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Recent work has led to highly efficient physics-based computational models of wave propagation in
strings, acoustic tubes, membranes, plates, and rooms using the digital waveguide filter, the 2-D
digital waveguide mesh, and the 3-D tetrahedral digital waveguide mesh, all of which are suitable
for real-time musical synthesis applications. A simple first-order nonlinear filter structure derived
from a passive nonlinear impedance circuit is described which extends the usefulness of these
models, and which avoids the difficulties of energy conservation when memoryless nonlinearities
are inserted in resonant feedback systems.1997 Acoustical Society of America.
[S0001-496627)01602-0

PACS numbers: 43.75.TWVJS|

INTRODUCTION cymbals, Chinese gongs, or tam-tams, the spectra become
brighter with time. The higher portions of the spectra rise in
Among the various approaches to the digital synthesis ofomparison with the lower portions. The relative rise in
musical sounds, some involve the production and excitatiomigher frequencies, which is essential to the timbre of the
of linear resonances which are characteristic of a musicadound, comes about because nonlinearities transfer vibra-
instrument. One fruitful notion has been that of consideringtional energy from lower frequency to higher frequency
the vibrating string as an electrical transmission l{kech, = modes. Beyond this, Lagge and Fletck&984 have shown
1937. The Karplus—Strong plucked-string algorithiidar-  that the compliance of a bridge supporting one end of a vi-
plus and Strong, 1983; Jaffe and Smith, 1P&®dels the brating string can cause the transfer of energy among modes
vibrating string as a delay line loop. This is a special case o0bf vibration. Further, it has been known for some time that
the traveling-wave-based digital waveguide modeling techthe flexible string is intrinsically nonlinear, except for the
nique (Smith, 1992 which is applicable to many kinds of smallest vibrational amplitude&Carrier, 194%. Thus, non-
strings and acoustic tubéSmith, 1987; Cook, 1990 The linearities may have a smaller but nonetheless important ef-
vibrating membrane and other two- and three-dimensiondlect on the tones of some stringed instruments.
(2-D and 3-D musical structures or reverberant environ- We have found that the addition of passive nonlineari-
ments have been modeled, and efficiently computed, usinties to an otherwise linear digital synthesis algorithm can
the multiply-free, parallel-computable, 2-D digital wave- cause the transfer of energy among modes, and can lead to
guide meshVan Duyne and Smith, 1993&nd 3-D tetrahe- large and interesting alterations and evolutionary changes in
dral extension(Van Duyne and Smith, 19961t is in the timbre. In real physical instruments nonlinearities are neces-
context of these kinds of wave-decomposed, computationallgarily passive because physical nonlinearities cannot cause
efficient digital modeling schemes that the current work onan increase in total energy, but can only transfer energy
passive nonlinear filters most naturally resides. among modes. The use of nonlinearities that are inherently
While properly excited resonanceslofear systems can passive in digital sound synthesis is important because other
closely approximate the tones of some musical instrumentsyays of adding nonlinearity can result in instability, oscilla-
nonlinearity plays an essential part in the sound of othertion, or unwanted energy loss.
musical instruments. Some nonlinearities are associated with A method has been found to incorporate an efficiently
the maintenance of oscillations in blown or bowed instru-computable, energy conserving, first-order nonlinearity into
ments(Smith, 1987. Others nonlinearities may be found in a resonant feedback system. In particular, the first-order non-
the excitation means of struck strings and percussion instruinearity is a digital filter simulation of a spring which is
ments, for example, the nonlinear compression force of pistiffer for deflection in one direction than in the other, or
ano hammer felt which leads to a greater spectral brightnessternatively, a capacitance which has a different value for
of the sound with greater strike for¢€haigne and Asken- positive than for negative voltages. Such an element stores
felt, 1994a, 1994b; Van Duynet al, 1994. The nature of no energy at zero deflectiapring or at zero voltagéca-
the nonlinearity under present consideration is not to initiatepacito. Any energy that is stored by an increase in deflec-
drive or maintain oscillation, but rather to modify the spec-tion or voltage will be given up as the deflection or voltage
tral energy distribution naturally and passively over time byreturns to zero. The element can store and release energy, but
transferring energy among resonating modes during the dét cannot produce energy. The use or addition of this simple
cay portion of the tone. element is economical in computation and effective in caus-
Fletcher and Rossingl991) observe that after striking ing energy transfer among otherwise linear modes. It can
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FIG. 1. Delay loop string model with square law nonlinearity.
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lead to a substantial and pleasing alteration in the sound

