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Abstract

Two of the more well known congruences for binomial coefficients modulo p, due to

Gauss and Jacobi, are related to the representation of an odd prime (or an integer

multiple of the odd prime) p as a sum of two squares (or an integer linear combination

of two squares). These two congruences, along with many others, have been extended

to analogues modulo p2 and are well documented in [1]. More recently, J. Cosgrave

and K. Dilcher, in [7] and [9], have extended the congruences of Gauss and Jacobi and

a related one due to Hudson and Williams, to analogues modulo p3. In this thesis we

discuss their methods as well as the potential of applying them to similar congruences

found in [1].
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List of Abbreviations and Symbols Used

In what follows, and throughout this thesis, n and r always denote a positive integer,

p a prime, and q a power of a prime.

Notation Description

a ≡ b (mod n) a is congruent to b modulo n; that is, b− a = kn for some integer k.

a �≡ b (mod n) a is not congruent to b modulo n; that is, b− a �= kn for any integer k.

gcd(a, b) Greatest common divisor of a and b.(
n

k

)
Binomial coefficient defined by n!

(n−k)!k! .

qp(m) Fermat quotient defined by mp−1−1
p

.

En The nth Euler number.

Cn The nth Catalan number defined by 1
n+1

(
2n
n

)
.

Bn(x) The nth Bernoulli polynomial.

Bn The nth Bernoulli number.

Nn! Gauss factorial of N modulo n.

Q Field of rational numbers.

Z Ring of integers.

Qp Field of p-adic numbers.

Zp Ring of p-adic integers in Qp.

Z∗p Group of units in Zp.

Fq Finite field with q elements.

F∗q Group of units in Fq.

Gr(β, χ) Gauss sum for the element β and the character χ.

Jr(χ, ψ) Jacobi sum for the characters χ and ψ.

Q(α1, . . . , αn) The smallest subfield of C containing Q and α1, . . . , αn.

Z[α1, . . . , αn] The smallest subring of C containing Z and α1, . . . , αn.(
a
p

)
Legendre symbol of a and p defined for integers a and odd primes p for

which p � a to be 1 if x2 ≡ a (mod p) for some x and -1 otherwise.
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Notation Description

a | b a divides b; that is, b = ak for some integer k.

a � b a does not divide b, that is, b �= ak for any integer k.

indga Index of a base g modulo p defined to be the least nonnegative integer

k such that gk ≡ a (mod p).

p A prime ideal in the given ring of integers that divides the prime p.

m ≡ n (mod a) m is congruent to n modulo the ideal a; that is, the element m+ (−n)

belongs to the ideal a.
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Chapter 1

Introduction

Many mathematicians were interested in the problem of determining the value of bi-

nomial coefficients modulo an odd prime p; among them were C. Gauss, C. Jacobi,

E. Lehmer, A.Whiteman, L. von Schrutlea, R. Hudson, and K. Williams. In the late

1980s, a number of authors began considering the problem of determining the value

of binomial coefficients modulo p2 rather than modulo p [1, Chapter 9]. In this thesis,

we will be concerned with determining the value of binomial coefficients modulo p3.

1.1 The Theorems of Gauss and Jacobi

One of the earliest and better known congruences for binomial coefficients, due to

Gauss (1828), is related to the representation of an odd prime p (congruent to 1 mod-

ulo 4) as a sum of two squares.

Let p ≡ 1 (mod 4) be prime. It is well known that such primes p admit a repre-

sentation as a sum of two integer squares. But if we consider such a representation

p = a2 + b2 for integers a and b modulo 4, and use the fact that the only squares

modulo 4 are 0 and 1, we can conclude that exactly one of a2, b2 is congruent to 1

modulo 4 (and the other is congruent to 0 modulo 4). Without loss of generality, we

may then suppose that a2 ≡ 1 (mod 4) so that a ≡ ±1 (mod 4). Finally, by switch-

ing the sign of a, if necessary, we can assume that a ≡ 1 (mod 4). The following

notation that will be used in several of the following results therefore makes sense.

1
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p = a2 + b2 ≡ 1 (mod 4) where a ≡ 1 (mod 4) (1.1)

Theorem 1.1. Let p, a, b satisfy (1.1). Then

(p−1
2

p−1
4

)
≡ 2a (mod p).

This congruence was discovered by Gauss as a result of his work on quartic and

biquadratic reciprocity (see, e.g., [25, Section 6.2]).

Beukers, in [2], conjectured the following modulo p2 extension of this congruence

which was proven by Chowla, Dwork, and Evans in 1986 [4].

Theorem 1.2. Let p, a, b satisfy (1.1). Then

(p−1
2

p−1
4

)
≡
(
1 +

1

2
pqp(2)

)(
2a− p

2a

)
(mod p2),

where qp(m) denotes the Fermat quotient, defined for integers m and odd primes p � m

by

qp(m) :=
mp−1 − 1

p
.

More recently, Cosgrave and Dilcher [7] (2010) have extended this congruence to

the following analogue modulo p3.

Theorem 1.3. Let p, a, b satisfy (1.1). Then

(p−1
2

p−1
4

)
≡
(
2a− p

2a
− p2

8a3

)(
1 +

1

2
pqp(2) +

1

8
p2
(
2Ep−3 − qp(2)

2
))

(mod p3).

Here Ep−3 denotes the (p − 3)rd Euler number, where the Euler numbers En, n ≥ 0
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are defined by the exponential generating function

1

cosh(x)
=

2

ex + e−x
=

∞∑
n=0

En

n!
xn.

Theorem 1.1 follows from an identity involving Jacobsthal sums while Theorem

1.2 was proved using the Gross-Koblitz formula along with a formula due to J. Dia-

mond. Theorem 1.3, which is the main focus of this thesis, was proved using Gauss

factorials, Morita’s p-adic gamma function, a special case of the Gross-Koblitz for-

mula, and congruences for certain finite sums modulo p and p2.

In [7], the authors use a consequence of the Gross-Koblitz formula to relate a

particular Jacobi sum to a quotient of values of Morita’s p-adic Γ-function. Properties

of Morita’s p-adic Γ-function are then used, along with explicit evaluations of the

Jacobi sum, to obtain Theorem 1.4 below.

Definition 1.1. The Gauss factorial Nn! is defined by

Nn! =
∏

1≤j≤N
gcd(j,n)=1

j.

Definition 1.2. The nth Catalan number, which is always an integer, is defined by

Cn :=
1

n+ 1

(
2n

n

)
.

Theorem 1.4. Let p, a, b satisfy (1.1) and α ≥ 2 be an integer. Then

(
pα−1

2

)
p
!((

pα−1
4

)
p
!
)2 ≡ 2a− C0

p

2a
− C1

p2

8a3
− . . .− Cα−2

pα − 1

(2a)2α−1

= 2a− 2a
α−1∑
j=1

1

j

(
2j − 2

j − 1

)( p

4a2

)
(mod pα).

The quotient on the left-hand side of this congruence strongly resembles a central
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binomial coefficient and Theorem 1.1 is a direct consequence of Theorem 1.4. We will

also see that Theorem 1.3 follows from Theorem 1.4.

Let p ≡ 1 (mod 3) be prime. It is known that such primes p admit a representation

as a sum of an integer square and 3 times an integer square. But if we consider such

a representation p = a2+3b2 for integers a and b modulo 3, and use the fact that the

only squares modulo 3 are 0 and 1, we can conclude that a2 is congruent to 1 modulo

3. The congruence a2 ≡ 1 (mod 3) then implies that a ≡ ±1 (mod 3). Finally, by

switching the sign of a if necessary, we can assume that a ≡ 1 (mod 3). It follows

that, with r = 2a, s = 2b we can represent 4p = r2 + 3s2 with r ≡ 1 (mod 3). The

following notation that will be used in several of the later results therefore makes

sense.

4p = r2 + 3s2 ≡ 1 (mod 3) where r ≡ 1 (mod 3) (1.2)

Similar to Gauss’ theorem of 1828, Jacobi (1837) is credited for the following

result.

Theorem 1.5. Let p, r, s satisfy (1.2). Then

( 2(p−1)
3

p−1
3

)
≡ −r (mod p).

This congruence has been extended to the following analogue modulo p2, indepen-

dently by Evans and by Yeung; see [1, page 293] for both references and additional

comments.

Theorem 1.6. Let p, r, s satisfy (1.2). Then

(2(p−1)
3

p−1
3

)
≡ −r +

p

r
(mod p2).

Similarly to how Cosgrave and Dilcher obtain their modulo p3 analogue of Theorem

1.2 given by Theorem 1.3, they also obtain the following modulo p3 analogue of
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Theorem 1.6, appearing in [7].

Theorem 1.7. Let p, r, s satisfy (1.2). Then

(2(p−1)
3

p−1
3

)
≡
(
−r +

p

r
+

p2

r3

)(
1 +

1

6
p2Bp−2

(
1
3

))
(mod p3).

Here Bp−2(x) denotes the (p − 2)nd Bernoulli polynomial, where these polynomials,

Bn(x), n ≥ 0 are defined by the exponential generating function

tetx

et − 1
=

∞∑
n=0

Bn(x)

n!
tn.

1.2 The Theorem of Hudson and Williams

Similarly to the previous section, the following congruence is found in the work of

Hudson and Williams [22].

Let p ≡ 1 (mod 6) be prime. Then we also have that p ≡ 1 (mod 3) and we may

use the reasoning of the previous section to justify the following notation.

p = a23 + 3b23, a3 ≡ −1 (mod 3) (1.3)

4p = u2
3 + 3v23, u3 ≡ 1 (mod 3) (1.4)

Theorem 1.8. Let p ≡ 1 (mod 6) be a prime and a3, b3 as in (1.3). Then we have

(p−1
3

p−1
6

)
≡ (−1)

p−1
6

+1u3 ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2(−1)

p−1
6

+1a3 (mod p) if b3 ≡ 0 (mod 3),

(−1)
p−1
6 (a3 + 3b3) (mod p) if b3 ≡ 1 (mod 3),

(−1)
p−1
6 (a3 − 3b3) (mod p) if b3 ≡ 2 (mod 3).

This congruence has been extended to the following analogue modulo p2, as found

in [1].
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Theorem 1.9. Let p ≡ 1 (mod 6) and u3 as in (1.4), then

(p−1
3

p−1
6

)
≡ (−1)

p−1
6

+1

(
u3 − p

u3

)(
1 +

2p − 2

3

)
(mod p2).

In analogy with Theorem 1.4, J. Cosgrave and K. Dilcher obtained the following

result (see [10]).

Theorem 1.10. Let p ≡ 1 (mod 6) and u3 as in (1.4), then

(p
α−1
3

)p!

((p
α−1
6

)p!)2
≡ (−1)

p−1
6

+1

(
u3 + u3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

u2
3

)j
)

(mod pα).

1.3 Morley’s Congruence

Another famous congruence involving binomial coefficients and prime numbers is due

to Morley (1895). In [28], using DeMoivre’s theorem, Morley proved the following.

Theorem 1.11. For any prime p ≥ 5,

(−1)
p−1
2

(
p− 1
p−1
2

)
≡ 4p−1 (mod p3).

We note that when p = 3, the above congruence fails modulo 33 but holds modulo

32. For more comments on Morley’s theorem as well as an interesting generalization,

see [20]. This theorem was generalized to the following result by Carlitz in [3].

Theorem 1.12. For any prime p ≥ 5,

(−1)
p−1
2

(
p− 1
p−1
2

)
≡ 4p−1 +

1

12
p3Bp−3 (mod p4).

Here Bp−3 denotes the (p − 3)rd Bernoulli number, where the Bernoulli numbers,

Bn, n ≥ 0 are defined by Bn = Bn(0) with Bn(x) denoting the nth Bernoulli polyno-

mial.
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1.4 Uses and Applications

Areas of Number Theory and Discrete Mathematics employ arithmetic properties of

binomial coefficients. Congruence relations for binomial coefficients have been studied

in the past by famous mathematicians such as Gauss, Kummer, Legendre, and Lucas.

One particular application of congruences of binomial coefficients is discussed

in [26]; these types of congruences have extensive use in the study of Probabilis-

tic Primality Testing. In Probabilistic Primality Testing there are many congruence

relations that are always satisfied by prime numbers and are rarely satisfied by com-

posite numbers. The following theorem is important for proving a large number of

such congruence relations ([26]).

Theorem 1.13. The positive integer n is prime if and only if

(
n

k

)
≡ 0 (mod n)

for all k with 1 ≤ k ≤ n− 1.

On its own, this is not an efficient way to check primality since it requires the

direct computation of binomial coefficients. However, this theorem is indirectly used

to give effective probabilistic primality tests (see [26] for additional comments).

A celebrated theorem in Elementary Number Theory, due to Wilson, with the

converse due to Lagrange, states the following.

Theorem 1.14. A natural number n > 1 is prime if and only if

(n− 1)! ≡ −1 (mod n).

Wilson primes are odd primes that do better than this last congruence; an odd

prime p is called a Wilson prime if (p− 1)! ≡ −1 (mod p2). The only known Wilson

primes p < 2 × 1013 are p = 5, p = 13, and p = 563 ([11]). Congruences involving
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binomial coefficients have also been used to help with the large-scale computations

required in searching for Wilson primes as was done in [13]; see also [14, pp. 102ff.]

Finally in this section, we mention that Theorem 1.10 is an essential tool in the

study of the multiplicative orders of certain Gauss factorials ([10]), namely those of

the form
(
n−1
M

)
n
! (mod n) for odd prime powers n = pα, p ≡ 1 (mod M) and M = 3,

and M = 6.

