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ABSTRACT 

Biomedical image processing is a very important research area. Image analysis is one of 

the most important techniques in studies related to heart functions. The clinical 

assessment of LV function is very important to evaluate the heart function for patients or 

suspected heart disease sufferers. 2D echocardiography allows us to study the dynamic 

analysis of the heart which results in obtaining the quantitative and qualitative analysis of 

the LV. Cardiac function quantitative analysis depends on the heart’s shape 

characteristics like the enclosed area and heart wall thickness. The segmentation of 

medical images and obtaining the traces of the LV boundaries is an essential procedure to 

get the quantitative and qualitative analysis. Yet, in clinical procedure, this task depends 

on manual tracing which is slow, tedious and time consuming job. Hence, automating this 

clinical procedure during the cardiac cycle is of great importance. The aim of this thesis 

is to automate the manual process of detecting and tracking the LV boundaries of 2D 

echocardiographic image sequence. Instead of depending only on the imaging based 

techniques, the designed and implemented framework utilizes the LV mechanics beside 

the imaging based techniques. When it comes to information extraction from patterns 

which have been classified, it has been proved that the different contour detection 

methods complement each other. As a result, efficient combination of different contour 

detectors is expected to achieve better contour detection than if only one detector is used. 

This combination of contour detectors produces incremental gains in overall 

performance. In the first framework, the detection and tracking are accomplished by 

employing the extended Kalman filter framework to combine the contours estimated by 

the biomechanical model and the contours extracted using the deformable models. An 

alternative framework is used by employing averaging fusion followed by level set 

method. A gold standard is created from three manual outlines and utilized in the 

experimental results to evaluate the automated results. The tracking and segmentation of 

LV during the cardiac cycle was accomplished successfully in all cases. The results 

showed limits of agreement for an average perpendicular distance of 1.277 ±0.252 mm 

versus the created gold standard. This proved that this framework achieved better 

performance in tracking and segmenting the LV through the cardiac cycle. 
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CHAPTER 1 INTRODUCTION 

1.1 MOTIVATION 

Biomedical image processing is a very important research area. One of the key aspects is 

using the techniques of the image analysis to investigate the patient’s heart function [1]. 

The clinical assessment of LV function is the major key in the evaluation of heart 

function for patients or suspected heart disease sufferers. In the clinical routine, 2D 

echocardiography is commonly used to determine the LV function to obtain the 

quantitative and qualitative analysis of the heart [1, 2]. Clinically, quantitative analysis is 

more preferable over qualitative analysis, especially for wall motion and volume 

estimation [3]. The cardiac function Quantitative analysis depends on shape attributes of 

the heart like the computed volume or area and the heart wall thickness [4]. Tracing the 

borders during the end-diastolic (ED) and end-systolic (ES) periods on 2D 

echocardiographic images allows analysts to compute clinically important measures such 

as regional wall thickness and ejection fraction. On the other hand, tracing the borders on 

complete cardiac cycle images gives the quantitative analysis of the LV contraction 

dynamics [2].  

Most of the researchers have focused their research on LV analysis by detecting, 

segmenting and tracking the LV over the cardiac cycle. LV is responsible for pumping 

blood from the heart to the whole body. By examining the functioning of the LV, many 

conditions and disease can be discovered [5]. In medical imaging, the segmentation and 

obtaining the tracing of the boundaries of the heart is a significant step to take out the 

qualitative and quantitative measurements [1], Figure (1.1). 

 

 

Figure (1.1) - Normal and abnormal heart [6] 
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However, manual tracing is still the only way to perform this job in the clinical practice 

[7]. Manual tracing of the LV boundaries is a very slow process that leads to consume a 

lot of time and ends up with a tedious work. Furthermore, the resulting tracings vary 

between different cardiologists [7, 8]. Hence, there is a clinical need for automatically 

detecting these borders over the cardiac cycle [7]. “Amongst the other medical imaging 

modalities, 2Dechocardiography is valuable for patients with heart diseases. It is non-

invasive, non-radioactive, portable, real time, easy to use in clinical environment and 

non-expensive when compared to other modalities” [8, 9]. Automatic LV border 

detection and tracking over the cardiac cycle in echocardiographic image sequences 

remains an open and challenging problem due to many difficulties related to the heart and 

its dynamics, as well as other difficulties related to the echocardiography ultrasound 

machine. 

 

1.2 CHALLENGES AND DIFFICULTIES WITH TRACKING ECHOCARDIOGRAPHIC 

IMAGE SEQUENCE  

Echocardiographic image sequence has many challenges and difficulties that can hamper 

not the automation process but also the human interpretation. The challenges and 

difficulties are as follows: 

 Echocardiography ultrasound images suffer from poor resolution and quality with 

several artifacts such as shadowing, speckle and side lobes [1, 8]. 

 



 

3 

 

 

Figure (1.2) - Poor quality of 2D echocardiographic images 

 

 Images of echocardiography suffer from signal dropout. This dropout in the 

echocardiography signal makes part of the LV boundary invisible, which yields 

an open contour as shown in Figure (1.3) [2, 8]. 

 

 

 

Figure (1.3) - 2D echocardiography images signal dropout and missing parts of the LV 

contour 

 

 Low signal to noise ratio (SNR) and limited echo windows [2, 8]. 

 Gray level intensity variability [10]. 
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 The LV real boundaries cannot always extract from the strongest images features. 

The strongest edge locations do not always relate to the real contour as drawn by 

cardiologists [3]. 

 The heart itself is a highly deformable object with a wide range of motion. The 

papillary muscle impedes the detection of the real LV boundary. The mitral valve 

also is one of the contributors to the problem of detecting the LV boundaries.  

 

The problem of LV detection, segmentation and tracking is still open and challenging.  

Numerous of the proposed methods have shown good results after evaluating the 

methodologies with good quality images [11]. Up to date, there is no methodology 

clinically approved to be used in clinical routine for automatic or semiautomatic LV 

segmentation or tracking [11]. There is still demand of robust methodology to detect, 

segment and track the LV of 2D echocardiographic images for estimating quantitative 

and qualitative parameters [12]. 

1.3 THESIS OBJECTIVES AND CONTRIBUTIONS 

To tackle the challenges and difficulties due to echocardiographic images and LV 

complex motion, the objective of this thesis is developing a robust and reliable 

framework to track and segment LV through a 2D echocardiographic image sequence. 

The contributions of the thesis can be listed and illustrated by the following points: 

 Unlike the previous work done for segmenting and tracking the LV from 2D 

echocardiographic image sequence, this approach does not depend on the imaging 

based techniques alone. Depending in imaging based techniques alone does not 

provide the solution to the difficulties and challenges due to the ultrasound images 

and the heart. The novelty in the framework is by utilizing the LV mechanical 

properties through the BM model. The BM model is represented by the 

constitutive equations that simulate the LV movement and function. Also, another 

novelty is by using FEM to track and segment LV contour and area. ABAQUS 

FEM is used to solve the BM model constitutive equations and provide the 

deformations of the LV to find its new shape and contour through the cardiac 

cycle. 
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 The heart is load dependent. The movement and deformations of the LV during 

the cardiac cycle depends on the amount of the load that applied to its boundaries. 

So, finding the exact and suitable amount of load at each time step in the cardiac 

cycle is crucial point in the solution of BM model equations. By finding the 

relation between the frames and the pressure, we can simulate the pressure in each 

frame. This relation enables us to provide the specific load required in each frame. 

 The myocardium tissue is anisotropic, highly nonlinear, undergoes large 

deformations and time dependent [13, 14]. To get the exact deformations of the 

LV at each frame in the cardiac cycle, the exact time is provided to the FEM to 

run the BM model solution procedure. The BM model will deform in the same 

time that the real LV will deform from one to another shape in the cardiac cycle. 

 

 

Figure (1.4) - Stress and strain relationship in LV myocardium tissue [15] 

 

 Employing the BM model in the solution provides the stability and robustness to 

the tracking framework.  Moreover, the BM model enables to detect the LV 

contour in positions where parts of the LV are missed in the image or suffered 

from signal drop out. By integrating the BM model in the tracking framework, it 

gains the ability to detect and track the LV through the 2D echocardiographic 

image sequence independently from the quality of ultrasound images. 

 When it comes to information extraction from patterns which have been 

classified, it has been proved that the different contour detection methods 

complement each other. As a result, efficient combination of different contour 

Strain 

S
tress 
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detectors is expected to achieve better contour detection than if only one detector 

is used. This combination of contour detectors produces incremental gains in 

overall performance [7, 16, 17]. By fusing the contours of the deformable and BM 

models, we can overcome the difficulties and challenges due to the 2D 

echocardiographic images and LV. The evaluation of the framework shows, the 

%95 confident level of the framework is 1.277±0.285 mm 

1.4 THESIS OUTLINE 

The thesis is divided into seven chapters and they listed as follows: 

 The first chapter addresses the motivation behind this work, the challenges and 

difficulties facing this work and the objective and contribution of the thesis.  

 The second chapter provides the literature review of the previous work about 

tracking the LV borders through the echocardiographic image sequence with a 

brief explanation about the technique used and the shortcomings in each work.  

 A medical background is given in the third chapter. A brief about the definitions 

of the medical terms, the phases of the cardiac cycle and the pressure and volume 

loop is presented. 

 Detailed information about the biomechanical model with continuum mechanics, 

strain energy functions and the equations of the LV stresses are given in chapter 

four. Also, the FBEM (Field Boundary Element Method) is introduced along with 

the derivation of the nonlinear equation of FBEM and the iterative incremental 

solution to get the LV deformation. FEM is used instead of FBEM to solve the 

BM constitutive equations. Complete details are given for the solution, along with 

a brief introduction to the ABAQUS model.  

 Chapter five presents the Snake, the Kalman filter and the combination of the 

Snake with the BM model by utilizing EKF.  Averaging framework is used 

instead of EKF. Detailed information is given about this framework.  

 Chapter six is about creating the gold standard, the experimental results and the 

evaluation of these experimental results by comparing them with the the created 

gold standard.  

 In the last chapter, the conclusion of the thesis is given with the future work. 
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  In APPENDIX I, images of tracking and segmenting LV in a complete cardiac 

cycle are given with the plot of all the computed contours.   

 In APPENDIX II, a sample of running the BM model to compute the 

deformations of the LV during contraction phase is given. 

 In APPENDIX III, a sample of the computed deformations of the LV during 

passive phase. 

 In APPENDIX IV, ten tables of the X-Y coordinates data for the manually plotted 

contour of the three cardiologists for all the samples along with the created the 

gold for each sample 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Clinically speaking, LV segmentation and tracking is very important. This importance led 

to a long search for a good segmentation and tracking algorithm to be medically 

applicable. This search resulted in many segmentation and tracking algorithms published 

in computer vision and other related journals. Methods for LV contour extraction and 

tracking can be categorized into eight approaches according to the technique used in the 

approach 

2.2 EARLY COMPUTER VISION APPROACHES 

Contour detection is one of the well-used techniques in computer vision and it is the first 

step in image segmentation [18]. This importance led to a long search for a good contour 

detection algorithm to be used in a variety of applications. Many contour detection 

algorithms were published in image processing journals [18]. Methods for contour 

extraction are categorized into two approaches; the first is the bottom-up method (early 

vision techniques) and the second approach the top down method, which include Active 

Contour Models (ACM-deformable models) and other recently developed techniques. 

Early methods of edge detection techniques rely on the gradient method to detect the 

edges by looking for the maximum and minimum in the first derivative of the image [19, 

20]. If f(x, y) refers to the image, the gradient of point (x, y) is defined as follows: 

(2.1)
x

y

f

G x
f

fG

y









 
  
    
  
    

The solution of this equation will be: 



 

     9 

1
2 2 2

1
22 2

( )

(2.2)

x yf mag f G G

f f

x y

 

 

      

   
    

    

 

And its direction as θ(x, y) = arctan (Gy/ Gx)      

More advanced techniques such as Fuzzy logic, artificial neural networks and cellular 

neural networks are also used for edge detection purposes. In early vision techniques, the 

edge detection is extracted, followed by the boundary formation where the gaps between 

edges are filled (edge linking). Following is an explanation of the work relating to this 

category. 

L. Zhang et al. [10]  assumed that important information concerning the edges to be 

detected was present in the motion between sequential video frames. The algorithm 

requires the operator to define the end diastolic, end systolic and the closing end diastolic 

frame for the cardiac cycle; and roughly define the border on each frame. Once the 

operator has defined these boundaries, the threshold will be decided automatically, 

followed by a search region limited by the initial outlined from the observer in each 

frame. Lastly, border detection and spatial and temporal smoothing is carried out. D. 

Wilson et al.  [21] used large matched filters to extract the endocardial and epicardial 

boarders during the systole in 2D short axis. The algorithm introduced by C. Chu et al. 

[4], first detects spatially significant features from image intensity variations. This is 

followed by a process of edge thinning and linking to remove false edges and filling gaps 

by interpolation. A final refinement process is then used for ensuring an accurate estimate 

of the boundaries. The approach of I. Herlin et al. [22] takes the time sequence 

echocardiographic images as input, extracting the edges of the image, initiates the 

segmentation of a preselected anatomical structure and uses deformable model for 

tracking. M. Baroni et al. [23] utilized Gaussian filtering at both coarse and fine scales to 

detect the LV edges. The coarse edges are used to define the region of interest as a binary 

map throughout image sequence. A contour template is matched against the gradient of 

the first image. Two contours are estimated, one by maximizing an edge likelihood 

function and the other by using a region growing algorithm.  Both edge and region 

contours are combined by maximizing another likelihood function with the edge map 
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computed at fine scale. In our work [24], a Fuzzy logic is used to extract the LV 

endocardial after smoothing the image with contrast enhancement. Four inputs are given 

to the Fuzzy IF THEN inference system. Each input has five linguistic variables named 

VLOW, LOW, MED, HIGH and VHIGH. The Fuzzy rules have the ability to detect the 

endocardial edges even in low contrast regions. In [1], FCNN is used to detect the 

endocardial edges instead of pure Fuzzy logic. MVN_CNN nonlinear filter is used as 

image smoother due to its ability to remove the noise while keeping the image 

information. In [25] , UBN_CNN is used to extract the endocardial edges of the LV. 

UBN_CNN uses a non threshold Boolean function with nine variables to detect the edges 

corresponding to the upward and downward brightness overleaps. MVN_CNN nonlinear 

filter is used also in this approach to smooth echocardiographic images. In [16], improved 

Dempster and Shafer theory is used to fuse Fuzzy inference system, ANN and CNN edge 

detectors to get more accurate edge detection contour. Choy et al. [26] used the 

mathematical morphology, Temporal Information (TI) and Spatial Information (SI) to 

segment the 2D echocardiographic image sequence. To improve the initial contour in 

frame number i, the image information from frame number i-1 is combined with the 

initial contour in frame i. The authors tried by this technique to overcome the difficulty of 

poor image quality of echocardiographic images. Narang et al [27] used hybrid filters to 

extract to select and extract the region of interest (ROI) and then applying K-means to 

enhance the ROI. First step is the contrast enhancement and noise reduction is applied to 

the image. Second step, the image is segmented using thresholding. Third step is Robert’s 

operator edge detector is applied. Fifth step is ROI is extracted using morphological 

operation. Last step is enhancing the ROI by K-means. 

 

 Shortcomings of Early Vision Techniques: 

 

Early vision techniques perform a static segmentation on single two-dimensional (2D) 

frames. The segmentation results are inconsistent with the dynamics of the cardiac cycle. 

Among other difficulties, these techniques could not solve the problem of dropout in 

echocardiography signals. Also, there is no provision in the system to correct any initial 

detection error due to noise or imprecise knowledge representation.  
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2.3 CONTOUR MATCHING APPROACH  

Contour matching is a significant problem in computer visions with a variety of 

applications such as model based recognition and tracking. In these applications the two 

matched curves are usually very similar. Contour matching techniques are based on the 

assumption that for any distinguishable shape, landmarks can be consistently followed 

through a sequence of images. At the beginning, we need to find the initial 

correspondence between frames by comparing the segmented contours. Then, we choose 

the match that minimizes the metric, based on curvature difference in the optimization 

function. The problem is formulated as finding parameters that minimize a cost function. 

The cost function can be defined as the elastic energy which is needed to transform points 

on one curve at time t to points on the next curve at time t+1. Suppose we have two 

contours; C1 and C2, indexed by sampling point  [0, N].  We can define 

corresponding mapping functional F1 ( ) and F2 ( ) such that a displacement emanating 

from point F1 ( ) on C1 specifies a point F2 ( ) on C2.  

2 1 F ( )= ,    F ( ) (2.3)Let        

Where  is small, then the energy matching is functional and will be as follows: 

1 2

1 2

* *

1 2 1 2
,

2

2 1
,

( , ) arg  min  e(F ,F )   

1
                   = arg min  ( ) ( ) (2.4)

2

F F

g f
F F

S

F F

k F k F d



  
 

Where S is the segment on C2 used for matching, kf is the curvature for any given point 

on the C1 and kg is the curvature of a candidate point within a set G( ) of the nearest 

point on C2. The functional e (F1, F2) is the bending energy required to deform points 

from contour C1 to points on contour C2 for a given index  [28]  .  

J. McEachen et al. [28] presented an approach for tracking and quantifying the non-rigid, 

non-uniform motion of the LV endocardial on a point-by-point basis over the entire 

cardiac cycle on 2D cardiac image sequences. J. McEachen et al. built their approach 
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based on the assumption that recognition of the shape landmarks can be consistently 

tracked through a sequence of images. Given two LV contours Ci and Ci+1  derived from 

successive image frames representing times ti and ti+1 in a cardiac imaging sequence, the 

initial correspondences between frames is extracted by comparing the shape of contour 

segments. Next, the match that minimizes bending energy is chosen by the metric based 

on differences in curvature.   McEachen et al. also in [29] addressed the problem of 

tracking LV endocardial motion from medical images. The approach is based on 

information over two spatial dimensions and time in formulating a displacement flow 

field of the LV wall viewed as a deformable contour. The approach consists of two 

stages. The first stage is comprised of shape-based matching and the second is a 

smoothing of the resultant vectors over pairs of successive contours. The authors used a 

least squares analysis to derive an analytic solution to the smoothing stage, while still 

constraining displacement vectors to the contour definitions. S. Yeo et al. in their paper 

[30] recovered and elucidated the left ventricular wall motion during isovolumetric 

contraction using a shape-based tracking approach. The LV surface properties are derived 

by local surface fitting and the point correspondences between successive time frames are 

determined using a thin plate bending model. J. McEachen et al. [31] presented a 

framework for temporal analysis of left ventricular (LV) endocardial wall motion. The 

harmonic estimation is utilized to model the periodic nature of cardiac motion. A flow 

vector computation method is used to define a relationship between image-derived, 

shape-based correspondences and set of correspondences. A recursive filter is then 

constructed which takes into consideration this relationship, as well as knowledge of 

temporal trends. The trajectories contrast markers implanted in the LV wall are compared 

with trajectories estimated by the filter. P. Bansod et al. [11]proposed a semi-automatic 

method to estimate the contour of the endocardial border of heart chambers in short axis 

view of 2 or 4 chamber and long axis view echocardiographic image sequences. This 

method is based on ellipse fitting and a subsequent radial search with gradient magnitude 

and direction.  The multi frame guided local search employed the temporal information to 

recover the dropout as a refinement process. The procedure is evaluated with one manual 

contour drawn by an expert without evaluating other parameters like LV area. A Mishra 

et al.  [32] algorithm for detecting the LV motion on a non-rigid shape approach utilized 



 

     13 

an expansion and contraction of shape matched templates to optimize the correspondence 

in each level. The optimization process is done by using genetic algorithms.   

 

 Shortcomings of Contour Matching Approach: 

The choice of which matching criterion and which features to match can affect the 

tracking quality. After extended periods, the trajectories of these matches diverged from 

the trajectories of the markers, requiring a temporal constraint to correct for this issue. 

This approach did not provide any solution to echocardiography difficulties like contour 

missing parts. 

 

2.4 SNAKE BASED APPROACH 

Kass et al. [33] introduced the concept of active Contour Models (ACM), or Snake in his 

paper “Snakes: Active Contour Models”. Snakes are used in the area of image processing 

to detect the object boundaries. Detecting the object boundaries by utilizing the low level 

image processing techniques (Sobel, Laplacian; Canny edge detection) is not successful.  

Following this technique, edges are not continuous (there are gaps between edges) and 

there is evidence of spurious edges due to noise. Snakes overcome these shortcomings by 

imposing desirable properties such as continuity and smoothness to the contour of the 

object, which means using prior knowledge for solving the problem of detecting the 

object boundaries. The snake model is modeled as parametric curve that evolves into a 

position where its energy function is minimized. The position of the snake is given by the 

parametric curve C(s) = [x(s), y(s)] with s = [0, 1]. Kass et al. introduced the following 

energy functional for the Snake: 
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E1 is the internal energy term and E2 represents the external energy term. The first term in 

the internal energy represents the elasticity and the second term represents the curvature. 

The influence of the two terms is controlled by the parameters α and β respectively. The 

external energy (image energy) attracts the Snake to the boundaries of the object in the 

images. The image energy here will be defined as follows: 

2

2 ( , (2.8)E I x y    

where I is the image function. Following this, the snake function will be minimized in the 

position with high gradient values. 

Many authors exploited the Snake to segment and track LV from echocardiographic 

images. U. Bharali et al. [5] presented an unsupervised active contour tracking algorithm. 

The algorithm is fully automatic without any user interaction. The authors utilized multi-

resolution image segmentation to initialize the contour in the first frame of the sequence. 

The output from the current frame was used as the initial contour to the next frame until 

the end of the sequence. The authors did not use any tracking methodology and they 

depended only on the snake output from one frame to another. By using this method, the 

snake cannot follow the movement of the LV because it does not have the ability to 

detect large displacement movements. Also the authors did offer any evaluation of their 

method. The approach of S. Malassiotis  [34] is to first apply a Hough Transform (HT) to 

find the initial approximation at the first frame. The snake model is then applied to 

estimate LV boundaries. The PCA (Principle Component Analysis) is used in this 

approach to find the reduced ordered orthonormal basis of the LV deformations to 

constrain the motion of the snake. The authors did not provide any evaluation for their 

approach, V. Chalana et al.  [2] designed a method based on an extension of active 

contour models to detect both epicardial and endocardial boundaries. The idea is to use 

temporal information to detect cardiac boundaries from echocardiograms by extending 

the original active contour model to three dimensions, because individual 

echocardiographic images often contain missing boundaries and the detection errors 

using a 2D model may propagate and increase further in the sequence. The approach of 

Sheng et al.  [35] is based on taking aid from the neighbouring frames. These frames 

have consistent locations and shape that aid in segmentation process. To work with the 

constraining information provided by the neighbouring frames, the authors combined the 
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template matching with the conventional snake model. A multi-scale directional snake 

was proposed by J. Cheng et al. [36] to segment echocardiographic images. First, 

morphological operations were used to locate the left ventricular center point and region 

of interest. After that, a multi-scale directional edge map is applied to enhance snake 

performance. This step eliminates the initialization step, so Snake will propagate on this 

region only during deformation. By combining optical flow with snake, I. Mikic et al.  

developed their algorithm to extract the LV contour from echocardiographic image 

sequence [37]. Their technique incorporates the information on pixel velocities (optical 

flow) into the estimation of initial contour to enable tracking of LV endocardial contours. 

M. Berger et al. used a hierarchical approach to track the LV motion [38]. First, the 

authors computed a global estimation of the ventricular motion based on a parametric 

motion model with a small number of parameters. An optical flow is used to compute the 

LV motion. Then a fine tuning algorithm is applied to adjust the detection of the 

ventricular wall. After tuning, a conventional Snake is used to refine the detected contour. 

Cheng et al. [39] located the area of LV by using the watershed transform and 

morphological operations. This step is followed by Snake and multi-scale edge map 

detection to extract the LV endocardial boundaries. 

 

 Shortcomings of Snake Based Approaches: 

a) Snake when used for tracking by selecting the contour from the current frame as 

an initial position to the next frame fails to detect large displacements. 

b) Snakes performance depends on the elastic forces and the local image features. 

This dependency makes the curve evolution not easily controlled and sensitive to 

noise or to image corruption. Snakes do not work well on low-quality data where 

noisy feature measurements attract it into noisy areas of the image because there 

is no constraint on valid deformations. 

c) Snake’s performance depends on the initialization process. Snake should be 

initialized very close to the required contour. 

d) Snake has a difficulty to handle the topological changes. 
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2.5 LEVEL SET BASED APPROACH 

The level set method was introduced by Osher and Sethian [40] as a solution to the 

shortcomings of the classical Snake. Let C (p, t), defined as {(x, y, t)} denote a family of 

closed contours generated by moving an initial contour C0 (p, t) in the direction of normal 

vector N. Let F denote the speed function of the curvature k; thus the curve evolution 

equation will be written as: 

0

( , ) ( )
(2.9)

( ,0)

C p t F k N

C p C





 

The level set method represents the contour implicitly as the zero level set of a smooth, 

continuous scalar function ϕ(x, y, t) known as the level set function. The implicit contour 

at any time t is given by C (p, t) ={x, y|ϕ(x, y, t) =0}. By taking the derivative of ϕ(x, y, t) 

=0 w.r.t. time and space, the following equation results: 

0
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This equation links the moving contours C (p,t) with the evolving level set curves ϕ(x,y,t) 

[40]. For related work that utilized the level set method, C. Corsi et al. [6] utilized a level 

set method to detect and track LV boundaries through the 2D echocardiographic images 

sequence. The authors depend on the level set method only in their approach to segment 

and track the LV boundaries. In our work [16] , improved Dempster and Shafer theory is 

used to fuse edge and region based level set to detect the endocardial edge detection. Data 

fusion has great improvement in the performance of the framework when using more 

than one classifier in a detection system. In [41] , the LV contour is detected by 

MVN_CNN and UBN_CNN framework as mentioned in [25] then the area of the LV is 

extracted by using edge based level set. By using the MVN_CNN and UBN_CNN 

framework enabled us to extract the exact area of LV  due to the powerfulness of 

MVN_CNN for noise removal and image smoothness and the ability of UBN_CNN to 

detect the edges of the LV. Cheng et al [42] employed Markovian level set to tackle the 

difficulties of echocardiographic images. The authors combined the MRP and the level 

set methods tighter. The MPR is used to handle the local statistics and level set to detect 

the LV topologies. Saini et al in [43] employed level set method based on a new Signed 
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Pressure Force (SPF) function based on Chan-Vese (CV) region based level set method. 