produced in an otherwise linear resonant feedback system. It atrest [ k,
has proven musically useful for both the qualitatively correct

simulation of certain traditional instrument tones, and for the

development of new and more exotic nonlinear synthetic
tones. /\/\CM‘M
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I. PROBLEM OVERVIEW 7%2

A. Memoryless nonlinearity

o . . . FIG. 2. String terminated with passive nonlinear double spring.
Many spectral modifications, as occur during the time 9 P prng

evolution of cymbal or gong tones, may be achieved by in-
serting memorylessnonlinearities into feedback loop sys- has an active impedance for certain forces and we risk insta-
tems. These kinds of nonlinearities have been used with sudility in the loop without a careful monitoring of the overall
cess to induce auto-oscillation of feedback lodpodet, loop gain.
1994. Nevertheless, energy conservation is out of control  In general, a memoryless nonlinearity may be formu-
without additional amplitude tracking and/or scaling else-lated as a look-up table indexed by the samples of the incom-
where in the loop. For example, Fig. 1 illustrates a simpleing digital signal. There is no easy way to guarantee that the
nonlinear sound synthesis model based on the linedptal energy of the input signal will equal the total energy of
Karplus—Strong plucked-string algorithniKarplus and the output signal.
Strong, 1983 The length of the delay line determines the
fundamental pitch of the sound. The lowpass attenuation fil-
ter summarizes frequency-dependent loss per period in th%‘
string system. The simple linear loop model has been modi- In order to resolve this dilemma of having to trade off a
fied to include a square law nonlinearity within the feedbackmusically desirable large nonlinear effect against the risk of
loop. Thee and 1—¢ scalings allow some control over how system instability, while still maintaining a practical level of
much nonlinearity shall be present in the loop. The loop iscomputational cost for real-time musical sound synthesis ap-
linear fore set to 0. For small, nonzerg a pleasant spectral plications, the problem has been approached through the
brightening may occur over time. Interpreted physically, aphysical modeling of a passive nonlinear lumped termination
memoryless scaling in the feedback loop may represent thiempedance which has an internal state, that is, whiahois
transfer function at a terminating dashpot terminating re- memorylessA passive nonlinear loop filter has been derived
sistor, in the transmission line caseetween the left- and based on a real physical system constructed from passive,
right-going traveling force wavegroltage waver Figure 1  lossless elements only, namely, two springs of differing stiff-
would then correspond to a string terminated on one endess.
with a dashpot whose coefficient varies with the force ap-  Consider a string terminated by a double-spring appara-
plied to it, or to an oscillating transmission line terminatedtus as shown in Fig. 2. Three states of the system are shown
with a resistor whose coefficient depends on the voltage drom the figure: First, the lower spring is compressed, while the
across it. upper spring is at rest; second, both springs are at rest; and,
In Fig. 1, the choice of scaling coefficientsand 1-¢,  third, the upper spring is compressed, while the lower spring
will guarantee passivity of the system, understanding that thes at rest. In effect, the spring termination apparatus is
digital signal levels are restricted to between 1 arld how-  equivalent to a single nonlinear spring whose stiffness con-
ever, as we increase, thereby increasing the amount of stant isk; when the displacement is positive akgdwhen the
nonlinearity in the system, the nonlinear dashpot becomedisplacement is negative.
more and more lossy. Yet, for important classes of musical Now consider what is happening to the energy in the
instruments, such as gongs and cymbals, a large, nonlossystem. When the lower spring is compressed, some energy
nonlinear effect is required. The scaling factors might befrom the string is converted to potential energy stored in the
adjusted to allow more nonlinearity without as much loss byspring. When the lower spring returns to its rest state, the
choosing, for examples and 1.}¢, but this would corre- stored spring energy is entirely returned to the string, and the
spond to a physical system where the terminating dashpapring contains no stored energy. When the upper spring is

