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ABSTRACT 

Non-overflow flow-through rockfill structures are river engineering elements used 

to attenuate and delay inflow hydrographs.  They represent expedient places to deposit 

rather enormous quantities of waste rock at mountainous mine sites.  Their application 

has become so common that matters of safety regarding their design have been laid out in 

Section 8.5 of the Canadian Dam Safety Guidelines (CDA 2007). The research described 

herein was directed at investigating the different aspects of the hydraulics of these flow-

through rockfill structures.  

In order to assess the potential for an unraveling failure of flow-through rockfill 

dams, a systematic study of the hydraulic design of these structures was conducted and 

the non-linear nature of flow through these structures was dealt with using a p-LaPlacian-

like partial differential equation.  Subsequently, factors of safety against this type of 

failure are presented for a range of downstream slopes, thus showing the unsafe 

combinations of embankment slope and particle diameter. 

Three different index gradients within the toe of such structures were investigated.  

In this regard, the gradient most suitable for independently computing the height of the 

point of first flow emergence on the downstream face is examined and a method for 

independently computing the variation in hydraulic head within that vertical (which 

allows for the toe of the structure to be isolated) is presented.  An additional gradient that 

allows for the independent estimation of the default tailwater depth is proposed.   

In order to provide better tools to assess the behavior of these embankments at the 

toe, laboratory and analytical studies were undertaken.  In this regard, the hydraulics 

associated with the zone of the downstream toe were studied.  The depth variation of the 

seepage-face was computationally modeled, and two approaches for solving the spatially 

varied flow (SVF) condition problem within the toe region undertaken.  The results show 

that a dual linear variation in depth can be used to good accuracy, without inducing any 

unrealistic exit gradients in the zone of primary concern with respect to unraveling.   

It is hoped that these techniques and computational tools provided herein will aid 

in facilitating the design and assessment of these flow-through rockfill structures. 
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CHAPTER 1 INTRODUCTION 

 

1.1. FLOW-THROUGH ROCKFILL STRUCTURES 

The focus of this thesis is on the hydraulics of flow-through rockfill structures; it 

is therefore necessary to begin with the definition of rockfill hydraulics. A rockfill may 

be defined as a coarse-grained and free-draining material composed of large, loosely-

placed particles (Parkin 1991).  The above definition might vary from author to author, 

based on different standpoints and technical evolutions.  From a hydraulic point of view, 

very small particles cannot be considered part of a rockfill (Martin 1991). In regards to 

friction head losses (open-channel flow), stability and permeability, the behavior of these 

particles under flow action is a subject belonging to classical hydraulics and soil 

mechanics, and does not represent the specific behavior of rockfills.  Martins (1991) 

defines rockfill hydraulics as the “study of the interaction between flow and irregular, 

loose particles, with a characteristic dimension larger than 1 cm”.  Naturally, rockfill 

hydraulics has an interface with the hydraulics of porous media with smaller particles.   

Flow-through rockfill structures are river engineering elements that are often used 

to attenuate and delay inflow hydrographs.  They also represent expedient places to 

deposit rather enormous quantities of waste rock at mountainous mine sites.  These 

embankments are not barrages in the ordinary sense but are rather similar to hydraulic 

structures (spillways) constructed out of very coarse porous media.  They have become 

sufficiently common that matters of safety regarding their design have been laid out in 

Section 8.5 of the Canadian Dam Safety Guidelines (CDA 2007).   

The quantity of flow passing through these ‘structures’ is much greater than that 

of any true dam and consequently, there are two different kinds of failure corresponding 

to these structures: massive failure and unraveling failure.  In order to analyze the 

potential for a massive failure, a limit-equilibrium stability analysis (e.g. Bishop’s 

Method) can be used (Garga et al. 1995).  For unraveling failure on the other hand a 

moment-based analysis of the stability of individual particle(s) under the seepage-face 

can be performed (Hansen et al. 2005).  The most common mechanism of failure for 
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these kinds of structures is often a progressive ‘unraveling’ of the downstream toe 

(Wilkins 1956, Parkin et al. 1966).  This phenomenon process is partly caused by the 

large amounts of seepage exiting under high hydraulic gradients.  Unraveling failure 

results from the initiation-of-motion (IoM) of one or perhaps a few stone particles, which 

in turn impacts particles further down the seepage-face (Figure 1.1), destabilizing them 

into motion, and so on (Wilkins 1956, Parkin 1963, Gerodetti 1981).  This implied 

‘domino effect’ may be overstated because the simultaneous movement of many particles 

at the toe may be just as disastrous (i.e. downstream limit of Bd, see Figure 1.1), 

especially since there may be nothing to prevent the last ‘row’ of particles from moving 

downstream.  The variation and the pattern of the hydraulic head within the entire 

structure is of interest because the rapidity of the variation in this head affects the 

strength of the exit gradient.  The flow or seepage in question is a non-Darcy flow of the 

high-Reynolds-number type.  Figure 1.1 shows an orthometric view and the 

nomenclatures used in this study for a flow-through rockfill embankment.
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Figure 1.1. Orthometric view and nomenclature for flow-through rockfill embankments. 
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1.2. FLOW TAXONOMY 

It is known that flow through porous media is analogous to flow in open-channels 

and can be described using open-channel flow equations if the right parameters are used 

(Bari and Hansen 2002).  In order to study rockfill hydraulics, understanding the 

classification and nature of flow will result in a better understanding of the behavior of 

the flow within rockfill structures.  Figure 1.2 shows the flow classification and the open-

channel flow taxonomy. 

 

Figure 1.2.  Flow taxonomy in open-channel hydraulics. 

Due to the turbulent nature and high flow rate within these structures, the above 

flow taxonomy can also be adapted to rockfill structures (Freeze and Cherry 1979).  For 

example in flow-through rockfill structures, the phreatic surface can be described by a 

gradually-varied flow equation (Harr 1962, Dake 1972, Sturm 2001) and the seepage-

face is described by a spatially-varied flow equation (Sharp and James 1963, Hansen 

1992, Hansen and Roshanfekr 2012b). 
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1.3. OBJECTIVES 

Various studies have covered different aspects of the safety and design of flow-

through rockfill structures, but it appears that little attention has been paid to simplifying 

the design of the internal and downstream face hydraulics of these barrages.  The main 

purpose of this thesis is therefore to study the hydraulics of flow-through rockfill 

embankments and to give additional guidance on the safety and design of these 

structures. 

The research described herein aims to investigate and study the hydraulics, 

‘seepage’ characteristics
1
 and safety of rockfill embankments, as well as to quantify their 

resistance to hydraulically-induced deterioration.  This will concern both the flow inside 

and ‘outside’ of the structure. In the latter case, the downstream toe of the structure poses 

interesting challenges.  The detailed study of the sediment effect, flow in the river reach 

and of the turbulence/eddies around these structures however is not within the scope of 

this research.  In this research six main aspects were investigated: 

1) The variation and pattern of the hydraulic head within the entire structure.   In 

order for an accurate and efficient head determination, two non-linear finite-

difference (FD) techniques for steady-flow analysis were compared with one 

another as well as to the ordinary Darcian case, and recommendations made.  

The relative intensity of the non-linear effect were also quantified using the 

preferred numerical modeling technique.  

2) The parametric investigation of the strength and spatial variations in the 

surficial exit gradient directly under the seepage-face.  Outcomes were used to 

demonstrate how a particle-based Factor of Safety (FS) varies according to 

hydraulic conditions, down to the toe of a given structure with a given 

geometry.   

                                                 

1
 High velocity flows through porous media(s) are not generally thought of as ‘seepage’ even though 

engineering literature on it sometimes appears in volumes that also deal with ordinary seepage.  
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3)  The effects of grid density on smoothness in exit-flowline patterns and the 

marginal benefits of using specialized finite-difference molecules (two 

ancillary contributions).  

4) The use of representative hydraulic gradients in the context of the hydraulics 

of the toe.  In this regard three different gradients were studied: 

a. The gradient most useful in independently computing the height of the 

point of first emergence relative to the foundation. 

b. The gradient appropriate to independently computing the variations in 

the hydraulic head within the point of first flow emergence vertical for 

isolating the toe. 

c. The gradient that will allow the independent estimation of the default 

tailwater depth.   

5) The modeling of the seepage-face over the toe of these structures; 

specifically, the spatial rate of change in depth ( d/dd ) and discharge 

( d/dQ ), and the spatial variations in hydraulic resistance.   

6) The simplification of the downstream boundary conditions of these 

structures. 

 

1.4. RESEARCH OVERVIEW 

This thesis consists of five chapters and references, including three papers, either 

published or under second review for publication, and appendices.  The present chapter 

gives an overview of the overall project, and an introduction to the main topics included 

in the subsequent chapters.  Chapters Two to Four represent journal papers, each 

consisting of an introduction, a literature review, a main body and summary/conclusions. 

The main body of each paper explains the experimental investigations, the results 

obtained from the models, and the semi-empirical equations developed to predict the 

behavior of flow-through rockfill embankments.   Chapter Two presents a p-LaPlacian-

like equation and estimates the factor of safety within the flow-through rockfill 
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structures. In Chapter Three, the use of three index gradients within the toe of rockfill 

embankments is presented.  In this regard, the applicability of the flow-field angle theory 

is verified.  In Chapter Four, the hydraulics of flow within the toe of the rockfill 

embankments is presented.  Chapter Five includes the summary, conclusions, and 

recommendations for future work.  A complete list of references, followed by appendices 

showing derivations, observations and some supplementary data conclude this thesis. 
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CHAPTER 2 ASSESSMENT OF POTENTIAL FOR SEEPAGE-

INDUCED UNRAVELING FAILURE OF FLOW-THROUGH  

ROCKFILL DAMS1 

  

2.1. ABSTRACT 

A purely numerical parametric study of 24 flow-through rockfill dam geometries 

was conducted.  The non-linear nature of the p-LaPlacian-like partial differential equation 

was dealt with using a finite-difference scheme which directly incorporated the exponent 

of a power law that replaced Darcy’s Law.  Convergence, use of specialty nodes, nodal 

density, and boundary condition effects were quantitatively investigated.  The flow-field 

angle of the toe was found to be a useful starting point in studying the potential for 

unraveling failure.  Factors of safety (FS) against this type of failure are presented for a 

range of downstream slopes, thus showing which combinations of slope and particle 

diameter are unsafe.  It is shown that the FS tends to drop below unity under the seepage-

face primarily because of the strength of the exit gradient near the toe of the structure, 

and secondarily because of the overflow velocity.  It is hoped that the techniques and 

results presented will facilitate the design and assessment of flow-through rockfill 

structures. 

Keywords:     seepage modeling, coarse rockfill, unraveling failure, initiation of motion, 

flow-through embankments. 

 

2.2. INTRODUCTION 

Flow-through rockfill dams and drains have various physical manifestations.  As 

the former, they can serve to attenuate and delay inflow hydrographs; in the latter, they 

                                                 

1
 With Permission from ASCE (see Appendix C). 

Hansen D., and Roshanfekr A.  2012a.  Assessment of potential for seepage-induced unraveling failure of 

flow-through rockfill dams.  ASCE International Journal of Geomechanics, 12(5):560-573. 

Note: Numerical modeling works presented in this chapter were carried out by the second author. 
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may simply represent expedient places to deposit rather enormous quantities of waste 

rock at mountainous mine sites.  These embankments are not barrages in the ordinary 

sense, acting more as hydraulic structures (spillways) constructed out of very coarse 

porous media.  They have become sufficiently common that matters of safety to be 

considered in their design are laid out in Section 8.5 of the Canadian Dam Safety 

Guidelines (CDA 2007).  They are embankments only in a loose sense because the 

quantity of water passing through them is far larger than for any true dam, and the 

mechanism of failure is most commonly a progressive erosion or unraveling of the 

downstream toe (Wilkins 1956, Parkin et al. 1966) rather than a pseudo-rotational failure.  

This process is due to the large amount of seepage that exits under relatively high 

hydraulic gradients, although deep-seated failure is also possible (Garga et al. 1995). 

The idea of unraveling failure is that the initiation-of-motion (IoM) of a few 

stones results in impacts on particles further down the seepage-face (Figure 2.1), 

destabilizing them into motion, and so on (Wilkins 1963, Gerodetti 1981).  The implied 

domino effect may be overstated because the simultaneous movement of many particles 

at the terminus of the toe may be at least as disastrous (i.e. downstream limit of Bd in 

Figure 2.1), especially since there may be nothing to prevent this last ‘row’ of particles 

from moving downstream.  In any case, the toe of such structures (that above Bed) is the 

primary zone of engineering concern (Hansen et al. 2005). 

 

Figure 2.1.  Nomenclature for rockfill dam of width Bw with constant flow Q passing 

through it. 
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The variation in and pattern of hydraulic head
1
 within the entire structure is of 

interest because the rapidity of the variation in this head affects the strength of the exit 

gradient.  The flow or seepage in question is non-Darcy flow of the high-Reynolds-

number type.  In the interests of accurate and efficient head determination, two existing 

non-linear finite-difference (FD) techniques for steady-flow analysis are compared to 

each other and to the ordinary Darcian case, and recommendations are made.  The 

relative intensity of the non-linear effect is quantified using the preferred numerical 

modeling technique.    

The most important outcome presented herein is of a parametric investigation of 

the strength and spatial variation in the surficial exit gradient that is directly under the 

seepage-face.  It is used to show how a particle-based Factor of Safety (FS) varies 

according to hydraulic conditions, down to the toe of a given structure with a given 

geometry.  Finally, two ancillary contributions are made: the outcomes of studies of the 

effect of grid density on smoothness in exit-flowline patterns and the marginal benefit 

accrued by using specialized finite-difference molecules.  It is hoped that these various 

numerical tools and computational aids will facilitate the efficient assessment and design 

of flow-through rockfill structures, as a particular class of geo-hydraulic structure. 

 

2.3. THEORETICAL BACKGROUND 

The ability to determine the internal pattern of, or spatial variation in, the 

hydraulic head for a given set of external boundary conditions is fundamental to the 

analysis of flow-through rockfill structures.  Through a parametric study of a range of 

geometries, knowledge of this pattern was used in three ways (described in the following 

sections): 

(i) to compare outcomes from two different FD models, (ii) to assess the degree of ‘non-

Darcy-ness’ via comparison with head patterns found for ordinary (Darcian) seepage 

                                                 

1
 h = z + p/, sometimes called piezometric head, often called total head (see complete review of the 

semantics in Hansen 2003).  The scalar of interest herein is h. 
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scenarios, and (iii) to study subtleties in the exit-face gradients and associated flow-lines, 

shown to dominate unraveling potential by Hansen et al. (2005). 

Apart from the choice of numerical method (FD, FEM, FV, or BIEM) there are 

two primary methods for modeling high-Reynolds-number non-Darcy flows, if the 

widely-used FD method is selected
1
.  Parkin et al. (1966) and Curtis and Lawson (1967) 

did the seminal work for this class of boundary-value problem.  A detailed derivation of 

their expressions (referred to herein as the PCL expressions) with corrections to the 

original work, can be found in Hansen (1992).  The PCL partial differential equation is: 
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 [2.1] 

Equations of the form of equation [2.1] are often referred to as p-LaPlacian partial 

differential equations (cf. Vazquez 2007).  The associated 9-point PCL FD form is (cf. 

Figure 2.2): 

   3275311C TThhhhTh   [2.2a] 

where: 

 
 1N2

1
T1


  [2.2b] 

 
 
 1N2

1N
T2




  [2.2c] 

 
 2
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737384627351

2

51513

)hh()hh(/

)hh)(hh()hhhh)(hh)(hh(5.0)hh)(hh(T





  [2.2d] 

As expected, setting N
/
 = 1.0 (= 1/N, see equation [2.5]) causes the PCL 

expressions to revert to the familiar expressions used to model 2-D Darcian flow through 

isotropic homogeneous media (e.g. Freeze and Cherry 1979): 

                                                 

1
   Spreadsheets have been shown by a number of investigators, to be a highly efficient way to perform the 

2-D steady-flow analysis in question (e.g. Kleiner 1985, Olsthoorn 1985, Townsend et al. 1991). 
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  7531C hhhh
4

1
h   [2.4] 

 

a) ‘molecule’ style schematic of nine-point scheme. 

 

b) corresponding body-centered coverage. 

Figure 2.2.  FD molecule and associated areal coverage. 

Townsend et al. (1991) compared experimentally measured heads with heads 

modeled using equation [2.2], and obtained good results.  However, a disadvantage of the 

PCL FD expression is that it is only good for internal nodes
1
.  Another way of handling 

this class of steady-flow problem has been described by Kells (1995).  It represents an 

adaptation of a modification to Darcy’s Law suggested by Cedergren (1989).  One way to 

make Darcy’s linear law into a non-linear law is simply to use a non-linear hydraulic 

                                                 

1
 Neither the Australian researchers nor Townsend et al. 1991 presented any non-Darcy expressions for 

non-internal nodes, the derivation of which may be intractable, given the complexity of the simple internal-

node case.  
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conductivity (NLHC).  It can be readily shown that if this non-linearity is controlled by 

the local hydraulic gradient, outcomes are identical to the non-linear (power function) 

version, for simple cases.  One non-linear power function used for non-Darcy flow 

(Parkin et al. 1966) is: 

 NVi   [2.5] 

where: 

= coefficient, 

N= exponent with value between 1 (laminar flow) and 2 (fully turbulent flow), 

i= hydraulic gradient (dimensionless), 

V= bulk velocity (L/T). 

