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[1] Elevated pore pressure can lead to reactivation of slip on pre-existing fractures and
faults when the static Coulomb failure is reached locally. As the pressurized region spreads
diffusively, slip can accumulate quasi-statically (paced by the pore fluid diffusion) or
dynamically. In this work, we consider a prestressed fault with a locally peaked, diffusively
spreading pore pressure field to study (1) conditions leading to the escalation of slip and
nucleation of dynamic rupture and (2) rupture run-out distance before it is arrested.
Nucleation appears in this model when the fault friction decreases from its peak value with
slip, while arrest of dynamic propagation is imminent on aseismic faults (i.e., such that
prestress tb is less than the residual fault strength tr at ambient conditions). When fluid
overpressure is a small-to-moderate fraction of the ambient value of normal effective stress
(and prestress is large enough for fault slip to be activated by overpressure), dynamic
rupture always nucleates, and the nucleation length increases with decreasing prestress
practically independently of the overpressure value. Transition from the ultimately unstable
(tb > tr) to the ultimately stable (tb < tr) fault loading is marked by a strong increase of
the nucleation length (∝1/(tb � tr)

2) as tb approaches tr from above. For aseismic faults
(tb < tr), no dynamic rupture is nucleated at large fluid overpressures for all but the
smallest values of prestress. The largest run-out distances of dynamic slip on aseismic
faults correspond to overpressure/prestress just sufficient for slip activation. In such cases,
the dynamically accumulated slip can lead to enhanced, dynamic fault weakening, resulting
in a sustained dynamic rupture and generating a large earthquake. This is consistent
with field observations when the largest injection-induced seismicity occurred after fluid
injection ended.

Citation: Garagash, D. I., and L. N. Germanovich (2012), Nucleation and arrest of dynamic slip on a pressurized fault,
J. Geophys. Res., 117, B10310, doi:10.1029/2012JB009209.

1. Introduction

[2] Locally elevated pore pressure is a viable mechanism
for reduction of fault strength and earthquake triggering.
Possible sources of elevated pressure near faults, which are
associated with induced or triggered seismicity, include
(1) deep fluid injection into the crust for geological storage
[Healy et al., 1968; Raleigh et al., 1976; Zoback and Harjes,
1997] and stimulation of geothermal and hydrocarbon
reservoirs [Pearson, 1981; Warpinski and Teufel, 1987;
Cornet et al., 1997; Rutledge et al., 2004]; (2) fault-valve
systems (e.g., inter-seismically impermeable fault transecting
the suprahydrostatic pressure gradient [Sibson, 1992]); and
(3) metamorphic dehydration in thrust and normal fault sys-
tems [Walder and Nur, 1984; Wong et al., 1997; Ague et al.,

1998; Seno, 2005]. One of the likely mechanisms of trig-
gering is the diffusive process of pore pressure relaxation in
fractured and/or porous rock [e.g., Healy et al., 1968; Hsieh
and Bredehoeft, 1981; Shapiro et al., 2003, 2006].
[3] Although the mechanics of fault slip reactivation due to

a pore pressure perturbation has been extensively studied
[Hubbert and Rubey, 1959; Raleigh et al., 1976; Scholz, 1990;
Rice, 1992], there is still a considerable lack of understanding
of (1) fundamental conditions under which the reactivation of
fault slip by elevated pore pressure leads to the nucleation of
dynamic (earthquake) rupture, (2) the extent of dynamic rup-
ture propagation before it is arrested, and (3) what separates
micro-seismic events from earthquakes.
[4] We address these questions by analyzing a simplified

model of nucleation and possible arrest of dynamic slip on a
pressurized fault characterized by initially uniform frictional
strength and loaded by uniform prestress (background stress
field). An evolving, locally peaked pore pressure profile is
generated by along-the-fault diffusion from a fluid source
characterized by either constant overpressure or a constant flow
rate. As a result, the frictional strength of the fault, given by the
product of the local normal effective stress and slip-weakening
friction coefficient [Ida, 1972; Palmer and Rice, 1973; Rice,
1980; Wong, 1986], diminishes below the background stress
within the pressurized region, expandingwith time. This causes
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a shear crack, with growth initially moderated by pressure
diffusion and thus being quasi-static. The slip-weakening
nature of friction suggests that quasi-static growth may even-
tually become unstable leading to the nucleation of dynamic
rupture [Campillo and Ionescu, 1997; Ionescu and Campillo,
1999; Uenishi and Rice, 2003; Rice and Uenishi, 2010]. In
this paper, we extend the approach ofUenishi and Rice [2003],
who studied nucleation due to locally peaked fault loading
under dry or drained fault conditions. We determine the extent
of the nucleation patch and the time to nucleation due to local
changes to the fault strength resulting from a pore pressure
perturbation. A similar approach has been independently used
by Viesca and Rice [2012] to analyze nucleation of dynamic
submarine and subareal landsliding, and numerically imple-
mented in simulations of seismicity caused by CO2 geological
sequestration by Cappa and Rutqvist [2011].
[5] In this first-order model we use a simple slip-dependent

friction law in favor of a potentially more complete,
laboratory-derived description [e.g.,Marone, 1998] in which
friction depends on slip rate and state. Tse and Rice [1986],
Dieterich [1992], Lapusta et al. [2000], Rubin and Ampuero
[2005], Ampuero and Rubin [2008], among others, studied
earthquake nucleation for rate- and state- dependent friction
laws. Uenishi and Rice [2003] suggested, in the context of
nucleation of dynamic slip on a well-healed fault, that the
linear slip-weakening law may provide an approximation of
the rate- and state-dependent friction of ageing type [Ruina,
1983]. They cautioned that their conjecture may require
unrealistic values of friction parameters. More recently,
however, Rubin and Ampuero [2005] and Ampuero and
Rubin [2008] identified two end-member length scales for
the nucleation patch. The first end-member is identical to that
obtained by Dieterich [1992] and Uenishi and Rice [2003]
for the linear slip-weakening friction law. The second end-
member can be linked (see section 7.1) to Andrews’ [1976]
critical length scale appearing from the slip-weakening fric-
tion law with constant stress-drop. This correspondence
between the end-members obtained in the context of the rate-
and state-dependent friction and for rate-independent slip-
weakening lends some confidence in using the simplified slip-
weakening friction framework to study earthquake nucleation.
[6] Other simplifying assumptions of this work include

neglecting the effect of poroelastic changes of the background
stress level [e.g., Segall, 1989; Rudnicki, 1999; Germanovich
and Chanpura, 2002], as well as the effect of inelastic chan-
ges of gouge porosity and permeability with the slip [Rice,
1992; Segall and Rice, 1995; Garagash and Rudnicki, 2003,
and references therein].
[7] The arrest of dynamic rupture is usually associated

with the non-uniformity of prestress distribution and/or fault
strength. Such non-uniformity can reflect, for example,
finiteness of immature faults or pre-existing fractures, which
results in a significantly elevated cohesive component of
strength at the “tips”, and geometrical complexities and the
segmentation of mature faults [Sibson, 1986; Scholz, 1990].
Another possible rupture arrest mechanism, investigated
further in this work, is related to the limited nature of the
frictional weakening with increasing slip. This is expected to
be a dominant mechanism if the rupture extent is smaller than
the length scale of fault prestress/strength heterogeneity.
[8] In order to assess the run-out distance of a dynamic

rupture before it is arrested, we analyze alternative quasi-

static solutions for the slipping patch past the point of dynamic
instability. This analysis suggests that the arrest of the dynamic
rupture propagation is possible if the background loading on
the fault is equal or less than the residual (weakened) fault
strength at the ambient pore pressure. In this case, the dynamic
rupture is nucleated from the slipping patch, which is embed-
ded within the zone where the pore pressure is elevated by
diffusion. The rupture is arrested as its front grows out to the
margins of the pressurized zone. This situation is markedly
different from the case where the fault state is initially close to
failure (i.e., when the background stress is close to the peak
fault strength at ambient conditions). Then the growth of the
nucleated dynamic rupture is unabated within the constraints
of the model developed in this work.
[9] We also consider a possibility that other, dynamic

weakening processes (different from the “quasi-static” slip
weakening during the nucleation stage) can be activated by
fault frictional heating in the course of seismic slip. Depending
on gouge properties and prevailing fault conditions, these
weakening processes can include flash heating on asperities
[Rice, 2006; Beeler et al., 2008; Rempel and Weaver, 2008],
thermal pressurization of pore fluid [Sibson, 1973;
Lachenbruch, 1980; Andrews, 2002; Garagash and Rudnicki,
2003; Bizzarri and Cocco, 2006a; Rice, 2006; Garagash,
2012], and macroscopic melting or thermal decomposition
reactions [e.g., Rice, 2006;Di Toro et al., 2011, and references
therein]. Recent studies of kinematic slip [Rempel and Rice,
2006] and pulse-like dynamic slip [Garagash, 2012] showed
that thermal pressurization can effectively cap the temperature
rise, and, in the case of a pulse-like rupture, all but rule out
melting and some thermal decomposition reactions at seis-
mogenic depth. Yet, the possibility of co-seismic melting does
remain viable in the crack-like mode of rupture [e.g., Bizzarri
and Cocco, 2006b]. In this work, we examine if the co-seismic
flash heating or thermal pressurization can allow rupture
propagation beyond the otherwise predicted arrest length. This
would constitute a scenario of an earthquake nucleation on a
statically strong but dynamically weak fault [Lapusta and
Rice, 2003; Rice, 2006; Noda et al., 2009; Garagash, 2012].
[10] Finally, we discuss possible implications of our results

to patterns of seismicity induced by deep fluid injection and
lower and upper bounds for microseismicity (determined,
respectively, by minimum nucleation size and maximum
run-out distance, which does not yet activate dynamic fault
weakening processes). We also discuss a possible gap in
magnitude between induced microseismic events and larger
earthquakes [e.g., Healy et al., 1968] and a possible change
of the focal mechanism from smaller to larger events.

2. Equilibrium of a Slip-Weakening Fault

[11] We consider a mode II or III shear crack of length 2a =
a+ � a� in the uniform background stress field characterized
by the normal sn and shear tb components (Figure 1a). Shear
stress t on the fault plane is related to slip d (shear dis-
placement discontinuity) by the equation of quasi-static
elastic equilibrium [e.g., Bilby and Eshelby, 1968]

t x; tð Þ � tb ¼ �m*
2p

Zaþ tð Þ

a� tð Þ

∂d s; tð Þ
∂s

ds

x� s
; ð1Þ
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wherem* = m (shear modulus) forMode III and m* = m/(1� n)
(a half of the plane-strain modulus) for Mode II, n is the
Poisson’s ratio. Slip rate V = ∂d/∂t vanishes at the crack tips,
which imposes the following two constraints on the distri-
bution of the shear traction t(x, t) along the crack [Rice,
1968]:

Zaþ tð Þ

a� tð Þ

t x; tð Þ � tbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a tð Þ2 � x2

q dx ¼ 0;

Zaþ tð Þ

a� tð Þ

t x; tð Þ � tbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a tð Þ2 � x2

q xdx ¼ 0: ð2Þ

These two conditions also ensure that the stresses at the tip are
bounded and continuous (i.e., vanishing tip stress intensity
factors). In this work, we consider symmetric shear traction
distributions, which imply that the crack is symmetric,

aþ ¼ �a� ¼ a; ð3Þ
and that the second constraint in (2) is automatically satisfied.
[12] Inside the slipping region, the shear stress is equal to

the fault shear strength,

t ¼ f dð Þ sn � pð Þ; ð4Þ
where sn � p, also denoted as s , is the effective stress
normal to the fault and the friction coefficient

f dð Þ ¼ fp � wd 0 ≤ d < fp=w
� �

: ð5Þ

decreases linearly with the slip (Figure 1b) from its peak
value fp [e.g., Ida, 1972]. The implicit assumption associated
with using the unlimited slip-weakening relation (5) is that
during the nucleation process, the quasi-static slip is small
enough, such that the corresponding reduced strength
remains above the residual fault strength. This assumption is
evaluated aposteriori, and the influence of the residual fault
strength on the dynamic slip nucleation and its possible
arrest is considered in section 5.
[13] Elastic equilibrium (1) and constitutive laws (4)–(5) can

be used to describe quasi-static development of a slipping
patch in response to a change of the background loading tb

[Uenishi and Rice, 2003; Dascalu et al., 2000] and/or change
of the fault strength associated with the corresponding increase
of pore pressure. The latter is the focus of this paper.

3. Fault Slip Due to Pore Pressure Loading

[14] Consider the no-slip initial conditions when the
background shear stress tb is smaller than the ambient peak
strength tp = fp(sn � po), where po is the ambient pore
pressure on the fault plane. A pore pressure perturbation Dp
introduced at a given location x = 0 along the fault at t ≥ 0
causes a reduction of the shear strength. This reduction is
sufficient to activate the slip if

tb ≥ tp � fpDp: ð6Þ

Spreading of the region with reduced fault strength by the
pore pressure diffusion results in enlarging the slip zone.
[15] To illustrate this type of slip process, consider

evolving pore pressure perturbation p � po along the fault
(Figure 1a) in the following form:

p x; tð Þ � po ¼ Dp tð ÞP xð Þ; x ¼ x=
ffiffiffiffiffi
at

p
; ð7Þ

where a is the hydraulic diffusivity [L2/T] and P(x) is a
function describing instantaneous spatial profiles of the
pressure perturbation. This is a general type of spatiotem-
poral distribution due, for example, to the pore pressure
diffusion from a point (line) source in the fault plane [e.g.,
Carslaw and Jaeger, 1959]. Such a situation can be envi-
sioned if a borehole is drilled along the fault plane (orthog-
onal cross-section of which is shown in Figure 1a) and fluid
is injected into the borehole to trigger an earthquake in more
controllable conditions than it would happen otherwise
[Garagash et al., 2009; Germanovich et al., 2010, 2011].
Examples of the injection scenarios, for which the pressure
along the fault is described by (7) include fluid injection into
the fault zone characterized by negligible transverse perme-
ability, under a constant overpressure Dp,

Dp tð Þ ¼ const; P xð Þ ¼ Erfc xj j; ð8Þ

or, at a constant flow rate q [L/T],

Dp tð Þ ¼ 2ffiffiffi
p

p hq
k

ffiffiffiffiffi
at

p
; P xð Þ ¼ exp �x2=4

� �� ffiffiffi
p

p
2

xj jErfc xj j
2
;

ð9Þ

where h is the fluid viscosity and k is the longitudinal per-
meability of the fault zone.

