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Extracting source parameters from Gaussian fits to two-particle correlations
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Using a quadratic saddle-point approximation we show how information about a particle-emitting source can
be extracted from Gaussian fits to two-particle correlation data. Although the formalism is completely general,
extraction of the relevant parameters is much simpler for sources within an interesting class of azimuthally

symmetric models. After discussing the standard fitting procedure we introduce a new Gaussian fitting proce-
dure which is an azimuthally symmetric generalization of the Yano-Koonin formalism for spherically symmet-

ric sources. This new fitting procedure has the advantage that in addition to being able to measure source
parameters in a fixed frame or the longitudinally comoving system, it can also measure these parameters in the

local rest frame of the source.

PACS number(s): 25.70.Pq

I. INTRODUCTION

Recently quite a bit of work has been done in trying to
determine which attributes of the hadronic source formed in

high-energy particle or heavy-ion collisions can be deter-
mined by measuring the Hanbury-Brown —Twiss (HBT) cor-
relations of identical emitted particles. Usually the experi-
mental correlation function is fit with a Gaussian in some
components of the four-momentum difference q =p&

—p2
[1—5]. The parameters of such a fit (called correlation radii)
are then often compared to some simple analytic model in
order to get an idea of what is being measured. For example,
for a static Gaussian source, the duration of emission time is
directly proportional to the difference of the squares of the
correlation radii which are parallel to ("out") and perpen-
dicular to ("side") the transverse component of the total pair
momentum. However, this result is not true if for example
the actual source contains any z-t, z-x, or x-t correlations,
such as would be caused for quickly expanding sources.

The purpose of this paper is to determine exactly what
features of the source are actually being measured by experi-
mental correlation data. To do this, we use a quadratic
saddle-point approximation [6—8] to a general source func-
tion in order to derive a completely Lorentz covariant ex-
pression for the two-particle correlation function which can
be applied to a wide range of analytic models. In this ap-
proximation, 10 K-dependent parameters are needed to de-
scribe a general source, where K= (p, +p2) is the average
momentum of the two particles. The origin of these 10 pa-
rameters can be understood by noting that for each value of
K, our approximation is mathematically equivalent to a
Gaussian ellipsoid described by three Euler angles of orien-
tation, three components of the velocity of the local rest
frame, three spatial extensions, and one temporal extension.
As we will show, however, only six K-dependent parameters
(not including the chaoticity parameter X) can be measured
by making a Gaussian fit in q to the correlation function.

Furthermore, a source function which is azimuthally sym-
metric in coordinate space will not in general be azimuthally
symmetric in momentum space, since the direction defined

by E~ breaks this symmetry. As a result, the K-dependent

ellipsoid equivalent to such a source still requires one Euler
angle, two velocity components, three spatial extensions, and
one temporal extension in order to describe it. In this case,
only four K-dependent parameters can be determined by
making a Gaussian fit in q. Since for arbitrary K~ the num-

ber of source parameters exceeds the number of Gaussian-fit
parameters, some definite model must be used in order to
interpret how the latter depend on the former.

For pairs with @~=0, however, only four K-dependent
parameters are needed to describe the source (one velocity
component, two spatial extensions, and one temporal exten-
sion), so the four parameters measured in a Gaussian fit pro-
vide enough information to unambiguously determine all of
these source parameters. Although in practice it is very dif-
ficult to measure a pair whose total transverse momentum
vanishes, there is an interesting class of models in which the

K~ =0 simplifications persist for nonzero values of K~ . In
Sec. V we study a hydrodynamical model similar to ones
which have been used to fit one-particle distributions from
heavy-ion collisions at the Brookhaven Alternating Gradient
Synchrotron (AGS) and the CERN Super Proton Synchro-
tron (SPS). Within the context of this model, one would ex-
pect the simplifications in the extraction of source param-
eters to occur for pairs whose average energy in the
measurement frame is less than the freezeout temperature
divided by the square of the transverse How velocity (about
560 MeV for Si+Au at the AGS or S+Pb at the SPS).

If the correlation function for a model in the aforemen-
tioned class is fit to a Gaussian in the spatial components of
q, then in order to extract the relevant source parameters it is
crucial to pick beforehand the correct longitudinal reference
frame for the measurement. If, on the other hand, a fit is
made to a generalization of the Yano-Koonin formalism
[9,10], the correlation radii will automatically measure the
relevant source parameters even if the wrong frame is chosen
for measurement. For example, for a finite longitudinally ex-
panding source, the new formalism allows measurement of
the source parameters in the local rest frame of the quid,
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whereas fixed and longitudinally comoving system (LCMS)
radii measure the source in different frames.

II. LORENTZ COVARIANT CORRELATION FUNCTION

(x„)=x„(K),

(x„x,) —(x ) (x,)=(B ')„„(K).

(2.8)

(2.9)

For the two-particle correlation function, we use the well-
established theoretical approximation [8,11,12]

~

Jd'x S(x,K) e'&'~'

i fd S( K)i
(2.1)

where q=p& —
pq, qo=E~ —E2, K=-,'(p~+p2),

KO=E~= gm + ~K~ . The plus sign is to be used for boson
pairs and the minus sign for fermion pairs. The labeling of
particles 1 and 2 is defined such that q& =q is always posi-
tive. In this way, pairs with positive q2=qY and/or q3=q,
are physically distinct from those with negative q2 and/or

q3. The S(x,K) in Eq. (2.1) is a function which describes
the phase-space density of the emitting source.

