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Abstract

Modern reinsurance companies use stochastic simulation techniques for portfolio risk

analysis, often referred to as aggregate risk analysis, to support risk management.

Their risk portfolios may consist of thousands of reinsurance contracts covering mil-

lions of individually insured locations. To quantify risk and to help ensure capital

adequacy, each portfolio must be evaluated in large-scaled simulation trials, each

capturing a different possible sequence of catastrophic events (e.g., earthquakes, hur-

ricanes, etc.) over the course of a contractual year. In practice, due to the amount of

data and computations involved, it is highly attractive to explore high performance

parallel computing solutions to accelerate the analysis.

In this thesis, we explore the design of a flexible framework, called QuPARA, which

exploits parallelism to perform aggregate risk analysis via distributed computing by

using the MapReduce programming model. The goal is to provide a flexible framework

that can be used by analysts to answer a wide variety of unanticipated but natural

ad hoc queries to help them better understand multiple dimensions of risks that can

impact portfolio performance and thus company solvency.

The QuPARA framework was implemented using Apache Hadoop, Apache Hive,

and Pentaho. This prototype allows the user to take advantage of large parallel

servers in order to answer ad hoc risk analysis queries efficiently even on large data

sets. We also present data structure optimizations and tuning that greatly accelerate

QuPARA’s computation. The performance of the prototype system is competitive

with highly tuned production systems that are only capable of answering a narrow

set of portfolio queries, in contrast to the wide range of ad hoc queries QuPARA is

able to resolve.
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Chapter 1

Introduction

Risk analysis is a comprehensive methodology, which is used in various areas to de-

termine occurrences of specified events and assess the consequences of such events

in financial amount. A typical risk analysis usually involves probabilistic modeling

and simulation techniques. In many cases, large-scale simulations will be performed.

Parallelism and High Performance Computing (HPC) can be highly attractive for de-

veloping risk analysis applications, which can carry out these simulations and analyses

quickly.

The financial management of the risk associated with catastrophic events such as

earthquakes, hurricanes, and large-scale floods falls largely to reinsurance companies

[1]. Their risk portfolios may consist of thousands of reinsurance contracts covering

millions of individually insured locations. To quantify risk and to help ensure capital

adequacy, reinsurance companies use an analytical pipeline to manage risks. The

pipeline is consists of three stages, which are risk assessment, portfolio risk man-

agement, and enterprise risk management. In the risk assessment stage, catastrophe

models are used to provide scientifically credible loss estimates for individual catastro-

phe events. In the portfolio risk management stage, risk metrics of the performance

of the reinsurance portfolio and contract prices are assessed through portfolio risk

analysis. In the enterprise risk management stage, the risk metrics will be combined

with liability, assert and other forms of risks to generate an enterprise wide view of

risk.
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At the heart of the portfolio risk management stage, a stochastic simulation tech-

nique for portfolio risk analysis and contract pricing referred to as Aggregate Risk

Analysis (ARA) [2, 3, 4, 5]. The ARA is a Monte Carlo simulation performed on a

portfolio of risks that a reinsurer holds. At an industrial scale, a reinsurance port-

folio may consist of thousands of annual reinsurance contracts covering millions of

individually insured locations. To quantify annual portfolio risk, each portfolio must

be evaluated with respect to a range of risk metrics that take the uncertainty as-

sociated with both event order and magnitude into account[6]. In order to obtain

accurate and precise results, each portfolio must be evaluated in up to a million sim-

ulation trials, each consisting of a sequence of thousands of catastrophic events, such

as earthquakes, hurricanes or floods. Each trial captures one scenario how globally

distributed catastrophic events may unfold in a year.

Aggregate risk analysis is computationally intensive as well as data-intensive. Pro-

duction analytical pipelines exploit parallelism in aggregate risk analysis and ruth-

lessly aggregate results. The results obtained from production pipelines summarize

risk in terms of a small set of standard portfolio metrics that are key to regula-

tory bodies, rating agencies, and an organization’s risk management team, such as

Probable Maximum Loss (PML) [7, 8] and Tail Value at Risk (TVaR) [9, 10]. While

production pipelines can efficiently aggregate terabytes of simulation results into a

small set of key portfolio risk metrics, they are typically very poor at answering the

types of ad hoc queries that can help actuaries or underwriters to better understand

the multiple dimensions of risk that can impact a portfolio, such as spatial correlation,

seasonality, peril features, construction features, and financial terms.

In this thesis, we propose a framework, Query-Driven Large-Scale Portfolio Aggre-

gate Risk Analysis (QuPARA), for aggregate risk analysis that facilitates answering

a rich variety of ad hoc queries in a timely manner. A key characteristic of the pro-

posed framework is that it is designed to allow users with extensive mathematical

2



and statistical skills but perhaps limited programming background, such as risk ana-

lysts, to pose a rich variety of complex risk queries. The user formulates their query

by defining SQL-like filters. The framework then answers the query based on these

filters, without requiring the user to make changes to the core implementation of the

framework or to reorganize the input data of the analysis. The challenges that arise

due to the amounts of data to be processed and due to the complexity of the required

computations are largely encapsulated within the framework and hidden from the

user.

Our prototype implementation of this framework for QuPARA uses Apache’s

Hadoop [11, 12] implementation of the MapReduce programming model [13, 14, 15] to

exploit parallelism, and Apache Hive [16, 17] to support SQL-like queries. Also, a user

interface is developed by using Pentaho to provide easy access and result visualization

for the end users.

In our implementation of QuPARA, we discovered that the efficiency of the data

structure we used to support exposure loss lookups has a huge impact on the overall

system performance. We developed improved implementations of this data structure

that greatly accelerate QuPARA’s computation over large risk portfolios. Our ap-

proach was to combine data structure design with systematic in-depth experimental

evaluation and tuning. This allowed us to reduce the size of the core lookup data

structure, the Combined Event Loss Table (CELT), by over 50%, which in turn al-

lowed us to double the batch size per QuPARA run within a Hadoop MapReduce

environment and reduce the total system overhead by half. Also, the lookup perfor-

mance is increased by 42% by using the optimized CELT comparing to the baseline

implementation. The time reduction on system overhead and lookups resulted in an

overall system performance improvement of 31.7%.

Even though QuPARA is not as fast as a production system on the narrow set

of standard portfolio metrics, it can answer a wide variety of ad hoc queries in an
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efficient manner, and achieved performance that is competitive with production sys-

tems. For example, our experiments demonstrate that an industry-size risk analysis

with 1,000,000 simulation trials, 1,000 events per trial, and on a portfolio consisting

of 1,600 risk transfer layers with an average of 5 event loss tables per layer can be car-

ried out on a 72-cores Hadoop cluster in just over 71 minutes. The speed-up achieved

with 72-cores is up to 88%.

The remainder of this thesis is organized as follows. Chapter 2 gives an overview

of background information about the insurance and reinsurance industry, reinsurance

risk analysis, aggregate risk analysis, and the MapReduce programming model. Chap-

ter 3 proposes the design of our new risk analysis framework, QuPARA. Chapter 4

describes the implementation details of our prototype risk analysis system. Chapter

5 discusses our efforts to engineers an efficient CELT implementation. Chapter 6

presents a performance and overall system functionality evaluations of our framework

and implementation. Chapter 7 draws conclusion and discusses potential future work

related to the QuPARA framework.
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Chapter 2

Background

This chapter presents background information and related work for the research pre-

sented in this thesis. In Section 2.1, we give a brief overview of the insurance and

the reinsurance industry. In Section 2.2, we discuss the risk transfer contract and

risk portfolio in the reinsurance industry. In section 2.3, we talk about how risks

are quantified in the reinsurance industry. Section 2.4-2.6 show the related work on

financial and statistical modeling to address the risk analysis problem to be a se-

quential algorithm. In Section 2.7, we look beyond the basic procedures of the risk

analysis and discuss potential variations to meet the related risk analysis problems

under various scenarios. In Section 2.8, we give a review of all the parallel techniques

and big data tools we have used to design and implement the QuPARA framework.

2.1 Overview of Insurance and Reinsurance

In this section, we give a brief overview of the insurance and the reinsurance indus-

try. The insurance industry is well known to the public. It provides loss protections

through risk transfer contracts to individuals and companies in exchange for financial

payments. In addition to the insurance industry, there is a reinsurance industry which

helps the insurance companies withstand massive losses that might occur, for example,

accumulating catastrophic events like earthquakes [18]. The major insurance/rein-

surance businesses can be fitted into two categories, namely property risk protection

and life risk protection. We will focus solely on the property insurance/reinsurance

industry and associated analytical risks in the remainder of this thesis.
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2.1.1 Insurance

Risk, the possibility for financial loss associated an adverse event, is an unavoid-

able feature of many human activities. From an accounting perspective, risk can be

viewed as a financial amount, typically negative, and an associated probability. In

some of cases, the risk holders are not willing to or cannot bear the consequences of

unexpected losses. Therefore, over time the insurance industry has developed to offer

individual and companies the opportunity to manage the risks by entering into risk

transfer contracts. Insurance is the transfer of risk from an individual to an insurance

company in exchange for an agreed on financial payment. For the remainder of this

thesis, we will focus on risk to properties; typically, buildings, although insurance

exists for many other types of assets or event life. In property insurance, property

risk coverage is specified in a contractual agreement, which is named the policy. The

individual, who purchases a policy to gain property coverage, is known as the poli-

cyholder. The insurer, which is a company sells policies to individuals, is called the

primary insurance company. The monetary payment, which is a policyholder pays to

the primary insurance company in exchange of a policy, is called the premium.

The foundation of insurance is the uncertainty of the loss to the insured property.

At the time a policyholder purchases insurance policy to ensure property coverage,

neither the policyholder nor the primary insurance company knows whether, when,

and how losses will occur to the insured property [19]. In the insurance business, a

primary insurance company collects both risks and premiums while selling policies.

The premiums will go into a large cash pool. When a policyholder claims a property

loss, the primary insurance company need to pay the recovery amount from the pool.

Insurance companies build portfolios of policies expecting that many more people

will contribute to the pool than the people actually making claims. Therefore, in any

event, the insurance companies should be able to have enough funds from the cash
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Figure 2.1: Risk and premium flows between individuals, primary insurers, and rein-
surers

pool to pay the policyholders.

Most of the loss events, that individual properties experience, are uncorrelated.

Meaning that, the probability of loss event in property A is independent of the prob-

ability of loss event in property B. Unfortunately, there are rare catastrophe events

can affect many properties simultaneously. Natural catastrophes, such as earthquake,

hurricane, and flood, are examples of such highly correlated loss. When a catastro-

phe event occurs, primary insurers, who have policies covering many properties in

the same geographical location, may suffer massive losses. These massive correlated

losses may threaten the solvency of the insurance companies. Therefore, the primary

insurance companies seek other larger risk carriers to split the risks they are carrying

in exchange of sharing the premiums they owned. The business, which hedges risks

of the primary insurance companies, is called reinsurance. The risk and payment

transfer chain between policyholders, primary insurers, and reinsurers is shown on

Figure 2.1.

2.1.2 Reinsurance

Reinsurance, in essence, is the insurance for insures [20, 18, 21, 22]. The earliest

known contractual reinsurance agreement was made in Genoa in July 1370 to insure

a cargo shipment from Genoa to Sluis via sea. Under that contract, the primary

insurer transferred the most risky part of the voyage in the shipment, which was from
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Cadiz to Flanders, to a secondary insurer [18]. The core concept of reinsurance is to

protect the primary insurance companies from insolvency under circumstances when

a massive single loss or collective losses occur, for instance, in a large earthquake.

In the reinsurance business, primary insurance companies purchase protections from

secondary insures to gain coverage on the potential large losses associated typically

with a catastrophe event. The reinsurance purchaser, which is the primary insurance

company, is called the ceding company. The secondary insurer, which is the reinsur-

ance seller, is called the reinsurer. The relocation part of the risk, which is transferred

from the ceding company to the insurer, is called the cession [22].

The primary use of reinsurance is to help a ceding company to improve asset

allocation and increase business capacity [22]. In insurance, the policyholders are

guaranteed to be indemnified when failures occur on the insured properties. There-

fore, due to regulation rules and laws, a primary insurance company has to maintain

sufficient amount of capitals and reserves in cash or cash equivalents to proof its

claims-paying ability [21]. Based on the amount of capitals and reserves, the primary

insurance company will be legally restricted to only issue certain amount of policies.

Instead of reserving all assets in cash or cash equivalents, a primary company can

build a reinsurance structure to reduce the maximum expected loss amount to meet

the statutory solvency requirements. The released capitals can be used to either make

investments to gain profits or to reuse internally to increase the policy allowance.

Furthermore, reinsurance can help ceding companies to hedge large individual

losses and thereby reduce volatility from individual claims [21]. In primary insurance,

the premiums are determined based on the expected losses from the transferred risks

on the insured properties. However, sometimes the loss distribution of an individual

property, such as a car factory, has low expected value, but an extreme long tail. In

this case, there is a huge gap between the expected loss and the largest loss that can

occur. When an extreme loss occurs, it will cause a huge impact on the financial
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status of the company. By purchasing reinsurance protections, ceding companies can

limit large individual losses to be acceptable to reduce fluctuations in financial results.

Moreover, reinsurance can save ceding companies from massive collective losses in

large catastrophe events [21]. In insurance, the risk of each insured property is usually

calculated independently because the failure occurrence of each insured property is

statistically independent. However, in a catastrophe event, all the properties in the

same region might be seriously damaged at the same time. In such case, based on

the amount of policies in the disaster area a primary insurance company carries, the

company may suffer huge claim volume. The collective losses from the claims may

exceed the insurer’s claims-paying ability and may bankrupt the insurance company

immediately. As a solution, the ceding companies can purchase protections from

reinsurance to cover claims beyond their bearable limit. In summary, the ultimate

purpose of using reinsurance for ceding companies is to hedge risks and improve

solvency. For the primary insurers, reinsurance is a cost, not a potential profit, but

has value because it reduces financial volatility.

2.2 Reinsurance Risk Transfer Contracts

Risk transfer contracts are risk transfer agreements between reinsurance companies

and ceding companies. In the reinsurance industry, risk transfer contracts can be

made in various forms with very different rules which specify the benefits and obli-

gations. In this section, we discuss the details about the major types of reinsurance

contract, the form of insurance portfolio, and the structure of reinsurance portfolio.

2.2.1 Reinsurance Treaty Types

In the modern reinsurance industry, there are three types of contracts are widely used

to form agreement between reinsurance companies and ceding companies, which are

Quota Share treaty, Surplus treaty and Excess of Loss treaty [18].
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Quota Share Treaty

Quota Share is a form of proportional reinsurance which shares the risk and the

benefits in certain proportion of the loss. In this treaty, the reinsurance company

shares a fixed percentage of every risk, which generate losses, in the ceding company’s

portfolio. In exchange, the premium the ceding company pays to the reinsurance

company is a fixed percentage of the total premium from the insurance portfolio.

Surplus Treaty

Surplus treaty is another form of proportional reinsurance. This treaty is similar to

the Quota Share treaty except it does not cover all the risks but only for those that

exceed a predetermined loss amount.

Excess of Loss Treaty

Unlike the two proportional treaties we discussed above, Excess of Loss is a non-

proportional treaty which the coverage amount of risks is predetermined. Under the

Excess of Loss treaty, the reinsurer will only cover losses in a risk when the loss

exceeds a pre-determined amount, which is the loss attachment, and the coverage will

continue until the loss limit is reached [23].

In the reinsurance industry, the Excess of Loss treaties are most widely used

contract type and they are also most challenging to model [24]. In the remainder of

this thesis, we will focus solely on the Excess of Loss treaty reinsurance and analytical

problems.

2.2.2 Reinsurance Portfolio

. A reinsurance company typically holds a portfolio of programs that insure primary

insurance companies against large-scale losses, like those associated with catastrophic
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events. Each program contains data that describes (1) the buildings to be insured

(the exposure), (2) the modeled risk to that exposure (the Event Loss Table (ELT)),

and (3) a set of risk transfer contracts (the layers).

The exposure is represented by a table, one row per building covered, that lists

the building’s location, construction details, primary insurance coverage, and replace-

ment value. The modelled risk is represented by an event loss table (ELT). This table

lists for each of a large set of possible catastrophic events the expected loss that would

occur to the exposure should the event occur. Finally, each layer (risk transfer con-

tract) is described by a set of financial terms that includes aggregate deductibles and

limits (i.e., deductibles and maximal payouts to be applied to the sum of losses over

the year) and per-occurrence deductibles and limits (i.e., deductibles and maximal

payouts to be applied to each loss in a year), plus other financial terms.

