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ABSTRACT 

 

This thesis focuses on the development of order-promising and production-planning 

methodologies for sawmills.  Two types of demands are considered: contract and spot 

demands. Contract demands are those known commitments to be filled over a period of 

time, whereas spot demands are collected from the market for the current week, two, and 

three weeks prior to the delivery date. Campaigns are developed that describe how the 

various classes of logs will be processed under a given price list. The campaign produces 

lumber outputs that represent the proportions the sawmill optimizers would produce 

given this price list. An MIP model, which includes order promising and campaign 

production planning, is formulated to maximize revenue over a planning horizon. A new 

solution technique is introduced to simulate the effectiveness of the rolling planning 

horizon over the full year. The effectiveness of the solution techniques is studied using 

different scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF ABBREVIATIONS AND SYMBOLS USED 

 

AATP  Advanced Available-to-Promise 

ATP  Available-to-Promise 

CTP  Capability-to-Promise 

DSS  Decision Support System 

FIFS  First-in-First-Served 

FCFS  First Come First Serve 

GO  Global Optimization 

LP  Linear Programing 

MIP  Mixed Integer Programming 

MPS  Master Production Schedule 

MSP  Multi-Stage Stochastic Programming 

MTO  Make-to-Order 

RFQ  Request-for-Quotation 

UPM  Upper Partial Moment 

UPV  Upper Partial Variance 

     Contract demand 

     Current week variable demand 

     Product demand to be delivered in 2 weeks 

     Product demand to be delivered in 3 weeks 

     Promised order for contract demand 

     Promised order for current week delivery 

     Promised order to be delivered in 2 weeks 



x 

 

     Promised order to be delivered in 3 weeks 

     Product price for the contract demand 

     Product price for the current week variable demand 

     Product price to be delivered in 2 weeks 

     Product price to be delivered in 3 weeks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

ACKNOWLEDGEMENTS 

 

First of all, I would like to sincerely thank my supervisor, Dr. Eldon Gunn, for giving me 

the opportunity to work in this area. I want to thank him for his knowledge, supervision, 

advice, guidance, and patience that made my research achievement possible. 

I would also like to thank my committee member, Dr. Corinne A. MacDonald, for her 

advice and enormous support during this research especially on campaign generation 

module.  

I would also like to thank my committee member, Dr. Peter Gregson, for his advice and 

comments.  

I would also like to thank Dr. Uday Venkatadri for his advice and continuous support. 

I would also like to thank NSERC Forest Value Chain Optimization  Network for funding 

this research. 

I would also like to thank all of our group members Pegah Sohrabi, Andrew B. Matrin, 

Sina Saadatyar, Narges Sereshti and Mohammad Mallahi for their helpful comments and 

cooperation. 

Finally, I would like to express my deepest appreciation to my family. Their endless 

support and encouragement made all of this possible. 

  

http://www.linkedin.com/search?search=&company=NSERC+Value+Chain+Optimization+Network&sortCriteria=R&keepFacets=true&trk=prof-exp-company-name


1 

 

CHAPTER 1  

INTRODUCTION 
 

        A sawmill processes valuable forest resources (tree stems) to produce various types 

of lumber products. Scientific management of a sawmill at its operational level will 

reduce production waste, better meet market demands, and eventually increase 

profitability for the sawmill.  Order-promising is the collection of orders from customers 

with a specific delivery due date. The order-promising and optimal production- 

scheduling for the promised order is an important endeavor for the sawmill, and has 

received attention by many researchers in recent years.  This thesis addresses the issue of 

order-promising based on the available resources (i.e. logs, cutting facilities) for the 

sawmill product, and also focuses on optimal production-scheduling to deliver the 

finished product on time.  A mixed integer programming model is developed to address 

these issues, and optimized to determine the orders that can be promised and the optimal 

production schedule, by maximizing the revenue through delivering promised order on 

time. The orders are promised considering the variability in the product demand and 

prices in every week. Logs are generated randomly to produce lumber products which 

include the uncertainty in throughput in the optimization model. The solution methods 

represent the different requirements and concerns in day to day sawmilling business and 

operations.   

1.1.   BACKGROUND 

        A sawmill receives different species, grades and classes of logs from the forest and 

processes them to produce a wide variety of lumber products, differentiated by species, 
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dimensions, and grades. Due to the variable nature of tree-growth dimensions, the 

process yield is correspondingly uncertain at every stage of the lumber production 

operation.  This uncertainty and the wide variety of end products make the sawmilling 

operation highly variable and complex.  Amidst this uncertainty in operation, a sawmill 

manager collects orders from the market and produces lumber to fill promised orders. 

However, an order promised at a low price for a high quality of wood at the early stage of 

collecting may preclude later profitable actions. Thus, the improvement in the order-

promising methodology plays a vital role for the success of sawmill operations. 

        The sawmilling operation starts from the bucking operation. Felled trees are bucked 

to produce logs of different grades, classes and standard lengths and the bucking 

operation is done in such a way that the total potential market value is maximized. The 

logs are generally graded according to the lumber quality that will be produced through 

the sawmilling operation, and the average diameter of the logs determines their class. 

Different species of logs, such as spruce, fir, larch, hemlock, white pine, red pine, etc., 

are processed in a series of manufacturing operations.   

        Some mills can buck trees; other receives logs bucked in the forest. The input logs 

are sorted based on log species, diameter classes and grades, and processed in the same 

order to ease the lumber sorting process. Log bark is removed, and then the debarked logs 

undergo the three major manufacturing steps of sawing, drying, and planing (surfacing).  

In the sawing operation, the debarked logs are broken down into various sizes of rough 

pieces of lumber. A single log produces lumber of different sizes through a series of 

cutting steps.  Green (rough) lumber is produced through sawing, re-sawing, and edging 

processes, and collected in different bins. Each of the bins holds lumber of the same size 
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and species. Next, lumber from the bins is bundled and dried in a kiln dryer to reduce the 

moisture content in accordance with customer orders. The dried lumber is then passed 

through a planing process, after which the lumber is graded based on physical defects and 

moisture content. The defects are removed by trimming operations, and dimensioned 

lumber of a specific length is produced.  Fig. 1.1 shows the schematic flow diagram for 

the sawmill production operation. Generally, a portion of the produced lumber is 

transported to lumber suppliers to fulfill customer orders, while the rest is reserved as 

inventory. Inventory is required because sawmill demand is highly variable both 

seasonally and in the short-term between products.  Lumber suppliers accept orders from 

customers, quoting quantity and due dates. 

      The decision to accept or reject an order and determine a due date for delivery on an 

accepted order is generally known as order promising. The manufacturer needs to fill the 

order on time to protect the manufacturer’s reputation, as otherwise it may cause a loss of 

future orders. Thus, the dual processes of order promising and fulfillment should not be 

considered as two separate issues. Rather, these two activities are closely related to each 

other and involve sharing information among customers, suppliers, and the manufacturer. 

 

 

 

         

Grading & 

Trimming 

Debarking Sawing Drying Planing 

Bucking 

Log 

Sorting 

Figure 1.1: Lumber production flow diagram 
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        Problems involved in order promising for lumber products have been specifically 

addressed by Azevedo et al. (2012), while those related to sawmill production planning 

and control have been the focus of numerous studies (Maness & Norton, 2002; Zanjani, 

2009a; Saadatyar, 2012). Saadatyar (2012) maximized the revenue using a push 

manufacturing environment through proper production scheduling. This research is an 

extension of Saadatyar’s (2012) research work.  However, to the best of the author’s 

knowledge, no study has yet been carried out that considers order-promising and sawmill 

production-planning to fulfill the promised order as an integrated problem. This research 

aims to fill this gap by integrating a sawmill’s order-promising and production-

scheduling operations. 

1.2.     MOTIVATION AND THESIS CONTRIBUTIONS 

North American lumber industries’ production aim has been to maximize the volume 

throughput (Gaudreault et al., 2009). The basic idea behind this type of production 

planning is to produce product efficiently and build inventory without short term 

consideration of customer demand. This results in a large inventory but low agility. The 

motivation for this type of production planning is to take advantage of economies of scale 

(i.e., large-scale production reduces variable unit cost) and is commonly known as the 

‘push-production’ strategy. Although efficient in production, the push-production 

approach creates a large inventory, which may compromise the industry’s main objective 

of making maximum revenue. Due to the lack of agility in this approach, product 

diversity is limited and the lumber industry cannot take advantage of a changing demand 

pattern.  
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        On the other hand, a ‘pull-production’ strategy authorizes production based on 

current system state, which includes customer orders and inventory levels.  i.e. “Produce-

to-order” is one type of pull. In  an assembly manufacturing environment, “pulling” 

means pulling a bill of materials in response to a demand.  In the case of sawmill 

production planning, a system that is purely ‘pull’ is untenable because of the divergent 

nature of production throughput.  In other words, it is not practical or economical for a 

sawmill to operate only when an order is received (Gunn, 2013). The motivation of this 

thesis is to move towards a pull-production environment for the sawmill industry and at 

the same time to increase the agility of the production.  

        Due to the characteristic non-homogeneity of tree stems, process yields are uncertain 

at every stage of sawmill production, from stem bucking to log sawing. The uncertainty 

in process yields and the wide variety of lumber demands make every stage of the 

management decision complicated. There are numerous challenges involved in managing 

a sawmill, as sawmills process logs of different species and produce an extensive range 

(e.g., different sizes and species) of lumber products, all the while collecting orders from 

customers on a weekly basis and endeavoring to deliver these orders on time. The 

challenges include: 1) deciding which customer order will be accepted that will earn 

maximum revenue by using available resources (i.e., raw materials, production facilities); 

and 2) determining the optimal campaign (production plan of different species and 

classes of logs) schedule that will fulfill the promised order and maintain a safe inventory 

level.  

The thesis contribution is as follows:  
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1. Demonstrated that the shadow prices from the LP model can be used to generate 

campaigns that perform better in terms of both objective function and solution 

than the campaigns originally created in Saatadayar (2012) and Sohrabi (2012). 

2. Developed an integrated MIP (mixed integer programming) model for order-

promising and production-planning for sawmills.  

3. Developed a dynamic solution technique to solve the model, where demand and 

price uncertainty are considered for every period. 

1.3.     THESIS ORGANIZATION 

The rest of the thesis is organized as follows:  

Chapter 2 presents a brief literature review. The literature is reviewed according to the 

following aspects: customer order acceptance, capacity loading, and sawmill production 

planning. The conclusion shows how the work in this thesis contributes to the existing 

literature.  

Chapter 3 describes the generation of product pricelist based on shadow price. This 

chapter also describes how to generate new suitable campaigns that result in the reduction 

of solution time.     

Chapter 4 introduces the mathematical model for order promising used in this work. 

Chapter 5 describes a simulation approach that has been implemented within the Gurobi 

5.5 optimization system.  This allows testing the rolling planning horizon methodology as 

prices and demands vary over time. This chapter examines five different scenarios and 

presents model outputs illustrating the performance of the rolling planning horizon 

approach. 
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Chapter 6 draws conclusions and summarizes the results of this thesis. It also suggests 

possible future work.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. INTRODUCTION 

        Decisions regarding order promising  and capacity loading involve the acceptance or 

rejection of customer orders, based on the availability of sufficient capacity to complete 

the orders prior to the delivery due date, which are given by the customers at the time of 

order placement. 

        In the context of a sawmill, due to the non-homogeneous and random characteristics 

of logs (i.e., diameter, number of knots, internal and external defects, etc.), the process 

yields are uncertain and at the same time the production process where many products are 

produced simultaneously from each log is divergent in nature.  This means, it is not 

possible to produce product to meet a certain product demand without producing a lot of 

other products. Uncertainties in throughput and divergent nature of production make 

sawmill order promising and production planning complicated.  

        The production planning of a sawmill can be considered a combination of several 

classical production planning problems, which involve determining the optimal quantity 

of log consumption from different classes and the selection of corresponding cutting 

patterns to fit product demands (Zanjani et al., 2009a).  Estimating the availability of 

sufficient capacity for the order is difficult because throughput and processing times are 

uncertain for the sawmill industry. 

        Order promising has two main issues on the sawmill. The first issue is that, if an 

order is accepted at a low price, this may preclude selling the lumber at a higher price 
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later.  Thus it may make sense to refuse an order, still produce lumber and wait until a 

better price is available later.  The other issue is capacity utilization.  By accepting orders 

and promising delivery in the future, this may lead to higher capacity utilization at the 

mill.  However, if the mill is unable to meet these commitments, this may lead to 

customer dissatisfaction. The literature related to order promising and sawmill production 

planning is reviewed in the next two sections.  

2.2.     CUSTOMER ORDER ACCEPTANCE AND CAPACITY LOADING 

        In the literature, several authors addressed capacity loading as a vital issue for order 

promising. Wang et al. (1994) developed a workload-based policy for accepting or 

rejecting an order for an excessive demand non-MRP (material requirement planning) job 

shop under non-negotiable due-date requirements. The collected orders were prioritized 

based on the profit rate, which was defined as the profit per unit of time. More profitable 

orders were accepted as long as the entire scheduling period did not exceed the total 

available machine and manpower capacity.  A neural network approach was proposed to 

solve the order-acceptance decision problem. Under the workload-based policy, orders 

are allocated to a planning period as long as for a specific resource (i.e., bottle neck of the 

system) the workload does not exceed the available capacity, and for all resources total 

workload does not exceed a specified maximum workload. Workload-based policy works 

well when the resources are in series. In the case of a sawmill, Products are produced in 

parallel. Therefore, workload-based order promising approach are difficult to apply for 

sawmill products.  

        Through a simulation experiment, Raaymakers et al. (2000a) investigated the 

performance of workload rules for order acceptance in batch chemical manufacturing 
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with deterministic processing times. In the model, production orders were generated 

randomly and orders were accepted as long as the resulting work load per work center did 

not exceed a certain value. Considering the maximum work load of each work center, 

different scenarios were evaluated to find the variance of the makespan (the maximum 

completion times of a job in a job set), which were compared with the makespan obtained 

by simulated annealing (Raaymakers & Hoogeveen, 2000). The results showed that a 

capacity utilization of 53% can meet production needs on time. This work makes clear 

that simulation is a necessary tool to evaluate an order promising strategy. 

        Raaymakers et al. (2000b) investigated the performance of a regression-based 

makespan estimation policy and a workload-based policy against a detailed schedule 

policy (Raaymakers & Hoogeveen, 2000) for batch chemical manufacturing in a setting 

with deterministic processing times. The paper concluded that the regression-based 

makespan estimation policy performs better when there is high resource utilization and 

high job mix variety. 

        Ivanescu et al. (2002) extended the previous model (Raaymakers et al., 2000a, 

2000b; Raaymakers & Fransoo, 2000c) for uncertain job processing times. Using a 

simulation experiment, the work compared the performance of the regression, scheduling 

and workload-based policy. The experimental result shows that regression and 

scheduling-based policies offer better performance than a workload-based policy. The 

performance of the regression-based policy increases with increasing uncertainty in 

processing time but decreases for the scheduling-based policy.  A chemical processing 

industry produces various products from a single raw material, which bears resemblance 

to the sawmilling process. Raaymakers et al. (2000a, 2000b) studies were based on 
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deterministic processing times. Although Ivanescu et al. (2002) considered the uncertain 

processing times for a batch processing chemical industry, the difference between a batch 

processing chemical industry and a sawmill is that, in a batch processing chemical 

industry, the raw material passes through various operational stages and processing steps 

that are different for each product, and sometimes the processing steps may have an 

overlap in time ( two resources may be needed simultaneously).  However, in a sawmill, 

multiple products are produced simultaneously although the drying and planning stages 

to deal with separate products. In Ivanescu et al. (2002)’s study, promised due dates for 

all products were the same and they had to be processed in one planning period. This 

study considers different due dates for different products, which can be processed in 

different planning periods.        

        Pibernik (2005) used the term Advanced Available-To-Promise (AATP), which 

includes Available-To-Promise (ATP) and Capability-To-Promise (CTP). He classified 

AATP into eight different generic types based on distinct criteria.  The first criterion 

involves either finished goods inventory or inventory of supply-chain resources, 

including raw materials, work-in-process, finished goods, and production and distribution 

capacities. On the basis of finished goods inventory, AATP is better suited to a make-to-

stock production environment, whereas the make-to-order production environment shows 

better performance on the basis of supply-chain resources. The operating mode of AATP 

is considered the second criterion in classifying AATP.  AATP can be operated in real-

time or batch mode.  In real-time mode, order promising is made at the time of customer 

request. In batch mode, orders are collected within a batching-interval and then processed 

together. The third criterion is based on the interaction with the manufacturing resource 
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planning and is classified into two categories: active and passive. An active AATP is 

integrated with the company’s manufacturing resource planning that can be adjusted with 

the master schedule at the time of order promising, while passive AATP does not have 

any impact on manufacturing resource planning. Active AATP is suitable for make-to-

order and passive AATP is suitable for make-to-stock manufacturing environments. 

Some add-on features were also considered with the generic AATP, such as AATP with 

substitute products, multi-location AATP, and AATP with partial delivery. After defining 

various generic AATP types, Pibernik (2005) developed a mixed integer programming 

model for batch AATP on the basis of finished goods inventory and a planning 

mechanism for real-time AATP. Partial deliveries were considered for both cases.  

Operating in real-time mode, AATP showed reduced performance compared to AATP 

operating in batch mode. The focus of this thesis is for a make-to-order production 

environment that differs from Pibernik’s (2005) make-to-stock model.    

Zhao et al. (2005) developed a mixed-integer-programming (MIP) model for 

available-to-promise with multi-stage resource availability and implemented in an 

assemble-to-order production environment. The model was formulated for a batch of 

customer orders that arrived within a pre-defined batching interval. The objective 

function of the model minimizes the due-date violation, inventory holding cost and a day-

to-day production smoothness measure. The model considered multi-resource availability 

(including manufacturing orders, production capability and production capacity) and, 

from an order-promising point, allows the splitting of orders. The optimization-based 

ATP model was implemented at Toshiba Corporation to improve the performance over 

the company’s historical performance of order promising where the ATP system collects 
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orders over quarter-hour time intervals and returns commitments to the customer at the 

end of each ATP run. It was found that the optimization-based ATP model reduced due-

date violations by about 18% and 2.3% of inventory holding costs. It also increased the 

resource utilization by 14%.   

        Venkatadri et al. (2006) developed an optimization-based decision support system 

(DSS) for order promising in supply chain networks of an assemble-to-order 

manufacturing industry. This model helps industry agents to promise orders in real time 

(e.g., quote due dates, prices, and quantity). Within this context, buyers and suppliers can 

constantly exchange information and negotiate product price, quantities and due date. 

The model considered the variation in product price with the lead time. All parties update 

production, warehousing, and distribution plans based on negotiations involving product 

price, features, and due dates. An order was defined as a single product or a combination 

of products, and early delivery was not desirable.  The delivery of products could either 

be a single delivery or a span of deliveries over several time periods.  The accepted order 

can be delivered in the next shipment if the formulated LP model provides a feasible 

solution. Otherwise, it will be delivered in the following or subsequent shipment. The 

authors recommend using a revenue management technique for further improvements. 

      Venkatadri et al. (2008) developed a linear programming algorithm for order-

promising methods in a supply chain network adding new constraints such as penalties 

for late deliveries, and incentives for on-time deliveries with the previous work. The 

proposed model considered production and distribution data, initial inventories, 

committed orders and customer due date requests as an input, and production quantities 

in each period along with the sourcing path of each product in the supply chain network 
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as an output. The proposed model also estimated the marginal cost and maximum 

availability of a customer-requested product in each time period in response to a request-

for-quotation (RFQ) from a customer. The model described a multi-period, multi-

commodity flow allocation problem whose objective is to minimize costs while at the 

same time planning and allocating its internal flows to allow for resources plans, 

utilization, and distribution plans. The model generates RFQs to the suppliers considering 

make-to-order production capacity constraints protocol. The model maximizes the 

revenue by minimizing the network cost and provides an estimation of the price to be 

quoted. This thesis does not consider any supply chain network. It only considers the 

production of  a sawmill. 

        Applying revenue-management concepts to assemble-to-order (ATO) manufacturing 

environment, Harris and Pinder (1995) developed models for optimal pricing and 

capacity decisions. The general objective of revenue-management techniques is to 

maximize profit over the planning horizon by deciding whether to accept or reject a given 

order by anticipating future profitable orders. In the developed models, customer orders 

were segmented into two classes: class 1 customers were able to place their orders in 

advance, and class 2 customers placed their orders on a last-minute demand basis. The 

model was developed in two stages: optimal pricing and optimal reallocation. Allocation 

and reallocation of the optimal capacities were determined by the optimal protection level 

(i.e., the number of units reserved for a class). In this model, allocation for a particular 

class of customer was considered to be a function of the class rate and capacity. The 

expected profit was maximized through optimal pricing and capacity decisions. 
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        Meyr (2007) introduced two alternative clustering models to classify customer 

classes on the basis of customer importance and profitability.  Meyr (2008) upgraded this 

work and applied the advanced available-to-promise concept to the lighting industry, 

where bulbs, fluorescent lamps, etc. are produced. These are stocked to inventory on the 

basis of forecasts, and sold from the inventory as soon as customer orders arrive.  A 

deterministic linear programming model for ATP allocation and consumption was 

proposed. Simulation results of the proposed method were compared with conventional 

real-time order promising such as First-In-First-Served (FIFS) and Global Optimization 

(GO). In the global optimization, all customer orders are collected first and a due date is 

promised for the batch. The results showed that customer segmentation substantially 

improved profits. 

        Fan and Chen (2008) developed a stochastic dynamic programming model by using 

a revenue management technique to address the order acceptance problem for a make-to-

order (MTO) industry. In the model, it was assumed that both special purpose and 

flexible machines existed in the MTO system. A discrete time model was used to analyze 

the problem, where only one type of order could be placed at a time and only one type of 

machine could be assigned for each accepted order. Finally, with the use of the certainty 

equivalence approximation, the optimal order-acceptance and capacity allocation policies 

were proposed. In these policies, newly arrived order would be accepted as long as its 

revenue was not less than the minimum of the shadow revenue of the allocated machine. 

        Considering stochastic demand and exogenous replenishments, Pibernik and Yasdav 

(2009) developed a two-step AATP model that differentiates between two customer 

classes under a service level constraint for a single product industry in a make-to-stock 
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environment. The target service level was ensured by determining a safety inventory 

level that guarantees a certain probability of not stocking out of inventory in the lead 

time.   

        Chen and Chen (2009) developed a two-phase order promising model for an 

assemble-to-order manufacturing industry. The reserved capacity is defined in the 1
st
 

phase, based on forecasted demand. Customer orders are promised in the 2
nd

 phase, based 

on the phase-I decision, by giving customers commitments on delivery dates and 

quantity. The objective of phase-I is to maximize profit by allocating resources for certain 

customers. The priority rule in phase-I assumes that the unit profit for a product for each 

customer is known. The forecast reservation programming model for phase-I is 

developed using a fuzzy mathematical programming approach with different degrees of 

customer satisfaction regarding the reserved quantities. A mixed integer linear 

programming approach was used for the order promising method in phase-II. 

        Kilic et al. (2010) addressed an order-acceptance/rejection decision problem in a 

food processing system. Here, a single raw material is processed to produce several 

products that satisfy market demand. The demand is considered stochastic in nature. The 

problem was modeled using two heuristic approaches called the two-band heuristic and 

the first-come-first-served heuristic. The two-band heuristic was based on two arguments: 

1) acceptance of an order when the resource level was “sufficiently high” would always 

be profitable, since preservation of resources for future orders was not necessary at this 

resource level; and 2) acceptance of an order with small resource requirements when the 

resource level was “sufficiently low” would always be profitable, since it was not 

possible to accept future orders with higher rewards due to their larger resource 
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requirements. In the two-band heuristic approach, an order was accepted when the 

resource level was in one of these two bands (i.e., higher and lower resource levels). In 

the FCFS heuristic, an incoming order was attended according to their sequence of arrival 

and an order led to a nonnegative increment in the expected revenue was accepted. In 

Kilic et al.’s (2010) study, compared to the FCFS heuristic, the two-band method was 

found to be more effective in making an optimal acceptance decision. 

        Azevedo et al. (2012) developed an order promising model for a make-to-stock 

environment focusing on the Canadian softwood lumber industry using a revenue 

management technique. A three-step solution technique was proposed. In the first step, 

potential customers are segmented based on customers price sensitiveness.  Price-

sensitive customers who are willing to pay around the market price are considered as 

customer segment 1; customers who are willing to pay lower-than-market price are 

considered as customer segment 2; and customers who are not sensitive to the price 

considered as customer segment 3. The optimal allocation of the product is computed for 

different customer segments over a planning horizon by solving LP problems. After 

defining the product allocation for each customer segment, booking limits are defined. 

Booking limits includes the allocated volume for a specific customer segment, the 

volume that is not allocated to any customer segment, and a fraction of the volume that is 

allocated for a different consumption week for the same customer class or from different 

segments for more profit. After defining the booking limit, a Mixed Integer Programming 

(MIP) is developed to cope with the objective of net profit maximization. The product 

price is determined with reference to the market price of the past week. The planning 

horizon is four weeks. The optimization model was simulated considering orders received 
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during the first week. Orders arriving at any given time are assumed to present an order 

delivery date of within four weeks. In their study, Azevedo et al. (2012) was able to 

demonstrate the benefit of the proposed technique compared to FCFS by analysing 

different scenarios. 

2.3.   SAWMILL PRODUCTION PLANNING  

        Mendoza et al. (1991) developed an operationally feasible comprehensive 

production schedule for the sawmilling process. In order to achieve this, a log inventory 

model and a real-time hardwood process simulation model were developed and 

combined. The system worked by first utilizing an optimization model to determine the 

best log input mix to process according to the periodic lumber demand given assumed 

breakdowns of each log class into products. Optimization of the log mix was performed 

under constraints based on average machine, human, and resource capacities. The log 

input mix was used as an input to the simulation model to find the production schedules 

of the entire sawmill, and SIMAN block diagram codes were used to model the event 

subroutines. As the output of the simulation model could measure different sawmilling 

systems’ performances (i.e., the volume of logs processed, sawmilling time, lumber 

output, resources utilization,  production delay status of buffer decks, etc.), the 

production schedule was developed based on the information of the sawmill simulation 

model. After different sawmill operating modes were examined via simulation, these 

could be used to re-examine the production schedule.  Large scale implementation of the 

Mendoza et al. approach has not been reported. 

        Maness and Norton (2002) described a multi-period production planning model 

which had two components: a resource coordinator and a log-sawing simulation model.  
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In order to find the optimal level of activities satisfying the resource and market 

constraints, an LP algorithm was designed as the resource coordinator. Meanwhile, the 

shadow price from the LP model were used in the log-sawing simulation model to 

generate new sawing patterns which were then reinserted in the LP to determine a better 

combination of activities. In contrast to the plant models, which were designed to develop 

production strategies for current product prices and market demands, this model 

considered future implications of current decisions on inventory and future sales. The 

model was found to respond to market changes by altering sawing patterns and log 

consumption. The approach of the work reported in this thesis is very similar to that of 

Maness and Norton. Our emphasis is on a more flexible generation of sawmill patterns 

and on a framework for simulating the rolling planning horizon with order promising. 

