running time of generating a full data cube using SSEMPP
and MSEMPP. Figure 4.5(b) shows the corresponding relative improvement and for
all data sizes in this experiment the MSEMPP method is better than the SSEMPP

81

Algorithm 9 Single Scan External Memory Pipeline Processing
Input: A set of pipelines, PL; the number of PL, npi; the maximal available memory

M in bytes.

Output: The views in the pipelines.
L: for i=1 TO ny do
Calculate npmqs for the ith pipeline, PL;.

W

3: if Nymeg > ni, where ni is the number of rows of the input view in PL; then
4: Allocate ni row memory for each view in PL;.

5: Read all the data of the input view to memory.

6: Sort and scan the data to generate the views in PL;, and store the results in

memory.

7: Output the results to disks.

8 else

9: Allocate npmaz Tow memory for each view in PL;.

10: while More data of the input view in PL; do
11: Read npmaz Trows of the input view into memory from disks.
12: Sort and scan the data to generate the views in PL;, and store the inter-

mediate results in memory.
13: Output the intermediate results to the separated files on disks.
14: end while

15: for Each output view V in the PL; do

16: Externally merge the separated files into one file using M memory.
17; end for
18: end if

19: end for

82

Algorithm 10 Multiple Scan External Memory Pipeline Processing

Input: A set of pipelines, PL; the number of PL, npy; the maximal available memory

M in bytes.

Output: The views in the pipelines.
1: for i=1 TO n, do

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:.

22:

2
3
4
5
6
7
8

Let nipe, = M/ci.
if ni < Nipmeq, where ni is the number of rows of the input view in PL; then
Allocate ni row memory for the input view in PL;.
Read all the data of the input view to memory.
Sort the data into the order of the second view in PL;.
for j=1TO ! do
Scan and aggregate the (j — 1)th view to generate the the jth view in PL;,
and output the result to disks.
end for
else
Allocate nipq, row memory for each view in PL;.
while More data of the input view in PL; do
Read 7imqe rows of the input view into memory from disks.
Sort the data into the order of the second view in PL;.
for j=1TO !l do
Scan and aggregate the (j — 1)th view to generate the the jth view in
PL;, and output the intermediate result to disks.
end for
end while
for Each output view in the PL; do
Externally merge the separated files into one file using M memory.
end for
end if

23: end for

33

6000

20%

ISSEMPP ——
MSEMPP --e3¢---- L
5000 +
€ 15% |
o
4000 &
2
§ 3000 + g 10%
2000 | B
Q
© 5%+
1000
0 . A 0%
1 2 3 4 5 6 7 8
Rows (Millions) Rows (Millions)
(a) (b)

Figure 4.6: (a) Sequential running time in seconds as a function of the size of raw data,
n = from 1 to 8 million rows and (b) corresponding relative improvement. (Fixed
parameters: Dimensions d = 8. Cardinalities |D;| = 256, 1 < i < d. Skew a = 0.
Percentage of views selected k£ = 100%. The memory size M = 100 Megabytes.)

method. We observe the relative improvement decreases as the data size increases,

likely because the total running time is increasing faster than the benefit from MSEMPP.

Figure 4.6 shows the running time and the relative improvement for a sparse data
cube, as the cardinalities of all dimensions are 256. We also observe that the MSEMPP
method is better than the SSEMPP method. Note that the values of improvement is
larger than the values in Figure 4.5. The reason for this is that a sparse data cube
includes more rows than a dense one, so that the both SSEMPP and MSEMPP need
more disk I/O when the input raw data sets are same in size. Therefore MSEMPP

can benefit more from larger buffers than SSEMPP.

Figure 4.7(a) shows the running time of generating a full data cube with different
dimensions using SSEMPP and MSEMPP. Figure 4.7(b) shows the corresponding rel-
ative improvement. We observe that MSEMPP is significantly better than SSEMPP

and the average improvement is around 15% for a range of numbers of dimensions.

From these experiments, MSEMPP always achieves better performance than SSEMPP.
Therefore we choose the MSEMMP method in our external memory parallel algo-

rithm.

84

0,
1000 SsemPP —— . 20% . i ’
900 MSEMPP -3 4
o] 15%
700 | g |
§ 600 | g
S 500] S on | ‘
3 -—
% 400 s
5}
300 g
& 5% |
200 |
100]
° : . 0%
6 ' ’ ° s 10
Dimensions Dimensions
(a) (b)

Figure 4.7: (a) Sequential running time in seconds as a function of the dimensions
of raw data, d = 6, 7, 8, 9 and (b) corresponding relative improvement. (Fixed
parameters: The size of raw data » = 1 million rows. Cardinalities |D;] = 256,
1 <i<d. Skew a = 0. Percentage of views selected k = 100%. The memory size M
= 100 Megabytes.)

4.2.3 Sequential Relative Improvement

In the previous experiments, we evaluate the effects of shared prefix pipeline process-
ing and the external memory PipeSort separately. From the experiments, we observe
the improvement is affected by the combinations of some factors, such as the size of
input data sets, the size of the total available memory, the sparsity of data cubes
and the number of dimensions. Therefore we do not observe the constant improve-
ment. Next we combine the two enhancements, shared preﬁJ\c pipeline processing and
MSEMMP, together in our sequential data cube generation algorithm, and compare
them with the SSEMPP method without shared prefix pipeline processing to examine
the relative improvement from the two enhancements together.

Figure 4.8(a) shows the running time of generating a full data cube using the basic
approaches and the enhanced approaches. Figure 4.8(b) shows the corresponding
relative improvement. We observe an improvement of up to 40% after enhancements
for a range of the size of data although the relative improvement generally decreases
as the data size increases.

Figure 4.9 shows the running time and the relative improvement for a sparse data
cube, as the cardinalities of all dimensions are 256. We again observe an improvement

of up to 40% after enhancements for a range of the data sizes.

85

2500 50% T

No Enhancement ~———
Enhancement -

2000

oo’
5

40%

QLR

1500

[}

3

&
T

BRI IR RIS
ORLRENI

Seconds
X%

IS
&
v

%
9005,

1000 +

N
o
B
T
3%

X

Relative Improvement
2

500 10%

0 * - 0%
1 2 3 4 5 6 7 8 1
Rows (Millions} Rows (Millions)
(a) (b)

Figure 4.8: (a) Sequential running time in seconds as a function of the size of raw
data, n = from 1 to 8 million rows and (b) corresponding relative improvement.
(Fixed parameters: Dimensions d = 8. Cardinalities | D;] = 256, 128, 64, 32, 16, 8, 4,
2. Skew a = 0. Percentage of views selected k = 100%. The memory size M = 100
Megabytes.)

Figure 4.10(a) shows the running time of generating a full data cube with different
dimensions using the basic approaches and the enhanced approaches. Figure 4.10(b)
shows the corresponding relative improvement. We observe an improvement of up to

45% for a range of number of dimensions.

On the whole, the above experiments shows that the two enhancements, shared
prefix pipeline processing and MSEMMP, generates of up to 40% improvement in the
running time of the sequential data cube generation for a range of values of the data
size and the number of dimensions. In the next section, we will address the network

I/O problem by introducing an adaptive data. partitioning scheme.

4.3 External Memory Parallel Data Cube Generation

For parallel data cube generation, good data partitioning is a key factor in obtaining
good performance on shared nothing clusters. In the last chapter, our basic parallel
algorithm, Algorithm 6 partitions on all dimensions and then applys a parallel merge
procedure. The challenge here is that for large data sets, external merge procedures
based on fixed data partitioning schemes often lead to excess inter-processor com-

munications which may greatly reduce the speedup achieved by the parallel system

86

6000

T T 509
No Enhancement —~— 0%
Enhancement ----3---- +
5000 40% -
€
4000 g
P g 30%
=3
g 3000 g
0 $20% | 1
2000 ©
Q
-4
1000 10% |
0 0%
Rows (Millions) Rows (Millions)

(a) (b)

Figure 4.9: (a) Sequential running time in seconds as a function of the size of raw data,
n = from 1 to 8 million rows and (b) corresponding relative improvement. (Fixed
parameters: Dimensions d = 8. Cardinalities |D;il =256,1 <i<d. Skew o = 0
Percentage of views selected k£ = 100%. The memory size M = 100 Megabytes.)

and limit its effective scalability. In this section, we describe and evaluate an adap-
tive data partition scheme for parallel ROLAP data cube generation. This dynamic
data partitioning scheme adapts to both, the current data set and the performance

parameters of the parallel machine.

4.3.1 Algorithm Outline

Before discuss an adaptive data partitioning scheme, we first describe the external
memory parallel data cube generation algorithm based on this partitioning scheme
briefly; See Algorithm 11. Compared with Algorithm 6, Algorithm 11 has one more
step, adaptive data partitioning, which uses the dynamic data partitioning scheme
to shift partitions among processors to minimize the total cost. Another change in
Algorithm 11 is that we do not need to balance the partitions using the y parameter in
AdaptiveSampleSort, since adaptive data partitioning generates a better partitioning
than using an arbitrary parameter y. Next we discuss the adaptive data partitioning

in more details.

87

Algorithm 11 ExternalMemoryParallelSharedNothingDataCube

Input: Raw data set R with n rows and d dimensions, distributed arbitrarily over

the p processors, n/p records per processor.

Output: Data cube, DC, distributed over the p processors. Each views is evenly

distributed over the p processors’ disks.
1: for i=0 TO d-1 do
2: (1) Data Partitioning:

@

(a) Each processor P; (j =0...p— 1) computes locally the D;-root for
its subset of data. (Essentially a sequential sort followed by a sequential
scan.) Let D;-root|; denote the D;-root created by processor P;.

(b) Call AdaptiveSampleSort(D;-root|o, . . ., Di-root|,—1; D;, ..., Dg_1),
to sort Uj=o,.p—1D;-root|; by D;,...Dy_y.

(c) Each processor Pj (j =0,...p—1) computes locally the D;-root for
its subset of data received in the previous step. Let D;-root||; denote

the D;-root created by processor P;.

(2) Adaptive Data partitioning:

(a) Processor Py locally computes, by applying the first phase of a
sequential top-down data cube method, the schedule tree T; for building
the D;-partition with respect to D;-root||o.

(b) Processor Py broadcasts T; to Py ... Pp_;.

(c) Each processor, in parallel, execute AdaptivePartition(D;-root||;)

to obtain an optimized partitioning of D;-root||; into D;-root|||;.

10: (3) Computation Of Local D;-Partitions:

11

(a) Each processor P; (j = 0,...p—1) computes locally the D;-partition
with respect to D;-root|||; by applying the second phase of a sequential
top-down data cube method to the schedule tree T; received in the

previous step.

12: (4) Merge Of Local D;-Partitions:

13:
14: end for

(a) Call MergePartitions(D;).

88

0/
e No Enhancement ~—+— 50% - .
900 f Enhancement -3¢
800 40%
700) é
w 600 g 2 30% |
| e
8 500 2
h _—
@ 400 £20% ¢
300 %
@
200 10%
100 -
0 : p 0%
: ’ ’ * s 10
Dimensions Dimensions
@)

Figure 4.10: (a) Sequential running time in seconds as a function of the dimensions
of raw data, d = 6, 7, 8, 9 and (b) corresponding relative improvement. (Fixed
parameters: The size of raw data n = 1 million rows. Cardinalities |D;| = 256,
1 <1< d. Skew o = 0. Percentage of views selected & = 100%. The memory size M
= 100 Megabytes.)

4.3.2 Approach of Adaptive Data Partitioning

The dynamic data partitioning scheme is based on a cost model, which is adaptive
to parallel machines. For a given parallel machine, we introduce four performance
parameters teompute, treads twrite A0d tnetwork defined as follows: toompute is the average
time in microseconds to fetch/compare/store a data item in main memory; treqq is
the average time in microseconds to read a data item from disk; £, is the average
time in microseconds to write a data item to disk; fpemworr is the average time in
microseconds for communicating a data item between processors. For heterogeneous
parallel machines (e.g. clusters with different generations of processors), the para-
meters teompute, tread a0d tyrite can differ between processors. In this case, we choose
the parameters for the slowest processor. The parameter t,emorr depends on both,
the network hardware and the number of processors used. Based on the above four
parameters, we devise a cost model to estimate the time for communication and com-
putation, and determine the best data partitioning for Algorithm 11. Before starting
Algorithm 11, our software enters a test phase where it measures automatically the
parameters teompute, treads twrite aNd tnetwork for the given machine.

After the i-th iteration of Step 5 of Algorithm 11, the partitions of the D;-root

are well balanced over processors P; (1 < j < p). However, as a result of the

89
global sort, subsequent items with the same sort key may end up on two different

(subsequent) processors. This is especially the case when the cardinality of some
dimensions is small, such as for attributes like gender, months and intervals for a
numeric attribute. The situation is illustrated in Figure 4.11 for an attribute “A”
with attribute values al,a2,...,al10. When the data is sorted by “A” in Step 2, each
processor receives a range of data as indicated. Consider the range of items with value
a4. Some items are on Processor 1 and some are on Processor 2. The problem is that
during the merging of partitions in Step 12 of Algorithm 11, data movement occurs
because Processor 2 has to send its items with value a4 to Processor 1. Instead, we
could have made a4 the dividing line between the data between Processors 1 and 2
and moved all items with value a4 to Processor 2. We call this process “pivoting”
and refer to a4 as the pivot. If we choose a4 as a pivot, then no data will have to be
transferred between Processors 1 and 2 during the merging of partitions in Step 12
of Algorithm 11. However, on the negative side, choosing a4 as a pivot introduces an
imbalance in data size between Processors 1 and 2, and other steps of Algorithm 11
may now have a longer computation time because of this imbalance, since the total

computation time is always determined by the slowest processor.

Pivot 1 Pivot 2
' l | I

Ll |L= L 1] |

al az2 a3

a4 ' oas a6 a8 a9 alo

Procesgsor 1 Processor 3

o
~

| ™

n

Figure 4.11: Data Partitioning and Pivots.

Our strategy is to choose pivots in such a way that we obtain the best tradeoff
between lower communication due to less data movement and longer computation
due to imbalance. We build a cost model to measure the impact of each possible
pivot and choose the one with the lowest cost. We iterate this process until the total

cost can be no further reduced.

90
4.3.3 The Cost Model

We now discuss our cost model for the performance of Algorithm 11 with respect to
a chosen set of pivots. Note that the steps before optimizing partitioning are not
impacted by pivots. Our model therefore measures only the performance of the three
steps after optimization: shifting partitions (sub-step in optimizing partitioning),
computing cubes, and merging cubes.

An important factor to be taken into consideration is the impact of external
memory. For our implementation of Algorithm 11, views that are small enough to fit
into main memory are created in memory for better speed, while larger views are built
in external memory through disk scan and external memory sort; see Algorithm 10. In
order to determine which version is used at run time, we calculate a maximal number
of records, n,,.; based on the total available memory M. If the number of records of
a view is smaller than n,,,., we calculate the cost according to a formula for internal
memory computation. Otherwise, we calculate the cost according to a formula for
external memory computation. For example, if . is 1,000, 000, view ABCD has
2,000, 000 records and view BCD has 500, 000 records, then we process BC'D in main
memory using the internal memory cost calculation and process ABCD in external

memory using the external memory cost calculation.

To calculate the cost of the three steps of Algorithm 11 for each view v, we use two
basic numbers for each processor: n,' the number of records stored at the processor
and m, the number of moved records. Figure 4.11 illustrates n and m for Processor
2. The n and m values for D;-root are obtained through a local linear scan. For every
other view v in D;-partition, we estimate values Nest and meg; as follows: Set n to the
estimated view size calculated in Step 7 of Algorithm 11. Set m = ?f‘f;’fl—‘n where
ND;—root 1A Mp,_roo are the n and m values for Dj-root, respectively.z Note that a
record is composed of d feature attributes and 1 measure attribute so that the size of

a record is proportional to d + 1.

We are now ready to analyze the three steps of Algorithm 11: shifting partitions
(sub-step in Step 9), computing data cubes (Step 11), and merging data cubes (Step
13). For each step, we will give the cost for internal and external memory calculation

and outline our rationale for the given formulae.

91

Step Internal Memory External Memory

Scanning n(d/2) * tcompute n(d + 1) * Lreqd + n(d/2) * Leompute
Exchanging m(d + 1) * tnetwork m(d + 1) * tnetwork

Merging n(d/2) * teompute n(d + 1) * twrite + 1(d/2) * tcompute

Table 4.2: The Costs of Shifting Partitions

Step Internal Memory External Memory

Sorting nlogn * teompute + | n(d + 1) * treqa + 71080 * teompute +
n(d/2) * Loompute n(d/2) * Leompute

Scanning n(d 4+ 1) * tompute n(d + 1) * turite + n(d + 1) * teompute

Table 4.3: The Costs of Computing Data Cubes

Shifting Partitions

Table 4.2 lists the costs of shifting partitions. This step shifts partitions of root views
among processors. It consists of three sub-steps: scanning data, exchanging data
and merging data. Each processor scans the local data and compares each row with
the pivots considered. To compare a row with a pivot, we compare dimension values
one by one. In the best case, only one comparison is needed, and d comparisons
in the worst case, where d is the number of dimensions. The average number of
comparisons is d/2. In the external memory version, the cost for reading data from
disk is n(d + 1) * t,eqq, Where n(d+1) is the number of item in D;-root since each row
contains d + 1 items. In both versions, the communication cost is m(d+ 1) * tnetwors,
where m(d + 1) is the number of items moved across the network. The cost of the
last sub-step is n(d/2) * teompute- For the merging, the number of comparisons is a
function of both, » and m. However m is much smaller than n and we ignore m in
order to simplify calculations. In the external version, the cost for writing the data
to disks is n(d + 1) * tyrite. Note that, this is also an approximation since data is

exchanged between processors.