The spacetime saddle point x(K) of the emission function
S(x,K) is defined via the four equations [6—8]

8
lnS(x, K) = 0,

Bx@
(2.2)

S(x,K) =S(x,K)exp[ —
~ (x —x)~(x —x)"B~,( K) ],

where the symmetric curvature tensor B„ is given by

(2.3)

B „(K)= —8~8„1nS(x,K) (2.4)

where p, =(0,1,2,3). The saddle point is that point in space-
time which has the maximum probability of emitting a par-
ticle with momentum K. A quadratic saddle-point approxi-
mation for S(x,K) then yields

(B ') (K) =(x„)—(x„) (2.10)

can be understood as the squares of the lengths of homoge-
neity of the source as seen by pairs with momentum K. It
should be noted that the homogeneity lengths agree with the
curvature radii (2.5) only if the curvature tensor B „ is diag-
onal. This was implicitly assumed by the authors of [6,7],
who first introduced the name "homogeneity length" but
used it for the curvature radii (2.5) of the source near the
saddle point.

Within the approximations of Eqs. (2.1) and (2.3), calcu-
lation of a general correlation function is straightforward,
yielding

C(q, K) = 1 ~ exp[ —q~q'(B ')~„]. (2.11)

From Eq. (2.9) we can see that the correlation function di-
rectly measures the spacetime correlations within the source.

It may at first seem that all of the components of the
correlation tensor B ' can be found simply by comparing
the results of a four-dimensional fit to the correlation func-
tion with Eq. (2.11).Such a fit is not possible, however, since

qo is highly correlated with the other components of q
through the equation

The saddle point is thus the average spacetime point from
which particle pairs with momentum K are emitted, and the
components of the inverse of the curvature tensor
(B '),(K) give the spacetime correlations of the source.
The four diagonal elements

We define the curvature radius in the p, th direction by [6,7]

2K;
qo=g P q, , where P, =

l &i+&2
(2.12)

(K) = [B (K)] (2 5) By making the approximation

fd x ((x) S(x,K)
(0)=(6(x))(K)= (2.6)

Using this notation, the correlation function (2.1) can be
compactly written as

Note that since B,(K) is symmetric, it will in general have
10 independent components. From the form of Eq. (2.3) it is
seen that the saddle-point approximation is mathematically
equivalent to an ellipsoid described by the 10 K-dependent
parameters mentioned in the Introduction. As long as the
saddle point x(K) is unique, knowledge of the 10 functions

B~„(K) is in most practical situations sufficient for a com-
plete characterization of the source.

It is convenient to define [8,13,14] the following
K-dependent average of an arbitrary spacetime function
((x) with the source density S(x,K):

P;=K; /E~, (2.13)

which is valid for pairs with ~q~(~Ez, one can use (2.12) to
fit the correlation function (2.11) to the form

where the R,, cross terms can be either positive or negative
and X is a parameter introduced to allow for coherence ef-
fects [15,16] and/or particles from the decay of long-lived
resonances [17—20]. From (2.9) and (2.12) the six functions

R, (K) (R;—=R;;) can be expressed as the correlations [8,14]

R,,(K) =((x,—p;t)(x, —p, t)) —(x, —p, t)(x, —p, t). (2.15)

C(q, K) = 1 ~ Xexp[ —q, R, (K) —q2R2(K) —q&Rs(K)

—2q & q 2R &2(K) —2q & q 3R &3(K) —2q2q&R2&(K) ],
(2.14)

C(q, K)=I l(e"')(K) I'. (2.7)

Furthermore, within the saddle-point approximation (2.3),
the following relations hold:

In general, the six R parameters found by fitting correlations
to Eq. (2.14) do not provide enough information to determine
the 10 independent components of (B ')
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Due to Eqs. (2.12) and (2.13), any Lorentz transformation
and/or spatial rotation to a new coordinate system can be
written as a purely spatial linear transformation,

t

q, —a;q. (2.16)

Ri =Ri+ y p, p&R3+2y p(p3R, 3,

R2 =R2+ y p2p3R3+2y p2p&Rz&,

R — R3 7

R(z=R(2+ y pap&R(3+ y pip3Rz&+ y pipzp3R3,

Thus the new R' parameters found in the primed frame will

simply be linear combinations of the R parameters found in
the original frame. For example, the longitudinally comoving
system (LCMS) is defined as the longitudinally boosted
frame in which p3=0 [4,5,21]. The R' parameters in this

(primed) frame are related to those in some fixed (unprimed)
frame via

III. AZIMUTHALLY SYMMETRIC SOURCES

S(t,x,y, z, K) = S(t,x, —y, z, K). (3 1)

From Eq. (2.3) this implies that y=B~2=Bz~=O for p,
W2, so for azimuthally symmetric sources B„has only
seven independent components.