Darcy’s Law may be stated as V = K∙ i.  The apparent hydraulic conductivity (K) 

is accounted for using (see Appendix A): 

  iK  [2.6] 

then from equation [2.5] it follows that: 

 
N
1

1










  [2.7] 

and that: 

 1
N

1
  [2.8] 

As a matter of fundamental fluid mechanics (and that not restricted to flow 

through porous media) it is worth noting that fully-developed turbulence (FDT) is 

associated with N = 2.  This implies that  = -0.5 for FDT, from equation [2.8]. 

Some researchers have used a gradient-dependent hydraulic conductivity (e.g. 

Cedergren 1989, Kells 1995) for high-Reynolds-number flows, and this normally 

necessitates a separate but head-linked matrix or grid in which the hydraulic conductivity 

is updated iteratively.  However, if equation [2.5] is incorporated into the continuity 

equation, the following expression results (referred to herein as the NLHC expression, the 

derivation of this p-LaPlacian-like PDE can be found in Appendix A): 
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 [2.9] 

Equation [2.9] is a specific simplification of equation [2.1].  In the development 

of equation [2.9] it is assumed that the hydraulic conductivity is a function of the 

magnitude of the gradient in each orthogonal direction, not the magnitude of the 

hydraulic gradient as a vector, as in equation [2.1] (Curtis and Lawson 1967, Kells 1995).  

Table 2.1 summarizes prior numerical work on steady non-linear flow through rockfill 

banks and embankments. 

Temperature and heat conduction represent direct analogues of hydraulic head 

and seepage.  Various investigators have used the idea of non-linear heat conduction and 

have come up with expressions similar to equation [2.9].  Polyanin and Zaitsev (2004) 

classified heat flow problems as being governed by linear and non-linear PDE’s, with the 

non-linear problems having either a power-law non-linearity (as above) or an exponential 

non-linearity.  Gao and Li (1996) successfully examined non-linear thermal conduction in 

granular composite materials using a conductivity equation of the form K=a+bi
2
 (where a 

and b are constants).  Tanigawa et al. (1996) studied transient heat conduction and 

thermal stress problems in a non-homogeneous plate with temperature-dependent 

material properties, also with good success. 
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Table 2.1.  Previous investigations of flow-through rockfill structures. 

Investigator(s) No. of Reported Dam 

Geometries, 2-D 

Shape, and Flow 

Condition(s) 

Numerical 

Method 

Notes 

Curtis and 

Lawson (1967) 

one, long rectangular, 

partial overflows 

finite-difference no sloping seepage-face 

Volker (1969) one, trapezoidal, h¾H 

non-overflowing 

finite element heads modeled with and 

without internal wall
1
 

Parkin (1971) one, trapezoidal, h=H 

non-overflowing 

finite element
1
 one-third of downstream 

side submerged by 

imposed tailwater  

Townsend et 

al. (1991) 

one, trapezoidal, h=H 

non-overflowing 

finite-difference heads modeled with and 

without impermeable 

facing
2
 

Kells (1995) one, long rectangular, 

complete overflow 

finite element no sloping seepage-face; 

full SVF analysis of 

increasing and decreasing 

dQ/dx (over long crest)
3
 

1.  Phreatic surface found automatically.  Some seepage-face flow but no details on its modeling.   

2.  Seepage-face present, modeled as a triangular overflow (as herein).  Phreatic surface independently 

determined and modeled. 

3.  With some of the behavior being opposite to the seepage-face problem presented herein.  

 

Jardin et al. (2008) studied 1-D diffusion problems at temperatures that 

necessitated a gradient-dependent diffusion coefficient.  The work was done in polar 

coordinates and used K = a(i - icrit)
0.5

 plus a constant to describe the gradient-dependent 

conduction component of this coefficient.  The magnitude of the gradient was taken to be 

in the orthogonal directions in said study.  Several investigators have used a temperature 

dependent thermal conductivity (e.g. Munier et al. 1981, Budd and Collins 1998, DeLillo 

et al. 2006) and in doing so some used the absolute value of the temperature within a 

non-linear power-law heat equation (e.g. Souplet and Weissler 2003, Vazquez 2007).  

The range of the ψ exponent in equations of the form of [2.9] for which some solution 

exists is -1 < ψ (or p-2) < +∞ (where p is the power constant in the p-LaPlacian PDE, 

Esteban et al. 1988).  This range contains ψ = -0.5.  In principle, there is no difficulty in 

applying finite-difference methods to such non-linear systems but the resulting FD 

equation also becomes non-linear and can be difficult to solve (Özisik 1993 and Smith 

1978). 
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Various finite-difference approximations or schemes are available for non-linear 

problems.  These include the lagging of scalar-dependent properties by one time step, the 

use of three-time-level finite-differentiation, and various linearization procedures.  A 

simple FD scheme may be developed using central differences in order to solve equation 

[2.9] based on only the orthogonal neighbors of Ch  (i.e. a scheme in which the corner 

locations in Figure 2.2 are omitted).  Estimating the gradients and gradients-of-gradients 

in equation [2.9] as follows: 

 0
y

hh2h

y2

hh

x

hh2h

x2

hh
2

7C373

2

5C115 


















 [2.10a] 

and assuming that the nodes in the grid are of equal size (x = y, herein), 

     0hh2hhhhh2hhh 7C3735C115 


 [2.10b] 

the following expression arises: 

 









7315

737155733151

C

hh2hh2

hhhhhhhhhhhh
h  [2.10c] 

The merits of the NLHC approach are that:  (i) both theoretical literature and 

experimental data exist on the empirical quantities  and N and hence  and  (e.g. flow 

quantity Wilkins 1956, phreatic surface Basak 1977), (ii) the quantities  and N can be 

formally determined from the two coefficients used in an alternate non-linear form 

commonly adopted by chemical and mechanical engineers– a zero intercept 2
nd

 order 

polynomial – the so-called Forchheimer equation or form (George and Hansen 1992), and 

(iii) it can be readily adapted to the various kinds of non-internal nodes that are needed in 

most civil engineering applications.  Such adaptations are needed at irregular boundaries 

(of both the impermeable and phreatic-surface type) and in order to carefully follow 

upstream and downstream slopes, especially those that represent non-integer rates of 

decline for the slope of interest (e.g. not 1V:2H, 1V:3H, etc.).  Furthermore, the lower 

two-thirds of the downstream slope will usually have the complication of being under the 

seepage-face, in which case the imposed bounding condition is the sum of the exterior 

head implied by the thickness of the seepage-face (which increases down the face) and 
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the elevation head (which decreases down the face).  Finally, (iv) a 3-D version of 

equation [2.10] can be readily written, if desired. 

Expressions for the various special cases will now be presented.  Figure 2.3 shows 

two cases of contiguous proximity to impermeable boundaries. 

 
a) node adjacent to impermeable surface. 

 
b)  node at intersection of impermeable surfaces

1
. 

Figure 2.3.  Example FD molecules next to impermeable surfaces. 

                                                 

1
 The corner FD molecule shown in Figure 2.3b was not needed in this research because this ‘corner case’ 

did not exist for the 2-D cases studied herein. 
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The expression used herein for cases/positions associated with Figure 2.3a is: 
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and with Figure 2.3b is: 
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The case of positions adjacent to the phreatic surface (the slope of which changes 

continuously), or of positions adjacent to the seepage-face, can be handled as follows. 

 
a) one intra-nodal cut.  

 
b) two intra-nodal cuts

1
. 

Figure 2.4.  FD star for nodes adjacent to phreatic surface or seepage-face. 

                                                 

1
 The corner FD molecule shown in Figure 2.4b was not needed in this research because this ‘corner case’ 

did not exist for the 2-D cases studied herein. 
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The expression associated with Figure 2.4a used in the analysis described herein is: 
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and with Figure 2.4b is: 
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where: 

X = centre-to-centre distance between hC and /

1h  in y direction, divided by global 

x, i.e. X=(distance from hC to 1h )/global x, 

Y = centre-to-centre distance between /

3h  and hC in x direction, divided by the 

global y, i.e. Y=(distance from hC to 1h )/global y (not needed herein). 

The phreatic surface case is a sub-set of the case of having a series of imposed 

hydraulic heads, only that said heads consist entirely of elevation head.  Equations [2.12a 

and b] are modifications of the linear flow versions presented by others (e.g. Southwell 

1946, Kleiner 1985). 

 

2.4. GEOMETRIES CONSIDERED AND BOUNDARY CONDITIONS USED 

Twenty four hypothetical flow-through dams were modeled (Figure 2.5).  These 

had the following characteristics:  (i) An upstream slope of 1V:1H in all cases.  (ii) 

Heights defined in terms of crest-width, namely, as H = 0.5 BC, 1.0 BC, 2.0 BC, and 3.0 

BC.  (iii) A crest-width that could be easily set to a coarse and integer nodal density.  If 

the crest of the structure is used as a means for vehicles to cross the stream or river, a 

value of 15 m would be a common width for the total right-of-way.  Therefore, making a 
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node 1 m by 1 m would result in a suitably coarse yet simple density, with 15 nodes 

making up the crest.  (Much higher nodal densities were, however, also investigated.)  

(iv) A range of downstream slopes, from 1V:1H to 1V:6H.  From the point of view of 

unraveling failure and based on prior experience, it was expected that this would 

encompass a suitable range of factors-of-safety, from below unity to above unity. 

With regard to boundary conditions, three different relative magnitudes of hTW 

were imposed a priori at the downstream toe, namely:  hTW /H = 0.05, 0.10, and 0.20.  

The variation in the seepage-face ‘thickness’ was then assumed to vary linearly from zero 

to the implied hTW value.  This is usually an acceptable approximation (Hansen 1992) but 

is the subject of on-going research, as an interesting spatially-varied flow (SVF) problem 

first investigated by Sharp and James (1963).  The values of the bounding nodes making 

up the seepage-face and directly beside the porous media nodes of the downstream face 

were therefore set at: 

  
 

w

SF
SFSF

p
zh





  [2.13] 

where: 

hSF = local seepage-face head (L), 

zSF(ℓ) = elevation of seepage-face; varies from zero at  ℓ = ℓSF to ℓ = 0 at yexit (L), 

pSF(ℓ)/w = pressure head
1
 (also a function of position on face), magnitude varies 

from zero at ℓ = 0 to hTW at ℓ = ℓSF (L), 

w = unit weight of water (F/L
3
). 

Finally, the maximum upstream water-level (hus) allowed in any given case was 

made equal to the height of the dam (H).  Overflow is imminent beyond this upstream 

depth; being a highly undesirable condition (CDA 2007) it was not considered. 

The envelope defining the entire flow-through zone is incomplete without 

knowledge of the elevation of the point of emergence as well as of the path of the 

phreatic surface behind it.  The yexit of the model dams was determined using the concept 

of the angle of the emergent flow field, ff (Hansen et al. 2005), together with the 

equation of Stephenson (1979) - as per earlier findings on the performance of various 1-D 

                                                 

1
 pSF(ℓ)/w = ycos

2
 where y is measure orthogonally to the foundation, also see Figure 4.16. 
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non-Darcy flow equations (Hansen et al. 1995).  Since y = q/V is an identity for open-

channel flow and q was uni-valued (= Q/L), then yexit = q/V.  For: 

Stephenson (1979) i
K

gd
nV

steph

  [2.14a] 

where: 
angRe

800
KSteph   [2.14b] 

so: 2

2

steph
V

gdn

K
i   (i.e. a form of equation [2.5]) [2.14c] 

It follows that: 

exit

steph

exit

i
K

gd
n

q
y   [2.15] 

where: 

ang = empirical constant ranging from 1 for spheres to 4 for angular stone (L/T), 

Re = Stephenson’s particle Reynolds number (=Vd/n), 

n = porosity (dimensionless), 

d = particle diameter (L)
1
, 

iexit = hydraulic gradient most suitable for use in finding yexit (dimensionless). 

In Leps’ (1973) summary of various geo-hydraulic design methods extant for this 

class of structure, it was re-presented that a practitioner’s approximation of the 

representative hydraulic gradient acting within the toe and for use in equation [2.15], or 

similar, is simply tan.  Hansen et al. (2005) introduced the idea of a variable angle ff 

for this emergent flow field and showed that the following equation performs better than 

tan, when used to estimate yexit: 

                                                 

1
 It is possible to dramatically change the apparent permeability of a porous medium without changing D50.  

This can be done by making the particle gradation well graded (poorly sorted), so that both much smaller 

(and much larger) particles are present.  This has the effect of decreasing permeability because a given void 

space created by some large(r) particles is filled in with small(er) particles.  However, the more efficient 

packing of mass that is implied by this kind of gradation results in a decreased porosity (and porosity is a 

part of the Stephenson equation).  Theoretically and according to the so-called capillary model of flow 

through porous media, it can be shown (Hansen 2004) that the representative pore size, known as the 

hydraulic mean radius (Taylor 1948), is m=ed/6 for spherical particles.  Since e=n/(1-n), m=nd/6(1-n), 

indicating that accounting of this effect in the Stephenson (1979) equation is imperfect.  Regardless, if D50 

is used in the equation, the medium should be “poorly graded” (nearly uni-sized), as it was herein. 
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 17.0
H

y
41.1 exitff 




 [2.16] 

where: 

yexit= exit height (L), 

H= height of dam (L), 

ff= angle of emergent flow field (see Figure 3.2), 

= angle of downstream toe (see Figure 2.1). 
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Figure 2.5.  Geometries used in parametric study; downstream slopes are (by row) 1V: mH.  With 1V:1H upstream slope.
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Equation [2.16] was so used in equation [2.15] to obtain yexit and was the starting 

point for calculation of the phreatic surface in the upstream direction.  The existence of 

the phreatic surface makes this a so-called free-boundary problem.  If the Finite Element 

Method (FEM) is used to solve this class of boundary value problem, an initial position 

for the phreatic surface is provided to the mesh and then various options may be used to 

'home in' on the correct position of the free boundary.  Desai (1972) used the FEM to 

solve the unsteady Darcian embankment-seepage problem.  The initial position of the 

moving surface was imposed and an increase in the head at the upstream end propagated 

downstream through the problem, with the position of the moving surface found by using 

a combination of the previous surface and an updated field velocity component.  Desai 

(1973) used the FEM to solve the steady-state Darcian embankment seepage problem. 

 The free surface that satisfied the zero normal-velocity condition, while minimizing the 

overall flow-field energy, was found.  Volker (1969) used the same method to locate the 

free surface, but for a trapezoidal embankment of prismatic cross-section.  Desai and 

Sherman (1971) used the FD method to study transient seepage.  The initial position of 

the moving surface was imposed and an increase in the head at the upstream end 

propagated downstream through the problem, with the position of the moving surface 

found using a combination of the previous surface and the updated field-velocity 

component.  In this study the position was independently and easily determined using the 

porous media analogue of gradually-varied open-channel flow theory (cf. Hansen et al. 

2005), a priori, and then simply imposed on the FD grid.  The details of the analytical 

expression applicable to prismatic sections, and of the numerical approach needed when 

the valley in which the dam resides is non-prismatic, are also presented in Hansen et al. 

(2005). 

 

2.5. ASSESSMENT OF MAGNITUDE OF NON-DARCY EFFECT 

It was found that the effect in question could be masked by insufficient 

convergence of the numerical outcomes.  Figure 2.6 shows the outcome of a 

representative study of the convergence of one of the numerical solutions, a process 

sometimes referred to as ‘grid relaxation’ (Southwell 1946).  All 24 grids were similarly 
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relaxed to a high degree of convergence.  In Figure 2.7a the outcomes for the PCL and 

NLHC methods of modeling are compared.  In Figure 2.7b the outcomes for laminar and 

fully-developed turbulent flow modeling are compared.  Figure 2.7a shows that there is 

very little difference between hydraulic heads found using the PCL approach and the 

NLHC method of modeling using equations [2.10] through [2.12], where both are cases 

of completely non-Darcy flow (N=2).  Figure 2.7b shows that there is also little 

difference between hydraulic heads found using equation [2.4] for flow governed by 

Darcy’s Law (in concert with its various special cases) compared to that modeled via 

equations [2.10] through [2.12] for completely non-Darcy flow.  Figure 2.7b also shows 

that:  (i) non-Darcy hydraulic heads are higher than those found using the assumption of 

linear Darcian flow, (ii) that the difference between these heads is not large, and that (iii) 

it always increases toward the toe of the structure (the part of the dam most prone to 

unraveling failure).  Finally, due to the fact that the non-Darcy free surface is always 

slightly higher than the free surface associated with laminar flow, there is a narrow zone 

in which the ratio cannot be computed.  The imposed non-Darcy free surface found using 

methods described in Hansen et al. (2005) and was indeed higher than the upper limit of 

the shaded areas in Figure 2.7b, but imperceptibly so as presented. 

 

Figure 2.6. Convergence (grid relaxation) of model dam with 1800 nodes, using 

change in head at centrally-located interior node as indicator. 
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a) comparison of PCL and NLHC methods of modeling hydraulic head (ratio of NLHC 

results to PCL results for mid-size dam, H/BC = 2.0, 1V:2H). 

 

b) comparison of modeling outcomes for two extremes of turbulent intensity; none 

(laminar, N=1 in equation [2.5]) and fully-developed turbulent flow (N=2). Ratios shown 

in legends were found using ratio of heads from N=2 case to heads from N=1 case. 