Computing Data Cubes

Table 4.3 lists the costs of computing data cubes. Step 11 of Algorithm 11 calculates
the schedule tree used to generate the views. As described in [59], we compute

pipelines one by one. For each pipeline, the first view is sorted and the remaining

92

Step Internal Memory External Memory

Scanning n(d/2) * tcompute n(d + 1) * treaq + 1(d/2) * teompute
Exchanging m(d + 1) * tnetwork m(d + 1) * tretwork

Merging n(d/2) * Leompute 'I’L(d + 1) * Lyrite + n(d/z) * Leompute

Table 4.4: The Costs of Merging Data Cubes

views are generated by scanning. For example, in Figure 3.2, the schedule tree for the
I-subcube consists of a pipeline, ABCD = BCD — BC — B. The cost of sorting is
nlogn * teompute + n(d/2) * tcompute [32] for the internal memory version. The external
version includes an additional cost for disk reading: n(d + 1) * t,eqa. The cost for
scanning is n.(d/2) * teompute for the internal memory version, plus n(d -+ 1) * typse for

the external memory version.

Merging Data Cubes

Step 13 of Algorithm 11 merges D;-partition between processors. The cost calculation

is similar to the calculation for Shifting Partitions. See Table 4.4.

4.3.4 Algorithm of Adaptive Data Partitioning

Based on the above cost model, we may evaluate possible partitioning and choose an
optimal partition with minimum cost. Algorithm 12 shows our method to select a set
of pivots and shift the partitions. The function Cost() represents the cost function for
a given set of pivots as discussed above. Algorithm 12 first calculates the cost of the
partitioning generated by Steps 2 and 3 of Algorithm 12 without any pivots. We then
select pivots, calculate the cost based on those pivots and update the partitioning if
the new cost is smaller than the old one. This process will continue until the cost can
not be reduced any further. Unfortunately, the number of possible pivot combinations
is very high. For p processors, the maximum number of possible pivots is p — 1. Each
pivot can either be not selected or selected for its left adjacent processor (all data move
left) or its right adjacent processor (all data move right). Hence, the total number
of possible data partitioning is 37~1. If we have 32 processors in a cluster, the total
number of partitioning is 332! = 617,673, 396, 283, 947. In Algorithm 12, we choose a

93

greedy method to reduce the cost as much as possible. In each iteration of the repeat-

until loop, we choose the pivot which generates the greatest cost reduction among all

possible remaining pivots. We update the partitioning and the cost, and search again
until we cannot reduce the cost further by adding another pivot. Algorithm 12 then
re-partitions Dj-root, using the chosen set of pivots.

Algorithm 12 AdaptivePartition(D;-root||;)

Input: D;-root||;, the globally sorted root view distributed on Processor 7.

Output: D;-root|||;, the globally sorted root view distributed on Processor j. Its

n

8:

9:
10:
11:
12:
13:
14:
15:
16:

PR A

cost is the smallest among all possible partitioning.
Each processor P; collects locally, for its data set D;-root||;, the partitioning
information (pivots and their n, m values) required for the evaluation of the

function Cost(). The partitioning information is broadcast to all PIOCESSOTS.

: Bach processor P; computes cost = Cost(current partition without pivots).
: done = FALSE.

repeat

for each processor P; in parallel do
Processor P; calculates the new cost costi® obtained by adding pivot j,
(moving the respective data to the left or right processor, whichever is lower
cost).

end for

Let cost™™ = Min(costFe¥, costie?, -+,COStReY)

if cost™™ < cost then
update partition by adding the chosen pivot.
cost = cost™V¥

else
done = TRUE

end if

until done

Di-root||; is re-partitioned using the chosen set of pivots to generate Dj-root|]|;.

94

2500

r T T T v 50% T T T
Adaptive Partitioning —— °
No Adaptive Pattitioning «-->--
2000 | 40%
=
[
5
o 1500 | Z 30% [
2 8
g E
@ 1000 F L20%
5
[
4
500 10% |
0 s . 2 0%
0 2 4 6 8 10 12 14 16
Processors Processors

(2) (b)

Figure 4.12: (a) Parallel wall clock time in seconds as a function of the number of
processors before and after the optimized partitioning and (b) corresponding relative
improvement. (Fixed parameters: The size of raw data, n = 8 millions. Dimensions
d = 8. Cardinalities |D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew o = 0. Percentage of
views selected & = 100%. The memory size M = 100 Megabytes. Balance threshold
v = 5%)

4.3.5 Experimental Evaluation of Adaptive Data Partitioning

Using the experimental platform described in Section 2.4, we implemented the adap-
tive partitioning described in the previous section and compared it with the fixed
partitioning scheme described in Chapter 3. In order to isolate the improvement
which is generated only from the adaptive partitioning scheme, we do not use shared
prefix pipeline processing or MSEMPP in comparisons and use SSEMPP to handle
external memory PipeSort in this evaluation. In the next section, we will evaluate all

of the enhancements together.

Our implementation of adaptive partitioning initially runs a performance test to
calculate the key machine specific cost parameters, teomputes treads Twrite A0 tretwork,
that drive our dynamic data partitioning method. On our experimental platform
these parameters were as follows: tcompute = 0.0293 microseconds, t,eqq = 0.0072 mi-
croseconds, tyrie = 0.2730 microseconds. The network parameter, #peruork, Captures
the performance characteristics of the MPI MPI_ALL_TO_ALL_v operation on a fixed
amount of data relative to the number of processors involved in the communication.
On our experimental platform, nemor = 0.0551,0.0873,0.1592, 0.2553 microseconds
for p = 2, 4, 8 and 16, respectively.

95

16

T d T 50% T T
Adaptive Partitioning —+—
18t No Adaplive Partitioning ---->¢----
Linear -
40%
12t =
N g
g 10 2 30%
2 2
@ =4
s ° E
s g}t g 20% 1
L 3
4t 4
10%
2 L
0 0%
0 2 4 6 8 10 12 14 16
Processors Processors
() (b)

Figure 4.13: (a) Relative speedup as a function of the number of processors before and
after the optimized partitioning and (b) corresponding relative improvement. (Fixed
parameters: The size of raw data, n = 8 millions. Dimensions d = 8. Cardinalities
|D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew a = 0. Percentage of views selected k& =
100%. The memory size M = 100 Megabytes. Balance threshold v = 5%)

"The experiments include the two groups. In the first group, we use the cardinali-
ties, 256, 128,64, 32,16, 8,4, 2 for 8 dimensions. In the second group, we use 256 for
every dimensions. In both groups, we chose 8 million rows for the size of the raw
data. Therefore, the data cube in the first group is a dense one, and it consists of
fewer rows because of more aggregation. In the second group, the data cube is sparse,

and consists of more rows because less aggregation takes place.

Figure 4.12 and Figure 4.13 are for the dense data cubes. Figure 4.12(a) shows
parallel wall clock time in seconds as a function of the number of processors be-
fore and after using the adaptive partitioning scheme, and Figure 4.12(b) shows the
corresponding relative improvement. We observe the relative improvement is approx-
imately 30% up to eight processors and then falls to about 10% for 16 processors. The
reason is that the adaptive partitioning scheme tries to reduce the time for merging,
but when we use 16 processors, the data on each processor becomes so small that the
time for merging is a small part of the total time. This decreases the benefit from

the adaptive partitioning scheme.

Figure 4.12 focuses on the relative improvement in total time, however it is also
interesting to consider the relative improvement in speedup for the same data sets.

Figure 4.13(a) shows for the same data set relative speedup as a function of the

96

6000 . r r : . % . . —
Adaptive Partitioning —+— 5o
No Adaptive Partitioning ----¢----
5000 40%
5
4000 E
) g 30%
§ 3000 } £
@ £20% |
2000 %
[+4
10 -
1000 | 10%
0 0%
0
Processors Processors
(a) (b)

Figure 4.14: (a) Parallel wall clock time in seconds as a function of the number of
processors before and after the optimized partitioning and (b) corresponding relative
improvement. (Fixed parameters: The size of raw data, n = 8 millions. Dimensions
d = 8. Cardinalities |D;| = 256, 1 <4 < d. Skew a = 0. Percentage of views selected
k = 100%. The memory size M = 100 Megabytes. Balance threshold v = 5%)

number of processors before and after using the adaptive partitioning scheme, and
Figure 4.13(b) shows the corresponding relative improvement of Figure 4.13(a). We
observe the same trend as in Figure 4.12. The values of the improvement are around
40% for 2-8 processors and the relative speedup super-linear, although the improve-
ment decreases at 16 processors. The reason for super-linear is that we are increasing
not only the number of processors but also the ratio of available memory to data
sizes. The benefit from adding processors and memory is larger than the cost of the

extra communication required.

Figure 4.14 and Figure 4.15 are for the sparse data cubes. Figure 4.14(a) shows
parallel wall clock time in seconds as a function of the number of processors be-
fore and after using the adaptive partitioning scheme, and Figure 4.14(b) shows the
corresponding relative improvement. Again we observe the same basic trends. The
improvement increases first and then decreases with the processors increases. How-
ever, the values of the improvement is larger than those in Figure 4.12, for the dense
cube cases. The data cube in this figure is sparse, so that it consists of more rows
than a dense cube and it needs more time in merging among processors than a dense

cube when no adaptive partitioning is used.

For the same data size as Figure 4.14, Figure 4.15(a) shows the relative speedup as

97

. . . 60% . . , .

Adaplive Partitioning ——
18 + No Adaptive Partitioning ----3¢---
Linear -3

50%

£y
T

-y

S

2
T

Relative Speedup
-
o

20%

Relative Improvement
2 w
o
®

10%

. + 0%
0 2 4 6 8 10 12 14 16
Processors Processors

(a) (b)

Figure 4.15: (2) Relative speedup as a function of the number of processors before and
after the optimized partitioning and (b) corresponding relative improvement. (Fixed
parameters: The size of raw data, n = 8 millions. Dimensions d = 8. Cardinalities
|Di| =256,1 <i<d. Skew o = 0. Percentage of views selected k = 100%. The
memory size M = 100 Megabytes. Balance threshold v = 5%)

a function of the number of processors before and after using the adaptive partitioning
scheme, and Figure 4.15(b) shows the corresponding relative improvement. We still
observe the same trends as in Figure 4.14. The improvement increases first and
decrease with the processors increases. Also we observe that all the speedup points
are above the linear line, and the improvement is up to more than 50% for 4 and 8
processors. It suggests that the adaptive partitioning scheme can dramatically reduce

time on the communication time among processors when large amount of data need

merging.

4.3.6 Experimental Evaluation of Combined Enhancements

Using the experimental platform described in Section 2.4, we combined and imple-
mented the three enhancements: shared prefix pipeline processing, MSEMPP and
the adaptive partitioning scheme, together in the external memory parallel data cube
algorithm described in Algorithm 11. We also implemented a basic external memory
parallel data cube method without any enhancement and in this method we used
SSEMPP to handle external memory PipeSort. We compare these two methods for
full cube generation, partial cube generation and cube generation on skewed data sets

to evaluate the relative improvement from the three enhancements.

98

2500

60% ' T

Combined Enhancements —+—
No Enhancement «--X---

2000 50% 1

40%
1500

Seconds

1000
20%

Relative Improvement
W
2
]
v

55

23

500 |

e

10% |

o

%

ot

%

oS

e

o;

%

05
5%

0 — Y S —— 0%

Processors Processors

(a) (b)

Figure 4.16: (a) Parallel wall clock time in seconds as a function of the number of
processors before and after the optimizations and (b) corresponding relative improve-
ment. (Fixed parameters: The size of raw data, n = 8 millions. Dimensions d = $.
Cardinalities | D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew o = 0. Percentage of views
selected £ = 100%. The memory size M = 100 Megabytes. Balance threshold v =
5%)

Figure 4.16(a) shows the full cube generation running time of two methods and
Figure 4.16(b) shows the corresponding relative improvement. We observe that the
improvement for one processor is about 20%, however the improvement for multiple
processors is up to 55%. The sequential cube generation only uses two enhancements:
shared prefix pipeline processing and MSEMPP, while the parallel cube generation
uses the adaptive partitioning scheme plus the above two enhancements. So we may
observe that the improvement of the parallel generation is better than the sequential
generation. Also, we observe that the improvement dips for 16 nodes to 30%. This
dip is due to the fact that the relatively smaller data sizes per processor at 16 nodes

cannot fully hide the additional communication costs.

Figure 4.17(a) shows for the same data as Figure 4.16 for the partial cube gen-
eration and Figure 4.17(b) shows the corresponding relative improvement. In this
experiment, only 25% of the views are selected, so that the running time drops to 650
seconds from 2200 seconds for the sequential computation. We observe that the im-
provement curve is very similar to the one in Figure 4.16, although the improvement
of the sequential generation is smaller due to the small size of the selected views. Also

the overall improvement of the parallel generation drops to about 30%, smaller than

99

700

Combined Enhancements ——
_ No Enhancement ----3---

600

500

400

Seconds

300 |

200 |

100

0 2 4 6 8 10 12 14 18 T 2 4 8
Processors Processors

(2) (b)

Figure 4.17: (a) Parallel wall clock time in seconds as a function of the number of
processors before and after the optimizations and (b) corresponding relative improve-
ment. (Fixed parameters: The size of raw data, n = 8 millions. Dimensions d = 8.
Cardinalities |D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew a = 0. Percentage of views
selected k& = 25%. The memory size M = 100 Megabytes. Balance threshold v =
5%)

50% observed in Figure 4.16.

Figure 4.18(a) shows the full cube generation running time of the two methods
and Figure 4.18(b) shows the corresponding relative improvement when the input
data set is skew with o = 1. We observe that the sequential running time drops
sharply from 2200 seconds to 1000 seconds. We also observe that the improvement

curve is also very similar to the one observed in Figure 4.16.

4.4 Performance Evaluation

We implemented the external memory parallel data cube generation algorithms with
all the three enhancements, and evaluate them using the experiment platform de-

scribed in Section 2.4 from the following aspects:

e Speedup. We evaluate the speedup of the enhanced external memory algo-
rithms. Since the running time for the sequential cube generation is reduced
dramatically, the speedup could decrease. However the running time for the
parallel cube generation is reduced due to the adaptive partitioning, éo the
speedup could increase. From the experiments, we will find out the speedup

trend under the effects of both sequential and parallel enhancements.

100

0 " ; 9 . - .
1000 = Combined Enhancements —+—— 60%

900 No Enhancement -3¢ |

800
700
600 |
500 ¢
400
300 |
200
100

Seconds
H
(=]
*

Relative Improvement
N w
(=3 [=]
B B
v T

10% r

0%

Processors Processors

(a) (b)

Figure 4.18: (a) Parallel wall clock time in seconds as a function of the number of
processors before and after the optimizations and (b) corresponding relative improve-
ment. (Fixed parameters: The size of raw data, n = 8 millions. Dimensions d = 8.
Cardinalities |D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew oo = 1. Percentage of views
selected & = 100%. The memory size M = 100 Megabytes. Balance threshold vy =
5%)

e Scaleup. It is another key metric for evaluation our parallel algorithms. It
indicates whether a constant running time can be maintained as the workload

is increased by adding a proportional nodes.

o Sizeup. It is similar to scaleup but fixes the number of processors. It indicates
whether a proportional running time can be maintained as the workload is

increased.

¢ Data Dimensionality. We fix the size of data and the cardinality of each dimen-
sion, and then increase dimensions. By this way, we may evaluate the effects of

dimensionality on our algorithms.

¢ Cardinality of Dimensions. We fix the size of data and the dimensions, and then
change the cardinalities of dimensions. So that we may evaluate the effects of

the sparsity of data cubes.

e Data Skew. We fix the size, dimensions and cardinalities of data, and then
change the Zipf value to generate skew data sets. Therefore we may evaluate

the effects of skew data on our algorithms.

101
In the following experiments all sequential times were measured as wall clock times

in seconds. All parallel times were measured as the wall clock time between the start
of the first process and the termination of the last process. We will refer to the latter
as parallel wall clock time. All times include the time taken to read the input from
files and write the output into files. Furthermore, all wall clock times were measured
with no other users on the machine.

Throughout these experiments, as we increased the number of processors we ob-
served two countervailing trends. Increasing processors, while holding total data
size constant, leads to less data per processor and therefore better relative speedup
because each processor can fit more of its data in memory, thereby reducing disk re-
lated overheads. On the other hand, using standard 100M LAN and a standard MPI
implementation, increasing the number of processors reduces the speed of communi-
cation, even when total data size communicated is held constant, and therefore tends
to reduce relative speedup. The large super linear effects are observed in some of
these experiments when the benefits of fitting data in memory outweigh the penalties

associated with higher communication overheads.