Consider, for example, a Japanese earthquake program. The exposure might list

2 million buildings (e.g., single-family homes, small commercial buildings, and apart-

ments) and, for each, its location (e.g., latitude and longitude), constructions details

(e.g., height, material, roof shape, etc.), primary insurance terms (e.g., deductibles

and limits), and replacement value. The event loss table might, for each of 100,000

possible earthquake events in Japan, give the sum of the losses expected to the asso-

ciated exposure should the associated event occur. Note that ELTs are the output of

stochastic region peril models [25] and typically also include some additional financial

terms. Finally, a risk transfer contract may consist of two layers as shown in Fig-

ure 2.2. The first layer is a per-occurrence layer that pays out a 60% share of losses

between 160 million and 210 million associated with a single catastrophic event. The

second layer is an aggregate layer covering 30% of losses between 40 million and 90

million that accumulate due to earthquake activity over the course of a year.
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Figure 2.2: An example two-layer reinsurance program.

2.3 Quantification of Reinsurance Risk

At the heart of the analytical pipeline of a modern insurance/reinsurance company

is a stochastic simulation technique for portfolio risk analysis and pricing referred to

as Aggregate Risk Analysis (ARA). In this section, we firstly introduce catastrophe

risks are recognized in the reinsurance industry, and then the loss recognition process

is explained. Afterwards, we discuss the use of Monte Carlo simulation in the ARA.

At the end of this section, the common risk quantification methods are introduced.

2.3.1 Catastrophe Risk Modeling

The core risk sources, which a reinsurer exposes to, is the catastrophe risk [26, 1].

A major catastrophe event, such as a big earthquake, can cause serious life and

property losses. Buildings, bridges, and roads can be damaged or destroyed, and the

recovery processes will take very long time. In such disasters, the direct and indirect
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losses will result a huge financial impact on the insurance industry, and then extend

to the reinsurance industry. By using a proper catastrophe risk model, a reinsurer

can organize its portfolio to avoid unbearable peak losses by balancing potential

risks among different locations. After a disaster occurred, catastrophe risk model

can help reinsurers to quickly and accurately estimate economic consequences of the

event to perform proper reactions to reduce the impact of the event. Therefore, it is

important for a reinsurer to develop and use catastrophe risk models to understand

the occurrences and influences of catastrophe events for risk management.

In reinsurance, catastrophe risk modeling involves four important modules, which

are hazard, inventory, vulnerability, and loss as shown on Figure 2.3 [26]. The hazard

module is responsible for defining the occurrences and features of natural disasters.

For example, a hurricane can be described by wind speed and projected path, and

its occurrences can be simulated based on historical records. The inventory module

produces data to describe physical properties, which may expose to catastrophe risks,

as accurate as possible. The description of a property usually includes location,

structure, and age. In the vulnerability module, the output from the hazard module

is mapped on the inventory data to demonstrate the impact and evaluate the damages

of the natural disasters on the properties. The exposure is represented by a table,

one row per property covered, that lists the property’s location, construction details,

primary insurance coverage, and replacement value. The modeled risk is represented

by an ELT. This table lists for each of a large set of possible catastrophic events the

expected loss that would occur to the exposure should the event occur.

2.3.2 Monte Carlo Simulation

A common reinsurer usually holds a portfolio consists of hundreds to thousands layers.

Each layer in the portfolio may cover one or more catastrophe events in various

locations in a fiscal year. Due to the uncertainties in occurrence, location and severity
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Figure 2.3: The basic structure of catastrophe model

of catastrophe events, it is impossible to predict which and where events will occur in

a year, and then it is impossible to evaluate the actual risk amount for the portfolio.

Therefore, a Monte Carlo simulation is needed to estimate the expected risks for

each contract, and then create a probability distribution for the portfolio to explain

possible outcomes in a year.

In reinsurance portfolio risk analysis, we first use sampling techniques to gener-

ate simulation trials which contain possible catastrophe events in a year, and then

applying the trials to the portfolio to observe the expected risks. Each trial captures

one scenario how globally distributed catastrophic events may unfold in a year. To

quantify annual risk, the portfolio must be evaluated in up to a million simulation

trials, each consisting of a sequence of possible thousands of catastrophic events, such

as earthquakes, hurricanes or floods. In practice, the simulation trials is produced

by a catastrophe event simulator and stored in the Year Event Table (YET). The

simulation is performed by evaluating each event in the YET to against each of the

layers in the portfolio to obtain individual layer loss, and then aggregate the layer

losses in the same event to be a portfolio loss. Afterwards, all the portfolio losses

which are generated by the events from the same trial will be aggregated to be an

annual portfolio loss. Recall that, the YET contains millions of trials, and each trial
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includes thousands of events. The total events in a simulation will be billions. Fur-

thermore, a reinsurance portfolio may carry thousands of layers, and each layer will

be evaluated by each of the events in the YET. Therefore, the amount of calculations

in one analysis may exceed trillions. Based on the scale of simulation, the size of

consumed input data and intermediate results will be very big. Thus, aggregate risk

analysis is computationally intensive as well as data-intensive, and it can benefit from

exploiting advances in high-performance computing.

2.3.3 Risk Metrics

Risk quantification is the final process of ARA which interprets the analysis results

to be meaningful metrics to support decision making. In reinsurance, the generally

used portfolio risk metrics are the PML, TVaR, and Exceedance Probability (EP)

curve [7, 8, 9, 10, 27].

Probable Maximum Loss (PML)

Probable Maximum Loss (PML) is a chiefly used term in the insurance and rein-

surance industry. The PML is an estimated value of the maximum monetary losses

affecting properties which can be caused by catastrophe events in a given exceedance

probability [7, 8]. In reinsurance, the properties indicate the contracts in a portfolio

which exposing to catastrophe risks. The given exceedance probability is defined by

a return period which is an estimate recurrence time interval between losses which

exceed a certain amount. For example, if an excess of 10 billion dollars loss from

a reinsurance portfolio is not expected to occur more than about once in every 500

years, we could say that there is a probability of 99.8% in each year which the loss

incurred from such portfolio will be less or equal than 10 billion dollars. The PML

is an very important risk metric to evaluate the solvency of a reinsurer. In a given

return period, a portfolio has higher PML value indicates higher risk for the reinsurer
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to fail to pay off the losses. In a portfolio, the PML values can be calculated based on

the loss distribution of such portfolio. However, the loss distribution of a large portfo-

lio is usually unknown because of the uncertainties of the natural disasters and their

effects. With the available information, it is very difficult for a reinsurer to build the

loss distribution for its portfolio through deterministic methods. Therefore, the only

feasible way for reinsurers to calculate PML is to build an estimated loss distribution

for their portfolios through large scaled stochastic Mote Carlo simulations.

Tail Value at Risk (TVaR)

Tail Value at Risk (TVaR) is a risk measure which quantifies the expected value in

a condition which the total loss of a portfolio exceeds the PML in a given return

period [9, 10]. Note that, the PML measures the maximum loss value under a return

period, for instance, 500 years or probability of 99.8%, for a portfolio. However, there

is a chance that the portfolio may suffer losses, which exceed the PML, from events

which beyond the given return period. The TVaR is usually used by the reinsurers

to adjust their reserve capital to ensure they can withstand more losses to further

avoid solvency issues in a severe condition. The TVaR value can be calculated by

finding the mean value of all losses beyond a specific return period in the portfolio

distribution.

Exceedance Probability (EP) Curve

Exceedance Probability (EP) curve is a graphical representation which gives a detailed

overview to explain the loss levels in each exceedance probability from 0 to 1 [27].

The EP curve is valuable for a reinsurer to recognize the size and distribution of the

potential losses. Based on the EP curve, a reinsurer can manage risks in its portfolio

to meet the acceptance loss level in different return periods. For example, suppose

an insurer specifies 100 million dollars as the acceptance maximum loss at a return
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period of 500 years (99.8%). On the EP curve, if the PML at 99.8% is less than 100

million dollars, the insurer can accepting additional risks from the market to ear n

more premium. However, if the PML at 99.8% is already higher than the acceptance

level, the insurer would need to decrease risks by either reduce its portfolio or transfer

risks to other reinsurers or the capital market. The EP curve can be treated as a

continuous curve which each point on the curve represent a PML value at a probability

between 0 to 1.

2.4 Aggregate Risk Analysis Algorithm (ARA)

Aggregate risk analysis is a form of Monte Carlo simulation performed on a portfolio

of risks that a reinsurer holds rather than on individual risks. In this section, firstly

the input data of ARA is explained, followed by the presentation of the sequential

aggregate risk analysis algorithm. Afterwards, the statistical and financial calcula-

tions, which are secondary uncertainty, retention, occurrence loss, and aggregate loss

calculations, are explained.

2.4.1 Analysis Input Data

There are three inputs to the portfolio aggregate risk analysis, which are YET,

Portfolio Table (PFT), and a pool of ELTs. The YET is the representation of a

pre-simulated occurrence of catastrophe events E in the form of trials T . Each trial

captures the sequence of the occurrences of events for a year using time-stamps in

the form of event time-stamp pairs. The PFT represents a reinsurance portfolio that

includes a group of Programs, P , which in turn represents a set of Layers L, that

covers a set of ELTs. The ELT represents the loss information lE that correspond

to an event based on an exposure. An ELT contains exposures in one particular

location with certain perils. However, the damage from a catastrophe event, such as

earthquake, can spread across different regions. Therefore, one event can appear over
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different ELTs with different loss information.

2.4.2 Sequential Aggregate Risk Analysis Algorithm

Algorithm 1 shows the sequential analysis of aggregate risk. The algorithm scan

through the hierarchy of the portfolio, PF ; firstly through the Programs, P , followed

by the Layers, L, then the Event Loss Tables, ELTs. Line no. 5-9 shows how the

loss associated with an Event in the ELT is computed. For this, the loss, lE associ-

ated with an Event, E is retrieved, after which secondary uncertainty and retention

financial terms is applied. The computation of secondary uncertainty and financial

terms will be explained in the following sections.

Input : Y ET , ELT pool, PFT
Output: Y LT

1 for each Trial, T do
2 for each Event, E, in T do
3 for each Program, P in PFT do
4 for each Layer, L, in P do
5 for each ELT covered by L do
6 Lookup E in the ELT and find corresponding loss, lE
7 Apply Secondary Uncertainty to lE (Optional)
8 Apply Beneficial Financial Terms to lE
9 l′E ← l′E + lE

10 end
11 Apply Occurrence Financial Terms to l′E
12 Apply Aggregate Financial Terms to l′E
13 lL ← lL + l′E
14 end
15 lP ← lP + lL
16 end
17 lPF ← lPF + lP
18 end
19 lT ← lT + lPF
20 end
21 Populate Y LT

Algorithm 1: Pseudo-code for Sequential Aggregate Risk Analysis
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In line no. 11, two Occurrence Financial Terms, namely the Occurrence Attach-

ment and the Occurrence Limit are applied to the loss. Afterwards, two Aggregate

Financial Terms, namely the Aggregate Attachment and the Aggregate Limit are ap-

plied to the loss in line no. 12. In line no. 13, the net losses, l′E, are summed up as

lL. The lL losses correspond to the total loss a layer will suffer from a given event.

Occurrence Attachment refers to the retention or deductible of the insured for an

individual occurrence loss, whereas Occurrence Limit refers to the limit or coverage

the insurer will pay for occurrence losses in excess of the retention. The Occurrence

Financial Terms capture specific contractual properties of Excess of Loss treaties as

they apply to individual event occurrences only.

In line no. 15, the aggregated layer losses are aggregated from the Layer level to

the Program level, lP . Aggregate Attachment refers to the retention or deductible

of the insured for an annual cumulative loss, whereas Aggregate Limit refers to the

limit or coverage the insurer will pay for annual cumulative losses in excess of the

aggregate retention. The Aggregate Financial terms captures contractual properties

as they apply to multiple event occurrences.

In line no. 17 the event losses are aggregated from the Program level to the

Portfolio level, lPF , which represents the total losses a portfolio will suffer from a

given event. In line no. 19, all the event losses from the same trial will be combined

into a trial-portfolio loss, lT , which represents the yearly loss amount of a portfolio in

the simulation trial.

In line no. 21, the trial-portfolio losses are populated in the Year Loss Table Y LT

which represents the output of the analysis of aggregate risk. Afterwards, financial

functions or filters are then applied on the aggregate loss values to generate risk

quantification metrics.

19



2.5 Secondary Uncertainty

When measuring the yearly loss of a reinsurance portfolio, the primary uncertainty we

consider is associated with whether a catastrophe event occurs or not in a simulated

year. A typical way to measure the risk of an occurred event is to use the expectedloss

value in the exposure data. In reality, the losses caused by a catastrophe event can

be fluctuating. Therefore, secondary uncertainty is used to incorporates the loss

distribution of occurred events to measure the uncertainty of loss amount. In this

section, the methodology to compute secondary uncertainty is presented; this method

heavily draws on industry wide practices. The inputs and their representations are

firstly presented, followed by the sequence of steps for combining independent and

correlated standard deviations, and finally computing the losses which are calculated

based on the Beta distribution.

2.5.1 Calculation Inputs

There are six inputs required for computing secondary uncertainty for an event, which

are obtained from the Extended Event Loss Table (XELT), and are as follows:

i. Program-and-Event-Occurrence-Specific random number, denoted as z(Prog,E) =

P(Prog,E) ∈ U(0, 1). Each Event occurrences across different Programs have

different random numbers. This number is used to represent the correlation of

losses between layers which are grouped in the same program.

ii. Event-Occurrence-Specific random number, denoted as z(E) = P(E) ∈ U(0, 1).

Each Event occurrence has an unique number.

iii. Mean loss, denoted as µL

iv. Independent standard deviation of loss, denoted as σI , which represents the

variance within the event-loss distribution.
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v. Correlated standard deviation of loss, denoted as σC , which represents the error

of the event-occurrence dependencies.

vi. Maximum expected loss, denoted as Lossmax

2.5.2 Steps for Combining Standard Deviation

Given the above inputs, the independent and correlated standard deviations need to

be combined to reduce the error in estimating the loss value associated with an event.

For this, firstly, the raw standard deviations is produced as σ = σI + σC .

Secondly, the probabilities of occurrences, z(Prog,E) and z(E) are transformed from

uniform distribution to normal distribution using, f(x;µ, σ2) =
x∫
−∞

1
σ
√

2π
e−

1
2

(
x−µ
σ

)2
dx.

This is applied to the probabilities of event occurrences as

v(Prog,E) = f(z(Prog,E); 0, 1) ∈ N(0, 1)

v(E) = f(z(E); 0, 1) ∈ N(0, 1)
(2.1)

Thirdly, the linear combination of the transformed probabilities of event occur-

rences and the standard deviations is computed as

LC = v(Prog,E)

(σI
σ

)
+ v(E)

(σC
σ

)
(2.2)

Then the normal random variable is computed, fourthly, as

v =
LC√(

σI
σ

)2
+
(
σC
σ

)2
(2.3)

Finally, the normal random variable is transformed from normal distribution to
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uniform distribution by using the inverse function as

z = Φ(v) = FNorm(v) =
1√
2π

v∫
−∞

e
−t2
2 dt (2.4)

The model used above for combining the independent and correlated standard

deviations represents two extreme cases. The first case is when σI = 0 and the

second case is when σC = 0. The model also ensures that the final random number,

z, is drawn based on both the independent and correlated standard deviations.

2.5.3 Loss Calculation based on Beta Distribution

The loss is calculated based on the Beta distribution as fitting such a distribution

allows the representation of risks quite accurately. The Beat distribution is industrial

standard used by the large vendor of catastrophe model [24]. The Beta distribution

is a two parameter distribution, with an upper bound for the standard deviation, and

after normalising in the model above, three parameters are used.

In the Beta-distribution the standard deviation, mean, alpha and beta are defined

as

σβ = σ
Lossmax

µβ = µL
Lossmax

α = µβ

((σβmax
σβ

)2 − 1
)

β = (1− µβ)
((σβmax

σβ

)2 − 1
)

(2.5)

An upper bound is set to limit the standard deviation using σβmax =
√
µβ(1− µβ);

if σβ > σβmax , then σβ = σβmax . For numerical purpose in the algorithm a value very

close to σβmax is chosen.
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The estimated loss is then obtained by

Loss = Lossmax ∗ PDFbeta(z;α, β)

PDFbeta(z;α, β) =
z∫
−∞

Γ(α+β)
Γ(α)Γ(β)

zα−1(1− z)β−1

where Γ(z) is the gamma function.

Loss = Lossmax ∗ 1
B(α,β)

zα−1(1− z)β−1

where B is the normalisation constant.

(2.6)

2.6 Financial Term Calculation

From algorithm 1, we have seen three different financial terms calculations which

are the beneficial financial terms, occurrence financial terms, and aggregate financial

terms. In this section, we will discuss these financial term calculations in detail.

2.6.1 Beneficial Financial Term Calculation

In the ARA, the event losses are calculated based on the exposure data, which is the

ELTs. The exposure data is created based on potential physical damages and losses.

In a multi-layer reinsurance contract, the layer treaties usually take losses in order.

