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Abstract

Analytical instrumentation that produces multivariate data is now commonplace
in chemical laboratories. Such data includes first-order tensors (e.g. a spectrum), second-
order tensors (e.g. chromatography with multichannel detection), and third- and higher
order tensors (e.g. fluorescence excitation-emission-lifetime measurements). From a data
analysis perspective, the “cubes” of data that form third-order tensors, or three-way data,
offer unique advantages not observed for lower order measurements. In particular, data
that exhibit a trilinear structure can be decomposed in such a way that unique underlying
factors are extracted, without the rotational ambiguity that exists when bilinear data are
used. Common data analysis tools employed to carry out this type of decomposition
include the well-known Parallel Factor Analysis (PARAFAC) and Direct Trilinear
Decomposition (DTLD) algorithms. The application of these tools to trilinear data has
tremendous potential to extract fundamental information such as spectra, concentration
profiles, rate constants, and equilibrium constants from complex mixtures with little or no
prior information. However, this potential is mitigated by the fact that these methods do
not optimally accommodate the complex error structures commonly found in three-way
data.

In this work, the development and application of Maximum Likelihood Parallel
Factor Analysis (MLPARAFAC) is described. This approach is designed to incorporate
prior measurement error information, including information about heteroscedascity and
correlation of errors, into the decomposition procedure. Although MLPARAFAC is an
extension of maximum likelihood methods for two-way data, the application to three-way
data greatly expands the types of error interactions that can be observed, the size of
matrices produced, and complexity of the algorithms involved. The principles behind the
generalized MLPARAFAC algorithm, as well as several simplifications based on
different measurement error structures and pre-compression of the data, are described.
These algorithms are applied to simulated data and three fluorescence data sets to
demonstrate their statistical validity, computational efficiency and estimation accuracy.
Further implementation of MLPARAFAC in conjunction with the Direct Exponential
Curve Resolution Algorithm (DECRA) is also examined using simulated data and

spectral data from two widely studied reaction systems.
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Chapter 1
Introduction

1.1 Overview

The last few decades have seen a remarkable increase in the amount and
complexity of data generated by modern instruments for chemical analysis. Different
types of chromatographic and spectroscopic instrumentation are now commonplace in the
analytical laboratory and coupling of such instruments is now routine. A few examples of
the “hyphenated methods” that generate such copious amounts of data are time-decay and
emission-excitation fluorescence, chromatography-spectroscopy combinations, tandem
mass spectrometry (MS/MS) and two-dimensional nuclear magnetic resonance (2D-
NMR). These methods can provide data in several dimensions (e.g. wavelength and time)
at once. The necessity to analyze several samples, either with individual techniques or
with combinations, adds yet another order to the data obtained. Contrary to univariate
analytical methods that require full selectivity for proper effectiveness functionality,
multivariate analytical methods are much more flexible, requiring only fractional
selectivity in a multivariate context. This can dramatically reduce sample preparation
procedures, saving the analyst time and money. The efficient nature of these analytical
procedures, in conjunction with the ability to obtain general and accurate information
regarding chemical and physical properties of the sample will make them perfect
candidates for a wide variety of industrial, environmental, medical, and research

applications.

Unfortunately, the measurements obtained from these instruments may be rather
complex, increasing the necessity for data analytical methods that can handle these types
of data. In 1971 a group of pioneering scientists coined the term “chemometrics” to
describe the growing use of mathematical, statistical and computer-based methods in the
field of chemistry [1-2]. Despite the fact that many of the so-called chemometrics

techniques obviously existed prior to the 1970s, the philosophy behind the techniques as



applied to the discipline of chemistry has evolved considerably over the past decade. This
has been a consequence not only related to the increasing necessity for more powerful
mathematical methods to treat chemical data, but also due to the increasing availability of
inexpensive computational resources. Besides the partial selectivity that allows the
analyst to quantify a compound in the presence of interferents, some additional
advantages of employing chemometric methods in conjunction with multivariate

measurements include multiple component estimation, noise reduction, and outlier

detection.

In the beginning, multivariate analytical measurements were naturally arranged
into vectors and matrices, but analytical methods have now developed to the point where
some techniques will yield measurements that are better arranged in multi-way arrays
(i.e. cubes or hyper-cubes) due to the intrinsic structure of these data. The application of
chemometric methods specially designed to handle this type of data will produce
additional benefits and has led to terms such as “second-order advantage” and
“mathematical chromatography”, both of which are intimately related to the ability to
decompose this type of data into the underlying contributions from individual
components. Nonetheless, these benefits will only be attainable if the proper model is
estimated, and the estimation process will depend heavily on the nature of the errors
affecting the data. The characteristics of measurement errors and their proper treatment in

the analysis of multi-way data is the central theme of this thesis.

Given the complexity of modern instrumentation, it is evident that measurement
errors can arise from a wide variety of sources, and have a correspondingly complex
range of properties and characteristics. Usually, the description of instrumental noise is
based on its dominant source, which is associated with certain distributional and
frequency characteristics. For instance, the source of Johnson or thermal noise is the
thermal agitation of electrons or other charge carriers in resistive elements in the
instrument. It is typically considered as a type of fundamental noise, since it does not
arise from instrument or component deficiencies, and is the same at every frequency and
can never be totally neglected. It is ubiquitous in resistive elements whether they are

carrying current or not. Another type of fundamental noise is shot noise, or quantum



noise, that arises from the random statistical nature of discrete events, whose rate is
subject to statistical fluctuations well-described by the Poisson distribution. The overall
effect of shot noise is usually much lower than that of Johnson noise, although this may
not be the case in measurements based on a low number of events, such as molecular
fluorescence. Pink or 1/f noise can arise from a variety of sources and is named after the
inverse proportionality between the magnitude of the noise fluctuations and the frequency
of the observed signal (f). This type of noise is considered non-fundamental and generally
arises from longer-term (lower-frequency) variation of instrumental components. Some
other terms used to refer to this type of noise are flicker noise and drift noise. In addition
to those already mentioned, there are a variety of other noise sources including such
things as detector noise, read-out noise, quantization noise, and noise from environmental
sources (interference noise).

From a more fundamental point of view, the noise can be classified using some of
its characteristics in various ways, the most common of which include: its source, its
distribution, and its characteristics in the frequency and time domains. Unfortunately,
classifications based on these categories are not all mutually exclusive. Instead, a more
concise but less precise term will be coined to classify noise. It will be defined in terms of
whether or not it is independent and identically distributed with a normal distribution
(fid-normal). The term “7id normal noise”” summarizes a lot of information. The concept
of independence with regard to measurement errors implies that the error observed at any
one element in the signal vector is independent or unrelated to the error observed at any
other (different) element in the signal vector. Independence in the measurement errors is
equivalent to saying that measurement errors are uncorrelated. The term identically
distributed implies a homogeneity in the error variance across all elements in the signal
vector; i.e., the standard deviation at every elements in the signal vector is the same. The
terms homoscedastic and heteroscedastic are also often used to indicate whether
measurement errors are identically distributed, or not. The “normal” condition simply
refers to the normal distribution often assumed for the noise observed at one channel in
the signal vector over many repeat measurements. Therefore, measurement errors are
classified to be iid-normal if all of the aforementioned conditions are fulfilled and non-

fid-normal if any of these conditions are violated. Assumptions regarding normality are



seldom significantly violated (recall the Central Limit Theorem), and therefore, in the
future, references to iid-normal errors will often be shortened to simply “iid errors”.
Mathematically, violations of the iid condition can be detected and corrected through the

use of the error covariance matrix.

Unfortunately, the vast majority of chemometric methods employed are typically
extensions of existing univariate methods in terms of their assumptions about the error
structure (i.e. the assumption that it is iid-normal). Although some consideration of
heteroscedascity in univariate calibration has been made through weighted regression
methods [3, 4], measurements are generally assumed to be independent. Because single
channel measurements are used, the existence of correlation among errors at different
channels is impossible, and correlation among samples is generally considered negligible
based on the preparation of standards. Until recently, the migration to multichannel
instrumentation and, therefore to multivariate data analysis has occurred, without the

corresponding advance in handling of measurement errors.

The initial attempts to accommodate non-iid error structures in multivariate data
analysis addressed the problems of heteroscedasticity while assuming that measurement
errors remained independent. One of the first approaches was to extend the principles of
weighted univariate regression to multivariate regression [5]. This strategy can be
successful for certain calibration problems that can be treated with multiple linear
regression (MLR), but does not address broader methodologies of calibration and
decomposition. Paatero and Tapper [6] showed that heteroscedastic noise could be
treated in bilinear decomposition through a simple scaling of the data, as long as the error
structure could be represented as a rank one matrix. For cases that did not meet this
criteria, Paatero developed a method called Positive Matrix Factorization (PMF2) for
bilinear data [7]. This was later extended to three-way data (PMF3) [8]. On the other
hand, the impact of correlated noise has attracted much less interest among analytical
chemists [9-12], although its consequences can be quite severe [13]. Nevertheless, the
formulation of Maximum Likelihood Principal Component Analysis (MLPCA) and other
derived techniques, such as Maximum Likelihood Principal Component Regression

(MLPCR) and Maximum Likelihood Latent Root Regression (MLLRR), by Wentzell and



collaborators [9, 14] have shed some light on the positive effects of including error
information in the form of the error covariance matrix in multivariate data analysis to
obtain optimal or near-optimal models from a theoretical point of view. This
methodology is closely related to a number of other methods currently in use, including
Total Least Squares (TLS) [10] and Maximum Likelihood via Iterative Least Squares
Estimations (MILES) [12]. These different approaches are essentially the same in terms
of the statistical model that they use to incorporate measurement error information, but

differ substantially in their numerical implementations.

The transition from two-way data to three-way and multi-way data is
accompanied by a concomitant increase in the complexity of the model and the noise
structure. The objective of the present study is to extend maximum likelihood principles
developed for MLPCA to multi-way analysis by formulating optimal algorithms to
estimate the Parallel Factor Analysis (PARAFAC) model. Following a concise
introductory chapter explaining the relationship between different physical, structural and
statistical multi-way models, Chapter 2 introduces the general formulation of the
MLPARAFAC algorithm to estimate the PARAFAC model in cases where
heteroscedasticity and/or correlation occur, as well as two mathematically exact
simplifications and some statistical testing of the methods. In Chapter 3, a more extensive
exploration of the possible simplifications is carried out and a number of different
simplifications for a variety of error structures are formulated. Chapter 4 introduces some
tools to characterize the error covariance matrix for three-way arrays and describes the
application and comparison of the different formulations of MLPARAFAC to three
experimental data sets. Chapter 5 explores the application of MLPARAFAC to a
particular problem in the analysis of kinetic data, through the use of the recently
introduced Direct Exponential Curve Resolution Algorithm (DECRA). The thesis closes
with a summary of the results for this research and possible avenues for future

investigation.

Note that the main body of this thesis is composed of a published paper (Chapter

2) or manuscripts that have been submitted for publication (Chapters 3-5).



1.2 Instrumentation and physical models

The mathematical tools used to analyze a set of experimental measurements are
closely related to the order of the data tensor obtained from the analytical device. In
general, instruments can be classified by the order of data they produce; for instance,
zero-order, first-order, second-order and so on. The relationship between the form of the
data and the order of the instrumentation is presented in Figure 1.1. As a general rule, the
use of an n-order instrument analyzing a single sample produces an n-order tensor. The
use of the same instrument analyzing a data set formed by multiple samples yields an

(n+1)~order tensor.

Zero-order instruments are analytical instruments that produce a single
measurement per sample analyzed, for instance, pH, viscosity or absorbance at a single
wavelength. However, most of the time the measurement obtained is not ultimately the
property sought, but it is theoretically or empirically related to a more attainable property
such as acidity, temperature or concentration, requiring a process called calibration. A
well-known example is the application of spectroscopy in chemistry. The specimen of
interest is a homogeneous solution of chromophores contained in a cuvette of known path

length, L (usually 1 cm). Integration of the ratio d//I leads to Beer’s Law, shown in

equation 1.1:
A=-log,,(I/1,)=g(A)cL (1.1)

where 4 is the absorbance, I/, is the transmittance of a beam of light of wavelength A,
and c is the concentration of chromophore. The fundamental property of the chromophore
is &(4), the molar absorptivity. Unfortunately, this quantity which characterizes a
particular analyte can also change with other parameters such as temperature, pH, and
solvent. Therefore, calibration needs to be used to estimate this parameter, which in turn
defines the structural model relating absorbance obtained and the concentration sought.
The calibration of this type of device can be carried out using univariate calibration. This
type of calibration is well understood and easy to adopt, since it works in a very simple

statistical framework and the equipment used is inexpensive. While the simplicity of
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unjvariate calibration is an attractive attribute, there are several fundamentally limiting
properties of the approach. Univariate calibration methods naturally require full
selectivity for the analyte of interest. Interferences can therefore only be handled in the
rather ideal case in which the amount of the interference is constant in all calibration and
prediction samples. This severe limitation mathematically precludes doing calibration in
the presence of interferences, and simultaneous multicomponent analysis. In addition to
the disadvantage of full selectivity, zero-order instruments cause difficulties in detecting
outliers present in the analytical data. These intrinsic deficiencies can be overcome by

migrating from zero order instruments to first order instrumentation.

With multiple P chromophores that need to be quantified, the experiment can
involve additional independent variables. Therefore, first-order instruments are analytical
devices that yield a vector of first-order data per sample as shown in Figure 1.1. The
spectrometer is a common example of a first-order instrument, where the primary
independent variable is the energy or wavelength of the photons absorbed or emitted.
Innovations such as diode array detectors (DAD) for UV-visible absorption instruments,
charge-coupled devices for fluorescence instruments, and Fourier transform techniques
for nuclear magnetic resonance and infrared spectroscopy have made first-order data
more readily available. The combination of two first-order techniques can produce
second-order data, but the most common way to obtain second-order data is when the
first-order instrument is used to analyze multiple samples. An example of the
mathematical representation of the physical model behind second-order data is given in
equation 1.2, which is an expression of Beer’s Law for measurements at multiple

wavelengths for a single component.
A, =ce,L (1.2)

Here c; is the concentration of the chromophore in sample i, & is the molar absorptivity of
the chromophore at wavelength &, and L is the path length of the cuvette. Theoretically,
the physical model can be seen as an explicit causal (or hard) model that relates the
instrumental measurements to the level of the analyte of interest, and often to the level of

interfering components via an extension of Beer’s law when multiple components are



involved. For multiple samples, the concentration of chromophore i can be represented by
a vector ¢, which is an J'x 1 vector containing the concentration of the chromophore for
each sample. If P different spectroscopically active components are present in the
mixtures, then equation 1.2 can be represented by:

A=(c,8 +e,8) +..+cpe,)L
e (13)

where € is a K x 1 vector of molar absorptivities for each of K wavelength channels, C (/
X P) and S (X x P) are the concentration and spectral profiles (molar absorptivities
multiplied by the path length), respectively, and A is an / x K (samples x wavelengths)
matrix of absorbances, with each row corresponding to the spectrum of a different
sample. The matrix of spectra arises from the simple outer product of the concentration
vector, and the pure-component spectrum for the component. It should be noted that,
although this example uses spectroscopy, equation 1.3 applies equally well in its general
form to other first-order instruments. A visual representation of this structure is shown in

Figure 1.2, where the concentration vectors are defined by HPLC elution profiles for a

two-component mixture.

Spectral Profiles
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Figure 1.2. Physical model representation for second order data using a HPLC-DAD
example.

Instruments that generate second order arrays of data or higher order tensors per
sample are now more commonplace in the analytical laboratory. Time-decay and

emission-excitation fluorescence, and other combinations of chromatographic and



spectroscopic techniques are a few examples of the many hyphenated methods that
generate such data. In addition, the use of multiple samples with these techniques makes
the data one order higher. A simple example to introduce the physical model is data from
steady-state fluorescence. In this technique, the absorption of a photon puts a
chromophore into a higher energy excited state, which can then rapidly decay, emitting a
photon as fluorescence. In fluorescence spectroscopy, the sample is illuminated with light
of wavelength L, and the consequent emission of light is measured at wavelength A°™.

For one fluorophore, the process is mathematically expressed as:

My =7 iC, (1.4)
where «;is the coefficient of absorption of the fluorophore (incorporating molar

absorptivity, quantum yield and source intensity) at excitation wavelength A7, m; is the

relative emission (incorporating the emission profile and the detector response profile) at

detection wavelength 1 <" and ¢ is the concentration of fluorophore in question in
g j P q

sample k. Equation 1.4 represents the mathematical relationship describing a single
element of the three-way array, U, which is an  x J x K cube of data for I excitation
wavelength channels, J emission wavelength channels, and K samples. This array can be
viewed as K matrices representing excitation-emission spectra that are “slices” in the

cube of data. Equation 1.5 represents the physical model for such a system with P

components;

Uf =a,cfn] +a,cin) ++a,cinl (L5)
= AD*B”
In this specific case, A and B are matrices which contain the excitation spectra ([o o
ap]) and the emission spectra ([m; m; " mp]), respectively, of the pure components along
the columns. D* represents a diagonal matrix formed by the concentration of all P
components for the k" sample placed on the main diagonal of D. This type of data is
diagrammatically depicted in Figure 1.3. Simple application of this physical model
requires that sample absorbance be small and that excitation energy not be transferred

between chromophores. The violation of these conditions will prevent the use of this

simple physical model, since more complex models will be necessary.

10



S3]1Joid uoIssiwg

"a[dwexs N FH ue Suisn Blep 10PIO PIIY} 10f uonejuasaIdal [9poul [edIsAY *¢ ] dandiyg

yiBusjonem uoissiwg

I
I
=]

$8J1j01d SuoljeUBIUCY)

Aysusju| aousosaion|4

11



1.3 Structural models

Structural models can be divided into two categories: models that can often be
regarded as a good approximate model of the true underlying phenomena, and models
where there is little or no theory to describe how the data are related to the underlying
phenomena. The latter group can be exemplified with process or sensory data while the
former corresponds to spectral data of the type described in the preceding sections. In this

thesis, all of the models treated belong to the first group.

1.3.1 Second-order data

Second-order data can be represented by bilinear models. A major difficulty with
genera] bilinear models is that the underlying physical factors are usually impossible to
separate by using only the data at hand, since the factors are subject to rotational and
scaling ambiguities. This means that many sets of paired C- and S-type matrices can
equivalently reproduce the original data set X. Equation 1.6 shows how the product of
RR"', which is equal to the identity matrix, can be placed between profiles C and S,
leaving X unchanged and modifying the concentration and spectral profiles to CR and
R’'ST, respectively.

X=CS"
= CRR'ST = TVT (1.6)

This situation reflects the ambiguity, since R can be any non-singular square matrix;
therefore, an infinite number of equivalent solutions exists.

The existence of this intrinsic ambiguity opens two different avenues for the data
analysis. Two different strategies can be employed, depending on whether the final aim
of the analysis process is the prediction of future samples or the estimation of the first-
order profiles. The prediction of future samples is carried out using any of the many
possible variations of inverse calibration, such as principal component regression (PCR),
partial least squares regression (PLS), ridge regression (RR), or continuum regression
(CR), providing that a representative set of the future samples exists and the property
sought has been determined by a reference method. The estimation of the individual

profiles composing this type of data is carried out using a wide variety of methods
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described as multivariate curve resolution (MCR) algorithms [15]. To obtain these
profiles, MCR methods employ different types of constraints, ranging from empirical
ones, such as non-negativity and unimodality [16] to theoretically justified ones, such as
kinetic hard models [17]. It is worth noting that the method referred to as classical least
squares calibration, also known as direct calibration, is the best-case scenario for MCR,

in which all of the information about one of the orders is known in advance.

Geometrically speaking, inverse calibration tries to estimate the subspace which
contains the property sought and the magnitude of the property in this space, while MCR
methods estimate the subspace and try to estimate the best rotational matrix R, to align
the vectors defining the subspace with the vectors representing the profiles in each mode.
From here we can see that both avenues have a common core, which is the estimation of
the subspace which contains the data. Many different methods have been created to do
this, but a vast majority of these techniques have as a common core a method called
principal component analysis (PCA) [18], which is able to estimate the subspace spanned
by the underlying factors forming the data. Therefore, a short introduction to PCA will be
given in the next section. This also provides a good starting point for the introduction to

the different trilinear methods that are the focus of this work.

1.3.1.1 Principal components analysis

Principal components analysis (PCA) is the most widely used variable reduction
method in chemistry. In addition to forming the basis for PCR, PCA is widely used in
other applications, such as pattern recognition and curve resolution, and it is related to
other regression methods such as PLS, RR and CR. The first known chemical application
of PCA appeared in 1878 [19], and even at that time it was used in a regression problem.
The extensive use of this method was paralleled by the evolution of computing
technology which made computation times more reasonable, so that even large arrays are
now easily handled. From a vectorial point of view, PCA transforms the data from a
redundant coordinate system into a more natural coordinate system uniquely reflecting
the sources of variability in the data.

The bilinear structural model will be introduced using the same scheme of the

bilinear data represented by equation 1.3. Instead of using the matrices C and S,
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representing the physical underlying profiles, a more general representation based on
rotated matrices T and V, as used in equation 1.6, will be employed.
X=TV"' (1.7)
Uniqueness is an important issue for structural models. It can be said that a
structural model is unique when no additional constraints are necessary to identify the
model. For a unique structural model, the parameters cannot be changed without
changing the fit of the model. Therefore, in order to eliminate the ambiguities
characterizing the bilinear model, PCA introduces orthogonality constraints in its scores
and loadings (i.e. the dot product of different columns within T or V" should be Zero).
Principal components analysis goes a step further by constraining the first principal
l component to be the vector describing the most observed variance. From a mathematical
point of view the first loading is defined as the normalized vector that maximizes the

variance of (X vy,) or in other words maximizes:

viX'Xv, =t/t, (1.8)
The next loading, v, is defined as the vector maximizing the same quantity, i.e.
v,X"Xv, =t;t,under the constraint that t; and t, are orthogonal, i.e. tit, =0. The
procedure continues this way until all dimensions have been accounted for, always under
the constraint that new scores are orthogonal to previous ones. It is important to note that
the combination of the structure of this model and the imposed constraint makes the PCA

model the best subspace and low rank approximation solution for bilinear data.

1.3.1.2 Numerical Implementation

Computationally, PCA can be carried out by a variety of numerical methods, such
as the power method used for matrix diagonalization. However, singular value
decomposition (SVD) is now the most commonly used method to perform PCA in
chemometrics, since it is efficient, reliable and can accommodate rectangular matrices of
the sort that appear frequently in chemical applications. Using SVD, the data matrix X 4

x J) is decomposed into the product of three different matrices as is shown in equation
1.9.

X=USV' (1.9)
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Here, the columns of U (I x J) represent the eigenvectors of the covariance matrix xx™.
These eigenvectors are orthonormal (orthogonal to each other and of unit length). The
main diagonal of § (/ x J) contains the singular values, which are the square roots of the
eigenvalues of the covariance matrices (XX") and (X"X). The elements of the main

diagonal of S are ordered in a decreasing fashion (s, > s ,,i < j ), representing the square

i
root of the variance accounted for by each PC. Off diagonal elements are zero (s5=0,1
#7). Vlis a (J x J) matrix formed by the eigenvectors of the covariance matrix (X'X).
The row vectors of V' are orthonormal and identical to the loadings described for PCA.
The score matrix T is the product of matrices U and S (T = US). Truncation is easily

achieved by discarding the uninformative rows and columns of the matrices.

X =TSV’ (1.10)

To summarize, PCA is a method to perform a regression of X onto a lower
dimensional estimate of itself, thereby reducing the high dimension of the original space
to a relatively simple P-dimensional subspace. It also provides a bilinear decomposition
avoiding the rotational and scaling ambiguities by imposing two important constraints.
These two constraints work by extracting loadings, which describe most of the variance
and are mutually orthogonal among each other. In this way the PCA model can
accomplish the estimation of a model that at the same time is the best low rank and best

subspace approximation of bilinear data.

1.3.2 Third order data

1.3.2.1 Parallel Factor Analysis

The physical model shown in equation 1.5 is equivalent to a structural model
called Parallel Factor Analysis (PARAFAC), independently introduced by Harshman [20]
and by Carroll and Chang [21] in 1970. Contrary to second-order data, that can always be
represented by a bilinear model providing the best subspace and low rank approximation
solution, for third order data these two seemingly similar decompositions are obtained by
two structurally different three-way models called Tucker [22] and PARAFAC models,

providing the best subspace and low rank approximation solution, respectively [23]. Both
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models can be generically represented by the same equation, but some restrictions are

applied to distinguish one from the other.

Before explaining the different structural representations, it is important to note
that this model is symmetric in the sense that if the array is reordered so that, for
example, the first and third modes are exchanged, then the models of the two data sets
will be identical, except that the first and third mode loadings have been interchanged.
The structural model can be represented in different but equivalent ways depending on
the way the three-way data are arranged. In the following chapters, some cases will be
presented in which different representations are needed in order to estimate the

parameters defining the structural model.

The matricial/unfolded representation is the most common form used to represent
the PARAFAC model, since it can be easily expressed using standard linear-algebra
identities and also provides an excellent starting point for describing certain estimation
methods. The / x J x K cube of data can be unfolded, yielding a matricial representation
of the data. Only the equation representing the data array when it is unfolded by retaining
the first dimension will be shown, since, due to the symmetry of the model, the other

unfolded representations are equivalent after permutation:

X, =[X',X*,...X¥1=AG (C®B)" (1.11)

Equivalently, the elements forming the data can be arranged as a sequence of elements

providing the vectorial representation:
vec(X) = (A ® C® B)vec(G) (1.12)

where A, B and C are the matrices whose columns represent the loadings for the three
modes. It is common three-way practice not to distinguish between scores and loadings as
these are treated equally from a numerical perspective. The dimensions of these loading
matrices mark the first difference between the Tucker and the PARAFAC models. In the
former, the second dimension of the loadings can be different, while in the latter the
second dimension is the same for all the loadings. For instance, if a three-way array of

data X is given as an / x J x K block of data, a Tucker3 model decomposition with a rank
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D in the first mode, E in the second mode, and F in the third mode can be formulated. On
the other hand, a PARAFAC model will be defined as a rank P model since all the
loadings have the same number of columns. The second difference is related to the
structure of G. The matrix G, is the unfolded representation of the core array G arranged
as a matrix. This matrix is similar to the S matrix found in the PCA case, since the
elements of the core define how individual loading vectors in the different modes interact
and these elements also carry the magnitude of these interactions. Mathematically, in
PARAFAC, G will be composed of zeros everywhere but in the superdiagonal (g,

8222,
..+, gppp). For the Tucker model, non-zero values are allowed for the elements besides the

superdiagonal elements in G.

The structure of G for both models will have a profound impact on the uniqueness
of these models. The Tucker3 model has rotational freedom, and is hence not structurally
unique. This can be seen by replacing the model in equation 1.11 with a model where the
first mode loadings have been rotated by a non-singular square matrix, S. Then, by

counter-rotating G, with the inverse of this matrix, the model is obtained.
X, =ASS"'G,(C®B)" (1.13)

As we can see, this model is completely equivalent to the original model, hence rotation
is possible. Even with the orthogonality constraints imposed, the model does not provide
an identifiable solution, since rotations by any orthogonal matrix of any of the loading
matrices will provide new orthogonal loading matrices. In fact, it has been shown that the
structural model is so redundant that several parameters, often more than half of the
elements, in the core, G, can be forced to zero without changing the fit of the model [24].
This clearly shows that the Tucker models are unnecessarily complex and explains why
they give “ambiguous” results. As in two-way analysis the rotational freedom has
prompted the need for rotations of solutions in order to increase interpretability [25, 26].
Before analyzing the uniqueness of the PARAFAC model, it is convenient to
introduce an alternative representation, since this will make the proof simpler and will
clarify how the PARAFAC model is related to the principle of parallel proportional
profiles. It is important to say that Tucker3 model cannot be represented by this

expression since some important interactions cannot be explicitly included. The
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PARAFAC model can be written in terms of frontal slices. Let X; be the J x J matrix
obtained from X by fixing the third mode at the value k. Therefore, the model is

expressed in terms of its frontal slices as:
X*= AD'B” (1.14)

Here matrices A and B represent the loadings for mode A and B, respectively and DF is
the diagonal matrix, which contains the kth row of matrix C on its diagonal,
Equation 1.14 has an equivalent representation to the one shown above when a

similar transformation is carried out and the model is reformulated as:

X*= APP'D'SS'B” (1.15)

After the transformation, if the trilinear model holds, AP, B(S'l)T and P'D*S can be
considered the loadings instead of considering A, B and C. However, in order for the
trilinear model to still hold, the product matrix P'D*S must remain diagonal to represent
the third mode. This fact constrains the matrices P and S (and hence P™' and S to bea
very special type of matrix called permutation and/or scaling matrices. Therefore,
solutions must be unique up to trivial differences in factor order and relative scaling
across modes. Hence, contrary to the bilinear case, where a rotational ambiguity exists, in
trilinear and multilinear data in general, this ambiguity does not exist, which allows for
the unique estimation of the profiles. This intrinsic property of this type of data makes
this technique very suitable for chemistry, since the estimated solutions can be obtained
directly without any major assumption and compared to other profiles included in
databases, allowing the identification of the compounds present in the samples. Another
advantageous consequence of the unique estimation is the so-called “second order
advantage”, which allows the quantitation of an analyte in the presence of interferences
with only one calibration sample, since only a scaling indeterminacy has to be solved.
Many studies have been carried out to understand the uniqueness of the
PARAFAC model estimates. Harshman [27] and Leurgans et al. [28] showed that unique
solutions can be expected if the loading vectors are linearly independent in two of the
modes and there are no more than two linearly dependent loading vectors in the third

mode. Kruskal [29 ,30] found less restricted conditions for uniqueness by using the k-
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rank of the loading matrices, which is a term introduced by Harshman and Lundy [31].
The proof says that if any combination of ks columns of A have full column-rank, and
this does not hold for £s+1, then the k-rank of A is ku. The k-rank is thus related, but not
equal, to the rank of the matrix, as the k-rank can never exceed the rank. Kruskal

formulated the following equation as a proof:
ka+ kgt kc=2P+2 (116)

If under this set of conditions this proof holds, then the PARAFAC solution is unique.
Here ka is the k-rank of A, kg is the k-rank of B, k¢ is the k-rank of C and P is the number
of PARAFAC components sought. None of the above conditions are strong enough to
cover all situations where uniqueness can be expected, but they do give sufficient
conditions for uniqueness. Note that, regardless of the above rule, a one-component

solution is always unique. This even holds for a two-way decomposition.

1.3.2.2 Numerical Implementation

There are many published algorithms for fitting the PARAFAC model. Some of
the most important methods will be briefly explained in this section. The first algorithms
used to estimate the PARAFAC model were least squares iterative algorithms [20, 21]
based on the principle of alternating least squares (ALS) [32] and it has been the most
frequently used algorithm to date. Numerically, the principle behind ALS is to divide the
highly nonlinear optimization problem into a sequence of conditional linear sub-problems
and solve these in a least squares sense via simple established numerical methods.
Equation 1.11 is an excellent starting point to understand the way ALS is implemented.
The PARAFAC model can also be expressed as in equations 1.18 and 1.19 for the three-
way data matricized in the second and third modes. Let X, be the 7 x JK matricized array
and define X (Jx IK) and X, (K x 1J) similarly as the arrays matricized in the second and

third modes, respectively.

X, =AI (C®B)’ (1.17)

X, =BI,(C®A)T (1.18)
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X, =CI,(B®A)’ (1.19)

Using expression 1.17, A can be estimated by assuming B and C by a simple least
squares step as shown in equation T3 in Table 1.1. The full ALS algorithm is shown in
Table 1.1. As can be seen from the table, the ALS algorithm consists of three least
squares estimates, each providing a better estimate of one set of loadings, and the overall
algorithm will therefore improve the least squares fit of the model to the data. It is worth
noting that, even though a number of algorithms exist to estimate the PARAFAC model,
only the ALS algorithm is extendable to higher order data, Despite the excellent
convergence properties and well-defined optimization problem characterizing the ALS
procedure, the iterative nature of the method is a major inconvenience.

This inconvenience can be overcome by using the direct trilinear decomposition
method (DTLD) [33] which solves an eigenvalue problem. Historically, the evolution of
DTLD is linked to a method called Rank Annihilation Factor Analysis (RAFA)[34].
RAFA tries to estimate the concentration of an analyte in an unknown matrix solely using
the unknown sample and a pure standard. Mathematically, the idea behind RAFA was
based on reducing the rank of the calibration sample by subtracting the contribution from
the analyte of interest. That is, if the signal from the analyte of interest is subtracted from
the sample data, then the rank of this matrix will decrease by one, as the contribution of
the analyte of interest to the rank is one in the case of ordinary bilinear rank-one data like
chromatographic or fluorescence data. Later, Lorber [35, 36] found that the algorithm
could be automated by expressing the process as a generalized eigenvalue problem. In
1986, Sanchez and Kowalski generalized the method into the Generalized Rank
Annihilation Method (GRAM) [37]. In GRAM several components could be present or
absent in both calibration and standard samples. The method starts by finding two sets of
orthogonal bases that represent the subspace in each mode using two slices of the three-
way array. Subsequently, transformation matrices are found that transform these bases
into estimated pure components. In DTLD, the GRAM method is extended to data with
more than two slices by generating two pseudo-slices as differently weighted averages of

all the slices. The loadings in two modes are estimated by using the synthetic data set and
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Table 1.1. PARAFAC algorithm.

1.

Given an IxJxK cube of data X, the algorithm is initialized using random values of

the correct dimensions or using estimates obtained by TLD.
[A,B,C]=1d(X,P)

Using the estimates of A, B and C the initial value for the objective function can be

calculated using equation T1.

St = trace((Xa -X (X, - X, )T)

a a (Tl)
Unfold X retaining the first order and estimate A conditional on B and C.
Z,=1,(COB) (T2)
A= XaZI (ZaZZ)_] (T3)
Unfold X retaining the second order and estimate of B conditional on € and A .
B= XbZZ (ZbZZ)_l (T5)
Unfold X retaining the third order and estimate C conditional on A and B .
- T
~_ 7T iy Tyl
C=X,2,(Z,Z,) (T7)

Using C and the estimates of A and B the objective function can be calculated

using equation T8.

S = trace((XC -X, )X, -X)" ) (T8)

Calculate the convergence parameter .

/1=(Slz ‘Szz)/Szz (T9)
If A is less than the convergence limit (typically 10 in this work), terminate.

Otherwise make S} = S7 and return to step 2.
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GRAM. The loading in the last mode can be calculated using equations 1.17, 1.18 or
1.19, depending on which modes were used to obtain the pseudo-slices.

It is important to note that several other algorithms have been proposed in the
literature. Many of them claim to be insensitive to over-factorization and faster than the
standard methods [38-43]. However, it has been demonstrated that they are suboptimal
from a statistical and structural point of view, since they lack an objective function and
also need more stringent conditions to achieve uniqueness [44]. On the other hand,
Positive Matrix Factorization applied to three-way data (PMF3) [8] is statistically correct,
but its Gauss-Newton optimization is computationally involved, since the memory
requirement of the algorithm increases quickly with the size of the problem, preventing

the algorithm from being applicable to large data sets in practice.

1.4 Statistical models

Thus far, the focus of this discussion has been the analytical measurements
obtained in multivariate/multi-way analysis and the structural model that best represents
those measurements. However, the analytical measurements are always disturbed by
uncontrollable variation, which obscures the measurement of the signal of interest (e.g.
the true signal described by the structural model). In general, this noise may be caused by
everything from the sampling process to the instrumental acquisition. The analytical
signal will consist of two inseparable parts: a pure or undistorted true signal and a
corrupting part called noise. This signal is measured as a function of some other ordinal
variable such as wavelength, or time. For instance, it is helpful if we imagine a discretely
sampled signal vector, x (e.g., a spectrum or chromatogram), from which we could break
the signal in two parts: the pure signal component, x° and the noise, e, as shown below in

equation 1.20, and depicted in Figure 1.4.

x=x°+e (1.20)

The estimation of the parameter defining the previously introduced structural
model for the pure data, generically symbolized by x°_ can be carried out by applying a

variety of numerical algorithms to the experimental data obtained from instrumental
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sources. However, the optimality of these methods will be guaranteed only if the

measurement errors fulfill certain conditions. The term, e, in equation 1.20 is a random
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Figure 1.4. An observed signal, which can be envisioned as the contribution of two parts:
the true signal and the noise.

variable and by definition cannot be predicted, only characterized. There are different
methodologies and figures of merit used to characterize the error. Nonetheless, the focus
of this work will be the error covariance matrix, since it is not only the most simple and
complete way to describe this term, but it is also the one usually utilized to carry this

information into the estimation process.