Figure 1. (a) A growing slip patch (shear crack) due to
fluid injection into a uniformly loaded fault. (b) Linear slip
weakening of fault friction f(d) with (horizontal solid line)
or without (inclined dashed line) residual cut-off .
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[16] An example of pressure distribution more general
than (7) is given by the point (line) injection into the rock,
with isotropic permeability k1, at distance L from the fault
plane and at a constant rate Q [L2/T]. For a permeable fault
with permeability k = k1,

Dp tð Þ ¼ �Ei �x2L=4
� �
2p2

hQ
k1

; P x; xLð Þ ¼ Ei � x2 þ x2L
� �

=4
� �
Ei �x2L=4
� � ;

ð10Þ

where xL = L/
ffiffiffiffiffi
at

p
and Ei is the exponential integral

[Abramowitz and Stegun, 1972]. In the case of an imper-
meable fault plane (k = 0), Dp(t) in (10) has to be increased
by the factor of two.

[17] Nondimensionalizing of the set of equations (1), (2),
(3)–(5), and (7) suggests that the normalized slip d/dw and
the normalized half-length of the slipping patch (zone) a/aw
can be expressed in terms of the normalized coordinate X =
x/a, normalized time at/aw

2 , and two dimensionless loading
parameters, namely, fault understress (tp � tb)/tp and fluid
overpressure Dp/�so (�so = sn � po). Hereafter,

aw ¼ m*
tp

dw; dw ¼ fp
w

ð11Þ

are the characteristic patch length and slip weakening scale,
respectively. In the case (10) of fluid injection at a distance
from the fault plane, an additional parameter is the scaled
distance, xL. The numerical solution method, used to solve
the nondimensionalized set of equations, relies on expansion
of slip into a series of Chebyshev polynomials, which is
presented in Appendix A.
[18] Development of slip due to the fluid injection with

the constant value of overpressure, Dp/�so = 0.5, into a fault
zone characterized by negligible transverse permeability
(equations (7) and (8)), can be seen in Figures 2 and 3. Figure 2

Figure 2. Development of (a) the crack half-length and
(b) the slip at the crack center for the overpressure at the crack
center Dp/s o = 0.5 and various values of the background
stress tb/tp. The rightmost points of each curve (i.e., with
vertical slope) correspond to the instability of quasi-static
crack growth. Beyond these points, continued quasi-static
growth would require either reduction of the background
stress or, conceivably, injection shut-in. Dotted parts of the
curves correspond to the crack growth under physically
meaningless reversal of the pore pressure diffusion (time
reversal) at the fixed level of background stress.

Figure 3. Development of (a) slip and (b) shear stress dis-
tributions for Dp/so = 0.5 and tb/tp = 0.75. The heavy line
corresponds to the instability of the quasi-static slip growth
under sustained injection of fluid at the crack center. Dotted
lines correspond to a physically unrealistic solution depicted
in Figure 2 (also by dotted lines).
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shows evolution of the normalized crack half-length
(Figure 2a) and the slip at the patch center x = 0 (Figure 2b)
with advance of the pore pressure diffusion “front” (char-
acterized by its normalized position

ffiffiffiffiffi
at

p
/aw) for various

values of the normalized background stress tb/tp. Both time
to instability (or nucleation time) and the corresponding
critical length of the crack (or the length of the nucleation
patch) correspond to the points with the vertical slope in
Figure 2. Values of the nucleation time and length increase
with decreasing background loading (Figure 2a), while the
slip at the center reaches its maximum for the intermediate
value of tb/tp ≃ 0.75 (Figure 2b). The dotted parts of the
curves correspond to the crack growth under physically
meaningless reversal of the pore pressure diffusion (time
decrease). Therefore, after the slip zone reaches a critical
size, quasi-static equations cannot describe its further
development, which corresponds to the initiation of dynamic
slip (earthquake nucleation). For smaller values of the
background stress (tb/tp ≤ 0.6), dotted curves in Figures 2a
and 2b are terminated when the fault frictional strength
(equations (4)–(5)) is reduced to zero (dashed line in
Figure 1b) at the center of the crack when d|x=0→ dw. Clearly,
the frictional model with unconstrained slip-weakening (5)
ought to be amended at the slip values ≳dw, for example,
by introducing a non-zero residual friction. The effect of
the residual friction on the dynamic slip nucleation and its
possible arrest is discussed in section 5.
[19] Development of the slip and the shear stress dis-

tributions with the normalized position of the diffusion front
is shown in Figures 3a and 3b, respectively, for the back-
ground stress of tb/tp = 0.75 and overpressure Dp/so = 0.5.
Bold line corresponds to the instability of the quasi-static
crack growth and nucleation of the dynamic slip. Stress
profiles corresponding to small times are characterized by
spikes near the fluid source (the crack center).

4. Conditions for Nucleating Dynamic Slip

[20] Differentiating (1) with respect to time and account-
ing for (4) and (5), we obtain equation

wV x; tð Þs x; tð Þ � f d x; tð Þð Þ ∂s x; tð Þ
∂t

þ ∂tb x; tð Þ
∂t

¼

¼ m∗

2p

Za tð Þ

�a tð Þ

∂V s; tð Þ
∂s

ds

x� s
ð12Þ

governing the slip rate distribution V = ∂d/∂t along the crack,
|x| < a(t). The instability of quasi-static crack growth, as
illustrated in section 3, corresponds to the diverging rate of
slip. Let tc be the nucleation time and ac = a(tc) the half-
length of the nucleation patch. As the instability is approa-
ched when t → tc, the bounded terms f∂s /∂t and ∂tb/∂t
in (12) become negligible when compared to the remaining
diverging terms. Slip velocity, normalized by its root-mean-
square, can be written as a function of the normalized
coordinate X = x/a(t):

v X ; tð Þ ¼ V a tð ÞX ; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Z 1

�1
V 2 a tð ÞX ; tð ÞdX

s : ð13Þ

At the time of nucleation, t = tc, (12) can be then written as

a

aw
v Xð Þs aXð Þ

so
¼ 1

2p

Z1
�1

dv sð Þ
ds

ds

X � s
: ð14Þ

[21] When the effective normal stress s(x) is known along
the slipping patch, (14) is a linear homogeneous equation for
the normalized slip rate distribution v(X). This equation has a
non-zero solution only for values of the normalized nucle-
ation half-length a/aw that correspond to eigenvalues of
problem (14). In the particular case of the uniform distribu-
tion of the normal effective stress along the crack (s(x) = s =
const), (14) has been solved by Uenishi and Rice [2003],
with the smallest eigenvalue, which corresponds to the
nucleation half-length, given by

ac
aw

≃ 0:579
so

s
s ¼ constð Þ: ð15Þ

[22] In the case of the pore pressure loading (7) due to
fluid injection into the fault, we have

s aXð Þ ¼ so �Dp tð ÞP aX=
ffiffiffiffiffi
at

p� �
;

and the solution of (14) for the normalized half-length ac/aw
of the nucleation patch depends upon two parameters: the
normalized overpressure Dp(tc)/so at the crack center and
the normalized square root of the nucleation time

ffiffiffiffiffiffiffi
atc

p
/aw

(or normalized position of the pressure diffusion “front”).
The corresponding magnitude of the background shear
stress, required to reach nucleation, cannot be recovered
from the solution of the eigenvalue problem (14), and
requires solving the full set of slip equations (1)–(7) at the
nucleation instant (i.e., at t = tc and a = ac for a given value
of the overpressure Dp(tc) at the patch center X = 0).
[23] Let us first consider two limiting cases when at the

nucleation time, the slip zone is much larger or much smaller
than the pressure diffusion scale in the fault zone. As dis-
cussed below, a “large” slip zone, ac ≫

ffiffiffiffiffiffiffi
atc

p
, is expected in

critically loaded faults, which are stressed almost to their
strength level (tp � tb ≪ fpDp). A “small” slip zone, ac ≪ffiffiffiffiffiffiffi
atc

p
, would appear in faults that are pressurized merely

enough to activate the fault slip (tp � tb ≃ fpDp) and only at
the slip zone center, where the pressure is the largest. In
these limiting cases, the solution at the instability can be
established for a general pressurization scenario, not con-
strained to a specific form of the pressurization function
P(x) in (7).

4.1. Nucleation on a Marginally Pressurized Fault
( fpDp ≃ tp�tb)

[24] In this case, a localized pore pressure incrementDp is
just enough to activate the fault slip near x = 0. The subse-
quent quasi-static growth of the slipping patch will be much
slower than the diffusive growth of the pressurized zone.
As a result, at the instability, the crack will be well within
the pressurized region (ac ≪

ffiffiffiffiffiffiffi
atc

p
), and, therefore, will be

almost uniformly pressurized, so that p(x, tc) ≃ po + Dp for
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|x| ≤ ac (Figure 4a). Consequently, an asymptotic expression
for the nucleation length follows from (15) in the form of

ac
aw

≃ 0:579
tp
tb

; ð16Þ

where the limit value (tp � tb)/fp of overpressure Dp has
been used to evaluate s ≈ s0 + Dp in (15). Expression (16)
gives the smallest possible nucleation length (corresponding
to the smallest Dp required to activate the slip) for a given
fault background loading tb. The asymptotic solution
developed in Appendix B suggests the scaling

d
dw

� fpDpðtÞ � tp � tb
� �

tb
d ≪ dwð Þ

for the fault slip. The corresponding distribution d(x, tc) is
shown in Figure 5 for the case of linear (injection into trans-
versely impermeable fault) and radial (injection into the rock
with isotropic permeability) diffusions. Note that in this work,
we use symbols� andO of asymptotic order interchangeably.
[25] The respective solution for the nucleation time

depends on the injection scenario. For example, in the case
of fluid injection into a transversely impermeable fault at
a constant injection pressure (equations (7) and (8)), the
nucleation time can be recovered from equations (B4a) and
(B5a) (Appendix B):

ffiffiffiffiffiffiffi
atc

p
ac

≃ 0:454 1� tp � tb

fpDp

� ��1

: ð17Þ

[26] For injection at a constant injection rate q = const,
expression (9a) for the overpressure evolution can be alter-
natively written as

Dp tð Þ
Dpð Þw

¼
ffiffiffiffiffi
at

p
aw

; Dpð Þw ¼ 2ffiffiffi
p

p h
k
qaw q ¼ constð Þ ð18Þ

where (Dp)w is a characteristic pressure drop over distance
aw from the crack center. Then, the expression for the time
of nucleation ffiffiffiffiffiffiffi

atc
p
aw

≃
tp � tb

fp Dpð Þw
ð19Þ

follows from settingDp(tc) in (18) to the value of (tp � tb)/fp
at the slip activation, on the premise that in this case, the
instability follows shortly after the activation. This assump-
tion is valid for slow injection rates (q ≪ (tp � tb)

ffiffiffi
p

p
k/

(2haw)), when the characteristic pressure drop (Dp)w is small
compared to Dp(tc) ≃ (tp � tb)/fp.
[27] When the fluid is injected at a distance L from the

fault plane into a rock with isotropic permeability, the
nucleation time can be found in a similar fashion by
approximating the nucleation time by the slip activation
time, setting Dp(tc) = (tp � tb)/fp in (10a), and solving the
resulting implicit equation for L/

ffiffiffiffiffiffiffi
atc

p
. This approximation is

permissible if the distance of the injection point from the
fault is much larger than the crack length (�aw) at the
instability, i.e., if L ≫ aw.
[28] Finally, it is worth stressing that because fpDp ≃

tp � tb, the normalized slip at nucleation is small (d/dw ≪ 1)
while the normalized nucleation time is large (

ffiffiffiffiffiffiffi
atc

p
/aw ≫ 1).

That the slip is small (d ≪ dw) is consistent with the fact that
we neglected the cut-off part of the slip weakening friction
law (solid horizontal line in Figure 1b). Hence, for marginally
pressurized faults with a small slip zone (ac ≪

ffiffiffiffiffi
at

p
), the

residual friction is likely not achieved by the moment of
dynamic slip nucleation.

4.2. Nucleation on a Critically Loaded Fault (tb ≃ tb)

[29] A fault that is stressed almost to its static strength
level requires only a small stress or strength perturbation to
reach the instability. In the context of this paper, a small
strength perturbation is achieved by finite pore pressure

Figure 4. Two limiting responses of a fault to pressuriza-
tion: (a) marginally pressurized fault ( fpDp ≃ tp � tb),
and (b) critically loaded fault (tb ≃ tp).

Figure 5. Asymptotic solutions for the slip d(x, tc) on a
marginally pressurized fault ( fpDp(tc) ≃ tp � tb) at the
instability for two pressurization scenarios corresponding to
a fluid source in the fault zone (e.g., equations (8) and (9))
and at a distance from it (e.g., equation (10)). Fluid flow is
symmetric about x = 0.
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increase Dp at the center of the crack over small injection
times, such that at the instability, the size of the pressurized
region is small compared to the size of the quasi-statically
slipped crack,

ffiffiffiffiffiffiffi
atc

p
≪ ac (Figure 4b). As a result, the pres-

sure is largely unperturbed (uniform) along the crack with
the exception of the small pressurized “island” at the center.
The corresponding asymptotic solution

ac
aw

≃ 0:579 ð20Þ

for the critical length of the quasi-static crack follows from
(15) and s ≈ s 0. Asymptotics outside of the small central
region with perturbed pore pressure (outer solution) and inside
that region (inner solution) are developed in Appendix C. At

the instability, the integrated net overpressure (force) along the
fault is

DP tcð Þ ¼
Z∞
�∞

p x; tcð Þ � poð Þdx ≃ 0:837
tp � tb

fp
aw; ð21Þ

which allows determining the nucleation time for a particular
pressurization scenario. For example, in the case of injection
into transversely impermeable fault zone, using (8) and (9)
evaluates DP(tc) to (2/

ffiffiffi
p

p
)Dp

ffiffiffiffiffiffiffi
atc

p
(Dp = const) andffiffiffi

p
p

(Dp)watc/aw (q = const), respectively. The corresponding
asymptotic solutions for the nucleation time follow from
(21) as

ffiffiffiffiffiffiffi
atc

p
aw

≃
0:742

tp � tb

fpDp
Dp ¼ constð Þ

0:687
tp � tb

fp Dpð Þw

� �1=2

q ¼ constð Þ

8>>><
>>>:

ð22Þ

where (Dp)w is defined in (18).
[30] The outer solution suggests that the normalized slip

scales with the understress when the latter is small, i.e.,
d/dw � (tp � tb)/tp when tp � tb ≪ tp. The corresponding
scaled slip distribution is universal (independent of a par-
ticular pressure profile) and shown in Figure 6 (solid line).
In contrast, the inner solution for the slip inside the small
pressurized region does depend on the pressure distribution
(Appendix C). It is presented in Figure 6 by gray lines for
the case of injection into a transversely impermeable fault
at constant overpressureDp (equations (7) and (8)), and three
small values of parameter �̂ = (tp � tb)/( fpDp), which is the
understress normalized by the peak strength reduction. When
�̂ ≪ 1, the inner and outer slip solutions match at an inter-
mediate distance, 0.742�̂ ≪ x/aw ≪ 0.579, from the crack
center (Figure 6).
[31] The asymptotic expression for the peak slip (d|x=0)c at

the instability follows from (C18) and can be written in a
compact form upon relating Dp in parameter �̂ at the
nucleation to the nucleation time (22). As a result, we obtain

ðdjx¼0Þc
dw

≃
tp � tb

tp
�0:533ln

ffiffiffiffiffiffiffi
atc

p
aw

� �
þ B

� �
ð23Þ

where B ≃ 1.127 (Dp = const) and 0.860 (q = const).