        A multi-period, multi-product production planning problem was addressed by 

Zanjani et al. (2009a) by proposing a two-stage stochastic linear program model. The 

objective of the proposed program was to minimize material consumption cost as well as 

expected inventory and backorder costs. A deterministic linear programing (LP) model 

for the sawmill production planning problem was first formulated when the complete 

information about the process yield were unknown. Thus, the production plan was 

considered as the first-stage (planning stage) decision variable. The second stage (plan 

implementation stage) generated scenarios by taking a log samples from each log class, 

letting them be processed by each cutting pattern, and computing the average yield for 

the samples. This process was repeated for all cutting patterns, and the probability of 

process yield for each scenario was calculated. The first stage LP model is modified by 

the probability of process yield and formulates a deterministic equivalent model.  
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Next, a Monte Carlo simulation technique was used to obtain approximate solutions. The 

stochastic model was then compared with the deterministic one by considering the key 

performance indicators of a backorder gap. These indicators include the gap between the 

realized total backorder size of the deterministic and the stochastic models’ plans after 

implementation. The plan precision (that is, the gap between the planned total backorder 

size determined by the production planning model and the realized total backorder size 

after implementation of the model plan) was also taken into consideration. Overall, in 

terms of the realized backorder size, the production plans in sawmills provided by the 

two-stage stochastic model were found to be more realistic than those provided by the 

mean-value deterministic model. This paper again illustrates the need to use simulation to 

test the performance of a production planning method under uncertainty. 

      Zanjani et al. (2009b) upgraded their previous model by adding the uncertainty of the 

product demand and proposed a multi-stage stochastic programming approach. As the 

product demand and process yield were considered uncertain in this model, they were 

first modeled separately and then integrated to obtain the multi-stage stochastic 

programming model. During the planning horizon, demand uncertainty was considered as 

a dynamic stochastic  process. This was modeled as a scenario tree, which is a viable way 

of discretizing the dynamic stochastic data over time in a population, with each stage 

denoting the point in time when new information is available to the decision maker.  

Meanwhile, the uncertain yield was modeled as a scenario with a stationary probability 

distribution. A hybrid scenario tree was constituted by integrating the yield scenario in 

each node of the demand scenario tree, which was then considered as the basis for the 

multi-stage stochastic programming (MSP) model.  In the model, the production plan was 
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assumed to be flexible at different stages based on the demand scenarios. The results 

obtained by the multi-stage stochastic programming model were compared to those 

obtained by the optimal solution to the mean-value deterministic. and two-stage 

stochastic programming models.  The multi-stage approach was  found to be superior 

among the three. 

        Nourelfath (2010) studied a multi-period, multi-product production planning 

problem. Due to the uncertainty in machine breakdowns, the production rate and the 

customer service level were considered as random variables. Their robust production 

design ensures a pre-specified customer service level with high probability. A two-step 

optimization model was proposed, where in the first step, the mean-value deterministic 

model was solved, and in the second step, a method was proposed to improve the 

probability of meeting the service level.  

        Considering the uncertainty in the process yield, Zanjani et al. (2010) developed two 

robust production planning models for multi-period, multi-product sawmill production.  

The proposed models were developed based on the variability measures of recourse cost 

(inventory and backorder cost) and customer service level. The upper partial moment of 

order 2 (UPM-2) model measures the squared positive deviation of a scenario recourse 

cost from the target recourse cost, and the upper partial variance (UPV) model measures 

the squared positive deviation of a scenario recourse cost from the expected recourse 

cost. The optimal expected recourse cost is determined by a two-stage stochastic model 

without considering the penalty on recourse cost variability. The target recourse cost is 

determined as a percentage of the optimal expected recourse cost and the customer 

service level is defined as the portion of customer demand that can be fulfilled.   In the 
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simulation model, 3 classes of logs and 5 different cutting patterns were used for 27 

different products. The production planning horizon was 30 days, and production demand 

in each period is assumed to be deterministic based on the received order. An unsatisfied 

demand is penalized by a unit backorder cost, which leads to a decreased customer 

service level. The solution aim is to reduce any anticipated backorder costs. The RO-

UPV results in less backorder /inventory cost (size) variability. These several papers by 

Zamani and her colleagues illustrate how one might modify a production plan to deal 

with uncertainty.  However, they do not actually test their method in a realistic 

sawmilling situation.  

2.4.     SUMMARY  

        The only study we found that considers profit-driven order-promising problems for 

the Canadian softwood lumber industry was carried out by Azevedo et al. (2012). In their 

optimization model, Azevedo et al. (2012) maximize profit and allow back orders, 

whereas Pibernik and Yasdav (2009) optimize the target service level and do not allow 

back orders. Furthermore, the Azevedo et al. (2012) model considers several locations of 

the manufacturing unit as well as different geographical customer segments and different 

classes of customer based on customers’ willingness to pay. This is in contrast to other 

studies, where customers are statistically lumped into one category of willingness to pay 

(Meyr, 2007, 2008; Fan & Chen, 2008: Chen & Chen, 2009) and a single-product 

environment (Meyr, 2008; Pibernik & Yasdav 2009). Some other research considered 

that capacity loading (maximizing profit through high capacity utilization and 

maintaining a high service level) is one of the main issues in order promising (Wang et 
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al., 1994; Raaymakers et al., 2000b; Raaymakers & Fransoo, 2000a; Ivanescu et al., 

2002) for the chemical processing industry.  

        Available-to-Promise (ATP) means that the products are available either in storage 

or can be produced in a certain future period in accordance with the production promise. 

ATP can be calculated as the sum of the initial inventory plus the master production 

scheduled (MPS) quantity, minus the back order and already promised order. However, 

Azevedo et al. (2012) considered the ATP in a deterministic fashion, which is 

significantly different from the reality of a sawmill operation. Due to the uncertain nature 

of the raw material (classes of logs), the production amount is uncertain for a specific 

production period. In this thesis, ATP is determined by a sawmill operational MIP model 

that is capable of reacting to production uncertainty. 

       The sawmill production planning and scheduling are generally determined by the 

best way of cutting of logs to generate certain products, while minimizing the material 

consumption cost and the expected inventory and backorder costs for a certain period. 

Several studies considered the stochastic characteristics of logs and developed combined 

optimization and simulation models, where all logs were required to scan through before 

planning and also needed to be processed in the sawmill in the same order as processed in 

the simulation model (Mendoza, 1991; Maness & Norton, 2002). Zanjani et al., (2009a) 

addressed the sawmill production planning control and scheduling problem considering 

uncertain yield (2009b). These models need to generate scenarios, to assess the 

probability of each scenario and to adjust the production schedule based on the assessed 

scenarios.  
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        Capacity loading and revenue management are two different aspects addressed in 

the literature regarding the formulation of an order acceptance or rejection decision. To 

the best of the author’s knowledge, no work has yet been done specifically for the lumber 

industry combining both aspects. This research combines the two areas of work order 

promising and production planning for sawmills to fill this gap. 

        In this research, two types of demands are considered for order-promising: contract 

and spot demands. Contract demands are those promised by the sawmill manager to be 

filled over a period of time, whereas spot demands are collected from the market one, 

two, or three weeks prior to the delivery date. Orders are promised based on the 

production planning model solution. The production planning model is developed based 

on the availability of the raw materials (log classes), current inventory, and resources 

(cutting patterns, production capacity).This research  upgrades  the work presented by 

Saadatyar (2012) by creating a pull manufacturing environment based on order promising 

rather than his focus on multi-level demand. The thesis also upgrades the work presented 

by Azevedo et al. (2012) in several ways by determining production capacity and 

considering spot and contract demands as well as variations of product pricing and 

demand for each period. The prices are not necessarily determined by customer.   In 

terms of production planning, the recent work presented by Zanjani et al. (2010) 

considered 3 classes of logs and 5 different cutting patterns. These were used for 27 

different products for 30-day production planning. In the work reported in the remainder 

of this thesis, we consider more complex problems in an attempt to come closer to 

realistic sawmill situations.  Most of the computations we report are carried out with 2 
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species, 8 different classes of logs, over 6,000 cutting patterns, 41 different product of 

each species, with a13-week rolling planning horizon simulated over one year. 

2.5.     CONCLUSIONS 

In this chapter. literature was reviewed on the following aspects: customer order 

acceptance, capacity loading issues, and sawmill production planning issues This chapter 

attempts to  show how the current work will contribute to the existing literature. In the 

next chapter, the campaign generation technique will be described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

CHAPTER 3  

CAMPAIGNS GENERATION 

 

3.1.     INTRODUCTION 

After reviewing the literature related to the thesis goal, it appears that order promising 

can be an important issue contributing to industry success. The order-promising process 

must be based upon actual constraints (such as available raw materials and production 

capacity) that an industry faces for its production planning.  The divergent production and 

the uncertain nature of logs, with the consequent uncertainty in lumber production makes 

order promising difficult for a sawmill manager. To fulfill the promised order and meet 

related deadlines, advanced production planning may be required. A key part of sawmill 

production planning is the optimal scheduling of campaigns to satisfy customers’ lumber 

demands.  

A campaign is defined as a combination of log classes, a set of cutting patterns, 

together with a pricelist which contains the relative prices of the lumber and is used to 

choose the cutting patterns for each class of logs. As a result of simulating the behavior 

of the sawmill optimizers, the campaign definition results in certain proportional outputs 

for the set of lumber products that can be produced from this log class. The next three 

sections describe the generation of log classes, pricelist, cutting patterns, and campaigns.  

The generated campaign will be used for sawmill production planning in the next chapter. 

The fourth section describes how to generate more suitable campaigns to reduce 

computational time.  
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A key issue of campaign generation is the choice of the price-list used to generate the    

campaign.  In Sadaatayar (2012) and Sohrabi (2012), the price-lists were generated based 

on   heuristic ideas of trying to force the production of certain widths, thicknesses and/or 

lengths.  In   this chapter, we demonstrate for the first time, at a realistic scale of more 

than 40 products, that column generation procedures, based on the use of shadow prices 

of model constraints, can give superior results in campaign generation.  

3.2.     GENERATION OF LOG CLASSES 

A typical sawmill processes logs of many different dimensions. Logs are generated 

randomly using a program developed by MacDonald (2013). In her program, MacDonald 

considered three parameters for generating random logs: small end radius, large end 

radius, and length. The logs are modelled as truncated cones and no defects in log were 

considered. The program can deal with various specifications of logs. The following data 

are considered to generate logs for our simulation:  

        Saadatyar (2012) collected data for the small end radius of logs from Bowater 

Mersey Oakhill sawmill and found a satisfactory fit with a lognormal distribution. Thus, 

the small end radius is modeled as coming from a lognormal distribution. The mean and 

standard deviation of the underlying normal distribution were 1.20 and 0.32 respectively; 

A relation between the small and large end is established. It was assumed that the logs 

were uniformly tapered, and that the taper rate is uniformly distributed in between 0.05 

and 02 inches per feet of a log. Thus the large end radius for a log can be calculated as: 

the large end radius = small radius + uniform (5, 20)/100 (in/ft.)× length (ft.). 

Furthermore, using the Bowaters data, the probability of generating log lengths greater 

than 8ft. and less than 10ft. is 0.01; greater than 10ft. and less than 12ft. is 0.12; greater 
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than 12ft. and less than 14ft. is 0.23; greater than 14ft. and less than16ft. is 0.13; and 

greater than 16ft. and less than18ft. is 0.49. Based on random small-end radius, length 

and taper 100,000 logs were generated. Different classes were created by sorting these 

100,000 logs by length length. Log lengths less than 10ft. are considered class1;  random 

lengths greater than 10ft. and less than 18ft. are class2; lengths greater than 10ft and less 

than 12ft. are class3; lengths greater than 12ft. and less than or equals 14ft are class 4; 

lengths greater than 14ft. and less than or equals 16ft. are class 5; and lengths greater than 

16ft. and less than or equals 18ft. are class6. Log classes from 1 to 6 are used for pine and 

the log classes 1 and 2 are used for spruce.  

These eight classes were used to test the approach in this thesis. It is possible to 

generate many more classes by sorting according to diameter as well as length. This will 

be left for future research. It should be noted that most sawmills will have extensive scan 

information on their log inputs. In this case it is unnecessary to simulate logs. The 

scanned information can be used correctly. The only reason that simulated log classes 

were used for this basis was due to the lack of real data from sawmills. 

3.3.     GENERATION OF THE PRICELISTS 

A sawmill operation is controlled through the pricelist, a list that contains the relative 

prices of each lumber piece type. The pricelist plays a vital role in selecting cutting 

patterns. Typically, the sawmill is automated with various scanners and computers that 

decide which cutting pattern to use. The pattern chosen for an individual log is that which 

maximizes the value of the lumber produced where the price of each individual lumber 

product is given in the price list. 
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Saadatyar (2012) generated 20 different pricelists. Pricelist 1 was developed using actual 

lumber prices collected from http://www.acehardware.net/estimate/ in his research. The 

prices of products that are absent on that website were generated by developing a fit 

function using the “least squares” method.  Pricelist 2 was generated by considering all 

types of lumber to have the same unit price. . Pricelist 3 created a function which 

generated unit price by emphasizing width; pricelist 4 considered used a function for unit 

price by emphasizing thickness; pricelist5 used a function for unit price, emphasizing 

length; and pricelists 6 to 20 repeated the emphasis on width, thickness and length by 

multiplying the unit price by 20 (assumed) for all generated products. Pricelist 6-9 

generated giving emphasis on width, 10-15 on thickness and 15-20 on length.  The details 

of these pricelists are given in Saadatyar (2012).  

In section 3.6, we describe how more price list can be generated using the shadow 

prices of the LP model and these then used to generate more suitable campaigns. 

3.4.     GENERATION OF ALL POSSIBLE CUTTING PATTERNS 

        A new algorithm was developed by Sohrabi (2012) and Saadatyar (2012) by 

considering in advance the capability of a softwood sawmill to produce many 

combinations of patterns for a log of a particular diameter. MacDonald (2013) has 

improved their algorithm and documented the resulting Python code.  The details can be 

found in Chapter 3 of Saadatyar’s (2012) MASc thesis, but a brief description is provided 

here. Patterns are generated in two or three steps of cutting (main, first, and second cut). 

Fig. 3.1 shows the schematic diagram of generation of all possible cutting patterns.      

http://www.acehardware.net/estimate/
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Figure 3.1: Schematic diagram of cutting pattern generation 

 

        The thickness of the main cut is determined by one standard thickness of lumber, 

and the maximum total width is determined by multiplying the standard thickness by a 

factor. All possible combinations of patterns are generated from the standard widths at 

that thickness of lumber, using kerf (width of the saw) and allowance (difference between 

“target” and “actual”, within each dimension of the lumber). After the diameter of the 

main cut is determined, the largest available uncut portion remaining within that diameter 

is cut in the next step.  The largest remaining uncut portion is sectioned into all possible 

combinations of standard-sized lumber using an algorithm similar to that for the main cut 

in the 1
st
 cut. If any available area remains, that is cut using the similar algorithm in 2

nd
 

cut. Details of the process are given in the thesis by Saadatyar (2012) and Sohrabi (2012), 

and in MacDonald et al. (2013). Typically the algorithm produces 6000+ candidate 

sawing patterns. Not all patterns can be applied to a given log.  For the subset of patterns 

which can be used, when that pattern is applied to the given log, the diameter, taper and 
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length of the log are used to to calculate the lengths of the pieces that will be produced, 

given the wane allowances for the lumber.  

3.5.     GENERATION OF CAMPAIGNS 

After generating the log classes, pricelist and cutting patterns, the next step is to 

generate campaigns. Each log in a sawmill is processed by a cutting pattern, the best of 

which, in terms of value output, is chosen by a pricelist. The campaign throughput is the 

cumulative throughput of lumber from a log class that includes the number of lumber 

pieces produced of each type, volume throughput in terms of percentage, and total lumber 

value.  

MacDonald’s updated campaign generation model, an extension of that developed by 

Sohrabi (2012) and Saadatyar (2012), can be described in the following steps: 

Step 0:  Setup input data files: The setup input data file contains all of the nominal values 

of the lumber to be produced, i.e., width (in), thickness (in), length (ft). 

Step 1:  Create the price lists: Use the pricelist that is described in section 3.3. 

Step 2:  Create the patterns: The generation of cutting patterns is described in section 3.4. 

Step 3:  Create the logs: The generation of logs is described in section 3.2. 

Step 4:  Find the best cutting option for each log: The best cutting option is chosen based 

on the value of produced lumber based on the pricelist. 

Step 5:  Generate the campaign: The generated campaign and relevant statistics, such as 

nominal lumber dimension, volume throughput, and number of logs processed, are stored 

in an Excel spreadsheet. Fig. 3.2 shows the campaign generation flow steps.  

 

http://industrialengineering.dal.ca/Faculty%20and%20Staff/Corinne_MacDonald.php
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3.6.     NEW CAMPAIGN GENERATION 

At this point in our research, we are interested in reducing the solution time of 

Saadatyar’s (2012) campaign scheduling model. This is because we want to develop an 

order-promising and production-planning model for 52 weeks instead of a 13-week 

model. In the literature, Maness and Norton (2002) demonstrated that a shadow price-

generated cutting pattern introduced new columns into their master LP model and better 

met the market demand. A shadow price-driven cutting pattern can be more responsive to 

market demand than any other type of price. The shadow prices are generated after 

solving an LP model and represent the amount of additional value added to the objective 

value per unit variation of appropriate constraints. Maness and Norton’s (2002) 

investigation drives us to generate a more suitable campaign by generating new pricelists 

using a shadow price technique that will introduce new columns in the campaign 

scheduling model and allow us to find a faster solution for the same market demand. 

Saadatyar’s (2012) 13 weeks campaign schedule model is used to generate the shadow 

Generate all Possible 

Cutting Patterns 
Generate Pricelist Generate Logs 

Find Cutting Options 

Generate Campaign 

 

Figure 3.2: Campaign generation flow diagram (derived from MacDonald  

                   et al.’s (2013)  developed program) 
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price of all products in this thesis. Fig. 3.3 and Fig 3.4  describe the  mathematical model  

of Saadatyar (2012).   

Sets 

      Set of product types (   is the index to the chip product) 

      Set of product species  

     Set of campaigns  

      Set of time periods  

      Set of classes  

    Set of campaign class combinations  

     Set of market levels  

Parameters  

    
                  Product selling price ($/ft

3
) 

    
                  Amount of product that can be sold       

                 Inventory holding cost ($) 

                  Output percentage from each campaign  

run (percentage)  

             The log volume input rate (ft
3
 per period) 

    
                The minimum allowable inventory (   ) 

    
                The maximum allowable sales  (   ) 

    
                The minimum allowable sales  (   ) 

        Cost of the logs ($/tonne) 

        Campaign setup time (week) 

         Class setup time (week) 

   Conversion factor  from volume to log  
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weight (tonne/     

   Penalty cost for violating minimum inventory  

constraint ($/   ) 

ICAP  The maximum Sawmill storage (   ) 

 

Variables 

    
                  Amount of product sold (   ) 

                  Inventory of product (   ) 

                 Violation of the inventory balance  

constraints (   ) 

            Campaign run time (week) 

                 Production (   ) 

                       Amount of chips produce from lumber  

inventory (   ) 

             Binary variable for campaign (0 if campaign k  

is  run in t; 1 otherwise) 

             Binary variable for class (0 if class c is run in t;  

1 otherwise) 

 

Figure 3.3: Model MIP formulation: Sets, parameters and variables (Saadatyar, 2012) 
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          3.18 

Figure 3.4: Model MIP formulation: Objective and constraints (Saadatyar, 2012) 

 

The objective function of Saadatyar’s (2012) model shown in Equation 3.1 

maximizes the total revenue, which includes the total revenue from selling products at 

different market level prices minus the product’s holding cost, minus the minimum 

inventory violation cost, and minus the log costs for all periods. 

Constraint 3.2 describes the inventory balance equations for all dimensioned lumbers. 

The left side of the equation is the current inventory, and the right side of the equation is 

the previous inventory, plus current production, minus current sales, and minus the 

converted amount of chips from the lumber inventory. 

Constraint 3.3 is for the chips inventory balance equation. The current chip inventory is 

equal to the previous chip inventory, plus the current period chip production, minus chip 

sales, and plus the sum of chips converted from the different lumber inventories. 

Constraint 3.4 represents the total production amount. The total production is the 

campaign run-time, percentage throughput of each product from that campaign, and the 

log input rate of that campaign. 

Constraint 3.5 indicates that the sum of the campaign run-time, campaign setup time, and 

class setup time is less than or equal to 1 week. 

Constraint 3.6 limits the upper and lower bounds of sales. 

Constraint 3.7 sets the lower bound of the inventory level. There is a penalty cost if the 

inventory goes below the lower bound. 

Constraint 3.8 limits the sales to market level.  

Constraint 3.9 states that there is a setup time before running a campaign. 
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Constraint 3.10 shows that all campaigns in a class will run first before changing the 

class. 

The total inventories are limited by constraint 3.11. The initial inventory and the final 

inventory are the same, as shown in constraint 3.12.  Constraint 3.12 ensures the model’s 

activity.  

Constraint 3.13 ensures that before setting a new class, all campaigns of that class 

complete the processing. Constraint 3.14 ensures that at least campaigns from one of the 

classes of logs will run. Constraint 3.15 sets the lower bound of the campaign run-time. A 

campaign run-time must be greater than or equal to the campaign setup time. Constraint 

3.16 sets the lower bound of the class run-time. The run-time of a class must be greater 

than or equal to the class setup time. Constraint 3.17 is for the non-negativity of the 

variables, and constraint 3.18 shows that each campaign run-time is less than a period 

(week). 

For the purpose of this thesis Saadatyar’s (2012) campaign scheduling MIP model 

has been simplified to 41 different dimensioned lumber products using for two different 

log species (spruce and pine), 8 different log classes, 20 price list and 160 campaigns.  A 

list of these lumber products is shown in Table 4.1. The model was formulated for 13 

weeks and solved using the  Gurobi 5.5 solver. The solution of the model is as follows: 

Best objective value:  $ 9.43×     

Solution time: 12758 sec  

MIP gap: 1.96% 

The obtained solution is 1.96% close to best potential solution for  MIP. The shadow 

price of the product can only be found after finding the solution of a linear programming  
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Figure 3.5: Shadow price generated from 160 campaigns for period 1 

 

model. Shadow prices have no meaning for an MIP model,   In our case, after solving 

approximately the MIP model, we fixed the integer value and solved the model as a linear  

programming model. The shadow prices of the product were taken from the inventory 

balance constraints 3.2 and 3.3.  

The constraints 3.2 produced shadow price for 40 different dimensioned lumber 

and the constraints 3.3 produced the shadow price of the chips.  Each period of solution 

produced a set of shadow prices for that period. Fig. 3.5 shows the generated shadow 

price of 41 different products for period 1. Thus, the 13-period solution produced 13 sets 

of new prices. These 13 sets of new lumber prices were added to the existing 20 sets of 

prices (used to generate 160 campaign from 8 log classes ).  
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Figure 3.6: Shadow price generated from 238 campaigns for period 1 

 

In  MacDonald’s campaign generation module, 20 set of pricelists are replaced by 

33 set of pricelists and produced new campaigns. Using these 33 pricelists, the module 

produced 238 different campaigns for 8 classes of logs. The campaign scheduling model 

was solved again using 238 different campaigns. The solution findings are below using 

Gurobi 5.5 solver: 

Best objective value:  $ 9.26×     

Solution time: 9187 sec 

MIP gap: 1.96% 

Note that the solution time has decreased, even though we now have many more 

campaigns. We then repeated the same procedure to find a new set of pricelists. From the 

new solution run, we obtained 13 more pricelists, one of which is shown in Fig. 3.6. 
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Now, these 13 sets of pricelists are added with the previous 33 set of pricelists. This total 

of 46 different pricelists from 8 different classes of logs produces 366 different 

campaigns. The Gurobi 5.5 solver found the following solution after solving  the 13-

period production planning problem.  

The solution findings are below: 

Best Objective value: $ 9.43×     

Solution time: 7684 sec 

MIP Gap: 1.95% 

3.7.     CONCLUSIONS 

Campaign generation techniques were described in this chapter, along with how the 

number of campaigns affects the solution time. Generating a new campaign based on the 

shadow price introduces new columns in the campaign scheduling model in a way similar 

to that Maness and Norton (2002).  By providing more and better options to solve the 

schedule campaign and meet the market demands, this also reduces computational time. 

The solution shows that a higher number of campaigns results in a shorter computational 

time. It was demonstrated that increasing the number of campaigns from 180 to 366 

reduces the solution time from to 12,758sec to 7,684sec. The shadow price generation 

code written in python 2.7 for Gurobi solver is given in Appendix A. The mathematical 

model of order promising and production using 366 campaigns to solve the problem is 

shown in the next chapter. Additional work could have been done in determining how 

many times the shadow price procedure should be run.  This will be left for future 

research. 
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CHAPTER 4 

MATHEMATICAL MODEL 

 

4.1.          INTRODUCTION 

Order promising and delivering the promised order on time are important issues in the 

success of any manufacturer. Moreover, the order promising process must be based upon 

actual constraints (such as raw materials and capacity) that an industry faces for its 

production planning.  

In the case of the lumber industry, the problem is greatly complicated by the 

divergent nature of sawmill production where a given production campaign will produce 

many different products as well as the additional problem due to the uncertain nature of 

logs and consequent uncertainty in lumber production.  In this thesis we focus on the 

issues of divergent production and demand and price and uncertainty. The uncertainty in 

lumber yields and production can be dealt with via similar methods to those we will 

discuss. 

Capacity constraints have been the focus of numerous studies in the literature 

(Raaymakers and Fransoo, 2000a; Ivanescu et al., 2002). Order promising without 

considering production capacity usually results in dissatisfied customers. This thesis 

considered the sawmill capacity constraints and divergent production in the process of 

promising an order. The problem description and the model formulation are described in 

the next two sections, and section 4.4 provides  relevant data used in Chapter 5 for 

solving the mathematical model. 
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4.2.     METHODOLOGY 

The objective of this work is to maximize the revenue through order promising that 

takes into account the available resources and ensures that the resources are used 

optimally. In our study, we consider an example sawmill with an output capacity of 80 

million board feet per year. The mill processes two different species (i.e., spruce, pine) of 

logs and produces 41 different products from each species, lumber of different 

dimensions, as well as chips. For simplicity we consider only a single lumber grade 

although in reality there will be several different quality grades. The produced lumber 

and chips are assumed to be sold on the market under two different situations. The first is 

to that of corporate customers with a large volume of demand and known, committed 

delivery contracts. The revenues from this contract demand are known. The second 

situation involves spot demand, where the mill experiences potential orders each week 

with delivery lead times of 0, 1, 2, 3,  … L weeks and a price for delivery at that time for 

each product.  In the work here we assume that the prices are higher for short lead times 

but in later work this assumption can be replaced.  

A static MIP model has been formulated for order promising and production planning 

for the sawmill in this chapter. A summary of the input and output flow of the model is 

shown in Fig.4.1. The solution model is formulated in two steps. In the first step, all 

campaigns are generated based on pricelists, cutting patterns, and log classes. 

Descriptions for these have been given in Chapter 3. In the second step, the integrated 

order promising and campaign scheduling model are developed that include all of the 

generated campaigns, available inventory, inventory holding cost, promised demands and 

log price. 
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In the campaign scheduling model, two types of setup time are considered: campaign 

setup and class setup time. The mathematical model formulated in the next section is 

based on the following assumptions, all of which can be altered. 

 A period is considered, as one week  (8 hours a day, 5 days a week) 

 The model is formulated for 52 periods. The operation hours for every period are 

same. 

 No down-time is considered. 