First-order nonlinearity
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that is, there is no inversion of force waves at a rigid termi-
nation. The case of a springy termination is considered be-

low.
then compressed, exactly the same kind of energy exchange There is awave impedanceelationship between the

occurs. This ideal system is physically passive and losslesgayeling components of force and velocity in the string, cor-
since energy is neither created nor destroyed. _ responding to the wave impedance relation between pressure
If the spring stiffness constant had changed while storedinq flow in acoustic tubes, or voltage and current in electri-

potential energy was still in the spring, i.e., when one of the;g| transmission line§Magnusson, 1970 which can be
springs was still compressed, the stored energy would bgyitien

scaled by the new relative stiffness of the spring. In this case, N N B B
the stored energy before the stiffness change would be dif- f"=Rgv and f~=—-Rgv ", (1)

ferent from the stored energy after the stiffness change, leaggheref* andy = are the traveling wave components of force
ing to the creation or loss of energy, possibly resulting in aand velocity, respectively, and where the wave impedance is
nonpassive system. In any model of this nonlinear systemr_ = /Ke, K being the constant tension on the string and
care must be taken to change the spring stiffness coefficieeing the mass density per unit length. Intuitively, these
at the right time in order to preserve passivity and losslessgquations say that when a force is applied transversely to a
ness. string, the resultant transverse velocity should be less for
Passivity is the requirement that no energy be created bjreater string mass and for greater string tension. The change
the system. When energy is created in a feedback loop, sty sign for the left-going components is due to coordinate
bility problems may ensue. We have specifically tried to dis-system choice. Note that no matter whether velocity or force
cover a nonlinear system which is passive, and which is l0sSygves are being modeled in the system loop, both physical
less, so the system loss may be decoupled from the nonlinegdrce and physical velocity at any point along the string may

FIG. 3. The digital waveguide.

effect, and designed separately. be computed from the resident traveling wave components
using Eq.(1) to make the change of variables,
II. NONLINEAR FILTER DERIVATION
v=v 4" =(LURg)(f"—f"), ©)
A. The digital waveguide string model
f=f"+f =Ry(v'—v7). (3

The one-dimensional wave equation may be solved as
the sum of two waves traveling in opposite directidhtorse
and Ingard, 1968 The traveling wave solution has led to the
digital modeling of string and acoustic tube oscillations us-  The force equation for the ideal linear spring shown in
ing a pair of bi-directional delay lines, each delay line imple-Fig. 4 is
menting one of the traveling waves. This efficient filter struc- df(t)
ture is known as the digital wavegui@8mith, 1992, 198) f(H)=kx(t)= ——
The traveling may represent displacement, velocity, slope, dt
force, or other physical variables. Traveling waves are mathwheref (t) is the force applied on the spring at tire(t) is
ematical constructs, the actual physical values at any poirthe compression distance of the spring) is the velocity of
on the string being the sum of the right- and left-going trav-compression, andl is the spring stiffness constant.
eling components at that point. Figure 3 illustrates a physical ~ Taking the Laplace transform mappifi¢t) to F(s) and
variable,u, as the sum of its traveling components, and  v(t) to V(s), and further assuming no initial force on the
u-, at some point on the waveguide. The delay lines represpring, we get
sent both a sampled delay in time and a sampled position in
space. The digital waveguide filter structure permits an exact F(s)=(kis)V(s). ®)
band-limited reconstruction of the continuous traveling waveHere, k/s is the lumped impedance of the spring. Setting
in time and space. s=jw will give the frequency response of this system.