4.3. Numerical Solution at the Instability

[32] Consider first injection into the transversely imper-
meable fault zone at constant injection pressure. Per (7) and
(8) in this injection scenario, the effective normal stress
along the fault is s(x) = s0 � DpP(x) with P(x) = Erfc |x|.
In general, the solution of the linear eigenvalue equation (14)
for the normalized nucleation half-length ac/aw and the
normalized slip rate distribution v(X), expressed as a func-
tion of Dp/so and

ffiffiffiffiffiffiffi
atc

p
/aw, does not explicitly depend on the

background stress and its spatial distribution. As discussed
later in this section, to determine the background stress
magnitude for a given spatial profile, one needs to solve the
full problem, (1)–(7), not just its eigenvalue reduction. In the
meantime, we use the method of Chebyshev polynomial
representation (section A1) to solve (14). Figure 7 illustrates

Figure 6. Asymptotic solution for slip on a critically
loaded fault (tb ≃ tp) at the instability: the outer solution
(black) at x≫

ffiffiffiffiffiffiffi
atc

p
and the inner solution (gray line, the case

(8) of injection in transversely impermeable fault under con-
stant injection pressure) at x � ffiffiffiffiffiffiffi

atc
p

. The inner solution is
shown for various values of the small parameter, �̂ = (tp �
tb)/( fpDp) ≪ 1, in (a) semi-logarithmic and (b) linear scale.
The two solutions match at the intermediate length scaleffiffiffiffiffiffiffi
atc

p
≪ x ≪ ac near the crack center, where

ffiffiffiffiffiffiffi
atc

p
/aw ≃

0.742�̂ and ac/aw ≃ 0.579.
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the solution for the nucleation length for various values of
the overpressure and the time to instability. The maximum
overpressure value that we use, Dp/so = 1, corresponds to
the complete loss of frictional strength at the injection point
and possible onset of the along-the-fault hydraulic fracture.
Note that because s o is, generally, not the least effective
normal stress, it is also possible that hydraulic fracture may
be initiated and propagated off the fault plane for Dp less
than so. It can be seen in Figure 7 that the Uenishi and
Rice [2003] value (20) of the normalized nucleation length
is recovered for small nucleation times (i.e., when the pore
pressure perturbation is localized near the crack center),
which, as shown in this section, is synonymous to a critically
loaded fault.
[33] The value of the uniform background stress tb required

to reach the instability is recovered from the numerical solu-
tion of the full set of equations (1)–(7) (section A1) at the
nucleation instant, characterized by the normalized critical
crack length ac/aw given in Figure 7. This value allows us
to recast the critical crack half-length and the nucleation time
in terms of the two loading parameters, the fault understress
(tp � tb)/tp and the fluid overpressure Dp/s o (Figures 8a
and 8c). The corresponding slip at the crack center is shown
in Figure 8e. For a given value of the overpressure, the
solution exists in the range of background loading conditions,
0 < (tp � tb)/tp ≤ Dp/so, where the lower and upper bounds
of the understress tp � tb correspond to the asymptotics of
the critically loaded and marginally pressurized faults,
respectively. As already discussed, and further supported by
the numerical solution, these asymptotic cases are charac-
terized by the vanishing slip (Figure 8e) and the extreme

values of the nucleation time. The latter vanishes for the low
end and diverges for the high end values of the understress.
To emphasize the relation of the general solution and its
asymptotics, the solution for the critical crack half-length,
the square root of the nucleation time, and the corresponding
peak slip are recast in Figure S1 in the auxiliary material, in
the scaling of a marginally pressurized fault.1

[34] The prominent feature of Figure 8a and its scaled
representation, Figure S1a in the auxiliary material, is the
weak dependence of the nucleation length on the fluid pres-
sure. In other words, the nucleation length is largely controlled
by the proximity of the fault loading to the static strength,
quantified by the understress parameter (tp � tb)/tp. The
minimum nucleation length for a given background loading
is given by the asymptote of the marginally pressurized fault,

min ac=awð Þ ≃ 0:579 tp=tb
� �

; ð24Þ

corresponding to the minimum value of pressure required to
activate the slip. The maximum nucleation length is constrained
by the value of the overpressure that would cause an incipient
fault opening (hydraulic fracture) and the local loss of shear
strength. It can be approximated (with < 1% error) by a two
term expression

max ac=awð Þ ≃ 0:682 tp=tb
� �� 0:103 tb=tp

� �
: ð25Þ

[35] Change of the pressure boundary condition at the
fluid source from a constant overpressure (equation (8)) to a
constant fluid flux condition (equation (9)) leaves the nucle-
ation length, including its minimum (24) and maximum (25)
values, and critical slip predictions practically unchanged.
This follows from comparing Figures 8a and 8b for the
nucleation length, and Figures 8e and 8f for the slip. In the
latter case, the two solutions are compared at the same values
of the overpressure (dashed contour lines in Figure 8f). Two
solutions for the nucleation time are qualitatively similar, but
quantitatively different (solid lines in Figure 8c and dashed
contour lines in Figure 8d), with shorter time to instability in
the case of a constant fluid flux. Note that this quantitative
difference is somewhat obscured by the semi-logarithmic
scale of the Figures 8c and 8d.
[36] Although the numerical solutions at instability repor-

ted here are limited to two particular injection scenarios,
Figure S1 in the auxiliary material suggests that accurate
order-of-magnitude estimates of the nucleation length, time,
and peak slip, can be obtained for a different injection sce-
nario by interpolating between the two analytical asymptotes.

5. Effect of Residual Friction on Nucleation
and Arrest of Dynamic Slip

[37] So far, the nucleation of the dynamic slip propagation
due to the fault pressurization has been addressed in terms of
the ideal linear slip-weakening of the fault friction (dashed line
in Figure 1b). Physical extent of this weakening (at least under
quasi-static slip conditions) is limited. That is, the friction is
more likely to reach, eventually, a finite residual value at a
large enough slip. Related questions are: (1) Can the limited

Figure 7. Solution of the eigenvalue problem (14) in the
case of constant overpressure (Dp = const). Normalized
crack half-length ac/aw is shown as a function of the square
root of the normalized time to instability

ffiffiffiffiffiffiffi
atc

p
/aw and nor-

malized overpressure Dp/s o. This nucleation relationship
(ac vs. tc and Dp) is applicable to an arbitrary spatial profile
of the background stress. Its magnitude tb is uniquely deter-
mined from the solution of the full problem, (1)–(7), at the
instability (see Figures 8a, 8c, and 8e for a uniform back-
ground stress profile).

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GC004192.
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Figure 8. (a–b) Normalized crack half-length, (c–d) square root of time, and (e–f ) slip at the crack center
at the instability as functions of the fault understress (tp � tb)/tp for various constant values of the pre-
scribed fluid overpressure Dp/so (left) and injection rate q/qw (right), where qw = (k/h)(s0/aw) is a charac-
teristic flow rate. In the case of constant injection rate, the contour lines of the overpressure at nucleation,
Dp(tc)/s0 = (2/

ffiffiffi
p

p
)(q/qw)(

ffiffiffiffiffiffiffi
atc

p
/aw), are shown by dashed lines (right). The nucleation crack length (Fig-

ures 8a and 8b) and critical slip (Figures 8e and 8f) for two injection scenarios ((8) and (9)) are very close,
while the sufficiently larger nucleation time is required in the case of constant overpressure (i.e., the
dashed lines in Figure 8d are lower than the solid lines in Figure 8c, which is somewhat obscured by
the semi-logarithmic scale).
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nature of the fault friction weakening alter or suppress the
dynamic instability? (2) Can it arrest otherwise dynamic rup-
ture propagation? In this section, these questions are addressed
by examining changes to the states of quasi-static crack equi-
librium when the friction law (5) is amended by postulating
that the friction slip-weakening is limited to the residual value,
fr, reached at the slip value of dr = (fp � fr)/w:

f dð Þ ¼ fp � wd; d ≤ dr
fr; d > dr

	
ð26Þ

[38] In relation to the first question, we note that since the
slip on critically loaded (tp � tb ≪ fpDp) or marginally
pressurized (tp � tb ≃ fpDp) faults at the instability is small,
the nucleation of dynamic slip for such faults is not affected
by the limited slip-weakening. Further, examination of
Figure 8e suggests that the peak slip at the instability (d|x = 0)c
in the model without residual friction may reach the mini-
mum value dr = (1 � fr/fp)dw at which the residual friction
is probed only if the overpressure is large enough and the
understress is within an intermediate subset from the range of
0 < tp � tb < fpDp. For example, taking a representative
value fr/fp = 0.6 (discussed in section 7.2) results in dr/dw =
0.4, and Dp/so ≳ 0.6 (more precisely ≳0.565) is required to
reach the residual friction level prior to the instability for
these intermediate values of the understress (Figure 8e).

5.1. Numerical Examples

[39] Solution of the scaled set of equations (1)–(4), (26)
and (7) for the normalized crack half-length a/aw and
slip d/dw is a function of normalized time at/aw

2 , understress
(tp � tb)/tp, overpressure Dp/so, and the ratio of the
residual to the peak friction coefficients, fr/fp. Since the slip-
weakening region may no longer extend over the entire slip
zone, resulting in a non-smooth stress distribution along it,
the problem is more conveniently treated numerically by the
piecewise constant displacement discontinuity (DD) method,
as outlined in section A2.
[40] The development of the quasi-static crack (the crack

length and the peak slip at the crack center) due to the
pressurization of a slip-weakening fault with residual friction
fr/fp = 0.6 is examined in Figure 9 for three values of the
overpressure and various values of the understress (tp � tb)/
tp from the corresponding ranges of (0, Dp/so). Dotted lines
show the solution for the model with unlimited slip
weakening. Solutions for these two fault friction models are
identical for d ≤ dr (e.g., compare Figure 9b to Figure 2 for
Dp/so = 0.5). If the peak slip (at the crack center) exceeds the
threshold of dr, a different path of the crack evolution before
and after the initial instability can be realized.
[41] In the case of a small overpressure and the

corresponding range of large background stress values
(Figure 9a), the slip accumulated during the quasi-static
growth of the crack to the instability is small, and, as antic-
ipated, the nucleation of dynamic rupture (da/dt → ∞) is not
affected by the residual friction. Furthermore, there exist
no quasi-static crack states with a > ac, suggesting that the
dynamic rupture propagation is unabated, at least, within
the confines of the model of a homogeneous fault loaded by
a uniform background stress.
[42] In the case of a moderate overpressure (Figure 9b),

the initial instability is still unaffected by the residual

friction, i.e., the peak slip at the instability is smaller than the
residual value. However, different scenarios of the devel-
opment of ensuing dynamic rupture can be forecasted based
on the level of the background loading. For example, con-
sider a possible path for the crack evolution with tb/tp =
0.55, as shown by arrows in Figure 9b. The crack growth
occurs in three distinct episodes: (1) quasi-static crack devel-
opment toward the initial point of instability A, (2) dynamic
slip episode arrested at point B, and (3) subsequent quasi-
static expansion of the slip zone. A necessary condition for
the transition from the dynamic propagation back to the
quasi-static one is linked to the existence of alternative
quasi-static solution branches (for given fixed values of the
background stress and overpressure) characterized by the
increasing crack length with time. We observe that no such
alternative branches exist for relatively large background
stress (tb/tp ≳ 0.74 in Figure 9b), when the fault is relatively
close to failure even prior to the pressurization. In this case, the
limited amount of slip-weakening is sufficient to drive
dynamic rupture without further pressurization. For smaller
values of the background stress (0.5 < tb/tp ≤ 0.6),
approaching the minimum set by the overpressure value, the
pressurization is essential to drive the dynamic crack growth.
Indeed, the transition from the dynamic slip (nucleated when
the crack tips were well behind the pressure diffusion frontffiffiffiffiffi
at

p
) to the second quasi-static slip episode takes place when

the crack tip “catches up” with the pressure diffusion “front”.
For intermediate values of the background stress (0.6 < tb/tp <
0.74 in Figure 9b), the crack evolution has two instability
episodes: the first dynamic slip is arrested and followed by the
intermediate period of quasi-static slip, which eventually leads
to the re-nucleation and sustained propagation of the dynamic
rupture. The evolution of stress and slip profiles for these three
types of solution trajectories is controlled by the level of the
background stress and illustrated in Figure S2 in the auxiliary
material.
[43] Finally, in the case of large overpressure (Figure 9c),

the development of slip is qualitatively similar to the previ-
ous case of a moderate overpressure for large and small
values of the background stress, when the initial instability is
not affected by the limited nature of fault-weakening.
Namely, large background stress corresponds to a near-crit-
ical fault (e.g., tb/tp = 0.8) when the propagation of the
dynamic rupture is unrestricted. In contrast, small back-
ground stress corresponds to a marginally pressurized fault
(e.g., tb/tp = 0.3) when dynamic rupture is arrested. Different
types of fault slip development are observed in the interme-
diate loading range (0.36 ≲ tb/tp < 0.8), where the initial slip
instability is altered by the limited friction weakening. In
the ultimately stable part of this range (0.36 ≲ tb/tp ≤ 0.6)
the instability is suppressed completely, as a higher level
of the quasi-static slip, compounded by lower background
stress, results in the stabilization of the fault strength (at
the residual value) before the instability can develop. In the
ultimately unstable part of this stress range (0.6 < tb/tp <
0.8), the instability takes place at a larger quasi-static crack
length than otherwise predicted in the model without the
residual friction, and ensuing dynamic rupture propagation
is unrestricted.
[44] We note that the existence of the alternative quasi-

static crack solutions associated with the arrest of dynamic
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Figure 9. Development of (left) the normalized crack half-length and (right) the slip at the crack center
for various values of the normalized fault background stress tb/tp and three values of the fixed overpres-
sure at the center: (a) Dp/so = 0.25, (b) Dp/so = 0.5, and (c) Dp/so = 0.75, in the model with residual
friction (Figure 1b) fr/fp = 0.6. Dotted lines correspond to the model with unlimited friction weakening
(Figure 2). The two models are equivalent for d|x = 0 ≤ dr ≡ (1 � fr/fp)dw. Lighter lines correspond to
the small scale yielding (s.s.y.) asymptote. The case of tb/tp = 0.55 in Figure 9b shows quasi-static evo-
lution of the crack toward the point of instability A, followed by dynamic propagation episode (vertical
arrow), which is arrested at point B, after which the crack resumes quasi-static expansion.
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propagation is the necessary condition for the arrest, while
the sufficiency has not been established here, and may
require explicit solution for dynamic crack propagation. To
this end, Viesca and Rice [2012] used numerical simulations
of dynamic rupture nucleated on a fault with limited slip-
weakening in a similar problem. They show that the dynamic
rupture is indeed arrested at/near the states predicted from the
quasi-static solution with a limited amount of dynamic
overshoot.