 Campaign outputs are based on simple log models (perfect truncated cones) and 

all products are the same grade. 

 

All Campaigns Previous Inventory 

Inventory Holding Cost 

Demands: Fixed and 

Variable 

Campaign/Class Setup 

Time 

Product Price based on 

Demand Types 
Log Classes 

Maximize Revenue: 

Order Promising and 

Production Planning 

Promised Order 

 & Sales 

Current Inventory 

Campaign Schedule 

 

 

Figure 4.1: Model input and output diagram 
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4.3.     MODEL FORMULATION 

An MIP model is formulated by extending Saadatyar’s (2012) model to solve the 

problem described in section 4.2. The output of the model maximizes the revenue 

through order promising and also creates a production plan through campaign scheduling 

to satisfy the promised orders on time. Fig.4.2 shows the Sets, Parameters and Variables 

of the model and Fig4.3 shows the model’s objective and constraints. The GNU linear 

programing kit (GLPK) formulation for this model is found in Appendix B. The outputs 

and demands are in units of cubic ft. nominal . One can divide by 12 to get board ft. 

nominal.   

Sets 

     Set of products (   is the index to the chip product) 

     Set of species 

    Set of campaigns 

    Set of periods 

    Set of classes 

   Set of all (k, c) where k is a campaign using log class c 

    Set of potential orders lead time 

 

Parameters     

                 Inventory holding cost ($/ft
3
) 

    
              Contract demands over the period (ft

3
) 

    
                  Potential orders to be delivered in   weeks (ft

3
) 

    
              Product price for contract demands ($/ft

3
) 

    
                  Product price for   week advanced submitted  

demands ($/ft
3
) 
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         Log cost ($/tonne) 

         Campaign setup time as a fraction of one  

period (week) 

         Class setup time as a function of one period (week) 

            Log volume input rate (ft
3
 per period  t) 

               Initial inventory (ft
3
) 

             Initial Backorder (ft
3
) 

                 Output of each campaign (lumber volume/log volume) 

                Initial inventory product I, species j (ft
3
) 

        Inventory holding limit (ft
3
) 

   Log volume to weight conversion factor (tonne/     

   Backorder penalty cost ($/ft
3
) 

   Number of products 

Variables 

                  Inventory (ft
3
) 

            Campaign run time (week) 

                 Production of lumbers (ft
3
) 

                    Production of chips form lumber inventory (ft
3
) 

    
              Contract promised order (ft

3
) 

    
                  Order promised to be delivered in   weeks (ft

3
) 

                    Total Sales on promised order (ft
3
) 

                 Backorder (ft
3
) 
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             Binary variable for campaign (0 if campaign k  

is  run in t; 1 otherwise) 

             Binary variable for class (0 if class c is run in t;  

1 otherwise) 

 

Figure 4.2: Model MIP formulation: Sets, parameters and variables 
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Figure 4.3: Model MIP formulation: Objective and constraints 

 

 

The objective function (Equation 4.1) maximizes the total revenue over the 

planning horizon  and contains four terms. The 1
st
 term sums all revenues generated from 

selling the products. The 2
nd

 term is the sum of all inventories’ holding costs. The 3
rd
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term is the sum of all backorder costs and the 4
th

 term is the sum of log costs, which is 

calculated by the log price per unit volume, multiplied by the total volume of logs 

consumed.  

Constraint 4.2 describes the total production of each product in each period. The 

right hand sums over all campaigns k. The     is the time (fraction of a week) that 

campaign k runs. The     is the input feed rate (tonnes per week) for campaign k in 

period t) and the      is the output of product i, species j per tonne of input of campaign 

k.  

Inventory balance constraints are shown in Constraints 4.3 and 4.4. The left-hand 

side of the inventory balanced constraint consists of current inventory and back orders. 

Constraint 4.3 is for the entire lumber inventory, meaning for products numbered 1 to 40. 

The right-hand side of Constraint 4.3 shows previous inventory, previous backlog, 

current production, current sales, and chips produced while processing logs. The back 

order is deducted from the both of the sides so that the constraints hold for any positive 

value of the inventory and back order. That means that neither inventory nor backorder 

will ever be negative. 

Constraint 4.4 is for the inventory balance constraint for chips. The left hand side 

of the constraint is the current inventories and backorder of the chips. The right hand side 

contains previous period inventories, backorders, current production, sales and the chips 

produced while making other products. 

The unit of production time is a week. The total operation hours a week is 40 

hours assumed to be same for every period. Constraint 4.5 ensures the total run-time and 

set-up time of a campaign and that classes of log should not exceed one week. 
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Constraint 4.6 shows that the amount promised to contract demand each period is 

equal to the contract demand. 

Constraints 4.7 states that promised orders for delivery within any lead time 

should be less than or equal to the demand (known or forecasted) for that product and 

order lead time.  

Constraint 4.8  states that total actual deliveries to sales in a period is the sum 

over l of the amounts promised l periods ago with a lead time of l. 

Constraints 4.9 and 4.10 ensure that a campaign cannot run unless it has incurred 

a setup and that if run, it must be run for a time that is at least as long as setup. This lower 

limit can be increased if desired.  

Constraint 4.11 requires that the log class c to which campaign k belongs must be 

set up if campaign k is setup. 

Constraint 4.12 requires that the total campaign run-time in a class should be 

greater than or equal to the set-up time of the class. 

Constraint 4.13 states that class set-up time will not be considered as long as a 

campaign of a class is running.  

Constraint 4.14 ensures that at least one class of log is running. Constraint 4.15 

shows that the maximum amount of inventory is limited by an inventory limit. 

Constraint 4.16, 4.17 and 4.18 are for the initial back order, initial chip inventory, 

and initial lumber inventory, respectively. 

Constraint 4.19 is a somewhat artificial constraint that requires total inventory in 

storage at the end of the horizon is equal to that at the beginning. This is an attempt at 
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eliminating “free production” for testing purposes. In a real application, more realistic 

ending inventory constraints can be established for each product.   

Constraints 4.20 and 4.21 are the limit of the number of campaigns and log 

classes per period. Constraints 4.22 ensure that campaign run time should not be more 

than a period. Constraints 4.23 are for non-negativity for the variables. 

The model developed in this study is a combination of order promising and 

production planning for sawmills, which is an extension of Saadatyar’s (2012) production 

planning model. The model attempts to maximize revenue through order acceptance and 

campaign scheduling. A penalty cost is used for backorder.  

The constraints 4.3 and 4.4 describe the inventory balance equations for the 

lumber products and the chips, respectively. The backorders are deducted from both sides 

of the two constraints (i.e., 4.3 and 4.4) so that the inventories and backorders never take 

negative values. Constraints 4.6, 4.7 and 4.8 are added to Saadatyar’s (2012) model to 

include order promising options. Constraint 4.5 ensures that the promised orders for the 

contract demand are equal to the contract demand.  Constraint 4.6 represents that the 

promised orders for any lead time for a product is less than or equal to the demand of that 

product of that lead time. Constraint 4.8 ensures that the current sales should equal to the 

sum of promised order (i.e., contract and spot-demands) for the current period. The 

overall model promises order considering the availability of the resources (raw materials 

and production facilities) and ensures the best use of them. 
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4.4.     DATA 

The data related to campaign scheduling in the model such as sawmill capacity, 

species, log classes, set-up time, log cost, lumber price, etc., are taken from Saadatyar’s 

(2012) MASc thesis. The solution technique is described in the next chapter. 

Capacity: 80 M fbm (80,000,000) board feet of lumber are considered as the annual 

capacity of the modeled sawmill. 

Weekly inventory holding cost: The inventory holding cost is the sum of fixed and 

variable costs. It is assumed that the fixed cost is $1/ year and the variable cost is 25% of 

contract/fixed demand product. This can be calculated as  

           
       

 

  
  

 

  
             

The inventory holding cost is given in Table 4.1 for each product. 

 

Table 4.1: Product data (Saadatyar, 2012) 

 

Pro- 
duct 

Dimensions 

(WxTxL) 

(in*in*ft) 

Average 
Demand

         

Unit 
Price 

($/   ) 

Holding 

Cost 

($/   ) 
/ week 

Product 

Dimensions 

(WxTxL) 

(in*in*ft) 

Average 
Demand 

         

Unit 
Price 

($/   ) 

Holding 

Cost 

($/   ) 
/week 

1 1x3x8 3449.388 4.422433 0.040492 21 2x6x8 3492.103 5.74146 0.046834 

2 1x3x10 2073.339 4.519666 0.04096 22 2x6x10 3322.807 5.838193 0.047299 

3 1x3x12 799.2673 4.616899 0.041427 23 2x6x12 3927.914 5.934925 0.047764 

4 1x3x14 399.5905 4.714132 0.041895 24 2x6x14 4290.089 6.031658 0.048229 

5 1x3x16 235.4637 4.811365 0.042362 25 2x6x16 4598.379 6.12839 0.048694 

6 1x4x8 6046.227 4.58502 0.041274 26 2x8x8 1212.677 5.99479 0.048052 

7 1x4x10 3616.337 4.682198 0.041741 27 2x8x10 1413.427 6.0913 0.048516 

8 1x4x12 2400.034 4.779375 0.042209 28 2x8x12 1887.214 6.18781 0.04898 

9 1x4x14 1232.175 4.876553 0.042676 29 2x8x14 2096.009 6.284321 0.049444 

10 1x4x16 955.7446 4.97373 0.043143 30 2x8x16 2415.516 6.380831 0.049908 

11 2x3x8 6879.644 5.361465 0.045007 31 2x10x8 731.84 6.24812 0.04927 

12 2x3x10 2873.813 5.458531 0.045474 32 2x10x10 793.945 6.344408 0.049733 

13 2x3x12 1760.281 5.555598 0.04594 33 2x10x12 947.0752 6.440696 0.050196 
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14 2x3x14 859.7346 5.652664 0.046407 34 2x10x14 890.4678 6.536983 0.050659 

15 2x3x16 811.5066 5.74973 0.046874 35 2x10x16 966.5798 6.633271 0.051121 

16 2x4x8 10924.27 5.48813 0.045616 36 2x12x8 367.9265 6.50145 0.050488 

17 2x4x10 7921.274 5.585085 0.046082 37 2x12x10 447.0633 6.597516 0.05095 

18 2x4x12 4771.97 5.68204 0.046548 38 2x12x12 601.3857 6.693581 0.051411 

19 2x4x14 2605.536 5.778995 0.047014 39 2x12x14 595.679 6.789646 0.051873 

20 2x4x16 2553.478 5.87595 0.047481 40 2x12x16 697.56 6.885711 0.052335 

 

     The contract/fixed demand is 30% of the average weekly demand shown in Table 4.1. 

Demands to be delivered within one, two, or three, weeks is 25% of the average weekly 

demand that is shown in Table 4.1 for each of the scenario. 

     In this example problem, we consider only orders promised for deliveries in the 

current week (l=0)  or with two or three weeks of lead time (l=2,3). Product price for 

contract demands is given in Table 4.1 as a price per unit volume. The product price for 

the 0, 2 and 3-weeks lead time demands are 1.3, 1.2 and 1.1 × price of fixed demand 

product respectively. These demand and prices are used for the initial 52 weeks model. 

The first week solution is generated based on above demand and price setting. The 

variation in product prices and demand are considered from 2-52 weeks. The 

consideration technique is described in the next chapter. 

     Campaign and classes: Two different species are considered in this simulation: spruce 

and pine. Spruce is classified into 6 different classes of logs. Pine logs are classified into 

2 different classes. 366 campaigns are considered from the combination of 46 pricelists 

and 8 different classes of logs.  

     Output of each campaign (    ): The output of each campaign is lumber of different 

dimensions and chips. Considering the total campaign log input volume as a unit, the 
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lumber produced for each product type is a fraction of the total volume. Chip production 

is calculated as sum over all of the fraction of the lumber volume produced.  

     Log cost:  The prices considered for the 6 different classes of spruce and 2 different 

classes of logs are given in the table 4.2. The price includes the harvesting, bucking and 

transportation cost per tonne of logs. 

Table 4.2: Log prices 

 

Species Spruce Pine 

Class 1 2 3 4 5 6 7 8 

Log Cost ($/tonne) 70 80 72 74 76 78 60 70 

 

     Campaign and class set-up time: The sawmill run-time is considered to be 8 hours per 

day, 5 days per week, and 40 hours per week. In the model in constraint 4.5, the total 40 

hours is considered as 1 1 week.  The class set-up time is considered to be higher than 

campaign set-up time which may involve no more that changing price lists. In the work 

we report and, class set-up time is 30 mins and campaign set-up time is 10 mins. 

     
  

     
 

 

   
      

     
  

     
 

 

  
      

     Initial Backorder: The initial backorder for all products is set to  zero. 

Initial Inventory: The initial inventory was calculated by multiplying a uniform random 

value between 0.5 and 1.5 to the weekly average demand. The initial inventory for pine 

was set to zero in this simulation. 

     Backorder penalty cost    : The back order penalty cost is $20 per (ft3). This is a high 

cost and should discourage backorder unless no other solution is possible. 
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     Inventory holding limit          : We set the sawmill inventory limits at a maximum 

of 4 weeks of its production capacity.  Since the annual production capacity of the 

sawmill is 80,000,000 board feet (fbm),  the weekly production capacity is: 

            
 

  
                

 

  
(

   

   
)  

                     

and 

                      

Log volume input rate       : The average yield of the campaigns obtained from the 

campaign-generation model is 52.91%. Thus, if we assume that the feed capability is, 

recognizing downtime and other interruptions, 20% higher than required for mill, the log 

volume input rate is: 

    
      

      
                                 

 

     The conversion factor     is used to calculate the total consumed-og price.  The unit 

of log cost is $/ton, and the unit of log-volume input is          . The density of 

softwood lumber in Nova Scotia as 0.856898029 ton/   is commonly used (Saadatyar, 

2012) 

             tonne/     

4.5.    SOLUTION TECHNIQUE 

The model is meant to be used in a rolling planning-horizon process. In a rolling 

planning horizon, the model is solved for a given time horizon.  The intention is that the 

planning horizon is long enough to give an estimate of the future value of present 
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production with the first period solution of each rolling planning-horizon meant to be 

implemented.  Once the uncertain information in the first period is realized, the starting 

state  and demand information at the beginning of the next period is updated and the 

model solved using the same time horizon going forward.  In the next chapter,  we 

describe an approach to simulating a 13 week rolling horizon approach that could be used 

for solving the order-promising and production-planning problem of a sawmill applied 

over 52 periods 

Demands and prices vary each week.  It is assumed that we know the current 

inventory information, and current accepted orders for each lead time, the potential orders 

in week 1 for each lead time l and the prices corresponding to those lead time orders.  We 

assume that we have a forecast of the orders that are likely to occur in each week for each 

possible lead time at that week and again assume that we have a price for such orders.  

Once the model is solved, the first week’s solution is considered to be implementable in 

terms of order acceptance and campaign schedule production to make the delivery on 

time.   In rolling forward, we start week two as if it were week one, again knowing 

inventory, accepted orders, orders available to be accepted this week and updated 

forecasts for orders for the subsequent weeks up to a horizon of the same length as in the 

first model.  

After solving the 2
nd

 planning horizon, the 1
st
 period solution of the 2

nd
 planning 

horizon solution is implemented. At this stage, two implemented final solutions are 

obtained: one is from the 1
st
 planning horizon solution, and the other is from the 2

nd
 

planning horizon.  These two implemented solutions are also considered in the next 

planning horizon. In the next planning horizon, prices and demands for the coming 13 
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periods are updated and the two already-implemented solutions are also considered. The 

initial inventory for the current planning horizon is the inventory on hand at the end of 

the latest implemented period. This process is continued until the end period of the 

problem.  In Chapter 5, we describe a simulation environment for testing this rolling 

planning approach. 

4.6.     CONCLUSIONS 

     This chapter described the research methodology of this thesis. An MIP model is 

formulated to solve the order promising and production planning issues in a sawmill.  

The data for the static model is also presented in this chapter. As order quantity and 

product price vary every week, a weekly optimal production schedule is required to 

resemble a real sawmill operation environment. In order to demonstrate the rolling 

planning horizon, we developed a dynamic solution technique using Gurobi 5.5 to solve 

the problem, where the demand and price are updated every week. The implementation 

and results of the solution techniques described in section 4.5 is shown in the next 

chapter. 
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CHAPTER 5 

USING AN EMBEDED SIMULATION TO DEMONSTRATE 

THE ROLLING PLANNING-HORIZON 

 

5.1. INTRODUCTION 

In this chapter, we describe the solution techniques that we introduce to simulate 

the rolling planning-horizon approach in Chapter 4.  A 52-week order promising and 

production- planning model is simulated as a rolling planning-horizon problem.  In such 

an approach, a deterministic model is solved over a planning horizon, treating the random 

data as known.  Only the first period of the horizon model is implemented. Once the 

random information for that period become known then the process is repeated with the 

planning horizon extended by one week. For the work presented here, the planning-

horizon is considered as 13 weeks.  Thus, to cover the 52 week period,  we need to 

perform 40 optimization runs ( weeks 1-13, 2-14, 3-15, …40-52).  To perform these as 

individual optimization runs would be a very time-consuming task since, as shown 

previously, each run takes approximately 1100 seconds. The task we consider here is how 

to efficiently carry out the 40 runs necessary to simulate how the rolling planning-horizon 

approaches to order promising and production scheduling would perform. The approach 

we use takes advantage of the Python Shell provided with GUROBI 5.5 . Using this shell, 

the entire series of 40 optimization runs can be performed as a single task.  

The models in this chapter were developed using the GUSEK environment (see 

Bettoni, 2013 ) for the GNU Linear Programming Kit ( see Makhorin, 2013).  The Gurobi 

Optimization  solver GUROBI 5.5 was used to solve the models ( see the website at 

Gurobi (2013) for information and documentation). 



58 

 

1st

Week

2nd 

Week

3rd 

Week

4th 

Week

5th 

Week

6th 

Week

7th 

Week

8th 

Week

9th 

Week

10th 

Week

11th 

Week

12th 

Week

13th 

Week

14th 

Week

15th 

Week

16th 

Week

...52nd

Week

2nd 

Week

3rd 

Week

4th 

Week

5th 

Week

6th 

Week

7th 

Week

8th 

Week

9th 

Week

10th 

Week

11th 

Week

12th 

Week

13th 

Week

14th 

Week

3rd 

Week

4th 

Week

5th 

Week

6th 

Week

7th 

Week

8th 

Week

9th 

Week

10th 

Week

11th 

Week

12th 

Week

13th 

Week

14th 

Week

15th 

Week

4th 

Week

5th 

Week

6th 

Week

7th 

Week

8th 

Week

9th 

Week

10th 

Week

11th 

Week

12th 

Week

13th 

Week

14th 

Week

15th 

Week

16th 

Week

Implemented 

period

Implemented 

period

Implemented 

period

 

Figure 5.1: Rolling planning-horizon solution technique 

 

First, the entire 52- week model is formulated in GMPL and read into the GUROBI 

5.5 solver. The 52-week model is reduced to a 13-week model by putting all variable 

upper and lower bound zeros for weeks 14 to 52, and eliminating all constraints for 

weeks 14 to 52.  Once the 1-to-13-week problem is solved, the 1
st
 week solution is 

implemented. 

In the second stage,  week 2 to 14, all of demands and prices are updated and all 

of the constraints of 14 weeks are activated. The end inventory constraint is relaxed from 

the 13
th

 period and set on 14
th

 period. The 2
nd

 week solution is implemented after solving 

the 2-14 week model. The process of updating solutions and moving forward to the next 

planning-horizon and continues throughout the 52 weeks. Fig. 5.1 indicates the solution 

technique for rolling horizon planning. 

5.2. COMPUTATIONAL FRAME WORK  

The mathematical model developed in Chapter 4 was coded using the GMPL modeling 

language of GLPK. In order to simulate the process of solving the model. using a rolling 

planning-horizon technique where variables, constraints right hand side and the objective 

function co-efficient value will be updated dynamically, we used the Python shell that 
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comes with the Gurobi 5.5 solver. We used the GUSEK IDE to process the .mod file for 

the model. This then produces a linear programming model in the form of a  *.lp file 

which can read by  Gurobi 5.5. The initial s model was formulated as a 52 weeks problem 

for a fixed orders and prices. Using the Python shell within Gurobi, this 52 week problem 

was processed as a series of rolling planning horizon solutions as follows ( the Python 

code to carry out this work can be found in appendix B): 

Step 1: Read the 52-week *.lp model into two different model objects (i.e., m and m1). 

Step 2: Reduce the 52-week model to a 13-week model. The model reduction is done in 

two stages. In the first stage, all variables from weeks 14 to 52 are eliminated by putting 

upper bound and lower bound variables to zero. The objective coefficients of those 

variables are also put at zero. In the second stage, all constraints from 14 to 52 weeks are 

relaxed based on the sense of the constraints. The three possible constraints senses, ‘≤’,  

‘≥’ and ‘=’, are relaxed in three different ways.  The RHS  value  of a constraint is 

replaced by a big number M using the following rules: 

Constraints sense RHS  value replaces by 

≤ +M 

≥ -M 

=  replaces by ≥ -M 

Step 3: Solve the problem after eliminating all variables and constraints from 14 to 52 

weeks.  

Step 4: The first period solutions from the 13-period problem are saved and we consider 

those values as an implemented solution.  The lower bound and upper bound of the 1
st
 

period variable values are set to the solution values. 
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Step 5: The next step for the rolling planning-horizon solution is to activate the next 

period’s (i.e., period 14) variables and constraints. As well, the end-inventory constraints 

of period 13 need to be relaxed as well as the market demand and prices updated. 

To activate the next period’s (i.e., 14
th

 period’s) variables and constraints, we refer to the 

initial 52-week model, read previously as ‘m1’. The 14
th

 period variables’ upper bound, 

lower bound, objective coefficient, constraints sense, and right-hand side values of model 

‘m’ are replaced by the 14
th

 period values of model ‘m1’. The end inventory condition of 

the 13
th

 period is relaxed using the step 2 and set as the 14
th

 period constraints. 

 

 

NO 

Read 52- Weeks Model 

Eliminate all variables and relax 

all constraints of every period 

except first 13- weeks 

Solve 13 -Weeks Model 

Activate next period variables and 

constraints; 

consider the changes in market 

demands and prices for the next 

13- weeks model 

Save the variables values of the 

first period solution from the 13- 

weeks model 

Stop  
YES 52 Weeks  

Model Solved? 

Figure 5.2: Solution control flow diagram 
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The market demand and prices  for the next 13 weeks are randomly generated updated for 

the 2- to 14-week model. Note that this is done to demonstrate the feasibility of our 

simulation process. More realistically, a forecasting model would be use to randomly 

generate anticipated markets and prices in a more formal way. The forecasting part of this 

process was not the subject of this thesis. 

Step 6: Solve the 2- to 14-week problem and repeat step 4, step 5, and step 6. The 

solution control flow diagram is shown in Figure 5.2. 

5.3. RESULTS 

The first 13-week model was solved considering static product prices and demands. 

The average weekly demands and the nominal price of each product (Table 4.1) are used 

to determine the product prices and demands.  The prices shown in Table 4.1 are used for 

the contract demand. The prices of products delivered within the current week, two, and 

three weeks after accepting an order were treated as  1.3, 1.2, and 1.1 times the nominal 

price, respectively. The sum of the average weekly demand, shown in Table 4.1, is the 

weekly production capacity of the sawmill.  

In order to test the ability of our process to cope with various random estimates of 

demand and price and to demonstrate the computational capability of her approach we 

carried out five different scenarios. 

Scenario1 considered just the single13 period problem and solved once after the  

product demands  were chosen randomly. The prices shown in table 4.1 were applied for 

the contract-demand and treated as constant. For the spot-demand, the nominal price is 
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multiplied by 1.3, 1.2, and 1.1 to deliver within the current week, two, and three weeks, 

respectively to determine the spot-demand product price.  

Scenarios 2, 3, 4, and 5 simulate the solution of a 52-week problem. The problems 

of those scenarios are solved for  the 40 13-week planning-horizon problems.The demand 

and prices are randomly varied every week after the first week implemented solution. 

Scenario 2 considered a ±10% price variation on the nominal price for spot-demand 

for weeks 2 to 52. Contract demand is 25% of capacity and spot-demand varies uniformly 

in between 15% and 35% of average weekly production (Table 4.1) for each lead time 

category. Scenario 2 has relatively small price variation and,on average, total demand 

less than capacity 

Scenario 3 considered a ± 20% price variation on the nominal price for spot-

demand for weeks 2 to 52. Contract demand is 30% of capacity and the three other spot-

demands vary uniformly in between 25 and 35% of average weekly production in each 

category. Scenario 3 has relatively large price variation and told demand on average 

greater than capacity 

Scenario 4 used a ±20% variation in product price for spot-demand for weeks 2 to 

52.. Contract demand is 25%, the current week spot-demand varies from 20 to 30%, and 

the two other spot-demand vary from 30 -35% of average weekly production in each 

category. Scenario 4 has a quite large total demand relative to capacity with a relatively 

small portion of that being contract demand 

In scenario 5, variation in product price is ±20%, contract demand is 25%, the 

current week spot-demand varies by 30-35% and the two other spot-demands vary by 35-

40% of average weekly production in each category. 
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5.3.1. Scenario 1 

The scenario 1 is generated by solving a 13-week order promising and production 

planning problem. The problem is solved in one step and does not consider the variation 

in product prices and demand for every week. The nominal prices of the product  shown 

in Table 4.1 are used for the contract-demand. The spot prices of products delivered 

within the current week, two, and three weeks after accepting an order are considered to 

be 1.3, 1.2, and 1.1 times the nominal price respectively. The values are fixed for every 

week. The product demand for each period is chosen randomly. The resulting model 

contains 10632 continuous and 4862 binary variables.  The following results are found by 

using the Gurobi 5.5 solver: 

Best objective value:  $1.08 ×     

Best bound: $1.11 ×     

The MIP gap for the 13-week solution was 2.67%, and the solution time was 

1197.31 seconds.  

Fig. 5.3 shows the 13-period solution for one product  (product 1, species 1) under 

the scenario 1.  It shows that the initial and final inventory is the same  as limited by 

constraint 4.19. There is no backorder in this 13-period solution. No chips are produced 

from the product 1 (species1) inventory. Table 5.1 shows the inventory, production, sales, 

backorder and the chips that are produced from the product 1 (species1) inventory of 

scenario1 for the 13 week solution.   
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Figure 5.3: Production, sales and inventory of product1 (species 1) 

 

The inventory-balance equation can be written as: Inventory (current period) = 

Inventory (previous period) + Production (current period) - Sales (current period) - 

ToChips (current period). This can be written as follows: 

                              5.1 

To verify,  using period 12 of scenario1- product1 (species1) 

Inventory (12) = Inventory (11) + Production (12)- Sales (12)- Back order (12) 

- ToChips (12) 

 = 1520.87+1782.22-782.78- 0.00-0.0 

 = 2520.31 

Table 5.1: Solution output for scenario1-product 1(species1) 

 

Period Production Sales Back order ToChips Ending 

Inventory 

0 0 0 0 0 4044.94 

1 377.66 1634.88 0 0 2787.73 

2 2105.38 1511.07 0 0 3382.03 
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3 1420.21 1864.19 0 0 2938.06 

4 634.38 1978.65 0 0 1593.78 

5 1312.51 1722.11 0 0 1184.19 

6 2475.11 1722.11 0 0 1937.19 

7 624.20 1392.17 0 0 1169.22 

8 679.42 782.78 0 0 1065.87 

9 1346.51 782.78 0 0 1629.60 

10 801.11 782.78 0 0 1647.94 

11 655.70 782.78 0 0 1520.87 

12 1782.22 782.78 0 0 2520.31 

13 2307.41 782.78 0 0 4044.94 

 

Table 5.2 below shows total sales in response to the contract and spot-demands 

for product 1 (species 1). There is no variation in product prices for any of the demand. 