By inserting Eq. (3.1) into Eq. (2.1), one can see that the
correlation function from an azimuthally symmetric source
must be unchanged under the substitution q2 —+ —q2. This
implies that R,2=R23=0, so that only four R parameters
can be found by making a Gaussian fit to the correlation
function [8,14,24]:

For an azimuthally symmetric source, it is convenient to
choose z to point along the beam ("longitudinal ') axis and
to choose x to point in the same direction as the component
of K which is perpendicular to the beam ("out"). The re-
maining ("side") direction is then defined by y =z Xx [23].
Note that by definition K, and pi are always positive and
K2= p2=0. Since the latter is true, azimuthally symmetric
sources must satisfy

R(3= yR, s+ y pipsR3,

R23 = yR2s+ y p2 p3R3, (2.17)
—2q(qsR, s(K)]. (3.2)

C(q, K) = 1 ~ li. exp[ —
q iR i(K) —q2R2(K) —q3R3(K)

where the p; are measured in the fixed frame and

y= 1/gl —p3. The above equalities can be used as an ex-
perimental test of the validity of the saddle point approxima-
tion in the following way: If measured LCMS radii are not
equal to the above corresponding combinations of fixed-
frame radii, then the saddle point formalism is not a good
approximation to the actual correlation function.

For sources which have highly non-Gaussian spacetime
dependencies, it is better to define [22] the inverse of the
curvature tensor directly through Eqs. (2.9) and (2.6) [using
the full source S(x,K)] rather than to use second derivatives
to define the curvature tensor at the saddle point via (2.4). A
simple example of when this is necessary is provided by the
emission function from a uniform sphere:

Expressing these four correlation radii in terms of the seven
independent elements of the curvature tensor we have

R —X2 2~

+ 2 pi 1(,l(.p(B ip
—l(.3B3(Bsp)],

R, = I [l(.,'(1 —li,'l(. ', B'„)+ P,'li. ,'(1 —l(. ', li,'B,', )

+ 2 p3X 3li. p(B3Q k iB3(Bip) ],

R(s = I [pi p3l(p( 1 —k i l(. 3Bsi) + pi ksli p(B3Q
—X iB3(B(p)

+ p3k(kp(Bi(i —k3Bs(B3Q) X k(3(B3 ikpB(pB3(j)],
S(x,K) =f(K) 8(t tp) 8(R —r), — (2.18) (3.3)

where r = v'x + y + z and R is the radius of the sphere. For
this source function, the saddle point is not unique and sec-
ond derivatives are ill defined. Nevertheless, (B ), in
(2.9) is perfectly well defined, producing through (2.11) a
Gaussian correlation function of the form

where

I = [1— l(plB(—ip l(. (li.3Bsi —li. pk3Bsp
2 2 2 2 2 2 2 2 2

+ 2k QX i X3BipBspB3i] (3.4)

C(q K) = 1 —exp( —
I
ql'R'/5). (2.19)

cos(lqlR) sin(lq R)

, (IqIR)'
(2.20)

which is found by plugging (2.18) directly into (2.1). This
example clearly shows that in terms of the correlation func-
tion, even a highly non-Gaussian source can be well approxi-
mated by a Gaussian with the same rms width.

The reader can verify that the above expression is a good
approximation to the correlation function

It is now apparent that the statement that R, —R2 is propor-
tional to the square of the emission time is highly model
dependent. Implicit in this statement are the assumptions that

X] = X2 and that all x-z, x-t, and z-t correlations are negli-
gible.

Until now we have been discussing fits to the correlation
function which are three-dimensional Gaussians in the spa-
tial components of q. It is also possible to fit correlation
functions in a different three-dimensional space defined by

q~= yq, +q2, q3 and qo. As we pointed out in the last2

section, qo is highly correlated with the spatial components
of q through Eq. (2.12) which we rewrite here as
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qo= p, q~cosp+ psqs, (3.5) IV. THE MEASUREMENT FRAME

where P is the angle between x and qt . Due to this corre-
lation, qo only varies over a finite range which is nonetheless
greater than zero for any nonzero values of p& and q~:

In order to illustrate the utility of the saddle-point formal-
ism and the importance of picking the right longitudinal ref-
erence frame for making measurements, we will now study
three example source models.

piq—i+ p3q3 qo plqx+ p3q3 (3 6)
A. Static Gaussian source

Despite this phase-space limitation, it is still possible to fit
correlation functions with Gaussians in a (q~, q3, qo) space
P5&.

For example, one could use an azimuthally symmetric
generalization of the Yano-Koonin formalism [9,101 S(x,K) =f(IC) exp—

x +y z (t to)—
2R 2L 2(ht)

Consider a source function which is defined by spacetime
Gaussians in its center-of-mass (c.m. ) frame:

where

C(q, K)=1~) exp[ —qiR~+(qo q3)R

—(q U) (Ro+R4)], (3.7)

(4.1)

Using Eq. (2.2), we see that the saddle point for this function
is independent of K and given by x =y = z = 0 and t = to . In
the c.m. frame, all of the off-diagonal components of B„
vanish, while the curvature radii are given by

U= y (1,0,0, v), y= 1/$1 —v (3.8) X) =X2=R, k3=L, and ho=At. (4.2)

(in units with c= 1), and R,(K), Ro(K), R4(K), and v(K)
are the four fit parameters. When using this fitting procedure,
it is convenient to define the particle labeling such that qo is
always positive. In this way, pairs with positive and negative
q3 are physically distinct and can be separately binned. For
the remainder of this paper, we will refer to Eqs. (3.2) and
(3.7) as the "standard" and "GYK" (generalized Yano-
Koonin) fitting procedures, respectively.