Thus, the layers with lower priority gain benefits from the loss deductions generated

by the higher prioritized layers. We use lELT to represent the cumulative loss in a

trial which associated with an ELT. ELTOccatt and ELTOcclim are used to represent

the event occurrence beneficial attachment and limit. ELTAggatt and ELTAgglim

are used to represent the exposure aggregate beneficial attachment and limit. dE is

defined as the per-occurrence beneficial loss deduction amount. The calculation in

line no. 8 in algorithm 1 is then obtained by
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dE = min(max(lELT − ELTAgglim, 0),

min(max(lE − ELTOccatt, 0), ELTOcclim))

lE = lE −min(dE,max(0, lELT − ELTAgglim))

(2.7)

2.6.2 Occurrence Financial Term Calculation

The occurrence financial term calculation is based on the Exceed of Loss treaty. In

such treaty, there will be a pre-defined per-event loss deductible, Occatt, and per-event

loss limit, Occlim. In a catastrophe event, the reinsurance company only cover the

loss portion which is higher than the deductible and is lower than the limit. Thus,

the calculation in line no. 11 in algorithm 1 is then obtained by

l′E = min(max(l′E −Occatt, 0), Occlim) (2.8)

2.6.3 Aggregate Financial Term Calculation

The aggregate financial term calculation is based on the Exceed of Loss treaty. In such

treaty, there will be a pre-defined cumulative loss deductible, Aggatt, and per-event

loss limit, Agglim. Unlike the occurrence terms, the aggregate terms will be applied

on the cumulative loss from a contract in year. The reinsurer only provides coverage

on the part of cumulative losses which is higher than the deductible and lower than

the limit. Thus, the calculation in line no. 14 in algorithm 1 is then obtained by

lT = min(max(lT − Aggatt, 0), Agglim) (2.9)
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2.7 Scenario Risk Analysis

While computing the basic risk metrics, such as PML, TVaR, and EP curve, for the

company’s entire portfolio is critical in assessing a company’s solvency, analysts are

often interested in digging deeper into the data and posing a wide variety of queries

with the goal of analyzing such things as cash flow throughout the year, diversity of

the portfolio, financial impact of adding a new contract or contracts to the portfolio,

and many others.

The following is a representative, but far from complete set of example queries.

Note that while all of them involve some aspects of the basic aggregate risk analysis

algorithm used to compute EP curves, each puts its own twist on the computation.

2.7.1 Probable Maximum Losses (PML) by Line of business (LOB),

Class of Business (COB) or Type of Participation (TOP)

In the reinsurance industry, a layer defines coverage on different types of exposures

and the type of participation. Exposures can be classified by class of business (COB)

or line of business (LOB) (e.g., marine, property or engineering coverage). The way

in which the contractual coverage participates when a catastrophic event occurs is

defined by the type of participation (TOP). Decision makers may want to know the

loss distribution of a specific layer type in their portfolios, which requires the analysis

to be restricted to layers covering a particular LOB, COB or TOP.

2.7.2 Region/Peril Losses

This type of query calculates the expected losses or a loss distribution for a set of

geographic regions (e.g., Florida or Japan), a set of perils (e.g., hurricane or earth-

quake) or a combination of region and peril. This allows the reinsurer to understand

both what types of catastrophes provide the most risk to their portfolio and in which
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regions of the globe they are most heavily exposed to these risks. This type of analysis

helps the reinsurer to diversify or maintain a persistent portfolio in either dimension

or both.

2.7.3 Multi-marginal Analysis

Given the current portfolio and a small set of potential new contracts, a reinsurer

will have to decide which contracts to add to the portfolio. Adding a new contract

means additional cash flow but also increases the exposure to risk. To help with the

decision on which contracts to add, multi-marginal analysis calculates the difference

between the loss distributions for the current portfolio and for the portfolio with any

subset of these new contracts added. This allows the insurer to choose contracts or

to price the contracts so as to obtain the right combination of added cash flow and

added risk.

2.7.4 Stochastic Exceedance Probability Analysis

This analysis is a stochastic approach to the weighted convolution of multiple loss

distributions. After the occurrence of a natural disaster not in their event catalogue,

catastrophe modeling [17] vendors attempt to estimate the distribution of possible loss

outcomes for that event. One way of doing this is to find similar events in existing

stochastic event catalogues and propose a weighted combination of the distributions

of several events that best represents the actual occurrence. A simulation-based

approach allows for the simplest method of producing this combined distribution.

To perform this type of analysis, a customized Year Event Table must be produced

from the selected events and their weights. In this YET, each trial contains only

one event, chosen with a probability proportional to its weight. The final result is a

loss distribution of the event, including various statistics such as mean, variance and

quantile.
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2.7.5 Periodic Loss Distribution

Many natural catastrophes have a seasonal component to them, that is, do not occur

uniformly throughout the year. For example, hurricanes on the Atlantic coast occur

between July and November. Flooding in equatorial regions occurs in the rain season.

As a result, the reinsurer may be interested in how their potential losses fluctuate

throughout the year, for example to reduce their exposure through reduced contracts

or increased retrocessional coverage during riskier periods. To aid in these decisions,

a periodic loss distribution represents the loss distribution for different periods of the

year, such as quarters, months, weeks, etc.

2.8 MapReduce and BigData Tools

The ARA involves large-scale simulations which are both data and computationally

intensive. In this section, we firstly give an brief overview of the MapReduce pro-

gramming model which can be used to explore parallel solution ARA. A MapReduce

software, Apache Hadoop, which can be used to implement the major component of

MapReduce ARA, is discussed as following. Furthermore, the big data tools, which

are Apache Hive and Pentaho, are introduced as data management and manipulation

tools in the end of this section.

2.8.1 Google MapReduce Programming Model

MapReduce is a programming model which was originally introduced by Jeffrey Dean

and Sajay Ghemwat from Google in 2004 [13]. In the original paper, Map-Reduce was

described as a programming model and an associated implementation for processing

and generating large data sets [13]. A map and a reduce function are adopted in

this model to execute a problem that can be decomposed into sub-problems with no

dependencies. A classic MapReduce application is the word count problem, which is
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to calculate world frequency in a given text document. The basic information entity

in this model is a 〈key, value〉 pair; where the key is an identifier and the value is its

corresponding satellite data [28].

The entire MapReduce computation is split into three stages, which are map,

shuffle and reduce, and the basic process of executing a MapReduce job is shown

on Figure 2.4 [15]. From the beginning, the input will be split into mangy pieces

and formatted into a set of 〈key, value〉 pairs. In the map stage, each mapper will

receive a subset of the 〈key, value〉 pairs, and then for each input pair, a map function

will be applied to produce one or more intermediate result pairs, which is known as

(key’, value’). In the shuffle stage, the intermediate 〈key’,value’〉 pairs will be sorted

according to the keys, and all the values attached with a common key will be delivered

to a single node to launch the reduce stage. In the reduce stage, each reducer takes all

the values, which have a common key, and apply the reduce function on these values

to produce the final output. Because the mapper functions and reducer functions

are executed independently from each other, the MapReduce model is scalable across

large number of computing resources. In addition to the computations, the fault

tolerance of the execution, for example, handling machine failures is taken care by

MapReduce.

The core elements of a MapReduce algorithm are the map function and the re-

duce function. If we can solve a problem by first dividing it to be independent

sub-problems, and then merge all the results from the sub-problems to produce the

answer, we can build a parallel solution to speed up the computation by applying the

MapReduce model. In the mapper stage, the processing of each input 〈key, value〉

pair is independent, and the map function is always stateless; so that we can parallel

the input data processing by employing as may mappers as possible. In the reduce

stage, we run a sequential algorithm on all the values with the same key. Also, there

should not be any relationship between value groups. Therefore, we can parallel

28



Input File

Split 0

Split 1

Split 2

Split 3

  

Mapper

Mapper

Mapper

Mapper

<Key, Value>

<Key, Value>

<Key, Value>

<Key, Value>

<Key', Value'>

<Key', Value'>

<Key', Value'>

<Key', Value'>

Shuffle

Combiner

Combiner

Combiner

Combiner

Reducer

Reducer

Reducer

Output

Output

Output

Figure 2.4: Basic structure of MapReduce programming model

the result generation by fire multiple reducers to process different value groups at

the same time. Thus, the MapReduce model is most attractive for embarrassingly

parallel problems [29].

2.8.2 Hadoop MapReduce Framework

Hadoop MapReduce is an open source software framework for developing and running

MapReduce applications on large clusters to processing vast amounts of data [11, 12,

30]. This software framework works on the top of Hadoop Distributed File System

(HDFS), which is a distributed file system designed to run on low-cost hardware.

HDFS can support high throughput data access and highly fault-tolerant services

[31]. Hadoop MapReduce framework is not only providing the basic functionalities,

which are described by the basic Map-Reduce model, but also carrying more features

to help developing applications. In Hadoop, the data input and output streams are

directed by directory paths in HDFS. The basic structure of Hadoop is shown on

Figure 2.5.

The Hadoop framework works in the following way for a MapReduce round. First

of all, the data files from the HDFS are loaded using the InputFormat interface. The
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InputFormat interface specifies the input of the Mapper function and splits the input

data as required. The Mapper interface receives the partitioned data and emits inter-

mediate 〈key, value〉 pairs. Before delivering the mapper results, there is an optional

combiner which can be used to do local result aggregation to reduce network traffic.

The Partitioner interface receives the intermediate 〈key’,value’〉 pairs and controls the

partitioning of these keys for the Reducer interface. Then the Reducer interface re-

ceives the partitioned intermediate 〈key’,value’〉 pairs and generates the final output

of this MapReduce round. The output is received by the OutputFormat interface and

provides it back to HDFS. Additional to the original MapReduce programming model,

the HDFS provides functionality called distributed cache for distributing small data

files which are shared by all the worker nodes. The distributed cache provides local

access to the shared data. This feature is very useful for implementing real-world

problems.

The Hadoop MapReduce framework provides full functionalities for pure MapRe-

duce problems, and it also has flexibility to build customized solutions around MapRe-

duce. Through the InputFormat, we can define the way the input file is split to adopt
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the existing data. The Partitioner supports customizing intermediate result grouping

which might be very useful. The Outputformat can be used to define the shape of

file results. The distributed cache is helpful when supporting information is needed

in the worker nodes to do processing. In the study presented in this thesis, we used

Hadoop as the core piece of our analysis system.

2.8.3 Big Data Tools

In our study, rather than Hadoop, there were two big data tools which were used

to provide additional features for the analysis system, which are Apache Hive, and

Pentaho. Apache Hive is a data warehouse which builds on top of HDFS and Hadoop

for data query and analysis [16, 17]. It provides a SQL-like language, called Hive

Query Language (HQL), to support data query on HDFS through MapReduce pro-

cess. In our study, Hive is used to store, manipulate, and filter the input data as well

as the output results. Pehtaho is an open-source business intelligence software which

provides a series of tools to build a work flow [32]. In our study, Pentaho was used

to develop the user end interface and job scheduler.
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Chapter 3

QuPARA MapReduce Framework

In this chapter, we propose a framework, Query-Driven Large-Scale Portfolio Ag-

gregate Risk Analysis (QuPARA), for aggregate analysis that facilitates answering a

rich variety of ad hoc queries in a timely manner. A key characteristic of the pro-

posed framework is to allow users with extensive mathematical and statistical skills

but perhaps limited programming background, such as risk analysts, to pose a rich

variety of complex risk queries. The user formulates their query by using an SQL-like

syntax to a set of filters. The framework then answers the query based on these

filters, without requiring the user to make changes to the core implementation of the

framework or to reorganize the input data of the analysis. The challenges that arise

due to the amounts of data to be processed and due to the complexity of the required

computations are completely encapsulated within the framework and hidden from the

user.

3.1 Hadoop Ecosystem for Reinsurance Analytics

QuPARA is a framework that fits complex simulation based exploratory reinsurance

risk analytics into big data and web analytics techniques. In the very early stage

of designing QuPARA, we considered to use online analytical processing (OLAP)

techniques to enable large-scaled reinsurance risk analysis. OLAP allows users to

selectively extract and view data in various aspects [33]. In reinsurance risk analysis,

OLAP is suitable for filtering and extracting input data. However, simulation based

analysis does not fit in OLAP due to the complexity of dynamic simulation, stochastic
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calculations, and varied dataflow. Alternatively, we used a combination of MapReduce

and web analytics techniques, which include Hadoop, Hive, and Pentaho, to achieve

exploratory reinsurance risk analysis.

The combination of Hadoop, Hive, and Pentaho gives us many of the features

we need to achieve a framework for reinsurance risk analysis. The Monte Carlo

simulation in the analysis appears to fit in MapReduce programming model because

the calculations between simulation trials are highly independent. Comparing to other

parallel model, such as shared memory (OpenMP) or message passing (MPI), Hadoop

provides a simple model of parallelism with fault-tolerance mechanism to ensure a

successful completion of an analysis job even after some components in the system

are not working properly. Hive provides a standard way to query and filter large data

sets in an ad hoc manner. Pentaho gives ability create a workflow to link and organize

all the components in the risk analysis process. QuPARA is not as efficient as the

production risk analytic systems; however, with carefully design, implementation, and

optimization, the performance can be improved to be competitive to the production

systems.

3.2 Framework Overview

This section gives an overview of the QuPARA framework. Figure 3.1 visualizes the

design of QuPARA. The framework is split into a front-end offering a query interface

to the user, and a back-end consisting of a distributed file system, data filters, and a

core engine. The query interface is built to allow users to specify queries to customize

the analysis process. The distributed file system is used as the storage of all the

data used in QuPARA to guarantee high disk throughput and availability of data.

The data filters are used to retrieve the data required to answer the query from

the portfolio. The different parts of the query entered through the query interface

control the behavior of these files. The Aggregate Risk Analysis (ARA) algorithm is

33



QUERY 
INTERFACE

W
eb

 P
or

ta
l

Ad hoc
Request

User

DISTRIBUTED FILE SYSTEM (DFS)

CORE ENGINE

Data FILTERS

MAPPER COMBINER REDUCER

Map Function Combine Function Reduce Function

Portfolio 
Table(PFT) 

<T2>

Year Event 
Table(YET)

<T1>

Exposure Data Pool (EDP) 
<T4> Event 

Catalogue 
Table (ECT) 

<T8>

Layer Filter ELT Filter Event Filter

LLT <T3> CELT
<T6>

YELT <T7> YRPLT 
<T10>

Reduce Key 
Generator

PYRPLT 
<T11>

Pruned Event 
Catalogue Table <T9>

Q2Q1

Q3

Q4

Q5

Q6

Analysis 
Result Table

<T12>

LEGEND

COMPONENT

SUB-
COMPONENT

Table on the 
File System

Function

Filter

Data Flow

Query Flow

Extended Event 
Loss Table(XELT)

<T5>

Figure 3.1: The Query-Driven Portfolio Aggregate Risk Analysis (QuPARA) frame-
work design

implemented in the core engine, which utilizes the MapReduce programming model,

to exploit parallelism to carry out the Monte Carlo loss aggregation calculations.

3.2.1 Query Interface

The query interface offers a web-based portal where the user can issue ad hoc queries

in a SQL-like syntax. The queries are passed to the data filters and the core engine

to customize access to input data, aggregation rules, and the production of analysis

results. When a query has been processed, the user can access the result through the

web-based portal. The basic idea of building the query interface is to allow the user

to access all the features in QuPARA without knowing the actual implementation of

the back-end components.

We analyzed a wide range of ad hoc rick analysis queries and discovered that they

can all be expressed by specifying a numbers of sub-queries to different components

in the QuPARA framework. In this framework, we employed six basic sub-queries,

which are explained in detail in Section 3.5.
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3.2.2 Distributed File System

The distributed file system is the major data storage used by QuPARA supports large

files, provides high aggregate throughput and is highly scalable. A distributed file

system can be deployed on a cluster with hundreds of nodes and support millions of

files. Each node of the cluster can access the data in the file system the same interfaces

and semantics as for local files. In QuPARA, the distributed file system stores the

Portfolio Table (PFT), the Exposure Data Pool (EDP), which contains all portfolio-

linked extended event loss tables, as well as the Year Event Table (YET). The raw

portfolio data and exposure data can be directly accessed by the workers (mappers,

combiners and reducers) in the MapReduce process. The YET is sent through the

MapReduce input interface to split and distribute it across all the mappers to achieve

parallelism in aggregate loss calculations. At the end of the computation, the result

data is written back to the distributed file system.

3.2.3 Data Filters

QuPARA incorporates three data filters that allow the user to focus their queries

on specific reinsurance layers and exposure data. These filters select the appropriate

entries from the data tables they operate on for further processing in the MapReduce

components in the Query Engine. The three filters are the layer filter, the ELT filter

and the event filter.

Layer Filter

The layer filter, extracts the set of layers from the portfolio table, PFT, based on

the user query and passes this list of layers to the mapper as the ”portfolio” to

be analyzed. The filter also unions the elt IDs fields, which is a set of exposure

data table identifiers, of the selected layers to construct a set of elt IDs of required

35



Extended Event Loss Tables (XELTs) and then passes this set to the ELT filter for

selection of the relevant XELTs.