1.4.1 Error covariance matrix

The error covariance matrices are composed of two closely related statistical
quantities, the variance and covariance terms. For the first element in the noise vector, ¢,

(e= [eI e, - e ]), the measurement error variance is defined by:

= E(e?) (1.21)
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where E( ) indicates the expectation value of the quantity in brackets. In practice this,
theoretical value cannot be obtained and the variance is estimated in the usual way:
R
z (el,r ) '

e (1.22)

5 =

R-1

where R is the number of replicate measurements used in the estimate. This number 1s a
quantitative estimate of the magnitude of the error variance at element one, but it says
nothing about the relation of the errors at element one to errors at another element. This

relationship can be quantified by calculating the error covariance, given for elements 1
and 2:

o, =E(ee,) (1.23)

As for the variance, the covariance between elements 1 and 2 is estimated using:

_ Z:,(el.r XeZ.r )

~ R-1

(1.24)

S12

where the summation product now includes the errors at different channels (1 and 2).
The expectation of the error covariance term is positive when the errors at channels i and
J are correlated, negative when the errors are anticorrelated, and zero when the errors are
independent of one another. The calculation of variances, and error covariances for every
channel in a signal vector, then, allows one to map the structure of the variations in the
measurement errors, and how they are correlated between channels. This structure is
conveniently summarized in an error covariance matrix, ¥, a mapping of the variance

and covariance of the measurement errors, which has the general form for an » x n matrix

as depicted in equation 1.25.

Sy S Sp; St
2
Syt Sy Sy Sou
— 2 -, .
V=5, s, s - (1.25)
2
_snl Su2 Sn N

24



Since s;; = s;;, erTor covariance matrices are necessarily symmetric.

For iid noise, the error covariance terms should approach zero in the expectation,
and if the noise is identically distributed, then all of the diagonal terms (variances) should

be approximately the same. This can be equivalently expressed using all of the elements |

of the n-element vector of errors, e,

¥ = E(ee)=0 1, (1.26)

This structure arises because, in the iid case, the expectations of the individual variances,

and covariances are
E(e?)=Elee,)= o (1.27)
Elee;)=0, =0 (1.28)

Therefore, under iid noise conditions, the error covariance matrix should be
diagonal. Deviations from the iid condition have easily recognizable influences on the
error covariance matrix. The loss of the independence condition corresponds to error
covariance terms being significantly different from zero, and ¥ deviates from the
diagonal form of equation 1.26. Heteroscedasticity (unequal variance for different
elements) is characterized by unequal diagonal elements in ¥. Figure 1.5 shows some
examples of error covariance matrices estimated from 100 replicates. Figures 1.5a and b

correspond to error covariance matrices of measurements affected by iid, and non-iid

noise respectively.

Thus far, the structure of the error covariance matrix for two extreme scenarios

has been introduced. The simplest case characterizes scenarios where the noise is iid and
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Figure 1.5. Error covariance matrices for measurement error, which follow the a) iid
condition and the b) non — iid condition.
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is numerically represented by only one element, o*. On the other hand, in some cases the
error structure is so pervasive and unequal among the elements that a full error
covariance matrix ¥ (r x n) in needed. A number of more “grey” scenarios exist in
between these extremes. For instance, correlations may only exist among measurements
within one order of the data matrix. This is usually the case, for example, when
measurements from absorption spectrometers are employed, since errors in adjacent
channels are correlated by source flicker noise or cell positioning errors, but there are no
errors from sample to sample. Similarly, for thee-way data obtained by pairing emission-
excitation profiles for different sample compositions, we might expect measurement error
correlation to exist over the entire excitation-emission matrix (EEM). Other cases,
simpler and more complex, can be envisioned, producing all kinds of simplifications to
the full error covariance matrix due to the inherent symmetry. Therefore, the information
forming the full error covariance matrix can be equivalently conveyed by smaller
matrices carrying the same information in some cases. A more extensive discussion about

the error structure and the error covariance matrix can be found in reference 46.

1.4.2 Measurement error structure and model estimation

The numerical methods previously introduced to estimate structural models such
as PCA and PARAFAC can be applied to data with any error structure. However, the
optimal estimates of the true parameters, which are in essence, the maximum likelihood
parameter estimates, will be only obtained if the measurement errors corrupting the data
are iid and normal. As mentioned above, the iid error assumption is largely a remnant of
the age of univariate calibration. The appearance of multichannel instruments leads to
measurement errors that can be correlated in several different ways in a data matrix X.
There may be correlations among channels in the calibration spectra (columns in the
matrix), for instance. This is often the prevailing scenario in spectroscopic calibration,
and can arise from a variety of conditions including sensor spatial correlations in the
instrument, source flicker, and numerous signal-processing techniques. Another example
can be samples that are not run in random order, in which case low-frequency variations
in the instrument performance (e.g., temperature drift, source degradation) can become

embedded in the measurement error structure. The presence of non-iid noise will
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seriously hamper the estimation process, since most of the methods used assume these

characteristics. The graphical example depicted in Figure 1.6, can be used to illustrate the

problem and the proposed solution.

a) Least squares projection onto the subspace under iid condition

b) Maximum likelihood and least squares projections onto
the subspace under non-iid condition

uncertainty

“ £ .’ ‘

Figure 1.6. Maximum likelihood estimation approaches for different noise structures: a)
least squares projection under iid conditions, and b) maximum likelihood projection and
least squares projection when the iid conditions are violated.

Figure 1.6a shows the simple scenario of a noise-corrupted bivariate vector, x,

related to the unattainable true vector, x°. The subspace S, where the true vector
resides is assumed known. The best representation of the vector X in the subspace S, is

obtained by the orthogonal projection of x onto the subspace S, . This orthogonal (least-
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squares) projection minimizes the length of the error between x and & (X is the

projection of x onto Syo ). On the other hand, Figure 1.6b shows a case where the errors

are non-iid. In this case, the sphere shown in the previous figure is stretched along the
coordinate axes in some fashion. By considering the shape of this ellipse, it can be said
that the data are corrupted by some heteroscedaticity and correlation, since the principal
axes of the ellipse have different radii and are not aligned with the coordinate axes. If a
standard method is used, the best estimate will be obtained by orthogonally projecting the

vector onto the S, subspace. As seen here, this vector is very distant from the true

vector x°, therefore it is an unlikely estimate. Rather, if the error covariance matrix is

utilized to provide a directional guide for the projection of the vector x onto the

subspace S, , this oblique projection yields an estimate that is very close to the true

vector x°.

In order to translate this geometrical example mathematically, it is important to
realize that a measurement error vector can be described by a multivariate probability
distribution. In practice, multivariate probability density functions are difficult to obtain
but, as previously mentioned, the normal condition is seldom violated and, therefore, a
multivariate normal distribution is usually assumed. For the vector of measurement

errors, e from the previous example, this is shown as:

PDF(x) = —-1—1/Zexp{— —l-(x S i):l
27]¥| 2

1 (1.29)

= ﬁz;;l‘l’ll B expl:— %eT\I’-le:|
In maximum likelihood estimation, the error ellipsoid, ¥, is associated with some “true”
point which lies on the hyperplane described by a trial model. Since the actual error-free
measurement is not known, a best guess is required, and this is the maximum likelihood
estimate for the point. For the general case, the maximum likelihood estimate is obtained
by finding the point in the subspace where the measured value maximizes the
multivariate probability density function for that measurement. Thus, the maximum

likelihood estimate of x is the one for which the observed measurement is “most
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probable”. The joint probability density function is called the likelihood function. The
objective of this method is to maximize its value with respect to & (although this method
usually maximizes with respect to a parametric model of %). Alternatively, we could
minimize the constant part of the logarithm of this function likelihood represented in

equation 1.29:

S =(x-%)"P ' (x-%) (1.30)

This is the goodness-of-fit objective function. In this equation x and Xrepresent the
observed and the maximum likelihood estimates of the measurement vector. In fact, this
is a sum of squared residuals for all measurements weighted by the appropriate error
covariance matrix. For iid measurement errors, this function can be reduced to the least-
squares objective function, represented in equation 1.31, and is usually mimimized by
methods such as PCA and PARAFAC:

S? =l2(x-ﬁ)T(x—ﬁ) (1.31)
(o)

It is important to note that the use of a vector to formulate the statistical model in
a generic way is not introduced only for the sake of simplicity, but also because it
provides a more general way in which this problem can be treated, since the errors for a
given analytical experiment can be correlated along any order. In many cases, this
general scenario, which can be prohibitive for practical cases, can be alleviated by
equivalent but more compact representations, as in the case shown in equation 1.31 for
the iid case. Additional simplifications are possible by using equivalent representations of
the structural models in conjunction with alternative optimal representation of the error
covariance matrix. For example, in kinetic studies, the course of the reaction is followed
spectroscopically, giving rise to errors that are correlated in both the time and wavelength
modes. The other mode may be composed of samples, but the structure of this correlated
noise changes from sample to sample independently. This type of situation is not
uncommon when spectroscopic techniques such as NIR spectroscopy are used due to path
length variations. Mathematically, the trilinear errors-in-variable model best suited to

describe these data can be obtained by minimizing equation 1.32:
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!
§? =2 ('x,~'3(C®B) ) ¥ ('x,~A(CO®B)")" (1.32)

i=l
For this case, we will consider that the three-way data X, will be unfolded preserving the
samples of different compositions in mode A, while modes B and C will be combined in
one composite mode, formed by the spectral information and the time information for
each sample. However, if the sample contribution to the error structure can be alleviated

somehow, the objective function in this case can be expressed as shown in equation 1.33.
§* = trace(X,, - AL (C®B)")¥,'(X, - AL (C®B)")"] (1.33)

The philosophy introduced above has been successfully used by MLPCA to treat
bilinear data in a number of analytical scenarios [9, 14, 45, 47, 48]. The implementation
details of MLPCA will not be given here as they can be found elsewhere [17,49]. For the
case of three-way data, a generic method called Maximum Likelihood via Iterative Least
Squares Estimation (MILES) was introduced by Bro et al. [12]. MILES works as an
iterative preprocessing tool to condition the data from a maximum likelihood perspective
in order that least squares methods such as PCA and PARAFAC can optimally handle the
estimation process. The method is based on a majorization strategy in which the original
objective function is substituted by a simpler and equivalent objective function in each
step of the estimation process. Unfortunately, the simplicity of this numerical
implementation is hindered by the amount of computation time needed. Since the method
runs the full least squares optimization in each step, the time needed to obtain an estimate
is sometimes excessive. Another important drawback of this approach is that the physical

problem becomes obscured by the efficient but unfamiliar numerical methodology.

The present work introduces the theoretical foundations for a maximum
likelihood implementation of the PARAFAC model. The method will be called
Maximum Likelihood Parallel Factor Analysis (MLPARAFAC) and is an errors-in-
variables modeling method in that it accounts for measurement errors in the estimation of
model parameters. It is an optimal modeling method in a maximum likelihood sense for
functional models with no errors in the model equations. The present method is a natural
extension to PARAFAC of the MLPCA method introduced by Wentzell et al. [9]. The

mathematical aspects of the algorithm will be described in detail to allow the principles to
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be readily applied. The algorithm can accommodate heteroscedastic and correlated noise

in one or more dimensions and has excellent convergence characteristics since its core is

based on an ALS framework.
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Chapter 2

Maximum Likelihood Parallel Factor Analysis (MLPARAFAC)'

2.1 Abstract

Algorithms for carrying out maximum likelihood parallel factor analysis
(MLPARAFAC) for three-way data are described. These algorithms are based on the
principle of alternating least squares, but differ from conventional PARAFAC algorithms
in that they incorporate measurement error information into the trilinear decomposition.
This information is represented in the form of an error covariance matrix. Four
algorithms are discussed for dealing with different error structures in the three-way array.
The simplest of these treats measurements with non-uniform measurement noise which is
uncorrelated. The most general algorithm can analyze data with any type of noise
correlation structure. The other two algorithms are simplifications of the general
algorithm which can be applied with greater efficiency to cases where the noise is
correlated only along one mode of the three-way array. Simulation studies carried out
under a variety of measurement error conditions were used for statistical validation of the
maximum likelihood properties of the algorithms. The MLPARAFAC methods are also

shown to produce more accurate results than PARAFAC under a variety of conditions.

! Submitted to Journal of Chemometrics (Published, April 2003)
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2.2 Introduction

With advancing technology of analytical instrumentation, data in the form of
tensors of second order and higher have become more commonplace. Examples of such
techniques include fluorescence excitation-emission spectroscopy and chromatography
with multichannel detectors. In 1980, Hirschfeld [1] provided a very complete table of all
the feasible combinations of techniques capable of providing second order data at that
time and estimated that about »60% of the techniques are bilinear under certain conditions.
Extension to trilinear data is easily accomplished when several samples are analyzed by
these methods. This list has continued to expand in terms of the number of techniques
and possible analytical orders as this instrumentation becomes commonplace in chemistry
laboratories. Ever since Appellof and Davidson [2] provided the first application of
trilinear ~ decomposition to  chemistry using  both simulated and real
LCl/emission/excitation fluorescence data, the number of applications has expanded to

many branches of chemistry, ranging from basic research to environmental and food

chemistry.

Trilinear data (and multilinear tensors in general) share common properties with
bilinear data that make the latter structure central to modern chemometrics. Both types of
data can model deterministic relationships among variables, especially in cases where a
high degree of collinearity exists. These types of models allow multivariate and
multiorder data to be represented by a smaller number of variables. Using this smaller set
of variables, the data can be described within experimental error as a P-dimensional
hyperplane. In this case, P is called the chemical rank or “true” rank of the data set in
order to distinguish it from the mathematical rank. In general, the chemical rank is
typically related to the number of underlying chemical factors or chemical components
present in the mixture. However, contrary to what happens in bilinear models, where the
smaller set of variables are abstract solutions of the underlying physical factors which are
not unique due to rotational ambiguities, the trilinear and higher multilinear models can
produce unique and well-identified solutions (up to trivial differences in factor order and

relative scaling across modes) [3]. In addition, the uniqueness of the solution gives rise
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to the “second order advantage” which allows the quantitation of an analyte in the

presence of interferences with only one calibration sample.

A variety of algorithms have been developed to estimate the multilinear model,
including parallel factor analysis [4] (PARAFAC), direct trilinear decomposition [5]
(DTLD), and positive matrix factorization [6] (PMF3). These algorithms are based on
different numerical approaches, namely alternating least squares (ALS), eigenproblem
formulation and a Gauss-Newton approach, respectively. Each has its own advantages
and disadvantages that make it suitable in a specific situation. However, PARAFAC
(ALS) is currently the most widely used algorithm, mainly due to its good convergence
properties. ALS, which was introduced by Yates [7] in 1933, works by simply dividing
the parameters into several sets. Each set of parameters is estimated in a least squares
sense conditionally on the remaining parameters. The estimation of the parameters is
repeated iteratively until a certain stop criterion is reached. In this way, a very complex
nonlinear problem becomes a sequence of simpler least squares steps in which the
parameter sets are improved in each step. As all estimates of parameters are least squares
estimates, the procedure can only improve the fit or keep it the same if converged. It
follows from this that the objective function decreases monotonically, and, since it is also
bounded from below (the objective function cannot be less than Zero), convergence is
always reached. This does not imply that the global minimum is guaranteed, since a
problem like this is characterized by several local minima. Global convergence can be
assessed when repetitions using different starting points yield similar sets of parameters.
In addition to the reliable convergence characteristics of ALS, it is also used because it

yields maximum likelihood estimation under certain noise characteristics.

Methods such as PARAFAC give maximum likelihood estimates of the model
parameters when the noise is independently and identically distributed with a normal
distribution (iid normal). Noise can be broadly defined as an undesirable variation in a
measured signal which obscures the measurement of interest, the true signal. Based on
the specific advantages of multilinear data, this definition will be narrowed to undesirable
variation attributable to non-chemical sources (e.g. instrumental sources). Noise can
have many different origins, having a very complex range of properties and

characteristics. Unfortunately, these properties and characteristics are not mutually
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exclusive making the number of possibilities of noise structures very large. The term iid
has been coined in the chemometric literature to make a precise and concise description
of the fundamental properties needed to characterize the instrumental noise in the “ideal”
case. It conveys information about independence (i.e. the error observed at any one
channel is uncorrelated with the error observed at any other channel) and the
homogeneity of distributions (i.e. identically distributed implies the error variance and
distribution are the same for all measurements). Conventional least squares approaches
to trilinear decomposition are maximum likelihood methods only under #id conditions.
These naive assumptions about the noise structure corrupting the multilinear data can
lead to poor models, since all of the methods rely on a least squares procedure.
PARAFAC and DTLD are the most affected since both independence and
homoscedasticity (identical distributions) need to be satisfied to yield the maximum
likelihood solution. PMF3 can overcome the need for homoscedastic noise to yield the
maximum likelihood solution because it applies a weighting scheme that solves this
impediment. When minor variations from the assumption of iid normal noise are
observed, some scaling techniques can be used with PARAFAC in order to alleviate the
deviations from the 7id condition, but this will only yield a maximum likelihood solution
when the noise is uncorrelated and the heteroscedasticity follows a certain structure. A
more general approach to tackle this problem, W-PARAFAC, was introduced in 1997 by
Kiers [8], who used a weighted objective function to remedy the problem of
heteroscedastic noise. The algorithm is based in a majorization procedure instead of an
ALS algorithm. W-PARAFAC and PMF3 both overcome the heteroscedasticity of the
noise using a weighted objective function, but the issue of the noise correlation is still a
problem for both methods, since they cannot accommodate error covariance terms in the

procedure.

The presence of covariance among measurement errors is an ubiquitous and
pernicious effect produced by several sources ranging from the temporal correlation of
pump noise in chromatography to the spatial correlation of array detectors in
spectroscopy. Another important source of correlation in the measurement errors is signal
processing, particularly electronic or digital smoothing filters. Because of all of these

effects, correlated measurement errors are likely to be the rule rather than the exception
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for multivariate data sets, implying that standard methods of analysis (both two-way and
multiway) that make assumptions of iid normal noise are suboptimal. The only optimal
means to account for the correlation in measurement errors is using a maximum
likelihood approach to estimate model parameters that are most likely to give rise to the
observed measurements. For bilinear data, this problem has been addressed through the
development of maximum likelihood principal component analysis (MLPCA) [9], which

has been shown to provide improved results where the effects of noise correlation are

significant.

Correlation among measurement errors in three-way data is complicated by the
unfolding/matricization process usually used in ALS algorithms. Elements with
correlated measurement errors which may appear adjacent to one another in a “slice” of
the three-way array may become spatially separated from one another when the cube is
unfolded in certain ways. Because of this, conceptualization and simplification of error
covariance structures for three-way data is more difficult, and this has impeded the
development of maximum likelihood methods for three-way data. Until recently, this
problem was avoided by the standard estimation algorithms. Recently, a method called
MILES [10], which is based on a majorization-ALS algorithm, was introduced to address
the problem of correlated measurement errors for multilinear data. The extent to which
this method yields maximum likelihood estimates is unclear since no validation of the
results was done in this context and the theoretical foundation of the method is obscured

by the complexity of the algorithm.

This paper introduces the theoretical foundations for Maximum Likelihood
Parallel Factor Analysis (MLPARAFAC). MLPARAFAC is an errors-in-variables
modeling method in that it accounts for measurement errors in the estimation of model
parameters. It is an optimal modeling method in a maximum likelihood sense for
functional models with no errors in the model equations. The present method is a natural
extension to PARAFAC of the MLPCA method introduced by Wentzell et al. [9]. The
mathematical aspects of the algorithm are described in detail to allow the principles to be
readily applied. The algorithm can accommodate heteroscedastic and correlated noise in

one or more dimensions and has excellent convergence characteristics because its core is
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based on an alternating least squares procedure. Although, all the cases used in this paper

will be three-way data this algorithm is extensible to N-way data.

2.2.1 Notation

In this paper, scalars are indicated by italics and vectors by bold lower-case
characters. Bold upper-case letters are used for two-way matrices and underlined bold
upper-case letters for three-way data. The letters A, B ,C and I, J, K are reserved for
indicating the first, second and third mode of three-way data and the dimensions of those
modes respectively. Also the letter P is reserved to represent the number of factors used
in the model. The terms mode, way and order are used indistinctively, as well as the
terms factors and components. When three way arrays are unfolded to matrices, the
following notation will be used. If X (Ix Jx K) is unfolded while retaining the first order
to produce a (7 x JK) matrix, this will be designated X,. In the same way, matrices X, (J
x IK) and X; (K x IJ) will be used to represent unfolded matrices which retain the second
and the third orders, respectively. In general, other matrices with subscripts a, b and ¢
represent unfolding while retaining the first, second and third modes. The symbol “®”
will be used primarily to indicate the Kronecker product, but will also be used to

represent the tensor product in certain cases which will be clearly distinguished.

2.3 Theory

PARAFAC is an acronym used to refer to two different, though closely related
concepts. It is used to describe the model that the trilinear structure of the data follows,
and it is also used to refer to one of the various algorithms used to estimate the
parameters of the aforementioned model. PARAFAC was originally introduced by
Harshman [4] and simultaneously and independently by Carroll and Chang [11], who
referred to it as Canonical Decomposition (CANDECOMP). The model can be seen as
an extension of bilinear PCA to higher orders. The PARAFAC model for a three-way
array is defined by three loading matrices, A, B and C, with elements aj, b;, and c,. It

can be written as a tensor product, as shown in equation 2.1:

P
X=>a,®b,®c,+E 2.1)



where a,, by, and ¢, are the pth columns of the loading matrices A, B and C, respectively.

The model can also be expressed in scalar form as shown in equation 2.2:

P
Xy = Za,.pbjpckp +ey, (2.2)
p=l

Here, xj is an element of the three-way array X, and ejr 1s an element of the
corresponding residual matrix, E, where the indices refer to modes A, B, and C,

respectively.

Since most of the mathematical/statistical tools and concepts used in
chemometrics rely on the foundations of linear algebra, a matrix representation of a three-
way array is very useful. The process of converting a cube or higher order arrangement
of data into a matrix is called unfolding or matricization and it can be done in at least as

many ways as the array has orders. Equation 2.3 represents the unfolded data when the

first order is retained.

X.=AZ,+E, (2.3)
The X, matrix is obtained from the matrix multiplication of loading matrix A and a
matrix Z, which is formed from loading matrices B and C. The Z, matrix can be obtained
as a Khatri-Rao product [12] of matrices B and C or as a Kronecker product [13] of
matrices B and C premultiplied by the unfolded superdiagonal “identity” matrix of order

P (I,). These alternative representations are shown in equations 2.4 and 2.5, respectively.
Z,=(C"|®B") (2.4)
Z,=1(C"®B") (2.5)
Analogous equations can be used to represent X as the matrices obtained when the

second and third orders are retained (Xy and X,).

Assuming B and C are known (or estimated) and iid noise conditions, then an
estimate of A can be obtained solving the conditional least squares problem to minimize
the sum of the squares of the residuals in E. The solution to this problem is given by

equation 2.6.

A=X,2NZ,27)" (2.6)

a
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This least squares estimate of A can in turn be used to obtain estimates of B and C (given

€ and B , respectively) by employing similar equations involving X and X.. This leads
naturally to the iterative ALS procedure which can be used to estimate all of the loadings

in a stepwise procedure.

2.3.1 Non-uniform Measurement Errors

Unfortunately, in cases where iid noise conditions are violated, the conventional
ALS algorithm will produce suboptimal estimates of the loadings. In those cases where
measurement errors remain independent but the condition of homoscedasticity is violated
(i.e. each measurement can have a different variance), a more general objective function

can be minimized to satisfy the maximum likelihood criterion. Consider the three-way

array of measurements X and an associated array X, which contains the variances of the
measurements of the corresponding elements in X. For a given trial solution X (based

on estimates of A, B , and C such that X = AZG), equation 2.7 gives the likelihood

function in terms of the matrices unfolded in the A mode.

! 1 [ 1. o
L= - exp ——(’xa-’xn)"l’ﬂ’(’xa—’ia)T} (2.7)
I‘._:‘][(zﬂ)Jk/2|i‘Pa|l/2 2

In this equation, X, represents the ith row of the unfolded matrix X, and ‘%, represent the

corresponding vector of estimates of X,. The matrix ‘¥, is the measurement error

covariance matrix for the ith row of X,,, which in the case of uncorrelated errors will be a
diagonal matrix (JK x JK) containing the variance of the measurement errors of 'x, ; that

is, it is the diagonalized form of the ith row of £,. The error covariance matrix is
defined according to:

¥, = E[('x,-'x))" ('x,~'x])] (2.8)
where “E” designates an expectation value and 'x° represents ith row of X°, which is

the true or expectation value of X° unfolded in the A mode. Since X° is not normally

known, it is normally estimated on the basis of mean values, or else ‘¥, is estimated on

the basis of prior information (e.g. an assumption of proportional errors).
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Obtaining the maximum likelihood estimates of A, B, and C means maximizing
the likelihood function in equation 2.8 with respect to these loading parameters. This is
equivalent to minimizing the logarithm of the likelihood function, which, when constant

terms are ignored, results in the objective function in equation 2.9.

! 4

Z l" )11;--1(x ) =ZS,'2

- = (2.9)
Z —1 i T _i 1\I;l l"T i :\P! ‘XT+X I‘P: if(T)

i=1

a

To minimize the objective function, 2, with respect to the loadings A given B and C ,
we first recognize that each term, S;, in the summation is an independent function of the
ith row of A, designated as ‘4, and the given matrix Z,,thatis ‘%,='4Z_. This means

that §® can be minimized by minimizing the individual terms, allowing each row of A to

be estimated independently as shown in equations 2.10 to 12.
§*="x, "W x;-'x,"¥;'AzZ,)" - Az, ¥;' ' x" +4Z, V] (AZ,)" (2.10)

2
aai—o X, W,'Z; -Z,"¥;' 'x! +2Z "Wz 4" (2.11)
a

a='x,'¥'27(z,'¥;'Z,)" (2.12)
It should be emphasized that, in these equations, ‘4 is used to designate a row of A and

does not represent a loading vector of A. From equation 2.12, estimates of ‘a can be

combined to give A. In cases where the error covariance matrix is the same for all the

rows of X,, equation 2.12 can be generalized to the matrix form represented in equation
2.13.

A=X Y27z, ¥'z2")" (2.13)
This equation can also be reduced easily to equation 2.6 in cases where the noise is the

same (homoscedastic) for all the channels.

Since the requirement for this development was independence of measurement

errors, the error covariance matrices for all the orders are diagonals. Unfolding X in the
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other two directions leads to similar equations for B and C, allowing an equivalent
maximum likelihood estimation of X in all the spaces, subject to the constraint that two

of the spaces remain fixed. This occurs because the objective function of X unfolded in

all the orders reduces to the same summation but in a different order. To obtain the
unrestricted maximum likelihood estimation of X, it is necessary to optimize the

objective function with respect to all three sets of loading vectors. An altemative to such

a direct optimization is an iterative approach using ALS.

The algorithm for the Maximum Likelihood PARAFAC in cases of

heteroscedastic noise is given in Table 2.1. The algorithm alternately uses the maximum
likelihood estimates of two modes, say B and C, to update the estimates in the mode left
out, say A. This procedure is carried out iteratively, using the previously estimated

mode and one of the other two modes, say Aand € , to estimate the other, say B. This
procedure has been found to be simple, fast and reliable. Although, global convergence
is not guaranteed, it does not seem to be susceptible to local minima as is the case with
gradient methods. In addition, this method is very attractive since its core is based on an
ALS framework, which ensures an improvement of the solution in each step. The
algorithm is easily applied in cases where there are missing values by incorporating large
variances for the missing measurements. Convergence time depends on the
dimensionality of the data, the degree of similarity of the components forming the
system, the accuracy of the initial estimates and the structure of the errors. The two most
important factors increasing the convergence time are the dimension of the model and the
degree of similarity, especially the former, which makes each step longer and increases

the necessity for more iteration. Some strategies have been reported to improve the
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Table 2.1. Standard MLPARAFAC algorithm (uncorrelated errors).

L.

Given an I x J x K cube of data X and a corresponding 7 x J x K cube I of measurement
error variances, the algorithm is initialized using random values of the correct dimensions or
using estimates obtained by TLD.

[A,B,C]=1ld(X,P) (T.1)
Unfold X and X retaining the first order and calculate the maximum likelihood estimation of
A conditional on B and C.

X, =unfold(X,a); L, =unfold(L,a); ¥, = diag('L,) (T.2)
l"T l I\P-IZT(Z \P—lzT)-l (T.3)

Here ‘4" is a row vector of A. Using this estimate and the estimates of B and C the
objective function can be calculated using equation T.4.

52 =3 (%~ %) W7 (%, %, )" (.4

Unfold X and £ retaifling theA se?ond order and calculate the maximum likelihood estimation
of B conditional on C and A.

X, = unfold(X,b); X, =unfold(L,b); '¥, = diag('L,) (T.5)

bT='x, ¥, 22, ;2 (T.6)

Here ‘b7 is a row vector of B. Using this estimate and the estimates of C and A the
objective function can be calculated using equation T.7.

J s .
Sy =>.Ux,~"%,) ¥;' (Ux,~'%,)" (T.7)
=l

Unfold X and £ retalnmg the third order and calculate the maximum likelihood estimation of
C conditionalon A and B.

X, =unfold(X,c); T, =unfold(E,c); “¥, = diag(*T.) (T.8)
T x 2T (Z, 2T (T.9)

Here “&" is a row vector of C. Using this estimate and the estimates of A and B the
objective function can be calculated using equation T.10.

K
SI=(*x ~ %) (P x, - %,)" (T.10)
k=1
Calculate the convergence parameters 4, and 4,.
A =(82-82)182; 4, = (82 -82)/8 (T.11)

If A and A, are less than the convergence limit (typically 10® in this work), terminate.
Otherwise return to step 2.
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efficiency of the algorithm [14], but these will not be incorporated here. Comparative
data on convergence time will be reported in a future paper.

It is worth noting that the algorithm presented in Table 2.1 imposes restrictions on
the presence of offsets in any mode. Normally, this would be equivalent to saying that
the data have been properly mean centered [15], but in the case of non-uniform
measurement errors, mean centering is not equivalent to eliminating offsets. The case of
offsets will be treated from a more optimal, though incomplete perspective in Section
2.34.

Although, the problem of heteroscedastic noise has been addressed in the
literature using weighted PARAFAC algorithms, the description presented here marks the
first time (to our knowledge) that a formal theoretical treatment of this problem from a
maximum likelihood perspective has been given. It also represents a good starting point
to generalize this algorithm to more complicated scenarios, such as systems affected by

correlated noise and heteroscedastic and correlated noise in two or more dimensions.

2.3.2 Correlated Measurement Errors

The incorporation of uncorrelated, heteroscedastic measurement errors into the
ALS framework as described in the preceding section is relatively straightforward. On
the surface it may appear that extension to correlated measurement errors is a trivial
matter, since the likelihood function expressed by equation 2.7 should be equally
applicable for error covariance matrices that are not diagonal. However, there is a critical
difference that relates to the way in which the information in the error covariance
matrices is transformed when the three-way array is unfolded. In the case of uncorrelated
measurement errors, the diagonal error covariance matrices in each mode contain all of
the information about the uncertainty in the measurements, although the order in which
this information appears varies with the modes. In the case of correlated measurements,
some of this information will be lost in one or more modes, making it impossible to
maintain consistency in the ALS estimates obtained when using the same strategy as for
independent errors.

To illustrate this point consider the relatively simple case where the errors are

correlated in one order only. For example, we may have a case where multiple samples
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of different composition are separated by chromatography with multichannel detection
and there is significant correlation in the time domain due to pump noise. Alternatively,
we could imagine fluorescence excitation-emission measurements for a series of samples,
which are correlated in the emission domain due to source fluctuations, but uncorrelated
in the excitation domain because it is scanned at longer time intervals as the second order.
For convenience, we will say that the measurements along the rows, which make up
mode B are correlated, but there is no correlation among these rows in the three-way

array. This situation is conceptually illustrated with a small 4x3x2 array in Figure 2.1.
%)
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Figure 2.1. Illustration of the unfolding of a three-way array and its effect on the
structure of the error covariance matrix for the first row of the unfolded matrix. Elements
with correlated measurement errors are labelled with the same letter.

The elements of the array that are labeled with the same letters are considered to
be correlated in this example. Considering unfolding in the A mode first, the figure

shows the structure of the error covariance matrix for the first row of Xq, which is block

47



diagonal due to the presence of two sets of correlated measurement errors. The
remaining 3 rows will have the same error covariance structure, resulting in 72 non-
zero elements in total describing error covariance. On the other hand, the error
covariance matrix for the first row of X, has a diagonal form since the correlated
measurements appear in the columns. Considering all three rows of X, this results in
only 24 non-zero elements describing the error structure. Information on the covariance
has been lost in this representation. Finally, the error covariance matrix structure for the
first row of X, is band diagonal. The two error covariance matrices resulting from this
unfolded matrix will have a total of 72 non-zero values describing the error covariance
and contain the same information as the A mode, only in a different representation.
However, because the error covariance matrices for X, contain incomplete information,
the sequence of steps in the ALS algorithm described in the previous section cannot be

completed using this approach.

As correlation among the orders becomes more complex, the inability to represent
this information becomes more obvious. This is clear if one realizes that a complete
description of all correlations in the general case would require (IUK)* elements, but the
total number of elements in the row covariance matrices for, say X, , is only I(JK)*. In
order to circumvent this problem a more general solution for correlated errors will be
obtained redeﬁning. the problem and modeling the measurements as a single point in an
IJK-dimensional space. To do this, X (or alternatively any unfolded representation) is
vectorized by applying the ‘vec’ operator and the equations are adapted as necessary. The

generalization of equations 2.12 and 2.10 are:

vec(AT) = (VIQ'V ) VIQ 'vec(XT) (2.14)
S? =vec(AX]) Q;'vec(AXT) (2.15)
where,
V,=I,QZ" (2.16)
Q, = E[(vec((X, = X7)")) - (vee((X, —X2)™))" ] (2.17)
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AX, =(X,-X,) (2.18)
In these equations, the ‘vec’ operator reshapes a matrix into a column vector by taking the

elements in sequence column-wise [13]. The symbol ‘® as used here identifies the

Kronecker product such that each element of I, is multiplied by ZZ therefore V, is an IP
x IJK matrix with Z] repeating along the diagonal. The matrix Q, is the full error

covariance matrix for vec(X} ), providing information about the error covariance among

all the measurements. Similar equations can be obtained by making the appropriate
substitutions for the second and third mode in a trilinear case, or to the other dimensions
in a multilinear case. Based on this, an alternating regression algorithm similar to the one

in the preceding section can be formulated as shown in Table 2.2.

In a manner analogous to the ALS algorithm for heteroscedastic errors, the
generalized algorithm presented in Table 2.2 uses the maximum likelihood estimates in

two spaces to estimate the solution in the other space. In order to exchange the solutions,

the error covariance matrix for vec(X}), given by Q_, needs to be modified to give the
al)s> 8 a

error covariance matrix for vec(X;) and vec(X]), given by Q, and Q, respectively.

This can be done on an element-by-element basis; but since these matrices contain the
same elements in a different order, it is simpler to apply a special type of matrix called
permutation matrix to carry out the rearrangement. The permutation matrix is an
orthonormal matrix that changes the arrangement of the elements. Conveniently, the
same permutation matrix that is used to convert error covariance matrices can also be
used to convert between the vectorized forms of X,, X, and X.. Equations 2.19 through

2.22 show how this is done.

vee(X, ) = P,vec(X]) (2.19)
vee(X]) =P, vec(X}) (2.20)
Q,=PQ P (2.21)
Q. =PQ P’ (2.22)
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The construction of the permutation matrices P, and P, which consist only of ones and
zeros, is conceptually straightforward but algorithmically involved, so the details of this

will not be presented here.

The algorithm presented in Table 2.2 represents a completely general treatment for the
case where correlation can exist among all of the measurement errors. Although it is
presented for the trilinear case, extension to higher orders is trivial. The algorithm also
has very good convergence characteristics and gives results that are identical to those
obtained by the algorithm in Section 2.2.1 in the presence of uncorrelated noise. In
practice, implementation of the algorithm is limited to some extent by the size and
stability of the matrices and the convergence time. These three factors are not completely
independent from one another. For example, as X becomes large, the associated error
covariance matrices tend to become ill-conditioned, causing convergence problems. A
variety of approaches, such as compression [14], line search extrapolation [16], and
simplifications based on the error structure [17] may be adapted to the present algorithm
to avoid these problems. The first two modifications will not be treated in this paper
since the first is beyond the scope of the present work and the second is primarily an
algorithmic modification to the ALS algorithm. However, the third approach has

important practical implications and for this reason will be the focus of the next section.

