

IMPROVING EFFICIENCY OF ORDER PICKING

IN PICKER-TO-PARTS

WAREHOUSES

by

Moayad Khalil

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

November 2013

© Copyright by Moayad Khalil, 2013

ii

Dedicated to

my dear parents Wajdi, & Ohood

and my lovely brothers, Moaad & Muthafer

iii

Table of Contents

List of Tables ... v

List of Figures ... vi

Abstract .. vii

Acknowledgements ... viii

Chapter 1 - Introduction ... 1

Chapter 2 -Thesis Motivation ... 5

2.1 Organization of the Thesis Report .. 6

Chapter 3 - Literature Review ... 7

3.1 Improving Efficiency of Order Picking in Picker-to-parts Warehouses 7

3.1.1 The Full-turnover and The Nearest-location Storage Policies 12

3.1.1.1 Travel Distance Estimation .. 15

3.2 Summary ... 17

Chapter 4 - Methodology .. 19

4.1 Items Attributes .. 19

4.2 Warehouse Layout Structure .. 20

4.2.1 Selection of Feasible Warehouse Layouts .. 21

4.3 Routing of Order Pickers .. 22

4.4 Storage Assignment Policies .. 23

4.4.1 Full-turnover Storage Assignment Policy .. 24

4.4.1.1 North-north Assignment... 24

4.4.1.2 North-south Assignment .. 25

4.4.2 The Nearest-location Storage Assignment Policy .. 26

4.4.3 Random Storage Assignment Policy .. 27

4.4.4 Allocating Items into Warehouse Storage Aisles ... 27

4.4.5 Probability of Locating a Pick in a Particular Aisle ... 30

4.5 Travel Distance Estimation... 31

4.5.1 Analytical Approach .. 32

4.5.1.1 Pattern Generator ... 32

4.5.1.1.1 Repeated Patterns... 35

4.5.1.2 Routing Scenarios and Pattern-based Travel Distance Estimation 36

iv

4.5.1.2.1 Regular Routing Scenario .. 36

4.5.1.2.2 Extra Exiting Distance Scenario .. 38

4.5.1.2.3 Pattern-based Travel Distance Estimator ... 39

4.5.1.3 Estimating Total Expected Travel Distance Using the Analytical Approach 40

4.5.2 Monte Carlo Simulation Approach .. 41

4.5.2.1 Limitations of Analytical approach .. 42

4.5.2.2 Generating Random Patterns .. 43

4.5.2.3 Estimating Total Expected Travel Distance Using Simulation 47

4.5.2.4 Validation of Monte Carlo Simulation Approach .. 47

Chapter 5 - Implementation ... 49

5.1 Items ... 49

5.2 Warehouse Layout Alternatives ... 50

5.3 Python Code ... 51

5.3.1 Input Parameters and Item’s Data .. 51

5.3.2 Item Allocation ... 51

5.3.3 Travel Distance Estimation Using the Analytical Approach .. 52

5.3.4 Travel Distance Estimation Using the Simulation Approach 53

5.3.4.1 Validation of the Simulation Approach ... 53

5.3.5 Outcomes and Results .. 54

5.3.6 Computational Time ... 54

5.4 Item Allocation ... 55

5.5 Validation of the Monte Carlo Simulation Approach ... 58

5.6 Analysis of the Estimated Total Expected Travel Distance .. 60

5.6.1 Effects of Storage Assignment Policies and Pick list Size ... 60

5.6.2 Effect of Warehouse Shape .. 63

5.6.3 Performance Differences of the Storage Assignment Policies 67

5.7 Special Case: Pick List Sizes Follow an Exponential Distribution 69

Chapter 6 - Conclusions and Further Research ... 73

6.1 Directions for Further Research.. 75

Bibliography .. 76

Appendix A: Validation of Monte Carlo Simulation ... 79

Appendix B: Python Code .. 82

v

List of Tables

Table 1: Set
 of Fully Enumerated Patterns for N=3 and M=3 ... 34

Table 2: Size of
 for Various N and M .. 43

Table 3: Sample of Items Data .. 49

Table 4: Sample of CPU Times (seconds) for selected pairs of N, and M .. 54

Table 5: Validation Results Based on Final Layout, = 5 and = 178 .. 59

Table 6: Validation Results Based on Initial Layout, = 30 and = 31 .. 79

Table 7: Validation Results Based on Second Layout, = 15 and = 60 80

Table 8: Validation Results Based on Third Layout, = 10 and = 90 .. 80

Table 9: Validation Results Based on Fourth Layout, = 8 and = 112 .. 81

Table 10: Validation Results Based on Fifth Layout, = 6 and = 148 ... 81

vi

List of Figures

Figure 1: Six typical warehouse operations (Tompkins et al. [23], De Koster et al. [6]) 2

Figure 2: Typical distribution of order picking time (Tompkins et al. [23], De Koster et al. [6]) 3

Figure 3: Warehouse layout with M main storage aisles and two cross aisles 20

Figure 4: The S-shape routing policy in a single-block warehouse structure .. 23

Figure 5: The north-north assignment direction .. 25

Figure 6: The north-south assignment direction .. 25

Figure 7: Unsuccessful assignment based on ... 30

Figure 8: Successful assignment based on ... 30

Figure 9: Example picking tour for regular routing scenario .. 37

Figure 10: Example picking tour for extra exiting distance scenario .. 39

Figure 11: Flow chart for generating R random patterns using Monte Carlo simulation approach 45

Figure 12: A scaled layout representation of the six layout alternatives in D* 50

Figure 13: () values of the three storage policies for the six layouts .. 56

Figure 14: (
) values of the three storage policies for the six layouts 61

Figure 15: (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values of the three storage policies for the eight ranges of N 64

Figure 16: Percentage difference in performance of the three storage policies 67

Figure 17: Probability of pick-list of sizes based on exponential and uniform distributions

 ... 71

Figure 18: Averaged (
) values of the three storage policies for the fifth layout based on

exponential and uniform distributions ... 72

file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090889
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090890
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090891
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090892
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090893
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090894
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090895
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090896
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090897
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090898
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090900
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090901
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090902
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090903
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090904
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090905
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090905
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090906
file:///C:/Users/Uday/Desktop/Khalil-Moayad-MASc-IENG-December-2013.docx%23_Toc374090906

vii

Abstract

Order picking is considered one of the most time-consuming operations in picker-to-parts

warehouses. Accordingly, more emphasis has been given to the task of improving the

efficiency of order picking systems in general, and the required travelled distance during

the order picking operation, specifically.

In this thesis, we focus on two main factors that significantly affect the efficiency of order

picking systems: the assignment storage policies, including the full-turnover, nearest-

location and random storage policies; and the warehouse layout structure, in terms of the

depth and the number of storage aisles. We investigate the combined effects of these two

factors on the order picking travel distance.

While previous research compares the full-turnover to the random storage policy, we

compare the performance of the full-turnover policy to the nearest-location and random

storage policies over various warehouse layout alternatives.

For this purpose, we present a methodology for estimating order picking travel distance in

a single-block, open-ended warehouse, under the assumptions of S-shape routing and

discrete order policies.

viii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to Dr. Uday Venkatadri

for his supervision, advice, and guidance throughout my studies. He provided me with

encouragement and unfailing support in many ways. Without him, this thesis would not

have been possible. My thanks are also due to Dr. Pemberton Cyrus and Dr. William

Phillips, members of the examining committee. Also, I would like to thank Dr. Alireza

Ghasemi for his great support and guidance.

Last but not least, I am most thankful for the continuous and endless support of my

family, and my friend, Alkuor.

1

Chapter 1

Introduction

Warehouses are a vital component of a company’s supply chain. Warehouses are

typically used as a means of storing items, whether those items are parts for

manufacturing processes or finished goods. Warehouses can hold items that are not fully

ready for consumption, or items a customer does not presently need but requires quick

access to when the need arises. The most common benefits of warehouses, according to

Lambert et al. [14], are that warehouses allow businesses to function more efficiently

through changing and uncertain market conditions, improve service to customers, and

take advantage of transportation and production economies of scale, allowing for

quantity purchase discounts and forward buying.

Constructing, stocking and staffing a warehouse is an important strategic business

decision, often featuring high investment and overhead costs. Careful planning and

design considerations must be done, including determining the warehouse’s impact on

company goals and day-to-day operations.

Le-Duc and De Koster [16] classify manual warehousing systems based on their order

picking operations. The two main types of systems are picker-to-parts systems, featuring

manual picking; and parts-to-picker systems, featuring an automated picking system. In

an automated picking system, a machine stores and retrieves items by moving vertically

and horizontally along each rack. In contrast, in picker-to-parts systems, an individual

2

order picker navigates through the aisles one at a time, picking items from multiple

locations within the storage racks.

Tompkins et al. [23] presents six typical warehouse operations, as depicted in Figure 1.

These warehouse operations are receiving, transferring and putting away, order

picking/selecting, accumulating/sorting, cross-docking, and shipping.

Order picking is the retrieval of items from their storage locations, in order to satisfy a

number of independent customer orders. The process begins when an order arrives at the

warehouse, and an order picker is sent into the aisles with the customer’s list, pulling the

requested items from storage.

 Tompkins et al. [23] states that order picking is among the most labor intensive and

expensive tasks that take place in a warehouse, and Coyle et al. [5] estimates that order

picking represents roughly 65 percent of the total operating costs of a typical warehouse.

Tompkins et al. [23] breaks down picking-related activities, in terms of the time

performing each activity, as depicted in Figure 2. There are several activities that take

Figure 1: Six typical warehouse operations (Tompkins et al. [23], De Koster et al. [6])

3

significant amounts of time, but an overwhelming majority of the picking time, about

percent, is spent by the picker as it travels through the warehouse. Therefore, travel time

is the primary performance indicator used to measure the efficiency of a manual order

picking process. Warehousing professionals look to order picking as the highest impact

area of improvement in a warehouse’s operating efficiency, and travel time offers the

most room for improvement among order picking activities.

Chan and Chan [4], Petersen et al. [19], and Roodbergen et al. [22] state that the

performance and efficiency of an order picking system primarily depends on the

following four tactical and operational decisions:

 Layout design is a tactical decision; it concerns the layout of both the warehouse

containing the order picking system and the system itself.

 Picking policies are operational decisions; they determine how orders will be

picked by the order picker. Common picking policies utilized in picker-to-parts

systems include discrete picking, batching, and zoning.

Figure 2: Typical distribution of order picking time

(Tompkins et al. [23], De Koster et al. [6])

4

 Routing policies are operational decisions; they determine the route of an order

picker as it travels through the warehouse picking an order, as well as the

sequence in which items are picked. There are numerous routing policies, ranging

from simple heuristics such as S-shape, return, mid-point, largest gap, and aisle-

by-aisle, to optimal and hybrid procedures.

 Storage assignment policies are both tactical and operational decisions; they

determine which products will be allocated in which location, based on given

storage criteria. Common storage assignment policies include random storage,

dedicated storage, family grouping, full-turnover storage, volume-based storage,

class-based storage, and nearest-product storage.

Improving order picking productivity can be achieved through the implementation of

more efficient picking, routing, and storage assignment policies in the warehouse.

Decision makers must always take accurate and appropriate approaches, accounting for

the relationships between warehouse operating policies.

5

Chapter 2

Thesis Motivation

In this thesis, a methodology for improving the performance of order picking in picker-

to-parts warehouses will be developed. As mentioned earlier, the efficiency of the order

picking system can be improved through one or more of the four main areas: warehouse

layout design, storage assignment, picking, and routing policies. This thesis will address

only two of these areas: layout design and storage assignment policies.

This methodology aims to assist warehouse professionals in investigating the combined

effects of the item storage assignment policies and the warehouse shape, in terms of the

length and number of main storage aisles, on the performance of the order picking

system, measured in terms of the travel distance, for the purpose of identifying the

optimal combination of the storage policy and the warehouse layout to be implemented

for the storing and picking of a group of items, in order to achieve the local minimum

travel distance among all feasible combinations. Also, this methodology is designed with

high flexibility, to handle a generic number of items, main storage aisles, and storage

locations within the warehouse. It can, therefore, be applied to a multitude of practical

warehouse layout configurations and numbers of allocated items.

The development of this methodology is based on an open-ended, single-block layout

structure with double-sided storage aisles. The S-shape routing policy is assumed to

direct order pickers within the warehouse, and the picking is based on a discrete picking

policy.

6

This thesis focuses on three storage assignment policies: full-turnover, nearest-location,

and random storage. These three policies are flexible enough to be implemented in

different warehouse environments, as they are less information intensive and easier to

administer than other storage policies such as the class-based, volume-based, and family

grouping storage policies, which usually require a higher level of detail about the items’

attributes to be stored, and more sophisticated warehouse operations management

systems for continuous tracking and revision. More importantly, the reason for

considering the full-turnover policy in addition to the other policies in this thesis is the

limited work done in evaluating and improving the full-turnover storage policy in order

to improve the efficiency of manual order picking, as will be shown clearly in the

following chapter.

2.1 Organization of the Thesis Report

The reminder of this report is organized as follows:

In Chapter 3, literature review related to picker-to-parts warehouses and improving the

efficiency of manual picking systems is introduced.

In Chapter 4, the developed methodology, including its two primary approaches, is

explained and presented in detail.

In Chapter 5, the results from implementation of the methodology are presented and

discussed.

Finally, in Chapter 6, the overall conclusions derived from this study and directions for

further work in this area are presented.

7

Chapter 3

Literature Review

The following literature review will introduce the work done in improving the efficiency

of order picking in picker-to-parts warehouses, with emphasis on contributions regarding

the implementation and improvement of the full-turnover and the nearest-location storage

policies.

3.1 Improving Efficiency of Order Picking in Picker-to-parts

Warehouses

Le-Duc and De Koster [15] developed an analytical approach for estimating the average

travel distance of a picking tour in picker-to-parts systems, where items are assumed to

be allocated into a single-block warehouse layout structure using the ABC-storage

assignment policy, which means that the items are divided into classes according to their

pick frequencies. The return routing strategy is assumed to be used in developing this

approach.