ELT Filter

The ELT filter is used to select, from the EDP, the set of XELTs to be used in the

analysis. The Event Loss Table (ELT) filter extracts from the set of elt IDs received

from the layer filter a subset of elt IDs whose corresponding XELTs satisfy certain

requirements. For example the ELT filter can be used to exclude exposures in certain

regions from the analysis. The ELT filter then retrieves the corresponding set of

XELTs and passes them to the mapper.

Event Filter

The event filter selects event features from the Event Catalogue Table (ECT) to

provide the grouping information to the combiner. The event filter can be used to

build different aggregation rules to express the analysis results of various levels of

detail.

3.2.4 Core Engine

The core engine employs the MapReduce programming model to evaluate the query

using a single MapReduce round, which consists of a map/combine step and a reduce

step. During the map step, the engine uses one mapper per trial in the YET to

calculate the event portfolio loss, lPF , in Algorithm 1 on page 18, to populate the

Year Event Loss Table (YELT). The combiner and reducer collaborate to aggregate

portfolio losses and produce the final analysis results for the query. There is one

combiner per mapper. The combiner pre-aggregates the loss information produced

by this mapper, in order to reduce the amount of data to be sent across the network to

the reducer(s). The reducer(s) then carry out the final aggregation. In most queries,
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which require only a single loss distribution as output, there is a single reducer. Multi-

marginal analysis is an example where multiple loss distributions, which contain one

per subset of the potential contracts to be added to the portfolio, are computed. In

this case, we employ a separate reducer to produce each output distribution. In the

following sections, we describe the date organization of each table, and then discuss

the mapper, combiner, and reducer components of QuPARA in more detail.

3.3 Data Organization

The data used by QuPARA is represented as a number of tables. In the design of

the QuPARA framework, we use 12 data tables (T1...T12) which include all the input,

intermediate and output data. In this section, we discuss the 12 data tables used by

QuPARA in detail.

3.3.1 Year Event Table (YET)

The Year Event Table (YET), table T1 in Figure 3.1, is the input of the core engine,

T1 in Figure 3.1. This table is stored in the distributed file system. The YET contains

tuples 〈trial ID, event ID, time Index, z PE〉. The trial ID is a unique identifier asso-

ciated with each of the trials in the simulation. A typical YET usually contains more

than one million trials, and each trial consists of hundreds to thousands simulated

catastrophe events. The event ID is a unique identifier associated with each event in

the ECT. The time Index determines the time and order of occurrence of the event

in the trial. The z PE is a random number specific to the program and event oc-

currence. Each event occurrence across different programs has a different associated

random number. This number is used to represent the correlations of event effects

among all the layers in the same program.
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3.3.2 Portfolio Table (PFT)

The Portfolio Table (PFT), table T2 in Figure 3.1, is a meta-data table. This table

stores all contract features associated with each layer. The PFT is stored in the

distributed file system. A simplified PFT contains tuples 〈program ID, layer ID, cob,

lob, top, elt IDs〉. The layer ID is a unique identifier associated with each layer in

the portfolio. The class of business, cob, is an industry classification according to

the perils insured and the related exposure and groups homogeneous risks. The line

of business, lob, defines a set of one or more related products or services where a

business generates revenue. The type of participation, top, describes how reinsurance

coverage and premium payments are calculated in reinsurance contracts. The elt IDs

is a list of (extended) event loss table identifiers that are covered by the layer.

3.3.3 Layer List Table (LLT)

The Layer List Table (LLT), table T3 in Figure 3.1, is an in-memory list of the

mapper component in the core engine. The LLT contains the financial terms and

layer features of a subset of layers in the PFT. The LLT is a product of the layer

filter, which filters the layers in the PFT according to user query. The basic LLT

contains tuples 〈layer ID, occ Ret, occ Lim, agg Ret, agg Lim, elt IDs〉. Each entry is

a simplified contract representation of the layer identified by layer ID. The occ Ret is

the occurrence retention or deductible of the insured for an individual occurrence loss.

The occ Lim is the occurrence limit or coverage the insurer will pay for occurrence

losses in excess of the occurrence retention. The agg Ret is the aggregate retention or

deductible of the insured for an annual cumulative loss. The agg Lim is the aggregate

limit or coverage the insurer will pay for annual cumulative losses in excess of the

aggregate retention. elt IDs is a list of identifiers of (extended) event loss tables that

store the exposure data covered by the layer.
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3.3.4 Exposure Data Pool (EDP)

The Exposure Data Pool (EDP), table T4 in Figure 3.1, is a meta data table stored in

the distributed file system. The EDP contains exposure characteristics of the XELTs.

A simplified EDP contains tuples 〈elt ID, region, peril〉. Each such entry associates

a particular type of peril and a particular region with the XELT with elt ID.

3.3.5 Extended Event Loss Table (XELT)

The Extended Event Loss Table (XELT), table T5 in Figure 3.1, is an extension of

the original exposure data table ELT and is stored in the distributed file system.

In contrast to a ”normal” ELT, which records only expected loss values for events,

the XELT stores information about the loss distribution of each events it contains.

This information allows us to use the secondary uncertainty method for stochastic

loss estimation of catastrophe events. The XELT contains tuples 〈event ID, z E,

mean Loss, sigma I, sigma C, max Loss〉. The event ID is the unique identifier of an

event in the event catalogue. z E is a random number specific to the event occurrence.

Event occurrences across different programs have the same random number. The

mean Loss denotes the expected loss incurred if the event occurs. The max Loss

is the maximum expected loss incurred if the event occurs. sigma I represents the

variance of the losses which directly caused by the event. sigma C represents the

variance of the correlated losses which occur simultaneously from the event.

3.3.6 Combined Event Loss Table (CELT)

The Combined Event Loss Table (CELT), table T6 in Figure 3.1, is constructed by

each mapper from the extended event loss tables corresponding to the user’s query. It

combines the information in these XELTs and allows the loss information associated

with an event in a particular XELT to be looked up using the corresponding 〈event ID,
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elt ID〉 pair as key. As such, the functionality of the CELT can be achieved by

performing lookups directly on XELTs, but we discuss in Chapter 5 how to implement

the CELT so that lookups become substantially faster than directly on XELTs.

3.3.7 Year Event Loss Table (YELT)

The Year Event Loss Table (YELT), table T7 in Figure 3.1, is an intermediate table

produced by the mapper for consumption by the combiner. It contains 〈trial ID,

event ID, time Index, estimated Loss〉 tuples. Each of the tuples in the YELT rep-

resents a final portfolio loss in an event. The YELT is not physically created in

memory in the mappers since the mapper immediately sends each of the tuples to

the combiner. However, the combiner may assemble this in-memory if it has to sort

the entries it receives before aggregating them.

3.3.8 Event Catalogue Table (ECT)

The Event Catalogue Table (ECT), table T8 in Figure 3.1, is the master catalogue

of catastrophic events that contains a detailed description of each such event that

may occur in the simulation. In our study, we used a simplified ECT that stores only

the basic characteristics of the events as 〈event ID, region, peril〉 tuples associating a

region and a type of peril with each event.

3.3.9 Pruned Event Catalogue Table

The Pruned Event Catalogue Table, table T9 in Figure 3.1, may contain 〈event ID,

region〉, 〈event ID, peril〉, or 〈event ID, region, peril〉 depending on the user query.

This table is a product of the event filter, which is used to provide grouping informa-

tion for simulation events. The table is stored in memory in the combiner.
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3.3.10 Year Region Peril Loss Table (YRPLT)

The Year Region Peril Loss Table (YRPLT), table T10 in Figure 3.1, is an intermediate

table that is produced by the combiner for consumption by the reducer. The YRPLT

contains tuples 〈trial ID, time Index, region, peril, estimated Loss〉, listing for each

trial the estimated loss at a given time, in a given region, and due to a particular type

of peril. This table is an aggregated version of the YELT, based on the user query.

3.3.11 Pruned Year Region Peril Loss Table (PYRPLT)

The Pruned Year Region Peril Loss Table (PYRPLT), refers to the T11 in Figure

3.1, contains the grouped losses which are used by the reducer to generate the final

result. This table is stored in the reducer component in the core engine, and contains

〈trial ID, group ID, grouped Loss〉 tuples. All the entries in this tale share the same

group ID, which is assigned by the reduce key generator. In this table, there is only

one entry for each trial ID.

3.3.12 Analysis Result Table

The Analysis Result Table, table T12 in Figure 3.1, is stored in the distributed file

system and contains the final result produced by the core engine. The content of

the table depends on the user query, which defines the final output from the reducer.

For example, if we want to create a statistical distribution of the portfolio losses, the

Analysis Result Table contains 〈trial ID, loss〉 tuples. The user interface then uses

these loss values to visualize the loss distribution.

3.4 Core Engine and MapReduce Algorithms

As already discussed, the core engine utilizes the MapReduce programming model to

process aggregate risk analysis queries in parallel. Thus, its computation is divided
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into three parts: the mapper, the combiner and the reducer. Each mapper receives

one trial in the YET as input, and produces event-layer level loss information. The

combiner associated with each mapper aggregates the loss information from the map-

per to produce trial-portfolio level loss information. Finally, the reducer generates

the analysis output based on the aggregated loss information from the combiners.

Depending on the user query, one or more reducers are used to produce the final

query output. Next we discuss these components in detail.

3.4.1 Mapper Algorithm

Each mapper retrieves the layer list and the set of required XELTs from the dis-

tributed file system using the layer filter and the ELT filter. The layer filter retrieves

the layer subset from the PFT and then deliver it to the mapper to create a LLT.

The LLT contains all the contract-related financial terms, which are needed in the

loss calculations. The layer filter also retrieves the identifiers of the XELTs contained

in the subset of layer and passes these identifiers to the ELT filter. The XELTs with

these identifiers form the base XELT set. If the user query specifies, for example,

that the analysis should be restricted to a particular type of peril, the ELT filter then

extracts the subset of XELT identifiers corresponding to the specified type of peril

from the base XELT set, and delivers information about where the corresponding

XELTs are stored to the mappers. Given this information, the mapper retrieves the

actual XELTs from the storage and constructs an in memory lookup table, called the

CELT, to support the lookup of loss information associated with each event in each

of the XELTs.

Algorithm 2 shows the computation of the mapper. It takes an entire trial as

input, represented as a pair 〈T,E := {E1, E2, . . . , Em}〉, which T is a unique trial

identifier and E represent the set of events in this trial. It then iterates over the

sequence of events in its trial, looks up the XELTs recording non-zero losses ljEi for
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each event Ei ∈ E. The loss estimate of the event Ei is done by iterating through

every layer L in the LLT to generates the corresponding 〈trial, event, loss〉 tuple in

the YELT, taking each XELT’s and layer’s financial terms into account.

Input : T,E := {E1, E2, · · · , Em}, where m is the number of events in a trial
Output: A list of entries 〈T,Ei, lPF 〉 of the YELT

1 for each event, Ei in E do
2 Look up Ei in the CELT and find the set lEi = {l1Ei , l

2
Ei
, · · · , lnEi} of loss

values recorded for event Ei in the XELTs covered by the CELT
3 for each layer, L, in the LLT do
4 for each ELT ELTj covered by L do

5 Lookup ljEi in lEi
6 Apply Secondary Uncertainty to ljEi (Optional)

7 Apply Beneficial Financial Terms of ELTj to ljEi
8 lL ← lL + ljEi
9 end

10 Apply L’s Occurrence Financial Terms to lL
11 Apply L’s Aggregate Financial Terms to lL
12 lPF ← lPF + lL
13 end
14 Emit(〈T , Ei, lPF 〉)
15 end

Algorithm 2: Map Function in the Core Engine

3.4.2 Combine Algorithm

The combiner is responsible for aggregating the per-event losses to produce per-trial

losses. The aggregation done by the combiner depends on the query. In the simplest

case, a single loss distribution for the selected set of layers and XELTs is to be com-

puted. In this case, the combiner sums the loss values in the YELT from the mapper

and then sends this aggregate value to the reducer. A more complicated example

is the computation of a weekly loss distribution. In this case, the combiner would

group the losses corresponding to the events in each week and send each aggregate

to a different reducer. Each reducer is then responsible for computing the loss distri-

bution for one particular week. There are many other scenarios in which the event
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level losses need to be aggregated by characteristics, such as region and peril. Also,

the user may want to filter out a particular set of events. Therefore, we construct a

sub set of the ECT in the combiner with assistance from the event filter to provide

event information to the combine function.

The details of the combiner are shown in Algorithm 3. The function receives as

input the list of triples 〈T , Ei, lPF 〉 generated by a single mapper, that is, the list of

portfolio loss values for the events in one specific trial. The combiner groups these

loss values according to user-specified grouping criteria and outputs one aggregate loss

value per group to populate the YRPLT. The entries in the YRPLT pass through

the reduce key generator, which assigns a key to each entry that identifies the reducer

the entry is to be sent to. The reduce key generator is implemented as a secondary

grouping technique which allows the user to specify queries to reject, combine, or

duplicate loss group. For example, we may need to send the loss group of a single

combiner to multiple reducers to achieve portfolio combinations in the multi-marginal

analysis.

Input: A list of YLT entries 〈T , Ei, lPF 〉 for the events in a given trial T .
Output: A list of aggregate YLT entries 〈Gi, T , lG〉 with key Gi for the event

groups in trial T

1 Join input tuples with event catalogue to annotate events with their attributes
(region, peril, etc.)

2 Group events in the input list by event features according to the user’s query
3 for each group Gi do
4 lGi ← sum of the loss values associated with the events in Gi in trial T
5 Ri ← ReduceKeyGenerator(Gi, T)
6 for each R ∈ Ri do
7 Emit(〈R, LG〉)
8 end

9 end
Algorithm 3: Combine Function in the Core Engine
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3.4.3 Reduce Algorithm

The reducer is the final component of the core engine which formats and outputs the

final analysis results. The input of each reducers is a set of trial loss values with the

same group key, which we call the PYRPLT. The PYRPLT is a subset of the YRPLT

in the combiner. The reducer function, shown in Algorithm 4, receives as input the

loss values for one specific group and for all trials in the YET. The reducer then

aggregates these loss values into the loss statistic requested by the user. The default

result query to the combiner is to output the loss distribution of the groups. In this

case, the reducer delivers the raw loss data directly to the distributed file system, and

then the query interface visualizes the data by creating a histogram based on the loss

values to express the distribution. However, the user might assign queries to generate

special views of the results. For example, to generate Probable Maximum Loss (PML)

values, the reducer need to sorts the received loss values in increasing order, and then

for each user-specified return period p, report the corresponding probable maximum

loss value.

Input: A list of loss tuples 〈Ri, lPF 〉 for an event group Gi.
Output: Loss statistics for event group Gi based on user’s query

1 Based on user query, generate:
(i) Group loss distribution, or
(ii) Group loss statistics, or
(iii) Group Probable Maximum Loss (PML) and/or Tail Value at Risk (TVaR)

Algorithm 4: Reduce Function in the Core Engine

3.5 User Query

The motivation for building QuPARA is to be able to answer a rich variety of ad

hoc risk analysis queries. The user can specify SQL-like queries to modify the input

data, analysis process, and result representation. In QuPARA, there are six queries,

referred as Q1...Q6 in Figure 3.1, which the user can use to influence the analysis
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process. Based on the functionality of each query provided, we divide the queries into

three categories: data filtering queries, loss grouping queries, and result reporting

queries. The default analysis scenario in QuPARA is the portfolio aggregate risk

analysis, which generates a loss distribution for the whole portfolio. If the users does

not specify one of the queries Q1...Q6 above, the default query that is used to analyze

this default scenario is used. In this section, we discuss the queries in detail and give

the default queries for the default analysis scenario.

3.5.1 Data Filtering Queries

There are three data filtering queries, Q1, Q2 and Q3 in Figure 3.1, that are used by

the different filters in QuPARA to extract the entries relevant for the analysis from

the data tables.