4.4.1 Speedup

Speedup is one of key metrics for evaluation of parallel database systems [30] as it
indicates the degree to which adding processors decreases the running time. The
relative speedup for p processors is defined as S, = f}’:, where #; is the running time
of the parallel program using one processor, all communication overhead having been
removed from the program, and tp is the running time using p processors. An ideal
Sp is p, which implies that p processors are p times faster than one processor, so the
curve of an ideal S, is a linear line.

Figure 4.19(a) shows the running time for external memory full cube generation
for the data size of from 1M to 16M rows and Figure 4.19(b) shows the relative
speedup. We observe that the speedup for 8M and 16M is super-linear. The speedup
for 4M is close to the linear line on 2-8 nodes, and the speedup for 2M is good on
2-4 nodes. Basically, we observe good speedup when there is enough data (0.5M per
processor in Figure 4.19) on each processors. When the input data size is too small,

such as 1M or 2M rows, local computing costs are low and insufficient to hide the

102

1800

n=1M ——
600 | R T 1
L n=8M —[J--
1400 \ n=16M -~
1200 | Ey
o]
2 1000 | 2
8 w
g 80t %
600 | 3 K
400 +
200 | B |
0 Lt qomerarsy %
0 14 16
Processors Processors
(a) (b)

Figure 4.19: (a) Parallel wall clock time in seconds as a function of the number of
processors for the data size n = from 1 million to 16 million rows and (b) corresponding
speedup. (Fixed parameters: Dimensions d = 8. Cardinalities |D;| = 256, 128, 64,
32, 16, 8, 4, 2. Skew a = 0. Percentage of views selected k = 100%. The memory
size M = 100 Megabytes. The balance threshold parameter y = 5%)

communication overhead so the speedup on the large number of processors is poor

for these small tasks.

In many applications, users do not require all of the 2¢ views contained in a
full data cube but rather only a selected subset. The challenge for a partial cube
generation method is to efficiently construct the set of selected views, maintaining
relative efficiency even as the number of views (and therefore total work) is decreased.
Figure 4.20(a) shows the running time for full cube generétion for the selected views
of from 25% to 100% and Figure 4.20(b) shows the relative speedup.

We observe that for up to 8 processors, the speedup of 75% and 50% selected
views is close to or better than the full cube. That is because the running time is not
proportionally increased with the percentage of selected views, but at a faster rate.
See Figure 4.20a. We also observe that when we use 16 processors, the speedup for
50% and 75% selected views drops below the speedup of full cube. That is because
the local computation for each processor is decreased faster for 50% and 75% selected
views than a full cube when we use 16 nodes. Except 25% selected views, the other
speedup obtained is super linear speedup, because the benefits of fitting data in
memory outweigh the penalties associated with higher communication overheads for

50%, 75% selected views and a full cube. For 25% selected views, the speedup is close

1800

e " k=25% —+— K=25% —+—
1600 | 3 K=50% - | 16 | Ks50% -
i K=75% - 3onr K=75% oo orme
1400} K=100% —&— | 14 LK=100% —B-—
X“E Linear ---B--
1200 F it
8 i
S 1000 F it
8 it
@
[

800
600 |
400 |
200 |

Relative Speedup

0 2 4 6 8 10 12 14 16
Processors Processors

(2) (b)

Figure 4.20: (a) Parallel wall clock time in seconds as a function of the processors
for a range of different percentages of selected views and (b) corresponding speedup.
(Fixed parameters: The data size n = 8 millions. Dimensions d = 8. Cardinalities
|D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew o = 0. The memory size M = 100
Megabytes. The balance threshold parameter v = 5%)

to linear speedup for 2-8 nodes, and drops down for 16 nodes. The reason for that is
no enough local work on each processor when we use 16 nodes for only 25% selected

views.

4.4.2 Scaleup

Scaleup is another key metric for evaluation of parallel database systems [30]. It
indicates whether a constant running time can be maintained as the workload is
increased by adding a proportional numbers of processors and disks. So the curve of
an ideal scaleup is a linear line, which parallels with x-axle.

Figure 4.21(a) shows for full cube generation the parallel wall clock time observed
as a function of the number of processors used when N/p = 0.25M, 0.5M, 1M and
2M rows per processor. Overall, we observe good scaleup lines, which almost parallel
with x-axle except the curves of 1M and 2M, where the scaleup is increased with the
number of processors. When we double the number of processors and double the size
of the input, we may spend less time on local computation than before. This is due
to the fact that we are holding the cardinalities of dimensions constant as we increase
the data size and therefore the relative density of the data cube is increasing which is

beneficial for top-down generation methods. This increase in relative density leads to

104

450

Obzgm PeF Processor ——f— ') . "Total 1ije —_ |
L .5M per processor -3¢ - + ommunication Time -
400 1M per processor Y- /_// 400 .
350 b 2M per processor —f}-— " . 350 |
——E]/
300 + S e 300
B 250 B 250
E ol o I
$ Sl — K g 200 =
Lol I — st e e 1
100 1 X e 3 0o
N Gnaerenn P orsernennananasaianes Penenememen et L e
50 | "Q(: Al i sof pY RSV S
0 L 1 A 1 1 1 i 0 -">L< A 1 1, 1 1 L
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors
(a) (b)

Figure 4.21: (a) Parallel wall clock time in seconds as a function of the number
of processors and (b) The total time and the communication time in seconds as a
function of the number of processors for 2M rows per processor. (Fixed parameters:
The size of raw data, n = 8 millions. Dimensions d = 8. Cardinalities | D;| = 256,
128, 64, 32, 16, 8, 4, 2. Skew a = 0. Percentage of views selected k& = 100%. The
memory size M = 100 Megabytes. Balance threshold v = 5%)

more aggregates. We may observe this at the points for two nodes, where the running
time is less than the sequential running time. However, this effect is offset by the fact
that the network bandwidth is not being scaled as we increase the total input size. As
we increase the data size per processor, more time has to be spent on communication
across the network. When the communication time is not too much, we may still get
linear scaleup, such as for 0.25M and 0.5M curves. But for more data on each node,
such as 2M, high communication time degrades the global performance, as illustrated
in Figure 4.21(b), where we observe the total time and the communication time are
almost in parallel. It suggests the increasing time comes from communications when

we increase data and processors at the same time.

4.4.3 Sizeup

Sizeup is similar to scaleup but fixes the number of processors. It indicates whether
a proportional running time can be maintained as the workload is increased. The
sizeup for z units of workload is defined as U, = i—f, where t; is the running time
of one unit workload and t, is the running time of z unit workload. An ideal U, is

z, which implies that z units of workload costs z times more time than one unit of

105

30

25 p=4 e

p=8 ~~—
p=16 ---B--
20 | Linear --Q--

Seconds
Relative Sizeup
-
wn

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Rows (Millions) Rows (Millions})
(a) (b)

Figure 4.22: (a) Parallel wall clock time in seconds as a function of the size of input
data for the processors p = 1 — 16 and (b) p = 16. (Fixed parameters: Dimensions
d = 8. Cardinalities |D;| = 256, 128, 64, 32, 16, 8, 4, 2. Skew a = 0. Percentage
of views selected k = 100%. The memory size M = 100 Megabytes. The balance
threshold parameter vy = 5%)

workload, so the curve of an ideal sizeup is a linear line.

Figure 4.22(a) shows the running time for full cube generation on the data sets
of between 1M and 16M rows using 1 — 16 processors and Figure 4.22(b) shows
the corresponding sizeup. We observe that sizeup decreases when we chose more
processors. This means we spend less time for one unit of workload when we use
more processors. The reason for this is that each processor works on less data and has
greater ratio of available memory to the data size when more processors are available.

For 4 — 16 processors, this effect is so significant that we observe super-linear sizeup
Figure 4.22(b).

4.4.4 Data Dimensionality

Figure 4.23(a) shows the full cube running time for different dimensions from 5 to
8. Figure 4.23(b) shows the relative speedup. We observe that the speedup increases
with the dimensions. The speedup of 8 dimensions is very good, even better than
the linear speedup on 2-16 nodes. The speedup of 7 dimensions are better than the
linear speedup on 2-8 nodes, and drops at 16 nodes, but still close to the linear line.
The speedup of 5 dimensions is close to the linear line on 2-8 nodes, and drops at

16 nodes. The speedup of 5 dimensions is far away from the linear line. Note that,

4500 T T T - : T 20 T T il
? S =
4 S =6 weeedone | 18 El v, -
3500 [| d=8 —- % d=8 —E— - .
i .
3000 | 1 5y I
* 3
€ 2500} | g
8 ' @
& 2000 X \ %
1500 1 0O e
1000 b %
Processors . Processors
(@ (b)

Figure 4.23: Parallel wall clock time in seconds as a function of the the number of
dimensions. (Fixed parameters: Data size n = 8 million rows. Cardinalities |D;| =
256, 1 <1 < d. Percentage of views selected £ = 100%. Skew o = 0. The memory
size M = 100 Megabytes. The balance threshold parameter v = 5%)

the number of views grows exponentially with respect to the dimensionality of the
data set, so that the workload increases very faster. We may see the running time
increases faster than the linear speed in Figure 4.23(b). Therefore we may get good
speedup at large number of dimensions. Only when the number of dimensions is very

small, such as 5, the speedup is far away from linear speedup due to much less work

to be parallelized.

4.4.5 Cardinality of Dimensions

Figure 4.24 shows the running time of full cube generation for different carnalities
and the relative speedup. We observe that the speedup is all above the linear line or
close to it. The speedup for |A;| = 64 is not good as other after 8 nodes, even though
the sequential time is similar to the others. The reason is that the small cardinality
makes it harder to partition the data on large number processors evenly, so that we
may take more time on merging data cubes and shift data across the processors.
However our optimized partitioning still can find out the best partitions and make

the speedup close to the linear line, as showed in Figure 4.24.

4500

A ——
a0 | 3 e R
3500 | i‘, D —&-
3000 F s
" ! 3
T 2500+ @} 2
8 (2]
& 2000} %
1500 | 2
1000 |
500 b N PRI
0 A L — 1 A i 1 " A 2
0 10 12 14 16 0 2 4 B8 8 10 12 14 16
Processors Processors
(2) (b)

Figure 4.24: (a) Parallel wall clock time in seconds as a function of the number
of processors for data sets with different cardinality mixes, and (b) corresponding
relative speedup. (Fixed parameters: Data size n = 8 million rows. Dimensions d
= 8. Cardinalities and skews (A)|D;| = 256, 128, 64, 32, 16, 8, 4, 2. (B)|D;| = 64,
1<i<d (C)|D;| =128,1<i<d (D)|D;| =256, 1 <4< d. Percentage of views
selected k = 100%. Skew a = 0. The memory size M = 100 Megabytes. The balance
threshold parameter v = 5%)

4.4.6 Data Skew

Data sets with skewed distributions can cause data reduction and then reduce the local
computing time. To explore the effects of skew data, we generated data sets using
the standard ZIPF [66] distribution in each dimension with oo = 0 (no skew) to & =3
(very high skew). Figure 4.25 shows the running time of full cube generation with
the skew for a = 0, 1,2, 3, and the corresponding relative speedup. We observe that,
in general, as skew is increased, the running time decreases due to data reduction
and decreased local computation. Our data partitioning optimization appears to
handle gracefully the resulting data imbalance by shifting data appropriately so that
the speedup on the small number of processors is above or close to the linear line.
However, if this data reduction is very large, as for o = 3, it reduces the opportunities

for speedup as there is simply much less work to be parallelized.

4.5 Summary

In this chapter, we present our external memory parallel ROLAP data cube gener-

ation algorithm on shared-nothing cluster and some enhancements. We address two

108

4500

2 T
b 18 - -w<-X -----
4000 2 Yo
3500

16 | 3 —F— N]
Linear -~-Mk-~
3000 b i
2500
2000 |
1500 |

1000

Seconds
Relative Speedup
=3

0 2 4 6 8 10 12 14 16
Processors Processors

(2) (b)

Figure 4.25: (a) Parallel wall clock time in seconds as a function of the skew of @ =
0,1,2,3 for the running time and the communication time and (b) the corresponding
relative speedup. (Fixed parameters: The data size n = 8 millions. Dimensions d
= 8. Cardinalities |D;| = 256, 1 < i < d. The number of processors p = 16. The
memory size M = 100 Megabytes. The balance threshold parameter v = 5%)

critical problems: 1) how to compute data cube efficiently in external memory and
2) how to reduce the high cost of disk 1/O and network I/0. For the first problem,
we use a partitioning schema to reduce the memory for sorting and design an effi-
cient external memory adoption of PipeSort, which is a popular in-memory data cube
generation method. Our experiments show that the enhanced external memory data
cube generation algorithm reduces the sequential running time by up to 40% com-
pared with our basic algorithm. For the second problem, we design an adaptive data
* partitioning scheme, which uses a cost model to estimate the cost of computation,
disk I/O and network I/O based on different parallel machines and computes a “best
partitioning” to reduce the global cost. Our experiments show that the adaptive data
partitioning reduces the parallel running time by up to 40% and increases the speedup
by up to 50%. Overall our external memory parallel ROLAP data cube generation
algorithm exhibits good speedup in most cases while reducing the total running time
significantly. More importantly, our external memory algorithm can handle large data

-sets and maintains scalability in a linear time.

Chapter 5

External Memory and Parallel Generation of ROLAP
Iceberg Data Cubes

In this chapter, we present a novel PnP operator and “Pipe 'n Prune” (PnP) algo-
rithm for the computation of iceberg cube queries. Our PnP algorithm consists of
a sequential PnP version, an external memory PnP version, and a parallel PnP ver-
sion. In the performance evaluation, we compare the sequential PnP with other two
sequential iceberg algorithms, BUC [20] and Star-cubing [64], and then evaluate the
external memory PnP and the parallel PnP. These experiments show that PnP is an
interesting new alternative method to BUC or Star-cubing, and the external memory

PnP and parallel PnP algorithms also achieve good performance on large data sets.

5.1 Introduction

In the previous two chapters, we have described efficient parallel algorithms for com-
puting both full and partial data cubes. However, the size of data warehousing keeps
growing in recent years. In the Winter Corporation’s report [63], the largest three
databases exceed 20 terabyte in size. More importantly, it is estimated that by the end
of 2004, the storage requirements of more than 40% of production data warehouses
will exceed one terabyte [31].

One approach for dealing with the data cube size is to allow user-specific con-
straints. For iceberg-cubes (e.g. (20, 34, 64]), aggregate values are only stored if they
have a certain, user specified, minimum support. Another possible approach is to
introduce parallel processing which can provide two key ingredients for dealing with
the data cube size: increased computational power through multiple processors and
increased I/O bandwidth through multiple parallel disks (e.g. [25, 24, 28, 33, 29, 27,
39, 58, 40, 43, 55]). In the paper [56], Ng et.al. combined both of the above ap-
proaches and studied various algorithms for parallel iceberg-cube computation on PC

clusters. The algorithm of choice in [56], referred to as PT, applies a. hybrid approach

109

110
in that it combines top-down data aggregate with bottom-up data reduction.

Motivated by the work of Ng et.al. [56] and the recent success of another hy-
brid sequential method, Star-Cubing [64], in this chapter we further investigate the
use of hybrid approaches for the parallel computation of iceberg-cube queries. We
present a new hybrid method, called “Pipe 'n Prune” (PnP), for iceberg-cube query
computation. Our approach combines top-down data aggregate through piping with
bottom-up Apriori [18, 20] data reduction. The main difference to previous ap-
proaches is the introduction of a novel PnP operator which uses a piping approach
to aggregate data and, at the same time, performs Apriori pruning for subsequent
group-by computations. Our approach was motivated by the work of Ng et.al. (56]
who presented a two phase hybrid parallel method, PT, which first partitions BUC
bottom-up computation and then use top-down aggregate for building the startup
group-by for each partition. Inspired by Star-Cubing [64], our new PnP operator
extends this two phase approach towards a complete merge between data aggregate
and Apriori pruning. PnP is very different from Star-Cubing [64] in that PnP retains
top-down data aggregate through piping and interleaves it with iceberg bottom-up
data reduction (pruning). An illustration of our approach is sketched in Figure 5.2.
An important property of our PnP method is that it is composed mainly of linear
data scans and does not require complex in-memory structures. This allows us to
extend PnP to external memory computation of very large iceberg-cube queries with
only minimal loss of efficiency. In addition, PnP is well suited for shared-nothing
parallelization (where processors do not share any memory and all data is partitioned
and distributed over a set of disks). Our new parallel, external memory, PnP method
provides close to linear speedup particularly on those data sets that are hard to han-
dle for sequential methods. In addition, parallel PnP scales well and provides linear
speedup for larger number of processors, thereby also solving an open scalability

problem observed in [56].

In the remainder of this chapter, we present a novel PnP operator and “Pipe 'n
Prune” (PnP) algorithm for the computation of iceberg-cube queries. The novelty
of our method is that it completely interleaves a top-down piping approach for data
aggregation with bottom-up Apriori data pruning. A particular strength of PnP

is that it is very efficient for all of the following scenarios: sequential iceberg-cube

111
queries, external memory iceberg-cube queries and parallel iceberg-cube queries on

shared-nothing PC clusters with multiple disks.