1.5 Goals

Similar to the theorems of Gauss, Jacobi, Hudson and Williams above, there exist

many other congruence relations for binomial coefficients modulo an odd prime p. A

large number of these results have been extended to modulo p2 analogues, but very

few of them have been extended beyond that to modulo higher powers of p, not even

one step further to modulo p3. We will use the methods outlined by Cosgrave and

Dilcher in [7] to extend as many of the congruences found in [1] as we can to modulo

p3 analogues.



Chapter 2

Background

In this chapter we define the various mathematical objects that will be required later

in this thesis. We also state, mostly without proofs, those results that will be essential

later on.

2.1 Gauss Factorials

For the sake of completeness, we begin by repeating Definition 1.1:

Definition 2.1. For positive integers N and n let Nn! denote the product of all

positive integers up to N that are relatively prime to n. That is,

Nn! =
∏

1≤j≤N
gcd(j,n)=1

j.

In [6] these products are called Gauss factorials. In particular, (n − 1)n! = nn!

is equal to the product of the units modulo n. In any finite abelian group, if one

multiplies all of the elements of the group together, each element that isn’t equal to

its inverse will cancel with its (distinct) inverse in the product. We are therefore left

with the product of the self-inversive elements of the group. Squaring this product

therefore yields the identity element of the group and so either the group has odd

order and the product is equal to the identity, or the group has even order and the

product is equal to the identity or is equal to the unique element of the group having

order 2. The case we are concerned with here is that where the group is equal to

the multiplicative group of the integers modulo some n, having even order ϕ(n) and

unique element of order 2 equal to −1. We therefore obtain 1 or −1 as the value of

9
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the product, but can we classify when each of these possibilities occurs? According to

the following theorem of Gauss, it is completely determined by whether or not there

exists a primitive root to the given modulus ([15, page 65]).

Theorem 2.1. For any integer n ≥ 2 we have

(n− 1)n! ≡

⎧⎪⎨⎪⎩−1 (mod n) for n = 2, 4, pα, or 2pα

1 (mod n) otherwise,

where p is an odd prime and α is a positive integer.

For further properties of the Gauss factorial, see [8].

2.2 Morita’s p-adic Gamma Function

In [27], Morita constructs a p-adic analogue of the classical Γ-function. Morita’s p-

adic Γ-function satisfies some useful analogues to its classical counterpart, as will be

seen in this section.

Define a function F on the non-negative integers by

F (0) := 1, F (N) := (−1)N
∏

0<j<N
p�j

j (N ≥ 1)

where F (1) is interpreted as F (1) = −1, in accordance with the convention that the

empty product equals 1.

Let Qp denote the p-adic completion of the rationals Q, and let Zp denote the

ring of p-adic integers in Qp. Denote the group of units in Zp by Z∗p. Morita’s p-adic

gamma function is the function Γp : Zp → Z∗p defined by

Γp(z) = lim
N→z

F (N) (z ∈ Zp),
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where N runs through any sequence of positive integers having p-adic limit equal to z.

For all n ≥ 0, F is a well-defined (as the following lemma shows) function on

Z/pnZ, Consequently, F lifts to a well-defined map Γp on Zp.

Lemma 2.1. If M,N , and n are non-negative integers, then

M ≡ N (mod pn) implies F (M) ≡ F (N) (mod pn).

Proof. Let M,N, and n be as in the lemma. Without loss of generality, let M < N .

M ≡ N (mod pn) implies N −M = kpn (k ∈ Z). Using the definition of F , we see

that F (M) �≡p 0. Thus
F (N)
F (M)

makes sense and we have

F (N)

F (M)
= (−1)N−M

∏
M≤j<N

p�j

j

≡ (−1)N−M(−1)k (mod pn).

Here we have used Theorem 2.1 since there are k complete reduced residue systems

in the product. Thus

F (N)

F (M)
≡ (−1)k(p

n+1) (mod pn)

≡ 1k (mod pn)

≡ 1 (mod pn),

as required.

Having established that Γp is well-defined, we turn to establishing its continuity.

This is a consequence of the following result (the sequence definition of continuity).

Theorem 2.2. Let E ⊆ Zp and let x0 ∈ E. For f : E → Qp, f is continuous at
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x0 ∈ E if and only if for every sequence {xn} ∈ E satisfying limn→∞ xn = x0 we have

lim
n→∞

f(xn) = f(x0).

If we take E = Zp then we see that Γp satisfies this property.

We observe that Γp(N) = F (N) for nonnegative integers N . For positive integers

n and N with 0 < N < pn, it follows from the definition of F and Theorem 2.1 that

F (N)F (pn + 1−N) ≡ (−1)E(N) (mod pn), (2.1)

where E(N) is the least positive integer ≤ p congruent to N (mod p). Taking a

sequence of integers converging to z ∈ Zp in (2.1) and using the continuity of Γp(z)

and E(z), we obtain the reflection formula

Γp(z)Γp(1− z) = (−1)E(z), (z ∈ Zp). (2.2)

Before Morita, in [31] Overholtzer gave a definition of a different p-adic analogue

to the Γ-function (Overholtzer used Γp(n) =
∏n−1

j=0 (1+ jp)). This definition, however,

does not prove as useful to our purposes as that of Morita.

2.3 Gauss and Jacobi Sums

Let p be prime and r a positive integer. We will set q = pr and denote the finite field

with q elements by Fq. To define Gauss and Jacobi sums over Fq we will first need

the following definitions:

Definition 2.2. A character of an abelian group G is a homomorphism χ : G → C∗.

In the case where G = Fq for some prime power q, characters of G are referred to as

additive characters modulo q. In the case where G = F∗q, characters of G are referred

to as multiplicative characters modulo q.
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From now on, when we refer simply to a “character”, we shall mean a multiplica-

tive character. Among such characters we have the trivial character that maps each

element of F∗q to 1, and we extend every multiplicative character to a map on Fq

by agreeing that the trivial character is to map 0 to 1 while the other (nontrivial)

characters are to map 0 to 0.

Definition 2.3. With the above notation, we define the trace from Fq to Fp to be the

group homomorphism tr : Fq → Fp given by

tr(α) :=
r−1∑
j=0

αpj (α ∈ Fq).

We also denote by e the additive character e : Fq → C∗ given by

e(α) := e
2πitr(α)

p (α ∈ Fq).

To see that tr(α) ∈ Fp we use the multinomial theorem and the fact that Fq has

characteristic p to obtain (α+α2+. . .+αpr−1
)p = αp+αp2+. . .+αpr ; but αpr = α, and

so the equality becomes (tr(α))p = tr(α), from which it follows that tr(α) ∈ Fp . To

see that tr is a homomorphism we use the binomial theorem and the fact that Fq has

characteristic p to obtain tr(α+β) =
∑r−1

j=0(α+β)p
j
=
∑r−1

j=0(α
pj+βpj) = tr(α)+tr(β).

The fact that e is an additive character follows from tr being a homomorphism.

We are now ready to define Gauss and Jacobi sums over the finite field Fq.

Definition 2.4. With the above notation, let χ be a character on Fq, and β ∈ Fq.

Then the Gauss sum Gr(β, χ) over Fq is defined by

Gr(β, χ) =
∑
α∈Fq

χ(α)e(αβ) =
∑
α∈Fq

χ(α)e
2πitr(αβ)

p .

If β = 1, we shall write Gr(1, χ) = Gr(χ). If r = 1, we shall suppress the subscript r.
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Definition 2.5. With the above notation, let χ and ψ be characters on Fq. The

Jacobi sum Jr(χ, ψ) is defined by

Jr(χ, ψ) =
∑
α∈Fq

χ(α)ψ(1− α).

It is well known that the set of all characters of a finite abelian group G forms a

group Ĝ, isomorphic to G and with the trivial character as its identity. In particu-

lar, the order of characters modulo q is well-defined and divides ϕ(q). For two such

characters, χ and ψ we define the order of the associated Jacobi sum to be the least

common multiple of the orders of χ and ψ. In particular, if Jr(χ, ψ) has order m then

the orders of χ and ψ both divide m. It follows that both χ and ψ map into the group

of mth roots of unity so that Jr(χ, ψ) lies in the ring of integers of the cyclotomic field

Q(e
2πi
m ), being a sum of mth roots of unity. For notational convenience, we suppress

the subscript in the notation of the Jacobi sum when we are working modulo a prime.

That is, we set J(χ, ψ) = J1(χ, ψ).

Lemma 2.2. If χ is a nontrivial character on Fq, then

∑
α∈Fq

χ(α) = 0.

Proof. Since χ is nontrivial we know there exists β ∈ F∗q such that χ(β) �= 1. Then

∑
α∈Fq

χ(α) =
∑
α∈Fq

χ(αβ) (since α 
→ αβ defines a permutation of F∗q)

= χ(β)
∑
α∈Fq

χ(α).

Rearranging we get

(1− χ(β))
∑
α∈Fq

χ(α) = 0.
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Since χ(β) �= 1, we may conclude that

∑
α∈Fq

χ(α) = 0,

as required.

An important relationship between Jacobi and Gauss sums is given by the follow-

ing theorem. We present a proof to illustrate standard methods in dealing with these

sums.

Theorem 2.3. Let χ and ψ be characters on Fq. If χψ is nontrivial, then

Jr(χ, ψ) =
Gr(χ)Gr(ψ)

Gr(χψ)
.

Proof. With χ and ψ as in the theorem, we have

Gr(χ)Gr(ψ) =
∑
α

∑
β

χ(α)ψ(β)e(α)e(β)

=
∑
α

∑
β

χ(α)ψ(β)e(α+ β)

=
∑
γ

e(γ)
∑
α,β

α+β=γ

χ(α)ψ(β)

=
∑
α,β

α+β=0

χ(α)ψ(β) +
∑
γ �=0

e(γ)
∑
α

χ(α)ψ(γ − α).

Thus

Gr(χ)Gr(ψ) =ψ(−1)
∑
α

χψ(α) +
∑
γ �=0

e(γ)
∑
α

χ(αγ)ψ(γ − αγ)

=0 + Jr(χ, ψ)
∑
γ �=0

χψ(γ)e(γ) (by Lemma 2.2)

=Jr(χ, ψ)Gr(χψ).

Here we have used the fact that χψ is nontrivial to conclude that χψ(0) = 0 in the
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last two equalities. This completes the proof.

2.4 The Gross-Koblitz Formula

In the following chapter we will need to make use of a corollary of a special instance

of the Gross-Koblitz formula. In its complete generality, the Gross-Koblitz formula

is a powerful and celebrated result which expresses Gauss sums in terms of the value

of Morita’s p-adic Γ-function at rational arguments; see [21] and [1, Section 11.2].

Let p = kf + 1 be prime, g be a primitive root modulo p and χ be a character

modulo p of order k such that χ(g) = β = e
2πi
k .

We use the notation L(a) to denote the least positive residue of the integer a

modulo k. Write the base p expansion of L(a)f as

L(a)f = a0 + a1p+ . . .+ ar−1p
r−1, 0 ≤ ai ≤ p− 1,

and define s(a) to be the sum of the base p digits of L(a)f :

s(a) = a0 + a1 + . . .+ ar−1.

Set π = e
2πi
p − 1 and let λ be the prime element in Qp(e

2πi
p ) such that

λp−1 = −p and λ ≡ π (mod π2).

For the existence and uniqueness of λ, as well as additional information aboutQp(e
2πi
p )

see [23, Chapter 3].
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A special instance of the Gross-Koblitz formula is then given by

G(χ−a) = −λs(a)Γp

(
L(a)

k

)
in Qp(e

2πi
p ),

where χ is the specific character defined above and Γp is Morita’s p-adic gamma func-

tion ([1, Page 350]). For details regarding the Gross-Koblittz formula in all of its

generality as well as commentary on its proof see [1, Sections 2.1 and 11.2].

We now use this formula together with Theorem 2.3 to express Jacobi sums in

terms of the values of Morita’s p-adic Γ-function at rational arguments.

Lemma 2.3. Let χ be the character defined above and let a and b be positive integers

such that a+ b ≤ k. Then

J(χk−a, χk−b) = −Γp(
a
k
)Γp(

b
k
)

Γp(
a+b
k
)

.

Proof. With χ, k, a, and b as in statement of the lemma, we have

J(χ, ψ) =
G(χ)G(ψ)

G(χψ)

by Theorem 2.3 with r = 1. Replacing χ by χk−a and ψ by χk−b we get

J(χk−a, χk−b) =
G(χk−a)G(χk−b)
G(χ2k−(a+b))

=
(−λs(a−k)Γp(

L(a−k)
k

)(−λs(b−k)Γp(
L(b−k)

k
))

−λs(−2k+(a+b))Γp(
L((a+b)−2k)

k
)

.

Here we have applied the special instance of the Gross-Koblitz Formula three times.

Then, using the definitions of L(n) and s(n), we get

J(χk−a, χk−b) = −λs(a−k)+s(b−k)Γp(
a
k
)Γp(

b
k
)

λs(−2k+(a+b))Γp(
a+b
k
)

= −Γp(
a
k
)Γp(

b
k
)

Γp(
a+b
k
)

,
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as desired.

By the reflection formula (2.2) and the identities

E
(a
k

)
= p− af, E

(
b

k

)
= p− bf, E

(
a + b

k

)
= p− (a + b)f,

(valid for positive integers a, b with a+ b ≤ k) we get the following corollary:

Corollary 2.1. For χ, k, a, and b as above we have

J(χk−a, χk−b) =
Γp(1− a+b

k
)

Γp(1− a
k
)Γp(1− b

k
)
.