2.3.3 Simplification: Correlation Along One Order Only

For many chemical applications, error covariance affects only one order or at least
the covariance in other orders can be neglected. This can, in certain cases, result in
substantial simplification of the generalized algorithm. For the purpose of illustration,
only the case where correlations exist along the rows (i.e. in the second order, as
illustrated in Figure 2.1) will be considered, since correlations along other orders can be

rendered equivalent through permutation of the original array or appropriate adjustment
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Table 2.2. General MLPARAFAC algorithm (correlated measurement errors).

1.

Given an I x J x K cube of data X, a corresponding UK x IJK matrix Q , of error covariances

for vec(X,) and two permutation matrices P, and P, to permute from vec(X,) to vec(X,) and
vec(X,), respectively, the algorithm is initialized using random values of the correct
dimensions or using estimates obtained by TLD.

[A,B,Cl=dd(X,P) (T.12)
Unfold and vectorize X retaining the first order and calculate the maximum likelihood
estimation of A conditional on B and C.

vee(X,) = vec(unfold(X,a)"); V, =1, ®27; Q_ (T.13)
vec(AT) = (VIQ:V,) " VTQ vee(XT) (T.14)

Here vec(AT )is the vectorized row form of A . Using this estimate and the estimates of B

and C the objective function can be calculated using equation T.15.

AX, =(X,-X,); S? =vec(AX,)"Q]'vec(AX ) (T.15)
Vectorize X retaining the second order and calculate the maximum likelihood estimation of
B conditional on € and A

vee(Xy) =Pyvec(X]);V, =1, ®Z]; Q, =P,Q_P] (T.16)

vec(B") = (V] Q;'V,)" VI Q; vee(XT) (T.17)

Here vec(ﬁT) is the vectorized row form of B. Using this estimate and the estimates of C
and A the objective function can be calculated using equation T.18.

AX, = (X, =X,); S} =vec(AX,)Q;'vec(AX,) (T.18)

Vectorize X retaining the third order and calculate the maximum likelihood estimation of C
conditional on A and B.

vee(X;) =Pvec(X]);V, =1, ®LT; Q =P Q P’ (T.19)
vee(C") = (VIQ'V, )" VIQ vee(XT) (T.20)

Here vec(éT) is the vectorized row form of C . Using this estimate and the estimates of A

and B the objective function can be calculated using equation T.21.

AX, =(X,-X,); 87 =vec(AX,)"Q'vec(AX,) (T:21)
Calculate the convergence parameters 4, and A, .
A =(Sy = 82)/82; Ay =(S - 52)/8? (T.22)

If A, and A, are less than the convergence limit (typically 10" in this work), terminate.
Otherwise return to step 2.
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of equations which will be presented. For this case, three common cases can be
distinguished: (1) the error covariance is different among all of the rows forming the
array; (2) the error covariance is different among rows forming different slices but
identical among the rows of the same slice; and (3) the error covariance is identical
among the rows of all the slices. This section will focus in the second and third cases,
since the first case can only be treated using the general algorithm. To begin, however, it
is helpful to examine the second case, which is more general and can be extended to the

third case in a straightforward manner.

Imagine a trilinear data set such as the examples presented in Section 2.2.2, where
the error correlation can be expected to affect only one order, which we will assume to be
the second order as noted above. In addition, in certain cases where this assumption
applies, it may be possible to make the additional assumption that the error covariance
matrix is the same for each row in the same vertical slice of data. Considering that the
correlation occurs along the rows of X, and is the same in each row, all the covariance

information is contained in a single JK x JK covariance matrix ¥ defined by:

¥, = E[(x, —x;)" (X, =X})] (2.23)
Here, X, and x] can represent any row of X, and X°, the unfolded forms of the
measured data array and the error-free data array, respectively. Of course, X? is not
generally known, so in the absence of a priori knowledge of the error covariance matrix,

¥, might typically be estimated by obtaining replicates of the measurements for each

row and using the means in place of x?, then pooling all of the results, as indicated in

equation 2.24.

1 I 1 2 in ic \Tin iz
Y= 120y Z( X,—'%,)"("x,~'%,) (2.24)
In this equation, " x,, is the nth replicate measurement of the ith row of X, and X, is the
mean of the N replicates for that row. (Note that these replicates would likely be
obtained through separate experiments for each of the K slices.) Other strategies are also

possible, but these will not be discussed in detail here. The full covariance matrix, Q_,

will now be block diagonal, consisting of I identical diagonal units of dimension JK x JK.
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This situation offers a number of advantages to the algorithm. From a storage capacity

point, the improvement is related to the reduction of the number of non-zero elements

from a maximum of (JK)* in the general case to (JK)?, since Q_, that has the form

represented in equation 2.26, can also be represented as the sparse Kronecker product

shown in equation 2.26.

[y

a

Q = . (2.25)

Q =I,0Y%, (2.26)
Additionally, this improves the numerical stability of the algorithm since the Kronecker
form allows Q,to be inverted by inversion of the individual covariance matrix ¥, as
shown in equation 2.27.
Q' =1, Q¥ (2.27)
The companion error covariance matrices for the other orders can be obtained using the
permutation matrices via equations 2.28 and 2.29.
Q' =P,Q'P) (2.28)
Q' =P QP (2.29)
Based on these equations and in the identical block diagonal form of Q, it is easy to

demonstrate that the maximum likelihood solution for the A loadings is obtained using

equation 2.30.
A=XY;'27(Z,¥;'Z")" (2.30)
Although, the equation for order A under this assumptions is analogous in form to

equation 2.13 for the heteroscedastic case, the rest of the equations needed to implement

the ALS algorithm are different. In order to obtain these equations, it should first be

realized that Q'can be represented as shown in equation 2.31, as is apparent from

Figure 2.1, while Q,' cannot be similarly simplified under these circumstances.
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'1\1,—1
‘ 2 \I;;l
Q' , (2.31)

K\Ij;]

This leads to equations 2.32 and 2.33 for the maximum likelihood estimation of B and C,

respectively under this assumption.
vec(B™) = (V] Q;'V,)" VO vee(XT) (2.32)
et =x w2z, Yz (2.33)
Besides the storage improvements achieved, speed enhancements are also realized since
A can now be estimated projecting the data at once onto a smaller set of matrices. In
order to estimate the C loading, a row-by-row procedure has to be implemented since the
error covariance matrices change from slice to slice. The estimation of B has to be done
using the full error covariance matrix as in the general case since the error covariance

terms needed cannot be summarized in a more efficient manner. This algorithm for this

simplified case is presented in Table 2.3.

A further simplification is possible when the error covariance matrix is the same
for each row in all the slices, a situation which is not uncommon, at least to a first
approximation. In this case equations 2.27 and 2.30 can be used to estimate A as before,
and analogous equations can be used to estimate C by making the appropriate
substitutions, since all of the W, ’s are now the same. The calculations are further

simplified by realizing that ©;', under these noise characteristics, can be expressed as in

equation 2.34, since the permutation matrix in this case is similar to the commutation

matrix used in referencel7, reducing the estimation of B to equation 2.35.
Q' =¥, ®I, (2.34)
B=X,27(Z,Z])" (2.35)

Table 2.4 gives the algorithm under these assumptions.
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Table 2.3. Simplified MLPARAFAC algorithm (Simplification 1 - same error

covariance matrix for each row in a slice, but different between slices).

1. GivenanZxJx K cube of data X, a corresponding JJK x [JK matrix Q, of error covariances
for vec(X,) and two permutation matrices P, and P. to migrate from vec(X,) to vec(X;) and

vec(X,) respectively. The algorithm is initialized using estimates obtained by TLD.
[A,B,C]=1ld(X, P) (T.23)
2. Unfold X retaining the first order and calculate the maximum likelihood estimation of A

conditional on B and C. Since € is block diagonal as shown in T.24, A can be
calculated at once.

X, =unfold(X,a); @, =P, Q,P,; Q, =1,0¥, (T.24)
A=X Y272 %2y (1.25)

Using A and the estimates of B and C the objective function can be calculated using
equation T.26.

Se =tr((X, -X,)¥;' (X, -X.)") (T.26)
3. Unfold X retaining the second order and calculate the maximum likelihood estimation of B
conditional on C and A using , .

vee(X;) = vec(unfold(X,))";V, =1, ®Z'; Q, (T.27)
veeB™) = (V] Q;'V,)” V7 Q; vee(X]) (T.28)

Here vec(ﬁT) is the vectorized row form of B . Using this estimate and the estimates of C
and A the objective function can be calculated using equation T.29.

AX, = (X, =X,); 8} =vec(AX,)" Q;'vec(AX,) (T.29)

4. Unfold X retaining the third order and calculate the maximum likelihood estimation of €

conditional on A and B ."‘I’c is constructed taking the corresponding block of Q. since it
is block diagonal.

X, =unfold(X,c); @ =P P QPPT; ‘W (T.30)
KAES I SUAVARL SN (T.31)

Here ‘&" is a row vector of C. Using this estimate and the estimates of A and B the
objective function can be calculated using equation T32.

K
Se = 2 (%~ ) ] (*x &) (T:32)
k=1
5. Calculate the convergence parameters A, and 4,.

A =(S; =82/ 82 2, =(S? -82)/8? (T.33)

If A and A, are less than the convergence limit (typically 10® in this work), terminate.
Otherwise return to step 2.
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Table 2.4. Simplified MLPARAFAC algorithm (Simplification 2 - same error
covariance matrix for each row in each slice).

1. Given an I x J x K cube of data X, and the error covariance matrices ¥, and

¥ for the A and B orders respectively. The algorithm is initialized using random
values of the correct dimensions or using estimates obtained by TLD.

[A,B,C]=1d(X,P) (T.34)
2. Unfold X retaining the first order and calculate the maximum likelihood
estimation of A conditional on B and C.

X, =unfold(X,a); ¥, (T.35)
A=X Y '27(2 975" (T.36)

Using A and the estimates of B and C the objective function can be calculated
using equation T.37.

S; = (X, -X)¥ (X, -X,)") (T37)
3. Unfold X retaining the second order and calculate the maximum likelihood
estimation of B conditional on € and A.

X, =unfold(X,b) (T.38)
B=X,27(Z,2])" (T.39)

Using B and the estimates of C and A the objective function can be calculated
using equation T.40.

S} =tr((X, - X)X, -X,)") (T.40)
4. Unfold X retaining the third order and calculate the maximum likelihood
estimation of C conditional on A and B.

X, =unfold(X,c); P, (T.41)
C=X¥,Z](Z,%.Z])" (T.42)

Using C and the estimates of A and B the objective function can be calculated
using equation T.43.

§¢ = (X - X)X, -X )" (T.43)
5. Calculate the convergence parameters A, and A4,.
=8, =8)/85 Ay =(S; =8)/8: (T44)

If A, and A, are less than the convergence limit (typically 10°® in this work),
terminate. Otherwise return to step 2.
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2.3.4 MLPARAFAC with Offsets

So far, it has been assumed that the multilinear data is not affected by offsets in
any mode. Unfortunately, it is not uncommon in chemical system to have offsets
affecting different orders. The sources of offsets range from instrumental artifacts, such
as a spectral background for all samples or variations in cell position, to factors related to
sample preparation. One general model to describe trilinear data affected by different
kinds of offsets is represented by equation 2.36.

p
Xp =pAa+ B 4y, + Za,.,,b_,.pckp (2.36)

o
Here, p is the grand mean of X and ¢;, f; and y represent the offsets for mode A, B and
C, respectively. It has been reported [15] that, in cases where an overall offset exists; it
can be removed by eliminating the offset associated with any mode. Therefore, the grand
mean can be incorporated into any or all the offset terms affecting the individual modes.
When the measurements in X are corrupted by iid noise, proper mean-centering to
remove the offset is a convenient approach since this pre-processing step does not destroy
the multilinear characteristics of the data. It is important to note, however, that mean-
centering will alter the structure of the loadings so that they may no longer be readily
identified with real factors, counteracting one of the main benefits of trilinear

decomposition.

From a mathematical point of view, the mean-centering is equivalent to adding
trilinear factors that are formed by the product of a vector of offsets and two other

loading vectors set to ones as shown in equation 2.37.
P
X=(a®1,®1,)+(1,8p®1,)+(1,®1, ®y)+Zap ®b,®c, (237)
p=1

Note that equation 2.37 is a general formulation and in a given application, the offset
affecting any of the modes could be set to zero, i.e. a, B or y could be a zero vector. In
addition, it could even be constrained to be a general offset affecting all the
measurements equally and then, loadings representing each mode would be equal to a
vector of ones and everything multiplied by a scalar representing the offset. However,

the presence of non-uniform and/or correlated error distribution makes mean centering no
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longer optimal from a maximum likelihood point of view. This can be understood
considering that mean centering in any mode is the projection of X unfolded in this mode
onto the null space spanned by the vector of ones corresponding to this mode. Therefore,
this projection will only be optimal under iid conditions. In order to mean center
optimally, the procedure should be incorporated into the ALS algorithm. Contrary to
what happens in MLPCA, where the loadings are constrained to be orthogonal,
PARAFAC does not impose any constraints on the estimation of the loadings, making the
inclusion of offsets in the ALS algorithm a more straightforward task. Additionally, an

important benefit is that the offsets may often be uniquely determined because of the
uniqueness of the PARAFAC model.

A relatively simple approach to handling offsets can be used when the offsets
follow the structure represented by equation 2.37. It is clear from this equation that the
offsets can be incorporated by using from one to three more factors (in the trilinear case)
than the number of factors expected in the absence of offsets. The number of additional
factors which should be added depends on how many modes exhibit the offsets in
equation 2.37. This means of dealing with offsets is easily incorporated into the
MLPARAFAC algorithm, and will yield maximum likelihood estimates of the loadings
in accordance with the model, but is not the best approach. This is because the loadings
in the two modes other than the one in which the offsets occur are allowed to “float”; that
is, they are not constrained to unity (or, more generally, a constant value). While these
loadings may be nearly constant and will constitute a maximum likelihood solution to the
expanded-factor model, all of the loadings in this case should experience a greater
variance than would be expected with the true model. The situation is analogous to
fitting simple bivariate straight line data with an intercept of zero to linear models. The
data could be fit using only a slope term (intercept forced to zero), or with a slope and
intercept term. Both approaches will yield a maximum likelihood solution, but the latter
strategy (which has a closer fit but fewer degrees of freedom) will produce a larger
variance in the slope, so it is the less preferred method given a priori knowledge of a zero
intercept. Likewise, if we have prior knowledge of a structure such as that in equation

2.37, it is better to incorporate this into the modeling process.
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Equation 2.37 is only one of many possible constrained structures that can exist in
trilinear models, and it is clear that the question of offsets is part of a more general issue
of constrained factors. The nature of these constraints is very application dependent and
relies on prior information. While such constraints can be incorporated into the
MLPARAFAC algorithm, a general discussion of strategies is premature and beyond the
scope of the current paper. However, one example will be presented in Section 2.4.5 to

demonstrate the performance of MLPARAFAC in the presence of offsets.

2.3.5 Estimation of Error Covariance Matrices

The error covariance matrix is of critical importance in maximum likelihood
methods such as MLPCA and MLPARAFAC. Consequently, questions often arise
related to procedures used to estimate the error covariance matrix, the quality of these
estimates, and the implications of this on the subsequent analysis. While the emphasis of
this work is on the development of the algorithm, it is legitimate to raise these concerns,

so they will be addressed here, although only briefly.

Perhaps the most obvious way to estimate the error covariance matrix is through
the use of replicates, as indicated in the discussion related to equation 2.24. In practice,
such an approach may be limited by experimental design considerations or realistic
constraints on the number of experiments that can be conducted. Covariance estimates,
like variance estimates, are notoriously imprecise unless a large number of replicates is
employed. This is often impractical, although pooling can sometimes be used. The
question then becomes whether it is better to employ traditional methods (which assume
an fid-normal error structure) or maximum likelihood methods with a noisy error
covariance matrix. Maximum likelihood methods will generally be favored in situations
where the number of replicates is large and/or the level of heteroscedastic/correlated
noise is high. The precise point at which the use of maximum likelihood methods
becomes advantageous will depend on the particular application and a detailed

examination of this is beyond the scope of the present work.

An alternative to the often unpopular approach of measuring replicates is to

characterize the error covariance structure for a particular instrument or application based
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on empirical evidence or theoretical considerations. In the same way that certain
instruments are known to exhibit proportional noise, it may be possible to obtain a
functional form for the error covariance in certain types of applications. This is already
done to some degree when multiplicative signal correction (MSC) is applied to near-
infrared data dominated by scatter noise. Furthermore, in some circumstances, it may be
possible to describe covariance arising from techniques such as filtering or
transformation on a purely theoretical basis. By using such approaches, more reliable
error covariance matrices can be obtained that are not subject to the statistics of a small

number of replicates.

For the work presented here, which is intended to validate the algorithm rather
than to demonstrate its practical application, the theoretical error covariance matrix based
on noise simulation was used. This removed any uncertainties associated with the error

covariance in the statistical validation.

2.4 Experimental

2.4.1 Data Sets

Since the objective of this work is to describe the theoretical basis of the
MLPARAFAC algorithm and to validate its capabilities, all of the data sets employed in
this work were simulated so that the rank and error structure could be known with
confidence. Future studies will examine the performance of the algorithm for real
experimental systems. Although a wide range of simulations were carried out, the results
from only six data sets are presented here to support the main conclusions. In all cases,

the data sets were relatively small, since the studies generally involved statistical

validation requiring numerous runs.

Data Set 1 was a rank-three data set of dimensions 8x7x4 used to test the degrees
of freedom with conventional PARAFAC algorithm under conditions of iid normal noise
and compare it with the new algorithms. The loadings for mode A were represented by
an 8x3 matrix drawn from a uniform distribution of random numbers from zero to three

(U(0,3)). Similarly, B was a 7x3 matrix from U(0,2) and C was a 4x3 matrix from
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U(0,5). The error free data were generated using equation 2.3, yielding the 8x28 matrix
of error-free data, unfolded to maintain the A mode. The matrix of measurement errors
was an 8x28 matrix of normally distributed random numbers (1 =0, o= 0.1, or N(0,0.1)),
which was added to the error-free data to generate the unfolded form of Data Set 1. This

matrix was then folded into a three-way array and passed to the PARAFAC algorithms.

Data Set 2 was a rank-three data set of dimensions 6x7x3 and was used to test the
algorithm under conditions of heteroscedastic but uncorrelated noise. The error-free data
was generated in the same fashion as Data Set 1, with the same ranges of loadings but
using the corresponding dimensions. The matrix of measurement errors was created by
the Hadamard (element-by-element) multiplication of a 6x21 matrix of normally
distributed random numbers drawn from N(0,1) and a 6x21 matrix of random numbers,
Q,, drawn from U(0,0.1), representing the matrix of standard deviation for each
measurement in X,. The noise matrix and the error-free data set were added and the

resultant matrix was folded.

The error-free part of Data Set 3, which was used to test the general algorithm for
correlation in multiple orders, is identical to Data Set 1. The noise matrix was created to
introduce non-uniform and correlated noise at the same time. Initially, an 8x28 matrix of
normally distributed random numbers drawn from N(0,1) was generated and multiplied in
an element-by-element fashion by one-tenth of the value of the error-free measurements.
The resultant matrix was treated with a 15 point moving average filter along each row in
order to produce error covariance. At the boundaries of the error matrix the filter was
wrapped around the to the opposite side in order to eliminate edge effects. Since the
error matrix was unfolded to maintain mode A, this approach produced correlation
among the measurements in the two other modes. Although this approach is not
particularly realistic, it represents a general case for which the covariance structure could
be easily predicted. Again, the error-free data set was added to the noise matrix in order

to generate the data set.

Data Sets 4 and 5 were 5x8x4 matrices, again formed by three components in the

same manner as already described for error-free data. These data sets were used to test
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simplifications to the general algorithm related to the error covariance structure. In both
cases, the error-free data were the same and only the measurement error matrices
differed. The noise matrix for Data Set 4 was generated to simulate a system where the
errors are correlated along only one order (the B mode) and the error covariance matrix is
identical for each vector in this mode. To do this, four 5x8 matrices of normally
distributed random numbers drawn from N(0,0.1) were generated and all of them were
individually treated with a 5 point moving average filter along the rows. The filtered
error matrix was added to the error-free matrix and used in the simulations. For Data Set
5, the correlated errors were also only in one order and all the vectors in a given ‘slice’
(mode C fixed) had the same error covariance structure, but this structure varies from
slice to slice. The measurement error matrices for this data set were generated in the
same manner as for Data Set 4, but the standard deviation of the normal distribution and

the filter width were varied between slices (6=0.15,0.15, 0.2,0.1, 0.05; w=3, 5, 7, 3).

Data Set 6, which was used to test the performance in the presence of offsets, was
constructed from a 7x8x4 rank three matrix with the same distribution of loading values
and the same noise correlation structure as Data Set 3 — heteroscedastic and correlated in
two orders. In this case, however, a single vector offset was added to the second order;
that is, a 1x8 vector of values drawn from U(0,2) was added to each row of the three way

array.

2.4.2 Computational Aspects

All the calculations performed in this work were carried out on a Sun Ultra 60
workstation with 2 x 300 MHz processors and 512 MB of RAM and a 700MHz Pentium-
III PC with 128 MB of RAM. All programs were written in-house using Matlab 6.0 (The
MathWorks Inc., Natick, MA).

2.5 Results and Discussion

2.5.1 Statistical Validation

In order to validate the various proposed algorithms, it was necessary to verify

that they yield the maximum likelihood solution. This can be accomplished by exploiting
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the statistical characteristics of $? values for the correct model. Operationally, this is
done by analyzing replicate data sets, each with the same matrix of error-free data and the
same error structure, but with different realizations of the measurement error each time.
If the distribution of $® values for these replicates follows a * distribution with the
appropriate degrees of freedom, it can then be concluded that the algorithm is finding the
maximum likelihood solution. Probability plots are used in this work to make this
comparison. Initially, the replicate data sets (normally 100 replicates) are analyzed and
the §? values are stored. Then, the $ values are sorted from the smallest to the largest and
assigned a cumulative probability according to their position in the list; this is called the
observed probability. For instance, the third element in the list would be assigned an
observed probability of 2/n, where n is the number of replicates. The expected
probability is then calculated using the xz distribution. The cumulative probability

density function for y* can be calculated using the incomplete gamma function included

in Matlab as shown in equation 2.38:
2 §* v

P(S*|v)=T,, (—Z—,EJ (2.38)
where vis the number of degrees of freedom. If the two distributions are the same, a plot
of the observed probabilities vs. the expected probabilities should yield a straight line
with a slope of unity. If the model is insufficient to account for the systematic variance,
either because the form of the model is incorrect or the parameters are suboptimal, then
the points of the plot will lie above the ideal line. If the model accounts for an excessive
amount of variance, i.e. the estimated rank is too high and measurement variance is
modeled, the points will lie below the ideal line. It should be pointed out that the only
way to employ this approach is to use simulated data where the true noise characteristics
are known. Because error estimates for virtually all experimental measurements will
have some (often substantial) degree of uncertainty, the resulting §* values will not
follow a #* distribution. (For this reason, it can be argued that the present methods are

not truly, “maximum likelihood”, since they should also estimate the error covariance,

but this is not practical in most situations.)
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The issue of degrees of freedom for trilinear data is far from being trivial. Bro
has suggested that degrees of freedom do not exist a priori [18], but have to be
determined from the specific data. This situation arises from the fact that the rank of a
trilinear data set cannot be calculated based on the same approach used in bilinear data.
For instance, the maximum rank of a 3x3x3 array is five [19] contrary to what happens in
bilinear data, where the maximum rank of a 3x3 matrix is always three. Unfortunately,
there is no simple rule for calculating the maximum rank of arrays in general, except for
the bilinear case and some simple trilinear arrays. However, Durell et al [20]. reported
two equations to calculate the degrees of freedom in trilinear and quadrilinear models, as
given in equation 2.39 and 2.40.

V(X)3way =IJK - P+ J+ K-2) (2.39)
V(X)4-way =IJKL - PU+J+ K + L —3) (2.40)

The theoretical foundation of these equations is not completely clear, but it has been
suggested in the literature that they might be used for exploratory (qualitative) purpose.
In other words, they should not be used as the statistically correct number of degrees of
freedom. In the present work, the approach was to use equation 2.39 as estimator of the
statistically meaningful number of degrees of freedom for a trilinear case. In order to
assess the merit of this approach, trilinear data corrupted with iid normal noise, such as
Data Set 1, were submitted to the standard PARAFAC algorithm, which is well-known to
yield the maximum likelihood solution under these noise characteristics. The replication
procedure described above was performed using 100 and 1000 replicates and the
probability plot, shown in Figure 2.2, was constructed. It is observed that the plot
follows the theoretical slope very closely for 1000 replicates, indicating that equation
2.39 provides a credible number of degrees of freedom, at least for the purposes of this
study. For 100 replicates, the agreement is not as good due to the smaller sample size,
but these results are included as a point of reference for other studies that involve only
100 replicates. It is worth noting that, even though the results are not shown, analysis of
all of the trilinear data structures used in this work was carried out under iid conditions

using PARAFAC to confirm the estimated degrees of freedom.
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Figure 2.2. Probability plot for PARAFAC results under conditions of iid normal errors
for 100 (O) and 1000 (+) replicates. The solid line with unity slope indicates ideal
behaviour for maximum likelihood estimation.

2.5.2 Non-uniform (Uncorrelated) Measurement Errors: Data Set 2

In order to test the validity of the algorithm depicted in Table 2.1, Data Set 2,
which was corrupted with heteroscedastic error, was employed. Since the main objective
of this study is the statistical validation of the algoritlﬁn, the theoretical error covariance
matrix obtained from the simulation parameters was employed. The theoretical error
covariance matrix for each row is calculated using equation 2.41:

¥, =diag('q,)’ (2.41)
where diag( ) represents the diagonalization operator that transforms the vector argument
into a diagonal matrix. The result is a diagonal matrix with the squared elements of ‘q,

(the ith row of Q,, the matrix of standard deviations unfolded in the A mode) along the
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diagonal. Error covariance matrices for the other orders were obtained using the same
equation applied to Q, and Q, accordingly.
Figure 2.3 shows the results obtained for the analysis of Data Set 2 using

PARAFAC and the version of MLPARAFAC designed to accommodate heteroscedastic

noise.
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Figure 2.3. Probability plot for the analysis 100 replicates of Data Set 2 (non-uniform,
uncorrelated errors) by MLPARAFAC (0) and PARAFAC (Q).

The S values in both cases were calculated in the same manner, i.e. using
equation 2.9 with either the PARAFAC or MLPARAFAC estimates of X,. Itis clear
from the figure that the estimates obtained using MLPARAFAC follow the expected
behavior for maximum likelihood estimation, with only minor deviations attributable to
the statistical limitations of the study. On the other hand, the models obtained by
PARAFAC do not adequately account for the systematic variance in the data set,

producing suboptimal solutions that deviate radically from the line representing expected
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& distribution in the probability plot. Although this data set was not designed to test the
more general algorithm depicted in Table 2.2, it was also analyzed using that algorithm to
test its generality. The general algorithm produced exactly the same set of solutions,

indicating that the two algorithms are equivalent under these noise characteristics,

2.5.3 Non-uniform and Correlated Measurement Errors: Data Set 3

In the preceding section, it was noted that the general MLPARAFAC algorithm
for correlated errors was able to handle the case of uncorrelated errors as well. Data Set 3
was designed to test the general algorithm in the presence of errors which were correlated
and heteroscedastic. Again, the theoretical error covariance matrix was used. For this

specific data set, the covariance matrix in the A mode is given by:
1 ‘I‘a
Q = ? (2.42)
. e
where ¥, represents the error covariance matrix of the i row of X, and was calculated

using equation 2.43.
'Y, =¥ (diag((0.1)- 'x2))*F (2.43)

Here, F is the 28x28 filter matrix designed to carry out the 15-point moving average
smooth on the noise (eqo = €4 F), and second term is a diagonal matrix of the variance
of the noise in the ith row of noise matrix prior to smoothing, equal to 10% of the error-

free measurement squared. The companion error covariance matrices, 2, and Q_, were

calculated using their respective permutation matrices as shown in equation 2.21 and
2.22.

Figure 2.4 shows the probability plots obtained using Data Set 3. Results for the
general MLPARAFAC algorithm, which can accommodate any covariance structure, are
shown for both 100 and 1000 replicates. Both of these show good agreement with the

expected slope.of unity, indicating that a maximum likelihood solution has been obtained.
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Figure 2.4. Probability plot for the analysis of Data Set 3 (correlated measurement errors
in two modes) using the general MLPARAFAC algorithm with 100 (O) and 1000 )
replicates, the standard MLPARAFAC algorithm for uncorrelated errors with 100
replicates () and PARAFAC with 100 replicates (01).

In contrast, it is clear that the PARAFAC model has substantial systematic error, since it
generates a maximum expected probability of unity across all observed probabilities. In
order to test whether the superior performance of the general MLPARAFAC algorithm
was due to its inclusion of the error covariance structure or simply because it accounts for
heteroscedasticity, results were also generated using the version of MLPARAFAC
designed to accommodate only heteroscedasticity. For this analysis, only the diagonal
elements of the full error covariance matrix () were employed. Like the standard
PARAFAC algorithm, these models result in systematic errors, indicating that modeling

the covariance structure is a critical factor.
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2.5.4 Simplified Error Covariance Structures: Data Sets 4 and 5

While the general MLPARAFAC algorithm should be able to deal with any error
covariance structure, in many cases it may be possible to use the simplified algorithms
presented in Tables 2.3 and 2.4. These algorithms were tested using Data Sets 4 and 5.
Data Set 4, which has a simple error covariance structure consisting of correlation in one
mode only and identical error covariance matrices for all the vectors in this mode, was
used to test the corresponding algorithm in Table 2.4, which will be referred to as
Simplification 2. The probability plots for this study are shown in Figure 2.5, together
with the results of the generalized algorithm and conventional PARAFAC.
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Figure 2.5. Probability plot for the analysis of 100 replicates of Data Set 4 (identical row
correlations) using the general MLPARAFAC algorithm (O), Simplification 2 of the
general MLPARAFAC algorithm (%) and PARAFAC (O).

Note that the results of the general algorithm and Simplification 2 are identical,
confirming that the latter is a special case of the former, and that both appear to produce
the maximum likelihood results. As before, the performance of PARAFAC is

suboptimal. Simplification 1, which appears in Table 2.3, is designed to handle the case
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where: (i) error correlation exists in one mode only, and (i1) the error covariance structure
differs from vector to vector along one of the remaining modes, but is the same along
the other remaining mode. Data Set 5, which was simulated to test this algorithm, was
created such that errors were correlated along the rows (mode B) and the error covariance
matrix was identical for rows within the same slice (mode A), but different across

different slices (mode C). The results from analysis of 100 replicates are summarized in

Figure 2.6.
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Figure 2.6. Probability plot for the analysis of 100 replicates of Data Set 5 (different row
correlations along mode A, same row correlations along mode C) using the general

MLPARAFAC algorithm (O), Simplification 1 of the MLPARAFAC algorithm () and
PARAFAC (O).

As with Simplification 2, the figure shows the identical results for Simplification

1 and the generalized algorithm, both of which produce maximum likelihood estimates,
and poor results for PARAFAC.
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2.5.5 MLPARAFAC with Offsets: Data Set 6

As noted in Section 2.2.4, the inclusion of certain kinds of offsets in the trilinear
structure can be modeled by using an expanded rank model. This can be demonstrated
with Data Set 6, which has offsets added to one order ({.e. o and vy are zero in equation
2.37, but B is not). Therefore, expansion of the PARAFAC model to rank four should
accommodate the offsets. This is demonstrated with the probability plots in Figure 2.7,

which compares the results of MLPARAFAC (general algorithm) with conventional
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Figure 2.7. Probability plot for the analysis of 100 replicates of Data Set 6 (correlation
along modes B and C plus offset on modeB) using the general MLPARAFAC algorithm
(O) and PARAFAC (O).

PARAFAC, both with rank four models. It is clear that MLPARAFAC produces the

maximum likelihood solution while PARAFAC does not. Furthermore, this approach to
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handling offsets is superior to mean-centering in that the integrity of the loading vectors

18 retained.

As noted in Section 2.2.4, the maximum likelihood solution extracted in this
manner does not represent the “best™ solution in this application because information
about constraints on the loading vectors in the A and C modes of the offset factor (i.e.
that they are fixed) is not incorporated into the ALS algorithm. While it is possible to do
this, the inclusion of constrained factors adds algorithmic complications and introduces

questions regarding degrees of freedom, so this issue will not be dealt with in this paper.

2.5.6 Model Quality

The preceding sections dealt with the statistical validation of the maximum
likelihood estimation process, but nothing has been said about the quality of the estimates
obtained using these new algorithms. Although the implication has been that the
MLPARAFAC solutions are better, two reasonable questions that arise are: (1) Are the
MLPARAFAC estimates closer to the true underlying factors than the PARAFAC
estimates?, and (2) Do the MLPARAFAC estimates offer a significant advantage over the
estimates obtained by PARAFAC?. The first question can be answered easily using
simulated data. The second question is more general in essence ';md it can only be
addressed on a case-by-case basis since the advantages gained by MLPARAFAC will
strongly depend on the type and magnitude of error corrupting the data and the correct
use of a number of parameters related to the estimation of the model. Some of the
parameters determining the success of MLPARAFAC over PARAFAC are the number of
components, accuracy of the estimation of the error covariance matrix, and the use of the

correct algorithm based on the error structure present.

The first issue, the closeness of estimates to the true factors, will be addressed
using vector angles as a figure of merit. This figure of merit is the angular difference
between the true loading vectors and the estimated loading vectors in each mode. For

example, the vector angle between two loading vectors in mode A is given by:
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(2.44)

AT

aa
@~ cos| —2 P

a, P

where a, and 4, are the true and estimated values for the pth loading vector of A.

Analogous equations can be used for the other orders. Smaller angles mean a greater
similarity, so by comparing the vector angles obtained by MLPARAFAC with those of
PARAFAC, the agreement with the true vector can be assessed. An alternative measure
is the correlation coefficient of the vectors, which is simply the term in parentheses, but

since this approaches unity with small differences, it is less sensitive.

To evaluate the accuracy of the loadings extracted by MLPARAFAC and
PARAFAC under different conditions, loadings extracted from 100 replicates of Data
Sets 2 through 6 by both MLPARAFAC and PARAFAC were used to calculate vector
angles for each of the loadings. These angles were then averaged over the 100 replicates
to give 9 mean angles and their standard deviations (3 modes x 3 factors) for each
method. These results are summarized in compressed form in Table 2.5, which, in the
interest in saving space, shows only the results for the first loading vector in each mode.
The uncertainty given is the population standard deviation.

Table 2.5. Comparison of vector angle accuracies for PARAFAC and MLPARAFAC.
Results are based on 100 replicates and uncertainties are given as standard deviations.

Mean angular deviation (°) Mean angular deviation (°)
%aetta PARAFAC MLPARAFAC
A B C A B C
2 0.27:£0.15 0.33+0.13  0.21+£0.18 | 0.17+£0.09 0.19£0.08 0.14+0.11
3 0.90+0.36 0.61£0.34 0.58£0.37 | 0.08+0.02 0.14+0.05 0.09+0.04
4 0.17£0.07 0.27+0.14 0.21+0.16 | 0.07:£0.04 0.19:£0.08 0.10+0.09
5 0.25£0.12 0.43+0.23  0.32+0.25 | 0.10£0.05 0.23+£0.16 0.16+£0.16
6 1.77+1.30  3.04+£1.16 1.52+£1.03 | 0.24+0.12 0.47+0.14 0.31+0.19

The results in Table 2.5 support the general view that MLPARAFAC produces
more accurate estimates of the loading vectors than PARAFAC. Both the mean vector
angles and their uncertainties are smaller in all cases for MLPARAFAC, although the

degree to which this is true varies with the data set. For Data Set 2, the differences
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between the two methods is relatively small. This might be expected, however, since this
data set contains heteroscedastic errors only with no correlated errors, and the degree of
heteroscedasticity, arising from proportional errors, is not very large. Nevertheless,
differences are statistically significant (note that the standard deviation of the mean will
be the value reported in the table divided by 10). The differences are much more
dramatic for Data Set 3, which has correlated errors in two modes, and illustrates the
importance of modeling error covariance. To further empbhasize this point, the analysis of
Data Set 3 by MLPARAFAC assuming only heteroscedastic errors (i.e. using only the
diagonal) produced corresponding vector angles of 0.92+0.37, 0.59+0.34, and 0.57+0.35,
which are not significantly different from the PARAFAC results. Data Sets 4 and 5,
which exhibit a smaller degree of error covariance than Data Set 3, also show less
dramatic differences between MLPARAFAC and PARAF AC, but the angular differences
are still about a factor of two and are statistically very significant. The analysis of these
two data sets employed the simplified algorithms, but it should be noted that the general
algorithm produced identical results, as expected. In Data Set 6, the addition of a fourth
factor representing the offset decreases the quality of the estimates in general compared
to Data Set 3 (the most similar data set). Because of the highly correlated error structure,
this data set exhibits a difference of a factor of five or more in the mean vector angles
obtained by the two methods. For comparison purposes, the corresponding vector angles
for the rank three MLPARAFAC model are 1.52+0.55, 3.79+0.17 and 1.44+0.42,

indicating that the inclusion of the fourth factor to model the offset is essential.