The contract demand is satisfied 100%. The current week spot-demand is rejected by 

48% and each of the two other spot-demands is rejected by 100%. The total sales in the 

current period = Sales corresponding to the promised order for the contract demand + 

Sales corresponding to the promised order for the current period + Sales corresponding to 

the promised order 2 periods prior + Sales corresponding to the promised order 3 periods 

prior. This can be written as follows: 

         
    

      
      

  5.2 

 

As an other verification , period 4 sales from Table 5.2 is given below:  

Sales (4) = Contract demand (4) + Promised Order (4)+ Promised Order (2) 

+ Promised Order (1) 

 = 899.39+1079.27+0.00+0.00 

 = 1978.66 ft
3
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Table 5.2: Demand, promised order and sales for scenario1-product1(species1) 

 
Per

iod   
   

   
   

   
   

   
   

   
   

   
   

 
Total 

Sales 

1 4.42 743.13 743.13 5.75 891.75 891.75 5.31 966.07 0.00 4.86 1114.69 0.00 1634.88 

2 4.42 686.85 686.85 5.75 824.22 824.22 5.31 892.91 0.00 4.86 1030.28 0.00 1511.07 

3 4.42 847.36 847.36 5.75 1016.83 1016.83 5.31 1101.57 0.00 4.86 1271.04 0.00 1864.19 

4 4.42 899.39 899.39 5.75 1079.27 1079.27 5.31 1169.20 0.00 4.86 1349.08 0.00 1978.65 

5 4.42 782.78 782.78 5.75 939.33 939.33 5.31 1017.61 0.00 4.86 1174.16 0.00 1722.11 

6 4.42 782.78 782.78 5.75 939.33 939.33 5.31 1017.61 0.00 4.86 1174.16 0.00 1722.11 

7 4.42 782.78 782.78 5.75 939.33 609.40 5.31 1017.61 0.00 4.86 1174.16 0.00 1392.17 

8 4.42 782.78 782.78 5.75 939.33 0.00 5.31 1017.61 0.00 4.86 1174.16 0.00 782.78 

9 4.42 782.78 782.78 5.75 939.33 0.00 5.31 1017.61 0.00 4.86 1174.16 0.00 782.78 

10 4.42 782.78 782.78 5.75 939.33 0.00 5.31 1017.61 0.00 4.86 1174.16 0.00 782.78 

11 4.42 782.78 782.78 5.75 939.33 0.00 5.31 1017.61 0.00 4.86 1174.16 1174.16 782.78 

12 4.42 782.78 782.78 5.75 939.33 0.00 5.31 1017.61 1017.61 4.86 1174.16 1174.16 782.78 

13 4.42 782.78 782.78 5.75 939.33 0.00 5.31 1017.61 1017.61 4.86 1174.16 1174.16 782.78 

 

Notation used in Table 5.2, 5.4, 5.6, 5.9, and 511:  

   Product price for the contract demand; 

   Product price for the current week variable demand; 

   Product price to be delivered in 2 weeks; 

   Product price to be delivered in 3 weeks; 

   Contract demand; 

   Current week variable demand; 

   Product demand to be delivered in 2 weeks; 

   Product demand to be delivered in 3 weeks; 

   Promised order for contract demand; 

   Promised order for current week delivery; 

   Promised order to be delivered in 2 weeks; 

   Promised order to be delivered in 3 weeks. 
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The nature of this solution for product one was to accept all the spot-demand until no 

more can be used  and still meet the ending inventory constraints. Note that it looks as if 

two week and three week ahead orders will be promised in weeks 12 and 13 but note that 

these will never be processed. 

5.3.2. Scenario 2 

In Scenario 2, a 52-week order-promising and production-planning model is simulated 

using the rolling planning-horizon technique. The problem is solved as 40 individual 

planning-horizon problem and 40 implemented solutions are obtained. The variation of 

product price of ±10% of the nominal price (price considered in scenario 1) for all three 

spot-demands is considered for every week of each planning horizon. The price for the 

contract demand is considered the same as the nominal price for each week.  Contract 

demands are 25% of the weekly average production and spot-demands vary in between 

15 and 35% of average weekly production in each category. The Gurobi 5.5 calculation 

produces the following solution using the developed solution algorithm: 

Best objective value:  $2.20×     

Best bound: $2.23×     

The solution time is 15.59 hours. Fig. 5.4 shows the solution output for the 52 weeks 

solution.  

The 52-week solution shows that the end inventory, limited by constraint 4.19, is 

equal to the initial inventory of 4,044.94 (   ).  As we are assuming that chips are sold at 

a lower price than lumber, no chips were produced from the lumber inventory as long as 

the maximum inventory is within the limit inventory. The constraints for the maximum 

inventory are set at equation 4.15. 
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Figure 5.4: Production, sales and inventory of scenario2-product1 (species 1)  

 

Table 5.3 shows the output of the 40 implemented periods of scenario2-product1 (species 

1). The result satisfied the inventory balance equation 5.1 of every implemented period.  

Again, verifying, taking period 12 as an example. 

Inventory (12) = Inventory (11) + Production (12)- Sales (12)- Back order (12) 

- ToChips (12) 

 = 232.73+1552.44-1785.17- 0.00-0.0 

 = 0 

Table 5.3: Solution output of scenario2- product 1(Species 1) 

 

Period Production Sales Back order ToChips Ending 

Inventory 

0 0.00 0.00 0 0 4044.94 

1 1671.04 1634.88 0 0 4081.11 

2 465.02 1981.71 0 0 2564.41 

3 2086.26 1954.05 0 0 2696.63 
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4 1436.63 2899.99 0 0 1233.27 

5 1469.91 1503.11 0 0 1200.07 

6 1525.53 1869.40 0 0 856.21 

7 527.76 782.80 0 0 601.17 

8 1843.20 1929.73 0 0 514.63 

9 759.64 1274.27 0 0 0.00 

10 3000.24 1991.48 0 0 1008.75 

11 1321.49 2097.51 0 0 232.73 

12 1552.44 1785.17 0 0 0.00 

13 3688.85 1900.69 0 0 1788.16 

14 151.64 1563.72 0 0 376.08 

15 1054.02 1430.10 0 0 0.00 

16 3300.01 1518.03 0 0 1781.98 

17 1471.56 1896.61 0 0 1356.93 

18 1490.68 998.68 0 0 1848.93 

19 163.89 1629.31 0 0 383.51 

20 409.58 793.09 0 0 0.00 

21 1701.32 782.80 0 0 918.52 

22 2167.64 782.80 0 0 2303.36 

23 771.38 1515.38 0 0 1559.37 

24 2674.35 1577.54 0 0 2656.18 

25 955.29 2645.54 0 0 965.94 

26 996.45 1747.03 0 0 215.36 

27 913.75 1129.11 0 0 0.00 

28 3597.62 2009.78 0 0 1587.85 

29 762.27 1575.40 0 0 774.71 

30 2375.97 1809.57 0 0 1341.11 

31 1257.99 1857.54 0 0 741.56 

32 1370.83 1590.79 0 0 521.60 

33 2292.65 1359.35 0 0 1454.89 

34 1249.75 782.80 0 0 1921.84 

35 829.60 1427.27 0 0 1324.17 

36 1267.07 1744.35 0 0 846.89 

37 2081.53 1407.16 0 0 1521.26 

38 0.00 1424.46 0 0 96.81 

39 2778.36 2039.96 0 0 835.21 

40 868.25 1703.46 0 0 0.00 

 

 Table 5.4 shows that the total sales are the sum of orders promised for spot and contract 

demands for the product 1 (species 1).  As we consider higher prices for earlier delivery, 
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most of the spot order is promised for the next week’s delivery. If the next week’s 

demand amount is less than the product availability, then it is promised for a 2-week 

delivery, and so on. The contract demand is satisfied by 100%. The current week spot-

demand is rejected in 32.49% of cases, the two weeks advanced demand is rejected by 

82.59% and the three weeks advanced demand is rejected by 100%.     

As an example,  period 12 sales from Table 5.4 is given below:  

Sales (12) = Contract demand (12) + Promised Order (12)+ Promised Order (10) 

+ Promised Order (9) 

 = 782.80+0.00+1002.37+0.00 

 = 1785.17 

 

This was   a case where the spot price in period 12 is low and the spot 2 period lead time 

price in period 10 was higher. 

 

Table 5.4: Demand, order promised and sales for scenario 2- product 1(species1) 

 
Per

iod   
   

   
   

   
   

   
   

   
   

   
   

 
Total 

Sales 

1 4.42 743.13 743.13 5.75 891.75 891.75 5.31 924.68 100.42 4.86 747.47 0.00 1634.88 

2 4.42 782.80 782.80 5.78 1198.91 1198.91 5.68 924.68 924.68 4.93 747.47 0.00 1981.71 

3 4.42 782.80 782.80 5.43 1070.83 1070.83 5.23 1022.22 0.00 4.74 858.10 0.00 1954.05 

4 4.42 782.80 782.80 5.66 1192.51 1192.51 5.16 1153.68 0.00 4.82 972.00 0.00 2899.99 

5 4.42 782.80 782.80 5.36 1086.42 720.31 4.99 912.02 0.00 5.03 1062.74 0.00 1503.11 

6 4.42 782.80 782.80 6.17 1086.60 1086.60 5.52 1146.93 1,146.93 4.63 1239.59 0.00 1869.40 

7 4.42 782.80 782.80 5.39 597.26 0.00 5.14 712.08 0.00 4.92 1288.40 0.00 782.80 

8 4.42 782.80 782.80 5.38 894.01 0.00 5.30 839.40 0.00 4.60 996.10 0.00 1929.73 

9 4.42 782.80 782.80 5.80 1267.45 491.47 5.34 1057.31 309.49 4.71 1348.37 0.00 1274.27 

10 4.42 782.80 782.80 6.19 1208.68 1208.68 5.64 1002.37 1,002.37 4.59 768.39 0.00 1991.48 

11 4.42 782.80 782.80 6.18 1005.22 1005.22 5.56 624.64 0.00 4.78 1099.74 0.00 2097.51 

12 4.42 782.80 782.80 5.40 625.60 0.00 5.02 1245.78 0.00 5.30 878.96 0.00 1785.17 

13 4.42 782.80 782.80 6.19 1117.89 1117.89 5.29 785.55 0.00 5.12 1046.79 0.00 1900.69 

14 4.42 782.80 782.80 5.74 780.92 780.92 5.23 925.82 0.00 4.56 1075.73 0.00 1563.72 

15 4.42 782.80 782.80 5.99 742.19 647.30 5.22 1204.18 0.00 4.50 1015.45 0.00 1430.10 

16 4.42 782.80 782.80 5.59 735.23 735.23 4.94 994.35 0.00 4.73 1251.13 0.00 1518.03 

17 4.42 782.80 782.80 6.08 1113.81 1113.81 5.22 885.08 0.00 4.96 790.71 0.00 1896.61 
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18 4.42 782.80 782.80 5.77 1306.62 215.88 5.41 643.02 0.00 4.64 794.68 0.00 998.68 

19 4.42 782.80 782.80 6.11 1110.93 846.51 5.01 725.80 0.00 4.53 604.07 0.00 1629.31 

20 4.42 782.80 782.80 5.82 1013.66 10.29 5.10 999.31 0.00 4.62 819.27 0.00 793.09 

21 4.42 782.80 782.80 5.41 1292.86 0.00 5.29 684.77 0.00 4.62 1002.38 0.00 782.80 

22 4.42 782.80 782.80 5.35 958.95 0.00 5.21 1279.44 0.00 4.56 1362.28 0.00 782.80 

23 4.42 782.80 782.80 5.68 732.58 732.58 5.33 591.57 591.57 4.54 898.86 0.00 1515.38 

24 4.42 782.80 782.80 6.04 794.74 794.74 5.45 929.71 0.00 5.28 901.80 0.00 1577.54 

25 4.42 782.80 782.80 5.78 1271.16 1271.16 5.23 700.96 0.00 4.95 846.67 0.00 2645.54 

26 4.42 782.80 782.80 6.19 964.23 964.23 5.64 776.18 84.03 4.93 1357.08 0.00 1747.03 

27 4.42 782.80 782.80 5.86 1073.87 346.31 5.39 656.62 0.00 4.90 1337.26 0.00 1129.11 

28 4.42 782.80 782.80 5.95 1142.95 1142.95 5.50 1295.28 0.00 4.82 1170.47 0.00 2009.78 

29 4.42 782.80 782.80 6.18 792.60 792.60 5.16 1329.22 0.00 4.58 683.61 0.00 1575.40 

30 4.42 782.80 782.80 6.18 1026.77 1026.77 5.02 620.68 0.00 5.24 907.85 0.00 1809.57 

31 4.42 782.80 782.80 5.57 1074.74 1074.74 5.40 589.09 0.00 4.81 840.42 0.00 1857.54 

32 4.42 782.80 782.80 6.03 807.99 807.99 4.93 843.54 0.00 5.20 1124.13 0.00 1590.79 

33 4.42 782.80 782.80 5.56 1102.50 576.55 5.08 679.09 0.00 4.62 940.38 0.00 1359.35 

34 4.42 782.80 782.80 5.67 1350.00 0.00 5.23 1062.69 0.00 5.19 1080.92 0.00 782.80 

35 4.42 782.80 782.80 5.46 644.47 644.47 5.56 624.36 624.36 5.30 1253.52 0.00 1427.27 

36 4.42 782.80 782.80 5.85 961.55 961.55 5.21 1339.51 0.00 5.15 805.21 0.00 1744.35 

37 4.42 782.80 782.80 5.35 1262.91 0.00 5.54 1126.84 545.07 5.00 792.98 0.00 1407.16 

38 4.42 782.80 782.80 5.44 1250.21 641.66 4.98 702.72 0.00 4.94 1155.93 0.00 1424.46 

39 4.42 782.80 782.80 5.45 1254.25 712.09 5.06 1256.67 0.00 4.76 1236.90 0.00 2039.96 

40 4.42 782.80 782.80 5.94 1297.96 920.66 5.63 655.73 655.73 4.56 1175.87 0.00 1703.46 

 

5.3.3.  Scenario 3 

Scenario three used a ±20% variation of the nominal price for each week’s spot-demand. 

The price for the contract demand is the same as the nominal price for every week. The 

contract demand is 30% of nominal weekly production and the three other spot-demands 

vary from 25-35% of the nominal weekly production. The Gurobi 5.5 solver found the 

following results for the 52-week model using the designed solution technique: 

Best objective value:  $2.43 ×     

Best bound: $2.47×     

Time taken to solve the problem is 16.62 hours. Fig. 5.4 shows the generated revenue 

after solving each planning-horizon of a 40 planning-horizon problem. 
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Figure 5.4: Revenue after solving each planning-horizon for scenario 3  

 

 

Figure 5.5: Production, sales and inventory of product5 (species 1) of scenario 3 
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Figure 5.5 shows the result of product 5 (species1) for the scenario 3. The initial 

and final inventories are same. No backorder is generated but chips are produced from 

the product 5 inventory over time. Although chips are sold at a lower price than the 

lumber, chips are produced from the lumber inventory when the sum of inventories 

exceeds a limiting inventory given by Equation 4.15.  

Table 5.5 shows the 40 implemented  1-period solutions of product 5 (species 1) 

of scenario 3. The inventory balance equation 5.1 is satisfied in every period. As 

verifying example look at period 6 of Table 5.5 

Inventory (6) = Inventory (5) + Production (6)- Sales (6)- Back order (6) 

- ToChips (6) 

 = 5696.95+2123.43-3293.57-0.00-869.30 = 3657.51 

 

Table 5.5: Solution output of the scenario 3 for product 5 (species1) 

 

Period Production Sales Back order ToChips Ending 

Inventory 

0 0.00 0.00 0 0.00 3218.40 

1 12477.22 754.29 0 0.00 14941.33 

2 1224.03 1664.88 0 678.31 13822.17 

3 493.34 3325.13 0 0.00 10990.39 

4 1874.45 2562.43 0 3710.99 6591.41 

5 2917.72 3566.78 0 245.39 5696.95 

6 2123.43 3293.57 0 869.30 3657.51 

7 8670.56 3484.13 0 2347.62 6496.32 

8 3070.81 3320.31 0 0.00 6246.82 

9 1947.32 3291.12 0 0.00 4903.03 

10 2757.13 2648.14 0 0.00 5012.02 

11 1863.81 2686.86 0 2381.63 1807.34 

12 4046.03 3682.75 0 775.09 1395.52 

13 1896.03 2699.68 0 591.87 0.00 

14 4959.85 3519.77 0 0.00 1440.09 

15 21626.13 3387.75 0 0.00 19678.47 

16 924.22 3438.76 0 833.83 16330.11 

17 2714.53 3642.70 0 0.00 15401.93 

18 1211.44 3634.38 0 12202.61 776.38 
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19 5158.95 3440.90 0 1157.49 1336.95 

20 1409.99 2746.94 0 0.00 0.00 

21 9506.92 3516.69 0 0.00 5990.23 

22 2417.87 3694.20 0 2067.11 2646.80 

23 1408.00 3492.00 0 0.00 562.80 

24 2046.72 2609.52 0 0.00 0.00 

25 15571.12 3594.23 0 0.00 11976.90 

26 2.22 2852.44 0 0.00 9126.68 

27 50.01 3585.15 0 0.00 5591.54 

28 1321.73 3454.49 0 0.00 3458.78 

29 3288.93 3372.02 0 0.00 3375.69 

30 4323.90 3495.00 0 2955.53 1249.06 

31 945.78 2082.02 0 0.00 112.82 

32 6605.12 3489.35 0 0.00 3228.58 

33 0.00 3228.58 0 0.00 0.00 

34 17563.15 3469.70 0 4808.52 9284.93 

35 2563.08 3400.53 0 4931.87 3515.62 

36 12828.76 3714.89 0 0.00 12629.49 

37 1335.16 3561.40 0 0.00 10403.26 

38 0.00 3615.49 0 1641.67 5146.09 

39 4882.86 3405.33 0 0.00 6623.62 

40 2769.15 3482.25 0 0.00 5910.52 

 

 

Table 5.6 shows variations in product price, demand, the promised order and sales 

for 40 implemented periods for the product 5 (species 1).  It shows that at period 20 the 

model promised for a higher price order having a longer delivery date in the presence of 

shortage of inventory. Table 5.6 data shows an agreement with the sales equation 5.2. 

The contract demand is satisfied by 100%. The current week spot-demand is rejected by 

8.48%, the two weeks advanced demand is rejected by 5% and the three weeks advanced 

demand is rejected by 11%.     

An example is given below to see the agreement between the sales in Table 5.6 and 

equation 5.2 for period 23.  
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Sales (23) = Contract demand (23) + Promised Order (23)+ Promised Order (21) 

+ Promised Order (20) 

 = 880.8+857.91+951.56+801.73 = 3492.00 

 

 

Table 5.6: Demand, order promised and sales for scenario 3- product 5(species1) 

 
Per

iod   
   

   
   

   
   

   
   

   
   

   
   

 
Total 

Sales 

1 4.81 342.86 342.86 6.25 411.43 411.43 5.77 1945.7 1645.72 5.29 1645.7 0.00 754.29 

2 4.81 880.80 880.80 5.86 784.08 784.08 6.36 870.48 870.48 4.92 960.25 960.25 1664.88 

3 4.81 880.80 880.80 5.75 798.61 798.61 4.99 890.81 890.81 5.88 769.10 769.10 3325.13 

4 4.81 880.80 880.80 6.68 811.15 811.15 5.80 737.13 737.13 5.36 942.40 942.40 2562.43 

5 4.81 880.80 880.80 5.53 834.92 834.92 6.55 842.97 842.97 4.92 869.36 869.36 3566.78 

6 4.81 880.80 880.80 7.08 906.54 906.54 6.36 804.42 804.42 5.13 788.88 788.88 3293.57 

7 4.81 880.80 880.80 6.13 817.97 817.97 6.49 847.95 847.95 6.13 887.74 887.74 3484.13 

8 4.81 880.80 880.80 5.83 765.72 765.72 5.14 849.84 0.00 5.36 764.01 0.00 3320.31 

9 4.81 880.80 880.80 6.72 773.49 773.49 5.36 988.59 988.59 5.94 992.20 992.20 3291.12 

10 4.81 880.80 880.80 6.49 879.60 879.60 5.35 909.62 909.62 4.57 894.43 0.00 2648.14 

11 4.81 880.80 880.80 7.14 817.47 817.47 4.88 846.16 846.16 4.92 1015.83 1015.83 2686.86 

12 4.81 880.80 880.80 5.86 900.13 900.13 6.41 765.08 765.08 5.50 831.80 831.80 3682.75 

13 4.81 880.80 880.80 5.85 972.72 972.72 5.96 856.45 856.45 4.59 889.00 889.00 2699.68 

14 4.81 880.80 880.80 7.10 858.05 858.05 5.50 826.99 826.99 4.71 1020.41 1020.41 3519.77 

15 4.81 880.80 880.80 6.65 818.70 818.70 6.06 743.87 743.87 4.65 839.65 839.65 3387.75 

16 4.81 880.80 880.80 6.88 841.97 841.97 5.01 886.72 886.72 5.87 978.79 978.79 3438.76 

17 4.81 880.80 880.80 7.15 997.62 997.62 5.44 788.86 788.86 5.59 1004.90 1004.90 3642.70 

18 4.81 880.80 880.80 7.10 1027.21 1027.21 6.48 861.24 861.24 5.28 881.30 881.30 3634.38 

19 4.81 880.80 880.80 7.08 792.45 792.45 6.03 871.49 871.49 4.88 994.33 994.33 3440.90 

20 4.81 880.80 880.80 6.26 802.18 0.00 6.55 970.66 970.66 5.32 801.73 801.73 2746.94 

21 4.81 880.80 880.80 6.65 883.10 883.10 4.92 951.56 951.56 4.86 748.73 748.73 3516.69 

22 4.81 880.80 880.80 6.80 848.42 848.42 6.49 775.70 775.70 4.77 834.36 834.36 3694.20 

23 4.81 880.80 880.80 6.19 857.91 857.91 6.21 963.07 963.07 5.47 961.12 148.92 3492.00 

24 4.81 880.80 880.80 6.56 842.24 204.29 6.51 951.59 951.59 5.43 964.79 964.79 2609.52 

25 4.81 880.80 880.80 6.78 916.00 916.00 6.02 846.81 846.81 5.96 898.68 898.68 3594.23 

26 4.81 880.80 880.80 6.54 871.12 871.12 5.61 849.57 849.57 4.78 822.17 822.17 2852.44 

27 4.81 880.80 880.80 6.98 892.76 892.76 5.05 920.23 920.23 5.35 970.40 970.40 3585.15 

28 4.81 880.80 880.80 6.91 825.44 825.44 5.51 738.01 738.01 5.22 946.17 946.17 3454.49 

29 4.81 880.80 880.80 5.75 969.67 748.82 4.87 886.09 255.05 5.54 829.25 829.25 3372.02 

30 4.81 880.80 880.80 7.07 905.79 905.79 5.74 873.43 873.43 5.02 795.33 795.33 3495.00 

31 4.81 880.80 880.80 6.15 962.43 0.00 4.85 931.77 931.77 6.23 908.05 908.05 2082.02 

32 4.81 880.80 880.80 6.93 905.88 905.88 6.64 747.35 747.35 5.16 798.24 798.24 3489.35 

33 4.81 880.80 880.80 5.77 913.59 620.67 6.52 865.61 865.61 6.12 931.69 931.69 3228.58 

34 4.81 880.80 880.80 6.75 933.50 933.50 6.37 915.44 915.44 5.41 998.70 998.70 3469.70 

35 4.81 880.80 880.80 5.32 855.88 855.88 6.39 880.38 880.38 4.81 896.66 896.66 3400.53 

36 4.81 880.80 880.80 5.81 986.96 986.96 6.40 864.89 864.89 4.49 936.14 936.14 3714.89 

37 4.81 880.80 880.80 6.52 801.52 801.52 5.84 810.37 810.37 4.55 759.44 759.44 3561.40 
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38 4.81 880.80 880.80 7.17 973.14 973.14 5.53 988.61 988.61 5.65 899.34 899.34 3615.49 

39 4.81 880.80 880.80 6.61 778.02 778.02 5.03 763.88 763.88 4.93 842.72 760.54 3405.33 

40 4.81 880.80 880.80 7.21 853.40 853.40 6.11 931.63 931.63 5.41 943.81 943.81 3482.25 

 

Different sets of campaigns are chosen for different periods of production runs, 

out of 366 campaigns of 8 different log classes.  

 

 
 

Figure 5.6: Campaign schedule for the first five implemented solution of scenario 3 
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In the first implemented solution, 7 campaigns are scheduled. These are campaign 

number 10, 20, 214, 327, 335, 340 and 350. The number of campaigns setup is 346 and 

class setup is 148 during the 52 weeks. The total campaign setup time is 86.25 hours. The 

total class setup time is 74 hours. The total of setup time is 158.25 hours. The total run 

time of the sawmill in a year is 2080 hours. A representative figure is shown in Fig 5.6 

from the solution output of campaign scheduling. The first 5 of the 40 implemented 

periods of the third scenario is presented in Fig 5.6. The total setup time is 7.61%, and the 

resource utilization is 92.39%. Table 5.7 shows the campaign scheduling data for the first 

12 implemented periods. 

Table 5.7: Campaign schedule for 12 implemented periods of scenario 3  

 

Implimented 

Period 

(week) 

Class 

No. 

Class  

Setup time 

(week) 

Campaign 

No. 