If transverse velocity or displacement waves on a string  Figure 5 shows a string terminated by a spring. As was
are being modeled, then, on reaching a rigid termination, theuggested in Eq%2) and(3), the physical force at the string
traveling wave in the right-going delay line will invert and termination is the sum of the transverse force waves on the
turn into the left-going delay line. This is to say that the string at that pointf =f, + f,, while the physical velocity at
velocity wave transfer function at a rigid termination-s..  the termination is the difference between the force waves
Similarly, if transverse force waves are being modeled, theiscaled by IR,, v=(1/Ry)(f,—f,). We may, therefore, re-
the force wave transfer function at a rigid terminationH%,  formulate Eq.(5) as a transfer function frork, to F,,

B. The linear spring termination

=kv(t), 4
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FIG. 5. String terminated by simple spring. FIG. 6. Allpass filter implementation.
F(s)=(k/s)V(s), (6)  passivity and losslessness this change must be made just at
(8- F () 'f F.(s)—F/(s) - the point where the spring passes through its rest position.
r ! s R, :
Fi(s)= k/s—Ro F.(s). ®) D. Physically correct coefficient modulation

KIs+Ro Consider the internal filter signal(n) in the allpass

The force wave transfer function is stable allpass since itfilter implementation ofH(z) shown in Fig. 6. From the
pole is ats= —k/R, and its zero is as=k/R,, wherek and  diagram, it may be seen that

R, are defined to be positive real numbers.
fi(n)=apu(n)+u(n—1), (13

C. Moving to the digital domain u(n)=f,(n)—agu(n—1). 14

While it is appropriate simply to sample the continuous  The actual physical force applied to the spring termina-
traveling waves to form the digital waveguide filter structure,tion is equal to the sum of the input and output force waves,
it is convenient to make a conformal bilinear transform whenas defined in Eq(3). Using (13) and(14), an expression of
taking the spring system from the plane to thez plane  the actual force on the sprinf(n), may be found:

(Parks and Burrus, 1987; Nehari, 1952 N
f(n)=f.(n)+f(n) (15

1-z1
S—a g T ©) =(1+ag)[u(n)+u(n—1)]. (16)

This bilinear transform maps DC in the continuous system td=quation(16) indicates that the actual physical force on the
DC in the digital system, while mapping infinite frequency in Spring is proportional to a linearly interpolated value of sig-
the continuous system to half the sampling rate, or the Nyhal u at time n—0.5. From Eq.(4), displacement of the
quist limit frequency, in the digital system. Further, the sys-Spring termination is zero when force is zero, did) is
tem retains its allpass characteristics, which is essential fotero whenu(n)+u(n—1) is zero. Therefore, whem
the present purpose. The parametés a degree of freedom changes sign between times-1 andn, the spring displace-
which may be used to control the frequency warping. It isment is closest to zero. Hence, this is as close as we can get
usual to choose=2/T to obtain faithful frequency response to the physically correct time to change the spring stiffness
at the low end of the frequency rangBarks and Burrus, Ccoefficient in order to model the nonlinear spring termination
1987). system shown in Fig. 2.

The bilinear transform is applied to E(B) to obtain In some computational circumstances, the alternative fil-
ter structure shown in Fig. 7 may be preferable to that in Fig.

FI(2)=H(2)F(2), 10 6 From the diagram in Fig. 7, it may be seen that
where
fi(n)=w(n—1)+acf,(n), 17
a0+ Z_l k_ aRO
H(2)= Trag ! and aO:k+aR0' (11 w(n)=f,(n)—apf(n). (18
The filter coefficienta, ranges from—1 to 1 as the spring Combining(17) and(18) as before, the termination force

stiffness parametek ranges from 0 toe. The frequency May be found:
domain transfer function, Eq.10), corresponds to a time
domain difference equation of the form

fi(n)=aof,(n)+f(n—1)—aof|(n—1), (12)

wheren is the sampled time index. Figures 6 and 7 show two fn) —
alternative implementations of this allpass difference equa-
tion. Thez ! blocks indicate a delay of one time sample.
Since the filter coefficient, represents the spring stiff-
ness, onlya, need be changed to modify the stiffness of the
spring termination. However, to preserve physical and digital FIG. 7. Alternative allpass filter implementation.
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FIG. 8. Nonlinear string/spring system. FIG. 10. Spectrogram of harmonic loop with lowpass filter and passive

nonlinear filter.