5.2 The Sequential PnP Algorithm

PnP is a hybrid, sort-based, algorithm for the computation of very large iceberg-
cube queries. The idea behind PnP is to fully integration data aggregation via top-
down piping [59] with bottom-up (BUC [20]) Apriori pruning. We introduce a new
operator, called the PnP operator. For a group-by v, the PnP operator performs
two steps: (1) It builds all group-bys v’ that are a prefix of v through one single
sort/scan operation (piping [59]) with iceberg-cube pruning. (2) It uses these prefix
group-bys to perform bottom-up (BUC [20]) Apriori pruning for new group-bys that
are starting points of other piping operations. An example of a 5-dimensional PnP
operator is showed in Figure 5.1. The PnP operator is applied recursively until all
group-bys of the iceberg-cube have been generated. An example of a 5-dimensional
PnP Tree depicting the entire process for a 5-dimensional iceberg-cube query is shown

in Figure 5.2.

ABCDE

ABCD | ABCE ABDE ACDE

ABC

AB

Figure 5.1: A PnP Operator.

5.2.1 PnP: Sequential In-Memory Version

In this chapter, we assume as input a table R[l..n] representing a d-dimensional
raw data set R consisting of n rows R[], ¢ = 1...n. Because of the iceberg-cube
constraint, a row in a view is only returned if its measure is greater than minimum

support, min_sup.

112

TBCDE\
/[BCD ABGE ABDE ACDE BCDE|

YN AT TN
pec |- [ABD ABR/ |AGD |ACE ADE o |gce soe [GBE
LS TR TN N
AB e ;i lac AD AE[BC |- i BD BE|CD |ge DE
| / V| AN
N S B c ¥ b E

Figure 5.2: A PnP Tree. (Plain arrow: Top-Down Piping. Dashed Arrow: Bottom-up
Pruning. Bold Arrow: Sorting.)

For a row R[i] we denote with R;[i] the prefix of Rl[i] consisting of the first J
dimension values of R[i], followed by the measure value of R[i]. We denote with
RI[i] the row R[] with its dimension value in dimension J removed. We denote with
{ the empty (0-dimensional) view. For a view v we denote with |v| the number of
dimensions of v, and with 9/ the view that is the same as v but with dimension g
removed. We denote with »; the view identifier consisting of the first j dimensions of

V.

Our PnP method for the sequential, in memory, case is shown in Algorithms 13
and 14. Algorithms 14 represents the main part, the implementation of the recursive

PnP operator.

We explain our algorithm using the example in Figure 5.2 for a 5-dimensional
iceberg-cube query. In Line 2 of Algorithms 13, we call PnP-1(R, ABCDE, 0). This
will first result in the creation of the pipe ABCDE - ABCD - ABC - AB - A and then
create pruned versions of ABCE, ABDE, and ACDE for subsequent piping operations.
Table 5.1 shows a complete execution for the example raw data set R indicated in
the first column of Table 5.1. Buffers b[5] ... b[1] represent the results of piping
operations, while Rz ... R show the result of pruning operations. Note that, the
PnP operator uses only one single pass through the data set. The horizontal lines in
Table 5.1 indicate cases where aggregate or pruning take place. The recursive call in
Line 12 of Algorithms 14 initiates the PnP operator for group-bys ABCE, ABDE, and
ACDE. The prefix passed as third parameter in Line 12 of Algorithms 14 is shown
in Figure 5.2 as the underlined portions of ABCE, ABDE, and ACDE, respectively.

113

R b5 bl4] b[3] R3 b(2] | Ro b[1] | R:
ABCDE | ABCDE | ABCD | ABC | ABCE | AB | ABDE | A | ACDE
111111 111111 pruned 1111 2 11111
111121 11112 1 1111 2 11121 11121
11122 1 11122 1 11121 | 1113 1122 1 1122 1
112111 112111 11211 [1121 | pruned | 11 4 1412111
211111 211111 21111 pruned pruned pruned
211211 211211

211221 211221 21122 | 2113 213 23

311111 31111 1 31111 pruned 31111 31111
311211 311211 , 3121 2 31211
31122 1 311221 31122 | 3113 3122 1 31221
312211 | 312211 pruned 3123 1 32211
312231 | 312231 31222 | 3122 315 3532231
411111 411111 41111 | 4111 | pruned | 41 1 | pruned 4111 2
421111 42111 1 pruned pruned 41121
421121 (421121 | 42112 | 4212 42 2 41211
431211 431211 43121 4311 | pruned | 431 | pruned |4 4

Table 5.1: PnP Processing of ABCDE

It represents for those recursive calls the portion of the pipe that has already been
computed. The recursive call in Line 20 of Algorithms 14 initiates the PnP operator
for group-by BCDE and starts the iceberg-cube computation for all group-bys not

containing A. The resulting entire process is depicted in Figure 5.2.

Algorithm 13 Algorithm PnP: sequential, in memory
Input: R[l..n]: a table representing a d-dimensional raw data set consisting of n

rows R[i], i =1...n; min_sup: the minimum support.
Output: The iceberg data cube.
1: Sort R and aggregate duplicates in R.
2: Call PnP-1(R, vg, 0), where vg is the group-by containing all dimensions of R

(sorted by cardinality in decreasing order).

5.2.2 PnP: Sequential External Memory Version

Since PnP is sort based, it is easy to extend PnP to external memory, as shown in Al-
gorithms 15 and 16. We discuss here only the main differences between Algorithm 14
and Algorithm 16. All sort operations are replaced by external memory sorts. Some

care has to be taken with the scan and aggregate/pruning operations, as buffers may

114

Algorithm 14 PnP-1(R, v, pv)
Input: R[l..n]: a table representing the raw data set consisting of n rows R[], 1=

1...n; v: identifier for a group-by of R; puv: a prefix of v.
Output: The iceberg data cube.
1: Local Variables: k = [v] - |pv|; R;: tables for storing rows of R; b[1..k]: a buffer
for storing k rows, one for each group-by v, ...wy; h[L..k]: k integers; i, 5: integer
counters. Initialization: b[1..k] = [null .. null]; A[1..k] = [1..1].

2: fori=1..n do

3: forj=k.1do

4 if (b[j] = null) OR (the feature values of b[j] are a prefix of R[i]) then
5 Aggregate R;[i] into b[j].

6: else

7 if b[j] has minimum support then

8 Output b[j] into group-by v;.

9 if j < k — 2 then

10: Create a table R; = R/*1[A[f]] ... Rit1[i—1].
11: Sort and aggregate R;.
12: Call PnP-1(R;, 711, v,).

13: end if

14: end if

15: Set b[j] = null and h[j] = .
16: end if

17: end for

18: end for

19: Create a table R'[1..n/] by sorting and aggregating R[1] ... R![n].
20: Call PnP-1(R/, 9%, 0).

115
overflow and have to be saved to disk. The main difference between Algorithm 14

and Algorithm 16 is with respect to the recursive calls in Line 12 in Algorithm 14.
In the external memory version, we have to save the tables R; into a file F}; on disk
as shown in Line 11 of Algorithm 16. A separate loop in Lines 18 to 22 of Algo-
rithm 16 is then required to retrieve all R; and perform the recursive calls. Note
that, these operations are independent and we can apply disk latency hiding through
overlapping of computation and disk I/O. In order to make good use of this effect, we
have implemented our own I/O manager which resulted in a significant performance

improvement.

Algorithm 15 Algorithm PnP: sequential, external memory
Input: R[l..n): a table (stored on disk) representing a d-dimensional raw data set

consisting of n rows R|[i], i = 1...n; min_sup: the minimum support.
Output: The iceberg data cube (stored on disk).
1: Sort R, using external memory sorting, and aggregate duplicates in R.
2: Call PnP-2(R, vg, 0), where vp is the group-by containing all dimensions of R

(sorted by cardinality in decreasing order).

5.3 The Parallel And External Memory PnP Algorithms

We now discuss how our PnP algorithm can be parallelized in order to be executed
on a shared-nothing cluster as shown in Figure 2.27. Such a cluster consists of p
processors Py ... Pp—1, each with its own memory and disk. The processors are
connected via a network or switch. Processors exchange information by sending
and receiving messages each others. Our focus is on practical parallel methods that
can be implementéd on low-cost, Beowulf style, PC clusters consisting of standard
Intel processor based Linux machines connected via Gigabit Ethernet. Since the
speed of networks is much slower than processors and disk I/O, we try to reduce
communications among processors as much as possible in parallel PnP.

We assume as input a d-dimensional raw data set R stored in a table consisting
of n rows that are distributed over the p processors as shown in Figure 3.1. More
precisely, every processor P; stores on its disk a table R; consisting of % rows of R. As

indicated in Figure 3.1, each view of the output (iceberg-cube) will also be partitioned

116

Algorithm 16 PnP-2(R, v, pv)

Input: R[l..n]: a table (stored on disk) representing the raw data set consisting of

n rows R[], i = 1...n; v: identifier for a group-by of R; pv: a prefix of v.

Output: The iceberg data cube (stored on disk).

1:

2:

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24

3
4
5
6:
7
8
9

Local Variables: k = [v| — |pu|; R;: tables for storing rows of R (called parti-
tions); Fy: disk files for storing multiple partitions Rj; b[1..k]: a buffer for storing
k rows, one for each group-by v, .. .U B[1..k]: k integers; i, 7: integer counters.
Initialization: b[1..k] = [null .. null]; A[1..k] = [1..1].
for i = 1..n (while reading R[] from disk in streaming mode...) do
for j=%..1do
if (b[j] = null) OR (the feature values of b[j] are a prefix of R[i]) then
Aggregate R;[4] into b[j].
else
if b[4] has minimum support then
Output b[j] into group-by ;- Flush to disk if v;’s buffer is full.
if § <k —2then
Create a table R; = RI+1[h[j]] ... RI+1[; — 1].
Sort and aggregate R; (using external memory sort if necessary).
Write the resulting R; and an “end-of-partition” symbol to file F;.
end if
end if
Set b[j] = null and h[j] = i.
end if
end for
end for
for j=%.1do
for each partition R; written to disk file Fj in line 11 do
Call PnP-2(R;, 91, u;).
end for
end for
Create a table R'[1..n/] by sorting and aggregating R! [1] ... R'[n] (using external
memory sort if necessary).
Call PuP-2(R/, 9!, 0).

117
and distributed over the p processors. We refer to this process as striping a view over

the p disks. When every view is striped over the p disks, access to the view can be
performed with maximum I/O bandwidth through full parallel disk access.

For a d-dimensional view R;, we define views Tij ,J =1,..,d, as the views obtained
by removing from each row of R; the first J — 1 dimension values and performing

aggregate to remove duplicates (but not performing iceberg-cube pruning). Note
that, T} = R;.

Algorithm 17 Algorithm PnP: parallel, external memory
Input: R: a table representing a d-dimensional raw data set consisting of n rows,

stored on p processors. Every processor P, stores (on disk) a table R; of 7 Tows
of R as shown in Figure 3.1. min_sup: the minimum support.
Output: The iceberg data cube (distributed over the disks of the p processors as
shown in Figure 3.1).
1: Variables: On each processor P; a set of d tables T, ..., T2
for j=1..ddo

34

3: Each processor P;: Compute Tz-j from Tij ! via sequential sort. (T} = R;)
4: Perform a parallel global sort on 79 U T U ... U T3.

5: end for

6: for j =1..d do

7. Each processor P;: Apply Algorithm 15 to T?.

8 end for

Algorithm 17 shows the algorithm of parallel PnP. It consists two stages: data
partitioning and iceberg cube computing. In the data partitioning stage, we partition
the input data on processors and let each processor get the almost same amount of
data. In the iceberg cube computing stage, each processor computes iceberg cube

from the local data independently without further communications with each: other.

5.3.1 Data Partitioning

In the data partitioning stage, we partition the input data on processors and let each
processor get the almost same amount of data. In the iceberg cube computing stage,

each processor computes iceberg cube from the local data independently without

118
further communications with each other. In order to make the computing stage

independently for each processor, we partition the lattice into d sub-lattices, where d
is the number of dimensions. All the views with the same first dimensions are grouped
into one sub-lattice. See Figure 5.3. For each sub-lattice, there is a root view, such
as ABCDE, BCDE, CDE, DE and E. If each processor keeps the data of root
views on its local disks, the iceberg cube computing on each processor is independent
for sub-lattices. For example, Processor 0 may be computing on Sub-lattice A, while

Processor 1 is computing on Sub-lattice B without communication between them.

/AEDE\
ABED Af;E A?};E A?E }R
c D E ACD ACE E BCD BCE BDE 7<
WE BWE cvs Dr
B

c D E

Figure 5.3: Five Dimension Sub-lattices.

However, when different processors are working on the same sub-lattices, commu-
nications could be necessary if we partition the root views evenly on processors. In
Table 5.1, there are 16 rows of ABCDE, and each processor gets 8 rows if there is
only two processors in total. When both processors compute (31) for AB, Processor
0 gets (311), and Processor 1 gets (314). They have to exchange data to generate the
right aggradation value (315). But if we adjust partitioning between two processors
to let them gets the different values of A dimension, then no communication is needed
between them. For example, Processor 0 gets the first 7 rows, and Processor 1 gets
the rest of rows, so that all the rows where A is 1 or 2, are on Processor 0, and all the
rows where A is 3 or 4, are on Processor 1. Therefore each processor can compute
iceberg cube from its local data without communication.

The partitioning adjustment may cause slightly imbalance of workload on proces-

sors, and this increases the total computing time because the computing time is

119
determined by the slowest processor in the network. On the other hand, balanced

partitioning could even cost more time than unbalanced partitioning, because we have
to exchange data among processors, merge the data before computing measures and
compare them with minimal support. Since the increased computing time is very
small compared with the communication time and the merging time in the low speed
network of PC cluster, The partitioning adjustment is better way to partition the
data.

We partition the root views using the adaptive sample sort described in Algo-
rithm 7. In this algorithm, each processor sorts its local data first, and then sends
some sample data to Processor 0, which sorts the samples, and chooses pivots from
the sorted samples data, sends them back to each processor. Then all processors
partition the local data using the pivots, and send, receive partitions to or from other
processors. At last, each processor merges the partitions locally. In Algorithm 7,
there is a step to apply a global shift according to a threshold value. Here we do not

need a shift for iceberg cube computing.

5.3.2 Parallel Iceberg Cube Computing

TT
ABCDE
7-2
ABCD | ABCE ABDE JACDE BCDE
FANAUIN | r
\8C |-~ /ABD ABR |ACD [ACEADE |BoD |BGE BDE CDE
- P TAN
g P T
AB |- AC ADAE [Bc |} /BDBE |CD |GE DE
! A
l | r
A | B c D E

Figure 5.4: A PnP Forest.

The basic idea of the iceberg cube computing stage is illustrated in Figure 5.4.
The figure shows a PnP forest obtained by converting each sub-lattice in Figure 5.3
into a PnP tree. Therefore we get d PnP trees, one for each feature dimension. The
data set for the root of the jth tree is the set 79 = T¢ U TY U ... U Tg_l. We
start with 7! = R striped over the p disks, where processor P, stores T} = R;, and

120
execute on each processor P; the sequential Algorithm 15 with input T} (Line 7 of

Algorithm 17). This creates the first tree in the PnP forest of Figure 5.4.

Next, we compute on each processor P; the table T7? from T} by removing the first
feature dimension and performing aggregate to remove duplicates (via a sequential
sort); see Line 3 of Algorithm 17. Different data aggregate on different processors can
lead to imbalance between processors, and the set TFUTZU ... U T2, is therefore
re-balanced through a global sort {Line 4 of Algorithm 17). We can then execute on
each processor P; the sequential Algorithm 15 with input 72 (Line 7 of Algorithm 17),
creating the second tree in the PnP forest of Figure 5.4. This process is iterated d

times, until all views have been built.

5.4 DPerformance Evaluation

We have implemented the sequential (in-memory), external memory, and parallel ver-
sions of our PnP algorithm as presented in the previous section. Our sequential C-+-+
code evolved from the code for top-down sequential PipeSort used in the previous
chapters. Our external memory code evolved from the sequential code optimized us-
ing the partition sort and the external memory PipeSort in Chapter 4. Our parallel
code evolved, in turn, from our the external memory code through the addition of
communication operations drawn from the MPI communication library.

Our performance evaluation was conducted in three stages. In the first stage
we evaluate the sequential version of PnP by comparing it with sequential imple-
mentations of BUC and Star-Cubing. The Microsoft Window’s executables for these
implementations were kindly provided by J. Han’s research group to enable just such
comparative performance testing of cube construction methods [64]. In the second
stage, we evaluate the external memory version of PnP. For PnP codes, both the
sequential version and external memory version, were compiled using Visual C++
6.0. Both sequential and external memory experiments were conducted on 2 2.8 GHz
Intel Pentium 4 based PC running Microsoft Windows 2000 with 1 GB RAM and
an 80 GB 7200 RPM IDE disk. In the third stage of our performance evaluation we
explored the performance of our the parallel version of PnP on the 16 node cluster

introduced in Section 2.4.

