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A passive nonlinear digital filter design which facilitates
physics-based sound synthesis of highly nonlinear
musical instruments

John R. Pierce and Scott A. Van Duyne
Center for Computer Research in Music and Acoustics, Stanford University, Stanford, California 94305

~Received 31 May 1996; revised 16 September 1996; accepted 17 September 1996!

Recent work has led to highly efficient physics-based computational models of wave propagation in
strings, acoustic tubes, membranes, plates, and rooms using the digital waveguide filter, the 2-D
digital waveguide mesh, and the 3-D tetrahedral digital waveguide mesh, all of which are suitable
for real-time musical synthesis applications. A simple first-order nonlinear filter structure derived
from a passive nonlinear impedance circuit is described which extends the usefulness of these
models, and which avoids the difficulties of energy conservation when memoryless nonlinearities
are inserted in resonant feedback systems. ©1997 Acoustical Society of America.
@S0001-4966~97!01602-0#

PACS numbers: 43.75.Tv@WJS#
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INTRODUCTION

Among the various approaches to the digital synthesi
musical sounds, some involve the production and excita
of linear resonances which are characteristic of a mus
instrument. One fruitful notion has been that of consider
the vibrating string as an electrical transmission line~Koch,
1937!. The Karplus–Strong plucked-string algorithm~Kar-
plus and Strong, 1983; Jaffe and Smith, 1983! models the
vibrating string as a delay line loop. This is a special case
the traveling-wave-based digital waveguide modeling te
nique ~Smith, 1992! which is applicable to many kinds o
strings and acoustic tubes~Smith, 1987; Cook, 1990!. The
vibrating membrane and other two- and three-dimensio
~2-D and 3-D! musical structures or reverberant enviro
ments have been modeled, and efficiently computed, u
the multiply-free, parallel-computable, 2-D digital wav
guide mesh~Van Duyne and Smith, 1993! and 3-D tetrahe-
dral extension~Van Duyne and Smith, 1996!. It is in the
context of these kinds of wave-decomposed, computation
efficient digital modeling schemes that the current work
passive nonlinear filters most naturally resides.

While properly excited resonances oflinear systems can
closely approximate the tones of some musical instrume
nonlinearity plays an essential part in the sound of oth
musical instruments. Some nonlinearities are associated
the maintenance of oscillations in blown or bowed inst
ments~Smith, 1987!. Others nonlinearities may be found
the excitation means of struck strings and percussion ins
ments, for example, the nonlinear compression force of
ano hammer felt which leads to a greater spectral brightn
of the sound with greater strike force~Chaigne and Asken
felt, 1994a, 1994b; Van Duyneet al., 1994!. The nature of
the nonlinearity under present consideration is not to initia
drive or maintain oscillation, but rather to modify the spe
tral energy distribution naturally and passively over time
transferring energy among resonating modes during the
cay portion of the tone.

Fletcher and Rossing~1991! observe that after striking
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cymbals, Chinese gongs, or tam-tams, the spectra bec
brighter with time. The higher portions of the spectra rise
comparison with the lower portions. The relative rise
higher frequencies, which is essential to the timbre of
sound, comes about because nonlinearities transfer vi
tional energy from lower frequency to higher frequen
modes. Beyond this, Lagge and Fletcher~1984! have shown
that the compliance of a bridge supporting one end of a
brating string can cause the transfer of energy among mo
of vibration. Further, it has been known for some time th
the flexible string is intrinsically nonlinear, except for th
smallest vibrational amplitudes~Carrier, 1945!. Thus, non-
linearities may have a smaller but nonetheless important
fect on the tones of some stringed instruments.

We have found that the addition of passive nonlinea
ties to an otherwise linear digital synthesis algorithm c
cause the transfer of energy among modes, and can lea
large and interesting alterations and evolutionary change
timbre. In real physical instruments nonlinearities are nec
sarily passive because physical nonlinearities cannot ca
an increase in total energy, but can only transfer ene
among modes. The use of nonlinearities that are inhere
passive in digital sound synthesis is important because o
ways of adding nonlinearity can result in instability, oscill
tion, or unwanted energy loss.