These results clearly demonstrate that improved estimates of loadings can be
obtained from the trilinear model when information about the measurement error
structure is available and is incorporated into the modeling process in the correct way.
As already noted, the extent to which these improvements will be si gnificant for a given
application depends on nature of the application and the characteristics of the noise.
Furthermore, the results presented here were obtained assuming an absolute knowledge
of the measurement error covariance matrix, but in practice this is typically estimated on
the basis of replicate measurements and hence may be less reliable. The benefits of
including measurement error information must therefore be weighed against the

detrimental effects of including poor quality information. The development of the
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algorithms presented here has demonstrated the potential for improvements that could be
achieved and facilitates application to more practical situations in which an experimental

assessment of their benefits can be made.

2.6 Conclusions

Four algorithms for carrying out MLPARAFAC based on an ALS framework
have been described in this work. The simplest of these is designed to work with cases
where the measurement errors are non-uniform (heteroscedastic) but uncorrelated. The
most general form of the algorithm can treat data with any type of error covariance
structure. Two simplifications of the general algorithm were also presented which more
efficiently handle more restricted error covariance structures. All of the algorithms were
shown to produce maximum likelihood estimates through a comparison of the
distribution of the objective function with the 4* distribution. It was also shown that the
quality of the estimated loading vectors for MLPARAFAC was significantly better than

for the PARAFAC models in cases where the error covariance matrix is known.

Although the principles of MLPARAFAC have been established here, a number
of more practical aspects related to its implementation remain to be examined. These
include issues related to the computational efficiency and stability of the algorithms for
large arrays, the estimation of error covariance matrices for three-way data, and the
implementation of constraints on the loadings within the algorithms. These subjects will

be the focus of future investigations.
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Chapter 3

Mathematical Improvements to Maximum Likelihood Parallel Factor

Analysis: Theory and Simulations®

3.1 Abstract

A number of simplified algorithms for carrying out Maximum Likelihood Parallel
Factor Analysis (MLPARAFAC) for three-way data affected by different error structures
are described. The MLPARAFAC method was introduced to establish the theoretical
basis to treat heteroscedastic and/or correlated noise affecting trilinear data.
Unfortunately, the large size of the error covariance matrix employed in the general
formulation of this algorithm prevents its application to solve standard three-way
problems. The algorithms developed here are based on the principle of alternating least
squares, but differ from the generalized MLPARAFAC algorithm in that they do not use
equivalent alteratives of the objective function to estimate the loadings for the different
modes. Instead, these simplified algorithms tackle the loss of symmetry of the
PARAFAC model by using only one representation of the objective function to estimate
the loadings of all of the modes. In addition, a compression step is introduced to allow the
use of the generalized algorithm. Simulation studies carried out under a variety of
measurement error conditions were used for statistical validation of the maximum
likelihood properties of the algorithms and to assess the quality of the results and
computation time. The simplified MLPARAFAC methods are also shown to produce

more accurate results than PARAFAC under a variety of conditions.
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3.2 Introduction

Over the past three decades, the use of multivariate [1-2] and multi-way [3-5]
methods have driven a change in the analytical laboratory from a univariate and
chemically selective paradigm into a multivariate/multi-way and mathematically selective
philosophy. Nonetheless, it was not until the 1990’s that some researchers [6-11] started
to consider in a consistent manner the nature of the noise corrupting these measurements
in the context of multivariate analysis. The assumption of iid -normal (independent and
identically distributed noise with a normal distribution) upon which univariate least
squares methods [12] relied to provide optimal estimates was recognized as a limitation
in the presence of other types of noise cases. The nature of the noise affecting
multivariate measurements is strongly related to the nature of the experiment and the type
of instrument employed [13], as well as different cosmetic manipulations [14-15] that
make the noise deviate from the iid condition. Instrumental factors, such as spatial
correlation in the detector sensors, detector response variation, source intensity
instability, temperature fluctuations and physical variation in the sample and in the
positioning of the sample within the instrument are a few examples of the causes of the
existence of correlated noise.

In 1994, Paatero and Tapper [6] resurrected the idea of introducing some kind of
weight information related to the uncertainty of the variables when the method Positive
Matrix Factorization (PMF) was introduced. Unfortunately, this weighting information
was only related to the variance of these variables, correcting for the violation of the
identical distribution of the noise, but their method still assumed that the errors were
independent from channel to channel. A more complete alternative was available a few
years later when Wentzell er al. [7] formulated Maximum Likelihood Principal
Component Analysis (MLPCA) which considered cases where the iid condition was
completely violated due to the presence of heteroscedasticity and correlated noise. A
principal innovation of this method was the use of the error covariance matrix (ECM),
which is a more general way of describing the magnitude of the errors and the
relationships among them. A few other closely related methods [8-10] have also been
introduced to handle bilinear data in a maximum likelihood fashion, sometimes adding

other constraints or information.
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The application of this philosophy to multi-way data lagged behind the bilinear
case until Bro et a/l. [11] introduced a generic method called Maximum Likelihood via
Iterative Least Squares Estimation (MILES), which worked as a iterative preprocessing
tool to condition the data from a maximum likelihood perspective in order that least
squares methods such as PCA and PARAFAC could optimally handle the estimation
process. The method is based on a majorization strategy in which the original objective
function is substituted by a simpler and equivalent objective function in each step of the
estimation process. Unfortunately, the simplicity of this numerical implementation is
hindered by the amount of computation time needed. Since the method runs the full
least squares optimization in each step, the time needed to get an estimate is sometimes
excessive. Another important drawback of this approach is that the physical problem
becomes obscured by the efficient but unfamiliar numerical methodology.

Recently, a method called Maximum Likelihood Parallel Factor Analysis
(MLPARAFAC) was introduced to the chemometrics literature [16]. The main difference
with respect to MILES is that MLPARAFAC is a method based solely on an alternating
least squares (ALS) optimization. The implementation is straightforward and runs faster
since the noise information is introduced in each iteration rather than in each optimization
step as it is in MILES. The method was designed to estimate the parameters of the well-
known PARAFAC model from a maximum likelihood perspective in cases where
different violations of the assumed iid-normal error condition exist. Four algorithms for
carrying out MLPARAFAC based on an ALS framework were described in this work.
The simplest of these was designed to work with cases where the measurement errors are
non-uniform (heteroscedastic) but uncorrelated. The most general form of the algorithm
can treat data with any type of error covariance structure. Two simplifications of the
general algorithm were also presented which more efficiently handle more restricted error
covariance structures. All of the algorithms were shown to produce maximum likelihood
estimates through a comparison of the distribution of the objective function with the 7
distribution. It was also shown that the quality of the estimated loading vectors for
MLPARAFAC is significantly better than for the PARAFAC models in cases where the

error covariance matrix is known.
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Although the original paper on MLPARAFAC outlined the theory for dealing
with correlated error, demonstrated its validity through simulation, and introduced some
exact simplifications based on mathematical properties of the matrices used in the
estimation process, it was found that many important situations remained uncovered and
they are the subject of this paper. This work will be divided in two parts: the first part
will introduce, test and apply the methodology to simulated data, while a companion
paper will treat the application of MLPARAFAC to three experimental data sets. This
paper will initially analyze the two simplifications introduced in the earlier work, since
more interesting and useful simplifications can be found when those algorithmic
alternatives are approached from a geometrical and computational point of view. This
will lead us to the extension of one of these alternatives to more general cases where the
noise structure along one order is less restricted and to cases were the error structure is
correlated along two orders. Cases where the noise structure is correlated along more
than two orders will need to be treated using the general algorithm, but since this is
usually impractical from a computational point of view when the raw data are used, a
compression approach will be introduced. After the algorithmic issues have been
covered, a thorough analysis will be provided in order to go from these mathematically
clear and well-defined cases to the more “grey” real cases. Also, some simulations will
show the effects in the estimate when some cases with a considerable departure from the
assumed structure are used with the corresponding simplification. Figure 3.1 shows the

scenarios treated in this work.

3.2.1 Notation

In this paper, scalars are indicated by italics and vectors by bold lower-case
characters. Bold upper-case letters are used for two-way matrices and underlined bold
upper-case letters for three-way data. The letters A, B ,C and J, J, K are reserved for
indicating the first, second and third mode of three-way data and the dimensions of those

modes respectively. Also, the letter P is reserved to represent the number of factors used
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Figure 3.1. Illustration of the possible scenarios in which correlated errors might
pervade a three-way array and the corresponding representations of the structure of the
error covariance matrix to describe all the sources of variation. Arrows indicate which
elements of the unfolded or vectorized three-way array have correlated errors. Different
arrows represent different error structures.

in the model. The terms mode, way and order are used interchangeably, as well as the
terms factors and components. When three-way arrays are unfolded to matrices, the
following notation will be used. If X (Ix Jx K) is unfolded while retaining the first order
to produce a ( x JK) matrix, this will be designated X,. In the same way, matrices X, o4
x IK) and X. (K x IJ) will be used to represent unfolded matrices which retain the second
and the third orders, respectively. In general, other matrices with subscripts a, b and ¢
represent unfolding while retaining the first, second and third modes. The use of

subscripts i, j, k and p accompanying matrices and vectors refers to the use of the i, j, k

and p — th slice or row of the corresponding data array or matrix. An important exception
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to this notational rule is when subscripts i, /, k and p accompany matrix I in which case it
refers to the identity matrix of order represented by the subscript. The use of superscript
“T” accompanying square matrices indicates that the inverse of the transpose of the
corresponding matrix is calculated. The symbol “®” will be used primarily to indicate

the Kronecker product, but will also be used to represent the tensor product in certain

cases which will be clearly distinguished. The symbol “|®| ” will be used to indicate the

Khatri-Rao product, which is a compact version of a column-wise Kronecker product.

3.3 Theory

In the original paper introducing MLPARAFAC [16], it was noted that for many
chemical applications, error covariance affects only one order, or at least the covariance
in other orders can be neglected. This can, in certain cases, result in substantial
simplification of the generalized algorithm. For the purpose of illustration, only the case
where correlations exist along the rows will be considered, since correlations along other
orders can be rendered equivalent through permutation of the original array or
appropriate adjustment of equations introduced. For this case, three common situations
can be distinguished: (1) the error covariance is different among all of the rows forming
the array; (2) the error covariance is different among rows forming different slices but
identical among the rows of the same slice; and (3) the error covariance is identical
among the rows of all the slices. Simplifications for cases (2) and (3) were formulated
based on mathematical identities and the more general scenario represented by case (1)
was considered unsolvable by any simplification. Deeper scrutiny of these simplifications
led the authors to realize the existence of more powerful and general simplifications for
these cases. The next subsections will revisit these two simplifications from a geometrical
and algorithmic point of view. One of these simplifications will be further extended to the
case where error covariance is different among all of the rows forming the array and to

the case where correlation is present along two modes.

83



3.3.1 Correlation along One Order

3.3.1.1 Case 1A

Imagine a trilinear data set such that the error correlation can be expected to affect
only one order, which we will assume to be the second order. In addition, in certain cases
where this assumption applies, it may be possible to make the additional assumption that
the error covariance matrix is the same for each row in all the slices of data. Given that

the observed data,X, can be considered the sum of the true data, X°, and a array of

measurement errors, E, this can be mathematically represented using any of the
following three equations:

X=X"+E

X, =X, +E (3.1)

L0
Xiw =X T€

The trilinear data can be equivalently represented as a three-way array of elements, a
slice by slice representation or as a vector representation, respectively. As mentioned
above, all these representations are equivalent but only the last representation allows a
clear representation of the characteristics of the noise, which follows a normal
distribution around zero and with variance /covariance matrix Z, e ~ N(0, X). Since the
errors are correlated,  cannot be expressed as a multiple of the identity matrix. This case
is conceptually similar to the case treated by Brown ef al. [15] in which bilinear data
corrupted by drift noise were accommodated by applying an optimally designed filter.
Therefore, we can consider our problem as a similar preprocessing problem in which

each frontal slice £ of data is multiplied by a filter as shown in Equation 3.2:
X, =X,F (3.2)

F is an optimal filter matrix that will be applied to the data, and thus to the individual

error vectors in each slice as shown in Equation 3.3:
"X, =(X{ +E)F = X°F + EF (3.3)
The error covariance matrix after filtering can be expressed as:

"L =E(F e"eF) (3.4)
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Since the filter matrices are constant, they can be extracted from the expectation operator

E(e) to obtain:
"E=F"E(e"e)F =F'ZF (3.5)

F is an optimally constructed filter in the sense that it will rotate and scale the data
yielding a new noise data, EF, which follows a normal distribution around zero with
variance/covariance matrix equal to a multiple of the identity matrix," ¥ = o’I.
Therefore, dropping the proportionality constant (which can be viewed simply as a

scaling factor) and substituting this equality into Equation 3.5 yields:
I=F'XF (3.6)

The filter matrix F which solves Equation 3.6 can be readily obtained considering the
estimation process as an extended eigenproblem in which matrix ¥ is initially rotated to
yield a diagonal matrix that then goes through a scaling process producing the identity
matrix. This linear transformation can only be executed when F is defined as the product
of the eigenvectors of F, U, multiplied by the inverse of the diagonal matrix S formed by

the square root of corresponding eigenvalues of F as shown in Equation 3.7.

F=U*S"

(3.7)
L =US?UT =USSU"

It is worth noting that, even though the term filter has been used thus far, this optimal
filter will not have the typical form of a least-squares polynomial filter such as the usual
symmetric/antisymmetric band diagonal Savitzky-Golay filters [17]. In fact, it will not
technically be a filter since no noise reduction is carried out. It can be better understood
as a “modulator” which transforms the original signal corrupted by non-iid noise to a
signal corrupted by iid-noise. This transformation not only affects the noise but also
affects the imbedded true signal that is the aim of the estimation process. Fortunately, this
transformation will not affect the trilinear structure, since all the slices are going to be
rotated and scaled equivalently, as is evident from Equation 3.3. Additionally,
uniqueness, which is one of the most appealing characteristics of trilinear data, will be

preserved since the inverse transformation exists and can be easily applied to the
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estimated loadings describing the order along which the noise is correlated. This is

mathematically represented by Equation 3.8:

X, =AL (C"®BT) 5.8)
8=5"("B)

The advantages of this approach with respect to the previous approach formulated in
Table IV of reference 16 to treat this type of data optimally is two-fold. First, it will not
be necessary to calculate the inverse of ¥, (¥, = Ixk®Z)in order to estimate the
parameters of the model since the error structure information is reflected in the data and
not in the projection of the data. This is rather convenient, since X can be rank deficient
for a variety of reasons. Second, the estimation procedure will be carried out using the
standard PARAFAC algorithm, which is more stable and less computationally involved
than the algorithm in Table IV of reference 16.

3.3.1.2 Case 1B

In addition to the simplest case treated above, Figure 3.1 represents a few other
cases where the complexity of the error structure increases gradually up to the most
complex case where the errors affecting all the elements of the multi-way data are
related. Case B represented in Figure 3.1 takes the simplest error structure one step
further to the case where noise is still correlated along one dimension but the structure
and/or magnitude of it changes from slice to slice. The first reasonable approach to treat
such a case might be to use the previously described strategy, utilizing in each case a

filter matrix derived from the error covariance matrix obtained for each individual slice

as shown in Equation 3.9:

X, =X,F, (3.9)

Equation 3.10 shows that the reasoning holds from a noise treatment perspective, since
the local filtering will produce a diagonal matrix because the filter matrices are going to

rotate and scale the original error covariance matrix for each slice in order to fulfill the iid

condition.

"Y, =F;E(e;e,)F, =F Z,F, (3.10)
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However, when this strategy is thoroughly explored via equation 3.11, it is clear that the
“cleaning effect” produced over the noise has a negative collateral effect over the part of
the data related to the chemical information since the trilinearity is destroyed by applying

different rotation to the data in each slice.

X, = (X2 +E,)F, =XF, +E,F, (3.11)

A solution based on a mathematical simplification of the full error covariance matrix was
introduced in reference 16. The approach used to obtain this simplification was based on
the idea of finding a simpler representation of the error covariance matrix to express the
normal equations to estimate the loading for each mode. A relatively concise and
computationally efficient formulation was found for the estimation of the loading for the
modes A and C, but the equation for the estimation of B was still a function of the full

error covariance matrix for this particular mode, as can be seen in equation 3.12:
vec(B™) = (V;Q;'V,)' V[ Q vec(XT) (3.12)

Equivalently to the notation in reference 16, V, is a JP x IJK matrix with

Z,= (C® A)" repeating along the diagonal. The matrix Q, is the full error covariance
matrix forvec(X;), providing information about the error covariance among all the

measurements. The presence of €, in this equation makes this simplification practically

useless since its dimensions in a practical application will make the storage and

manipulation for this equation prohibitive.

The lack of success of this approach can be attributed to the well-established
strategy in standard PARAFAC in which the different estimation sub-steps are
formulated using the same objective function expressed differently for each mode. This
strategy is used because, due to the symmetry of the PARAFAC model, the
implementation is not only efficient but extremely simple, making the normal equations
very similar from one mode to the other. However, when the characteristics of the noise
are taken into account, this symmetry is lost, making it necessary to express the problem
as the general problem, since the existence of a simplified version of the error covariance
matrix in the given space is not possible or extremely difficult to find. Therefore, in this

paper, a new approach is introduced in which the data are initially arranged in order to
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have the major source of correlated noise along the mode B, followed by the second
major source of correlation along mode C leaving mode A as the mode not affected by
correlated noise. After the data are arranged, the estimation equations are obtained by
expressing all the sub-steps as minimization problems of the objective function written to
preserve mode A alone. It is worth noting in advance that this alternative is laborious,
since the equations will no longer be simple bilinear representations in which the mode to
be determined is represented independently and the other two modes are represented as a
composite mode, but as a more complex set of equations in which the modes are going to

be interrelated most of the time.

We will start by showing the estimation of the normal equation for case B
represented in Figure 3.1. For this particular case, we will be able to see how the equation
obtained for mode A is exactly the same as the equation shown in reference 16 as proof
that this strategy is equivalent to the standard strategy used in the past. Also, our goal will
be accomplished by formulating a tractable equation for mode B, making equation 3.12
unnecessary. Even though the estimation of the loading for mode C was not particularly
complex, the new strategy will provide a set of equations that is less demanding from a

storage point of view. We start by defining the objective function as equation 3.13:
K
f = trace(X, - AD,B")¥;' (X, —~AD,B")"] (3.13)
k=1

In this equation, X represents the k-th slice of the three-way array X, A and B are
matrices of dimensions / x P and J x P representing the loading vectors for mode A and B
respectively, Dy is a P x P diagonal matrix with the k-th row of the K x P matrix C along

the diagonal and W;' is the inverse of the error covariance matrix that describes the noise

affecting all the rows of the 4-th slice of the three-way array X. The implementation of an
alternating least squares algorithm for the estimation of mode A loadings assumes B and
C are known and then equation 3.13 is.minimized with respect to each element forming
A. Before proceeding with the derivation, it will be convenient to express equation 3.13

as the quadratic form shown in equation 3.14 where M = Xy - ADB':

K
f =Y trace(M, ¥;'M}) (3.14)
k=1
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equation 3.15 shows the derivation:

T
o _ o (oM,
0A, OM,|0A,

ip

k=

K T
= Ztrace[ZM k‘I‘;‘ M, J

OA,;

ip

trace[ZM b % OX, ~AD,B")" ]

trace(2M,¥; (-E, D,B")") (3.15)

TFM:: EM:-: T_TMa

trace(2(X, — AD,B"Y¥; (E, D,B")")
Ztrace( 2X,¥;'BD,E] +2AD,B"¥;'BD,E] )
k=1
=—22tmce(X ¥.'BD,E] )+ ZZtrace(AD B"¥.'BD E5)

Equation 3.15 represents the first derivative of the objective function with respect to the
elements of A. The matrix E;, is an elementary I x P matrix with all of its elements equal
to zero with the exception to the element located in the position i x P, which is equal to 1.
This equation will be equal to zero for the optimum value of A;, given B and C. In order

to calculate this value of A;, equation 3.15 is transformed as follows:

K

Ztrace(X ¥;'BD,E] )= erace(AD B™Y¥;'BD,E])

k=1

Zvec(D BTY;'X}) vec(E, )_Zvec(AT) vec(D,B"¥;'BD,E] )

- (3.16)
D vec(D,BTY;'X;) vec(E ) Zvec(AT) I, ®D,B"¥;'BD, )vec(E )
k=1

k=1

T
vec(Z(DkBT‘I’;'XZ)] vec(E ;) = vec(AT)TZ(I, ®D,B"¥;'BD, )vec(E )
k=1

Equation 3.16 is one of the IP equations necessary to estimate the loadings of A. The rest
of the equations are obtained as the right and left parts of this equation are multiplied by

the different vectorized E,; matrices. Since this term is completely independent in both
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sides of the equation, the process can be carried out in a straightforward manner using a
matrix E formed as [vec(E ;) vec(E)) ... vec(Ep)]. A closer examination of this matrix
reveals that E is the identity matrix of order IP, making the multiplication theoretically

sound but numerically unnecessary and providing equation 3.17 to estimate the loadings
of mode A:

vec(A") = (i (I, ®D,B"Y.'BD, ))— vec(i(DkBT‘I’;‘XZ)) (3.17)

k=1 k=1

Taking into consideration the properties of the vec operator and the Kronecker product,

equation 3.17 can be transformed to:
K K -l
A= ZXkT;’BDk(ZDkBT‘P;‘BDk) (3.18)
k=1 k=1

For this scenario, equation 3.18 is a more compact and computationally efficient
representation of the equivalent equation 30 in reference 16 and reproduced here as

equation 3.19.
A=X ¥.'Z1(z,¥;'2")" (3.19)

The summations over & found in equation 3.18 can be eliminated by using the unfolded
representation of X retaining mode A (X,) and by expressing ¥, as the block diagonal
error covariance matrix with the individual error covariance matrices for each slice along
the diagonal and expressing the projection space byZ, =1_(C®B)".

For convenience, the mathematical procedure to derive the estimation equations

for the rest of the loadings in this and the rest of the different scenarios are provided in

Appendix L. The results of these derivations are given below.

vec(B) = (i (D,ATAD, ® ¥;' )j- vec(f(DkATxk\I';’ ) (3.20)
k=1

k=1

¢, =|B¥BEATA) vec(ATX, %;'B)| E (3.21)

It is interesting to note how both equations are composed of the two key parts of a
standard weighted least squares estimator: a projection matrix spanning the space where

the best approximation of the noiseless signal is located and a vector representing a
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weighted projection of the data onto the space where the signal is located. The awkward
form of these two components is a consequence of the manner in which these equations

were obtained, as anticipated at the beginning of this section. Two important details have
to be mentioned for the expression to obtain loadings for mode C: vector ¢} represents

the k-th row of the K x P matrix C and the matrix E in this case is a matrix formed as
[vec(E11) vec(Ey) ... vec(Epp)] and is used to choose the necessary elements for the

estimation of ¢, , since the optimization was originally designed to have this vector along

the main diagonal of Dy .

3.3.2 Correlation along Two Orders

3.3.2.1 Case 1C

Figure 3.1C represents cases where the error structure becomes more complex by
affecting elements of the data set located in two different modes. Such types of scenarios
are not unusual, for example in kinetic studies where the course of the reaction is
followed spectroscopically giving rise to errors that are correlated in both the time and
wavelength modes, while the other mode may be composed of samples with different
compositions of the reactants that are run independently of one another. For this case, we
will consider that the three-way data X, will be unfolded preserving the samples of
different compositions in mode A, while modes B and C will be combined in one
composite mode formed by the spectral information and the time information for each
sample. The objective function in this case can be expressed as shown in equation 3.22.

S =tracel(X, - AI,(C®B)")¥,' (X, —AI (C®B)")"]

- ~ (3.22)
= trace[(X, - A(C®B)" ¥ (X, -A(C®B)")"]

As mentioned in the notation section, the variables with the “a” subscript such as X, and
I, represent the three-way arrays X and I unfolded preserving mode A independently.
Array 1is P x P x P with all the elements equal zero but those on the superdiagonal,

which are equal to unity. A small modification was made in the second expression in

equation 3.22 to make it more compact by expressing A as the product of A by L.
Equation 3.22 will be used only to obtain the loadings for modes B and C, since the

loadings for mode A can be obtained by equation 3.19. It is important to anticipate that
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the expressions obtained are not going to have the visual clarity to be interpreted as
equation 3.19 due to the manner in which they were obtained. The expression for the
estimation of the loadings B for this noise characteristic is shown in equation 3.23:

vec(B") = (fi(\?;}, ® L,,,,,)j_ (fi(‘r;},} ®R,, ))vec(I,) (3.23)

m=] n=1 m=1 n=l

Equations 3.24 and 3.25 show the expressions to calculate matrices R and L,
respectively.

L=(C®I,)ATA(C®I,)" (3.24)

R=(C®I,)A'X, (3.25)

It should be noted that in order to obtain equation 3.23, a number of manipulations of the
different matrices involved in the estimation process are performed as shown in the
Appendix. The most remarkable manipulation the reader must be aware of in order to
understand equation 3.23 is the partitioning of the JK x JK inverse error covariance
matrix W', the KP x KP matrix L and the KP x KJ matrix R into three K x K super-
matrices composed of the corresponding J x J, P x P and P x J matrices. A graphical
representation is presented in equation A.19 in the Appendix. It is clear from the equation
that subscripts m and » indicate the use of different partitioned pieces of ¥ L and R.
Although equation 3.23 does not resemble the traditional representation of a weighted
least squares estimator, a closer look will actually indicate, as before, that it is formed by
the key pieces of this type of estimator: a projection matrix spanning the space where the
vector to be estimated resides (the term within the inverse operator) and a weighted
image of the signal in the same space (the term following the inverse operator). The
equation to estimate the loadings for mode C are equivalently obtained and will have a
similar structure as can be seen in equation 3.26:
P

vee(CT) = (Zi(T,,m ®sT, ))_ [ii(LT,,,, ®R,, ))vecan (3.26)

m=l n=| m=1 n=l

Equations 3.27 to 30 show the necessary expressions to calculate the matrices involved in

equation 3.26. As before, matrices Kk and Kg;are JK x KK commutation matrices.

T=B"®I,)K , Y.'K,, (3.27)
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S=B®I,)ATA (3.28)
L=Y'K,, (3.29)
R=(B®I,)A™X, (3.30)

Again, the subscripts m and » indicate the use of different partitioned pieces of the full
matrices previously shown. In all cases, we have tried to produce the most compact
representation for the expression used to calculate the estimates, but it is possible that
further simplifications have been unnoticed by the authors. Also, some of these
expressions will be computationally implemented in a more efficient way than the one

used here, which was preferred for its notational simplicity.

3.3.2.2 Case 1D

Figure 3.1D represents chemical scenarios that are very similar to the previous
case. The complexity of the system is taken a step further by considering that the noise
propagates in a correlated fashion along two modes but the structure of this correlated
noise changes from sample to sample independently. This type of situation is not
uncommon when spectroscopic techniques susceptible to path length variations such as
NIR spectroscopy are used. Mathematically, the trilinear errors-in-variable model best

suited to describe these data can be obtained by minimizing equation 3.31:

I . .
[=2.0x,~"3(C®B)") ¥, ('x,~'a(C®B)")” (3.31)
i=1
This objective function yields expressions for the estimates that are very similar to the

previous case, but in this particular case the estimates are obtained in a row by row

fashion for mode A, and as a summation over the J objects in mode A for modes B and C,

as can be seen in equations 3.32 to 34:

fa='x, "W '2T (2, W'z (3.32)

g

ii("‘l’;l ® "R,,,,,)jvec(lj) (3.33)

m=l n=1

!

vec(B") = (

I
=]

=
i M=

. -1
NG L)) (

I
n= i=1
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i

vec(C") = (

I P J =1
>30T, @], )) (ZZZ(L ®'R,, ))vecau (3.34)
=1

m=1 n=1 i=1 m=1 n=1

The estimations of the loadings for mode B and C will use the same equations shown
before, but in all cases the matrix A will be replaced by the corresponding row vector

"d and the I x JK matrix X, will be replaced by the row vector ‘x_. It is important to

emphasize that a set of I error covariance matrices of dimensions JK x JK will be used by
this method making this alternative very expensive from a storage and computational
point of view.

Thus far in section 3.2, a number of different simplified scenarios have been
examined, ranging from the simplest, where the error covariance matrix can be fully
represented by a J x J matrix, to the most complex case, where it is necessary to consider
I different JK x JK error covariance matrices. From the estimation equations, it is evident
that the computational effort and the storage space increase as the complexity of the error
structure characterizing the noise affecting the data grows. Therefore, the main advantage
of using a simpler alternative will be the reduction of time needed to estimate the
loadings for each mode. On the other hand, some scenarios will show the merit of using
the more complex alternatives in order to provide the maximum likelihood estimation for
each mode. The situation in which practioners will have to compromise to estimate the
best possible errors-in-variables model using the minimum amount of time will depend
on the characteristics of the data at hand and will be difficult to assess on an a priori
basis. In the experimental section of this paper, a number of simulated data sets are used
to validate the statistical properties of these algorithms and also to show the advantages

of using one algorithm over the other in terms of time, computational power and quality

of the results.

3.3.3 Correlation along Three Orders

In the previous sections, the expressions for a number of simplified algorithms
were derived for a variety of scenarios characterized by error covariance matrices of
different complexity. However, there are going to be cases where none of these
simplifications will provide the best solution, making it necessary to use the full

algorithm presented in reference 16. As noted in that work, the full algorithm is not a
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viable alternative except when the dimensions of each order are unrealistically small.
This is also the case with some of the simplifications discussed here (e.g. case 1D) for
which the amount of storage space is prohibitive from a practical point of view. In these
cases, some compression methods, taking advantage of different intrinsic levels of
structure present within the data, will be introduced to tackle the situation. This section
provides the theoretical basis of this approach and describes the implementation in the
context of the model using the full error covariance matrix, although it is important to

note that this can also be applied to some of the simplified models previously discussed.

3.3.3.1 Compression

Compression is a natural concept for two-way and multi-way data since both
types of data can model deterministic relationships among variables, especially in cases
where a high degree of collinearity and multilinearity exist. These types of data can be
represented by a smaller number of variables. Using this smaller set of variables, the data
can be described within experimental error as a P-dimensional hyperplane. In this case,
P is called the chemical rank or pseudorank of the data set in order to distinguish it from
the mathematical rank. In general, the chemical rank is typically related to the number of
underlying chemical factors or chemical components present in the mixture. For multi-
way data, the theoretical basis of the idea was initially introduced by Carroll et al. [19] in
1980, stating the optimality theorem of the Canonical Decomposition with Linear
Constraints (CANDELINC) model, which ensures that the compressed array preserves
the original variation maximally when a set of orthogonal bases, usually Tucker3 factors,
are used to project the original array onto the space spanned by them. In 1981, Appellof
and Davidson [20] provided the first application of trilinear decomposition to chemistry
using both simulated and real LC/emission/excitation measurements by compressing the
original data. They used the scores provided by the principal component decomposition
of the unfolded data in each mode as compression bases. Later, Alsberg and Kvalheim
published a number of papers [21-22] proposing a method called Postponed Basis Matrix
Multiplication (PBM) using B-spline basis sets for the compression of high dimensional
arrays. A comparative study done by Kiers and Harshman [23] proved that PBM is
equivalent to the more general approach based on the CANDELINC model. They also
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stressed that there is no need for special algorithms in the CANDELINC approach,
showing it was only necessary to compress the array using a select set of optimal bases,
to use any existing multi-way algorithm on the compressed array, and to decompress the
result by post-multiplying the solution with the bases. The latest additions to the arsenal
of compression basis sets have been a variety of wavelet families of basis sets not only
used as compression devices but also as smoothing and denoising alternatives [24]. It is
worth noting that these positive side effects commonly attributed to the compression
using wavelets are not completely an intrinsic characteristic of the basis set, but a
consequence of the projection step involved in the compression procedure.

From a structural point of view, the possibility of using different basis sets such as
Tucker3 factors, PCA factors, B-splines-and wavelets is a consequence of the different
levels of underlying structure present in the chemical part of any multi-way data. The
type of data encountered in chemistry is normally collinear (well suited for B-splines and
wavelets), bilinear (ideally treated by PCA) and, in many cases, trilinear (where Tucker3
basis sets are the perfect option). This idea will be clearly demonstrated from a
mathematical point of view throughout the theoretical development of an example shown
next.

An I'x Jx K array X is given, such that matrices U (/ x D), V (/x E) and Z (K x
F), representing orthogonal basis for the systematic variation in the first, second and third
mode respectively, are considered known. Dimensions D, E and F are the pseudo-rank
(i.e. the rank of the subspace spanning the systematic variation when noise is not present
[25]) for each mode. It is important to clarify that matrices U, V and Z as well as ranks D,
E and F must be estimated beforehand, but in this case, for the sake of illustration, will be
considered known. The standard estimation of the PARAFAC model can be expressed

via equation 3.36:

min |X, - AL, CcoB)'|. (3.36)

The CANDELINC optimality theorem expresses the existence of three matrices A, ® and
® of orders (D x P), (E x P) and (F x P) that are related to A, B and C through a bilinear

relationship with U, V and Z as shown in equation 3.37:
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A=UA
B=V@ (3.37)
C=Zd

From a geometric point of view, this is equivalent to saying that each mode is linearly
constrained to sub-spaces U, V, and Z. Therefore, if the minimization problem
represented by equation 3.36 is to be solved subject to the constraints expressed by
equation 3.37, it is only necessary to estimate the much smaller matrices A, ® and
@ using the smaller array Y of order D x E x F obtained after the projection.
Mathematically, this is carried out by projecting X onto the space spanned by U, V and Z
as shown in equation 3.38:

X, =UU"X,(ZZ"®VVT) | (3.38)

Using equation 3.38, array X can be defined as:

Y, =U'X_(Z®V) (3.39)

Equation 3.39 coincides with the expression used to calculate the core matrix for the
Tucker3 model [26] when matrices U, V and Z represent the respective modes for this
model. This is a clear mathematical proof to demonstrate the earlier statement indicating
Tucker3 loadings as the perfect basis set for compression of multi-way data. As
mentioned before, array Y can be used to estimate A, ® and ® and, using the expressions
depicted in equation 3.37, the loadings in the original space can be calculated as the

standard estimation problem depicted in equation 3.36, which is reduced to the one

represented in equation 3.40:

min |¥, AL (@®0)"|] (3.40)

Thus far, it has been demonstrated why Tucker3 provides the best basis set for
compression. In addition to the method of choice for the compression basis set, another
key piece of information is the dimensions for corresponding basis set. In general,
compression will provide an approximate solution, although it has been reported in the
literature [27] that, in situations where only one mode is high dimensional, an exact
compression can be obtained by compressing this mode with a basis set of dimension

equal to the product of dimensions of the other smaller two orders. In reality, exact
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compression can be considered the exception instead of the rule. No formal theory exists
to choose the number of components for each Tucker3 loading. A rule of thumb is to use
at least five more components than the number of components expected for the system,
since the main objective is to speed up the algorithm and therefore only information
related to the chemical structure is needed.

Up to this point, the theory and most important equations for the compression and
estimation of multi-way data to be treated with the standard PARAFAC and other multi-
way models such as PARAFAC2 and PARATUCK?2 have been introduced. However,
when this philosophy is to be extended for cases where a maximum likelihood method
such as MLPAPAFAC is to be used, a few other equations must be introduced. These
new equations will lead us to issues related to the selection, calculation and number of
basis sets needed for this approach.