In the following experiments, all sequential times are measured as wall clock times

121
in seconds. All parallel times are measured as the wall clock time between the start

of the first process and the termination of the last process. All times include the
time taken to read the input from files and write the output into files. Furthermore,
all wall clock times are measured with no other users on the machine. The running
times for BUC and Star-Cubing that we show are those captured and reported by

the executables obtained from [64].

5.4.1 Sequential Experiments

The performance results for our sequential experiments are shown in Figures 5.5
to 5.11. There are three groups of experiments in this section. The first group,
Figure 5.5, compares PnP to BUC and Star-Cubing for the special case of full cube
computation. Then the second group, Figures 5.6 to 5.7 compares the iceberg cube
computation on raw data sets of varying sparsity. The last group, Figures 5.8 to 5.11
explore various settings of the size of raw data, dimensions, skew and the minimal

support for both very dense and very sparse cubes.

140

450

120 | PrP

Siar-cut;ing —_— ' ' " ' o Slér-cubiﬁg —)
BUC - BUC ---d¢eeem ?

x a00 |

100 | 30 ¢

300 |
80

Seconds

123
2
§ 250
60 | @
® 200}
o 150 | .
20 ' 100 L
0 — ot L
0 20 30 40 50 60 70 80 90 100 1 15 2 2.5 3 3.5 4 4.5 5
Cardinality Rows (Millions)
(a) (b)

Figure 5.5: (a) Full cube running time in seconds as a function of the cardinality with
the size of raw data, n = 1 million and (b) Full cube running time in seconds as a
function of the size of raw data with the cardinalities |D;| = 256, 1 < i < d. (Fixed
parameters: Dimensions d = 6. Skew o =0.)

Figures 5.5 shows for full cube computation (i.e. the minimal support is 1.) results
for PnP compared to BUC and Star-Cubing on various cardinalities and growing data
sizes. Note that varying cardinality, while holding the other parameters constant,

amounts to varying the sparsity. We observe that for the special case of full cube

122
computation the sequential version of PnP performs better than BUC or Star-Cubing

regardless of sparsity. In this case, PnP takes full advantage of pipeline processing
and saves significant time by sharing sorts, while bottom-up Apriori data pruning is

ineffectual.

110

110 r T T T T T T T
Star-cubing —+— Star-cubing —+—
100 BUG - 100 BUE v
PAP oo Horeee
%0 %0
80 i
g o7 3
E oo
Ly 1]
w50} 0
40 b
F
20
10° - . . : . - 0 - . . + : -
10 20 30 40 50 60 70 80 90 100 10 20 30 40 58 60 70 80 90 100
Cardinality Cardinality
(a) (b)

Figure 5.6: (a) Running time in seconds as a function of the cardinality with the
minimal support, m = 10 and (b) m = 100. (Fixed parameters: The size of raw data,
n = 5 million. Dimensions d = 6. Skew a = 0.)

55 v 9 T
Star-cubing —+— 0 Star-cubing —+—

50 | BUC e b 80 } BUC X

a5 PAP e e PnP e

40

Seconds
Seconds

Rows (Millions) Rows (Millions)

(2) (b)

Figure 5.7: (a) Running time in seconds as a function of The size of raw data with
the cardinality for each dimensions, |D;| = 22 and (b) |D;| = 70. (Fixed parameters:
Dimensions d = 6. Skew o = 0. The minimal support, m = 10.)

Figures 5.6 compares PnP to BUC and Star-Cubing for iceberg cube computation

while varying sparsity. In order to measure the sparsity of a data cube, we use the

123
following formula to calculate it:

n
o= [T, |Ds|

In Figure 5.6(a), Sequential PnP typically shows the best performance when the
cardinality is between 25 and 80, or the sparsity of the data cube Sp is between
0.02 and 0.00002. Star-Cubing is the best one when the cardinality is below 25, or
sp is larger than 0.02, which is a very dense case, while BUC is the best one when
the cardinality is above 80, or sp is larger than 0.00002, which is a very sparse case.
Figure 5.6(b) shows the results when the minimal support is 100. We observe the
similar trend as Figure 5.6(a). PnP and BUC are very close when Sp is between 0.02
and 0.00002, and both of them are better than Star-Cubing. When Sp is larger than
0.02, Star-Cubing is best, and when Sp is less than 0.00002, BUC is the best.

In order to take a close look at these thresholds (0.02 and 0.00002), we select
the cardinality as 22 and 70 respectively for a range of n in order to examine at
which point PnP switches position with BUC or Star-Cubing. Figure 5.7(a) shows
running time verses varying data size with the cardinality for each dimensions, set
to |D;] = 22. In this dense cube case, we observe PnP and Star-cubing are better
than BUC, and they switch the position between 3 million and 4 million rows. The
sparsity at 3M is about 0.02. When the data size is smaller than 3M, or the sparsity is
smaller than 0.02, PnP is versatilely better than Star-cubing. And when the sparsity
is increase and larger than 0.02, Star-cubing becomes very slightly better than PnP.
Figure 5.7(b) shows running time verses the varying data size with the cardinality for
each dimensions, set to |D;| = 70. This is the sparse cube case. We observe PnP and
BUC are better than Star-cubing, and they switch the positions between 2 million
and 3 million rows. The sparsity at 2M is about 0.00002. When the data size is
smaller than 2M, or the sparsity is smaller than 0.00002, BUC is slightly better than
PnP. And when the sparsity is increase and larger than 0.00002, PnP becomes better
than BUC.

Finally, Figures 5.8 to 5.11 compare PnP to BUC and Star-Cubing for iceberg
cube computation while varying the raw data size, dimensionality, minimum support,
and skew, for both very dense (|D; = 10 or Sp = 5) and very sparse (|D;| = 100 or
Sp = 0.000005) cubes. We observe that the sequential performance of PnP is highly

stable even in these extreme cases. Sequential PnP performance is almost always

124

35

110

e 100 F
30 POP vl e /

Star-cubing —+—
BUC

25 ¢

20

Seconds
Seconds

1B

Rows {Millions) Rows (Millions)

(a) (b)

Figure 5.8: (a) Running time in seconds as a function of the size of raw data. with the
cardinality for each dimensions, |D;| = 10 and (b) |D;| = 100. (Fixed parameters:
Dimensions d = 6. Skew o = 0. The minimal support, m = 10.)

close to the best one, while BUC tends to perform best on very sparse data sets and
Star-Cubing best on very dense data sets.

Overall, sequential PnP shows the best performance when the data sets are in
the normal sparsity (0.00002 < Sp < 0.02), while still keeps close to the best one
in the extremely sparse or dense cases. Therefore sequential PnP appears to be
an interesting alternative to BUC and Star-Cubing especially in applications where

performance stability over a large wide range of input parameters is important.

5.4.2 External Memory Experiments

The performance results for the external memory version of PnP are shown in Fig-
ures 5.12. Note that since PnP is composed mainly of linear scans and does not
require complex in-memory data structures, it is reasonably easy to implement as an
external memory method for very large iceberg-cube queries. For these experiments,
in order to make good use of PnP’s properties, we have implemented our own I/O
manager to have full control over latency hiding through overlapping of computation
and disk I/0.

In evaluating the external memory version of PnP we use larger data sets, ranging

in size from 1 million to 20 million rows, while varying dimensionality d and available

memory M.

Seconds

350

300 |

250 ¢

200

150 |

100

50

Star-cubing —+—
BUC -6
POP w3

Dimensions

(2)

Seconds

400

125

350 1
300 -
250
200
150 ¢
100 +

PP o

Hevee

Dimensions

(b)

Figure 5.9: (a) Running time in seconds as a function of The size of raw data with
the cardinality for each dimensions, |D;| = 10 and (b) | D;| = 100. (Fixed parameters:
Dimensions d = 6. Skew a = 0. The minimal support, m = 10.)

Overall, our experiments show minimum loss of efficiency when PnP switches
from in-memory to external memory computation. The measured external memory
running time (where PnP is forced to use external memory by limiting the available
main memory) is less than twice the running time for full in-memory computation of
the same iceberg-cube query. In Figure 5.12(a) we observe similarly shaped curves
even as we increase the dimensionality of the problem due in large part to the effects of
iceberg pruning. The location of the slight jump in time, corresponding to the switch
to external memory, occurs between 5 miilion rows and 7 million rows depending
on the dimensionality of the iceberg cube being generated. Figure 5.12(b) shows,
not surprisingly, that there is a benefit to increasing the memory space M available
to the external memory algorithm. However, the gaps between the curves are very
small. It suggests that the external PnP takes full use of memory and shows the good

performance on the limit memory.

5.4.3 Parallel Experiments

The performance results for the parallel shared-nothing version of PnP are shown in
Figures 5.13 to 5.17. This implement is based on the external memory PnP code base

and uses external memory processing, in addition to parallelism, as needed.

126

160

X Starcubing —i— Star-cubing ——
------ Hovoresrrnnn.. BUC -3 UG -+ Doeeer
30 b B PP gy 140 + POP e 4
0+
25 12!
w w
4 o 100 (%
5§ 20 § !
3 8 wsofi
60 ‘
*‘% * * *
¥ OF %o
5) . . . : . , , 20 . ; A . . : .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Minimal Support Minimal Support
(a) (b)

Figure 5.10: (a) Running time in seconds as a function of the minimal support with
the cardinality for each dimensions, |D;| = 10 and (b) | D;| = 100. (Fixed parameters:
"The size of raw data, n = 5 million. Dimensions d = 6. Skew a = 0.)

These experiments focus on speedup, since it is one of the key metrics for the eval-
uation of parallel database systems [30]. The experiments consist of incrementally
increasing the number of processors available to the parallel version of PnP to deter-
mine the time and corresponding parallel speedup obtained while varying the other
key parameters of input data size, dimensionality, cardinality, minimum support, and
skew.

Figure 5.13(a) shows the running time of parallel PnP for input data sizes between
1 and 8 million rows and Figure 5.13(b) shows the corresponding speedup. As is
typically the case, relative speedup improves as we increase the size of the input and
consequentially the total amount of work to be performed. With the data size from
2M to 8M, near optimal linear speedup is observed all the way up to 8 processors.
For 16 processors, speedup drops a little because the data on each processor reduces.
With the 1M data size, speedup drops off slightly beyond 4 processors. Again, it
suggests our parallel algorithm works well on large data sets.

Figure 5.14(a) shows the running time of the parallel version of PnP for increas-
ing dimensionality and Figure 5.14(b) shows the corresponding speedup. We observe
that the speedup increases with the dimensions increasing. When dimensions increase,
there are exponentially increasing views in a data cube, so that the local computing
spend much more time. However the communication time increases slowly. In fact,

we just need one more parallel sort when dimensions increase by 1. Therefore, the

127

35

vy Stér-cubing —t Stér-cubing ———
.......... "y UC 3 . BUC -
30} -ﬂ.___n._.“.x. PP e | 100 | PAP e]
25| Ra] 80
o, ‘
g 20t 1 S 60f
& ® Bf
15 | 1 40 (
20
0 A
0 1 2 3
Skew (Zipf) Skew (Zipf)
(a) (b)

Figure 5.11: (a) Running time in seconds as a function of the data skew with the
cardinality for each dimensions, |D;| = 10 and (b) |D;| = 100. (Fixed parameters:
The size of raw data, n = 5 million. Dimensions d = 6. Skew o = 0.)

speedup goes up with dimensions increasing. For 16 nodes, we observe that 11 dimen-
sion data shows super linear speedup, 10 dimension data speedup is below, but close
to the linear line, and 9-8 dimension data speedup is farther away from the linear
line. Note that the best speedup is achieved on the problems which are hardest to
solve sequentially, that is those that involve the largest problems in terms of input
size and/or dimensionality.

The cardinality of the dimensions in the input data can significantly effect perfor-
mance. As cardinalities increase so does the sparsity of the data set, and this typically
effects the size of the resulting iceberg query result. Figure 5.15(a) shows the running
time of the parallel version of PnP for input data covering a range of cardinalities and
Figure 5.15(b) shows the corresponding speedup. We observe that the running time
increases when the cardinality increases. Generally, the aggregated measures become
smaller when the cardinality increases, so that we might expect the less running time.
However, in this experiment, we choose the small minimal support and a large data
size. That means the most measures are still greater than the minimal support, and
more rows are output. Therefore, in Figure 5.15(b), we observe that the speedup
increases when the cardinality increases. The largest speedup is for the carnality of
200. It is even above the linear line. We notice its sequential running time is the too.
Then the speedup for the carnality of 100 is below the linear line and still close to the

linear line. The worst one is the data set for the cardinality of 50, because the cube

00 ——r—r—————————————— — 1600 — T
= ¥
=10 -eerHerem = BV
1400 | 4oqg o s 1400 [\=100MB ¢ -
1200 s 1200 |

1000 1000 +

Seconds
Seconds
o«

o
o

0% 0%
1234567891011121314151617181920 1234567889 1011121314151617 181920
Rows (Millions) Rows (Millions)

(a) (b)

Figure 5.12: (a) Running time in seconds as a function of the size of raw data with
the memory size M=500MB and (b) with the 10 dimensions. (Fixed parameters: The
cardinality |D;| = 300, 1 < 4 < d. Skew a = 0. The minimal support, m = 1000.)

is dense, and output the less data. The data set with the various cardinality shows
the speedup between the cardinality of 50 and 100, because most of its cardinalities
are still small and it is still dense.

Figures 5.16 shows the effects on running time and speedup of varying minimum
support. We observe that for smaller values of minimum support, m = 100 and m =
500, the computing time required is larger and the speedup obtained by our parallel
PnP algorithm is near the linear line. And the curves of m = 100 and m = 500
are almost overlapped, because the most measures in the data cube are greater 500,
also greater than 100 too, so that the two cases output almost the same amount of
data. For the large minimal support, m=1000 and m=2500, the speedup is away
from the linear line, because most of data are pruned and so lack of efficient local
computing. Note that the running time for m=1000 is greater than m=2500, however
the speedup for m=1000 is lower than m=2500. The reason is that PnP operator
becomes an in-memory version when the data can fit in memory on each processor,
so it takes much less time than the external version, which is used for the sequential
case.

Figures 5.17 shows the effects on running time and speedup of skew. We observe
that for smaller values of skew the time required is larger (as is typically the case in
cube construction) and the speedup obtained by our parallel PnP algorithm is near

linear. When skew is sufficiently large speedup falls off, however so does the wall

1600
i n=;m N 1 n=;m — -
L NZ2M ceeHKomen | n= .V
1400 n:g]\MA é 14 n=4M é E
n=gM -~ n=8M --@--
1200 12+ Linear ---@--
, 1000F 10}
2
§ B00F y
8 !

600

Relative Speedup
[«

400 1
200

10 12 14 16 0 2 4 6 8 1 12 14 16
Processors Processors

(2) (b)

Figure 5.13: (a) Parallel wall clock time in seconds as a function of the number of
processors for the data size n = from 1 million to 8 million rows and (b) corresponding
speedup. (Fixed parameters: Dimensions d = 10. Cardinalities | D;] = 100, 1 < i < d.
Skew o = 0. The minimal support m = 100. The memory size M = 100 Megabytes.)

clock time required by parallel PnP to compute the iceberg cube.

Overall our experiments show that the parallel version of PnP provides close to
linear speedup particularly on those data sets that are hard to handle for sequential

methods, such as large size high dimensions and large cardinalities.

5.5 Summary

In this chapter, we have described the use of hybrid approaches for the parallel com-
putation of iceberg-cube queries and presented a new hybrid method, “Pipe 'n Prune”
(PnP), for iceberg-cube query computation. The most important feature of our ap-
proach is that it completely interleaves top-down data aggregate through piping with

bottom-up Apriori data reduction.

We performed an extensive performance analysis of PnP for all of the above sce-
narios. For sequential iceberg-cube queries, PnP typically shows a best performance
in the certain range of sparsity. While BUC and StarCube have ranges of data density
and skew where BUC outperforms StarCube or vice versa. In both cases, PnP is close
to the best one. This makes PnP an interesting new alternative method, especially

in applications where performance stability over a wide range of input parameters is

2500 : r T . pr— 16
o d=Q wrerdoome wul
d=10 v Horrmr
2000 d=11 —3— 12
s
w 1500 | *\ B 10}
E -. 5
1 w
8 % e °
1000 - %% s N
", g 6
4 L
500
2
0 0 .
0 0 2 4 6 8 10 12 14 16
Processors Processors
(a) (b)

Figure 5.14: (a) Parallel wall clock time in seconds as a function of the number of
processors for the dimensions d = from 8 to 11 and (b) corresponding speedup. (Fixed
parameters: The data size n = 8M. Cardinalities |D;| = 100, 1 < i < d. Skew o = 0.
The minimal support m = 100. The memory size M = 100 Megabytes.)

important. For external memory iceberg-cube queries, we observe minimum loss of ef-
ficiency. The measured external memory running time is less than twice the running
time for full in-memory computation of the same iceberg-cube query. For parallel
iceberg-cube queries on shared-nothing PC clusters, PnP scales well and provides
near linear speedup for larger numbers of processors. In general, PnP performs very
well for both, dense and sparse data sets and it scales well, providing linear speedup

for larger number of processors up to 16 processors.