A method has been found to incorporate an efficien
computable, energy conserving, first-order nonlinearity i
a resonant feedback system. In particular, the first-order n
linearity is a digital filter simulation of a spring which i
stiffer for deflection in one direction than in the other,
alternatively, a capacitance which has a different value
positive than for negative voltages. Such an element sto
no energy at zero deflection~spring! or at zero voltage~ca-
pacitor!. Any energy that is stored by an increase in defle
tion or voltage will be given up as the deflection or volta
returns to zero. The element can store and release energy
it cannot produce energy. The use or addition of this sim
element is economical in computation and effective in ca
ing energy transfer among otherwise linear modes. It
11201(2)/1120/7/$10.00 © 1997 Acoustical Society of America
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lead to a substantial and pleasing alteration in the so
produced in an otherwise linear resonant feedback syste
has proven musically useful for both the qualitatively corr
simulation of certain traditional instrument tones, and for
development of new and more exotic nonlinear synthe
tones.

I. PROBLEM OVERVIEW

A. Memoryless nonlinearity

Many spectral modifications, as occur during the tim
evolution of cymbal or gong tones, may be achieved by
sertingmemorylessnonlinearities into feedback loop sys
tems. These kinds of nonlinearities have been used with
cess to induce auto-oscillation of feedback loops~Rodet,
1994!. Nevertheless, energy conservation is out of con
without additional amplitude tracking and/or scaling els
where in the loop. For example, Fig. 1 illustrates a sim
nonlinear sound synthesis model based on the lin
Karplus–Strong plucked-string algorithm~Karplus and
Strong, 1983!. The length of the delay line determines th
fundamental pitch of the sound. The lowpass attenuation
ter summarizes frequency-dependent loss per period in
string system. The simple linear loop model has been m
fied to include a square law nonlinearity within the feedba
loop. The« and 12« scalings allow some control over ho
much nonlinearity shall be present in the loop. The loop
linear for« set to 0. For small, nonzero«, a pleasant spectra
brightening may occur over time. Interpreted physically
memoryless scaling in the feedback loop may represent
transfer function at a terminating dashpot~or terminating re-
sistor, in the transmission line case! between the left- and
right-going traveling force waves~voltage waves!. Figure 1
would then correspond to a string terminated on one
with a dashpot whose coefficient varies with the force
plied to it, or to an oscillating transmission line terminat
with a resistor whose coefficient depends on the voltage d
across it.

In Fig. 1, the choice of scaling coefficients,« and 12«,
will guarantee passivity of the system, understanding that
digital signal levels are restricted to between 1 and21; how-
ever, as we increase«, thereby increasing the amount o
nonlinearity in the system, the nonlinear dashpot becom
more and more lossy. Yet, for important classes of mus
instruments, such as gongs and cymbals, a large, nonl
nonlinear effect is required. The scaling factors might
adjusted to allow more nonlinearity without as much loss
choosing, for example,« and 1.12«, but this would corre-
spond to a physical system where the terminating dash

FIG. 1. Delay loop string model with square law nonlinearity.
1121 J. Acoust. Soc. Am., Vol. 101, No. 2, February 1997 J. R. Pie
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has an active impedance for certain forces and we risk in
bility in the loop without a careful monitoring of the overa
loop gain.

In general, a memoryless nonlinearity may be form
lated as a look-up table indexed by the samples of the inc
ing digital signal. There is no easy way to guarantee that
total energy of the input signal will equal the total energy
the output signal.

B. First-order nonlinearity

In order to resolve this dilemma of having to trade off
musically desirable large nonlinear effect against the risk
system instability, while still maintaining a practical level o
computational cost for real-time musical sound synthesis
plications, the problem has been approached through
physical modeling of a passive nonlinear lumped terminat
impedance which has an internal state, that is, which isnot
memoryless. A passive nonlinear loop filter has been deriv
based on a real physical system constructed from pass
lossless elements only, namely, two springs of differing st
ness.

Consider a string terminated by a double-spring appa
tus as shown in Fig. 2. Three states of the system are sh
in the figure: First, the lower spring is compressed, while
upper spring is at rest; second, both springs are at rest;
third, the upper spring is compressed, while the lower spr
is at rest. In effect, the spring termination apparatus
equivalent to a single nonlinear spring whose stiffness c
stant isk1 when the displacement is positive andk2 when the
displacement is negative.