5.2. Small Scale Yielding

[45] Fault responses to the pressurization observed in
the model with a residual fault friction fall in two general
categories of ultimately stable (with or without a dynamic
episode) and ultimately unstable slips. The corresponding
criteria, as well as the relevant asymptotic behavior of the
fault can be discerned from the analysis when the quasi-
static crack length is large compared to the characteristic
value aw, such that the strength slip-weakening is localized
to a small zone near the crack tip. In fact, this localization
can be directly observed from the slip and stress distribu-
tions corresponding to the solutions shown in Figures S2b
and S2c in the auxiliary material. In this case, we use the
small scale yielding (s.s.y.) approach [Rice, 1968; Palmer
and Rice, 1973] and evaluate the fracture energy as

G* ≃ fp � fr
� �

s að Þ dr
2

ð27Þ

on the assumption that the effective normal stress is approxi-
mately constant within the (small) end zone and equal to s(a).
[46] On the other hand, the stress intensity factor (SIF), K,

that would exist at a tip of the crack, loaded by the far field
stress tb and by the shear traction equal to the residual fault
strength frs, can be written as a sum of the SIF at ambient
conditions and the perturbationDK due to the pressurization:

K ¼ tb � tr
� � ffiffiffiffiffiffi

pa
p þDK a; tð Þ; ð28Þ

where

DK a; tð Þ ¼ fr

ffiffiffi
a

p

r Za
�a

p x; tð Þ � poffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p dx ð29Þ

and tr = frso is the residual strength at ambient conditions.
This allows for the evaluation of the rate G = K2/(2m*) at
which the elastic energy can be quasi-statically released into
a crack tip region in the event of crack propagation. Then,
the crack propagation criterion G = G*, or, equivalently,

K2= 2m*ð Þ ¼ G*; ð30Þ

yields the asymptotic solution for the crack length a.
[47] This asymptotic solution is generally in good agree-

ment with the full numerical solution when the crack is large
enough. We do not show it here, because a more accurate
version of the s.s.y. solution can be obtained by replacing a
in (28) with an effective crack length aeff = a � 0.466d
(Appendix D), where d = 0.466(p/2)(so/s(a))aw is the size of
the end zone [Dempsey et al., 2010]. This improved s.s.y.
solution, plotted by gray lines in Figure 9 (left), is in
excellent agreement with the full solution when a ≳ 2aw.

5.3. Ultimate Stability

[48] The condition for the ultimate stability of the pres-
surized fault requires that the slipping patch can be stably
(quasi-statically) grown to the infinite size in infinite pres-
surization time, or, in other words, that the s.s.y. solution
possesses the asymptotic limit of a → ∞ when t → ∞.

Rewriting (29) as DK(a, t) = fr
ffiffi
a
p

p Z 1

�1

p as;tð Þ�poffiffiffiffiffiffiffiffi
1�s2

p ds and taking

into account that in our case (i.e., fluid diffusion) p(as, t) �
po > 0 and momothonically decreases with increasing a,
we observe that the integral in DK decreases with a. This
suggests that DK either decreases with a or, at least, grows
slower than

ffiffiffi
a

p
as a → ∞. Therefore, the first term in (28) is

the leading one and K → �∞ if

tb < tr ð31Þ
In reality, negative values of K are unattainable because
the patch will stop growing as soon as K becomes less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m*G*
p

. Its further growth is only possible when the pres-
sure increases to maintain K =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*G*

p
. Hence the necessary

and sufficient condition (31) implies that stable, quasi-static
growth of the slipping patch during sustained fault pressur-
ization requires that the background stress value is less than
the value of the residual fault strength at ambient conditions.
[49] When tb > tr, K → ∞ as a → ∞ in (28). We, there-

fore, predict, not surprisingly, an imminent fault slip insta-
bility if tb > tr.
[50] Note that the stability criterion (31) is in agreement

with the numerical solution for the development of the quasi-
static slipping patch on a fault with residual friction fr/fp = 0.6
(Figure 9). In this case, the neutrally stable trajectory corre-
sponds to tb/tp = tr /tp = 0.6 while the solution trajectories
for higher and lower background stresses correspond to ulti-
mately dynamic and quasi-static slip, respectively (Figures 9b
and 9c). The above asymptotic consideration suggests that for
tb/tp < tr /tp = 0.6, crack length a increases quasi-statically
at large times. Hence, the crack growth is stable at t → ∞,
which would be difficult to establish purely numerically. We
also note that a large enough pressure perturbation,Dp/so ≥1
� fr /fp, is required in order to activate slip, (6), on an ulti-
mately stable fault, (31).

5.4. Large Nucleation Patch Near Stable-to-Unstable
Transition (tb ≃ tr)

[51] When tb is just above the residual strength tr, the
length of the final nucleation patch is large and its front is
well ahead of the “front” of the pressurized zone (also large).
This means that a ≫

ffiffiffiffiffi
at

p
≫ aw and s(a) ≃ so, which can be

seen, for example, for the tb/tp = 0.65 trajectory in the left
parts of Figures 9b and 9c. We note that the separation of
scales between the slipping patch and the pressurized zone
also arises on critically stressed faults (tb ≃ tp, Figure 4b),
but in this case, the nucleation patch scales with aw while the
pressurized zone is small (i.e., a � aw ≫

ffiffiffiffiffi
at

p
).

[52] A “point force” asymptote, p(x, t)� po≃DP(t)dDirac(x),
can be used again to represent a relatively small pressurized
region, centrally located within the crack, when evaluating
the corresponding contribution to the stress intensity factor.
Then DK(a, t) = frDP(t)/

ffiffiffiffiffiffi
pa

p
in (28). Differentiating prop-

agation criterion (30) in time, and passing to the nucleation
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limits, a → ac and da/dt → ∞, we find that DK = DKc =
(tb � tr)

ffiffiffiffiffiffiffi
pac

p
at the nucleation. Substituting this expression

back in (30), we recover the large nucleation patch asymptote,

ac
aw

≃
1

4p
tp � tr
tb � tr

� �2

tb → tr þ 0
� �

: ð32Þ

The corresponding nucleation time is recovered from
DK(ac, tc) = DKc. As above, a more accurate asymptote is
obtained from (32) by replacing ac with the effective nucle-
ation size of ac � 0.341aw (Appendix D).
[53] Equation (32) was independently reported by Viesca

[2011]. Expressing the characteristic length (11) in terms
of the slip-weakening distance dr and substituting the result,
aw = m*dr /(tp � tr), in (32), one obtains the expression
which agrees (up to a factor of 1/4) with Andrews’ [1976]
critical crack length Lc. The similarity between the large ac
asymptote (32) and Lc reflects the s.s.y. nature of the
corresponding shear crack solutions. The difference in the
prefactor reflects different loading conditions. That is, ac in
(32) appears from the point-force-like pore pressure distri-
bution applied at the center of the crack (combined with the
background stress), while Lc in Andrews’ [1976] work is
the minimum length for a propagating crack loaded only
by the uniform background stress.

5.5. Large Dynamic Run-Out on a Marginally
Pressurized (fpDp ≃ tp � tb), Aseismic (tb < tr) Fault

[54] In seismology, “aseismic” faults are often defined as
creeping faults that never host a dynamic rupture. This def-
inition is typically constrained by excluding earthquakes of
sufficiently small magnitude (e.g., micro earthquakes) or not
consistent with the fault plane. In the history of fault evo-
lution, however, the loading conditions or fault strength may
change resulting in sizable seismic events and dynamic
rupture on the fault that previously was aseismic [e.g.,
McGuire et al., 1997]. In this work, a fault is considered to
be aseismic in its current state, that is, before the onset of
change of the background loading, fluid pressure, or rock
strength. To avoid confusion, we define a fault to be aseis-
mic if prestress tb is less than the residual fault strength tr at
the ambient conditions.
[55] In the case of marginally pressurized aseismic faults,

the nucleation time is large and the corresponding size of the
pressurized region is much larger than the nucleation patch
size (Figure 4a), resulting in the large run-out distances of
the dynamic rupture before the arrest, so that a = aarrest ≫ aw.
Indication of this behavior can be seen in Figure 9b (left) for
values of the background stress tb/tp approaching the min-
imum value 1 � Dp/so = 0.5 required to activate the quasi-
static slip for the considered value 0.5 of the overpressure

Dp/so (further discussed in section 5.6). Since K =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*G∗

p
in (30) is bounded, (28) suggests that to the first-orderDK ≃
(tr � tb)

ffiffiffiffiffiffi
pa

p
when a ≫ aw. The corresponding asymptotic

expressions for the arrested crack length and dynamically
accrued peak slip (at the crack center when it is arrested) on
a marginally pressurized fault are given in Appendix E.
[56] These asymptotes suggest that for a given value of

the residual friction, the run-out distance roughly tracks the
pressurized fault length � ffiffiffiffiffiffiffi

atc
p

(see, e.g., (17) and (19) for
particular pressurization scenarios) and the peak accrued slip
�(tp/m*)

ffiffiffiffiffiffiffi
atc

p
. The exception to these estimates corresponds

to the vicinity of the lower (upper) bound of the understress
and overpressure when the run-out distance is much larger
(smaller) than the size of the pressurized region. The lower
and upper bounds of the understress and overpressure on
a marginally pressurized fault correspond to the transition
to the ultimately unstable fault behavior (tb = tr) and to
hydraulic fracturing (Dp = so), respectively.

5.6. Main Results for the Effects of Residual Friction

[57] The main findings of the numerical solutions and
asymptotic analyses are illustrated in Figures 10 and 11 in
the case (8) of constant overpressure. Figure 10 shows the
crack length (left) and peak slip (right) at the (re-) nucleation
and arrest of dynamic rupture on a fault with fr/fp = 0.6 as a
function of the fault understress for the same three values
of the fluid overpressure considered previously in Figure 9.
Figure 11 maps all stable and unstable regimes of slip evo-
lution (as discussed in this section and illustrated in numer-
ical examples in Figures 9 and 10) in the parametric space
of the understress and overpressure. A similar regime map in
the case (9) of injection with constant flow rate is shown in
Figure S5 in the auxiliary material.
[58] According to the asymptotic analysis (sections 5.2

and 5.3), a fault is ultimately unstable when the back-
ground stress magnitude exceeds the residual static strength
at the ambient pore pressure (i.e., when tb > tr). This agrees
with the numerical results (Figure 10) for tp � tb < tp �
tr = 0.4tp or tb > tr = 0.6tp. The nucleation of unstable
sliding takes place on “smaller” patches within the range
defined by (24) and (25) when tb is sufficiently larger than
tr, and the fault residual strength is not reached in the course
of the slip leading to the nucleation (i.e., t > tr, see region 2a
in Figure 11). The (re-) nucleation of dynamic slip on
“larger” patches (32) takes place when tb approaches tr
from above (regions 2b and 3 in Figure 11) and a large part
of the slipping patch has achieved the residual friction. This
can be seen, for example, for ranges (0.26, 0.4) and (0.2, 0.4)
of the normalized understress (tp � tb)/tp in Figures 10b
and 10c, respectively.

Figure 10. (left) Crack half-length and (right) slip at the crack center at the nucleation, arrest, and re-nucleation of dynamic
rupture as functions of understress (tp � tb)/tp for fixed values of the overpressure Dp/so = {0.25, 0.5, 0.75} in the model
with residual friction fr/fp = 0.6 and constant pressure source (8). Dashed lines show the normalized position of the pressure
diffusion “front,”

ffiffiffiffiffiffiffi
atc

p
/aw, at the (re-) nucleation. The rate of dynamic slip per unit crack advance (from the nucleation to

arrest) is shown in Figures 10b and 10c, right axis. For larger values of the overpressure (Figures 10c and 10d) the nucleation
length/peak slip in the model with residual friction differs from that in the model with unlimited weakening (dotted line in
Figure 10c) in a range of the background stress tb. In the case with residual friction, nucleation is suppressed all together on
ultimately stable faults (tb < tr), with the exception for a small range of low tb values near the marginal-pressurization con-
dition (Figure 10c). This range vanishes as Dp → s0 (Figure 10d).
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[59] Faults are ultimately stable when tb < tr, but the
pattern of slip development depends on the level of pres-
surization and that of the background stress. For sufficiently
large fluid overpressure (e.g., forDp/so = 0.75 in Figure 10c),
no nucleation of dynamic rupture takes place when the
residual fault strength is reached within the quasi-statically
expanding slipping patch (regime 4, Figure 11). Such
behavior is characteristic for intermediate values of the
fault loading, which maximize quasi-static slip (0.4 < (tp �
tb)/tp < 0.64 in Figures 10c). This stabilizing trend with
increasing overpressure persists as the overpressure is
increased to the level of the ambient effective stress (Dp/so =
1 in Figure 10d), which corresponds to the incipient
hydraulic fracturing condition at the fluid source. In this case,
dynamic rupture is suppressed entirely in the ultimately
stable fault loading range, tb < tr, (corresponding to the

understress range 0.4 < (tp � tb)/tp < 1 in Figures 10d
and 11).
[60] On the other hand, for moderate to large overpressure

(Dp/so > (tp � tr)/tp in Figures 10b, 10c, and 11), nucle-
ation of dynamic rupture on “small” patches is followed by
the eventual arrest when the background stress is sufficiently
low (regime 2c in Figure 11).
[61] Finally, we note that longer run-out distances of the

dynamic rupture and larger dynamically accumulated slip are
expected for marginally pressurized faults, when the fluid
overpressure is at the minimum required to activate the fault
slip (i.e., (tp� tb)/tp→Dp/so in Figures 10b and 10c). Large
run-out distances may favor activation of other (dynamic) fault
weakening mechanisms during a prolonged dynamic slip
episode that, in turn, may lead to a run-away dynamic rupture

Figure 11. Map of different slip regimes in the space of the normalized understress (tp � tb)/tp and
overpressureDp/so for fr/fp = 0.6. 1. No fault slip (overpressure is not sufficient to activate slip). 2. Nucle-
ation of dynamic slip is not affected by the residual friction fr (i.e., the slip at nucleation dc is less than dr);
distinct sub-regimes correspond to different outcomes of dynamic slip, that is, (2a) unabated dynamic rup-
ture, (2b) arrest, followed by re-nucleation of unabated dynamic rupture, and (2c) arrest (ultimately stable
fault). 3. Nucleation of dynamic slip, affected by fr, leading to unabated dynamic rupture. 4. No dynamic
slip nucleation for “large” overpressure on ultimately stable fault. Dependencies of the crack length and
the peak slip at the nucleation, arrest, and re-nucleation on the understress for different values of overpres-
sure (from the ‘small’, ‘moderate’, and ‘large’ overpressure ranges, as defined in the Figure) are illustrated
in Figures 10a, 10b, 10c, and 10d, respectively. The line dc = dr, which separates the parametric regions
where dynamic instability is and is not affected by the level of the residual friction fr, respectively, is eval-
uated from the solution with unlimited friction slip-weakening (Figure 8e).
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and a larger earthquake. This effect of dynamic weakening
mechanisms is discussed below.