131

3000
2500 |
2000 | 1%
S 1500 F "% @
o =
@ =
1000 | g
500
0 . :
0 [+ 2 4 6 8 10 12 14 16
Processors Processors
(a) (b)

Figure 5.15: (a) Parallel wall clock time in seconds as a function of the number of
processors for data sets with different cardinality mixes, and (b) corresponding relative
speedup. (Fixed parameters: The data size n = 8M. Dimensions d = 10. Cardinalities
(A)|Di| = 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2. (B)|D;| = 50, 1 < i < d. (C)|D{
=100, 1 <i < d. (D)|D;| = 200, 1 < i < d. The minimal support m = 100. Skew
o = 0. The memory size M = 100 Megabytes.)

1600 o T m=‘i08 -x 16
m=50
1400 m=1000 - 1 14+
m=2500 —3—
1200 12t
S

- 1000 T 10¢f
o @
1 & 8
§ 800 o
@ =

600 o 6r

o
400 4l
200 0 2t
R o R -
0 . . - 0 + . .
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Pracessors
(a) (b)

Figure 5.16: (a) Parallel wall clock time in seconds as a function of the minimal
support and (b) corresponding relative speedup. (Fixed parameters: The data size n
= 8M. Dimensions d = 10. Cardinalities |D;| = 100, 1 <% < d. Skew a = 0. The
memory size M = 100 Megabytes.)

132

3000 r T r T v o — 16
2500 % 3787 1

12 F
2000 |

1500

Seconds
Relative Speedup
«©

1000

500

2} # oo

0 2 4 6 8 10 12 14 16
Processors Processors

(a) (b)

Figure 5.17: (a) (a) Parallel wall clock time in seconds as a function of the number of
processors for data skew & = 0,1,2,3 and (b) corresponding relative speedup. (Fixed
parameters: The data size n = 8 millions. Dimensions d = 10. Cardinalities |D;| =
100, 1 <2 < d. The number of processors p = 16. The minimal support m = 100.
The memory size M = 100 Megabytes.)

Chapter 6

The CgmOLAP System

In the previous three chapters we have focused on algorithm design issues for high
performance sequential external memory and parallel data cube generation. The focus
has been on the algorithms rather than the software engineering and system issues
that must be tackled to realize them in a comprehensive robust extensible system.
In this chapter, we introduce our cgmOLAP system, the first fully functional parallel
OLAP system able to build data cubes at a rate of more than half terabyte per hour.
We describe the system architecture, the main modules of the system, and how the
system process files into the larger scheme of query processing. We also present a
performance evaluation of the cgmOLAP system using real (i.e. non-synthetic) and
very large synthetic data sets. This performance evaluation confirms our early results

that were based on previous synthetic data.

6.1 Introduction

All of the key algorithms described in Chapters 3, 4 and 5 of the thesis have been
incorporated into the cgmOLAP system. The cgmOLAP system, developed as part of
the PANDA project [13] at Dalhousie, Concordia, Carleton and Griffith universities,
employs parallel processing techniques to support highly scalable ROLAP data cube
generation and queries on large data warehouses, where the size of a single data cube
query can be massive. The cgmOLAP system is the first fully functional parallel
OLAP system able to build data cubes at a rate of more than half terabyte per
hour. The system incorporates a variety of novel algorithms, such as the parallel
computation of full cubes, partial cubes, and iceberg cubes, which were discussed
in the previous chapters. In particular, our cgmOLAP system has the following

distinguishing characteristics:

1. Fully parallel. The cgmOLAP system is fully parallel and has been designed

from the ground up to efficiently exploit the computational power of inexpensive,

133

134
shared-nothing, distributed memory clusters.

2. Memory hierarchy adaptive. All of the key algorithms that make up the
cgmOLAP system are designed to be both cache friendly and capable of running
fully in external memory. No requirement that even data stored on a single
processor will fit in memory. Detailed engineering of I/O managers to manage

local disk subsystems.

3. Highly tunable. All of the key algorithms that make up the cgmOLAP system
are driven off an explicit cost model. This approach supports both hardware

platform portability and application self tuning.

4. Scalability. The cgmOLAP system is highly scalable in terms of dimensions,
processors, and input data size. All of the key parallel algorithms for data cube

generation and query processing exhibit close to linear (optimal) speedup.

6.2 Software Architecture and Hardware Platform

Figure 6.1 shows the cgmOLAP software architecture. The key components in the

architecture include:

1. Application interface. Provides the application interface to the cgmOLAP

system.

2. Parallel query engine. Supports parallel OLAP operations, introduced in

Section 2.2.4, such as roll-up, drill-down, slice, dice, and pivot queries.

3. Parallel cube generation engine. Supports parallel generation of full, partial
and iceberg data cubes. The implement of the engine is based on the algorithms,

which has been discussed in previous chapters.

4. Meta data and cost model repositories. Repositories for meta data de-
scribing original data sets and materialized data cubes, as well as hardware
configuration and system performance parameters that drive the algorithmic

cost models.

Application Interface

Parallel Query Engine

Transformation Module

Query Resolution

Materialized
View Manager

Caching
Framework

Index Builder
Module

Parallel Cube Generation Engine

Partial Cube

Full Cube Genertion

Generation

Iceberg Cube
Generation

View Selection
Module

Layout Manager PnP Operator

Pipeline Process Module

Metadata RepositorfA]Cost Module Repository

Sorting Aggregation
Module Module /0
Manager
Memory Manager

Parallel Communication Library

0S Support

Disk Subsystem

Figure 6.1: The cgmOLAP System Architecture.

5. Shared server components. These components provide shared modules used
by upper components and uniform management of disk I /O, memory, commu-
nications and other resources. Of these components, the bottom three, the
parallel cube generation engine, the metedata and cost model repository and
the shared server components were all largely designed and implemented as part
of this thesis. The components were built using C++, the MPI communication
library and the LEDA data structure library. The core software components
alone consist of over 80 files and 20,000 lines of codes. These components were
designed for extensibility and heavily optimized. See Appendix A for the core

systems’ documentation.

136

Po Pr Pp.r Storage node

ﬂmj bra: mem l ljroc mem I l proc mem
L - L
)| |= ‘w ’m

disk array

I network or switch I

Figure 6.2: A Shared-Nothing Cluster with a Disk Array.

The hardware platform of the cgmOLAP system is low cost, shared nothing, com-
modity cluster architecture. A diagram of such an architecture is given in Figure 6.2.
Consider a storage node as shown in Figure 6.2 that holds the initial, possibly very
large, raw data set R on a disk array. The cgmOLAP system fully distributes the
data set R over the p local disks of processors Py to P,_; in striped format as shown
in Figure 3.1. Similarly, each view created by the cgmOLAP system is generated
over the p local disks in striped format. The striped format ensures that subsequent
accesses to an individual view generated by the cgmOLAP system can access all D
local disks in parallel, providing maximum I/0 bandwidth, with balanced retrieval
across the disks/processors. A particular feature of the cgmOLAP system is that it

shows very high performance on this share-nothing cluster architecture.

6.3 Query Processing in cgmOLAP

While the parallel cube generation engine can be used to produce data cubes, the
materialized views in the data cubes may still be quite large. Moreover, given the
complex, multidimensional nature of the OLAP environment, a naive query imple-
mentation would significantly undermine the potential benefit of the materialized
views. Therefore, it is crucial that an efficient, OLAP-centric query model be devel-
oped to complement the suite of cube generation algorithms developed in this thesis.
In the remainder of this section we briefly describe query processing in the cgmO-
LAP system not because it is a contribution of this thesis, but rather to show the
interaction between cube generation algorithms and query processing in practice.
Figure 6.3 depicts the basic query model in our cgmOLAP system. In this ex-

ample, the user requests a query on the view ABC with the value ranges on each

137

Initial User
— || Quey
ngry on the Tdently Surrogate Pool
View ABC Cheapest
A=10/20 ‘ Surogate CDAB
B=1/6 Resolve Transformed
C=15/50 - Query on Surrogate
ACBDE

C = 15/50

D = min/max|

A=10/20

B=1/6
Permute Partial Result

Sort and

; iate | Aggregate
E lné%?eergé?tei — Final Result:
i __ONABCD ! ABC

Figure 6.3: The Process of Resolving Queries Against Materialized Views.

dimension. If ABC does not exist in the system cache, a surrogate view will be se-
lected. Here the surrogate view is CDBA, and then the query will be transformed
into a new query on the surrogate CDBA and the ranges of ABC are transformed
into new ranges. After the result of the transformed query is answered, it is re-sorted

and aggregated into the final answer on ABC.

In practice, OLAP queries tend to exploit dimension hierarchies such as year-
month-day on a “time” dimension. The query engine supports hierarchical query
resolution by way of an extensive dimension-aware caching subsystem. Not only does
the caching framework improve the response time for general queries, but it can be
used to efficiently resolve common hierarchical OLAP queries. Specifically, roll-up,
drill-down, slice and dice, and pivot queries can directly manipulate the intermediate
results sets associated with previous hierarchical queries. For example, if we need
to answer a query on year, the query engine first searches for the intermediate cube
including year. If there is no such cube, the query engine converts the query to a
new query about the highest level of the “year-month-day” hierarchy available. Note
that the base level in the hierarchy is always available, such as the day level in this
example. After the result for the new query is found, the query engine converts the

result from the day level back to the year level.

138

IP Dimension Time Dimension
IP (PK) Hour Key (PK)
Network Period

Click Fact Table

IP Key (FK)

Date Dimension Date Key (FK)
/ Hour Key (FK)
Content Key (FK)
Date Key (PK) Y

Click Count

Yeaxr

Month Content Dimension
Dayofmonth
Dayofweek Content (PK)

Figure 6.4: The Star Scheme for the Web Log Data Set.

Longitude Dimension Aspect Dimension

Longitude Key (PK) Aspect Key (PK)

Hydrologic Fact Table

Latitude Dimension Longitude Key (FK)
Aspect Key (FK)
Latitude Key (FK)
Slope Key (FK)
Elevation Key (FK)
FD Key (FK)

CTI Key (FK)

Slope Key (PK) Continent Key (FK) \
Count \ FD Key (PK)

Elevation Dimension

Latitude Key (PK}
ude Key [—— Elevation Key (PK)

Slope Dimension Flow directions Dimension

Compound Topographic

Index Dimension Continent Dimension

CTI Key (PK) Continent Key (PK)

Figure 6.5: The Star Scheme for the World Hydrologic Data Set.

6.4 Experimental Evaluation of cgmOLAP on Real Data Sets

In this section we describe an experimental evaluation of the cgmOLAP cube genera-
tion algorithms using real (i.e non-synthetic) data sets. In order to convert these data
sets to cgmOLAP internal format, an ETL process was employed. Using ETL tools
provided in Oralce 9 for Linux, we converted two large real data sets into cgmOLAP
internal format and we evaluate the parallel cube generation engine on these real data
sets. The internal format is a structured binary file. The first integer indicates the
number of rows in this file and the second integer indicates the number of columns
in this file. The rest of the file is a two dimension integer array to store data. We
first store the first row, then the second row, ..., and the last row. Binary files can be

read into memory fast and data in memory can be written into binary files fast.

139
The first data set comes from the web logs of a local newspaper web site. For

each day, there is an individual log file recoding every click event from users. Each
line in the log file indicates a click event, and consists of the IP address, date, time
and page accessed in this click event. We converted the log files into a click fact table
and four dimension tables stored in an Oracle database. In this fact table, there were
four dimensions (IP, date, time and content) and one measure (click counts). The
tables were organized as a star schema, illustrated in Figure 6.4. The IP dimension
includes 833471 unique addresses. The date dimension includes 366 unique days. The
time dimension includes 24 unique hours. And the content dimensions includes 25

unique categories of contents. The fact table includes 154,729,804 rows and each row

includes four dimensions and one measure.

The second data set comes from the HYDRO1k Elevation Derivative Database
[5]. It is a geographic database developed to provide hydrologic information on a
continental scale. The database includes data of six continents: North America,
South America, Europe, Africa, Asia and Australia. For each continent, it divides
the ground into the same size squares based on longitude and latitude, and then
records elevation, aspect, compound topographic index, flow directions and slope for
each square. We organized the data as a star schema as illustrated in Figure 6.5. In
the hydrologic information fact table, there are eight dimensions: longitude, aspect,
slope, elevation, flow directions, compound topographic index and continents. The
number of unique values (cardinalities) for each dimension is 360, 360, 180, 90, 82, 8,
7 and 6 respectively. The fact table includes one measure: square counts. The total
number of rows in the fact table is 124,676,260.

Figure 6.6 shows the running time and the relative speedup for generating full
and partial data cubes from the web log data set. In Figure 6.6(b), we observe that
the speedup is very close to linear for both full and partial data cubes. The full cube
generation shows the best speedup, since much time is spent on local computing. The
speedup for 50% selected views is better than that for 75% selected views, because
both of them compute the similar number of views, while 75% selected views spend
more time on communications. The speedup for 25% selected views drops because
of insufficient local computing. Note that we cannot use the zipf value to indicate

the data skew in the web log data set. However, the skew does exist in this real

140

250

K=25% —t— K=25% ——f—

K=50%)(..... K=50% mreeDovee

i K=75% - 11 K=75% o

200 - A K=100% ——8— 1 K=100% -~
i 12 Linear ---i--

150 |

Seconds

100 -

Relative Speedup
-]

50

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors

(a) (b)

Figure 6.6: (a) Parallel wall clock time in seconds as a function of the number
of processors (b) corresponding speedup. (Fixed parameters: The data size n =
32,631,392. Dimensions d = 4. Cardinalities |D;| = 833471, 366, 24, 25. Skew
o = Unknown. The memory size M = 100 Megabytes. The balance threshold
parameter 7 = 5%)

data set. For example, some IP addresses belong to proxy servers, which have much
higher access frequency than personal IP addresses. Another example is that users
prefer one or two content pages over other contents on this web site. We know that
about 40% clicks are about the obituary and birth pages on this local newspaper web
site. In spite of these skew data, our parallel cube generation algorithm shows good
speedup. We also observe that the running time for full cube, 75% selected views
and 50% selected views is very close in Figure 6.6(a). The reason for this is that
only four dimensions or 16 views are in this data sets. And when we compute 75%
selected views and 50% selected views, we may add some intermediate views. This
makes the total number of computed views is close to 16 for partial data cubes. For

25% selected views, only 4 views are selected so that the running time decreases.

Figure 6.7 shows the running time and the relative speedup for generating iceberg
data cubes from the web log data set. We observe that the speedup is almost linear in
Figure 6.7(b). In the web log data set, the first dimension and the second dimension
have the relatively large cardinalities compared with the number of processors, so the
work load is well balanced across the processors in our parallel PnP algorithm. This

makes the speedup is almost linear even though the data set is skew.

Figure 6.8(a) shows the running time for full and partial data cube generation on

141

250 T r T r r T 35 T r
Web logs —+—
Linear -3 X
30]
200 +
e 25t
150 | 3
2 @ 20}
@ 100 | £ 157
Q
€ 10t
50
5 L
o : A . A : " 0 . . X N N N
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Processors Processors
(2) (b)

Figure 6.7: (a) Parallel wall clock time in seconds as a function of the number
of processors (b) corresponding speedup. (Fixed parameters: The data size n =
32,631,392. Dimensions d = 8. Cardinalities |D;| = 833471, 366, 24, 25. The mini-
mal support m = 100. Skew o = Unknown. The memory size M = 100 Megabytes.

)

the web log data set. We observe that the computing time is only one minute for
the full data cube and less than one minute for partial data cube for this large web
log data set, which is 3 gigabyte in size. We also observe that the running time for
full and partial data cubes is very close because there are only four dimensions or 16
views in total. Therefore, partial data cubes might compute the similar number of
views with the full cube, since our sequential partial data cube algorithm might add

some intermediate views.

Figure 6.8(b) shows the running time for iceberg cube generation on the web log
data set. We observe that the running time is less than one minute for this large data
set with 150M rows. We also observe that the running time is constant for different
minimal support values, because the aggregated measures are very large in this large
size data set with small dimensions, and then as a consequence most of the data are
output for all of the different minimal support values. That is also the reason that
the running time of iceberg cube generation is so close to that of full and partial cube

generation.

Figure 6.9 shows the running time and the relative speedup for generating full
and partial data cubes from the world hydrologic data set. We observe that the

speedup is close to linear when we use a small number of processors, such as two or

142

100 T 1 T T T y v 100

80 1 80
3 60 | +—// g 80 h
3]
Q QO
a 40t @ 40t

20 + E 20 f

0)) I A " A 0 . " . .
20 30 40 50 60 70 80 90 100 [} 2000 4000 6000 8000 10000
Percentage of Selected Views Minimal Support
(a) (b)

Figure 6.8: (a) Parallel wall clock time in seconds as a function of different percentages
of selected views and (b) Parallel wall clock time in seconds as a function of the
minimal support. (Fixed parameters: The data size n = 154,729,804. Dimensions d
= 4. Cardinalities |D;| = 833471, 366, 24, 25. The number of processors, p = 16.
Skew o = Unknown. The memory size M = 100 Megabytes. The balance threshold
parameter v = 5%)

four, but the speedup drops a little when we use more processors, such as 8 or 16,
however the speedup is still more than 80% of linear except in that case. For 25%
selected views, the speedup drops to 60% of linear speedup because of insufficient local
data on each processor. Note that we cannot use the zipf value to indicate the data
skew in this world hydrologic data set either. However, the skew does exist in this
world hydrologic data set. For example, deserts and lakes have the totally different
hydrologic characteristics. In spite of these skew data, our parallel cube generation

algorithm shows the good speedup.