SPF is given by the following formula: 

1 2

1 2
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Here, H(.) is Heaviside function. 

 

 Shortcomings of Level Set Based Approaches: 

a) The authors depend on the edge based stop criteria to stop curve evolution which 

cannot be guaranteed to stop the curve from leaking out of the LV true 

boundaries. 

b) The authors used a fixed number of iterations, which will not guarantee the 

convergence.  

c) There is no temporal and spatial coherence between frames to ensure robustness 

of the performance. 

d) The authors did not mention any solution to signal drop out and missing parts of 

LV boundaries. 

2.6 OPTICAL FLOW BASED APPROACH 

The Optical Flow (OF) of an image is defined as how parts of the image move with 

respect to the previous image. In 2D, the optical flow specifies how much each image 

pixel moves between adjacent images. There are many different methods to estimate the 

optical flow, which can be divided into correlation, energy, phase and differential based 
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methods. Most optical flow approaches are based on the assumption that image objects 

keep the same intensity value under motion for at least a short period of time. 

 

Figure (2.1) - The position (x,y,t) in the image is the same as at (x+ x,y+ y,t+ t) 

 

Let I(x,y,t) be the center pixel in nn neighbourhood and moved by δx,δy in time δt to 

I(x+δx,y+δy,t+δt). I(x,y,t) and (I(x+δx,y+δy,t+δt)) are the same point in the image, then 

we have: 

   I x, y, t   (I x x, y y, t t (2.12)       

This assumption forms the basis of the 2D motion constraint equation as in Figure (2.1).  

The assumption is true for small motions, which means δx, δy and δt are small values. By 

using Taylor series expansion, we get the following equation: 

( , , ) ( , , ) . . . (2.13)
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H.O.T. is the Higher Order Terms, which are assumed to be small and can be ignored. By 

using Equation (2.12) and Equation (2.13), we get: 
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Where x and y represent the x and y image velocity components, we call them optical 

flow. ,    
I I I

and
x y t

  

  
are the image intensity derivatives at (x,y,t). The above partial 

derivative equation can be written in this way: 

t

t

( , ).( , ) (2.17)

,  ,    and I = .

 as:

I. =-I (2.18)
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where,  is the spatial intensity gradient.I  

  is the image velocity or optical flow at pixel (x,y) at time t.  

Equation (2.18) is known as (2D Motion Constraint Equation), which is one equation in 

two unknowns. To solve this problem we have to find another constraint that has a 

second different equation with the same unknowns [44] . 

Many authors utilized optical flow to track LV motion. To track the heart motion in B 

mode echocardiography, N. Sahba et al.  [45-47] combined local and global (CLG) 

optical flow with multi-resolution spatiotemporal spline moments to increase the 

accuracy and robustness of shear, rotation and wide range of motions that the optical flow 

techniques suffer from.  The results demonstrate better efficiency with respect to other 

motion estimation techniques such as Lucas-Kanade, Horn-Schunck and the 

spatiotemporal affine technique. M. Unser et al. [48] presented a serial extraction of a 

myocardial boarder. The technique consists of three steps: image enhancement, template 

matching and boarder extraction. M. Sühling et al.  [49] combined the Lucas–Kanade 

method of optical flow with a local motion model inside a sliding spatiotemporal 

window. The objective from using a local-affine model is to calculate the velocity in 

space which describes heart motions such as rotation, contraction, expansion and shear. A 

multiresolution strategy was used to improve the estimation of the motion. Y. Chunke et. 

al. [50] applied the Lukas-Kanade optical flow, which is a local gradient based method to 

analyze two echocardiographic image sequences.  Chunke found that the applied motion 

can be clearly recognized when the local spatial constant window size is properly 
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selected. The authors also proposed a hierarchical improvement to solve the problem of 

contradiction between the motion blur and the sensitivity of the numerical differentiation 

to the noise. The good quality results from these improvements depend on the properly 

selected weight which determines the relation between the motion blur and the sensitivity 

to the noise. M. Berger et al. [38]  used a hierarchical algorithm to outline the LV 

boundaries. The authors first computed a global estimation of the ventricular 

deformation. This global estimation is based on a parametric motion model that has a 

small number of parameters. The parameters are estimated from the velocity field that 

computed at all points on the LV contour. Secondly, a fine tuning is applied to the 

deformation to adjust the details.  From the previous estimations, an active contour model 

is applied detect the LV outlines. G. Mailloux et al. [51] applied the Horn and Shunk 

optical flow method to track the heart motion through 2D echocardiographic images. The 

authors noted that they got good results but without any validation. In their paper, D. 

Boukerroui et al. [52] combined the similarity measure technique proposed by Cohen and 

Dinstein and the Singh block matching technique and also proposed a global optimisation 

scheme for the parameters estimation.  The results from this combination showed a more 

effective block-matching algorithm in ultrasound sequences and the resulting 

optimisation improves the outcome in about 35% in comparison to the worst case. In this 

paper, the performance of the proposed block matching approach is demonstrated on B-

mode ultrasound images. P. Baraldi et al. [53] evaluated the performances of three 

methods for evaluations of motion on synthesized 2D echocardiographic image 

sequences with features similar to real ones. The selected techniques are based on the 

computation of optical flow of the differential type and assume that the image brightness 

pattern is constant over time. The images were synthesized by simulating the process of 

echo formation, considering the interaction between ultrasonic fields and human tissues. 

Moreover, two different approaches were followed to generate the sequences. In the first 

approach, a known motion field was applied to the intensity distribution of the 

synthesized images. In the second approach, a known motion field was applied directly to 

the point scatterer distribution of the tissue. Good results were obtained by applying 

Lucas-Kanade and Horn-Schunck techniques to the sequences of the first type, while all 

the techniques produced large errors when applied to the other type of sequences. The 
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approach of A. Giachetti [54] for tracking LV is based on fast correlation optical flow. 

Initially, the contour is detected by a balloon active contour model, then LV contour is 

tracked with optical flow and snake based regularization.S. Riyadi et al. in their 

framework [55-57] extracted the profile of myocardium motion of the segmented 

boundary. By obtaining the optical flow between two consecutive frames, the inner 

boundary is extracted by the Canny operator and centroidal based searching method. The 

last stage is smoothing the extracted boundary. M. Suhling et al. [58] estimated the heart 

motion from 2D echocardiography sequences using the Lucas-Knande optical flow 

algorithm. In their work, Suhling et al. does not depend on the assumption of constant 

motion in the sliding window, instead they used a locally affine model that can account 

for dilation, contraction and shear motion of the heart. Suhling et al.  also estimated the 

displacement vector at different scales. Hamou et al. tried to improve the performance of 

the deformable model (Snake) by using the optical flow as the external energy of the 

Snake. Using the optical flow as external energy can provide additional information to 

the Snake to improve the extract of more accurate contours. Q. Duan et al. [59] used 

optical flow to track the LV in the three dimensional echocardiography to extract the 

displacement field. G. Hamarneh et al. [60] used the optical flow to derive a new force 

from two consecutive frames. This new force will be combined to the Snake forces to 

assist the tracking of Snake to the desired dynamics. 

 

 Shortcomings of Optical Flow: 

a) Optical flow methods are well known for being sensitive to image noise.  

b) Optical flow is based on the assumption that the object motion is not wide. From 

this, optical flow cannot capture or detect wide range motions.  

c) Optical flow is highly computationally expensive. 

d) Optical flow is highly dependent on whether the smoothness of velocity variation 

assumption holds. 

e) Optical flow is crucially dependent on the accuracy of the initial estimates of the 

velocity components. 
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2.7 MRF BASED APPROACH 

A Markov Random Field is a graphical model in which a set of random variables have a 

Markov property described by an undirected graph. MRF is a principled approach for 

incorporating context information and domain knowledge. According to the Bayesian 

framework, the segmentation problem formula will be as: 

 

( | ) ( )
( | ) (2.19)

( )

p y x P x
P x y

p y


 

If we take the logarithm of both sides of Equation (2.19), then we will get the following 

equation: 

 

log ( | ) log  p(y|x)-log p(x) + C (2.20)p x y   

 

which is the posterior log likelihood. To find the solution x (in this case, the maximum a 

posterior MAP) for a given measurement y, we simply minimize the log likelihood, 

which can be expressed in the following energy function: 

 

( , ) ( , ) ( ) (2.21)d pE x y E x y E x   

 

The constant C is ignored because its value has no effect during energy minimization. 

The first term in the energy function represents the data energy and measures the log 

likelihood where the data is observed given the unknown state x. The second term is the 

prior energy which works as smoothness energy. In image processing, the unknown x is 

the output pixels and y is simply the input pixels [61]. The following work has been 

carried out using MRF: 

 

I. Herlin et al. [62] combined spatial properties and temporal properties to segment and 

track heart boarders in 2D echocardiographic image sequence under the MRF framework, 

which is used to model the energy function. The first frame is manually segmented. This 

manual segmentation is used to estimate the parameters of the model (energy function) to 



 

     23 

be used for segmenting and tracking subsequent frames. I. Herlin et al. [63]  used the 

Markov random fields and stochastic processes for the automatic selection of the 

parameters. The authors addressed the problem of initial segmentation by using grey 

level, texture and gradient information. A global energy function is minimized to get the 

regularization of the surface boundaries. N. Friedland et al. [64]  presented an approach 

for detecting endocardial boundaries from 2D echocardiographic image sequences. The 

approach can be summarized into three steps. First the predetermined size window is 

decimated into another size after low pass filtering. Secondly the center of gravity is 

determined and an elliptical Hough Transform (HT) is performed to estimate the cavity 

boundaries. Thirdly, 64 radii are bounded by the high probability region and defined as a 

link in a 1-D, 64 member cyclic Markov random fields. A stochastic relaxation 

optimization (SA) is performed upon the MRF to bring the energy function to a global 

minimum.  J. Dias et al. [65] presented a probabilistic model for endocardial and 

epicardial contour estimation in sequences where echocardiographic images are 

presented. The problem was formulated under the Bayesian setup. Contours are assumed 

two-dimensional, i.e., they have spatial and temporal indexes. For each temporal index, 

the contour is modeled as a noncausal first-order Markov random process. For each 

spatial index, the resulting process is assumed as a causal, first-order Markov random 

process. The physics of image generation and the heart morphology play a key role in 

building the image generation model; namely, the observed image pixels were modeled 

as Rayleigh distributed random variables with means depending on their positions 

relative to the contours. The MAP criterion is then applied to derive the contour 

estimates. 

 

 Shortcomings of MRF: 

One of the shortcomings of MRF is the different parameters of the algorithm. Choices 

of parameter values are usually a major drawback of MRF modelling. Also MRF 

suffers from high cost of computation. The technique does not provide a solution to 

the signal dropout in echocardiographic images and missing parts of contours. 
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2.8 ACTIVE SHAPE MODEL BASED APPROACH 

The Active Shape Model (ASM) is a parametric deformable model where a statistical 

model of the global shape variation, called a Point Distribution Model (PDM) is built 

from a training set. The ASM model detects the main variations in the training data using 

Principal Component Analysis (PCA). By finding the variations, the ASM has the ability 

to automatically recognize the contour of an object.  A brief description for constructing 

the PDM using a principal component analysis (PCA) is given by [66].  

The shape is represented by choosing n-points (features) from training instances of the 

shape 

1 1 1 1( , ,..., , , , ) (2.22)T

n n n nX x y x y x y 
 

 
Aligning the shape instances

 

The Procrustes algorithm is used so that the sum of distances to the mean of each shape is 

minimised 2

1

( )
m

i

i

x x


 . 

 Compute the mean shape 

1

1
(2.23)

m

i

i

x x
m 

   

 The deviation of each shape from the mean shape: 

(2.24)i idx x x   

The estimation of the covariance matrix can now be written as: 

1

1
(2.25)

m
T

i i

i

dx dx
m 

    

 

 Compute the eigenvectors (pi) and the eigenvalues(λi) 

 The matrix P is then built from each eigenvector ordered in descending order of 

the corresponding eigenvalues. 

 

1 2[ ... ] (2.26)nP p p  

 

 A shape instance can then be generated by deforming the mean shape by a linear 

combination of eigenvectors: 
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(2.27)x x Pb   

 

 PCA can be applied to the training set to reduce the number of parameters in the 

model. Choose t so that: 

2

1 1

(2.28)
t n

i i

i i

g 
 

   

 

 A suitable value for g is 0.98. 

 Approximate any instance of the shape, including the training instances, by 

projecting onto the first t eigenvectors: 

1

(2.29)
t

i i

i

x x b p


   

The weight vector b is identified as the characteristic of this instance shape 

1[ ,...., ] (2.30)T

tb b b  

 Varying the weights bi enables us to explore the allowable variations in the shape. 

 A model instance is defined by its model vector T as following: 

x y

{ , , , } (2.31)

where t ,t  is translation, s for scale, and  for rotation.

x yT t t s 




 

 

 The model instance in the image will be as follows: 

1

( ) (2.32)
t

i i

i

x T x b p


 

 

 After selecting K points in the image, the boundaries of the object will be detected 

by minimizing the following equation: 

2

1

( ) (2.33)
t

i i

i

K T x b p


   

Many authors employed the ASM to detect and track LV boundaries. To model and 

segment spatio-temporal shapes (ST-shapes), G. Hamarneh et al. [67] extends 2D active 

shape models to 2D + time.  The model builds the statistical of ST-shape parameters that 
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describe the principal modes of variation plus the constraints on the allowed variations. 

The active approach is used for segmentation after an initial ST-shape is deformed to 

better fit the shape. D. Comaniciu [68] introduced an approach that incorporates other 

information about the image in the tracking process. The authors proposed a fusion 

formulation in the information space for robust shape tracking, optimally resolving 

uncertainties from the system dynamics, heteroscedastic measurement noise, and 

subspace shape model. K. Leung et al. [64, 69] employed the ASM to classify the heart 

wall motion. J. Nascimento et al. [70] used ASM with bank of nonlinear filters to deal 

with measurement uncertainty to attenuate the influence of outliers (false edges). 

 

 Shortcomings of ASM: 

The efficiency of ASM directly depends on the comprehensive object variations in the 

training set and a suitable initialization. The obtained model changes only in the available 

variations in the training set. All changes outside of the training set are not covered by the 

model. The initial shape which easily affects the final result is another challenging 

problem. If the initial shape is not suitable, the final result will not be satisfactory. 

Another disadvantage to ASM is that it only uses data around landmarks and does not 

utilize all available grey information across the object, meaning that it yields less reliable 

results. 

2.9 ACTIVE APPEARANCE MODEL BASED APPROACH 

The Active Appearance Model (AAM) is a generalization of the widely used Active 

Shape Model approach, but AAM uses all the information in the image region covered by 

the target object, rather than just the near modeled edges.  AAM combines a statistical 

model of the shape and grey-level appearance of the object of interest. When the image is 

matched to AAM, this process includes finding the model parameters that minimize the 

difference between the image and a synthesized model example.  

AAM was introduced by Cootes et al. [71]  as an improvement to shortcomings of ASM. 

The following steps illustrate the model operations: 

 Create the distribution model PDM. The same steps are followed as in ASM 

(Shape model). 



 

     27 

(2.34)x x Pb   

 Create the appearance model: 

(2.35)g gg g p b   

 Warp each image in the training set, so each control point matches the mean 

shape. 

• Find the optimal shape parameters p and appearance parameters λ to minimize the 

difference between the warped-back appearance I(W(p)) and synthesized 

appearance 

 

2
( , ) ( ( )) (2.36)aE p A I W p    

J. Bosch et al.  and S. Zhou et al.  employed AAM to segment and track LV. 

 Shortcomings of AAMs 

a) The large number of parameters makes this process difficult. 

 

b) If the distribution is disjunctive or skewed, the model may generate implausible 

intermediates or may fail to cover the full range of variability.  

c) AAM is not suitable for highly deformable objects. Due the wide variety of heart 

shapes for different people and different ages, at various degrees of good and poor 

health; the shape and movement of the heart can be completely different. 

Depending on the training data base, AAM cannot recognize a new shape or a 

new movement that is not already included in the training data set. 

2.10 BLAKE FRAMEWORK 

G. Jacob et al.in their papers [72-74] utilized dynamic contour algorithm introduced by 

Blake [75] to track and evaluate an LV endocardial border. A dynamic contour tracker is 

based on a linear Kalman filter technique, where a model and measurements are 

combined together. The model is spatiotemporal and contains two stages.  The first stage 

is a deformable model describing the deformations and a motion-model describing the 

temporal properties of the contour.  The second stage is the measurement. G. Jacob et 

al.used edge detection to find the LV borders by employing a normal displacement 

technique, which detects the edges by searching for edge pixels in the normal direction of 
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the LV contour, as predicted from the motion model. F. Orderud et al. [76-79] used the 

same approach of G. Jacob et al. for the 3D echocardiography and with EKF instead of a 

linear Kalman filter. 

 

 Shortcomings of the Blake Framework 

G. Jacob and F. Orderud followed the Blake framework by using a simple edge 

detection technique in the measurement stage to find the edges in the normal direction to 

the surface of LV contour, as predicted from the motion model. This technique will lead 

to poor results due to difficulties mentioned regarding echocardiography ultrasound 

images. Another disadvantage is that the normal displacement technique will search in 

the normal direction only, whereas the real edge may be located in a different position 

outside of the predicted LV contour. 

2.11 FEM AND LV TRACKING  

FEM is used in literature to study the heart, especially the LV motion and mechanical 

properties. For LV motion tracking, I did not find any work relating to LV tracking from 

2D or 3D echocardiography image sequences. For other modalities (MRI, CT scan, X- 

ray and MRI), FEM was used only to reconstruct the LV or the heart shape after 

extracting the LV boundaries using deformable models or other techniques. 

a. CT scan and FEM 

T. McInerney and D. Terzopoulos [80] tracked the LV surface motion during the cardiac 

cycle using physics based approach. The authors used CT images to estimate the LV 

surface images. A dynamic balloon model (spherical shape thin plate) under the tension 

surface spline is used to deform elastically to fit the image data. By means of internal 

force estimated from the elastic properties of the spline and the external forces that are 

extracted from the image data, the fitting process is done. FEM is employed to 

reconstruct the LV shape during the cardiac cycle. 

b. X-Ray and FEM 

Choi and Kim [81] tracked the LV motion in the cardiac cycle through the X- ray 

angiographic images. The framework, based on a 3D deformable model that consists of a 



 

     29 

non-rigid body that deforms around a reference shape, is obtained from the previous 

image. The FEM is used here to reconstruct the shape of LV in 3D. 

c. MRI and FEM 

Young et al. [82] tracked the stripe motion tMRI images starting from the given locations 

of the tagging planes of the undeformed shape and the 3D locations of the stripes in the 

deformed shape. The authors then calculated the displacement for all the tracked stripes. 

FEM is used in this work as the 3D template for the 16 shapes of the heart that represent 

the cardiac cycle.  The framework has a large error (16%) due to the inability to 

approximate the cylindrical geometry and the displacements. The authors did not evaluate 

their work. J Park et al. [83] tracked the systole phase of the cardiac cycle from MRI 

images. The data is extracted from the image and rigid body motion is used to simulate 

the translation and rotation. The Lagrangian dynamics model with FEM is used to 

simulate the deformation by using the image data. C. Conti et al. [84] developed a semi-

automatic framework to track heart boundaries for the MRI image sequence. Deformable 

models are used to detect the heart boundaries and FEM is used to calculate the strains 

from the image data. X. Wang et al. [85]  reconstructed the LV motion from tMRI image 

sequence using deformable models and FEM. The intersection of the three tagged planes 

with the intersection of the LV boundaries and the tagged planes of the LV area is 

segmented and interpolated onto mesh vertices. From the extracted image data, FEM is 

used to reconstruct the LV shape at each image. X-rays and CT scans have radiations and 

are therefore not suitable for heart disease patients. MRIs use magnetic fields and radio 

waves to view the heart anatomy, which can cause series problems for some patients [86]. 

MRIs can cause malfunctions to cardiac pacemakers and insulin pumps and also can 

cause panic attacks to patients due to loud noises emanating from the machines [87]. To 

avoid potential shortcomings in the computer vision techniques, there are correction steps 

to avoid any errors in the segmentation steps. Also, there is no spatial and temporal 

coherence between image sequences. The reconstruction step of the LV by FEM depends 

completely on the previous process of the segmentation, where the image data is used to 

draw the LV shape.  
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2.12 SUMMARY  

In this chapter, the review to the approaches that have been used to detect and track the 

LV boundaries is introduced. The approaches are classified into 9 categories depending 

on the technique that used in the approach. A brief introduction about each technique is 

given along with the shortcomings of the utilized approach. A brief explanation about 

using the FEM with other modalities is mentioned for tracking and reconstructing the LV 

shape during the cardiac cycle. 
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CHAPTER 3 MEDICAL BACKGROUND  

3.1 INTRODUCTION 

As mentioned in Chapter 1, the objective of this thesis is to track and detect the LV 

boundaries during the cardiac cycle.  The approach is to utilize LV mechanics with 

deformable models. To achieve this objective and to use the LV mechanics, some 

knowledge about the heart anatomy and the stages of the cardiac cycle during its various 

activities phases is very important. Also, knowing the LV structure and understanding its 

mechanics are essential, necessary steps to reach the target and be able to use the 

knowledge gained in the resulting framework.  

3.2 HEART ANATOMY 

The human heart works as a mechanical pump that receives low pressure blood from the 

venous system and ejects it with higher pressure into the arterial system [88]. The heart 

consists of four chambers, left and right ventricle and left and right atria with a septal that 

separates the left and right chambers as illustrated in Figure (1). A muscular tissue known 

as myocardium encompasses the four heart chambers. The myocardium works in a 

sequence of contractions and relaxations. Out of the four chambers in human heart, Left 

Ventricle (LV) is the strongest. The force needed to circulate blood through the body is 

provided by its muscular walls which on average are only one centimeter thick [88]. The 

heart has four valves which regulates the flow of the blood between the chambers. The 

valves can be classified as follows: 

 The tricuspid valve:  controls blood flow between the right atrium and right 

ventricle.   

 The pulmonary valve:   regulates blood flow from the right ventricle into the 

pulmonary arteries.  

 The mitral valve:   passes blood from lungs through the left atrium into the left 

ventricle.   

 The aortic valve:   passes blood from the left ventricle into the aorta [88]. 
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3.3 ACTIVITIES DURING THE CARDIAC CYCLE 

The cardiac cycle can be defined as the period of time required for one heart beat and can 

be divided into two stages [89]: 

Diastole: represents the time when the ventricular are filling with blood and a short 

period before filling. In this stage the left and right atria contract to eject blood into the 

ventricles. 

Systole: is the time when both ventricle contract to eject blood to the body. No blood 

enters the ventricles while blood is continuing to enter the atria, Figure (2) [89, 90]. 

 

Figure (3.1) Heart Anatomy [91] 

3.4 PHASES OF THE CARDIAC CYCLE 

The cardiac cycle is divided into seven phases that illustrate in detail the activities that 

occur during the diastole and systole stages as shown in Figure (3) [89, 90] .A brief 

description about each phase follows: 
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Figure (3.2) Systole, diastole and LV volume during the cardiac cycle [89, 90] 

 

 Phase One: Atrium Contraction  

[AV Valves Open - Semilunar Valves Closed] 

In the first phase, the atrium muscles are contracted due to the electrical 

depolarization of the atria. This contraction causes the pressure inside the atriums to 

increase. At this moment, the atrioventricular (AV) valves are open which leads to a 

rapid flow of blood into the ventricles.  The atrium pressure starts to decrease at the 

end of the contraction which leads to the valves to float upward before closure.  At 

this phase, the ventricular have the maximum volume which is known as End 

Diastolic Volume (EDV) [89, 90].   

 

 Phase Two: Isovolumetric Contraction [All Valves Closed] 

In the second phase, the intraventricular pressure is greater than the atrium pressure that 

causes the AV valves to close. Ventricular contraction triggers the contraction of the 

papillary muscles also stimulated from the contraction of ventricular that prevents the 

blood to leak from the AV valve. 
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During this phase, all valves are closed and the pressure in the ventricular pressure 

increases quickly. There is no ejection, so the volume of ventricular remains as it is 

which is known as isovolumetric contraction [89, 90].   

 Phase Three: Rapid Ejection [Aortic and pulmonary Valves Open - AV Valves Remain 

Closed] 

The third phase represents the time when the pressure inside the ventricles is over the one 

inside the aorta and pulmonary artery. This leads the aortic and pulmonary valves to open 

causing a rapid flow of the blood from ventricular into the aorta and pulmonary arteries. 

The ejection of the blood occurs because the blood energy in the ventricle is more than 

blood energy in the aorta [89, 90]. 