Figure 2.7.  Ratios of hydraulic heads for two pairs of cases. 

 

2.6. GRID FINENESS (NODAL DENSITY) EFFECT 

A given finite area of porous medium, typically considered in 2-D, can be 

represented by few nodes or by many.  The effect of this density was of interest because a 
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coarse representation of the problem numerically will result in a low level of detail and 

even in rather erratic outcomes.  The latter are manifested by flow-lines that undulate and 

by spatially-fluctuating hydraulic gradients.  The density can be defined by how many 

nodes correspond to, or are used to construct, a unit dimension.  In this study and as was 

shown in Figure 2.5, the nominal dimension of BC in Figure 2.1 was 15 units, in all cases.  

Three densities were tested.  Using BC as the reference quantity, these corresponded to 15 

nodes, 30 nodes, and 75 nodes being used to construct BC.  (If the nominal dimension of 

15 is intended to represent 15 physical meters, the associated sizes considered for a single 

node were  = 1 m,  = 0.5 m, and  = 0.2 m.) 

Figure 2.8 shows qualitatively that making the mesh finer reduces undulations in 

the flow-line pattern near the seepage-face, especially near the point of emergence.  The 

benefit of increasing nodal density was smaller than expected.  However, the upper-most 

example in Figure 2.8 shows inward flow, which is physically unrealistic. 

 

2.7. BENEFIT OF USING SPECIALIZED FD MOLECULES 

Figure 2.4 illustrates the situations wherein certain irregular ‘permeable’ 

boundaries are present, such as at the phreatic surface and the seepage-face.  Although 

slopes with integer regularity in the manner in which the elevation drops can be easily set 

up in a step-like manner (1V:1H corresponding to 45°, 1V:3H corresponding to 18.4°, 

etc), even this kind of regular stepping can be handled more carefully.  The example in 

Figure 2.9 shows where the minor discrepancy exists between a truly continuous 1V:2H 

slope and a slope simply modeled using one vertical drop in x for every two horizontal 

shifts via y.  This minor discrepancy can be remedied through the intermittent use of the 

special FD molecules (Figure 2.4) and the associated expressions (equations [2.12a and 

b]), but it was considered of interest to see how much difference this additional attention 

to detail would make, and for a range of nodal densities.  The study of this discrepancy 

was considered to be representative of the question of how much benefit might be 

accrued by using any one of the special molecules shown in Figure 2.4. 
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Figure 2.8.    Nodal density effect on exit flow-line patterns; equation [2.12a] for special 

FD molecule used where needed.  H/BC = 2.0 and slope 1V:2H. 

 

Figure 2.9.  Example of integer slope with regular drop. 
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In comparing the top of Figure 2.10 with the top case of Figure 2.8 (and 

correspondingly for the middle and bottom cases), it qualitatively appears that the use of 

specialized FD molecules under the seepage-face does not obviate the undesirable effects 

of using a coarsely-defined grid.  Conversely, it qualitatively appears that the benefit 

accrued from using a fine grid make it unnecessary to use specialized FD molecules 

under the seepage-face. 

In the current study, block-centered nodes were used.  Although use of special 

computational molecules can help to get a better representation of the slope of the 

downstream face of the phreatic surface, these will not completely resolve the issue.  

Figure 2.11 shows that the special nodes reduce the jaggedness of the line representing 

the downstream face of embankment, but do not eliminate it. 

As can be seen from Figure 2.12 the curve describing the exit angle of the local 

seepage vector is smoother for the truncated-arm case
1
.  However, the difference in the 

two exit angles is everywhere small. 

                                                 

1
 Truncared-arm is when special molecules are used for the downstream toe (also see Figures 2.11) 
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Figure 2.10.   Nodal density effect on exit flow-lines for case of no special FD molecules 

at all; H/BC = 2.0 and slope = 1V:2H. 
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a)  no specialty nodes used in downstream face. 

 

b)  0.5∆x (≡0.5∆y) specialty nodes used in downstream face. 

Figure 2.11.  Illustration of benefit of selective use of half-nodes on downstream face. 

Figure 2.12 shows a comparison of the exit gradient directions for a grid in which 

no specialty nodes are used and one in which 0.5∆x (≡0.5∆y) nodes are incorporated. 
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Figure 2.12.   Minimal effect of using specialty node on direction of exit hydraulic 

gradient for ∆ =1, H/BC = 2.0 and slope = 1V:2H. 

 

2.8. EXIT GRADIENT MAGNITUDE AND DIRECTION 

A more quantitative study of the magnitude and direction of the exit gradient next 

to the seepage-face was undertaken.  This gradient has previously been found to play a 

powerful destabilizing role with respect to the initiation-of-motion (IoM) of particles 

residing on the surface of the downstream toe (Hansen et al. 2005).  Using central 

differences, the general expression for the absolute magnitude of this gradient is: 
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Figures 2.13 and 2.14 show the effects of mesh size on the strength and direction 

of the exit gradient.   

 

Figure 2.13.   Mesh-size effect on exit hydraulic gradients with use of specialty node.  

Case of H/BC = 2.0 and 1V:2H ( = 26.6 º). 
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Figure 2.14.   Mesh size effect on exit hydraulic gradients, with no specialty node used.  

Case of H/BC = 2.0 and 1V:2H. 

Figures 2.13 and 2.14 imply that seepage exits outwardly, at an angle of between 

12° and 29°, relative to the plane of the downstream toe (see angle of Fseep in Figure 

2.15).  Figures 2.13 and 2.14 also show that on the upper one-third of the face, the 

hydraulic gradient vector is more inward, relative to the plane of the face, and lower in 

absolute magnitude.  This is significant because any gradient vector which is more 

outward as well as higher in magnitude is more important as a destabilizing force causing 

IoM and unraveling.  Figures 2.13 and 2.14 also show that (i) using a coarse grid results 

in some unreliable point-value outcomes for the magnitude of the local hydraulic-

gradient vector, as well as for the associated direction of this vector, on the upper one-

third of the seepage-face, (ii) using a fine grid does not necessarily result in reliable point 

outcomes for said magnitude and direction even if specialized nodal definitions (equation 

[2.12]) are used throughout, and (iii) if accurate exit gradient vectors are needed for the 

entire seepage-face, both a fine grid and specialized nodal definitions should be used. 
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2.9. INITIATION OF MOTION THRESHOLD (UNRAVELING POTENTIAL) 

The initiation of motion (IoM) of a single rock particle under the seepage-face is 

the beginning of so-called unraveling failure.  This initial disruption is driven by the same 

forces that bring about the continued movement and rapid disaggregation of the entire 

surface, as part of an artificial deposit of porous media – the force associated with the 

exiting seepage, and the force caused by the flow moving down over it, of length ℓSF 

(Figure 2.1).  The former may be quantified using the fundamental principle describing 

seepage forces that Fseep/unit = w.i, and the latter using the well-known equation for the 

drag exerted by a fluid that is moving past a bluff body.  With various qualifications these 

forces can be applied through moment-arms that depend partly on the particle size.  The 

only stabilizing moment is that associated with the submerged weight of the particle (see 

Figure 2.15 and Hansen et al. 2005 for further details). 

Using the first six previously-mentioned 24 geometric configurations (column 1 

in Figure 2.5), a fairly comprehensive study of the IoM threshold under seepage-face 

conditions typical of flow-through rockfill dams was undertaken, based on the theoretical 

framework presented in Hansen et al. (2005), cf. Stevens and Simons (1979).  Three 

particle diameters, three overflow velocity variations, and a single imposed tailwater 

level (hTW/H of 0.05, the most severe relative tailwater) were considered, leading to 54 

IoM outcomes.  The outcomes for the FS for the higher relative tailwater levels of 0.10 

and 0.20 were found to be markedly higher and are not presented herein.  A rock particle 

was approximated as a sphere and was assumed to lie in the plane of the downstream face 

such that it was one-half exposed. 

The expression for the Factor of Safety for the moment-based IoM of a single 

particle is: 

 
 




sinFF5.0

cosW
FS

seephyd

sp
 [2.19a] 

    
6

d
W

3

wPpwPsp


  [2.19b] 



 

36 

 
2

U
ACF

2

Dhyd   [2.19c] 

 i)e1(F wPseep   [2.19d] 

where: 

Wsp= submerged weight, 

Fhyd= hydraulic force (from drag and shear), 

Fseep= seepage force, 

CD= drag coefficient (dimensionless), varied according to Re (see  

Hansen et al. 2005), 

A= area of forward projection of the object (L
2
), 

U= velocity of uniform infinite flow field impinging upon object (L/T), 

ρ= fluid density, 

d= particle diameter (L), 

P= volume of the particle (L
3
), 

e= void ratio (dimensionless), 

W = unit weight of water (F/L
3
), 

P= unit weight of the particle (F/L
3
), 

i= hydraulic gradient (dimensionless), 

= angle of the toe of the dam, 

 = local angle of seepage vector (Figure 2.15). 

 

Figure 2.15.   Particle position and seepage force direction in the downstream face 

(adapted from Hansen et al. 2005). 
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Since the hydraulic modeling of SVF, as an open-channel hydraulics problem, 

was beyond the scope of the work described herein (although it is discussed in Chapter 

4), and represents a distinct algorithm, U(ℓ) was not modeled for each seepage-face.  

Rather, a range of likely U values was assumed for use in equation [2.19], so that: (i) the 

relative effect or importance of U could be assessed, and (ii) an analyst having U(ℓ) from 

independent SVF outcomes could quantitatively still see its effect for a U of interest.  The 

local velocity U was found from knowledge of hTW and the local depth arising from the 

assumption of a linear variation from the point-of-emergence (zero depth) to the depth 

hTW at the toe, as: 
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from which:  
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where: 

U(ℓ)= local mean velocity within seepage-face (L/T), 

hTW= tailwater depth at toe of dam (L), 

Q= total discharge through dam (L
3
/T). 

Figures 2.16 through 2.18 show the results of the above initiation-of-motion 

analyses.  The hydraulic gradients under the seepage-face were extracted from part of the 

parametric study.  Figure 2.19 summarizes the variation in the low-end values of the 

factors of safety for slopes flatter than 1V:1H. 
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Figure 2.16.   Factor of safety as a function of exit gradient for dams with H/BC = 0.5, for 

three velocities at toe of seepage-face.  Particle diameter = 0.1 m.  (See also Figure 2.19 

for selected low-FS endpoints of 3 m/s cases.) 
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Figure 2.17.   Factor of safety as a function of exit gradient for dams with H/BC = 0.5, for 

three velocities at toe of seepage-face.  Particle diameter = 0.3 m. (See also Figure 2.19 

for selected low-FS endpoints of 3 m/s cases.) 
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Figure 2.18.   Factor of safety as a function of exit gradient for dams in parametric study 

with H/BC = 0.5, for three velocities at toe of seepage-face.  Particle diameter = 0.6 m. 

(See also Figure 2.19 for selected low-FS endpoints of 3 m/s cases.) 

 

Figure 2.19.   Worst case factors of safety as a function of exit gradient for dams in 

parametric study with H/BC = 0.5 (for three particle diameters and U = 3 m/s). 
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2.10. SUMMARY AND CONCLUSIONS 

It was found that the non-linear flow effect on head is a small effect.  The 

parametric study revealed that the heads associated with fully-developed turbulent flow 

will never be more than about 10% larger than those associated with laminar flow, and 

that over most of the 2-D modeling space(s) of interest, the difference is much less than 

10%.  As an incidental outcome and with regard to studies directed at measuring the 

magnitude of the head itself, this implies that the physical modeling of flow-through 

rockfill dams is difficult if not pointless unless the physical model is very large
1
.   

Starting with an exit height represented by 18 nodes, it was found that quintupling 

grid density had little effect on the visual smoothness in exit-flowline patterns.  It was 

also found that the direction of these exit flow-lines was little affected by using specialty 

nodes at regular intervals in the FD molecules. 

It was confirmed via the work described herein that the toe of such structures is 

the primary zone of engineering concern.  The particle-based FS was found to decrease 

very dramatically as the distance to the toe decreased (as ℓ becomes equal to ℓSF in Figure 

2.1).  As the velocity of the overflow approached 3 m/s, this caused the FS to drop 

dramatically and approach unity, regardless of the magnitude of the local hydraulic 

gradient, as determined where the seepage exits into the seepage-face. 

The severity of this overflow effect was greater for flatter slopes, which is perhaps 

non-intuitive.  The reason, however, that the drop in FS with increasing overflow U is 

greater for flatter slopes is that flatter slopes have inherently smaller exit gradients, 

                                                 

1
 The non-linear hydraulic conductivity model outcomes do show a smooth variation in head between the 

imposed boundary conditions. If the porous medium had been sand and the heads modelled via numerical 

solution of the LaPlace equation, the general level of confidence with that kind of modeling effort would be 

high and the resulting internal heads would not be questioned, because that problem is relatively trivial. 

Since modelled non-Darcy ‘flow nets’ are little different from Darcian flow nets (PCL 1966, 1967), and the 

heads modelled herein indeed varied smoothly from the upstream boundary condition to the downstream 

boundary conditions, a good measure of confidence in the results was implicitly present, especially since 

the correct non-Darcy phreatic surface was imposed a priori. 

For a physical model 500 mm high (300 mm herein), the amount of discrepancy between the Darcian and 

non-Darcian cases would be 2-3 mm in the centre of structure (150 mm to 250 mm above the floor of the 

flume).  Therefore, unless a given piezometer can be positioned to within a millimeter in the vertical and 

can then clearly resolve heads at the millimeter scale, it will even be quite difficult to distinguish between 

non-Darcy and Darcian conditions.  Such internal head measurement was therefore not attempted in the 

Dalhousie Hydraulics Laboratory. 
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tipping the effect of the denominator within the FS expression toward the effect of U and 

away from iexit.  Furthermore, the dams with particle diameters higher than 0.3 m and flat 

downstream faces flatter than 1V:2H all had worst-case FS values of greater than 2. 

An important outcome presented herein is of the strength of the surficial exit 

gradient that is directly under the seepage-face, as a force destabilizing particles residing 

on this surface.  This gradient was not found to exceed about 0.75, in any of the cases 

considered.  This however is enough to destabilize particles smaller than about 0.3 m in 

diameter, especially as the toe slope approaches 1V:1H and as the overflow velocity 

approaches 3 m/s. 

Given the fact that equation [2.19] uses certain approximations (such as to the 

value of CD), it is recommended that in cases wherein the FS for IoM is less than about 

two, further and more detailed studies be conducted.  
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CHAPTER 3 USE OF INDEX GRADIENTS AND DEFAULT 

TAILWATER DEPTH AS AIDS TO HYDRAULIC MODELING OF 

FLOW-THROUGH ROCKFILL DAMS1 

 

3.1. ABSTRACT 

To assess the potential for unraveling failure of flow-through rockfill dams, a 

systematic study of three aspects of the hydraulic design of these structures was 

conducted.  The first concerned finding that gradient which is most useful in 

independently computing the height of the point of first flow emergence.  The method 

presented is based on the idea of the angle of the emergent flow field within the toe of the 

structure.  As an outcome, the second presents a method for independently computing the 

variation in hydraulic head within that vertical which allows the toe of the structure (i.e. 

downstream of the vertical associated with first flow-emergence) to be isolated.  It is 

based in part on a separate parametric study of 24 numerically-simulated flow-through 

rockfill dams.  In the third, the gradient that will allow for the independent estimation of 

the default tailwater depth is presented and verified, with the help of laboratory results.  It 

is hoped that these three computational tools will facilitate the design and assessment of 

flow-through rockfill structures, as a particular class of pseudo-hydraulic structure. 

Key Words:   embankments, barrages of coarse porous media, flow-through rockfill, 

non-Darcy seepage, unraveling failure, initiation of motion, hydraulic 

gradients, default tailwater, boundary conditions. 

 

                                                 

1
 With Permission from ASCE (see Appendix C). 

Hansen D., and Roshanfekr A. 2012b. Use of index gradients and default tailwater depth as aids to 

hydraulic modeling of flow-through rockfill dam.  ASCE Journal of Hydraulic Engineering, 138(8):726-

735. 

Note: Numerical and experimental works presented in this chapter were conducted by the second author. 
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3.2. INTRODUCTION 

So-called flow-through rockfill dams and drains have various physical 

manifestations, often serving to attenuate and delay inflow hydrographs, or simply 

representing expedient places to deposit mine-waste rock at mountainous mine sites.  

These structures are not barrages in the ordinary sense, acting more as hydraulic 

structures made out of very coarse porous media.  They have become sufficiently 

common that matters of safety to be considered in their design are laid out in Section 8.5 

of the 2007 Canadian Dam Safety Guidelines (CDA 2007).  The quantity of water 

passing through these ‘dams’ is much larger than for any true dam, and the mechanism of 

failure is most often a progressive ‘unraveling’ of the downstream toe (Wilkins 1956, 

Parkin et al. 1966).  This process is due to the large amounts of seepage exiting under 

high hydraulic gradients.  The idea of unraveling failure is that the initiation-of-motion 

(IoM) of one or perhaps a few stone particles results in impacts on particles further down 

the seepage-face (Figure 3.1), destabilizing them into motion, and so on (Wilkins 1956, 

Parkin 1963, Gerodetti 1981).  The implied ‘domino effect’ may be overstated - the 

simultaneous movement of many particles at the toe (i.e. downstream limit of Bd) may be 

at least as disastrous, especially since there may be nothing to prevent the last ‘row’ of 

particles from moving downstream. 