Figure 6.10 shows the running time and the relative speedup for generating iceberg
data cubes with different minimal support values from the world hydrologic data set.
We observe that the relative speedup is typically super linear. The reason for this
is twofold. Firstly, the parallel algorithm benefits from the large cardinality of the
dimensions and is able to get a near perfect load balance. There is also sufficient local
computation involved in this very large data set to overwhelm the overhead due to
communication. Secondly, for this large size data set, the sequential algorithm has to
extensively use disk based external memory operations while the parallel version deals

with less data on each processor and can use more in-memory operation. We also

1800

T k=25% ——

K=50% §=§g:§a :

L A =50% eoHere] L K= [V
1600 3 K=75% Hoeorr 14 K=75°/: ,,,,, ¥
1400 | K=100% —&— | K=100% ~-0J -

12 Linear ---@--

1200 | R
1000 |
800 |
600
400 |
200 |

Seconds
Relative Speedup
[+

Processors Processors

(a) (b)

Figure 6.9: (a) Parallel wall clock time in seconds as a function of the number
of processors (b) corresponding speedup. (Fixed parameters: The data size n =
17,845,529. Dimensions d = 8. Cardinalities [D;| = 360, 360, 180, 90, 82, 8, 7, 6.
Skew o = Unknown. The memory size M = 100 Megabytes. The balance threshold
parameter v = 5%)

observe that the speedup increases when the minimal support values decrease. This
is because the local computing cost goes up as minimal support decreases, making it

easier to hide communication overhead.

Figure 6.11(a) shows the running time for full and partial data cube generation on
the world hydrologic data sets. We observe that the running time increases with the
percentage of selected views, since more time is needed to process the larger number
of views. We also observe that the running time for 75% views is slightly larger than
that for the full cube. This is unexpected. Apparently,, it is due to the fact that the
sequential partial data cube algorithm cannot compute every view using a pipeline
for 75% selected views, instead it sorts some parent views at a high cost. But for the
full cube, the algorithm can always find a best parent view in a pipeline to compute

every view.

Figure 6.11(b) shows the running time for iceberg cube generation on the world
hydrologic data sets. We observe that the running time decreases when the minimal
support value increases, because the output is smaller when we choose larger minimal

support values.

The above experiments shows our algorithms run very efficiently on these large

real data sets. It only takes one minute to generate full, partial or iceberg data cube

144

1200 T . T T T r g 35
100 —— 100 ——
200 e Ko 200 oo
1000 F 500 e 30 - 500 e
Linear —-{3—
25
800 | s
3
§ by g 207+
g 600 @
é 2 15}
400 5
€ 10
200 . 5t
0 . R Al . : X 0 N R . . . R
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Processors Processors
(a) (b)

Figure 6.10: (a) Parallel wall clock time in seconds as a function of the number
of processors (b) corresponding speedup. (Fixed parameters: The data size n = .
Dimensions d = 8. Cardinalities |D;] = 360, 360, 180, 90, 82, 8, 7, 6. The minimal
support m = 100. Skew oo = Unknown. The memory size M = 100 Megabytes.)

for 150M row and 4 dimension data sets. It takes only 30 minutes to generate full
cube for a 124M row and 8 dimension data set, and 15 minutes for the corresponding
iceberg cubes. This is strong evidence that our parallel algorithms work well in

practice on large scale real data sets.

6.5 Experimental Evaluation of cgmOLAP on Large Data Sets

In this section we evaluate the cgmOLAP cube generation algorithms using large
synthetic data sets. Figure 6.12 shows the running time for generating full data
cubes from large data sets of up to 250 million rows and the running time for the
corresponding output data of up to one terabyte. We observe that running time is
almost linear with both input data size and output data size. We also observe that
for the output data size of 980 megabytes the running time is about 115 minutes. It
shows our cgmOLAP system is able to build data cubes at a rate of more than half

terabyte per hour on 32 nodes.

6.6 Summary

In this chapter, we introduced our cgmOLAP system, which is the first fully functional
parallel OLAP system able to build data cubes at a rate of more than half terabyte per

1800
1600
1400
1200
1000 ¢
800
600 +
400
200

Seconds

30 40 50 60 70 80 90 100
Percentage of Selected Views

(a)

Seconds

145

1800

1600 |
1400
1200
1000 |
800 |
600
400 |
200 r

200 400 600 800 1000

Minimal Support
(b)

Figure 6.11: (a) Parallel wall clock time in seconds as a function of percentages
of selected views and (b) Parallel wall clock time in seconds as a function of the
minimal support. (Fixed parameters: The data size n = 124,676,260. Dimensions d
= 4. Cardinalities |D;| = 360, 360, 180, 90, 82, 8, 7, 6. The number of processors,
p = 16. Skew o = Unknown. The memory size M = 100 Megabytes. The balance
threshold parameter v = 5%)

hour. cgmOLAP integrates all of the algorithms, discussed in the previous chapters.

Our experiments show that the parallel cube generation engine works well on large

scale real data sets. Along with the parallel query engine, the cgmOLAP system can

support massive hierarchical queries on terabyte data sets.

146

120 T T T T T 120 T T T T ™ —T
100 1 100
80 ’ 80 ¢
8 8
2 60 2 er
= =
40 + 1 40 -
2 J 2 F
0 A L 1 L A, 0 - L . 1. L L " 1. 1
0 50 100 150 200 250 300 0 100 200 300 400 500 600 700 800 900 1000
Rows of input (Millions) Bytes of Output (Megabytes)
(a) (b)

Figure 6.12: (a) Parallel wall clock time in minutes as a function of input data size
and (b) the corresponding output data size. (Fixed parameters: Dimensions d = 8,
Cardinalities |D;| = 256 for 1 < i < d. The number of processors, p = 32. Skew
a = 0. The memory size M = 300 Megabytes. The balance threshold parameter +
= 5%)

Chapter 7
Conclusions and Future Work

This thesis has combined 1) the design of efficient parallel cube generation algorithms
for the three basic types of data cubes: full cubes, partial cubes and iceberg cubes, 2)
careful system work associated with parallelism and external memory issues, and 3)
extensive experiments and evaluation. The resulting techniques are first reported in
the literature that exhibit new linear speedup and good scalability for cube generation
problems on shared nothing clusters of up to 16 Processors.

In this thesis, we have designed and implemented parallel data cube generation
algorithms for shared-nothing clusters. Based on these algorithms and implementa-

tions, here are a number of potential research directions that could be pursued:

1. View Selection In this thesis we assume that the user provides a list of views
to be generated. In practice, a OLAP system may need to determine which
views to generate in order to improve querying response itself. This is called

the view selection problem. It would be interesting to explore view selection in

the parallel context.

2. Grid Computing The Grid is a new type of parallel and distributed system. It
can use geographically distributed autonomous resources to solve large prob-
lems. Grids are in many ways similar to clusters but exhibit much higher
possible communication latency. It would be interesting to try to extend the

parallel algorithms described in this thesis to the grid environment.

3. Integration with Data Mining Data Mining is another important decision sup-
port tools in data warehousing systems. Since data mining tasks can be executed
on various data sources, including OLAP data cubes. It would be interesting

to consider if we can use data cubes to speed up data mining tasks.

147

Bibliography

[1] Beowulf Cluster. http://www.beowulf.org/. Last visited: May 9th, 2005.

[2] Business Intelligence Definition. WHATIS.COM. http:/ /whatis.techtarget.com/.
Last visited: May 9th, 2005.

3] Business intelligence with SAS. SAS Corp. http://www.sas.com. Last visited:
May 9th, 2005.

[4] Data warehousing guide. release 2(9.2). Oracle Corp. http://www.oracle.com.
Last visited: May 9th, 2005.

[5] HYDRO1k Elevation Derivative Database. http:/ /edcdaac.usgs.gov/gtopo30/
hydro/index.asp. Last visited: May 9th, 2005.

[6] Hyperion Essbase OLAP Servers. http://www.hyperion.com/. Last visited: May
9th, 2005.

[7] Informix Dynamic Server. http://www-3.ibm.com/software/ data/informix/ids/.
Last visited: May 9th, 2005.

8] Microsoft SQL Server OLAP Services. http:/ /www.microsoft.com /sal/default.asp.
Last visited: May 10th, 2005.

[9] MicroStrategy. http://www.microstrategy.com/Software/Products/Service._
Modules/OLAP Services/. Last visited: May 9th, 2005.

[10] OLAP and OLAP Server Definitions. http://www.olapcouncil.org/research/
glossary.htm. Last visited: Match 6th, 2004.

[11] Open database connectivity —(ODBC). Microsoft Corp. http://
msdn.microsoft.com/library/default.asp?url=/library /en-us/odbc/htm/ dasd-
kodbcoverview.asp. Last visited: May 9th, 2005.

[12] Oracle 9 OLAP. http://otn.oracle.com/products/bi/9iolap.html. Last visited:
May 9th, 2005.

(13] The PANDA project. http:// www.cs.dal.ca/~panda/ Last visited: May Oth,
2005.

[14] Pilot Decision Support Suite. http://www.auriga.com /pilot_decision_.html. Last
visited: May 10th, 2005.

[15] The Message Passing Interface (MPI) Standard. http://www-
unix.mcs.anl.gov/mpi/. Last visited: May 9th, 2005.

148

149
[16] USING OLAP TO IMPROVE YOUR PERFORMANCE. Cognos Corp.
http://www.cognos.com. Last visited: May 10th, 2005.

[17] Sameet Agarwal, Rakesh Agrawal, Prasad Deshpande, Ashish Gupta, Jeffrey F.
Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. On the computation of
multidimensional aggregates. In VLDB ’96: Proceedings of the 22th Interna-
tional Conference on Very Large Data Bases, pages 506-521. Morgan Kaufmann
Publishers Inc., 1996.

[18] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-
ciation rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors,
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487-499. Morgan
Kaufmann, 12-15 1994.

[19] S. Ceri S. Kant Batini, C. and B. Navathe. Conceptual Database Design: An
Entity Relational Approach. The Benjamin/Cummings Publishing Company,
1991.

[20] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse and
Iceberg CUBE. pages 359-370, 1999.

(21] Rajkumar Buyya. High Performance Cluster Computing. Prentice Hall PTR,
Upper Saddle River, Ner Jersey 07458, 1999.

[22] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and
OLAP technology. SIGMOD Record, 26(1):65-74.

(23] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallel ROLAP data cube
construction on shared-nothing multiprocessors. In International Parallel and
Distributed Processing Symposium (IPDPS2003), 2003.

[24] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. Building large ROLAP data
cubes in parallel. In Proceedings of the 8th International Database Engineering
and Applications Symposium (IDEAS ’04), pages 367-377, 2004.

[25] Y. Chen, F.Dehne, T.Eavis, and A.Rau-Chaplin. Parallel ROLAP data cube
construction on shared-nothing multiprocessors. In Proc. International Parallel
and Distributed Processing Symposium (IPDPS 2003), page 70. IEEE Computer
Society, 2003.

(26] Y. Chen, F.Dehne, T.Eavis, and A.Rau-Chaplin. Pnp: Parallel and external
memory iceberg cube computation. In Proceedings of the 21st International
Conference on Data Engineering (ICDE 2005), 2005.

[27] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the data
cube. International Conference on Database Theory, 2001.

[28] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the data
cube. Distributed and Parallel Databases, 11(2):181-201, 2002.

150
[29] F. Dehne, T. Eavis, and A. Rau-Chaplin. Computing partial data cubes for
parallel data warehousing applications. Euro PVM/MPI 2001, 2001.

[30] David DeWitt and Jim Gray. Parallel database systems: the future of high
performance database systems. Communications of the ACM, 35(6):85-98, 1992.

[31] The Rising Storage Tide. DataWarehousing.com
http://www.datawarehousing.com /papers/ storage_tide.asp. Last visited:
May 10th, 2004.

(32] Todd Eavis. PARALLEL RELATIONAL OLAP. PhD thesis, DALHOUSIE
UNIVERSITY, 2003.

[33] T. Eavis F. Dehne and Andrew Rau-Chaplin. A cluster architecture for parallel
data warehousing. In Proc IEEE International Conference on Cluster Computing
and the Grid (CCGrid 2001), Brisbane, Australia, 2001.

[34] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman. Com-
puting iceberg queries efficiently. in Proceedings VLDB, pages 299-310, 1998.

[35] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge
discovery in databases. AI Magazine, 17:37-54, 1996.

[36] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for
data base applications. Journal of Computer and System Sciences, 31(2):182-
209, 1985.

[37] Andreas Fabri Frank Dehne and Andrew Rau-Chaplin. Scalable parallel geomet-
ric algorithms for coarse grained multicomputers. In SCG ’93: Proceedings of

the ninth annual symposium on Computational geometry, pages 298-307, New
York, NY, USA, 1993. ACM Press.

[38] Todd Eavis Frank Dehne and Andrew Rau-Chaplin. Top-down computation of
partial ROLAP data cubes. In Proceedings of the 87th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS’04), 2004.

[39] S. Goil and A. Choudhary. High performance OLAP and data mining on parallel
computers. Journal of Data Mining and Knowledge Discovery, 1(4):391-417,
1997.

[40] S. Goil and A. Choudhary. A parallel scalable infrastructure for OLAP and data
mining. In Proc. International Data Engineering and Applications Symposium
(IDEAS’99), Montreal, 1999.

[41] Sanjay Goil. High Performance On-Line Analytical Processing and Data Mining
on Parallel Computers. PhD thesis, NorthWestern University, 1999.

[42]

[43]

[44]

[45)

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

151
Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals. J. Data
Mining and Knowledge Discovery, 1(1):29-53, 1997.

L. Feng H. Lu, J.X. Yu and X. Li. Fully dynamic partitioning;: Handling data

skew in parallel data cube computation. Distributed and Parallel Databases,
13:181, 2003.

Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. Sampling-
based estimation of the number of distinct values of an attribute. In VLDB '95:
Proceedings of the 21th International Conference on Very Large Data Bases,
pages 311-322. Morgan Kaufmann Publishers Inc., 1995.

Jiawei Han, Yongjian Fu, Wei Wang, Jenny Chiang, Wan Gong, Krzysztof Kop-
erski, Deyi Li, Yijun Lu, Amynmohamed Rajan, Nebojsa Stefanovic, Betty Xia,
and Osmar R. Zaiane. DBMiner: A system for mining knowledge in large re-
lational databases. In Proc. 1996 Int’] Conf. on Data Mining and Knowledge
Discovery (KDD’96), pages 250~255, Portland, Oregon, 1996.

W.H. Inmon. Building the Data Warehouse. John Wiley, 1992.

Max Planck Institute. LEDA. http:/ /www.mpi-sb.mpg.de/LEDA /. Last visited:
May Oth, 2005.

M. Kamber J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco, CA, 2001.

Thomas P. Nadeau Kanda Runapongsa and Toby J. Teorey. Storage estimation
for multidimensional aggregates in OLAP. In CASCON ’99: Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative research,
page 10. IBM Press, 1999.

Ralph Kimball and Margy Ross. The Data Warehouse Toolkit. The Complete
Guide to Dimensional Modeling. John Wiley and Soms, Inc., 2002.

Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Shillington, Pok Sze Wong, and
Hanmao Shi. On the versatility of parallel sorting by regular sampling. Parallel
Computing, 19(10):1079-1103, 1993.

H. Lu, X. Huang, and Z. Li. Computing data cubes using massively parallel
processors. In Proc. 7th Parallel Computing Workshop (PCW’97), Canberra,
Australia, 1997.

Joerg Reinschmidt Maria Sueli Almeida, Missao Ishikawa and Torsten Roeber.
Getting Started with DataWarehouse and Business Intelligence. IBM Interna-

tional Technical Support Organization. http:/ /www.redbooks.ibm.com, August
1999.

152
[54] Michael W. Hawkins Mark Humpbhries and Michelle C. Dy. Data Warehousing
Architecture and Implementation. Prentice Hall PTR.

[55] Seigo Muto and Masaru Kitsuregawa. A dynamic load balancing strategy for
parallel datacube computation. In Proceedings of the second ACM international
workshop on Data warehousing and OLAP, pages 67-72. ACM Press, 1999.

[56] R.T. Ng, A. Wagner, and Y. Yin. Iceberg-cube computation with pc clusters. In
ACM SIGMOD Conference on Management of Data, pages 2536, 2001.

[57] Kenneth A. Ross and Divesh Srivastava. Fast computation of sparse datacubes.
In VLDB ’97: Proceedings of the 23rd International Conference on Very Large
Data Bases, pages 116-125. Morgan Kaufmann Publishers Inc., 1997.