 

 Phase Four: Reduced Ejection  

[Aortic and Pulmonary Valves Open- AV Valves Remain Closed] 

In the fourth phase, the rate of blood ejection becomes less due ventricular 

repolarization that leads to ventricular active tension to go down with the ventricular 

pressure too [89, 90]. 

 

 Phase Five: Isovolumetric Relaxation [All Valves Closed] 

The fifth phase is when isovolumetric relaxation occurs. The aortic and pulmonary 

valves are closed because the intraventricular pressures are less. There is no change in 

the ventricular volume because all valves are closed. The remaining blood in the 

ventricular is known as the End-Systolic Volume (ESV). The difference between the 

end-diastolic and the end-systolic volumes is known as Stroke Volume (SV) [89, 90]. 

 

 Phase Six:  Rapid Filling [AV Valves Open] 

The sixth phase is when the ventricular start filling. This occurs due to the 

intraventricular pressures is below the pressure in the atrium and the AV valves become 

open. While the ventricles under relaxation, the pressure inside them is going down until 

they completely relaxed, after that intraventricular pressures rise because they fill with 

blood from the atria [89, 90].  
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 Phase Seven - Reduced Filling [AV Valves Open] 

The last phase is when the ventricles continue to fill with blood and their volume will 

increase. The expansion of the volume causes the intraventricular pressures to rise and 

to reduce the pressure gradient across around the AV valves. The result will be the rate 

of filling becomes less [89, 90]. 

 

 

Figure (3.3) The seven phases of the cardiac cycle starting from left to right respectively 

[89, 90] 

3.5 GEOMETRY OF LEFT VENTRICULAR 

The normal ventricular is usually visualized mentally as ellipsoid. The long axis extends 

from apex to base. Due to the posterolateral wall and the anterior wall, the short axis 

cross section does not appear in a circular geometry, Figure (3.4) [91]. The papillary 

muscles and trabecula cause an extremely irregular shape to the endocardial surface. The 

LV wall also has irregularity in its thickness. The LV wall thickness at septum is less 

thick than the posterolateral wall [92].  
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Figure (3.4) Short axis view [91] 

  

3.6 LV PRESSURE VOLUME RELATIONSHIP 

There are many advantages to displaying left ventricular pressure (LVP) as a function of 

left ventricular volume (LVV) on a pressure – volume diagram. This is accomplished by 

plotting the measured LVV on the x-axis and the measured LVP on the y-axis for one 

cardiac cycle. This plot forms a loop. This loop is called the Pressure-Volume loop (PV 

loop) where the PV points go around the loop in a counter clockwise direction as the time 

proceeds [89]. 

 
Figure (3.5) LV Pressure and volume relationship (LV Loop) [89] 
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3.7 PHYSIOLOGICAL MEASUREMENTS RETRIEVABLE FROM THE PRESSURE 

VOLUME LOOP 

As mentioned above, the PV loop shows the relation between intraventricular pressure 

and volume throughout the cardiac cycle. From this plot, the cardiologist can ascertain 

values of several parameters and variables of physiological importance. If we picked out 

the maximum volume from the volume axis, we will have the End Diastolic Volume 

(EDV) which represents the ventricular volume at the end of the cardiac cycle. The 

minimum volume is known as the End Systolic Volume (ESV), which represents the 

ventricular volume at the end of the ejection phase. The ratio difference between EDV 

and ESV is the stroke volume (SV), which is the amount of blood ejected during the 

cardiac cycle. The ratio between SV and EDV is known as the Ejection Fraction (EF), 

which is the most commonly used index of contractility [89]. 

 

*100 *100 (3.1)
EDV ESV SV

EF
EDV EDV


 

 

3.8 MYOCARDIUM STRUCTURE 

The heart resides inside a special cyst called the pericardium, which consists of two 

layers; fibrous and serous. The serous also has two layers, which are the visceral and 

parietal layers. The fibrous has a soft and lubricated lining, which protects the heart from 

infection and gives free movement to the heart [10].  
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Figure (3.6) Structure of pericardial sac [92] 

 

The epicardium, myocardium and endocardium are the three layers that make up the 

ventricle wall. The endocardium is the inner layer lining of the cavities, which also holds 

the valves of the heart and the tendons that carry the valves. The epicardium is the outer 

layer, which consists of connective tissue and a serous surface. The most important layer 

is the myocardium, which enables the ventricle to contract and pump the blood to the 

body [93]. 

The myocardium tissue consists of layers of interconnected sheets separated by cleavage 

planes. Each sheet in the myocardial tissue is formed by three to four cells connected 

together by extracellular matrix collagen, known as endomysial collagen. The sheets of 

the myocardium are coupled together by the perimysal collagen network [10]. 

 
Figure (3.7) Schematic of fibrous sheet structure of cardiac tissue [94] 
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Figure (3.8) illustrates the representation of the microstructure using rectangular 

Cartesian axes. The first axis is the fiber axes. The second is the sheet axis and the third is 

the sheet-normal axis. The three material axes are used in the passive elasticity, while 

only the fiber direction is used in the continuum mechanics [94]. 

 

 
 

Figure (3.8) The local microstructure represented as Cartesian axes [94]
 

3.9 SUMMARY 

Chapter three gives a brief overview of the medical background of the heart. The heart 

anatomy introduces the chambers and valves with their functions. The cardiac cycle and 

the activities during the seven phases are summarized. The quantities that used in the LV 

measurements are mentioned. The relationship between the pressure and volume in the 

LV is also presented, along with the measurements that can be retrieved from it. The 

structure of the heart muscles is given with a focus on the myocardium. 
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CHAPTER 4 BIOMECHANICAL MODEL, FIELD BOUNDARY 

ELEMENT METHOD AND FINITE ELEMENT METHOD 

4.1 INTRODUCTION 

Some biological tissues are subjecting to a large deformation in physiologic activity [95, 

96]. Large deformation can be defined as deformations greater than 3 - 5% strain. Small 

deformation linear strain tensors can be used only in cases of small deformations. Cardiac 

cells change in length by over 20% during a normal heart beat, so the mechanical analysis 

must be based on a finite deformation elasticity theory [94]. During the cardiac cycle, 

myocardial deformation is produced as a result of longitudinal and circumferential 

motion, which is accompanied by thickening or thinning in the radial dimension. This 

deformation is quantified by the strain (E). At the end of diastole, myocardial length and 

thickness are at baseline, while during systole, longitudinal and circumferential 

shortening give negative strain values, reaching their minimum negative values. At the 

beginning of the diastole, the strain backs up to a less negative value and when the 

ventricular completes filling, the strain backs up to baseline, Figure (4.1) [97]. 

 

Figure (4.1) - Strain and strain rate during one cardiac cycle [97] 

 

When a force is acting on a deformable object, a displacement field results in which each 

point moves a certain amount depending on its position in the object relative to the 
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applied force and on the mechanical properties of the object. Strain tensors are defined in 

terms of displacement gradients using kinematic relations [98]. 

The accurate myocardial mechanics model can simulate the heart wall motion during the 

diastolic (relaxation) and systolic (contraction) stages of the cardiac cycle. LV 

deformation can be determined through a model of the mechanics of myocardium. The 

BioMechanical (BM) model based on finite deformation elasticity and solving the 

resultant functional of the model by utilizing Field Boundary Element Method (FBEM) 

and Finite Element Method (FEM) is presented in this chapter.  

4.2 MATERIAL BEHAVIOR  

Due to the intra- and extra-vascular fluid displacements that occur throughout the 

contraction, the myocardial tissue is characterized as a highly anisotropic and weakly 

compressible material [99] . The material behaviour of myocardium is time dependent in 

that it varies through the cardiac cycle. Anisotropy, which is due to the alignment of the 

contractile elements of the tissue, makes the behaviour of the material directional 

dependency while applying the loads. The fiber orientation in the myocardium is highly 

complex with regional variability, making it challenging to incorporate anisotropy into 

the mechanical model of the LV. Instead, simplified transversely isotropic material 

models with different strain energy functional and material parameters have been used to 

create constitutive equations of the LV. The advantage of assuming the myocardium 

tissue as a transversely isotropic material is that, the strain energy function can be 

determined directly from the experimental data [100, 101]. Recently, orthotropic material 

models for myocardium were also proposed. The problem with the assumption of 

orthotropic material, the experimental data are not adequate to determine the strain 

energy functional and the associated material constants without further assumptions   

[102, 103]. 
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4.3 CONTINUUM MECHANICS 

 

 

Figure (4.2) –Un-deformed body, deformed body and displacement [104] 

 

The first step in measuring of large deformation is to establish the relation between the 

un-deformed and deformed shapes of the LV. The un-deformed shape is the state of the 

LV in 3D space before applying the loads while the deformed shape is the location and 

shape of the LV after applying the loads. An illustration of the relationship between the 

un-deformed and deformed configurations is shown in Figure (4.2) [104]. 

It is assumed that there is one to one mapping between the un-deformed R0 to the 

deformed Rt , so that for every point of the body we can write: 

 

 

Figure (4.3) – Movement of one point from reference to deformed body [104] 
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( , ) (4.1)x x X t  

Furthermore, this mapping can be assumed invertible so that: 

 

( , ) (4.2)X X x t  

 

For physically realistic problems the Jacobian description of the transformation can be 

written as: 

det (4.3)i

j

x
J

X

 
  

  

 

But must not be zero for t>0. 

 

The relation between the position vectors in the un-deformed and deformed shapes can be 

obtained by vector addition and written directly as follows: 

(4.4)x u X   

From (4.4) we can define the deformation gradient tensor as: 

(4.5)dx FdX  

Or with respect to the components, as: 

(4.6)i
ij

j

x
F

X





 

Now, the relation between displacement and deformation gradient tensor can be derived 

as follows: 

 

ij

 u+I (4.7)

F = i
j

j

x u X

dx du dX

F grad

u
i

X


 

 








 

The deformation gradient tensor characterizes the state of motion and deformation in the 

neighborhood of any point of the body [104]. 

The right Cauchy-Green tensor is as follows: 
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(4.8)TC F F  

The stretch ratio λ is defined as: 

 

. . (4.9)N C N   

Where N is the unit vector 

 

A further useful tensor is the Green-Lagrange strain tensor, which is defined as: 

 

 
1

(4.10)
2

 I is the unity matrix

 in  terms  

1
(4.11)

2

ji k k
ij

j i i j

E C I

where

Or of displacement

uu u u
E

X X X X

 

   
   

     

 

 

The quadratic term, which is the product of the displacement gradients, is the source of 

the geometrical nonlinearity in kinematical relations. The linear strain is given by the 

following equation: 

 

1
e = (4.12)

2

ji
ij

j i

uu

X X

 
 

   

 

 

If df denotes the infinitesimal force acting on surface element dS, we introduce the first 

Piola-Kirchhoff (1st PK) stress tensor by writing: 

( , ) (4.13)
df

X t
dS

   
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W(F), known as a strain–energy function that is a single-valued function of the 

deformation gradient tensor F at any point of the body and any time, is independent of 

the rate of deformation or its history. W is the internal mechanical energy due to 

deformation that is stored in the body [104]. 

 

The first PK stress tensor can be derived from the strain-energy function: 

 

( )
(4.14)

W F

F






 

 

The strain energy function can be represented by right Cauchy deformation tensor (C), by 

(E), or by invariants of right Cauchy deformation tensors (I1, I2, …). We denote these 

functions by W(F) , W(C), W(E) or W(Ii). 

Then S and σ will be defined as follows: 

 

( )
2

( ) ( )
2 (4.15)

W C
F

C

W C W E
S

C E







 
 

 

 

 

If strain invariants are used, then W will be as follows: 

 

1 2 3

1

2

2 28

2

3

( ( ), ( ), ( ))

( )

1
( ) ( ) (4.16)

2

( ) det

W W I C I C I C

I C trC

I C trC trC

I C C J





   

 

 

 

The second Piola-Kirchhoff (2nd PK) stress tensor will be redefined as follows: 

 

3

1

( )
2 (4.17)i

i i

IW C
S

I C




 
  
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If the material is incompressible, then J=1 and the S will be defined as follows: 

 

1 ( )
2 (4.18)

W C
S pC

C

 
  



  

The 1st PK stress tensor σ can be found from 2nd PK stress tensor as follows: 

 

(4.19)FS   

4.4 TRANSVERSELY ISOTROPIC MATERIAL 

Transversely isotropic material can be defined as a material that exhibits a preferred 

direction, where the material properties depend on this direction and the response of the 

material along directions which are normal to this direction is isotropic Figure (4.4) 

[103].  

 

 

Figure (4.4) transversely isotropic material [103] 

 

In the transversely isotropic material, the strain-energy function depends on C and on the 

preferred direction N. In other words, if the material undergoes deformation, the vector N 

will deform with the body [99, 105]. The strain energy function of transversely isotropic 

material will be as follows: 
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( , ) (4.20)W W C N N   

 

W will be function of I1(C) , I2(C) , I3(C) , I4(C) and I5(C) as following: 

 

 1 2 3 4 5

4

2

5

( ), ( ), ( ), ( , ), ( , )

( , ) . .

( , ) . . (4.21)

W W I C I C I C I C N I C N

where

I C N N C N

I C N N C N







 

 

Then, the second PK stress tensor will be as follows: 

 

5

1

( , )
2

( , )
2 (4.22)

i i

W C N N
S

C

W C N N Ii
S

I C

 




  


 


 

4.5 CONSTITUTIVE EQUATION 

A constitutive equation is a mathematical model that describes the relationship between 

stress and strain. Constitutive equations consist of two parts; one part is the unknown 

constants or material properties, which should be found experimentally [104]. The other 

part is the measures of deformation which may be a linear or nonlinear deformation. 

To develop a constitutive equation for the tissue mechanics, some assumptions should be 

taken into account due to the complexity of this kind of mechanics.  

Essentially, it is not possible to develop a constitutive equation that will precisely model 

the tissue behavior. To develop a constitutive equation for modeling a tissue, there should 

be a balance between the ability to accurately mimic the tissue behavior and the ability to 

obtain a constitutive equation simple enough to experimentally determine the material 

properties and numerically solve the equations [104].  

a. LV Constitutive Equations: 

To track the LV movement, our work depends on the Lin-Yin model [14] for the 

constitutive equation based on hyperelastic material theory. In this model, the strain 
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energy potential W is divided into two components: one is passive (Wpass), and the other 

is active (Wactive). Lin et al. [14] performed multiaxial tests using a similar protocol as 

Humphrey et al. [100, 101] on passive and activated specimens. To reduce the passive 

parameters from 14 to 5, Lin et al. [14] used an exponential function instead of a 

polynomial function. The passive strain energy function is given as follows: 

1

2 2

2 1 3 1 4 4 4

( 1)

( 3) ( 3)( 1) ( 1) (4.23)

Q

passW c e

Q c I c I I c I

 

      
 

where, c1, c2, c3 and c4 are the material property parameters that are determined 

experimentally. Lin et al. found that the active stress-strain responses were more linear 

than the passive ones, which indicated that both active and passive phases should have 

different kinds of materials that lead to establishing different strain energy functions to 

describe their behavior. The polynomial form of the active strain energy function which 

fit the experimental data is given in the following form: 

 

5 6 1 4 7 1 8 4 9 1 10 4( 3)( 1) ( 3)2 ( 1)2 ( 3) ( 1) (4.24)activeW c c I I c I c I c I c I             

c5, c6, c7, c8, c9 and c10 are material property parameters determined experimentally. Table 

(4.1) shows the values that are used for each material parameter. The material properties 

are given in (g/cm2).   

Table (4.1) – Values of material properties 

Material parameter Value (g/cm2) 

c1 2.92 

c2 3.21 

c3 -2.60 

c4 2.01 

c5 0.0 

c6 -7.89 

c7 66.20 

c8 51.12 

c9 40.12 

c10 0.0032 
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I1 and I4 are the invariants of right Cauchy deformation tensor and given by the following 

equations:  

 

1 ij 11 22 33

2

4 ij j

1 11 1 1 12 2 1 13 3 2 21 1 2 22 2

2 23 3 3 31 1 3 32 2 3 33 3

 C  = C +C +C (4.25)

 C  N  

      =  C  N  C  N  C  N  C  N  C  N

        C  N  C  N  C  N  C  N (4.26)

i

I tr

I N

N N N N N

N N N N





   

   

 

b. Driving the Stress Equations of the LV Model: 

Second PK stress for a nonlinear elastic incompressible material based on a strain energy 

function is given as follows: 

 

1 2 (4.27)ij hyd ij

ij

W
S p C

C

 
  


 

1

_passive _

1

_ _

2

2 (4.28)

pass

ij hyd passive ij

ij

active
ij active hyd active ij

ij

W
S p C

C

W
S p C

C






  




  



 

Here, phyd_passive and phyd_active represent the hydrostatic pressure value at passive and active 

phases.   

Lin et al. followed the same assumption of Humphreys et al. for the muscle fiber 

direction. Humphreys et al.  assumed that the fibers were located in the x direction. This 

assumption leads to the normal vector N will be equal (1, 0, 0); and from this assumption 

the following invariants will be equal: 

2

4 11

4 11 (4.29)

I C

so

I C





 

The components of the second PK stress will be directly written as follows: 



 

     50 

1

11_ _ 11

11

1

11_ _ 11

11

2 (4.30)

2

pass

passive hyd passive

active
active hyd active

W
S p C

C

W
S p C

C






  




  



 

The differentiation of the passive energy function with respect to C11 will be given as 

follows: 

    

   

    
           

2 21/2  

4 11 2 11 22 33

1
1/2

11
3 11 11 22 33

1/2  

2 11 22 33 3 11

1/2 1/2 1/2

4 11 3 11 22 33 11

c C  1   c C   C   C   3  
c *exp

 c C   1 C   C   C   3

(c 2C   2C   2C   6 c C  1   

c C11   1 / C c C   C   C   3 / 2C )

(4.31)

passW

C

        


      
 

     

    

 

The differentiation of the active energy function with respect to C11 will be as follows: 

    

        

     

1/2

9 7 11 22 33 10 11

11

1/2 1/2 1/2

6 11 11 11

1/2

6 11 22 33 11

=c   c 2C   2C   2C   6   c / 2C   

c C   1   c8 C   1 / C   

c C   C   C   3 / 2C

(4.32)

activeW

C


     



   

  

 

The first stress component for the passive and active phases will be as follows: 
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    

   

    
     

2 21/2  

4 11 2 11 22 33
1

11_ _ 11 1
1/2

3 11 11 22 33

1/2  

2 11 22 33 3 11

1/2 1/2

4 11 11 3 11 22 33

c C  1   c C   C   C   3  
c *exp

 c C   1 C   C   C   3

(c 2C   2C   2C   6 c C  1   

c C   1 / C c C   C   C   

passive hyd passiveS p C 

      
 

  
 
    
 

     

         1/2

113 / 2C )

(4.33)

 

    
        

     

1/21

11_ _ 11 9 7 11 22 33 10 11

1/2 1/2 1/2

6 11 8 11 11

1/2

6 11 22 33 11

c   c 2C   2C   2C   6   c / 2C   

c C   1   c C   1 / C   

c C   C   C   3 / 2C

(4.34)

active hyd activeS p C         

   

    

The differentiation of the passive energy function with respect to C22 will be as follows: 

 

    

   

     

2 21/2

4 11 2 11 22 33

1
1/2

22
3 11 11 22 33

1/2

2 11 22 33 3 11

c C   1   c C   C   C   3  
c exp

 c C   1 C   C   C   3

c 2C   2C   2C   6   c C   1

(4.35)

passW

C

        


      
 

    

 

 

The differentiation of the active energy function with respect to C22 will be as follows: 

 

    1/2

9 7 11 22 33 11

22

=c   c 2C   2C   2C   6   c6 C   1

(4.36)

activeW

C


     

  

 

The second stress component for the passive and active phases will be as follows: 
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    

   

     

2 21/2

4 11 2 11 22 33
1

22_passive _ 22 1
1/2

3 11 11 22 33

1/2

2 11 22 33 3 11

c C   1   c C   C   C   3  
S  c exp

 c C   1 C   C   C   3

c 2C   2C   2C   6   c C   1

(4.37)

hyd passivep C 

      
 

  
 
    
 

      

 

    1/21

22_ _ 22 9 7 11 22 33 11S = C +c   c 2C   2C   2C   6   c6 C   1

(4.38)

active hyd activep       
 

The differentiation of the passive energy function with respect to C33 will be as follows: 

    

   

     
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1
1/2
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 c C    1 C   C   C  3

c 2C   2C   2C   6   c3 C    1

(4.39)
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The differentiation of the active energy function with respect to C33 will be as follows: 

 

    1/2

9 7 11 22 33 6 11

33

=c   c 2C   2C   2C   6   c C   1

(4.40)
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The third stress component for the passive and active phases will be as follows: 

 

    

   

     
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1
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    1/21

33_ _ 33 9 7 11 22 33 6 11c   c 2C   2C   2C   6   c C   1

(4.42)

active hyd activeS p C         

 

 

At this point, it is important to remember that the (S33) third component of the second PK 

stress tensor is equal to zero. Thus, we can solve for the hydrostatic pressure for both 

passive and active phases as follows: 

 

    

   

     

2 21/2

4 11 2 11 22 33

1
1/2

_ 33 3 11 11 22 33

1/2

2 11 22 33 11

c C   1   c C   C   C   3  
c exp

 c C    1 C   C   C  3

c 2C   2C   2C   6   c3 C    1

(4.43)

hyd passivep C

        
  

        
 
     
 

 

    1/2

_ 33 9 7 11 22 33 6 11c   c 2C   2C   2C   6   c C   1

(4.44)

hyd activep C        
   

4.6 SOLUTION USING FIELD BOUNDARY ELEMENT METHOD 

“The Boundary Element Method (BEM) is a technique used to solve partial differential 

equations by rewriting the original Partial Differential Equation (PDE) into an integral 

equation over the boundary of an object where the solution of the Boundary Integral 

Equation (BIE) is exactly the solution of original PDE”    [106-109]. Unlike the Finite 

Element Method (FEM), only the boundary of the object needs to be discretized, because 

the BIE is only over the boundary of the object [107, 108]. There are two types of 

boundary conditions for PDE. If the boundary condition is given as specific displacement 

vector, then this type is known as Dirichlet problem. The other type which is known as 

Neumann problem, the boundary condition is given as specific traction vector over [107]. 

The fundamental solutions for PDE should first be obtained to enable the conversion of 

the PDE into a boundary integral equation [107, 110, 111]. 
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a. Fundamental Solutions: 

“The fundamental solution for the plane stress elasticity problem is the solution for a 

point load xp of unit magnitude applied to a point x in an infinite 2D medium of unit 

thickness. The fundamental solutions are sometimes referred to as Kelvin solutions, 

Green’s functions, or singular solutions. The displacement of a point x in an infinite 

medium with a unit load applied at xp is known as the displacement fundamental solution. 

kjU  is the fundamental solution which represents the displacement at point x in the k 

direction due to a unit load applied at xp in the j direction in the infinite plane” [106]. kjU  

is calculated by the following equation[106]: 

 

1 2 2

1

2

1

2
1 1 2 2

( )( )1
( , ) ln (4.45)

1

8 (1 )

3 4

( ) ( ) (4.46)

p p
p l l k k

kl lk

p p

x x x x
U x x C C

r r

where

C
v

C v

r x x x x





  
  

 




 

     

 

 

“There is also a fundamental solution that gives the traction at a point x in an infinite 

medium due to a unit load at px . The traction vector must be defined in reference to a line 

l that cuts through the material. The traction vector is the force distribution that would 

have to be applied to the object if it was cut by the line l in order to maintain the same 

state of stress in the material” [106]. The fundamental traction solution can be written as 

[106]: 
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3
4 42

1 1 1 2 2 2

3

4

( )( ) ( ( ) ( ( )
( , ) 2

( ) ( )
(4.47)

1

4 (1 )

1 2

p p p p
p l l k k l k k k l l

lk lk

p p

C x x x x n x x n x xr
T x x C C

r n r r r

where

n x x n x xr

n r r

C

C



 



       
       

     

 
 






 

 

4.7 GOVERNING EQUATION 

The framework is based on the assumption that the first PK stress tensor (which is given 

by Equation (4.19) and the second PK stress tensor (which is given by Equation (4.29) 

can be split into two parts; linear and nonlinear parts as follows: 

(4.48)L n

ij ij ij     

 

Here, L

ij represents the linear stress. The nonlinear stress is represented by n

ij . The 

nonlinear part will computed by replacing it with  L

ij ij  . 

As mentioned above, the myocardium tissue is treated as a transversely isotropic material 

[103, 112].  For the linear elastic model, the stress-strain relationship has the form: 

 

1  e (4.49) L C   

Here, e represents the linear strain and the matrix C-1 takes the form: 
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1

1
0 0 0

1
0 0 0

(4.50)1
0 0 0

2(1 )
0 0 0 0 0

1
0 0 0 0 0

fp fp

p p f

p fp

p p f

fp f fp f

p p f

p

p

f

E E E

E E E

C E E

E E E

E

G

 

 

 





 
 

 
 
 
 

  
 
 
   
 
 
 


 
 
 
 
 
 

 

 

where, fE is the fiber stiffness, pE is cross-fiber stiffness and ,fp p  are the corresponding 

Poisson’s ratios [113]. fG is the shear modulus across fibers and is given by the 

following equation [113]: 

(4.51)
2(1 )

f

f

fp

E
G





 

 

4.8 THE EQUILIBRIUM EQUATION 

The equation of equilibrium in the absence of body force can be obtained by 

differentiating Equation (4.48) which represents the total stress, the first PK stress tensor 

[111]: 

 

, 0 (4.52)ij j   

As mentioned earlier in Equation (4.48), the total stress consists of the linear and 

nonlinear parts, so the equilibrium equation becomes as follows [111]: 

 

, , 0 (4.53)L n

ij j ij j    
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In our case the boundary conditions are considered at each point on the boundary and the 

traction is specified and given as follows: 

 (4.54)ij j i iN t t    

4.9 DERIVING THE FBEM EQUATION 

Deriving the FBEM equation is based on combining the equilibrium Equation (4.52) and 

the boundary condition Equation (4.54), by utilizing direct BEM [108]. 