Even though compression can be applied to any of the simplified scenarios, we
will treat here the case where the full error covariance matrix must be used. The
expression used to compress the full error covariance matrix is a direct extension of the

projection expression shown in equation 3.39 in a vectorized form:

E,=(URZAV)'Q (URZQRYV)) (3.39)

Equation 3.39 will convert the original JJK x IJK full error covariance matrix describing
the noise structure present in the original array X in a compressed DEF x DEF full error
covariance matrix describing the noise in the compressed array Y. Although equation
3.39 represents the theoretical expression to compress the error covariance matrix, it does
not solve the size problem associated with it. In order to solve this problem, the
compression step must be carried out on the original data and the compressed arrays used
to calculate the compressed error covariance matrix. These alternatives are equivalent, as

can be seen in equation 3.40, where equation 3.39 is used as starting point in a backward

transformation.
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E,=(URZBV)'Q (UR®ZRYV)
=(U®Z® V)" Elvec(E" )vec(E!) URZ V)
=E(U®Z® V) vec(ETvec(E]) (UBZ®V)) (3.40)
= E(vec{[UTEa(Z ov)[ }vec{[UTEn(Z ov] }T)
= E(vec(N Jvec(NT)")

It is important to differentiate in equation 3.40, the expression E(s), which represents the

expectation value of the expression in parenthesis from expression, E, which represents
the noise array E unfolded as an I x JK matrix. Expression 3.40 represents the symmetric
outer product of the multiplication of the unfolded error array and the compression basis
set in vector form. This can be transformed to the following matrix expression to be

further explored:

N,=U'E_(Z®V)
=UT(X, -XJz®V) (3.41)
=U'X,(Z®V)-UX(Z®V)

Here, X, and X are the unfolded forms of the measured data array and the error-free

data array, respectively. Equation 3.41 shows that a successful estimation of the noise in

the compressed space can be obtained if the compression basis sets are chosen to

optimally compress the chemical part represented by X . Two detrimental effects can be

foreseen if the chosen basis set does not span the space of X° properly. The first is

related to the loss of meaningful chemical information during the projection step and it is
common to PARAFAC and MLPARAFAC. The second is a direct consequence of the
first one and related to the inclusion of chemical variability in the error covariance matrix
as if it were noise. Clearly, the second detrimental effect will only affect MLPARAFAC
since PARAFAC does not use any noise information. In order to prevent these effects
when compression is used with MLPARAFAC, it is necessary to retain as much variation
as possible. This alternative is not advisable for PARAFAC, since including a large
amount of variation can increase the uncertainty of the estimates, but in the case of
MLPARAFAC there is no danger of this, since this meaningless variation (noise) will be

down-weighted via the error covariance matrix during the estimation process.
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It is well known that, in practice, X° is not generally available, hence in the
absence of a priori knowledge, the error-free data array is replaced by its best unbiased
estimate (considering the normal assumption), which is the average array X, calculated
by obtaining replicates of the measurements. For practical applications, equation 3.41
becomes equation 3.42:

N,=U"X, (Z®V)-U"X,(Z®V)

— 3.42
v (3.42)

Equation 3.42 also unveils another important practical issue regarding the selection of the
compression basis sets, indicating that the optimal basis set will be obtained as a Tucker3

decomposition of the mean array X. The compressed error covariance matrix E, will be

calculated using a set of R replicates as shown in equation 3.43:

E, ~ (_R_l—T) > [vec{(Y; -Y,)" pecly -X,)" }T] (3.43)

Based on the theoretical expressions derived in this section, a sequence of steps to

prepare the data for the most general MLPARAFAC algorithm is shown in Table 3.1.

It is important to note that, although this strategy was explained for the
compression of all three orders, it can also be applied to the compression of one or two
orders in a very straightforward manner. For example, if only mode A is compressed,
equation 3.39 will become equation 3.44, since in that case Z and V will be the identity

matrix of orders J and K respectively and (Z& V) =1 ,.
Y, =U"X, (3.44)

This result is equivalent and symmetric for all the orders. Therefore, if an order
different from A is to be compressed, the data will be unfolded, keeping the desired order
unmodified, and multiplied by the optimal base describing this order. Equivalently, if
more than one order needs to be compressed, this methodology can be individually
repeated for both orders, including a folding and unfolding intermediate step between the

multiplication by each basis set.
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In the experimental part of this paper, a number of simulated data sets will be
used to test the performance of the compression approach under different conditions,
such as the level of noise and the amount of structure in the chemical data. Also, a

comparative study between Tucker3 and PCA loadings will be carried out to confirm the

theoretical results.

Table 3.1. Algorithm for the MLLPARAFAC algorithm using compression.

1. Given R replicates of an I x J x K cube of data X. The algorithm starts by
calculating a Tucker3 model for the average cube of data, X.
[U,V,Z,Y] = tucker3(X, P) 1)

2. For each replicate, unfold X', retain the first order and regress X' onto the

subspace spanned by U, V and Y in order to calculate Y, for each replicate as
shown in equation T.2:

Y, =U'X’(Z®V) (T.2)

Using all the Y, estimate the error covariance matrix in the compressed

subspace, represented by &, in equation T.3.

R

g, ~ (Rl—l) Z[Vec{(Ya' ~¥,)"rec{(y; ‘Ya)T}T] (T.3)

r=1

3. Submit E, and each Y/ to the MLPARAFAC algorithm previously introduced
until convergence is achieved.

[A",0",®"]= MLPARAFAC(Y',E,,P)

T4
4. Using the following relationships, the uncompressed MLPARAFAC loadings( calz
be obtained.
A" =UA"
B =V@’ (T.5)
C' =729
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3.4 Experimental

3.4.1 Data Sets

Since the objective of this work is to introduce the theoretical basis and test the
statistical properties and performance of a number of simplified alternatives of the
MLPARAFAC algorithm, all of the data sets employed in this work were simulated so
that the rank and error structure could be known with confidence. Experimental results
will be presented in a companion paper to examine the performance of the algorithm for
real experimental systems. Although a wide range of simulations were carried out, the
results from only six data sets are presented here to support the main conclusions. In all
cases, the data sets were relatively small, since the studies generally involved statistical

validation requiring numerous runs.

Data Sets 1 to 5 share the same noise-free structure. This structure was a rank-
three data set of dimensions 12x15x6 used to test the statistical characteristics and the
performance of the different algorithms introduced. The loadings for mode A were
represented by a 12x3 matrix drawn from a uniform distribution of random numbers from
zero to three (U(0,3)). Similarly, B was a 15x3 matrix from U(0,2) and C was a 6x3
matrix from U(0,5). The error-free data were generated using the well known
PARAFAC model, yielding the 12x90 matrix of error-free data, unfolded to maintain the
A mode. Each data set is used to generate 100 replicates obtained by adding this noise-

free structure to different realizations of the following error structures.

The matrix of measurement errors for Data Set 1 was a 12x90 matrix with a very
simple structure. The simplest noise structure studied in this paper (Case 1A) was
imposed on this data set. Initially, six different 12x15 matrices of normally distributed
random numbers drawn from N(0,0.1) were generated. These matrices were individually
treated with a 7 point moving average filter along each row in order to produce error
covariance. At the boundaries of the error matrix, the filter was wrapped around the
opposite side in order to eliminate edge effects. Since these error matrices were
individually treated with the same filter, this approach produced correlation among the

measurements in one mode, and it is identical for all the slices (Case 1A). Although this
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approach is not particularly realistic, it represents a general case for which the covariance
structure could be easily predicted. Finally, the error-free data were added to the noise

matrix in order to generate the data set.

The matrix of measurement errors for Data Set 2 was a created in a very similar
fashion to the matrix of measurement errors for Data Set 1. The only difference is that
each of the six different 12x15 matrices of normally distributed random numbers drawn
from N(0,0.1) were individually multiplied by a different filter matrix. The filter matrices
were constructed from moving average filters (wrapped around the opposite side in order
to eliminate edge effects) of dimensions 3, 5,7, 7,9, 5. Since these error matrices were
individually treated with the same filter, this approach produced correlation among the

measurements in one mode, and different from slice to slice (Case 1B).

The noise matrix of Data Set 3 was created to introduce correlated noise in two
orders. Initially, a 12x90 matrix of normally distributed random numbers drawn from
N(0,0.1) was generated. This matrix was treated with a 67 point moving average filter
along each row in order to produce error covariance. Since the error matrix was unfolded
to maintain mode A, this approach produced the same row correlation among the

measurements in the other two other modes (Case 1C).

The noise matrix of Data Set 4 was constructed in a similar way to the the noise
matrix of Data Set 3. However, different size moving average filters were used along
each row in order to produce error covariance among the measurements in the two other
modes but with a different structure for each row. Twelve different moving average filter

matrices with sizes in the range between 53 and 77 points were used (Case 1D).

The matrix of measurement errors for Data Set 5 was created to have the most
complex noise structure studied in this paper (Case 1E). Initially, a 12x90 matrix of
normally distributed random numbers drawn from N(0,0.1) was generated. This matrix
was vectorized by stacking the transposed rows on top of each other producing a 1080x1
vector that was multiplied by a 1080x1080 filter matrix. This filter matrix was formed
by accommodating eigth 135x135 filter matrices of 127 points moving average filter

along the diagonal to produce error covariance. As before, the boundaries of the filter
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matrices were wrapped around the opposite side in order to eliminate edge effects.
Considering that dimension of the filter matrices was 135 x 135 this approach produced
correlation among the measurements in three modes. Again, the error-free data were

added to the noise matrix in order to generate the data set.

The matrix of measurement errors for Data Set 6 was also created to represent the
most complex in case 1E but with a more heterogeneous structure. The noise structure
was constructed in a similar fashion to Data Set 5, but in this case nine different 120x120
filter matrices of 101, 133, 109, 131, 119, 121, 127 and 97 point moving average filter
along the diagonal to produce error covariance. As before, the boundaries of the filter
matrices were wrapped around the opposite side in order to eliminate edge effects.
Considering that dimension of the filter matrices was 135 x 135 and each individual filter
matrix was created with a different number of points, this approach produced correlation

with a very heterogeneous structure among the measurements in three modes.

Data Sets 7 to 10 were rank-three data sets of dimensions 32x128x8 and were
used to test the compression approach for different conditions of noise and data structure.
In a generic way, the data sets are generated to contain the same broad spectral
characteristics commonly observed in fluorescence excitation/emission matrices. The
pure components for modes A and B were generated by adding Gaussian peaks of
random means and standard deviations. The position of the center of each peak is a
random number drawn between one and the largest channel number. The width of each
peak is also drawn from a uniform distribution with a range between 10 and 40 (uQ10,
40)). The spectra were normalized to unit length in all cases. The information about the
intensity for each component is carried in mode C, in which the pure component
concentrations are represented by an 8x3 matrix drawn from a uniform distribution of
random numbers from zero to thirty (U(0,30)). Two different issues affecting the
compression were investigated with these data sets: the amount of chemical information
contained in the data and the level of noise affecting the data. Data Sets 7 and 8§ were
constructed with unimodal components for modes A and B. Data Sets 9 and 10 were
constructed using components obtained by adding five Gaussian peaks for each

component. All the data sets were constructed using the same error structure. In all cases,
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an error structure equivalent to Data Set 1 was used to compare the results obtained after
compression with results obtained without any compression using an algorithm which is
optimal but not computationally involved. For this case a 61 point moving average filter
was used for each row. The error structure is the same in each case but the signal-to-noise
ratio (SNR) is varied to test the performance of compression with respect to the noise.
Data Sets 7 and 9 have a SNR = 1000 and Data Sets 8 and 10 have a SNR = 250. The
SNR values reported here represent the best case scenario, since they are calculated as the
ratio between the maximum peak for the most concentrated sample and the value for the
noise defined as three times the standard deviation. Therefore, there will be parts of these
data sets with poorer SNR. All the data sets utilize 25 replicates calculated by adding the

respective noise-free data and a different realization of the noise structure described for

each data set.

3.4.2 Computational Aspects

All calculations performed in this work were carried out on a Sun Ultra 60
workstation with 2 x 300 MHz processors and 512 MB of RAM and a 3.2 GHz Pentium-
IV PC with 1 GB of RAM. All programs were written in-house using Matlab 6.0 (The

MathWorks Inc., Natick, MA) with the exception of the PARAFAC and TUCKER3
functions that were run using the N-Way Toolbox [28].

3.5 Resuits and Discussion

In this section the estimation equations for each method will be validated using
Data Sets 1 to 5 in order to cover different possible scenarios. In addition to the
validation discussion, some general conclusions will be drawn about the merits of using
the different algorithms based on the quality of the results and computational efforts
invested to get them. Data Sets 7 to 10 will be used to compare the quality of the results
for the compression approach with standard PARAFAC using different scenarios (noise
level, amount of structural information and different basis sets) which have a very simple

error structure in order to use the simplification developed for Case 1A as a benchmark

value.
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3.5.1 Statistical Validation

In order to validate the various proposed algorithms, it was necessary to verify
that they yield the maximum likelihood solution. This can be accomplished by exploiting
the statistical characteristics of S values for the correct model. This methodology has
been explained elsewhere [8,16] but it will be briefly reproduced here for the sake of
completeness. Operationally, this is done by analyzing replicate data sets, each with the
same matrix of error-free data and the same error structure, but with different realizations
of the measurement error each time. If the distribution of S* values for these replicates
follows a y* distribution with the appropriate degrees of freedom [16,29], it can then be
concluded that the algorithm is finding the maximum likelihood solution. Probability
plots are used in this work to make this comparison. Initially, the replicate data sets
(normally 100 replicates) are analyzed and the S® values are stored. Then, the S® values
are sorted from the smallest to the largest and assigned a cumulative probability
according to their position in the list; this is called the observed probability. For instance,
the third element in the list would be assigned an observed probability of 2/n, where n is
the number of replicates. The expected probability is then calculated using the >
distribution. The cumulative probability density function for %> can be calculated using

the incomplete gamma function as shown in equation 3.45:

§* v
P(S*|v)=T,, [7,5) (3.45)
where v is the number of degrees of freedom [16]. If the two distributions are the same, a
plot of the observed probabilities vs. the expected probabilities should yield a strai ght line
with a slope of unity. If the model is insufficient to account for the systematic variance,
either because the form of the model is incorrect or the parameters are suboptimal, then
the points of the plot will lie above the ideal line. If the model accounts for an excessive
amount of variance, (i.e. the estimated rank is too high and measurement variance is

modeled), the points will lie below the ideal line.

Figure 3.2 shows the probability plots obtained when all of the algorithms
introduced in this work, in addition the general MLPARAFAC algorithm (without

106



Expected Probability
=
o

Expected Probability

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Observed Probablllty Observed Probability

Expected Probability
Expected Probability

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Observed Probability

PARAFAC

S-1A

S-1B

$-1C

S-1D

Full MLPARAFAC

oo x+ D

Expected Probability

0 02 04 06 08 1
Observed Probability

Figure 3.2. Probability plots obtained for 100 replicates of different simulated data sets
using different algorithms such as PARAFAC (4); simplifications 1A (+), 1B (3¥), 1C
(©), 1D (O); and full MLPARAFAC (O). The solid line with unity slope indicates ideal
behaviour for maximum likelihood estimation.

compression) and PARAFAC are used to estimate Data Sets 1 to 5. The general
MLPARAFAC was included as a benchmark since it can accommodate any covariance
structure. Figure 3.2 shows a perfect trend, starting with all the methods but PARAFAC
providing optimal models and ending with only the general MLPARAFAC algorithm
providing an optimal model. As the complexity of the error structure increases, the
methods designed to handle simpler error structures join the PARAFAC method,
indicating the suboptimality of their estimates. Even though this trend was theoretically
expected since each data set was constructed mimicking the error structure and therefore
the objective function used to derive the estimation equation for each method, the results
show from a numerical point of view the correctness of the estimation expressions for

each case and how all of these methods are different simplified instances of a general
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class of method. It is important to emphasize that this particular methodology is very
sensitive to suboptimal solutions; therefore, it should not be used to compare the quality

of different solutions.

3.5.2 Model Quality and Performance

The preceding sections dealt with the statistical validation of the maximum
likelihood estimation process, but nothing has been said about the quality of the estimates
obtained using these new algorithms. Although it has been previously demonstrated [16]
that MLPARAFAC estimates are closer to the true underlying factors than the
PARAFAC estimates, two reasonable questions are still not answered: (1) How do the
MLPARAFAC estimates from different simplifications behave as the complexity of the
error structure increases?, and (2) What is the computational price paid for the increment
on complexity?. Both questions will be answered using simulated data. The
computational workload and the quality of the data will be assessed using the average
time needed for convergence and loading vector angles, respectively. Both magnitudes
will be calculated using 100 replicates. In order to put this comparison into context, the

value for each method relative to the value for the PARAFAC model will be used.

As mentioned above, the quality of the estimates will be measured as the
closeness of estimates to the true factors using vector angles as a figure of merit. This
figure of merit is the angular difference between the true loading vectors and the

estimated loading vectors in each mode. For example, the vector angle between two

loading vectors in mode A is given by:

AT
@, =cos™ -Aa—”a-"— (3.46)
" o]

where a, and 4, are the true and estimated values for the pth loading vector of A.

Analogous equations can be used for the other orders. Smaller angles mean a greater
similarity, so by comparing the vector angles obtained by the different simplifications of
MLPARAFAC with those of PARAFAC, the agreement with the true vector can be
assessed. An alternative measure is the correlation coefficient of the vectors, which is

simply the term in parentheses, but since this approaches unity with small differences, it
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is less sensitive. The quality of the estimates as well as the computation time will be
compared in a relative fashion with respect to the corresponding values for the
PARAFAC model. Equations 3.47 and 3.48 represent the expressions to calculate the

relative average angle (RA) and the relative computation time (RCT):

RQ = & (3.47)
QPAR

RCT = X (3.48)
fpar

Two completely different scenarios will be explored in order to have a broad view
of the problem, since the degree to which these results will be extendable to a given
application depends on the nature of the application and the characteristics of the noise.
Data Sets 1 and 5 will be used since they represent very different scenarios in which clear
comparisons can be made and conclusions drawn. The validation results showed that all
of the simplifications provided optimal estimates for Data Set 1; therefore, this is a good
scenario to test the computational advantages of using simpler algorithms over more
complex algorithms when the data merit the simplification. Data Set 6 has a more

complex error structure and these simplifications are also used to treat it.

Figures 3.3 and 3.4 show the results for the comparison in terms of quality and
performance, respectively, when different simplifications are used. As expected, all the
methods but PARAFAC provided the same results for Data Set 1 in terms of quality in
Figure 3.3, since the error structure used was the simplest case. However, when the time
employed to reach the convergence is taken into account (Figure 3.4), it is possible to

appreciate the advantages of using simplified algorithms when the data at hand merit the

use of a simplification.

In Figure 3.3, the relative average angle for Data Set 5 exhibits a nice trend,
showing an improvement of the quality of the results as the complexity of the algorithms
used increases. PARAFAC and general MLPARAFAC are located at the two extremes,
corresponding to the methods providing the worst and best estimates. Again, a positive

correlation between the complexity of the algorithm and the time needed to obtain the
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best possible solution is observed, indicating in this case that a better solution will require
the use of more computational effort. These results were expected, since the common
wisdom tends to assume that the application of more complex algorithms (which in turn
translates into error covariance matrices that are bigger and richer in information) will
provide estimates of a better quality. Even though the error structures in real applications
tend to be simple in general [13], the authors believe that in this particular case, the
perfect monotonic trend in quality was mainly the result of an oversimplified (i.e. very
symmetric) error structure. To avoid a misleading conclusion in this regard, this issue
was further explored using a Data Set 6, which has a similar but less symmetric error

structure.
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Figure 3.3. Comparison of the improvements in the quality of the estimates obtained for
different MLPARAFAC algorithms for three characteristic data sets. The quality is

measured using the relative average vector angle with respect to PARAFAC and the
results are based on 100 replicates.

The results for Data Set 6 are quite surprising. For Data Set 5, a trend showing a

monotonic improvement in the quality of the results with the complexity of the algorithm
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used was observed, but the simulations for Data Set 6 show a very different scenario.
PARAFAC and general MLPARAFAC were the only methods that coincide with the
expected trend results. The remainder of the simplifications did not provide a clear trend
in quality. For instance, the simplifications assuming that the errors are correlated along
one order and are the same everywhere(Case 1B) gave estimates that are as good as the
ones provided by the methodology assuming errors with the same structure affecting two

orders (Case 1D).

120 T T T T T T

1000-

800

600-

Relative Computation Time

400
PARAFAC

200

0 - —t

PARAFAC S-1A S$-1B $-1C S-1D S-1E

Algorithm used

Figure 3.4. Comparison of the time utilized by different MLPARAFAC algorithms for
three characteristic data sets. The performance is measured using relative time with
respect to PARAFAC and the results are based on 100 replicates.

Another striking inconsistency evident from Figure 3.3 is that the quality of the
results for the simplifications representing case 1B and 1D were worse than the quality of
the results for Cases 1A and 1C, respectively. The mathematical theory behind these
expressions makes Cases 1A and 1C subsets of the more general implementations
representing Cases 1B and 1D, respectively, when the models are properly used.

Therefore, all these inconsistent results clearly illustrate the importance of a thorough
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characterization of the error structure, since the applications of an incorrect model can
significantly degrade the quality of the result. It is important to note that the comparison
of these methodologies from a computational point of view is meaningless for Data Set 6,

since all of them produced a variety of sub-optimal models.

In reality, data commonly found in chemistry will have a behavior closer to the
scenario illustrated by the simulations using Data Set 5. Probably, the error structure will
not be exactly equivalent to the error covariance matrix used to derive the expression for
a particular simplification, but it will not depart to the extent that Data Set 6 did to make
the simplifications useless. However, it is important to fully characterize the error
structure in order to apply the most suitable algorithm given the data set at hand in order
to avoid erratic results such as the ones shown for Data Set 6. Unfortunately, due to the
length and scope of this paper, only exact mathematical simplifications were shown, but
in a companion paper to this work, a number of important guidelines will be introduced

and used with different experimental data sets in order to cover more grey scenarios.

Finally, it is important to emphasize that, although only the results for three data
sets were shown, many different data sets with the same characteristics of Data Sets LS

and 6 were used to ensure the generality of the conclusions drawn.

3.5.3 Compression results

In the results shown in the previous section, general MLPARAFAC always
provided the best solution, provoking the question: why not use general MLPARAFAC
for every case? There are two reasons for this. The first is that general MLPARAFAC
usually takes more time to produce the estimates, as already demonstrated. The second
reason is that the previous results used general MLPARAFAC for a very small data set.
For a more typical size data set, general MLPARAFAC cannot be applied directly due to
storage and memory limitations. In order to overcome these limitations, a compression
strategy was formulated. This section will show that, even though compressed
MLPARAFAC will not give exactly the same results as general MLPARAFAC, the
solutions will generally be superior to the PARAFAC solution. Figure 3.5 shows the

comparative results for different cases (Data Sets 7, 8, 9 and 10) and compression basis
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sets with respect to PARAFAC and general MLPARAFAC. In general, these results
clearly demonstrate that improved estimates of loadings with respect to PARAFAC can
be obtained from the general algorithm when information about the measurement error
structure is compressed and is incorporated into the modeling process in the correct way.
As already noted, the extent to which these improvements will be significant for a given
application depends on the nature of the chemical data and the level and structure of the
noise affecting the measurements. As can be seen from Figure 3.5, when the amount of
information related to the chemical data increases, a larger number of factors are needed
to yield better estimates using the compressed data. For Data Sets 7 and 8, which are

constructed by unimodal components, six factors are enough to produce good results

Data Set 7 (SNR = 1000) Data Set 8 (SNR = 250)
1.5
0.3 | 1 uuuuuuuuuu - -~
0.2
0.5 Lol RS St S T T )
PRI LT SEEEH LSO L |
0.1
' ' 0
C 5 10 15 20 5 10 15 20
kb Data Set 9 (SNR = 1000) Data Set 10 (SNR = 250)
0.8 5
0.6 | 4
o ~ . 3
0.4 \\....-..-—-«-—"“"“"'
..... 2 -
0.2 Sgnmimaennminny 1 ""'"'---.:::_:::_::,:
0 0
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Number of Components
memee PARAFAC ..o Tucker3-MLPARAFAC ~<== Tucker3-PARAFAC

—— MLPARAFAC ... Tucker1-MLPARAFAC

Figure 3.5. Comparison of the quality, in terms of average vector angle, of the estimates
obtained for four different data sets when PARAFAC and general MLPARAFAC are
employed on the original data and on compressed data. Tuckerl (PCA) and Tucker3
loadings were used as compression basis sets.
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while for Data Sets 9 and 10, ten components are necessary to produce similar results. It
is important to note, that Tucker3 and Tuckerl (PCA) basis sets produces very similar
results in all cases, at least to the extent of these simulations. The different noise levels
produce an equivalent worsening of all methods, indicating that this does not play an
important role in the compression strategy. In addition to the PARAFAC, general
MLPARAFAC, Tuckerl-MLPARAFAC and Tucker3-MLPARAFAC, Tucker3-
PARAFAC is also included to dissect the improved results with respect to PARAFAC in
its two most important contributions: the effects of compression and the use of the error
information in the estimation process. It can be observed in all cases that although the
compression step by itself produced some improvement in the results, the use of
compression and weighting yield much better estimates. It is also important to comment
about the worsening of the estimates as the number of components increases, shown as a
trend in all cases when the compressed data are treated with standard PARAFAC. This
situation does not occur when MLPARAFAC is used due to its capacity to down-weight

noisy regions as anticipated in the theory section

In reality, the difference between the quality of the estimates of compressed
MLPARAFAC and PARAFAC will not be as large as the differences encountered in the
simulation studies, since the results presented here were obtained assuming an absolute
knowledge of the measurement error covariance matrix, while in practice this is typically
estimated on the basis of replicate measurements and hence may be less reliable.
Therefore, the benefits of including measurement error information must be weighed
against the detrimental effects of including poor quality information. In many cases, it
will be more advisable to use one of the previous simplifications because, in those
situations, the advantages gained by pooling error covariance estimates may outweigh the

benefits of using the full error covariance matrix.
3.6 Conclusions

In this work, the standard practice of expressing the estimation process by
minimizing the different formulations of the same objective function was discarded since

it does not take into account the loss of symmetry caused by the introduction of error

information. A new approach, in which the same objective function is used to estimate
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the loadings for all the modes, was introduced due to the benefits of locating the noise
information in one or two modes as a simple representation and using it equivalently to

obtain the estimation equations for each mode.

Four algorithms for carrying out simplified variations of general MLPARAFAC
when the data at hand are corrupted by correlated noise affecting one or two orders have
been described in this work by using the new approach. Also, a compression step was
included prior to the use of general MLPARAFAC for cases where the noise structure is
affecting three modes and the volume of data precludes the use of general MLPARAFAC

on the raw data.

All of the algorithms were shown to produce maximum likelihood estimates
through a comparison of the distribution of the objective function with the * distribution.
It was also shown that the use of simplified algorithms when the data at hand merit the
simplification is beneficial from a computational point of view. When the error structure
was properly used, the quality of the estimates was the same for all the methods designed
to handle this error structure. Two simulated scenarios where the error structure assumed
departs from the actual error structure were studied to illustrate the importance of a

thorough characterization of the error structure.

The merits of using compressed MLPARAFAC over PARAFAC were studied in
different scenarios. Also, no significant differences were found between Tucker3 and

Tucker1 basis sets, at least for the data used in the simulation studies.

Although the principles of general MLPARAFAC and a number of
simplifications have been established here, a number of more practical aspects related to
its application on experimental data remain to be examined. These include issues related
to the characterization of the error structure and the application of the different

simplifications. These subjects will be the focus of a companion paper.
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3.7 Appendix
Case 1B:

Mode B

This scenario is represented by the following objective function:
K
[ =2 trace(X, - AD,BT)¥] (X, — AD,B™)"] (A.1)
k=1
Defining: M = X;~ AD,B", equation A.1 can be modiﬁed to yield:
K
f=> trace(M, ¥;MT) (A2)
k=1

Using standard relations for derivatives of matrices and vectors [20], this gives:

T
o _ o [om,
OB, M, (0B,

JP

K

Z trace[ZM ;!

k=1

oM}
oB

=

d(X, —AD,B")
OB

i

it
T[\/]a ?FM> TM» |

Ztrace[2M ‘I’"I
trace(2M, ¥; (-AD,E" )T) (A.3)

trace(2(X, — AD,B")¥;' (-AD ETHT)

trace( 2X,'¥;'E, D,A" +2AD,B"W;'E ,D,A")

K
= —2;),‘race(Xk‘I’;]EJ.I,D,(AT )+ 2; trace(ADkBT‘P;'EjpD,‘_AT)

Setting this derivative equal to zero to find the minimum leads to:
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K K .
> trace(X,¥;'ET D,A")= trace(AD,B"¥;'E D, A")
k=1

L . (A.4)
> trace(D,ATX, ¥;'E , )= trace(B"¥;'E,,D,ATAD,)
k=l k=1
Expressing the traces as the product of two vectors [20] yields:
K K
D vec(¥i' X;AD,) vec(E ) =) vec(B) vec(¥;'E ,D,ATAD,)
k= k=1 ’ (A5)

- T
vec(i D,A™X, ¥, )) vec(E ) =vec(B)" i (¥, ®D,ATAD, )vec(E )
k=1 k=1
Equation A.5 is one of the JP equations necessary to estimate the loadings of B. The rest
of the equations are obtained as the right and left parts of this equation are multiplied by
the different vectorized E;, matrices. Since this term is completely independent in both
sides of the equation, the process can be carried out in a straightforward manner using a
matrix E formed as [vec(E ;) vec(Ey) ... vec(Esp)]. A closer look of this matrix shows
that E is the identity matrix of order JP, making the multiplication theoretically sound but

numerically unnecessary and providing equation A.6 to estimate the loading of B:

vec(B)" =(i(‘l’;‘ ®DkATBDk)J_ vec(f(DkATxk\P;‘ J (A.6)

k=1 k=1

Mode C

Similarly, this objective function is used to represent the following scenario. It is

important to realize that it can be expressed as the summation over the X slices:
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f= itrace[(Xk -AD,B"Y;' (X, ~AD,B")"]
“ (A7)
= ka

k=1

Defining: M, = X, — AD,B’, equation A.7 can be modified to yield:

f, =traceM, ¥;'M}) (A.8)

Using standard relations for derivatives of matrices and vectors [20], this gives:

o, _ af (6M JT

oC
T
= trace[ ‘I"l oM, J

8(X, - AD,B")" ]

aC

= trace(2M, ¥;' (-AE, B")") (A.9)
(2(x, - AD,B™)¥}'(-AE ,B")")

= trace(~2-X,¥;'BE, A" +2-AD,B"¥;'BE A")

= -2-trace(X,¥;'BE , A" )+ 2 - trace(AD,B"¥;'BE  A")

kp

= trace| 2M ¥,

kp

= trace

Setting this derivative equal to zero to find the minimum leads to:

trace(Xk‘I’ZlBE AT )= trace(AD, B"¥;'BE , AT)
trace(A"X,¥;'BE ) = trace(D,B"¥;'BE  ATA)
vec(B"¥;'X;A) vec(E ) = vec(D, )" vec(B "¥.'BE ,,ATA)
vec(B W' X;) vec(E,,) = vec(D,)" (ATA®B Y'B)vec(E )

(A.10)

The last expression in equation A.10 is one of the PP equations necessary to estimate the

loadings of k row of matrix C. The rest of the equations are obtained as the right and left
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parts of this equation are multiplied by the different vectorized E,, matrices. Since this
term is completely independent in both sides of the equation, the process can be carried
out in a straightforward manner, using a matrix E formed as [vec(E11) vec(Ey) ...
vec(Epp)]. Contrary to what happened in the estimation of mode B, matrix E is used to
pick the relevant elements in both members, since we are only interested in the estimation
of the elements located in the diagonal of Dy. Therefore, equation A.11 is used to

estimate the loading of C in a row by row fashion:
_ r
= [(B“I’;‘B@ATA) lvec(ATXk‘I';'B)} E (A.11)
Case 1C:

Mode B

This scenario is well represented by the following objective function:
f =trace(X, -A(C®B)")¥' (X, -A(C®B)")"] (A.12)

In order to make the equation more tractable the following modifications were applied:

M=(X,-A(C®B)")" and A = Al to yield:

f =trace(M"¥'M) (A.13)
af o (em)
oM (4B,
-—trace[Z‘I’ ]
—trace(2 ¥'M (X 1;}(3C®B) )’ ]) (A.14)

= trace(2%; M(-A(CSE ,)T))
= trace2- ¥ (X[ -(C®B)AT)(-A(COE,)")
=~2-trace(¥ XTACCBE,)" )+ 2- trace(¥; (COB)ATA(COE, ")

Setting this derivative equal to zero to find the minimum leads to:
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trace{¥; X" A(C®E )T )= trace(¥; (COB)ATA(C® E,)")
trace¥; (COE, )X'X, )= trace(¥; (COE ,)ATA(C®B)T)
tracel¥; (1, ®F,, COL,)A'X, )=

trace(¥;'(Iy ®F ,)(C®I,)ATA(CT ®1,)(I, ®BT))

(A.15)

Equation A.15 becomes equation A.18 using the matrices L and R as defined in equation

A.16 and A.17 respectively.

R=(C®I,)A"X, (A.16)
L=(C®I,)A"A(C®I,)" (A.17)
trace(¥; (I, ® ,)R)= trace(¥:' (I , ®F,)L(I, ®B")) (A.18)

Equation A.18 can be expressed as equation A.20 when the matrices forming both

members of the previous equation are partioned as shown in equation A.19. Matrices

"Y', ™R and "™Lhave orders J x J;PxJand Px P,respectively.

1iygy-1 ! [V ¢ -1 | I 11 | U1K
M e fe | TURD R
tracd| i | Lo 'E, ! Do : =
L e B 70 sl TG A XK p
\L a ! ! a | [ et/ 3 | !
(—HT—I | 1K _1_[' | . T 1 ! T (A19)
a ! | ‘I’ E | | L [ | L
T R [ A B e s e
tracg| | b 'E. | Do P I, ®BT)
Kyt el R R e B e ot
L VUYS 1 JE, | ML e
K K K K
trace(z Z "WE " R) = tmce([z z "R " L)BT
m=] n=1 n=1 m=]
K K K K
trace(ZZE i ""'R’”’"P;‘j = trace BT(ZZ "¥'E, ”"'L]
m=l n=1 n=1 m=
K K K K
V€C(E pj)‘[‘ vec(zz nm an\P;T} — vec(B)Tvec(Z Z mn \P{—'lEjpnmLJ (AZO)
n=1 m=1 n=l m=1

vec(E )T(fi( b S R))vec(lj) = vec(B)T(szK:(""' L'® ™y} )jvec(Ejp)

n=

=
I

n=l m=]

vec(E n,.)T (i i ("’" YrQm R)]vec(l ;)= vec(E , )T (i i ("L® "yl )]vec(B)

=1 m=|

n=l m=l
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Equation A.20 is one of the JP equations necessary to estimate the loadings of B. The rest
of the equations are obtained as the right and left parts of this equation are multiplied by
the different vectorized E, and E; matrices, respectively. Since these terms are
completely independent on both sides of the equation, the process can be carried out in a
straightforward manner using matrices E; and E, formed as [vec(E11) vec(Ez) ...
vec(Epy)] and [vec(E;1) vec(Ez1) ... vec(E p)], respectively. A closer look at these
matrices shows that E, is the identity matrix of order JP while E, is equal to the
commutation matrix Kp,. When the equation is rearranged to estimate the loading of B

equation A.21 is obtained:

m=1 n=1 m=1 n=1

vec(BT) = (ZZ(‘P oL, ))h (ﬁi(m ® R,,,,,)jvecaj) (A21)

Mode C

This scenario is well represented by the following objective function:
f =trace[(X, -A(C®B) )Y (X, ~A(C®B)")"] (A.22)

In order to make the equation more tractable the following modifications were applied:

M=(X,~A(C®B)")" and A = Al to yield:

S =traceMT¥;'M) (A.23)
T
o o [om
6C, oM|aC,
T
= trace| 2¥;'M M
oC,,
- A T A24
= trace| 2¥.'M 6[(Xa A(C®B) )] (A-24)
oC,,

= trace(2¥; M(-A(E,, ® B)"))
= trace(2%; (X! - (C®B)AT)(-A(E,, ®B)"))
=-2-trace¥ XTA(E,, ® B)" )+ 2-trace(¥; (C® B)ATA(E,, ®B)")
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Setting this derivative equal to zero to find the minimum leads to:

trace{¥; XTA(E,, ®B)" )= trace(¥; (C®B)ATA(E, ®B)")
tracel¥;(E,, ® B)A"X, )= trace((C®B)ATA(E , ®BT)¥?)
trace(¥; (E, ®1,)1, ®B)ATX, )=

tracel(CO1, )1, ®B)ATA(E , ®1,)1, ®BT)¥?')

trace{¥;K (I, ®F, )K ,(I, ®B)A'X, )=

trace((I, ® C)K , (1, ®B)ATAK ,,(I, ®F ,)K (I, ® BNY'K )
trace{¥;K (I, ®F, )K ,(I, ®B)ATX, )=

trace((I, ® C)B ®1,)K ,, ATAK ,, (1, ®F , )K . (I, ®BT).'K )
trace{¥7K , (I, ®F, )BSI,)ATX, )=

trace{(I, ® C)B®1,)A"A, ®F , )K (I, ®B")¥7'K )

(A.25)

It is worth noting two important manipulations carried out in equation A.25. First, the

commutation matrices are introduced in order to invert the order of the Kronecker
products (E,, ®1,)and(C®I,). Second, due to the sparse nature of A, the following
equality holds:

K,,AT=A" (A.26)

Equation A.25 becomes equation A.31 using the matrices T, S, L and R as defined in
equations A.27 to A.30:

L=YK,, (A.27)

R=(B®I,)AX, (A.28)
S=BQ®I,)A'A (A.29)
T=B"®I,)K, YK, (A.30)

trace{L(I, ®E,,)R)= trace{I, ®C)S(1, ®F ,,)T) (A.31)
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Equation A.31 can be expressed as equation A.33 when the matrices forming both

members of the previous equation are partioned as shown in equation A.32. Matrices

"L, ™R ,™8 and " T have dimensions K x K; Px K ; Px Pand K'x K respectively.