Now consider what is happening to the energy in t
system. When the lower spring is compressed, some en
from the string is converted to potential energy stored in
spring. When the lower spring returns to its rest state,
stored spring energy is entirely returned to the string, and
spring contains no stored energy. When the upper sprin

FIG. 2. String terminated with passive nonlinear double spring.
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 Redistr
then compressed, exactly the same kind of energy excha
occurs. This ideal system is physically passive and loss
since energy is neither created nor destroyed.

If the spring stiffness constant had changed while sto
potential energy was still in the spring, i.e., when one of
springs was still compressed, the stored energy would
scaled by the new relative stiffness of the spring. In this ca
the stored energy before the stiffness change would be
ferent from the stored energy after the stiffness change, le
ing to the creation or loss of energy, possibly resulting in
nonpassive system. In any model of this nonlinear syst
care must be taken to change the spring stiffness coeffic
at the right time in order to preserve passivity and lossle
ness.

Passivity is the requirement that no energy be created
the system. When energy is created in a feedback loop,
bility problems may ensue. We have specifically tried to d
cover a nonlinear system which is passive, and which is lo
less, so the system loss may be decoupled from the nonli
effect, and designed separately.

II. NONLINEAR FILTER DERIVATION

A. The digital waveguide string model

The one-dimensional wave equation may be solved
the sum of two waves traveling in opposite directions~Morse
and Ingard, 1968!. The traveling wave solution has led to th
digital modeling of string and acoustic tube oscillations u
ing a pair of bi-directional delay lines, each delay line imp
menting one of the traveling waves. This efficient filter stru
ture is known as the digital waveguide~Smith, 1992, 1987!.
The traveling may represent displacement, velocity, slo
force, or other physical variables. Traveling waves are ma
ematical constructs, the actual physical values at any p
on the string being the sum of the right- and left-going tra
eling components at that point. Figure 3 illustrates a phys
variable,u, as the sum of its traveling components,u1 and
u2, at some point on the waveguide. The delay lines rep
sent both a sampled delay in time and a sampled positio
space. The digital waveguide filter structure permits an ex
band-limited reconstruction of the continuous traveling wa
in time and space.

If transverse velocity or displacement waves on a str
are being modeled, then, on reaching a rigid termination,
traveling wave in the right-going delay line will invert an
turn into the left-going delay line. This is to say that th
velocity wave transfer function at a rigid termination is21.
Similarly, if transverse force waves are being modeled, t
the force wave transfer function at a rigid termination is11,

FIG. 3. The digital waveguide.
1122 J. Acoust. Soc. Am., Vol. 101, No. 2, February 1997 J. R. Pie
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that is, there is no inversion of force waves at a rigid term
nation. The case of a springy termination is considered
low.

There is awave impedancerelationship between the
traveling components of force and velocity in the string, c
responding to the wave impedance relation between pres
and flow in acoustic tubes, or voltage and current in elec
cal transmission lines~Magnusson, 1970!, which can be
written

f15R0v
1 and f252R0v

2, ~1!

wheref6 andv6 are the traveling wave components of for
and velocity, respectively, and where the wave impedanc
Ro 5 AKe, K being the constant tension on the string ande
being the mass density per unit length. Intuitively, the
equations say that when a force is applied transversely
string, the resultant transverse velocity should be less
greater string mass and for greater string tension. The cha
in sign for the left-going components is due to coordina
system choice. Note that no matter whether velocity or fo
waves are being modeled in the system loop, both phys
force and physical velocity at any point along the string m
be computed from the resident traveling wave compone
using Eq.~1! to make the change of variables,

v5v11v25~1/R0!~ f
12 f2!, ~2!

f5 f11 f25R0~v
12v2!. ~3!

B. The linear spring termination

The force equation for the ideal linear spring shown
Fig. 4 is

f ~ t !5kx~ t !⇒ d f~ t !

dt
5kv~ t !, ~4!

wheref (t) is the force applied on the spring at timet,x(t) is
the compression distance of the spring,v(t) is the velocity of
compression, andk is the spring stiffness constant.