6. Effect of Dynamic Weakening

[62] Can dynamic rupture, that is otherwise bound for
arrest under conditions (26) of limited quasi-static weakening,
run-away? Our model with the residual quasi-static friction
predicts that faults with background loading less than the
residual strength (equation (31)) are ultimately stable, yet
may exhibit an episode of dynamic slip (e.g., region 2c in
Figure 11) confined to the zone with perturbed pore pressure.
Interestingly, dynamic ruptures nucleated on marginally
pressurized faults tend to run out the longest distance prior
to the arrest (e.g., Figure 10, left), owing to the fact that
nucleation under the marginal pressure conditions requires a
pressurized region far-exceeding the length of the fracture
at the initial instability. It is plausible to think that the longer
the distances of dynamic crack propagation and, therefore,
the higher the dynamically accumulated slip on the fault
(Figure 10, right), the higher the likelihood that other
(dynamic) weakening mechanisms can be activated in the
course of a dynamic rupture episode. These mechanisms
may allow rupture to propagate dynamically beyond the
otherwise predicted arrested length. This would constitute a
scenario of an earthquake nucleation on a statically strong,
but dynamically weak fault [Lapusta and Rice, 2003; Rice,
2006; Noda et al., 2009]. This possibility is examined
below for two generic dynamic weakening mechanisms
related to the frictional heating in the course of seismic slip.

6.1. Flash Heating on Asperities

[63] The first mechanism corresponds to the “flash heating
on microscopic asperities” along a thin principal shear zone
[Rice, 2006, and references therein], resulting in significant
reduction of the macroscopic friction in laboratory experi-
ments when the slip rate exceeds a threshold value of �0.1
m/s [e.g., Di Toro et al., 2011]. A dynamic rupture episode
in the model with residual quasi-static friction (for suffi-
ciently low values of the background stress) is characterized
by the average normalized rate of slip, (Dd/Da)dyna � tp/m*,
per unit of dynamic crack growth increment (Figures 10b
and 10c, heavy-dotted lines, right axes). The corresponding
average dynamic slip rate is estimated by

Vdyna � vr Dd=Dað Þdyna � vrtp=m*;

where vr is the velocity of dynamic rupture propagation.
Assuming vr � 1 km/s, tp � 20–100 MPa (which roughly
corresponds to 1–7 km depth), and m* � 30 GPa, we esti-
mate Vdyna � 0.6–3 m/s > 0.1 m/s. This simple consideration
shows that the flash heating mechanism can be realistically
activated during a dynamic rupture episode following the
initial fault instability. Therefore, this mechanism can
potentially prevent the arrest, predicted otherwise, leading to
the unabated dynamic propagation (and a large earthquake).
We note, however, that an explicit solution for the dynamic
rupture propagation driven by the slip-rate weakening
(“flash heating”) mechanism is necessary to validate the
latter possibility, which is outside the scope of this paper.

6.2. Thermal Pressurization

[64] Another generic mechanism of dynamic fault weak-
ening corresponds to thermal pressurization resulting from
the mismatch between the thermal expansivity of the pore
fluid and that of the pore space [Sibson, 1973; Lachenbruch,
1980]. This mismatch leads to the fluid pressure increase
with accumulated slip, unless diffusion and/or fault gouge
dilatancy [e.g., Garagash and Rudnicki, 2003] is efficient
enough to dissipate such increases. During the quasi-static
fault slip, the timescale of the pore pressure diffusion across
the thickness of the principal shear zone is likely to be much
smaller than the timescale of the frictional heating, which
effectively suppresses thermal pressurization (e.g., for seis-
mogenic crust) [Segall and Rice, 2006]. On the contrary,
during the dynamic slip, the rate of diffusion may be well
below the rate of shear heating, resulting in essentially
undrained, adiabatic response of the principal shear zone and
in the maximum thermal pressurization effect. We further
assume that the latter is true during a dynamic rupture epi-
sode, resulting in the following undrained, adiabatic pres-
surization equations along the fault [Lachenbruch, 1980]:

dp� LdT ¼ 0; rch dT ¼ tdd: ð33Þ

These equations represent the fluid balance under the
undrained conditions, and the energy balance for the principal
shear zone of thickness h under the adiabatic conditions,
respectively. Here T is the temperature, L is the undrained
pressurization coefficient, and rc is the volumetric heat
capacity of the fault gouge. In view of the explicit dependence
(4) of the fault frictional strength on slip, equations (33) can be
integrated to obtain the slip-dependence of the pressure, and,
consequently, of the fault strength, as follows:

t ¼ f dð Þ�si exp � L
rch

Z d

di
f dð Þdd

� �
; ð34Þ

where di and si = sn � pi are certain initial values of the slip
and the effective normal stress, respectively. In the context of
the dynamic slip nucleation and ensuing activation of the
thermal pressurization mechanism, the initial state in (34)
corresponds to that at the instability of the quasi-static slip,
i.e., di(x) = d(x, tc) and s i(x) = sn � p(x, tc). The extent of
dynamic slip weakening, associated with the exponential term
in (34), depends on the cumulative dynamic slip, d � di, in
relation to the characteristic slip-weakening distance, that can
be defined as (dw)dyna = rch/(fpL). Since the maximum
dynamic slip is �dw for arrested dynamic ruptures in the
model without the dynamic weakening (Figures 10b (right)
and 10c (right), the dynamic fault weakening in that range of
slip is scaled by the ratio dw/(dw)dyna (except for conditions of
marginally pressurized fault where the dynamic slip may be
much larger, and so would be the anticipated dynamic weak-
ening). For crustal rocks, rc� 3MPa/�C,L� 1MPa/�C, fp�
0.6 [e.g., Lachenbruch, 1980; Rice, 2006], so (dw)dyna � 5h.
The principal shear zone thickness h is not well constrained.
Sub-mm to cm values of h have been suggested for seismic
slip on mature faults [Wibberley, 2002; Chester et al., 2004;
Rice, 2006]. Such small values may have resulted from mul-
tiple, severe localization events of slip [Platt et al., 2010], but
larger values cannot be ruled-out at the earthquake nucleation
or for shear fractures propagating through fresh rock. Thus,
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(dw)dyna may be roughly in mm to decimeter range, which, in
view of a plausible sub-mm to mm range for dw (see further in
section 7.2), suggests that the magnitude of the dynamic fault
weakening due to thermal pressurization (scaled by the ratio
dw/(dw)dyna) is small for all but the marginally pressurized
initial fault conditions.
[65] Dependence (34) of the undrained-adiabatic thermal

pressurization on the slip (but not on the slip rate) allows us
to develop conditions for possible arrest of dynamic rupture
without referring to explicit dynamic solutions. Indeed, the
arrested state of the dynamic rupture can be described by a
quasi-static crack solution for the same strength-slip relation
(34). Thus, the necessary arrest condition corresponds to
the existence of such a quasi-static solution with a > ac and
slip exceeding d(x, tc).
[66] To simplify the task of numerical search for the

arrested slip solutions, we solve for fictitious quasi-static
growth of the crack past the instability (a > ac) when the

fault strength is described by (34) by incrementing the crack
length a > ac while allowing the background stress tb to
change from its true value. The state of the arrested dynamic
growth is recovered when the value of tb in the fictitious
solution returns to its true value (if it does).
[67] The piecewise constant slip numerical method out-

lined in section A2 is used for the fictitious quasi-static
crack solution. Examples of these solutions and the
corresponding arrested states (when they exist) are shown in
Figure 12 for several values of the true background stress (or
the understress), as indicated by the intercepts of the vertical
lines, and the fixed value of the fluid overpressure Dp/s0 =
0.5 in the model with residual friction fr/fp = 0.6 and dw/
(dw)dyna = 0.1. The two arrested states with the vertical tan-
gent at the corresponding true values of the fault understress
define the range for the rupture arrest. This range is reduced
compared to the one without the dynamic weakening
mechanism, as further examined in Figure 13 for various
values of the characteristic slip weakening distance ratio dw/
(dw)dyna. The arrest range of the understress is reduced from
0.26 ≤ (tp � tb)/tp ≤ 0.5 for the zero value of the ratio (no
dynamic weakening) to an empty set for dw/(dw)dyna ≳ 0.14.
[68] The magnitude of the dynamic weakening due to the

thermal pressurization of pore fluid is estimated to be rela-
tively small due to the fact that most of dynamic weakening
is expected to occur at the slip scale of (dw)dyna, which is
likely larger than the slip �dw that would be accumulated
during a dynamic rupture episode without dynamic weak-
ening effects. Yet we observe from the above example that
the effect of the dynamic weakening to increase the rupture
run-out distance is not negligible for dw/(dw)dyna ≳ 0.1.

Figure 12. Example of “quasi-static” calculations to deter-
mine the effect of a dynamic slip-weakening mechanism
(thermal pressurization of the shear zone under undrained,
adiabatic conditions) on the arrest of dynamic rupture in
the model with residual friction fr/fp = 0.6 and fixed fluid
overpressure Dp/so = 0.5. For a given value of the back-
ground stress tb, the thermal pressurization mechanism is
switched on and the injection is stopped at the instability
(t = tc and a = ac) of the quasi-static crack growth (shown
with an open circle). Past this moment, a fictitious quasi-
static growth solution, which now includes tb as an
unknown, is evaluated for incremented crack length a > ac.
During the latter stage, the undrained shear strength decays
over slip distances �(dw)dyna = (rc/fcL)h, where rc is the
gouge heat capacity, fc is the friction coefficient at the insta-
bility, L = dp/dT is the undrained thermal pressurization fac-
tor, and h is the thickness of the principal shear zone. The
arrest conditions are met at aarrest > ac (shown by a red
dot) if the value of tb in the fictitious quasi-static solution
reaches the true value of tb there (indicated by a vertical
line). The solution shows that the arrest condition is met over
a narrower range of background stress, 0.33 ≲ tb/tp ≲ 0.44,
than in the solution without the dynamic weakening, 0.26 ≲
tb/tp ≲ 0.5 (Figure 10b).

Figure 13. Crack half-length at the arrest of dynamic prop-
agation as a function of the background stress for various
degrees of dynamic weakening, dw/(dw)dyna = {0, 0.05, 0.1,
0.125}, in the model with residual friction fr/fp = 0.6 and
fixed overpressure Dp/so = 0.5. Increasing the ratio of the
static-to-dynamic slip weakening distances corresponds to
increasing dynamic weakening, with the zero value equiva-
lent to no dynamic weakening (Figure 10b). The range of
background stress where the arrest condition is met shrinks
with increasing effect of the dynamic weakening and
vanishes for dw/(dw)dyna ≳ 0.14.
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Furthermore, values of this ratio as low as 0.14 (for the
considered value of the overpressure Dp/s0 = 0.5) eliminate
the possibility for the rupture arrest and lead to the unabated
seismic slip in the entire range of the fault uniform prestress.
At least, in the confines of our simplified fault model.

7. Discussion

7.1. Assumption of Rate-Independent Slip Weakening

[69] The classic concept of the rate- and state- dependent
friction [Dieterich, 1979; Ruina, 1983] can be described, for
example, by the friction “ageing” law [Ruina, 1983]

t ¼ �s fo þ aln
V

Vo
þ bln

q
qo

� �
;

dq
dt

¼ 1� Vq
dc

; ð35Þ

where q is the state variable, dc is the characteristic strength-
evolution slip distance, a (not to be mistaken for the crack
half length a or ac used otherwise in this work) and b are the
frictional parameters quantifying the dependence of friction
on slip rate and “state” of the frictional surface, respectively,
and fo is the frictional coefficient at the reference rate Vo and
state qo. Considering large slip rates such that Vq/dc ≫ 1,
Uenishi and Rice [2003] suggested that (35) can be
approximated by a linear slip-weakening law for small
values of ratio a/b. This has been confirmed by Rubin and
Ampuero [2005], who recovered the Uenishi and Rice
[2003] nucleation length scale [see also Dieterich, 1992]

ac � m*
ws0

ð36Þ

for the nucleation patch when a/b ≪ 1. Here w = b/dc is the
slip-weakening rate of friction when recast in terms of rate
and state friction parameters, b and dc. Rubin and Ampuero
[2005] and Ampuero and Rubin [2008] have further shown
that the nucleation patch length scale increases with
increasing ratio a/b from the minimum value given by (36) to
the following asymptotic form as a/b → 1:

ac ¼ 1

p
tp � tr
tb � tr

� �2 m*
ws0

ð37Þ

Here tp � tr ∝ bs0 is the frictional strength drop from the
peak (tp) to the residual (tr) strength level, which is accom-
plished in the small end-zones near the tips of the nucleation
patch, and tb � tr ∝ (b � a)s0 is the stress drop from the
background (tb) to the quasi-uniform residual (≈tr) level
in the interior of the patch. Substituting the expression for
the slip-weakening stress rate in terms of the strength drop
over the slip-weakening distance dr,ws0 = (tp� tr)/dr in (37),
shows that this nucleation length scale is identical to the
Andrews’ [1976] expression for the maximum extent of a slip-
weakening, quasi-static crack, before the onset of dynamic
propagation. Uenishi and Rice’s [2003] study has not yielded
the nucleation length scale (37) due to the unlimited nature of
friction weakening in their model. As shown in section 5.4,
nucleation in a slip-weakening model with residual friction
does recover length scale (32), which is similar to (37), when
the prestress value is close to the residual value of the ambient
strength. In other words, length scale (37) can be interpreted
in the framework of a slip-weakening model with residual

friction when most of the weakening takes place near the
fracture tips (small scale yielding).
[70] “Rate and state” frictional law (35) with fixed dc is

experimentally justified for some fault conditions, such as low
velocity (aseismic) sliding on bare rock surfaces or on thin
gouge layers [e.g., Marone, 1998]. This law, however, does
not necessarily work well for sliding on thicker gouge layers
where redistribution and localization of shear strain with
incurred slip [e.g.,Marone et al., 1992; Beeler et al., 1996] is
likely to correspond to changing the state evolution distance dc
with evolving shear zone thickness and may lead to a change
of frictional stability (sign of a � b). The evidence of non-
trivial internal structure and slip localization within ultra-
cataclastic gouges of exhumed mature fault zones [e.g.,
Chester et al., 1993; Chester and Chester, 1998; Wibberley
and Shimamoto, 2003] is well established. Although the slip-
weakening friction law is not always physically justified, it
does adequately describe the post-failure phase of triaxial
compression of granite [Rummel et al., 1978; Rice, 1980;
Wong, 1986], and the post-localization stage in plane-strain
compression of cohesionless materials (a proxy for fault
gouge) [e.g., Han and Vardoulakis, 1991]. Furthermore,
if the rate- and state- dependent framework is a valid physical
representation of the fault friction (e.g., for aseismic slip
on bare rock surfaces [Marone, 1998]), the above corre-
spondence of the end-members indicate that the simplified
slip-weakening friction framework may be asymptotically
accurate at least in the limits of a/b ≪ 1 and a/b = 1.