Q1 is the query to be processed by the layer filter. This query defines the layers

in the PFT to be processed in the analysis. In the default analysis, we are interested

in performing the analysis on the entire portfolio. Therefore, the default query for

Q1 is:

SELECT ∗ FROM PFT

Q2 is the query to be processed by the ELT filter to extract the relevant XELTs

from the EDP to provide exposure loss data in the analysis calculations in the mapper

component in the core engine. After the layer filtering process is done in the layer

filter, a relevant set of elt IDs will be send from to the ELT filter. The ELT filter

will extract all the tuples from the EDP which the elt ID are in the set to form

a base XELT set. If there is a user requirement specified, for example, excluding

exposures in certain regions from the analysis, the requirement will be applied on the

base XELT set to form the final XELT set. Otherwise, the base XELT set will be

used as the final XELT set to do the analysis. In the default analysis, there is no

additional user requirement specified and then the default query of Q2 will be pushed
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to the layer filter is:

SELECT ∗ FROM EDP

WHERE elt ID IN {elt IDs}

Q3 is the query to be processed by the event filter to extract the event features

from the ECT to support loss grouping in the combiner. The event filter also allows

us to exclude certain events, such as flood events, from the analysis. This query is

not used by default since in the default analysis we group all event losses in a trial

together and do not care about the differences of the events. Therefore, the default

query for Q3 is to select only the event ID field of all events in the ECT :

SELECT elt ID FROM ECT

3.5.2 Loss Grouping Query

There are two loss grouping queries, Q4 and Q5, that are used by the combiner to

determine which trial-event losses are aggregated in the final result. Q4 is used to

control aggregation in the combiner before sending these aggregated results to the

reducer. Q5 is used by the reduce key generator to control which loss values are sent

to the same reducers for aggregation.

Q4 is the query to be processed by the combine function to specify the grouping

rules for the event losses in the same trial in YELT. The event losses can be grouped

by their characteristics, such as region or peril, as well as by time frame in a year. In

the default analysis, all the event losses are combined to produce a single trial-level

loss. Therefore, the default query for Q4 is:

SELECT trial ID, TRIAL SUM(estimated Loss)

FROM YELT

Q5 defines aggregation groups for the losses in different trials. The reduce key

generator assigns to each loss group in the YRPLT one or many reduce keys for
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producing the final result in the reducer. For most of the analyzes, only one key is

assigned to each grouped trial loss. However, in case of multi-marginal analysis, we

need to generate different loss combinations of the base portfolio and joining layers

to examine the impact of accepting new contracts into the portfolio. In the default

portfolio aggregate risk analysis, we output all the trial losses in one table, and then

generate a portfolio loss distribution based on this table. Therefore, the reduce key

generator assigns the same key to the losses in the YRPLT. This is expressed by the

following default query:

SELECT trial ID, estimated Loss

FROM YRPLT

GROUP BY TRIAL

3.5.3 Result Reporting Query

The result reporting query, Q6, is used to define the final output of the analysis. This

final output could be a loss distribution, loss statistics, risk quantification metrics,

or a Exceedance Probability (EP) curve. In the standard analysis, the result of the

analysis is the statistical distribution of the portfolio loss. Thus, no aggregation is

required in the reducer, that is, the reducer simply outputs all entries in the PYRPLT

is receives. This is expressed by the following default query:

SELECT ∗ FROM PYRPLT

3.6 Loss Grouping

The combiner performs loss grouping based on the user query Q4 to aggregate per-

event losses into trial-level losses. After joining the YELT with table T9, the event

losses may be grouped according to three fields, which are time index, region, and

peril. The user query Q4 may specify rules which use one or more of these fields
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for grouping. If there is only one grouping rule specified in Q4, we will firstly sort

the YELT by the filed used for grouping and sum the event losses in each group to

create a table of grouped losses. For example, if Q4 request the losses are grouped by

region, we sort the event losses by their region fields, and then sum the losses with

the same region. In a more complicated scenario, there are multiple grouping rules

specified in Q4. For example, the user may ask for a loss distribution by peril, region

and season of the year. In such a scenario, it is necessary to sort the event losses by

multiple attributes to produce the event groups. In such a scenario, we always sort

the losses in a trial primarily by time index, and then create loss groups to represent

seasons. Afterwards, in each season, the losses are sorted by region, and then by

peril. After the sorting is done, the event losses in the smallest sub-groups in each

season are aggregated to create a grouped loss with a unique combination of event

characteristics as the group key G.

3.7 Reduce Key Generator

The reduce key generator uses the user query Q5 to assign a reduce key to each of the

loss values produced by the combiner. Usually, since the group key G is built by a

unique combination of event characteristics, it can be used directly as the reduce key.

However, in certain circumstances, such as multi-marginal analysis, the same loss

group may be used many times in different combinations of the base portfolio and

additional layers. Assuming we have a base portfolio PF and three additional layers

L1, L2, and L3. If we want to add two of the three layers to the portfolio, we need

to compare the different combinations, which are PFL1L2, PFL1L3 and PFL2L3,

to select the best two layers. The combinations cannot be achieved by the reducer

by assigning a single key to each of the loss groups. In multi-marginal analysis, the

reduce key generator holds a complete ordered set of the additional layers and assigns

one or multiple reduce keys R to each loss group value, one per combination of base

49



portfolio and additional layers the loss value participates in. This ensures that the

loss value is sent to multiple reducers, each of the reducers produces a loss distribution

for one combination of base portfolio added layers.

3.8 Final Result Production

The reducer produces the final result based on the output from the combiner and

then forwards the output to the Distributed File System (DFS) according to the user

query Q6. The input received nu a reducer is a set of loss values with the same reduce

key. A typical request to QuPARA is to generate an annual portfolio loss distribution.

Therefore, a trivial reducer is used, which outputs all the loss values it receives. For

other queries, such as loss statistic or risk quantification metrics, different statistical

functions are applied on the loss set to generate the results.

3.9 Scenario Risk Analysis Query Example

In this section, an example of an ad hoc request on QuPARA is given to illustrate the

use of queries Q1 ... Q6 to express this request. The request is to generate a report on

seasonal PML with confidence level of 99% due to hurricanes and floods that affect

all commercial properties in different locations in Florida.

Q1: The first part of processing any user query is the query to be processed by the

layer filter. In this case, we are interested in all layers covering commercial

properties, which translate into the following SQL query:

SELECT ∗ FROM PFT

WHERE lob IN commercial

Q2: The second query is passed to the ELT filter to extract the XELTs relevant for

the analysis. In this case, we are interested in all XELTs in the ELT set, elt IDs,
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returned by query Q1 and which cover Florida (FL) as the region and hurricanes

(HU) and floods (FLD) as perils:

SELECT ∗ FROM EDP

WHERE elt ID IN elt IDs

AND region IN FL

AND peril IN {HU, FLD}

Q3: This query is provided to the event filter for retrieving event features required

for grouping estimated losses in the YELT. In this case, we are interested in

grouping losses by different perils. Therefore, we need to extract the region

information for each event from the ECT to support loss grouping in the com-

biner.

SELECT elt ID, peril FROM ECT

Q4: This query is provided to the combiner for grouping all event losses in a trial in the

YELT based on their grouping attributes. In this case, the grouping attributes

are the time Index and the peril associated with each event. The combiner

first partitions all event losses into 4 buckets based on their time Index values.

In each bucket, event losses, which share the same peril, in the same trial are

combined together to create a trial-level peril loss in a particular season. In the

end, all the zero losses will be discarded. In this example, since we only use the

hurricane and flood exposure data in Florida, all event losses in other locations

and perils will be evaluated as zero and discarded.

SELECT trial ID, TRIAL SUM(time Index, 4, peril, estimated Loss)

Q5: This query is provided to the combiner to define the reduce groups for the es-

timated losses in loss groups in different trials. The reducer receives all losses

with the same reduce key and then produce results. In this case, we have eight

reduce groups which are the mix of four seasons and the two peril groups.
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SELECT trial ID, estimated Loss

FROM YRPLT

GROUP BY peril, SEASON(4)

Q6: This query is provided to the reducer to define the final output of the user request.

The seasonal PML with 99% confidence level is estimated by the PML function.

As the result, since there are eight reduce groups, we will receive eight PML

values, one per season/peril group.

SELECT PML(0.01) FROM PYRPLT
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Chapter 4

QuPARA System Implementation in Hadoop

In this chapter, we present an implementation of QuPARA based on Apache Hadoop,

Apache Hive, and Pentaho. Apache Hadoop [12] is an open-source software framework

that implements the MapReduce programming model. We used Hadoop to implement

the core engine in the QuPARA framework. Apache Hive [16] is a data warehouse

system built on top of the Hadoop Distributed File System (HDFS) and Hadoop. Hive

supports data summarization and ad hoc queries using SQL-like language called Hive-

QL. We used Hive to implement the data filters in QuPARA. Pentaho [32] is used to

build a web-based user interface to interact with the system users and translate the

user requirements into ad hoc queries to perform specialized risk analysis in QuPARA.

4.1 System Overview

In Chapter 3, we described the design of QuPARA in terms of the abstract MapRe-

duce programming model. In this Chapter, we describe a practical and efficient

implementation of QuPARA that based on the abstract framework design presented

in Chapter 3. The implementation addresses the constraints pointed by real system

software (Hadoop, Hive, and Pentaho) and hardware. During the implementation,

significant work was required to realize the framework design in a practical running

analysis system.

Figure 4.1 illustrates the implementation of QuPARA. The communication pipelines

(P1 ... P6) between subsystems are used to transfer data and queries. The analysis

begins when a user fills an analysis request with specifications using the Pentaho
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Figure 4.1: Overview of the final implementation of QuPARA

Query Interface. The Pentaho Query Interface transforms the specifications into a

set user queries, which were introduced as Q1 ... Q6 in Section 3.5 on page 45. The

user queries are divided into three groups, which are data filtering queries, loss group-

ing queries, and a result reporting query. The data filtering query is passed into the

Hive Data Filter through P1. The Hive Data Filter executes the data filtering queries

and pass the results through P2 to HDFS. To initiate the risk analysis, the Pentaho

Query Interface passes the loss grouping queries and the result report query to the

Hadoop Core Engine through P3. The Hadoop Core Engine reads input data from

HDFS through P4. At the end of the analysis, the Hadoop Core Engine delivers the

analysis result to the HDFS through P5. Finally, the Pentaho Query Interface extract

the analysis results from the HDFS through P6 and generate a result report as the

output for the user.

4.2 Hadoop Core Engine

The Hadoop Core Engine is an implementation of the core engine, refer to Figure 3.1

on page 34, in Apache Hadoop. One significant issue we had to address during the

implementation of the core engine was that a single worker node does not have enough

memory to store all XELTs relevant to a large portfolio. In many cases, the complete

CELT is too large to be held in the memory on a single worker. In order to address
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this constraint, we decided to split the loss calculations in the aggregate analysis by

breaking the portfolio into multiple sets of layers, and then distribute these layer sets

over multiple loss calculation MapReduce jobs to do loss calculations for each layer.

Afterwards, we aggregate all the results from the loss calculation MapReduce jobs to

generate the final result. In practice, a two-round MapReduce approach was required

in implementing the core engine instead of the single round MapReduce approach

described in Chapter 3 in order to address the memory constraint.

Figure 4.2 shows the internal structure and workflow of the Hadoop Core Engine.

The engine is split into three components, which are the batch job scheduler, the

Loss Calculation MapReduce Round (LCR), and the Loss Aggregation MapReduce

Round (LAR). The batch job scheduler is responsible for splitting the input portfolio,

launching MapReduce jobs, and distributing input queries. The LCR is used to

calculate and group losses for each of the layers in the portfolio. The LAR collects

and aggregates the layer losses produced from the LCR to produce the final results.
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4.2.1 Batch Job Scheduler

The batch job scheduler is a program which is used to split the input portfolio, dis-

tribute user queries and launch analysis. The goal of the batch job scheduler is to

divide the analysis job into batch jobs that do not exceed the capacity of the worker

nodes. Since there is overhead associated with the execution of each batch job, the

batch job schedule tries to create the largest individual jobs that can be run. Given

that, there is totally n layers in the portfolio, and each worker can process maximum

k layers. We calculate the number of batch jobs x we need as x = dn/ke.

One approach to schedule the analysis would be to run batched jobs sequentially

with each job using all the computing resources. However, the overhead associated

with executing each job is significant. If we process x batched jobs one by one, we

incur this overhead x times, which degrades the overall performance of QuPARA.

An alternative approach is to run all batched jobs in parallel on p processors,

which incurs job execution overhead just dx/pe times. As we described, we need at

least x batch jobs to complete the analysis, and we want to equally distribute all the

workers to these x jobs to keep load balance. Therefore, the number of processor per

batch job y can be calculated as y = dp/xe. A concern about splitting computing

resources to multiple batched jobs was that it would increase the processing time for

a single job since fewer processors are involved in each job. However, since the total

computation required to process the entire portfolio was fixed, we expected the total

computation time in this parallel approach is the same as in the sequential approach.

The batch job scheduler first receives a set of user queries, which includes loss

grouping queries, and a result reporting query, from the Pentaho Query Interface.

Afterwards, it splits the layers in the portfolio equally into x batch jobs, and then

launches LCR to execute these jobs with the loss grouping queries. After all the batch

jobs in LCR are successfully completed, the batch job scheduler will launch the LAR
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with the result report query to produce the final result.

4.2.2 Loss Calculation MapReduce Round (LCR)

Loss Calculation MapReduce Round (LCR) is the first MapReduce round which is

used to produce intermediate aggregated losses. In LCR, the batch jobs created by

the batch job scheduler are executed in parallel. Each of the batch job takes the same

YET but different LLT and XELTs as the input.

Batch job in LCR combines the roles of the mapper and the combiner in the

QuPARA framework as described in Chapter 3 (see Figure 3.1). In a batch job, the

mapper component, M1 on Figure 4.2, is implemented as same as the mapper in the

core engine as described in Section 3.4.1 on page 42. The reducer in the batch job,

R1 on Figure 4.2, is implemented as same as the combiner in the core engine as

described in Section 3.4.2 on page 43. Therefore, the intermediate results produced

by the batch jobs are PYRPLT entries as described in Section 3.3.11 on page 41.

4.2.3 Loss Aggregation MapReduce Round (LAR)

Loss Aggregation MapReduce Round (LAR) is the second MapReduce round which

collects all the intermediate results from LCR to produce the final result of the analy-

sis. The input of LAR is consumed by a trivial mapper, and then the PYRPLT entries

are emit to the reducer(s), R2 on Figure 4.2, based on their group/ID. The reducer

in LAR is implemented based on the concepts and the reduce algorithm described in

Section 3.4.3 on page 45.

4.3 Hive Data Filter

The component data filters in the original QuPARA framework design, refer to the

Figure 3.1, was implemented as the Hive Data Filter by using Apache Hive. In

this implementation, the tables, which are PFT, EDP, and ECT, were not stored as
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raw data in the HDFS but as the form of data tables in the Hive data warehouse.

The layer filter, ELT filter, and event filter, described in the original framework

design, implemented using Hive. By using Hive-QL, we could directly execute the

data filtering query to extract data from the data tables in the Hive data warehouse.

The behaviors of data filters was changed in the final implementation form the

original framework design. In Figure 3.1, we perform data filtering in the process

of MapReduce job. For example, the layer filter and ELT filter are executed by

the mapper to extract data from HDFS to build the LLT and the CELT. Also, the

combiner executes the event filter to extract data to form the Pruned Event Catalogue

Table. However, if we submit the data filtering queries to the filters in each mapper

and combiner in practice, the huge amount of ad hoc query requests to the Hive-QL

engine will cause a significant delay. Since the mapper and reducer cannot progress

until all the input data is received, there will be a large time penalty in the overall

system performance. We observed that all the mappers and combiners in an analysis

execute the same data filtering queries, and they will eventually receive the same

results from the filters. Therefore, instead of executing the queries multiple times

in the MapReduce process, we execute the data filtering queries once to produce an

intermediate result which is stored in HDFS. Then the mapper and reducer only need

to access this intermediate result through the distributed cache, rather than actually

running the query.

4.4 Pentaho Query Interface

The Pentaho Query Interface was used as a user interface to provide easy access of

the QuPARA system. The interface was designed and implemented as a web portal,

and it allows users to initiate analysis by either specifying their requirements in terms

of a set of parameters to form queries or by writing their own queries in a SQL-like

syntax. Figure 4.3 shows the start screen of the Pentaho Query Interface. There are
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Figure 4.3: Pentaho portfolio risk analysis page

three basic component which are the analysis selection menu (1), the user input field

(2), and the QuPARA job scheduler dashboard (3). In this section, we illustrate the

Pentaho Query Interface and explain each component in the interface in detail.

4.4.1 Analysis Selection and User Input

The analysis selection manual, component 1 on Figure 4.3, is used to select a type

of analysis from the analysis options the system supports. On the manual, there

are seven types of analysis, which are portfolio analysis, layer specified analysis, ELT

specified analysis, multi-marginal analysis, STEP analysis, and custom analysis. The

user input field, component 2 on Figure 4.3, allows users to specify parameters to the

selected analysis.

4.4.2 Portfolio Analysis

The default analysis in QuPARA is the aggregate risk analysis which computes a

portfolio loss distribution. In the user input field, as shown on Figure 4.3, there are
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Figure 4.4: Pentaho layer specified analysis page

two parameters which users can specify to initialize the analysis. The first parameter

is used to specify which portfolio to be analysis. The second parameter is used to set

the seasonal grouping rule.

4.4.3 Layer Specified Analysis

The layer specified analysis is shown on Figure 4.4. This page allows users to analyze

a subset of a portfolio. In the user input field on this page, there are five layer filtering

parameters which define the layer characteristics for the analysis. The default values

of these parameters are set to be ”NONE”, which means all layers will be selected.