 

Figure 3.1.  Nomenclature for rockfill dam of width Bw with constant flow Q passing 

through it. 
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The amount of flow through fine-grained porous media can normally be estimated 

using Darcy’s Law.  Darcy’s linear law is not valid at medium-to-high Reynolds 

numbers. It is generally accepted that the transition from linear laminar to non-linear 

turbulent flow through porous media is a gradual one (Wright 1968, McCorquodale et al. 

1978, Fand and Thinakaran 1990), although there is no agreement on the value of the 

Reynolds number at which purely Darcian flow ceases. Due to the nature of turbulent 

flow in rockfill, the flow must be estimated using a non-linear equation.  There are two 

functional forms that are commonly used to describe the relation between the hydraulic 

gradient (i) and the bulk velocity (V) for non-Darcy flow, the power function (equation 

[3.1a]) and the zero-intercept second-order polynomial (equation [3.1b]).  The power 

function was first proposed by de Prony (1804) and has more recently been applied to 

phreatic surface computation by Hansen et al. (2005).  The zero-intercept second-order 

polynomial form was first proposed by Forchheimer (1901).  The well-known Ergun 

equation (Ergun 1952) can be stated in this polynomial form and a form of it has been 

applied to partially-developed turbulent flows in porous media by Fand and Thinakaran 

(1990).  George and Hansen (1992) have shown how  and N are linked to r and s, and 

vice versa. 

 Ni = αV  [3.1a] 

 2sVrVi   [3.1b] 

where: 

 , r, s= non-Darcy coefficients, 

N= turbulent exponent for non-Darcy flow (1≤N≤2). 

The toe of flow-through rockfill structures is the primary zone of engineering 

concern (Hansen et al. 2005).  It is located under the seepage-face.  Three index or 

representative hydraulic gradients are considered in the context of interest in the 

hydraulics of the toe: (i) The gradient most useful in independently computing the height 

of the point of first emergence relative to the foundation (denoted yexit in Figure 3.1).  

This exit height is also the beginning of the seepage-face.  In this connection the 

application of previous research on the angle of the emergent flow field ( ff ) is explained 

and presented in the next section.  (ii) A general method for independently computing the 
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variation in hydraulic head within the vertical that has, as its upper terminus, the point of 

first flow emergence.  Such a method would make possible the hydraulic isolation of that 

part of the toe of the structure which is downstream of the yexit vertical.  This, it will be 

shown, is associated with the hydraulic gradients within the whole vertical making up 

yexit.  (iii) The gradient that will allow independent estimation of the default tailwater 

depth.  It will be shown that this is somewhat related to the previously established 

concept of the effective hydraulic gradient (Hansen et al. 1995), which can be used to 

quantify the amount of flow that will pass through the structure. 

 

3.3. ESTIMATING HEIGHT OF POINT OF FIRST EMERGENCE  

An important fundamental quantity in characterizing a given flow-through rockfill 

embankment is the height (yexit) of the point of first emergence of the flow on its 

downstream side, which height also represents the start of the seepage-face.  The exit 

height is fundamental because it can be used to develop a rating curve for the structure, 

no unraveling occurs above this elevation, and because below it the seepage-face forms 

the boundary condition.  A non-Darcy flow equation such as the Stephenson (1979) 

equation may be used to help determine the location of this position:  

Steph

gd
V n i

K
              (fully-developed turbulence)  [3.2a] 

 angSteph
Re

800
K                                                             [3.2b] 

Steph 2

2

K
i V

gdn
                (i.e. a form of equation [3.1a])          [3.2c] 

exitVyq   (≡Q/L)                                                              [3.2d] 

where: 

V= bulk velocity (L/T), 

Q= total discharge through embankment (L
3
/T), 

L= length of the embankment (L), 

g= gravitational constant (L/T
2
),  

d= representative particle diameter (L), 
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n= porosity of the rockfill matrix (dimensionless), 

Re Vd /(n )  = Stephenson’s particle Reynolds number (dimensionless), 

 = kinematic viscosity (L
2
/T), 

ang = value ranging from 1 for smooth spheres to 4 for angular stones 

(dimensionless), 

q= unit discharge through embankment (L
2
/T), 

yexit= height (i.e. depth, cf. Figure 3.1) of point of first emergence (L). 

In the current study KSteph was assumed to be its asymptotic value of 4.0, which is 

associated with a high Reynolds number (fully developed turbulence) and angular stones.  

The idea that the exit gradient that acts beneath the seepage-face and within the toe may 

be approximated by the tangent of the toe angle  has been mentioned by Leps (1973) as 

a matter of engineering practice.  It may be expected, however, that the true angle 

representative of the emergent seepage field is less than , that this effective flow angle 

ff  varies with the relative exit height, and that it approaches   as the relative exit height 

increases, as in Figure 3.2.  The angle θff is not the angle with which an extended free 

surface would arrive at the ground surface.  It is an imaginary angle that best represents 

the exit gradient for the flow emerging from the toe.  The hydraulic gradient tanff was 

inferred via hydraulic calculations that were based on knowledge of the exit height and 

the flow rate (see Hansen et. al 2005).  For non-Darcy flow in a crushed limestone 

( 2N   in equation [3.1a]), Hansen et al. (2005) found that: 

 17.0
H

y
41.1 exitff 




 r

2
=0.8, nobs=33  [3.3] 

where:  

H= height of the dam (L),  

 = angle at the downstream toe, 

ff = angle of the emergent flow field within the toe. 

This equation was found to work best if yexit was less than 0.5H, in keeping with 

the range of the available raw data.  If we assume that, for the toe iexit = tanff and 

substituting ff from equation [3.3] into equation [3.2c] to get V, yexit can be simply 

obtained as: 
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exit

Steph

exit

i
K

gd
n

q

V

q
y   [3.4] 

for the q of interest, where:  

iexit = hydraulic gradient most suitable for use in finding yexit (dimensionless). 

 

 
Figure 3.2.  Illustration of concept of angle of emergent flow-field, ff . 

This approach can be used to find the height of the point-of-emergence for the 

embankment of interest.  Although the Stephenson (1979) equation has been suggested 

and was used in the companion work (Hansen and Roshanfekr 2012a), the same 

procedure could be followed using any non-Darcy flow equation, of which there are 

many (e.g. review of Hansen et al. 1995).  Knowing the exit height (yexit) permits 
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estimation of the hydraulic head beneath the point of emergence and therefore the 

isolation of the toe, to be described in the next section. 

 

3.4. ISOLATION OF TOE (DOWNSTREAM OF YEXIT VERTICAL) 

There are two main reasons why an analyst might want to isolate the toe of a 

flow-through rockfill structure (i.e. the triangular zone of coarse porous medium between 

the yexit vertical and the downstream tip of Bed in Figure 3.3a): 

i) the face of this zone is probably the most failure-prone (Hansen et al. 2005) and 

deserves the maximum amount of numerical detail (i.e. a very fine mesh or grid, in terms 

of spatial discretization). 

ii) this portion of the embankment is a simple triangle that is completely bounded by 

exterior heads.  From a geometric point of view this means that it is easier for the 

modeler to specify the boundary conditions.  By contrast, the phreatic surfaces within 

these structures, present upstream of the yexit vertical, are always curved.  Although these 

curves can be adequately approximated by a numerical mesh or grid, the more accurate 

the approximation the more tedious it is to achieve a geometrically precise mesh.  

Numerical schemes that seek out an appropriate phreatic surface involve relatively 

complex coding because any given approximation to an assumed phreatic surface (in the 

iterative sense) requires that the outcome of a given search be checked against the laws 

governing such surfaces (Cedergren 1989) and against the flow rate within any given 

vertical implied by the assumed height of the surface.  Said discharge is uni-valued if the 

flow is steady and can be determined by independent means (Hansen et al. 1995).  In 

general, it is probably computationally easier to locate the phreatic surface independently 

using a method such as that described by Hansen et al. (2005) and used in Hansen and 

Roshanfekr (2012a), and then impose it on the mesh, using said rules (Bari and Hansen 

2002) as long as an accurate yexit value is in hand.  Hansen and Bari (2002) have formally 

investigated the uncertainty in this algorithm. 

Described herein is a way to allow the analysis to efficiently focus on the toe, 

specifically, the triangular zone downstream of yexit.  Large dams, as well as dams 
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requiring analysis at a high level of detail, may imply the need for very large grids or 

meshes.  Such grids can require orders-of-magnitude more grid relaxations before 

numerical results can be relied upon.  Further, the inclusion of the phreatic surface is a 

rather involved aspect of a given set-up, in that it is independently calculated and the 

numerical grid then locally adapted to it.  Yet, not all of the dam structure is of equal 

interest with respect to the failure mode of unraveling.  It is the toe, particularly the 

gradients beneath the seepage-face, which are of prime interest.  Highly-detailed 

modeling might be able to focus only on the toe if the boundary conditions on it, or 

around it, could be well represented.  These conditions have two key planes: the 

boundary whereby the toe abuts against the rest of the dam (i.e. the vertical upstream side 

of the toe that is directly below the point of first emergence), and the seepage-face.  The 

third plane or boundary, the foundation on which the toe and the dam rest, was assumed 

to be impermeable. 

For the work described herein, the determination of many phreatic surfaces was 

done as part of the modeling of the hydraulic heads within 24 dams taken in their 

entirety.  The information arising from the parametric study described in Hansen and 

Roshanfekr (2012a) was then examined and distilled.  One of the outcomes of the gross 

modeling done in the parametric study was a clear pattern of heads through the yexit 

vertical.  This information allowed computational efforts to be focused on the zone 

inclusive of and downstream of the yexit vertical, i.e., the triangular zone where 

unraveling failure typically begins. 

Hansen and Roshanfekr (2012a) have provided details regarding optimal finite 

difference (FD) modeling strategies, but it may be noted from previous studies of lateral 

seepage patterns through trapezoidal shapes having a phreatic surface and a point of 

emergence (e.g. Townsend et al. 1991, Hansen et al. 1995) that the equipotential lines 

(EPL’s) through said surface and then downstream of the terminus of BC form a series of 

concentric quarter-ellipses, but with unequal spacing.  Clearly, points a and a
//
 in Figure 

3.3a have the same hydraulic head because of the existence of the EPL through point a.  

It was surmised that if the head /a
h could be rationally computed, then studies of the 



 

51 

variation in head between points a and a
/
 would enable the desired isolation to be 

accurately set up. The hydraulic head at position a
//
 is equal to yexit. 

 

a) EPL’s through yexit vertical. 

Figure 3.3.  Schematic view of the parameters used for toe isolation in yexit vertical. 
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b) head variation in yexit vertical using the quarter of an ellipse approximation. 

Figure 3.3 (Cont).  Schematic view of the parameters used for toe isolation in yexit 

vertical. 

It was also surmised that a good fit for the variation in head between points a and 

a
/
 (i.e. through the yexit vertical) would be a quarter ellipse (Figure 3.3b).  This variation 

has the advantage that it forces the EPL to be perpendicular to the foundation at //a
h .  

Although it does not imply the correct flowline slope at the apex, it is head itself and not 

its rate of change that is under consideration.  In accordance with Figure 3.3b an elliptical 

equation for the variation in head through the yexit vertical is then: 

 
   

1
1

Y

b

1X
2

2

2

2




 [3.5] 
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where:  

b = difference in dimensionless heads exita
y/h /  and exita

y/h // , 

X = hiso/yexit, 

Y = y/yexit, 

hiso= hydraulic head at any given point within yexit vertical, 

y = height of point where hydraulic head (hiso) is calculated. 

Under this arrangement, hiso/yexit varies from ha
/
/yexit (=1-b) to ha/yexit (=1).  By 

substitution and rearrangement:  

 
2

exit

2

exit

iso

y

y
1b1

y

h
  [3.6] 

It is expected that for point a
/
 the hydraulic head (hiso) value will be less than yexit, 

thus excluding the positive sign outcome.  If the value of ‘b’ could be independently 

determined, equation [3.6] can be used to calculate the heads in the yexit vertical (hiso) for 

each individual point or nodal location of interest.  It was expected that the lower the 

imposed tailwater depth and the steeper the downstream face, the greater would be the 

amount of curvature in the head variation through the yexit vertical.   

The partial differential equation behind the numerical model used is known as a 

p-LaPlacian (Vazquez 2007).  It applies to boundary value problems wherein the 

relationship between flux and the gradient of the scalar potential is non-linear, as is the 

case with high-Reynolds-number non-Darcy flow.  It was solved using a non-linear 

hydraulic conductivity adaptation of equation [3.1a] within a five-point FD scheme (cf. 

Hansen and Roshanfekr 2012a).  Twenty four numerically-based models (detailed in 

Hansen and Roshanfekr 2012a) with a range of imposed tailwater levels were developed 

and the grids for each fully resolved (complete convergence);  the resulting ‘b’ values for 

these models using different hTW/h ratios are presented in the Tables 3.1 to 3.3.  In order 

to predict the ‘b’ value, a correlation between several parameters and the observed ‘b’ 

values was sought. The best model for the twenty four cases was found to be: 
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Equation [3.7] was obtained via ordinary least squares regression of ln-

transformed data and included a correction for the bias caused by non-linearity of the 

transformation.  In application, the above equation is constrained to the ranges 0.16 ≤ 

tanθ ≤ 1 and 0.5 ≤ H/Bc ≤ 3 and to tailwater depths limited to hTW/hus ≤ 0.1.  The model 

presented in equation [3.7] can be used to calculate a primary value for ‘b’.  A 

comparison of calculated versus observed values of this parameter is shown in Figure 3.4. 

 

Table 3.1.   Values of ‘b’ for with hTW/hus = zero (24 embankments). 

00.0
h

h

us

TW   
Slope of Toe 

1V:1H 1V:2H 1V:3H 1V:4H 1V:5H 1V:6H 

H/Bc= 0.5 0.0900 0.0590 0.0210 0.0140 0.0120 0.0100 

H/Bc= 1.0 0.0650 0.0400 0.0190 0.0125 0.0100 0.0080 

H/Bc= 2.0 0.0600 0.0300 0.0150 0.0065 0.0060 0.0055 

H/Bc= 3.0 0.0520 0.0170 0.0120 0.0050 0.0035 0.0025 

 

Table 3.2.   Values of ‘b’ for with hTW/hus = 0.05 (24 embankments). 

05.0
h

h

us

TW   
Slope of Toe 

1V:1H 1V:2H 1V:3H 1V:4H 1V:5H 1V:6H 

H/Bc= 0.5 0.0650 0.0490 0.0145 0.0080 0.0070 0.0060 

H/Bc= 1.0 0.0550 0.0340 0.0125 0.0060 0.0055 0.0050 

H/Bc= 2.0 0.0500 0.0240 0.0110 0.0030 0.0025 0.0020 

H/Bc= 3.0 0.0400 0.0120 0.0075 0.0020 0.0010 0.0005 

 

Table 3.3.   Values of ‘b’ for with hTW/hus = 0.10 (24 embankments). 

10.0
h

h

us

TW   
Slope of Toe 

1V:1H 1V:2H 1V:3H 1V:4H 1V:5H 1V:6H 

H/Bc= 0.5 0.0450 0.0400 0.0080 0.0035 0.0025 0.0015 

H/Bc= 1.0 0.0380 0.0280 0.0070 0.0030 0.0020 0.0010 

H/Bc= 2.0 0.0350 0.0180 0.0065 0.0025 0.0010 0.0004 

H/Bc= 3.0 0.0250 0.0055 0.0040 0.0020 0.0005 0.0002 
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Figure 3.4.  Comparison and correlation between the calculated and observed ‘b’ values. 

 
Figure 3.5.  Effect of tailwater on the head variation in the yexit vertical for isolation of 

the toe. 
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Figure 3.6.     Effect of different slopes on the head variation in yexit vertical for isolation 

of the toe. 

Figures 3.5 and 3.6 show that the general level of agreement between those heads 

predicted using equations [3.6] and [3.7] and numerically simulated hydraulic heads is in 

fact excellent, in most cases.  The level of agreement declines somewhat for dams with 

small longitudinal extent in the upstream-downstream direction and steep downstream 

faces.  The fitted curves in Figures 3.5 and 3.6 do exhibit what is known as ‘lack of fit’.  

That is, there is a distinct to the residuals and this might have been removed via choice of 

a better model.  Although it is true that a polynomial of (say) 5
th

 order could be fitted 

very exactly to the points seen in Figures 3.5 and 3.6 (representing hydraulic head) this 

was not done because: 

i) Treatises on seepage, drainage, and flow nets (such as those of Cedergren 

1967, 1977, 1989) clearly show that the equipotential ‘lines’ within the 

downstream toe resemble quarter-ellipses. 
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ii) The adjustment of the parameters in a single quarter-ellipse-based 

equation was considered to be more elegant than simply obtaining a 

collection of polynomials. 

iii) When it was discovered that the discrepancies between the ‘true’ hydraulic 

heads presented by the points in Figures 3.5 and 3.6 and the quarter ellipse 

curves was very small (at most 1% of hiso/yexit), it was decided that this 

parametric single-equation approach was adequate for engineering 

purposes. 

The worst error in the head ratio was found to be only about 1%.  This was for the 

steepest downstream slope and for the fictitious case of no imposed tailwater depth.  A 

slope as steep as the typical angle of repose of coarse granular material is generally not 

used in design.  This 1% error would be considerably less than the uncertainty associated 

with the bounding condition that is present on the downstream side of the triangular zone 

in question, namely, the depth of the flow over the seepage-face.  In general it was found 

that, if the tailwater is relatively high and the downstream face relatively flat, the 

distribution of head within the yexit vertical is nearly hydrostatic, and easy to approximate. 