7.2. Slip Weakening Scale, Nucleation Length,
and Dynamic Run-Out Distance

[71] Uenishi and Rice [2003] suggest that a laboratory-
derived rate- and state-dependent ageing friction law (35) for
an established slip surface [Ruina, 1983] can be approximated,
over a range of slip distances, by a linear slip dependence (5)
with the slip-weakening rate w ≈ b/dc, where b ≈ 0.015 and
dc ≈ 5 to 100 mm are the typical values of the friction param-
eter and the state-evolution distance [e.g., Marone, 1998],
respectively. They further find that the calculated range of
w ≈ 0.15 to 3/mm is broadly consistent with the values of
slip-weakening rate W = ws0 of the frictional strength
inferred by Rice [1980] and Wong [1986] from the post-
failure stage of triaxial experiments on initially intact granite
specimens [Rummel et al., 1978]. For characteristic values
w ≈ 0.7/mm, fp = 0.8, m* � 30 GPa, and s o � 50 MPa
(ambient conditions at 3 km depth), the characteristic slip
and the characteristic crack length are dw = fp/w ≈ 1.2 mm
and aw = (m*/tp)dw ≈ 0.9 m, respectively. Roughly an order
of magnitude variation centered about these values is plau-
sible according to the estimated range for w.
[72] As seen from equations (24) and (25) and Figures 8a

and 8b, the crack length at the nucleation of dynamic rup-
ture scales with aw through the strength-stress ratio: 2ac ≈
1.2(tp/t

b)aw. Thus, the nucleation patch is at its minimum
size ≈1.1 m on critically stressed (favorably oriented) faults,
and increases inversely proportionally to the decreasing
background stress for less critically loaded faults. The mini-
mum possible size of an induced seismic event in the crust
corresponds to the dynamic slip on a favorably oriented, pre-
existing fracture, arrested soon after its nucleation. The arrest
may happen due to the physical barriers to rupture propaga-
tion presented, for example, by the limited extent of the
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pre-existing discontinuity, suggesting the minimum rupture
area �4ac

2 � 1 m2. If a typical stress drop of 3 MPa is
employed, the calculated moment magnitude [Hanks and
Kanamori, 1979] of the smallest earthquake is Mw ≈
�1.6 (�1.7), where the spread corresponds to the possible
range of w and, therefore, of aw. This magnitude range is
consistent with the typical measured microseismicity induced
by hydraulic fracturing [Rutledge et al., 2004].
[73] Many well-studied mature fault zones are not favor-

ably oriented to the existing stress field, and, therefore,
operate at low background shear stress. For example,
Townend and Zoback [2004] estimate from in-situ stress
measurements tb/s0 � 0.06 � 0.3 for the San Andreas fault
(SAF). Similarly, Brune et al. [1969] and Lachenbruch and
Sass [1980] suggest tb/s 0 ≲ 0.1 to explain the lack of a
detectable heat flow anomaly. This implies higher over-
pressure to activate the fault slip, and a nucleation patch size
roughly 3 to 10 times larger than the above estimates for
the critically stressed fractures in the crust. For example,
tb/s0 = 0.2 and, as before, aw = 0.9 m, give the nucleation
patch 2ac ≈ 4.4 m.
[74] Note that in many cases in this paper we normalize

quantities of the length dimension by aw. Therefore, for aw ≃
1 m, the corresponding dimensionless results (and plots) can
be viewed as dimensional, expressed in meters.
[75] The run-out distance of seismic events on unfa-

vorably oriented (tb < tr) but extensive (large) fractures or
faults is likely to be constrained by the limited nature of the
friction slip-weakening (rather than by physical barriers such
as fracture “tips”, intersections, etc.), unless the events
become large enough to activate other (dynamic) weakening
mechanisms, which can allow an entire fault or a large fault
segment to rupture. For laboratory shear fracture of initially
intact granite, the slip weakening distance is approximately
dr ≈ 0.5 mm [Rice, 1980; Wong, 1986; Uenishi and Rice,
2003], and the corresponding ratio of residual-to-peak
friction is fr/fp = 1 � dr/dw ≈ 0.6, where, as before, dw ≈ 1.2
mm. Examples of numerical calculations with fr/fp = 0.6
(Figures 10b and 10c) and the s.s.y. analysis (section 5.2 and
Figure S3a in the auxiliary material) suggest that the dynamic
run-out distance can vary between the order of nucleation
size 2ac to length scale 2

ffiffiffiffiffiffiffi
atc

p
of the pressurized region. The

latter is at its maximum when the conditions of the marginal
pressurization are approached. This may happen when a
process with pore pressure slowly increasing up to and above
the minimum value required to activate the slip (equation (6))
is realized. Considering, for example, marginal pressurization
with overpressure 5% above the minimum slip-activation
value, we estimate from (17) that

ffiffiffiffiffiffiffi
atc

p
≈ 10ac. Thus, for the

nucleation size of 2ac ≈ 4.4 m estimated above, the run-out
distance may vary, depending on the pressurization condi-
tions, between roughly 4.4 and 44 m. The corresponding
moment magnitude varies between �0.4 and 1.6, although
a wider range of Mw ≈ �2 to 3 is also plausible for the pos-
sible range of the rate-weakening w values.

7.3. Time to Instability

[76] Permeability of the fractured fault rocks and gouge
constituting a major fault zone varies over many orders of
magnitude. For example, according to Wibberley and
Shimamoto [2003] for the Medium Tectonic Line fault, k �
10�19 � 10�15 m2 at so � 50 MPa. Here, lower values are

characteristic of both the centimeters-thick central ultra-
cataclastic gouge layer, which accommodates the majority of
slip, and undamaged rock, which is typically 10s to 100s of
meters away from the fault [e.g., Chester et al., 1993]. Higher
values of this permeability range represent the foliated gouges
and highly fractured rock at intermediate distances. It is plau-
sible to assume that it is the higher values of the permeability
spectrum that control fluid transport along the fault (if the
source of fluid overpressure is within the damaged zone of
the fault). Therefore, taking k ≈ 10�16 m2, pore space
expansivity bn� 10/GPa [e.g., Wibberley, 2002], pore fluid
compressibility bf � 1/GPa, porosity n = 0.05, and fluid vis-
cosity h � 10�3 Pa � s, we estimate along-the-fault diffusivity
a = (k/h)/(n(bf + bn)) [e.g., Rice, 2006] as �10�3 m2/s.
The corresponding characteristic diffusion timescale is tw =
aw
2 /a ≈ 15 min when aw ≈ 1 m, but may vary by an order of

magnitude (plus or minus) for the possible range of aw.
[77] The time to instability tc roughly scales with tw for the

intermediate values of understress tp � tb (Figures 8c
and 8d). However, tc ≪ tw for the critically stressed
(tb ≈ tp) and tc ≫ tw for the marginally pressurized
( fpDp ≈ tp � tb) end-member cases. Therefore, the favor-
ably oriented, critically stressed fractures nucleate dynamic
slip on a timescale less than a minute, while the unfavorably
oriented, understressed faults may take hours and days to
nucleate even when the source of the overpressure is in the
close vicinity of the principal slip plane.

7.4. Injection-Induced Seismicity

[78] The discussed mechanisms for nucleating and sus-
taining dynamic slip due to local pore pressure increase in
the crust may indicate the following pattern for injection-
induced seismicity in the vicinity of a large fault.
[79] Pore fluid pressure increase due to the injection may

first activate slip on favorably oriented (possibly critically
stressed) fractures which are likely to be prolific within the
wide damage zone associated with a well-developed fault.
This initially stable slip may transition into dynamic one, but
be promptly arrested at the pre-existing fracture tips leading
to contained microseismicity spreading along the fault with
the pore fluid diffusion front.
[80] Larger pore fluid overpressure is required to activate

slip on a less favorably oriented principal fault plane. If the
pore pressure is to increase continuously to a point of acti-
vating slip on the principal fault plane, the corresponding
nucleation condition is that of a marginally pressurized fault.
This nucleation condition can eventually be reached if
pressurization is maintained over the required large nucle-
ation time and the overpressure margin is sufficient to
overcome natural variations of the local prestress and
strength (which can otherwise precipitate earlier arrest of
dynamic rupture). This results in potentially the largest
dynamic slip run-out distances. As discussed in section 6,
the nucleation under marginally pressurized conditions
(on unfavorably oriented, but well-developed fault plane)
and the associated large run-out distance may lead to the
activation of dynamic weakening mechanisms and to the
unabated rupture propagation spanning a large fault segment.
[81] The outlined process of seismicity development may

have two distinct observables. First, we expect the change
of the focal mechanism between the favorably oriented
fractures (e.g., in the damage zone adjacent to the fault)
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and unfavorably oriented fault (principal) slip surface.
Consequently, there may be an increase in the event mag-
nitudes associated with the mechanism change. This may
signal nucleation on less-favorably oriented, but much better
developed (extended) fault planes. The Denver injection-
induced seismicity of 1962–68 [Healy et al., 1968; Hsieh
and Bredehoeft, 1981] may provide an example of such a
focal mechanism change. Specifically, Healy et al. [1968]
inferred the right-lateral strike-slip mechanism for micro-
seismicity recorded by a dense seismic station network
during two months in 1966, just before the injection was
permanently ended. Three large shocks with magnitude 5+
that shook the Denver area more than a year later were
studied by Herrmann et al. [1981], who concluded that these
were dip-slip events on a normal fault dipping at about 55�.
The two disparate focal mechanisms (strike-slip microseis-
micity and dip-slip earthquakes) inferred in these two studies
may be reconciled within the framework of injection-
induced seismicity developing in the vicinity of a large fault
as suggested above.
[82] Second, due to the effect of dynamic weakening, we

also expect the possible lack of intermediate size events,
which may manifest itself as a gap in the earthquake mag-
nitude range. For example, Healy et al. [1968] reported an
order of magnitude gap between small and large earthquakes
in the case of Denver seismicity. In less restrictive terms,
there may be a deficiency of an intermediate magnitude
range in the frequency-magnitude relation as, for instance,
was observed in the case of Basel seismicity induced during
stimulation of a geothermal reservoir [e.g., Deichmann and
Giardini, 2009]. In general, the lower bound of the magni-
tude deficiency range may correspond to the maximum run-
out distance on a marginally pressurized fault plane that has
not yet resulted in the activation of the dynamic weakening,
capable of sustaining seismic slip.

8. Conclusions

[83] We have studied nucleation and arrest of the dynamic
slip on a pressurized, slip-weakening fault in a uniform
background stress field. The pressurization takes place from
a fluid source and leads to the activation of slip over a patch
on the fault. We made a number of simplifying assumptions
regarding (1) fluid source and fault loading, which allowed
us to treat the slipping patch as a 2-D (mode II or III) crack,
(2) nature of the weakening of the fault gouge, (3) homo-
geneity of the fault gouge properties and stress along the
fault, and (4) negligible poroelastic and inelastic effects
such as gouge dilatancy and change of the fluid transport
properties of the gouge with the slip. These assumptions
may warrant revisiting the results of this study within a more
complete model. However, albeit these simplifications,
the model captures the essential interplay between the
deformation, fluid flow, and fault slip as it may lead to the
development of the dynamic slip nucleation. Specifically,
we show how the initially quasi-static expansion of the
slipping patch, paced by the along-the-fault diffusion, may
eventually lead to the instability and transition into dynamic
rupture due to the slip-weakening nature of the fault friction.
Furthermore, depending on the loading conditions, over-
pressure, and residual level of the fault strength, the dynamic
slip can be potentially arrested, with the possibility to be

renucleated again at a greater scale. Figure 11 shows a map
of slip regimes in the space of these parameters.
[84] We provide a framework for analysis of the stated

problem, which builds on the methodology of Uenishi and
Rice [2003], used by these authors to study the instability
on dry or drained slip-weakening faults. A similar approach
has been recently used in the independent study of a problem
of slip nucleation due to a locally elevated pore pressure in
relation to landsliding [Viesca and Rice, 2012]. In this work,
we provide a solution not limited to a particular injection
scenario, to a permeability contrast between a fault and a
host rock, or to the location of a fluid source (on or off the
fault plane), in the two limiting cases of the fault loading,
corresponding to the critically loaded and marginally pres-
surized faults. Prestress on a critically loaded fault is close to
the static failure condition and only a small (spatially and
magnitude-wise) pressure perturbation is required to activate
the fault slip. In the case of marginally pressurized faults,
when locally peaked fluid overpressure is just enough to
activate the slip, prolonged injection time is required to
reach the dynamic instability (nucleation of dynamic slip).
These asymptotic end-members provide bounds to the gen-
eral solution, obtained numerically for a particular injection
scenario corresponding to the fluid source on the fault
(characterized by the elevated permeability compared to the
host rock and by either constant overpressure or constant
flow rate conditions). Our main results are recounted below.
[85] 1. Fault is ultimately unstable when background shear

stress exceeds the residual static strength (tb > tr).
[86] 2. Size of the dynamic nucleation patch is weakly

dependent on fluid overpressure. It scales with the Uenishi
and Rice [2003] length scale aw (equation (11)) with the
prefactor ∝ tp/tb, and, therefore, only mildly depends on
the prestress tb (regimes 2a and 2c in Figure 11). The situa-
tion is different when tb is just slightly larger than the
residual strength tr (i.e., near the transition from the ulti-
mately unstable to the stable fault-loading). In this case, the
(re-) nucleation patch increases strongly with diminishing tb

and becomes unbounded (∝ aw(tp � tr)
2/(tb � tr)