Taking the Laplace transform mappingf (t) to F(s) and
v(t) to V(s), and further assuming no initial force on th
spring, we get

F~s!5~k/s!V~s!. ~5!

Here, k/s is the lumped impedance of the spring. Setti
s5 jv will give the frequency response of this system.

Figure 5 shows a string terminated by a spring. As w
suggested in Eqs.~2! and~3!, the physical force at the string
termination is the sum of the transverse force waves on
string at that point,f5 f r1 f l , while the physical velocity at
the termination is the difference between the force wa
scaled by 1/R0, v5(1/R0)( f r2 f l). We may, therefore, re-
formulate Eq.~5! as a transfer function fromFr to Fl ,

FIG. 4. Simple linear spring system.
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F~s!5~k/s!V~s!, ~6!

Fr~s!1Fl~s!5S ksD Fr~s!2Fl~s!

R0
, ~7!

Fl~s!5
k/s2R0

k/s1R0
Fr~s!. ~8!

The force wave transfer function is stable allpass since
pole is ats52k/R0 and its zero is ats5k/R0 , wherek and
R0 are defined to be positive real numbers.

C. Moving to the digital domain

While it is appropriate simply to sample the continuo
traveling waves to form the digital waveguide filter structu
it is convenient to make a conformal bilinear transform wh
taking the spring system from thes plane to thez plane
~Parks and Burrus, 1987; Nehari, 1952!,

s←a
12z21

11z21 . ~9!

This bilinear transform maps DC in the continuous system
DC in the digital system, while mapping infinite frequency
the continuous system to half the sampling rate, or the
quist limit frequency, in the digital system. Further, the sy
tem retains its allpass characteristics, which is essentia
the present purpose. The parametera is a degree of freedom
which may be used to control the frequency warping. It
usual to choosea52/T to obtain faithful frequency respons
at the low end of the frequency range~Parks and Burrus
1987!.

The bilinear transform is applied to Eq.~8! to obtain

Fl~z!5H~z!Fr~z!, ~10!

where

H~z!5
a01z21

11a0z
21 and a05

k2aR0

k1aR0
. ~11!

The filter coefficienta0 ranges from21 to 1 as the spring
stiffness parameterk ranges from 0 tò . The frequency
domain transfer function, Eq.~10!, corresponds to a time
domain difference equation of the form

f l~n!5a0f r~n!1 f r~n21!2a0f l~n21!, ~12!

wheren is the sampled time index. Figures 6 and 7 show t
alternative implementations of this allpass difference eq
tion. Thez21 blocks indicate a delay of one time sample.

Since the filter coefficient,a0, represents the spring stiff
ness, onlya0 need be changed to modify the stiffness of t
spring termination. However, to preserve physical and dig

FIG. 5. String terminated by simple spring.
1123 J. Acoust. Soc. Am., Vol. 101, No. 2, February 1997 J. R. Pie
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passivity and losslessness this change must be made ju
the point where the spring passes through its rest positio

D. Physically correct coefficient modulation

Consider the internal filter signalu(n) in the allpass
filter implementation ofH(z) shown in Fig. 6. From the
diagram, it may be seen that

f l~n!5a0u~n!1u~n21!, ~13!

u~n!5 f r~n!2a0u~n21!. ~14!

The actual physical force applied to the spring termin
tion is equal to the sum of the input and output force wav
as defined in Eq.~3!. Using ~13! and ~14!, an expression of
the actual force on the spring,f (n), may be found:

f ~n!, f r~n!1 f l~n! ~15!

5~11a0!@u~n!1u~n21!#. ~16!

Equation~16! indicates that the actual physical force on t
spring is proportional to a linearly interpolated value of s
nal u at time n20.5. From Eq.~4!, displacement of the
spring termination is zero when force is zero, andf (n) is
zero when u(n)1u(n21) is zero. Therefore, whenu
changes sign between timesn21 andn, the spring displace-
ment is closest to zero. Hence, this is as close as we can
to the physically correct time to change the spring stiffne
coefficient in order to model the nonlinear spring terminati
system shown in Fig. 2.