 

Figure (4.5) - BEM geometrical definition [108] 

 

Equation (4.54) should satisfy the following conditions: 

 Essential or displacement conditions: 

1  (4.55)k ku u on   

 Traction conditions: 

2  (4.56)k kt t on   

To minimize Equation (4.52), the equation will be weighted by displacement 

function *

ku and orthogonoalize the product as following: 

 

*

,( ) 0 (4.57)kj j ku d


   

From Equation (4.48), we will have the following: 

*

, ,( ) 0 (4.58)L n

kj j kj j ku d 


    

By applying the integration by parts and by grouping the same terms, the following 
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equation will result: 

 

* * *

, (4.59)L n

kj kj kj j k k ke d u d t u d 
  

         

Applying the integration by parts again resulted in the following equation: 

 

* * * *

, , (4.60)
L n

kj j k kj j k k k k ku d u d t u d t u d 
   

          

The two terms on the right hand side are integrals on the  surface of the body. If we 

divide the surface into two parts
1 and

2 , applying the boundary conditions (4.55) and 

(4.56), the next equation will be obtained: 

 

1 2 1 2

* * * * * *

, , (4.61)h n

kj j k kj j k k k k k k k k ku d u t u d t u d u T d u T d 
     

             

The bars in the above equation represent the known values of traction tk and 

displacement uk. Applying the integration by parts again we will get the next equation: 

 

2 2

* * *

, ,( ) ( ) ( ) (4.62)L n

kj j kj j k k k k k k ku d t t U d u u T d 
  

          

The equation is a generalized expression that used to obtain the boundary integral 

equation. The fundamental solution is obtained when a unit load is applied at a point I in 

the direction of the unit vector ei, i.e.  

, (4.63)n i

kj j le    

The fundamental solution can be written as follows: 

* *

* * (4.64)

k lk i

k lk i

U U e

T T e




 

The fundamental solutions *

lkU and *

lkT  are k components of displacement and 

tractions due to a unit load in the l direction. The first integral in (4.62) for a particular 

direction ei of the unit load becomes: 

 

* *

, , (4.65)L L i i

kj j k ij j i l i l iu u d u e d u e 
  

           
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Here, ui
l  represents the l component of the displacement at the point i of application 

of the load. The equation can now be written to represent the displacement at i as follows: 

 

1 1 2

* * * * *

,

2

(4.66)i n

l lk k lk k lk k lk k lk j lku T u d T u d U t d U t d U d
    

            

 

By applying the boundary conditions and combining the two parts of the boundary 

together
1 2  , Equation (4.66) will be written in the following form: 

 

* * *

, (4.67)i n

l lk k lk k lk kj ju T u d U t U d
  

        

Equation (4.67) for the displacement is also written for the boundary nodes as 

follows: 

 

* * *

, (4.68)i i n

lk l lk k lk k lk kj ju T u d U t d U d 
  

        

 The resulting integral equations are:  

( ) ( ) ( , ) ( ) ( , ) ( )

( , ) ( ) (4.69)

p p p p L p

kj k kj k kj k

n
p mk

kj

m

x u x T x x u x d U x x t x d

U x x x d
x





 



   






 


 

Here,
kj kj   if xp lies in the domain , for a point on the boundary, which is smooth 

at the point xp,
1

2
kj kj  . 

kj is the Kronecker delta. uk is the boundary displacement 

vector. L
kt is the linear part of the boundary traction vector, which is given by: 

(4.70)L L

k jk jt n  

 

By applying the divergence theorem to Equation (4.69), the nonlinear part can be 

retrieved. Then, Equation (4.69) will be in the following form: 
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( ) ( ) ( , ) ( ) ( , ) ( )

( , )
( ) (4.71)

p p p p L p

kj k kj k kj k

p

kj n

mk

m

x u x T x x u x d U x x t x d

U x x
x d

x





 



   






 

  

The derivative of Equation (4.71) will give us the direct displacement gradients inside the 

domain as follows: 

 

( )
( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) (4.72)

p

j kj kjp p

k kp p p

kj p n

mkp

m

u x T U
x x u x d x x x t x d x

x x x

U
x x x d x

X x

 



  
     

  


 

 

 



 

 

The domain integral in Equations (4.71) and (4.72) can be transferred to a boundary 

integral using the divergence theorem. The divergence theorem is given as follows: 

 

. (4.73)F dA F N d
 

     

Here, N represents the normal vector. Both equations will be rewritten as: 

 

 

( ) ( ) ( , ) ( ) ( , ) ( )

( , ) ( ) . (4.74)

p p p p L p

kj k kj k kj k

p n

kj mk

x u x T x x u x d U x x t x d

U x x x Nd





 



   



 


 

 

( )
( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) . ( )

(4.75)

p

j kj kjp p

k kp p p

kj p n

mkp

u x T U
x x u x d x x x t x d x

x x x

U
x x x N d x

x

 



  
     

  

 
  

 

 

  

The fundamental solution
kj

p

T

x




is given by the following kernel equation [114]: 
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* , , , , , , ,

2

, , , , , ,

2 (1 ) 41

4 (1 ) (1 2 ) 2 2 2

(4.76)

k ij i jk j ik i j k k k

ijk

k ij i jk j ik i j k j i k k i j

r r r r r r r N
D

G r N N N N r r N r r N r r

   

    

         
  

          
 

The fundamental solution 
kj

p

U

x




is given by the following kernel equation [114]: 

 

  
*

, , , , , ,

1
3 4 2 (4.77)

8(1 )
ijm m ij j im i jm i j mK r r r r r r

Gr
   


    


 

a. Discritization of FBEM Equations: 

It is known that LV has complicated and different shapes during the cardiac cycle. To be 

more accurate in describing the LV shapes, quadratic shape functions are used with BE 

isoparametric boundary elements. The quadratic shape functions are given with the 

following formula [108]: 

 

 

2

3( ) 1

1 1
1 1,2 (4.78)

2 2
n n n

N

N N n

 

 

 

   
 

 
 

 

Figure (4.6) Quadratic element a) Global Coordinates  b) Local Coordinates [108] 

 

The LV domain is divided into M constant domain cells as shown in Figure (4.6). 

Creating the mesh is the first step in the solution of the BIES. It is essential to evaluate 

the displacement gradient at each cell in the domain and hence the hydrostatic pressure 
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phyd because the constitutive equations are written in terms of displacement gradients and 

hydrostatic pressure [115]. 

 

Figure (4.7) Meshing the LV into M cells 

 

The discretization form of Equation (4.74) will be written as follows: 

 

1 1

1 1

1 1

( ) ( ) ( ) ( , ) ( )

( ) ( , ) ( )

( ) ( ) ( , ) ( ) (4.79)

m

BE N
p p e p

kj n n

e n

BE N
e p

n n

e n

M N
n p

n mk

m n

x u x N t U x d

N u T x d

N U x d

   

  

    

 

 

 

 
   

 

 
  

 

 
 

 

 

 

 

Here, we define the following equations:

 ( ) ( , ) ( ) (4.80)

( ) ( , ) ( ) (4.81)

( ) ( , ) ( ) (4.82)

m

p

n

p

n

p

n

H N U x d

G N T x d

f N U x N d

  

  

  



















 

Equation (4.79) can be represented in matrix form as follows: 

 

( , ) (4.83)hydHu Gt f u p    

 



 

     63 

Here, u represents the displacement value of the nodes at the boundary, while t represents 

the traction value [111].  H, G and f are the coefficient matrices given by Equations 

(4.80), (4.81) and (4.82). The elements of the matrix f are functions of the displacement 

gradients and of hydrostatic pressure.  

 

Rearrangement of Equation (4.83) is needed to transfer the boundary unknowns to the left 

side in matrix y and to combine all the known values in matrix C on the right side after 

applying the boundary conditions with the corresponding components of H and G. The 

following equation will result [111]: 

 

( , ) (4.84)hydAy C f u p    

where A is a coefficient matrix.  

The same procedure will be applied to Equation (4.75) to represent it in matrix form. 

Applying the equation at the centroids of the M domain cells yields the following 4M 

nonlinear equations for the four plane displacement gradients [111], which are illustrated 

below: 

1 1 1 1

1 1

( ) ( ) ( , ) ( ) ( , ) ( )

( ) ( , ) ( )

(4.85)

m

BE N BE N
p e p e p

n n n n

e n e n

M N
n p

n mk

m n

u x N t U x d N u T x d

N U x N d

    

   

    

 

   
         

   

 
   

 

    

 

 

Here, we define the following equations: 

( ) ( , ) ( ) (4.86)

( ) ( , ) ( ) (4.87)

( ) ( , ) ( ) (4.88)

m

p

n

p

n

p

n

D N U x d

B N T x d

g N U x N d

  

  

  







  

  

  






 

T and U  are given by Equations (4.76) and (4.77) respectively. Equation (4.85) can 

be written in matrix form as: 

 

( , ) (4.89)hydu Bu Dt g u p      
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B, D and g are the coefficient matrices as given in Equations (4.86), (4.87) and (4.88). 

The elements of the matrix f are also functions of the displacement gradients and of 

hydrostatic pressure. 

b. Incompressibility Condition: 

Satisfying and maintaining the incompressibility condition over all the M domain cells in 

the LV area is very important in the Yin et al. model. The incompressibility condition can 

be represented mathematically as: 

 

 
m

det C 1 (4.90)     

 

where, (det C)m is the value of the determinant at the centroid of every cell [111] m in the 

LV domain. At every cell in the LV domain, the right Cauchy deformation tensor C will 

be given as follows [111]: 

 

11 12

21 22

33

0

0 (4.91)

0 0

ij

C C

C C C

C

 
 


 
  

 

 

From this, by using Equation (4.90), C33 will be equal to the following value at each node 

m: 
 

33

11 22 12 21

1
(4.92)C

C C C C



 

 

To the incompressibility condition, C33 will be used to find the hydrostatic pressure phyd, 

which is given earlier by Equation (4.43) for the passive phase and by Equation (4.44) for 

the active phase in every cell in the whole domain of the LV during the cardiac cycle.  

4.10 EVALUATION OF REGULAR AND SINGULAR BOUNDARY INTEGRALS: 

The FBEM implementation is highly dependent on the evaluation of boundary integrals 

in Equations (4.79) and (4.85). The difficulties are in the singularities that exist in 

evaluation of matrices f, H and G. For the fundamental solution, px  is known as the 

source point and x is known as the field point. If the fundamental solution is bounded 
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everywhere with x, then the integral will be regular in this case. If the fundamental 

solution has infinity value at some points of x then it is singular. The evaluation of the 

regular integration will be given first, and then the evaluation of a singular integral will 

be explained next as explained in [116]. 

a. Evaluation of Regular Boundary Integration: 

As mentioned earlier, after discretization of the boundary into Be elements and referring 

to the fundamental solution as f (xp, x); the integration will become as follows [116]: 

1

1 1

( , ) ( ) (4.93)
Be

p

e

I f x x d x
 

   

1

1 1

( , ) (4.94)
Be

p

e

I f x x Je d
 

  

Here, J is the transformation Jacobian from global to intrinsic coordinates. The 

Jacobian is given by the following formula: 

 

    2 2
(4.95)J x y        

To evaluate the regular integrals numerically, usually the Gaussian quadrature 

method is utilized by employing the following formula: 

1

11

( , ) ( , ( )) (4.96)
gN

p p

n n

n

f x x J d f x x J  


  

Here, Ng represents the number of Gaussian points, 
n is the Gaussian coordinates 

and 
n is the associated weights. 

b. Evaluation of Singular Boundary Integration: 

The singularity appears on the fundamental solution equation when the source point 

xp falls at the nodes of the element on the boundary of the integration. At that moment, 

the distance r between the source and field point given by Equation (4.43) is equal or 

approximately equal to zero. Under this condition, the singularity appears in Equation 

(4.47) (with 1 r ) and Equation (4.45)(with ln(1 )r . The equations will be represented as 

follows [116]: 
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 

 
       

Here, ( , ) ( , )p pT x x and U x x are bounded everywhere. 

 

To overcome this difficulty, a solution given by [116] will be followed which is based on 

expressing the nonsingular parts of integration kernels as polynomials on the distance r.  

First, the differentiation element dwill be transferred to dr as follows: 

 , , , , (4.99)x ydr r x r y d     

The r,x and r,y given by the following equations: 

 

, ,, (4.100)
p p

x y

r x x r x y
r r

x r y r

   
   
 

 

As mentioned above, ,d J d  then d  will be come as follows: 

(4.101)
ˆ ˆ( . )

dr
d

r
   

 

Figure (4.8) Variables over singular element [116] 

 

The unit vector r is given by Equation (4.43) and  is the unit vector along the 

tangential vector direction to d as shown in Figure (4.8) and given by the following 

formula: 

 

1 2
ˆ ˆ, (4.102)

x y

J J

 
 

   
   
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The differentiation dwill be substituted by Equation (4.101) in Equations (4.97) 

and (4.98) to have the following two equations [116]: 

 

( , )

0

( , )

0

( , )
( , ) (4.103)

ˆˆ. ( , )

( , ) log ( , )
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As mentioned earlier, the singular integrals are evaluated by expressing the 

nonsingular parts as polynomials of distance r as follows: 

 

0

( , )
( , ) (4.105)

ˆ.̂

p N
n n p

i
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T x x
C r x x
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Here, N is the order of the polynomials and n

iC represents the coefficients that are 

computed by collocating the coordinate x at N+1 points from the source point xp to the 

end point xe. At the first point where n=0, the term ˆ ˆ( . 1)r  , the first coefficient will be 

equal: 

0 ( , ) (4.106)p p

iC f x x  

The rest of the coefficients will be computed by using the following formula: 
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107)

 

 

By substituting equation (4.107) into equation (4.103) and taking the lim, then the 

integration formula will be resulted as: 
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By using the same procedure [116], Equation (4.98) will be integrated using the 

following formula: 
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4.11 INCREMENTAL ITERATIVE PROCEDURE  

The deformations of the LV can be obtained by solving the equations given by (4.84) and 

(4.85). The incremental-iterative procedure is used to obtain the LV deformations at each 

boundary node [111]. The incremental-iterative procedure will be processed as ordered in 

the following steps: 

 

1. The displacement gradients are initialized by a small value. 

2. By using the linear elasticity assumption, we set the nonlinear part to zero. This 

means the matrices f and g will equal to zero. This enables us to calculate the 

values for boundary unknowns, y1 and the plane displacement gradients 1u . 

3. Calculating the initial hydrostatic pressures 1p hyd  by utilizing Equation (4.43) for 

the passive phase and Equation (4.44) for the active phase. 

4. The matrices f and g that contain the nonlinear part and hydrostatic pressure can 

be obtained by employing the results of the 1u  and 1p hyd . 
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5. Updating the boundary unknown y1 to a new value y2. The boundary unknowns 

can be updated by utilizing the values of matrix f in Equation (4.82).  

6. Updating the displacement gradients 1u to 2u . In the same way, the 

displacement gradients can be updated by using the values of matrix g in equation 

(4.82).  

7. Updating the hydrostatic pressure 1p hyd  to 2p hyd by satisfying the nonlinear 

incompressibility constraint given by the Equation (4.90) in all LV domain cells 

using the updated values of the boundary unknowns and the displacement 

gradients in equations (4.84) and (4.89). The resulting nonlinear algebraic 

equations have the following form: 

 

2 2 2 2( , , , ) 0 1, (4.110)m hydf u t u p m M     

8. The steps 4 to 7 will be iterated until the solution converges to a specified 

tolerance. 

9. The same iteration procedure will be repeated for all the boundary traction 

increments and will be added in sequence after the convergence of the previous 

one. 

4.12 RESULTS FROM FBEM 

The solution of FBEM was built by MATLAB to solve the BM model equations and 

the results were not acceptable. FBEM cannot provide the solution to find the 

deformations of the heart at each frame of echocardiography images. The 

displacement values at the boundaries of the LV were very high, which cannot be 

represented in the output screen. The heart is highly nonlinear, time varying and load 

dependent. Cardiac cycles last for 0.8 seconds and the ultrasound images for one 

cardiac cycle have 40 images (frames), so each frame takes .8/40=0.02 sec. During 

the contraction, the cardiac muscles move under pressure, which varies between 80-

120 mmHg. To mimic the LV motion at each frame, the simulation should contain 

these factors. In the FBEM, time and load (pressure) cannot be included in the 

solution. According to this, the equilibrium equation will not be satisfied which leads 

to divergence of the solution. 
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An alternative approach is used to solve the BM model equations by utilizing FEM 

instead of FBEM. 

4.13 FEM APPROACH 

The Finite Element Method is chosen to solve the BM constitutive equations due to 

its ability to include all the required factors of the solution. Figure (4.9) illustrates the 

solution steps: 

 

 

Figure (4.9) - FEM solution block diagram 

 

The undeformed shape is obtained by using the previous frame in the cardiac cycle. The 

meshing of the LV domain is the same as previously explained in the FBEM solution. 

a. Finding the Boundary Nodes 

After meshing the LV domain, the nodes at the boundary of the LV should be found and 

identified. This step is necessary to find the nodes where the boundary conditions should 

be applied. 

Undeformed 

Shape 
Meshing Finding the 

Boundary Nodes 

Preparing the 

ABAQUS Model 

(I/P) File 

Estimating the 

pressure values 

Finding 

Element Faces 

Calling 

ABAQUS 

Solver 

Running Python 
Getting the Deformed 

Coordinates 



 

     71 

b. Finding the Element Faces  

After finding the nodes that form the boundaries of the LV, the elements that relate to 

these nodes will be identified. After knowing the boundary elements, the faces of each 

boundary element must be recognized. Each triangle element has three faces. These faces 

are ordered in anticlockwise direction as shown in Figure (4.10). Next, the face of the 

triangle element at the boundary should be found and identified as Face1, Face2, or 

Face3. After identifying all the faces at the boundary of the LV, the same faces will be 

grouped together in one group. After that, all the groups will be combined together to 

form one surface. This surface is where the pressure should be applied during the systole 

and diastole stages of the cardiac cycle. 

 

Figure (4.10)-Identifying triangle element’s faces 

c. Boundary Conditions and Pressure Load Simulation 

In the anatomy of a heart, LV is bridled by the atria, RV (right ventricle) and the aorta. 

The quantitative information of the boundary conditions between these parts of the heart 

is unknown. To prevent rigid body motion of the left ventricle during the calculation of 

deformation, the basal plane (as shown in Figure (4.11)) motion should be suppressed. 

 

Face3 

Face2 

Face1 
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Figure (4.11) Basal, mid and apical areas of the heart [117] 

 

The load applied to the endocardial surface is the blood pressure. The blood pressure in a 

human heart depends on time and location. The fluid dynamics of the blood pressure in 

the left ventricle should be taken into account to estimate the spatial distribution of the 

blood pressure as a function in time. During LV contraction, the pressure gradients are 

very small compared to the absolute pressure. From this, we can assume a uniform 

parabolic distribution of the pressure along the endocardial surface of the LV. 

From tracking of the cardiac cycle, the duration of the systole phase lasts for 16 frames 

starting at the QRS ECG signal. The pressure starts rising up to 80 mmHg and reaches 

the peak of 120 mmHg and down to 80 mmHg at the end of the systole stage. 

 

In the literature [103] , the blood pressure of the left ventricle variation with time is 

simulated as follows: 

 

2944.38 245.54 0 0.2 (4.111)P t t t      

To find the pressure at each certain frame in the contraction phase, the time should be related 

to the frame number. The following equation is developed to establish the relation and find 

the specific value of the time t to the specific frame number k: 

 

0.055  *0.0090625 (4.112)t k   

The total duration of time is divided over the 16 frames which covers the systole stage. 

By calculating t according to the frame number, the pressure value will be calculated 

from the previous equation. The minimum pressure will be 10.666 Kpa which 
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corresponds to 80mmHg, while the maximum pressure value is 15.96 kpa, which 

corresponds to 120 mmHg. These values are the normal systolic blood pressure for an 

intact heart.  

 

In the diastole stage, the pressure is approximately fixed and according to the literature, a 

value of 5 K pa is used as indicated in the pressure curve in the cardiac cycle diagram. 

d. ABAQUS FEM 

ABAQUS is a powerful software package of Finite Element Analysis (FEA) that has 

proven high solution ability and quality in the performance of complicated engineering 

challenges and problems [118] 

 

ABAQUS runs commands called keywords which are prepared in an input file. The 

keywords contain all the information that defines the geometry (mesh and nodes), the 

properties of the material, the boundary conditions and that control output from the 

program [118].  

e. ABAQUS Model 

ABAQUS analysis can be divided into three stages; preprocessing, running 

ABAQUS/Standard and postprocessing. These three stages are processed in sequence as 

follows [119] : 

 

1- Preprocessing 

 

In the preprocessing stage, the ABAQUS model of the physical problem is defined by 

creating an input file. The input file consists of two parts; model and history. The model 

part contains the geometry discretization by defining the nodes and elements, material 

data, the loads and boundary conditions. The history part defines the analysis type 

(linear/nonlinear, static/dynamic or other analysis) and what we will do to the created 

model. The work done in this part is in steps. The input file in ABAQUS has the *.inp 

extension [120] . 
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2- Running ABAQUS /Standard 

The ABAQUS model is passed to the solver (ABAQUS /Standard), which runs in 

background mode and starts solving the problem numerically. 

 

3- Postprocessing  

Postprocessing is the stage where we get the results and start using or evaluating these 

results. 

 

For each frame of the echocardiographic image sequence, the ABAQUS model (input 

file) is prepared by a MATLAB script that identifies the entire model and history data, 

which are saved in the input file and run by ABAQUS to estimate the deformations of the 

LV at that moment in the cardiac cycle.  

f. User Defined Subroutines 

Besides the input file, two user subroutines are prepared and used in the framework. To 

identify the BM to ABAQUS, both the passive and active strain energy functions should 

be declared in a specific user subroutine in ABAQUS called 

UANISOHYPER_STRAIN.F. The letter U stands for User, ANISO stands for 

anisotropic material, HYPER stands for hyperelastic material and STRAIN stands for 

strain energy function. In ABAQUS, the user can use this subroutine to define the strain 

energy function of the anisotropic hyperelastic material and the components of this strain 

energy function must be defined as a function in the Green strain tensor [121]. 

 

This subroutine should be written in FORTRAN as requested by ABAQUS.  In this 

subroutine, the first and second derivative of the strain energy functions (both for the 

passive and active phases) must be provided and declared as part of the solution [121].  

The passive and strain energy functions will be differentiated with respect to E11, E22 and 

E33. The other components, which are E12, E13, E21, E23, E31, and E32 are equal zero due to 

absence of their components in the strain energy functions. The first derivatives of the 

passive strain energy function will be as follows [118]: 
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The second derivatives of the passive strain energy function will be given as following: 
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* ( *(2* 2* 2* )

*((2* 1) 1)

*((2* 1) 1)*(2* 2* 2* ))*

( *(8* 8* 8* ) 2* *((2* 1) 1))

8* * * ( *(2* 2* 2* )

passd W
c exp c E E E

dE dE

c E

c E E E E

c E E E c E

c c exp c E E E

c

   

  

   

     

  

(1/2) 2

4 11

(1/2)

3 11 11 22 33

*((2* 1) 1)

*((2* 1) 1)*(2* 2* 2* ))

(4.120)

E

c E E E E

  

   

 

The first derivatives of the active strain energy function will be as follows: 

9 7 11 22 33

11

(1/2) (1/2)

10 11 6 11

(1/2)

6 11 22 33 11

(1/2) (1/2)

8 11 11

2* *(8* 8* 8* )

/ (2* 1) 2* *((2* 1

(4.12

) 1)

( *(2* 2* 2* )) / (2* 1)

(2* *((2* 1) 1)) / (

1)

2* 1)

activedW
c c E E E

dE

c E c E

c E E E E

c E E

    

    

   

  

 

(1/2)

9 7 11 22 33 6 11

22

2* *(8* 8* 8* ) 2* *((2* 1) 1)

(4.122)

activedW
c c E E E c E

dE
      

 

(1/2)

9 7 11 22 33 6 11

33

2* *(8* 8* 8* ) 2* *((2* 1) 1)

(4.123)

activedW
c c E E E c E

dE
      

 

The second derivatives of the active strain energy function will be given as follows: 
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2
(3/2) (1/2)

7 10 11 6 112

11

8

(3/2)

6 11 22 33 11

(1/2) (3/2)

8 11 11

8* / (2* 1) (4* ) / (2* 1)

(2* ) / (2* 11 1)

( *(2* 2* 2* )) / (2* 1)

(2* *((2* 1) 1)) / (2* 1

(

)

4.124)

actived W
c c E c E

d E

c E

c E E E E

c E E

     

 

   

  

 

2
(1/2)

7 6 11

22 11

8* (2* ) / (2* 1 (4.12 )) 5actived W
c c E

dE dE
    

2
(1/2)

7 6 11

11 33

8* (2* ) / (2* 1 (4.12 )) 6actived W
c c E

dE dE
    

2

72

22

 =8*c (4.127)
E

actived W

d
 

2

active
7

22 33

W
 =8*c (4.128)

E dE

d

d
 

2

active
72

33

W
 =8*c (4.129)

E

d

d
 

The subroutines will be compiled at the same time with the input file (ABAQUS model). 