Campaign 

Setup time 

(week) 

Campaign 

Run time 

(week) 

1
st
  week  

1 0.0125 10 0.004167 0.0395530

14 5 0.0125 20 0.004167 0.2962737

17 214 0.004167 0.0891129

99 8 0.0125 327 0.004167 0.0590578

23 335 0.004167 0.1591718

46 340 0.004167 0.1546645

05 350 0.004167 0.1354994

29 

2
nd  

week  

1 0.0125 9 0.004167 0.1093239

35 2 0.0125 51 0.004167 0.1115516

23 5 0.0125 189 0.004167 0.0881067

15 193 0.004167 0.0437483

39 7 0.0125 295 0.004167 0.2310293

85 8 0.0125 331 0.004167 0.0739152

71 336 0.004167 0.0250550

82 338 0.004167 0.0398130

41 339 0.004167 0.0559957

9 355 0.004167 0.1172941

51 

3
rd

  week  

5 0.0125 184 0.004167 0.2209512

64 6 0.0125 233 0.004167 0.0158607

62 245 0.004167 0.2662212

07 255 0.004167 0.0429422

12 8 0.0125 336 0.004167 0.0610417

59 
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340 0.004167 0.0628116

94 348 0.004167 0.1045706

71 354 0.004167 0.1547670

96 

4
th

  week  

3 0.0125 107 0.004167 0.1668509

32 115 0.004167 0.1674682

39 122 0.004167 0.0377708

22 8 0.0125 323 0.004167 0.1630860

13 331 0.004167 0.1093144

49 335 0.004167 0.0862242

61 336 0.004167 0.2151190

65 

5
th

 week  

4 0.0125 158 0.004167 0.0422229

07 5 0.0125 191 0.004167 0.0188961

7 193 0.004167 0.1193695

19 6 0.0125 235 0.004167 0.0922358

6 239 0.004167 0.1223649

69 255 0.004167 0.0170517

59 8 0.0125 335 0.004167 0.2693975

57 338 0.004167 0.1011253

67 350 0.004167 0.0815802

65 355 0.004167 0.0440889

6 

6
th

  week  

4 0.0125 158 0.004167 0.2490817

14 167 0.004167 0.0097653

89 5 0.0125 189 0.004167 0.2700899

41 7 0.0125 295 0.004167 0.4168962

9 

7
th

  week  

1 0.0125 20 0.004167 0.2194615

94 8 0.0125 336 0.004167 0.1762062

47 338 0.004167 0.0641946

65 340 0.004167 0.2881683

89 350 0.004167 0.2061357

72 

8
th

 week  

5 0.0125 188 0.004167 0.2982444

95 193 0.004167 0.2450194

92 6 0.0125 233 0.004167 0.1311059

26   238 0.004167 0.2839634

2 

9
th

  week  

3 0.0125 101 0.004167 0.105512 

4 0.0125 146 0.004167 0.0934151

42 5 0.0125 184 0.004167 0.1147294

57 8 0.0125 330 0.004167 0.2173151

64 340 0.004167 0.1448942

99 350 0.004167 0.0640390

08 354 0.004167 0.1809282

63 

10
th

  week  

4 0.0125 158 0.004167 0.4648595

35 167 0.004167 0.0944932

08 7 0.0125 295 0.004167 0.1826052

7 8 0.0125 350 0.004167 0.2038753

2 
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11
th

  week  

3 0.0125 97 0.004167 0.0463855

75  116 0.004167 0.0189331

57  122 0.004167 0.1088439

95 8 0.0125 322 0.004167 0.0724454

25 331 0.004167 0.0599732

24 335 0.004167 0.1521234

03 336 0.004167 0.3029408

04 340 0.004167 0.1545215

48 355 0.004167 0.0213328

7 12
th

  week  3 0.0125 114 0.004167 0.0755888

72 6 0.0125 235 0.004167 0.4439730

64 7 0.0125 290 0.004167 0.1507505

12 295 0.004167 0.1386951

17 8 0.0125 338 0.004167 0.1201591

02  

 

Six runs of simulation were performed for scenario 3. The total revenue obtained by 

simulating scenarios 3 for six different runs were $ 2.43×10
7
, $ 2.41×10

7
, $ 2.41×10

7
, $ 

2.44×10
7
, $ 2.38×10

7
,
 
and $ 2.38×10

7
. If outputs are assumed to be normally distributed 

I, this corresponds to a 95% confidence interval of $ (2.40±0.02) ×10
7
. 

The narrow confidence interval of the total revenue indicates that in each run of 

simulation almost same amount of revenue is generated.  The revenue is generated 

through order promising and delivering the promised order on time. These activities (i.e., 

the order promising and delivering) depend on the market prices and demands in each 

period. To explain the activity of each simulation run, product-23 (2×6×12) is selected 

randomly and the sales activity in six different simulation runs is plotted in Fig. 5.7. 

It shows that the sales pattern is very different in each run of each period. For an 

example, in period 9, the sales amount in run 1 is 4795.11 ft
3
 and in run 4 is 1195.50 ft

3
, 

in period 18, sales in run 2 is 1747.58 ft
3
 and in run 3 is 4846.67 ft

3
. 
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Figure 5.7: Sales of product-23 (species 1) of scenario 3 for different simulation runs 

 

 

Thus, although the rolling planning approach achieves about the same result over 

each simulation, quite different production strategies were used to cope with the 

randomness.  
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shows that the order promising for each simulation run is again quite different from 

others in every period. Here the same period (i.e., period 9)  is considered to explain, the 

promised order for the current period for run 1 is 1153.80 ft
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 and for run 4 is 0 ft

3
.  In 

period 18, promised order for the current period in run 2 is 246.63 ft
3
 and for run 3 is 

1258.39 ft
3
. 
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Figure 5.8: Order promised for the current period of product-23 (species 1) of  

                   scenario 3 for different simulation runs 

 
 
 

 
Figure 5.9: Sum of sales  of product-23 for different simulation  run 
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Fig. 5.9 shows the total sales at a particular period for the product-23. The mean 

of total sales in 52 weeks of different runs corresponds to a 95% confidence interval of 

187754.26± 27478.22. The same level of total sales is achieved smoothly in different 

runs through using different sales strategy that is shown in Fig. 5.7. 

5.3.4.  Scenario 4 

In scenario 4, the variation of product price is considered ±20% of the nominal price, and 

the contract demand is 0.25% of average weekly production capacity. Current week spot-

demand varies from 20-30% and the two other spot-demands vary from 30-35% of the 

average weekly demand (Table 4.1).  The Gurobi 5.5 solver produces the following 

results after solving the 52-week model using the designed solution technique: 

Best objective value:  $2.51 ×    

Best bound: $2.58×     

 

Figure 5.10: Revenue after solving each planning-horizon of scenario 4 
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The solution time was 13.55 hours. The generated revenue for each planning-horizon for 

scenario 4 is shown in Fig 5.10. Fig. 5.11 shows the 52 weeks solutions of the 

production, sales and inventory of product 1 (species 1) of scenario 4. The initial and 

final inventories are found to the same. No backorder and chips are generated over the 

period.  

 

Figure 5.11:  Production, sales and inventory of product1 (species 1) of scenario 4 
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Table 5.8:  Solution output of scenario 4- product 1(Species1) 

 

Period Production Sales Back order ToChips Ending 

Inventory 

0 0 0 0 0 4044.94 

1 377.66 1634.88 0 0 2787.73 

2 882.64 1849.86 0 0 1820.51 

3 1908.92 978.50 0 0 2750.93 

4 646.76 978.50 0 0 2419.19 

5 2393.57 2051.83 0 0 2760.93 

6 1623.25 3208.67 0 0 1175.50 

7 1951.18 1927.86 0 0 1198.82 

8 1085.21 978.50 0 0 1305.53 

9 1750.75 978.50 0 0 2077.78 

10 897.34 978.50 0 0 1996.62 

11 1705.46 1931.55 0 0 1770.53 

12 2076.09 2284.16 0 0 1562.46 

13 1836.05 1761.85 0 0 1636.65 

14 726.76 2227.40 0 0 136.01 

15 3045.56 2139.98 0 0 1041.59 

16 559.75 978.50 0 0 622.84 

17 2054.29 2135.75 0 0 541.37 

18 1157.96 978.50 0 0 720.84 

19 701.73 978.50 0 0 444.07 

20 3754.66 978.50 0 0 3220.24 

21 247.52 1984.88 0 0 1482.88 

22 2538.40 1890.45 0 0 2130.83 

23 1123.59 978.50 0 0 2275.92 

24 2233.83 1795.57 0 0 2714.18 

25 1820.84 978.50 0 0 3556.52 

26 2114.20 2339.26 0 0 3331.46 

27 954.23 1888.23 0 0 2397.46 

28 98.39 978.50 0 0 1517.36 

29 1066.25 1884.15 0 0 699.45 

30 1823.38 978.50 0 0 1544.34 

31 2091.79 2119.55 0 0 1516.58 

32 1821.16 978.50 0 0 2359.24 

33 760.65 1644.57 0 0 1475.32 

34 2465.61 2198.01 0 0 1742.92 

35 1455.18 978.50 0 0 2219.60 

36 643.23 978.50 0 0 1884.33 

37 2830.45 1514.38 0 0 3200.40 

38 1393.82 1435.55 0 0 3158.68 
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39 1943.11 978.50 0 0 4123.29 

40 466.46 1837.10 0 0 2752.65 

 

 

Table 5.9 shows variations in product price, demand, the promised order and sales for 40 

implemented periods for scenario 4-product 1(species1).  The Table 5.9 shows that the 

sales equation of 5.2 satisfied every period.  The contract demand is satisfied by 100%. 

The current week spot-demand is rejected by 55.93%, the two weeks advanced demand is 

rejected by 88.44% and the three weeks advanced demand is rejected by 97.46%.    As an 

example of period 6 sales from Table 5.9 is given below:  

Sales (6) = Fixed demand (6) + Promised Order (6)+ Promised Order (4) 

+ Promised Order (3) 

 = 978.50+945.05+0.00+1285.12 

 = 3208.67 

 

Table 5.9: Demand, order promised and sales for scenario 4-product 1(species1) 

 
Perio

d   
   

   
   

   
   

   
   

   
   

   
   

 
Total 

Sales 

1 4.42 743.13 743.13 5.75 891.75 891.75 5.31 966.07 0.00 4.86 1114.69 0.00 1634.88 

2 4.42 978.50 978.50 6.45 871.36 871.36 5.15 1187.06 0.00 4.18 1325.49 0.00 1849.86 

3 4.42 978.50 978.50 5.12 1141.79 0.00 4.74 1186.89 0.00 5.62 1285.12 1285.12 978.50 

4 4.42 978.50 978.50 5.63 938.42 0.00 5.24 1202.37 0.00 4.21 1294.43 0.00 978.50 

5 4.42 978.50 978.50 5.73 1073.33 1073.33 5.40 1353.85 0.00 4.98 1261.03 0.00 2051.83 

6 4.42 978.50 978.50 6.51 945.05 945.05 4.57 1277.23 0.00 4.65 1269.47 0.00 3208.67 

7 4.42 978.50 978.50 6.48 949.36 949.36 5.43 1328.82 0.00 5.59 1229.48 0.00 1927.86 

8 4.42 978.50 978.50 5.52 788.86 0.00 4.75 1184.14 0.00 4.52 1215.59 0.00 978.50 

9 4.42 978.50 978.50 4.88 1101.13 0.00 4.58 1320.68 0.00 4.07 1360.02 0.00 978.50 

10 4.42 978.50 978.50 5.69 1004.88 0.00 6.00 1305.66 1305.66 5.41 1232.71 0.00 978.50 

11 4.42 978.50 978.50 6.14 953.05 953.05 4.72 1262.57 0.00 4.76 1268.97 0.00 1931.55 

12 4.42 978.50 978.50 5.46 820.26 0.00 5.85 1187.52 723.98 5.40 1331.51 0.00 2284.16 

13 4.42 978.50 978.50 6.39 783.35 783.35 4.66 1242.98 0.00 5.31 1302.14 0.00 1761.85 

14 4.42 978.50 978.50 5.60 1131.20 524.92 5.67 1199.78 0.00 5.57 1329.99 0.00 2227.40 

15 4.42 978.50 978.50 6.05 1161.48 1161.48 4.52 1353.03 0.00 4.40 1201.08 0.00 2139.98 

16 4.42 978.50 978.50 5.26 1126.11 0.00 6.02 1275.39 0.00 4.65 1304.17 0.00 978.50 

17 4.42 978.50 978.50 6.59 1157.25 1157.25 5.66 1198.77 0.00 5.12 1310.66 0.00 2135.75 

18 4.42 978.50 978.50 5.06 1160.23 0.00 5.33 1318.67 0.00 4.96 1349.87 0.00 978.50 

19 4.42 978.50 978.50 5.41 840.02 0.00 5.01 1308.53 0.00 5.51 1235.37 0.00 978.50 
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20 4.42 978.50 978.50 5.20 942.06 0.00 4.90 1192.61 0.00 4.85 1351.10 0.00 978.50 

21 4.42 978.50 978.50 6.06 1006.38 1006.38 4.65 1356.21 0.00 5.53 1193.00 0.00 1984.88 

22 4.42 978.50 978.50 5.78 911.95 911.95 5.23 1231.34 0.00 5.05 1205.73 0.00 1890.45 

23 4.42 978.50 978.50 5.08 878.62 0.00 4.88 1214.17 0.00 4.67 1369.64 0.00 978.50 

24 4.42 978.50 978.50 5.93 817.07 817.07 5.93 1360.76 1360.76 4.16 1217.98 0.00 1795.57 

25 4.42 978.50 978.50 5.55 1061.81 0.00 5.29 1316.47 0.00 5.10 1340.03 0.00 978.50 

26 4.42 978.50 978.50 5.28 964.41 0.00 4.57 1246.11 0.00 5.04 1359.21 0.00 2339.26 

27 4.42 978.50 978.50 5.96 909.73 909.73 5.34 1177.09 0.00 4.37 1210.72 0.00 1888.23 

28 4.42 978.50 978.50 5.05 986.23 0.00 4.78 1176.48 0.00 4.87 1184.60 0.00 978.50 

29 4.42 978.50 978.50 5.66 905.65 905.65 4.87 1327.76 0.00 4.79 1294.83 0.00 1884.15 

30 4.42 978.50 978.50 5.04 1096.45 0.00 5.52 1187.85 0.00 4.61 1326.46 0.00 978.50 

31 4.42 978.50 978.50 6.24 1141.05 1141.05 5.07 1206.45 0.00 5.16 1274.25 0.00 2119.55 

32 4.42 978.50 978.50 5.46 844.64 0.00 5.65 1308.63 1219.51 4.68 1223.87 0.00 978.50 

33 4.42 978.50 978.50 6.04 1070.22 666.07 4.65 1346.64 0.00 5.22 1264.74 0.00 1644.57 

34 4.42 978.50 978.50 5.30 1017.02 0.00 5.77 1268.72 0.00 5.52 1208.47 0.00 2198.01 

35 4.42 978.50 978.50 5.34 946.13 0.00 5.70 1323.09 0.00 5.00 1250.39 0.00 978.50 

36 4.42 978.50 978.50 5.69 807.00 0.00 5.86 1330.66 457.05 4.48 1178.12 0.00 978.50 

37 4.42 978.50 978.50 5.74 976.52 535.88 5.48 1326.59 0.00 4.52 1190.50 0.00 1514.38 

38 4.42 978.50 978.50 5.26 831.27 0.00 4.89 1323.02 0.00 4.13 1364.69 0.00 1435.55 

39 4.42 978.50 978.50 5.48 907.08 0.00 5.95 1219.17 759.99 4.88 1195.69 0.00 978.50 

40 4.42 978.50 978.50 6.30 858.60 858.60 4.43 1335.93 0.00 4.67 1265.18 0.00 1837.10 

 

5.3.5.  Scenario 5 

The variation of product price of ±20% of the nominal price is considered in scenario 5. 

The contract demand is 0.25%, current week spot-demand varies from 30-35% and the 

two other spot-demands vary from 35-40% of the average weekly production (Table 4.1).  

Gurobi 5.5 solver produces the following results after solving the 52-week problem using 

the designed solution technique: 

Best objective value:  $2.78×     

Best bound: $2.82×     

The solution time is 5.87 hours. Figure 5.12 shows the generated revenue after solving 

each planning horizon.  
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Figure 5.12: Revenue after solving each planning-horizon for scenario 5 

 

 
 

Figure 5.13: Production, sales and inventory of product 4 (species 1) of scenario 5 

 

Figure 5.13 shows the solution of 52-week problem using the rolling planning-

horizon technique for product 4 (species1). The initial and final inventories are the same. 

No backorder and chips are generated over  the time.   
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Table 5.10 shows 40 implemented first period solutions of scenario 5 -product 

4(species1). The inventory balance equation 5.1 is met for every period for this scenario. 

As an example of period 17 of Table 5.10 

Inventory (17) = Inventory (16) + Production (17)- Sales (17)- Back order (17) 

- ToChips (17) 

 = 79.32+3234.49-3288.66-0.00-0.00 

 = 25.15 

 

Table 5.10: Solution output of scenario 5 -product 4(species1) 

 

Period Production Sales Back order ToChips Ending 

Inventory 

0 0 0 0 0 1199.34 

1 821.66 1028.17 0 0 992.84 

2 4806.28 1470.51 0 0 4328.62 

3 4215.04 2071.65 0 0 6472.00 

4 489.61 2995.43 0 0 3966.18 

5 3721.09 3201.99 0 0 4485.28 

6 3680.83 3334.48 0 0 4831.64 

7 188.26 2323.22 0 0 2696.68 

8 3707.18 3277.95 0 0 3125.91 

9 1677.04 2640.08 0 0 2162.86 

10 5845.18 2390.84 0 0 5617.21 

11 1069.47 3243.86 0 0 3442.82 

12 639.24 3324.42 0 0 757.64 

13 2133.22 2890.86 0 0 0.00 

14 3526.35 3289.12 0 0 237.24 

15 3040.66 2878.74 0 0 399.15 

16 1960.84 2280.68 0 0 79.32 

17 3234.49 3288.66 0 0 25.15 

18 5246.58 3195.71 0 0 2076.02 

19 5148.20 3367.24 0 0 3856.98 

20 770.28 2952.90 0 0 1674.36 

21 1141.78 1357.98 0 0 1458.16 

22 10478.73 3213.88 0 0 8723.01 

23 410.84 3198.38 0 0 5935.48 

24 1583.84 3089.44 0 0 4429.88 
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25 2834.23 2379.72 0 0 4884.39 

26 223.47 2324.09 0 0 2783.77 

27 2860.76 3247.90 0 0 2396.63 

28 6492.69 2433.08 0 0 6456.25 

29 5254.95 2310.02 0 0 9401.17 

30 689.16 3353.80 0 0 6736.53 

31 2966.55 3130.09 0 0 6572.99 

32 2143.89 3352.77 0 0 5364.10 

33 2981.98 2380.01 0 0 5966.07 

34 389.45 3297.99 0 0 3057.53 

35 12807.28 3245.85 0 0 12618.96 

36 1480.77 3202.42 0 0 10897.31 

37 427.23 3285.42 0 0 8039.12 

38 2570.91 3262.02 0 0 7348.01 

39 1950.39 3172.37 0 0 6126.02 

40 1696.76 3234.22 0 0 4588.57 

 

Table 5.11 shows variations in product price, demand, the promised order and sales for 

40 implemented periods for scenario 5 -product 4(species1).  The Table 5.11 data satisfy 

the sales equation of 5.2.  The contract demand is satisfied by 100%. The current week 

spot-demand is rejected by 3.84%, the two weeks advanced demand is rejected by 9.45% 

and the three weeks advanced demand is rejected by 17.33%.    As an example of period 

17 sales from Table 5.11 is given below:  

Sales (17) = Contract demand (17) + Promised Order (17)+ Promised Order (15) 

+ Promised Order (14) 

 = 615.25+823.25+968.45+881.71 

 = 3288.66 

Table 5.11: Demand, order promised and sales for scenario 5 -product 4(species1) 

 
Perio

d   
   

   
   

   
   

   
   

   
   

   
   

 
Total 

Sales 

1 4.71 467.35 467.35 6.12 560.82 560.82 5.65 607.55 607.55 5.18 701.02 701.02 1028.17 

2 4.71 615.25 615.25 5.73 855.26 855.26 5.10 934.71 934.71 5.23 904.14 904.14 1470.51 

3 4.71 615.25 615.25 6.31 848.85 848.85 5.78 871.64 871.64 5.58 980.30 980.30 2071.65 
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4 4.71 615.25 615.25 6.05 744.45 744.45 5.14 892.31 892.31 5.05 967.89 0.00 2995.43 

5 4.71 615.25 615.25 6.71 810.95 810.95 5.95 905.96 905.96 4.92 964.49 959.01 3201.99 

6 4.71 615.25 615.25 6.81 846.62 846.62 6.29 907.04 907.04 4.51 887.38 254.39 3334.48 

7 4.71 615.25 615.25 6.81 802.01 802.01 5.37 948.18 948.18 4.61 947.10 0.00 2323.22 

8 4.71 615.25 615.25 6.26 796.66 796.66 5.17 914.33 914.33 5.23 980.77 980.77 3277.95 

9 4.71 615.25 615.25 6.24 822.27 822.27 5.78 869.64 869.64 4.54 922.92 922.92 2640.08 

10 4.71 615.25 615.25 6.79 861.26 861.26 5.18 956.14 956.14 4.51 970.00 970.00 2390.84 

11 4.71 615.25 615.25 6.91 778.20 778.20 5.17 899.19 899.19 5.36 877.47 877.47 3243.86 

12 4.71 615.25 615.25 5.85 830.11 830.11 6.16 946.26 946.26 4.86 866.14 866.14 3324.42 

13 4.71 615.25 615.25 5.56 858.71 406.42 5.22 905.37 604.32 4.28 950.34 788.67 2890.86 

14 4.71 615.25 615.25 5.73 850.14 850.14 5.56 876.76 876.76 4.83 881.71 881.71 3289.12 

15 4.71 615.25 615.25 6.50 793.03 793.03 6.29 968.45 968.45 6.03 880.93 880.93 2878.74 

16 4.71 615.25 615.25 5.46 780.25 0.00 5.74 873.52 873.52 5.41 955.28 955.28 2280.68 

17 4.71 615.25 615.25 5.38 823.25 823.25 6.33 970.15 970.15 4.87 873.28 873.28 3288.66 

18 4.71 615.25 615.25 5.47 826.00 826.00 5.23 921.92 723.43 4.77 956.42 0.00 3195.71 

19 4.71 615.25 615.25 6.47 826.57 826.57 5.78 975.38 0.00 5.50 911.17 911.17 3367.24 

20 4.71 615.25 615.25 5.64 740.93 740.93 5.50 925.60 925.60 5.09 878.31 878.31 2952.90 

21 4.71 615.25 615.25 5.67 742.73 742.73 6.03 908.73 908.73 4.78 951.56 951.56 1357.98 

22 4.71 615.25 615.25 5.28 761.87 761.87 5.29 876.62 697.22 5.79 875.89 875.89 3213.88 

23 4.71 615.25 615.25 5.77 796.08 796.08 5.52 915.88 27.34 4.43 873.52 0.00 3198.38 

24 4.71 615.25 615.25 6.59 825.40 825.40 6.46 918.66 918.66 5.22 903.74 903.74 3089.44 

25 4.71 615.25 615.25 5.76 861.24 861.24 5.55 874.97 874.97 4.39 896.64 0.00 2379.72 

26 4.71 615.25 615.25 5.41 790.18 790.18 5.49 982.60 982.60 6.04 876.48 876.48 2324.09 

27 4.71 615.25 615.25 6.18 853.93 853.93 5.17 925.82 0.00 5.98 900.50 900.50 3247.90 

28 4.71 615.25 615.25 5.78 835.23 835.23 6.17 980.48 980.48 4.99 876.02 876.02 2433.08 

29 4.71 615.25 615.25 6.32 818.29 818.29 6.38 882.45 882.45 5.02 968.32 968.32 2310.02 

30 4.71 615.25 615.25 6.84 857.57 857.57 4.75 955.47 955.47 4.37 892.87 0.00 3353.80 

31 4.71 615.25 615.25 6.38 756.36 756.36 4.75 936.13 936.13 4.79 970.40 970.40 3130.09 

32 4.71 615.25 615.25 6.08 813.73 813.73 6.58 972.87 972.87 6.01 922.19 922.19 3352.77 

33 4.71 615.25 615.25 6.60 828.64 828.64 5.53 959.45 959.45 5.69 865.33 865.33 2380.01 

34 4.71 615.25 615.25 5.89 739.46 739.46 5.15 910.24 910.24 6.05 966.48 966.48 3297.99 

35 4.71 615.25 615.25 6.42 748.96 748.96 5.11 959.37 959.37 4.29 875.21 875.21 3245.85 

36 4.71 615.25 615.25 6.82 811.59 811.59 5.45 915.71 915.71 4.48 863.33 863.33 3202.42 

37 4.71 615.25 615.25 6.04 744.32 744.32 5.80 916.43 916.43 4.39 970.77 970.77 3285.42 

38 4.71 615.25 615.25 6.69 855.85 855.85 4.99 886.97 886.97 4.77 978.97 978.97 3262.02 

39 4.71 615.25 615.25 5.74 777.35 777.35 6.16 938.41 938.41 5.01 982.56 982.56 3172.37 

40 4.71 615.25 615.25 6.81 761.23 761.23 5.56 982.47 982.47 6.05 878.13 878.13 3234.22 

 

5.4. DISCUSSIONS 

Five different scenarios were studied to test the sensitivity of the designed model. 

Different product price demand patterns were also considered in five different scenarios. 

None of the scenarios generate any backorder because the order was promised within the 
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production capacity. The initial and final inventories were thus the same for all scenarios. 

In the second scenario, as the inventory went down to zero, it did not promise for any 

variable demand for period 12. 

In the third scenario, chips were produced in different periods from the lumber 

inventory. Although the lumber prices were higher than the chip price, constraint 4.15 

limited the total lumber inventory capacity of the sawmill. As there was no capacity limit 

for specific product inventory, the optimization model decided which inventory product 

would be converted to chips. 

In period 20, as inventory was low, the model did not accept the coming week’s 

spot-demands. Instead, it accepted relatively higher price demands that would be 

delivered after 2 weeks. It also accepted an order that would be delivered three weeks 

later, though the price of the product is lower than that of the coming week’s delivery 

product price but from the production planning model it is anticipated that promising 

order for a demand that would be delivered in three weeks is feasible. The same situation 

was also seen in period 24.  

The scenario 3 is simulated for  6 different runs and it is found that the mean of 

total revenue corresponds to a 95% confidence interval of $(2.40±0.02) ×10
7
. The 

revenue is generated using different order promising strategies based on the demand and 

prices for that scenario. The sales in each period for different runs of scenario 3 are 

shown in Fig 5.7. The mean of total sales in 52 weeks of different runs corresponds to a 

95% confidence interval of (187754.26± 27478.22) ft
3
. Thus,  although the order 

promising, rolling planning horizon technique achieves the same total result over 52 
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weeks, much different strategies of production and order promising are required in order 

to cope with the uncertainty. 

In scenario 4, it is shown that the order is promised for higher price product in 

period 3. The computational time of scenario 5 is significantly less than the other 

scenarios. This is because this scenario was run on a different computer having 8 GB ram 

and quard core 3.40 GHz processor speed. All other scenarios run on a computer having 

4 GB memory and duel core 3.17 GHz processor speed. Gurobi 5.5 is designed to take 

advantage of extra processors.  

5.5. CONCLUSIONS 

 This chapter described the dynamic rolling planning-horizon simulation solution 

technique. This new approach allow us to conveniently carry out the many runs needed to 

evaluate the rolling planning horizon approach in a simulation. The sensitivity of the 

designed model was also presented by illustrating various scenarios by looking at how 

the production requirements are met for certain products.The solution code written in 

Python 2.7 for Gurobi 5.5 solver is given in Appendix C for all scenarios. In the next 

chapter, the research conclusion and future work are described.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

This thesis describes the modeling framework of an order-promising methodology 

and production-planning technique for the sawmill industry. Order promising is a 

continuous process with ongoing sawmilling operations. Two types of customer demands 

are considered: contract demands and spot demands. Contract demands are submitted by 

a corporate customer and are intended to be delivered over a period of time. Three types 

of spot demands are considered in this thesis: promised demands to be filled current 

week; promised demands to be filled within two weeks; and promised demands to be 

filled within three weeks. A production-planning model that includes the scheduling of 

campaigns in such a way that the promised order can be delivered on time, is also 

included with the order-promising model.  

In this thesis, we considered 2 different species of logs that were classified into 8 

different classes. Each of the species produced 41 different dimensional lumber products. 