The layer filtering parameters can be used to select a certain subset of the portfolio.

For example, if we only want to analysis the layers associated with earthquake (EQ),

we can specify ”EQ” in the layer peril coverage input field.
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Figure 4.5: Pentaho ELT specified analysis page

4.4.4 ELT Specified Analysis

The ELT specified analysis is shown on Figure 4.5. This page allows users to specify

which exposure data will be involvedw in the analysis. In the user input field on

this page, there are four parameters which help the users to select or exclude certain

exposure data involved in the analysis. For example, if we want to exclude all the

losses from Japan (JP), we can specify ”JP” in the input filed of ELT reject region.

4.4.5 Multi-marginal Analysis

The multi-marginal analysis page is shown on Figure 4.6. In the multi-marginal

analysis, users want to exam the impact on the performance of a portfolio by adding

new layers into it. There are three parameters on this page, which are the base

portfolio, the adding layer set, and the grouping parameter. The base portfolio is

the portfolio the user currently holds. The adding layers are the new contracts which

the user need to decide to take or not. The grouping parameter specifies the rules of

adding layers into the base portfolio. For example, if the user specifies five adding
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Figure 4.6: Pentaho multi-marginal analysis page

layers, but only want to select the best two of them, the grouping parameter will be

set as 2.

4.4.6 STEP Analysis

The STEP analysis page is shown on Figure 4.7. In this analysis, the user is allowed

to upload its customized event catalogue to create a loss portfolio for un-known event.

The uploaded event catalogue will be used to create a simulation event data, which

is a YET. And then a portfolio will be mapped into this simulation data to generate

the portfolio loss distribution for the new event.

4.4.7 Custom Analysis

The custom analysis page is shown on Figure 4.8. In this page, the user is allowed

to enter the six user queries in SQL-like syntax, which was introduced in Section 3.5

on page 45. On the input fields, if there is no user query specified, the default query

will be applied in the analysis.
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Figure 4.7: Pentaho STEP analysis page

Figure 4.8: Pentaho custom analysis page
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After setting all the parameters for the analysis, there are two options the user

can choose, which are the data preview and the run job options. The data preview

option allows user to check the selected layers and exposure data before executing the

analysis job. When the user hit the run job button, Pentaho will push the job into a

queue in the job scheduler.

4.4.8 Job Schedule Dashboard

The job schedule dashboard, component 3 in Figure 4.3, is a job queue system which

keeps track of the status of the submitted jobs. When the user hit the run job button,

an analysis job will be created and push into the job queue to wait for execution. At

this time, an analysis job entry will appear under the waiting list. After an analysis

is completed, a history record will show on the complete list with a link to the result

report page of the completed analysis.

4.4.9 Result Report

The result report page is the final product of the analysis performed by QuPARA. The

report visualizes the analysis result to the user using various visualization techniques.

A sample result report page, which demonstrates a dummy portfolio distribution, is

shown on Figure 4.9.
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Figure 4.9: Pentaho sample result report page
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Chapter 5

Data Structure Design and Implementation

One of the most costly steps in the aggregate risk analysis algorithm is to retrieve loss

data from the XELTs of each layer in a portfolio. In order to calculate an aggregated

loss for a layer in an event from the YET, we need to look up the event in all XELTs

of the layers to retrieve raw loss data. Since there is no correlation between the orders

of events in the YET and in the XELTs, this amounts to random entry accesses in

random tables. Such random accesses are very time consuming. Our goal in this

chapter is to develop a data structure, the CELT, that can speed up such assesses

momentously.

We start by introducing a dictionary design the CELT. In order to obtain the

most efficient CELT implementation, we carefully select the underlying dictionary

data structures and tune the execution environment parameters. The final CELT

was assembled step by step according to a set of implementation decisions, based on

a series of experiments.

The platform for our sequential experiments was a single node of a Rocks cluster

[34], with 2.66Ghz Quad Core Intel Xeon Processor X3350, 4 GB DDR2 RAM, and

three 1 TB 7200 RPM SATA disk driver. The node runs CentOS 6.3 [35] with Java

version 1.7.0 03 [36]. The maximum Java heap memory size was set to 2 GB for each

experiment. Each input XELT contained 10,000 loss entries and each entry consisted

of one integer and four doubles.
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5.1 XELT Data Generator

Since the choices we made in designing and knowing our CELT implementation was

supported by carefully designed experiments to determine the optimal choices of

underlying data structure and parameters, we first describe the data set we used in

these experiments.

An XELT is an exposure data tables which stores loss information for a certain

type of catastrophic event in a specific geographical division. XELTs are essentially

dictionaries consisting of key-value pairs in which the key is a unique catastrophic

event identifier and the value is the corresponding loss exposure. The number of

entries in a single XELT varies from a few hundred to several millions and the aver-

age number is approximately ten thousand. The number of XELTs associated with

a reinsurance layer may vary and a single XELT may be associated with multiple

layers. On average, there are approximately five unique XELTs per layer. A typical

reinsurance portfolio may include thousands of layers.

The exposure data in a XELT is generated based on the treaty terms, statistical

data associated with each catastrophic event, and property data in different locations.

Each reinsurance company has its unique exposure data set, and the data set serves as

the main loss information source. The exposure data set is property of the reinsurer

and is not transferable. Therefore, we were unable to work with real-world exposure

data in our experiments. Instead, we used synthetic exposure data generated and

collected from catastrophe model data generators with scientific data to simulate

real-world use cases.

The exposure data generation starts by creating a proper Master Event Catalogue

Table (MECT), which records the features of every possible catastrophic event, such

as region, peril, occurrence rate, and severity data. We generated a set of sample

events for each peril from an occurrence distribution that describes this type of peril,
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and then calculate losses for the sample events by using hazard models. For exam-

ple, we can use the Poisson distribution to predict the total number of earthquake

events may occur in a year [37]. Afterwards, we sample this number of earthquake

events from all the earthquake records in the MECT based on their occurrence rates.

Afterwards, we run a earthquake hazard model which uses the severity data of each

occurring earthquake event to against the property data to estimate the losses.

5.2 CELT Data Structure Design

We use simulation data as the starting point for designing and implementing the

Combined Event Loss Table (CELT) to ensure that the final CELT implementation

performs well on real-world data. In the input, each XELT has a unique identifier

represented as a positive integer value. In each XELT, each catastrophic event is

identified by a unique integer value as the unique identifier. The value range of both

XELT identifiers and event identifiers is from 0 to the maximum 32 bit unsigned

integer value, which is 4,294,967,295.

To help with data structure design, we first consider the type of operations that

will be performed on the data structure. The contents of the data structure change

only in the construction stage. After the data structure is built, no updates are

performed. In the aggregate risk analysis algorithm, we perform a series lookups

with different XELT identifiers for each event in the YET to support loss calculations

for different layers in a portfolio.

5.2.1 Direct Access Data Structure

A natural design of the CELT data structure that supports fast lookup operations

based on event identifiers and ELT identifiers is a two-dimensional array. The table

uses ELT identifier as the row index and event identifier as the column index. Insert,
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Figure 5.1: The basic structure of CELT

remove and lookup operations in this table are trivial and take constant time. How-

ever, according to the data description, both ELTs and events have a wide identifier

range. Hence, the table will be very large and most of its entries will be 0. For

example, a portfolio with 1000 layers contains approximately 5,000 ELTs, which may

include around 50 million entries. In contrast, the size of the direct access table is

(4, 294, 967, 295)2. Thus, this data structure would be extremely sparse and have very

low memory efficiency. It is not easy to find a machine that can hold a data structure

of this size in memory. Thus, the direct access table is not an acceptable choice for

our data structure.

5.2.2 Hierarchical Data Structure

We introduce a hierarchical data structure consisting of two lookup layers to imple-

ment CELT. The structure of the data structure is visualized on Figure 5.1. The

first layer of the CELT is a primary event lookup table. The second layer consists of

a pool of secondary ELT lookup tables. A key is an event identifier in the primary

table. The associated value is a pointer to a secondary table that contains all ELT

entries with this event identifier.
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Insert Operation

An insertion into the CELT is split into to two steps. For each event loss entry

in each ELT, we first use its event identifier to lookup the corresponding secondary

table in the primary table, and then insert the entry into the secondary table. If the

in the primary table fails, which indicates that there is no previous loss entry with

this event identifier, we create a new secondary table, insert the new table into the

primary table with this event identifier as key, and then insert the loss entry into the

secondary table. This ensures that only on-empty secondary table are created.

Lookup Operation

To answer a lookup query with a given event identifier and ELT identifier, we first

use the event identifier to look up the corresponding secondary table in the primary

table. If the secondary table does not exist, we stop searching and report failure of

the query. If there is a secondary table associated with the event ID, we use the ELT

identifier to find and retrieve the loss data. This secondary lookup can also fail.

In the aggregate risk analysis algorithm, we perform a series lookups in different

ELTs for each event. Thus, we can optimize the lookup procedure for query sequence

with the same event identifier. In this case, we perform only lookup in the primary

table to retrieve the corresponding secondary table. If the secondary table does not

exist, we can report failure for all queries in the sequence. If we find a secondary

table, we perform a series loss data lookups for the ELT identifiers from in query

sequence. In a modern computer, cache memory accesses are significantly faster than

accesses in to memory. Therefore, we expect to gain overall performance from this

optimized lookup operation.
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5.3 HashMap CELT Implementation

The hierarchical CELT implementation we have just described can be realized using

different choices of representations of the primary and secondary tables. Hash maps

are a normal choice to represent these tables since they support expected constant

time insert and lookup operations. Apart from the Java STL, there are a number of

high-performance libraries that offer alternative hash map implementations, includ-

ing Trove and HPPC. This gives us three different CELT implementations based on

the choice of the underlying hash map implementation. We refer to these as STL

HashMap CELT, Trove HashMap CELT, and HPPC HashMap CELT. We used STL

HashMap CELT as the base line implementation. The Trove and HPPC implemen-

tations were compared and tested to form an optimized CELT.

5.3.1 STL HashMap CELT

The Java Built-in HashMap is a chained hash table, and usually works well when

the number of entries is small. However, as the number of entries grows, the data

structure performance degrades. We use the STL HashMap CELT as the base line

implementation, and its insert time, memory usage, and lookup time are treated as

the baseline for comparisons with other implementations.

5.3.2 Trove HashMap CELT

The GNU Trove library is a free and open-source project that provides high-performance

collections in Java. The library consists of a series of fast, lightweight, and easy to

use collection data structures for Java. In that CELT, both the primary table and

secondary tables used integers as keys and objects as the values associated with

these keys, so we used a HashMap implementation called TIntObjectHashMap from
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Trove library to implement both tables in the Trove HashMap CELT. The TIntOb-

jectHashMap uses open addressing with double hashing.

5.3.3 HPPC HashMap CELT

The name HPPC stands for high-performance primitive collections for Java. HPPC

is a free and open-source project that aims to provide high-performance and mem-

ory efficient collections for Java. We built a HPPC HashMap CELT by utilizing

the IntObjectOpenHashMap implementation from the HPPC library. The IntObjec-

tOpenHashMap uses open addressing with quadratic collision resolution.

In the following sections, we discuss the performance of the three candidate

HashMap CELT implementations and determine the best choice of hash map imple-

mentation. We conducted a series of experiments to determine the best environment

configurations for each of the candidate data structures and then selected the best

one by comparing their performance.

5.4 JVM Parameter Tuning

In Java, the efficiency of an application is highly depending on memory management

and garbage collection techniques. While executing an application, the memory man-

agement and Garbage Collection (GC) behaviors are driven by the parameters used

to initialize the Java Virtual Machine (JVM). In this section, we give an overview

of the techniques used in Java to perform memory heap management and garbage

collection to understand the basic mechanisms of how JVM utilize the memory. Af-

terwards, based on the features and behaviors of the CELT, we select and discuss two

JVM parameters that could have a significant impact on the performance of the data

structures.
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5.4.1 JVM Memory Management

In the JVM, the heap memory space is the storage of objects created during run-

time. The heap size is initialized with the minimum heap size parameter Xms. As

more objects crated, the heap can grow until reaching the maximum heap size, which

is specified by the maximum heap size parameter Xmx. Every time the heap size

changes, there is a memory management penalty due to GC operations, moving ob-

jects around, and other bookkeeping activities.

The JVM uses a generational object memory system, which divides the entire

memory heap space into two generations: an old generation and young generation.

An object is initially created in the young generation, and it is moved to old generation

if it has a long survivor time and survives from GC operations in the young generation.

5.4.2 GC Techniques

Garbage Collection (GC) is the techniques used by JVM to reclaim the memory

allocated to objects that are no longer in use. An object is considering live if it is

accessible by the application. Any other object is dead. When the percentage of

the free heap memory drops below a certain threshold, the JVM runs the garbage

collector to reclaim memory allocated to dead objects.

In a GC run, the objects in the young generation are checked first. This is called

a minor GC. A minor GC is usually very fast. After going through the young

generation, the remaining objects are marked and are moved into the old generation.

If the collected memory from a minor GC is not enough to raise the free memory

ratio above the threshold, the JVM runs a full GC, which involves the old generation,

to seek free memory. The cost of running a full GC is significantly higher than the

cost of running a minor GC.
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5.4.3 JVM Parameter Tuning

Recall that, we first insert all the entries into the CELT and then perform lookups.

This indicates that, in the insertion stage, many objects are created and destroyed.

Most of the old generation objects are created in this stage. After all insertions are

done, we do not create long-lived objects in the lookup operations. Thus, most of the

full GCs will happen in the inserting stage, and only minor GCs should occur in the

lookup stage. Thus, we consider to tune JVM parameters to improve the performance

of the CELT.

Initial Heap Size (Xms) Selection

Xms is the parameter that determines the initial and minimum heap size used by the

JVM. When the maximum allowed heap size and Xms value is different, the memory

space used by JVM may grow or shrink the heap during each GC in order to keep the

ratio of free space to live objects in a specific range. With a large Xms setting, we can

reduce the frequency of overall heap resizing, but the time spent on GC is longer at

the beginning. With a small Xms value, GC time is shorter before the heap grows to

a large size. However, if the memory usage pattern for an application is fluctuating,

the small initial heap size may result in frequent heap resizing and the application

performance may suffer from the resize penalties. For the CELT, we expected that a

larger Xms leads to better performance since the size of the data structure grows in

the insertion stage and stays the same during the rest of the program’s execution.

In order to observe the effects of adjusting Xms value on the performance of each

candidate CELT implementation, we performed insert and lookup experiments on

each of the data structures with three different Xms values: the default value (64

MB), 1.5 GB, and 2GB. In insertion tests, we kept inserting ELTs into the data

structure until hitting memory issues. To test the lookup performance of the CELT,
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Figure 5.2: Insertion time of STL HashMap CELT using different Xms values

we performed 10 million lookup queries on the data structure constructed by each

insertion test, and recorded the total lookup time.

STL HashMap Xms Performance Figure 5.2 shows the comparison of insertion

times of STL HashMap CELT using the different minimum heap size settings. In-

creasing the Xms value decreased the total insert time significantly for each input

data. With a higher initial heap size, the need of heap resizing is decreased, so the

frequency of GC is decreased.

In order to observe the full effects on the STL HashMap CELT of increasing the

value of Xms, we also conducted experiments to test the lookup performance of the

STL HashMap CELT. Figure 5.3 shows the lookup time of the STL HashMap CELT

using different Xms settings. Again, increasing the value of Xms from the default

value improved the lookup performance of CELT significantly. However, the lookup

performance did not improve further when changing Xms from 1.5 GB to 2 GB.

This is because the heap resizing cost differences between the two Xms settings are

insignificant.

Figure 5.4 shows a comparison of the insertion times using different Xms settings
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Figure 5.3: Lookup time of STL HashMap CELT using different Xms values

for the Trove HashMap CELT. A larger initial size once again produced better per-

formance by reducing the memory management penalty caused by heap resizing. The

Trove HashMap CELT had the best insert performance when the Xms value was set

to the maximum allowed heap size of 2G.

Figure 5.5 shows the lookup times of the Trove HashMap CELT using different

Xms settings. Increasing the initial heap size improved the lookup time once again,

but performance improvement was not as significant as for the STL HashMap CELT.

This suggests that the lookup operations in Trove HashMap CELT use less memory

than in the STL HashMap CELT.

Figure 5.6 shows the insertion times of the HPPC HashMap CELT using different

Xms settings. A larger initial heap size resulted in better insertion performance

once again. Thus, by setting the Xms value to 2 GB, we obtained the best insert

performance.

Figure 5.7 shows the lookup performance of the HPPC HashMap CELT using

different Xms settings. Increasing initial heap size once again improved the lookup

performance of the HPPC HashMap CELT. The performance difference between Xms

settings of 1.5 GB and 2 GB was still not significant.
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In summary, our experiments show that all three CELT implementations achieve

the best insertion and lookup performance using the maximum possible heap size of

2 GB.

Young Generation Ratio (NewRatio) Selection

The young generation size in the JVM can affect the frequency and cost of minor

and full GC runs. The bigger the young generation, the less often minor GC occurs.