Le-Duc and De Koster [16] extended their approach presented in Le-Duc and De Koster

[15]; they developed a probabilistic model for estimating the average travel distance of a

picking tour in a 2-block class-based storage strategy. Also an optimization model is

developed to optimize the design of the 2-block layout structure by determining the

optimal distance at which the middle cross-aisle should be placed within the warehouse.

8

Roodbergen et al. [21] developed a model to minimize the average travel distance

required to complete a given pick list. This model determines the design of warehouse

layout structures consisting of multiple cross aisles (i.e., multiple blocks) by optimizing

the number of blocks of which a warehouse layout structure consists. The S-shape policy

and random storage assignment policy were assumed in developing this model. This

model was developed to be capable of accommodating any number of blocks, as well as

any number of aisles.

Vaughan and Petersen [24] investigated the effect of adding middle cross aisles to the

layout structure on the travel distance required to complete a given pick list by

developing a model to determine the optimal number of cross aisles, with the purpose of

minimizing the travel distance of the order picker. Items are assumed to be assigned

randomly into storage locations within the warehouse. A specifically designed aisle-by-

aisle routing algorithm is developed for multi-block warehouses in this study.

Berglund and Batta [1] revisited the problem addressed by Vaughan and Petersen [24].

They developed an analytical model for optimizing the number and positioning of middle

cross aisles in a warehouse layout structure, in order to minimize the average travel

distance required to complete a given pick list. The possible combinations of how a given

pick list might be distributed in the warehouses are found based on generating the fully

enumerated set of patterns, along with their associated probabilities. The aisle-by-aisle

routing algorithm developed by Vaughan and Petersen [24] is modified in this model to

represent a Markov reward process with multiple states, corresponding to the cross aisles.

9

Items are assigned locations in the warehouse using a volume-based storage policy with

three different cases: diagonal storage, within-aisle storage, and across-aisle storage. In

this thesis, we utilize the concept of generating all possible patterns to find how a given

number of picks might be distributed in a single-block warehouse with a given number of

main storage aisles, despite the obvious differences in the scope and the general goals of

our frame work and the frame work of Berglund and Batta [1]

Petersen [18] developed a simulation approach to design a single-block warehouse layout

structure for two different storage assignment policies: the volume-based storage

assignment policy with two distinctive cases, within-aisle storage and across-aisle

storage; and the random storage assignment policy; on the total travel distance of an

order picker. The return routing method for the order picker is assumed in developing

this approach.

Hall [9] developed an analytical approximation for the expected travel distance under

each of four routing strategies: the traversal, mid-point return, largest gap return, and

double traversal, assuming a single-block warehouse and a random assignment storage

policy. The performance of the four routing strategies is compared with a lower bound

for the expected tour length, assuming the optimal routing strategy to be a hybrid of the

traversal and the largest gap strategies. The primary conclusion obtained from this

comparison is that the largest gap strategy always outperforms the mid-point strategy.

Roodbergen and De Koster [20] developed two heuristics for routing order pickers in a

warehouse with multiple cross aisles: combined and combined+ heuristics. They

10

compared the performance of five routing heuristics: the S-shape, largest gap, combined,

and combined+ heuristics, as well as the aisle-by-aisle heuristic, developed by Vaughan

and Petersen [24]. The comparison was based on 80 different warehouse layout structure

configurations, with the number of main vertical aisles varying between and , the

number of cross aisles varying between and , and the pick list size varying between

 and . The items were assigned randomly. The results showed that the combined+

heuristic provided the best results in 74 of the 80 configurations, and that the largest gap

was found to be effective in layout configurations with two cross aisles and low pick

frequencies, which is in agreement with Hall [9]. Also, the performance of the five

heuristics was compared to the results of a branch-and-bound procedure providing

optimal order picking routes, and the results show that the gap between this optimal

routing method and the combined+ heuristic varies substantially.

Petersen [17] compared the performance of five routing heuristics: the S-shape, return,

mid-point, largest gap, and composite, against the performance of an optimal routing

strategy in picker-to-parts systems. Items are assumed to be assigned randomly in a

single-block warehouse. He concludes that the best heuristic solution was 5 percent over

the optimal solution. Also, this study shows that the composite and transversal strategies

yield shorter travel distances with larger pick lists, while the largest gap and mid-point

strategies yield shorter travel distances with smaller pick lists.

Roodbergen et al. [22] developed an analytical approach to investigate the effects of two

different routing policies in low-level, picker-to-parts systems: the S-shape routing policy

and the largest-gap routine policy, on the average length of an order picking route in a

11

one-block warehouse layout structure. Their approach determines the optimal design of a

single-block layout structure for the two routing policies. The random storage assignment

policy is assumed for this approach. The primary conclusion found by this study is that

the largest-gap routing policy yields shorter average route length than or equal to the S-

shaped routing policy if the optimal layout structure is used for each routing policy.

Chan and Chan [4] presented a simulation study of a real class-based and random storage

assignments problem of a multi-level rack, single-block warehouse that utilizes a picker-

to-parts system. In this study, the items are divided into three classes. The efficiency of

order picking under three different routing policies: the S-shape, return, and combined,

along with the class-based and random storage policies, is evaluated and compared by

considering travel distance as the key performance indicator. The primary conclusion of

this study is that the case of a combined routing policy, along with class-based storage,

achieves the minimum travel distance of all policies considered in this study.

Petersen et al. [19] evaluated the performance of the class-based storage (CBS) policy

relative to the volume-based storage (VBS) policy in low-level, picker-to-parts single-

block warehouses. The traversal routing strategy is considered in this study. The primary

conclusion obtained from this study is that the VBS policy is generally more effective at

minimizing the average travel distance than CBS policy. However, the VBS policy is

information intensive and far more difficult to administer than the CBS policy. Also, this

study shows that the performance gap between CBS and VBS decreases as the number of

storage classes decreases; the results indicated that a two-class system attained nearly 80

12

percent of the benefits when compared to the VBS policy, which requires much more

time and effort to implement properly.

3.1.1 The Full-turnover and The Nearest-location Storage Policies

Heskett [10],[11] introduced, for the first time, the rule for the placement of items based

on the ratio of the required storage volume space to the order frequency, which he called

the cube per-order index (COI). He utilized the COI policy in developing a model for

minimizing the total variable costs arising from labor work, consisting of picking, sorting

and stacking items, and the travel costs of fork-lift trucks in distribution centers.

Kallina and Lynn [12] investigated the impact of the COI-based and the popularity-based

(i.e., demand-based) assignment policies on the total variable costs, including the labor

work and fork-lift operating costs. They considered a distribution warehouse with three

staging areas. A primary finding of their study is that the implementation of the COI-

based policy could achieve a saving of 5-10% in total variable costs over the popularity-

based assignment.

Caron et al. [2] compared the performances of the traversal and return routing policies in

low-level picker-to-parts systems using both analytical and simulation approaches. A

COI-based full-turnover storage policy was used to allocate the items in a double-block

warehouse. The primary outcome of this study was that the return policy outperformed

the traversal policy only for a small-sized pick list. Also, the full-turnover policy was

found to outperform the random storage policy, with both the traversal and the return

13

routing policies. In this thesis, we compare the performance of the full-turnover storage

assignment to the performance the nearest-location and the random storage policies in

single-block, picker-to-parts warehouses, considering the effects of the pick list size and

the warehouse shape in terms of the number and the depth of its main storage aisles.

 Caron et al. [3] developed an analytical approach for minimizing the expected picking

travel distance by optimizing the number of main storage aisles of which a warehouse

layout structure consists. This analytical approach considers a double-block warehouse

layout structure in a low-level, picker-to-parts system. Items are assumed to be stored in

the warehouse using a COI-based full-turnover storage policy, and the traversal routing

strategy for the order-picker is used in developing this approach. In this thesis, we

provide a comprehensive frame work for determining the optimal storage assignment

policy among three policies: the full-turnover, the nearest-location, and the random

storage policies, and the optimal single-block warehouse shape in terms of the number

and the depth of main storage aisles, under the assumption of the S-shape order picker

routing strategy, for a given group of items and given ranges of pick list sizes.

Kubasad [13] investigated and compared the effects of three storage assignment policies

on the picking travel distance in two single-block layout alternatives, in which the first

alternative is a closed-end layout, and the second is an open-ended layout, where each

consists of seven aisles and twelve storage aisles. The author developed and applied three

storage assignment policies and evaluated the layouts based on a probability graph to

simulate the picker’s traversal path through the block. The first two policies are called the

north-north and the north-south storage assignment policies. Both of these storage

14

policies start with ranking a given group of items in descending order according to their

demand, which is also referred to as popularity-based sorting in literature. Then the

sorted items are assigned into the storage aisles, starting with the left-most aisle closest to

the depot in a northerly direction within the aisles for the north-north storage policy, and

in alternating northerly and southerly directions over the storage aisles for the north-

south storage policy. The third storage policy is called the nearest-location storage

assignment policy; that is, it starts with sorting a given group of items in ascending order

according to their storage requirements only, and then the sorted items are assigned into

the available storage location located at the shortest Euclidean distance from the depot,

without the need to completely fill a given aisle before moving to the next one. The

primary conclusions of this study are that the open-ended layout always provides a lower

travel distance than the closed-end layout, the north-north policy outperforms the other

two policies, and the north-south provides the largest travel among the three storage

policies. In this thesis, we will present a completely different nearest-location storage

policy than the one introduced by Kubasad [13]. With our nearest-location storage

policy, a given group of items are first grouped in ascending order according to their

storage requirements, and for each group the items are sorted in descending order

according to their demand, then the sorted items are assigned to storage aisles in a

northerly direction, starting from the first aisles closest to the depot. The purpose of our

nearest-location storage policy is to pack the storage aisles closest to the depot with the

highest number of items while maintaining the highest possible demand weight for these

aisles at the same time, which achieves both the highest density of items and the highest

possible demand weight for the aisles located closest to the depot. Also, in this thesis, the

performance of the nearest-location storage policy is compared with the performance of

15

the full-turnover and random storage policies, considering the effects of pick list sizes

and the warehouse shape which is not accounted for by Kubasad [13].

3.1.1.1 Travel Distance Estimation

Caron et al. [2], [3] developed a travel distance model considering the full-turnover and

random storage policies in a double-block warehouse; the travel distance is estimated to

be equal to the multiplication of two values. The first is the expected number of main

storage aisles visited for the purpose of completing a given number of picks, and the

second is the overall length of the main storage aisles. The first value is estimated by the

summation of the probabilities that at least one pick out of a given number of

independent picks is located in every storage aisle over the total number of aisles, where

these probabilities are determined based on an analytical function which describes both

the random and the full-turnover storage policies. The developed travel distance model is

a function of the number of and length of the storage aisles, and the number of the

independent picks. Also, the development and the implantation of the developed travel

distance model are limited only to the full-turnover and the random policies.

Kubasad [13] developed a travel distance methodology based on the concept of the

probability graph. This travel distance methodology starts with labelling all the ends of

the aisles (seven aisles are considered in the example) in an open-ended layout structure

as nodes for the probability graph. Then all possible routes under the S-shape routing

strategy that the order picker might follow within the warehouse are defined assuming

that any possible route starts and ends at the depot. The possible routes are defined based

16

on the assumption that the probability of moving from the current node to the successive

node through a given aisle is equal to the probability of entering that given aisle. The

probability of entering the storage aisle is defined as the ratio of the total demand of the

items allocated in a storage aisle to the total demand of all items allocated in the

warehouse. The overall travel distance was found by calculating the expected travel

distance of all possible routes defined by the probability graph for the seven aisles in the

open-ended warehouse. The probability graph-based travel distance approach is limited

does not account for the number of picks.

In this thesis, we develop a framework for estimating travel distance using a completely

different approach. Our approach utilizes the concept of generating all possible patterns

in which a given number of picks might be distributed within a given number of storage

aisles introduced by Berglund and Batta [1], where each of these patterns indicates a

possible route to be followed by the order picker under the assumption of the S-shape

routing strategy. We find the relative weight (i.e., probability) associated with every

pattern based on the probability of locating a single pick in a particular aisle, which is

defined as the ratio of the total demand of the items allocated in a storage aisle to the

total demand of all items allocated in the warehouse, which is mathematically the same

as the probability of entering an aisle in Kubasad [13]. However, our probability carries a

different meaning, as it is used to quantify the impact of how the items are positioned

within the warehouse by the different assignment policies. Also, a Monte Carlo

simulation approach is developed as a part of our framework, in order to show that large

problems can be solved for generic numbers of picks, items, storage aisles, and storage

17

locations, rather than only relying on analytical approaches developed in Caron et al. [3],

and Kubasad [13].

3.2 Summary

The warehouse layout design has received considerable attention by many authors,

including Le-Duc and De Koster [15], [16], Roodbergen et al. [21], Vaughan and

Petersen [24], Berglund and Batta [1], Caron et al. [3], and Petersen [18]. The emphases

of their work were single-block warehouses with front and rear cross aisles, and multiple-

block warehouses with many middle cross aisles.

Hall [9], Roodbergen and De Koster [20], Petersen [17], Roodbergen et al. [22], and

Caron et al. [2] provided research on order picker routing in picker-to-parts warehouses.

Their work was focused on developing optimal and heuristic routing procedures,

comparing the performance of the different routing policies, and investigating the impact

of these routing procedures on the warehouse layout design and the efficiency of order

picking systems.

Chan and Chan [4], Petersen et al. [19], and Petersen [18] provided research concerning

storage assignment that mainly focuses on developing the class-based and volume-based

storage policies, and comparing their performances along with the random storage policy.

Previous research in investigating the impact of the full-turnover storage policy on order

picking travel distance is limited to Caron et al. [2], [3] only, who provided two studies

for developing and implementing the full-turnover storage policy. The first study

investigated the effect of the full-turnover storage policy under the S-shape and the return

18

routing policies in double-block warehouses, and the second study optimized the number

of main aisles in double-block warehouses, using the full-turnover storage policy.