We considered 46 price lists and over 6,000 cutting patterns that produced 366 different 

campaigns. Log defects were not considered in generating cutting patterns and all output 

products were considered to be of the same quality. The order promising and production-

planning length was 52 weeks, and the problem was solved using the Gurobi 5.5 solver 

and the rolling planning-horizon technique.   

The newly developed solution algorithm can be seen as allowing one to solve a 

very large-scale optimization problem. For example, the 52-week model contains 43,934 

continuous variables, as two types of setup time (campaign and class) are added with the 
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problem, which includes more than 19,448 binary variables. The problem was attempted 

using a PC with 4 GB memory and 3.17 GHz processor speed. However, the computer 

ran out of memory after 10.39 hours. Here we are not just solving a 52 week problem but 

simulating how the solution process would work as the random information becomes 

available weekl. 

The developed solution techniques solve the problem as a 13-week problem each 

time in 40 steps. This eventually reduces the continuous and binary variables to 10,454 

and 4,862, respectively for each planning horizon. The total number of solution runs is 40 

and took in between 13 and 16 hours,  although faster results were obtained in scenario 

five on more capable computer.  More to the point, the designed solution technique 

allows for updating of the parameter values before starting each 13-week planning-

horizon. However, the new solution technique could be applied to any large scale 

dynamic optimization problem. 

The combination of order promising and production-planning is the novelty of 

this work. In the literature, the order-promising methodology has been investigated 

(Azevedo et al., 2012), but without consideration of the production planning. Other 

researchers developed a production-planning strategy (Zanjani et al., 2009a; Zanjani et 

al., 2009b; Nourelfath, 2010) targeting fulfilling a demand. In this thesis, we maximize 

the total revenue via promising order and make a production schedule to fulfill the order. 

Chapter 3 describes the generation of new campaigns that resulted in a reduction in 

solution time. We also demonstrated that a new pricelist to generate the new campaigns 

can be usefully developed from the product shadow price, similar to the column 

generation technique discussed by Maness and Nelson. From the column-generation 
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technique, more suitable campaigns allow the solver more options to schedule the 

campaign relatively in shorter time. 

In Chapter 4, we formulated an MIP model for order promising and campaign 

scheduling. The objective is to maximize the revenue using available resources and 

ensure the proper utilization of the resources. Four different types of demand lead times 

were considered in the model. The model determines how many orders will be accepted 

within the sawmill capacity and other constraints. It also determines the campaign 

schedule to fulfill the promised order.  

The dynamic solution technique, developed to carry out process of simulating the 

rolling planning horizon application of the model developed in Chapter 4, is described in 

Chapter 5. The new technique allows us to dynamically update the prices and demands 

for each product in each period  within a single run in the Gurobi Python environment.  

The scenario 3 simulated  6 different runs. The variation in the total revenue obtained in 6 

runs was found to be small (having the 95% confidence interval for the mean ($2.38×10
7
, 

$2.42×10
7
)).. The variation in total sales is also found to be small (having the 95% 

confidence interval for the mean (160276 ft.3, 215232 ft.3)). However, the order 

acceptance strategies and campaign production strategies needed to obtain these 

consistent results were of necessity greatly different. The results shown in Chapter 5 

demonstrate the effectiveness with which the rolling planning horizon approach can be 

simulated as a tool of investigation. 

In a real sawmill, we would have available scanners information for a large 

number of logs. Thus simulating the logs would be unnecessary. An interesting area of 

research would be to investigate various sorting strategies to generate alternative 
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campaigns using the market prices and shadow prices as pricelists.  What we have 

demonstrated here is the technical capability to do this at large-scale. 

The idea of shadow price based campaign generation can be investigated in 

several ways, such as by adding more shadow prices to the existing pricelist, or by 

removing the old pricelist from the existing pricelist and using only the new shadow price 

in the pricelist, to generate campaigns and see the effect on solution time.  

Using the revenue management technique is one of the options for order 

promising. The general objective of revenue management techniques is to maximize 

profit over the planning-horizon by deciding whether to accept or reject a given order by 

anticipating future profitable orders. Customers are classified into different segments, 

based on their willingness to pay. An allocation limit is defined for each class of 

customer. Different authors segment customers in different ways. For instance, Harris 

and Pinder (1995) segmented customers into two classes: class 1 customers were able to 

place their orders in advance, and class 2 customers placed their orders on a last-minute 

demand basis. Azevedo et al. (2012) segmented customers into 3 classes: class1 were 

price-sensitive customers who were willing to pay around the market price; class2 

customers aimed to disburse a lower-than-market price; and class3 were customers to 

whom a product might be sold at a premium price. 

In future research, the segmentation of customer classes can be done after 

consultation with the local sawmill industry. The booking limits of a product for each 

segment of customers are also an issue for future research, as is the pricing of products 

for each customer segment. Investigating the suitability of offering variable product 
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prices according to demand lead-time (Venkatadri et al., 2006) for the lumber industry 

could likewise be interesting research.   

On the other hand, to fulfill the promised demand, an optimal production schedule is 

required.  A real-time production control model can be developed, consisting of two 

parts: 1) a campaign- scheduling model; and 2) a pricelist-based control model.  The 

campaign-scheduling problem can be modeled separately and coupled with the sawmill 

control problem. The campaign- scheduling model schedules a campaign based on real-

time data, and the pricelist-based feedback control will achieve the production target 

within the timeframe determined by the campaign- scheduling model.  

The emphasis in this thesis has been mostly technical. We have demonstrated the 

ability to use shadow prices to generate better campaigns. We have created a framework 

within which the rolling planning horizon approaches can be simulated for a model which 

includes both the complexity of sawmill campaigns that produce multiple output products 

and an order promising framework where demands that are available are accepted or 

rejected based on current inventories current prices and anticipated future demands and 

price. A full investigation of how these technical capabilities can lead to better planning 

in real sawmills remains to be accomplished. 
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APPENDIX A: GENERATION OF SHADOW PRICE 
 

The model coded in GLPK produces *.mod file and converted into *.lp file to solve by 

using Gurobi 5.5 solver. As the MIP solution does not produce shadow price, the model 

is optimize first (m.optimize) and fixed the integer variable values (m.fixed) and solved 

the model again (mfix.optimize) as a linear programming model. The product shadow 

prices are collected from the inventory constraints. 

 

m = read("C:/Documents and Settings/Dalhousie/Desktop/Research_Sharif/Production 

run for 13 weeks_120Campaign/blv.lp") 

m.optimize() 

mfix = m.fixed() 

mfix.optimize() 

con=mfix.getConstrs() 

shadowPrice=[] 

for i in range(1066,2106):  

    x= con[i].getAttr('Pi') 

    nm= con[i].getAttr('ConstrName') 

    data=(i,nm,x) 

    shadowPrice.append(data) 

    shadowPrice.append(data) 

    shadowPrice.append(data) 

 

import csv 

b = open('C:/Documents and Settings/Dalhousie/Desktop/Research_Sharif/Production 

run for 13 weeks_120Campaign/shadowPrice.csv', 'wb') 

a = csv.writer(b) 

a.writerows(shadowPrice) 

b.close() 
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APPENDIX B: GLPK CODE 

 
The model is coded in GLPK environment. The model objective is to maximize the total 

revenue. The objective function, equation 4.1, is coded in such a way that every variable 

upper and lower bound and the variable coefficient is accessiable through Gurobi solver 

5.5. Every constraints name (constraints 4.1-4.23) is defined so that any modification is 

needed for a specific constraint can be accessiable by name. The initial parameter values 

are read from *.csv file 

 

param m, integer, >0; 

/* m for number of product types */ 

 

param n, integer, >0; 

/* n for number of campaigns */ 

 

param pr, integer, >0; 

/* pr for number of periods */ 

 

param lev, integer, >0; 

/* for number of market levels */ 

 

param cNo, integer, >0; 

/*for number of classes*/ 

 

param ProdRate, integer, >0 ; 

  

set I := 1..m; 

/* I set of product types*/  

 

set S := 1..2; 

/*S set of spieces */ 

 

set K := 1..n; 

/* K set of campaigns*/ 

 

set T := 1..pr; 

/* T set of periods */ 

 

set C := 1..cNo; 
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/*C set of Class*/ 

 

set TI := 0..pr; 

 

set Q dimen 3; 

/* holding cost */ 

 

set ZZ dimen 3; 

/* output */ 

 

set mx dimen 3; 

set mn dimen 3; 

set smx dimen 3; 

set smn dimen 3; 

set inp dimen 2;  

set res dimen 2; 

set KK dimen 1; 

set KKK dimen 1; 

set Fccc dimen 3; 

set vccc1 dimen 3; 

set vccc2 dimen 3; 

set vccc3 dimen 3; 

set ppp dimen 3; 

set ppp1 dimen 3; 

set ppp2 dimen 3; 

set ppp3 dimen 3; 

set inIn dimen 2; 

set KC within K cross C ; 

 

 

param PC:= 20; 

/*Penalty Cost for out of range inventory */ 

 

param ST >=0, default 1.0/240. ; 

/*setup time for campaign 10min */ 

 

param STC>=0, default 1.0/80.; 

/*setup time for class 30min*/ 

 

param mem{k in K, c in C},>=0; 

/*shows campaigns of each class*/ 

 

table tab_membership IN "CSV" "Data5.csv": 

  KC <- [Campaign, Class], mem ~ member; 

 

param CountMem{c in C}, default sum{k in K:(k,c) in KC} 1; 
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param h{i in I, s in S, t in T}, >= 0; 

/* inventory holding cost for product i in period t */ 

 

table tab_holdingcost IN "CSV" "Data.csv" : 

  Q <- [Product, Species, Period], h ~ holding; 

 

param sMin{i in I, s in S, t in T}, >= 0; 

/* the minimum allowable sales of product i in period t */ 

 

table tab_smin IN "CSV" "Data.csv" : 

  smn <- [Product, Species, Period], sMin ~ saleMin; 

 

param sMax{i in I, s in S, t in T}, >= 0; 

/* the maximum allowable sales of product i in period t */ 

 

table tab_smax IN "CSV" "Data.csv" : 

  smx <- [Product, Species, Period], sMax ~ saleMax; 

 

param iMin{i in I, s in S, t in T}, >= 0; 

/* the minimum allowable inventory of product i in period t */ 

 

table tab_invmin IN "CSV" "Data.csv" : 

  mn <- [Product, Species, Period], iMin ~ InvMin; 

 

#param iMax{i in I, s in S, t in T}, >= 0; 

#/* the maximum allowable inventory of product i in period t */ 

 

#table tab_invmax IN "CSV" "Data.csv" : 

#  mx <- [Product, Species, Period], iMax ~ InvMax; 

 

param Fcost{i in I, s in S, t in T}, >= 0; 

/* Selling price for product i in period t at level L*/ 

 

table tab_costmx IN "CSV" "demand1.csv" : 

  Fccc <- [Product, Species, Period], Fcost ~ fprice;  

 

param Vcost1{i in I, s in S, t in T}, >= 0; 

/* Selling price for product i in period t at level L*/ 

 

table tab_costmx IN "CSV" "demand1.csv" : 

  vccc1 <- [Product, Species, Period], Vcost1 ~ vprice1;  

   

param Vcost2{i in I, s in S, t in T}, >= 0; 

/* Selling price for product i in period t at level L*/ 
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table tab_costmx IN "CSV" "demand1.csv" : 

  vccc2 <- [Product, Species, Period], Vcost2 ~ vprice2;  

 

param Vcost3{i in I, s in S, t in T}, >= 0; 

/* Selling price for product i in period t at level L*/ 

 

table tab_costmx IN "CSV" "demand1.csv" : 

  vccc3 <- [Product, Species, Period], Vcost3 ~ vprice3; 

 

param fd{i in I, s in S, t in T}, >= 0; 

/* product i upper bound for level L at period t */ 

 

table tab_Lmax IN "CSV" "demand1.csv" : 

  ppp <- [Product, Species, Period], fd ~ fdemand;  

 

param vd1{i in I, s in S, t in T}, >= 0; 

/* product i upper bound for level L at period t */ 

 

table tab_Lmax IN "CSV" "demand1.csv" : 

  ppp1 <- [Product, Species, Period], vd1 ~ vdemand1;  

 

param vd2{i in I, s in S, t in T}, >= 0; 

/* product i upper bound for level L at period t */ 

 

table tab_Lmax IN "CSV" "demand1.csv" : 

  ppp2 <- [Product, Species, Period], vd2 ~ vdemand2; 

 

param vd3{i in I, s in S, t in T}, >= 0; 

/* product i upper bound for level L at period t */ 

 

table tab_Lmax IN "CSV" "demand1.csv" : 

  ppp3 <- [Product, Species, Period], vd3 ~ vdemand3;  

 

param V{t in T, k in K}, >= 0; 

/* the maximum amount of input run of campaign k in period t */ 

 

table tab_maxinput IN "CSV" "Data2.csv" : 

  inp <- [Period, Campaign], V ~ Maxinput; 

 

param y{k in K}, >= 0; 

/* volume yield of each campaign */ 

 

table tab_CampaignYeild IN "CSV" "Data3.csv" : 

  KK <- [Campaign], y ~ Yield; 

 

param LogsCost{k in K}, >= 0; 
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/* Log cost per tone */ 

 

table tab_SupplyCost IN "CSV" "Data3.csv" : 

  KKK <- [Campaign], LogsCost ~ LogCost;  

 

param O{i in I, s in S, k in K}, >= 0; 

/* output of product i from campaign k per unit volume input run of campaign k */ 

 

table tab_outputs IN "CSV" "Data4.csv" : 

  ZZ <- [Product, Species, Campaign], O ~ output; 

   

param inInv{i in I, s in S}, >=0; 

/* sets the initial inventory */ 

 

table tab_initial IN "CSV" "Data7.csv" : 

  inIn <- [Product, Species], inInv ~ initial; 

 

/*******************************************************/ 

 

var Sale{i in I, s in S, t in T}, >= 0; 

/* amount of product i sold in market level L at period t */ 

 

var S1{i in I, s in S, t in T}, >= 0; 

/* amount of product i sold in market level L at period t */ 

 

var S2{i in I, s in S, t in T}, >= 0; 

/* amount of product i sold in market level L at period t */ 

 

var S3{i in I, s in S, t in T}, >= 0; 

/* amount of product i sold in market level L at period t */ 

 

var S4{i in I, s in S, t in T}, >= 0; 

/* amount of product i sold in market level L at period t */ 

 

var Inv{i in I, s in S, t in TI},>= 0; 

/* inventory of product i at the end of period t */ 

 

var lostInv{i in I, s in S, t in TI}, >= 0; 

/* Lost Invenotry amount */ 

 

#var extraInv{i in I, s in S, t in T}, >=0; 

#/* Extra Inventory amount */ 

 

var TP{k in K, t in T}, >= 0, <=1; 

/* proportion of time that campaign k is running during period t */ 
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var P{i in I, s in S, t in T}, >= 0; 

/* production of product type i in period t */ 

 

var yP{k in K, t in T}, binary; 

/*binary for setup time for campaigns within each class*/ 

 

var Z{c in C, t in T}, binary; 

/*binary for setup between classes*/ 

 

var toChips{i in I, s in S, t in TI}, >=0; 

 

 

/*******************************************************/ 

 

/* constraints */ 

 

/*1-production */ 

s.t. production{i in I, s in S, t in T} : P[i,s,t] = sum{k in K}TP[k,t]*(O[i,s,k]*V[t,k]); 

   

/* 2-inventory balance */ 

s.t. inventory{i in I, s in S, t in T: i < 41}: Inv[i,s,t]-lostInv[i,s,t]= Inv[i,s,t-1]-lostInv[i,s,t-

1]+ P[i,s,t]- Sale[i,s,t]-toChips[i,s,t]; 

     

s.t. inventoryChips{s in S, t in T}: Inv[41,s,t]-lostInv[41,s,t] = Inv[41,s,t-1]-

lostInv[41,s,t-1]+P[41,s,t]- Sale[41,s,t] +sum{i in I: i<41}(toChips[i,s,t]); 

 

/* 3-time limit */ 

s.t. timeProportion{t in T}: sum{k in K,c in C:(k,c) in KC} (TP[k,t]+ yP[k,t]*ST) + 

sum{c in C}(Z[c,t]*STC) <=1; 

 

/*10- Setup time*/ 

s.t. setupUP{k in K, t in T}: TP[k,t]<=yP[k,t]; 

 

s.t. setupLB{k in K, t in T}: TP[k,t]>=yP[k,t]*ST; 

 

/*11- Setup for class*/ 

s.t. setupclass{k in K, c in C, t in T:(k,c) in KC}:yP[k,t]<=Z[c,t]; 

 

s.t. TotClassSetup{c in C, t in T}:  sum{k in K:(k,c) in KC}  

yP[k,t]<=CountMem[c]*Z[c,t]; 

 

display KC; 

s.t. AtLeastOneInClass{c in C, t in T}:  sum{k in K:(k,c) in KC} yP[k,t]>=Z[c,t]; 

 

s.t. AtLeastOnePerPeriod{t in T}: sum{c in C} Z[c,t] >=1; 
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/*12- Maximum inventory */ 

s.t. maxmimumInv{t in T}: sum{i in I, s in S:i<41}(Inv[i,s,t])<= 4*ProdRate; 

 

/* 8. Starting stock */ 

 

s.t. startlostInv{i in I, s in S}: lostInv[i,s,0]=0;#inlost[i,s]; 

 

s.t. starttoChips{i in I, s in S}:toChips[i,s,0] = 0; 

 

/*9- Market maximum price */ 

s.t. ContractDemand{i in I, s in S, t in T}: S1[i,s,t]=fd[i,s,t];# added new constrain 

 

s.t. SpotDemandLead0{i in I, s in S, t in T}: S2[i,s,t]<=vd1[i,s,t]; # added new constrain 

 

s.t. SpotDemandLead2{i in I, s in S, t in T}: S3[i,s,t]<=vd2[i,s,t]; # added new constrain 

 

s.t. SpotDemandLead3{i in I, s in S, t in T}: S4[i,s,t]<=vd3[i,s,t]; # added new constrain 

 

s.t. totalSale{i in I, s in S, t in T:t<3}: Sale[i,s,t]=S1[i,s,t]+S2[i,s,t];# added new constrain 

 

s.t. totalSale1{i in I, s in S, t in T:t=3}: Sale[i,s,t]=S1[i,s,t]+S2[i,s,t]+S3[i,s,t-2]; 

 

s.t. totalSale2{i in I, s in S, t in T:t>3}: Sale[i,s,t]=S1[i,s,t]+S2[i,s,t]+S3[i,s,t-2]+S4[i,s,t-

3];# added new constrain 

 

/*8.1- Start&finish Inventory */ 

s.t. startInv{i in I, s in S,0}: Inv[i,s,0]= inInv[i,s]; 

 

s.t. endInv{i in I, s in S,t in T:t>12}: Inv[i,s,t] >= Inv[i,s,0] ;  

 

/*13- minimum running time for each class */ 

 

s.t. mintimeClass{t in T,c in C}: sum{k in K:(k,c) in KC} (TP[k,t])>=STC*Z[c,t]; 

 

/*14- number of campaigns*/ 

s.t. maxcam{t in T}: sum{k in K} (yP[k,t]) <= 46; 

 

s.t. maxcls{t in T}: sum{c in C} (Z[c,t]) <= 8; 

 

/*******************************************************/  

 

maximize obj: sum{i in I,s in S, t in T:t<3} (Fcost[i,s,t]*S1[i,s,t]+Vcost1[i,s,t]*S2[i,s,t]- 

h[i,s,t] * Inv[i,s,t] - PC * lostInv[i,s,t])+sum{i in I,s in S, t in T:t=3} 

(Fcost[i,s,t]*S1[i,s,t]+Vcost1[i,s,t]*S2[i,s,t]+Vcost2[i,s,t]*S3[i,s,t-2]- h[i,s,t] * Inv[i,s,t] - 

PC * lostInv[i,s,t])+sum{i in I,s in S, t in T:t>3} 

(Fcost[i,s,t]*S1[i,s,t]+Vcost1[i,s,t]*S2[i,s,t]+Vcost2[i,s,t]*S3[i,s,t-
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2]+Vcost3[i,s,t]*S4[i,s,t-3] - h[i,s,t] * Inv[i,s,t] - PC * lostInv[i,s,t])- sum{t in T, k in K}( 

(TP[k,t]* V[t,k]) * 0.0242646 * LogsCost[k]) ; 

 

/* the objective is to maximze revenue */ 

 

solve; 

 

data; 

   

param m := 41; 

param n := 366; 

param pr := 52; 

param cNo := 8; 

param ProdRate := 128205 ; 

/* weekly production Rate */ 

/*param Factor := 0.0242646; 

 ft^3 to m^3 /1.167 (m^3/tone) */ 

end; 
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APPENDIX C: SOLUTION TECHNIQUE 
 

The model is read in two variable names m and m1. All modifications are made on ‘m’ 

and m1 is used to reset the values of variables upper and lower bound, objective co-

efficient, constraint sense and right hand side value. The solution technique is described 

using the  steps. 

Ste

ps 
Operations Explanation 

1 m = read("C:/Documents and 

Settings/Orderpromising.lp") 
m1 = read("C:/Documents and Settings 

/Orderpromising.lp") 

Read model in two variables 

name 

2 def var_values(m,var3,var2,period) To eliminate variables (14-52 

period)   

3 def cons_RhsValues(m,con3,con2,con1,period)   To relax constrains  (14-52 

period)    

4 m.optimize() For solving model 

5 solution_update(m,var3,var2,solution_period[i]) For updating implementable 

solution 

6 activareNextPeriodVariable(m,m1,var3,var2,peri

od[0]) 
Activate period 14  variables 

and objective coefficient 

comparing with m1 
7 activareNextPeriodConstrain(m,m1,con3,con2,c

on1,period[0]) 
Activate period 14  constraints 

comparing with m1 

8 relaxedPreviousPeriodEndInventoryConstrain(m

,con,conperiod[0]) 
Period 13, now end inventory 

is on period 14 

9 setVariabkeDemand(m,demand,newDemandPeri

od) 
For updating demand- period 

2-14 

10 setVariabkePrice(m,price,newDemandPeriod) For updating price- period 2-

14 

11 m.update() For updating model 
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12 m.optimize() For solving problem 

13 Repeat from 5  

 

SCENARIO 1 

 

#********************************************************************* 

#********************************************************************* 

 

def var_values(m,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(period)):  

            for k in range(len(var3)): 

                if name[0]==var3[k] and varPeriod[2]==period[j]: #Take care on varPeriod[] 

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

            for k in range(len(var2)): 

                if name[0]==var2[k] and varPeriod[1]==period[j]: #Take care on varPeriod[] 

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def cons_RhsValues(m,con3,con2,con1,period):  #To relax constrains   

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')         

        for j in range(len(period)): 

            for k in range(len(con3)): 

                if name[0]==con3[k] and conPeriod1[2]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 
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                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con2)): 

                if name[0]==con2[k] and conPeriod1[1]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con1)): 

                if name[0]==con1[k] and conPeriod[1]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',50000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-5000000000000)   

                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************** 

 

def relaxedPreviousPeriodEndInventoryConstrain(m,con3,period):  #To relax end 

inventory constrains   

    cons_list=m.getConstrs() 

    #print '---------------',con3,period 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        #print '-------------------',name[0],conPeriod1[2] 

        if name[0]==con3 and conPeriod1[2]==period: #Take care on conPeriod[]                       

            #print cons_list[i].getAttr('ConstrName'),conPeriod1[2] 
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            cons_sense=cons_list[i].getAttr('Sense') 

            if cons_sense=='<': 

                cons_list[i].setAttr('RHS',5000000000000) 

            elif cons_sense=='>': 

                cons_list[i].setAttr('RHS',-5000000000000) 

            else: 

                cons_list[i].setAttr('Sense','>') 

                cons_list[i].setAttr('RHS',-50000000000)                               

    return m.update() 

 

 

 

#********************************************************************* 

#********************************************************************** 

 

 

def solution_update(m,var3,var2,solution_period): # To update solution 

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodVariable(m,m1,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 

    var_list1=m1.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  
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        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print var_list[i].getAttr('varName') 

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print r 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodConstrain(m,m1,con3,con2,con1,period):  #To add next period 

constrain 

    cons_list=m.getConstrs() 

    cons_list1=m1.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')  

        for k in range(len(con3)): 

            if name[0]==con3[k] and conPeriod1[2]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS') 

        for k in range(len(con2)): 

            if name[0]==con2[k] and conPeriod1[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

        for k in range(len(con1)): 

            if name[0]==con1[k] and conPeriod[1]==period: #Take care on conPeriod[]                       
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                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS')                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkeDemand(m,demand,newDemandPeriod):  #To add next period constrain 

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(')         

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',')              

        for j in range(len(newDemandPeriod)): 

            if name[0]==demand[0] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]             

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d1=0.25*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d1) 

                p1=name,d1 

                demands1.append(p1) 

                #print name,d1 

            if name[0]==demand[1] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d2=random.uniform(0.20,0.30)*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d2) 

                p2=name,d2 

                demands2.append(p2) 

            if name[0]==demand[2] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                productnumber=name[1].split(',') 

                d3=random.uniform(0.30,0.35)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d3) 

                p3=name,d3 

                demands3.append(p3) 

            if name[0]==demand[3] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[] 

                productnumber=name[1].split(',') 

                d4=random.uniform(0.30,0.35)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 



118 

 

                cons_list[i].setAttr('RHS',d4) 

                p4=name,d4 

                demands4.append(p4) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkePrice(m,price,newDemandPeriod): #To eleminate variable 

    var_list=m.getVars()     

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(newDemandPeriod)):              

            if name[0]==price[0] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                productnumber=name[1].split(',') 

                price1=lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price1) 

                #print name,lumberprice[int(productnumber[0])] 

                p11=name,price1 

                fixeddemandlogprice.append(p11) 

            if name[0]==price[1] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price2=random.uniform(1.1,1.5)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price2) 

                p22=name,price2 

                variabledemandlogprice1.append(p22) 

            if name[0]==price[2] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price3=random.uniform(1.0,1.4)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price3) 

                p33=name,price3 

                variabledemandlogprice2.append(p33) 

            if name[0]==price[3] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price4=random.uniform(0.9,1.3)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price4) 

                p44=name,price4 

                variabledemandlogprice3.append(p44) 

    return m.update() 
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#********************************************************************* 

#********************************************************************* 

 

#Main program 

from collections import deque 

import random 

m = read("C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/Orderpromising.lp") 

m1 = read("C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/Orderpromising.lp") 

period=deque(['14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','

29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47

)','48)','49)','50)','51)','52)']) 

conperiod=deque(['13)','14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','2

7)','28)','29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)'

,'46)','47)','48)','49)','50)','51)']) 

solution_period=['1)','2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','

18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36

)','37)','38)','39)'] 

totalPeriod=deque(['2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','1

8)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36)'

,'37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47)','48)','49)','50)','51)','52)']) 

#Variables********************************************** 

var3=['Inv','lostInv','toChips','P','Sale','S1','S2','S3','S4'] 

var2=['TP','yP','Z'] 

var_values(m,var3,var2,period) 

#******************************************************** 

#Constrains************************************************************ 

con3=['production','inventory','saleUB','InvLB','setupclass','startInv','endInv','ContractDe

mand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead3','totalSale2'] 

con2=['inventoryChips','setupUP','setupLB','TotClassSetup','AtLeastOneInClass','mintim

eClass'] 

con1=['timeProportion','AtLeastOnePerPeriod','maxmimumInv','maxcam','maxcls'] 

cons_RhsValues(m,con3,con2,con1,period) 