The procedure for isolating the toe is given in Figure 3.7. 
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Figure 3.7.  Procedure for isolating the toe. 

 

3.5. ESTIMATING DEFAULT TAILWATER DEPTH (HTW) 

The default tailwater depth refers to the depth that the tailwater reverts to if there 

is no higher depth imposed on the downstream face from downstream, by the receiving 
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channel.  It can be thought of as being part of the self-generated boundary condition 

constituting the seepage-face, being the downstream limit of said seepage accumulation.  

By way of background, Hansen et al. (1995) developed the concept of effective hydraulic 

gradient (ieff) in order to study a representative hydraulic gradient for the entire 

embankment, using the adaptation of 1-D flow equation to 2-D models and 

embankments. In order to calculate the hydraulic gradient for use in equations [3.2d] (i.e. 

discharge calculation, see also notes on Table 3.6) the concept of effective hydraulic 

gradient was applied. It can be written: 

 

4.1

us2/3

Reff
H

h
A8.0i 








     r

2
=0.98, nobs=48  [3.8a] 

which  dcuR B5.0BB
H

1
A   [3.8b] 

where:  

hus= upstream water level (L), 

H= height of the embankment (L), 

AR= aspect ratio of the embankment (dimensionless), 

Bu= width of the upstream portion (L), 

Bc= width of the crest portion (L), 

Bd= width of the downstream portion (L). 

In general, the variation in the tailwater depth, especially the default depth hDTW, 

is small for flow-through structures not subjected to any backwater effects from the 

downstream receiving channel (Hansen 1992).  According to equation [3.8a] the effective 

hydraulic gradient is largely a function of the shape of the embankment and the upstream 

depth, relative to the height of the dam, the default downstream water level per se does 

not have much effect on the effective hydraulic gradient (Hansen et al. 1995).  The 

concept and practical usefulness of the effective hydraulic gradient has already been 

established (Hansen et al. 1995).   

Flow through any porous medium is driven by the boundary conditions.  In most 

cases these conditions are imposed and obvious.  In the case of flow-through rockfill 

structures, the downstream boundary condition is not uni-valued.  When the discharge 

varies significantly in the direction of flow, whether positively or negatively, it is 

classified as spatially-varied flow (SVF).  Sharp and James (1963) were apparently the 



 

60 

first researchers to classify the seepage-face at the toe of a rockfill slope as a case of SVF 

with increasing discharge.  The quantity of flow within it varies from zero at 0  to the 

total discharge passing through the dam at SF   (see Figure 3.1).   

It is also obvious that there is no single flow path.  It is suggested that 

representative values may suffice.  Since any hydraulic gradient is the ratio of a 

difference in boundary conditions (hydraulic heads) to a flow path length, it follows that: 

 
   

rep

repdsrepus

DTW

hh
i




  [3.9] 

where:  

iDTW = hydraulic gradient suitable for finding default tailwater depth 

(dimensionless), 

hus(rep) = representative
1
 upstream head (L), 

hds(rep) = representative downstream head (L), 

rep = representative length of mean flow path (L). 

 
a) free-fall (drop off).            b) no free-fall but hsvft has about same magnitude as (a). 

Figure 3.8.  Definitions relating hsvftcos
2
 to yexit. 

 

                                                 

1
 The question of what head is adequately representative is presented in the theory following. 
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The quantity hsvft is the depth at the termination of the SVF zone (end of the 

seepage-face, Figures 3.1 and 3.8).  Figure 3.8 shows that the depth in the channel just 

downstream of the terminus of Bed may be comparable to hsvftcos
2
 at sufficiently low 

flows. 

The situation at the toe can be compared to that present downstream of a 

hydraulic structure that introduces supercritical flow in a pre-existing hydraulically mild 

channel.  The condition excluded from consideration herein is that of having a tailwater 

depth that is so high that the hydraulic jump (HJ) is drowned and this level is then able to 

impinge directly upon the downstream face of the structure.  Data associated with very 

low flows in the receiving channel was also excluded from the default tailwater (DTW) 

studies.  At low flows the exit height was only slightly greater than the default depth over 

the toe hTW (Figure 3.9), which was in turn only slightly greater than the normal depth 

(yn) of the receiving channel.  There being no free-fall condition (physical brink) at the 

toe, the Froude number associated with this hTW was experimentally found to be sub-

critical.  At small depths the magnitude of hTW relative to the normal depth of the 

receiving channel (if there is one) therefore becomes important.  Data associated with 

subcritical flow being present over the toe were not considered in the analysis. 
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a) tailwater depth less than but comparable to hTW – data excluded. 

 
b) tailwater depth at toe governed by (at) default condition – data included (M3 wsp 

probably forms). 

 
c) tailwater depth at toe also governed by default condition – data included (slope of 

foundation is very small). 

Figure 3.9.  Behavior of tailwater with increasing flow. 

 

The representative upstream hydraulic head is obviously h.  If hus = H, let it be 

assumed that the ‘entry point’ of rep  is midway along Bu/cos and that the exit point of 

rep  is midway along SF .  Again for hus = H, the representative mean flow path brep may 

then be thought of as being comprised of Bu, Bc and Bd components (Figure 3.8): 

 

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where: 
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
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and where repb is the straight-line path of flow line, which for a full upstream reservoir 

(hus=H) can be written: 

 
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More generally, and for an upstream head h that is less than H, repb can be written 

in the following forms: 
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or: 
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The above equations ignore the slight curvature of the rep  path.  It might be 

expected that the depth averaging and other geometric approximations mentioned above 

will cause the rep  so computed to be slightly shorter than reality, so that: 

 
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The value of Cpath in [3.12] may be expected to be slightly more than unity.  If 

obtained from experimental observations on model flow-through rockfill structures, the 

value of Cpath will be affected by limits on the accuracy of the hTW measurements, made 

in a turbulent and rather undulating zone of flow. 

The seepage-face is an interesting example of a class of open-channel flow known 

as SVF.  An algorithm for handling this class of flow has been presented by Chow (1959) 

and others.  Sharp and James (1963) investigated the particular manifestation considered 

herein, an investigation which is being continued by these authors.  If the terminal water 

depth arising from the application of such an algorithm is hsvft, the boundary condition of 

interest is the hydraulic head as would be measured at the ‘bed’ of the ‘channel’ at the 
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exact tip of the toe of the dam, hsvftcos
2
.  The distinction between the hydraulic head at 

the bed and that depth measured at 90° to the bed is immaterial for typical river-bed 

slopes
1
, but this laxitude should not be blindly allowed in this case because  large.  

Again, the case under consideration here is the case of zero imposed-backwater, meaning 

that hsvft is allowed to form as part of the self-generated downstream boundary condition 

which the entire seepage-face represents, and right at the toe of the embankment.  The 

case of some higher imposed depth, such as the normal depth of the receiving river 

channel, may well also be of interest but is not in view at this point in the analysis. 

If an index of the representative downstream head is then yexit/2 + (hsvftcos
2
/2, 

combining [3.12] and [3.9] yields: 
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The above may be termed a path-based effective gradient, as distinct from an 

aspect-ratio based effective gradient.  The latter has been described by Hansen et al. 

(1995), including how actual flow and depth data was used to infer it, for a range of 

embankment aspect ratios.  Both of these effective gradients are more-or-less 

representative of the hydraulic gradient under which the entire structure appears to be 

operating, in a gross sense.  It follows from [3.13] that: 
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The engineering practitioner may not try to construct a water surface profile for 

the seepage-face using a formal spatially-varied (supercritical) flow analysis, leading to 

hsvft at the terminus.  The shape of the seepage-face is indeed close to being a simple 

triangle, at least of various model structures (Hansen 1992).  If the externally-imposed 

hydraulic head at the toe is simply denoted hTW by the analyst as: 

                                                 

1
 Chow (1959) notes that the correction is less than 1% until θ is nearly 6º (1V:10H). 
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it was surmised that the distinction between hsvftcos
2
θ and hTW might not be fatal to the 

usefulness of the available laboratory data nor to the predicted results for tailwater depth.  

If in fact the receiving waters exert little backwater effect and there is therefore some 

question about the true condition at the toe in connection with a given value of hTW, then 

a formal hydraulic analysis of the seepage-face and the receiving channel is indicated.  

Indeed, a merit of equation [3.15] is that it makes it possible to independently find an 

approximate value of the depth at the toe, the one that the structure itself will set up if 

given the freedom to do so (i.e. no backwater effects being imposed from downstream).  

As previously indicated, this should be compared to such depths as the normal depth of 

the receiving channel for the discharge of interest. 

It was found to be difficult for laboratory measurements of tailwater to distinguish 

between hsvft and hTW (see Appendix B).  Although the flow was steady, the water surface 

profile was unsteady at the particle scale, and the spatially-uneven nature of the toe 

(comprised of gravel particles that always resulted in a rather imperfect wedge shape) 

resulted in as much lateral variability as longitudinal variability in the depth, right at the 

toe.  It is important to note that the quantities hsvft and hTW were found to be small 

compared to yexit, and yet comparable to each other.   

In order to calculate the Cpath value, a series of model embankment tests were 

conducted in a glass walled flume at the hydraulics laboratories of Ottawa and Dalhousie 

Universities (Table 3.4).  A framed wire mesh prevented erosion of the toe.  This mesh 

was found to have very little effect on the seepage-face.  For each embankment the 

experimental data were collected and tabulated.  The values of  and N in the experiment 

were determined from packed-column tests performed on the same rockfill material and 

the porosity (n) of the rockfill material was measured (Table 3.5, also see Appendix B).  

The downstream depth was made to be a freefall - no downstream backwater condition 

was imposed.  The depth variation in the SVF around the downstream toe of each 

embankment was measured and the curvature in the water surface profile noted.  It was 

found that the amount of curvature increased with increasing toe angle. 
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The values of  and N in Table 3.5, together with equations [3.8] and [3.13], were 

used to calculate Qieff and QDTW (see notes on Table 3.6).  In order to calculate the best 

Cpath value a range of upstream depths (e.g. hus= 0.5H, 0.75H, 0.9H and 1H) and 

discharges were imposed on each embankment and the default tailwater was measured at 

the downstream terminus of the toe.  Table 3.6 shows the various mathematically inferred 

Cpath values and the statistical results of a comparison of associated discharges. 

 

Table 3.4.   Geometries of model flow-through dams considered for comparison of iDTW 

and ieff. 

Model 

# 

H 
(cm) 

Bu 
(cm) 

Bc 
(cm) 

Bd 
(cm) 

w

c

B

B
 

(Figure 3.1) 

Slope of Toe Laboratory 

1 50 50 33.3 50 25.0 % 1V:1H U. of Ottawa 

2 50 50 50.0 100 25.0 % 1V:2H U. of Ottawa 

3 50 50 66.7 150 25.0 % 1V:3H U. of Ottawa 

4 30 30 15.0 30 20.0 % 1V:1H Dalhousie U. 

5 30 30 15.0 60 14.3 % 1V:2H Dalhousie U. 

6 30 30 15.0 90 11.1 % 1V:3H Dalhousie U. 

 

Table 3.5.   Some experimental details (flume sizes and characteristics of gravel), see 

also Appendix B. 

 
Flume Width 

(cm)* 

Slope of 

Flume 

  

(V in cm/s) 
N Porosity 

University of Ottawa  38.5 0.0001 0.0088 1.88 0.47 

Dalhousie University 31.0 0.0000 0.0213 1.85 0.42 

* Channel wall to channel wall, contrary to the sense of “width” in Figure 3.1.  In 

industry, the “length” of an embankment is commonly taken to be the distance from 

riverbank to riverbank. 
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Table 3.6.   Inferred Cpath values and statistics of discharge comparisons. 

 r
2
 Mean Error Ratio

1 
RMSE (L/s) 

No. of Data 

Points (nobs) 

all discharge data used (Cpath=1.04) 

Qobs 
2
 vs QDTW 

3 
0.988 1.04 0.659 22 

Qobs vs Qieff 
4 

0.995 0.96 0.568 22 

Qieff vs QDTW 0.992 0.92 0.673 22 

only using discharges for hus/H>0.6 (Cpath=1.02) 

Qobs vs QDTW 0.980 1.04 0.526 16 

Qobs vs Qieff 0.990 0.95 0.428 16 

Qieff vs QDTW 0.985 0.91 0.539 16 

only using discharges for hus/H=1 (Cpath=1.01) 

Qobs vs QDTW 0.982 1.03 0.425 6 

Qobs vs Qieff 0.982 0.95 0.357 6 

Qieff vs QDTW 0.989 0.92 0.467 6 

1.  based on first quantity divided by second quantity.      2.  Qobs = measured in laboratory. 

3. Lhi
1

Q us

N/1

DTW

N

1

DTW 









 , iDTW via eqn [3.13].      4. Lhi

1
Q us

N

1

ieff

N

1

ieff 









 , ieff from eqn [3.8]. 

 

Figure 3.10 shows that the general level of agreement between flows implied by 

equation [3.13] and observed flow rates is excellent, in most cases.  This level of 

agreement declines somewhat for dams with small longitudinal extent in the upstream-

downstream direction and steep downstream faces.  In no case is the error ratio greater 

than 1.09.  Due to the good agreement between the Qieff and QDTW results, it is suggested 

that the ieff value can be taken as the iDTW value.  By using the ieff instead of iDTW value in 

equation [3.15] the hTW value can be readily calculated.  Due to the limited nature of the 

range of actual measurements, it is suggested that for Cpath values associated with ieff 

values of 0.25 or higher, the procedure not be used.  This caveat is included in the 

flowchart for calculating the hTW, shown in Figure 3.11. 
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Figure 3.10.  Comparison of discharges. 

 

Figure 3.11.  Procedure for calculating default tailwater depth. 
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3.6. SUMMARY AND CONCLUSIONS 

1.   A method for independently computing the height of the point of first 

emergence (yexit) relative to the foundation has been presented.  This height is important 

because unraveling failure can only occur below this point.  This method is based on the 

idea of the angle of the emergent flow field at and within the toe of the structure.  

Although it has been shown how to use the Stephenson (1979) equations in concert with 

this key computation, it could be executed using any non-Darcy flow equation.  It is also 

the first step toward the hydraulic isolation of the toe, for this class of porous hydraulic 

structure. 

2.   A general method for independently computing the variation in hydraulic head 

within the vertical that has, as its upper terminus, the point of first flow emergence has 

been presented and verified.  It makes possible the hydraulic isolation of that part of the 

toe of the structure which is downstream of said yexit vertical.  

3.   A general method for independently computing the default tailwater depth has 

also been presented and verified.  Knowledge of this depth is valuable to the designer 

because if the default or representative depth of the receiving watercourse (just beyond 

the toe of the structure), such as its normal depth, is numerically less than this default 

tailwater condition (hTW), then the hTW value will govern and dictate the nature of the 

downstream condition, without which more thorough seepage modeling and other 

hydraulic modeling cannot proceed.  It has been shown that the hydraulic gradient needed 

for this computation is related to the previously established concept of the effective 

hydraulic gradient (Hansen et al. 1995), once again of the structure as a whole. 



 

70 

CHAPTER 4 HYDRAULICS OF FLOW AT THE TOE OF 

NON-OVERTOPPING ROCKFILL STRUCTURES1 

 

4.1. ABSTRACT 

So-called flow-through rockfill structures have various physical manifestations.  

The effect of the water flowing through and out of flow-through rockfill embankments 

often raises questions about their hydraulic behavior and geotechnical stability, especially 

of the downstream toe.  In order to provide better tools to assess the behavior of these 

embankments, laboratory and analytical studies were conducted.  Firstly, physical models 

were built to observe boundary conditions and assess the hydraulics associated with the 

zone of the downstream toe.  Secondly, the depth variation along the seepage-face was 

computationally modeled, and two approaches for solving this spatially varied flow 

(SVF) problem were undertaken.  Under one of the approaches, SVF depths for a given 

spatial rate of flow emergence were computed and used by the head-based surficial finite 

difference (FD) nodes.  This implied a new spatial rate of flow emergence, then used in 

the next round of SVF water surface profile modeling.  Under the other approach, a layer 

of flux nodes rather than head-based FD nodes were tied directly to the SVF algorithm.  

Although there are inherent uncertainties, it was found that these two methods can be 

made to perform equally well.  The difficulty in knowing how Manning’s n should be 

varied was overcome by measuring the flow accumulation at multiple positions down the 

face.  It appears that a dual linear variation in depth can be used to good accuracy and 

without inducing any unrealistic exit gradients in the zone of primary concern with 

respect to unraveling.  Design guidance on how to describe these two linear variations is 

provided.  It is based on the knowledge of the exit point, the hydraulic control point and 

the expected depth at the toe, all of which can be estimated a priori. 

                                                 

1
 Roshanfekr A., and Hansen D.  2014. Hydraulics of flow at the toe of non-overtopping rockfill structures.  

ASCE Journal of Hydraulic Engineering, HYENG-8269, Partially Accepted, Under 2
nd

 Review. 

Note: Numerical and experimental works presented in this chapter were conducted by the first author. 
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Key Words:   hydraulic behavior, rockfill structures, boundary conditions, flow, exit 

height, spatially varied flow, seepage-face. 