Previous research in implementing and investigating the impact of the nearest-location

storage policy on order picking travel distance is limited to Kubasad [13], who compared

the performance of the nearest-location storage policy with the performance of the north-

north and north-south storage policies in open-ended and closed-end single-block

warehouse structures with a limited number of seven storage aisles. Therefore, as

mentioned earlier, we decided to investigate the full-turnover storage policy by

comparing its performance with the performances of the nearest-location and random

storage policies in single-block, picker-to-parts warehouses, and investigating the

combined effects of the full-turnover storage policy and the warehouse layout on order

picking travel distance, for the purpose of improving the efficiency of order picking in

picker-to-parts warehouses.

19

Chapter 4

Methodology

In this chapter, the methodology is presented in five sections. The first four sections

present the main assumptions in developing this methodology, while the last section

presents the development of two approaches to be utilized in estimating order picking

travel distance.

4.1 Items Attributes

Within the explanation of this methodology, all items can be assumed to have main key

attributes, defined as follows:

 : the demand of item per unit of time;

 : the number of storage locations required to assign item in an aisle, simply

referred to as size of item ;

 : the demand to size ratio of an item , equal to

;

 : a uniform random number generated for item ;

 : the total demand of the group of items assigned to the warehouse’s storage

aisles;

 : the total number of storage locations needed to allocate the group of items to

the warehouse.

20

4.2 Warehouse Layout Structure

The warehouse on which the approach shall be implemented is depicted in Figure 3. It is

assumed the warehouse is of a single-block layout with main storage aisles, each

containing one level of racks on both sides in which to store products. Every storage aisle

consists of equally spaced storage locations. The warehouse is assumed to be open-

ended in layout, featuring front and rear cross aisles. The depot is located within the front

cross aisle, south of the first main aisle. This approach is developed for picker-to-parts

systems, in which the picker walks or drives into the aisles containing the items in order

to pick them.

Figure 3: Warehouse layout with M main storage aisles and two cross aisles

21

The warehouse layout shall be based upon the following parameters:

 : the number of main storage aisles within the warehouse, where

{ } represents each individual main aisle;

 : the number of storage locations on each side of a main aisle;

 : width of a cross aisle;

 : center-to-center distance between two adjacent main storage aisles;

 : width of a storage location.

4.2.1 Selection of Feasible Warehouse Layouts

As mentioned earlier, this thesis aims to improve the performance of the order picking

system by evaluating the combined effects of the storage assignment policies and the

warehouse shape, in terms of the length and number of main storage aisles, on the

expected travel distance required to complete a pick list of size . Accordingly, a set of

feasible different layouts of the warehouse that would be investigated has to be selected

in advance, and each of these feasible layouts is evaluated along with the storage

assignment policies. Eventually, the combination of the layout alternative and the storage

assignment policy that achieves the local minimum expected travel distance is considered

the optimal combination among all possible combinations of layouts and storage policies.

The selection process is performed in such a way that each of these configurations has at

least the same storage capacity, meaning that , in order to be able to

successfully allocate the same group of items to each of these layout configurations.

22

Therefore, an initial arbitrary layout configuration is selected with and , followed

by selection of a second layout configuration that has a fewer number of aisles and higher

number of storage locations than those in the initial layout, where and ,

followed by selection of a third layout configuration that has a fewer number of aisles

and higher number of storage locations than those in the second layout, where

 and . The selection process continues in this manner until a

predetermined final layout configuration with and such as

 and , is reached. After completing this selection process, a

set of the feasible alternatives containing different pairs of and values is formed,

such that:

 {() () () ()} 4.1

4.3 Routing of Order Pickers

 The S-shape routing strategy is considered for routing order pickers through the single-

block warehouse, as shown in Figure 4. The black squares represent the items to be

picked, and the dotted line indicates the path taken by the order picker under the S-shape

routing policy to perform the picking tour through the warehouse. An order picker must

start the picking tour from the depot, and enter each aisle containing at least one pick,

regardless of the locations of the pick(s) within the aisle. After completing all the picks in

the aisle, the picker exits into the opposite cross aisle. The aisles without picks are

ignored, except when a picker has to return to the depot after the completion of a picking

tour.

23

4.4 Storage Assignment Policies

A storage assignment policy is defined as a set of rules to be followed in assigning

groups of items to storage locations within the warehouse.

Three different storage assignment policies are to be evaluated: the full-turnover with

two distinct cases, north-north and north-south; nearest-location; and random storage

assignment policies. The effect of these policies is evaluated with respect to every

feasible warehouse layout alternative among the set of all feasible alternatives.

Figure 4: The S-shape routing policy in a single-block warehouse structure

24

4.4.1 Full-turnover Storage Assignment Policy

The full-turnover storage assignment policy ranks the items to be allocated according to

their in descending order. Items with the highest are located at the more

accessible storage aisles that are closest to the depot, whereas items with lower

values are located somewhere towards the back of the warehouse. The advantage of this

ranking is that items with higher demand but requiring an excessive number of storage

locations are treated less preferentially than items with a slightly lower demand but

requiring much fewer storage locations to be assigned. The -based ranking, used

here, is functionally similar to the COI-based ranking implemented by Caron et al. [2],

[3], except that the considers the number of storage locations needed for each

item , while the COI considers the volume of space needed for each item .The full-

turnover storage assignment policy is applied in this study through two different cases of

assignment direction: the north-north and the north-south.

4.4.1.1 North-north Assignment

As illustrated in Figure 5, items are allocated to the main storage aisles in a northerly

direction; the assignment starts from the south end and moves to the north end of a

storage aisle.

25

4.4.1.2 North-south Assignment

As illustrated in Figure 6, items in the first aisle are assigned from south to north, but the

next aisle is assigned in the southerly direction: from north to south. This pattern repeats

for the remainder of the aisles.

Figure 5: The north-north assignment direction

Figure 6: The north-south assignment direction

26

4.4.2 The Nearest-location Storage Assignment Policy

The nearest-location storage assignment policy ranks the items to be allocated in

ascending order by the number of storage locations, , required for each item. Items with

the lowest are assigned to the more accessible storage aisles closest to the depot, using

demand as a tiebreaker when two or more items have the same space requirements. This

type of sorting provides two distinct advantages: the first advantage is that the first aisles

are stocked with the greatest number of items, as we sort first by values; the second

advantage is that the highest possible demand weight can be achieved in the first aisles,

since the values are considered secondly. Therefore, the order picker may only need

to enter the first aisles closest to the depot, most of the time. The nearest-location storage

policy introduced by Kubasad [13] accounts for the storage requirements only, and does

not consider the demand of items. Therefore, the nearest-location storage policy of

Kubasad [13] results in the first aisles closest to the depot being packed with a high

number of items, but not necessarily carrying the highest weight of demand. Therefore, it

becomes possible that, for example, the fourth or the fifth aisle has a greater demand

weight than the first or the second aisles, meaning that the order picker will still need to

travel to the furthest aisles, rather than only entering the first aisles closest to the depot.

The items are allocated in order from the south end to the north end of a storage aisle, as

shown earlier in Figure 5.

27

4.4.3 Random Storage Assignment Policy

The random storage assignment policy arranges items randomly. The policy can be

simulated by generating a uniform random value , associated with each item, and

sorting the items according to these random values in either ascending order or

descending order. Items are allocated in order from the south end to the north end of a

storage aisle, as shown earlier in Figure 5.

4.4.4 Allocating Items into Warehouse Storage Aisles

The three assignment policies differ only in the criteria for sorting a given group of items

to be assigned, and the assignment direction in the main double-sided storage aisles.

Remember, assignment direction must be either always northerly, as is the case in north-

north full-turnover, nearest-location, and random storage assignment policies; or

alternating northerly and southerly by aisle, as with the north-south full-turnover storage

assignment policy; but they all share the same procedure for assigning the items within

each aisle .

Each item is placed in an aisle according to its order in the sorted group of all items,

determined by the storage assignment policy. The first item in the sorted group is placed

first, followed by the second item, and so on for all items. For each aisle, beginning at the

first aisle, the closest aisle to the depot, the left-hand side of the aisle is attempted to be

filled first. If the item will not fit on the left-hand side, then the right-hand side is

attempted to be filled. If the item will not fit on either side, it is stored in the next aisle

with enough available storage locations.

28

Items must not be split up across multiple aisles, and must be stored contiguously. Also,

each aisle must be filled to its capacity before moving on to the next aisle. This means if

an item is to be placed in aisle , but the number of remaining empty storage locations

in the aisle is not sufficient to place the item, the item is instead placed in the next aisle,

 , and the remaining empty storage locations in aisle will be filled with the next

eligible item following item in the sorted group. Using this assignment technique, the

highest utilization of the warehouse space is achieved.

In order to make sure that a given group of items has been successfully allocated using

one of the three assignment storage policies in a single-block warehouse with a given

aisles, we first determine a rough estimate of the number of storage locations on each

side of a main aisle, , sufficient to successfully allocate a group of items with total

storage requirements, , using the equation:

 4.2

Then, based on the given assignment storage policy, we try to assign the group of items

into the aisles, and to determine whether the assignment of all items is successful or

not, we verify whether the total demand of items allocated into the warehouse is equal to

the total demand of all given items, , or not, as follows:

𝐴𝑠𝑠 𝑔 𝑒 𝑡

{

 ∑
 𝜖

 𝑎
∑ 𝜖

 𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

∑ 𝜖

 𝑈 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

 4.3

 where : represents the demand of item , assigned to aisle .

29

If the assignment performed based on the initial rough estimate of is found to be

unsuccessful, then the assignment is repeated again after increasing the initial value of ,

until the successful assignment of all items is achieved.

For an example of this item allocation procedure, given that there are a group of three

sorted items with , : the first with , ; the second

with , ; and the third with , ; all to be assigned in one

double-sided storage aisle. The initial estimate of is equal to . As illustrated in

Figure 7, the first item is assigned in the storage locations from 1 to 7 on the left side of

the aisle. The second item, which is to be assigned next, cannot be fit in the remaining

three storage locations on the left side. Therefore, it is assigned in the storage locations

from 1 to 7 on the right side of the aisle. The third item is not assigned, because it cannot

be fit on either sides of the aisle. It is apparent that this assignment is unsuccessful, and

this is clearly diagnosed by
∑

 , which less than . Accordingly, we

increase the initial value of , and the assignment is repeated. The new value of

is used to assign the three items, as illustrated in Figure 8. The new assignment results in

the first and the third items being allocated to the storage locations from 1 to 13 on the

left side, and the second item being allocated to the storage locations from 1 to 7 on the

right side. This assignment is obviously successful, and it can be seen that ∑ 𝜖

 and
∑

 .

30

4.4.5 Probability of Locating a Pick in a Particular Aisle

This approach assumes the likelihood of a particular pick to be present in aisle is

proportional to the ratio of the demand of the items stocked in the aisle to the total

demand of all items assigned in the warehouse. Once the items are assigned to specific

storage locations, it becomes possible to calculate the probability of a single pick being

located in an aisle . For example, if after assigning the items in the warehouse using

one of the three storage assignment policies, aisle happened to contain items such that

the aisle’s demand accounts for percent of the total demand of all items in the

warehouse, then the probability of locating a random pick stocked in aisle is equal to

 percent. The probabilities for all other aisles are obtained in a similar fashion. These

probabilities can be represented by a probability mass function, denoted by () , and

defined as follows:

Figure 8: Successful assignment

based on 𝑩 𝟏𝟑

Figure 7: Unsuccessful assignment

based on 𝑩 𝟏𝟎

31

 () {

∑ 𝜖

 ≤ ≤

 𝑂𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

4.4

 ∑ ()

 =

 4.5

where : represents the demand of item , assigned to aisle .

The primary role of () is to quantify the impact of how the three storage assignment

polices position the items within a given layout configuration on the estimated total

expected travel distance.

4.5 Travel Distance Estimation

Two approaches are developed for estimating the total expected travel distance needed to

complete a pick list of size in a warehouse with a feasible and . The first approach

is an analytical approach, in which the fully enumerated set of patterns is obtained by the

pattern generator for a given pair of and values.

The second approach is the Monte Carlo simulation approach. This simulation permits a

probabilistic examination of the fully enumerated space of patterns, rather than

considering every single pattern obtained by the pattern generator, which allows for

examining relatively larger values of and .

32

For this study, the primary purpose of using the analytical approach is only to validate

the Monte Carlo simulation approach. Therefore, the total expected travel distance values

will be found using the Monte Carlo simulation approach.

4.5.1 Analytical Approach

 The execution of the analytical approach consists of two primary elements: the pattern

generator and the pattern-based travel distance estimator. These two elements of the

analytical approach are utilized together in order to execute an exhaustive check of all

possible paths the order picker may follow within a given warehouse layout

configuration to complete a pick list of size , and return the total expected travel

distance based on these potential paths and the size of the pick list.

4.5.1.1 Pattern Generator

A given pick list of size must be distributed among the main storage aisles;

therefore, the idea of the pattern generator is implemented and adopted from Berglund

and Batta [1].

The purpose of the pattern generator is to provide a fully enumerated set of all possible

patterns in which a given pick list of size might be distributed within a warehouse of

 aisles. A specific pattern indicates the number of picks present in each aisle among

the aisles of a feasible warehouse configuration from the set in Equation 4.1

(section 4.2.1). The summation of the number of these picks in each of the aisles in

every pattern is equal to .

33

A fully enumerated set for a given pair of and that contains patterns is denoted

by
 .

As mentioned in Berglund and Batta [1], every pattern is defined as follows:

 { } 4.6

such that ∑

 =

 4.7

where : represents the number of picks existing in aisle .