The boost-invariant form of the "GYK" fit means that for
any given value of K there is a longitudinally boosted refer-
ence frame in which v(K) =0. The fit parameters R,(K),
Ro(K), and R4(K) measure the source in this frame, regard-
less of which longitudinally boosted frame is chosen for the
evaluation of the q . Although the general interpretation of
the v (K) = 0 frame is difficult, it can be shown that in this
frame

((p z —p x)(p t —x)) —(p z —p x)(p t —x) —p (y')

= 0. (3.9)

R, =R +pt(At), R2=R,

R,'=L'+ P,'(At)', R» ——P, P, (b, t)'. (4.3)

The duration of emission (At) can thus be extracted either
from R» or from the difference R, —R2. If some frame
other than the c.m. is used for making a "standard" fit, then
the correlation radii will have much more complicated de-
pendencies on the source parameters. In particular, R, —R2
will not be proportional to (At) .

If a "GYK" fit is made, on the other hand, then in the
c.m. frame or any frame longitudinally boosted from it, one
will find the same expressions for the correlation radii:

That the curvature radii are independent of K is true for any
source in which the spacetime and momentum dependences
factorize. For the simple source of Eq. (4.1) they simply
measure the relevant geometrical "radii" of the system.

If one makes a "standard" fit to the correlation function
using c.m. momentum differences, the extracted radii will
have the interpretation

Furthermore, in this frame the remaining fit parameters take
the form (for p, 4 0) Rt=R, R4=L, Rp= l Lt. (4.4)

R,'=(y') =) ,',

pi i pt pi

Furthermore, the parameter U will measure the velocity dif-
ference between the c.m. and measurement frames. In other
words, even if measurements are made in the "wrong"
frame, a "GYK" fit will still produce correlation radii which
measure the source in its rest frame.

t l 1 1
2R', = t ——x — t —x —,(y').—(3.10)

)

Just as for the correlation radii of (2.15) and (3.3), these fit
parameters contain mixtures of various spatial and temporal
lengths of homogeneity, making the extraction of source pa-
rameters in general highly model dependent. However, a
"GYK" fit has the advantage that the time structure of the
source enters in only one of the radius parameters, namely
Ro.2

Pl f
S(x,K) = exp—

K u x+y (r—ro)
T 2R 2(b, r)

(4.5)

Here T is a constant freeze-out temperature, r= gt —z is
the longitudinal proper time, and m, = gm + K~. The longi-

B. Boost-invariant source

Next we consider a longitudinally expanding, boost-
invariant source:
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tudinal expansion of the source is described by the flow four-
velocity relative to some fixed frame

y'= y —y= y —Y, Y'= Y —r)=0,

u~= (cosh', 0,0, sinhxg), (4.6)

where rg= —,'In[(t+z)/(r —z)] is spacetime rapidity.
Calculation of the saddle point in the fixed frame is

straightforward, yielding x=y=0, 7.= 7.O, and y= Y, where
Y is the rapidity of a particle with momentum K. Unlike in
the previous model, both the saddle point and the curvature
tensor depend on K. Explicitly, the curvature radii and off-
diagonal elements of B are given by

sinh Y ) m, ~ cosh Y
+

( T) (hr)

q3 coshY(qs —tanhY qp),

qp=coshY(qp —tanhY q3). (4.10)

kp=Ar, XI =k2 R X3= rpgTlm, . (4.11)

Due to the diagonal nature of the curvature tensor, these
source parameters can be easily extracted from the LCMS
correlation radii

In other words, the local rest frame of a boost-invariant
source is just the LCMS (Y' =0 frame).

It is easy to verify that in this frame 83o vanishes and

Xi=X2=R,

cosh Y (m

I T) (Ar)

1 )m, 'I 1
Bps=Bsp= —sinhY coshY —, —+ 2 . (4.7)

Here we see that the z-t correlations of the longitudinally
expanding source give rise to a nonvanishing B30 for pairs
with YWO.

The correlation radii from a "standard" fit can be found
by plugging these source parameters into Eq. (3.3). One finds

R =R2

) Tl
R =R +P (hr) cosh Y+ —

~ r sinh Y,
(m, )

Ri =R + pi(b, r), R2 =R,

R3 = (Tlm, ) rp Ri3:0 .12 2 &2 (4.12)

R&=R, R4=rp/Tlm~, Rp=kr, (4.13)

while U measures the difference between the measurement
frame and the local rest frame of the source at the saddle
point. For example, a measurement made in the LCMS
would yield U = 0, while one made in a fixed frame would
yield v = th Y for pairs with an average rapidity Y relative to
that frame.