( llL : : ]JL E { | “R: : lJR
et STt R el N IO (Ot Rt S
trace __:__{____ }__E__ ' E,, | i ____: BRIE
Ny | Twy T e g T "
L | | L | lEkp Rl | R
(A.32)
DS 1 TS[EL L b TMT etV
tracef I, ®C)| : | . | i 'E,, | R
Jls_: TJPS “"‘{““T‘E" PLT L Pfri
\ | I | | pk | l

trace(zjz i mn LE kpnm R) — trace(czj: ZI’: mn SE o an)

=] n=1 n=1 m=l

ZZtrace( kp""'R"’"L) vec(CT)" vec(zz " SE "’"TJ (A.33)

m=1 n=1 n=l m=|

vec(E ;)" (i ("L e ”’"R))vec(l,() =vec(E,,)" [i Y ("T®™sT) ]vec(CT )

m=1 n=| n=1 m=l

Equation A.33 is one of the KP equations necessary to estimate the loadings of C. The
rest of the equations are obtained as the right and left parts of this equation are multiplied
by the vectorized E,; matrix. Since these terms are completely independent on both sides
of the equation, the process can be carried out in a straightforward manner using matrices
E, formed as [vec(E;) vec(E3)) ... vec(Egp)]. A closer look at these matrices shows that

E is the identity matrix of order PX, providing equation A.34 to estimate the loadings of
C:

vec(CT) [ZZ( ,,,,,®s§,,,) (ZZ(L,,,,,®R,,,,,)]vec(lk) (A.34)

m=l n=| m=1 n=l

Case 1D:
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This scenario is structurally similar to the previous case, but more complex since the
error covariance matrix changes from row to row. Therefore, the estimation process

cannot be carried out in one step, but rather as a sequence of / independent problems

solved by minimizing equation A.35:
I
f=2(x,~"A(COB))¥; (x,~'a(C®B))’ (A.35)
i=]

As mentioned before, the only difference in the minimization process between equation
A.35 and equation A.12 is the sequential manner in which the former is solved. This
situation leads to estimation equations that are similar to the previous case, but solved in
a sequential manner. Mathematically, this is carried out by solving row by row in mode A

and solving over a sequence of J summations for mode B and C as shown next:

‘a='x 'W'Z27(Z," ;2T (A.36)

vec(BT){iff( ;,I@’Lm”))_ (if\z(\P;,T,@'R,,,,,)Jvec(l,) (A.37)

i=] m=l n=1 i=1 m=1 n=l

where:
=(C®I, )’NT' (A.38)

=(C®L,) 3" 5(C®I,)" (A.39)

and:

vec(CT) (iii(tnn@ s},,,j [iii( L ® 'R,,,,,)jvec(lk) (A.40)

i=l m=1 n=l i=] m=1 n=1

L="Y'K,, : (A.41)
R=(B®I,)a"'x, (A.42)
‘S=(B®I,)a" '3 (A.43)
T=B"®I)K, ¥'K,, (A.44)
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Chapter 4

Mathematical Improvements to Maximum Likelihood Parallel Factor

Analysis: Experimental Studies’

4.1 Abstract

In this paper, the application of a number of simplified algorithms for Maximum
Likelihood Parallel Factor Analysis (MLPARAFAC) to experimental data is explored.
The algorithms, described in a companion paper, allow the incorporation of a variety of
correlated error structures into the three-way analysis. In this work, three experimental
data sets involving fluorescence excitation-emission spectra of synthetic three-component
mixtures of aromatic compounds are used to test these algorithms. Different experimental
designs were employed for the acquisition of these data sets, resulting in measurement
errors that were correlated in either two or three modes. A number of data analysis
methods were applied to characterize the error structures of these data sets. In all cases,
the introduction of statistically meaningful information translated to estimates of better
quality than the conventional PARAFAC estimates of concentrations and spectra. The
use of the algorithms that employ the error structure suggested by the analysis of the error

covariance matrix yielded the best results for each data set.
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4.2 Introduction

In 1980, Hirschfeld [1] presaged the current state of analytical instrumentation
when he made a very complete compilation of all feasible combinations of techniques
capable of providing second order data at that time. Nowadays, many of these
combinations are commonplace in the analytical laboratory and they have been extended
a step further by adding other orders to produce three-way and multi-way data in general.
The vast majority of these combinations involves a spectroscopic domain, where
measurements are made as a function of wavelength. The spectroscopic order can be
combined with a broad selection of techniques exploiting different spectroscopic,
chromatographic, kinetic and physicochemical characteristics of the analyzed samples.
Even though the combination of spectroscopic information with chromatographic, kinetic
and physicochemical attributes have a number of drawbacks, such as poor reproducibility
of retention times for chromatography, poor sensitivity in the spectroscopic order with
respect to changes in physicochemical properties and important deviations from the
bilinear structure in kinetic experiments, these combinations have been extensively used

in the chemical literature [2-23].

Three-way data obtained by pairing fluorescence excitation and emission spectra
to produce fluorescence excitation-emission matrices (EEMs) is perhaps the most
common combination used in chemistry due to the wide availability of
spectrofluorometers and a number of useful features. First, the measurements can be
made on a single instrument with consistent channel registration. Second, EEMs are
characterized by excellent sensitivity, selectivity and bilinearity. Finally, a wide variety
of different options can be used to produce trilinear data [17-23]. However, real EEMs
can give rise to non-ideal behavior that can disturb the trilinearity of the data. Among the
most common cases are nonlinear effects caused by high concentration of the analytes

and the presence of instrumental effects such as scattering within the measurements.

A common problem that arises in the analysis of experimental fluorescence data is
related to primary absorption due to high concentration of chromophores. As the
concentration of the compounds increases, their absorptions become more significant at

the edge of the cuvette and it will reduce the amount of light reaching the fluorophores in
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the rest of the cell. This will decrease the emission intensity in a nonlinear fashion. In
order to avoid this situation, fluorescence excitation-emission measurements of dilute
samples are usually preferred, or in cases where this is not possible, some corrections can
be applied [24-25]. A second problem is the inadequacy of the mathematical model to
represent scattering effects in the samples (i.e. Rayleigh and Raman scatter).
Unfortunately, corrections for scattering effects cannot be implemented as easily as the
previous case from an experimental point of view and in general corrections have to be
made in the estimation step. Further scrutiny of this problem has been done and thus far
the only real applications use some kind of weighted decomposition [9, 24, 26] to
eliminate this problem by considering the scattering as noise rather than model
deviations. In this work, special attention has been given to the selection of a range of
concentration profiles and excitation and emission wavelengths to produce data sets that

are not affected by these deviations of the model.

Deviations apart, the physical model describing this type of measurements is
equivalent to the well known structural model called PARAFAC [27-28]. Many different
algorithms [28-35] based on different optimization strategies have been formulated to
estimate the parameters describing the model. However, the PARAFAC algorithm, based
on an alternating least squares optimization technique, accounts for the majority of the
applications reported in the chemical literature due to its excellent convergence
characteristics and simplicity. A few examples cover areas as dissimilar as the estimation
of sugar quality and process parameters in the food industry and the determination of

polycyclic aromatic compounds, pesticides and dioxins in different matrices [36-41].

In general, even though the characteristics of the noise affecting fluorescence
EEMs are well documented [42], they are disregarded in favor of the more simplistic and
therefore unrealistic features characterized by an identical distribution of independent
errors from channel to channel, since this provides optimal estimates when algorithms
based on simple least squares optimization are used. Recently, two methods, called
MILES (Maximum Likelihood via Iterative Least Squares Estimation) and
MLPARAFAC (Maximum Likelihood Parallel Factor Analysis), have been introduced to
the chemometrics literature [26, 43] to optimally estimate the model using measurement

error information. The main difference between MILES and MLPARAFAC is that
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MLPARAFAC is a method based solely on ALS optimization, while MILES works as an
iterative preprocessing tool to condition the data from a maximum likelihood perspective

in order that least squares methods such as PCA and PARAFAC can optimally handle the

estimation process.

In an earlier companion paper [44], a number of important simplifications of the
general MLPARAFAC [43] methodology for cases where the error covariance matrix is
dominant along one or two orders, and a compression step prior to the use of general
MLPARAFAC for cases where the error was corrupting more than two orders, were
introduced. These simplifications complete the theoretical background of the general

methodology presented in the original work [43] by introducing a new approach to obtain

the estimation equations.

Traditionally, the estimation equations for the standard PARAFAC model and for
its derived errors-in-variables model, general MLPARAFAC, were obtained by switching
among different mathematical arrangements of the same objective function, expressed
differently for each mode. This strategy is used because, due to the symmetry of the
PARAFAC model, the implementation is not only efficient, but extremely simple,
making the normal equations very similar from one mode to the other. However, when
the characteristics of the noise are taken into account, this symmetry is lost, making it
necessary to express the estimation problem as the general problem, since the existence
of a simplified version of the error covariance matrix in the given space is not possible or
extremely difficult to find. Therefore, a new approach was introduced in which the data
are initially arranged in order to have the major source of correlated noise along the mode
B, followed by the second major source of correlation along mode C, leaving mode A as
the mode not affected by correlated noise. After the data are arranged, the estimation
equations are obtained by expressing all of the sub-steps as minimization problems of the

same objective function written by preserving mode A alone.

The simplifications obtained by using this approach were tested using
simulations. These simulations showed the statistical characteristics of these new
algorithms and the improvements in terms of performance and quality of the estimates

when the proper simplifications given the available data were used. However, they also
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illustrated the importance of a thorough characterization of the error covariance matrix in
order to use the most suitable algorithm. Unfortunately, the simulations had a very well
defined error structure, making the process of choosing the appropriate simplification
extremely simple, since information about the number of orders affected by the correlated
noise and its structure were accurately known in advance. Real life applications are not
characterized by this simplicity, making the decision process a more complex task.
Therefore, the objective of the present paper is three-fold. First, a set of guidelines are
introduced to thoroughly characterize the error structure and rationalize the way in which
the different orders are arranged and the simplifications used. Second, the different
simplifications are applied to experimental EEM data sets to test whether the
improvement observed in simulations can translate to experimental data. Finally, the
effect of using the different simplifications is explored with variations in the way the

orders are arranged.

4.3 Theory

The companion to this paper showed the relationship between the optimal
representation of the error covariance matrix (the one including all the information about
the variance and the covariance among the elements) for different scenarios and the
different simplifications used in each case, reducing to a considerable degree the
computational burden for MLPARAFAC. Unfortunately, for all cases, it was assumed
that the error covariance matrix describing the given system was completely known in its
structure as well as its numerical value. In reality, the situation is more complex. For a
given application, it is necessary to initially characterize the structure of the error
covariance matrix to choose the proper representation and, once this is established, its
numerical estimation has to be performed. Until recently, the literature on characterizing
error covariance matrices was virtually nonexistent but a recent paper by Leger et. al.
[45] has shed some light on this topic. A number of two-way data sets were analyzed in
this work using those tools developed by the authors, and these tools can be extended to
three-way data in a straightforward manner, as suggested by the authors and to be
demonstrated here. A principal objective of this work is to develop a set of tools for
understanding and classifying the measurement error structure of a given multi-way

system through an analysis of the error covariance matrix. This knowledge will then be
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used in conjunction with the different simplifications of general MLPARAFAC
introduced in the companion paper. There are two immediate benefits to such an
analysis. First, the analysis can provide insight into the main sources of error affecting
the measurement. This can potentially be used to redesign experiments to minimize these
error sources, since the error structure is directly related to the experimental design as
well as the detection technique used to collect the data. Most importantly, it can help the
practioner choose the proper estimation method to accommodate the error structure in an
optimal way. Leger et al. [45] also speculated on the idea of using this information to
produce a deterministic model of the error covariance matrix in order to eliminate the
need for extensive replication in order to estimate the error covariance matrix. However,

in this work, this possibility will not be explored.

In order to put into context the motivation behind these tools, a brief description
of the structure of error covariance matrices will be given. The tools will then be
described, devoting some attention to the pieces of information provided by them.
Finally, a flow chart will be presented to choose the optimal representation of the error

covariance matrix and, in turn, the algorithm needed to estimate the PARAFAC model.

4.3.1 Analysis of the Error Covariance Matrix

A few important pieces of information are needed to construct an optimal
representation of the error covariance matrix. The first one is the answer to the following
question: How many orders are affected by correlated noise? Second: Which are the
orders affected by correlated noise? Once these two questions are answered and the data
are reorganized by using permutations in a way that the order affected by correlation is
located in mode B if the errors are only affecting one order, or in mode B and C if the
errors are only affecting two orders. At this point, another important issue must be
addressed by answering the following question: Is the correlation structure the same for
all the objects used in the construction of the error covariance matrix? (In other words, is

pooling of the individual error covariance matrices statistically correct?).

Figure 4.1 shows a schematic representation of the structure of the full error
covariance matrix and its equivalent simplified representations for each case in order to

understand the characterization of the error covariance matrix and the tools used to do it.
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Figure 4.1. Illustration of the possible scenarios in which a full error covariance matrix

can be expressed using different simplified representations of the error structure to
describe all of the sources of variation.

It is clear from Figure 4.1 that the errors can be correlated along one, two or three
orders, giving rise to different representations of the full error covariance matrix. For the
cases where the errors are correlated along only one or two orders, more simplified
representations exist. Unfortunately, the analysis of the full error covariance matrix is
usually precluded by its size. Therefore, this case has to rely on alternative
representations providing similar information. A substantial amount of information about

the measurement error structure can often be gleaned through a visual examination of the
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pooled experimental error covariance matrix for each mode. As already noted elsewhere
[45-47], this matrix is typically obtained through the use of replicate measurements.
Normally, a series of R replicates of each object order is obtained. The definition of a
replicate can vary for different fields, applications and experiments, but in the present
context it is defined as the measurement realization made to capture the relevant sources

of variation while the underlying chemical information defining the unattainable true

signal is kept constant.

Operationally, the process to construct the pooled error covariance starts by
unfolding the replicate  of the three way data "X retaining the order to be analyzed. This
operation is repeated for the R replicates. For example, to calculate the error covariance
matrix for mode A, "X (7 x J x K) is unfolded while retaining mode A, producing "X,
( x JK). Then, "X, is transposed and used to calculate the individual experimental error

covariance matrix for each object included in mode B and C via equation 4.1.
z ——l—i('x -%,)'('x,-%.) 4.1)
4 (R _ 1) oy o o [ o ‘

where X, is the o™ 1 x 7 row vector of replicate » taken from "X'and X, is the 1 x /

mean vector of the replicate measurements. The superscript “o” is used in a generic way
to represent objects from mode B and C. The degrees of freedom used in this equation are
analogous to the calculation of variance (which will be represented by the diagonal
elements of X) and, as with the calculation of variance, the estimated error covariance
matrix will have a high degree of uncertainty unless a large number of replicates are used.
In many cases, as we will see shortly, the error covariance matrices estimated for several
objects can be combined to give a pooled error covariance matrix, Zq,e. For this example
Z,vg can be calculated as follows:

1JK

L,,=—>X° 4.2
avg JK por ( )

Of course, such a pooling is statistically valid only if it can be assumed that the row error
covariance structure is the same for all the objects in the other modes. This situation will

be rigorously analyzed in the next step of the characterization process, but here only a
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subjective analysis will be carried out to determine the extent of the error correlation

effect. Mathematically, equations 4.1 and 4.2 can be combined to give a clearer view of

this calculation. This is done by considering the 7 x JKR matrix of residuals for all

replicates of all objects, E,. The equation can then be written as:
! EET

T, = 43
“ T JK@R-1) (*3)

It is important to emphasize, that despite the use of mode A for the example, this process

is exactly the same for the rest of the modes, but with the given equation adapted

accordingly.

Despite the central role of error covariance matrices in maximum likelihood
estimation, their visual interpretation may be of limited utility since, in the presence of
heteroscedastic errors, a few elements with a high variance can obscure the interactions
among other elements. A more complete understanding of the interactions of the
elements in the error structure can be gained through inspection of error correlation
matrices. Error correlation matrices can be calculated by dividing each element of the

covariance matrix by the two contributing standard deviations:

o3

P, =—5 (4.4)
.0

r-s

In this equation, p,s and o;, represent the elements in the #th row and sth column of the
correlation and covariance matrices, respectively, and o, and o; are the standard
deviations at elements r and s, calculated from the square root of the corresponding

elements of the diagonal of the covariance matrix. In matrix notation, this can be given

as:

2., =%/ Jdiag(%) diag(T)" (4.5)

where the notation “/” indicates an element-wise division (Hadamard quotient), the
function “diag” converts the diagonal of ¥ into a column vector, and the square root is
taken to be an element-wise operation. By definition, the diagonal elements of the

correlation matrix will be unity. The off-diagonal elements will indicate the degree of
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error correlation among elements, although information about the absolute magnitude of

the covariance is lost.

Once these correlations matrices are constructed for each mode, a conclusion
regarding what orders are affected by correlated errors can be drawn. Based on this
conclusion, the three-way arrays can be permuted in order to have either the uncorrelated
orders in mode A and C for cases where correlation is only affecting one order, or the

uncorrelated order in mode A for cases where correlation is affecting two orders.

It is worth noting, that the construction of error covariance matrices for cases
where correlated noise is affecting two orders is extended in a straightforward manner as

shown in the following equation where the correlated orders are B and C:

z =R 1)Z( -%,)"("x} -%,) (4.6)

where "x;, is the 1 x JK row vector of replicate 7 and X is the 1 x JK mean vector of the

replicate measurements. The pooled error covariance matrix is calculated as shown:

av; 1 ! i
roe =;ZZ(, 4.7)

i=l
4.3.2 Homogeneity among Different Error Covariance Matrices

The visual analysis of the average error covariance and correlation matrices treats
the error structure as a pooled entity. The pooling of individual error covariance matrices
is permitted by an a priori assumption that the sources giving rise to this error structure
are constant from object-to-object, and that each object’s own contribution to the error
structure is fairly constant. Even though a few statistical tests, such as Wilks’ A and
Box’s M tests [48], have been designed to test the similarity and homogeneity of
covariance matrices, the approximations used for these tests are only valid when the
number of replicates is larger than 20 and the number of objects/variables is less than 5.
Usually, for multi-way data, these assumptions are violated. Therefore, since the
assessment of structure and homogeneity of error covariance matrices is an important
subject, a decomposition tool will be introduced here taking into account the special

requirements of this type of data.
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To understand the theoretical idea behind the decomposition tool used in this
work, we will initially assume that the measured error covariance matrix can be
factorized according to a low rank bilinear model. This assumption is obviously limiting
in the context of a general model for error covariance. The authors recognize the limited
scope of this assumption. For instance, the simplest error structure, iid-normal errors,
cannot be represented by this low rank bilinear model, and neither can certain sources of
covariance arising from cosmetic manipulations, such as digital filtering. Nevertheless,
reference 45 demonstrated the validity of these simplified assumptions using a number of

examples.

The theoretical foundation supporting this tool will be illustrated using
fluorescence emission spectroscopy, which is the simplest case of EEMs, since a set of
emission measurements is recorded at a fixed excitation wavelength. Two sources of
error that have been identified in fluorescence emission spectroscopy are offset noise and
multiplicative offset noise [45]. In the first case, which can arise, for example, from
variable cell positioning, the entire spectrum is offset by a fixed amount. In the second
case, the offset depends on the magnitude of the square-root of the signal in a
multiplicative way. This square root dependence might be expected due to the shot noise
characteristics of emission measurements, which follow Poisson statistics. Therefore, a
structural component similar to the square-root of the mean emission spectra can be
anticipated. If we consider a series of spectra, X (R replicates by J wavelength channels),

the errors of these types in the spectra, E (= X-X°), could be represented as:

€y

E=|"", =| " || +
: : : (4.8)

Xp —X €re €ir G

=e, -1 +e, -Vx°

In this equation, x,, is a row vector (replicate spectrum) from X, e, is a row vector

(residuals) from E, 1, is a J x 1 vector of ones, and x° is a row vector representing the
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error-free spectrum. The R x 1 vectors e, and e; contain the individual realizations of the
offset error and the multiplicative offset error for each replicate, where e;and e, are

assumed to be normal random variables with standard deviations of oy and o. Taking

the expectation for the error covariance matrix, we can write:

z=E(eT.e)=z,+zz=a,2-1J.1”5+a§-(~/§7)T-x/§7 4.9)

It is important to mention that the structural model shown in equation 4.1 will describe
most, but not all, of the variation for this type of data, since the contributions of other
sources, most notably independent errors, (either homoscedastic or heteroscedastic), are
not included. This will have an impact when the methodology is employed to obtain a
deterministic model for the error covariance matrix, but since our main objective is the

characterization of the homogeneity error covariance matrix these contributions will be

neglected here.

Equation 4.9 represents the physical model behind the error structure for a
particular object. When different objects are considered, this physical model can be
mimicked by the INDSCAL structural model, introduced by Carroll and Chang [27].
Mathematically, this can be done by collating individual error covariance matrices into a

three-way array consisting of symmetric slices 2y, Xo,..., Zo. The model decomposes the

slices as:
XL, =FD,F' +E, (10)

where F is a Jx P matrix representing the sources of variation (i.e. structural factors) and

D, is the P x P diagonal matrix whose elements represent the contribution of each source

of variation to the error covariance of object o.

Often, as noted previously, error covariance matrices from different objects are
pooled to give a better estimate of the error covariance matrix. In these cases, it is
expected that the decomposition of the individual error covariance matrices (different
objects) can be factorized using common structural factors with contribution vectors that
share the same statistical properties of the specific model. Therefore, the homogeneity of

the individual error covariance matrices can be reduced to the homogeneity of the
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structural factors describing the error sources and the similarity in the statistical
properties of the contribution of each individual object. For instance, in the example
presented, this would mean that the spectra for individual samples show a strong
similarity (structural factors) and e; and e, (contribution vectors) share the same
statistical characteristics for all samples (i.e. same o7 and 03). As explained in reference
45, this model is solved using the PARAFAC algorithm [28], which is simpler and less
constrained, but mathematically equivalent in terms of the solution produced by equation
4.10. It is recommended that the PARAFAC algorithm be run in a split-half [49] fashion

to make sure of the validity of the estimates.

4.3.3 Assessment of the error structure

Figure 4.2 depicts a flow chart indicating the important steps and metrics to direct
the user in the optimal construction, characterization and calculation of the error
covariance matrix. This will lead to the use of the optimal estimation method given the

available data.

The first step uses the information obtained though a subjective analysis of the
pooled error correlation matrices for each mode to make a decision about the number of
modes affected by correlated errors and to sort the modes in a way that the permuted
array will have the uncorrelated orders in modes A and C for cases where correlation is
only affecting one order, or the uncorrelated order in mode A for cases where correlation
is affecting two orders. This step will also provide the necessary information to decide
whether a J x J, JK x JK or IJK x IJK error covariance matrix will be needed. Matrices
with a majority of their elements showing significant correlation will be considered to
describe important correlation in this mode. As mentioned before, this interpretation will
be largely subjective as the different error covariance matrices are visually analyzed.
However, some numerical interpretation can be added by considering that the
decomposition of pooled error covariance matrices describing important sources of
correlation will produce a low rank model with few components accounting for a large

proportion of the variance. It is important to mention that this interpretation must be

140



Visual Inspectlon o

ErrorCorrelat nMétrices :

One mode How many modes : Two modes

are ai‘fected by correlated errors?v

:Calculate:::: . ‘Calculate:
1.1 v Indivldual‘ : 241
“ECMs =
Three _ +
i modes i Solve
1.2 - Split-Half - 22
PARAFAC models PARAFAC models
/' Described Variance - Described Varlance
13 - Corcondia Value .- Corcondia Value * 23
_-Visual Inspection ‘Visual vlnspect_l__t_)__r)lr
1.4 ; Assess : L Assess“ ;:ﬂ_' 2.4
: structural model structural model’ '
:Vector Angles’
1.5 .: Object contributions 2.5
‘21 Visual Inspection
_ No It
1.6 “:Homogeneous?. - :Homogeneous?. 26

“Asetof/

JKXJK:
ECM

Algorithm 1A

Algorithm 1C Algorithm 1D

" Visual Inspection’

1.11

Homogeneous?::

A 'set. of JK
Y X
i ECM

Algorithm 1B Algorithm 1D

Figure 4.2. Flow chart employed to characterize the error structure.
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treated carefully, since on many occasions the structure in other modes will produce some

artificial structure in the analyzed mode, as was described by Leger et al. [45].

Once the form of the error covariance matrix is decided, an analysis of the
homogeneity is necessary, regardless the form. For cases where correlation is important
along only one dimension, it is important to assess whether the objects in the other two
orders will contribute to the structure equally. This is also true for cases where the
correlation is affecting two orders, with the only difference being that the equivalence of
the contribution is only tested for objects within the one remaining order. The general
procedure starts by calculating the individual error covariance matrices of order
determined in step 1 of the flowchart. Different split-half data sets are created to assess
the contribution of different objects to the structural factors when the INDSCAL model is
estimated. In the present context, the split-half method [49] is a type of cross-validation
method in which the homogeneity of the structural factors in one or more modes is
examined by partitioning the data in half along a remaining mode and analyzing each half
individually. The partitioning is typically done in such a way to examine variations in the
structural factors that depend systematically on the other mode. For example, it is
advisable to use partition strategies that provide information about short range (e.g. by
taking alternate objects) and long range (e.g. by taking consecutive blocks of objects)

differences in the contribution of the objects to the error covariance matrix.

The number of factors describing the structural model of the error covariance
model will be chosen by using information such as variance accounted for the models,
corcondia values and visual appearance of the factor [45]. Once this number is
established, the structural factors obtained by different split-half models are aligned to
eliminate the permutation indeterminacy, and then the average structural factors are
calculated. These average structural factors are used as reference values to calculate the
similarity of the corresponding structural factors obtained from different split-half models
via the average vector angle. The decomposition of the INDSCAL model also provides
information about object contributions. Low average vector angles and statistically
homogeneous sample contribution values will indicate that that pooling of the error

covariance matrices for different objects is correct from a statistical point of view.
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It is important to note that, for cases where the correlation affects only one
dimension, an additional homogeneity test separating objects from different modes has to
be carried out if the first test fails to indicate global homogeneity. In the second test, the
homogeneity in the other two modes is examined individually. If the second test also
fails, the data must be treated with an algorithm that is also used to treat cases where
correlation is affecting two modes, as shown in the flowchart. These approaches will be

illustrated with real samples in Section 4.4.

4.4 Experimental

4.4.1 Sample preparation

Reagents and Samples. Naphthalene (Fisher) was used as received. Acenaphthylene
(Aldrich) and phenanthrene (BDH) were recrystallized prior to use. Stock solutions of the
individual samples were prepared by mass in acetonitrile (Anachemia,
spectrophotometric grade, 99.9%). The final concentration ranges were approximately

0.10 to 0.34 pg/g (ace), 0.018 to 0.063 ng/g (nap), and 0.0072 to 0.027 ng/g (phe).

Instrumentation. Fluorescence emission spectra were obtained from samples in a 1 cm
quartz cuvette on a Shimadzu RF-301PC spectrofluorometer with a xenon lamp
excitation source. The excitation wavelength range was between 250 nm and 305 nm
using intervals of 5 nm. The emission wavelength was scanned between 309 and 415 nm
in steps of 1 nm. A medium scan speed was used and the slits for both excitation and
emission were set at 5 nm. The pure excitation and emission spectra for each component

are the average of ten replicates using the same experimental conditions. These are shown

in Figure 4.3.

Procedure. Fluorescence emission spectra were obtained from mixtures of three
polycyclic aromatic hydrocarbons (PAHSs): acenaphthylene (ace), naphthalene (nap), and
phenanthrene (phe). Five replicate sets of spectra were obtained from each of 27
mixtures. A three level, three-factor factorial design was used to prepare the mixtures and

a blank containing only the solvent (acetonitrile) was run before and after each block.

It is well known that the error structure affecting spectroscopic data depends on

both the spectroscopic technique and the experimental design used to record the data.
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Figure 4.3. Pure excitation (top panel) and emission (bottom panel) normalized spectra
of the compounds employed in this work. Each spectrum is the average of ten replicate
measurements.

Since the main objective of this work is testing the performance of different
simplifications of the general MLPARAFAC algorithm in the presence of different error
structures, the procedure described was used to produce three different data sets through

changes in the data acquisition protocols.

Data Set 1 was obtained by scanning all of the samples in each replicate block in a
randomized order. Also, in order to decrease the possibility of correlated errors, the
excitation wavelengths were also randomized for each replicate block. Emission spectra

were obtained in a consecutive fashion.

Data Set 2 was also obtained by scanning all of the samples in each replicate
block in a randomized order. In this case, the excitation and emission were scanned in a
consecutive fashion to see if some additional correlation is introduced by the non-

randomized use of the excitation range. The excitation range was scanned from the
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highest to the lowest excitation wavelength to decrease the potential effects of

photodecomposition.

Data Set 3 represents the most complex error structure since the objects in all
modes were scanned in a consecutive fashion (i.e. samples were run in a sequential order
and excitation and emission wavelengths were scanned consecutively). This experimental
design is generally avoided by practitioners, since it can introduce temporal correlation
from different sources [42]. Again, the excitation range was scanned from the highest to
the lowest excitation wavelength. These different designs are represented pictorially in

Figure 4.4.

4.4.2 Computational Aspects

All the calculations performed in this work were carried out on a Sun Ultra 60
workstation with 2 x 300 MHz processors and 512 MB of RAM and a 3.2 GHz Pentium-
IV PC with 1 GB of RAM. All programs were written in-house using Matlab 6.0 (The
MathWorks Inc., Natick, MA) with the exception of the PARAFAC and TUCKER3
functions that were run using the N-Way Toolbox [50].

4.5 Resuits and Discussion

4.5.1 Analysis of the error covariance matrices

Figures 4.5 to 4.7 show the pooled correlation matrices of each mode for Data
Sets 1, 2 and 3, respectively. They are plotted using an intensity map in which a darker
tonality indicates an absolute correlation vglue closer to one and a paler tonality indicates
a correlation value closer to zero. The three cases present a very strong pattern of
correlation for the emission modes, as was expected due to the consecutive fashion in
which this mode was recorded in every case. It is important to note that the correlation
patterns were very similar for Data Sets 1 and 2 but some differences were observed for
Data Set 3. The physical reason for this difference is not entirely clear, but is undoubtedly
linked to the sequential order of the samples in the third data set and indicates the close
relationship between experimental design and error structure. The excitation mode was
also highly affected by correlation in all cases, even though Data Set 1 was scanned in a

random manner in the excitation mode. This result is not completely surprising since, for
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Figure 4.4. Simplified pictorial representation of the experimental designs employed to
acquire Data Sets 1, 2 and 3.

a given sample, the emission spectra at each excitation wavelength were recorded without
removing the sample from the spectrometer. Therefore, the cuvette positioning will
produce an offset, which is one of the most common sources of correlated errors. This
will carry through all the excitation wavelengths, and is likely an important source of

correlation affecting this mode. Another expected result was related to the correlation
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affecting the sample orders. Data Sets 1 and 2 showed a very random distribution of
tonalities, indicating the lack of important sources of correlation affecting these data sets.
However, Data Set 3 was characterized by a very dark correlation map, indicating

important sources of correlation that need to be taken into account in the sample mode.

Conclusions about the necessary permutations and the optimal representation of
the error covariance matrices for each data set can be drawn based on these plots. For
Data Sets 1 and 2, the correlation pattern suggests that the emission and excitation orders
should be located in modes B and C and the use of a JK x JK format for the error
covariance matrix. Order permutations are not necessary for Data Set 3, since the general
MLPARAFAC algorithm will be needed to provide optimal estimates, requiring a full

IJK x IJK error covariance matrix and merit the use of compression in order to use the
algorithm.

Although, previous results indicate that the use of J x J error covariance matrices
was unjustified since correlation is affecting more than one order, a structural
decomposition of the individual error covariance matrices for each mode was done. In all
cases, it was clear that that the different objects pooled produce different sources of

structure (results not shown) indicating again that the use a pooled J x J error covariance

matrix would be sub-optimal.

The flow chart in Figure 4.2 indicates that the next step in the characterization
process is the assessment of the homogeneity of the individual error covariance matrices
to determine whether or not pooling is theoretically justified. This step was carried out
for Data Sets 1 and 2, but was not necessary for Data Set 3 since the full error covariance

matrix was required in this case.

Following the right-hand side of the flowchart in Figure 4.2, individual error
covariance matrices were first calculated as given in step 2.1. These were organized into
four different split-half groups and each was decomposed by PARAFAC (step 2.2).
Figure 4.8 shows the average structural factors and sample contributions obtained for

Data Sets 1 and 2 when a PARAFAC model is used. In both cases, the decomposition
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Pooled Excitation ECM Pooled Emission ECM

Pooled Sample ECM

Figure 4.5. Pooled correlation matrices for each mode of Data Set 1 using intensity
maps.

Pooled Excitation ECM Pooled Emission ECM

Pooled Sample ECM

Figure 4.6. Pooled correlation matrices for each mode of Data Set 2 using intensity
maps.
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Pooled Excitation ECM Pooled Emission ECM

Figure 4.7. Pooled correlation matrices for each mode of Data Set 3 using intensity
maps.
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Figure 4.8. Results of two-component PARAFAC decomposition of the individual error
covariance matrices for the composite mode formed by excitation and emission modes
for Data Sets 1 and 2: (a) structural factors, (b) sample contributions.

149



was carried out on the error covariance matrices characterizing the composite mode
formed by the excitation and emission modes. Consequently, the plot of structural factors
exhibits a repeating pattern of features corresponding to each of the excitation channels.
As discussed in reference 45 and shown in step 2.3 of Figure 4.2, different pieces of
information, such as the variance accounted for the model, the corcondia value [51], and
the shape of the structural factors, are used to identify the structural model that describes
the array of error covariance matrices. Different split-half models suggest that the error
structure in both cases can be decomposed using two factors, since the models accounted
for more than 90% of the variance and gave corcondia values of 100%. When a third
component was added, the corcondia values decreased in all cases to values below 70%.
Furthermore, additional extracted components explained little variation (less than 2% in
all cases), were very noisy, and similar in shape to the preceding components. Based on

these evidences, it was concluded that the error covariance matrices could be represented

by two factors.

The next step in this process was to assess the homogeneity of the structural
factors (step 2.4 in the flowchart) using a combination of metrics and visual analysis (step
2.5 in the flowchart). The first structural factor resembles the average emission profile for
different excitation wavelengths, as anticipated in the theory section, and it also describes
more than 90% of the variation of the model. This component is characterized by a very
low vector angle (2.7° and 8.9° for Data Sets 1 and 2, respectively), indicating a high
similarity among the estimates for different split-half models. The second structural
component is more heterogeneous than the first, as the analysis of vector angles indicates
(16.7° and 10.8° for Data Sets 1 and 2, respectively). However, the contribution of this
component to the error covariance matrix structure is smaller, as is the variance that it
describes. In addition, some split-half models indicate that this high variability arises
from a few odd-numbered samples in the first half of the data set (i.e. samples 1 to 13). It

is also localized in the long wavelength region of the emission spectrum where chemical

information is likely minimal, as can be seen in Figure 4.3.