Every pattern has its own probability to occur denoted by (), and it is calculated

based on the probability mass function () obtained from the storage assignment

policies according to Berglund and Batta [1], as follows:

 () ∏ ()
𝐾

 =

 4.8

such that ∑ ()

𝐾 ∈ 𝐾𝑁 𝑀

 4.9

The fully enumerated set
 for a pick list of picks and a warehouse of main aisles

with () , () , and () , is presented in Table 1; there are

27 patterns that cover all possibilities of how the picks might be distributed among the

 aisles, along with their associated probabilities, (). It is apparent from the table that

the summation of all picks for every pattern among the patterns is always equal to ,

and the summation of all () values is 1.

34

Table 1: Set 𝑲𝟑 𝟑

 of Fully Enumerated Patterns for N=3, and M=3

Pattern No.
Pattern 𝑲

∑𝑲𝒎 𝑵

𝑴

𝒎=𝟏

 𝐏𝐫 (𝑲)
𝑲𝟏 𝑲𝟐 𝑲𝟑

1 3 0 0 3 0.091125

2 2 0 1 3 0.050625

3 2 1 0 3 0.06075

4 2 0 1 3 0.050625

5 2 1 0 3 0.06075

6 1 0 2 3 0.028125

7 1 1 1 3 0.03375

8 1 1 1 3 0.03375

9 1 2 0 3 0.0405

10 2 0 1 3 0.050625

11 2 1 0 3 0.06075

12 1 0 2 3 0.028125

13 1 1 1 3 0.03375

14 1 1 1 3 0.03375

15 1 2 0 3 0.0405

16 1 0 2 3 0.028125

17 1 1 1 3 0.03375

18 1 1 1 3 0.03375

19 1 2 0 3 0.0405

20 0 0 3 3 0.015625

21 0 1 2 3 0.01875

22 0 1 2 3 0.01875

23 0 2 1 3 0.0225

24 0 1 2 3 0.01875

25 0 2 1 3 0.0225

26 0 2 1 3 0.0225

27 0 3 0 3 0.027

Total 1

35

4.5.1.1.1 Repeated Patterns

It is apparent from Table 1 that some of the listed patterns repeat several times within the

fully enumerated set
 , such as { }, displayed three times.

The explanation for the repeated pattern is that the pattern only provides how many picks

each aisle may include, without referring to the location of individual in each aisle.

Therefore, some patterns must be repeated in order to cover all possible combinations of

the locations of the items. For example, assume there are three items , , and , and

these items have to be distributed in a warehouse of aisles according the pattern

 { }. The manner in which these items are distributed is that

aisle always includes items, aisle always includes item, and aisle is always

empty. Three combinations of two items may be present in aisle : and ; and ; or

 and . The respective item found in aisle for each combination is , , and . Each

combination is represented by { }; therefore, this pattern is

repeated three times. The pattern itself is used to represent a certain scenario of how is

distributed numerically among aisles, while the repetitions of the pattern are used to

represent all possible combinations of how potential items may arbitrarily be linked to

those picks located in the warehouse.

36

4.5.1.2 Routing Scenarios and Pattern-based Travel Distance

Estimation

The derivation of the pattern-based travel distance estimator stems from two exclusive

and distinct routing scenarios which may result from any given pattern: the regular

routing and the extra exiting distance scenarios. Both scenarios are explained in 4.5.1.2.1

and 4.5.1.2.2:

4.5.1.2.1 Regular Routing Scenario

The regular routing scenario occurs when an order picker is able to complete his picking

tour and return back to the depot without the need to enter any extra aisles. In the case of

the S-shape routing strategy, this means that when the last pick is made, the picker must

be on the same cross aisle as the depot when he exits the picking aisle.

An example of a regular routing scenario can be represented by {

 } from the set
 , for the pair and .

This example is illustrated in Figure 9, along with a detailed distance representation of

each segment of the path followed. An order picker enters and traverses the aisles , ,

and , and finally enters aisle from the rear end, traversing it and exiting into the front

cross aisle, and returning to the depot. In this described picking path, the four traversed

aisles account for a vertical travelled distance of () units, and the lateral

displacement back and forth between the depot and the last aisle in the given pattern,

which is aisle in this case, accounts for a travelled distance of () units. Therefore

the pattern-based travel distance is equal to () ().

37

The last aisle entered in this given pattern is also the last aisle on the warehouse layout,

but it is not mandatory that both are the same every time. For some patterns, the last aisle

to be entered according to the given may be any other aisle prior to the last aisle on the

warehouse layout.

Figure 9: Example picking tour for regular routing scenario

38

4.5.1.2.2 Extra Exiting Distance Scenario

The extra exiting distance scenario occurs when it is necessary for an order picker to

enter an extra aisle, adjacent to the last aisle in a given pattern, in order to invert his path

direction to exit into the front cross aisle and return back to the depot.

An example of an extra exiting scenario can be represented by {

 } from the set
 , for the pair and . This

example is illustrated in Figure 10, along with a detailed distance presentation of each

segment of the path followed. An order picker enters aisles 2 and , then enters aisle 6

from the front. After exiting aisle , the order picker must enter the prior adjacent aisle,

which is aisle in this case, inverting his path direction and exiting to the front cross

aisle, then returning back to the depot. In this described picking path, the four traversed

aisles, including the extra aisle account for a vertical travelled distance of ()

units, and the lateral displacement back and forth between the depot and the last aisle in

the given pattern, which is aisle in this case, accounts for a lateral travelled distance of

 () units. Therefore the pattern-based travel distance is equal to ()

 ().

39

4.5.1.2.3 Pattern-based Travel Distance Estimator

Based on the previous two routing scenarios, the pattern-based travel distance estimator

which intuitively provides the tour length based only on the values of in a given

pattern is defined as:

 () (𝐶 𝐶)() 𝐶 () 4.10

where the parameters 𝐶 , 𝐶 , and 𝐶 for a given pattern are defined as:

Figure 10: Example picking tour for extra exiting distance scenario

40

 𝐶 : the total number of aisles for which . The role of this parameter is to

count the number of aisles that includes at least one pick;

 𝐶 : a binary decision variable, defined as {
 𝑓 𝐶 𝑠 𝑎 𝑢 𝑒𝑟
 𝑓 𝐶 𝑠 𝑎 𝑒 𝑒 𝑢 𝑒𝑟

 The

value of this parameter is determined according to the value of 𝐶 ; when 𝐶 is an

odd number, the last aisle is entered from its front end and, therefore, an extra

aisle is needed to reverse the path direction; accordingly, 𝐶 is set to . When 𝐶

is an even number, the last aisle is entered from its rear end; accordingly, 𝐶 is set

to ;

 𝐶 : a value equal to , where is the number of the last aisle in the given

pattern, such that .The role of this parameter is to determine the

farthest lateral point reached away from the depot.

4.5.1.3 Estimating Total Expected Travel Distance Using the

Analytical Approach

Each pattern within the full set
 leads to a specific picking tour, executed under the

S-shape routing strategy with an associated probability (). In other words, a given

pattern is considered a blueprint or map, informing the order picker whether or not to

enter the aisle during the order picking tour. Given a general pattern

{ }; implies that aisle must be entered to perform one or more

picks, and implies that aisle is not entered, except for the purpose of

completing the order picking tour and returning back to the depot.

41

 Therefore, the total expected travel distance required to complete a pick list of size in

a warehouse with aisles is obtained from the summation of the expected pattern-based

travel distances for every pattern in the fully enumerated set
 , where the expected

pattern-based travel distance of a pattern is obtained by multiplying the probability of a

pattern (Equation 4.8) by its travel distance (Equation 4.10). This gives:

 (
) ∑ () × (K)

𝐾 ∈ 𝐾𝑁 𝑀

 4.11

where:

 (
): the total expected travel distance for a given pair (,) using the

analytical approach;

 (): the pattern-based travel distance;

 (): the probability of pattern to occur.

4.5.2 Monte Carlo Simulation Approach

In this section, the Monte Carlo simulation approach is presented through four main

aspects; the need of the simulation approach due to the limitations of the analytical

approach, the concept of generating random patterns, the estimation of the total expected

travel distance using the simulation approach, and finally the validation of the Monte

Carlo simulation approach.

42

4.5.2.1 Limitations of Analytical approach

The analytical approach is theoretically designed to investigate all patterns obtained from

any given pair of and , regardless of the size of the fully enumerated set
 .

However, due to practical computational limitations, the analytical approach requires a

very long processing time to evaluate excessively large or even moderate sizes of
 .

The use of large and values makes the analytical approach impractical due to the

excessively large sets of patterns that result.

Table 2 presents the size of the fully enumerated sets
 for pick lists of size

 and , along with different warehouse layouts of and . It is

clear from the table that a rapid increase in the size of
 occurs as M and/or N

increase, due to the exponential-factorial effect. Even with the moderate case of a pick

list of picks and a warehouse with main storage aisles, there are over

 × possible patterns to be evaluated. Therefore, the analytical approach is

practically limited to investigating and values producing reasonably- and

practically-sized fully enumerated sets, which may be around million patterns.

43

Table 2: Size of 𝑲𝑵 𝑴

 for Various N and M

Pick list size

Number of Storage Aisles

𝑴 𝟏𝟎 𝑴 𝟐𝟎 𝑴 𝟑𝟎

𝑵 𝟔 × × ×

𝑵 𝟏𝟐 × × ×

𝑵 𝟑𝟎 × 0 8 × 0 8 ×

𝑵 𝟓𝟎 × 0 8 × 8 8 ×

4.5.2.2 Generating Random Patterns

A Monte Carlo simulation approach is developed to overcome the limitations of the

analytical approach. The idea behind this simulation approach is to substitute the role of

the pattern generator with a process which randomly generates a predetermined number

of runs , where each run represents a random pattern. This random set of runs is

determined, instead of generating the fully enumerated set
 for a given , and that

may consist of billions of patterns.

44

For the purpose of generating random patterns, the following function and variables are

defined:

 Cumulative distribution function of the probability mass function ():

𝑃 ()

{

∑ ()

 =

 ≤

 𝑂𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

 4.12

 : the total number of random patterns (runs);

 𝑟 : a random number associated with pick among picks.

The process of generating a random pattern based on a given pick list of size , and a

warehouse with aisles, starts with assigning a random number, 𝑟 , between and , to

each of the picks. Next, an aisle is selected to contain each of these picks, by finding

the first aisle among the aisles that happens to have a cumulative value of () at

least equal to the random value 𝑟 associated with the pick 𝑃 () 𝑟 . This process is

repeated until the runs are generated. The flow chart in Figure 11 below shows the

steps in the process of generating random patterns.

45

Start

Enter the pick list size (N)

Enter the total number of
storage aisles (M)

Enter the number of
random runs (R)

Pick number (n) =1

Aisle number (m)=1

n ≤ N Yes

Run number(Rn) ≤ Total
Number of runs (R)

Yes

End

No

Generate random number (rn)

m ≤ M

Random
number(rn)≤ PM(m)

Yes

Pick number (n)
in aisle number(m)

No

Locate pick number (n) in
aisle number (m)

Increment pick number (n) by
1

Yes

Increment aisle
number (m) by 1

No

Run number (Rn)=1

Increment run number (Rn)
by 1

No

Figure 11: Flow chart for generating R random patterns using Monte Carlo simulation approach

46

A randomly generated set for a given pair of and containing patterns is denoted

by
 . Each pattern is defined as follows:

 { } 4.13

such that ∑

 =

 4.14

where : the number of picks present in aisle .

For an example of how a random pattern might be generated, assume that after assigning

a given group of items into a warehouse with , the obtained discrete probabilities

of a single pick are () , () , and () . The cumulative

distribution would be 𝑃 () , 𝑃 () , and 𝑃 () . We are interested in

generating a random pattern for a pick list of 3 picks in that warehouse, given that the

randomly generated numbers 𝑟 , 𝑟 , and 𝑟 8 are associated with the

first, second, and the third picks, respectively. The first pick would be located in the first

aisle, as (𝑃 ()) (𝑟). Similarly, the second pick would be located in the

first aisle, as (𝑃 ()) (𝑟). The third pick would be located in the third

aisle, as (𝑃 ()) (𝑟 8). The resultant random pattern would be defined

as { }.

47

4.5.2.3 Estimating Total Expected Travel Distance Using

Simulation

After generating a random set
 , the expected total travel distance required to

complete a pick list of size from a warehouse with aisles is obtained by averaging

the summation of the travel distances of every random pattern in
 , using the

following function:

 (

)
∑ ()𝐾𝑆 ∈ 𝐾𝑆𝑁 𝑀

𝑅

 4.15

where:

 (
): the total expected travel distance for a given pair (,) using the

simulation approach;

 (): the travel distance corresponding to pattern , obtained by the pattern-

based travel distance function given in Equation 4.10.

4.5.2.4 Validation of Monte Carlo Simulation Approach

 The set
 always has a large number of randomly generated patterns . According

to the central limit theorem, a hypothesis test is conducted to validate the Monte Carlo

simulation approach.

The analytical approach is utilized to validate the simulation approach by executing a

two-sided hypothesis test at a 99 percent confidence level for the expected total travel

48

distance values for given pairs of , and , obtained by both approaches. The test is

described as follows:

 Hypotheses on the expected total travel distance:

 H0 (
) (

)

 H (
) ≠ (

)

4.16

 Test statistic:

 0

 (
) (

)

 𝐸(𝑆𝑁 𝑀𝑅)/√
 4.17

where 𝐸(𝑆𝑁 𝑀𝑅)
√
∑ (() (

)) 𝐾𝑆 ∈ 𝐾𝑆𝑁 𝑀
𝑅

 4.18

 𝐸(𝑆𝑁 𝑀𝑅) is an estimate of the standard deviation of () values, implied by the

random patterns in
 for a given pair of and .

 Decision criterion for rejecting the null hypothesis:

 𝑃- 𝑎𝑙𝑢𝑒(0) 4.19

49

Chapter 5

Implementation

In this chapter, 600 items and six feasible layout alternatives have been chosen for

implementing the methodology, and for performing the desired numerical analysis in

such a way that the combined effects of the three storage assignment policies and the

warehouse shape on the efficiency of order picking in terms of the travel distance, as well

as the performance of each of the three storage polices under consideration, can be

thoroughly analyzed.