2.5 Evaluations of Certain Jacobi Sums

Let p = 4f+1 be prime, g be a primitive root modulo p, and χ be a character modulo

p of order 4 such that χ(g) = β, where β = exp(2πi
4
) = i. Then the values of the 16

Jacobi sums J(χm, χn) (m,n = 0, 1, 2, 3) of order 4 are given in the table below.

m\n 0 1 2 3

0 p 0 0 0

1 0 (−1)f(a4 + ib4) a4 + ib4 −(−1)f

2 0 a4 + ib4 -1 a4 − ib4

3 0 −(−1)f a4 − ib4 (−1)f(a4 − ib4)

Table 2.1: Table 3.2.1 in [1].

Let p = 6f + 1 be prime, g be a primitive root modulo p, and χ be a character

modulo p of order 6 such that χ(g) = β, where β = exp(2πi
6
) = 1+i

√
3

2
. Then the

values of the 36 Jacobi sums J(χm, χn) (m,n = 0, 1, 2, 3, 4, 5) of order 6 are given in

the table below.
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m\n 0 1 2 3 4 5

0 p 0 0 0 0 0

1 0 (−1)f 1

2
(u3 + iv3

√
3) a3 + ib3

√
3 (−1)f (a3 + ib3

√
3) 1

2
(u3 + iv3

√
3) −(−1)f

2 0 a3 + ib3
√

3 1

2
(r3 + is3

√
3) a3 + ib3

√
3 −1 1

2
(u3 − iv3

√
3)

3 0 (−1)f 1

2
(a3 + ib3

√
3) a3 + ib3

√
3 −(−1)f a3 − ib3

√
3 (−1)f 1

2
(a3 − ib3

√
3)

4 0 1

2
(u3 + iv3

√
3) -1 a3 − ib3

√
3 1

2
(r3 − is3

√
3) a3 − iv3

√
3

5 0 −(−1)f 1

2
(u3 − iv3

√
3) (−1)f (a3 − ib3

√
3) a3 − ib3

√
3 (−1)f 1

2
(u3 − iv3

√
3)

Table 2.2: Table 3.1.2 in [1].
.

2.6 Some Special Number Sequences

In this section we give a few more details on the special numbers already mentioned

in the Introduction.

Definition 2.6. The Bernoulli polynomials Bk(x), (k ≥ 0) are defined by the expo-

nential generating function

tetx

et − 1
=

∞∑
k=0

Bk(x)

k!
tk,

and the Bernoulli numbers B0, B1, B2, . . . by Bk = Bk(0) (k ≥ 0).

Definition 2.7. The Euler numbers Ek, (k ≥ 0) are defined by setting E2k+1 = 0

and

E2k = −42k+1B2k+1(
1
4
)

2k + 1
(k ≥ 0).

Taking x = 0 in the definition of the Bernoulli polynomial shows that the Bernoulli

numbers are determined by the following exponential generating function:

t

et − 1
=

∞∑
k=0

Bk

k!
tk.

Similarly, the Euler numbers are given by the following exponential generating func-

tion:
1

cosh(t)
=

2

et + e−t
=

∞∑
k=0

Ek

k!
tk.
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The Bernoulli and Euler numbers and polynomials satisfy many recurrence rela-

tions as well as other important properties, as can be found in, e.g., [5] or [30, Chapter

24]. Bernoulli numbers and polynomials are by definition the Taylor coefficients of

certain power series and therefore occur in the Taylor expansions of a number of

classical functions. These numbers and polynomials have been studied in great detail

and are found in many different areas of mathematics, including number theory, the

analysis of finite differences, and numerical analysis. They have connections to cer-

tain Fourier series, analytic applications of L-functions, numerical integration, and

Fermat’s Last Theorem.

The following is a table containing the first few Bernoulli polynomials, Bernoulli

numbers, and Euler numbers.

n Bn En Bn(x)

0 1 1 1

1 −1/2 0 x− 1
2

2 1/6 −1 x2 − x+ 1
6

3 0 0 x3 − 3
2
x2 + 1

2
x

4 −1/30 5 x4 − 2x3 + x2 − 1
30

5 0 0 x5 − 5
2
x4 + 5

3
x3 − 1

6
x

6 1/42 −61 x6 − 3x5 + 5
2
x4 − 1

2
x2 + 1

42

7 0 0 x7 − 7
2
x6 + 7

2
x5 − 7

6
x3 + 1

6
x

8 −1/30 1385 x8 − 4x7 + 14
3
x6 − 7

3
x4 + 2

3
x2 − 1

30

Table 2.3: Bn, En, and Bn(x) for 0 ≤ n ≤ 8.

We will also make use of the following notation, defined in [32].

Definition 2.8. The Fermat quotient of an integer a with respect to an odd prime

p � a is defined by

qp(a) =
ap−1 − 1

p
.
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We note that this value will always be an integer by Fermat’s Little Theorem.

In particular, 2p−1 ≡ 1 (mod p) for odd primes p. Wieferich primes are those p for

which we can do better. An odd prime p is called a Wieferich prime if 2p−1 ≡ 1

(mod p2); this is equivalent to qp(2) ≡ 0 (mod p). It was shown in [16] that p = 1093

and p = 3511 are the only Wieferich primes with p < 6.7 × 1015. We also mention

in passing that Wieferich primes have a connection to Fermat’s Last Theorem, as for

example can be found on [32, Page 23].

2.7 Congruences for Certain Finite Sums

In order to prove some of our results we need a number of congruences for certain

finite sums. Congruences of this kind were obtained by several authors in the early

1900s; here we will focus on results that are found in the papers [24] of Emma Lehmer

and [33] of Zhi-Hong Sun.

Lemma 2.4. For all primes p ≥ 5 we have

p−1∑
j=1

1

j2
≡ 0 (mod p), (2.3)

p−1
2∑

j=1

1

j2
≡ 0 (mod p), (2.4)

∑
1≤j<k≤p−1

1

jk
≡ 0 (mod p), (2.5)

∑
1≤j<k≤ p−1

2

1

jk
≡ 2qp(2)

2 (mod p), (2.6)

for p ≡ 1 (mod 4), we have

p−1
4∑

j=1

1

j2
≡ 4Ep−3 (mod p), (2.7)

∑
1≤j<k≤ p−1

4

1

jk
≡ 9

2
qp(2)

2 − 2Ep−3 (mod p), (2.8)
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and for p ≡ 1 (mod 3), we have

2(p−1)
3∑

j=1

1

j2
≡ −1

2
Bp−2

(
1
3

)
(mod p), (2.9)

p−1
3∑

j=1

1

j2
≡ 1

2
Bp−2

(
1
3

)
(mod p), (2.10)

∑
1≤j<k≤ 2(p−1)

3

1

jk
≡ 9

8
qp(3)

2 +
1

4
Bp−2

(
1
3

)
(mod p), (2.11)

∑
1≤j<k≤ p−1

3

1

jk
≡ 9

8
qp(3)

2 − 1

4
Bp−2

(
1
3

)
(mod p). (2.12)

Lemma 2.5. For all primes p ≥ 5 we have

p−1∑
j=1

1

j
≡ 0 (mod p2), (2.13)

p−1
2∑

j=1

1

j
≡ −2qp(2) + pqp(2)

2 (mod p2), (2.14)

for p ≡ 1 (mod 4), we have

p−1
4∑

j=1

1

j
≡ −3qp(2) +

3

2
pqp(2)

2 − pEp−3 (mod p2), (2.15)

and for p ≡ 1 (mod 3) we have

2(p−1)
3∑

j=1

1

j
≡ −3

2
qp(3) +

3

4
pqp(3)

2 +
1

3
Bp−2

(
1
3

)
(mod p2), (2.16)

p−1
3∑

j=1

1

j
≡ −3

2
qp(3) +

3

4
pqp(3)

2 − 1

6
Bp−2

(
1
3

)
(mod p2). (2.17)

For odd primes p and integers a �≡ 0 (mod p), the Legendre symbol
(

a
p

)
is defined

to be 1 if x2 ≡ a (mod p) has a solution and −1 otherwise. In general, the values of
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a
p

)
are determined by the residue class of p modulo 4|a|. Of particular interest to

us will be the a = 2 and a = 3 cases given by the following two lemmas.

Lemma 2.6. (
2

p

)
=

⎧⎪⎨⎪⎩1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).

Lemma 2.7. (
3

p

)
=

⎧⎪⎨⎪⎩
1 if p ≡ ±1 (mod 12),

−1 if p ≡ ±5 (mod 12).

We are now ready to state the next set of summation congruences.

Lemma 2.8. For all primes p ≥ 7 we have

	 p−1
6

∑

j=1

1

j2
≡ 1

2

(p
3

)
Bp−2

(
1
6

)
(mod p), (2.18)

	 p−1
6

∑

j=1

1

j
≡− 2qp(2)− 3

2
qp(3) + p

(
qp(2)

2 +
3

4
qp(3)

2

)
− p

12

(p
3

)
Bp−2

(
1
6

)
(mod p2).

(2.19)

In order to find modulo p3 identities for some Gauss factorials, we require sums

that are very similar to the ones above. These sums were not found in the literature

directly; however, they are easy to obtain from the results in [24] and [33], as was

done in [7].

In [24] we find the congruence

1

nr
≡ −1

p− nr
− p

1

n2r2
(mod p2),

valid for primes p and integers n, r such that p � n, r.
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If we take n = 1 and r = j, we obtain

1

j
≡ −1

p− j
− p

1

j2
(mod p2). (2.20)

Thus, for p ≡ 1 (mod 4),

3(p−1)
4∑

j=1

1

j
=

p−1∑
j=1

1

j
−

p−1
4∑

j=1

1

p− j
,≡ −

p−1
4∑

j=1

1

p− j
(mod p2), by (2.13).

Using (2.20), we then obtain

3(p−1)
4∑

j=1

1

j
≡

p−1
4∑

j=1

1

j
+ p

p−1
4∑

j=1

1

j2
(mod p2). (2.21)

Finally we invoke Lemmas 2.4 and 2.5 to obtain the following lemma.

Lemma 2.9. For all primes p ≡ 1 (mod 4), we have

3(p−1)
4∑

j=1

1

j
≡ −3qp(2) +

3

2
pqp(2)

2 + 3pEp−3 (mod p2).

To obtain an analogous result for the other type of sum considered in the above

lemmas (still considering p ≡4 1), we start with the observation that

∑
1≤j<k≤ 3(p−1)

4

1

jk
=

1

2

⎛⎝ 3(p−1)
4∑

j=1

1

j

⎞⎠2

− 1

2

3(p−1)
4∑

j=1

1

j2
. (2.22)

However, from our work above we see that

3(p−1)
4∑

j=1

1

j2
=

p−1∑
j=1

1

j2
−

p−1
4∑

j=1

1

(p− j)2

≡ −
p−1
4∑

j=1

1

j2
≡ −4Ep−3 (mod p), (2.23)
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where we have used (2.3) and (2.7). We conclude that

∑
1≤j<k≤ 3(p−1)

4

1

jk
=

1

2

⎛⎝ 3(p−1)
4∑

j=1

1

j

⎞⎠2

− 1

2

3(p−1)
4∑

j=1

1

j2
(from (2.22))

≡ 1

2

⎛⎝ 3(p−1)
4∑

j=1

1

j

⎞⎠2

− 1

2
(−4Ep−3) (mod p) (from (2.23))

≡ 1

2
(−3qp(2))

2 + 2Ep−3 (mod p) (from Lemma 2.9)

=
9

2
qp(2)

2 + 2Ep−3.

We have therefore proved the following congruence:

Lemma 2.10. For all primes p ≡ 1 (mod 4), we have

∑
1≤j<k≤ 3(p−1)

4

1

jk
≡ 9

2
qp(2)

2 + 2Ep−3 (mod p).

In a completely analogous manner we get the following useful congruences:

Lemma 2.11. For all primes p ≡ 1 (mod 6), we have

5(p−1)
6∑

j=1

1

j
≡ −2qp(2)− 3

2
qp(3) + pqp(2)

2 +
3

4
pqp(3)

2 +
25

12
pBp−2

(
1
3

)
(mod p2),

∑
1≤j<k≤ 5(p−1)

6

1

jk
≡ 2qp(2)

2 + 3qp(2)qp(3) +
9

8
qp(3)

2 +
5

4
Bp−2

(
1
3

)
(mod p).

Employing the same method used in (2.22), we have

∑
1≤j<k≤	 p

6



1

jk
=

1

2

⎛⎝ 	 p
6

∑

j=1

1

j

⎞⎠2

− 1

2

	 p
6

∑

j=1

1

j2
,

and ultimately obtain the following analogue to Lemma 2.10.
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Lemma 2.12. For all primes p ≡ 1 (mod 6), we have

∑
1≤j<k≤ p−1

6

1

jk
≡ 2qp(2)

2 + 3qp(2)qp(3) +
9

8
qp(3)

2 − 1

4

(
3

p

)
Bp−2

(
1
6

)
(mod p).

2.8 Primes and Sums of Squares

The following section very closely follows [12, Chapter 1]. A famous theorem in

elementary number theory, conjectured by Fermat and then proved by Euler, is the

following:

Theorem 2.4. An odd prime p can be written as a sum of two integer squares if and

only if p ≡ 1 (mod 4).

For the sake of completeness, we present a proof, based on the exposition in [12,

pp. 10–12].

Proof of Theorem 2.4. First assume p = x2 + y2 for suitable integers x and y. The

squares modulo 4 are 0 and 1 which means that p must be congruent to one of 0,1,2

modulo 4. However since p is odd, it cannot be congruent to 0 or 2 modulo 4 and we

must have p ≡ 1 (mod 4), as required.