Since the total available heap memory is fixed, a larger young germination implies a

smaller old generation. If the old generation is filled, the old objects will stick around

as young objects in the young generation and these objects are involved in minor

GCs.

In the JVM, there are several ways to define the size of young generation. Adjust-

ing the young generation ratio parameter, NewRatio, is the most common and easiest

way. The value of NewRatio indicates the ratio between the old generation size and

the young generation size. For example, if NewRatio is 1, the heap is divided into

two portions of equal size one for the old generation and one for the new generation.

When the NewRatio value is set to 3, the old generation will occupy 3/4 of the total

heap size, and the remaining is used for the new generation.

In order to determine the effect of the young generation size on the insert and

lookup performance of the candidate CELTs, we tested the NewRatio values of 1, 2,

3, and 4, referred to as NewRatio configurations R1, R2, R3, and R4 in the remainder

of this section of the optimal initial heap size.

Figure 5.8 shows the insertion times of the STL HashMap CELT using different

NewRatio settings. When the number of elements in the data structure is small, a

lower NewRatio yields better performance. However, when the number of elements

in the data structure exceeded 4 million, the performances of the data structure

with smaller NewRatio deteriorated and a larger NewRatio value resulted in better
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Figure 5.8: Insertion time of STL HashMap CELT using different NewRatio values

performance. Most of the objects created during the construction of the CELT would

eventually be moved into the old generation. With a small NewRatio value, the old

generation is likely too small to hold the long-lived objects, which forces us to leave

some of them in the young generation. In this case, the remaining long-lived objects

in the young generation will be re-examined in each minor GC. This is likely the

reason why the STL HashMap CELT performed better with a larger NewRatio value

if the input size is big.

Figure 5.9 shows the lookup performance of the STL HashMap CELT using differ-

ent NewRatio settings. We observe that there is no significant performance difference

in lookup operations of the STL HashMap CELT using different NewRatio settings.

However, using NewRatio equal to 4, the lookup time increases as the input size in-

crease from 9 million to 10 million elements. This is likely because, with a NewRatio

value of 4, the young generation is given only 1/5 of the heap. During lookup op-

erations, short-lived objects are created. With a small young generation size, these

objects fill the young generation more quickly, which triggers minor GCs more fre-

quently. Therefore, it would be better for us not to set the young generation size too

small to avoid frequent GCs.
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Figure 5.9: Lookup time of STL HashMap CELT using different NewRatio values

Figure 5.10 shows the insert performance of the Trove HashMap CELT using

different NewRatio settings. Most of the time, a higher NewRatio value leads to

better performance. However, when NewRatio was set to 4, the program performed

GC between the 9 million and the 10 million insertions. With the NewRatio equals

to 2 or 3, this GC occurred later. This could be caused by the small young generation

size.

Figure 5.11 shows the lookup performance of the Trove HashMap CELT using

different NewRatio settings. There is no significant difference between all four config-

urations. Also, we did not observe any GC activity in each of the lookup experiments.

This suggests that the Trove HashMap CELT had smaller memory footprints while

performing lookup operations than the STL HashMap CELT.

Figure 5.12 shows the insert time performance of the HPPC HashMap CELT

using different NewRatio configurations. The data structure performed better when

the NewRatio value was set to 3 or 4. There was no significant performance difference

between setting the NewRatio parameter to 3 or 4.

Figure 5.13 shows the lookup performance of HPPC HashMap CELT using differ-

ent NewRatio value settings. A NewRatio of 3 or 4 resulted in the best performance.
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Figure 5.10: Insertion time of Trove HashMap CELT using different NewRatio values
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Figure 5.11: Lookup time of Trove HashMap CELT using different NewRatio values
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Figure 5.12: Insertion time of HPPC HashMap CELT using different NewRatio values
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Figure 5.13: Lookup time of HPPC HashMap CELT using different NewRatio values
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Figure 5.14: Relationship between lookup time and percentage of hits in the primary
data structure

From these results, we conclude that the best NewRatio value is 3 for the STL

HashMap CELT, 2 for Trove HashMap CELT, and 3 for the HPPC HashMap CELT.

5.4.4 Relationship between Lookup Time and Data Structure Size

From the lookup experiments discussed in the previous section, the lookup cost per

element increased with the number of elements in the CELT, no matter which GC

settings we chose. A lookup cost per element increased with the primary table con-

tains no secondary table with the given event ID because it can skip the second phase

of the operation. Therefore, we suspected that, this increase in lookup time correlates

with the frequency of hit in the primary data structure.

Figure 5.14 shows the relationship between total lookup time and percentage of

hits in the primary data structure. The horizontal axis is the total number of elements

inserted into the data structure; the left vertical axis is the total time spend on

executing 10 million lookups; and the right vertical axis is the percentage of hits in

the primary data structure over all 10 million lookup operations. The lookup time

and hit percentage curves match perfectly which confirms our hypothesis.
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Figure 5.15: Insert time comparison between different HashMap implementations

5.5 HashMap CELT Implementations Comparison

In this section, we choose the best HashMap implementation to use for our CELT

implementation by comparing their relative performance for each the optimal JVM

parameters determined in Section 5.4.

5.5.1 Insert Performance Comparison

Figure 5.15 compares the insertion times of the three hash map CELT implementa-

tions. Figure 5.16 compares the memory consumption. The three implementations

achieved the same insert performance. However, the STL HashMap CELT had the

highest space overhead and could not handle more than 10 million insertions. The

Trove HashMap CELT was able to handle up to 11 million insertions. The HPPC

HashMap CELT was the most space efficient and was able to handle up to 15 million

insertions, a 50% increase over the STL HashMap CELT and a 36% increase over the

Trove HashMap CELT.
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Figure 5.16: Memory consumption of the different HashMap implementations

5.5.2 Lookup Performance Comparison

Figure 5.17 compares the lookup times of the three hash map CELT implementations.

The STL HashMap CELT was slowest. The Trove HashMap CELT was the fastest,

approximately 24% faster than the STL HashMap CELT and 4% lower than the

HPPC HashMap CELT.

Since the STL HashMap CELT was not competitive in terms of size, insertion time

as lookup time, our selection was narrowed down to the HPPC HashMap CELT, which

used less space, or the Trove HashMap CELT, which was slightly faster for lookup

operations. In our QuPARA implementation, the smaller CELT data structure allows

more XELTs to fit in the memory of a single mapper, which allow us to reduce the

number of bathed jobs accordingly. Since the HPPC implementation uses 36% less

space than the Trove implementation, we can reduce the number of batches by 36%.

Since we expect this to have a greater system performance impact than improving

raw lookup times by 4%, we choose the HPPC HashMap CELT as our final HashMap

CELT implementation.
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Figure 5.17: Lookup time comparison between different HashMap implementations

5.6 Hybrid CELT Implementation

CELT is a representation of an extremely sparse 2-dimensional lookup table, the aver-

age size of the secondary tables is very small. Figure 5.18a shows the size distribution

of secondary tables in a CELT with 10 million elements. The bucket size used in the

graph is 5. Figure 5.18b shows the tail of the distribution. As we can see, the distri-

bution has a very long tail, and the larger secondary tables occur more infrequently.

According to the distribution, 82.1% secondary tables contain equal or less than 5

elements.

Since more than 80% of the secondary tables in a CELT with 10 million elements

contain no more than 5 elements, a has map may be unnecessarily complicated as

an implementation of the secondary tables. In particular, a simple array promise to

be more space efficient and offer the same on better lookup performance, even using

linear search. Since lookups are performed only after all insertions are finished, we

can do event better by first inserting the elements in constant amortized time per

element need, then sorting the secondary tables once all insertions are done. This

allows us to perform binary search during lookup operations. We call this CELT
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Figure 5.18: Relationship between lookup time and percentage of hits in the primary
data structure

implementation that uses an HPPC IntObjectOpenHashMap for its primary table

and sorted ArrayLists as secondary tables a hybrid CELT implementation. Our goal

in this section is to optimize this implementation as much as possible and compute

its performance to that of the HPPC HashMap CELT.

5.6.1 Searching Algorithm Selection

In the same way that a hash table, with its constant lookup cost, is theoretically

faster than linear or binary search, binary search is faster than linear search in theory.

However, it is also more complicated. Thus, it makes sense to determine the minimum

input size necessary for binary search to outperform linear search in practice. To do

so, we performed a series of experiments with different list sizes. For each experiment,

we first inserted a number of XELT loss entries into an ArrayList and then sorted the

entries in the list by their ELT identifier. Afterwards, we performed 10 million lookup

queries using the two search algorithms and recorded the wall clock time spent on

lookups.

Figure 5.19 shows the cost of 10 million lookup queries using linear search and

binary search on between 1 and 130 elements. The figure shows that linear search
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Figure 5.19: Lookup time comparison between linear search and binary search

performs better for less than 64 elements while binary search is more efficient for more

than 64 elements.

We can take advantage of both linear search and binary search by building a

hybrid search with a threshold value. If the number of elements in the array is less

than the threshold, we use linear search. Otherwise, we apply binary search until the

size of the sub array left to be searched drops below the threshold value, at which

point we switch to linear search. Based on the previous experiments, we select 64 as

the threshold value.

Figure 5.20 compares the lookup cost of the hybrid search algorithm to that of

linear and binary search. As expected, the hybrid search algorithm matches the cost

of linear search up to 64 elements; it may seem surprising that the algorithm performs

even better than binary search for more than 64 elements. The reason is the switch to

linear search once the number of remaining elements chops before 64, of which point

linear search is more efficient than binary search. This also explains the drop in the

search cost of the hybrid search when increasing the array size from 64 to 65 elements.

For 64 elements, it performs a standard linear search. For 65 elements, it performs one

binary search step to reduce the number of elements left to be searched to 32. It then
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Figure 5.20: Lookup performance comparison between linear search, binary search,
and hybrid search

perform a linear search of only 32 elements in contrast to the 64 elements searched

when the input size is 64. In conclusion, we choose the hybrid search algorithm as

the lookup algorithm for our hybrid CELT implementation.

5.6.2 JVM Parameter Tuning

In the same way as we tuned the JVM parameters for the different candidate HashMap

CELT implementations, we discuss the tuning of these parameters for the hybrid

CELT implementation in this section.

Initial Heap Size Tuning

Figure 5.21 shows the insert performance of the Hybrid CELT using different Xms

values. A larger initial heap size led to better performance. The best Xms value for

insert performance was 2 G, which is the same as the memory limit we set for the

JVM.

Figure 5.22 shows the lookup costs of the Hybrid CELT using different Xms set-

tings. A higher Xms value once again leaded to better performance.
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Figure 5.21: Insertion time of Hybrid CELT using different Xms values
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Figure 5.22: Lookup time of Hybrid CELT using different Xms values
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Figure 5.23: Insertion time of Hybrid CELT using different NewRatio values

Since both insert and lookup performance improve with large initial heap size, we

decided to use the maximum Xms value of 2 GB for the Hybrid CELT.

Young Generation Ratio Tuning

In order to observe the effect of different young generation sizes on the Hybrid CELT

performance, we performed insert and lookup experiments on the data structure with

three different NewRatio values.

Figure 5.23 shows the insert performance of the Hybrid CELT using different

NewRatio values. The data structure performed better with a NewRatio value of 4

up to 17 million insertions. Beyond 17 million insertions, a NewRatio value of 2 yield

the best performance. This suggest that a NewRatio of 2 or 4 should be chosen for

the Hybrid CELT.

Figure 5.24 shows the lookup performance of the Hybrid CELT in different NewRatio

values. There was no significant performance difference between these different set-

tings.

Thus, for the Xms configuration, we select the best value as 2 GB. For the

NewRatio value, we select 4 as the best configuration for the Hybrid CELT.
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Figure 5.24: Lookup time of Hybrid CELT using different NewRatio values

5.7 Final CELT Implementation Selection

In this section, we compare the performance of the hybrid CELT implementations and

the most efficient HashMap CELT implementation, the HPPC HashMap CELT, to

decide whether to use the hybrid or HashMap implementation to maximize QuPARA’s

performance.

5.7.1 Insert Performance Comparison

Figure 5.25 shows the insert time performance of the HPPC HashMap CELT and the

Hybrid CELT. Figure 5.26 shows the memory consumption. We observe that, the two

implementations had almost equal insertion cost. However, the Hybrid CELT used

much less space. This was expected since the memory overhead of an ArrayList is

much lower than that of a HashMap. With the same amount of memory, the Hybird

CELT can store up to 22 million elements, which is 46% more than the 15 million

the HPPC HashMap CELT can hold.

93



0 

5 

10 

15 

20 

25 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In
se

rt
 T

im
e 

(S
ec

o
n

d
s)

 

Number of Inserted Elements (Millions) 

Insert time comparison between 
HPPC HashMap CELT and Hybrid CELT 

HPPC Hybrid 

Figure 5.25: Insert time comparison between the HPPC HashMap CELT and the
Hybrid CELT
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Figure 5.26: Memory usage of the HPPC HashMap CELT and the Hybrid CELT
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Figure 5.27: Lookup performance comparison between the HPPC HashMap CELT
and the Hybrid CELT

5.7.2 Lookup Performance Comparison

Figure 5.27 compares the lookup performance of the HPPC HashMap CELT and

the Hybrid CELT. Up to 14 million elements, the Hybrid CELT performed better.

Beyond this point, the HPPC HashMap CELT showed better performance. This

slight drop in lookup performance of the hybrid CELT is likely outweighed by the

layer batch size the greater space efficiency of the Hybrid CELT allows.

In conclusion, the Hybrid CELT implementation is our final choice as it has small-

est size, achieved the best insertion time, and its slightly higher lookup time compared

to the HPPC HashMap CELT is outweighed by the reduction in size.
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Chapter 6

System Evaluation

In this chapter, we discuss our experimental setup for evaluating the performance and

functionality of QuPARA, and the results obtained. Throughout the experiments, we

used our final aggregate analysis engine implementation which is based on the highest

performing underlying data structures. We evaluate the performance of the system

using the default portfolio aggregate risk analysis setup for one reinsurance portfolio

comprising 1,600 layers. Each of the layers carries 5 unique XELTs. The Year Event

Table has 1,000,000 trials, with each trial comprising 1000 Events. We evaluate the

system by executing the standard queries to perform speed-up test, size-up test and

scale-up test.

We evaluate QuPARA on the Hugh cluster, which belongs to the Faculty of Com-

puter Science in Dalhousie University. The platform was a 19-node Rocks cluster [34],

and each of which was built with 2.66Ghz Quad Core Intel Xeon Processor X3350,

4 GB DDR2 RAM, and three 1 TB 7,200 RPM STAT disk drivers. The nodes were

connected via Gigabyte Ethernet. The nodes were running CentOS 6.3 with Java

version 1.7.0 03.

In the cluster, we deployed the standard Cloudera BigData platform version 4.7.3

[38] by using one node as the master node and 18 nodes as the worker nodes. HDFS

was built by assigning the master node as the major name node, and the worker

nodes as the data nodes. The maximum capacity of HDFS was 20TB. The Hadoop

version was 2.0.0-cdh4.5.0. In Hadoop, the jobtracker and job queue were running

on the master node, and there were 18 worker nodes which gives totally 72 cores to
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run MapReduce jobs. The HIVE version was 0.10.0 [16]. The Pentaho version was

4.8-CE [32].

6.1 Experiment Data Description

In QuPARA, there are five types of input data sets, which are Year Event Table

(YET), Portfolio Table (PFT), Extended Event Loss Table (XELT), Exposure Data

Pool (EDP), and Event Catalogue Table (ECT). In the reinsurance industry, these

data sets are properties of reinsurance companies and not transferable. Therefore,

we were unable to work with real-world exposure data. Instead, we used synthetic

data sets, which were carefully prepared with help from experts from the reinsurance

industry, to match live industrial data.

YET: The YET, as described in Section 3.3.1, is a simulation data table describes a

large number of trials, each representing one possible sequence of catastrophic

events that might occur in a given year. The YET contains 1 million trials,

each consisting of 1,000 catastrophic events.

PFT: The PFT, as described in Section 3.3.2, stores all the layers in a portfolio to be

analyzed. In our experiments, the PFT contains 1,600 layers, and each covers

5 unique XELTs.

XELT: The XELT, as described in Section 3.3.5, is an exposure data tables which

stores loss information for a certain type of catastrophic event in a specific

geographical division. There are totally 8,000 XELT, and each XELT contains

1,000 events.

EDP: The EDP, as described in Section 3.3.4, contains exposure characteristics of

the XELTs. This table contains 8,000 records in which each record describes a

unique XELT.
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ECT: The ECT, as described in Section 3.3.8, is the master catalogue of catastrophic

events we used as the foundation in all the data generators. This table contains

a detailed description of each such event that may occur. The ECT we used in

our experiments contains 500 million unique event records in different regions

and perils.