ABAQUS will call these subroutines at each material calculation step of elements where 

the material definition contains user defined anisotropic hyperelastic material behavior. 

g. ABAQUS and MATLAB Linking 

ABAQUS will be called from MATLAB script and it will run in background mode. 

After the completion of the ABAQUS model, a Python program will also be called from 

MATLAB script to read the results from the ODB file (Output Data Base). 

The Python program will read the deformations (DISPLACEMNTS) at each 

boundary node and add these to the original coordinates to find the objective; the 
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deformed contour. After completion of these calculations, the MATLAB will continue 

running to complete the required jobs [120]. 

4.14 SUMMARY 

In this chapter, a brief explanation about the continuum mechanics is introduced along 

with the most important parameters used. The material behavior of the LV is presented. 

The passive and active strain energy functions of the LV are described and the 

derivations of stress tensors are given. Brief information about the BEM is given. The 

derivation of the FBEM equation is provided. Also, the numerical solution of the regular 

and singular integrations of BIE is provided. The incremental-iterative solution of the 

nonlinear FBEM is given to find the LV deformations. Due to the not acceptable results 

from the FBEM, the alternative approach of using FEM is introduced for solving the BM 

constitutive equations. A brief explanation regarding ABAQUS FEA and its model is 

introduced. The desecration for the solution and how the ABAQUS linked with 

MATLAB is also provided. 



 

     81 

CHAPTER 5 DEFORMABLE MODEL IN COMBINATION WITH 

BIOMECHANICAL MODEL  

5.1 INTRODUCTION 

In this chapter, the ACM (Active Contour Model) or Snake is introduced and explained 

in detail. The nonlinear Extended Kalman Filter (EKF) is also introduced along with its 

equations. The Kalman filter based framework, which is used to fuse the ACM with the 

BM model, is explained. The second order dynamic motion model is explained and used 

to provide robustness for the tracking system. The entire steps of the framework are 

explained in detail with the interpretation of the mechanism. An averaging approach 

alternative to EKF is introduced and used. 

5.2 ACM (ACTIVE CONTOUR MODEL) SNAKE  

As mentioned in Chapter 3, ACM or Snake is used in the area of image processing to 

detect the contour of an object. In other words, Snake can be defined as a set of control 

points, which target to enclose the contour of an object to be extracted. Snake is modeled 

as parametric curve that evolves into a position where its energy functional is minimized. 

The position of the snake is given by the parametric curve C(s) = [x(s), y(s)] with s = [0, 

1]. In the closed curve, the first point C (0) is equal to the last point C (N). 

 

c. Snake Energy Function 

 

Snake is a parametric curve which evolves to a position where its energy has the 

minimum value. A parametric deformable model is used instead of nonparametric 

deformable models (Level set methods) due to the way that the parametric models 

represent their curves with a set of control points in the same manner that we use to 

represent the contour curve in the BM model. The BM model represents the curve as a set 

of nodes. This similarity enables us to use point to point mapping to fuse both contours of 

Snake and BM models. Unlike the parametric deformable models, the level set method 
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represents the curve implicitly where the level set function is equal to zero, which does 

not match the way the BM model is using to represent the LV contour. 

 

Kass et al. [33] formulated the Snake as an energy minimization process; the final 

contour is where the function has its lowest minimum value. The function consists of the 

contour internal energy and the image energy and is given as follows: 

1

int

0

( ( ( )) ( ( ))) (5.1)Snake ernal imageE E C s E C s ds   

 

The internal energy function represents the properties of the Snake such as its ability to 

stretch or bend where the image energy is the edge magnitude, which attracts the Snake 

to the boundaries of the object. The Snake will evolve until it reaches the lowest value 

that minimizes Equation (5.1) where the points of Snake C(s) will set the function as 

follows: 

 

0 (5.2)SnakedE

dC
  

 

The total energy functional of the Snake is the combination of functions of the internal 

and the image energies. The internal energy function is given as follows: 

1
2 2

0

( ( ) ( ) ) (5.3)INTE C s C s ds     

The first term in the internal energy represents the elasticity due to stretching where the 

higher values of this derivative pushes the Snake to a new region. The second term 

represents the curvature due to the bending. The participation of the two terms in the 

internal energy is controlled by the parameters α and β respectively.  

d. Image Energy Function 

The image energy attracts the Snake to the boundaries of the object in the image by 

calculating the gradient of the image. Three different image energy models are used with 

and are given as follows: 
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e. Kass Energy Model  

The original Snake introduced by Kass uses the energy model defined by the following 

equation: 

 

2
( , (5.4)imgE I x y  

 

 

where I is the image function. As mentioned earlier, the echocardiography ultrasound 

images are very noisy, so the first step to be taken into account is noise reduction to allow 

for edge detection and to enhance the ability of Snake to capture the real contour of the 

LV. To reduce the noise, the image will be convolved by Gaussian kernel, making the 

image energy as follows: 

 

 
2

( , )* ( , ) (5.5)imgE G x y I x y    

 

Here, ( , )G x y  is a two dimensional Gaussian filter and   represents the standard 

deviation. Convolving the Gaussian kernel with the image using large values of   makes 

the boundaries become blurry. The smoothing process in this case has an advantage and a 

disadvantage. The positive effect is increasing the range of attraction of the Snake. The 

negative effect is that the boundary localization will become less accurate and more 

image information will be lost.  

f. Balloon Energy Model   

Kass Snake will shrink instead of flattening if it is not under the influence of image 

energy. Cohen suggested another way of using the image energy by modifying the Kass 

model, which increases the capture of control points to edges [122]. The Eimg is calculated 

by taking the normalization of the image energy as follows: 

1 2( ) (5.6)
img

img

img

E
E k N s k

E


 


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In the first term, Cohen added a magnification factor multiplied by the normal 

vector, which gives it a dynamic behavior even though the contour does not affect the 

image energy. That is why it is called a balloon. The magnitude k1 controls the value of 

first term and k2 controls the value of normalized term. The disadvantage of the this 

model is that if the edge is too weak, like in the ultrasound images, the first term will 

push the curve away from the position of this weak edge. 

g. GVF Energy Model   

Xu and Prince introduced a new energy model for the by using the GVF (Gradient 

Vector Flow) [123] . The target of this improvement is to increase the capture range and 

improve the Snakes ability to move into boundary concavities.  

 

GVF tackles these problems by employing a new external force, which is defined as 

GVF(x; y) = (u(x; y); v(x; y)). The GVF obtained from the solution that minimizes the 

following energy function is: 

 

  2 22 2 2 2

(5.7)

x y x yu u v v I GVF I dxdy         

In this functional I(x, y) is given by Equation (5.7). µ is a regularization parameter to 

control the tradeoff between the strength of the first and the second terms of the energy 

functional. To allow for noise compensation in noisy images, the value of µ should be 

high. In the proposed energy functional, if the gradient of the image has a large 

magnitude, the second term dominates the solution of the functional by getting GVF = ∇I. 

In the opposite situation, if the gradient of the image is low; the first term dominates the 

solution of the energy functional. 

h. Choosing the Suitable Energy Model for Ultrasound 
Images 

The three with their image energy models (Snake_Kass, Snake_Balloon, Snake_GVF) 

were built and tested with different 2D echocardiographic image sequences. Snake_Kass 

and Snake_Balloon showed better results than GVF. GVF shows instability and passes 

the boundaries of the LV. In comparison of Snake_Kass with Snake_Balloon, 
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Snake_Kass shows better performance than Snake_Balloon. According to these results, 

Snake_Kass is chosen to be used in the tracking framework. 

5.3 SOLUTION OF THE SNAKE ENERGY FUNCTION  

The objective is to find a set of Snake points [C(s) =(x(s), y(s)] that minimizes the 

energy in Equation (5.2).  By employing the calculus of variation, we will consider a 

valid solution  ˆ ( )C s  agitated by a small amount ( )C s , by achieving a minimum energy 

as follows: 

 

ˆ( ( ) ( ))
0 (5.8)SnakedE C s C s

d

 



 

 

The agitation is spatial causing the x and y co-ordinates of the points to be as follow: 

 

( ) ( ( ), ( )) (5.9)x yC S s s     

The agitated solution of the Snake will become as follows: 

 

ˆ ˆ ˆ( ) ( ) ( ( ) ( ), ( ) ( )) (5.10)x yC s C s x s s y s s       

 

ˆ ( )x s and ˆ ( )y s  represent the x and y co-ordinates of the solution ˆ ˆ ˆ( ( ) ( ( ), ( )))C s x s y s  . 

The solution for the functional given by Equation (3.1) after replacing Eimg with EEdge will 

be written as: 

 
1

0

ˆ ˆ ˆ ˆ ˆ( ( ) ( )) ( ( ) ( ) ( ( ) ( )

(5.11)

Snake INT Edge
s

E C s C s E C s C s E C s C s ds


         

EINT is given by Equation (5.3), and by replacing it in the previous equation, the 

solution will become as follows: 
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   
2 2

2

2
1

0

ˆ ˆ( ( ) ( ) ( ( ) ( )
( ) ( )

ˆ( ( ) ( ))

ˆ( ( ) ( )

(5.12)

Snake
s

Edge

d C s C s d C s C s
s s

ds ds ds
E C s C s

E C s C s


 
    

   
 

    
   

  

The complete solution of Equation (5.10) is given in detail in [124] and we thereby 

arrive at the following equations: 

 

 

2 1 1 2

,

1

4

1 1

4 2

1 1 1

4 2

1 1

4 2

1

4

(5.13)
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s s s s s s s s s s s
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s

s s s
s

s s s s s
s

s s s
s

s
s

f a x b x c x d x e x
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x
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h h

e
h



  
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  



   



 

  

 



    


 






  

  
 


  



 

The equation can be written in a linear matrix equation as: 

( , ) (5.14)xAx f x y  

Where ( , )xf x y  is the first order of the edge magnitude along the x axis and A is 

given by: 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1 1 1 1 1

0 ..

0 ..

0

: : : : : : :

0 ..

0 ..

(5.15)

s s s s s

s s s s s

c d e a b

b c d e a

a b c d e
A

e a b c d

d e a b c

    

 
 
 
 

  
 
 
 
  
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In the same way, the linear matrix equation for y will be: 

( , ) (5.16)yAy f x y  

To evolve the Snake from contour Ci to Ci+1, both equations will be solved iteratively as: 

 

 

 

1

1

1

1

( , ) (5.17)

( , )

i i

i i i

x

i i

i i i

y

x x
Ax f x y

y y
Ay f x y










 




 

  

 

The control factor   , controls the speed of evolution of the Snake. Large values 

cause the Snake to pass the real boundaries of the object while small values let the Snake 

move slowly. An appropriate value should be chosen for  . The final solution for the 

Snake after rearrangement can be given as: 

 

1

1

1

1

1 1
( , ) (5.18)

1 1
( , )

i i i i

x

i i i i

y

x A I x f x y

y A I y f x y









   
     

    

   
     

    

 

5.4 KALMAN FILTER  

R. Kalman introduced his seminal paper in 1960 describing a computationally 

recursive solution to the problem of discrete data linear filtering. The paper was entitled 

“A new approach to linear filtering and prediction problems” [125]. 

 

Since that time, the Kalman filter became a vast research point and application, 

especially in the area of navigation and automation [126]. Using the least square method, 

the Kalman filter affords an adequate solution to the set of mathematical equations in a 

recursive way. The solution is optimum because it minimizes the estimated error 

covariance under the condition that some assumptions are met. This efficiency comes 

from its ability to support the estimation of past, present and future; even if we do not 

know the precise nature of the modeled system   [127].    
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The estimation of the process in the Kalman filter framework is done in the form of 

feedback control; by estimating the process state at some point in time and allowing 

feedback to come from the noisy measurement. Kalman filter equations can be classified 

into two stages; the time update and measurement update equations. The time update 

equation uses the current state and error covariance to get the a priori estimates for the 

next time step, while the function of measurement update equations is to provide 

feedback by assimilating a new measurement into the a priori estimate to get an enhanced 

a posteriori estimate. In the literature, the time update equations are known as predictor 

equations while the measurement equations are known as the correction equations. Figure 

(5.1) represents the estimation algorithm by using time update (prediction) and 

measurement update (correction) equations. 

 

 
 

Figure (5.1) – The estimation algorithm by using time update and measurement update 

stages 

The standard Kalman filter can be used to estimate the state of a discrete-time 

process, only if this process is governed by a linear stochastic difference equation. In our 

case, as mentioned earlier, the LV is highly nonlinear system. Our approach is to use 

Extended Kalman Filter or EKF which based on linearizing the system equation about the 

current mean and covariance [128]. 

a. Extended Kalman Filter Equations  

The equations for the EKF are given as follows [128]: 

 

• State equation:  
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1
ˆ( ) (5.19)k kx f x   

 • Jacobian equation: 

 

ˆ( ) (5.20)kH J f x   

 

• Kalman gain 

 

1( ) (5.21)T T

k k KK P H HP H R    

 

• Error covariance matrix 

 

1 ( ) (5.22)k k kP I K H P    

 

• Next estimate will equal 

ˆ ( ) (5.23)k k k k kx x K z x    

5.5 TRACKING THE LV BOUNDARIES USING EKF FRAMEWORK  

The approach to track the LV contour in the echocardiographic image sequence will be 

performed in a sequential state estimation fashion, using the extended Kalman filter 

(EKF) to recursively predict and update LV contour deformations. EKF is used to 

integrate the advantages of mathematical physical models and time-series models. 

Measurement information is used to find and eliminate modeling errors, errors in the 

input and errors in the parameters. Model information is used to eliminate outliers in the 

measurements.  

 

 

 

 

 

 



 

     90 

 

 

 

Figure (5.2) Processing frames starting from second frame for EKF framework 

 

In the designed work, we will see the tracking as a probabilistic inference problem. The 

probabilistic framework is essential for dealing with classes of shapes and motions [129]. 

In order to track the shape of the LV (non-rigid time-varying object), a second order 

dynamic model is used to predict the contour state. A deformable model is used to 

describe the shape changes in the LV that deforms through time.  The function of the 

deformable model is to transform the contour points (C) into deformed points using a 

state vector (x) as parameters. The Jacobian matrix is also computed in this stage. The 

BM model is used to estimate the LV deformation, which will be treated as measurement 

stage. In the last stage, the predicted contour from the deformable model and the 

estimated contour from the BM model will be fused together to compute the final contour 

of the LV. Figure (5.2) illustrates the tracking framework. 

a. Prediction Stage  

The predicted state of the LV contour will be provided by the dynamic model. To enable 

modeling of motion, in addition to position, a second-order dynamic model is proposed to 

be used as follows [129]: 

1 2 2 1
ˆ ˆ ˆ ( ) (5.24)k k kx A x A x I A A x     1 1  

The technique that takes the contour at time step k-1 as an initial contour to the time step 

k, is lacking a mechanism to extrapolate the motion between frames and it is only suitable 

ˆ
kx

 

Ck

-1 

Dynamic Model 

Frame k 

1kx 

 Ck-1 

Parametric 

Deformable 

Model 

EKF 

Fusion  
kx  

Ck-1 

BM Model 

2kx 
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for objects that have slow motion. If the posterior at time k is handed on as prior to the 

time step k-1, it will cause the measurement information to accumulate and the 

covariance will decrease to zero. The system with zero covariance will put greater 

emphasis on the predication state meaning the measurement will have no effect in the 

estimated contour [129]. The suitable framework should provide a contingency plan for 

possible motions, the deformation of the shape and a deterministic part which gives the 

expected displacement between the successive frames. This dynamic, prior distribution 

must be applied between all pairs of successive frames [129]. 

To overcome these shortcomings, a second order dynamic process is used in the tracking 

framework. The second order dynamic process provides the temporal and spatial 

coherence between frames to insure robustness of the performance. Instead of one frame, 

two successive frames are used to increase the robustness and accuracy of the LV 

boundary detection. ˆ
kx represents the state of the LV contour at the kth frame and ˆ

kx 1  

represents the state of the LV contour at frame k-1. 

b. Dynamical learning problem  

 

The coefficients in the second order dynamical model which are the matrices A1, A2, the 

mean x and the variable D̂ that used to calculate the mean. These parameters that 

describe the dynamics of the moving shape of LV can be obtained through dynamical 

learning algorithm given by [129, 130] . Using a set of manually outlined contours of the 

LV boundaries for a one cardiac cycle from an image sequence, we can compute these 

parameters. The manually outlined contours for the one cardiac cycle are used as training 

set which are outlined by a cardiologist. The following algorithm is used to get the 

matrices A1, A2, D̂ and the mean x . 

c. The Learning Algorithm 

 

1. First step is calculating the summations which are representing the auto-

correlation coefficients where, i, j= 0, 1, 2. The three summations are computed with the 

following formulas: 
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3

(5.25)
M

i k i

k

R X 



  

3

(5.26)
M

T

ij k i k j

k

R X X 



  

1
(5.27)

2

T

ij ij i jR R R R
M

  


 

 

2. Estimating the parameters by utilizing the following formulas: 

 

  

 

 

1
1 1

2 02 01 11 12 22 21 11 12

1

1 01 2 21 11

0 2 2 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ (5.28)

ˆ ˆ (5.29)

1 ˆ ˆˆ (5.30)
2

A R R R R R R R R

A R A R R

D R A R A R
M


 



  

   

  


3. The mean x is estimated from the following formula: 

 

 
1

2 1
ˆ ˆ ˆ (5.31)x I A A D



  
 

 

4. The following formula is used to estimate the covariance coefficient B0 as a 

matrix square root 0
ˆB C , where the matrix C estimated by the following formula: 

 00 2 20 1 10 0

1ˆ ˆ ˆ ˆ (5.32)
2

TC R A R A R DR
M

   


  

After obtaining the parameters of the motion dynamic model, these parameters will 

be used to estimate the a priori error covariance matrix that will be used in the combining 

process. For the second order dynamic system, the more advanced formula will be used 

to estimate the a priori error covariance matrix as follows given by [131]: 

 

2 2 2 1 1 2 2 2 1 1 1 1 (5.33)T T T T T

k k k kP A P A A P A A P A A P A v         
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d. Detecting the Contour by the Deformable Model (Snake) 

After the second order dynamic model predicts the contour, in this stage, the deformable 

model (Snake) will evolve the control points to the boundaries of the LV from the current 

frame of the image sequence giving the contour. At the same time, the Jacobian matrix 

will be computed using the formula (5.34) as follows: 

1 1 1

1 2

1 2

...

(5.34)

n

n n n

n

C C C

x x x

H

C C C

x x x

   
   
 

  
 
   
      

The Jacobian matrix or the measurement vector H will be used later in the next step to 

compute other important variables. 

e. Measurement Stage 

The second stage in the tracking system is the measurement where the LV boundaries are 

estimated by utilizing the BM model ( BM

kx  ). ( BM

kx ) represents the measurements obtained 

in the kth frame. In this stage also, we will calculate the matrix R, which will be used later 

to calculate the Kalman gain. The matrix R represents the uncertainty in the measurement 

process. The uncertainty of measurement represents the doubt that exists about the 

contour that was obtained from the BM model. There are two methods of calculating the 

uncertainty; Type A and Type B estimations. Type A uncertainty estimation is used by 

applying statistics to estimate the uncertainty when there are multiple readings. . In Type 

B estimations, the uncertainty is evaluated from any other information like past 

experience of the measurements, calibration certificates, from calculations, from 

published data and from common sense [132, 133]. In our case, only a single 

measurement is available at each frame, so Type A is not applicable. In Type B the real 

value of the contour of LV is unknown to us, so it is not applicable for use either.  To 

overcome this difficulty, an auto covariance, least squares estimation method will be used 

to calculate uncertainty in the BM model contour calculation. In this approach, it is 

assumed that the initial estimation for the uncertainty of measurement R is given R0. R 

will be estimated by the following formula: 
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1 (5.35)

(5.36)

T T

k k k k

BM Snake

k k k

R E e e HPH R

where

e x x


    

 

 

f. Correction Stage 

 

After deriving the measurement value, the correction step takes place to get the actual 

contour. The most important factor is the Kalman gain, which will be calculated by 

utilizing formula (5.29). After obtaining the Kalman gain, we will be able to obtain the 

final contour for LV endocardial by using the correction formula written as: 

 

ˆ ( ) (5.37)Snake Snake BM

k k k k kx x K x x    

 

After this step, we need to update the error covariance Pk+1 to a new value using the 

new value of Kalman gain by utilizing the following formula: 

 

( ) (5.38)k k kP I K H P   

5.6 TRACKING THE LV BOUNDARIES USING AVERAGING FRAMEWORK  

An alternative approach is used to get more accurate results. Improvements are done to 

the EKF framework by replacing the EKF fusion with an averaging approach. The BM 

model and Snake control points are averaged to create the fusion contour. The fused 

contour is then followed by the Level set deformable model at the end of the framework 

to improve the final contour after fusion process. Figure (5.3) illustrates the block 

diagram of the framework. 
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Figure (5.3) Framework of the averaging approach 

 

a. Fusion using Averaging Technique 

This procedure is based on establishing one-to-one correspondence between the 

control points of the Snake and BM model contours [134]. The control points of each 

contour start at the base of LV at the left side of the image and the last point is at the 

right side of the base of the LV. This means the correspondence is already established 

between the control points of the Snake and BM contours. The first step in the 

averaging fusion technique is to compute the average contour Cavg using the 

following formula: 

1

1
(5.39)

M

i ji

j

y x
M 

   

After getting the average curve at each point on this curve, a normal to the curve is 

calculated. An efficient method is used to compute the normal given by [135], based 

on a 2 2 scatter matrix given as follows: 

 

11 12

21 22

a a
A

a a

 
  
 

           (5.40) 

 

The matrix A is given by following formula: 
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   

2

22 2

( ) ( )( )1
(5.41)

( )( ) ( )

i i ii i

i i ii ii ii

x x x x y y
A

x x y y y yx x y y

   
  

          

 
 

 

 

First, the eigen values of the matrix are calculated and represented as
M mand  . After 

that, the orthonormal eigenvectors (aM,am) are calculated using the following formula: 

 

 

 

 

12 11

22

12 11

11 12

22

12 11

,
(5.42)

,
(5.43)

M

M

M
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M

a a
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a a

a a
a

a a












 




 

 

 

 

Figure (5.4) - Computing the intersection point 

 

After computing the normal, the intersection between the normal vector with BM and 

Snake contours will be computed. Let the point P1 on the Cavg contour, the normal is 

ma  (estimated from the Eigen vector above), so the equation at P1 is given by: 

1 1 1 (5.44)my a x b   

The constant b1 will be computed from P1(x1, y1) as follows: 

1 1 1 (5.45)mb y a x   
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In order to find the point where the two contours intersect with the normal line, the 

difference between the interpolations of the normal with each contour must first be 

calculated. Then, again using the interpolation, the value of x will be located at the 

position where the difference is equal to zero (the point of the intersection is where the 

two lines are equal). From x value, the y axis point will also be computed using 

interpolation. These intersection points give us a new correspondence between the Snake 

and BM contours, which will be averaged again using Equation (5.38). This procedure 

will be iterated until we find there is no change in the computed averaged points. Usually 

the iteration process takes five iterations to compute the final averaged contour. 

The same procedure will be done with the Snake contour to find the intersection with the 

Cavg contour. These intersection points give us a new correspondence between BM and 

Snake contours which will be averaged again using Equation (5.38). This procedure will 

be iterated until we find there is no change in the computed averaged points of the Snake 

and BM contours. Usually the iteration process takes five iterations to compute the final 

averaged contour [134]. 

 

 

 

Figure (5.5) Averaging steps, firstly: finding the correspondence between each control 

points in both contours and lastly, the averaged contour with the bold line [134] 

5.7 LEVEL SET DEFORMABLE MODEL 

As mentioned in section 2.5, Level set method is a non-parametric deformable model (no 

control points). It is chosen as a correction stage after the fusion center due to its ability 

to detect the topologies of objects. A level set introduced by Li et al.  [136] is used in this 

framework. The following vibrational formulation is introduced by the authors: 
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, ,( ) ( ) ( ) (5.46)g           

 

The first term is the penalization term that characterizes how is close the function   to 

the signed distance function. The parameter   controls this term. The first term is given 

by the following formula: 

 
21

( ) 1 (5.47)
2

dxdy  


    

The second term is the amount of energy that drives the motion of the zero level curve of 

 , and is given as follows: 

, , ( ) A ( ) (5.48)g g gL        

The parameters, 0   and   are constants. The terms Lg and Ag are given as 

follows: 

( ) ( ) ( ) (5.49)

( )dxdy

g

g

L g dxdy

and

A gH

   







 

 





 

The edge indicator function is represented by letter g and is given as follows: 

2

1
(5.50)

1 G *
g

I


 

 

 H here represents the Heaviside function. The gradient flow that minimizes the function 

  is given as: 
t t

  
 

 
 .  

 

The level set will run for a few iterations because the fused contour is too close to the real 

contour and it corrects only the parts that have a small error. . In most cases, the contour 

of the level set is too close to the fused contour. In cases where neither Snake nor BM can 

follow the LV contour, the level set completes the job and detects the LV contour 

precisely. 
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5.8 SUMMARY 

This chapter presents detailed information about the deformable model (Snake), its 

energy functions and the solution for minimizing its function using variations of calculus.  