Note that in this frame R, —R2 is proportional to (Ar) .
Using the "standard" fitting procedure, it obviously makes
the most sense to measure correlations for boost-invariant
sources in the LCMS rather than a fixed frame.

Using the "GYK" fitting procedure, on the other hand,
one finds that regardless of the longitudinal frame chosen,

)Tl rp 2
)T&

R3 = —
h2 Y, R»= —pi —

' rptanhY. (4.8)
(m, ) cosh Y' (m, )

u =(cosh', 0,0, sinhig). (4 9)

Since g= Y, transforming to the local rest frame (primed) of
the saddle point can be done for each pair by making the
following substitutions

Using a saddle point approximation to a hydrodynamic
model similar to the one presented here, Makhlin and

Sinyukov first derived the above expression for R3 [26]. In a
recent paper by the NA35 Collaboration at CERN, the m,
and Y dependence of R3 measured in relativistic heavy-ion
collisions was compared to that expression in order to esti-
mate a freezeout proper time rp [2]. This treatment was not
consistent, however, since the parameter R» was omitted
from the fits.

Notice that R, —R2 in Eqs. (4.8) is in general proportional
neither to (Ar) nor to kp. This is simply a result of choos-
ing the wrong measurement frame. The extraction of Av.

from correlation radii is greatly simplified if instead of mea-
suring the correlation in a fixed frame, one measures it in the
local rest frame of the source near its saddle point x(K). At
that point, the flow velocity relative to the fixed frame is
given by

m, cosh( rg
—Y)

S(x,K) = exp-
(2rr) $2vr(h )r

Ku x+y
7 2R2

( r rp)—
2(A r) 2(b, rg)

(4.14)

In [8] it was shown that the 5 r) cutoff term leads to more
realistic Gaussian-like rapidity distributions. The prefactor
was introduced so that in the limit as b, r~0, S(x,K) be-
comes the Boltzmann approximation to a hydrodynamical
source which freezes out at a constant temperature T and
proper time rp [30].

C. Finite expanding source

The main problem with a boost-invariant source is that it
gives rise to a dN/dy which is completely flat, whereas the
dN/dy for produced particles which are actually observed in
relativistic heavy-ion collisions are much better described by
Gaussians in rapidity. Furthermore, in a boost-invariant
source, R,'3 will vanish in the LCMS, but nonzero values for
R,'3 have been measured by NA35 [27]. These inconsisten-
cies with boost-invariant sources lead us to consider an ex-
panding model with a non-boost-invariant cutoff in space-
time rapidity [8,14,28,29]. Using the expansion four-velocity
of Eq. (4.6), we define a source in its c.m. frame by
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The saddle point for this model still has the coordinates
x= Y=O and 7.= v.p, but the spacetime-rapidity coordinate
for a given value of K (relative to the c.m. frame) is now
given by the solution of

D. A class of models

All of the models we have discussed so far belong to a
class of source functions which satisfy the following condi-
tions:

tanh( tj —Y) ——sinh( y —Y) —
2

= 0. (4.15)
T (5 xg)2

and B&p= B3i= 0. (4.19)

It is apparent that the saddle point is only located at y= Y for
an infinite longitudinal tube 5 y~ ~ or for pairs with
K=0.

As in the previous model, transforming to the local rest
frame (primed) at the saddle point can be achieved by

q3= cosh'(q3 —tanhg qo), qo= cosh'(qo —tanhy q3).
(4.16)

Notice that since Y' WO, the local rest frame does not coin-
cide with the LCMS. It is possible to show that in the local
rest frame the curvature tensor becomes diagonal (B3O=O)
and

k) = X2=R, Xp= Ar,

m,
k3 = 7o —cosh( tj —Y)—3 0 T

—1/2

(4.17)

In the c.m. and LCMS frames, however, the curvature tensor
is in general not diagonal and each component becomes
much more complicated. These complications carry over into
the correlation radii. For example, R,3 does not vanish in

these frames, and R& R2 is not proportional to either

(Ar) or Xo [8,14].
By looking at one-particle slopes and rapidity distribu-

tions, it may be possible to estimate T and 6 y. Using these
values, one can numerically solve Eq. (4.15) for rg(K), use
Eq. (4.16) to transform to the local rest frame, and then ex-
tract the source parameters by making a "standard" fit to the
correlation function. Alternatively, one could simply make a
"GYK" fit in the c.m. frame (or any other longitudinally
boosted frame), and the result would be

Rt= k) —X2, R4= k3, Rp= Xp (4.18)

Again the parameter u(K) would measure the velocity dif-
ference between the measurement frame and the local rest
frame.

Each of the three models discussed above exhibits a dif-
ferent local rest frame. If one makes a "standard" fit to the
correlation function, it is important to guess the correct ref-
erence frame befove performing the fit in order to extract
useful information about the source. This implies that one
must have some a priori knowledge about the source before
making the fit. If one makes a "GYK" fit, however, there is
no need to pick a frame beforehand. In all three of the above
cases, the fitting procedure itself automatically chooses the
correct frame in which to measure the source. This feature of
the "GYK" fitting procedure is actually common to a whole
class of models we will discuss below.