Conversely, assume p ≡ 1 (mod 4). We show that p = x2 + y2 for x, y ∈ Z using

the method of infinite descent:

Claim (Descent Step). If an odd prime divides a sum of two relatively prime squares

then it is itself a sum of two squares.

Proof of Descent Step. To prove this step, we will require the following lemma.

Lemma 2.13. Suppose that N is a sum of two relatively prime squares, and that

q = x2 + y2 is a prime divisor of N . Then N
q
is also a sum of two relatively prime

squares.
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Proof of lemma. Write N = a2 + b2, where a and b are relatively prime, and suppose

that q = x2 + y2 is a prime divisor of N . Then q also divides

x2N − a2q = x2(a2 + b2)− a2(x2 + y2)

= x2b2 − a2y2

= (xb− ay)(xb+ ay).

Since q is prime, it divides one of these two factors, and changing the sign of a, if

necessary, we can assume that q | (xb− ay). Thus xb− ay = dq for some integer d.

We claim that x | (a + dy). Since x and y are relatively prime, this is equivalent to

x | (a + dy)y. However,

(a+ dy)y = ay + dy2

= xb− dq + dy2

= xb− d(x2 + y2) + dy2

= xb− dx2,

which is divisible by x. Furthermore, if we set a + dy = cx for a suitable integer c,

then the last equality implies that b = dx+ cy. Thus

a = cx− dy (2.24)

b = dx+ cy. (2.25)

Then, using (2.24) and (2.25), we obtain

N = a2 + b2

= (cx− dy)2 + (dx+ cy)2

= (x2 + y2)(c2 + d2)

= q(c2 + d2).
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Thus N
q
= c2 + d2 is a sum of two squares, and (2.24) and (2.25) show that c and d

must be relatively prime since a and b are. We have now completed the proof of our

lemma.

We now return to the proof of the descent step.

Suppose, towards a contradiction, that p is an odd prime dividing N = a2 + b2,

where a and b are relatively prime and p is not the sum of two squares. If a and b are

changed by adding multiples of p, we still have p | a2 + b2. We may therefore assume

that |a| < p

2
and |b| < p

2
, which in turn implies that N < p2

2
. The new a and b may

have a greatest common divisor d > 1, but p does not divide d, so that by dividing a

and b by d, if necessary, we may assume that p | N , N < p2

2
, and N = a2 + b2 where

gcd(a, b) = 1. Then all prime divisors q �= p of N are less than p. If q were a sum of

two squares, then Lemma 2.13 would show that N
q
would be a multiple of p, which is

also a sum of two squares. If all such q’s were sums of two squares, then repeatedly

applying Lemma 2.13 would imply that p itself was of the same form. So if p is not

a sum of two squares, there must be a smaller prime q with the desired property.

Since there is nothing to prevent us from repeating this process indefinitely, we can

create an infinite decreasing sequence of prime numbers. This contradiction finishes

the Descent Step.

Claim (Reciprocity Step). If p ≡ 1 (mod 4) then p divides a sum of two relatively

prime squares.

Proof of Reciprocity Step. Since p ≡ 1 (mod 4), we can write p = 4k+1 for a suitable

integer k. Then Fermat’s Little Theorem implies that

(x2k − 1)(x2k + 1) = x4k − 1 ≡ 0 (mod p)

for all x �≡ 0 (mod p). If x2k −1 �≡ 0 (mod p) for one such x, then p | x2k +1, so that

p divides a sum of relatively prime squares, as desired. The required x is guaranteed

to exist by the fundamental theorem of algebra, since x2k − 1 is a polynomial over
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the field Fp and hence has at most 2k < p− 1 roots. This completes the proof of the

Reciprocity Step which in turn completes the proof of Theorem 2.4.

This is only the first of many related results that are due to Fermat. For example,

the following were also stated by Fermat and then proved by Euler:

Theorem 2.5. An odd prime p can be written as p = x2 + 2y2 where x, y ∈ Z if and

only if p ≡ 1, 3 (mod 8).

Theorem 2.6. An odd prime p can be written as p = x2 + 3y2 where x, y ∈ Z if and

only if p �≡ 2 (mod 3).

These two theorems can be proven analogously to the above theorem if we change

the Descent Steps respectively to:

Claim. If an odd prime divides a sum of a square and two times another relatively

prime square then it is itself of the same form.

Claim. If an odd prime divides a sum of a square and three times another relatively

prime square then it is itself of the same form.

and change the Reciprocity Steps respectively to:

Claim. If p ≡ 1, 3 (mod 8) then p divides a sum of a square and two times another

relatively prime square.

Claim. If p ≡ 1 (mod 3) then p divides a sum of a square and three times another

relatively prime square.

We note that when we write p = x2+y2, p = x2+2y2, or p = x2+3y2 for integers

x and y, these representations are unique up to the sign of x and y. For proofs of this,

see [29, pp. 167–174], in particular, Corollary 3.23 and Theorem 3.27 with d = −12

and d = −8, respectively.
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When considering the general case given by p = x2 + ny2 for integers x and y

and an arbitrary positive integer n, Euler’s two-step method above will not lead to a

proof. Indeed, the fact that a prime divides an integer of this form need not imply

that the prime is of the same form. For example, consider n = 5: 3 | 21 = 12 + 5 · 22

but 3 �= x2 + 5y2 for integers x and y.

To completely answer the question of when a prime can be written as p = x2+ny2

for integers x, y, and a given positive integer n, we would need to employ methods

that lie beyond the scope of this thesis. We refer the interested reader to [12] for a

complete discussion of the subject.



Chapter 3

Congruences for Binomial Coefficients Modulo p3

The goal of this chapter is to derive modulo p3 analogues for as many classes of bi-

nomial coefficients as possible. Using [7] as a guide, in each case we will do this in

two stages: First we will derive congruences modulo arbitrarily high powers of p for

quotients of suitable Gauss factorials. These results will then be used to prove the

desired modulo p3 congruences for binomial coefficients. Due to the nature of the

proofs, there will be a great deal of repetition throughout this chapter.

3.1 The p ≡ 1 (mod 6) case

Let p = 6f +1 be a prime and let g be a primitive root modulo p. Define Z = indg2,

β = exp(2πi
6
) = 1+i

√
3

2
a primitive 6th root of unity, and χ a character modulo p of

order 6 such that χ(g) = β. By Theorem 2.6 and the argument presented in Chapter

1, we can write

p = a23 + 3b23, a3 ≡ −1 (mod 3), b3 ≡ −Z (mod 3). (3.1)

It follows that, with u3 = 2a23, v3 = 2b23,

4p = u2
3 + 3v23, u3 ≡ 1 (mod 3), v3 ≡ Z (mod 3). (3.2)

We will obtain several modulo p and modulo p2 congruences in this section. The

modulo p2 ones can be obtained from [1, Theorem 9.4.4], and the modulo p ones can

either be deduced from their modulo p2 analogues, or can be found directly in [1,

Theorem 9.2.5].

31
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3.1.1 The binomial coefficient
( p−1

3
p−1
6

)

In [1] we find the following two congruences:

( p−1
3

p−1
6

)
≡ (−1)

p−1
6

+1u3 ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2(−1)

p−1
6

+1a3 (mod p) if b3 ≡ 0 (mod 3),

(−1)
p−1
6 (a3 + 3b3) (mod p) if b3 ≡ 1 (mod 3),

(−1)
p−1
6 (a3 − 3b3) (mod p) if b3 ≡ 2 (mod 3).

(p−1
3

p−1
6

)
≡ (−1)

p−1
6

+1

(
u3 − p

u3

)(
1 +

2p − 2

3

)
(mod p2).

The modulo p congruence is in fact due to Hudson andWilliams [22]. We will begin

by giving an independent proof of the theorem of Cosgrave and Dilcher (Theorem

1.10), which provides the following generalization:

(p
α−1
3

)p!

((p
α−1
6

)p!)2
≡ (−1)

p−1
6

+1

(
u3 + u3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

u2
3

)j
)

(mod pα).

From [1, Table 3.1.2] we have

J(χ, χ) = (−1)
p−1
6
1

2

(
u3 + iv3

√
3
)
,

J(χ5, χ5) = (−1)
p−1
6
1

2

(
u3 − iv3

√
3
)
.

Furthermore, if p is a nonzero prime ideal in the ring Z
[
1+i

√
3

2

]
of integers of Q(i

√
3)

dividing the prime p, then by [1, Theorem 2.1.14], we have

J(χ, χ) ≡ 0 (mod p). (3.3)

By taking a = b = 1 in Corollary 2.1, we obtain

J(χ5, χ5) =
Γp(1− 1

3
)

Γp(1− 1
6
)2
.
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Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ5, χ5) ≡ Γp(1 +
pα−1

3
)

Γp(1 +
pα−1

6
)2

(mod pα).

Since the arguments of Γp are now integers, we have

J(χ5, χ5) ≡ F (1 + pα−1
3

)

F (1 + pα−1
6

)2
(mod pα).

Comparing with the definition of the Gauss factorial, this gives

J(χ5, χ5) ≡ − (p
α−1
3

)p!

((p
α−1
6

)p!)2
(mod pα).

Here we have used the fact that 1 + pα−1
3

≡ 1 (mod 2) which takes care of the minus

sign. Next, (3.3) implies that J(χ, χ)α ≡ 0 (mod pα). Thus

(
(−1)

p−1
6
1

2
(u3 + iv3

√
3)

)α

≡ 0 (mod p
α).

Since this holds for any nonzero prime ideal p of Z
[
1+i

√
3

2

]
dividing p, we may conclude

that this congruence also holds modulo pα. Indeed, we know that p either remains

prime in Q(i
√
3), splits in Q(i

√
3), or ramifies in Q(i

√
3). In the first case,

(
(−1)

p−1
6
1

2
(u3 + iv3

√
3)

)α

∈ pαZ
[
1+i

√
3

2

]
and in the other two cases,

(
(−1)

p−1
6
1

2
(u3 + iv3

√
3)

)2α

∈ pαZ
[
1+i

√
3

2

]
.

We now have that

(u3 + iv3
√
3)α ≡ 0 (mod pα).
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Expanding the left-hand side using the binomial theorem, we get

α∑
j=0

(
α

j

)
uα−j
3 (iv3

√
3)j ≡ 0 (mod pα).

We separate the even from the odd powers to get

	α
2

∑

j=0

(
α

2j

)
(−1)juα−2j

3 3jv2j3 +

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)juα−2j−1

3 3jv2j3 (iv3
√
3) ≡ 0 (mod pα).

Grouping the real terms to one side of the congruence and the imaginary terms to

the other side we have

−iv3
√
3

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)juα−2j−1

3 3jv2j3 ≡
	α
2

∑

j=0

(
α

2j

)
(−1)juα−2j

3 3jv2j3 (mod pα).

Because of the relationship 3v23 = 4p − u2
3, the first sum, which we denote by S1,

becomes

S1 =

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)juα−2j−1

3 (4p− u2
3)

j

=

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)juα−2j−1

3

j∑
k=0

(
j

k

)
(4p)j−k(−u2

3)
k

=

	α−1
2

∑

j=0

j∑
k=0

(
α

2j + 1

)(
j

k

)
(−1)j+kuα−1−2j+2k

3 (4p)j−k

=uα−1
3

	α−1
2

∑

j=0

j∑
k=0

(
α

2j + 1

)(
j

k

)(−4p

u2
3

)j−k
.

Setting ν = j − k and noting that
(
j

k

)
=
(

j

j−k
)
=
(
j

ν

)
, we get

S1 = uα−1
3

	α−1
2

∑

ν=0

(−4p

u2
3

)ν 	α−1
2

∑

j=ν

(
α

2j + 1

)(
j

ν

)
.
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We now use [18, Identity (3.1.21)], namely

	n
2

∑

k=j

(
n+ 1

2k + 1

)(
k

j

)
= 2n−2j

(
n− j

j

)
.

With this we obtain

S1 = (2u3)
α−1

	α−1
2

∑

ν=0

(
α− 1− ν

ν

)(−p

u2
3

)ν

.

Similarly, the second sum, denoted by S2, becomes

S2 =

	α
2

∑

j=0

(
α

2j

)
(−1)juα−2j

3 (4p− u2
3)

j

=

	α
2

∑

j=0

(
α

2j

)
(−1)juα−2j

3

j∑
k=0

(
j

k

)
(4p)j−k(−u2

3)
k

=

	α
2

∑

j=0

j∑
k=0

(
α

2j

)(
j

k

)
(−1)j+kuα−2j+2k

3 (4p)j−k

=uα
3

	α
2

∑

j=0

j∑
k=0

(
α

2j

)(
j

k

)(−4p

u2
3

)j−k

=uα
3

	α
2

∑

ν=0

(−4p

u2
3

)ν 	α2 
∑
j=ν

(
α

2j

)(
j

ν

)
.

Using [18, Identity (3.120)], namely

	n
2

∑

k=j

(
n

2k

)(
k

j

)
= 2n−2j−1

(
n− j

j

)
n

n− j
,

we obtain

S2 =
1

2
(2u3)

α

	α
2

∑

ν=0

(
α− ν

ν

)
α

α− ν

(−p

u2
3

)ν

.

To simplify notation, we set y = −p
u2
3
. Now S1 �≡ 0 (mod pα); we can therefore divide

by S1 to obtain −iv3
√
3 ≡ S2

S1
(mod pα).



36

Claim. We also have

S2

S1
≡ u3 + 2u3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)
yj (mod pα).