A brief description of the Kalman filter is presented. The extended Kalman filter as an 

fusion center for nonlinear systems, along with its equations, is also introduced. The 

tracking framework and the dynamic equation for the predication stage are given in 

detail. The combination process is first given by using the EKF framework with its 

shortcomings. The averaging framework is introduced as alternative solution to the EKF 

framework.   
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CHAPTER 6 CREATING GOLD STANDARD, EXPERIMENTAL 

RESULTS AND EVALUATION  

6.1 INTRODUCTION 

In the area of medical image analysis, researchers developed a lot of segmentation 

algorithms to extract the contours of different body organs from different medical image 

modalities. These segmentation algorithms need to be evaluated on a large set of clinical 

data. This step is important to validate the segmentation algorithms and to be clinically 

applicable.  In the literature, very few researchers evaluate their algorithms on a large 

number of clinical data sets [134].  

 

If we know the expected result then we can use it as gold-standard segmentation. The 

segmentation output from the computer will be compared with this gold standard. The 

output of the segmentation algorithm must be compared with a large number of clinical 

data sets to test and make sure it is not statistically different from the gold standard [134].  

The gold standard was created by manual plotting of three cardiologists. The evaluation 

of the biomechanical model and the whole framework performance against the gold 

standard is also given. 

6.2 DIFFICULTIES FACING THE EVALUATION OF MEDICAL IMAGE 

SEGMENTATION 

The evaluation of medical image segmentation is not an easy task. The difficulties can be 

summarised in the following points [134]: 

1- There are no standard criteria to define the gold standard. In medical image 

segmentation, the only way to proceed with evaluation is to compare the 

automated results against the manual outlining of the experts. The manual 

outlining of the experts alone cannot be taken as the gold standard due to observer 

bias and inter and intra observer variability. 

2- There is difficulty in defining a metric to compare the automated with manual 

results. In medical image segmentation, the complexity of multidimensional 

segmentation data makes the definition of metric very difficult. 
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3-  There are no standardized statistical protocols to judge the performance of 

automated algorithms. The difficulty in defining standard statistical protocols 

comes from the lack of gold standard and the lack of metrics. 

4- Collecting large data with expert manual outlining is very tedious and time 

consuming work. 

6.3  CREATING THE GOLD STANDARD 

To overcome the problem of the lack of a gold standard, Chalana et al. [134]  developed 

a method to create a gold standard for comparing an automated contour with manually 

plotted contours. 

a. Creating Manually Plotted Contours  

The automated contour will be compared and tested with three manually plotted 

contours, traced by different cardiologists. Comparing the results of the automated 

contours to only one observer’s outline may not be sufficient, because a single 

observer’s tracing may be subjected to the observer’s bias or inter-observer 

variability.  

b. Creating the Gold Standard 

To create the gold standard, the manually plotted contours are averaged by the same 

method that we used in averaging the Snake and BM models; as introduced in section 

5.6.1. The methodology explained above is applied to ten samples from five different 

patients. In each case, an image of EDS and ESS are chosen so we can compute the 

ejection fraction for the patient. All the images are outlined by three observers. The 

three contours of each sample are used to create the gold standard of that sample. The 

following figures show the tracing of each observer and the created gold standard 

after applying the mentioned methodology. In each image, Observer_1 is represented 

by the green color; observer_2 is represented by the blue color and observer_3 is 

represented by the yellow color.  The gold standard is depicted in red color. 
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Figure (6.1) – Sample No. 1 ED, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

 

Figure (6.2) – Sample No. 2 ES, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

In the first sample, Figure (6.1) shows the EDS and Figure (6.2) shows the ESS for the 

same patient where a four chamber view is used in this case. 

 

Figure (6.3) – Sample No. 3 ED, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

Creating Gold Standard 

 

 

Creating Gold Standard 

Creating Gold Standard 
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Figure (6.4) – Sample No. 4 ES, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

 

In the second sample, Figure (6.3) shows the EDS and Figure (6.4) shows the ESS 

for the same patient where a two chamber view is used in this case. 

 

Figure (6.5) – Sample No. 5 ED, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

 

 

Creating Gold Standard 

Creating Gold Standard 
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Figure (6.6) – Sample No. 6 ES, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

 

In the third sample, Figure (6.5) shows the EDS and Figure (6.6) shows the ESS for the 

same patient where a four chamber view is used in this case. This patient is suffering 

from severe abnormality and dysfunction. 

 

Figure (6.7) – Sample No. 7 ED, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

 

 

Creating Gold Standard 

Creating Gold Standard 
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Figure (6.8) – Sample No. 8 ES, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

In the forth sample, Figure (6.7) shows the EDS and Figure (6.8) shows the ESS for 

the same patient where a two chamber view is used in this case. This sample is noisy and 

the images have signal dropout at the boundaries of the LV. 

 

Figure (6.9) – Sample No. 9 ED, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

 

 

Creating Gold Standard 

Creating Gold Standard 
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Figure (6.10) – Sample No. 10 ES, Observer_1 (green), observer_2 (blue), observer_3 

(yellow) and gold standard (red) 

In the fifth sample, Figure (6.9) shows the EDS and Figure (6.10) shows the ESS for 

the same patient where a four chamber view is used in this case. 

In the all cases and images, there is mismatch between all the observers outlining which 

is called intra observer variability [137]. All the X-Y coordinates’ data of the ten samples 

are given in the listed ten tables in appendix IV. 

6.4 ERROR METRIC 

In medical image segmentation, the first step is choosing which parameter will be 

compared. The comparison can be done on the boundaries or in the parameters that will 

be derived from the boundaries, such as the enclosed area. For the LV tracking and 

segmentation, the most important derived parameters are the enclosed area at the end of 

the systole and the end of the diastole. Evaluation based on these derived parameters will 

not be accurate because in some cases the automated derived parameters are in complete 

agreement with the manually measured parameters; but the boundaries from which these 

measurements were derived were not in agreement. To avoid this complication, the 

comparison of the automated contour with gold standard will be based on the absolute 

difference as a distance metric. The Average Perpendicular Distance (APD) will be used 

to evaluate the detected contour of the framework by comparing it to a gold standard 

created from three manual outlined contours traced by three cardiologists.  

 

Creating Gold Standard 
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APD measures the match between two segmented contours by finding the average of the 

perpendicular distances between two corresponding points in the contours. A high value 

indicates that the two contours do not match closely. APD is chosen due to its ability to 

detect very small variations in the compared contours without computational complexity. 

APD uses distance as a measure of shape matching, unlike the other methods that use 

area.  This is because two contours can have an almost identical area but quite different 

shapes. APD satisfies the following requirements to be a metric distance: 

1. 𝑒(𝐴, 𝐴) = 0 𝑎𝑛𝑑 𝑒(𝐴, 𝐵) ≥ 0 

2. 𝑒(𝐴, 𝐵) = 𝑒(𝐵, 𝐴) 

3. 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦: 𝑒(𝐴, 𝐶) ≤ 𝑒(𝐴, 𝐵) + 𝑒(𝐵, 𝐶)  

 

 

Figure (6.11) - Average perpendicular distance [138] 

 

To calculate the APD at each point in the automated contour, Pauto(x, y), the first step 

is finding the intersection points between the automated contour and the gold standard. 

We used the same procedure as mentioned in section 5.6.1. After finding the intersection 

point Pintersect(x0, y0), the distance will be measured between the automated contour and 

the intersection point using the following formula: 

   
2

0 0 2 (6.1)APD x x y y      
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6.5 EXPERIMENTAL RESULTS 

Many experimental results are conducted to verify the output of the BM model, 

deformable models and the fused contour. 

a. BM Model Experimental Results 

 

As mentioned in Chapter 4, the tracking started at the end of the QRS of the ECG 

signal which represents the end of diastole and starting of the systole phase.  

 

 

Figure (6.12) - Undeformed shape, applied load, deformed and superimposed shape 

of the LV at the contraction phase for the four chamber view 

 

The FEM will run for a certain time and a certain pressure (load) applied to the LV 

boundaries according to the frame number. In Figure (6.12), the load is positive in the 

contraction phase and applied at all the faces of the elements at the boundary of the LV. 

This positive pressure (symbols pointing toward the LV boundaries) will let the LV 

boundaries contract and the area of the LV will be less in the deformed shape. No 

pressure is applied at the base because it is not part of LV muscles and this area should be 

kept fixed to avoid the rigid body motion, as explained in Chapter 4. 
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After the end of running of FEM, the LV will contract and the deformed shape will 

be as shown in the third image of Figure (6.12). A sample of the resulted LV deformation 

values during the contraction phase in given in the appendix II.  As illustrated in the list, 

some deformations have negative values and others have positive values according to 

position of the nodes at the LV boundaries. The zero deformations are located at the base 

as mentioned in chapter 4 to avoid the rigid body motion. The forth image shows a 

superposition of the undeformed and deformed shapes of the LV before and after 

contraction. As in the real LV, additional contractions will occur at the apex and lateral 

wall, while fewer contractions will occur at the septal. 

The next images show the results of applying the BM model in the passive phase.  

The first image in Figure (6.13) shows the undeformed shape before applying the load. 

 

 

 

Figure (6.13) - Undeformed shape, applied load, deformed and superimposed shape 

of the LV at the relaxation phase for the four chamber view 

 

In the second image, the load is applied to the undeformed shape to let it relax to 

simulate the passive phase. As shown in the figure, the pressure in this case is negative 

(arrows are pointing outward), to let the LV boundaries expand to simulate the relaxation 

of the LV muscles in the passive phase. As mentioned in the contraction results, no 
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pressure is applied at the base; pressure is only applied to the faces of the elements at the 

LV boundaries. The third image in the figure shows the LV shape after applying the load. 

Appendix III shows the list of LV deformations after the completion of the running of 

ABAQUS. The deformation values in the passive phase are less than the deformations in 

contraction phase. The reason behind this is the force of the contraction and the applied 

load is more during the contraction to let the LV has the enough power to eject the blood 

to the whole body. This will result to have more deformations than in the passive where 

the LV is just relaxing and expand during the filling stage. 

In fourth image, the undeformed and the deformed shapes are superimposed together 

to show the amount of deformation that happened after applying the load. 

Two chamber view results are given in the next figure to show the performance of 

the BM model in the active phase. Figure (6.14) shows two chamber views for the LV 

before applying the load, which represents the undeformed shape of the LV for the BM 

model. 

 

 

 

Figure (6.14) - Undeformed shape, applied load, deformed and superimposed shape 

of the LV at the contraction phase for the two chamber view 

 

The second image in Figure (6.14) shows the load applied to all the element faces at 

the LV boundaries to let the LV contract. The next image in the figure shows the 
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deformed shape of the LV after applying the load. In the last image, both the undeformed 

and deformed shapes of LV are represented in one figure to show the amount of 

deformation that occurred during the contraction of the LV.  

 

At the passive phase, the same two chamber view image is used to show the 

deformation measured by the BM model. 

 

 

 

Figure (6.15) – Undeformed shape, applied load, deformed and superimposed shape 

of the LV at the relaxation phase for the two chamber view 

 

b. BM, Snake, Fused and Level Set Contours Experimental 
Results 

 

In this section, the results of applying the BM, the Snake and the final contour will 

be shown as superimposed in the ultrasound images of the echocardiographic images. 

The same images that were used in the previous section will be used here to show all of 

the contours. In all cases of the experimental results, the BM model contour will appear 

blue, the Snake contour will appear red, while the final contour will appear green in the 

EKF frame work; and yellow in the averaging framework.  
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c. EKF Framework Experimental Results 

 

In this section, the experimental results achieved by using the EKF framework will be 

shown and discussed.  

 

 

 

 Figure (6.16) – EKF framework results for two chamber view plotting contours 

 

In Figure (6.16), one sample of using the EKF framework to track the LV is shown. The 

Snake, BM model and the fused contours are always away from the real boundaries of the 

LV. There is no improvement in the Snake contour or in the fused one. Especially, when 

we approach the end of systole, as shown in the first image of the figure, all the contours 

are outside the ROI. After the end of systole, when the LV starts to expand, the contours 

are still away from the real contours, as shown in the last three images. 

d. Limitations of EKF to Improve the Fused Contour  

The results from EKF framework are unacceptable. The EKF could not improve the 

fusion contour for the following reasons: 
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 “The EKF is an approximate technique for Bayesian filtering of nonlinear models 

with Gaussian noises. It is known to work well when the nonlinearities are not 

severe and the distribution of the disturbances is a mutually independent zero-

mean Gaussian with known variance. When these conditions are not met, the filter 

is known to fail” [139, 140]. 

 The mean and variance state vector should be known in advance to start the 

recursive algorithm and there is general assent to find these initial values [141] . 

 The covariance matrices of EKF need to be tuned [139, 140]. 

 If the initial estimate is wrong, the filter is quickly diverged. 

 The Kalman filter framework assumes that the uncertainty of the measurement 

(BM model contour) and covariance error of the model (Snake) are known and 

given. These values cannot be calculated, especially the uncertainty of BM, 

contour because the real contour is unknown to us. 

 The assumption of local linear localization is not always valid. The linearization 

process produces a highly unstable filter, which leads to divergence phenomena   

[142-144] .  

 The EKF framework consists of a system model (Snake) and a measurement 

model (BM model). According to Equation (5.36), the Snake dominates the fused 

contour and the BM model functionality controlled by the Kalman gain after 

subtracting the Snake from it. Thus in a fused contour the BM model will have 

limited effect.  

e. Averaging Framework Experimental Results 

 

Due to the un-acceptable results of EKF framework, an averaging approach is used to 

tackle the difficulties and challenges of the noisy echocardiographic images. In Figure 

(6.17), samples of results of the framework in the active phase while the LV is 

contracting are presented. In this figure, the Snake passes the real boundaries of the LV 

due to the signal drop out. The BM contracts more than the real LV. From the earlier 

results we see that the estimated contour does not match the real contour of the LV. It is 

known that tissue mechanics can be quite complex and many assumptions must be made 
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when deriving a constitutive equation. It is not possible to derive a particular constitutive 

equation that would accurately model all aspects of tissue behavior under any type of 

loading. Therefore, during the development of a constitutive equation to model a tissue, 

there is a trade-off between accurately modeling the tissue behavior and the need to have 

a constitutive equation that is simple enough to be in a numerical model and to 

experimentally measure all the constants in the constitutive equation. This gives us the 

interpretation as to why the biomechanical model does not follow accurately the LV 

deformation. In Figure (6.18), four samples are given for the passive phase during the 

relaxation of the LV.  

 

  

 

   

 

Figure (6.17) – Four samples for the extraction of the LV contour during the active phase  
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Figure (6.18) – Four samples for the extraction of the LV contour during passive phase  

 

   
 

   
 

   
 

LV Segmentation of Frame #1 LV Segmentation of Frame #2 LV Segmentation of Frame #3

LV Segmentation of Frame #4 LV Segmentation of Frame #5 LV Segmentation of Frame #6

LV Segmentation of Frame #7 LV Segmentation of Frame #8 LV Segmentation of Frame #9
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Figure (6.19) – Contour tracking of 18 frames of two chamber view starting from the end 

of diastole to the end of systole 

In Figure (6.20), a sample of tracking the LV in two chamber view case is shown. In this 

sample, the LV is tracked from the end of diastole when the LV is fall of blood until the 

end of systole after the completion of pumping blood to whole the body. This period of 

time is the most important part of the cardiac cycle because it shows the ability of the LV 

to contract to push the blood to the body.  Moreover, tracking LV boundaries in this 

period enables the cardiologist to extract and obtain all the measured patient data like the 

regional wall thickness and ejection fraction. 

 

 The tracking shows the ability of the framework to detect the LV boundaries in this 

important period of the cardiac cycle. In all the tracked images, the fused and the final 

contour are too close to the real LV boundaries. This shows the robustness of integrating 

the BM model in the tracking framework.  

 

In Figure (6.21), the segmentation and the extraction of the LV area is shown and 

presented.  

LV Segmentation of Frame #10 LV Segmentation of Frame #11 LV Segmentation of Frame #12

LV Segmentation of Frame #13 LV Segmentation of Frame #14 LV Segmentation of Frame #15

LV Segmentation of Frame #16 LV Segmentation of Frame #17 LV Segmentation of Frame #18
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The extraction and segmentation removes other parts from the image and shows only the 

required part that the cardiologists focus to monitor and observe. 

As mentioned earlier, tracking the LV in this period provide the cardiologist with a 

valuable data about the patient. Extracting and segmenting the LV area from the ED to 

the ES stages enables the cardiologist to view the LV myocardium motion and 

contraction and the changes in area in each frame by monitoring only the LV area.  

 

In each frame, the LV area is segmented and extracted smoothly by the framework 

starting from the first frame in the EDS to the last frame in the ESS.  Regardless to the 

image quality, the framework has the ability to extract and segment the LV area in all the 

2D echocardiographic image sequence will all the difficulties and challenges that 

mentioned in the first chapter. 

 

LV Segmentation of Frame #1 LV Segmentation of Frame #2 LV Segmentation of Frame #3

LV Segmentation of Frame #4 LV Segmentation of Frame #5 LV Segmentation of Frame #6

LV Segmentation of Frame #7 LV Segmentation of Frame #8 LV Segmentation of Frame #9

LV Segmentation of Frame #10 LV Segmentation of Frame #11 LV Segmentation of Frame #12
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Figure (6.20) – Segmentation of 18 frames of two chamber view starting from the end of 

diastole to the end of systole   

 

f. Why Averaging Fusion technique? 

 

The averaging fusion technique is used to fuse the Snake and the BM contours due to the 

following reasons: 

In the Active Phase 

 The Snake curve moves in the normal direction of the LV domain and usually it 

passes the real contour of the LV, especially at the parts where the echo image has 

a drop out in its signal or there are missing parts of the LV. 

 At the apex, the image has artifacts and the Snake will stay at the apex area during 

the LV contraction due to the higher image energy. It will stay there until the end 

of systole phase. 

 The LV rotates suddenly at certain frames of the echo image sequence. The 

dynamic model will predict the position of the next frame and the Snake will start 

from this prediction, which is far away from the real contour due to the rotation. 

Snake will move at the normal direction, leaving the real contour in the opposite 

direction behind it. 

Unlike the Snake, the BM works independently from the image and it has consistent 

behavior, regardless of the image quality or condition. The contraction of the BM contour 

LV Segmentation of Frame #13 LV Segmentation of Frame #14 LV Segmentation of Frame #15

LV Segmentation of Frame #16 LV Segmentation of Frame #17 LV Segmentation of Frame #18
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is greater than the real LV. The reason is, the constitutive equations will not simulate the 

behavior of the myocardium. This shortcoming can be converted to advantage by taking 

the average value at each control point in the Snake and BM contours. The real contour 

will be closer to the fused contour than both contours of the BM and the Snake. By 

deducting the wrong values from its contour points we ensure that the Snake will not pass 

or stick at any point in the echo image by pulling it down.  During the next frame, we 

also ensure that Snake starts from a position whereby it has the ability to detect the real 

contour because deformable models exhibit the best performance if they are initialized 

from a position close the objective contour. As shown in Figures (6.17), (6.18) and 

(6.19), the Snake passes the real boundaries of the LV due to low intensity values of the 

pixels. The Snake will treat these pixels as noise and they will be removed from the 

image. On the other hand, the BM model contour will be less than the Snake contour, 

especially at the apex where the ultrasound image has maximum drop out and artifacts. 

By taking the average contour, the resulting contour will be closer to the real boundaries. 

The level set deformable model will refine the average contour and the final contour will 

be the accurate one, as shown in the images. 

In the Passive Phase: 

During the passive phase, the BM resembles the movement of the real LV, as mentioned 

before and as shown in the images given in Figures (6.17), (6.18) and (6.19). In this 

phase, the Snake and the BM are very close to each other and the fused contour will 

obviously be approximately the same in most frames. In the other frames, as shown in the 

previous figures , both the Snake and the BM cannot follow the LV contour, thus the 

level set will detect the contour starting from the fusion point as the best approximation. 

6.6 RESULTS EVALUATION  

In this section, the assessment and the evaluation of the results will be carried out in order 

to ascertain the accuracy of the obtained results. First, the detected contours will be 

evaluated using the APD. Then, the computed area enclosed by the LV and the computed 

EF is evaluated using Bland Altman plot. 
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a. Evaluating the Computed Contours, Area and EF 

 

 Computing the APD for the sample No.1  

Table (6.1) – Computing the APD for the sample No. 1 

 

Method APD (mm) 

BM Model 1.887 

Snake 0.648 

AVG 0.990 

Level set 0.636 

 

 Computing LV enclosed area for the sample No. 1  

Table (6.2) – Computing the LV enclosed area for the sample No. 1 

 

Method AREA (cm2) 

BM Model 9.285 

Snake 11.093 

AVG 10.139 

Level set 10.784 

Gold Standard 11.0358 

 

 

  

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD



 

     121 

  

 

Figure (6.21) – Plotting the BM, Snake, AVG and Level set contours vs. their gold 

standard for the sample No.1 

 

 Computing the APD for the sample No.2  

Table (6.3) – Computing the APD for sample No. 2 

 

Method APD (mm) 

BM Model 1.849 

Snake 1.598 

AVG 1.490 

Level set 1.555 

 

 Computing LV enclosed area for the sample No. 2  

Table (6.4) – Computing LV enclosed area for the sample No. 2 

 

Method AREA (cm2) 

BM Model 5.813 

Snake 6.645 

AVG 6.216 

Level set 6.670 

Gold Standard 7.748 

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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Figure (6.22) – Plotting the BM, Snake, AVG and Level set contours vs. their gold 

standard for the sample No. 2 

 

 Computing the EF for the first case  

Table (6.5) – Computing the EF for the case No. 1 

 

Method EF 

BM Model 0.373 

Snake 0.4 

AVG 0.386 

Level set 0.381 

Gold Standard 0.297 

 

 

 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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 Computing the APD for the sample No. 3  

Table (6.6) – Computing the APD for the sample No. 3 

 

Method APD (mm) 

BM Model 1.541 

Snake 1.607 

AVG 1.854 

Level set 1.167 

 

 Computing LV enclosed area for the sample No. 3  

Table (6.7) – Computing LV enclosed area for the sample No. 3 

 

Method AREA (cm2) 

BM Model 7.982 

Snake 9.233 

AVG 8.574 

Level set 9.149 

Gold Standard 9.896 

 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD



 

     124 

 

Figure (6.23) – Plotting the BM, Snake, AVG and Level set contours vs. their gold 

standard for the sample No. 3 

 Computing APD for the sample No. 4  

Table (6.8) – Computing the APD for sample No. 4 

 

Method APD (mm) 

BM Model 1.502 

Snake 1.591 

AVG 1.487 

Level set 1.515 

 

 

 Computing LV enclosed Area for the sample No. 4  

Table (6.9) – Computing LV enclosed area the sample No. 4 

 

Method AREA (cm2) 

BM Model 5.0 

Snake 5.573 

AVG 5.283 

Level set 5.755 

Gold Standard 5.505 

 

 

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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Figure (6.24) – Plotting the BM, Snake, AVG and Level set contours vs. their gold 

standard for the sample No. 4 

 

 Computing the ejection fraction for case No. 2  

Table (6.10) – Computing the EF for case No. 2 

 

Method EF 

BM Model 0.373 

Snake 0.396 

AVG 0.391 

Level set 0.371 

Gold Standard 0.443 

 

 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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 Computing APD for sample No. 5  

Table (6.11) – Computing the APD for sample No. 5 

 

Method APD (mm) 

BM Model 1.557 

Snake 0.954 

AVG 1.039 

Level set 1.0 

 

 Computing LV enclosed Area for sample No.5  

 

Table (6.12) – Computing LV enclosed area for sample No. 5 

 

Method AREA (cm2) 

BM Model 9.541 

Snake 10.704 

AVG 10.239 

Level set 10.908 

Gold Standard 10.583 
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Figure (6.25) – Plotting the BM, Snake, AVG and level set contours vs. their gold 

standard for sample No. 5 

 

 Computing the APD for sample No. 6  

Table (6.13) – Computing the APD for sample No. 6 

 

Method APD (mm) 

BM Model 1.451 

Snake   1.688 

AVG 1.887 

Level set 1.954 

 

 

 

 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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 Computing LV enclosed area for sample No. 6  

Table (6.14) – Computing LV enclosed area for sample No.6 

 

Method AREA (cm2) 

BM Model 5.927 

Snake 6.482 

AVG 6.234 

Level set 7.142 

Gold Standard 8.606 

 

 

 

 

 

Figure (6.26) – Plotting the BM, Snake, AVG and Level set contours vs. their gold 

standard for sample No.6 

 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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 Computing the ejection fraction for case No. 3  

Table (6.15) – Computing the EF for case No. 3 

 

Method EF 

BM Model 0.378 

Snake 0.394 

AVG 0.391 

Level set 0.345 

Gold Standard 0.186 

 

 Computing APD for sample No. 7  

Table (6.16) – Computing the APD for sample No. 7 

 

Method APD (mm) 

BM Model 1.556 

Snake 1.544 

AVG 1.704 

Level set 1.40 

 

 Computing LV enclosed Area for sample No. 7 

 

Table (6.17) – Computing LV enclosed area for sample No. 7 

 

Method AREA (cm2) 

BM Model 9.594 

Snake 10.829 

AVG 10.341 

Level set 11.129 

Gold Standard 11.1354 
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Figure (6.27) – Plotting the BM, Snake, AVG and Level set contours vs. their gold 

standard for sample No. 7 

 

 Computing APD for the sample No. 8  

 

Table (6.18) – Computing the APD for sample No. 8 

 

Method APD (mm) 

BM Model 1.329 

Snake 1.606 

AVG 1.590 

Level set 1.524 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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 Computing LV enclosed area for sample No. 8  

Table (6.19) – Computing LV enclosed area for sample No. 8 

 

Method AREA (cm2) 

BM Model 5.780 

Snake 6.270 

AVG 6.007 

Level set 6.360 

Gold Standard 5.948 

 

 

 

 

Figure (6.28) – Plotting the BM, Snake, AVG and Level set contours vs. their gold 

standard for sample No. 8 

 

 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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 Computing the ejection fraction for case No. 4  

Table (6.20) – Computing EF for case No. 4 

 

Method EF 

BM Model 0.397 

Snake 0.420 

AVG 0.419 

Level set 0.428 

Gold Standard 0.465 

 

 Computing APD for sample No.9  

Table (6.21) – Computing the APD for sample No. 9 

 

Method APD (mm) 

BM Model 1.534 

Snake 1.187 

AVG 1.379 

Level set 1.057 

 

 

 Computing LV enclosed area for sample No. 9  

Table (6.22) – Computing LV enclosed area for sample No. 9 

 

Method AREA (cm2) 

BM Model 8.830 

Snake 9.919 

AVG 9.438 

Level set 10.114 

Gold Standard 10.124 
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Figure (6.29) – Plotting the BM, Snake, AVG and Level set contours vs. their gold 

standard for sample No. 9 

 

 Computing APD for sample No. 10  

Table (6.23) – Computing the APD for sample No.10 

 

Method APD (mm) 

BM Model 1.454 

Snake 0.964 

AVG 1.321 

Level set 0.834 

 

 

 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD
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 Computing LV enclosed area for sample No. 10  

Table (6.24) – Computing LV enclosed area for sample No. 10 

 

Method AREA (cm2) 

BM Model 5.310 

Snake 6.254 

AVG 5.767 

Level set 6.315 

Gold Standard 6.465 

 

 

 

 

 

Figure (6.30) – Plotting the BM, Snake, AVG and level set contours vs. their gold 

standard for sample No. 10 

 

 

 

 LV Contour of BM MODEL vs GOLD STANDARD  LV Contour of SNAKE vs GOLD STANDARD

 LV Contour of AVG vs GOLD STANDARD  LV Contour of LEVEL SET vs GOLD STANDARD



 

     135 

 Computing the ejection fraction for case No.5  

Table (6.25) – Computing the EF for case No. 5 

 

Method EF 

BM Model 0.398 

Snake 0.369 

AVG 0.388 

Level set 0.375 

Gold Standard 0.361 

b. Statistical Analysis  

In order to provide a concise summary of the results, a statistical analysis is created 

depending on the following parameters: mean, standard deviation, standard error, and 

95% confidence interval, to evaluate the computed results compared to the gold standard  

 Computing the mean of the Measured APD  

Table (6.26) – Computing the mean of the measured APDs 

Method Mean (mm) 

BM Model 1.566 

Snake 1.313 

AVG 1.515 

Level set 1.277 

 

 Computing the Standard Deviation  

Table (6.27) – Computing the standard deviation of the measured APDs 

 

Method Standard deviation (s) 

BM Model 0.173 

Snake 0.358 

AVG 0.333 

Level set 0.407 
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 Computing the Standard Error 

The standard error is a good estimate of the standard deviation of the given distribution. 