[58] Sanjay Goil and Alok N. Choudhary. High performance multidimensional analy-
sis of large datasets. In International Workshop on Data Warehousing and
OLAP, pages 34-39, 1998.

[59] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical
Report RJ10026, IBM Almaden Research Center, San Jose, CA, 1996.

[60] Abraham Silberschatz, Michael Stonebraker, and Jeffrey D. Ullman. Database re-
search: Achievements and opportunities into the 21st century. SIGMOD Record,
25(1):52-63, 1996.

[61] C. Leiserson T. Cormen and R. Rivest. Introduction to Algorithms. The MIT
Press, 1996.

[62] Alejandro Ariel Vaisman. Olap, data warehousing, and materialized views: a

survey. http://citeseer.nj.nec.com/vaisman98olap.html. Last visited: May 9th,
2005.

[63] The Winter Report. http://www.wintercorp.com/vldb/ Last visited: May 10th,
2005.

[64] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes
by top-down and bottom-up integration. in Proceedings Int. Conf. on Very Large
Data Bases (VLDB’03), 2003.

[65] Yihong Zhao, Prasad M. Deshpande, and Jeffrey F. Naughton. An array-based
algorithm for simultaneous multidimensional aggregates. In ACM-SIGMOD In-
ternational Conference on Management of Data, Tucson, May 1997, pages 159-
170, 1997.

(66] G.K. Zipf. Human Behavior and The Principle of Least Effort. Addison-Wesley,
1949.

Appendix A
Parallel Data Cube Generation Library

In this appendix we describe the Parallel Data Cube Generation Library. The library
implements the bottom three components in our cgmOLAP system: parallel cube
generation engine, meta data and cost model repositories and shared server compo-
nents. We first present modules and classes in the library, and then give more details
about implementations of core algorithms. Lastly, we introduce the steps for building

the library and execute the main applications of the library.

A.1 Modules and Classes

The library is organized in a hierarchy structure, illustrated in Figure A.1. There
are nine modules in it. More modules could be added into the library in the future.
In each module, there are one or more C-++ classes, which support functions of the

module, illustrated in Figure A.2.

Application Module

/

Paralie! Full/Partial Secpential Full/Partial
Data Cube Module Dath Cube Module

AL |

Iceberg Data Cube Module

‘P@:inn Madule /

Plan G

\

Data Modjge Memnry M. Module

Figure A.1: Module Structure

153

154

Application Module

Parallel Full/Partial Sequential Full/Partial Iceberg Data Cube Module
Data Cube Module , = . Data Cube Module

Parallel Full/Partial
Data Cube

H ' H
: : :
H Data Cube H H
' H
: L weeeed 1| Extematpap |
.
E Data Cube Merging H H H
H
! . E In-memory PnP i
H
E Partition Shifting : R |
, H
H H
H H
v 1]
' h
.

, 1]
’ L]
. '
H Sequential Full/Partial ’
H ,
' »
H

Plan Generation Module Pipeline Processing Module
Fetemesescecasensuanecanconann. 4 Eemeemmeceesececceccaca.s .

. . " .

' —l H H

' l Schedule Tree Generation ’ ' | Pipeline Processing _I ’
lceeemcncacacnnsnascnannuanne S . Utility Module

Figure A.2: Modules and Classes

A.1.1 Data Module

One of basic modules is the data module. It provides all functions to input, output
and cache the data in relational tables for ROLAP.

The base class in this module is Data Buffer, which implements most manipulation
functions on the data of a single table, such as reading data from a file, writing results
to a file, caching data, and swapping data between disks and main memory. The
data buffer also supports multiple measures, and multiple aggregation functions by
defining a set of comparing and aggregating function. The source files of this class
are databuffer.cpp and databuffer.h.

The second class in this module is [/O manager. It implements an asynchronous
disk 1/0, so that the time for disk I/O can be overlapped with then time for com-
puting and communications. The source files of this class are iomanager.cpp and

tomanager. h.

155
A.1.2 Memory Manage Module

The memory manage module is in charge of memory allocation for all other classes.
It keeps the size of available memory in the system, the size of working space for some
external memory algorithms, and the size of cache for data buffers. The only class in

this module is memory manager. The source files of this class are memorymanager.cpp
and memorymanager.h.

A.1.3 Utility Module

The utility module provides some basic functions for other modules, such as sorting,

merging and string array.

The class of string array is a simple array, whose elements are strings. This
class are always used to store sets of view name. The source files of this class are

stringarray.cpp and stringarray.h.

The classes of sorts are in-memory sort, external memory sort, and parallel sort.
The in-memory sort is implemented by quick sort. In external memory sort, data are
read into memory block by block, and then are sorted in memory and output into
disks. After that the data are merged into a single data set by executing external
*merge. The source files of these class are quicksort.cpp and quicksort.h, localsort.cpp

and localsort.h, parallelsort.cpp and parallelsort.h, mergesort.cpp and mergesort.h

A.1.4 Plan Generation Module

The plan generation module is used in full /partial data cube generation only. It gen-
erates a schedule tree to compute full/partial data cube. The classes in this module
are pipeline tree and some other classes related with LEDA library. The source files of
these class are pipelinetree.cpp and pipelinetree.h, and balance_data. cpp,balance_data.h,
edges.cpp, edges.h, lattice.tmpl, nodes. cpp, nodes.h, partial_base.tmpl, partial_lattice.tmpl,

partial_pipesort.tmpl, plan.cpp, plan.h, plan_data.cpp, plan_data.h, sort_lattice.tmpl,
utility.cpp, utility.h.

156
A.1.5 Pipeline Processing Module

Pipeline Processing Module is used in full/partial data cube generation only. It
executes a schedule tree generated in the plan generation module. The only class in

this module is pipeline. The source files of this class are pipeline.cpp and pipeline.h.

A.1.6 Parallel Full/Partial Data Cube Module

The parallel full/partial data cube module provides all functions for parallel full or
partial data cube generation. The algorithms used in this module are based on our
published papers. The classes in this module are data cube merging, partition shifting
and data shifting. The source files of this class are mergecube.cpp and mergecube.h,
shiftpartition.cpp and shiftpartition.h, shiftdata.cpp and shiftdata.h. Another file,

which defines “main” function, is papcube. cpp.

A.1.7 Sequential Full/Partial Data Cube Module

The sequential full/partial data cube module implements sequential full or partial
data cube generation. The algorithms used in this module are based on our published

papers. The only file, which defines “main” function, is ezpcube.cpp.

A.1.8 Iceberg Data Cube Module

The iceberg data cube module provides all functions for iceberg data cube generation,
including parallel iceberg data cube generation, sequential external memory data cube
generation and sequential in-memory data cube generation. The methods used in this
module are based on our PnP algorithm for parallel and external memory data cube
generation. The source files of these class are iceberg.cpp and iceberg.h, exiceberg.cpp

and exiceberg.h, paiceberg.cpp and paiceberg.h.

A.1.9 Applications Module

The application module provides some applications by using all other modules, and
metadata used to describe data cubes. The applications module is included in the

library.

157
A.2 Implementation of Algorithms

The library implements five main algorithms, which are external memory full/partial
data cube generation, parallel full/partial data cube generation, in-memory iceberg
data cube generation, external memory iceberg data cube generation and parallel
iceberg data cube generation. The two parallel algorithms are based on the two
external algorithms respectively.

For each algorithm, there a C+- file to implement the mainframe of the algorithm
in the “main” function of C++ language. The files are expcube.cpp for external
memory full/partial data cube generation, papcube.cpp for parallel full/partial data
cube generation, pnp.cpp for in-memory iceberg data cube generation, expnp.cpp for
external memory iceberg data cube generation, and papnp.cpp for parallel iceberg

data cube generation.

A.2.1 External Memory Full/Partial Data Cube Generation

The algorithm of external memory full/partial data cube generation includes two
steps: Generating Processing Tree and Executing Processing Tree. The class “CPipeline-
tree” implements the first step, and the class “CPipeline” implements the second step.
The C++ file “expcube.cpp” implements the algorithm. It calls “CPipelinetree” to
generate the processing tree first, and then calls “CPipeline” to execute the processing

tree. At last it outputs data to disks.

A.2.2 External Memory Parallel Full/Partial Data Cube Generation

The C++ file “papcube.cpp” implements the mainframe of this algorithm. First it
reads configurations, and then does some testing for system parameters using the
class “CTestio”. Before beginning the algorithm, it distributes the raw data to each
node from node 0 using the class “CCutdata”, so that each node gets almost the same
amount of data. | '

The first step of the algorithm is to generation root views on each node using the
function of “rootview” in the class of “CLocalsort”. The next step is a big loop to
generate a number of partial data cubes for the corresponding root view in parallel

one by one. The turns of the loop is the number of the dimensions.

158
In each loop, a sub-lattice is generated first to consist of all the views to be

computed in the loop. Then the corresponding root view is sorted in parallel and
is partitioned using the class of “CParallelsort”. Next the main C++ file calls the
class of “CPipelinetree” to generate the processing tree, and a shifting processing is
executed to optimize the partitions using the class of “CShiftpartition”. After that,
the main file calls the class of “CPipeline” to execute the processing tree locally.
Next the class of “CMergecube” is executed to merge data cubes across the nodes.
At last “CShiftdata” is executed to balance the amount of data for each view across

the nodes, and then the results are written to disks.

A.2.3 In-memory Iceberg Data Cube Generation

The algorithm of in-memory iceberg data cube generation is implemented in the files
of iceberg.cpp and iceberg.h, although the file pnp.cpp consists of “main” function
for the in-memory iceberg data cube application.

The main function in the iceberg.cpp is “computeiceberg”. It sorts the input
data set, and then calls the recursive function of “Iceberg”, which implements the
PnP operator of in-memory PnP algorithm. “iceberg” scans the input view, and
aggregates the measures for each view in the pipeline beginning with the input view.
If the measure of a row in a view is equal or greater than the minimal support,
the row is output and a partition of the child view of the view is generated and
sorted. Immediately after that “iceberg” is called on the partition. The recursive

calls continue until there is no child view available.

The Iceberg Function

The “iceberg” function is the core procedure to implement the in-memory PnP op-
erator. In order to compete with other algorithms, we optimized it heavily so that it
is hard to read. The following is a brief description about this function.

The variable pipelen is the length of pipelines.

The variable agg is the array of aggregation values. agg[0] stores the aggregation
of the first view in the pipeline, and agg[pipelen — 1] stores the aggregation of the
last view. For example, if the input view is ABCDE, agg[0] is the aggregation of
ABCDE, and agg[pipelen-1] is the aggregation of A

159

The index of dimensions,
refered by the variable of 3j

01234
0 ABCDE

0 1 2 3 4
1 ABCD ABCE ABDE ACDE BCDE
2 ABC

The index of child views,
3 AB and the index of childp,
refered by the varible of v-1
‘%\A

The index of views in the pipeline
and the index of agg,
refered by the variable of v=pipelen-1-j

Figure A.3: Variables in the Iceberg Functions

The variable v is the index of agg. It is always equal to pipelen — 1 — 5, where j
is the index of the dimensions.

The variable childp is an array of the start indexes of the partitions of the child
views. childp[0] and childp[pipelen — 1] are NULL. For example, if the input view is
ABCDE, pipelen is 5. And the start index of the partitions of ABCE is (childp([1]),
and the start index of the partitions of ACDE is (childp[3]). childp[0] and childp[4]
are NULL, because there are no partitions to be generated for ABCD and BCDE.

We use v 1 as the index of childp. childp is updated as soon as a partition is found.

In iceberg, the main loop (4) is to read rows from the input data, and the secondary
loop (3) is to check the value of each dimension. If the value of the dimension j does
not change, we add the measure of the current row to agg[v], where v is pipelen—1—j.
If it changes, we start a new loop from v = 0 to v = pipelen — 1 — 5. In this loop,
we compare agg[v] with the iceberg condition. If agg[v] is greater than the iceberg
condition, we output the rows for the view of v and generate a partition for the child

views of v — 1 when v >= 2. And then we call iceberg on the partition immediately.

160
After all the rows are finished, we sort the input view to the last child view, and

call iceberg on the last child view immediately.

A.2.4 External Memory Iceberg Data Cube Generation

The algorithm of external Memory iceberg data cube generation is implemented in the
files of exiceberg.cpp and exiceberg.h, although the file expnp.cpp consists of “main”
function for the external memory iceberg data cube application.

The main function in the exiceberg.cpp is “computeiceberg”. It sorts the input
data set, and then calls the recursive function of “iceberg”, which implements the
PnP operator of external memory PnP algorithm. “iceberg” calls the function of
“pipeline” to execute the PnP operator in external memory. “pipeline” scans the
input view, and aggregates the measures for each view in the pipeline beginning with
the input view. If the measure of a row in a view is equal or greater than the minimal
support, the row is output and a partition of the child view of the view is generated
and sorted. And the partition is stored in memory or in disks if memory is not enough.
After “pipeline” finish the current input view, it returns to “iceberg”. “iceberg” picks

up partitions and call “pipeline” on them one by one until no partition is available.

A.2.5 External Memory Parallel Iceberg Data Cube Generation

The C++ file “papnp.cpp” implements the mainframe of this algorithm. First it
reads configurations and distributes the raw data to each node from node 0 using the
class “CCutdata”, so that each node gets almost the same amount of data.

The first step of the algorithm is to generation root views on each node using
the function of “rootview” in the class of “CLocalsort”. The next step is a loop,
which runs m times, where m is the number of the dimensions. In this loop, the
corresponding root view is sorted in parallel and be partitioned using the class of
“CParallelsort”. The last step is another loop, where iceberg data cubes are generated
from the corresponding root views. In this loop, the functions in “paiceberg.cpp”
and “paiceberg.h” are used to execute PnP operator. They are similar to ones in
“exiceberg.cpp”, except that only part of iceberg cubes are computed. For examples,
for the root view ABC, only ABC,AB,AC and A are computed.

161
A.3 Build the Library

The library is written in ANSI C/C++. It can be compiled on any operation system
with C/C+4+ compiler, such as Windows, Linux and other UNIX system. The library
uses MPI to exchange message among nodes, so an MPI library in C language is
needed to link objective files into executable files. In the plan generation module,
some classes come from LEDA library in C/C++ language. Before you compile the

library, make sure the following components are in your system.
e The source codes of the library.
e MPI library in C language.
o LEDA library in C/C++ langauge.
e C/C++ compiler and linker.

A free version of MPI library in C language can be downloaded from http://www.lam-
mpi.org/. And a free LEDA library can be downloaded from (http://www.mpi-
sb.mpg.de/LEDA /leda.html). ‘

Executable files for Linux are included in the source codes already. You may run
them without any change.

To compile the source codes, you may go to the directory of source codes. There

five make files for individual five applications.

expcube.mak It generates “expcube”, which is for sequential full/partial data cube

generation.

papcube.mak It generates “papcube”, which is for parallel full/partial data cube

generation.
pnp.mak It generates “pnp”, which is for in-memory iceberg data cube generation.

expnp.mak It generates “expnp”, which is for external memory iceberg data cube

generation.

papnp.mak It generates “papnp”, which is for parallel iceberg data cube generation.

162
You may use the command “make -f makefilename” to generate five executable

files respectively. The objective files are in the directory of “objfile”, and the executive

files are in the directory of “exefile”.

A.4 Execute Applications of the Library

After you generate executable files, you may run them to generate full/partial or
iceberg data cube in parallel or in sequence. All the five executive files share one
configuration file, whose name is “conf.dat”. It must be in the directory, where
executable files are. A sample conf.dat is in the directory of “exefile” of source codes.
You may find more details from “config.cpp” and “config.h” in this manual about the
entries of “conf.dat”.

In full/partial data cube generation, we need to set up a flat file to list target
views to be generated. In this file, each line includes one view name, represented by
a letter string. A sample flat file is in the directory of “exefile” of source codes. The
file name is “viewfile”.

The library uses synthetic data as input data, which can be generated by a tool
“dg”. There is a Linux executable file “dg” in the directory of “exefile” of source
codes. “dg” needs a flat file as input parameters. Here is an example:

r 10000
d8
w input.dat
z0
c01 1024
c02 512
c03 256
c04 128
c05 64
c06 32
c07 16
c08 8
c09 100

163
“r 10000” means 10000 rows. “d 8" means 8 dimensions. “w input.dat” means

the output file name. “z 0” means the skew of data. “z” can be from “0” to “2”. “0”
means no skew and “2” means high skew. The rest of lines are cardinalities od each
columns.

A sample of the flat file is in the directory of “exefile” of source codes. The file
name is “g”.

Another Linux executable in the directory of “e)'ceﬁle” of source codes is “peek”,
which can display the data in data files. Running “peek” without parameters may
display details about “peek”.

For sequential executable files, you may run it directly. For parallel executable
files, you need to use “mpirun”, like “mpirun -np 16 papcube”. The output files for
full/partial data cubes can be check using “peek”. The output files for iceberg data

cubes are flat files, which can be display by any text editors.

A.5 Summary

The parallel data cube generation library implements the core components of the
cgmOLAP system. It provides functions and data strictures used by the upper com-
ponents in cgmOLAP. Most experiments in the thesis are also done by using functions
and strictures provided by the library. These experiments show that the library is

well scalable and very reliable.