For models in this class, the curvature tensor (2.4) takes the
simple block-diagonal form

2 0 0 0

2

0 0

0 0

0 0

B3p

B3p kp

(4.20)

Moreover its inverse, the correlation matrix B of Eqs.
(2.11) and (2.9), has the same block-diagonal structure, i.e. ,

the x tand x z-correla-tions (B ') to and (B '),3 vanish, and

(B ')tt=(B ')22.
Since models in this class have only four nonvanishing

components of the curvature tensor, these four can be unam-
biguously determined by measuring the four parameters
coming from either a "standard" or "GYK" fit. Explicitly,

R2= X2=R, ,

(R t3) 2 RORY
R 3 (R2 R2) 3 y2(R2+ u 2R2)

(R —R)R —(R ) RR
p, R3 —2p, p3R, 3+p3(R, —R2) p (R~+u Ro)

p&R&3
—p3(R& —R2) up (R&+R4)

(R —R)R —(R ) RR
(4.21)

where y is defined in (3.8). If the q used for fitting the
correlation function are evaluated in a fixed frame, then the
above parameters describe the source as seen in that fixed
frame. If, on the other hand, LCMS values for q; are used,
then Eqs. (4.21) (with p3=0) will determine LCMS source
parameters.

An interesting experimental test is provided by comparing
the left and right sides of Eqs. (4.21). Namely, if after mak-
ing both "standard" and "GYK" fits to the correlation func-
tion it is found that the left and right sides of Eqs. (4.21) are
not equal, then the source in question cannot belong to the
class (4.19).

As we mentioned previously, the form of the "GYK" fit
means that the extracted parameters R,(K), R~(K), and

Ro(K) naturally measure the source in the u(K) =0 frame.
Setting u =0 in Eqs. (4.21), we see that the right halves of
the first three equations reduce to Eqs. (4.18). In other words,
the R parameters directly measure the curvature radii of the
source in the u (K) = 0 frame. Furthermore, the last equation
in (4.21) shows us that the u(K) =0 frame corresponds to
the frame in which B3o(K) vanishes (z tcorrelations vanish)-
and the curvature tensor diagonalizes. For many interesting
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1
X.p

=—
2 (R 1

—R2) .
Pi

(4.22)

Using relativistic quantum molecular dynamics (RQMD)
events in the LCMS, this equation was recently shown to be
a good approximation only for pairs with very small Y and

K~ in the center-of-mass frame of a symmetric projectile-
target collision [19]. The restriction of small I' found by
these authors can be explained in the following way: Only at
F=O do the LCMS and the local rest frame definitely coin-
cide for all sources resulting from a symmetric projectile-
target collision. As

~

I'~ increases, these two frames may be-
gin to diverge just as they did for the model discussed is
subsection IV.C. above. For large Y, 83p becomes nonnegli-
gible in the LCMS and (4.21) rather than (4.22) must be used
to extract Xp. As we will show in the next section, the ad-
ditional restriction of small K~ can be explained if a source
is undergoing transverse as well as longitudinal expansion.

The reader should note that there is a difficulty with the
"standard" fitting procedure which arises due to the fact that
experimental correlation functions are always generated for
pairs which lie in certain bins in K~ and K3 =EL rather than
for exact values of these average momenta. In extracting
1 0 and B3p of Eqs. (4.21) from the left-hand exPressions,
there will be a certain ambiguity as to which values of Pi
and P3 should be used. Fortunately, this problem can be
circumvented by employing the new fitting procedures that
we introduce in Appendix A. Since no P; are present on the
right side of Eqs. (4.21), the difficulty does not arise at all
when one uses the "GYK" fitting procedure.

Using the generalized Yano-Koonin formalism has the
further advantage that by making a single fit in a fixed frame,
one can determine the source parameters both in that frame
via (4.21) and simultaneously in the v(K)=0 frame via
(4.18). Similarly, by making a single fit in the LCMS frame,
one can simultaneously determine both LCMS and

v(K) =0 source parameters. Using the "standard" fitting

models including the three discussed above, this frame also
corresponds to the local rest frame of the source at the saddle
point x(K).

As for the "standard" fitting procedure, the left halves of
Eqs. (4.21) tell us that only if we are clever enough to pick
the 83p=0 frame beforehand will Xp reduce to the more
familiar form

V. A MODEL WITH TRANSVERSE EXPANSION

Just as longitudinally expanding sources feature z-t cor-
relations in their c.m. frame, transversally expanding sources
will in general feature x-t correlations in their c.m. frame or
in any frame which is only longitudinally boosted relative to
it. Consequently, such sources will exhibit nonvanishing
Bip and/or B3, and thus not belong to the class (4.19). Nev-
ertheless, by working with Eqs; (2.5) as well as the corre-
sponding general expressions for the "GYK" fit, it can be
shown that if for some range of K, all of the k„are of the
same order and

(~1~0 10) «Pl» (~3~1 31) (Pl»

and 1 —)1.3/)1. 1(&Pi, (5.1)

then Eqs. (4.21) are still good approximations. In other
words, Eqs. (5.1) define a larger class of models for which it
is possible to unambiguously extract the parameters
)1. 1(K)=)i.p(K), )1.3(K), li. p(K), and B30(K). Furthermore,
from Eq. (3.9) it can be verified that if Eqs. (5.1) hold, then
in the v(K) = 0 frame, )tp)t3830(&1, so it is a good approxi-
mation to treat the curvature tensor as being diagonal, and
the correlation radii in this frame are given by Eqs. (4.18).