The sample contributions for the first component are quite variable, which is
expected since these contribution values represent the stochastic contributions of the

structural factors, as represented in equations 4.8 and 4.10. Assuming the original
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contributions satisfy a normal distribution, the contributions extracted from the error
covariance matrices should follow a squared normal distribution if pooling is acceptable.
This is consistent with the pattern observed for the first component. However, the sample
contributions for the second component are characterized by substantial deviations in the
contributions of samples 1, 5 and 11. Problems with these samples are the likely cause of
disturbances in the estimation of the second structural factor described in the previous
paragraph. Because this disturbance appears in both data sets, it may be related to the
preparation of these samples. However, as noted in earlier work [45], the departure from
homogeneity due to sample contribution will not preclude the pooling of the error
covariance matrices. This violation is not as important as the violation of structural
similarity, and in these cases the structural differences are not really considerable, since
the second component has a small contribution to the error structures. Based on this, it
was concluded that the error covariance matrices were sufficiently homogeneous to

permit pooling (step 2.6 in the flowchart) and the use of one JK x JK error covariance is

recommended.

Summarizing all of the information presented, it can be said that Data Sets 1 and 2
are affected by correlated noise that permeates though the excitation and emission modes,
while in Data Set 3, the correlated noise is also affecting the sample mode. These results
indicate that Data Set 3 will need the use of general MLPARAFC to produce optimal
results. The homogeneity analysis of the error covariance matrices for Data Sets 1 and 2
using a number of split-half models indicates that pooling is advisable, since the model

was well-described by two structural factors and followed an expected distribution in the

sample contributions.

4.5.2 Estimation assessment

4.5.2.1 Figures of mierit

Due to the intrinsic differences in the experimental orders estimated
(concentrations and spectra), two different figures of merit will be used to assess the
performance of the methods. The figure of merit used to measure the quality of the

concentration estimates is the root-mean-square error of the estimation (RMSEE)

calculated as follows:
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RMSEE", = 20,-%,) (4.11)
" N, -1

where §' represents the estimated N, x 1 vector of concentrations for component p and
replicate block 7, y‘l’, is the ¢orresponding N; x 1vector of standard concentrations, and N,

is the number of samples. The use of (N;—1) degrees of freedom for RMSEE is justified
by the fact that PARAFAC model has a well-known scaling indeterminacy that has to be
estimated using at least a reference sample. This equation is applied to the R replicate

blocks and the average value is obtained using equation 4.12:

R
> RMSEE/,
RMSEE , = LE_ (4.12)
In order to make the interpretation of this value more meaningful, a relative average root-
mean square error of the estimation (RRMSEE ,) is calculated. This is determined with

respect to the average concentration for component p, symbolized by ¥y, yielding:

RMSEE,
o

RRMSEE , = (4.13)

For the excitation and emission modes, vector angles are preferred as a figure of
merit, since they describe the quality of the estimates more clearly from a geometric point

of view. The expression used to calculate this figure of merit is given in equation 4.14:

0, =cos™ ——f;f’: (4.14)
P = cos “fp ” f; .

Here, f; represents the estimated emission or excitation profile for component p using

replicate block » and f, represents the corresponding reference emission or excitation

profile, obtained from separate scans of the pure components. As in the case of the

RMSEE, the vector angle is also averaged over R replicates:
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20

0, == (4.15)

In addition to these two figures of merit that can be used individually to assess the
performance of each algorithm for each component and mode, a global indicator of the
relative performance of each algorithm with respect to the corresponding standard,
PARAFAC estimation, was used. This magnitude will be referred to as the performance

ratio, PR, and 1s calculated as follows for the spectral and concentration modes:

& g X
)
PRspec =t
(ZéPARAFAC]
14

p=l

—_

(4.15)

M~

1

=
i

( RRMSEEfJ
P —_

cone (i miARAFACJ
p=l
In this equation the superscript “X” represents any of the possible algorithms that will be
used in this work. PR values lower than unity will indicate superior perrformance of the
given method over PARAFAC for the same data set, while values greater than unity will
indicate inferior performance. The authors are aware of the drawbacks of such a summary
statistic, which can be significantly biased by extreme values of any of the components.
However, if the indicator is used with caution, it has the ability to simplify the analysis

considerably.

4.5.2.2 Performance of the algorithms

Although a proper permutation arrangement and format for the error covariance
matrix were suggested for each data set in Section 4.4.1, in this section, the results
obtained for all possible permutations and with different error covariance matrix formats
are presented. This was done to compare the results obtained with different formulations
and permutation orders. There were two objectives in doing this: (1) to demonstrate that
the incorporation of measurement error information can yield improved results over

PARAFAC, even if it is done in a sub-optimal manner, and (2) to show that best results
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are obtained with the proper error covariance structure. It is important to note, before
starting the description and discussion of the results, that no Cross-comparisons among
different data sets were done since a number of experimental factors such as
photodecomposition, solvent volatilization, and other factors associated with the temporal
stability of the samples cannot be controlled. A good indication of these effects is the fact
that the performance of the optimal method for each data set decreases from Data Set 1

(first data set recorded) to Data Set 3 (last data set recorded).

Tables 4.1, 4.2 and 4.3 summarize the results for Data Sets 1, 2 and 3,
respectively. Each table shows the performance for each component when different
structures of the error covariance matrix and the corresponding algorithms were used.
The first column of each table gives the algorithm used and, by implication, the format of
the error covariance matrix assumed. The second column specifies which mode(s) were

considered to be affected by correlated errors. The performance is measured as

RRMSEE, for the concentration profiles and as §p for the emission and excitation

profiles. In addition, the performance ratios (PR) with respect to the PARAFAC estimates
are also reported as a global indicator of performance. The rows of the tables shown in

bold indicate the best conditions found in this study for each data set.

For all of the data sets, the use of error information translated into a superior
performance of the algorithms tested over PARAFAC as a general trend, with the only
exceptions being Data Sets 1 and 2 when analyzed using error covariance matrices
assuming only sample correlation. This result is expected, since the previous analysis of
the measurement errors indicated that, for Data Sets 1 and 2, there was no correlation
affecting the sample domain. Therefore, the use of an erroneous error covariance matrix
with spurious correlations will only have a negative effect on the performance.
Comparatively, introduction of error information related to the emission order produces
marginally better performance than the use of error information describing the excitation
mode. Different levels of improvement were found when information about the correlated
error affecting the emission and excitation orders as a composite mode was utilized by

different algorithms. In other words, the performances of algorithms such as 1C and 1D,
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which include error covariance information about the composite mode formed by
emission and excitation profiles, were significantly better than the performance of
algorithms using error covariance information of either emission or excitation profiles
alone (e.g. algorithms 1A and 1B). Further to this argument, insignificant advantages in
terms of performance were found by introducing more localized information about the
error structure, as can be seen by comparing the results obtained by algorithms 1A and
1B when the same spectroscopic order (emission or excitation) was considered. This is a
clear indication that the sources of variation contributing to the error structure are a
combination of effects, such as the multiplicative and offset contributions anticipated in
the analysis of measurement errors, that permeate through the composite mode formed by
the excitation and emission modes. Similar levels of improvement were also observed for
Data Set 3 when information about the error covariance affecting the sample mode was
introduced. This was an important confirmation that the sources of correlation found for
the sample mode in the analysis of the measurement errors for Data Set 3 were real and

the inclusion of them will translate in a better performance.

The results for Data Sets 1 and 2 were very similar. This was anticipated due to
the similar error structure found in both data sets. Methods 1C and 1D using error
covariance matrices of a composite mode formed by the emission and excitation orders
yielded the best results for both data sets, as was anticipated by the analysis of the error
covariance. Improvements in performance in the range between about 60 and 80% were
observed for different modes. There were not significant differences in performance
observed between algorithms 1C, which use a pooled JK x JK error covariance matrix,
and 1D, which use a set of JK x JK error covariance matrices. However, for method 1D,
only two pooled error covariance matrices were used instead of a set of / individual error
covariance matrices. This simplification was carried out to reduce the computational load
of the algorithm, which would have been prohibitive. One of the error covariance
matrices was constructed by pooling the odd-numbered samples and the other was
constructed pooling the even-numbered samples. This partitioning was based on evidence
found during the analysis of error covariance that suggested anomalous behaviour of

some odd-numbered samples in the first half of the data set (see Section 4.4.1). Although
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no significant differences were found using algorithm 1D with this approach, it is

difficult to generalize this conclusion to the case of I covariance matrices.

The relative improvement in predictive ability of the compressed general
MLPARAFAC algorithm was the most important difference between Data Set 3 and Data
Sets 1 and 2. For the three data sets, a Tucker3 compression basis set formed by 12
components for the sample and excitation modes and 20 components for the emission
mode was employed. These parameters were selected on the basis of principles
developed in a companion paper [44], but results were not especially sensitive to them as
long as a sufficient number of components was used. Even though this alternative
produced an improvement over the PARAFAC model for Data Sets 1 and 2, the results
were worse than the those produced by most other algorithms. This situation can be
explained by considering that, for Data Sets 1 and 2, the introduction of error information
about the sample domain is likely to make the error covariance matrix less reliable due to
the introduction of spurious correlations and a reduction in the number of replicates in the
estimation process. On the other hand, the existence of an important source of error
structure in the sample order for Data Set 3 makes the estimation of the error covariance

matrix essential and more than makes up for a reduction in the number of replicates.

In the application of the general MLPARAFAC methodology to compressed data
sets, performance enhancement can result not only from the use of error covariance
information, but also from the compression procedure itself. To dissect the
improvements from each of these sources, PARAFAC was also applied to the
compressed data. As can be seen from the results in Tables 4.1-3, the use of PARAFAC
on the compressed data produced some improvements, but these are not as large as the
improvements observed by using MLPARAFAC on the same data, indicating the benefit

of using a weighted estimation method.

Some interesting details emerge when the prediction performances are analyzed
for each component. In all cases the concentration profile of phenanthrene yields the
lowest error followed by acenaphthylene and naphthalene. However, the emission and
excitation profiles of phenanthrene are poorly predicted in comparison to the other two

compounds. This may be indicative of a trade-off trend in the estimation process that
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needs to be studied more thoroughly. It is also worth noting that poor performance
exhibited by Data Sets 1 and 2 when error information describing the sample domain was
used mainly affected the estimation of the concentration profiles, indicating again the

irrelevant information carried by these error covariance representations.

Even though the time involved in the calculations of these models was not
specifically tabulated, it typically ranged from one to a few hours. By comparison,
PARAFAC models were computed in time windows of a few minutes to an hour,
depending on the size of the data set and initial estimates. Therefore, the construction of a
table similar to the ones presented here to choose the best arrangement and algorithm for
a given data set is not recommended. However, the results presented here validate the
analysis of error covariance as an exploratory strategy to choose the best arrangement and

algorithm given the available data.

4.6 Conclusions

In this work, a number of practical aspects related to the application of the
different simplifications of MLPARAFAC to experimental data have been explored. The
algorithms employed were described in an earlier companion paper [44] and these were
applied to three sets of fluorescence EEM data from mixtures of three polycyclic
aromatic hydrocarbons. A number of important tools, previously introduced for the
analysis of the error structure affecting two-way data [45], were extended to three-way
data in this work. These tools were applied to the three different data sets to characterize
the error structure. Two of the data sets exhibited error covariance along the composite
mode consisting of excitation and emision modes, while the third exhibited error
covariance along all three modes. These characterizations allowed estimation of an
optimal representation of the error covariance matrix for each data set. When used with
the corresponding algorithm, these error covariance matrices yielded the best models in
each case. Different error structures and algorithms were employed, showing that the
inclusion of statistically meaningful error information always produced an improvement
in the estimates over conventional PARAFAC, even in cases where the error covariance

information was incomplete. The level of improvement depends on the quality and
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importance of the error information, but in this work, improvements over PARAFAC by

as much as a factor of three were observed.
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Chapter 5

Approaching the Direct Exponential Curve Resolution Algorithm from

a Maximum Likelihood Perspective®

5.1 Abstract

The implementation of Maximum Likelihood Parallel Factor Analysis
(MLPARAFAC) in conjunction with the Direct Exponential Curve Resolution Algorithm
(DECRA) is described. DECRA takes advantage of the intrinsic exponential structure of
some bilinear data sets to produce trilinear data by a simple shifting scheme, but this
manipulation generates an error structure that is not optimally handled by traditional
three-way chemometrics methods such as TLD and PARAFAC. In this work, the effects
of these violations are studied using simulated and experimental data used in conjunction
with the well-established TLD and PARAFAC. The results obtained by both methods are
compared with the results obtained by MLPARAFAC, which is a method designed to
optimally accomodate a variety of measurement error structures. The impact on the
estimates of different parameters linked to the data sets and the DECRA method is
investigated using simulated data. The results indicate that PARAFAC produces
estimates of much poorer quality than TLD and MLPARAFAC. Also, it was found that
the quality TLD estimates was comparable or only marginally poorer than the
MLPARAFAC estimates. A number of commonly used algorithms were also compared
to MLPARAFAC using two sets of published experimental data from kinetic studies. The
MLPARAFAC estimates of rate constants were more precise than the other methods

examined.
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5.2 Introduction

The method called the Direct Exponential Curve Resolution Algorithm (DECRA),
introduced to the chemometrics literature by Antalek and Windig [1], was originally
formulated as a manageable alternative to treat pulse-gradient-spin-echo (PGSE) NMR
data for separating highly overlapped spectra. In PGSE-NMR experiments, the strength
of two sets of magnetic field gradient pulses is varied to produce a data set in which the
signal of each component forming the sample decays exponentially. In turn, this leads to
two dimensions: one dimension is conventional chemical shift and the other is diffusion
time. The self-diffusion coefficient is a property intimately related to characteristics of an
individual sample, such as size, shape, mass and charge, as well as its surrounding
environment, such as solution, temperature and aggregation state. This quantity can be
calculated for each component from these experiments since the decays are a function of
time. From an experimental point of view, the use of this technique is extremely
advantageous since it provides a non-invasive and straightforward method to obtain both
physical and chemical information. However, the main challenge of this technique
resides in the mathematical implementation of data analysis. Two classes of techniques
are commonly used to interpret the data: single channel methods and multivariate
methods. These two approaches differ from a fundamental perspective. The single
channel methods, represented by SPLMOD and CONTIN [2,3], rely on a hard model
where pure or nearly pure channels are sought to use during the estimation process.
Unfortunately, overlapping regions are commonly present in the spectra of real mixtures,
hence single channel methods find it difficult to deal with complex mixtures. Unlike
single channel methods, multivariate methods analyze the total information available in
the data set simultaneously. The most important characteristic of this approach is the
capability to analyze overlapping regions. Mathematically, the ideal method of choice is
multivariate curve resolution (MCR) [4] due to the intrinsic bilinear structure of the data.
However, it is well known that an infinite number of solutions are possible with MCR
even when the model is estimated using several constraints. This deficiency led Schulze
and Stilbs [5] to utilize a method proposed by Kubista [6] for the estimation process. The

solution for Kubista’s method is equivalent to the already well-established generalized
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rank annihilation method (GRAM), as shown by Sanchez and Kowalski [7]. GRAM
solves the structural PARAFAC model [8] using an extended eigenvalue problem. The
strict trilinear structure needed to estimate the model was theoretically sound but
impractical from an experimental point of view since the proposed experiment required
the use of a complicated data acquisition scheme in order to avoid peak shift and gradient
level shift while a second sample was recorded.

These problems motivated Antalek and Windig to propose DECRA. The
innovative idea behind DECRA’s implementation is the use of the existing underlying
exponential structure in the decay data, eliminating the need for a second sample. The
method utilizes only a single sample described by an exponential decay. Then this sample
is shifted in the “time domain” yielding a second sample which is proportional to the
first. To illustrate this basic principle with a simple example, consider a vector of

exponentially decaying values, d, as given in equation 5.1:

d=e™ (5.1

where £ is the decay constant and t represents a vector of uniformly increasing time

values of length N. We can now parse this vector into new vectors, d; and d,:

d =[d d,d,...d,]"

(5.2)
d, =[d,,, dgyy iy on dN]T

where S is a positive integer less than N. These vectors can be combined into a matrix D:

D=[d, d,]=[exp(~kt") exp(-kftrt })]
= [exp(-kt') {exp(~kt') exp(—kt  )}] (5-3)
=exp(~kt")[l exp(~kt)]

Here, t’ represents the vector formed by the first (N-S) elements of t and ¢y is element S of
t. Note that matrix D has a rank of unity since the second column will simply be a scalar

multiple of the first. Furthermore, the decay constant can be obtained from the ratio of the

elements in the two columns:

k=L 1n[illj (5.4)

tS i2
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Thus, this simple process of creating a matrix (two-way data) by offsetting a single vector
(one-way data) in time, leads to a method which can extract the decay constant. With
DECRA, this relatively simple concept is extended in a number of ways. First, DECRA is
based on the idea that any system that can be decomposed into a linear combination of
exponentials can be subjected to an analysis similar to above. Moreover, DECRA starts
with bilinear matrices (two-way data) and, through the shifting process, generates
trilinear data (three-way data). The decomposition of these matrices, which is described

in greater detail in Section 5.2.1, yields spectral and decay constant information.

This simple but elegant idea was easily extended to the PGSE-NMR bilinear data,
yielding a two sample trilinear array suitable to be decomposed using GRAM. The use of
DECRA instantly gained a number of advocates because of the possibility of obtaining
unique solutions to the decomposition problem. GRAM was initially preferred over MCR

and other multilinear methods [9] due to the non-iterative nature of the algorithm.

The application of this technique to other types of data such as magnetic
resonance spectra and images [1, 11-14], short-wavelength near-infrared [15], UV-Vis
[16], solid-state NMR and mid-infrared spectroscopy [17], motivated the exploration of
other decomposition methods such as direct trilinear decomposition (DTLD) [9],
Levenberg-Marquardt-PARAFAC (LM-PARAFAC) [15], weighted curve resolution
(WCR) [9] and successive Bayesian estimation (SBE) [18]. With the exception of
DTLD, which is an extension of GRAM for cases where more than two samples are
analyzed, the other methods share a common property that makes them different from
GRAM. GRAM and DTLD provide exact solutions to the decomposition problem when
the data are not corrupted by noise. For cases where noise is present, the solutions are
approximated but not in an optimal sense. In contrast, all the other methodologies have a
well-defined objective function and optimization strategy providing the optimal values
when the noise follows a normal-iid (independent and identically distributed) structure.
Unfortunately, these noise conditions are rarely met in real applications, making the
estimation suboptimal. Furthermore, the situation becomes worse when the bilinear data
are shifted in order to produce the second pseudo-sample, since some correlated errors
appear as a consequence of the shift. Even though this situation has been barely

recognized in the literature [19-20], Pedersen et al. [19] tried to correct for it by
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introducing a shift scheme in which non-overlapping measurements are used to produce
the second pseudo-sample, but their results were not promising. Recently, a method
called maximum likelihood parallel factor analysis (MLPARAFAC) was introduced [21-
23] to treat cases where the standard assumptions about the noise were violated for
trilinear data. The presence of a trilinear structure corrupted by non-iid noise makes the
matrices used for DECRA quite suitable for MLPARAFAC. These three-way data sets
fulfill the trilinear condition needed to apply the PARAFAC model, and are constructed
by shifting bilinear data so that a non-iid structure will result, making MLPARAFAC the
most optimal alternative. This new method will be applied to two experimental data sets
and some simulated data to show the improvements in terms of accuracy and precision in

the estimates.

5.3 Theoretical aspects

5.3.1 DECRA

In this paper, MLPARAFAC will be used to estimate the rate constants for two
kinetic studies previously reported in the literature [9]. Accordingly, a first-order kinetic
model will be used to illustrate the effects of applying the principle of DECRA to the
structure of the chemical data and the noise. Suppose that a system under study involves

consecutive first-order reactions as shown below:

Let the M x N matrix Y be a collection of spectra obtained during the time course of the
reaction, with M equidistant time points at N wavelengths for the mixture of the three
species. Assuming the Lambert-Beer’s Law holds, Y can be decomposed into the product
shown in equation 5.5:

Y=FL"+E (5.5)

where every row in Y denotes a spectrum recorded at certain time. F is an M x P matrix
(P is the number of components) with the variation of the concentration profile in time
for each component along each column. L is an N x P matrix containing the pure spectra

for each component along the columns, and E is an M x N residual matrix that includes
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model errors, experimental errors and instrumental noise. Analytically, the columns of F

can be represented by the integrated rate laws shown in equations 5.6 to 5.8:

f, = Foe™ (5.6)

v = (kk1 f(;c JE et =k e —e ™) (5.7
2 1

f, =F2 ~f, -f, (5.8)

where fy, fy and fy are the concentration profiles of species U, V, W along the time

vector t, respectively. Vector t is the sequence of uniformly spaced times at which the
reaction is monitored and it is represented as: t = [ £, tM]T. Fjis the initial

concentration of component U. Equations 5.6 to 5.8 indicate that all of the columns of F
(and therefore Y) are exponentials or combinations of exponential equations. The
bilinear decomposition of Y can be equivalently expressed as shown in equation 5.9
when equation 5.5 is expanded and the similar terms are grouped:

Y=FG" = AB’

5.9
=ab/ +a,b] +a,b] ©-9)

wherea, =e™, a, =™, a;=¢€", bi= gy + kgy - (k-1)gw, b, = k(g ~ g») and b3 = gy
with k = ki/(k2 - k). The concentration profiles fy, fy and fj are rearranged into
exponentially decaying functions a;, a, and a3, and the columns of B are linear
combinations of the spectra of U, V and W, designated by gy, gv and gy, respectively.
Therefore, the response matrix Y consists of linear combinations of exponentially
decaying functions, which justifies the implementation of DECRA. The matrix Y (M x N)
is used to build two matrices, X; and X,, partitioning Y with a constant time shift S as

shown:

I Vv
X = (5.10a)

Ym-sy .- Y-s)n
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Yaesn e Yaesyn
X, = : : (5.10b)
Y Yun

Equations 5.11 and 5.12 show the factorization of both matrices using the bilinear model

shown in equation 5.5:
) a2 a3
X, =| : i B"=AB" (5.11)

Ap-sn Gm-sy2 Fag—sys

Qaesy  Aaesyz  Aesys
X,=| : : B"=A,B” (5.12)

Ay Apra Apra

Equation 5.12 can be rewritten as equation 5.13 by using the intrinsic structure present in

the exponential profiles shown in equation 5.3:

X, =A, e™s B’ (5.13)

This transformation makes X; and X; appears as two parallel matrices with different
contributions to the same concentration and spectral profiles. In other words, this

partitioning strategy produces trilinear data (as represented in equation 5.14) that can be

decomposed using different algorithms.
X, =[X, X,]=A1,(CT®B") (5.14)

Here X, is the (M-S) x 2N matrix representing the M-S x N x 2 array X unfolded to retain
mode A. I, (P x P%) is the unfolded superdiagonal “identity” matrix of order P used to
obtain the column wise Kronecker product of the loadings for modes B and C. Matrix C

holds a new set of loadings pertaining the reaction rate constant as shown in equation
5.15.

1 1 1
CzL-an potsS eos} (5.15)
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This methodology has been further extended to cases in which three or more
slices are generated [9] using the same shift S. The argument given in the original paper
is that this can be advantageous in terms of noise reduction. The procedure is similar to
the two-slice case, but in this case (K-1) estimates (i.e. K is the number of created slices)
can be obtained for each rate constant, and these can be averaged to obtain a better
estimate. For example, the composition matrix of the C matrix for K =3 and P = 3 is

shown in equation 5.16.

1 11
C=|e™ ehS (5.16)
e ks e-kzs 2%

So far, the authors have used the standard notation employed in previous papers to
introduce DECRA in which mode A (rows) of the three-way array (/ x J x K) represent
the concentration profiles (time), mode B (columns) represents the spectra (wavelength)
and mode C (slices) represents the rate constants. However, in order to maintain a
consistent notation with the previous MLPARAFAC papers [21-23], in this paper the
trilinear data will be arranged in a fashion such that the time domain is represented by
mode B, mode A will carry spectral information and mode C will carry information about
the rate constants. This permutation pre-step is due to the loss of symmetry of the
PARAFAC model due to the introduction of the error information as explained in
reference 22. The value for 7 will be equal to the number of spectral channels N, and X
will be the number of slices that will be used. The value of J will be a function of the
original number of time points M, the data shift value S, and the number of slices X via

equation 5.17:

J=M-(K-1)S (5.17)

5.3.2 Noise considerations

Up to this point, the DECRA procedure has been illustrated by using the part of
the data that is related to the underlying deterministic structure. However, the
manipulations are carried out over all components of the acquired data, and therefore they
are consequently carried out over the noise structure as well, leading to some artificial

correlations among the elements when the trilinear data are analyzed. This is a
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consequence of the shifting strategy, which copies measurement errors along with the
data when creating a new slice of the three-way array, leading to perfectly correlated
noise among the slices. Even for the simplest scenario, where noise in the original matrix
is independent and identically distributed, the pattern of correlation is going to be
considerable. This is illustrated in Figure 5.1, which shows the relationship among the

measurements (and therefore measurement errors) in the folded and unfolded arrays for a

simple 3 x 5 matrix with §=1 and K = 3.
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Figure 5.1. Illustration of the DECRA procedure and its effects on the error structure.

The I x Jx K array is unfolded to retain mode A, which is the spectral order. This gives
an I x JK matrix. Because of the shifting process, a certain number of measurements will

be repeated among the slices (unless S > (M/K) + 1). This means that the measurement
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errors for repeated measurements will be perfectly correlated, leading to a near band-
diagonal structure in the JK x JK error covariance matrix for the rows of the unfolded
matrix, X,, as shown in Figure 5.1. The error covariance matrix is not perfectly band-
diagonal because there are some unrepeated measurements in each slice, so the bands off
the main diagonal have some uncorrelated measurements. For iid measurement noise, all
of the non-zero elements of this matrix will be equal to ¢, the variance of the
measurement errors. In practice o would not need to be known, since only relative
magnitudes are important in maximum likelihood estimation. For iid noise case, the error
covariance matrix will be the same for all of the rows of X,, and the total number of
bands (including the main diagonal) will be 2K-1 (except when S > (M/K) + 1, where
there will only be the main diagonal).

Figure 5.2 shows the effect of various values of the number of slices (K = 2, 3, 4)
and shift parameter (S =3, 6, 11) on the structure of the error covariance matrix for X, in
the iid noise case. This figure assumes that the total number of time points is 36, which
together with X and S, will define the dimension J of X (as given in equation 5.17) and
hence the dimension of the unfolded matrix, X,, and the error covariance matrix, ¥,. The
reduction in size for the time mode is the most important effect related to the increment
of the shift step S, although it will also affect the length of the bands off the main
diagonal and eliminate them when S is larger than M/K. A case where the value of § is
larger than this limit is represented at the bottom right of Figure 5.2. As mentioned
earlier, such a case where the shift was conveniently made to eliminate correlation did
not produce good estimates, as reported in reference 19.

Real error structures are much more complex than the iid scenario depicted above.
PGSE-NMR data and spectrophotometric-kinetic data, which are the most common types
of bilinear data used in conjunction with DECRA, are already permeated by correlated
noise due to the continuous way in which the data are recorded. This produces a temporal
noise correlation related to experimental variables (e.g. start time, gradient variations,
temperature, instrument drift, etc.) along the sample mode, which will also combine with
correlation that arises from factors such as cell positioning and cross talk among different

channels in the spectral domain. The effects on both orders will readily interact due to
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experimental design factors. Therefore, the correlation pattern in these cases will be much

more complex than the cases represented in Figures 5.1 and 5.2. This extreme departure

¥

a

VARV IRV,

100 P Py 80

_ 120

Figure 5.2. Illustration of the relationship between the error structure and the values of

the shifting parameter (S) and the number of slices (K). In this example M =36, S =3, 5
and 11, and K =2, 3 and 4.

from the expected iid noise characteristics should have an impact on the estimation
process. The main aim of this paper is to investigate the extent of this impact by
comparing the results of different estimation methods with the results of MLPARAFAC
for two well-studied data sets and a number of simulated data sets.

It should be noted that there are not widely accepted criteria given in the literature
for the selection of values of § and K. Different selection strategies, ranging from
empirical expertise to trial-and-error, are usually employed. In general, only anecdotal

explanations, such as the relationship between exponential decay rate and the shift
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parameter [16] and the relationship between the number of slices and noise reduction
during the estimation process [9], have been given as rational reasons for these

approaches. For this reason, a variety of § and K values will be examined in this study.

5.3.3 MLPARAFAC

MLPARAFAC is an errors-in-variables modeling method that accounts for
measurement errors in the estimation of model parameters for trilinear data. It is an
optimal modeling method in a maximum likelihood sense for functional models with no
errors in the model equations. It is a natural extension to PARAFAC of the MLPCA
method introduced by Wentzell ef al. [24]. The mathematical aspects of the algorithm
have been described in detail elsewhere [21,22] to allow the principles to be readily
applied. There are a number of simplified algorithms that can accommodate a variety of
error structures, such as heteroscedastic and correlated noise in one and two orders. Also,
when correlation is affecting more than two orders, the more general algorithm is
normally used after a compression step [22] to make the size of the data manageable. All
of the algorithms have excellent convergence characteristics because their core is based
on the same alternating least squares procedure as the original PARAFAC. The statistical
properties of these algorithms have been tested using simulated data, and the
corresponding improvement in the quality of parameter estimates has been demonstrated

using simulated and experimental data [22,23].

Two different MLPARAFAC algorithms will be employed in this work due to the
expected error characteristics of the trilinear data obtained after the application of
DECRA. Initially, it will be assumed that the experimental data are corrupted by iid noise
and the only source of correlation is related to the data shift. In such a case, elements
along the time domain in different slices will be affected only by the repetition, as shown
in Figure 5.1. In this case, a theoretical error covariance matrix can be formulated from
knowledge of the shift value, S, the number of slices used, K, and a global estimate of the
error variance. This error covariance matrix will be used with the MLPARAFAC
algorithm designed to handle the same correlation structure affecting two orders (i.e.
simplified algorithm 1C in reference 22). This algorithm, which will be referred to as

S-MLPARAFAC in this work, minimizes the following objective function:
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f =trace[(X, ~ A(C®B)")¥.'(X, ~A(C®B)")"] (5.18)

Here X, is an [ x JK matrix representing the trilinear data unfolded by preserving mode A

(spectral mode). A is an I x P2 matrix, which is a compact representation of mode A

(spectral information, I x P) multiplied by the P x P* unfolded superdiagonal matrix of

order P (in this case P =3), A = Al . B is aJx P matrix carrying the exponential decay

profiles. C (K x P) will have information regarding the rate constants. Finally, ¥, is the

JK x JK error covariance matrix describing the variance/covariance structure among the
elements in mode B along different slices. It is assumed for this algorithm that the error
covariance matrix is the same for all the rows. Usually, this error covariance matrix is
calculated using replicate measurements, as has been discussed elsewhere[21-24], but in
this case, a theoretical error covariance matrix considering only the shifting process will
be used, since it is assumed that the measurements are corrupted by iid noise. It is likely
that this will not be the most optimal choice, but it will provide an excellent pivotal
benchmark to compare methods that do not include any information about the error
structure with a method that includes all the available information about the error
structure.

The general MLPARAFAC (G-MLPARAFAC) algorithm will be the algorithm
of choice to include all the available information about the error structure. This is
motivated by the anticipated existence of sources of correlation affecting all the orders.

The general algorithm minimizes the following objective function:

£ =eeX?) - [(A@C®ByvecD) ][ @7 frec(XT) - [(A ® COB)vecT)] (5.19)
The only difference of this equation with respect to the previous equation is that, due to
the generalized error structure, the error covariance matrix Q_ must be ZJK x IJK in order

to include all the necessary information. Therefore, the estimation process has to be
carried out using the vectorized representation of the measurements and the PARAFAC
model. Even for small arrays, an JJK x IJK matrix is generally very large, making
necessary the use of a compression step. In this work, the previously formulated
operational procedure depicted in Table 5.1 of reference 22 will be used. The

MLPARAFAC estimates will be compared with estimates obtained by a number of
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methods previously used with the experimental data sets. For the case of simulations, the
estimates will be compared with TLD estimates (equivalent to GRAM when K = 2) and
standard PARAFAC, since they represent the sub-optimal but fast methods, and the

optimal methods assuming iid noise characteristics, respectively.

5.4 Experimental

5.4.1 Simulated data

Simulations are used in this work to characterize the performance of different
representative estimation methods in terms of accuracy and precision, since the true
values of the parameters are known in advance. Therefore, the data were constructed to
closely resemble the experimental data sets used in this paper, which follows the three-
component bilinear system as shown in equation 5.5. For the true signal part of the
simulated data, the first-order consecutive reaction, already described in Section 5.2.1 of
this paper, was used as a model kinetic system. The concentration profiles are decaying
functions governed by the reaction constants k; = 0.30 and &, = 0.05 respectively. The
time range was O to 20 min with increments of 0.2 min (M = 101). Pure spectra were
simulated with Gaussian peaks for the three individual species over a range of 100
channels with increments of 1 nm. The peak maxima of the species U, V and W were at
channels 22, 72 and 52 respectively and widths corresponded to o = 15 to simulate a
strong spectral overlap. The concentration profiles and pure spectra of the individual
species are shown in Figure 5.3.

For the noise contribution of the simulated data, different scenarios were
generated. Initially, a matrix E of random numbers with elements characterized by iid-
normal noise was created. Three levels, with standard deviations equal to 0.1%, 1% and
2% of the maximum absorbance of the simulated spectrum at time zero, were used. As
mentioned in Section 5.2.2, the kinetic data usually used in conjunction with DECRA are
corrupted by correlated noise affecting both time and spectral modes. Therefore, in order
to mimic these cases, a two-dimensional moving average filter block was convolved with

the error matrix E before it was added to the error-free measurements. At the boundaries
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Figure 5.3. Concentrations profiles (A) and spectra (B) of the compounds employed in
the simulations.

of the error matrix, the filter was wrapped around to the opposite side in order to
eliminate edge effects. Although this approach is not likely to reflect the actual
correlation structure in experimental data, it represents a general case for which the
degree of correlation and the resultant level of noise can be controlled. The filtering
procedure was carried out in an element-wise manner by defining a M x N matrix F,,,
containing the filter coefficients applied to the error matrix E to give the filtered error
element E,,,. Figure 5.4 shows a pictorial representation of Fy; where the filled squares
show the position of the filter coefficients for a 3 x 3 filter matrix. For Fy, the squares

shift right and for F,; they shift down. The correlated noise matrix can be obtained by

iterating through equation 5.20:
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E orreleted - vec(F,, )" vec(E) (5.20)
It is worth noting that the convolution with this filter will produce some attenuation of the
error variance in addition to the introduction of correlation. The level of attenuation is

given by equation 5.21:

0-21 ere
L Sitered > (5.21)

2
O-unﬁltered

2 2 . . .
Here o, and o,4.., are the noise variances of the filtered and unfiltered noise

matrix, respectively, and the c; represent the coefficients for the smoothing filter used.
For a simple moving average filter, all of the coefficients are the same and equal to the
reciprocal of the number of coefficients. For example, for a 5 x 5 two-dimensional
moving average filter, ¢; = 1/25 = 0.04. Therefore, to keep the level of noise variance
consistent among the simulations, equation 5.21 was used to normalize the correlated
noise levels. In order to introduce different levels of correlation, two-dimensional moving

average filter blocks of sizes 9 x 9 and 43 x 43 were used.
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Figure 5.4. Pictorial representation of the elements F;; and Fj; of a 3 x 3 wrap-around
moving average filter.

Each simulated data set consists of ten replicates calculated using the same
noiseless data and different realizations of the error structure. The replicates will have the
double aim of allowing calculation of the error covariance matrices and the bias and

variance components of the estimates.
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5.4.2 Experimental data

The two experimental data sets employed in this work were obtained from
previously published studies from the laboratory of Prof. Age Smilde [9]. Data Set 1
consisted of short-wavelength near-infrared (SW-NIR) spectra sequentially recorded in
time during the epoxidation of 2,5-di-ters-butyl-1,4-benzoquinone using tert-butyl
hydroperoxide and Triton B as a catalyst. The proposed reaction mechanism consisted of

two steps:
k,
A+B——C+D

C+BL>E+D

Species A, B, C, D and E are specified in Table 5.1. No distinction is made between the
cis and trans isomers (E) of the second step of the reaction since they are
spectroscopically indistinguishable in SW-NIR. Species B is present in large excess,
therefore the first and second steps of the reaction both become pseudo-first-order instead
of second-order. Hence, equations 5.6 to 5.8 can be used to describe the concentration
profiles of the reactant (A), intermediate (C) and main product (E) of the reaction
respectively. Species A, C and E were monitored spectroscopically.