The standard error is calculated using the following formula: 

(6.2)
s

StErr
n

  

   

Where s is the standard deviation and n is the number of samples. 

 

Table (6.28) – Computing the standard error of the measured APDs 

 

Method Standard error 

BM Model 0.054 

Snake 0.113 

AVG 0.105 

Level set 0.128 

 

 95% Confidence Interval 

The standard error can be used to calculate confidence intervals for the true population 

mean. For a 95% 2-sided confidence interval, the Upper Confidence Limit (UCL) and 

Lower Confidence Limit (LCL) are calculated as follows (units in mm as noted in the 

tables):  

95% 2.228 2.228

95% 2.228 2.228 (6.3)

s
UCL mean StErr mean

n

s
LCL mean StErr mean

n

    

    
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Table (6.29) – Computing the 2-sided confidence interval 

 

Method LCL (mm) UCL (mm) 

BM Model 1.446 1.686 

Snake 1.061 1.564 

AVG 1.281 1.749 

Level set 0.992 1.562 

c. Bland and Altman Statistical Analysis  

 

The Bland-Altman plot is a method that measures the degree of agreement between 

two different measuring techniques to find out if they are in sufficient agreement to 

allow the old technique to be replaced by the new one [145]. The Bland-Altman plot 

is done by plotting the difference of the two techniques in the Y axis and the mean of 

them in the X axis, as in the following formula, if data1 and data2 are the 

measurements of the two techniques: 

1 2
( , ) , 1 2 (6.4)

2

data data
data x y data data

 
  
 

 

Two red lines are shown in the graph, the above red line represents (mean+2× 

standard deviation) and the lower red line represents (mean-2× standard deviation). 

The black line represents the mean difference. The difference between the two 

techniques will be accepted if they are located between the red lines. 
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Figure (6.31) – Bland Altman plot for LV area computed vs. gold standard  

 

 

 

 

 

Figure (6.32) – Bland Altman plot for LV computed EF vs. gold standard  
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6.7 DISCUSSION AND RESULTS ANALYSIS 

By incorporating the BM model in the averaging fusion technique framework, the 

framework can achieve the following features: 

 Robustness and stability over all the samples during the cardiac cycle. 

 The closeness of the results to the gold standard. 

 Keeping the deformable models inside the ROI (Region of Interest) by 

overcoming the difficulties of twisting and rotation of the LV. 

 Preventing the deformable models from leaking outside the ROI when there are 

missing parts of LV boundaries or signal drop out. 

 The BM model plays a dominant rule in the framework by providing the concrete 

base that the framework stands on during the cardiac cycle. The BM model works 

independently from the ultrasound images and can provide accurate detection to 

the LV boundaries where the deformable models fail to do so. 

 By employing averaging fusion techniques, we always ensure that the fused 

contour is close to the boundaries of the LV by removing the outliers in the 

deformable models and by modifying the BM model contour.  

 The fused contour and the dynamic model provide robustness and an accurate 

starting point by initializing the current frame with a close contour to the desired 

one. This accurate initialization ensures the quality of the contour detection and 

reduces the required running time for the deformable models by reducing the 

number of iterations that the deformable models require. 

 The contours become closer to each other as the cardiac cycle approaches the end 

of systole. This indicates that the framework has performed well enough to keep 

all the contours inside the ROI. As we approach the end of systole, the LV 

contracts and the size of the heart becomes smaller. The concentration of the 

pixels around the LV increases with approximately the same intensity value and 

there are no missing parts in the boundary. In this situation, the deformable 

models will not leak out from the ROI and the BM model will have close 

performance to the deformable models, due to the reduction in the applied 

pressure as we approach the end of systole phase. 
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 When the Snake control points are redistributed by removing the closed control 

points and inserting a new control point in the position where the control points 

are very far from each other; the performance of the Snake becomes more robust. 

This is because the entire LV contour is covered, satisfying the snake algorithm’s 

condition of equidistance.  

 Within this framework and the feature mentioned above, the Snake exhibits 

significant improvement and great performance over the cardiac cycle and we can 

achieve very accurate results. 

 The constitutive equations of the BM model resemble and simulate the intact 

heart. From the results above, the BM model and the overall framework 

accurately detect the contour, area and ejection fraction for cases in which the 

heart is normal or suffers from fewer complications and abnormality. In cases 

where the patient has a severe heart abnormality (like in cases 1 and 3), the heart 

of patient does not contract as normal (dysfunction case) and the stroke volume is 

also less than normal. In this situation, the BM contour will not be an exact match 

for the real contour, which will affect the overall contour of the frame work.  

 From the APD data and the statistical analysis, the last contour (level set) scores 

the highest accurate results and is the closet contour to the gold standard. If we 

look at the mean of the four contours, which tells us about the central tendency of 

the data, the level set contour has the lowest value, which means the high 

accuracy with less error. The BM model has the most consistent performance, 

which scores the lowest standard deviation also with less value for the standard 

error. 

 The level set contour has outstanding results in computing the area and ejection 

fraction values. In calculating the area, 90% of the computed area is located in the 

acceptance range (between the two red lines), while the tenth sample is too close 

to the acceptance range. 

 For the ejection fraction, 100% of the computed values are located in acceptance 

range. 

 The acceptance range for the level set is too narrow compared to other methods. It 

is located between ± 1.256 mean differences for the area and ±0.186 for the EF. 



 

     141 

 The area computed by the BM enclosed contour is affected by the end systole 

phases, where the BM model has less area than the sample case when the patient 

has a severe abnormality. In the area plot in Figure (6.32), these computed areas 

are located outside the acceptance range. This computation can be compensated 

when estimating the EF by using its formula where the end of systole phase 

dominates the computation as illustrated in Figure (6.33). 

6.8 SUMMARY 

In this Chapter, the difficulties facing the evaluation of segmentation and tracking in 

medical images are presented. The method and steps of creating the gold standard from 

three manually tracing of cardiologists are presented. APD as an error metric is 

presented. Experimental results for the BM model and the deformable models are given. 

The evaluation of the computed contours, enclosed area and the ejection fraction is made 

comparing to the created gold standard. The discussion and analysis of the results are 

given.  
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CHAPTER 7 CONCLUSION AND FUTURE WORK 

7.1  CONCLUSION 

Unlike the previous work done in tracking the LV through the cardiac cycle of the 2D 

echocardiographic image sequence, instead of depending on imaging based techniques 

alone, in this thesis the LV mechanical properties are utilized through the BM model. 

FEM is utilized to obtain the LV contour and exact pressure and time is provided at each 

frame of the cardiac cycle to obtain the precise LV boundaries. The objective is to 

achieve significant improvement in detecting and tracking the boundaries and segmenting 

the LV area for the complete cardiac cycle. 

In this thesis, the implemented framework is based on the fusion of the BM model and 

the Snake followed by the level set method.  

In the BM model, to mimic the LV function and motion, two different strain energy 

functions are used to simulate the LV deformations in the active and passive phases. 

FBEM is used to solve the constitutive equations of the BM model using an 

incremental iterative procedure. The results are not acceptable due to the lack 

incorporation of the load (pressure) and time in the solution.  

FEM is used in this thesis instead of FBEM to get the deformations of the LV in each 

frame in a timely fashion as the real LV is deformed during the cardiac cycle. 

The pressure (load) is simulated in each frame through the cardiac cycle to let the LV 

deform in both the active and passive phases. 

The ABAQUS FEA is used and linked with MATLAB through the PYTHON 

language program to transfer the LV deformations estimated by ABAQUS to 

MATLAB’s main program. 

The parametric deformable model (Snake) is used and the detected contour is fused 

with the BM model contour by two different techniques. First, the EKF is used however 

the results are not acceptable due to the many shortcomings of this fusion technique. The 

averaging fusion technique is used as an alternative solution to the EKF, followed by the 

non-parametric deformable model (level set method). The averaging framework can 

detect the contour of the LV with acceptable accuracy. 
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To evaluate the results and tackle the problem of the lack of gold standard, a gold 

standard is created in this thesis from three different manual outlines from three different 

cardiologists. APD is used as an error metric to evaluate the computed contour and the 

Bland and Altman plot is used to evaluate the computed area and EF. Successful 

segmentation was achieved in all cases, with limits of agreement for average 

perpendicular distance of 1.277 ±0.267 mm compared to the created gold standard.  

From the evaluation and statistical analysis, the data shows highly accurate results 

for normal and abnormal heart patients. Less accurate results are obtained for patients 

with severe abnormality complications, but still the results fall within the acceptance 

range. 

7.2 FUTURE WORK 

The analysis of the difficulties  in tracking and segmenting the 2D echocardiographic 

image sequence and the challenges due to the heart movement and the proposed solution 

methods presented in this thesis can be further extended and enhanced.  The following 

subjects may shed some light on the intended work extensions: 

 According to the promising results with the 2D echocardiographic images, the 

framework and the solution scheme can be further extended to 3D 

echocardiographic images. 

 Instead of a 2D solution, a 3D BM model will be used for tracking the volume 

of the LV.  

 An alternative deformable model will be incorporated instead of the Snake 

and level set method to extract and correct the LV contour. 

  The gold standard also needs to be updated from 2D to 3D to evaluate the 

results of 3D solution scheme. 
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APPENDIX I 

Tracking of Complete Cardiac Cycle 
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Forty frames for the complete cardiac cycle starting from the QRS signal at the EDS up 

to the appearance of the next QRS signal 
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APPENDIX II 

Computed Deformations of the LV during Contraction Phase (unit in cm) 

 

Node = 1 U[x] = 0.0743 U[y] = -0.0073 

Node = 2 U[x] = 0.0786 U[y] = 0.0002 

Node = 3 U[x] = 0.1116 U[y] = 0.1749 

Node = 4 U[x] = 0.0693 U[y] = -0.0102 

Node = 5 U[x] = 0.0835 U[y] = 0.0097 

Node = 6 U[x] = 0.1109 U[y] = 0.1807 

Node = 7 U[x] = 0.1125 U[y] = 0.2224 

Node = 8 U[x] = 0.0648 U[y] = -0.0129 

Node = 9 U[x] = 0.1101 U[y] = 0.1872 

Node = 10 U[x] = 0.0881 U[y] = 0.0207 

Node = 11 U[x] = 0.1107 U[y] = 0.2199 

Node = 12 U[x] = 0.1110 U[y] = 0.2283 

Node = 13 U[x] = 0.1085 U[y] = 0.1707 

Node = 14 U[x] = 0.1093 U[y] = 0.1931 

Node = 15 U[x] = 0.1079 U[y] = 0.1662 

Node = 16 U[x] = 0.1074 U[y] = 0.1612 

Node = 17 U[x] = 0.1087 U[y] = 0.1984 

Node = 18 U[x] = 0.1066 U[y] = 0.1548 

Node = 20 U[x] = 0.1089 U[y] = 0.2174 

Node = 21 U[x] = 0.1096 U[y] = 0.2342 

Node = 23 U[x] = 0.1058 U[y] = 0.1472 

Node = 24 U[x] = 0.0573 U[y] = -0.0150 

Node = 26 U[x] = 0.0912 U[y] = 0.0347 

Node = 27 U[x] = 0.1079 U[y] = 0.2131 

Node = 28 U[x] = 0.1047 U[y] = 0.1376 

Node = 30 U[x] = 0.1070 U[y] = 0.2089 

Node = 32 U[x] = 0.1029 U[y] = 0.1250 
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Node = 33 U[x] = 0.1061 U[y] = 0.2047 

Node = 34 U[x] = 0.0931 U[y] = 0.0446 

Node = 36 U[x] = 0.1052 U[y] = 0.2006 

Node = 37 U[x] = 0.0495 U[y] = -0.0176 

Node = 38 U[x] = 0.1003 U[y] = 0.1068 

Node = 41 U[x] = 0.1061 U[y] = 0.2379 

Node = 42 U[x] = 0.0950 U[y] = 0.0519 

Node = 48 U[x] = 0.0978 U[y] = 0.0917 

Node = 50 U[x] = 0.0457 U[y] = -0.0178 

Node = 55 U[x] = 0.0958 U[y] = 0.0846 

Node = 57 U[x] = 0.0427 U[y] = -0.0180 

Node = 60 U[x] = 0.0936 U[y] = 0.0575 

Node = 61 U[x] = 0.1033 U[y] = 0.2416 

Node = 64 U[x] = 0.0942 U[y] = 0.0802 

Node = 68 U[x] = 0.0932 U[y] = 0.0770 

Node = 70 U[x] = 0.0395 U[y] = -0.0180 

Node = 78 U[x] = 0.0916 U[y] = 0.0763 

Node = 79 U[x] = 0.0361 U[y] = -0.0180 

Node = 87 U[x] = 0.0994 U[y] = 0.2442 

Node = 88 U[x] = 0.0900 U[y] = 0.0754 

Node = 89 U[x] = 0.0899 U[y] = 0.0611 

Node = 91 U[x] = 0.0328 U[y] = -0.0175 

Node = 95 U[x] = 0.0889 U[y] = 0.0731 

Node = 100 U[x] = 0.0293 U[y] = -0.0170 

Node = 103 U[x] = 0.0872 U[y] = 0.0701 

Node = 110 U[x] = 0.0253 U[y] = -0.0169 

Node = 118 U[x] = 0.0951 U[y] = 0.2427 

Node = 119 U[x] = 0.0857 U[y] = 0.0656 

Node = 125 U[x] = 0.0186 U[y] = -0.0159 

Node = 134 U[x] = 0.0908 U[y] = 0.2428 
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Node = 142 U[x] = 0.0109 U[y] = -0.0108 

Node = 145 U[x] = 0.0884 U[y] = 0.2419 

Node = 151 U[x] = 0.0865 U[y] = 0.2413 

Node = 157 U[x] = 0.0000 U[y] = -0.0000 

Node = 160 U[x] = 0.0848 U[y] = 0.2412 

Node = 163 U[x] = 0.0830 U[y] = 0.2411 

Node = 167 U[x] = 0.0000 U[y] = 0.0000 

Node = 168 U[x] = 0.0813 U[y] = 0.2418 

Node = 176 U[x] = 0.0795 U[y] = 0.2425 

Node = 185 U[x] = 0.0776 U[y] = 0.2409 

Node = 186 U[x] = 0.0000 U[y] = 0.0000 

Node = 190 U[x] = 0.0751 U[y] = 0.2387 

Node = 195 U[x] = 0.0707 U[y] = 0.2366 

Node = 196 U[x] = 0.0000 U[y] = 0.0000 

Node = 200 U[x] = 0.0679 U[y] = 0.2403 

Node = 209 U[x] = 0.0639 U[y] = 0.2415 

Node = 214 U[x] = 0.0000 U[y] = 0.0000 

Node = 215 U[x] = 0.0601 U[y] = 0.2393 

Node = 222 U[x] = 0.0566 U[y] = 0.2358 

Node = 229 U[x] = 0.0524 U[y] = 0.2379 

Node = 234 U[x] = 0.0000 U[y] = 0.0000 

Node = 235 U[x] = 0.0491 U[y] = 0.2356 

Node = 241 U[x] = 0.0460 U[y] = 0.2329 

Node = 248 U[x] = 0.0440 U[y] = 0.2314 

Node = 250 U[x] = 0.0426 U[y] = 0.2302 

Node = 255 U[x] = 0.0410 U[y] = 0.2306 

Node = 259 U[x] = 0.0393 U[y] = 0.2309 

Node = 262 U[x] = 0.0373 U[y] = 0.2329 

Node = 266 U[x] = 0.0354 U[y] = 0.2348 

Node = 270 U[x] = 0.0339 U[y] = 0.2356 
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Node = 274 U[x] = 0.0000 U[y] = 0.0000 

Node = 275 U[x] = 0.0324 U[y] = 0.2364 

Node = 281 U[x] = 0.0303 U[y] = 0.2367 

Node = 287 U[x] = 0.0282 U[y] = 0.2370 

Node = 290 U[x] = 0.0265 U[y] = 0.2361 

Node = 295 U[x] = 0.0248 U[y] = 0.2352 

Node = 297 U[x] = 0.0238 U[y] = 0.2328 

Node = 300 U[x] = 0.0223 U[y] = 0.2298 

Node = 302 U[x] = 0.0206 U[y] = 0.2260 

Node = 308 U[x] = 0.0168 U[y] = 0.2229 

Node = 309 U[x] = 0.0000 U[y] = 0.0000 

Node = 315 U[x] = 0.0137 U[y] = 0.2202 

Node = 320 U[x] = 0.0105 U[y] = 0.2161 

Node = 325 U[x] = 0.0090 U[y] = 0.2124 

Node = 327 U[x] = 0.0079 U[y] = 0.2096 

Node = 329 U[x] = 0.0069 U[y] = 0.2073 

Node = 335 U[x] = 0.0051 U[y] = 0.2068 

Node = 339 U[x] = 0.0033 U[y] = 0.2063 

Node = 342 U[x] = 0.0017 U[y] = 0.2057 

Node = 344 U[x] = -0.0000 U[y] = 0.0000 

Node = 349 U[x] = 0.0002 U[y] = 0.2050 

Node = 353 U[x] = -0.0015 U[y] = 0.2047 

Node = 357 U[x] = -0.0031 U[y] = 0.2045 

Node = 359 U[x] = -0.0042 U[y] = 0.2025 

Node = 362 U[x] = -0.0056 U[y] = 0.2000 

Node = 366 U[x] = -0.0074 U[y] = 0.1967 

Node = 375 U[x] = -0.0106 U[y] = 0.1942 

Node = 377 U[x] = -0.0000 U[y] = 0.0000 

Node = 380 U[x] = -0.0116 U[y] = 0.1901 

Node = 382 U[x] = -0.0127 U[y] = 0.1849 
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Node = 384 U[x] = -0.0139 U[y] = 0.1796 

Node = 386 U[x] = -0.0149 U[y] = 0.1754 

Node = 392 U[x] = -0.0168 U[y] = 0.1718 

Node = 396 U[x] = -0.0187 U[y] = 0.1682 

Node = 399 U[x] = -0.0205 U[y] = 0.1650 

Node = 404 U[x] = -0.0223 U[y] = 0.1619 

Node = 405 U[x] = 0.0000 U[y] = 0.0000 

Node = 416 U[x] = -0.0252 U[y] = 0.1572 

Node = 420 U[x] = -0.0265 U[y] = 0.1539 

Node = 422 U[x] = -0.0277 U[y] = 0.1505 

Node = 432 U[x] = -0.0286 U[y] = 0.1468 

Node = 437 U[x] = -0.0289 U[y] = 0.1442 

Node = 440 U[x] = -0.0000 U[y] = 0.0000 

Node = 441 U[x] = -0.0275 U[y] = 0.1411 

Node = 443 U[x] = -0.0165 U[y] = 0.0033 

Node = 447 U[x] = -0.0247 U[y] = 0.0093 

Node = 449 U[x] = -0.0270 U[y] = 0.1392 

Node = 452 U[x] = -0.0310 U[y] = 0.0154 

Node = 454 U[x] = -0.0356 U[y] = 0.0212 

Node = 456 U[x] = -0.0281 U[y] = 0.1403 

Node = 459 U[x] = -0.0310 U[y] = 0.1380 

Node = 464 U[x] = -0.0351 U[y] = 0.1365 

Node = 467 U[x] = -0.0455 U[y] = 0.1002 

Node = 468 U[x] = -0.0380 U[y] = 0.1342 

Node = 470 U[x] = -0.0393 U[y] = 0.0241 

Node = 472 U[x] = -0.0405 U[y] = 0.1314 

Node = 474 U[x] = -0.0445 U[y] = 0.0330 

Node = 477 U[x] = -0.0480 U[y] = 0.1050 

Node = 478 U[x] = -0.0493 U[y] = 0.0964 

Node = 481 U[x] = -0.0486 U[y] = 0.0421 
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Node = 484 U[x] = -0.0446 U[y] = 0.1297 

Node = 490 U[x] = -0.0467 U[y] = 0.1273 

Node = 491 U[x] = -0.0520 U[y] = 0.0472 

Node = 492 U[x] = -0.0530 U[y] = 0.0925 

Node = 493 U[x] = -0.0488 U[y] = 0.1249 

Node = 494 U[x] = -0.0518 U[y] = 0.1081 

Node = 495 U[x] = -0.0521 U[y] = 0.1115 

Node = 497 U[x] = -0.0542 U[y] = 0.0534 

Node = 498 U[x] = -0.0551 U[y] = 0.0873 

Node = 499 U[x] = -0.0524 U[y] = 0.1149 

Node = 501 U[x] = -0.0527 U[y] = 0.1183 

Node = 502 U[x] = -0.0566 U[y] = 0.0603 

Node = 503 U[x] = -0.0529 U[y] = 0.1218 

Node = 504 U[x] = -0.0571 U[y] = 0.0820 

Node = 505 U[x] = -0.0584 U[y] = 0.0651 

Node = 506 U[x] = -0.0596 U[y] = 0.0690 

Node = 507 U[x] = -0.0599 U[y] = 0.0732 

Node = 508 U[x] = -0.0602 U[y] = 0.0770 
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APPENDIX III 

Computed Deformations of the LV during Passive Phase (unit in cm) 

 

Node = 1 U[x] = -0.0056 U[y] = 0.0004 

Node = 2 U[x] = -0.0066 U[y] = -0.0010 

Node = 3 U[x] = -0.0043 U[y] = 0.0011 

Node = 4 U[x] = -0.0073 U[y] = -0.0024 

Node = 5 U[x] = -0.0030 U[y] = 0.0017 

Node = 6 U[x] = -0.0077 U[y] = -0.0035 

Node = 7 U[x] = -0.0079 U[y] = -0.0043 

Node = 8 U[x] = -0.0081 U[y] = -0.0049 

Node = 9 U[x] = -0.0017 U[y] = 0.0011 

Node = 16 U[x] = -0.0076 U[y] = -0.0059 

Node = 17 U[x] = -0.0000 U[y] = 0.0000 

Node = 21 U[x] = -0.0075 U[y] = -0.0071 

Node = 23 U[x] = -0.0000 U[y] = -0.0000 

Node = 28 U[x] = -0.0072 U[y] = -0.0085 

Node = 30 U[x] = 0.0000 U[y] = -0.0000 

Node = 34 U[x] = -0.0068 U[y] = -0.0101 

Node = 35 U[x] = -0.0034 U[y] = -0.0253 

Node = 36 U[x] = -0.0037 U[y] = -0.0237 

Node = 38 U[x] = -0.0027 U[y] = -0.0277 

Node = 40 U[x] = -0.0039 U[y] = -0.0225 

Node = 41 U[x] = -0.0000 U[y] = -0.0000 

Node = 42 U[x] = -0.0022 U[y] = -0.0290 

Node = 43 U[x] = -0.0041 U[y] = -0.0216 

Node = 44 U[x] = -0.0019 U[y] = -0.0300 

Node = 45 U[x] = -0.0062 U[y] = -0.0117 

Node = 48 U[x] = -0.0046 U[y] = -0.0185 

Node = 49 U[x] = -0.0041 U[y] = -0.0206 
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Node = 50 U[x] = -0.0044 U[y] = -0.0191 