f(n)=f.(n)+fi(n) 19

1 ear string/spring system of Fig. 2 using the allpass filter vari-
H)[w(n)er(n—l)], (200  ant given in Fig. 6. For graphical convenience, a look-up

0 table notation is used to show hawn) gates the coefficient

and the same arguments apply as above. The physically cothange, but, in general, this would be implemented in simple
rect time to change the allpass filter coefficient is when theconditional logic. Also shown in the loop are a delay line
spring force is nearest to zero, which is when the state signahlock which determines the fundamental pitch of the loop, a

w(n), changes sign. loss filter block which generally is a lowpass filter used to
model a frequency dependent attenuation per period, and a
E. Digitally correct coefficient modulation detuning filter block representing some static allpass filters

The i il ianai(n) in Fi ) which may make a fractional sample delay correction or,
. € internal filter state sign (n) in |g._6, orw_(n) N otherwise, introduce inharmonicities into the loop.
Fig. 7, represents the digital energy stored in the filter at any

given time,n. Assume that the allpass coefficienyis to be

c_hanged at t.imen:T_C. Also, assume that there is no input ||, MUSICAL EXAMPLES

signal after timeT, i.e., f,(n)=0 for n>T_, and that there

is some nonzero internal state value at timeT,. Then the The passive nonlinear filter was tested in a variety of
output of the filter caused only by this internal energy statgmusical situations. Shown here are comparisons of the spec-
value is proportiona| to the decaying exponenﬁ%ryTC, and tral evolution, with and without nonlinearity, of two sounds
the corresponding energy is the sum of squares of this outp@enerated by essentially the model in Fig. 8. In the first ex-
signal. ample, Fig. 9 shows the spectral evolution of a simple delay

If the coefficient, ay, is suddenly changed at time line plus lowpass filter loop excited in such a way that the
n=T,, it is clear that the internal state energy will ring out third _harmonic is _higth attenuated, and in which the.nonlin-
of the filter with a different decay rate than if the coefficient ©ar filter is deactivated. We see a natural exponential decay
had not been changed, and hence, the energy will not b&ith higher frequency modes decaying faster than low fre-
conserved. Such coefficient changes, if made arbitrarily, maguency modes. In Fig. 10, the passive nonlinear filter has
lead to instability in a feedback loop. However, if the inter- P€en activated with the result that the spectrum brightens
nal stateu(T,) for Fig. 6, orw(T,) for Fig. 7, is zero or near OVer time; in particular, the initially missing third harmonic
zero when the coefficierd, is changed, then the resultant builds up energy, as do several higher harmonics. After a few
discontinuity in the state energy will be minimal or zero. seconds, the effect of the lowpass filter in the loop takes over
Therefore, to maintain the desired passivity in the nonlinea@Nd the loop decays out. _ .
allpass filter, the filter coefficient change is gated on the sign  In @ second example, the same system is used with the
of the state. This method of gating the coefficient change igddition of an allpass filter in the loop to detune the modes
both physically correctsince when the state is near zero, theSlightly, giving it a more bell-like tone. Figure 11 shows the
modeled force on the element is correspondingly near zer$pectral evolution when the nonlinear filter is deactivated.
anddigitally correct, since it minimizes energy discontinui- F|gure 12 shows the result when the nonlinear filter is oper-
ties arising from the internal state. ating. Note that the modes exchange energy among them-

Figure 8 shows a digital system diagram for the nonlin-Selves in a more dynamic manner in this inharmonic case.