We will now examine a specific source model which ex-
hibits transverse as well as longitudinal expansion to see
what kind of restrictions Eqs. (5.1) impose on the average
momentum K. We consider a source function of the form
(4.14), but with an expansion four-velocity now given by

procedure, on the other hand, requires at least two fits (see
Appendix A) just to determine the source parameters in a
single frame.

Finally, we would like to discuss the reason why we chose
to study the class of models defined by Eqs. (4.19). First of
all, as we have seen explicitly, there are a number of inter-
esting models which naturally fall into this class. More im-
portantly, however, the source function for pairs with
K~ =0 from any azimuthally symmetric model will always
fall into this class. The reason for this is simply because
when K~ = 0, there is no way to distinguish between the
"side" and "out" directions. Consequently, X

&

= X2 and
since B2„=0, it must also be true that B]~

= 0. If all models
fall into this class for pairs with K~ exactly vanishing, then
there should be a wide range of models which are "close" to
being in this class for pairs with sufficiently small K~ . In the
next section, we will look at an illustrative example model.

u(x) = (gl + (v,plR) cosh', (v,xlR), (v,ylR), gl + (v,plR) sinhyg). (5 2)

Since u(x) is well defined and u u = 1 for arbitrarily large v, , Eq. (5.2) can be used for modeling relativistic (v,~ 1) as well
as nonrelativistic (v, (&1) transverse expansions. (Only for nonrelativistic expansions does the parameter v, represent the
transverse velocity of the source at p=R. )

By using Eq. (2.2) to calculate the saddle point of the emission function and recalling that K does not have any component
in the y (' side") direction, it is easily found that r= rp and y =0. Similarly, one can show that

Kiv i/T

1+ (m, v, /T) cosh( r/ Y)[1+(v,x/R) ]— (5.3)
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(v,x/R) (m, v, /T)cosh(r/ —I')
1 ——2=

(m, v, /T)cosh( r/
—I')[1+(v,x/R) ] + [I+(v,x/R) ] ' (5 4)

From these equations, it can be seen that if we demand that

T
E &—

U,
(5.5)

2
m, U,

Rp —kp —5 r, R~=ki —k2 —R 1 + cosh( r/ Y)

—1/2

m,
R4=) 3=rp —cosh(r/ —I')—' T

—1/2

(5 6)

where r/(K) =tanh '[v(K)]. By looking at the m, depen-
dence of R, , it may be possible to extract both the transverse
size R and the expansion parameter U, /T. Using the latter, it
is possible to make a consistency check to see if the pairs
under consideration did in fact satisfy condition (5.5).

The temperature T and transverse velocity parameter U,
can also be determined by measuring slopes and curvatures
of one-particle distributions. In heavy-ion collisions at the
both the AGS and SPS, these parameters have been esti-
mated to be on the order of T= 140 MeV and v, = 0.5 [31—
33]. From Eq. (5.5), these estimates imply that Eqs. (5.6)
should be good approximations for pairs with Ez less than
about 560 MeV.

VI. CONCLUSIONS

We have shown that in general the number of parameters
needed to describe a source in the quadratic saddle-point
approximation exceeds the number of parameters which can
be determined by making gaussian fits to two-particle corre-
lation data. However, we have identified a wide class of in-
teresting models for which the source is fully described by
only four K-dependent parameters which can all be deter-
mined from the experimental parameters measured in a
Gaussian fit. Using a realistic three-dimensionally expanding

then 1 —kz/X, will always be less than P, . Actually, given
the form of Eqs. (5.3) and (5.4), we are justified in deducing
that Eq. (5.5) implies 1 —Xz/li. , (&P, rather than the weaker
condition 1 —

l~. z/k, (P, . In Appendix B we also show that
if (5.5) is satisfied, then (X i kpB ip) &- P, and
(li. 3k Big )i(&P, . Consequently, in the context of the present
model, Eq. (5.5) is a sufficient condition to justify the use of
the expressions in the last section.

In particular, if one makes a "GYK" fit to the correlation
function of the model under consideration, then for pairs
satisfying (5.5), the extracted correlation radii will measure
the source in the local longitudinal rest frame at the saddle
point. Explicitly,

hydrodynamical model, we showed that for heavy-ion colli-
sions at the AGS or SPS, it should be simplest to extract the
source parameters from correlations of pairs with average
energies less than about 560 MeV in the measurement frame.
It should be noted that the source shape seen by these par-
ticles may still not be the geometrical shape of the source,
but rather that of the local region of homogeneity which is
affected by the expansion flow profile of the source. To sepa-
rate the How effect from the underlying geometry, it is nec-
essary to determine the K~ dependence of the HBT radius
parameters. Fortunately, much of this dependence may be
possible to see while staying in the "simple" regime. For
example, for pions with EL=0 in the measurement frame,
values of E~ up to 540 MeV/c will still correspond to ener-
gies below 560 MeV, so at least five 100-MeV bins in E~
can be explored below the limit. Of course for any given
analytic model it should also be possible to extract source
parameters from large K~ correlation radii by using expres-
sions such as those in Eqs. (3.3). However, at large Ki, each
correlation radius will contain contributions from a large
number of effects which may be difficult to disentangle.