5.1 Items

The developed methodology is implemented by considering a group of 600 items with

 items per unit time and storage locations. A sample of these

items along with their attributes is presented in Table 3.

Table 3: Sample of Items Data

Item No. 𝑫𝒊 𝑺𝒊 𝑫𝑺𝑹𝒊 𝑹𝒊

1 3357 2 1678.5 0.952524

2 2136 2 1068 0.560937

3 3164 1 3164 0.658153

4 843 2 421.5 0.179097

5 1463 4 365.75 0.321327

6 1504 4 376 0.210995

7 3503 5 700.6 0.692759

8 3552 4 888 0.977731

9 1683 3 561 0.206321

10 3684 5 736.8 0.24869

50

5.2 Warehouse Layout Alternatives

Six different feasible warehouse layout structure alternatives represented by

{() () () (8)

(8) (8)} are selected to be investigated with the

three storage assignment policies. All six layout structures share the same dimensional

parameters of m, 8 m, and 8 m. A scaled layout representation

showing the dimensional differences between the six warehouse layout alternatives is

depicted in Figure 12.

Figure 12: A scaled layout representation of the six layout alternatives in D*

51

5.3 Python Code

The software code for this thesis is developed in the Python language, in order to

facilitate efficient implementation, and to obtain full sets of results for a wide range of

scenarios and situations. The Python code is presented in its entirety in Appendix B. The

code is explained in the following six sections.

5.3.1 Input Parameters and Item’s Data

The Python code starts with the function enter_params, which is used to allow the user

to specify the layout and dimensional parameters of the warehouse including , , ,

 , and . Also, this function allows the user to enter the maximum size of the pick

list to be investigated using both the analytical approach and the Monte Carlo

simulation approach, in addition to the number of random runs, , to be provided by the

simulation approach. The function interactive is used at this stage to extract the items

and their attributes from the sample_data.csv file, and then it generates multiple data

sets, one for each assignment storage policy.

5.3.2 Item Allocation

After getting all necessary parameters, variables, and extracting all items and their

attributes, Aisle and Item classes are used to track and control both the items and the

aisles during the execution of the item allocation within the warehouse using any of the

three assignment storage policies. The Aisle class is used to control and track the position

and the number of assigned items within the aisles indicated by the number of storage

52

locations in which each assigned item is located. Also, the Aisle class is used to track and

update the current capacity of each side of every main storage aisle in the layout. The

Item class is used to keep track of individual item attributes including the name, the

demand, the storage requirements, and its location within the warehouse. Also, the Item

class is used to facilitate the sorting of the items, as required by the storage assignment

policies. The function Layout in cooperation with the Aisle class are used to create a

series of double-sided storage aisles with a number of storage locations in them, based on

the parameters and provided by the function enter_param, which is called from the

assign function and does not need to be called from the user’s code. The function

expected_values, in cooperation with the Item class, is used to sort a given group of

items according to the specific criteria of one of the three assignment storage policies.

Based on the classes, Aisle and Item, and in addition to the functions Layout and

expected_values, the function Assign is used to assign the items within a given

warehouse layout, and to return the probability values (). The function Assign

includes four sub-functions: one for each of the assignment storage polices. The four

functions are named assign_FullTurnOverNN, assign_FullTurnOverNS,

assign_NearestLocation, and assign_Random, which only differ in the final sorting of

the given items provided by the function expected_values.

5.3.3 Travel Distance Estimation Using the Analytical Approach

The function possibilities is used to generate the fully enumerated set of all possible

patterns
 , along with the probabilities () associated with the generated pattern,

based on the given values of , , and the values of () provided by the function

Assign for each of the three assignment storage policies.

53

The function distance is used to calculate the pattern-based travel distance for every

pattern in the fully enumerated set obtained by the function possibilities. This function is

represented in Equation 4.10, and takes into account the values , , , and . The

function total_distance is used to calculate the total expected travel distance for a given

pair of N and M based on the distances provided by the function distance, and the

probabilities () provided by the function possibilities. The function total_distance is

represented in Equation 4.11.

5.3.4 Travel Distance Estimation Using the Simulation Approach

The function Monte_carlo is used to perform a series of a predetermined number of

random runs, . The outcome of every single run represents a random pattern. Then,

using the function distance, the pattern-based travel distance associated with each of the

random patterns is obtained. The function Monte_carlo is used to calculate the total

expected travel distance by averaging all the distances obtained the function distance.

5.3.4.1 Validation of the Simulation Approach

The function confidence is used to validate the Monte Carlo simulation approach based

on the values obtained by the analytical approach. This function is responsible for

obtaining the mean and standard deviation for a given number of runs, and then

performing a two-sided hypothesis test at a specific confidence level; it returns the test’s

associated P-values.

54

5.3.5 Outcomes and Results

Finally, all of the obtained outcomes for each of the assignment storage policies are

provided using the function interactive in form of csv files. The outcomes include the

locations of the assigned items within the warehouse, the () values, the analytical

results, and the simulation results along with their validation results.

5.3.6 Computational Time

The CPU times (seconds) on a 2.5Ghz Intel i5 processor with 6GB RAM required for

estimating the total expected travel distances under each of the three assignment storage

policies using either the analytical or the simulation approach for selected values of

and are presented in Table 4.

Table 4: Sample of CPU Times (seconds) for selected pairs of N, and M

 Analytical Simulation

N 𝑴 𝟏𝟓,𝑩 𝟔𝟎 𝑴 𝟑𝟎,𝑩 𝟑𝟏 𝑴 𝟏𝟓,𝑩 𝟔𝟎 𝑴 𝟑𝟎,𝑩 𝟑𝟏

1 <1.00 <1.00 <1.00 <1.00

2 <1.00 <1.00 <1.00 <1.00

3 <1.00 1.21 <1.00 <1.00

4 1.311 39.88 <1.00 10.41

5 21.60 1300.56 8.72 11.58

6 365.82 - 9.73 12.77

7 5487.35 - 11.91 16.17

8 - - 12.91 17.41

20 - - 25.39 34.36

50 - - 54.74 76.33

90 - - 81.37 126.69

55

5.4 Item Allocation

The same 600 items are allocated into each warehouse layout alternative in the set by

implementing all three storage assignment policies, for the purpose of estimating the

probability of a single pick’s presence in aisle m, represented as (). The values of

the probability mass function () obtained under the full-turnover policies, including

its two distinct assignment directions, north-north and north-south; nearest-location; and

random storage assignment policies for every aisle in each layout alternative in are

presented in Figure 13.

56

 Fifth Layout
(M5 =6,B5 =148)

Aisle m

0 1 2 3 4 5 6 7

P
ro

b
ab

ili
ty

 o
f

a
Si

n
gl

e
P

ic
k

in
 A

is
le

 m

0.0

0.1

0.2

0.3

0.4

0.5

 Initial Layout
(M1 =30,B1 =31)

Aisle m
0 5 10 15 20 25 30 35

P
ro

b
ab

ili
ty

 o
f

a
Si

n
gl

e
P

ic
k

in
 A

is
le

 m

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 Second Layout
(M2 =15,B2 =60)

Aisle m

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ili
ty

 o
f

a
Si

n
gl

e
P

ic
k

in
 A

is
le

 m

0.00

0.05

0.10

0.15

0.20

0.25

 Third Layout
(M3 =10,B3 =90)

Aisle m

0 2 4 6 8 10 12

P
ro

b
ab

ili
ty

 o
f

a
Si

n
gl

e
P

ic
k

in
 A

is
le

 m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 Fourth Layout
(M4 =8,B4 =112)

Aisle m

0 2 4 6 8 10

P
ro

b
ab

ili
ty

 o
f

a
Si

n
gl

e
P

ic
k

in
 A

is
le

 m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 Final Layout
(Mf =5,Bf =178)

Aisle m
0 1 2 3 4 5 6

P
ro

b
ab

ili
ty

 o
f

a
Si

n
gl

e
P

ic
k

in
 A

is
le

 m

0.0

0.1

0.2

0.3

0.4

0.5

Full-turnover (NS,NN)
Random
Nearest Location

Full-turnover (NS,NN)
Random
Nearest Location

Full-turnover (NS,NN)
Random
Nearest Location

Full-turnover (NS,NN)
Random
Nearest Location

Full-turnover (NS,NN)
Random
Nearest Location

Full-turnover (NS,NN)
Random
Nearest Location

Figure 13 indicates that the full-turnover storage assignment policy results in a declining

trend of () values, such that () is the largest and () is the smallest, which

implies that, under the full-turnover policy, the probability of finding a single pick is

highest in the first aisle and decreases aisle by aisle. This is explained by the manner in

which the full-turnover policy sorts the items according to their demand to size ratio;

Figure 13: 𝐩𝐌(𝐦) values of the three storage policies for the six layouts

57

 . Accordingly, the aisles closest to the depot usually contain the items with the

highest demand. Also, it is important to mention that both north-north and north-south

assignment directions of the full-turnover policy produce exact () values. This

happens because the items allocated in each main storage aisle will be same for north-

north and north-south assignment directions, although their storage locations within the

main aisle will be different.

The nearest-location storage assignment policy results in () values which exhibit

cyclic, peak-valley behavior along the aisles. The reason for this behavior is because

the nearest-product policy incrementally sorts the items according to their storage

requirements; . In other words, items are split into multiple groups based on , so the

items in each group share the same , and then the items in each group are sorted

according to their demand. Therefore, each of the sorted groups features a peak ()

value caused by the items with the highest demand in the group, followed by a valley

 () value caused by the item with lowest demand.

The random storage assignment policy results in almost leveled () values among the

warehouse’s aisles. This is explained by the random manner in which all items are

allocated into the aisles with no preference of one over another, regardless of their

demand and storage requirements.

The data in Figure 13 suggests that () values obtained by the nearest-location

policy approach the ones obtained by the full-turnover policy as the number of storage

aisles decreases and the number of storage locations in each of these aisles increases

simultaneously. In other words, the impact of the nearest-location policy approaches the

58

impact of full-turnover as the density of the allocated items per storage aisle significantly

increases. The () values obtained by the random storage policy get more balanced

as the density of picks significantly increases in .

5.5 Validation of the Monte Carlo Simulation Approach

The Monte Carlo simulation approach is validated against the analytical approach. Two-

sided hypothesis tests are performed to determine whether or not the total expected travel

distance, (
), and (

) values obtained by both approaches, are similar at a

 percent confidence level. Therefore, limited and practical ranges of values among

all six warehouse layout alternatives in are considered to obtain the (
), and

 (
) values.

The results of the simulation approach validation based on the total expected travel

distance values required to complete pick lists of sizes from the final

layout in with , and 8 are presented in Table 5. The results clearly

suggest a conclusion that the values of both approaches are similar at a percent

confidence level, as all p-values are larger than the significance level of percent.

Also, the test indicates that the maximum absolute difference between the values

resulting from the two approaches does not exceed .

59

Table 5: Validation Results Based on Final Layout, 𝑴𝒇 = 5 and 𝑩𝒇 = 178

N

Full-turnover (NN & NS) The Nearest-location Random

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

1

341.845 341.843 0.00043 0.86 348.731 348.731 0.00012 0.96 362.281 362.278 0.00077 0.78

2

355.585 355.603 0.00526 0.03 365.125 365.130 0.00143 0.57 379.886 379.886 0.00003 0.99

3

461.689 461.701 0.00261 0.80 495.775 495.728 0.00945 0.35 530.609 530.582 0.00517 0.58

4

539.268 539.279 0.00199 0.83 581.854 581.824 0.00514 0.54 621.011 620.950 0.00974 0.15

5

592.559 592.547 0.00203 0.80 637.400 637.401 0.00009 0.99 675.515 675.571 0.00824 0.12

6

630.670 630.581 0.01416 0.04 678.220 678.156 0.00947 0.12 717.552 717.483 0.00955 0.07

7

659.518 659.500 0.00276 0.66 711.671 711.707 0.00512 0.39 755.703 755.658 0.00603 0.28

8

682.616 682.594 0.00319 0.59 741.245 741.223 0.00293 0.62 791.498 791.502 0.00051 0.93

9

702.035 702.057 0.00315 0.59 768.012 767.930 0.01061 0.08 824.409 824.412 0.00027 0.96

10

719.002 719.047 0.00622 0.29 792.333 792.290 0.00537 0.38 853.773 853.763 0.00117 0.83

11

734.247 734.226 0.00284 0.63 814.449 814.489 0.00493 0.41 879.286 879.302 0.00172 0.75

In similar manner, the simulation approach is validated based on the other five feasible

layout alternatives in . The validation results, obtained for each of the five layout

alternatives, show that both approaches provide similar values at a 99 percent confidence

level. The complete analysis of the five feasible layouts is presented in Appendix A.

60

5.6 Analysis of the Estimated Total Expected Travel Distance

The Monte Carlo simulation approach is utilized to estimate the total expected travel

distance (
) required to pick all items on pick lists of sizes from

each set of layout parameters and in , with the assumption that the S-shape

routing policy is to be used.

5.6.1 Effects of Storage Assignment Policies and Pick list Size

The total expected travel distances versus the pick list size under each of the full-turnover

policies, including the north-north and north-south assignment directions; nearest-

location; and random storage policies for the layouts (), (

), (), (8), (8), and

(8) are presented in Figure 14.