Data Set 2 is a collection of UV-VIS spectra recorded in a consecutive fashion
during the reaction of 3-chlorophenylhydrazonopropane dinitrile (U) with 2-

mercaptoethanol (V). The proposed reaction mechanism consisted of two steps:

U+V——k—‘—>W

W L Y+Z
Species U, V, W, Y and Z are also specified in Table 5.1. Similar to the first case, V is
present in large excess, so the first step of the reaction becomes pseudo-first-order instead
of second-order. Hence, equations 5.6 to 5.8 can be used in order to describe the
concentration profiles of U, W and Y respectively. In this work, species U (reactant), W

(intermediate) and Y (product) were monitored spectroscopically.
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Table 5.1. Species involved in Data Set 1 and Data Set 2

Data Set 1 Data Set 2
A: 2,5-di-tert-butyl-1,4-benzoquinone U: 3-chlorophenylhydrazonopropane dinitrile
B: tert-butyl hydroperoxide V: 2-mercaptoethanol

C: 2,5-di-tert-butyl mono-epoxide-1,4-

) W: Intermediate adduct
benzoquinone

D: tert-butyl alcohol Y: 3-chlorophenylhydrazonocyanoacetamide

E: cis and trans 2,5-di-tert-butyl di-epoxide-

Z: ethylene sulphide
1,4-benzoquinone

Both data sets used the same experimental set-up. A Hewlett Packard 8453 UV-
Vis spectrophotometer with diode array detection was used to measure spectra of the
reacting system. For Data Set 1, a quartz cuvette with 10 cm path length was used to
obtain spectra of the reaction mixture. For Data Set 2, a quartz cuvette with 1 cm path

length was used. The experimental conditions for the two data sets are summarized in
Table 5.2.

Table 5.2, Experimental conditions used for Data Set 1 and Data Set 2

Experimental conditions Data Set 1 Data Set 2
Reaction temperature ( °C) 17 25
Integration time (s) 1 1
Sampling time (s) 5 10
Total run time (s) 1200 2700
Wavelength range (nm) 860-880 300-500
Wavelength interval (nm) 1 1
Number of recorded spectra 241 271

To stress the dynamic spectral features for Data Set 1, second-derivative spectra

were estimated using a third-order Savitzky-Golay filter [25] with a window size of 15
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data points. Second-derivative spectra were calculated after subtracting the fourth
recorded spectrum from all the other spectra remaining. The first three recorded spectra
were not used for data processing because of the unsatisfactory reproducibility of these
spectra as described in an earlier paper [26]. The small wavelength range 860-880 nm
was used for data processing, since spectral features caused by the three species which
were monitored (species A, C and E ) are located in this region. Data Set 2 was obtained
by subtracting a spectrum of KH,PO, buffer solution used as blank. The wavelength
range 300-500 nm was used for data processing since there are only spectral features
caused by species U, W and Y in this spectral range. Figure 5.5 shows spectra for the first
replicate (i.e. batch) in each of these data sets, Spectra in both cases are shown after blank
subtraction and, in the case of Data Set 1, after second-derivative filtering. More details

about the reactions, experimental set-up and preprocessing steps can be found in the

original papers [9, 16].
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Figure 5.5. Representative spectra of the first replicate for Data Set 1 (top panel) and
Data Set 2 (bottom panel). Only every tenth spectrum is shown for clarity.
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5.4.3 Computational Aspects

All the calculations performed in this work were carried out on a Sun Ultra 60
workstation with 2 x 300 MHz processors and 512 MB of RAM and a 3.2 GHz Pentium-
IV PC with 1 GB of RAM. All programs were written in-house using Matlab 6.0 (The
MathWorks Inc., Natick, MA) with the exception of the TLD, PARAFAC and
TUCKERS functions that were run using the N-Way Toolbox [27].

5.5 Results and Discussion
Both simulated and experimental data were used to investigate the performance of
different estimation methods for DECRA transformed data under a variety of conditions.
The metric chosen for this comparison was the mean squared error (MSE), as shown in
equation 5.22, for the case of simulated data:
MSE = %i(&r -0°)?
. ’;‘ (5.22)
= EZ(Q’ -0)*+(@-0°)’

r=|
In this equation, R is the number of replicate experiments and @ represents the parameter
estimated (k; and k, in this work). For simulated data, the true value of the parameter
(6°) is known, so the MSE can be further broken down into the two terms representing
estimates of the precision (variance) and accuracy (bias), respectively. For experimental
data, the true parameter value is unknown, so MSE is estimated from the mean

parameter:

R —
‘MSE=R71-IZ(9, -0)° (5.23)
L=t

5.5.1 Simulated data

Different contributors can affect the quality of the rate constants estimated
through the DECRA approach. These contributors can be grouped into two different but
related classes. The first class consists of attributes related to intrinsic properties of the
original data set, such as the dimensions of the data, the level and structure of the noise,
the spectral characteristics, and the values of the decay constant imbedded in the data.

The second class consists of features related to the application of the mathematical
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methods, such as the choice of S and K, the decomposition algorithm employed and (in
the case of MLPARAFAC) the quality of the error covariance estimates. These two
classes of parameters are related to one another. For instance, aspects such as the level
and structure of the noise will have an impact on the quality of results obtained by
different decomposition algorithms. The structure of the measurement errors in the three-
way array, as well as its size, will depend on the dimensions of the original matrix and on
the choice of the shift parameter, S, and the number of slices, K. Other parameters, such
as number of replicates used to estimate the error covariance matrix and the use of
compression can also play an important role in the quality of the estimates. Therefore, in
order to analyze all of these factors, the performance of TLD, PARAFAC and
MLPARAFAC (as representative of eigenvalue, least squares and maximum likelihood
formulations, respectively) will be evaluated for scenarios with different levels of noise
and correlation that have been modified with different combinations of S and K.

Two types of plots are used to analyze the influence of these parameters in the
estimation of k; and k,. The first type of plot, exemplified by Figures 5.6 and 5.7, is a
relative plot to more readily compare the quality of the estimates for PARAFAC and
TLD with respect to MLPARAFAC. The logarithm of the ratio of the root mean square
error (RMSE) for the method in question and MLPARAFAC is shown for different
scenarios with different values of S and K. The logarithm is used for scaling convenience
since it can accommodate wide differences in magnitude and is symmetric in the
visualization of relative performance. The second type of plot, exemplified by Figures
5.8 and 5.9, shows the MSE divided into its contributors, variance and bias, for different
values of K and § to assess the influence of different parameters in the absolute value of
the errors.

The first important conclusion that can be drawn from the results of the
simulations shown in Figures 5.6-5.9 is the obviously poor performance of conventional
PARAFAC for parameter estimation. This is clearly shown in Figure 5.6, where the
RMSE for PARAFAC can be as much as three orders of magnitude worse than that for
MLPARAFAC. In some cases, PARAFAC failed to converge to real-number solutions,

hence some of the lines in Figure 5.6 are discontinuous. The poor performance of

187



ry, Lg%
WA i
AR
Vv
— noise 0.1%
""" noise 1%

noise 2%

log (RMSEp garnc / RMSEy pararac)

) o - Lo
: oo oy o ':\,. ::;,—\ 2 s
ke o4 "~ N 4
oll TN BTihic A% I
! (e) !
4

Figure 5.6. Comparative plots illustrating the relative performance of PARAFAC with
respect to MLPARAFAC in the form of the logarithmic ratio of the root-mean-squared
error of both methods. The different plots show the results for different levels of noise
and error structures in the estimation of k; (left column) and 4; (right column).

PARAFAC was found to be a general trend that was encountered in all cases (e.g. k, ky,
different combinations of X, S, error structures and noise levels). This indicates that
measurement etror correlation introduced by DECRA (even in the case of iid noise in the
original data) will have an enormous negative impact on the estimates. This is consistent
with the fact that conventional PARAFAC is rarely used for DECRA, and more
constrained algorithms (e.g. LM-PARAFAC) are typically employed. Also, for the
PARAFAC estimates, Figures 5.8 and 5.9 suggest that variance, as opposed to bias, was
the major contributor to MSE in most scenarios. Because of the generally poor results
obtained by PARAFAC, this decomposition approach will not be treated in detail in the

remainder of this discussion.
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Figure 5.7. Comparative plots illustrating the relative performance of TLD with respect
to MLPARAFAC in the form of the logarithmic ratio of the root-mean-squared error of
both methods. The different plots show the results for different levels of noise and error
structures in the estimation of &, (left column) and k; (right column).

A second important observation that can be made from the results shown in
Figure 5.7 is that MLPARAFAC and TLD provided similar results for different
combinations of K and S. Even though this robustness in the results was expected for
MLPARAFAC due to its use of error information, it was completely unexpected for
TLD. It has been extensively reported in the literature [28] that GRAM and TLD are
suitable for cases where the signal-to-noise ratio is very high, since they give an exact
solution for the noise free data, but they lack a clear objective function to be minimized
when noise is present. Although Figure 5.7 shows some stochastic variations in relative
performance, as well as some systematic differences that are elaborated upon below, the

differences between MLPARAFAC and TLD are not dramatic.
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Figure 5.8. Comparative plots illustrating the absolute performance of TLD (left
column), PARAFAC (center column) and MLPARAFAC (right column) in the form of
the mean-squared error dissected into its two components, bias’ and variance. The
different plots show the results in the estimation of k; for different levels of noise and an
iid error structure affecting the two-way data.

In Figures 5.7a and 5.7b, which represent cases where the noise in the original
data is iid, no important differences in performance can be observed for different levels
of noise. This indicates the introduction of non #id-noise (correlation) due to the inherent
shifting in DECRA does not seem to adversely affect TLD. A probable explanation is
that the amount of noise introduced was not high enough to reach a point in which TLD
becomes significantly suboptimal. Since the structure of the error covariance matrix for
these simulated cases is exactly known (because of the assumed iid structure of the
original data), these results indicate that the similarity in performance of TLD and
MLPARAFAC is a merit of TLD, and not connected with a poor estimation of the error

covariance matrix used with MLPARAFAC due to the limited number of replicates used.
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Figure 5.9. Comparative plots illustrating the absolute performance of TLD (left
column), PARAFAC (center column) and MLPARAFAC (right column) in the form of
the mean-squared error dissected into its two components, bias® and variance. The
different plots show the results in the estimation of &, for different levels of noise and an
iid error structure affecting the two-way data.

In contrast to Figures 5.7a and 5.7b, Figures 5.7¢ and 5.7f show the effect of
extensively correlated noise (filter size = 43) on the estimation for different settings of X
and S. In this case, the existence of highly correlated noise affecting the bilinear data and
the introduction of correlation due to the shifting affect the TLD estimates, yielding cases
where MLPARAFAC performed better than TLD. These differences are observed for
both rate constants at different levels of noise, although the best examples are for the
scenarios with high S/N ratios. Although error covariance matrices in these cases were
estimated from replicates, it seems that the amount of correlated noise is sufficiently
important to influence the results and diminish the effects of a limited number of

replicates and the use of a compression preprocessing step.
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Figures 5.7c and 5.7d show the results for intermediate cases where correlated
noise affecting the bilinear data was also present, but was not very pervasive (filter size
equal to 9). MLPARAFAC outperformed TLD for the scenario with the highest S/N
(noise equal to 0.1% of the maximum), but differences in the two methods are not
distinguishable as the S/N decreases. These results are consistent with those observed in
the preceding paragraphs and suggest that MLPARAFAC will provide better
performance than TLD for cases where there is significant correlated noise in the original
data and the S/N is relatively high.

While Figures 5.6 and 5.7 show the relative performance of the three methods
considered, information about the absolute performance is lost. Figures 5.8 and 5.9 show
the absolute mean-squared error, broken down into bias and variance contributions, for
the estimation of k; and k;, respectively, for different settings of K and S in cases where
different levels of iid noise are corrupting the original data. As noted above, the
performance of PARAFAC was comparatively very poor and, although it is included in
the figures for completeness, it will not be discussed in detail. In the examination of the
results for TLD and MLPARAFAC, there is a significant variation in the results due to
the complex relationship between the selection S and K and features such as the size of
the three-way data matrix, its error structure, and the information contained in the
individual slices. Because of this, some combinations of S and X produce estimates that
do not correspond to apparent trends. These cases will be easier to observe in the absolute
plots, since the relative plots will diminish this behavior.

One of the first noteable features of Figures 5.8 and 5.9 are the differences in the
quality of the estimates of k; and k; for different values of K and S. As the values of § and
K increase, the MSE values for k; also increase, while the MSE values for k, remain
relatively stable. It is likely that this behavior arises from the difference in the magnitudes
of k; and k. Since k; is much larger (faster decay) than k,, increasing the values for K
and/or S will employ a proportionately larger amount of data at extended times, where the
variation in the signal due to k; becomes very small in comparison to the level of noise,
introducing a large amount of variance in the estimates. On the other hand, the small
value of k, will provide a slow decay, which in turn will translate into good S/N ratios

and estimates of similar quality for different combinations of X and S.
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Figures 5.8 and 5.9 also show that, as expected, the quality of the estimates
decreases with the level of noise introduced in the original data. In most cases, however,
the quality of the estimates was good, typically below 1% error in the corresponding
parameter, although there is a wide variation. The plots show that most of the MSE arises
from variance contributions in most cases, with the exception of the estimation of k; in
the lowest noise case, which was dominated by bias for both TLD and MLPARAFAC.

It is important to note that, although Figures 5.8 and 5.9 show only the cases
where the original data was affected by iid noise, the same trends were found for cases
where correlated noise was affecting the original data. However, these results are not

shown for conciseness.

5.5.2 Experimental data

5.5.2.1 Analysis of the error covariance matrices

Figures 5.10 and 5.11 show mesh plots of the pooled error correlation matrices for each
mode of Data Sets 1 and 2, respectively. In both cases a very strong pattern of correlation
for the spectroscopic and the time modes is observed. The sources of this correlation are
likely to include offset effects due to variability in cell positioning, long- term instrument
drift, temporal correlation during scanning, temporal variation in reaction initiation, and
(for Data Set 1) effects related to derivative filtering. No attempt was made to decompose
these complex error covariance structures into individual contributions, but some cursory
observations can be made. For Data Set 1, the correlations in the spectral mode show a
systematic variation, with both positive and negative correlations in the measurement
errors. Correlation in the time domain was essentially flat, with values off the main
diagonal around 0.75, which suggests a significant offset contribution coupled with a
contribution from iid noise. For Data Set 2, the error correlation in the spectral domain
again shows a complex structure, similar in nature to the spectral error correlation in Data
Set 1, but with no negative correlation. Some regions of small correlation are evident. In
the time domain, Data Set 2 also shows a large flat region similar to the case of Data Set
1, but in this case the correlation values are smoother and approach unity, likely because

the contribution of iid noise is smaller, as is evident in Figure 5.11. Also, there is a band
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Figure 5.10. Pooled correlation matrices for each mode of Data Set 1 (SW-NIR). Plots A
and B show the correlation matrix for the spectral and the time domain of the two-way
data, respectively.
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Figure 5.11. Pooled correlation matrices for each mode of Data Set 2 (UV-Vis). Plots A
and B show the correlation matrix for the spectral and the time domain of the two- way
data, respectively.
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of low correlation near the edges of the correlation matrix. Although the source of this
behavior is unknown, it may be related to variations in the start time of the reaction.

These correlation patterns indicate that the use of the general MLPARFAC
algorithm will be necessary, since both modes are affected by correlated noise and the
shifting strategy will introduce correlation in the third mode. The existence of correlation
in more than two modes precludes the use of any of the published simplifications of the
general algorithm [22] to obtain an optimal solution. However, for comparison purposes,
the deterministic model of the error covariance matrix assuming iid errors (i.e. only
considering the correlation related to the shifting procedure) was also employed. This
simplified algorithm will be referred to as S-MLPARAFAC, while the generalized
algorithm will be referred to as G-MLPARAFAC. It is important to note that, in order to
use G-MLPARAFAC, a compression of the trilinear data set, as explained in reference
22, needs to be carried out. For both data sets, this was done using 21 Tucker3 factors for
the spectral and the time modes. The mode related to the shifting scheme was not

compressed due to its small dimension.
5.5.2.2 Data Analysis

Figures 5.12 and 5.13 depict the estimates for the rate constants and their standard
deviations for Data Sets 1 and 2, respectively, when different values of X (2 to 5)and S
(20 to 70 for K =2 and 3, and 20 to 30 for K = 4 and 5) are used in conjunction with the
G-MLPARAFAC, S-MLPARAFAC and TLD algorithms. It is important to note that the
variations in the estimates from different replicates (represented by the standard
deviations) can arise from a variety of sources which include model errors (e.g. kinetic
model, Lambert-Beer Law), experimental errors (e.g. concentration errors, time Errors)
and instrumental noise (e.g. variation of the spectrometer). The combined effect of all of
these sources is known as the upper error limit [15]. There are a number of approaches
[15, 20] to obtain estimates that represent the lower error limit, which is mainly related to
instrumental noise, but none of these were used in this work, since the upper error limit is
more relevant in the context of maximum likelihood estimation, which considers all
sources of error.

Estimated values for Data Set 1 for different combinations of X and S show

substantial standard deviations for the individual cases, as well as among the different
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combinations, suggesting that the quality of the data was poor. The variability was much
lower for the estimates of &; than for the estimates of ke, for all the estimation methods. In
general, the estimates of the rate constants for G-MLPARAFAC are smaller than the
other two methods, although they are typically within one standard deviation of those
methods. In addition G-MLPARAFAC appears to provide the most precise estimates for

both rate constants, but in only a few cases were these differences appreciably important.
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Figure 5.12. Comparison plots showing the estimates of k; and k, and their precision (as
one standard deviation) obtained by G-MLPARAFAC, S-MLPARAFAC and TLD when
different combinations of S and X are used for Data Set 1.

S-MLPARAFAC estimates seemed to be of similar magnitude and quality to
those provided by TLD in many cases, indicating that, despite the introduction of some
weighting information, the results are not completely optimal, since other sources of
variation (i.e. correlation among samples and channels in the bilinear data) are not
included. However, it should be noted that, in spite of the relatively simple error model,
the performance of S-MLPARAFAC was still far superior to conventional PARAFAC

(results not shown), which typically converged to very poor or imaginary solutions.
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Figure 5.13. Comparison plots showing the estimates of k; and k; and their precision (as
one standard deviation) obtained by G-MLPARAFAC, S-MLPARAFAC and TLD when
different combinations of S and X are used for Data Set 2.

For Data Set 2, estimated values for k; and k, are not affected by a high variability
indicating that the quality of the data was excellent, as has been recognized in the
literature [20]. For both rate constants, the estimates were very similar for different
values of § when two slices were employed. When more than two slices were used, the
standard deviation of the estimates increased for all methods when k; was estimated and
for both MLPARAFAC methods when %, was estimated. In general, G-MLPARAFAC
again appeared to provide the most precise estimates in most cases. It is important to
note, however, that TLD provided estimates of high quality for both %, and k, at a small
fraction of the time needed for the more computationally involved MLPARAFAC
algorithms (seconds vs. hours).

Despite the practical importance of testing new algorithms on experimental data, a

drawback is that an absolute assessment based on a known “true” value cannot be made.
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To put the results obtained here into an appropriate context, Figures 5.14 and 5.15 have
been constructed to compare the MLPARAFAC estimates with other known approaches
to kinetic rate constant estimation. Each method is shown by its 95% confidence interval
ellipse (based on a bivariate normal distribution) that was constructed using data
presented in the literature [9, 18]. It is worth noting that, although Faber has reported [20]
that the estimation of &, and k; could be done independently (different pairs of X and §
values for each rate constant) instead of finding a compromise value (same pair of X and
§ values providing a low variability for both rate constants), the second alternative will be
used here to maintain the comparison consistent with previous studies. All of these

methods are well-described in the literature [9], therefore only a brief summary is given

here.
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Figure 5.14. Comparison plots showing the estimates of k; and 4, and their confidence
interval (as 95 % probability) obtained by different methods when the best combination
of § and X values are used for Data Set 1.

Classical curve resolution (CCR) is the successive two-step algorithm that utilizes
the intrinsic bilinearity of the data set. Weighted curve resolution (WCR) is also an
approach that exploits the intrinsic bilinearity of the data set, but in this case combining a

soft model using singular value decomposition of the data set with a hard model
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representing the concentration matrix. Successive Bayesian estimation (SBE) [18] solves
a sequence of univariate models in which the previous results are used to construct the
“prior”. The Levenberg-Marquardt-PARAFAC (LM-PARAFAC) algorithm combines
one alternating least squares step of the PARAFAC algorithm with a sequence of
nonlinear optimization steps that use the Levenberg-Marquardt algorithm. This method,
as well as TLD, simplified MLPARAFAC (S-MLPARAFAC) and generalized
MLPARAFAC (G-MLPARAFAC), uses the DECRA shifting scheme in order to obtain

trilinear data that will provide the rate constants via equation 5.15.
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Figure 5.15. Comparison plots showing the estimates of ki and k, and their confidence

interval (as 95 % probability) obtained by different methods when the best combination
of § and K values are used for Data Set 2.

Figure 5.14 shows the 95% confidence boundaries for all of these methods
applied to Data Set 1. The confidence interval for the G-MLPARAFAC (K=3,8=55k
= 0.250, k2 = 0.07, o(k)) = 0.006, o(k;) = 0.01, » = -0.62) method is the smallest,
indicating that it yielded the most precise estimates for the rate constants. Simple

inspection of the figure reveals a strong overlap in the confidence intervals for all

200



methods, suggesting a consistency in the results obtained. Even though S-MLPARAFAC
(K=2,8=20,k =022, ki, = 0.03, o(k)) = 0.02, o(k) = 0.03, r =0.55) gave a smaller
confidence region than most of the traditional methods, the size of its region is
appreciably bigger than the region for G-MLPARAFAC, probably because some
important information (correlation in the spectral and time modes) was not included
during the estimation process. Although the precision of the estimates does not guarantee
accuracy, these results reinforce confidence in the method.

In contrast to Data Set 1, the different estimates for Data Set 2 were widely
spread, as can be seen in Figure 5.15. It was somewhat disturbing to find that the values
obtained in this work for the TLD estimates of Data Set 2 and its standard deviations
were different from those previously published [9]. The standard deviations obtained
were about a factor of two smaller than the previously reported values. This situation was
previously reported by Faber [20], and the differences were attributed to the existence of
different TLD implementations. The confidence interval region for all traditional
methods but the TLD used in this work were much bigger than both MLPARAFAC
algorithms, indicating that the introduction of a weighting scheme is necessary to obtain
better estimates. The confidence regions of G-MLPARAFAC (K =3, § = 50, k& =
0.28403, ky = 0.026241, o(ki) = 5.1868 x 10>, (k) = 8.8338 x 105, » = 0.14) and S-
MLPARAFAC (K =3, § =170, k; =0.27951, k= 0.028765, o(ki) = 4.3011 x 107, (k) =
1.5771 x 10, = 0.32) were very similar in shape and size, possibly indicating that
correlation due to shifting is more important than other sources of correlated errors in this
case. On the other hand, the TLD results (from this work) (K =2, §=70, k; = 0.28287, k;
= 0.028767, o(ki) = 4.9091 x 102, (k) = 1.6859 x 10™, r = 0.19) exhibit a confidence
region that was also very similar in shape and size to both MLPARAFAC
implementations. Qualitatively, this scenario seems to bear resemblance to the simulated
case represented in Figures 5.8 and 5.9, where the level of noise and the amount of
correlated noise were not very high. This scenario provided estimates where the main
contributor to the mean-squared error for k, was the bias and not the variance, with
MLPARAFAC and TLD giving very similar results. This hypothesis is reinforced when
these values are compared with the bias-corrected TLD estimates published by Faber [20]
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(ki = 0.29775 min and &, = 0.028837 min™), indicating the excellent quality of both
MLPARAFAC and TLD estimates, even though they are uncorrected estimates.

5.6 Conclusions

A number of important conclusions can be drawn from this work. First, through
the use of simulated and experimental data, it was shown that MLPARAFAC can be
applied to DECRA to produce results far superior to those generated by conventional
unconstrained PARAFAC. This implies that an important reason for the failure of the
traditional PARAFAC algorithm is its inability to accommodate correlated errors that
arise from the shifting procedure in DECRA. Unlike TLD, MLPARAFAC has a well-
defined and rational objective function which makes use of measurement error
information, but unlike some constrained PARAFAC algorithms, it makes no additional
assumptions about the underlying model.

A second important result of this study is the similarity of the performance
observed for MLPARAFAC and TLD. Although the performance of MLPARAFAC was
somewhat better in a number of cases, the quality of results was comparable overall. The
much greater computational efficiency of TLD is clearly an important consideration in
this comparison, and these results support the widespread application of TLD to DECRA.

Simulation studies suggested that the quality of results can be significantly
affected by the selection of S and K, but optimal methods for their selection were not
investigated. As expected, the quality of the results diminished as the level of noise
(correlated or uncorrelated) was increased.

Two sets of published and widely-studied data were also used to investigate the
performance of the MLPARAFAC algorithms, which were compared to a variety of other
methods. The experimental data sets exhibited strong correlations in both the time and
spectral modes. The application of the generalized MLPARAFAC algorithm produced
the most precise estimates for the rate constants for both data sets. A simplified
MLPARAFAC algorithm, considering only correlation introduced by the shifting
procedure, also produced good results.

Although the results of this work did not indicate a clear superiority of
MLPARAFAC over TLD, as had been anticipated, this is nevertheless useful in that it

validates the application of TLD, which is a much faster algorithm. Moreover, this study
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has demonstrated that the weakness of the conventional PARAFAC algorithm lies in its

inability to properly treat correlated errors, and this can be overcome through the use of
MLPARAFAC.
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Chapter 6
Conclusions

6.1 Summary

The evolution of analytical instrumentation has increased the amount and
complexity of the measurements produced. This increment in complexity of the analytical
data has been accompanied by a departure from the standard assumptions about the errors
corrupting these measurements. A few examples of the sources producing these
ubiquitous and pernicious effects are cell positioning errors, multiplicative noise effects,
spatial or temporal correlation of detectors in spectroscopy, temporal correlation of pump
noise in chromatography, and electronic or digital signal processing. These deviations
make least squares estimation methods suboptimal from a statistical point of view. The
only optimal means to account for the correlation in measurement errors is using a
maximum likelihood approach to estimate model parameters that are most likely to give
rise to the observed measurements. For bilinear data, this problem has been addressed in
the literature through the development of maximum likelihood principal component
analysis (MLPCA) and related techniques, which have been shown to provide improved
results where the effects of noise correlation are significant. The objective of this work
was to extend the maximum likelihood approach to treat the parallel factor analysis
(PARAFAC) model by formulating a method called maximum likelihood parallel factor
analysis (MLPARAFAC).

In Chapter 2, the basic principles of two algorithms for carrying out
MLPARAFAC were introduced. The simplest of these algorithms was designed to work
with cases where the measurement errors are non-uniform (heteroscedastic) but
uncorrelated. On the other hand, analytical data corrupted by errors characterized by any
type of error covariance structure can be treated by the most general form of the
algorithm. Unfortunately, the vectorized formulation used by the general algorithm

precludes its use to treat typical experimental data sets because of memory



considerations. Therefore, two additional algorithms, based on exact simplifications of
the error structure, were presented as exploratory alternatives to extend the maximum
likelihood approach in a more manageable manner to data sets of typical size. The four
algorithms were shown to produce maximum likelihood estimates through a comparison
of the distribution of the objective function with the 7 distribution. It was also shown
that the quality of the estimated loading vectors for MLPARAFAC was significantly
better than for the PARAFAC models in cases where the error covariance matrix is
known. In this work, the standard practice of expressing the estimation process by
minimizing the different formulations of the same objective function was employed. It
was later realized by the author that, even though this approach was optimal from a
statistical ~perspective, it was not as efficient as it could be from a
computational/numerical point of view, since it accounted for the loss of symmetry

caused by the introduction of error information in a naive manner.

Chapter 3 introduced a new approach which, in contrast to the standard practice,
involved no alternation amongst objective functions to estimate the loadings for all the
modes. The new approach has the benefits of locating the noise information in one or
two modes as a simple representation and using it equivalently to obtain the estimation
equations for each mode. Using this approach, four algorithms for carrying out simplified
variations of general MLPARAFAC when the data at hand are corrupted by correlated
noise affecting one or two orders were described. For completeness, a compression step
was included prior to the use of general MLPARAFAC for cases where the noise
structure is affecting three modes and the volume of data precludes the use of general
MLPARAFAC on the raw data. To test the optimality of these algorithms, a comparison
of the distribution of the objective function with the ;* distribution was carried out for
data sets corrupted by noise realizations that follow the corresponding error structure. A
number of simulated data sets were employed to illustrate that the use of simplified
algorithms when the data at hand merit the simplification is beneficial from a
computational point of view, and the quality of the estimates is improved when the data
are treated with the algorithm designed to handle the corresponding error structure. Also,
two simulated scenarios where the error structure assumed departs from the actual error

structure were used to illustrate the importance of a thorough characterization of the error
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covariance. Regarding the compression step used with the general formulation of
MLPARAFAC, it was found that no significant differences were detected between

Tucker3 and Tucker] basis sets, at least for the data used in the simulation studies.

In Chapters 2 and 3, a number of algorithms were developed and tested using
simulated data. Even though simulated data are very convenient to test the statistical
properties of these algorithms, the simulations had a very well defined error structure,
making the process of choosing the simplification extremely simple, since information
about the number of orders affected by the correlated noise and its structure were
accurately known in advance. Practical applications are not characterized by this
simplicity, making the decision process a more complex task. T herefore, in Chapter 4
practical aspects related to the application of the different simplifications of
MLPARAFAC to experimental data were explored using three sets of fluorescence EEM
data from mixtures of three polycyclic aromatic hydrocarbons. Because of the different
experimental design protocols used to acquire these data sets, two of the data sets
exhibited error covariance along the composite mode consisting of excitation and
emission modes, while the third exhibited error covariance along all three modes. These
error structures were confirmed by the use of a set of novel tools, previously introduced
for the analysis of the error structure affecting two-way data, and extended to three-way
data in this work. This characterization process allowed estimation of an optimal
representation of the error covariance matrix for each data set. The use of these optimal
representations in conjunction with the corresponding algorithm yielded the best models
in each case. In addition, different error structures and algorithms were employed,
showing that the inclusion of statistically meaningful error information always produced
an improvement in the estimates, by as much as a factor of three, over conventional

PARAFAC, even in cases where the error covariance information was incomplete.

In Chapter 5, the testing of MLPARAFAC algorithms was taken a step further
when one of the simplifications and the general algorithm were used to estimate the rate
constants of reactions for two widely-studied experimental data sets and a number of
simulated ones. The algorithms were used in conjunction with the Direct Exponential
Curve Resolution Algorithm (DECRA), a novel method to exploit the intrinsic structure

present in exponential-decay bilinear data to produce three-way data. In all cases

207



(simulated and experimental) when MLPARAFAC was applied to DECRA, it produced
results far superior to those generated by conventional unconstrained PARAFAC. These
results were a clear indication that the failure of the traditional PARAFAC algorithm was
linked to its inability to accommodate correlated errors that arise from the shifting
procedure in DECRA. In contrast, TLD, which is usually regarded as a suboptimal
estimation approach, provided estimates of comparable overall quality to MLPARAFAC,
supporting the widespread application of TLD to DECRA. The experimental data sets
employed in this work were characterized by correlations in both the time and spectral
modes. The quality of the estimates obtained by the MLPARAFAC algorithms was
compared with a number of algorithms previously used with these data sets. For both data
sets, the generalized MLPARAFAC algorithm produced the most precise estimates for
the rate constants. Also, the simplified MLPARAFAC algorithm, considering only

correlation introduced by the shifting procedure, produced good results.

6.2 Future Avenues of Investigation

The present work explored the introduction of measurement errors in the
estimation of the PARAFAC model. As a result, a number of possible scenarios were
typified and corresponding algorithms were formulated. However, in all of the cases,
simulated as well as experimental, the data employed followed the structural model
closely. Unfortunately, this is not always the case for experimental data sets. Depending
on the severity of these deviations, mathematical constraints can be added to the
estimation process. It is properly argued that the addition of constraints should be
superfluous in the case of the PARAFAC model, since the presence of trilinearity assures
the uniqueness of the solution. However, a number of practical motivations, such as
accounting for deviations of the data from the trilinear model, avoiding degeneracy and
numerical problems, achieving uniqueness in cases where ambiguous solutions are
possible, and obtaining estimates that do not contradict a priori knowledge (i.e. require
chromatographic profiles to be unimodal), can Justify the use of constraints. The work

presented here can be improved and/or extended by implementing the use of constraints

in the formulated algorithms.
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Constraints can be added in two different manners, constraints affecting the
structural model and constraints affecting the structural factors. Constraints can be added
to (or perhaps, more accurately, partially removed from) the structure of the PARAFAC
model. It is well-known that the PARAFAC model is the most constrained model of the
Tucker-model family. At one extreme is located the Tucker3 model, and at the other is
the PARAFAC model. In between are a number of other models, such as Tuckerl [1],
Tucker2 [1], PARATUCK2 [2], and PARAFAC2 [3]. However, only the PARATUCK?2
and PARAFAC2 models are relevant for spectral data, since these preserve some
uniqueness in the decomposition. Structurally, these models can be expressed as a more
constrained Tucker3 model or as a less constrained PARAFAC model. Mathematically,
the formulation of any of these models differs from the PARAFAC model in the structure
of the core array, G , which is expressed for the PARAFAC model as a super-identity
array. For instance, the PARATUCK2 model, which is well-suited for some analytical
scenarios that involve interaction among factors (i.e. rank deficient problems) can be

expressed in its more restricted form as in eqquation 6.1.
X, =AHI_ (C®B)") (6.1)

Here, X, is an 7 x JK matrix representing the trilinear data unfolded by preserving mode
A, 1, is a P x P> unfolded superdiagonal matrix of order P, and B (/x P) and C (K x P)
matrices represent the loadings for mode B and C, respectively. A (I x Q with O < P) is a
matrix formed by the loadings of mode A and H (Q x P) is the interaction matrix, formed

by ones and zeros. For example a 2 x 3 H matrix could appear as follows:

He 1 10 62)
10 0 1 (©.
When the product AH is evaluated, the following matrix is obtained:
1 10
AH = [al aZ]I:O 0 lil = [al a az] (6.3)

Different arrangements of H will reproduce the interactions in different ways, and
therefore lead to different manifestations of the rank-deficiency for the model. When the
model is solved using ALS in conjunction with the standard methodology of expressing

the different conditional linear problems by an equivalent but differently expressed
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objective function, H can be absorbed by the product Z_ =HI,(C®B)")when A is

estimated, and expressed as A = AH when B and C are estimated. If the rank deficiency
is located in mode B or C, the model is equivalently permuted to have the rank deficiency
in mode A. Often, the interaction matrix is known in advance and it is introduced in the
estimation process as a deterministic entity, but in many practical cases, it will be
estimated to explore the interaction of the given rank-deficiency problem.

Unfortunately, if the iid assumption is not fulfilled by the data and a maximum
likelihood approach is more suitable, a more complex problem has to be solved. As
shown in this work, the introduction of the error structure destroys the symmetry of the
structural model. Therefore, since the arrangement of the array is going to be primarily
determined by the error structure, two additional estimation equations (one for the rank
deficient mode and the other for the interaction matrix) are going to be needed for each
error structure scenario. In this way, the full modes can still be estimated using the
equations used for each mode in each error structure scenario. In general, this is the more
recommended procedure to implement maximum likelihood algorithms for the other
modes, since only a small number of equations will need to be derived.

On the other hand, the estimation algorithms can add constraints to the estimation
of the loading describing each mode. Constraints such as non-negativity, symmetry,
monotonicity, unimodality, smoothness, and orthogonality are a few examples. These
types of constraints are easily implemented by a column-wise estimation, since the
influence of each component in a mode can be determined separately, conditionally on all
remaining components in that mode and the remaining modes [4]. An extreme example
of these constraints is the N-PLS model [5], which can be seen as a rotated version of the
PARAFAC model to better describe the variation given by an external vector or matrix (y
or Y). To conclude this topic, it is important to say that a considerable effort needs to be
invested into understanding and implementing the use of constraints in algorithms
involving compressed data, which could then be extended to the compressed version of
the generalized MLPARAFAC algorithm.

In this work, a number of tools were introduced to characterize the error structure
of three-way arrays, since the correct use of this information translated into better quality

estimates throughout the data sets investigated. A rational extension of these techniques
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can ultimately lead to a deterministic modeling of the error covariance structure for a
particular experimental system, which in turn will greatly reduce the need for extensive
replication and make the error structure more reliable by removing “statistical effects”
within the structure.

Finally, a number of figures of merit have been introduced in the literature to
assess the quality and statistical properties of the estimates [6] for three-way data.
However, the established figures of merit depend highly on the assumptions made about
the error structure. Therefore, an important goal of future research should be the
development of a more fundamental approach to incorporate more realistic measurement
error information into these metrics. Only with the refinement of such tools can the

variety of multi-way methods now available be reliably evaluated and compared.
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