Proof of Claim. This is equivalent to

∑	α
2



ν=0

(
α−ν
ν

)
α

α−ν y
ν∑	α−1

2



ν=0

(
α−1−ν

ν

)
yν

≡ 1 + 2

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)
yj (mod pα),

or

	α
2

∑

ν=0

[(
α− ν

ν

)
α

α− ν
−
(
α− 1− ν

ν

)]
yν

≡ 2

(
α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)
yj

)⎛⎝ 	α
2

∑

ν=0

(
α− 1− ν

ν

)
yν

⎞⎠
≡ 2

α−1∑
j=1

	α
2

∑

ν=0

(−1)j−1

j

(
2j − 2

j − 1

)(
α− 1− ν

ν

)
yj+ν (mod pα).

We can simplify the left-hand side of the congruence by using the identity
(
α−ν
ν

)
α

α−ν −(
α−1−ν

ν

)
= 2

(
α−1−ν
ν−1

)
, which follows readily from the definition of the binomial coeffi-

cient. To simplify the right-hand side, we will set k = j + ν and change the order of

summation. When we do this, we get

	α
2

∑

ν=0

(
α− 1− ν

ν − 1

)
yν ≡

α−1∑
k=1

(
k∑

j=1

(−1)j−1

j

(
2j − 2

j − 1

)(
α− 1 + j − k

k − j

))
yk (mod pα).

We have proven our claim if we can show that the coefficients of the powers of y on

both sides of our last congruence are equal up to the power α− 1. To see that this is

indeed the case, we use the identity

∑
j≥0

(−1)j

j + 1

(
2j

j

)(
n+ j

n−m− j

)
=

(
n− 1

n−m

)
,
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which can be obtained from [19, Identity (3.120)] by setting n = α− k and n−m =

k − 1.

We have now proved Theorem 1.10, which we state again for the sake of complete-

ness.

Theorem 3.1. With p and u3 as described in (3.1)–(3.2), and α ∈ N, we have

(p
α−1
3

)p!

((p
α−1
6

)p!)2
≡ (−1)

p−1
6

+1

(
u3 + u3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

u2
3

)j
)

(mod pα).

To obtain our analogue to Theorem 1.3, we have to translate the congruence in

Theorem 3.1 into a congruence involving binomial coefficients. The quotient of Gauss

factorials on the left-hand side is very similar to a central binomial coefficient. We

begin by noting that for primes p as above and positive integers d with d � (p − 1),

we have
p3 − 1

d
=

p2 − 1

d
p+

p− 1

d
.

Thus, with s = p2−1
d

we have

(
p3 − 1

d

)
p

! =
s−1∏
ν=0

[(νp + 1) . . . (νp + p− 1)]

[
(sp+ 1) . . .

(
sp+

p− 1

d

)]
.

Now for each ν = 0, 1, . . . , s− 1 we have

(νp + 1) . . . (νp + p− 1) = (p− 1)!

[
1 + νp

p−1∑
j=1

1

j
+ ν2p2

∑
1≤j<k≤p−1

1

jk

]

≡ (p− 1)! (mod p3).

Here we have used Lemmas 2.4 and 2.5. Similarly,

(sp+ 1) . . . (sp+ p−1
d
) ≡

(
p− 1

d

)
!

⎡⎣1 + sp

p−1
d∑

j=1

1

j
+ s2p2

∑
1≤j<k≤ p−1

d

1

jk

⎤⎦ (mod p3).
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When d = 3 we obtain

(sp+ 1) . . . (sp+ p−1
3
) ≡

(
p− 1

3

)
!

[
1 + sp

(−3

2
qp(3) +

3

4
pqp(3)

2 − 1

6
pBp−2

(
1
3

))
+s2p2

(
9

8
qp(3)

2 − 1

4
Bp−2

(
1
3

))]
(mod p3).

Here we have used Lemmas 2.4 and 2.5. Upon simplifying and using the fact that

s ≡ −1
3
(mod p2), we obtain

(
p3 − 1

3

)
p

! ≡ (p− 1)!
p2−1

3

(
p− 1

3

)
!

×
(
1 +

1

2
pqp(3)− 1

8
p2qp(3)

2 +
1

36
p2Bp−2

(
1
3

))
(mod p3).

When d = 6, we will have to make use of Lemma 2.12. Proceeding as we did before,

we get

(
p3 − 1

6

)
p

! ≡ (p−1)!
p2−1

6

(
p− 1

6

)
!

⎛⎝1 + sp

p−1
6∑

j=1

1

j
+ s2p2

∑
1≤j<k≤ p−1

6

1

jk

⎞⎠ (mod p3).

Now s ≡ −1
6

(mod p2), and so, upon simplifying, we get

(
p3 − 1

6

)
p

! ≡ (p− 1)!
p2−1

6

(
p− 1

6

)
!

(
1 +

1

3
pqp(2) +

1

4
pqp(3)− 1

9
p2qp(2)

2

− 3

32
p2qp(3)

2 +
1

12
p2qp(2)qp(3) +

1

144
p2
(
3

p

)
Bp−2

(
1
6

))
(mod p3).

Combining everything, we get the desired analogue to Theorem 1.3:

( p−1
3

p−1
6

)
≡ (−1)

p−1
6

+1

(
u3 − p

u3
− p2

u3
3

)
× A(

1 + 1
2
pqp(3)− 1

8
p2qp(3)2 +

1
36
p2Bp−2(13)

) (mod p3),
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where

A =

(
1 +

2

3
pqp(2) +

1

2
pqp(3) −1

9
p2qp(2)

2 − 1

8
p2qp(3)

2

+
1

3
p2qp(2)qp(3) +

1

72
p2
(
3

p

)
Bp−2(16)

)
.

Since p ≡ 1 (mod 6), we have
(

3
p

)
= 1. Also, using the identity

1

1− x
= 1 + x+ x2 + x3 + . . . ,

valid for x ∈ pZp we get

1

1 + 1
2
pqp(3)− 1

8
p2qp(3)2 +

1
36
p2Bp−2(13)

≡ 1− 1

2
pqp(3) +

3

8
p2qp(3)

2 − 1

36
p2Bp−2(13) (mod p3).

We then have

( p−1
3

p−1
6

)
≡ (−1)

p−1
6

+1

(
u3 − p

u3

− p2

u3
3

)
×
(
1 +

2

3
pqp(2) +

1

2
pqp(3)− 1

9
p2qp(2)

2 − 1

8
p2qp(3)

2 +
1

3
p2qp(2)qp(3)

+
1

72
p2Bp−2

(
1
6

))(
1− 1

2
pqp(3) +

3

8
p2qp(3)

2 − 1

36
p2Bp−2

(
1
3

))
≡ (−1)

p−1
6

+1

(
u3 − p

u3
− p2

u3
3

)
×
(
1 +

2

3
pqp(2)− 1

9
p2qp(2)

2 − 1

36
p2Bp−2

(
1
3

)
+

1

72
Bp−2

(
1
6

))
(mod p3).

We can further simplify this congruence by using the following lemma, which can

be found on [32, page 158].

Lemma 3.1. If p ≥ 5, then 5Bp−2
(
1
3

) ≡ Bp−2
(
1
6

)
(mod p).

Using this lemma, we get an analogue to Theorem 1.3:
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Theorem 3.2. With p and u3 as in (3.1)–(3.2), we have

(p−1
3

p−1
6

)
≡(−1)

p−1
6

+1

(
u3 − p

u3
− p2

u3
3

)
×
(
1 +

2

3
pqp(2)− 1

9
p2qp(2)

2 +
1

24
p2Bp−2

(
1
3

))
(mod p3).

3.1.2 The binomial coefficient
( p−1

2
p−1
6

)
In [1] we find the following two congruences:

(p−1
2

p−1
6

)
≡ −2a3 (mod p).

( p−1
2

p−1
6

)
≡
(
2a3 − p

2a3

)(
−1 +

2p − 2

3
− 3p − 3

4

)
(mod p2).

We will begin by obtaining an analogue to Theorem 1.4. From [1, Table 3.1.2] we

have

J(χ2, χ) = a3 + ib3
√
3,

J(χ5, χ4) = a3 − ib3
√
3.

Furthermore, if p is a nonzero prime ideal in the ring Z
[
1+i

√
3

2

]
of integers of Q(i

√
3)

dividing the prime p, then by [1, Theorem 2.1.14], we have

J(χ2, χ) ≡ 0 (mod p). (3.4)

By taking a = 1 and b = 2 in Corollary 2.1, we obtain

J(χ5, χ4) =
Γp(1− 1

2
)

Γp(1− 1
6
)Γp(1− 1

3
)
.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ5, χ4) ≡ Γp(1 +
pα−1

2
)

Γp(1 +
pα−1

6
)Γp(1 +

pα−1
3

)
(mod pα).
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Since the arguments of Γp are now integers, we have

J(χ5, χ4) ≡ F (1 + pα−1
2

)

F (1 + pα−1
6

)F (1 + pα−1
3

)
(mod pα).

Comparing with the definition of the Gauss factorial, this gives

J(χ5, χ4) ≡ − (p
α−1
2

)p!

(p
α−1
6

)p!(
pα−1

3
)p!

(mod pα).

Next, (3.4) implies that J(χ2, χ)α ≡ 0 (mod pα). Thus

(a3 + ib3
√
3)α ≡ 0 (mod p

α).

Since this holds for any nonzero prime ideal p of Z
[
1+i

√
3

2

]
dividing the prime p,

we may conclude that this congruence also holds modulo pα. We now expand the

left-hand side and separate real and imaginary parts to obtain

−ib3
√
3

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)jaα−2j−13 3jb2j3 ≡

	α
2

∑

j=0

(
α

2j

)
(−1)jaα−2j3 3jb2j3 (mod pα).

Because of the relationship p = a23 + 3b23, the first sum, S3, becomes

S3 = (2a3)
α−1

	α−1
2

∑

ν=0

(
α− 1− ν

ν

)(−p

4a23

)ν

,

and the second sum, S4, becomes

S4 =
1

2
(2a3)

α

	α
2

∑

ν=0

(
α− ν

ν

)
α

α− ν

(−p

4a23

)ν

.

Here we have used [18, Identities (3.120) and (3.121)] with ν = j − k. Analogously

to the previous section, we state:
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Claim. With p, a3, and b3 as described in (3.1)–(3.2), we have

−ib3
√
3 ≡ S4

S3
≡ a3 + 2a3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j

(mod pα).

Putting everything back together we get another analogue to Theorem 1.4:

Theorem 3.3. With p and a3 as described in (3.1)–(3.2), and α ∈ N, we have

(p
α−1
2

)p!

(p
α−1
6

)p!(
pα−1

3
)p!

≡ −2a3 − 2a3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j

(mod pα).

To obtain our analogue to Theorem 1.3, we translate the congruence in Theorem

3.3 into a congruence involving binomial coefficients. From the previous section we

have

(
p3 − 1

3

)
p

! ≡ (p− 1)!
p2−1

3

(
p− 1

3

)
!

×
(
1 +

1

2
pqp(3)− 1

8
p2qp(3)

2 +
1

36
p2Bp−2

(
1
3

))
(mod p3)

and

(
p3 − 1

6

)
p

! ≡ (p− 1)!
p2−1

6

(
p− 1

6

)
!

(
1 +

1

3
pqp(2) +

1

4
pqp(3)− 1

9
p2qp(2)

2

− 3

32
p2qp(3)

2 +
1

12
p2qp(2)qp(3) +

1

144
p2
(
3

p

)
Bp−2

(
1
6

))
(mod p3).

From [7] we have

(
p3 − 1

2

)
p

! ≡ (p− 1)!
p2−1

2 (1 + pqp(2)) (mod p3).

Combining everything, we get another analogue to Theorem 1.3:
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Theorem 3.4. With p and a3 as in (3.1)–(3.2), we have

( p−1
2

p−1
6

)
≡
(
−2a3 +

p

2a3
+

p2

8a3

)(
1− 2

3
pqp(2) +

3

4
pqp(3) +

5

9
p2qp(2)

2

− 3

32
p2qp(3)

2 − 1

2
p2qp(2)qp(3) +

1

16
p2Bp−2

(
1
3

))
(mod p3).

3.1.3 The binomial coefficient
( 2(p−1)

3
p−1
6

)
In [1] we find the following two congruences:

( 2(p−1)
3

p−1
6

)
≡ (−1)

p−1
6

+12a3 (mod p).

( 2(p−1)
3

p−1
6

)
≡ (−1)

p−1
6

(
2a3 − p

2a3

)(
−1− 2(2p − 2)

3
+

3p − 3

4

)
(mod p2).

We will begin by obtaining an analogue to Theorem 1.4. From [1, Table 3.1.2] we

have

J(χ, χ3) = (−1)
p−1
6 (a3 + ib3

√
3),

J(χ5, χ3) = (−1)
p−1
6 (a3 − ib3

√
3).

Furthermore, if p is a nonzero prime ideal in the ring Z
[
1+i

√
3

2

]
of integers of Q(i

√
3)

dividing the prime p, then by [1, Theorem 2.1.14], we have

J(χ, χ3) ≡ 0 (mod p). (3.5)

By taking a = 1 and b = 3 in Corollary 2.1, we obtain

J(χ5, χ3) =
Γp(1− 2

3
)

Γp(1− 1
6
)Γp(1− 1

2
)
.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ5, χ3) ≡ Γp(1 +
2(pα−1)

3
)

Γp(1 +
pα−1

6
)Γp(1 +

pα−1
2

)
(mod pα).
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Since the arguments of Γp are now integers, we have

J(χ5, χ3) ≡ F (1 + 2(pα−1)
3

)

F (1 + pα−1
6

)F (1 + pα−1
2

)
(mod pα).