 

4.2. INTRODUCTION 

The main application of so-called flow-through rockfill embankments (Figure 4.1) 

is the reduction of peak flows.  Such embankments can be used to reduce the amount of 

spillage at downstream hydro dams or to control the outflow from stormwater detention 

basins.  There are two different kinds of failure for these structures, massive failure and 

unraveling failure.  According to the CDA (2007) guidelines, flow-through rockfill 

embankments shall be designed to withstand the combined effects of the action of the 

seepage emerging from the downstream face, along with any overflow, without local or 

massive movement of rock particles.  In order to analyze the potential for massive failure 

a limit-equilibrium stability analysis (e.g. Bishop’s Method) can be used (Garga et al. 

1995).  For unraveling failure a moment-based analysis of the stability of individual 

particle(s) under the seepage-face can be performed (Hansen et al. 2005).   

The word “face” in engineering usually refers to a surface of some kind; herein 

“seepage-face” will refer to a two-dimensional (2-D) surface.  This “seepage-face” is 

therefore distinct from the wedge of water that results from the seepage that comes out of 

the face.  The latter is referred herein as the “seepage-face flow wedge”, even though the 

water surface in question is not exactly planer. 

 
Figure 4.1.    Nomenclature for non-overtopping rockfill embankments with constant 

flow (discharge Q passing through it). 
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Various researchers (e.g. Lane et al. 1986, Campbell 1989, Townsend et al. 1991, 

Hansen et al. 1995, Bari and Hansen 2002) have discussed the Dupuit-like unconfined 

non-Darcy flow that occurs through rockfill embankments and mine waste dumps.  The 

toe and downstream face of such structures is the primary zone of engineering concern 

(Hansen et al. 2005).  Sharp and James (1963) may be the only published study 

specifically on the hydraulics of the seepage-face pattern.  They presented the 1-D 

spatially varied flow (SVF) equation for computing the depth variation of this seepage-

face and a closed-form expression for finding the distance from the point of first-

emergence to the critical depth.  No flux nodes were used and no data on the spatial rate 

of change in depth ( d/dd ) as a function of   (Figure 4.1) was presented, but computed 

discharges were in reasonable agreement with observed discharges.  Further work to 

quantify the hydraulic resistance for this type of emergent flow problem was indicated.  

Hansen et al. (2005) studied the hydraulic performance and stability of coarse rockfill 

deposits and presented the idea of the flow-field angle for estimating the height of the 

point of first-emergence.  They also stated that the flow field is unusual in the seepage-

face because the no-slip condition is absent, due to the emergence of flow (Hansen et al. 

2005, Figure 11 loc. cit.).  Further, the ‘bed’ is very steep, and the relative roughness is 

high (especially around the control section, where depth is small).  It is therefore difficult 

to know how Manning’s n should be varied for the SVF algorithm, especially given that 

the spatial rate of change in discharge ( d/dQ ) is also not known a priori (see Table 

4.2).  Hansen and Roshanfekr (2012a and 2012b) did a parametric study of 24 

embankments wherein the embankment height and the downstream slope were varied but 

the upstream slope and crest were kept constant.  The potential for unraveling failure was 

evaluated using a particle-based moment analysis for the material beneath the seepage-

face.  Results showed that an increase in seepage-face velocity caused the potential for 

unraveling failure of the downstream toe of such structures to increase but that the 

strength of the exit gradient played a more important role in this regard.   

It appears that little attention has been paid to the SVF hydraulics of the 

downstream face of non-overtopping rockfill structures.  The research described herein 

was aimed at investigating:  

(i) Modeling of the seepage-face over the toe; specifically, the spatial rate of change in 
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depth ( d/dd ) and discharge ( d/dQ ), and the spatial variation in hydraulic resistance.  

(ii) The value of a simplification of the downstream boundary, namely, a dual linearized 

variation in depth. 

 

4.3. EXPERIMENTAL SETUP 

In order to provide better tools to assess the seepage-face behavior of non-

overtopping rockfill structures a number of physical models were built in a glass-walled 

flume (Figures 4.2 and 4.3). 

 

Figure 4.2.   Flume in the hydraulics laboratory of Dalhousie University and the 

experimental setup. 

The granular material used for model embankments was restrained in wire 

baskets, in order to prevent any of it from moving.  Use of baskets also increased the 

speed of assembling any given configuration. These baskets had a ½” mesh size and were 

filled with a screened crushed limestone of nominal ¾” size (actual D50= 17.2 mm).  

Packed-column tests were conducted on the same material (results provided in Table 

4.1a).  The geometries of the model embankments considered are given in Table 4.1b.  It 

was found that a 1V:1H slope had the most curvature in the seepage-face water surface 

profile (wsp) (Figure 4.3) and is the most extreme case for any stability analysis 

(Roshanfekr and Hansen 2011).  The slope of the flume (S0) was set to zero and 

measurements of the upstream water level, phreatic surface, height of point-on-first-

emergence and seepage-face were taken for each discharge.  Partial discharges at four 
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positions down SF  were measured volumetrically using a collection channel (Figure 

4.2).  This was done for three downstream slopes having the same rockfill material, but 

different discharges.  No backwater was present at the toe for any experiment, other than 

the default tailwater depth (hTW).  It is acknowledged that the depths along the seepage-

face were of the same order of magnitude as the bed material size. 

 

Figure 4.3.  Representative water surface profile curvatures for three seepage-faces. 
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Table 4.1.   Some experimental details. 

a) Dalhousie University flume size and results of packed-column test on D50=17.2 mm 

material (see Appendix B for further details). 

Flume width * 

LO (cm) 

Slope of flume 

S0 

Parameters in equation [4.1]  

Porosity 

np 
(VB in cm/s) N 

31.0 0.0000 0.0213 1.85 0.42 

* channel-wall to channel-wall, contrary to the sense of “width” in Figure 4.1.  For the 

geotechnical practitioner the “length” of an embankment is commonly taken to be the distance 

from river-bank to river-bank (hence Figure 4.1). 

b) Geometries of model embankments considered. 

Model 

# 

H 
(1)

 

(cm) 

Bu 
(2) 

(cm) 

Bc 
(3)

 

(cm) 

Bd 
(4)

 

(cm) 

Downstream 

Slope 

Aspect Ratio, 

AR 
(5)

 

(dimensionless) 

1 30 30 0 30 1V:1H 1.5 

2 30 30 15 30 1V:1H 2.0 

3 30 30 30 30 1V:1H 2.5 

4 30 30 45 30 1V:1H 3.0 

5 30 30 60 30 1V:1H 3.5 

6 30 30 75 30 1V:1H 4.0 

7 30 30 0 60 1V:2H 2.0 

8 30 30 0 90 1V:3H 2.5 

(1)  Height of embankment   (3)  Embankment crest width 

(2)  Upstream width of embankment  (4)  Downstream width of embankment 

(5)  AR= (Bu+Bc+0.5Bd)/H (Hansen et al. 1995) 

In connection with the validity of inferences made using data obtained from 

experiments on small physical models of rockfill structures, the question of the quantity 

of discharge Q can be handled quite separately from the issue of the gradient.  There is 

virtually no difference in the phreatic surfaces (Parkin et al. 1966, Parkin 1971) nor in the 

associated underlying gradients between the 8.1N   cases seen in small models 

constructed of gravel, and the gradients in full-scale structures comprised of boulders 

(with N=2).  The use of a given gradient in a given non-Darcy flow equation can then 

yield an estimate of the discharge passing through the structure, which is then essentially 

stand-alone, as far as questions of scale are concerned.  The dependence of Q on  in 
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equation [4.2d] (or similar) in the latter calculation presents to the practitioner the 

opposite effect from the former - strong dependence on particle diameter. 

 

4.4. NON-DARCY FLOW AND EXIT HEIGHT ESTIMATION  

A functional form that is commonly used to describe non-Darcy flow is (Parkin et 

al. 1966): 

 N

BVi   [4.1] 

where:  

i= hydraulic gradient (dimensionless), 

VB= bulk velocity (L/T), 

= non-Darcy coefficient (T
N
/L

N
),  

N= turbulent exponent for non-Darcy flow, having a value between 1 (Darcy 

laminar flow) and 2 (fully turbulent flow) (dimensionless).  As the pore size and 

the void velocity, VV, become large, N approaches 2. 

VV= VB/np= void velocity (L/T), 

np= porosity (dimensionless). 

Equation [4.1] can be written: 

 i
ii

V

N

1

1
N

1

N

1

B

































 [4.2a] 

Darcy's Law may be stated as: KiVB   [4.2b] 

Comparing equations [4.2a] and [4.2b], a gradient-dependent hydraulic conductivity may 

be invoked (cf. Cedergren 1989): 

 
1N

1
N

1

iK


  [4.2c] 

or:  iK  [4.2d] 

where:  
N/1 = non-linear hydraulic conductivity coefficient (L/T),  

1N/1  = non-linear hydraulic conductivity exponent (dimensionless). 

In characterizing the seepage-face of flow-through rockfill embankments, the 

height of the point of first-emergence of the flow on its downstream side is an important 
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fundamental quantity.  Exit height can be used as the starting point of the seepage-face in 

the downstream direction and for calculation of the phreatic surface in the upstream 

direction.  This exit height (yexit) can also be used to develop a rating curve (see equation 

[4.3a]) for the structure; also, no unraveling occurs above this elevation.  Below this 

elevation the seepage-face itself forms the downstream boundary condition, which is of 

interest in the context of pore pressure modeling (Hansen and Roshanfekr 2012a).  The 

yexit of rockfill embankments can be determined using the concept of the angle of the 

emergent flow-field, ff (Hansen et al. 2005), in concert with a 1-D non-Darcy flow 

equation, of which there are many (Hansen et al. 1995).  For a rectangular channel: 

  OexitVppB LyVnAVQ   [4.3a] 

or: exitVpexitB yVnyVq   [4.3b] 

Since q is uni-valued (= Q/LO), yexit can be found by substituting equations [4.2b] 

and [4.2d] into equation [4.3b], and rearranging to: 

 
1

exit

exit
i

q
y


   [4.3c] 

where: 

Ap= cross-sectional area of flow in porous media (L
2
), 

q= Q/LO= unit-width discharge (L
2
/T), 

Q= total discharge through embankment (L
3
/T), 

LO = length of embankment (L), 

iexit = hydraulic gradient most suitable for use in finding yexit (dimensionless).  

The quantity of q can independently be determined for a given upstream water level of 

interest and longitudinal (downstream) width of deposit (Hansen et al. 1995). 

In Leps’ (1973) summary of various geo-hydraulic design methods for this class 

of structure, it was presented that a practitioner’s approximation of the representative 

hydraulic gradient acting within the toe is simply iexit=tan.  This relationship or similar 

can be used in equation [4.3].  It may be expected, however, that the true angle 

representative of the emergent seepage field is less than , that this effective flow angle 

ff varies with the relative exit height, and that it approaches as the relative exit height 

increases, as in Figure 4.4.  This idea of a variable angle, ff, for this emergent flow-field 
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was introduced by Hansen et al. (2005) and showed that the following equation performs 

better than a univalued tan: 

 17.0
H

y
41.1 exitff 




 [4.4a] 

For the case of both faces being at the angle of repose for coarse materials, it was 

surmised that: 

 







H

h usff   [4.4b] 

where:  

yexit = exit height (L), 

 ff = angle of emergent flow-field (see Figure4. 4),  

 = angle of downstream toe (see Figures 4.1 and 4.4), 

H= height of embankment (L), 

hus= upstream water level (L), 

H= measure of longitudinal extent (streamwise) of embankment, 

( )tan/(tan)tantanB( w  , for mine-waste dumps where 1V:1H it reduces 

to 2/Bw ) (L), 

Bw= total length of the embankment (L), 

λ= angle of the upstream slope, 

θ= angle of the downstream slope. 

Such approaches can be used to find the height of the point of first-emergence for 

flow-through rockfill embankments and mine-waste dumps.  The procedure can be 

invoked using any non-Darcy flow equation, of which there are many (cf. review of 

Hansen et al. 1995).  Some are in the form of equation [4.1], others are (after algebraic 

rearrangement – see Hansen et al. 1995) second-order polynomials.  The two forms are 

interchangeable (George and Hansen 1992), and the amount of supporting data quite 

variable from one published equation to the next, so that the choice of non-Darcy flow 

equation is a matter of engineering judgment (especially in the absence of medium-

specific experimental work).  It is possible to derive non-Darcy adaptations of the 

approach of Casagrande (1932) and others; this is beyond the scope of this work.  



 

79 

 

Figure 4.4.     Illustration of concept of angle of emergent flow-field, ff (adapted from 

Hansen et al. 2005). 

 

4.5. MODELING OF WATER SURFACE PROFILE OF SEEPAGE-FACE 

4.5.1. Prerequisites 

The seepage-face represents a self-generated boundary condition and as such the 

depth variation that it represents directly affects the amount of flow that emerges to 

supply it.  Greater depths reduce the rate of flow emergence and lesser depths increase it; 

a self-adjustment therefore takes place such that the total implied flow is matched to the 

difference in upstream and downstream heads (i.e. depth variation) that drives this flow.  

The SVF seepage problem has an apparent indeterminacy as a pseudo open-channel 

hydraulics problem, namely, that neither the variation in flow emergence nor of 

Manning’s n is known beforehand.  Ordinarily, the former is not only known, it is often 

associated with a univalued d/dQ ; the latter is merely approached by using n values 

considered to be representative of the surface in question (e.g. concrete). 
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The precise pattern of flow emergence can be thought as being dictated by final 

surficial heads arising from a very different kind of modeling effort, one sometimes 

referred to in geotechnical engineering as ‘pore pressure’ modeling (of the entire 

embankment).  In this case, and in order to dynamically simulate the whole system at 

once, the hydraulic head model of a given embankment was directly linked to the SVF 

algorithm for its external water surface profile.  We will therefore refer herein to the 

‘linked model’ or ‘paired algorithm’. 

Two methods were tested: (a) SVF depths for a given spatial rate of flow 

emergence were computed and used by the head-based surficial finite difference (FD) 

nodes.  This implied a revised spatial rate of flow emergence, then used in the next round 

of SVF water surface profile modeling (Figure 4.7).  (b) Flux nodes rather than head-

based FD nodes were tied directly to the incremental flow requirement of the SVF 

algorithm (Figure 4.9).  Table 4.2 describes the nature of the seepage-face problem and 

the two modeling approaches used in this research. 
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Table 4.2.   Nature of the seepage-face problem and the parameters involved. 

Row Parameter or 

Information 

(i) 

Needed as Input? 

(ii) 

Output or 

Outcome? 

(iii) 

Bounds/Limits 

(iv) 
Notes 

(v) 

1 

Average 

Manning’s n. 

Yes (as an initialization) 

Row 2 relevant. 

 

Yes 

~10
-1

 to ~10
-2

 for ordinary 

boundaries, but see Column 

(v) note →. 

No-slip condition not present (so 

boundary not ordinary). 

Mean ‘n’ being too high leads to 

SVF depths too large and exit 

gradients too small.  The latter is 

a non-conservative outcome from 

a design point-of-view. 

2 

Spatial pattern 

(down-slope 

variation) in 

Manning’s n
 *
. 

Yes - see equations [4.15], 

[4.16], and [4.18]. 
No 

Monotonic variation 

expected. 

See Note in Row 5 for 

consequences of wrong pattern. 

3 
Total 

discharge. 

No (but is implied by integral 

of Row 4 input). 

Yes 

(easily 

integrated) 

Expected Qtotal can be 

independently estimated 

using methods described in 

Hansen et al. (1995). 

The dQ/dl pattern must show 

monotonic increase in cumulative 

Q, reaching Qtotal at the toe (l = 

lSF). 

 

 

 

 

8
1
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Table 4.2 (Cont).   Nature of the seepage-face problem and the parameters involved. 

Row Parameter or 

Information 

(i) 

Needed as Input? 

(ii) 

Output or 

Outcome? 

(iii) 

Bounds/Limits 

(iv) 
Notes 

(v) 

4 

Spatial pattern 

(variation) in 

discharge. 

SVF side uses linear pattern 

(zero to q from equation 

[4.3b]) if head-based FD 

nodes used. 

Pore pressure side uses linear 

pattern (zero to q from 

equation [4.3-b]) if flux FD 

nodes used. 

Yes 

(inferable) 

 

Yes 

(explicit) 

(all incremental Q’s) 

cannot exceed Qtotal.  

Monotonically-increasing 

variation in cumulative Q 

must occur. 

Head-based-node approach 

requires distinct computation of 

all incremental flows
 ** (1)

. 

Linked flux-node based algorithm 

dynamically (automatically) takes 

care of incremental Q pattern
 (2)

. 

5 

Water surface 

profile (wsp = 

variation in 

seepage-face 

depth of flow 

from  l = 0 to l  

= lSF). 

Pore pressure side uses linear 

pattern (zero to h from 

equation [4.19]) if head-

based FD nodes used. 

SVF side uses linear pattern 

(zero to h from equation 

[4.19]) if flux FD nodes used. 

Yes (key 

outcome) 

A given depth (and flow) 

variation forces a velocity 

variation. Since the wsp 

depth is definitely 

monotonically-increasing, 

Vmax cannot exceed Qtotal / 

Amax, where Amax (=LO∙hsvft) 

must be at the toe. 

If depth pattern is wrong, 

misplaced maximum gradients 

result (highly undesirable because 

of use of gradients in initiation of 

motion (IoM) estimation).   