61

 Initial Layout
(M1 =30,B1 =31)

Pick List Size(N)

0 20 40 60 80 100

To
ta

l E
xp

ec
at

ed
 T

ra
ve

l D
is

ta
n

ce
(m

)

0

150

300

450

600

750

900

1050

1200

1350

1500

 Second Layout
(M2 =15,B2 =60)

Pick List Size(N)

0 20 40 60 80 100

To
ta

l E
xp

ec
at

ed
 T

ra
ve

l D
is

ta
n

ce
(m

)

0

150

300

450

600

750

900

1050

1200

1350

1500

 Third Layout
(M3 =10,B3 =90)

Pick List Size(N)

0 20 40 60 80 100

To
ta

l E
xp

ec
at

ed
 T

ra
ve

l D
is

ta
n

ce
(m

)

0

150

300

450

600

750

900

1050

1200

1350

1500

 Fourth Layout
(M4 =8,B4 =112)

Pick List Size(N)

0 20 40 60 80 100

To
ta

l E
xp

ec
at

ed
 T

ra
ve

l D
is

ta
n

ce
(m

)

0

150

300

450

600

750

900

1050

1200

1350

1500

 Fifth Layout
(M5 =6,B5 =148)

Pick List Size(N)

0 20 40 60 80 100

To
ta

l E
xp

ec
at

ed
 T

ra
ve

l D
is

ta
n

ce
(m

)

0

150

300

450

600

750

900

1050

1200

1350

1500

 Final Layout
(Mf =5,Bf =178)

Pick List Size(N)

0 20 40 60 80 100

To
ta

l E
xp

ec
at

ed
 T

ra
ve

l D
is

ta
n

ce
(m

)

0

150

300

450

600

750

900

1050

1200

1350

1500

Full-turnover (NN,NS)

Random

Nearest Location

Full-turnover (NN,NS)

Random

Nearest Location

Full-turnover (NN,NS)

Random

Nearest Location

Full-turnover (NN,NS)

Random

Nearest Location

Full-turnover (NN,NS)

Random

Nearest Location

Full-turnover (NN,NS)

Random

Nearest Location

By comparing the total expected travel distance values from all six layouts using the

three different policies, as illustrated in Figure 14, the effects of the three storage

assignment policies can be determined. The full-turnover policy, in which its two distinct

assignment directions, north-north and north-south, have similar outcomes, results in the

lowest total expected travel distances. This is due to the declining trend of the ()

Figure 14: 𝐄(𝐃𝐒𝐍 𝐌
𝐑) values of the three storage policies for the six layouts

62

values obtained by the full-turnover policy. In other words, the order picker is more

likely to enter the first few aisles, which are the closest to the depot and have the highest

 () values, rather than entering all aisles, including other aisles with lower ()

values, to retrieve the picks.

The nearest-location policy results in moderate total expected travel distances, compared

to the full-turnover and the random policies. This is caused by the cyclic behavior of

 () values among the aisles, which means that the order picker is more likely to

enter aisles with a peak () value than the other aisles, including aisles with

valley () values, to retrieve the picks. Also, in this case, the number of aisles to

be entered is always higher than those in the full-turnover policy, which is why the full-

turnover policy generally results in shorter total expected travel distances than the

nearest-product policy.

The random storage policy results in the largest total expected travel distances among the

three storage policies. This is due to relatively even () values, meaning an order

picker is likely to enter more of the aisles to retrieve the picks, when compared to

the previous storage policies.

The results also clearly indicate that the total expected travel distance values obtained by

a policy generally approach the values of the other policies as the size of the pick list

increases. A larger pick list size results in a higher density of picks per storage aisle,

which eventually necessitates the order picker to enter most of the aisles, regardless of

the storage policy applied.

63

5.6.2 Effect of Warehouse Shape

For the purpose of magnifying and maintaining the effect of the warehouse’s shape, the

pick list size of range is divided into eight ranges of picks: ,

 , , , , ,

 ,and .

The (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values obtained for each of the eight ranges under the three storage

assignment policies for each of the six feasible warehouse layout alternatives in are

presented in Figure 15.

64

N1=2,...,5

Layout Alternatives in D*

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

E
q

u
a

lly
 A

ve
ra

ge
d

 T
o

ta
l E

xp
e

ct
e

d
 T

ra
ve

l D
is

ta
n

ce

350

400

450

500

550

600

650
Full-turnover(NN,NS)

Random

Nearest Location

N2=6,...,10

Layout Alternatives in D*
M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

E
q

u
a

lly
 A

ve
ra

ge
d

 T
o

ta
l E

xp
e

ct
e

d

T
ra

ve
l D

is
ta

n
ce

550

600

650

700

750

800

850

Full-turnover(NN,NS)

Random

Nearest Location

N3=11,...,15

Layout Alternatives in D*

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

E
q

u
a

lly
 A

ve
ra

ge
d

 T
o

ta
l E

xp
e

ct
e

d
 T

ra
ve

l D
is

ta
n

ce

650

700

750

800

850

900

950
Full-turnover(NN,NS)

Random

Nearest Location

N4=16,...,20

Layout Alternatives in D*

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

E
q

u
a

lly
 A

ve
ra

ge
d

 T
o

ta
l E

xp
e

ct
e

d
 T

ra
ve

l D
is

ta
n

ce

750

800

850

900

950

1000

1050

Full-turnover(NN,NS)

Random

Nearest Location

N5=21,...,25

Layout Alternatives in D*
M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

E
q

u
a

lly
 A

ve
ra

ge
d

 T
o

ta
l E

xp
e

ct
e

d

T
ra

ve
l D

is
ta

n
ce

800

850

900

950

1000

1050

1100

1150
N6=26,...,35

Layout Alternatives in D*
M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

E
q

u
a

lly
 A

ve
ra

ge
d

 T
o

ta
l E

xp
e

ct
e

d
 T

ra
ve

l D
is

ta
n

ce

800

900

1000

1100

1200

1300

Full-turnover(NN,NS)

Random

Nearest Location

Full-turnover(NN,NS)

Random

Nearest Location

N7=36,...,45

Layout Alternatives in D*
M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

E
q

u
a

lly
 A

ve
ra

ge
d

 T
o

ta
l E

xp
e

ct
e

d

T
ra

ve
l D

is
ta

n
ce

800

900

1000

1100

1200

1300

1400
N8=46,...,90

Layout Alternatives in D*
M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

E
q

u
a

lly
 A

ve
ra

ge
d

 T
o

ta
l E

xp
e

ct
e

d
 T

ra
ve

l D
is

ta
n

ce

800

900

1000

1100

1200

1300

1400

1500

Full-turnover(NN,NS)

Random

Nearest Location

Full-turnover(NN,NS)

Random

Nearest Location

Figure 15: 𝐄(𝐃𝐒𝐍 𝐌
𝐑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ values of the three storage policies for the eight ranges of N

65

Figure 15 illustrates the fact that the (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values for the eight ranges of under

each of the three storage policies exhibit a concave up behavior over the six feasible

layouts in , in sequence from the initial layout to the final layout.

For instance, the pick list size ranges, , , and

 , can be used to explain how the variations in the warehouse shape result in the

concave up behavior of the (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values. A comparison of the graphs in Figure 15

indicates that the averaged total expected travel distance gradually decreases over the

initial, second, third, fourth and fifth layouts. This decrease is caused by the reduction in

the number of storage aisles in each of the five layouts the order picker may have

traversed to complete a given number of picks. Although this reduction is coupled with a

simultaneous increase in the number of storage locations in each of these aisles, resulting

in an extension of the length of each aisle, in the case of these five layout alternatives, the

reduction in travel distance due to decreasing the number of aisles overcomes the

simultaneous increase in travel distance due to extending the length of the vertical aisles,

eventually leading to an overall reduction in the averaged total expected travel distance.

The described reduction behaviour no longer occurs in the final layout alternative. This is

because the reduction in the travel distance due to reducing the number of total storage

aisles is no longer sufficient to overcome the increase in travel distance caused by

increasing the depth of the aisles. The result is a rapid increase in the averaged total

expected travel distance. For the exact same reasons, the concave up behavior is repeated

for the ranges , , , , and

 , in which the reduction behavior no longer occurs after the second and the third

layouts for , , , and , , respectively.

66

Figure 15 also indicates that, under the full-turnover storage policy, the second layout

alternative with achieves the local minimum averaged total expected

travel distances of m, 8 m and m, for the pick list sizes of ranges

 , , and , respectively; the third layout alternative with

 achieves the local minimum averaged total expected travel distances

of m, and 8 m for the pick list sizes of ranges, , and

 , respectively; and the fifth layout alternative with 8 achieves

the local minimum averaged total expected travel distances of 8 m, 8 m, and 8 m

for the pick list sizes of ranges , , and ,

respectively.

67

N1=2,...,5

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

s
%

0

5

10

15

20

25

30
N2=6,...,10

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

s
%

0

5

10

15

20

25

30

N3=11,...,15

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

s
%

0

5

10

15

20

25

30
N4=16,...,20

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

s
%

0

5

10

15

20

25

30

N5=21,...,25

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

s
%

0

5

10

15

20

25

30
N6=26,...,35

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

s
%

0

5

10

15

20

25

30

N8=46,...,90

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

s
%

0

5

10

15

20

25

30
N7=36,...,45

M1=30,B1=31 M2=15,B2=60 M3=10,B3=90 M4=8,B4=112 M5=6,B4=148 Mf=5,Bf=178

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

s
%

0

5

10

15

20

25

30

Full-turnover(NN &NS),Random
 Full-turnover(NN &NS),Nearest-location
Nearest-location,Random

Full-turnover(NN &NS),Random
 Full-turnover(NN &NS),Nearest-location
Nearest-location,Random

Full-turnover(NN &NS),Random
 Full-turnover(NN &NS),Nearest-location
Nearest-location,Random

Full-turnover(NN &NS),Random
 Full-turnover(NN &NS),Nearest-location
Nearest-location,Random

Full-turnover(NN &NS),Random
 Full-turnover(NN &NS),Nearest-location
Nearest-location,Random

Full-turnover(NN &NS),Random
 Full-turnover(NN &NS),Nearest-location
Nearest-location,Random

Full-turnover(NN &NS),Random
 Full-turnover(NN &NS),Nearest-location
Nearest-location,Random

Full-turnover(NN &NS),Random
 Full-turnover(NN &NS),Nearest-location
Nearest-location,Random

5.6.3 Performance Differences of the Storage Assignment Policies

The percentage differences in the performances of the three policies for the eight pick list

size ranges in the six warehouse layout alternatives are presented in Figure 16.

Figure 16: Percentage difference in performance of the three storage policies

68

Based on Figure 16, it can be seen that the difference in performance between the three

storage assignment policies decreases gradually over the eight pick list size ranges,

beginning with , and ending with , and this is explained by

the fact that the density of picks per aisle m increases as the pick list size increases. This

means that the order picker will enter more aisles to perform the required picks,

regardless of the storage assignment policy applied in allocating the items. The largest

difference in performance between the full-turnover and the random storage policies

starts at about with , and ends at about with ;

the largest difference in performance between the full-turnover and the nearest-location

policies starts at about with , and ends at about with

 ; and the largest difference in performance between the nearest-location and the

random storage policies starts at about with , and ends at about

with . The smallest difference in performance between the full-turnover

and the random storage policies starts at about 8 with , and ends at

about with the smallest difference in performance between the

full-turnover and the nearest-location policies starts at about with , and

ends at about with ; and the smallest difference in performance

between the nearest-location and the random storage policies starts at about 8 with

 , and ends at about with .

69

5.7 Special Case: Pick List Sizes Follow an Exponential

Distribution

In the case when all pick list sizes of the range are equally weighted, this

means that the () values are identical for all pick list sizes. Therefore, () is

defined according to a discrete uniform probability distribution defined as follows:

 () {

8
 ≤ ≤

 𝑂𝑡ℎ𝑒𝑟𝑤 𝑠𝑒
 5.1

In some practical real-life situations, it might happen that the pick list sizes are

exponentially distributed with a given mean, , which means that the relative weights of

the pick lists of sizes are no longer identical. In fact, in this case, the

relative weights of every pick list of size N are determined by an exponential probability

density function. Therefore, () is defined as follows:

 () {

𝑒
−
𝛽 ≤

 𝑂𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

 5.2

70

Accordingly, the averaged values of the total expected travel distances, (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,

obtained for each of the three storage assignment policies for pick lists of sizes

 are calculated as follows:

 (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∑ (

) × ()

 =90

 =

5.3

where:

 (
): the total expected travel distance required to pick all items from a pick

list of size in a warehouse layout with aisles, obtained through the use of the

Monte Carlo simulation approach;

 (): probability that the pick list has a particular size , which is chosen to be

either equally weighted or exponentially distributed according to the functions

given in Equations 5.1 and 5.2, respectively.

Represented in Figure 17 are two cases in which the pick list sizes are exponentially

distributed; the first case assumes a mean pick list size of picks (i.e.,), while

the second case assumes a mean of picks (i.e.,). These two cases are graphed

with equally distributed pick list sizes, relative to the probability of for the full range

of pick list sizes.

71

Pick-list Size N

0 20 40 60 80 100

P
ro

b
ab

ili
ty

 o
f

N

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Uniform

Exp,Beta=15

Exp,Beta=30

Considering the fifth layout in with 8, the averaged values of the

total expected travel distances, (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, obtained under the three storage assignment

policies for completing a pick list of sizes , with () values based on

exponential distributions with and , in addition to the equally weighted

 () are presented in Figure 18.

Figure 17: Probability of pick-list of sizes 𝑵 𝟐 𝟗𝟎 based on exponential and uniform distributions

72

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

Full-turnover (NN &
NS)

Nearest-location Random

6
2

0
.4

6
5

2
.3

6
7

8
.6

6
8

0
.1

7
0

5
.6

7
2

3
.9

 8
2

2
.5

8
3

8
.5

8
4

7
.3

Exp,β=15 Exp,β=30 Uniform

It is apparent from Figure 18 that the (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values are influenced by the relative

weight of the pick list sizes in a given warehouse. Accordingly, warehouse professionals

must pay attention to two primary aspects: the average size of the pick list, and the

manner in which the relative probabilities (i.e., weights) of pick list sizes are distributed.