Comparing with the definition of the Gauss factorial, this gives

J(χ5, χ3) ≡ − (2(p
α−1)
3

)p!

(p
α−1
6

)p!(
pα−1

2
)p!

(mod pα).

Next, (3.5) implies that J(χ, χ3)α ≡ 0 (mod pα). Thus

(a3 + ib3
√
3)α ≡ 0 (mod p

α).

Since this holds for any nonzero prime ideal p of Z
[
1+i

√
3

2

]
dividing the prime p,

we may conclude that this congruence also holds modulo pα. We now expand the

left-hand side and separate real and imaginary parts to obtain

−ib3
√
3

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)jaα−2j−13 3jb2j3 ≡

	α
2

∑

j=0

(
α

2j

)
(−1)jaα−2j3 3jb2j3 (mod pα).

Because of the relationship p = a23 + 3b23, the first sum, S5, becomes

S5 = (2a3)
α−1

	α−1
2

∑

ν=0

(
α− 1− ν

ν

)(−p

4a23

)ν

,

and the second sum, S6, becomes

S6 =
1

2
(2a3)

α

	α
2

∑

ν=0

(
α− ν

ν

)
α

α− ν

(−p

4a23

)ν

.

Here we have used [18, Identities (3.120) and (3.121)] and set ν = j−k. Analogously

to the previous section, we state:
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Claim. With p, a3, and b3 as described in (3.1)–(3.2), we have

−ib3
√
3 ≡ S6

S5
≡ a3 + 2a3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j

(mod pα).

Putting everything back together we get an analogue to Theorem 1.4:

Theorem 3.5. With p and a3 as described in (3.1)–(3.2), and α ∈ N, we have

(2(p
α−1)
3

)p!

(p
α−1
6

)p!(
pα−1

2
)p!

≡ (−1)
p−1
6

+1

(
2a3 + 2a3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j
)

(mod pα).

To obtain an analogue to Theorem 1.3, we translate the congruence in Theorem

3.5 into a congruence involving binomial coefficients.

We use our previous identities and Lemmas 2.4 and 2.5 to get

(
2(p3 − 1)

3

)
p

! ≡ (p−1)!
2(p2−1)

3

(
2(p− 1)

3

)
!

(
1 + pqp(3)− 1

9
p2Bp−2

(
1
3

))
(mod p3).

From the previous sections we know that

(
p3 − 1

2

)
p

! ≡ (p− 1)!
p2−1

2 (1 + pqp(2)) (mod p3),

and

(
p3 − 1

6

)
p

! ≡ (p− 1)!
p2−1

6

(
p− 1

6

)
!

(
1 +

1

3
pqp(2) +

1

4
pqp(3)− 1

9
p2qp(2)

2

− 3

32
p2qp(3)

2 +
1

12
p2qp(2)qp(3) +

1

144
p2
(
3

p

)
Bp−2

(
1
6

))
(mod p3).

Combining everything, in analogy to Theorem 1.3, we get:
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Theorem 3.6. With p and a3 as described in (3.1)–(3.2), we have

(2(p−1)
3

p−1
6

)
≡ (−1)

p−1
6

+1

(
2a3 − p

2a3
− p2

8a3

)(
1 +

4

3
pqp(2)− 3

4
pqp(3) +

2

9
p2qp(2)

2

+
21

32
p2qp(3)

2 − p2qp(2)qp(3) +
7

48
p2Bp−2

(
1
3

))
(mod p3).

3.1.4 The binomial coefficient
(
p−1
p−1
3

)

In [1] we find the following two congruences:

(
p− 1
p−1
3

)
≡ 1 (mod p).

(
p− 1
p−1
3

)
≡ 1 +

3p − 3

2
(mod p2).

We will begin by obtaining an analogue to Theorem 1.4. From [1, Table 3.1.2] we

have

J(χ4, χ2) = −1.

By taking a = 2 and b = 4 in Corollary 2.1, we obtain

J(χ4, χ2) =
Γp(1− 1)

Γp(1− 1
3
)Γp(1− 2

3
)
.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ4, χ2) ≡ Γp(1 + pα − 1)

Γp(1 +
pα−1

3
)Γp(1 +

2(pα−1)
3

)
(mod pα).

Since the arguments of Γp are now integers, we have

J(χ4, χ2) ≡ F (1 + pα − 1)

F (1 + pα−1
3

)F (1 + 2(pα−1)
2

)
(mod pα).
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Comparing with the definition of the Gauss factorial, this gives

J(χ5, χ3) ≡ − (pα − 1)p!

(p
α−1
3

)p!(
2(pα−1)

3
)p!

(mod pα).

In analogy to Theorem 1.4, we get:

Theorem 3.7. With p as described in (3.1)–(3.2), and α ∈ N, we have

(pα − 1)p!

(p
α−1
3

)p!(
2(pα−1)

3
)p!

≡ 1 (mod pα).

To obtain an analogue to Theorem 1.3, we translate the above congruence into a

congruence involving binomial coefficients. Using the identities from previous sections

we have the following analogue to Theorem 1.3:

Theorem 3.8. With p as described in (3.1)–(3.2), we have

(
p− 1
p−1
3

)
≡ 1 +

3

2
pqp(3) +

3

8
p2qp(3)

2 − 1

12
p2Bp−2

(
1
3

)
(mod p3).

3.1.5 The binomial coefficient
(
p−1
p−1
6

)
In [1] we find the following two congruences:

(
p− 1
p−1
6

)
≡ (−1)

p−1
6 (mod p).

(
p− 1
p−1
6

)
≡ (−1)

p−1
6

(
1 + (2p − 2) +

3p − 3

2

)
(mod p2).

We will begin by obtaining an analogue to Theorem 1.4. From [1, Table 3.1.2] we

have

J(χ5, χ1) = −(−1)
p−1
6 .

By taking a = 1 and b = 5 in Corollary 2.1, we obtain

J(χ5, χ) =
Γp(1− 1)

Γp(1− 1
6
)Γp(1− 5

6
)
.
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Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ5, χ1) ≡ Γp(1 + pα − 1)

Γp(1 +
pα−1

6
)Γp(1 +

5(pα−1)
6

)
(mod pα).

Since the arguments of Γp are now integers, we have

J(χ5, χ1) ≡ F (1 + pα − 1)

F (1 + pα−1
6

)F (1 + 5(pα−1)
6

)
(mod pα).

Comparing with the definition of the Gauss factorial, this gives

J(χ5, χ1) ≡ − (pα − 1)p!

(p
α−1
6

)p!(
5(pα−1)

6
)p!

(mod pα).

In analogy to Theorem 1.4, we have:

Theorem 3.9. With p as described in (3.1)–(3.2), and α ∈ N, we have

(pα − 1)p!

(p
α−1
6

)p!(
5(pα−1)

6
)p!

≡ (−1)
p−1
6 (mod pα).

To obtain our analogue to Theorem 1.3, we translate the above congruence into a

congruence involving binomial coefficients. We use the same methods of the previous

sections and Lemma 2.11 to get

(
5(p3 − 1)

6

)
p

! ≡ (p− 1)!
5(p2−1)

6

(
5(p− 1)

6

)
!

(
1 +

5

3
pqp(2) +

5

4
pqp(3) +

5

9
p2qp(2)

2

+
5

32
p2qp(3)

2 +
25

12
p2qp(2)qp(3)− 125

144
p2Bp−2

(
1
3

))
(mod p3).

Putting everything together we get, in analogy to Theorem 1.3, the following:

Theorem 3.10. With p as in (3.1)–(3.2), we have

(
p− 1
p−1
6

)
≡(−1)

p−1
6

(
1 + 2pqp(2) +

3

2
pqp(3) + p2qp(2)

2

+
3

8
p2qp(3)

2 + 3p2qp(2)qp(3)− 5

6
p2Bp−2

(
1
3

))
(mod p3).
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3.1.6 The binomial coefficient
( 5(p−1)

6
p−1
3

)

In [1] we find the following two congruences:

(5(p−1)
6

p−1
3

)
≡ −2a3 (mod p).

(5(p−1)
6

p−1
3

)
≡
(
2a3 − p

2a3

)(
−1 +

2p − 2

3
+

3p − 3

4

)
(mod p2).

We will begin by obtaining an analogue to Theorem 1.4. From [1, Table 3.1.2] we

have

J(χ2, χ3) = a3 + ib3
√
3,

J(χ4, χ3) = a3 − ib3
√
3.

Furthermore, if p is a nonzero prime ideal in the ring Z
[
1+i

√
3

2

]
of integers of Q(i

√
3)

dividing the prime p, then by [1, Theorem 2.1.14], we have

J(χ2, χ3) ≡ 0 (mod p). (3.6)

By taking a = 2 and b = 3 in Corollary 2.1, we have

J(χ4, χ3) =
Γp(1− 5

6
)

Γp(1− 1
3
)Γp(1− 1

2
)
.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ4, χ3) =
Γp(1 +

5(pα−1)
6

)

Γp(1 +
pα−1

3
)Γp(1 +

pα−1
2

)
(mod pα).

Since the arguments of Γp are now integers, we have

J(χ4, χ3) =
F (1 + 5(pα−1)

6
)

F (1 + pα−1
3

)F (1 + pα−1
2

)
(mod pα).
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Comparing with the definition of the Gauss factorial, this gives

J(χ4, χ3) ≡ − (5(p
α−1)
6

)p!

(p
α−1
3

)p!(
pα−1

2
)p!

(mod pα).

Next, (3.6) implies that J(χ2, χ3)α ≡ 0 (mod pα). Thus

(a3 + ib3
√
3)α ≡ 0 (mod p

α).

Since this holds for any nonzero prime ideal p of Z
[
1+i

√
3

2

]
dividing the prime p,

we may conclude that this congruence also holds modulo pα. We now expand the

left-hand side and separate real and imaginary parts to obtain

−ib3
√
3

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)jaα−2j−13 3jb2j3 ≡

	α
2

∑

j=0

(
α

2j

)
(−1)jaα−2j3 3jb2j3 (mod pα).

Because of the relationship p = a23 + 3b23, the first sum, S7, becomes

S7 = (2a3)
α−1

	α−1
2

∑

ν=0

(
α− 1− ν

ν

)(−p

4a23

)ν

,

and the second sum, S8, becomes

S8 =
1

2
(2a3)

α

	α
2

∑

ν=0

(
α− ν

ν

)
α

α− ν

(−p

4a23

)ν

.

Here we have used [18, Identities (3.120) and (3.121)] with ν = j − k. Analogously

to previous sections, we state:

Claim. With p, a3, and b3 as described in (3.1)–(3.2), we have

−ib3
√
3 ≡ S8

S7
≡ a3 + 2a3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j

(mod pα).
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Putting everything back together, we get an analogue to Theorem 1.4:

Theorem 3.11. With p and a3 as described in (3.1)–(3.2), α ∈ N, we have

(5(p
α−1)
6

)p!

(p
α−1
3

)p!(
pα−1

2
)p!

≡ 2a3 + 2a3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j

(mod pα).

Using the identities for Gauss factorials from the previous sections and the fol-

lowing congruence:

1

1 + 5
3
pqp(2) +

5
4
pqp(3) +

5
9
p2qp(2)2 +

5
32
p2qp(3)2 +

25
12
p2qp(2)qp(3)− 125

144
p2Bp−2(13)

≡ 1− 5

3
pqp(2)− 5

4
pqp(3) +

20

9
p2qp(2)

2 +
45

32
p2qp(3)

2

+
25

12
p2qp(2)qp(3) +

125

144
p2Bp−2

(
1
3

)
(mod p3)

we get an analogue to Theorem 1.3.

Theorem 3.12. With p and a3 as described in (3.1)–(3.2), we have

( 5(p−1)
6

p−1
3

)
≡
(
−2a3 +

p

2a3
+

p2

8a33

)(
1− 2

3
pqp(2)− 3

4
pqp(3) +

5

9
p2qp(2)

2

+
21

32
p2qp(3)

2 +
1

2
p2qp(2)qp(3) +

43

48
p2Bp−2

(
1
3

))
(mod p3).

3.1.7 The binomial coefficient
( 5(p−1)

6
p−1
6

)
In [1] we find the following two congruences:

( 5(p−1)
6

p−1
6

)
≡ −u3 (mod p).

(5(p−1)
6

p−1
6

)
≡
(
u3 − p

u3

)(
−1 +

2(2p − 2)

3

)
(mod p2).

We will begin by obtaining an analogue to Theorem 1.4. From [1, Table 3.1.2] we

have

J(χ, χ4) =
1

2
(u3 + iv3

√
3),
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J(χ5, χ2) =
1

2
(u3 − iv3

√
3).

Furthermore, if p is a nonzero prime ideal in the ring Z
[
1+i

√
3

2

]
of integers of Q(i

√
3)

dividing the prime p, then by [1, Theorem 2.1.14], we have

J(χ, χ4) ≡ 0 (mod p). (3.7)

By taking a = 5 and b = 2 in Corollary 2.1, we obtain

J(χ5, χ2) =
Γp(1− 5

6
)

Γp(1− 1
6
)Γp(1− 2

3
)
.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ5, χ2) ≡ Γp(1 +
5(pα−1)

6
)

Γp(1 +
pα−1

6
)Γp(1 +

2(pα−1)
3

)
(mod pα).