Velocities affect IoM results
***

. 

*    In this research the variation in Manning’s n could be inferred because of simultaneous knowledge of how the depth varied and how the 

discharge accumulated.  It was inferred by adjusting its mean and its spatial variation until depths and flows matched laboratory observations. 

**   Iteratively updated.  This calculation is part of neither the FD model of the embankment (per se) nor of the SVF algorithm.  

*** But not as much as exit gradients (Hansen et al. 2005). 

(1) This method is easier to set up and the exit gradients needed for IoM arise naturally. 

(2) Each of side of the paired algorithm is essentially making reference to the same fluxes.  The exit gradients needed for IoM must all be 

calculated after the numerical modeling has been completed.

8
2
 

 



 

83 

For modeling the hydraulic heads inside the embankment, equation [4.2] can be 

substituted into the continuity equation to develop a 2-D non-linear hydraulic 

conductivity (NLHC) partial differential equation (PDE) (see Hansen and Roshanfekr 

2012a and 2012b for details).  This NLHC PDE, known as a ‘p-LaPlacian’ (Vazquez 

2007), was used for modeling the hydraulic head within the model embankments: 
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 [4.5] 

A finite-difference (FD) version of equation [4.5] with Δ=Δx=Δy (also see Figure 4.5) is: 

 

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h  [4.6]  

 

 

Figure 4.5.    Four point body-centered FD molecule used for modeling of hydraulic 

head inside model embankments. 

 

4.5.2. SVF Water Surface Profile 

The downstream slope of these embankments is hydraulically steep (Chow 

1959)
1
.  In order to calculate the local seepage-face head for such slopes the following 

equation can be used (Figure 4.6): 

                                                 

1
 That is, the critical depth is greater than the normal depth. 
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where:  

SFh = local seepage-face head (L),  

)(SFz  = elevation of seepage-face; varies from zero at SF   to yexit at 0  (L),  

 d = local seepage-face depth normal to bed (L),  

w)(SF /p  = pressure head
1
 (also a function of position on face), magnitude varies 

from zero at 0  to hTW at SF   (L), perhaps nonlinearly, 

w = unit weight of water (F/L
3
). 

When the discharge varies significantly in direction of flow, whether positively or 

negatively, it is classified as ‘spatially varied’ flow (SVF).  Sharp and James (1963) were 

apparently the first researchers to classify the seepage-face flow at the toe of a rockfill 

slope as a case of SVF with increasing discharge.  The seepage-face is an unusual 

example of varied flow in that the standard no-slip condition
2
 is not present at the 

boundary (this should reduce Manning’s n), yet the relative roughness is very high, 

especially (as will be seen) near the control section (this should increase n).  Further, the 

‘bed’ slope is unusually steep (being much more than 6º), pushing the control section (i.e. 

transition from subcritical to supercritical) up toward yexit (ℓ=0 in Figure 4.1).  Literature 

on the hydraulic resistance of very rough beds with Fr>1 is itself rather scant (Pagliara et 

al. 2008, Kells 1993).  The governing ordinary differential equation (ODE) for steady 

SVF usually has the following inherent assumptions: flow 1-D, hydrostatic pressure 

distribution normal to the bed, channel boundary immobile, longitudinal slope small, and 

air entrainment negligible.  The numerical solution of this ODE usually involves the 

                                                 

1
 pSF(ℓ)/w = ycos

2
 where y is measure orthogonally to the foundation, also see Figure 4.16. 

2
 This no-slip condition might be more accurately referred to as an apparent no-slip condition.  The plane of 

the downstream face of a flow-through rockfill embankment is very rough, relative to the modest depth of 

water that covers it.  However, if it were a smooth surface, one could measure the velocity at regular 

intervals within a given vertical, right down to this plane itself.  The results of such a series of 

measurements would necessarily result in a non-zero velocity being measured at the plane. Otherwise, the 

equality between the known local flux rate and the integral of the local velocity distribution could not be 

satisfied.  It is therefore fair to say that although the no-slip condition must be satisfied at a microscopic 

level (i.e. where the fluid is in direct contact with the surface of a given rock particle) it appears not to be 

satisfied at the macroscopic level, for the spatially-varied flow that occurs within the seepage-face wedges 

of flow-through rockfill embankments. 
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Manning equation to assess the friction slope and does not require d/dQ  to be single-

valued.  

 
Figure 4.6.   Seepage-face in the toe of a rockfill embankment. 

The SVF equation applicable to this context (Sharp and James 1963, Hansen 

1992, Chow 1959) is: 
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 [4.8] 

where:  

d = depth normal to bed (see Figure 4.6) (L),  

d/dd = rate of change of depth (measured normal to the downstream slope) 

along  , in direction of flow (dimensionless),  
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S= sin= slope
1
 of toe of embankment (dimensionless),  

Sf = friction slope 2)3/2( )R/nV(  (dimensionless),  

V = velocity in seepage-face (L/T),  

n = Manning’s roughness coefficient, 

R = hydraulic radius (L),  

D = hydraulic depth (L),  

Q = total discharge through embankment (L
3
/T), 

A= cross sectional area of flow in seepage-face normal to embankment slope (L
2
),  

= velocity head correction factor (dimensionless),  

g = gravitational acceleration (L/T
2
). 

The computation of the water surface profile starts from the control section which 

must therefore be identified first.  Due to the variation of the discharge in the streamwise 

direction, the critical depth (creating the control section) can occur at any point along the 

channel.  It is known the critical section occurs where the specific energy is a minimum, 

which implies that either Fr = 1 or 0d/dd  2
.  In order to determine the position of the 

control section for a specific geometric and hydraulic condition, the numerator of 

equation [4.8] should therefore be set to zero (Henderson 1966).   

For this study the location of the control point using the methods of Chow (1959) 

and of Sharp and James (1963) were compared.  Chow’s (1959) method for determining 

the downstream location of the control section is numerical.  Sharp and James (1963) 

assumed a single d/dQ  value in the downstream direction by using the toe angle to 

estimate the rate of discharge variation (i= tanθ).  The following equation for calculating 

the distance of the critical depth ( c ), relative to the point of first-emergence, arose: 

 





32

2*2

c
sinLg

qcos8
  [4.9] 

where:  

SF

totalQ

d

dQ
q


 = average spatial rate of change in discharge (L

2
/T). 

                                                 

1
 The position occupied by Sθ in equation [4.8] is usually written S0, the bed slope (meaning the bed of the 

river or channel). 
2
 Normally, the critical depth is univalued (in a prismatic channel through which a given flow is being 

conveyed) and is greater than the depth of water if the flow is supercritical.  Spatially-varied flow has no 

single value of critical depth and if a transition from subcritical to supercritical flow is present (as here), 

there will be a unique point where the critical depth coincides with actual depth. 
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Knowledge of the location of the control point permits computation of the 

complete water surface profile, which proceeds downstream for supercritical flow and 

upstream for subcritical flow.  Although it is not necessarily the case for SVF (in 

general), it was found that the inferred Froude number just downstream of the control 

point was greater than unity in all eight of the cases described herein.  For seepage-face 

SVF cases associated with typical flow-through rockfill dams, (it turns out that) the 

control section is a short distance downstream of the point of first emergence, meaning 

that most of the computation and water surface profile is for the supercritical condition, 

and proceeds downstream from it. 

The governing ordinary differential equation of the SVF is non-linear with no 

closed-form solution even for the prismatic channel case.  The following discretization 

was used to solve equation [4.8] (cf. Chow 1959 with 1 ): 
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where:  

d = local drop in seepage-face depth relative to bed (L),  

d = elevation change in surface of seepage wedge (L),  

ΔV= Vi+1-Vi= change in seepage-face velocity between sections i and i+1 (L/T), 

ΔQ= Qi+1-Qi= change in seepage-face discharge between sections i and i+1 

(L
3
/T), 

 = distance between sections i and i+1 along seepage-face (L),  

Vi= velocity in section i of seepage-face at i  (L/T),  

Qi= discharge in section i of seepage-face at i  (L
3
/T). 

The two methods used for linking the NLHC-generated heads to the SVF algorithm are 

described in the following sections. 
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4.5.3. Linkage to Conventional Nodes 

Under the first method, links to SVF depths were merely made to the hydraulic 

heads of the body (interior) and the flux was calculated separately, using the head 

outcomes for the conventional surficial head nodes.  In this case the Dirichlet boundary 

condition (Wang and Anderson 1982) was used which, when imposed on a partial 

differential equation, specify the values that a solution needs to take on at the boundary of 

the domain.  Namely, the heads from equation [4.6] and the fluxes calculated using 

equation [4.11] were used to get the inputs for equation [4.10].  More specifically, the 

flux for each conventional node was calculated using (see Figures 4.5, 4.7 and 4.8): 

  O

N/1

CCCC L)i(AVQ  [4.11a] 
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where:  

CQ = flux out of node C (L
3
/T),  

N/1

CC )i(V  = velocity of flux out of node C, normal to seepage-face (L/T),  

 OC LA = area through which flux enters seepage-face (L
2
),  

LO= length of embankment (L), 

Ci = hydraulic gradient at node C, normal to seepage-face (dimensionless)  

(Figure 4.7),  

/C
i = absolute magnitude of hydraulic gradient at node C (dimensionless) 

(Figure 4.7),  

 = direction of absolute magnitude of hydraulic gradient, as + degrees below 

horizontal (dimensionless). 
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Figure 4.7.    Conventional surficial nodes in toe of rockfill embankments (vector ic is 

actually centered on node C). 

For the linked model in which conventional FD nodes were used on the 'pore 

pressure' modeling side, the criterion used to halt computations was the successful 

matching of the down-gradient pattern of discharge exhibited along SF .  Said matching 

was achieved by revising the water surface profile (patterns of depths) produced by the 

SVF algorithm, on the basis of the discharge pattern repeatedly handed to it by the pore 

pressure model.  If the resulting depth (handed back to the pore pressure model) was 

locally greater than that of the previous iteration, this had the effect of lessening the local 

emergent flow. 
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Figure 4.8.     Linkage of NLHC hydraulic head model to SVF algorithm via 

conventional head-based nodes. 
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4.5.4. Linkage to Flux Nodes 

Under the second method, flux nodes rather than head-based FD nodes were tied 

directly to the SVF algorithm.  In this case von-Neumann-like boundary conditions 

(Wang and Anderson 1982) were used.  When imposed on a partial differential equation, 

these specify that although the system to be simulated has a boundary, the values of the 

scalar of interest are not fixed.  Flux nodes linking the hydraulic heads further ‘inside’ the 

body of the rockfill embankment to the SVF algorithm were calculated using the 

following equation (Hansen and Roshanfekr 2012a and 2012b, Wang and Anderson 

1982): 
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where: 

OL)1(T   (L
2
/T), 

OL

)y,x(Q
)y,x(R







= volume of water added per unit time per unit area (L/T), 

Q(x,y)= flux node discharge from downstream toe, added to seepage-face (L
3
/T). 

Equation [4.12] reduces to Poisson’s equation when N=1 (recall equation [4.1]).  

The FD expression for equation [4.12] with Δx=Δy=Δ is (see Figures 4.5 and 4.9): 
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 After making an initial assumption about the spatial variation in the discharge, the 

discharge for the flux nodes and the SVF algorithm was self-determined (iteratively and 

interactively - see Figure 4.10). 
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Figure 4.9.   Flux nodes in toe of rockfill embankments. 

For the linked model in which flux FD nodes were used on the 'pore pressure' 

modeling side, the criterion used to halt computations was the successful matching of the 

down-gradient pattern of depth over SF .  Said matching was achieved by the action of 

the surficial layer of flux nodes, which produced revised flows on the basis of the input 

depth pattern handed to it by the SVF algorithm.  If the resulting flow (i.e. nodal efflux, 

to be handed back to the SVF model) was locally greater than that of the previous 

iteration, this had the effect of increasing the local depth produced by the SVF algorithm, 

as expected. 
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Figure 4.10.   Linkage of NLHC hydraulic head model to SVF algorithm via flux nodes. 
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4.5.5. Role of Roughness 

As previously indicated, for the linked-model seepage-face calculation (under 

either FD method) the downstream variation in Manning’s n, incremental flow 

accumulation, and depth were all unknown a priori.  Because these quantities themselves 

are known to interact hydraulically (apart from linkage to another algorithm) they 

represented an apparent indeterminacy in the SVF ‘half’ of the linked model.  However, 

it was found that a reasonable set of initial conditions was found to be sufficient 

information for the linked model to independently arrive at a reasonable final pattern of 

depths and flows, and of Manning’s n values - keeping in mind that any given depth and 

flow implies a Manning’s n through knowledge of the local energy gradient, for a given 

channel geometry: 
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  [4.14] 

It was of interest however to see how the pattern of this important parameter 

varied over the seepage-face of a given fully-resolved linked model (i.e. a given 

simulated spatially-varied flow water-surface profile).  The final pattern of depths and 

incremental flows was therefore used to infer the ‘n’ pattern for the final condition of the 

seepage-face for all eight models, via equation [4.14].  This range of values was 

compared to the Manning’s n values arising from the equations of Strickler and of 

Keulegan (cf. Chow 1959). 

Strickler (1923) 
6/1

pd047.0n   [4.15] 

Keulegan (1952), fully rough case 
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where: 

dp = representative particle diameter (m), 

R= hydraulic radius (in),  

ks = Nikuradse’s equivalent sand-grained roughness (in). 
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Eight model embankments with different widths (values of Bw and components, 

Figure 4.1) and toe angles/slopes were analyzed.  Three of these were modeled using 

additional discharge data and the results were compared against observed depths and in 

some cases incremental discharges.  The observed exit height (yexit), the phreatic surface, 

and the upstream head (hus) were used as boundary conditions for the numerical 

modeling.  The tailwater level at the toe was set to be the default tailwater depth.  This is 

the tailwater depth that forms in the absence of any backwater effects from the 

downstream channel.  It depends on tan, the surface roughness under SF , and the total 

Q (Hansen and Roshanfekr 2012b).  

Since depths were not measured at every incremental position down SF , but a 

given resolution of the imposed conditions did lead to a set of both depths and flows at 

each such position, and since each paired numerical model did efficiently settle to said 

pattern of depths and flows - but depth was much easier to measure - there was a 

disparity between the amount of depth data available versus the amount of incremental 

flow data available.  The preliminary results that follow therefore focus primarily on 

depth comparisons. 

 

4.5.6. Preliminary Results 

The first step was to determine a suitable node size (in this study Δx = Δy = Δ for 

all cases) for each model run, since the number of iterations was known to be non-trivial.  

A single node represents a finite amount of the porous medium.  As more and more nodes 

are used to represent the same 2-D section of media, the associated mesh or grid becomes 

finer and the level of detail available in the results becomes greater.  However, the 

computational effort toward full grid-relaxation also increases.  

Three node sizes were tested; the optimal size was found to be 0.5 cm (Figure 

4.11).  The total number of nodes for a given numerical model was around 10
4
, and could 

be relaxed such that each iteration only induced 10
-6

 cm of head change, after a few 

minutes of processing.   
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Figure 4.11.   Convergence study of NLHC FD scheme for full grid relaxation of Model 

# 6. 

The   within the SVF algorithm was measured along the seepage-face.  Since 

 cos/  (in this study Δx = Δy = Δ for all cases) the   values were 0.71, 1.12 and 

1.58 cm, for the three slopes considered. 

An important quantity in SVF considerations is the distance of the critical depth 

( c ) from the point of first flow emergence.  The methods of Chow (1959) and Sharp and 

James (1963) were compared for all model embankments; results for the first six cases 

are shown in Figure 4.12.  The average difference between the Chow (1959) and Sharp 

and James (1963) methods for the c  calculation was found to be only about 8%.  It is 

suggested that the Sharp and James (1963) equation be used (equation [4.9]) due to its 

simplicity.  In all cases c  was found to be less than 0.71cm, i.e. less than the   values 

usedhe SVF algorithm was therefore started from the first node after the node at the 

point of first-emergence.  The flow downstream of this point ( c ) was found to be 
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supercritical and was therefore taken as the starting point for all SVF calculations 

performed. 

 

Figure 4.12.   Critical depth distance calculation from yexit using Chow (1959) and Sharp 

and James (1963) for Models 1 to 6 (Q = 3.82 L/s). 

After selecting the nodal size and calculating the distance to the critical depth 

position for all models, the SVF algorithm was set up using both methods (Figures 4.7 

and 4.9).  It was then linked to the NLHC FD hydraulic head model of each embankment.  

After setting up the FD model and the SVF algorithm (using one of two methods 

considered) the initial conditions of depth, local discharge, and Manning’s n were 

imposed (see Table 4.2, especially columns ii and iii).  Specifically, the depth variation 

was made triangular (from zero to the default tailwater value), the discharge variation 

made linear (in the case of flux node usage) from zero to the value indicated by equation 

[4.3], and with these two aspects specified, equation [4.16] was used to set up the first 

pattern of Manning’s n values (with ks=D50 and R=d).  Table 4.3 provides a statistical 

comparison of the observed versus the computed seepage-wedge depths and the implied 

total discharge for all eight embankments.  Figure 4.13 shows how the observed vs. the 

computed local seepage-wedge depths compared, for all eight models. 



 

98 

Table 4.3.      Comparison of observed vs. computed seepage-wedge depths and ending 

flows
1
 (total discharge) for all eight models

*
. 