 (𝑫𝑺𝑵 𝑴
𝑹)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ m

Figure 18: Averaged 𝐄(𝐃𝐒𝐍 𝐌
𝐑) values of the three storage policies for the fifth layout based on exponential

and uniform distributions

73

Chapter 6

Conclusions and Further Research

We have presented a new methodology consisting of two primary approaches, the

analytical approach and the Monte Carlo simulation approach, for estimating the total

expected travel distance of a picking tour in a single-block, open-ended, picker-to-parts

warehouse. Through the use of these approaches, we evaluated the combined effects of

three storage assignment policies and the warehouse layout configuration, in terms of the

depth and the number of storage aisles. In doing so, we were able to determine the

optimal combination of the storage policy and the warehouse layout which achieves the

local minimum travel distance among all feasible combinations. Also, we compared the

performance of the full-turnover, the nearest-location and the random storage policies for

many warehouse layout configurations. This can be considered a contribution in the area

of improving the efficiency of order picking in picker-to-parts warehouses, and more

specifically, in implementing and evaluating the full-turnover storage assignment policy,

because the literature regarding the full-turnover storage policy in the context of order

picking travel distance is limited to the work performed by Caron et al. [2], [3], in which

he only compared the performance of the full-turnover policy to the performance of the

random storage policy in double-block, picker-to-parts warehouses. In addition, he

developed an analytical model for optimizing the number of storage aisles in double-

block warehouses, considering the full-turnover storage policy.

74

Our experimental evidence shows that the order picking travel distance is strongly

influenced by each item’s attributes, including their demand and storage requirements,

pick list size, warehouse layout in terms of the number and depth of its storage aisles, and

the storage policy used to allocate the items within the warehouse.

The results obtained from applying all three storage policies in various feasible

warehouse layout alternatives indicate that the full-turnover policy, including its two

assignment directions, the north-north and the north-south, always outperforms both the

nearest-location and the random storage policies, while the nearest-location policy

always outperforms the random policy. Accordingly, the random policy always results in

the highest order picking travel distances. Based on our experiments based on a group of

600 items allocated into six different feasible warehouse layout alternatives, we

concluded that the largest difference in performance between the full-turnover and

random storage policies is about , the largest difference in performance

between the nearest-product and random storage policies is about , and the

largest difference in performance between the nearest-location and random storage

policies is about .

We found that the layout shape significantly affects the order picking travel distance.

Under all three storage policies, a reduction in the travel distance occurred as a result of

decreasing the number of storage aisles the order picker may need to enter, until the

instance that the extra travel distance due to the corresponding extension in the depth of

the aisles, as needed to maintain the desired storage capacity of the warehouse, exceeded

the travel distance reduction due to lowering the number of storage aisles.

75

6.1 Directions for Further Research

Future research to extend this study could involve evaluating the impact of various

routing policies including the return, mid-point, and largest gap policies. Also, a future

study could compare the current three storage policies to other policies, including the

class-based and the volume-based storage assignment policies. Another important

extension to this study would be to evaluate the impact of adding one or more middle

cross aisles to the current layout structure on the order picking travel distance.

76

Bibliography

 [1] Berglund, P., & Batta, R. (2012). Optimal placement of warehouse cross-aisles in a

picker-to-part warehouse with class-based storage. IIE Transactions, 44(2), 107-120.

[2] Caron, F., Marchet, G., & Perego, A. (1998). Routing policies and COI-based

storage policies in picker-to-part systems. International Journal of Production

Research, 36(3), 713-732.

[3] Caron, F., Marchet, G., & Perego, A. (2000). Optimal layout in low level picker-to-

part systems. International Journal of Production Research, 38(1), 101-117.

[4] Chan, F., & Chan, H. K. (2011). Improving the productivity of order picking of a

manual-pick and multi-level rack distribution warehouse through the

implementation of class-based storage. Expert Systems with Applications, 38, 2686-

2700.

[5] Coyle, J. J., Bardi, E. J., & Langley, C. J. (2003). The management of business

logistics: A supply chain perspective. (7th ed.). Mason,OH: South-Western College.

[6] De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of

warehouse order picking: A literature review. European Journal of Operational

Research, 182(2), 481-501.

[7] Den Berg, J. P. (1999). A literature survey on planning and control of warehousing

systems. IIE Transactions, 31(8), 751-762.

[8] Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse

operation: A comprehensive review. European Journal of Operational Research,

177(1), 1-21.

[9] Hall, R. W. (1993). Distance approximation for routing manual pickers in a

warehouse. IIE Transactions, 25, 77-87.

77

[10] Heskett, J. L. (1963). Cube-per-order index – A key to warehouse stock location.

Transport and Distribution Management, 3, 27-31.

[11] Heskett, J. L. (1964). Putting the cube-per-order index to work in warehouse layout.

Transport and Distribution Management, 4, 23-30.

[12] Kallina, C., & Lynn, J. (1976). Application of the cube-per-order index rule for

stock location in distribution warehouse. Interfaces, 7(1), 37-46.

[13] Kubasad, S. R. (2010). Optimizing product placement for manual picking in

warehouses. (Unpublished Master of Engineering). Dalhousie University, Halifax,

Nova Scotia.

[14] Lambert, D. M., & Stock, J. R. (1998). In Ellram L. M. (Ed.), Fundamentals of

logistics management. Singapore: McGraw-Hill.

[15] Le-Duc, T., & De Koster, R. (2004). Travel distance estimation in single-block

ABC-storage strategy warehouses. In B. Fleiscmann, & A. Klose (Eds.),

Distribution logistics:Advanced solutions to practical problems. (pp. 184-200)

Springer.

[16] Le-Duc, T., & De Koster, R. (2005). Travel distance estimation and storage zone

optimization in a 2-block class-based storage strategy warehouse. International

Journal of Production Research, 43(17), 3561-3581.

[17] Petersen, C. G. (1997). An evaluation of order picking routing policies. .

International Journal of Operations & Production Management, 17(11), 1098-1111.

[18] Petersen, C. G. (2002). Considerations in order picking zone configuration.

International Journal of Operations & Production Management, 27(7), 793-805.

[19] Petersen, C. G., Aase, G., & Heiser, D. R. (2004). Improving order picking

performance through the implementation of class-based storage. International

Journal of Physical Distribution & Logistics Management, 34(7), 534-544.

78

[20] Roodbergen, K. J., & De Koster, R. (2001). Routing methods for warehouses with

multiple cross aisles. international journal of production research. International

Journal of Production Research, 39(9), 1865-1883.

[21] Roodbergen, K. J., Gunter, P. S., & Iris, F. A. V. (2008). Designing the layout

structure of manual order picking areas in warehouses. IIE Transactions, 40, 1032-

1045.

[22] Roodbergen, K. J., & Iris, F. A. V. (2006). A model for warehouse layout. IIE

Transactions, 38, 799-811.

[23] Tompkins, J. A., White, J. A., Bozer, Y. A., Frazelle, E. H., & Tanchoco, J. M. A.

(2003). Facilities planning. NJ: John Wiley & Sons.

[24] Vaughan, T. S., & Petersen, C. G. (1999). The effect of warehouse cross aisles on

order picking efficiency. International Journal of Production Research, 37(4), 881-

897.

79

Appendix A: Validation of Monte Carlo Simulation

The results of the simulation approach validation based on the initial layout of

 , , and ; the second layout of , , and ;

the third layout of , , and ; the fourth layout of 8,

 , and 8; and the fifth layout of , 8, and ;

are presented in Tables 6-10, respectively. The results clearly suggest the conclusion that

the values of both approaches are similar at a percent confidence level, as all p-values

are larger than the significance level of . Also, the tests indicate that the maximum

difference between the values resulting from the two approaches does not exceed

 8 percent.

Table 6: Validation Results Based on Initial Layout, 𝑴𝟏= 30 and 𝑩𝟏 = 31

N

Full-turnover (NN & NS) The Nearest-location Random

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
|%

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
|%

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
|%

P

1

261.923 261.876 0.01795 0.33 309.734 309.792 0.01862 0.33 385.388 385.401 0.00361 0.81

2

347.977 348.035 0.01674 0.22 416.070 416.099 0.00695 0.60 488.810 488.863 0.01071 0.26

3

450.658 450.680 0.00472 0.65 529.963 529.921 0.00794 0.42 595.552 595.557 0.00097 0.88

4

493.569 493.555 0.00295 0.72 577.839 577.825 0.00249 0.75 632.565 632.518 0.00756 0.14

5

554.331 554.262 0.01232 0.10 643.708 643.798 0.01394 0.04 696.022 696.067 0.00648 0.14

80

Table 7: Validation Results Based on Second Layout, 𝑴𝟐 = 15 and 𝑩𝟐 = 60

N

Full-turnover (NN & NS) The Nearest-location Random

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
|%

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
|%

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
|%

P

1

217.088 217.015 0.00333 0.39 237.165 237.127 0.01623 0.18 282.523 282.509 0.00515 0.62

2

261.114 261.128 0.00541 0.56 288.776 288.829 0.01851 0.05 335.936 335.947 0.00344 0.63

3

364.193 364.223 0.00823 0.34 398.110 398.120 0.00254 0.75 449.134 449.151 0.00369 0.52

4

404.640 404.647 0.00170 0.79 438.962 438.978 0.00377 0.51 482.608 482.591 0.00345 0.36

5

457.401 457.387 0.00307 0.64 495.684 495.695 0.00222 0.71 546.308 546.330 0.00398 0.37

6

500.023 499.976 0.00940 0.11 539.394 539.423 0.00547 0.29 588.280 588.273 0.00122 0.73

Table 8: Validation Results Based on Third Layout, 𝑴𝟑 = 10 and 𝑩𝟑 = 90

N

Full-turnover (NN & NS) The Nearest-location Random

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

1

232.733 232.738 0.00234 0.74 246.184 246.157 0.01074 0.17 274.315 274.325 0.00360 0.62

2

261.658 261.646 0.00435 0.49 280.489 280.484 0.00181 0.78 310.224 310.217 0.00247 0.64

3

371.991 371.997 0.00145 0.87 399.286 399.346 0.01510 0.07 440.010 440.003 0.00162 0.80

4

422.933 422.937 0.00098 0.88 449.844 449.820 0.00538 0.34 484.581 484.573 0.00169 0.65

5

471.339 471.344 0.00098 0.88 503.344 503.374 0.00586 0.33 546.345 546.318 0.00495 0.33

6

515.638 515.593 0.00872 0.17 551.604 551.577 0.00502 0.39 600.040 600.031 0.00159 0.73

7

554.022 554.036 0.00261 0.67 592.678 592.695 0.00288 0.60 644.120 644.106 0.00203 0.63

81

Table 9: Validation Results Based on Fourth Layout, 𝑴𝟒 = 8 and 𝑩𝟒 = 112

N

Full-turnover (NN & NS) The Nearest-location Random

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

1

255.276 255.275 0.00050 0.92 265.940 265.927 0.00501 0.39 284.639 284.643 0.00129 0.82

2

278.214 278.206 0.00287 0.54 293.358 293.377 0.00664 0.19 313.137 313.106 0.00990 0.02

3

391.441 391.469 0.00709 0.46 416.714 416.673 0.00980 0.27 452.181 452.202 0.00471 0.53

4

451.289 451.299 0.00239 0.73 476.645 476.610 0.00724 0.25 508.457 508.425 0.00638 0.16

5

498.555 498.563 0.00148 0.82 528.004 528.001 0.00053 0.93 566.803 566.786 0.00293 0.58

6

540.794 540.765 0.00528 0.42 575.271 575.209 0.01080 0.08 623.139 623.144 0.00079 0.88

7

578.269 578.244 0.00429 0.51 616.734 616.674 0.00966 0.11 670.447 670.454 0.00108 0.83

8

610.923 610.946 0.00385 0.54 652.274 652.268 0.00088 0.88 709.396 709.343 0.00746 0.10

Table 10: Validation Results Based on Fifth Layout, 𝑴𝟓 = 6 and 𝑩𝟓 = 148

N

Full-turnover (NN & NS) The Nearest-location Random

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

A
n
a
ly
ti
ca
l

S
im

u
la
te
d

|D
if
fe
re
n
ce
%
|

P

1

300.357 300.355 0.00058 0.86 308.199 308.175 0.00793 0.04 325.750 325.753 0.00082 0.82

2

317.278 317.300 0.00697 0.03 328.441 328.448 0.00219 0.52 346.933 346.920 0.00377 0.18

3

429.336 429.255 0.01873 0.07 457.129 457.113 0.00350 0.72 495.385 495.367 0.00378 0.66

4

501.264 501.208 0.01122 0.18 531.824 531.891 0.01249 0.09 570.666 570.638 0.00493 0.38

5

550.572 550.605 0.00606 0.40 584.044 584.100 0.00972 0.13 624.562 624.498 0.01032 0.05

6

588.857 588.883 0.00436 0.51 627.914 627.944 0.00466 0.46 675.236 675.227 0.00134 0.81

7

621.088 621.027 0.00972 0.13 666.820 666.828 0.00129 0.84 722.039 722.039 0.00008 0.99

8

649.336 649.354 0.00274 0.67 701.197 701.169 0.00401 0.52 761.916 761.998 0.01071 0.04

9

674.502 674.521 0.00286 0.65 731.052 731.089 0.00504 0.40 793.651 793.646 0.00070 0.88

82

Appendix B: Python Code

from __future__ import division

from math import *

def erfcc(x):

 z = abs(x)

 t = 1. / (1. + 0.5*z)

 r = t * exp(-z*z-1.26551223+t*(1.00002368+t*(.37409196+

 t*(.09678418+t*(-.18628806+t*(.27886807+

 t*(-1.13520398+t*(1.48851587+t*(-.82215223+

 t*.17087277)))))))))

 if (x >= 0.):

 return r

 else:

 return 2. - r

def ncdf(x):

 return 1. - 0.5*erfcc(x/(2**0.5))

import random, csv, math

powers_of_2 = [2 ** n for n in range(32)]

class Aisle:

 def __init__(self, aisle, size, north):

 self.name = "Aisle #{0}".format(aisle)

 self.size = size

 self.left = size

 self.contents = []

 self.north = north

 def add(self, item):

 if item.size > self.left:

 return False

 if self.north:

 item.bin = self.size - self.left + 1

 else:

 item.bin = self.left + 1 - item.size

 self.left -= item.size

 item.aisle = self

 self.contents.append(item)

 return True

 def __str__(self):

 if self.contents:

 return self.name + " : " + ", ".join([str(item) for item in self.contents])

 return self.name + " empty"

 def __repr__(self):

 return "Name:{0} Size:{1}, Left:{2} Contents:{3}".format(self.name, self.size,

self.left, self.contents)

 def __nonzero__(self):

 return self.left > 0

 def probability(self, total_demand):

 total_probability = 0.0

 for item in self.contents:

83

 total_probability += item.probability(total_demand)

 return total_probability

class Item:

 def __init__(self, name, demand, size):

 self.name = name

 self.demand = demand

 self.size = size

 self.expected = demand / size

 self.chance = 0

 self.aisle = None

 self.bin = 0

 self.rnd = random.random()

 def __str__(self):

 if self.size == 1:

 return "{0} ({1})".format(self.name, self.bin)

 return "{0} ({1}-{2})".format(self.name, self.bin, self.bin + self.size - 1)

 def __repr__(self):

 aisle = "Not stocked"

 if self.aisle:

 aisle = self.aisle.name

 return "Name:{0} (Demand:{1}, Size:{2}) Bin:{3} {4}".format(self.name,

self.demand, self.size, self.bin, aisle)

 def __lt__(self, other):

 return self.expected < other.expected

 def probability(self, total_demand):

 self.chance = self.demand / total_demand

 return self.chance

def possibilities(n, m, probabilities = None):

 if m == 1:

 yield 1, [n]

 return

 if not probabilities:

 probabilities = [1 / m] * m

 maxval = (2 ** n) - 1

 combination = [0] * m

 indices = [0] * m

 maxvals = [maxval] * m

 powers = powers_of_2[:n]

 for i in xrange(maxval, -1, -1):

 indices[0] = i

 combination[0] = len([n for n in powers if i & n])

 left = [n for n in powers if ~i & n]

 for j in range(1, m - 1):

 indices[j] = 0

 while True:

 remaining = left[:]

 for j in range(1, m - 1):

 maxvals[j] = (2 ** len(remaining))

 k = indices[j]

 remaining = [remaining[n] for n in xrange(len(remaining)) if ~k & 2 ** n]

 combination[j] = len([n for n in powers if k & n])

 combination[m - 1] = len(remaining)

 probability = 1.0

84

 for j in range(0,m):

 probability *= probabilities[j] ** combination[j]

 yield probability,combination

 index = m - 2

 indices[index] += 1

 while index > 0 and indices[index] >= maxvals[index]:

 indices[index] = 0

 index -= 1

 indices[index] += 1

 if not index:

 break

def bysize(item):

 return -item.size, item.demand

def byhash(item):

 return item.rnd

def expected_values(items, order = None):

 values = [Item(key, items[key][0], items[key][1]) for key in items if items[key][1]]

 values.sort(reverse = True, key=order)

 return values

def layout(num_aisles, num_bins, alternate, initial_left = False):

 north = True

 if alternate:

 north = False

 bins = [(None, Aisle(1, num_bins, True))]

 end = num_aisles // 2

 last_aisle = end - 1

 if num_aisles % 2:

 last_aisle += 1

 current = 0

 if initial_left:

 current = -1

 bins = []

 north = True

 if num_aisles % 2:

 end += 1

 else:

 last_aisle += 1

 for aisle in range(end):

 current += 2

 if aisle == last_aisle:

 bins.append((Aisle(current, num_bins, north), None))

 else:

 bins.append((Aisle(current, num_bins, north), Aisle(current + 1, num_bins,

north)))

 if alternate:

 north = not north

 return bins

def assign(items, num_aisles, num_bins, initial_left, alternate = False, order = None):

 expected = expected_values(items, order)

 aisles = layout(num_aisles, num_bins, alternate, initial_left)

 current = -1

 left = None

 right = None

 for item in expected:

 if not left and not right:

 current += 1

 if current == len(aisles):

85

 break

 left = aisles[current][0]

 right = aisles[current][1]

 if left and left.add(item):

 continue

 if right and right.add(item):

 continue

 for check_left, check_right in aisles[current+1:]:

 if check_left and check_left.add(item):

 break

 if check_right and check_right.add(item):

 break

 total_demand = sum(item.demand for item in expected)

 probability = []

 for left, right in aisles:

 probability_either = 0.0

 if left is not None:

 probability_either += left.probability(total_demand)

 if right is not None:

 probability_either += right.probability(total_demand)

 probability.append(probability_either)

 return aisles, probability

def assign_FullTurnoverNN(items, num_aisles, num_bins, initial_left = True):

 return assign(items, num_aisles, num_bins, initial_left)

def assign_FullTurnoverNS(items, num_aisles, num_bins, initial_left = True):

 return assign(items, num_aisles, num_bins, initial_left, True)

def assign_NearestLocation(items, num_aisles, num_bins, initial_left = True):

 return assign(items, num_aisles, num_bins, initial_left, True, bysize)

def assign_Random(items, num_aisles, num_bins, initial_left = True):

 return assign(items, num_aisles, num_bins, initial_left, True, byhash)

def distance(constants,pattern):

 width, bins, bin_width, vertical = constants

 travelled = 0

 aisle_length = bins * bin_width + vertical

 aisle = 0

 even = True

 for current,visit in enumerate(pattern):

 if visit:

 aisle = current + 1

 even = not even

 travelled += aisle_length

 travelled += aisle * width * 2

 if not even:

 travelled += aisle_length

 return travelled

def total_distance(constants, n, m, probabilities = None):

 travelled = 0

 for probability,combination in possibilities(n, m, probabilities):

 length = distance(constants,combination)

 travelled += length * probability

 return travelled

def monte_carlo(constants, runs, n, m, probabilities = None, expected = 0):

 travelled = 0

 threshold = []

 combination = []

 total_probability = 0

86

 deviation = 0

 if not probabilities:

 probabilities = [1 / m] * m

 for probability in probabilities:

 total_probability += probability

 threshold.append(total_probability)

 combination.append(0)

 for run in range(runs):

 for i in range(len(combination)):

 combination[i] = 0

 for i in range(n):

 rnd = random.random()

 for j,probability in enumerate(threshold):

 if rnd < probability:

 combination[j] += 1

 break

 length = distance(constants,combination)

 deviation += (length - expected) * (length - expected)

 travelled += length / runs

 deviation /= runs

 deviation = math.sqrt(deviation)

 return travelled, deviation

def read_val(prompt, default, numeric = True):

 while True:

 try:

 val = raw_input("{0} ({1}):".format(prompt, default))

 if not val and val != "0":

 return default

 if numeric:

 return float(val)

 except:

 if numeric:

 print "Please enter a numeric value (or enter for {0})".format(default)

 return val

def enter_params():

 params = {}

 params["csvfile"] = read_val("Enter the name of items data file:", "sample_data.csv",

False)

 params["num_aisles"] = int(read_val("Enter the number of main storage aisles:", 5))

 params["num_bins_per_aisle"] = int(read_val("Enter the number of storage locations:",

250))

 params["size_of_each_bin"] = read_val("Enter the width of the storage location:", 10)

 params["width_of_each_aisle"] = read_val("Enter the width of each cross aisle:", 20)

 params["distance_to_aisle"] = read_val("Enter the width of the main storage aisle:",

5)

 params["max_value_of_n"] = int(read_val("Enter the maximum pick list size for

validating the Monte Carlo simulation approach:", 5) + 1)

 params["n_increment"] = int(read_val("Enter the increment desired in the range of the

pick list sizes for validating the Monte Carlo simulation approach:", 1))

 params["monte_carlo"] = int(read_val("Enter the desired number of runs to be executed

by the Monte Carlo simulation approach:", 100000))

 params["simulation_items"] = int(read_val("Enter the maximum pick list size to be

obtained by the Monte Carlo simulation approach only:", 100) + 1)

 return params

def interactive():

 params = enter_params()

 items = {}

 with open(params["csvfile"], "rU") as f:

 reader = csv.reader(f)

 reader.next()

 for row in reader:

 items[row[0]] = (int(row[1]), int(row[2]))

 assignment_policy = {"FullTurnoverNN.csv" : assign_FullTurnoverNN,

 "FullTurnoverNS.csv" : assign_FullTurnoverNS,

 "NearestLocation.csv" : assign_NearestLocation,

87

 "Random.csv" : assign_Random}

 for policy in assignment_policy:

 aisles, probability = assignment_policy[policy](items, params["num_aisles"],

params["num_bins_per_aisle"])

 print policy[:-4],probability,sum(probability)

 with open(policy, "wb") as f:

 out = csv.writer(f)

 out.writerow(["Name", "Aisle", "Bin #", "Demand", "Size"])

 for left, right in aisles:

 if left is not None:

 for item in left.contents:

 out.writerow([item.name, left.name, item.bin, item.demand,

item.size])

 if right is not None:

 for item in right.contents:

 out.writerow([item.name, right.name, item.bin, item.demand,

item.size])

 with open(policy[:-4] + "_probability.csv", "wb") as f:

 out = csv.writer(f)

 out.writerow(probability)

 constants = (params["width_of_each_aisle"],

 params["num_bins_per_aisle"],

 params["size_of_each_bin"],

 params["distance_to_aisle"])

 with open(policy[:-4] + "_distance.csv", "wb") as f:

 out = csv.writer(f)

 out.writerow(["Number of items", "Expected distance"])

 for n in range(1, params["max_value_of_n"], params["n_increment"]):

 expected_distance = total_distance(constants, n, len(probability),

probability)

 print n, expected_distance

 out.writerow([n, expected_distance])

 with open(policy[:-4] + "_montecarlo.csv", "wb") as f:

 out = csv.writer(f)

 out.writerow(["Number of items", "Expected distance"])

 for n in range(1, params["max_value_of_n"], params["n_increment"]):

 expected_distance, deviation = monte_carlo(constants,

params["monte_carlo"], n, len(probability), probability)

 print n, expected_distance

 out.writerow([n, expected_distance])

confidence_values = { 90 : 1.645, 95 : 1.96, 98: 2.326, 99: 2.576 }

def confidence():

 params = enter_params()

 params["confidence"] = int(read_val("Select the statistical confidence level desired

for Validating the Monte Carlo simulation approach (90, 95,98,99) (99):", 99))

 confidence_value = confidence_values[params["confidence"]]

 items = {}

 with open(params["csvfile"], "rU") as f:

 reader = csv.reader(f)

 reader.next()

 for row in reader:

 items[row[0]] = (int(row[1]), int(row[2]))

 assignment_policy = {"FullTurnoverNN.csv" : assign_FullTurnoverNN,

 "FullTurnoverNS.csv" : assign_FullTurnoverNS,

 "NearestLocation.csv" : assign_NearestLocation,

 "Random.csv" : assign_Random}

 for policy in assignment_policy:

 aisles, probability = assignment_policy[policy](items, params["num_aisles"],

params["num_bins_per_aisle"])

 print policy[:-4],probability,sum(probability)

 with open(policy, "wb") as f:

 out = csv.writer(f)

 out.writerow(["Name", "Aisle", "Bin #", "Demand", "Size"])

 for left, right in aisles:

 if left is not None:

 for item in left.contents:

 out.writerow([item.name, left.name, item.bin, item.demand,

item.size])

88

 if right is not None:

 for item in right.contents:

 out.writerow([item.name, right.name, item.bin, item.demand,

item.size])

 with open(policy[:-4] + "_probability.csv", "wb") as f:

 out = csv.writer(f)

 out.writerow(probability)

 constants = (params["width_of_each_aisle"],

 params["num_bins_per_aisle"],

 params["size_of_each_bin"],

 params["distance_to_aisle"])

 analytical_values = {}

 with open(policy[:-4] + "_distance.csv", "wb") as f:

 out = csv.writer(f)

 out.writerow(["Number of items", "Expected distance"])

 for n in range(1, params["max_value_of_n"], params["n_increment"]):

 expected_distance = total_distance(constants, n, len(probability),

probability)

 analytical_values[n] = expected_distance

 print n, expected_distance

 out.writerow([n, expected_distance])

 with open(policy[:-4] + "_montecarlo.csv", "wb") as f:

 out = csv.writer(f)

 out.writerow(["Number of items", "Expected distance", "Deviation",

"Accept/Reject", "z", "p"])

 for n in range(1, params["max_value_of_n"], params["n_increment"]):

 expected_distance, deviation = monte_carlo(constants,

params["monte_carlo"],

 n, len(probability),

probability,

 analytical_values[n])

 z = (expected_distance - analytical_values[n]) / (deviation /

math.sqrt(params["monte_carlo"]))

 p = 2*(1-ncdf(abs(z)))

 accept = "reject"

 if abs(z) < confidence_value:

 accept = "accept"

 print n, expected_distance, deviation, accept, z, p

 out.writerow([n, expected_distance, deviation, accept, z, p])

 with open(policy[:-4] + "_montecarlo_only.csv", "wb") as f:

 out = csv.writer(f)

 out.writerow(["Number of items", "Expected distance"])

 for n in range(1, params["simulation_items"], params["n_increment"]):

 expected_distance, deviation = monte_carlo(constants,

params["monte_carlo"],

 n, len(probability),

probability)

 print n, expected_distance

 out.writerow([n, expected_distance])

 if False:

 with open(policy[:-4] + "_montecarlo_runs.csv", "wb") as f:

 out = csv.writer(f)

 header = ["Run"]

 for n in range(1, params["simulation_items"], params["n_increment"]):

 header.append("n=" + str(n))

 out.writerow(header)

 monte_carlo_csv(constants, params["monte_carlo"],

params["simulation_items"],

 len(probability), out, header, params["n_increment"],

probability)

if __name__ == "__main__":

 confidence()

 raw_input("Press enter to exit")