Since the arguments of Γp are now integers, we have

J(χ5, χ2) ≡ F (1 + 5(pα−1)
6

)

F (1 + pα−1
6

)F (1 + 2(pα−1)
3

)
(mod pα).

Comparing with the definition of the Gauss factorial, this gives

J(χ5, χ2) ≡ − (5(p
α−1)
6

)p!

(p
α−1
6

)p!(
2(pα−1)

3
)p!

(mod pα).

Next, (3.7) implies that J(χ, χ4)α ≡ 0 (mod pα). Thus

(
1

2
u3 + iv3

√
3

)α

≡ 0 (mod p
α).

Since this holds for any nonzero prime ideal p of Z
[
1+i

√
3

2

]
dividing the prime p,

we may conclude that this congruence also holds modulo pα. We now expand the
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left-hand side and separate real and imaginary parts to obtain

−iv3
√
3

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)juα−2j−1

3 3jv2j3 ≡
	α
2

∑

j=0

(
α

2j

)
(−1)juα−2j

3 3jv2j3 (mod pα).

Because of the relationship 3v23 = 4p− u2
3, the first sum, S9, becomes

S9 = (2u3)
α−1

	α−1
2

∑

ν=0

(
α− 1− ν

ν

)(−p

u2
3

)ν

,

and the second sum, S10, becomes

S10 =
1

2
(2u3)

α

	α
2

∑

ν=0

(
α− ν

ν

)
α

α− ν

(−p

u2
3

)ν

.

Here we have used [18, Identities (3.120) and (3.121)] with ν = j − k. Analogously

to previous sections, we state:

Claim. With p, u3, and v3 as described in (3.1)–(3.2), we have

−iv3
√
3 ≡ S10

S9
≡ u3 + 2u3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)
yj (mod pα).

Putting everything together we get the following analogue to Theorem 1.4:

Theorem 3.13. With p and u3 as described in (3.1)–(3.2), and α ∈ N, we have

(5(p
α−1)
6

)p!

(p
α−1
6

)p!(
2(pα−1)

3
)p!

≡ u3 + u3

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

u2
3

)j

(mod pα).

Using the identities for Gauss factorials from the previous sections, we have the

following analogue to Theorem 1.3:
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Theorem 3.14. With p and u3 as described in (3.1)–(3.2), we have

(5(p−1)
6

p−1
6

)
≡
(
−u3 +

p

u3
+

p2

u3
3

)
×
(
1− 4

3
pqp(2) +

14

9
p2qp(2)

2 +
57

72
p2Bp−2

(
1
3

))
(mod p3).

3.1.8 The binomial coefficient
(
p−1
p−1
2

)
In this section we give another method of proving a special case of Morley’s congru-

ence. From [1, Table 3.1.2] we have

J(χ3, χ3) = −(−1)
p−1
6 .

By taking a = b = 3 in Corollary 2.1, we obtain

J(χ3, χ3) =
Γp(1− 1)

(Γp(1− 1
2
))2

.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ3, χ3) ≡ Γp(1 + pα − 1)

(Γp(1 +
pα−1

2
))2

(mod pα).

Since the arguments of Γp are now integers, we have

J(χ3, χ3) ≡ F (1 + pα − 1)

(F (1 + pα−1
2

))2
(mod pα).

Comparing with the definition of the Gauss factorial, this gives

J(χ3, χ3) ≡ − (pα − 1)p!

((p
α−1
2

)p!)2
(mod pα).

Putting everything together we get the following analogue to Theorem 1.4:
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Theorem 3.15. With p as described in (3.1)–(3.2), and α ∈ N, we have

(pα − 1)p!

((p
α−1
2

)p!)2
≡ (−1)

p−1
6 (mod pα).

Using the identities for Gauss factorials from the previous sections and the defi-

nition of the Fermat quotient, we obtain the following special case of Morley’s con-

gruence:

Theorem 3.16. With p as described in (3.1)–(3.2), we have

(
p− 1
p−1
2

)
≡ (−1)

p−1
6 4p−1 (mod p3).

This is not as general as Morley’s congruence since we are restricted to primes

p ≡ 1 (mod 6); however, the two agree on primes congruent to 1 modulo 6.

3.2 The p ≡ 1 (mod 4) case

Let p = 4f + 1 be a prime and let g be a primitive root modulo p. Define β =

exp(2πi
4
) = i and let χ be a character modulo p of order 4 such that χ(g) = β. By

Theorem 2.4 and the argument presented in Chapter 1, we can write

p = a24 + b24, a4 ≡ −
(
2

p

)
(mod 4), and b4 ≡ a4g

p−1
4 . (3.8)

We will obtain several modulo p and modulo p2 congruences in this section. The

modulo p2 ones can be obtained from [1, Theorem 9.4.3], and the modulo p ones can

either be deduced from their modulo p2 analogues, or can be found directly in [1,

Theorem 9.2.2].



56

3.2.1 The binomial coefficient
(
p−1
p−1
2

)
In this section we give a method of proving another special case of Morley’s congru-

ence. From [1, Table 3.2.1] we have

J(χ2, χ2) = −1.

By taking a = b = 2 in Corollary 2.1, we obtain

J(χ2, χ2) =
Γp(1− 1)

Γp(1− 1
2
)2
.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ2, χ2) ≡ Γp(1 + pα − 1)

Γp(1 +
pα−1

2
)2

(mod pα).

Since the arguments of Γp are now integers, we have

J(χ2, χ2) ≡ F (1 + pα − 1)

F (1 + pα−1
2

)2
(mod pα).

Comparing with the definition of the Gauss factorial, this gives

J(χ2, χ2) = − (pα − 1)p!

((p
α−1
2

)p!)2
(mod pα).

Putting everything together:

Theorem 3.17. With p as described in (3.8), and α ∈ N, we have

(pα − 1)p!

((p
α−1
2

)p!)2
≡ 1 (mod pα).

Using the identities for Gauss factorials from the previous sections and the defi-

nition of the Fermat quotient, we obtain the following special case of Morley’s con-

gruence:
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Theorem 3.18. With p as described in (3.8), we have

(
p− 1
p−1
2

)
≡ 4p−1 (mod p3).

This is not quite as general as Morley’s congruence since we are restricted to

primes p ≡ 1 (mod 4); however, they agree on primes congruent to 1 modulo 4.

3.2.2 The binomial coefficient
(
p−1
p−1
4

)
In [1] we find the following two congruences:

(
p− 1
p−1
4

)
≡ (−1)

p−1
4 (mod p).

(
p− 1
p−1
4

)
≡ (−1)

p−1
4 (1 + 3(2p−1 − 1)) (mod p2).

We will begin by obtaining an analogue to Theorem 1.4. From [1, Table 3.2.1] we

have

J(χ3, χ) = (−1)
p−1
4 .

By taking a = 1 and b = 3 in Corollary 2.1, we obtain

J(χ3, χ) =
Γp(1− 1)

Γp(1− 1
4
)Γp(1− 3

4
)
.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ3, χ) ≡ Γp(1 + pα − 1)

Γp(1 +
pα−1

4
)Γp(1 +

3(pα−1)
4

)
(mod pα).

Since the arguments of Γp are now integers, we have

J(χ3, χ) ≡ F (1 + pα − 1)

F (1 + pα−1
4

)F (1 + 3(pα−1)
4

)
(mod pα).
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Comparing with the definition of the Gauss factorial, this gives

J(χ3, χ) ≡ − (pα − 1)p!

(p
α−1
4

)p!(
3(pα−1)

4
)p!

(mod pα).

Putting everything together:

Theorem 3.19. With p as described in (3.8), and α ∈ N, we have

(pα − 1)p!

(p
α−1
4

)p!(
3(pα−1)

4
)p!

≡ (−1)
p−1
4 (mod pα).

Using our identities for Gauss factorials from the previous sections and Lemma

2.10, we get

(
3(p3 − 1)

4

)
p

! ≡ (p− 1)!
3(p2−1)

4

(
3(p− 1)

4

)
!

×
(
1 +

9

4
pqp(2) +

45

32
p2qp(2)

2 − 9

8
p2Ep−3

)
(mod p3).

We therefore have the following analogue of Theorem 1.3:

Theorem 3.20. With p as described in (3.8), we have

(
p− 1
p−1
4

)
≡ (−1)

p−1
4 (1 + 3pqp(2) + 3p2qp(2)

2 − p2Ep−3) (mod p3).

3.2.3 The binomial coefficient
( 3(p−1)

4
p−1
4

)
In [1] we find the following two congruences:

(3(p−1)
4

p−1
4

)
≡ −2a4 (mod p).

( 3(p−1)
4

p−1
4

)
≡
(
2a4 − p

2a4

)(
−1 +

2p−1 − 1

2

)
(mod p2).

We will begin by obtaining an analogue to Theorem 1.4. From [1, Table 3.2.1] we
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have

J(χ, χ2) = a4 + ib4,

J(χ3, χ2) = a4 − ib4.

Furthermore, if p is a nonzero prime ideal in the ring Z[i] of integers of Q(i) dividing

the prime p, then by [1, Theorem 2.1.14], we have

J(χ, χ2) ≡ 0 (mod p). (3.9)

By taking a = 1 and b = 2 in Corollary 2.1, we obtain

J(χ3, χ2) =
Γp(1− 3

4
)

Γp(1− 1
4
)Γp(1− 1

2
)
.

Let α ∈ N be arbitrary. By applying Lemma 2.1, we know that

J(χ3, χ2) =
Γp(1 +

3(pα−1)
4

)

Γp(1 +
pα−1

4
)Γp(1 +

pα−1
2

)
(mod pα).

Since the arguments of Γp are now integers, we have

J(χ3, χ2) =
F (1 + 3(pα−1)

4
)

F (1 + pα−1
4

)F (1 + pα−1
2

)
(mod pα).

Comparing with the definition of the Gauss factorial, this gives

J(χ3, χ2) ≡ − (3(p
α−1)
4

)p!

(p
α−1
4

)p!(
pα−1

2
)p!

(mod pα).

Next, (3.9) implies that J(χ, χ2)α ≡ 0 (mod pα). Thus

(a4 + ib4)
α ≡ 0 (mod p

α).

Since this holds for any nonzero prime ideal p of Z[i] dividing p, we may conclude

that this congruence also holds modulo pα. We now expand the left-hand side and
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separate real and imaginary parts to obtain

−ib4

	α−1
2

∑

j=0

(
α

2j + 1

)
(−1)jaα−2j−14 b2j4 ≡

	α
2

∑

j=0

(
α

2j

)
(−1)jaα−2j4 b2j4 (mod pα).

Because of the relationship p = a24 + b24, the first sum, S11, becomes

S11 = (2a4)
α−1

	α−1
2

∑

ν=0

(
α− 1− ν

ν

)(−p

4a23

)ν

,

and the second sum, S12, becomes

S12 =
1

2
(2a4)

α

	α
2

∑

ν=0

(
α− ν

ν

)
α

α− ν

(−p

4a24

)ν

.

Here we have used [18, Identities (3.120) and (3.121)] with ν = j − k. Analogously

to previous sections, we state:

Claim. With p, a4, and b4 as described in (3.8), we have

−ib4 ≡ S12

S11
≡ a4 + 2a4

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a24

)j

(mod pα).

Putting everything together, we get the following analogue to Theorem 1.4:

Theorem 3.21. With p and a4 as described in (3.8), and α ∈ N, we have

(3(p
α−1)
4

)p!

(p
α−1
4

)p!(
pα−1

2
)p!

≡ −2a4 − 2a4

α−1∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a24

)j

(mod pα).

Using our identities for Gauss factorials from the previous sections as well as the

congruence

1

1 + 9
4
pqp(2) +

45
32
p2qp(2)2 − 9

8
p2Ep−3

≡ 1−9

4
pqp(2)+

117

32
p2qp(2)

2+
9

8
p2Ep−3 (mod p3)
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we get the following analogue to Theorem 1.3:

Theorem 3.22. With p and a4 as described in (3.8), we have

(3(p−1)
4

p−1
4

)
≡
(
−2a4 +

p

2a4
+

p2

8a34

)(
1− 1

2
pqp(2) +

3

8
p2qp(2)

2 +
5

4
p2Ep−3

)
(mod p3).

3.3 The p ≡ 1 (mod 8) case

Let p = 8f + 1 be a prime and let g be a primitive root modulo p. Define β =

exp(2πi
8
) = 1+i√

2
, and let χ be a character modulo p of order 8 such that χ(g) = β.

As was done previously in this chapter with p ≡ 1 (mod 6) and p ≡ 1 (mod 4),

we can get an analogue to Theorem 1.4. However, we cannot get a direct analogue

to Theorem 1.3. From [1, Section 3.3] we have

J(χ, χ7) = −(−1)
p−1
8 ,

J(χ3, χ5) = −(−1)
p−1
8 .

By taking a = 7, b = 1 and a = 5, b = 3 in Corollary 2.1, respectively, and then

applying Lemma 2.1, we have, for every α ∈ N,

J(χ1, χ7) =
Γp(1− 1)

Γp(1− 7
8
)Γp(1− 1

8
)
≡ − (pα − 1)p!

(7(p
α−1)
8

)p!(
pα−1

8
)p!

(mod pα),

J(χ3, χ5) =
Γp(1− 1)

Γp(1− 5
8
)Γp(1− 3

8
)
≡ − (pα − 1)p!

(5(p
α−1)
8

)p!(
3(pα−1)

8
)p!

(mod pα).

We now have our analogue to Theorem 1.4:

Theorem 3.23. For primes p ≡ 1 (mod 8) and α ∈ N, we have

(pα − 1)p!

(7(p
α−1)
8

)p!(
pα−1

8
)p!