In some computational circumstances, the alternative
ter structure shown in Fig. 7 may be preferable to that in F
6. From the diagram in Fig. 7, it may be seen that

f l~n!5w~n21!1a0f r~n!, ~17!

w~n!5 f r~n!2a0f l~n!. ~18!

Combining~17! and~18! as before, the termination forc
may be found:

FIG. 6. Allpass filter implementation.

FIG. 7. Alternative allpass filter implementation.
1123rce and S. A. Van Duyne: Nonlinear filters for music synthesis
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f ~n!, f r~n!1 f l~n! ~19!

5S 1

12a0
D @w~n!1w~n21!#, ~20!

and the same arguments apply as above. The physically
rect time to change the allpass filter coefficient is when
spring force is nearest to zero, which is when the state sig
w(n), changes sign.

E. Digitally correct coefficient modulation

The internal filter state signal,u(n) in Fig. 6, orw(n) in
Fig. 7, represents the digital energy stored in the filter at
given time,n. Assume that the allpass coefficienta0 is to be
changed at timen5Tc . Also, assume that there is no inp
signal after timeTc , i.e., f r(n)50 for n.Tc , and that there
is some nonzero internal state value at timen5Tc . Then the
output of the filter caused only by this internal energy st
value is proportional to the decaying exponential,a0

n2Tc, and
the corresponding energy is the sum of squares of this ou
signal.

If the coefficient, a0, is suddenly changed at tim
n5Tc , it is clear that the internal state energy will ring o
of the filter with a different decay rate than if the coefficie
had not been changed, and hence, the energy will no
conserved. Such coefficient changes, if made arbitrarily, m
lead to instability in a feedback loop. However, if the inte
nal state,u(Tc) for Fig. 6, orw(Tc) for Fig. 7, is zero or near
zero when the coefficienta0 is changed, then the resulta
discontinuity in the state energy will be minimal or zer
Therefore, to maintain the desired passivity in the nonlin
allpass filter, the filter coefficient change is gated on the s
of the state. This method of gating the coefficient chang
bothphysically correct, since when the state is near zero, t
modeled force on the element is correspondingly near z
anddigitally correct, since it minimizes energy discontinu
ties arising from the internal state.

Figure 8 shows a digital system diagram for the nonl

FIG. 8. Nonlinear string/spring system.

FIG. 9. Spectrogram of harmonic loop with lowpass filter.
1124 J. Acoust. Soc. Am., Vol. 101, No. 2, February 1997 J. R. Pie

ibution subject to ASA license or copyright; see http://acousticalsociety.org
or-
e
al,

y

e

ut

t
be
y

r
n
is

o,

-

ear string/spring system of Fig. 2 using the allpass filter va
ant given in Fig. 6. For graphical convenience, a look-
table notation is used to show howu(n) gates the coefficien
change, but, in general, this would be implemented in sim
conditional logic. Also shown in the loop are a delay lin
block which determines the fundamental pitch of the loop
loss filter block which generally is a lowpass filter used
model a frequency dependent attenuation per period, an
detuning filter block representing some static allpass filt
which may make a fractional sample delay correction
otherwise, introduce inharmonicities into the loop.

III. MUSICAL EXAMPLES

The passive nonlinear filter was tested in a variety
musical situations. Shown here are comparisons of the s
tral evolution, with and without nonlinearity, of two sound
generated by essentially the model in Fig. 8. In the first
ample, Fig. 9 shows the spectral evolution of a simple de
line plus lowpass filter loop excited in such a way that t
third harmonic is highly attenuated, and in which the nonl
ear filter is deactivated. We see a natural exponential de
with higher frequency modes decaying faster than low f
quency modes. In Fig. 10, the passive nonlinear filter
been activated with the result that the spectrum bright
over time; in particular, the initially missing third harmon
builds up energy, as do several higher harmonics. After a
seconds, the effect of the lowpass filter in the loop takes o
and the loop decays out.

In a second example, the same system is used with
addition of an allpass filter in the loop to detune the mod
slightly, giving it a more bell-like tone. Figure 11 shows th
spectral evolution when the nonlinear filter is deactivat
Figure 12 shows the result when the nonlinear filter is op
ating. Note that the modes exchange energy among th
selves in a more dynamic manner in this inharmonic cas

FIG. 10. Spectrogram of harmonic loop with lowpass filter and pass
nonlinear filter.