#********************************************************************** 

demand=['ContractDemand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead

3'] 

price=['S1','S2','S3','S4'] 

 

global 

demandamount,lumberprice,demands1,demands2,demands3,demands4,fixeddemandlogp

rice,variabledemandlogprice1,variabledemandlogprice2,variabledemandlogprice3 

demandamount=[0,3914,3715,2721,2461,2936,10470,2461,3473,1806,2978,1465,2756,2

675,1925,1563,4793,6226,3925,4196,1840,7532,6967,3985,3761,2645,5514,3070, 

3269,2029,2094,2413,2827,2094,1435,415,3576,3075,1759,1261,183,1000] 
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lumberprice=[0,4.422433,4.519666,4.616899,4.714132,4.811365,4.58502,4.682198,4.77

9375,4.876553,4.97373,5.361465,5.458531,5.555598,5.652664,5.74973,5.48813,5.58508

5,5.68204,5.778995,5.87595,5.74146,5.838193,5.934925,6.031658,6.12839,5.99479,6.09

13,6.18781,6.284321,6.380831,6.24812,6.344408,6.440696,6.536983,6.633271,6.50145,

6.597516,6.693581,6.789646,6.885711,4.1456] 

demands1=[] 

demands2=[] 

demands3=[] 

demands4=[] 

fixeddemandlogprice=[] 

variabledemandlogprice1=[] 

variabledemandlogprice2=[] 

variabledemandlogprice3=[] 

# Solution 

m.setParam("MIPGap",0.04) 

m.optimize() 

variables=[] 

totalsales=[] 

totalChips=[] 

variables1=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    p=(i,nm,x) 

    variables.append(p) 

    if x>0 : 

        p111=(i,nm,x) 

        variables1.append(p111) 

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='Sale': 

        s=(i,nm,x) 

        totalsales.append(s) 

    if name10[0]=='toChips': 

        s=(i,nm,x) 

        totalChips.append(s) 

     

 

import csv 

b = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising.csv'

, 'wb') 

a = csv.writer(b) 

a.writerows(variables) 

b.close() 
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b1 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand.csv', 'wb') 

a1 = csv.writer(b1) 

a1.writerows(demands1) 

b1.close() 

 

b2 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_Sal

es.csv', 'wb') 

a2 = csv.writer(b2) 

a2.writerows(totalsales) 

b2.close() 

 

 

b3 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_to

Chips.csv', 'wb') 

a3 = csv.writer(b3) 

a3.writerows(totalChips) 

b3.close() 

 

b4 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_fix

eddemandlogprices.csv', 'wb') 

a4 = csv.writer(b4) 

a4.writerows(fixeddemandlogprice) 

b4.close() 

 

b5 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice1.csv', 'wb') 

a5 = csv.writer(b5) 

a5.writerows(variabledemandlogprice1) 

b5.close() 

 

b6 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice2.csv', 'wb') 

a6 = csv.writer(b6) 

a6.writerows(variabledemandlogprice2) 

b6.close() 

 

b7 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice3.csv', 'wb') 
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a7 = csv.writer(b7) 

a7.writerows(variabledemandlogprice3) 

b7.close() 

 

b8 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising1.cs

v', 'wb') 

a8 = csv.writer(b8) 

a8.writerows(variables1) 

b8.close() 

 

totalS3=[] 

totalS4=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='S3': 

        s3=(i,nm,x) 

        totalS3.append(s3) 

    if name10[0]=='S4': 

        s4=(i,nm,x) 

        totalS4.append(s4) 

 

b9 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/S3.csv', 'wb') 

a9 = csv.writer(b9) 

a9.writerows(totalS3) 

b9.close() 

 

b10 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/S4.csv', 'wb') 

a10 = csv.writer(b10) 

a10.writerows(totalS4) 

b10.close() 

 

totalTP=[] 

totalyP=[] 

totalZ=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='TP': 
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        if x>0 : 

            tp=(i,nm,x) 

            totalTP.append(tp) 

    if name10[0]=='yP': 

        if x>0 : 

            yp=(i,nm,x) 

            totalyP.append(yp) 

    if name10[0]=='Z': 

        if x>0 : 

            z=(i,nm,x) 

            totalZ.append(z) 

 

b11 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/TP.csv', 'wb') 

a11 = csv.writer(b11) 

a11.writerows(totalTP) 

b11.close() 

 

b12 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/yP.csv', 'wb') 

a12 = csv.writer(b12) 

a12.writerows(totalyP) 

b12.close() 

 

b13 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Z.csv', 'wb') 

a13 = csv.writer(b13) 

a13.writerows(totalZ) 

b13.close() 

 

b14 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand1.csv', 'wb') 

a14 = csv.writer(b14) 

a14.writerows(demands1) 

b14.close() 

 

b15 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand2.csv', 'wb') 

a15 = csv.writer(b15) 

a15.writerows(demands2) 

b15.close() 
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b16 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand3.csv', 'wb') 

a16 = csv.writer(b16) 

a16.writerows(demands3) 

b16.close() 

 

b17 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand4.csv', 'wb') 

a17 = csv.writer(b17) 

a17.writerows(demands4) 

b17.close() 

 

 

SCENARIO 2 

 

#********************************************************************* 

#********************************************************************* 

 

def var_values(m,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(period)):  

            for k in range(len(var3)): 

                if name[0]==var3[k] and varPeriod[2]==period[j]:  

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

            for k in range(len(var2)): 

                if name[0]==var2[k] and varPeriod[1]==period[j]:  

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

def cons_RhsValues(m,con3,con2,con1,period):  #To relax constrains   

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 
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        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')         

        for j in range(len(period)): 

            for k in range(len(con3)): 

                if name[0]==con3[k] and conPeriod1[2]==period[j]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con2)): 

                if name[0]==con2[k] and conPeriod1[1]==period[j]:  

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con1)): 

                if name[0]==con1[k] and conPeriod[1]==period[j]:  

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',50000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-5000000000000)   

                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************** 

 

def relaxedPreviousPeriodEndInventoryConstrain(m,con3,period):  #To relax end 

inventory constrains   

    cons_list=m.getConstrs() 
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    #print '---------------',con3,period 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        #print '-------------------',name[0],conPeriod1[2] 

        if name[0]==con3 and conPeriod1[2]==period:  

            #print cons_list[i].getAttr('ConstrName'),conPeriod1[2] 

            cons_sense=cons_list[i].getAttr('Sense') 

            if cons_sense=='<': 

                cons_list[i].setAttr('RHS',5000000000000) 

            elif cons_sense=='>': 

                cons_list[i].setAttr('RHS',-5000000000000) 

            else: 

                cons_list[i].setAttr('Sense','>') 

                cons_list[i].setAttr('RHS',-50000000000)                               

    return m.update() 

 

#********************************************************************* 

#********************************************************************** 

 

def solution_update(m,var3,var2,solution_period): # To update solution 

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodVariable(m,m1,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 
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    var_list1=m1.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print var_list[i].getAttr('varName') 

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print r 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodConstrain(m,m1,con3,con2,con1,period):   

    cons_list=m.getConstrs() 

    cons_list1=m1.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')  

        for k in range(len(con3)): 

            if name[0]==con3[k] and conPeriod1[2]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS') 

        for k in range(len(con2)): 

            if name[0]==con2[k] and conPeriod1[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 
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                cons_list[i].setAttr('RHS',cons_RHS) 

        for k in range(len(con1)): 

            if name[0]==con1[k] and conPeriod[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS')                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkeDemand(m,demand,newDemandPeriod):  #To add next period constrain 

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(')         

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',')              

        for j in range(len(newDemandPeriod)): 

            if name[0]==demand[0] and conPeriod1[2]==newDemandPeriod[j]:  

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d1=0.20*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d1) 

                p1=name,d1 

                demands1.append(p1) 

                #print name,d1 

            if name[0]==demand[1] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d2=random.uniform(0.15,0.35)*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d2) 

                p2=name,d2 

                demands2.append(p2) 

            if name[0]==demand[2] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                productnumber=name[1].split(',') 

                d3=random.uniform(0.15,0.35)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d3) 

                p3=name,d3 

                demands3.append(p3) 

            if name[0]==demand[3] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[] 

                productnumber=name[1].split(',') 
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                d4=random.uniform(0.15,0.35)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d4) 

                p4=name,d4 

                demands4.append(p4) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkePrice(m,price,newDemandPeriod): #To eleminate variable 

    var_list=m.getVars()     

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(newDemandPeriod)):              

            if name[0]==price[0] and varPeriod[2]==newDemandPeriod[j]: 

                productnumber=name[1].split(',') 

                price1=lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price1) 

                #print name,lumberprice[int(productnumber[0])] 

                p11=name,price1 

                fixeddemandlogprice.append(p11) 

            if name[0]==price[1] and varPeriod[2]==newDemandPeriod[j]: 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price2=random.uniform(1.2,1.4)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price2) 

                p22=name,price2 

                variabledemandlogprice1.append(p22) 

            if name[0]==price[2] and varPeriod[2]==newDemandPeriod[j]: 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price3=random.uniform(1.1,1.3)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price3) 

                p33=name,price3 

                variabledemandlogprice2.append(p33) 

            if name[0]==price[3] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price4=random.uniform(1.0,1.2)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price4) 

                p44=name,price4 

                variabledemandlogprice3.append(p44) 

    return m.update() 

#********************************************************************* 
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#********************************************************************* 

 

#Main program 

from collections import deque 

import random 

m = read("C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/Orderpromising.lp") 

m1 = read("C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/Orderpromising.lp") 

period=deque(['14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','

29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47

)','48)','49)','50)','51)','52)']) 

conperiod=deque(['13)','14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','2

7)','28)','29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)'

,'46)','47)','48)','49)','50)','51)']) 

solution_period=['1)','2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','

18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36

)','37)','38)','39)'] 

totalPeriod=deque(['2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','1

8)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36)'

,'37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47)','48)','49)','50)','51)','52)']) 

#Variables********************************************** 

var3=['Inv','lostInv','toChips','P','Sale','S1','S2','S3','S4'] 

var2=['TP','yP','Z'] 

var_values(m,var3,var2,period) 

#******************************************************** 

#Constrains************************************************************ 

con3=['production','inventory','saleUB','InvLB','setupclass','startInv','endInv','ContractDe

mand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead3','totalSale2'] 

con2=['inventoryChips','setupUP','setupLB','TotClassSetup','AtLeastOneInClass','mintim

eClass'] 

con1=['timeProportion','AtLeastOnePerPeriod','maxmimumInv','maxcam','maxcls'] 

cons_RhsValues(m,con3,con2,con1,period) 

#********************************************************************** 

demand=['ContractDemand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead

3'] 

price=['S1','S2','S3','S4'] 

 

global 

demandamount,lumberprice,demands1,demands2,demands3,demands4,fixeddemandlogp

rice,variabledemandlogprice1,variabledemandlogprice2,variabledemandlogprice3 

demandamount=[0,3914,3715,2721,2461,2936,10470,2461,3473,1806,2978,1465,2756,2

675,1925,1563,4793,6226,3925,4196,1840,7532,6967,3985,3761,2645,5514,3070, 

3269,2029,2094,2413,2827,2094,1435,415,3576,3075,1759,1261,183,1000] 

lumberprice=[0,4.422433,4.519666,4.616899,4.714132,4.811365,4.58502,4.682198,4.77

9375,4.876553,4.97373,5.361465,5.458531,5.555598,5.652664,5.74973,5.48813,5.58508
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5,5.68204,5.778995,5.87595,5.74146,5.838193,5.934925,6.031658,6.12839,5.99479,6.09

13,6.18781,6.284321,6.380831,6.24812,6.344408,6.440696,6.536983,6.633271,6.50145,

6.597516,6.693581,6.789646,6.885711,3.1456] 

demands1=[] 

demands2=[] 

demands3=[] 

demands4=[] 

fixeddemandlogprice=[] 

variabledemandlogprice1=[] 

variabledemandlogprice2=[] 

variabledemandlogprice3=[] 

 

for i in range (len(solution_period)): 

    m.setParam("MIPGap",0.04) 

    #m.setParam("timeLimit",150) 

    m.optimize() 

    solution_update(m,var3,var2,solution_period[i]) 

    print '*****************Variables value binding period',solution_period[i] 

    print '****************Add constrain and variable period',period[0] 

    print '****************Relaxed end inventory constrain ',conperiod[0] 

     

    activareNextPeriodVariable(m,m1,var3,var2,period[0]) 

    activareNextPeriodConstrain(m,m1,con3,con2,con1,period[0]) 

    con='endInv' 

    relaxedPreviousPeriodEndInventoryConstrain(m,con,conperiod[0]) 

    newDemandPeriod=[] 

    for j in range (13): 

        newDemandPeriod.append(totalPeriod[j]) 

    print newDemandPeriod 

    setVariabkeDemand(m,demand,newDemandPeriod) 

    setVariabkePrice(m,price,newDemandPeriod)     

    m.update() 

    period.popleft()     

    conperiod.popleft() 

    totalPeriod.popleft() 

 

     

# Solution Output 

m.optimize() 

variables=[] 

totalsales=[] 

totalChips=[] 

variables1=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 
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    nm=vars1[i].getAttr('VarName')     

    p=(i,nm,x) 

    variables.append(p) 

    if x>0 : 

        p111=(i,nm,x) 

        variables1.append(p111) 

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='Sale': 

        s=(i,nm,x) 

        totalsales.append(s) 

    if name10[0]=='toChips': 

        s=(i,nm,x) 

        totalChips.append(s) 

     

import csv 

b = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising.csv'

, 'wb') 

a = csv.writer(b) 

a.writerows(variables) 

b.close() 

 

b1 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand.csv', 'wb') 

a1 = csv.writer(b1) 

a1.writerows(demands1) 

b1.close() 

 

b2 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_Sal

es.csv', 'wb') 

a2 = csv.writer(b2) 

a2.writerows(totalsales) 

b2.close() 

 

 

b3 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_to

Chips.csv', 'wb') 

a3 = csv.writer(b3) 

a3.writerows(totalChips) 

b3.close() 
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b4 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_fix

eddemandlogprices.csv', 'wb') 

a4 = csv.writer(b4) 

a4.writerows(fixeddemandlogprice) 

b4.close() 

 

b5 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice1.csv', 'wb') 

a5 = csv.writer(b5) 

a5.writerows(variabledemandlogprice1) 

b5.close() 

 

b6 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice2.csv', 'wb') 

a6 = csv.writer(b6) 

a6.writerows(variabledemandlogprice2) 

b6.close() 

 

b7 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice3.csv', 'wb') 

a7 = csv.writer(b7) 

a7.writerows(variabledemandlogprice3) 

b7.close() 

 

b8 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising1.cs

v', 'wb') 

a8 = csv.writer(b8) 

a8.writerows(variables1) 

b8.close() 

 

totalS3=[] 

totalS4=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='S3': 

        s3=(i,nm,x) 

        totalS3.append(s3) 

    if name10[0]=='S4': 
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        s4=(i,nm,x) 

        totalS4.append(s4) 

 

b9 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/S3.csv', 'wb') 

a9 = csv.writer(b9) 

a9.writerows(totalS3) 

b9.close() 

 

b10 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/S4.csv', 'wb') 

a10 = csv.writer(b10) 

a10.writerows(totalS4) 

b10.close() 

 

totalTP=[] 

totalyP=[] 

totalZ=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='TP': 

        if x>0 : 

            tp=(i,nm,x) 

            totalTP.append(tp) 

    if name10[0]=='yP': 

        if x>0 : 

            yp=(i,nm,x) 

            totalyP.append(yp) 

    if name10[0]=='Z': 

        if x>0 : 

            z=(i,nm,x) 

            totalZ.append(z) 

 

b11 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/TP.csv', 'wb') 

a11 = csv.writer(b11) 

a11.writerows(totalTP) 

b11.close() 

 

b12 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/yP.csv', 'wb') 

a12 = csv.writer(b12) 

a12.writerows(totalyP) 
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b12.close() 

 

b13 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Z.csv', 'wb') 

a13 = csv.writer(b13) 

a13.writerows(totalZ) 

b13.close() 

 

b14 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand1.csv', 'wb') 

a14 = csv.writer(b14) 

a14.writerows(demands1) 

b14.close() 

 

b15 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand2.csv', 'wb') 

a15 = csv.writer(b15) 

a15.writerows(demands2) 

b15.close() 

 

b16 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand3.csv', 'wb') 

a16 = csv.writer(b16) 

a16.writerows(demands3) 

b16.close() 

 

b17 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand4.csv', 'wb') 

a17 = csv.writer(b17) 

a17.writerows(demands4) 

b17.close() 

 

 

 

SCENARIO 3 

 

#********************************************************************* 

#********************************************************************* 

 

def var_values(m,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 
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    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(period)):  

            for k in range(len(var3)): 

                if name[0]==var3[k] and varPeriod[2]==period[j]: #Take care on varPeriod[] 

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

            for k in range(len(var2)): 

                if name[0]==var2[k] and varPeriod[1]==period[j]: #Take care on varPeriod[] 

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def cons_RhsValues(m,con3,con2,con1,period):  #To relax constrains   

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')         

        for j in range(len(period)): 

            for k in range(len(con3)): 

                if name[0]==con3[k] and conPeriod1[2]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con2)): 

                if name[0]==con2[k] and conPeriod1[1]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 
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                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con1)): 

                if name[0]==con1[k] and conPeriod[1]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',50000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-5000000000000)   

                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************** 

 

def relaxedPreviousPeriodEndInventoryConstrain(m,con3,period):  #To relax end 

inventory constrains   

    cons_list=m.getConstrs() 

    #print '---------------',con3,period 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        #print '-------------------',name[0],conPeriod1[2] 

        if name[0]==con3 and conPeriod1[2]==period: #Take care on conPeriod[]                       

            #print cons_list[i].getAttr('ConstrName'),conPeriod1[2] 

            cons_sense=cons_list[i].getAttr('Sense') 

            if cons_sense=='<': 

                cons_list[i].setAttr('RHS',5000000000000) 

            elif cons_sense=='>': 

                cons_list[i].setAttr('RHS',-5000000000000) 

            else: 

                cons_list[i].setAttr('Sense','>') 

                cons_list[i].setAttr('RHS',-50000000000)                               

    return m.update() 

 

 

 

#********************************************************************* 

#********************************************************************** 
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def solution_update(m,var3,var2,solution_period): # To update solution 

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodVariable(m,m1,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 

    var_list1=m1.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print var_list[i].getAttr('varName') 

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 
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                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print r 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodConstrain(m,m1,con3,con2,con1,period):  #To add next period 

constrain 

    cons_list=m.getConstrs() 

    cons_list1=m1.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')  

        for k in range(len(con3)): 

            if name[0]==con3[k] and conPeriod1[2]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS') 

        for k in range(len(con2)): 

            if name[0]==con2[k] and conPeriod1[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

        for k in range(len(con1)): 

            if name[0]==con1[k] and conPeriod[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS')                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkeDemand(m,demand,newDemandPeriod):  #To add next period constrain 

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(')         
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        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',')              

        for j in range(len(newDemandPeriod)): 

            if name[0]==demand[0] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]             

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d1=0.30*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d1) 

                p1=name,d1 

                demands1.append(p1) 

                #print name,d1 

            if name[0]==demand[1] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d2=random.uniform(0.25,0.35)*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d2) 

                p2=name,d2 

                demands2.append(p2) 

            if name[0]==demand[2] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                productnumber=name[1].split(',') 

                d3=random.uniform(0.25,0.35)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d3) 

                p3=name,d3 

                demands3.append(p3) 

            if name[0]==demand[3] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[] 

                productnumber=name[1].split(',') 

                d4=random.uniform(0.25,0.35)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d4) 

                p4=name,d4 

                demands4.append(p4) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkePrice(m,price,newDemandPeriod): #To eleminate variable 

    var_list=m.getVars()     

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(newDemandPeriod)):              
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            if name[0]==price[0] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                productnumber=name[1].split(',') 

                price1=lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price1) 

                #print name,lumberprice[int(productnumber[0])] 

                p11=name,price1 

                fixeddemandlogprice.append(p11) 

            if name[0]==price[1] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price2=random.uniform(1.1,1.5)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price2) 

                p22=name,price2 

                variabledemandlogprice1.append(p22) 

            if name[0]==price[2] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price3=random.uniform(1.0,1.4)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price3) 

                p33=name,price3 

                variabledemandlogprice2.append(p33) 

            if name[0]==price[3] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price4=random.uniform(0.9,1.3)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price4) 

                p44=name,price4 

                variabledemandlogprice3.append(p44) 

    return m.update() 

#********************************************************************* 

#********************************************************************* 

 

#Main program 

from collections import deque 

import random 

m = read("C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/Orderpromising.lp") 

m1 = read("C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/Orderpromising.lp") 

period=deque(['14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','

29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47

)','48)','49)','50)','51)','52)']) 
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conperiod=deque(['13)','14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','2

7)','28)','29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)'

,'46)','47)','48)','49)','50)','51)']) 

solution_period=['1)','2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','

18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36

)','37)','38)','39)'] 

totalPeriod=deque(['2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','1

8)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36)'

,'37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47)','48)','49)','50)','51)','52)']) 

#Variables********************************************** 

var3=['Inv','lostInv','toChips','P','Sale','S1','S2','S3','S4'] 

var2=['TP','yP','Z'] 

var_values(m,var3,var2,period) 

#******************************************************** 

#Constrains************************************************************ 

con3=['production','inventory','saleUB','InvLB','setupclass','startInv','endInv','ContractDe

mand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead3','totalSale2'] 

con2=['inventoryChips','setupUP','setupLB','TotClassSetup','AtLeastOneInClass','mintim

eClass'] 

con1=['timeProportion','AtLeastOnePerPeriod','maxmimumInv','maxcam','maxcls'] 

cons_RhsValues(m,con3,con2,con1,period) 

#********************************************************************** 

demand=['ContractDemand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead

3'] 

price=['S1','S2','S3','S4'] 

 

global 

demandamount,lumberprice,demands1,demands2,demands3,demands4,fixeddemandlogp

rice,variabledemandlogprice1,variabledemandlogprice2,variabledemandlogprice3 

demandamount=[0,3914,3715,2721,2461,2936,10470,2461,3473,1806,2978,1465,2756,2

675,1925,1563,4793,6226,3925,4196,1840,7532,6967,3985,3761,2645,5514,3070, 

3269,2029,2094,2413,2827,2094,1435,415,3576,3075,1759,1261,183,1000] 

lumberprice=[0,4.422433,4.519666,4.616899,4.714132,4.811365,4.58502,4.682198,4.77

9375,4.876553,4.97373,5.361465,5.458531,5.555598,5.652664,5.74973,5.48813,5.58508

5,5.68204,5.778995,5.87595,5.74146,5.838193,5.934925,6.031658,6.12839,5.99479,6.09

13,6.18781,6.284321,6.380831,6.24812,6.344408,6.440696,6.536983,6.633271,6.50145,

6.597516,6.693581,6.789646,6.885711,4.1456] 

demands1=[] 

demands2=[] 

demands3=[] 

demands4=[] 

fixeddemandlogprice=[] 

variabledemandlogprice1=[] 

variabledemandlogprice2=[] 

variabledemandlogprice3=[] 
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for i in range (len(solution_period)): 

    m.setParam("MIPGap",0.04) 

    #m.setParam("timeLimit",150) 

    m.optimize() 

    solution_update(m,var3,var2,solution_period[i]) 

    print '*****************Variables value binding period',solution_period[i] 

    print '****************Add constrain and variable period',period[0] 

    print '****************Relaxed end inventory constrain ',conperiod[0] 

     

    activareNextPeriodVariable(m,m1,var3,var2,period[0]) 

    activareNextPeriodConstrain(m,m1,con3,con2,con1,period[0]) 

    con='endInv' 

    relaxedPreviousPeriodEndInventoryConstrain(m,con,conperiod[0]) 

    newDemandPeriod=[] 

    for j in range (13): 

        newDemandPeriod.append(totalPeriod[j]) 

    print newDemandPeriod 

    setVariabkeDemand(m,demand,newDemandPeriod) 

    setVariabkePrice(m,price,newDemandPeriod)     

    m.update() 

    period.popleft()     

    conperiod.popleft() 

    totalPeriod.popleft() 

 

     

# Solution Output 

m.optimize() 

variables=[] 

totalsales=[] 

totalChips=[] 

variables1=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    p=(i,nm,x) 

    variables.append(p) 

    if x>0 : 

        p111=(i,nm,x) 

        variables1.append(p111) 

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='Sale': 

        s=(i,nm,x) 

        totalsales.append(s) 

    if name10[0]=='toChips': 

        s=(i,nm,x) 
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        totalChips.append(s) 

     

 

 

 

import csv 

b = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising.csv'

, 'wb') 

a = csv.writer(b) 

a.writerows(variables) 

b.close() 

 

b1 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand.csv', 'wb') 

a1 = csv.writer(b1) 

a1.writerows(demands1) 

b1.close() 

 

b2 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_Sal

es.csv', 'wb') 

a2 = csv.writer(b2) 

a2.writerows(totalsales) 

b2.close() 

 

 

b3 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_to

Chips.csv', 'wb') 

a3 = csv.writer(b3) 

a3.writerows(totalChips) 

b3.close() 

 

b4 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_fix

eddemandlogprices.csv', 'wb') 

a4 = csv.writer(b4) 

a4.writerows(fixeddemandlogprice) 

b4.close() 

 

b5 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice1.csv', 'wb') 

a5 = csv.writer(b5) 
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a5.writerows(variabledemandlogprice1) 

b5.close() 

 

b6 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice2.csv', 'wb') 

a6 = csv.writer(b6) 

a6.writerows(variabledemandlogprice2) 

b6.close() 

 

b7 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice3.csv', 'wb') 

a7 = csv.writer(b7) 

a7.writerows(variabledemandlogprice3) 

b7.close() 

 

b8 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising1.cs

v', 'wb') 

a8 = csv.writer(b8) 

a8.writerows(variables1) 

b8.close() 

 

totalS3=[] 

totalS4=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='S3': 

        s3=(i,nm,x) 

        totalS3.append(s3) 

    if name10[0]=='S4': 

        s4=(i,nm,x) 

        totalS4.append(s4) 

 

b9 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/S3.csv', 'wb') 

a9 = csv.writer(b9) 

a9.writerows(totalS3) 

b9.close() 

 

b10 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/S4.csv', 'wb') 
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a10 = csv.writer(b10) 

a10.writerows(totalS4) 

b10.close() 

 

totalTP=[] 

totalyP=[] 

totalZ=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='TP': 

        if x>0 : 

            tp=(i,nm,x) 

            totalTP.append(tp) 

    if name10[0]=='yP': 

        if x>0 : 

            yp=(i,nm,x) 

            totalyP.append(yp) 

    if name10[0]=='Z': 

        if x>0 : 

            z=(i,nm,x) 

            totalZ.append(z) 

 

b11 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/TP.csv', 'wb') 

a11 = csv.writer(b11) 

a11.writerows(totalTP) 

b11.close() 

 

b12 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/yP.csv', 'wb') 

a12 = csv.writer(b12) 

a12.writerows(totalyP) 

b12.close() 

 

b13 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Z.csv', 'wb') 

a13 = csv.writer(b13) 

a13.writerows(totalZ) 

b13.close() 
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b14 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand1.csv', 'wb') 

a14 = csv.writer(b14) 

a14.writerows(demands1) 

b14.close() 