≡ (pα − 1)p!

(5(p
α−1)
8

)p!(
3(pα−1)

8
)p!

≡ (−1)
p−1
8 (mod pα).
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The best we can do towards obtaining an analogue of Theorem 1.3 is depicted

by the following two results. To simplify our notation we first make the following

definitions:

Definition 3.1. For primes p ≡ 1 (mod 8) define

S1(p) :=

p−1
8∑

j=1

1

j
, S2(p) :=

7(p−1)
8∑

j=1

1

j
, S3(p) :=

5(p−1)
8∑

j=1

1

j
, S4(p) :=

3(p−1)
8∑

j=1

1

j
.

Definition 3.2. For primes p ≡ 1 (mod 8) define

T1(p) :=
∑

1≤j<k≤ p−1
8

1

jk
, T2(p) :=

∑
1≤j<k≤ 7(p−1)

8

1

jk
,

T3(p) :=
∑

1≤j<k≤ 5(p−1)
8

1

jk
, T4(p) :=

∑
1≤j<k≤ 3(p−1)

8

1

jk
.

Definition 3.3. For primes p ≡ 1 (mod 8) define

Q1(p) :=

p−1
8∑

j=1

1

j2
, Q2(p) :=

7(p−1)
8∑

j=1

1

j2
, Q3(p) :=

5(p−1)
8∑

j=1

1

j2
, Q4(p) :=

3(p−1)
8∑

j=1

1

j2
.

We now specialize Theorem 3.23 to the case α = 3, as was done in the previous

sections, and obtain the following corollaries.

Corollary 3.1. For primes p ≡ 1 (mod 8), we have

(
p− 1
p−1
8

)
≡ (−1)

p−1
8

([
1− 1

8
pS1(p) +

1

64
p2T1(p)

])
×
([

1− 7

8
pS2(p) +

49

64
p2T2(p)

])
(mod p3).
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Corollary 3.2. For primes p ≡ 1 (mod 8), we have

(
p− 1
5(p−1)

8

)
≡ (−1)

p−1
8

([
1− 5

8
pS3(p) +

25

64
p2T3(p)

])
×
([

1− 3

8
pS4(p) +

9

64
p2T4(p)

])
(mod p3).

We note that the sums S1(p), . . . , S4(p); T1(p), . . . , T4(p); and Q1(p), . . . , Q4(p)

that we have just defined are not independent. In fact, employing the same methods

we used in Chapter 2, we have the following properties that relate the various sums

to one another.

Lemma 3.2. For primes p ≡ 1 (mod 8), we have

S1(p) ≡ S2(p) + pQ2(p) (mod p2),

S3(p) ≡ S4(p) + pQ4(p) (mod p2),

T1(p) =
1

2
(S1(p))

2 − 1

2
Q1(p),

T2(p) =
1

2
(S2(p))

2 − 1

2
Q2(p),

T3(p) =
1

2
(S3(p))

2 − 1

2
Q3(p),

T4(p) =
1

2
(S4(p))

2 − 1

2
Q4(p).



Chapter 4

Conclusion

We begin this final chapter with some direct consequences of the “first stage” results

in Chapter 3, namely Theorem 3.1 and others. This is followed by some comments on

questions related to Chapter 3, and by some remarks on possible further work. The

main results of this thesis are then summarized in an appendix.

4.1 p-adic Expansions

In [7], Cosgrave and Dilcher state the following two corollaries of their main results.

Corollary 4.1. Let χ, p and a be as in the statement of Theorem 1.3. Then we have

the p-adic expansion

J(χ3, χ3) =
Γp(1− 1

2
)

Γp(1− 1
4
)2

= −2a+ 2a

∞∑
j=1

1

j

(
2j − 2

j − 1

)( p

4a2

)j

.

Corollary 4.2. Let χ, p and r be as in the statement of Theorem 1.7. Then we have

the p-adic expansion

J(χ2, χ2) =
Γp(1− 2

3
)

Γp(1− 1
3
)2

= r − r

∞∑
j=1

1

j

(
2j − 2

j − 1

)( p

r2

)j

.

Similarly, we can do the same with our results in Chapter 3. As a direct conse-

quence of Theorems 3.1, 3.3, 3.5, 3.11, and 3.13 we have the following corollary:

Corollary 4.3. Let χ, p, a3, and u3 be as described in (3.1)–(3.2); then we have the

64
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p-adic expansions

J(χ5, χ5) =
Γp(1− 1

3
)

Γp(1− 1
6
)2

= (−1)f+1

(
u3 + u3

∞∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

u2
3

)j
)
,

J(χ5, χ4) =
Γp(1− 1

2
)

(Γp(1− 1
6
))(Γp(1− 1

3
))

= 2a3 + 2a3

∞∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j

,

J(χ5, χ3) =
Γp(1− 2

3
)

(Γp(1− 1
6
))(Γp(1− 1

2
))

= (−1)
p−1
6

(
2a3 + 2a3

∞∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j
)
,

J(χ4, χ3) =
Γp(1− 5

6
)

Γp(1− 1
3
)Γp(1− 1

2
)

= 2a3 + 2a3

∞∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a23

)j

,

J(χ5, χ2) =
Γp(1− 5

6
)

Γp(1− 1
6
)Γp(1− 2

3
)

= u3 + u3

∞∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

u2
3

)j

.

Similarly, as a direct consequence of Theorem 3.21 we have the following corollary:

Corollary 4.4. If p ≡ 1 (mod 4), a4, and χ are as described in (3.8), then we have
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the p-adic expansion

J(χ3, χ2) =
Γp(1− 3

4
)

Γp(1− 1
4
)Γp(1− 1

2
)
= −2a4 − 2a4

∞∑
j=1

(−1)j−1

j

(
2j − 2

j − 1

)(−p

4a24

)j

.

4.2 Further Comments

We were not able to extend every congruence found in [1]. One of the major obstacles

that prevented us from doing so was that we needed sums like the ones in Chapter

2 but for primes that are congruent to 1 modulo 5, 7, 8, 12, 14, 15, 16, 20, and 24.

Another major obstacle we encountered when using the methods of Chapter 3 was

that in the search for congruences for some binomial coefficients we were required to

choose a and b in Corollary 2.1 in such a way that resulted in the evaluation of Γp at

a negative argument.

There are many similarities between the results found in Chapter 3. This is per-

haps not surprising, given that the congruences for finite sums we used to obtain our

results share some similarities between them. For example, when considering primes

congruent to 1 modulo 4 we saw the Euler numbers arise and when considering primes

congruent to 1 modulo 6 we saw the Bernoulli polynomials arise exclusively.

As is mentioned by the authors in [7], further extensions modulo higher powers of

the prime p may possibly be derived using their methods. However, as we increase α,

the resulting congruences would become very complicated. There would also remain

the issue of requiring more of the types of congruences for the finite sums used that

are not in the literature.

Also, as is mentioned in [7], the numbers Bp−2
(
1
3

)
and Bp−2

(
1
6

)
that appear in our

congruences are interesting on their own. They have connections to another sequence

of numbers, Glaisher’s G-numbers, denoted by {Gn}. The G-numbers are defined as
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Gn = (2n+ 1)In where In is the sequence

1

ex + e−x + 1
=

2

3

(
I0 − I1

2!
x2 +

I2
4!
x4 − I3

6!
x6 + . . .

)
.

These G-numbers are an analogue to the Euler numbers En and were studied by

Glaisher in [17].

Binomial coefficients are our interest and are more familiar to most readers. How-

ever, Theorem 1.4 and its analogues look much more natural stated in terms of

quotients of Gauss factorials rather than in terms of binomial coefficients.

Given the complexity of many of the congruences in Chapter 3, the theorems

of Sections 3.1 and 3.2 were verified by computation with the computer algebra sys-

tem Maple (Maple 17), for primes less than 200 and α ∈ {1, 2, 3, 4}, where applicable.

A noticeable difference among the results of Chapter 3 involves the Catalan num-

bers; they appear in some of the congruences but not in all of them. It is clear from

the respective proofs that the analogues of Theorem 1.4 that don’t have the Catalan

numbers in their expansion are exactly the ones where the Jacobi sums involved are

equal to ±(−1)f .

4.3 Further Work

It would be ideal if we could extend every congruence found in [1], whether that

involves finding new congruences for more finite sums and/or finding a new method

that will help us work around Morita’s p-adic Γ-function evaluated at negative argu-

ments. We would also like to find applications for the congruences modulo p3 that

are obtained in Chapter 3.
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Given the great degree of repetition in Chapter 3, it may be possible to combine

all of the different proofs of Chapter 3 into one large proof. The main differences

between the proofs is in the congruences for the Gauss factorials and the finite sums

associated with each binomial coefficient.
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4.4 Appendix: List of Congruences modulo p3

For the convenience of the reader we have gathered all of the modulo p3 congruences

in the following two tables.

Let p ≡ 1 (mod 4) be prime and let g be a primitive root modulo p. Define

β = exp(2πi
4
) = i and let χ be a character modulo p of order 4 such that χ(g) = β.

By Theorem 2.4 and the argument presented in Chapter 1, we can write p2 = a24+ b24,

where a4 ≡ −
(
2

p

)
(mod 4), and b4 ≡ a4g

p−1
4 . Then we have the following table.

Binomial Coeff. Congruence modulo p3(p−1
2

p−1
4

) (
2a4 − p

2a4
− p2

8a34

) (
1 + 1

2
pqp(2) +

1
8
p2 (2Ep−3 − qp(2)

2)
)

( 3(p−1)
4

p−1
4

) (
−2a4 +

p

2a4
+ p2

8a34

) (
1− 1

2
pqp(2) +

3
8
p2qp(2)

2 + 5
4
p2Ep−3

)
(
p−1
p−1
4

)
(−1)

p−1
4 (1 + 3pqp(2) + 3p2qp(2)

2 − p2Ep−3)(
p−1
p−1
2

)
4p−1

Table 4.1: The case p ≡ 1 (mod 4).

Let p ≡ 1 (mod 6) be a prime and let g be a primitive root modulo p. Define

Z = indg2, β = exp(2πi
6
), and χ is a character modulo p of order 6 such that χ(g) = β.

Then p = a23 + 3b23, where a3 ≡ −1 (mod 3), and b3 ≡ −Z (mod 3). By taking

u3 = 2a3 and v3 = 2b3 we can also write 4p = u2
3 + 3v23, where u3 ≡ 1 (mod 3),

v3 ≡ Z (mod 3). Then we have the following table.



70

B
in
om

ia
l
C
o
eff

.
C
on

gr
u
en
ce

m
o
d
u
lo

p3

(p−1 3
p
−
1

6

)
(−

1)
p
−
1

6
+
1
( u

3
−

p u
3
−

p
2

u
3 3

) ( 1
+

2 3
pq

p
(2
)
−

1 9
p2
q p
(2
)2

+
1 2
4
p2
B

p
−2
( 1 3

))
(p−1 2

p
−
1

6

)
( −2

a
3
+

p

2
a
3
+

p
2

8
a
3

) ( 1
−

2 3
pq

p
(2
)
+

3 4
pq

p
(3
)
+

5 9
p2
q p
(2
)2
−

3 3
2
p2
q p
(3
)2

−
1 2
p2
q p
(2
)q

p
(3
)
+

1 1
6
p2
B

p
−2
( 1 3

))
(2(p−

1
)

3
p
−
1

3

)
( −r

+
p r
+

p
2

r
3

) ( 1
+

1 6
p2
B

p
−2
( 1 3

))
(5(p−

1
)

6
p
−
1

6

)
( −u

3
+

p u
3
+

p
2

u
3 3

) ( 1
−

4 3
pq

p
(2
)
+

1
4 9
p2
q p
(2
)2

+
5
7

7
2
p2
B

p
−2
( 1 3

))
( p−1 p
−
1

6

)
(−

1)
p
−
1

6

( 1
+
2p
q p
(2
)
+

3 2
pq

p
(3
)
+
p2
q p
(2
)2

+
3 8
p2
q p
(3
)2
+
3p

2
q p
(2
)q

p
(3
)
−

5 6
p2
B

p
−2
( 1 3

))
(2(p−

1
)

3
p
−
1

6

)
(−

1)
p
−
1

6
+
1
( 2a

3
−

p

2
a
3
−

p
2

8
a
3

) ( 1
+

4 3
pq

p
(2
)
−

3 4
pq

p
(3
)
+

2 9
p2
q p
(2
)2
+

2
1

3
2
p2
q p
(3
)2
−

p2
q p
(2
)q

p
(3
)
+

7 4
8
p2
B

p
−2
( 1 3

))
(5(p−

1
)

6
p
−
1

6

)
( −u

3
+

p u
3
+

p
2

u
3 3

) ( 1
−

4 3
pq

p
(2
)
+

1
4 9
p2
q p
(2
)2

+
5
7

7
2
p2
B

p
−2
( 1 3

))
(5(p−

1
)

6
p
−
1

3

)
( −2

a
3
+

p

2
a
3
+

p
2

8
a
3 3

) ( 1
−

2 3
pq

p
(2
)
−

3 4
pq

p
(3
)
+

5 9
p2
q p
(2
)2
+

2
1

3
2
p2
q p
(3
)2
+

1 2
p2
q p
(2
)q

p
(3
)
+

4
3

4
8
p2
B

p
−2
( 1 3

))
( p−1 p
−
1

3

)
1
+

3 2
pq

p
(3
)
+

3 8
p2
q p
(3
)2
−

1 1
2
p2
B

p
−2
( 1 3

)
( p−1 p
−
1

2

)
4p
−1

T
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