FIG. 11. Spectrogram of inharmonic loop with lowpass filter.
1124rce and S. A. Van Duyne: Nonlinear filters for music synthesis
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In addition to these simple loop cases, promising go
and cymbal-like sounds have been generated by incorpo
ing these passive nonlinear filters into the 2-D digital wa
guide mesh membrane model~Van Duyne and Smith, 1993
Van Duyneet al., 1994!.

IV. PHASE MODULATION ANALYSIS

The time-varying allpass termination filter shown in Fi
8 is essentially lossless and passive. However, for it to
useful it must behave in the desired manner. Energy in
isting resonant modes of the main system must be cause
spread locally in the spectrum to nearby modes of the s
tem, as is observed in real musical instruments~Fletcher and
Rossing, 1991!. Empirically, this seems to happen, as seen
Figs. 9–12. However, this filter is difficult to analyze strictl
due to its signal-dependent time variation and due to its
clusion in a feedback loop system. Nonetheless, an intui
understanding of its operation may be gleaned by consi
ing a simpler, but nonpassive, form.

The termination filter in Fig. 8 is a one-pole allpass filt
with a time-varying coefficient. Consider the frequency
sponse of an allpass filter of the same form with asinusoi-
dally varying coefficient taking on values betweena1 anda2.
Intuitively, this filter will be performing a phase modulatio
on the input signal. Hence, the output signal of the fil
should contain sidebands generated by this phase modul
at multiples of the modulation frequency. Figure 13 sho
the dB magnitude spectrum of the output signal of this fil
with an input sine wave ‘‘center frequency’’ of 8000 Hz an
a coefficient ‘‘modulating frequency’’ of 2000 Hz. The re
sultant sidebands of the output signal are just as expect

FIG. 12. Spectrogram of inharmonic loop with lowpass filter and pass
nonlinear filter.

FIG. 13. Output dB magnitude spectrum of sinusoidally driven allpass fi
with sinusoidally modulated coefficient.
1125 J. Acoust. Soc. Am., Vol. 101, No. 2, February 1997 J. R. Pie
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Modulating the coefficient,a0(n), with a square wave
instead of a sine wave, should result in an output sig
spectrum containing some greater emphasis in the odd s
bands, due to the odd harmonics in the square wave co
cient modulation signal.

In the passive nonlinear filter form of Fig. 8, where th
coefficient change is controlled by the change in sign of
internal signal,u(n), the modulating signal is quasi-squa
wave in that it flips between two distinct values, and it ha
‘‘fundamental frequency’’ related to the input signal to th
filter, sinceu(n) is just a filtered version of the input signa
f r(n), as indicated in Eq.~14!. The filter output signal will,
therefore, contain sidebands corresponding to sum and
ference frequencies of the input signal, generally group
near frequencies in the input signal. Further, the choice oa1
anda2 may be used to determine the rate of energy spread
and the spectral region where it is most active, by sim
analysis of the relative phase response variation between
first-order allpass filters with these two coefficients.

For coupling to occur in the resonant system, the si
bands produced by the modulated allpass filter must fall
supported modes of the system. When a sideband coinc
with a supported mode, that mode will be driven by t
energy from the appropriate sideband. Energy from si
bands which do not fall on supported modes will not dri
any particular mode and will simply be absorbed back in
the system. Since the passive nonlinear filter produces
and difference frequencies of the input signal, we can exp
that at least some of the main system modes will be hit
energy spreading will occur.

V. CONCLUSIONS

A first-order, physically motivated, nonlinear digital fi
ter has been developed which is passive and energy con
ing. It may be incorporated easily into linear resonant filt
based sound synthesis algorithms such as the Karp
Strong plucked-string algorithm, and the various one-, tw
and three-dimensional digital waveguide filter structur
The nonlinear effect is pleasing, natural, and qualitativ
similar to that which may be observed in real musical inst
ments, namely, a gradual spreading of spectral energy f
existing modes to their neighbor modes. The rate of ene
spreading and spectral region of greatest activity may
tuned using the two filter parameters. The filter is compu
tionally efficient and suitable for real-time sound synthe
applications.
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