2) with tb

approaching tr. The latter behavior is a subset of regimes 2b
and 3 in Figure 11 (adjacent to their vertical boundary),
where the (re-) nucleation process is affected by the fault
residual strength.
[87] 3. No dynamic slip nucleation is observed on the

ultimately stable faults (tb < tr) for large fluid overpressure
and intermediate values of the fault understress, that is, away
from the two end-member cases of the critically loaded
(small understress) and marginally pressurized fault,
respectively (regime 4 in Figure 11). This is a consequence
of the fact that for a large overpressure (bounded in this
study by the value of the fault-normal stress), larger slip is
expected earlier, in the quasi-static patch development,
resulting in the fault friction reaching its residual value prior
to the instability.
[88] 4. Furthermore, the stabilizing effect of increasing

overpressure is maximized in the limit of incipient hydraulic
fracturing (i.e., when the overpressure at the fluid source is
equal to the ambient effective stress normal to the fault). In this
limit, the instability is suppressed entirely on ultimately stable
faults.
[89] 5. For moderate values of fluid overpressure that are

still sufficient to activate the slip, even the ultimately stable
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faults undergo a temporal episode of dynamic slip (regime
2c in Figure 11).
[90] 6. Although counterintuitive, the dynamic run-out

distance and accumulated slip are the largest for the lowest
value of fluid overpressure that can still activate the fault slip
on marginally pressurized faults.
[91] 7. Marginally pressurized faults are the most vulner-

able to the activation of dynamic weakening mechanisms
(such as thermal pressurization or flash heating on asperities)
capable of sustaining the earthquake slip, once nucleated.
This is consistent with observations that largest injection-
induced seismic events occur well after the end of injection
[e.g., Healy et al., 1968].
[92] 8. On the other hand, slip on marginally pressurized

faults is expected to be the most sensitive to natural varia-
tions of the local prestress and fault strength. Such variation
may precipitate earlier arrest of dynamic rupture. Placing
further constraints on dynamic rupture arrest has to include
characteristics of the fault prestress and strength heteroge-
neity [e.g., Ampuero et al., 2006].
[93] 9. Finally, it is important to stress again the existence

of a range of parameters (e.g., regions 2a, 2b, and 3 in
Figure 11) for which the run-out distance of dynamic rup-
ture can be theoretically unlimited or, in practice, very large.
Since the large run-out distance may result in a large (and
delayed) earthquake, one may want to keep this in mind
during manipulations with subsurface fluids such as geo-
thermal energy recovery, hydraulic fracturing, geological
(CO2) sequestration, and deep mining and petroleum
operations. Because locations of mature faults are often
unknown even in well-developed provinces, extensive geo-
logical reconnaissance is of utmost significance to support
case-specific analyses based on this work or on another
theoretical framework.

Appendix A: Scaling and Numerical Methods

[94] Using tp and dw to normalize the stress and the slip,
respectively, we rewrite the condition of elastic equilibrium
(1) in the normalized form

t xð Þ � tb

tp
¼ � 1

2p a=awð Þ
Z 1

�1

dd asþ x0ð Þ=dw
ds

ds

x� x0ð Þ=a� s
;

ðA1Þ
where a = (a+ � a�)/2 and x0 = (a+ + a�)/2. In view of the
fault strength expression (4), the normalized elastic stress
perturbation along the crack can be expressed as

t xð Þ � tb

tp
¼ tp � tb

tp
� 1� f d xð Þð Þ

fp

� �
� f d xð Þð Þ

fp

p xð Þ � po
so

:

ðA2Þ
For the linear slip-weakening friction law (5), f (d)/fp = 1 �
d/dw in (A2). In the case of a symmetric crack, x0 = 0, the
equations (A1) and (A2) together with the first slip-rate finite-
ness condition in (2), govern the solution for the normalized
slip d/dw, stress t/tp, and the crack length 2a/aw. These
quantities are functions of the normalized coordinate X = x/a
(for slip and stress distributions), the fault understress param-
eter (tp � tb)/tp, and two parameters, which define the nor-
malized pore pressure distribution (7), namely, the normalized
overpressure at the crack center Dp/s o and the normalized

position of the diffusion “front”
ffiffiffiffiffi
at

p
/aw. For a general case of

a non-symmetric crack, X = (x � x0)/a, and (2b) provides an
additional constraint to solve for an additional unknown x0/a.
[95] In order to solve the system of equations (A1), (A2),

and (2), we use two alternative numerical approaches, which
are standard in problems involving singular Cauchy integrals
[e.g., Uenishi and Rice, 2003; Viesca and Rice, 2012;
Garagash, 2012]. These approaches are summarized below,
as applied to problems considered in this work.

A1. Chebyshev Polynomial Representation

[96] This method relies on the expansion of the slip dis-
tribution into a series of the Chebyshev’s polynomials [e.g.,
Erdogan et al., 1973]

d xð Þ
dw

¼
X∞
n¼1

Bnsin nq; q ≡ arccos
x� x0
a

; ðA3Þ

where Bn are arbitrary expansion coefficients. Substitution of
(A3) in (A1) yields an expression for the stress perturbation,

t xð Þ � tb

tp
¼ � 1

2a=aw

X∞
n¼1

nBn
sin nq
sin q

; ðA4Þ

which is then used to satisfy the finiteness conditions (2):

X∞
n¼1;3;5;…

nBn ¼ 0;
X∞

n¼2;4;6;…

nBn ¼ 0: ðA5Þ

[97] An approximate solution is obtained by truncating the
above series to the first N terms. Equating expressions for
the stress perturbation resulting from (A2) with (A3) and
from (A4) at the N collocation points q(xk) = (p/2)(2k � 1)/
N (k = 1, …, N) along the crack, (xk � x0)/a ∈ (1, �1),
yields a system of algebraic equations for Bi (i = 1, …, N).
The latter, together with the two slip-rate finiteness con-
ditions (A5), results in the system of N + 2 equations for
N + 2 unknowns a/aw, x0/a, and coefficients B1,…,N.
[98] For a symmetric crack, x0/a = 0 and the even-

numbered terms in (A3) are nil, i.e., B2,4,6… = 0 and (A5b) is
automatically satisfied. In this case, an odd N and the first
(N + 1)/2 collocation points along the positive half of the
crack, x/a ∈ (1, 0], are used to evaluate the elasticity
equation (A2) with (A4). The resulting system of (N + 3)/2
algebraic equations together with the non-trivial finiteness
condition (A5a) is solved for a/aw and the (N + 1)/2 odd-
numbered coefficients B1,3,5,…,N. Results reported in this
work have been obtained using N = 100 expansion terms.

A2. Piecewise Constant Slip Method

[99] In this method, the slip is approximated by a piece-
wise constant distribution over 2N uniformly spaced ele-
ments (DX = 1/N) with midpoints Xj = jDX (j = �N, …, N),
where, as already defined before, X = (x � x0)/a ∈ [�1, 1] is
the normalized coordinate along the crack. This discretiza-
tion leads to the well-known approximation for the elastic
stress perturbation (A1) at the grid points [e.g., Uenishi and
Rice, 2003]:

t iDXð Þ � tb

tp
¼ � aw

a

X
j

Kij
d jDXð Þ

dw
; ðA6Þ
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where Kij = �1/(2pDX[(i � j)2 �1/4]) and d(�NDX) = 0.
Note that the stress and slip in (A6) are expressed in terms of
the normalized coordinate X rather than the dimensional x in
the original equation (A1). Equating (A6) evaluated at the
interior grid points (�N < i < N ) to the corresponding
expressions from the constitutive law (A2) yields 2N � 2
algebraic equations on the same number of the slip
unknowns. Solution of this set depends on the crack length a,
eccentricity x0, and the background stress tb. Quantities a
and x0 are related to t

b by the finiteness conditions (2). In the
case of the symmetric crack, x0 = 0, and the relevant finite-
ness condition (the first in (2)) is evaluated using (A2) and
the slip discretization as follows:

tb

tp
¼
X
j

kj
f dð jDXð ÞÞ

fp
;

where

kj ¼ 1

p

Zmin þ1; jþ0:5ð ÞDXf g

max �1; j�0:5ð ÞDXf g

1� p aX ; tð Þ � po
so

� �
dXffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

p :

[100] When using the above numerical scheme to solve for
the slip and the slipping patch length as a function of the
background stress tb (and time t, which enters as a parameter
in the pore pressure for a given injection scenario), we found
it more convenient to specify the crack length (and time) and
solve for tb and slip d. Results reported in this paper have
been obtained for 2N = 120 discretization elements along the
crack, which yields an accurate solution within the reported
range of the normalized crack length and injection time.
Comparison of the numerical results obtained by two dif-
ferent methods (i.e., by the polynomial expansion method
described in section A1 and the discretization method dis-
cussed above) for the case of friction law with unlimited
slip-weakening shows that the difference is practically
negligible.

Appendix B: Asymptotics of Marginally
Pressurized Fault (fpDp ≃ tp � tb)
at Slip Instability

[101] As discussed in section 4.1, in this case, the nor-
malized slip d/dw is expected to be small, and so is the
deviation of fluid pressure p(x) along the crack from its value
at the center po + Dp. In addition, f(d)/fp = 1 � d/dw accord-
ing to (5). Therefore, approximation (f(d)/fp)(p(x) � po) ≃
Dp � Dp(d/dw) � (Dp � (p(x) � po)) is valid and can be
substituted into the expression (A2) for the normalized stress
perturbation along the crack. After rearranging terms, we
obtain

t xð Þ � tb

tp
¼ � fpDp� tp � tb

� �
tp

� 1�Dp

so

� �
d xð Þ
dw

þDp� p xð Þ � poð Þ
so

: ðB1Þ

The first term~� = ( fpDp� (tp� tb))/tb in the right hand side
is a small dimensionless parameter, which scales other terms
in (B1), including the normalized stress perturbation in the
left hand side. Equating (B1) to the elasticity integral (A1)

with the crack length asymptote (16), and dividing the
result by ~�, we obtain

t xð Þ � tb

~�tb
¼ �1� d xð Þ

~�dw
þ F x=að Þ

¼ � 1

2pð Þa=aw

Z 1

�1

dd asð Þ= ~�dwð Þ
ds

ds

x=a� s
; ðB2Þ

where F(x/a) is the scaled pressure drop along the crack,
which, in view of the near-uniformity of the pressure along
the crack, can be further approximated by the Taylor series
expansion at the crack center:

F x=að Þ ≡ fpDp

fpDp� tp � tb
� � 1� p xð Þ � po

Dp

� �
≃ A1

xj j
a
þ A2

x2

a2
:

ðB3Þ
Here Taylor coefficients

A1;2 ¼ fp
fpDp� tp � tb

� � a
dp

dx










;� a2

2

d2p

dx2

	 �
x¼0

; ðB4Þ

and only the first non-zero term is to be considered in
expansion (B3). The linear term is non-zero when, for
example, the fluid is injected into a transversely impermeable
fault zone (e.g., equation (7) with (8) or (9)) and the quadratic
term is negligible. On the other hand, the linear term is null
when the pressure profile is smooth at the crack center
(i.e., (dp/dx)x=0 = 0), such as the case of fluid injection at
a distance from the fault plane (equations (7) and (10)).
[102] Equations (B2) and (B3) together with the appro-

priately normalized first finiteness condition in (2) are
solved for the scaled slip distribution d(x)/(~�dw) and either
A1, when (dp/dx)x=0 ≠ 0, or A2, otherwise, using the Cheby-
shev polynomial representation method (described in section
A1 for a similar problem) and considering the crack length a
known. The two numerical solutions at nucleation (a = ac ≃
0.579aw) for injection scenarios such as (8) (or (9)) and (10)
are given by

A1 ≃ 2:487; A2 ≃ 4:384; ðB5Þ
respectively, and the corresponding scaled slip distributions
are shown in Figure 5. Depending on the injection scenario,
the (large) nucleation time can be recovered from the relevant
expression in (B4), as further discussed in the main text.

Appendix C: Asymptotics of Critically Loaded
Fault (tb ≃ tp) at Slip Instability

C1. Outer Solution (x ≫
ffiffiffiffiffiffi
at

p
)

[103] In this case, the extent of the pressurized region is
much smaller than the extent of the quasi-statically slipping
crack,

ffiffiffiffiffi
at

p
≪ a, and the pressure distribution can be effec-

tively replaced by the equivalent “point-force” distribution

p x; tð Þ � po ≃ DP tð ÞdDirac xð Þ x ≫
ffiffiffiffiffi
at

p� �
; ðC1Þ

where dDirac(x) is the Dirac delta function and DP(t) =Z ∞

�∞
(p(x, t) � po)dx.

[104] The normalized perturbations of stress, (t � tb)/tp,
slip, d/dw, and pore pressure, (p � po)/s0, are small, and, in
view of (A1) and (A2), scale with the normalized understress
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parameter � = 1 � tb/tp ≪ 1. Retaining the leading, O(�)
terms in (A2),

t xð Þ � tb

tp
¼ �� d xð Þ

dw
� p xð Þ � po

so
þ O �2

� �
; ðC2Þ

and substituting the result, together with expression (C1) for
the pore pressure, in the left hand side of (A1), yields

a

aw
1� d xð Þ

�dw

� �
� PdDirac x=að Þ ¼ � 1

2p

Z 1

�1

dd asð Þ= �dwð Þ
ds

ds

x=a� s
;

ðC3Þ
where we used the scaling property of dDirac(x),

P ¼ DP

�aws0
¼ Dp

s0

ffiffiffiffiffi
at

p
�aw

Z∞
�∞

P xð Þdx ðC4Þ

is the scaled magnitude of the “point” force, P(x) corre-
sponds to a particular class (7) of pressure distributions,
and DP/(s0aw) � �. Similarly, the first condition in (2) of
the finiteness of the slip rate at the tips of a symmetric crack
can then be reduced to

a

aw
1� 1

p

Z 1

�1

d aXð Þ= �dwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

p dX

� �
� 1

p
P ¼ 0: ðC5Þ

[105] Let us denote the normalized integral operator in the
right hand side of (C3) and its inverse as

L f½ � Xð Þ ≡ � 1

2p

Z 1

�1

df sð Þ
ds

ds

X � s
;

L�1 F½ � Xð Þ ¼ 2

p

Z 1

�1
ln

X � s

1� sX þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

p










F sð Þds;

respectively, where the expression for L�1 is obtained by
integrating in X the classic inversion of the Cauchy integral
over a finite interval of the real axis [Muskhelishvili, 1977].