Node = 51 U[x] = -0.0015 U[y] = -0.0306 

Node = 52 U[x] = -0.0045 U[y] = -0.0181 

Node = 53 U[x] = -0.0041 U[y] = -0.0197 

Node = 55 U[x] = -0.0054 U[y] = -0.0134 

Node = 56 U[x] = -0.0011 U[y] = -0.0310 

Node = 58 U[x] = -0.0044 U[y] = -0.0176 

Node = 61 U[x] = 0.0000 U[y] = -0.0000 

Node = 62 U[x] = -0.0044 U[y] = -0.0169 

Node = 63 U[x] = -0.0049 U[y] = -0.0148 

Node = 65 U[x] = -0.0007 U[y] = -0.0312 

Node = 69 U[x] = -0.0043 U[y] = -0.0161 

Node = 78 U[x] = -0.0003 U[y] = -0.0314 

Node = 86 U[x] = 0.0003 U[y] = -0.0315 

Node = 92 U[x] = 0.0000 U[y] = -0.0000 

Node = 100 U[x] = 0.0010 U[y] = -0.0317 

Node = 110 U[x] = 0.0019 U[y] = -0.0318 

Node = 116 U[x] = -0.0000 U[y] = -0.0000 

Node = 121 U[x] = 0.0032 U[y] = -0.0320 

Node = 132 U[x] = 0.0050 U[y] = -0.0322 

Node = 133 U[x] = -0.0000 U[y] = -0.0000 

Node = 145 U[x] = -0.0000 U[y] = -0.0000 

Node = 146 U[x] = 0.0071 U[y] = -0.0301 

Node = 154 U[x] = 0.0000 U[y] = -0.0000 

Node = 160 U[x] = 0.0092 U[y] = -0.0281 

Node = 163 U[x] = 0.0000 U[y] = -0.0000 

Node = 169 U[x] = 0.0000 U[y] = -0.0000 

Node = 172 U[x] = 0.0103 U[y] = -0.0265 

Node = 177 U[x] = 0.0000 U[y] = -0.0000 

Node = 185 U[x] = 0.0000 U[y] = -0.0000 
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Node = 191 U[x] = 0.0112 U[y] = -0.0253 

Node = 192 U[x] = 0.0000 U[y] = -0.0000 

Node = 195 U[x] = 0.0113 U[y] = -0.0244 

Node = 200 U[x] = 0.0000 U[y] = -0.0000 

Node = 203 U[x] = 0.0115 U[y] = -0.0236 

Node = 206 U[x] = 0.0025 U[y] = 0.0004 

Node = 214 U[x] = 0.0120 U[y] = -0.0227 

Node = 216 U[x] = 0.0042 U[y] = 0.0001 

Node = 218 U[x] = 0.0052 U[y] = -0.0005 

Node = 224 U[x] = 0.0060 U[y] = -0.0010 

Node = 226 U[x] = 0.0125 U[y] = -0.0218 

Node = 227 U[x] = 0.0065 U[y] = -0.0014 

Node = 231 U[x] = 0.0070 U[y] = -0.0017 

Node = 232 U[x] = 0.0126 U[y] = -0.0202 

Node = 234 U[x] = 0.0077 U[y] = -0.0026 

Node = 235 U[x] = 0.0125 U[y] = -0.0192 

Node = 236 U[x] = 0.0123 U[y] = -0.0181 

Node = 239 U[x] = 0.0084 U[y] = -0.0036 

Node = 240 U[x] = 0.0122 U[y] = -0.0170 

Node = 242 U[x] = 0.0121 U[y] = -0.0160 

Node = 243 U[x] = 0.0092 U[y] = -0.0049 

Node = 245 U[x] = 0.0099 U[y] = -0.0063 

Node = 246 U[x] = 0.0104 U[y] = -0.0072 

Node = 247 U[x] = 0.0122 U[y] = -0.0145 

Node = 248 U[x] = 0.0114 U[y] = -0.0106 

Node = 249 U[x] = 0.0108 U[y] = -0.0081 

Node = 250 U[x] = 0.0121 U[y] = -0.0132 

Node = 251 U[x] = 0.0117 U[y] = -0.0112 

Node = 252 U[x] = 0.0115 U[y] = -0.0101 

Node = 253 U[x] = 0.0112 U[y] = -0.0090 
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APPENDIX IV 

Tables of the X-Y coordinate for the ten samples and their created gold standard 

Table (1) – Computing the gold standard for the Sample No. 1 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

203.16 40.73 203.6 44.75 201.25 44 202.67 43.16 

203.03 61.47 204.21 65.26 196.41 64.24 200.48 63.78 

203.71 82.44 202.25 85.57 197.11 85.02 201.02 84.34 

205.36 103.35 206.36 105.76 201.17 105.44 204.29 104.85 

207.47 124.22 210.11 126.02 203.7 126.11 207.09 125.45 

208.37 145.08 209.37 146.55 206.77 146.7 208.17 146.11 

205.36 165.79 206.42 166.93 201.91 166.8 204.56 166.51 

201.44 186.08 201.69 186.84 198.79 186.87 200.64 186.6 

210.77 203.81 211.22 204.52 213.5 201.14 211.83 203.16 

223.09 209.38 225.34 210.72 226.1 208.98 224.84 209.69 

244.01 207.89 245.81 208.34 246.93 207.9 245.59 208.04 

264.86 205.57 266.21 205.45 267.65 205.43 266.24 205.48 

285.59 202.35 286.46 201.63 288.07 201.17 286.71 201.72 

305.15 195.61 304.83 193.32 306.31 191.79 305.43 193.57 

301.85 176.68 303.15 173.66 308.99 172.19 304.66 174.18 

308.31 156.95 310.5 154.55 309.03 151.55 309.28 154.35 

312.73 136.47 309.99 134.01 307.59 130.98 310.1 133.82 

311.04 115.64 305.18 114.1 302.16 110.83 306.13 113.52 

303.84 95.95 290.11 100.24 295.23 91.19 296.39 95.79 

291.83 78.88 280.89 82.09 287.58 71.78 286.77 77.58 

278.85 62.41 275.55 62.21 279 52.81 277.8 59.14 

265.18 46.49 264.85 44.83 264.69 37.83 264.91 43.05 

248.92 33.56 246.28 36.43 245.83 29.09 247.01 33.02 

229.22 26.43 226.06 32.43 225.21 26.95 228.02 30.22 

210.79 33.71 206.6 35.16 206.48 35.03 207.96 34.63 
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Table (2) – Computing the gold standard for the Sample No. 2 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

223.97 50.71 224.72 65.99 221.42 53 223.37 56.57 

221.91 68.72 220.93 82.6 217.41 71.32 219.91 74.33 

220.46 87.43 219.97 99.75 214.1 89.79 218.18 92.32 

220.69 106.26 220.82 116.86 213.02 108.53 218.18 110.55 

220.85 125.13 217.24 133.46 213.93 127.26 217.34 128.62 

212.52 141.73 209.51 148.74 204.32 142.69 208.78 144.39 

202.13 157.3 201 163.35 196.06 159.21 199.73 159.95 

198.26 175.62 201.77 180.3 196.49 177.91 198.84 177.94 

208.18 190.26 205.07 196.2 199.27 194.34 204.17 193.6 

216.32 202.32 221.5 200.47 213.46 200.05 217.09 200.94 

235.12 203.9 238.65 201.36 232.19 201.36 235.32 202.21 

254.01 203.97 255.83 201.22 250.96 201.93 253.6 202.37 

272.85 202.78 272.94 199.89 269.73 201.56 271.84 201.41 

290.25 196.97 288.57 194.11 287.93 197.87 288.92 196.32 

285.94 179.44 284.78 178.02 286.64 180.73 285.78 179.39 

291.96 161.65 290.89 162.28 293.88 163.65 292.25 162.53 

296.24 143.26 294.43 145.76 298.84 145.91 296.5 144.98 

294.17 124.61 289.3 129.43 296.53 127.28 293.33 127.1 

289.47 106.32 284.33 113.03 290.93 109.38 288.24 109.58 

283.38 88.51 275.59 98.9 283.39 92.2 280.78 93.2 

273.27 72.57 267.62 84.91 274.36 75.74 271.75 77.74 

266.4 55.01 267.36 67.77 267.66 58.22 267.14 60.34 

253.27 41.6 259.27 52.9 258.14 42.7 256.9 45.74 

235.81 35.52 244.26 50.39 240.3 37.09 242.82 41.71 

221.14 41.78 229.53 58.92 224.02 44.12 224.9 48.27 
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Table (3) – Computing the gold standard for the sample No. 3 

Observer_1 Observer_2 Observer_3 Gold Standard 

X  Y X Y X Y X Y 

182.62 43.07 184.06 55.36 181.36 49.77 182.6 49.4 

180.32 62.06 184.02 73.88 179.29 68.83 181.53 68.38 

180.53 81.39 184.12 92.47 180.23 88.34 181.63 87.4 

183.27 100.53 183.12 111.03 178.11 107.77 181.5 106.45 

183.88 119.84 183.24 129.62 177.07 127.29 181.39 125.59 

182.33 139.12 183.67 148.21 176.65 146.83 180.88 144.72 

181.12 158.43 183.32 166.79 179.2 166.2 181.21 163.81 

183.21 177.57 186.13 184.84 184.18 185.08 184.51 182.5 

193.68 193.63 196.58 199.5 195.69 200.14 195.32 197.76 

205.1 197.53 214.69 201.12 208.65 203.06 209.48 200.57 

224.33 195.41 233.03 198.08 227.93 199.85 228.43 197.78 

243.53 193.11 251.24 194.31 247.2 196.55 247.32 194.66 

262.7 190.53 269.33 190.01 266.43 192.99 266.15 191.18 

281.47 186.16 287.17 184.83 285.19 187.72 284.61 186.24 

291.92 174.66 291.22 169.49 295.17 173.46 292.77 172.54 

295.63 155.98 291.76 150.93 296.32 154.03 294.57 153.65 

293.76 136.75 289.64 132.65 295.58 134.73 292.99 134.71 

286.75 118.86 280.12 116.69 289.18 116.26 285.35 117.27 

278.86 101.24 274.54 98.99 284.44 97.3 279.28 99.18 

266.54 86.71 263.78 83.91 273.95 81.08 268.09 83.9 

251.78 74.27 251.59 69.87 258.47 69.15 253.95 71.09 

238.21 60.52 237.91 57.3 245.48 54.63 240.53 57.48 

221.82 50.29 221.54 48.61 227.44 47.37 223.6 48.76 

206 39.31 204.86 40.7 208.2 44.04 206.35 43.71 

189.22 36.18 188.05 47.09 189 43.81 188.76 42.36 
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Table (4) – Computing the gold standard for sample No. 4 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

207.03 68.25 206.3 73.87 202.08 70.66 205.14 70.93 

202.49 82.26 201.79 87.47 198.31 85.39 200.52 85.08 

199.68 96.66 200.37 101.73 195.11 100.23 198.39 99.54 

200.46 111.37 200.6 116.08 195.15 115.46 198.74 114.3 

199.91 126.06 198.62 130.29 195.42 130.69 197.98 129.01 

196.24 140.33 196.89 144.51 193.92 145.82 195.68 143.56 

196.03 154.5 198.5 158.72 194.95 160.84 196.49 158.02 

202.86 167.47 204.7 171.48 200.63 174.59 202.73 171.18 

205.48 178.55 208.12 182.29 202.8 183.37 205.47 181.4 

220.18 179.26 222.42 182.78 217.98 181.99 220.19 181.35 

234.92 178.95 236.73 181.67 233.15 180.67 234.93 180.43 

249.64 178.17 250.97 179.84 248.32 179.25 249.64 179.09 

264.32 176.9 265.1 177.33 263.46 177.6 264.3 177.28 

278.7 173.96 278.68 172.91 278.31 174.48 278.56 173.78 

280.48 161.01 279.95 160.35 279.55 161.65 279.99 161 

285.21 147.24 282.31 146.6 279.87 147.46 282.46 147.1 

277.24 135.14 276.19 133.72 276.02 132.85 276.48 133.9 

267.44 124.16 267.18 122.55 267.99 120.15 267.54 122.29 

261.49 111.5 262.65 109.19 264.9 105.35 263.01 108.68 

261.76 96.83 261.34 94.97 261.73 90.59 261.61 94.13 

254.85 84.01 253.14 83.39 253.33 77.97 253.77 81.79 

243.83 74.26 241.75 74.65 242.67 67.21 242.75 72.04 

233.71 63.72 232.01 64.17 232.57 56.47 232.76 61.45 

222.73 55.07 219.81 58.19 217.59 55.26 221.27 58.86 

210.22 61.63 209.3 67.36 205.33 63.82 208.28 64.27 
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Table (5) – Computing the gold standard for the sample No. 5 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

206.99 35.61 210.4 39.9 192.03 48.62 202.78 41.37 

195.63 51.94 195 50.81 194.14 71.89 196.29 59.65 

197.48 72.45 196.14 70.62 197.13 95.12 196.92 79.39 

197.96 93.04 199.87 90.23 197.94 118.57 198.59 100.61 

198.39 113.63 200.95 110.16 201.82 141.73 200.38 121.84 

203.08 133.72 203.88 129.88 205.06 164.97 204 142.86 

205.86 154.17 207.22 149.52 214.46 186.48 209.18 163.39 

210.32 174.26 209.29 169.34 229.6 203.33 216.41 182.31 

222.35 190.18 219.68 186.14 212 201.93 218.01 192.75 

230.21 204.19 231.06 199.21 220.67 202.4 227.31 201.94 

250.13 209.43 250.07 205.29 243.57 207.7 247.92 207.48 

270.55 212.38 269.42 210.21 266.58 212.5 268.85 211.69 

291.16 213.36 289.07 213.75 289.76 216.34 290 214.49 

309.71 207.08 307.79 210.64 312.75 214.94 310.08 210.88 

304.35 187.78 304.82 191.44 307.4 194.56 305.52 191.26 

305.17 167.41 306.22 171.6 304.73 171.72 305.37 170.24 

302.21 147.01 302.45 152.01 300.36 148.67 301.67 149.23 

296.61 127.15 298.17 132.52 296.91 125.48 297.23 128.38 

290.64 107.39 294.05 112.98 287.37 104.03 290.69 108.14 

285.83 87.32 287.7 94.08 280.18 81.68 284.57 87.69 

280.71 67.32 278.45 76.4 273.2 59.28 277.45 67.67 

272.07 48.74 272.49 57.35 263.37 38.4 269.31 48.16 

256.85 34.83 259.87 43.01 242.26 29.36 252.99 35.73 

237.4 31.37 240.2 39.81 218.81 29.29 233.73 31.92 

216.86 33.07 220.29 38.63 197.38 38.48 211.51 36.73 
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Table (6) – Computing the gold standard for the sample No. 6 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

211.2 35.43 213.67 34.26 210.26 31.48 211.71 33.72 

199.39 48.58 200.44 45.67 196.79 45.13 201.39 48.21 

197.11 66.56 196.9 62.84 195.84 64.61 196.62 64.67 

198.37 84.73 199.03 80.39 194.73 84.22 197.38 83.11 

199.36 102.91 199.8 98.06 195.25 103.83 198.14 101.6 

204.59 120.3 202.17 115.52 199.21 123.05 201.99 119.62 

211.18 137.17 209.75 131.48 204.19 142.05 208.37 136.9 

210.52 155.36 211.57 149.05 207.48 161.41 209.85 155.27 

213.02 173.37 212.72 166.71 213.66 179.84 213.13 173.31 

222.63 187.51 220.33 181.95 217.14 193.38 220.03 187.61 

236.78 194.69 233.69 191.13 236.45 196.96 235.64 194.26 

254.96 195.75 251.28 193.09 255.91 199.58 254.05 196.14 

273.17 195.2 268.97 193.52 275.48 201.27 272.54 196.66 

289.5 189.1 285.3 188.5 293.49 197.31 289.43 191.64 

289.4 171.49 286.35 171.1 290.28 178.64 288.68 173.75 

289.97 153.8 286.82 153.54 294.91 160 290.57 155.78 

287.06 135.84 284.04 136.05 293.54 140.43 288.21 137.44 

283.23 118.05 281.38 118.55 289.62 121.25 284.74 119.28 

282.03 99.88 277.94 101.18 284.63 102.3 281.53 101.12 

276.5 82.56 272.43 84.38 281.78 82.88 276.9 83.27 

270.7 65.33 267.44 67.41 276.91 63.85 271.68 65.53 

267.64 47.47 266.5 49.78 269.97 45.53 268.03 47.59 

253.41 36.44 255.75 38.38 257.73 30.41 255.63 35.08 

237.22 28.46 238.98 32.73 238.94 25.88 238.89 29.25 

219.44 31.56 221.73 30.68 219.46 28.12 220.08 30.12 
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Table (7) – Computing the gold standard for the sample No. 7 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

171.29 65.22 172.23 69.87 172.58 61.92 172.03 65.67 

168.69 86.32 172.56 90.69 167.94 83.02 171.45 86.84 

176.31 106.16 181.15 109.45 171.11 104.46 176.19 106.69 

189.96 122.64 190.4 128.05 178.37 124.97 186.24 125.22 

194.04 143.59 195.38 148.34 185.58 145.49 191.67 145.81 

194.74 165.07 198.13 169.01 189.81 166.79 194.23 166.95 

193.95 186.52 197.13 189.87 192.85 188.27 194.64 188.22 

203.22 204.57 204.21 208.98 196.25 209.11 201.23 207.56 

211.71 212.99 216.68 213.45 206.9 216.15 211.76 214.2 

232.8 208.9 236.87 208.07 228.24 211.91 232.64 209.63 

253.83 204.44 256.89 202.08 249.45 207.04 253.39 204.52 

274.76 199.58 276.79 195.69 270.56 201.78 274.04 199.02 

295.54 194.07 296.51 188.8 291.57 196.09 294.54 192.99 

315.11 185.63 315.33 179.91 312.2 189.22 314.21 184.92 

307.35 168.5 307.01 163.98 315.03 172.33 309.8 168.27 

309.16 147.34 308.35 143.51 311.62 150.84 309.71 147.23 

300.24 128.06 294.64 127.92 301.89 131.52 298.92 129.17 

285.1 112.82 280.02 113.02 289.87 113.39 285 113.08 

270.34 97.29 268.55 95.72 279.7 94.16 272.86 95.72 

259.01 79.04 257.62 78.22 267.93 75.93 261.52 77.73 

243.18 64.58 238.98 68.9 252.17 60.95 244.78 64.81 

226.47 51.11 221.3 57.8 234.89 47.73 227.55 52.21 

207.47 41.13 204.85 44.92 215.74 37.64 209.35 41.23 

188.41 38.05 186.26 42.76 194.24 38.59 192.21 42.46 

176.01 55.58 174.44 59.68 177.91 52.45 176.12 55.91 
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Table (8) – Computing the gold standard for the sample No. 8 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

197.62 76.42 198.78 82.48 192.9 82.35 196.44 80.42 

198.73 92.33 199.18 98.3 192.7 98.84 196.05 96.48 

197.31 108.27 197.44 114.09 192.74 115.33 195.83 112.56 

197.25 124.26 197.36 129.93 192.75 131.82 195.79 128.67 

197.66 140.26 199.95 145.58 192.67 148.31 196.76 144.72 

197.74 156.26 199.1 161.42 194.85 164.62 197.23 160.77 

200.41 171.94 202.96 176.62 199.61 180.36 201 176.31 

205.13 186.44 210.03 190.61 206.48 194.69 207.22 190.58 

211.47 198.44 213.1 200.3 208.79 205.38 211.12 201.37 

227.32 197.37 224.27 196.49 225.06 202.86 225.55 198.91 

242.87 193.63 239.54 192.15 241.05 198.83 241.16 194.87 

258.14 188.82 254.76 187.62 256.81 193.97 256.57 190.14 

273.07 183.06 269.85 182.67 272.23 188.14 271.71 184.62 

286.6 174.83 283.81 175.43 285.88 179.3 285.43 176.52 

278.34 162.9 278.53 162.27 279.68 165.99 278.85 163.72 

276.51 147.22 276.62 146.63 277.52 150.13 276.88 147.99 

271.83 132.14 267.82 133.61 274.4 134.19 271.35 133.31 

261.11 120.95 257.27 121.82 267.48 119.23 261.95 120.67 

257.04 105.61 253.1 106.63 260.8 104.16 256.98 105.47 

249.28 91.64 249.87 91.18 252.38 89.99 250.51 90.94 

240.76 78.45 238.95 79.92 242.31 77.02 240.67 78.46 

226.36 71.52 224.77 72.81 228.45 68.1 226.53 70.81 

212.97 62.88 212.65 62.76 214.87 58.87 213.5 61.5 

201.26 54.34 200.94 59.74 198.96 59.2 203.16 62.06 

195.99 68.59 197.11 74.72 193.4 74.12 195.5 72.48 
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Table (9) – Computing the gold standard for the sample No. 9 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

190.77 59.4 194.33 61.7 197.68 54.93 194.26 58.68 

183.39 77.38 183.05 76.59 183.76 68.39 184.56 75.08 

180.5 96.56 181.96 95.22 178.11 86.89 180.19 92.89 

182.42 115.95 182.42 114 178.62 106.37 181.15 112.1 

184.83 135.28 186.36 132.36 179.35 125.86 183.52 131.17 

185.35 154.75 188.24 151.03 180.7 145.32 184.76 150.36 

185.34 174.22 187.58 169.81 182.08 164.77 185 169.6 

190.48 192.79 188.65 188.56 184.01 184.14 187.71 188.49 

203.74 206.2 198.73 204.08 191.54 201.17 198 203.82 

206.24 209.6 208.1 209.25 201.67 210.78 205.34 209.88 

222.69 211.34 226.85 207.89 221.17 210.36 223.57 209.86 

242.04 209.05 245.59 206.38 240.64 209.11 242.76 208.18 

261.37 206.6 264.31 204.67 260.07 207.42 261.92 206.23 

280.38 202.54 282.87 201.9 279.45 205.21 280.9 203.22 

293.32 188.47 292.15 187.61 292.02 192.03 292.5 189.37 

301.46 171.53 301.51 171.83 303.24 176.81 302.07 173.39 

297.03 152.65 298.1 153.47 301.48 157.48 298.87 154.53 

289.34 134.75 292.17 135.67 293.52 139.71 291.68 136.71 

280.98 117.15 281.62 120.12 286.05 121.7 282.89 119.66 

272.47 99.63 273.46 103.23 279.23 103.43 275.05 102.1 

262.37 83.11 264.22 86.9 270.56 85.99 265.72 85.33 

249.42 68.61 250.79 73.8 256.52 72.64 252.24 71.68 

233.67 58.18 236.15 62.03 241.77 59.88 237.2 60.03 

216.18 49.77 218.79 54.92 224.65 51 220.24 53.59 

197.74 52.71 200.84 55.01 205.58 49.33 201.39 52.35 
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Table (10) – Computing the gold standard for the sample No. 10 

Observer_1 Observer_2 Observer_3 Gold Standard 

X Y X Y X Y X Y 

206.14 89.47 205.34 93.87 205.74 83.99 205.74 89.11 

201.71 104.52 200.68 108.42 201.07 99.37 201.71 104.31 

201.29 120.36 199.76 123.71 198.16 115.22 199.74 119.76 

201.63 136.2 201.19 138.98 196.61 131.26 199.81 135.48 

199.28 151.77 199.37 154.18 194.63 147.25 197.76 151.07 

196.04 167.07 195.9 168.84 191.32 162.99 194.42 166.3 

184.7 177.9 189 181.43 186.42 178.33 186.7 179.22 

189.31 188.85 189.95 189.12 189.12 190.65 189.46 189.54 

204.82 191.93 205.17 191.09 203.07 193.1 204.36 192.04 

220.58 193.61 220.48 192.37 219.08 194.92 220.04 193.63 

236.39 194.64 235.8 193.33 235.13 196.43 235.77 194.8 

252.22 195.14 251.14 194.03 251.2 197.53 251.52 195.57 

268.07 195 266.49 194.38 267.31 197.96 267.29 195.78 

283.79 193.34 281.82 193.71 283.11 195.64 282.91 194.23 

283.38 181.97 281.11 182.79 284.41 181.75 282.97 182.17 

285.07 166.57 283.92 167.89 287.51 166.35 285.5 166.93 

286.62 151.03 285.66 152.88 289.94 150.85 287.41 151.59 

283.96 135.42 282.21 137.93 284.98 135.55 283.72 136.3 

280.35 119.99 276.53 123.69 278.25 120.91 278.38 121.53 

275.28 104.99 269.46 110.06 271.68 106.2 272.14 107.09 

267.1 91.49 261.44 96.98 265.15 91.49 264.57 93.32 

255.54 80.7 251.29 85.48 253.85 80.18 253.56 82.12 

241.37 74.14 238.07 78.23 240.11 71.85 239.85 74.74 

225.94 77.32 222.96 79.63 224.29 70.17 224.84 75.03 

211.56 83.75 205.34 93.87 210.12 77.27 210.51 83 

 