 

b15 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand2.csv', 'wb') 

a15 = csv.writer(b15) 

a15.writerows(demands2) 

b15.close() 

 

b16 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand3.csv', 'wb') 

a16 = csv.writer(b16) 

a16.writerows(demands3) 

b16.close() 

 

b17 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand4.csv', 'wb') 

a17 = csv.writer(b17) 

a17.writerows(demands4) 

b17.close() 

 

SCENARIO 4 

 

#********************************************************************* 

#********************************************************************* 

 

def var_values(m,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(period)):  

            for k in range(len(var3)): 

                if name[0]==var3[k] and varPeriod[2]==period[j]: #Take care on varPeriod[] 

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

            for k in range(len(var2)): 
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                if name[0]==var2[k] and varPeriod[1]==period[j]: #Take care on varPeriod[] 

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def cons_RhsValues(m,con3,con2,con1,period):  #To relax constrains   

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')         

        for j in range(len(period)): 

            for k in range(len(con3)): 

                if name[0]==con3[k] and conPeriod1[2]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con2)): 

                if name[0]==con2[k] and conPeriod1[1]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con1)): 

                if name[0]==con1[k] and conPeriod[1]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',50000000000000) 

                    elif cons_sense=='>': 
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                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-5000000000000)   

                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************** 

 

def relaxedPreviousPeriodEndInventoryConstrain(m,con3,period):  #To relax end 

inventory constrains   

    cons_list=m.getConstrs() 

    #print '---------------',con3,period 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        #print '-------------------',name[0],conPeriod1[2] 

        if name[0]==con3 and conPeriod1[2]==period: #Take care on conPeriod[]                       

            #print cons_list[i].getAttr('ConstrName'),conPeriod1[2] 

            cons_sense=cons_list[i].getAttr('Sense') 

            if cons_sense=='<': 

                cons_list[i].setAttr('RHS',5000000000000) 

            elif cons_sense=='>': 

                cons_list[i].setAttr('RHS',-5000000000000) 

            else: 

                cons_list[i].setAttr('Sense','>') 

                cons_list[i].setAttr('RHS',-50000000000)                               

    return m.update() 

 

 

 

#********************************************************************* 

#********************************************************************** 

 

 

def solution_update(m,var3,var2,solution_period): # To update solution 

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 
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                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodVariable(m,m1,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 

    var_list1=m1.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print var_list[i].getAttr('varName') 

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print r 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodConstrain(m,m1,con3,con2,con1,period):  #To add next period 

constrain 
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    cons_list=m.getConstrs() 

    cons_list1=m1.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')  

        for k in range(len(con3)): 

            if name[0]==con3[k] and conPeriod1[2]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS') 

        for k in range(len(con2)): 

            if name[0]==con2[k] and conPeriod1[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

        for k in range(len(con1)): 

            if name[0]==con1[k] and conPeriod[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS')                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkeDemand(m,demand,newDemandPeriod):  #To add next period constrain 

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(')         

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',')              

        for j in range(len(newDemandPeriod)): 

            if name[0]==demand[0] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]             

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d1=0.25*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d1) 

                p1=name,d1 

                demands1.append(p1) 

                #print name,d1 
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            if name[0]==demand[1] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d2=random.uniform(0.20,0.30)*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d2) 

                p2=name,d2 

                demands2.append(p2) 

            if name[0]==demand[2] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                productnumber=name[1].split(',') 

                d3=random.uniform(0.30,0.35)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d3) 

                p3=name,d3 

                demands3.append(p3) 

            if name[0]==demand[3] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[] 

                productnumber=name[1].split(',') 

                d4=random.uniform(0.30,0.35)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d4) 

                p4=name,d4 

                demands4.append(p4) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkePrice(m,price,newDemandPeriod): #To eleminate variable 

    var_list=m.getVars()     

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(newDemandPeriod)):              

            if name[0]==price[0] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                productnumber=name[1].split(',') 

                price1=lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price1) 

                #print name,lumberprice[int(productnumber[0])] 

                p11=name,price1 

                fixeddemandlogprice.append(p11) 

            if name[0]==price[1] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 
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                price2=random.uniform(1.1,1.5)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price2) 

                p22=name,price2 

                variabledemandlogprice1.append(p22) 

            if name[0]==price[2] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price3=random.uniform(1.0,1.4)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price3) 

                p33=name,price3 

                variabledemandlogprice2.append(p33) 

            if name[0]==price[3] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price4=random.uniform(0.9,1.3)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price4) 

                p44=name,price4 

                variabledemandlogprice3.append(p44) 

    return m.update() 

#********************************************************************* 

#********************************************************************* 

 

#Main program 

from collections import deque 

import random 

m = read("C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/Orderpromising.lp") 

m1 = read("C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/Orderpromising.lp") 

period=deque(['14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','

29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47

)','48)','49)','50)','51)','52)']) 

conperiod=deque(['13)','14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','2

7)','28)','29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)'

,'46)','47)','48)','49)','50)','51)']) 

solution_period=['1)','2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','

18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36

)','37)','38)','39)'] 

totalPeriod=deque(['2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','1

8)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36)'

,'37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47)','48)','49)','50)','51)','52)']) 

#Variables********************************************** 

var3=['Inv','lostInv','toChips','P','Sale','S1','S2','S3','S4'] 

var2=['TP','yP','Z'] 
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var_values(m,var3,var2,period) 

#******************************************************** 

#Constrains************************************************************ 

con3=['production','inventory','saleUB','InvLB','setupclass','startInv','endInv','ContractDe

mand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead3','totalSale2'] 

con2=['inventoryChips','setupUP','setupLB','TotClassSetup','AtLeastOneInClass','mintim

eClass'] 

con1=['timeProportion','AtLeastOnePerPeriod','maxmimumInv','maxcam','maxcls'] 

cons_RhsValues(m,con3,con2,con1,period) 

#********************************************************************** 

demand=['ContractDemand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead

3'] 

price=['S1','S2','S3','S4'] 

 

global 

demandamount,lumberprice,demands1,demands2,demands3,demands4,fixeddemandlogp

rice,variabledemandlogprice1,variabledemandlogprice2,variabledemandlogprice3 

demandamount=[0,3914,3715,2721,2461,2936,10470,2461,3473,1806,2978,1465,2756,2

675,1925,1563,4793,6226,3925,4196,1840,7532,6967,3985,3761,2645,5514,3070, 

3269,2029,2094,2413,2827,2094,1435,415,3576,3075,1759,1261,183,1000] 

lumberprice=[0,4.422433,4.519666,4.616899,4.714132,4.811365,4.58502,4.682198,4.77

9375,4.876553,4.97373,5.361465,5.458531,5.555598,5.652664,5.74973,5.48813,5.58508

5,5.68204,5.778995,5.87595,5.74146,5.838193,5.934925,6.031658,6.12839,5.99479,6.09

13,6.18781,6.284321,6.380831,6.24812,6.344408,6.440696,6.536983,6.633271,6.50145,

6.597516,6.693581,6.789646,6.885711,4.1456] 

demands1=[] 

demands2=[] 

demands3=[] 

demands4=[] 

fixeddemandlogprice=[] 

variabledemandlogprice1=[] 

variabledemandlogprice2=[] 

variabledemandlogprice3=[] 

 

for i in range (len(solution_period)): 

    m.setParam("MIPGap",0.04) 

    #m.setParam("timeLimit",150) 

    m.optimize() 

    solution_update(m,var3,var2,solution_period[i]) 

    print '*****************Variables value binding period',solution_period[i] 

    print '****************Add constrain and variable period',period[0] 

    print '****************Relaxed end inventory constrain ',conperiod[0] 

     

    activareNextPeriodVariable(m,m1,var3,var2,period[0]) 

    activareNextPeriodConstrain(m,m1,con3,con2,con1,period[0]) 

    con='endInv' 
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    relaxedPreviousPeriodEndInventoryConstrain(m,con,conperiod[0]) 

    newDemandPeriod=[] 

    for j in range (13): 

        newDemandPeriod.append(totalPeriod[j]) 

    print newDemandPeriod 

    setVariabkeDemand(m,demand,newDemandPeriod) 

    setVariabkePrice(m,price,newDemandPeriod)     

    m.update() 

    period.popleft()     

    conperiod.popleft() 

    totalPeriod.popleft() 

 

     

# Solution Output 

m.optimize() 

variables=[] 

totalsales=[] 

totalChips=[] 

variables1=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    p=(i,nm,x) 

    variables.append(p) 

    if x>0 : 

        p111=(i,nm,x) 

        variables1.append(p111) 

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='Sale': 

        s=(i,nm,x) 

        totalsales.append(s) 

    if name10[0]=='toChips': 

        s=(i,nm,x) 

        totalChips.append(s) 

     

 

import csv 

b = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising.csv'

, 'wb') 

a = csv.writer(b) 

a.writerows(variables) 

b.close() 
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b1 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand.csv', 'wb') 

a1 = csv.writer(b1) 

a1.writerows(demands1) 

b1.close() 

 

b2 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_Sal

es.csv', 'wb') 

a2 = csv.writer(b2) 

a2.writerows(totalsales) 

b2.close() 

 

 

b3 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_to

Chips.csv', 'wb') 

a3 = csv.writer(b3) 

a3.writerows(totalChips) 

b3.close() 

 

b4 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_fix

eddemandlogprices.csv', 'wb') 

a4 = csv.writer(b4) 

a4.writerows(fixeddemandlogprice) 

b4.close() 

 

b5 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice1.csv', 'wb') 

a5 = csv.writer(b5) 

a5.writerows(variabledemandlogprice1) 

b5.close() 

 

b6 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice2.csv', 'wb') 

a6 = csv.writer(b6) 

a6.writerows(variabledemandlogprice2) 

b6.close() 

 

b7 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_var

iabledemandlogprice3.csv', 'wb') 
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a7 = csv.writer(b7) 

a7.writerows(variabledemandlogprice3) 

b7.close() 

 

b8 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising1.cs

v', 'wb') 

a8 = csv.writer(b8) 

a8.writerows(variables1) 

b8.close() 

 

totalS3=[] 

totalS4=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='S3': 

        s3=(i,nm,x) 

        totalS3.append(s3) 

    if name10[0]=='S4': 

        s4=(i,nm,x) 

        totalS4.append(s4) 

 

b9 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/S3.csv', 'wb') 

a9 = csv.writer(b9) 

a9.writerows(totalS3) 

b9.close() 

 

b10 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/S4.csv', 'wb') 

a10 = csv.writer(b10) 

a10.writerows(totalS4) 

b10.close() 

 

totalTP=[] 

totalyP=[] 

totalZ=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='TP': 
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        if x>0 : 

            tp=(i,nm,x) 

            totalTP.append(tp) 

    if name10[0]=='yP': 

        if x>0 : 

            yp=(i,nm,x) 

            totalyP.append(yp) 

    if name10[0]=='Z': 

        if x>0 : 

            z=(i,nm,x) 

            totalZ.append(z) 

 

b11 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/TP.csv', 'wb') 

a11 = csv.writer(b11) 

a11.writerows(totalTP) 

b11.close() 

 

b12 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/yP.csv', 'wb') 

a12 = csv.writer(b12) 

a12.writerows(totalyP) 

b12.close() 

 

b13 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Z.csv', 'wb') 

a13 = csv.writer(b13) 

a13.writerows(totalZ) 

b13.close() 

 

b14 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand1.csv', 'wb') 

a14 = csv.writer(b14) 

a14.writerows(demands1) 

b14.close() 

 

b15 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand2.csv', 'wb') 

a15 = csv.writer(b15) 

a15.writerows(demands2) 

b15.close() 
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b16 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand3.csv', 'wb') 

a16 = csv.writer(b16) 

a16.writerows(demands3) 

b16.close() 

 

b17 = open('C:/Documents and 

Settings/Dalhousie/Desktop/Research/orderpromising52weeks/result/Orderpromising_de

mand4.csv', 'wb') 

a17 = csv.writer(b17) 

a17.writerows(demands4) 

b17.close() 

 

SCENARIO 5 

 

#********************************************************************* 

#********************************************************************* 

 

def var_values(m,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(period)):  

            for k in range(len(var3)): 

                if name[0]==var3[k] and varPeriod[2]==period[j]: #Take care on varPeriod[] 

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

            for k in range(len(var2)): 

                if name[0]==var2[k] and varPeriod[1]==period[j]: #Take care on varPeriod[] 

                    #print var_list[i].getAttr('varName') 

                    var_list[i].setAttr('LB',0) 

                    var_list[i].setAttr('UB',0) 

                    var_list[i].setAttr('Obj',0) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def cons_RhsValues(m,con3,con2,con1,period):  #To relax constrains   

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 
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        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')         

        for j in range(len(period)): 

            for k in range(len(con3)): 

                if name[0]==con3[k] and conPeriod1[2]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con2)): 

                if name[0]==con2[k] and conPeriod1[1]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',5000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-50000000000) 

            for k in range(len(con1)): 

                if name[0]==con1[k] and conPeriod[1]==period[j]: #Take care on conPeriod[]                       

                    #print cons_list[i].getAttr('ConstrName') 

                    cons_sense=cons_list[i].getAttr('Sense') 

                    if cons_sense=='<': 

                        cons_list[i].setAttr('RHS',50000000000000) 

                    elif cons_sense=='>': 

                        cons_list[i].setAttr('RHS',-5000000000000) 

                    else: 

                        cons_list[i].setAttr('Sense','>') 

                        cons_list[i].setAttr('RHS',-5000000000000)   

                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************** 

 

def relaxedPreviousPeriodEndInventoryConstrain(m,con3,period):  #To relax end 

inventory constrains   

    cons_list=m.getConstrs() 



161 

 

    #print '---------------',con3,period 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        #print '-------------------',name[0],conPeriod1[2] 

        if name[0]==con3 and conPeriod1[2]==period: #Take care on conPeriod[]                       

            #print cons_list[i].getAttr('ConstrName'),conPeriod1[2] 

            cons_sense=cons_list[i].getAttr('Sense') 

            if cons_sense=='<': 

                cons_list[i].setAttr('RHS',5000000000000) 

            elif cons_sense=='>': 

                cons_list[i].setAttr('RHS',-5000000000000) 

            else: 

                cons_list[i].setAttr('Sense','>') 

                cons_list[i].setAttr('RHS',-50000000000)                               

    return m.update() 

 

 

 

#********************************************************************* 

#********************************************************************** 

 

 

def solution_update(m,var3,var2,solution_period): # To update solution 

    var_list=m.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==solution_period: #Take care on 

varPeriod[] 

                var_value=var_list[i].getAttr('X') 

                #print var_list[i].getAttr('varName'),var_value 

                var_list[i].setAttr('LB',var_value) 

                var_list[i].setAttr('UB',var_value)  

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 
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def activareNextPeriodVariable(m,m1,var3,var2,period): #To eleminate variable    

    var_list=m.getVars() 

    var_list1=m1.getVars() 

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(')  

        for k in range(len(var3)): 

            if name[0]==var3[k] and varPeriod[2]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print var_list[i].getAttr('varName') 

        for k in range(len(var2)): 

            if name[0]==var2[k] and varPeriod[1]==period: #Take care on varPeriod[] 

                p=var_list1[i].getAttr('LB') 

                q=var_list1[i].getAttr('UB') 

                r=var_list1[i].getAttr('Obj') 

                var_list[i].setAttr('LB',p) 

                var_list[i].setAttr('UB',q) 

                var_list[i].setAttr('Obj',r) 

                #print r 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

 

def activareNextPeriodConstrain(m,m1,con3,con2,con1,period):  #To add next period 

constrain 

    cons_list=m.getConstrs() 

    cons_list1=m1.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(') 

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',') 

        conPeriod=cons_list[i].ConstrName.split('(') # Take care split('(')  

        for k in range(len(con3)): 

            if name[0]==con3[k] and conPeriod1[2]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS') 

        for k in range(len(con2)): 
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            if name[0]==con2[k] and conPeriod1[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

        for k in range(len(con1)): 

            if name[0]==con1[k] and conPeriod[1]==period: #Take care on conPeriod[]                       

                cons_sense=cons_list1[i].getAttr('Sense') 

                cons_RHS=cons_list1[i].getAttr('RHS') 

                cons_list[i].setAttr('Sense',cons_sense) 

                cons_list[i].setAttr('RHS',cons_RHS) 

                #print cons_list[i].getAttr('RHS')                               

    return m.update() 

 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkeDemand(m,demand,newDemandPeriod):  #To add next period constrain 

    cons_list=m.getConstrs() 

    for i in range(len(cons_list)): 

        name=cons_list[i].ConstrName.split('(')         

        conPeriod1=cons_list[i].ConstrName.split(',')# Take care split(',')              

        for j in range(len(newDemandPeriod)): 

            if name[0]==demand[0] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]             

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d1=0.25*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d1) 

                p1=name,d1 

                demands1.append(p1) 

                #print name,d1 

            if name[0]==demand[1] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                #print cons_list[i].getAttr('ConstrName') 

                productnumber=name[1].split(',') 

                d2=random.uniform(0.30,0.35)*demandamount[int(productnumber[0])] 

                cons_list[i].setAttr('RHS',d2) 

                p2=name,d2 

                demands2.append(p2) 

            if name[0]==demand[2] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[]                       

                productnumber=name[1].split(',') 

                d3=random.uniform(0.35,0.40)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d3) 
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                p3=name,d3 

                demands3.append(p3) 

            if name[0]==demand[3] and conPeriod1[2]==newDemandPeriod[j]: #Take care 

on conPeriod[] 

                productnumber=name[1].split(',') 

                d4=random.uniform(0.35,0.40)*demandamount[int(productnumber[0])] 

                #print cons_list[i].getAttr('ConstrName') 

                cons_list[i].setAttr('RHS',d4) 

                p4=name,d4 

                demands4.append(p4) 

    return m.update() 

 

#********************************************************************* 

#********************************************************************* 

def setVariabkePrice(m,price,newDemandPeriod): #To eleminate variable 

    var_list=m.getVars()     

    for i in range(len(var_list)): 

        name=var_list[i].VarName.split('(') 

        varPeriod=var_list[i].VarName.split(',') # Take care split('(') 

        for j in range(len(newDemandPeriod)):              

            if name[0]==price[0] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                productnumber=name[1].split(',') 

                price1=lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price1) 

                #print name,lumberprice[int(productnumber[0])] 

                p11=name,price1 

                fixeddemandlogprice.append(p11) 

            if name[0]==price[1] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price2=random.uniform(1.1,1.5)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price2) 

                p22=name,price2 

                variabledemandlogprice1.append(p22) 

            if name[0]==price[2] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 

                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price3=random.uniform(1.0,1.4)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price3) 

                p33=name,price3 

                variabledemandlogprice2.append(p33) 

            if name[0]==price[3] and varPeriod[2]==newDemandPeriod[j]: #Take care on 

varPeriod[] 
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                #print var_list[i].getAttr('varName') 

                productnumber=name[1].split(',') 

                price4=random.uniform(0.9,1.3)*lumberprice[int(productnumber[0])] 

                var_list[i].setAttr('Obj',price4) 

                p44=name,price4 

                variabledemandlogprice3.append(p44) 

    return m.update() 

#********************************************************************* 

#********************************************************************* 

 

#Main program 

from collections import deque 

import random 

m = read("C:/Users/Sharif/Desktop/orderpromising52weeks/Orderpromising.lp") 

m1 = read("C:/Users/Sharif/Desktop/orderpromising52weeks/Orderpromising.lp") 

period=deque(['14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','

29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47

)','48)','49)','50)','51)','52)']) 

conperiod=deque(['13)','14)','15)','16)','17)','18)','19)','20)','21)','22)','23)','24)','25)','26)','2

7)','28)','29)','30)','31)','32)','33)','34)','35)','36)','37)','38)','39)','40)','41)','42)','43)','44)','45)'

,'46)','47)','48)','49)','50)','51)']) 

solution_period=['1)','2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','

18)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36

)','37)','38)','39)'] 

totalPeriod=deque(['2)','3)','4)','5)','6)','7)','8)','9)','10)','11)','12)','13)','14)','15)','16)','17)','1

8)','19)','20)','21)','22)','23)','24)','25)','26)','27)','28)','29)','30)','31)','32)','33)','34)','35)','36)'

,'37)','38)','39)','40)','41)','42)','43)','44)','45)','46)','47)','48)','49)','50)','51)','52)']) 

#Variables********************************************** 

var3=['Inv','lostInv','toChips','P','Sale','S1','S2','S3','S4'] 

var2=['TP','yP','Z'] 

var_values(m,var3,var2,period) 

#******************************************************** 

#Constrains************************************************************ 

con3=['production','inventory','saleUB','InvLB','setupclass','startInv','endInv','ContractDe

mand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead3','totalSale2'] 

con2=['inventoryChips','setupUP','setupLB','TotClassSetup','AtLeastOneInClass','mintim

eClass'] 

con1=['timeProportion','AtLeastOnePerPeriod','maxmimumInv','maxcam','maxcls'] 

cons_RhsValues(m,con3,con2,con1,period) 

#********************************************************************** 

demand=['ContractDemand','SpotDemandLead0','SpotDemandLead2','SpotDemandLead

3'] 

price=['S1','S2','S3','S4'] 
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global 

demandamount,lumberprice,demands1,demands2,demands3,demands4,fixeddemandlogp

rice,variabledemandlogprice1,variabledemandlogprice2,variabledemandlogprice3 

demandamount=[0,3914,3715,2721,2461,2936,10470,2461,3473,1806,2978,1465,2756,2

675,1925,1563,4793,6226,3925,4196,1840,7532,6967,3985,3761,2645,5514,3070, 

3269,2029,2094,2413,2827,2094,1435,415,3576,3075,1759,1261,183,1000] 

lumberprice=[0,4.422433,4.519666,4.616899,4.714132,4.811365,4.58502,4.682198,4.77

9375,4.876553,4.97373,5.361465,5.458531,5.555598,5.652664,5.74973,5.48813,5.58508

5,5.68204,5.778995,5.87595,5.74146,5.838193,5.934925,6.031658,6.12839,5.99479,6.09

13,6.18781,6.284321,6.380831,6.24812,6.344408,6.440696,6.536983,6.633271,6.50145,

6.597516,6.693581,6.789646,6.885711,4.1456] 

demands1=[] 

demands2=[] 

demands3=[] 

demands4=[] 

fixeddemandlogprice=[] 

variabledemandlogprice1=[] 

variabledemandlogprice2=[] 

variabledemandlogprice3=[] 

 

for i in range (len(solution_period)): 

    m.setParam("MIPGap",0.04) 

    #m.setParam("timeLimit",150) 

    m.optimize() 

    solution_update(m,var3,var2,solution_period[i]) 

    print '*****************Variables value binding period',solution_period[i] 

    print '****************Add constrain and variable period',period[0] 

    print '****************Relaxed end inventory constrain ',conperiod[0] 

     

    activareNextPeriodVariable(m,m1,var3,var2,period[0]) 

    activareNextPeriodConstrain(m,m1,con3,con2,con1,period[0]) 

    con='endInv' 

    relaxedPreviousPeriodEndInventoryConstrain(m,con,conperiod[0]) 

    newDemandPeriod=[] 

    for j in range (13): 

        newDemandPeriod.append(totalPeriod[j]) 

    print newDemandPeriod 

    setVariabkeDemand(m,demand,newDemandPeriod) 

    setVariabkePrice(m,price,newDemandPeriod)     

    m.update() 

    period.popleft()     

    conperiod.popleft() 

    totalPeriod.popleft() 

 

     

# Solution Output 
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m.optimize() 

variables=[] 

totalsales=[] 

totalChips=[] 

variables1=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    p=(i,nm,x) 

    variables.append(p) 

    if x>0 : 

        p111=(i,nm,x) 

        variables1.append(p111) 

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='Sale': 

        s=(i,nm,x) 

        totalsales.append(s) 

    if name10[0]=='toChips': 

        s=(i,nm,x) 

        totalChips.append(s) 

     

 

 

 

import csv 

b = open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising.csv', 

'wb') 

a = csv.writer(b) 

a.writerows(variables) 

b.close() 

 

b1 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_demand.c

sv', 'wb') 

a1 = csv.writer(b1) 

a1.writerows(demands1) 

b1.close() 

 

b2 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_Sales.csv'

, 'wb') 

a2 = csv.writer(b2) 

a2.writerows(totalsales) 

b2.close() 
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b3 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_toChips.c

sv', 'wb') 

a3 = csv.writer(b3) 

a3.writerows(totalChips) 

b3.close() 

 

b4 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_fixeddem

andlogprices.csv', 'wb') 

a4 = csv.writer(b4) 

a4.writerows(fixeddemandlogprice) 

b4.close() 

 

b5 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_variabled

emandlogprice1.csv', 'wb') 

a5 = csv.writer(b5) 

a5.writerows(variabledemandlogprice1) 

b5.close() 

 

b6 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_variabled

emandlogprice2.csv', 'wb') 

a6 = csv.writer(b6) 

a6.writerows(variabledemandlogprice2) 

b6.close() 

 

b7 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_variabled

emandlogprice3.csv', 'wb') 

a7 = csv.writer(b7) 

a7.writerows(variabledemandlogprice3) 

b7.close() 

 

b8 = open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising1.csv', 

'wb') 

a8 = csv.writer(b8) 

a8.writerows(variables1) 

b8.close() 

 

totalS3=[] 

totalS4=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  
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    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='S3': 

        s3=(i,nm,x) 

        totalS3.append(s3) 

    if name10[0]=='S4': 

        s4=(i,nm,x) 

        totalS4.append(s4) 

 

b9 = open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/S3.csv', 'wb') 

a9 = csv.writer(b9) 

a9.writerows(totalS3) 

b9.close() 

 

b10 = open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/S4.csv', 'wb') 

a10 = csv.writer(b10) 

a10.writerows(totalS4) 

b10.close() 

 

totalTP=[] 

totalyP=[] 

totalZ=[] 

vars1=m.getVars() 

for i in range(len(vars1)):  

    x=vars1[i].getAttr('X') 

    nm=vars1[i].getAttr('VarName')     

    name10=vars1[i].VarName.split('(') 

    if name10[0]=='TP': 

        if x>0 : 

            tp=(i,nm,x) 

            totalTP.append(tp) 

    if name10[0]=='yP': 

        if x>0 : 

            yp=(i,nm,x) 

            totalyP.append(yp) 

    if name10[0]=='Z': 

        if x>0 : 

            z=(i,nm,x) 

            totalZ.append(z) 

 

b11 = open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/TP.csv', 'wb') 

a11 = csv.writer(b11) 

a11.writerows(totalTP) 

b11.close() 
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b12 = open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/yP.csv', 'wb') 

a12 = csv.writer(b12) 

a12.writerows(totalyP) 

b12.close() 

 

b13 = open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Z.csv', 'wb') 

a13 = csv.writer(b13) 

a13.writerows(totalZ) 

b13.close() 

 

b14 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_demand1.

csv', 'wb') 

a14 = csv.writer(b14) 

a14.writerows(demands1) 

b14.close() 

 

b15 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_demand2.

csv', 'wb') 

a15 = csv.writer(b15) 

a15.writerows(demands2) 

b15.close() 

 

b16 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_demand3.

csv', 'wb') 

a16 = csv.writer(b16) 

a16.writerows(demands3) 

b16.close() 

 

b17 = 

open('C:/Users/Sharif/Desktop/orderpromising52weeks/result/Orderpromising_demand4.

csv', 'wb') 

a17 = csv.writer(b17) 

a17.writerows(demands4) 

b17.close() 

 

 

 

 

 