2's 5.0 7.8 10.0 sec 1 slo 10.0 15.0 20.0 sec

FIG. 9. Spectrogram of harmonic loop with lowpass filter. FIG. 11. Spectrogram of inharmonic loop with lowpass filter.
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Modulating the coefficientay(n), with a square wave,
Kz instead of a sine wave, should result in an output signal
spectrum containing some greater emphasis in the odd side-
» bands, due to the odd harmonics in the square wave coeffi-
o cient modulation signal.

T i In the passive nonlinear filter form of Fig. 8, where the
s coefficient change is controlled by the change in sign of the
internal signal,u(n), the modulating signal is quasi-square
wave in that it flips between two distinct values, and it has a
FIG. 12. Spectrogram of inharmonic loop with lowpass filter and passivefundamental frequency” related to the input signal to the
nonlinear filter. filter, sinceu(n) is just a filtered version of the input signal,

f.(n), as indicated in Eq(14). The filter output signal will,

In addition to these simple loop cases, promising gongtherefore, contain sidebands corresponding to sum and dif-
and cymbal-like sounds have been generated by incorporaference frequencies of the input signal, generally grouping
ing these passive nonlinear filters into the 2-D digital wave-near frequencies in the input signal. Further, the choic, of
guide mesh membrane mod&an Duyne and Smith, 1993; anda, may be used to determine the rate of energy spreading
Van Duyneet al, 1994. and the spectral region where it is most active, by simple

analysis of the relative phase response variation between the
first-order allpass filters with these two coefficients.

IV. PHASE MODULATION ANALYSIS For coupling to occur in the resonant system, the side-

) ) o ) _ . bands produced by the modulated allpass filter must fall on

The time-varying allpass termination filter shown in Fig. supported modes of the system. When a sideband coincides
8 is essentially lossless and passive. However, for it to b§ih 4 supported mode, that mode will be driven by the
gs_eful it must behave in the desflred manner. Energy in ®Xanergy from the appropriate sideband. Energy from side-
isting resonant_modes of the main system must be caused {1ds which do not fall on supported modes will not drive
spread locally in the spectrum to nearby modes of the SySsny particular mode and will simply be absorbed back into
tem, as is observed in real musical instrumefistcher and ¢ system. Since the passive nonlinear filter produces sum
Rossing, 19911 Empirically, this seems to happen, as seen iy gifference frequencies of the input signal, we can expect

Figs. 9-12. However, this filter is difficult to analyze strictly, {4t at |east some of the main system modes will be hit and
due to its signal-dependent time variation and due to its i”énergy spreading will occur.

clusion in a feedback loop system. Nonetheless, an intuitive
understanding of its operation may be gleaned by consider-
ing a simpler, but nonpassive, form. V. CONCLUSIONS
The termination filter in Fig. 8 is a one-pole allpass filter A first-order, physically motivated, nonlinear digital fil-
with a time-varying coefficient. Consider the frequency re-ter has been developed which is passive and energy conserv-
sponse of an allpass filter of the same form witsiBusoi-  ing. It may be incorporated easily into linear resonant filter-
dally varying coefficient taking on values betwegpanda,. based sound synthesis algorithms such as the Karplus—
Intuitively, this filter will be performing a phase modulation Strong plucked-string algorithm, and the various one-, two-,
on the input signal. Hence, the output signal of the filterand three-dimensional digital waveguide filter structures.
should contain sidebands generated by this phase modulatiame nonlinear effect is pleasing, natural, and qualitatively
at multiples of the modulation frequency. Figure 13 showssimilar to that which may be observed in real musical instru-
the dB magnitude spectrum of the output signal of this filterments, namely, a gradual spreading of spectral energy from
with an input sine wave “center frequency” of 8000 Hz and existing modes to their neighbor modes. The rate of energy
a coefficient “modulating frequency” of 2000 Hz. The re- spreading and spectral region of greatest activity may be
sultant sidebands of the output signal are just as expectedtuned using the two filter parameters. The filter is computa-
tionally efficient and suitable for real-time sound synthesis
applications.
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