6.2 QuPARA System Performance

In this section, we evaluate the performance of QuPARA system by considering a

series of experiments, which include speed-up test, size-up tests and scale-up tests.

In the speed-up tests, we fixed the number of input size as 1,600 layers and increased

the number of cores from 4 to 72 to check how much efficiency we can get from adding

computational power in our system. In the size-up test, we fixed the number of cores

as 72 and increased the size of input from 100 layers to 1,600 layers. The size-up test

aimed to evaluate the system behavior differences between small inputs and large

inputs. The scale-up tests fixed the number of layers per core and then increased the

nodes to check the effects of adding computing resources into the QuPARA system.

6.2.1 Speed-up Performance

Figure 6.1 shows the decrease in running time for aggregate analysis using the opti-

mized hybrid CELT described in Chapter 5 when the number of cores is increased

but the input size is kept fixed at 1,600 layers. Figure 6.2 shows the relative speed-up

achieved in this experiment, that is, the ratio between the running time achieved on

4 cores (a single node) and the running time achieved on up to 72 cores (18 nodes).

The graph shows that we gained 88.38% speed-up while using 72 cores to process the

analysis. Up to 24 cores (6 nodes), the speed-up is almost linear. Beyond 24 cores

(6 nodes), the speed-up starts to decrease. As we observed, the decreasing trend was
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Figure 6.1: Running time of QuPARA on 1,600 layers using between 4 and 72 cores

caused by the increasing weight of the system overhead in the total running time.

In Chapter 5 we described an optimized hybrid CELT data structure. Figure 6.3

shows the effects of the hybrid CELT on the overall system performance. We observed

there was a significant difference in the overall system running time between the

original implementation and the improved optimization. With the hybrid CELT, we

gained 34% performance improvement when 4 cores are used, and 31.7% performance

improvement when 72 cores are used. The experiment results show the benefit of the

hybrid CELT. Figure 6.4 shows the relative speed-up we achieved with different

CELT implemented in QuPARA. On 72 cores, the speed-up of QuPARA with the

original STL CELT, which we used as the baseline implementation, is 92.7%, which is

better than 88.38% with the hybrid CELT. This is because the system overhead time

is fixed, when the computation time decreases, the weight of the system overhead in

the overall time increases, and then the speed-up performance decreases.

6.2.2 Size-up Performance

Figure 6.5 shows the increase in running time when the number of layers is increased

from 100 to 1600 while keeping the number of cored fixed as 72. Once again, each
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Figure 6.2: Speed-up achieved using QuPARA on 1,600 layers (corresponding to
Figure 6.1)
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using different CELT
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Figure 6.4: Speed-up comparison between QuPARA implementations using different
CELT (corresponding to Figure 6.3)

layer covered 5 ELTs, the YET contains 1 million trials, each consisting of 1 thousand

events. 72 cores, which are 18 nodes, were used in this experiment. As expected, the

running time of QuPARA increases linearly with the input size as we increase the

number of layers. With the increase in the number of layers, the time taken for setup,

I/O time, and the time for all numerical computations scale in a linear fashion. The

time taken for building data structures cleanup are a constant.

6.2.3 Scale-up Performance

Figure 6.6 shows the total time taken in seconds for performing aggregate risk analysis

on our experimental platform. Up to 72 cores in 16 nodes were used in the experiment.

Each four cores processed one job with 100 layers, each covering 5 unique XELTs.

Thus, up to 8,000 XELTs were considered. The YET in our experiments contained

1 million trials, and each trial consists 1,000 events. The graph shows a very slow

increase in the total running time, in spite of the constant amount of computation

to be performed by each node (because every node processes the same number of
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Figure 6.5: Running time of QuPARA with increasing number of layers on 72 cores

layers, XELTs, and YET entries). The gradual increase in the running time is due

to the increase in the setup time required by the Hadoop job scheduler and the

increase in network traffic (reflected in an increase in the time taken by the reducer).

Nevertheless, this scheduling and network traffic overhead amounted to only 0.85%

and 2.54% of the total computation time. Overall, this experiment demonstrates

that, if the hardware scales with the input size, QuPARA’s processing time of a

query remains nearly constant.

6.3 Scenario Analysis Validation

An motivation of designing and implementing the QuPARA is to answer the user

queries to solve various scenario risk analysis problems. Based on the scenarios de-

scribed in Section 2.7, we list a set of possible scenario analyzes as following:

1. Portfolio aggregate risk analysis

2. Loss distribution of contracts in selected Line of Business (LOB)

3. Loss distribution of contracts in selected Class of Business (COB)

4. Loss distribution of contracts in selected Type of Participation (TOP)
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Figure 6.6: Running time of QuPARA with fixed (N/P = 25) Layers

5. Portfolio loss distribution in selected regions

6. Portfolio loss distribution in selected perils

7. Seasonal portfolio loss distribution

8. Multi-marginal analysis

9. Stochastic Exceedance Probability (STEP) analysis

In the rest of this section, we describe use case examples, which cover the analyzes

we listed above, and present the results.

6.3.1 Portfolio Aggregate Risk Analysis

The basic use case for the QuPARA system is to perform the portfolio aggregate risk

analysis by using the default data filtering and loss grouping queries as described in

Section 3.5. In this experiment, the scenario analyses no.1 and no.9 are addressed.

To express the result of this use case, we set the result reporting query to report the

analysis results in different forms, which include the portfolio loss distribution, loss

statistics, exceedance probability curve, and a series of PML values.
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Maximum Loss : 
$26,299,117.00

Minimum Loss : 
$0.00

Median Loss : 
$0.00

Mean Loss : 
$2,460,865.90

Variance : 
$6,616,483,844,536.23

Standard Deviation : 
$2,572,252.68

Maximum VaR in 100% :
$26,299,117.00
Minimum VaR in 0.1% : $0.00

10 Value at Risk Values 
a = 0.10% : $17,055,459.00
a = 0.20% : $15,428,426.00
a = 0.40% : $13,655,101.00
a = 0.80% : $12,060,050.00
a = 1.60% : $10,362,267.00
a = 3.20% : $8,722,993.00
a = 6.40% : $7,019,139.00
a = 12.80% : $5,252,483.00
a = 25.60% : $3,467,049.00
a = 51.20% : $1,601,849.00

QuPara Report

Loss Distribution Density Graph

EP Curve

Figure 6.7: Result page for portfolio aggregate risk analysis

Figure 6.7 shows the result reporting page in this use case. The result page

suggests that the portfolio loss distribution has very long right tail, and the most

probable loss, which is the peak of the probability density graph, is relatively small.

6.3.2 Specialized Layer Analysis

In QuPARA, the layer filter is used to extract a subset of layers from the portfolio to

perform analysis. In this experiment, we address the analyses no.2, no.3 and no.4 by

creating an analysis on layers which cover commercial buildings with excess of loss

treaties. In order to perform this analysis, we need to modify the data filtering query

Q1, as described in Section 3.5.1, as following:
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Maximum Loss : 
$3,851,447.00

Minimum Loss : 
$0.00

Median Loss : 
$0.00

Mean Loss : 
$863,136.42

Variance : 
$251,785,179,588.34

Standard Deviation : 
$501,782.00

QuPara Report

Loss Distribution Density Graph

Figure 6.8: Loss distribution of layers for commercial buildings with excess of loss
treaties

SELECT ∗ FROM PFT

WHERE lob IN commercial

AND WHERE cob IN building

AND WHERE top IN exl

The 6.8 shows the result loss distribution of layers for commercial buildings with

excess of loss treaties.

6.3.3 Specialized Exposure Analysis

In QuPARA, the ELT filter is used to extract and filter the exposure data used in

the analysis. In this experiment, we address the analyses no.5 and no.6 by creating

an analysis to show the portfolio loss distribution in earthquake in Canada. In order

to perform this analysis, we need to modify the data filtering query Q2, as described

in Section 3.5.1, as following:

SELECT ∗ FROM EDP

WHERE elt ID IN {elt IDs}
AND WHERE peril IN {EQ}
AND WHERE region IN {CA}
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Maximum Loss : 
$5,734,769.00

Minimum Loss : 
$0.00

Median Loss : 
$0.00

Mean Loss : 
$474,572.69

Variance : 
$436,332,997,884.36

Standard Deviation : 
$660,555.07

QuPara Report

Loss Distribution Density Graph

Figure 6.9: Portfolio loss distribution in earthquake in Canada

The 6.9 shows a portfolio loss distribution with losses from earthquake and region

in Canada. In this analysis, we filtered out all the exposure data and events, which are

not related with earthquake and not in Canada. Then, the QuPARA produces result

shows a very sharp and long tailed loss distribution. In this distribution, the most

probable loss is close to zero. This is reasonable since notable earthquake happens

rarely in a year. However, an earthquake might cause massive damage, which destroy

properties completely, when it occurs.

6.3.4 Seasonal Analysis

QuPARA can produce seasonal portfolio loss distribution instead of a single annual

portfolio loss distribution. The seasonal distributions can help the analysts under-

stand their portfolio performance in time periods. In this experiment, we address the

analysis no.7 by specifying 4 seasons to the loss grouping query Q5, as described in

Section 3.5.2, to group event losses in a trial by time index. The query Q5 is specified

as following:

SELECT trial ID, estimated Loss

FROM YRPLT
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Maximum Loss : 
$11,210,324.71

Minimum Loss : 
$0.00

Median Loss : 
$0.00

Mean Loss : 
$1,585,625.80

Variance : 
$2,013,878,019,963.16

Standard Deviation : 
$1,419,111.70

QuPara Report

Loss Distribution Density Graph

(a) Portfolio Loss Distribution in Season 1

Maximum Loss : 
$14,639,919.13

Minimum Loss : 
$0.00

Median Loss : 
$0.00

Mean Loss : 
$2,645,749.63

Variance : 
$3,385,479,289,289.75

Standard Deviation : 
$1,839,967.20

Loss Distribution Density Graph

(b) Portfolio Loss Distribution in Season 2

Maximum Loss : 
$12,784,967.99

Minimum Loss : 
$0.00

Median Loss : 
$0.00

Mean Loss : 
$1,343,264.38

Variance : 
$1,761,102,520,648.98

Standard Deviation : 
$1,327,065.38

Loss Distribution Density Graph

(c) Portfolio Loss Distribution in Season 3

Maximum Loss : 
$13,400,851.86

Minimum Loss : 
$0.00

Median Loss : 
$0.00

Mean Loss : 
$1,354,120.63

Variance : 
$1,490,055,874,040.70

Standard Deviation : 
$1,220,678.45

Loss Distribution Density Graph

(d) Portfolio Loss Distribution in Season 4

Figure 6.10: Portfolio loss distribution in four seasons

GROUP BY SEASON(4)

Figure 6.10 shows the results of the seasonal analysis which contains one loss

distribution and its basic statistics in each season. On the graph, the loss distribution

in season 2 is flatter than others, and the expected loss in this season is much higher

than in other seasons. This is due to the major catastrophe events, such as hurricanes

and floods, usually occurs on the second season in a year. The loss distributions of

season no. 1 and season no. 4 are similar. This is reasonable since the catastrophe

events, such as storms, may occur in these two seasons are similar in this two seasons.

6.3.5 Multi-marginal Analysis

Multi-marginal analysis, analysis no.8, is used to observe the effects of adding more

layers into a portfolio for layer pricing purposes. In this experiment, we add 4 layers
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into a portfolio and try to check the influence of adding all 4 layers in the portfolio

EP curve and PML values. To perform this analysis, rather than specifying the 4

additional layers, the loss grouping query Q5, as described in Section 3.5.2, is modified

as following:

SELECT trial ID, estimated Loss

FROM YRPLT

GROUP BY TRIAL

AND GROUP BY Margin(4)

Figure 6.11 shows the results of the multi-marginal analysis we executed. The

result suggests that, after adding the additional 4 layers, the shape of EP curve

does not change. However, some of the PMLs values in the new portfolio is slightly

increased at risk level 1.6% and 6.4%.
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Maximum VaR in 100% :
$26,299,117.00
Minimum VaR in 0.1% : $0.00

10 Value at Risk Values 
a = 0.10% : $17,055,459.00
a = 0.20% : $15,428,426.00
a = 0.40% : $13,655,101.00
a = 0.80% : $12,060,050.00
a = 1.60% : $10,362,267.00
a = 3.20% : $8,722,993.00
a = 6.40% : $7,019,139.00
a = 12.80% : $5,252,483.00
a = 25.60% : $3,467,049.00
a = 51.20% : $1,601,849.00

Maximum VaR in 100% :
$26,299,117.00
Minimum VaR in 0.1% : $0.00

10 Value at Risk Values 
a = 0.10% : $17,055,459.00
a = 0.20% : $15,428,426.00
a = 0.40% : $13,655,101.00
a = 0.80% : $12,060,050.00
a = 1.60% : $10,393,353.80
a = 3.20% : $8,722,993.00
a = 6.40% : $7,026,158.14
a = 12.80% : $5,252,483.00
a = 25.60% : $3,467,049.00
a = 51.20% : $1,601,849.00

QuPara Report

EP Curve

EP Curve

Figure 6.11: Multi-marginal analysis EP curve results
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Chapter 7

Conclusion and Future Work

In this final chapter, we first present the summary and conclusion of this thesis, and

then discuss possible directions towards future work.

7.1 Summary and Conclusion

QuPARA is an extensible framework to facilitate ad hoc analysis of catastrophic risk-

based portfolios. Such an extensible framework can be used for performing analysis

of portfolios by taking into account the finer level of detail which is not supported

by production-based risk management systems. The proposed framework considers

the aggregate risk analysis algorithm and supports the layering of in-depth analysis

on top of the basic algorithm that can capture finer level of detail of different loss

aggregation levels.

The prototype implementation of QuPARA uses the Apache Hadoop implemen-

tation of the MapReduce programming model, Apache Hive for expressing ad hoc

queries in an SQL-like language, and Pentaho for building user-friendly interface.

Within the Hadoop implementation of MapReduce, careful engineering of the un-

derlying data structures can lead to further significant performance improvements of

QuPARA, thereby further reducing the performance gap to hand-crafted risk ana-

lytic systems. The performance-critical data structure in QuPARA is the CELT. We

obtained our final implementation of this data structure using systematic in-depth

experiments and tuning, leading to a 31.7% reduction in running time.

The performance results for the standard portfolio analysis show that within the
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Hadoop implementation, the QuPARA system can achieve high efficiency on dis-

tributed parallel environment. The capability and the scalability of the QuPARA

system are also proved in the experiments. Moreover, the scenario analysis experi-

ments demonstrate the feasibility of answering ad hoc queries on industry-size data

sets efficiently using QuPARA. In this prototype system, a full portfolio risk analysis

run consisting of a 1 million trial simulation, with 1,000 event per trial, and 1,600

risk transfer contracts can be completed on a 19-node Hadoop cluster in 80 minutes.

This performance is competitive with highly tuned production systems that are only

capable of answering a narrow set of portfolio queries, in contrast to the wide range

of ad hoc queries QuPARA is able to resolving [39].

7.2 Recommendation for Future Work

While the QuPARA showed good performance and ability on reinsurance portfolio

aggregate risk analysis under various scenarios, there are several areas where the

design, implementation, and experiment could be further enhanced. In this section,

we discuss possible directions for future work:

Extensible Aggregate Procedure

The proposed framework provides great flexibility on data customization through

the data filters. However, the aggregation procedure modifications are limited in

switching between a limited set of aggregation functions and parameters. A possible

improvement on the design of QuPARA framework is to allow the users to directly

define aggregation algorithms using high level programming languages, such as R, to

modify the analysis.
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Evaluation on Live Industrial Data

In the experiments presented in this thesis, we used synthetic data which generated

and collected from data generators with scientific data via simulation approaches.

The synthetic data is close to but not perfectly match the industrial data which

reinsurance companies use. In order to further understand the system performance

and the result quality of QuPARA, we need to apply QuPARA on real industrial data

and compare the results with production systems reinsurance companies use.

Location Based Aggregate Analysis

QuPARA uses event based aggregate data, XELT, to address losses in layers in ag-

gregate risk analysis. In order to perform more detailed analysis, location based

exposure data should be used. Comparing to the per-event aggregate losses in XELT,

the location based exposure data contains per-event-region loss data, which provides

detailed losses in each region effected by an event. In the future, we may extend

the filtering and aggregation abilities of QuPARA to make use of the location based

exposure data to offer more analytical options in various detail levels to the users.

Customized Treaty Classification

In QuPARA, the layer filter allows users to select a subset of layers based on the layer

attributes, such as Line of Business (LOB), Class of Business (COB), and Type of

Participation (TOP), to perform grouping and aggregation in the analysis. A further

improvement on this process is to allow users to define grouping rules, instead of using

existing attributes, to classify layers to perform analysis.
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