In the past there has been some debate as to which longi-
tudinal reference frame would be the most appropriate for
measuring correlations from a given reaction. For example,
for a source which is not expanding longitudinally, the
source center-of-mass frame is the natural choice. On the
other hand, for an infinite source which is undergoing a
boost-invariant expansion, the LCMS represents the local
rest frame of the source and is thus the natural choice. Since
experimental reactions undoubtedly produce sources which
lie somewhere between these two extremes, some intermedi-
ate frame is needed. The generalized Yano-Koonin fitting
procedure of Eq. (3.7) has the advantage that it does not
require one to postulate a reference frame beforehand; the
data themselves determine a frame for each value of K. For
many interesting "intermediate" models, the parameters in
this v (K) =0 frame measure the source in its local longitu-
dinal rest frame, while fixed frame or LCMS parameters
measure the source in some different frame.

Certainly the best way to compare any given model to
correlation data is to make the comparison directly in a six-
dimensional (p, , p2) space, rather than to compare the fitted
correlation radii of the model to those extracted from the
data. Nevertheless, we have shown here that Gaussian fits
can still reveal some very interesting information about the
velocity of the local longitudinal rest frame as well as the
lengths of homogeneity of the source.
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APPENDIX A

In this appendix we show how the p; dependencies in

kp and Bsp of Eqs. (4.21) can be removed through the intro-
duction of new fitting procedures. We label the fitting proce-
dure defined by Eq. (3.2) with an "a." Thus R&(a) refers to
the square of the "longitudinal" radius as found by fitting the
correlation with Eq. (3.2). We define a "b" fitting procedure
by using piq3 instead of q3 in making a Gaussian fit to the
correlation function. In other words,

m, u, (v,x~ l t i sinh(z/ —Y)

RT I, R l g rpi Ql+(utx/R)

m, u, l v,x1 / z 1 sinh(r/ —Y)

RT ( R i ( rp) Ql+(v, x/R)

1 m, v, cosh( z/
—Y)—)

R T [1+(u,x/R) ] ' (B1)

—2qi(piq3)Ri3(b)], (Al)

L(q, K) = 1 ~ liexp[ —qiRi(b) —q2R2(b) —(piq3) R&(b) The saddle point in spacetime rapidity for this source is
given by

where we have suppressed the K dependence of the R pa-
rameters. It can now be seen that in the LCMS (primed)
frame

2 [Ri (a) —R2 (a)]R3 (a) —[Ri&(a)]
R3 (b)

R', s(b)
[Ri (a) —R2 (a)]R3 (a) —[Ri&(a)]

To calculate Xo and 83O in a fixed frame, we need to
introduce two additional fitting procedures. Procedure "c"is
defined by using P3q, , P3q2, and P, q3 in place of q, ,

q2, and q3 when making Gaussian fits, while procedure "d"
is defined by using $~ps~qi, p~ps~q2, and q3. We then
have

[Ri(a) —R2(a)]R3(a) [Ris(a)]
R3(c) 2Ri3(c)+Ri(c) —R2(c)

tanh( i/ —Y) ——pl + (v,x/R) sinh( r/ Y) — —
z

——0.
T ' (&/)

(B2)

1 m,(—$1+(v,x/R) .
cosh( i7 —Y)

(B3)

Using this inequality, then for all Y it is true that

To derive the needed expressions for ko and X3, we have
first used Eq. (2.2) to check numerically that if
(m, /T) pl+(v, x/R) ~0.7, then for Y40,
(~ Y

~
and z/ has the same sign as Y. Although

(m, /T)pl+(u, x/R) )0.7 may present a significant re-
striction for electron or photon correlation measurements, it
does not present a significant restriction for current two-
hadron correlation measurements from particle or heavy-ion
collisions, Even for pions, temperatures of up to 200 MeV
would still satisfy this condition. Given this condition, from
Eq. (2.2) it is possible to show that for Y4 0,

R,3(b) -+ [R,(d) —R2(d)]
[Ri(a) —R2(a)]R3(a) —[R i&(a)]

(A3) m, l z ) sinh (z/ —Y)
)t. p ~—$1+(v,x/R)

i rp cosh( z/
—Y)

where the — (+) sign in Bsp refers to bins in which
p~) 0 (p3(0). Note that due to this distinction, the above
method for determining source parameters should not be ap-
plied to bins in which some of the pairs have p3) 0 while
others have p3(0.

m, t t ~ sinh (r/ Y)—)—v'1+ (v,x/R) — . (B4)
l rp/ cosh(iy Y)—

The desired inequalities are now easily proven:

APPENDIX 8

To prove the remaining inequalities in Eq. (5.1), we begin
by presenting the following easily verified relations:

()i.tksBs, ) ((u,x/R) (&P, ,

()~. i)i.pBtp) ((v,x/R) (&P, . (B5)
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