We look for the solution of (C3) and (C5) for the normalized
slip distribution in the form of

d aXð Þ
�dw

¼ P d1 Xð Þ � a

aw
d2 Xð Þ

� �
þ d Xð Þ; ðC6Þ

where d1 ≡ L�1[�dDirac], d2 ≡ L�1[d1], and d is an auxiliary
unknown function continuous and differentiable for all X ∈
(�1, 1). This function satisfies (C3) and (C5), which can be
written in the form of

a

aw
1þ P a

aw
d2 Xð Þ � d Xð Þ

� �
¼ L d

� 

Xð Þ ðC7Þ

a

aw
1� P K d1

� 
� a

aw
K d2
� 
� �

�K d
� 
� �

� 1

p
P ¼ 0; ðC8Þ

respectively, K[d] ≡ 1
p

Z 1

�1
(d(X/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

p
)dX. Functions d1(X)

and d2(X) are evaluated analytically,

d1 Xð Þ ¼ 2

p
In 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

p� �
=jX j

� �
;

and numerically, respectively, and plotted in Figure C1.
Numerical values of the corresponding terms in (C8) are
K[d1] ≃ 0.7425 and K[d2] ≃ �1.3942.
[106] In order to find the numerical solution for d(X) and P,

we use the Chebyshev polynomial representation,

d Xð Þ ¼
X∞
n¼1

Bnsin nq; L d
� 


Xð Þ ¼ � 1

2

X∞
n¼1

nBn
sin nq
sin q

q ¼ arccos Xð Þ; ðC9Þ

K d
� 


= 2
p

X∞

n¼1
Bn/n with B2,4,6,… = 0, truncated to the

first odd N terms, to evaluate (C8) and (C7) at (N + 1)/2
collocation points defined in section A1. For a given patch
size, a, the resulting system of (N + 1)/2 + 1 algebraic
equations is solved for (N + 1)/2 odd-numbered coefficients
B1,3,5,…,N and P: At the instability, a = ac ≃ 0.579aw
(equation (16)).
[107] The numerical solution is given by

P ≃ 0:8369 a ¼ acð Þ ðC10Þ
and distribution d(X) shown in Figure C1 for a = ac. We note
that the first three, non-zero terms of the slip series expan-
sion (C9),

d Xð Þ ≈ B1 sin q Xð Þ þ B3 sin 3q Xð Þ þ B5 sin 5q Xð Þ;
where B1 = �1.1732, B3 = �0.0608, and B5 = 0.0235,
provide an excellent approximation (1% error or less) to
the solution for a = ac.
[108] We also note that the complete outer solution (C6)

has a non-physical, logarithmic singularity at the crack cen-
ter because the pressure distribution was replaced there by a
point force. Specifically, the following near-field asymptotic
expansion of (C6) is valid at X = x/a ≪ 1 and a = ac:

d xð Þ
�dw

¼ � 2

p
P ln

Xj j
2

� a

aw
Pd2 0ð Þ þ d 0ð Þ þ O Xð Þ; ðC11Þ

where P ≃ 0.8369, a/aw ≃ 0.579, d2(0) ≃ �2.970, and
d(0) ≃ �1.077. Below, we explicitly consider the nature of

Figure C1. Terms in the outer solution d(aX)/�dw =P(d1(X)�
(a/aw)d2(X)) + d(X) (equation (C6)), for critically loaded faults
(� = 1 � tb/tp ≪ 1) at the instability (a = ac ≃ 0.579aw and
P ≃ 0.8369).
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the slip solution within the small pressurized region near the
crack center.

C2. Inner Solution (x � ffiffiffiffiffiffi
at

p
)

[109] Normalized pressure perturbation (p(x) � po)/so � 1
within a small pressurized region x � ffiffiffiffiffi

at
p

near the crack
center. In this region, expression (A2) for the stress pertur-
bation can be approximated as

t xð Þ � tb

tp
¼ � p xð Þ � po

so
þ O �ð Þ � ¼ 1� tb

tp
≪ 1

� �
: ðC12Þ

On the other hand, the elasticity equation (A1) can be
rewritten as

t xð Þ � tb

tp
¼ � 1

2p
�awffiffiffiffiffi
at

p
Z a=

ffiffiffiffi
at

p

�a=
ffiffiffiffi
at

p
dd

ffiffiffiffiffi
at

p
s

� �
=�dw

ds

ds

x=
ffiffiffiffiffi
at

p � s
:

ðC13Þ

Equating (C12) and (C13), using pressure distribution in the
form of (7), expressing

ffiffiffiffiffi
at

p
from (C4), and passing to the

limit of a/
ffiffiffiffiffi
at

p
→ ∞ results, after some simplification, in

equation

P xð ÞZ ∞

�∞
P sð Þds

¼ 1

2pP
Z ∞

�∞

dd̂ sð Þ
ds

ds

x � s
; ðC14Þ

where both right and left hand sides are of the O(1), d̂(x) =
d(

ffiffiffiffiffi
at

p
x)/�dw is the normalized slip in the inner solution, and

x = x/
ffiffiffiffiffi
at

p
is the normalized coordinate. Solution of (C14)

for the normalized slip rate is given by the inverse Hilbert
transform [e.g., King, 2009], which, upon further integration
for the slip, becomes

d̂ xð Þ ¼ d̂ 0ð Þ � 2

p
P

Z ∞

�∞
P sð Þln 1� x=sj jdsZ ∞

�∞
P sð Þds

: ðC15Þ

C3. Matching Outer and Inner Solutions

[110] In order to find the unknown normalized slip at the
center, d̂ (0) = d|x=0/�dw, we use the method of matched
asymptotics [e.g., Kevorkian and Cole, 1996]. Specifically,
we match the inner and outer solutions at the intermediate
distances from the crack center. To characterize behavior of
the inner solution (C15) in the far field x = x/

ffiffiffiffiffi
at

p
≫ 1, we

rewrite (C15) as

d xð Þ
�dw

≃ d̂ 0ð Þ � 2

p
P ln xj j þ 2

p
P

Z ∞

�∞
P sð Þln sj jdsþ I xð ÞZ ∞

�∞
P sð Þds

; ðC16Þ

where integral I(x) =
Z ∞

�∞
P(s) ln|s/x � 1|ds vanishes for large x.

To show this, consider, without a loss of generality, an even

function P(x) with indefinite integral F(x) = �
Z ∞

x
P(x)dx.

Then, I(x) =
Z ∞

0
P(s) ln|s2/x2 � 1|ds = �

Z ∞

0
F(s)

d s2ð Þ
s2�x2

, where

the last equality follows from the integration by parts and
using F(∞) = 0. Thus, I(x) is a Cauchy integral on a semi-
infinite interval, which is known to converge for any F(x)
vanishing (at least algebraically fast) as x → ∞. Furthermore,
asymptotic properties of this integral are such that if F(x) �
x�g (g > 0) as x → ∞, then I(x) � x�g in the same limit [e.g.,
Garagash et al., 2011]. Thus, we maintain that integral I(x)
vanishes in the limit of large x for an arbitrary integrable
distribution P(x) that decays at infinity at least as fast as
P(x) � x�1�g (g > 0). Such a property certainly holds for
pore pressure perturbations borne by linear diffusion and
characterized by a faster-than-power law decay with distance
from the source.
[111] Matching the near-field (X→ 0) asymptotic expansion

(C11) of the outer solution (C6) with the far field (x → ∞)
expansion of the inner solution, which follows from (C16) by
neglecting I(x), at the intermediate distances

ffiffiffiffiffi
at

p
≪ x ≪ a

from the crack center to the O(1) yields the asymptotic
expression for the normalized slip at x = 0:

djx¼0

�dw
¼ P � 2

p
ln

ffiffiffiffiffi
at

p
2a

� 2

p

Z ∞

�∞
P sð Þln sj jdsZ ∞

�∞
P sð Þds

� a

aw
d2 0ð Þ

0
BB@

1
CCAþ d 0ð Þ:

ðC17Þ

We finally make use of expression
ffiffiffiffiffi
at

p
/a = (aw/a)(P /R∞

�∞ P(s)ds)̂�, as follows from (C4), and relationship �̂ ≡
(Dp/s0)

�1 � = (tp � tb)/fpDp between the inner and outer
small parameters, to evaluate slip (C17) at the instability

djx¼0

� �
c

dw
¼ 0:533� � ln

�̂

C
þ 1:003

� �

with C ¼
Z ∞

�∞
P sð Þds

� �
exp �

Z ∞

�∞
P sð Þ ln sj jdsZ ∞

�∞
P sð Þds

0
BB@

1
CCA:

ðC18Þ

where the numerical values of P,Dp(t), a/aw, d2(0), and d(0)
at the instability were utilized (section C1). The value of C
depends upon the specific distribution P(s). For constant
overpressure and constant injection rate, P(x) is given by
(8) and (9), resulting in C = 4.0935 and C = 3.9000,
respectively.

Appendix D: Improved S.S.Y. Asymptotics

[112] Consider an auxiliary problem of slip propagation on
a uniformly loaded fault with limited slip-weakening and
uniform pore pressure. This problem is mathematically
identical to that of a cohesive crack with linear softening and
propagating under uniform far-field tension in the “fixed-
grip” conditions studied by Dempsey et al. [2010]. Let the
size of the end zone be d and the length of the “traction-free”
part of the crack b = a � d. Dempsey et al. [2010] found a
numerical solution for the normalized length d/l of the end
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zone and the normalized loading (tb � tr)/(tp � tr) as
functions of the normalized length b/l of the “traction-free”
part of the crack (i.e., a � b and ŝ∞, respectively, as functions
of b in their notations shown in their Figure 3b), where l =
(p/2)(K/(tp � tr))

2 is a characteristic length scale. The large
crack asymptote, b/l ≫ 1, is given by

d ≃ 0:466l; tb � tr ≃
Kffiffiffiffiffiffi
pb

p 1� 0:1245
l
b
þ O

l
b

� �2
 !

;

ðD1Þ

where K =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*Gc

p
for a growing fracture. The first term in

expansion (D1) is the s.s.y. asymptote, while the second term
is the first-order correction. This expansion can be rewritten
in a convenient form of

K ¼ tb � tr
� � ffiffiffiffiffiffiffiffiffiffi

paeff
p

; aeff ≃ bþ 0:249l ≃ a� 0:466d; ðD2Þ

which incorporates the next order correction to the s.s.y.
asymptote K = (tb � tr)

ffiffiffiffiffiffi
pa

p
.

[113] Based on this solution for the auxiliary problem, we
observe that a more accurate result for the far-field stress
intensity factor in the large crack limit can be obtained by
reducing the crack length a in the corresponding s.s.y.
expressions (such as (28) in the case of pore fluid pressuri-
zation) by a fraction of the end zone length. Specifically, as
follows from (D2), a should be replaced with aeff ≃ a �
0.466d. According to (D1a), the end zone length for the
problem of interest is given by d ≃ 0.466l, where length
scale l can be expressed, in view of (27) and (11), as l =

(p/2)(so/s(a))aw. A comparison of the asymptotes using a
and aeff in the s.s.y. solution is given in Figure D1.

Appendix E: Asymptotics of Large Dynamic
Run-Out

[114] When a ≫ aw, (28) suggests that to the first order,
DK ≃ (tr � tb)

ffiffiffiffiffiffi
pa

p
(because K is bounded in (28)). For the

pore pressure perturbation in the form of (7), we find an
implicit expression for the O(1) approximation of the s.s.y.
solution for the crack length (denoted here by a(0)) as a
fraction of the pressurized length scale:

k
a 0ð Þffiffiffiffiffi
at

p
� �

¼ tr � tb

frDp
; k xð Þ ≡ 1

p

Z1
�1

P xsð Þdsffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ; ðE1Þ

where function k(x) decreases from the �1 maximum value
at x = 0 to zero at x = ∞.
[115] The corresponding, first-order approximation d(0) of

the fault slip can be calculated from the classical inversion
[Rice, 1968] of (1) using (4) with f ≈ fr (since most of the
surface of the large crack, a ≫ aw, is in the state of residual
friction). In the case of pressure distribution (7), we use (E1)
to obtain the peak slip at the crack center:

djx¼0

a

� � 0ð Þ
¼ frDp

m*
W

a 0ð Þffiffiffiffiffi
at

p
� �

; ðE2Þ

where

W xð Þ ¼ 2

p

Z1
�1

ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p þ ffiffiffiffiffiffiffiffiffiffiffi
1� s

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p � ffiffiffiffiffiffiffiffiffiffiffi
1� s

p










� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
	 �

P xsð Þds:

[116] The obtained equations provide asymptotic expres-
sions for the length of the arrested dynamic rupture
(equation (E1)) and the corresponding accumulated peak slip
at the crack center (equation (E2)) for a marginally pres-
surized fault ( fpDp ≃ tp � tb). In both (E1) and (E2),
time t = tc is the nucleation time. For a particular pressuri-
zation scenario (7), characterized by a constant overpressure
and along-the-fault diffusion, tc is given by (17). For this
scenario, the crack length and peak slip are exemplified in
Figure S3 in the auxiliary material for various values of the
residual-to-peak friction ratio fr/fp.
[117] Comparison of asymptote (E1) with the full s.s.y.

solution for the arrested rupture size in Figure S4 in the
auxiliary material shows that (E1) is an accurate approxi-
mation for very large size of the pressurized region

ffiffiffiffiffi
at

p
/aw ≳

103 at the nucleation/arrest of the dynamic rupture driven by
moderate overpressure. In other words, in view of (17), the
fluid overpressure Dp has to be within 0.1% of the unders-
tress value at the slip activation, (tp � tb)/fp, for the
asymptote (E1) and (E2) to hold. For a less restrictive
overpressure margin, the asymptotic expressions (E1) and
(E2) are less accurate, yet provide an adequate order-of-
magnitude estimate of the run-out distance of dynamic rup-
ture and the associate fault slip. For example, Dp = 1%
corresponds to about 20% error in the predicted arrested
crack length (Figure S4 in the auxiliary material).

Figure D1. Comparison of the numerical solution with the
zero-order s.s.y. (dotted, gray lines) and the next-order s.s.y.
(using the “effective crack length” aeff, equation (D2), solid
gray lines) asymptotic solutions for development of the
crack half-length at three values of the fault background
stress tb/tp and the fixed fluid overpressure Dp/so = 0.5 at
the crack center in the model with residual friction fr/fp =
0.6 (as in Figure 9b, left).
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