Model # 

Observed 

Total 

Discharge  

(L/s) 

r
2
 

Mean Error Ratio 

(dobs/dcalc) 

RMSE 

(for depth) 

(cm) 

Error Ratio 

(Qobs/Qcalc) 

1 3.82 0.980 0.933 0.36 1.06 

2 3.82 0.985 0.972 0.31 0.97 

3 3.82 0.988 0.979 0.26 0.94 

4 3.82 0.988 0.979 0.26 0.94 

5 3.82 0.989 0.973 0.22 0.93 

6 3.82 0.989 0.966 0.22 0.94 

7 3.23 0.982 0.917 0.33 0.98 

8 3.23 0.987 0.965 0.20 0.93 

*
 
Number of measured depths = 5, in all 8 cases 

 

                                                 

1
 This is the value of flow at the terminus of Bed in Figure 4.1. 
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Figure 4.13.  Observed vs. computed local seepage-wedge depths along bed for all eight 

models (see Appendix B with respect to ‘depth’). 
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With respect to the natural manner in which each linked model came to a final 

condition, it is clear that more depth in the seepage-face would reduce the efflux.  Less 

emergent flow reduces the depth, which then increases the efflux.  The nature of the self-

correction was essentially no different for the model that did not invoke flux-type FD 

nodes at the surface of the pore pressure model.  The flow merely increased or decreased 

in accordance with the head corrections and the non-Darcy flow equation specified for 

the porous medium in question.  Overall, this simultaneous self-adjustment of depth and 

flow is therefore credible for the seepage-face boundary condition described herein. 

It is evident that there is a systematic error in the computed flows – most of the 

summations of flux were found to be too large (total Qcalc>total Qobs).  The discrepancy is 

in itself interesting because the emergent fluxes were found using non-Darcy flow 

parameters (cf. equation [4.2d]) arising from packed-column tests done on the same 

material (see Appendix B), with an effort to maintain the porosity of the porous medium 

for work done (models built) in the flume.  We suggest two possible causes for this 

systematic error.  One is that the relative wall-effect would not have been the same.  

Although this effect would have been small because D50 was less than one-tenth of the 

inside diameter of the column (Dudgeon 1966) we would in any case expect any wall-

effect to be smaller in the flume than in the column, implying a slightly smaller  to be 

physically at work in the former context.  The other explanation pertains to possible 

porosity differences between work done in the packed column and that done in the flume.  

Although the very same particles of rock were used and every effort was made to 

duplicate the porosity, the porosity of model embankments is in general more difficult to 

determine than it is for media that are perfectly confined within cylindrical containers.  

The Wilkins (1956) equation is widely accepted in the open-pit mining industry as a way 

to describe 1-D flow through linear mine-waste dumps.  It may be stated as (Hansen et al. 

1995): 

 
54.05.0

V iWmV   [4.17a] 
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where: 

Vv = void velocity (=VB/np), (L/T), 

W = 5.243 for hydraulic mean radius in meters and velocity in m/s, 

m = hydraulic mean radius (=(e∙dp)/(6∙re)), (L), e is void ratio, dp is representative 

particle diameter and re is a particle surface-area-efficiency, 

i = hydraulic gradient (dimensionless). 

Given that the void ratio is determinable from porosity via e= np/(1-np), equation 

[4.17a] can be written: 
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By comparison with equation [4.2a], and having the good fortune that the 

experimental work described herein led to an N of 1.85 (and 1/1.85=0.54), we can write: 
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It is therefore possible to quantify and adjust for the common problem that 

packed-column experiments typically have different porosities than model dam 

experiments done using rock particles with the same average diameter and re values: 
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An analogous argument can be developed with the non-Darcy flow equation of 

Stephenson (1979).  The relative role of porosity within  for these two equations are 

therefore presented in Table 4.4, for comparison purposes. 
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Table 4.4.   Effect of porosity on non-Darcy flow coefficient  in equation [4.2d]. 

Porosity 

np 

Ratio  * 

** / 8.01 

 Wilkins 

Equation 

Stephenson 

Equation 

0.38 0.83 0.90 

0.40 0.91 0.95 

0.42 1 1 

  0.44 1.09 1.05 

0.46 1.19 1.10 

0.48 1.29 1.14 

*  value of = 8.01  found experimentally (from packed-column tests, see Appendix B). 

** = in numerator altered via equation [4.17c] (or its analogue) and equation [4.17d], except for 

np=0.42 entry. 

It can be seen from Table 4.4 that only slightly higher porosities in the model 

dams, as compared to the packed-column porosity of np=0.42, could have systematically 

altered the flow coefficient  in equation [4.2d], enough to cause the above-noted 

systematic error in modeled flows. 

It was found that it made no difference whether the SVF algorithm was linked to 

conventional surficial nodes or to flux nodes, the computed depths were virtually 

identical.  The water surface profiles in Figure 4.13 are therefore indistinguishable.  The 

error in the calculated total discharge was found to be less than 7% (Table 4.3).  Figure 

4.14 shows the down-slope Manning’s n variation for all eight models. 

As previously mentioned, Manning’s n was found from the friction slope and as 

part of the SVF algorithm.  Results indicated that the hydraulic resistance, thus inferred, 

decayed exponentially down the seepage-face.  In the interests of providing guidance to 

designers with respect to good initial conditions for Manning’s n, the following 

expression was adapted to the problem: 

 











SF

nkexpba
n

n




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 F

str

C
n

n
  [4.18b] 

where:  

n = local Manning roughness coefficient,  

n = average (in spatial sense) 'n' value inferred over length SF . 

nstr = Manning roughness coefficient calculated using Strickler’s equation, 

CF = correction factor for Manning’s n variation, 

a= empirical constant,  

b= empirical coefficient,  

kn = rate-constant,  

 = distance down seepage-face (see Figures 4.1 and 4.6). 

The mean particle diameter can be used in the Strickler equation.  Then the value 

of the CF correction factor can be used to estimate the mean n applicable to SF .  The 

dimensionless 'n' decay equation can then be used to estimate the local ‘n’ relative to this 

corrected mean n, for all of SF .  This can be used as an initial pattern for Manning’s n, 

within the SVF algorithm (see Table 4.5). 
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Figure 4.14.   Manning’s n variation in the seepage-face along SF for all eight models.  

Exponential decay curves are Strickler based. 

The relative roughness aspect was examined via Keulegan’s (1952) equation, with 

the value of Nikuradse’s equivalent sand-grain roughness (ks) set at the value of the D50 

of the bed (i.e. the toe material).     
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Table 4.5.      Exponential decay parameters in equations [4.18a] and [4.18b] for 

Strickler-based Manning’s n calculation (all eight model embankments). 

Model # Q (L/s) AR 
Downstream 

Slope 

Parameters in Equations [4.18a] and 

[4.18b] 

a b kn CF 

1 3.82 1.5 1H:1V 0.95 0.46 4.6 1.01 

2 3.82 2.0 1H:1V 0.96 0.50 5.1 1.00 

3 3.82 2.5 1H:1V 0.96 0.67 5.5 1.01 

4 3.82 3.0 1H:1V 0.96 0.67 5.5 1.01 

5 3.82 3.5 1H:1V 0.97 0.84 6.6 0.99 

6 3.82 4.0 1H:1V 0.97 0.88 6.6 1.00 

7 3.23 2.0 2H:1V 0.97 0.62 6 0.95 

8 3.23 2.5 3H:1V 0.99 0.72 8.1 0.93 

 

Although the approach taken was made as general as possible, it is admitted that it 

needs to be verified further using seepage-face data from prototypes.  Photographic 

evidence of seepage-faces (e.g. HEC Tasmania 1969, on-line photos by Hydro Quebec of 

PK85 on the Rupert River) appears to support the general patterns described herein. 

 

4.5.7. Improved Model Verification 

Knowing that the depth variations and total flows could be readily generated 

using the linked model using reasonable initial patterns of Manning’s n, it was considered 

of interest to do a limited study of the d/dQ  patterns to see if some of the observed (but 

much more difficult to measure) incremental flows supported the previously-described 

work.  The results and the statistical analyses are shown in Table 4.6 and Figure 4.15. 
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Table 4.6.      Statistics for limited verification of modeling approach, using incremental 

discharges. 

Model # 

Toe Slope 

Total 

Discharge 

(L/s) 

Parameter Studied r
2
 

Mean Error 

ratio (obs/calc) 

Number 

of Data 

Points 

1 

1V:1H 
1.56 

Depth 0.984 0.994 5 

Incremental Discharge 0.995 1.074 4 

7 

1V:2H 
2.68 

Depth 0.989 1.036 5 

Incremental Discharge 0.994 0.964 4 

8 

1V:3H 
3.04 

Depth 0.982 0.947 5 

Incremental Discharge 0.998 0.959 4 

 

 

a) Model #1. 

 

b) Model #7. 

 

c) Model #8. 

Figure 4.15.  Results of seepage-face flow wedge modeling. 
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Figure 4.15 indicates that the growth in discharge down the seepage-face in non-

linear.  The above results also show that the theoretical basis used to describe SVF 

hydraulic resistance in this context is reasonable, since the observed depths match, to a 

reasonable level of agreement.  The main disadvantage of doing detailed seepage-face 

modeling using an SVF algorithm is the increased level of effort.  The following section 

describes the use of linear variation(s) in depth. 

 

4.6. USE OF LINEAR VARIATION(S) IN DEPTH 

It was of interest to see whether the water surface profile (wsp) of the seepage-

face flow wedge could be simplified.  This could be used as a starting point for the 

initially-imposed depths needed for the SVF algorithm, or if sufficiently accurate, used 

as-is.  Simple linear and bilinear (i.e. dual) depth variations were therefore compared to 

pseudo-observed water surface profiles (i.e. numerically generated profiles calibrated to 

agree with a finite number of location-specific depth observations).  Figure 4.16 shows 

the full geometry and nomenclature for a linearized seepage-face profile using two 

straight lines. 
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Figure 4.16.   Linearized seepage-face depth variation using two straight lines. 

From the SVF modeling and the observed data it was noted that the change in the 

slope of the seepage-face depth occurs near the critical section.  It was therefore surmised 

that the location and height of the point at which the slope of the line changes could be 

taken to be some multiple of the down-slope distance to this section, for practical 

purposes.  The bilinear variation therefore required the performance of a search for the 

best location along SF for the change in slope.  Table 4.7 summarizes the results. 
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Table 4.7.   Accuracy of mono vs. bilinear water surface profiles. 

WSP variation/approximation Error  
(Mean and Maximum) 

Notes 

One straight line 3% and 5% maximum error ratio 

occurs at  = 12·c 

Two straight lines 1% and 2.5% best slope change at 

  = 12·c and d = 3·dc 

 

As can be seen in Table 4.7 by comparing the results of all models, the best 

location of the slope change was found to occur at 12· c , at a depth of 3·dc (see footnote 

2 below Figure 4.8).  In addition, the results of the two straight line linearized seepage-

face depths was compared with the seepage-face depth pattern calculated using the SVF 

algorithm for Models 1 to 6, along bed (see Figure 4.17). 
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Figure 4.17.   Two straight line linearized seepage-face depths compared with seepage-

face depth pattern calculated using SVF algorithm for Models 1 to 6, along bed 

(Q= 3.82 L/s). 
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Figure 4.17 shows that the difference in depths is small.  The results of Figure 

4.17 also show that using two straight lines for seepage-face depth variation is more 

realistic than a single straight line.  This indicates that, by simply using a dual linear 

variation in depth instead of the complex SVF algorithm, the accuracy will be adequate, 

from a practical point of view (e.g. error in depth of less than 5%).  Doing so greatly 

reduces the time needed for solving the NLHC FD grid and obviates the need for 

additional iterations in the hydraulic head calculation while calculating each node in the 

SVF algorithm.   

 

4.6.1. Depth at Toe 

The procedures described herein implies the need for guidance for the depth at the 

toe of a prototype.  Hansen and Roshanfekr (2012b) have presented the following 

equation in this regard: 

 exit
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where: 

hsvft=  the depth at the termination of the SVF zone (end of the seepage-face), 

iDTW= hydraulic gradient suitable for finding default tailwater depth 

(dimensionless), 

brep = straight-line path of flow line (L), 

 = angle of the straight-line path of flow line, 

Cpath= correction factor, slightly larger than unity (cf. Hansen and Roshanfekr 

2012b), 

The above equation can be applied to prototype situations. 

 

4.7. SUMMARY AND CONCLUSIONS 

Flow within the seepage-face can be classified as a case of SVF with increasing 

discharge.  In order to handle the interaction between the non-linear hydraulic head ‘pore 

pressure’ model and the SVF wsp algorithm, two numerical schemes were considered: 

one invoking flux nodes and one using ordinary head-based nodes.  The former is slightly 
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more complex but both were found to be effective in modeling the entire system.  It was 

found that discharge increased non-linearly within the seepage-face wedge but that 

Manning’s n decreased exponentially, in the downstream (down-gradient) direction, over 

the toe of the embankment.  The hydraulic resistance outcomes presented are used to 

provide guidance as to how to independently set up viable initial patterns of Manning’s n 

values.  A dual linear variation was found to adequately describe observed depth 

variations, with the most suitable break point being located at 12·c and 3·dc. Imposition 

of said dual linear variation dramatically decreases the number of iterations required to 

relax the NLHC finite-difference grid, and even single linear variations represent wsp’s 

that are not far off the truth, for most of the down-gradient length of the seepage-face. 
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CHAPTER 5 SUMMARY AND CONCLUSIONS 

 

5.1. SUMMARY 

As stated earlier, flow-through rockfill structures are river engineering structures 

often used to attenuate and delay inflow hydrographs.  It was also highlighted that in such 

structures, the most common form of failure is an unraveling failure.   

Little attention has been given to the simplification of the design of the internal 

and downstream face hydraulics of these barrages.  The main purpose of this research 

was therefore to study the hydraulics of flow-through rockfill embankments and provide 

additional guidance on the design and safety of these structures.  In this regard, the non-

linear nature of flow within these structures was studied using a p-LaPlacian-like partial 

differential equation.  The factor of safety against the unraveling failure was presented for 

a range of downstream slopes, thus showing the unsafe combinations of slope and 

particle size.  It was shown that the factor of safety tends to drop below unity under the 

seepage-face primarily because of the strength of the exit gradient near the toe of the 

structure, and secondarily because of the overflow velocity.  

Also, in order to assess the potential of an unraveling failure in flow-through 

rockfill dams, three different aspects of the hydraulic design of such structures were 

systematically studied.  The first concerned finding the gradient most useful in the 

independent computation of the height of the first flow emergence point.  The second 

involved a method for independently computing variations in the hydraulic head within 

the yexit vertical which allows the toe of the structure to be isolated for purposes of 

stability analysis.  The third was the study of the gradient that will allow for the 

independent estimation of the default tailwater depth, the results of which were 

confirmed by experimental data.  In order to provide better tools to assess the hydraulics 

associated with the zone of the downstream toe, laboratory and analytical studies were 

conducted.  The depth variation of the seepage-face was computationally modeled, and 

two approaches for solving this spatially varied flow (SVF) problem were undertaken.  

The results showed that a dual linear variation in depth can be used to good accuracy and 
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without inducing any unrealistic exit gradients in the zone of primary concern with 

respect to unraveling.   

It is hoped that the findings of this study will result in more scientifically based 

designs and therefore improved safety evaluations of such structures, whether new or 

existing.   

 

5.2. CONCLUSIONS 

The observations resulting from the modeling and experimental work presented 

herein is summarized as follows: 

 The non-linear flow effect on the head was found to be small. 

 The heads associated with fully-developed turbulent flows was found to be no more 

than about 10% larger than those associated with laminar flows, and that this 

difference is much less than 10% over most of the 2-D modeling space(s) / region(s) 

of interest. 

 The physical modeling of flow-through rockfill dams with regards to studies on the 

magnitude of the head itself was found to be difficult, if not pointless, unless the 

physical model is large. 

 Quintupling grid density was found to have little effect on the visual smoothness in 

exit-flowline patterns, as compared to grids of the toe having an exit height 

represented by only 18 nodes.  

 The effects on the exit flow-lines were found to be minor when specialty nodes at 

regular intervals in FD molecules were used. 

 The particle-based FS was found to decrease dramatically as the distance to the toe 

decreased (as ℓ becomes equal to ℓSF in Figure 2.1).   

  The FS dropped dramatically and approached unity as the velocity of the overflow 

approached relatively high value of 3 m/s. 
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 The severity of this overflow effect was found to be greater for smaller slopes, which 

is perhaps non-intuitive.  The reason, however, that the drop in FS with increasing 

overflow U is greater for smaller slopes is that smaller slopes have inherently smaller 

exit gradients, tipping the effect of the denominator within the FS expression towards 

the effect of U and away from iexit.  Furthermore, the dams with particle diameters 

larger than 0.3 m and flat downstream faces (flatter than 1V:2H) all had worse-case 

FS values of greater than 2. 

 The strength of the surficial exit gradient, under the seepage-face, was found to act as 

a destabilizing force for particles residing on this surface.  This gradient was not 

found to exceed about 0.75, in any of the cases considered.  This however is enough 

to destabilize particles smaller than about 0.3 m in diameter, especially as the toe 

slope approaches 1V:1H and the overflow velocity approaches 3 m/s. 

 The need for further and more detailed studies in cases where the FS for IoM is less 

than  two were identified,  given the fact that certain approximations (such as the 

value of CD) was used for FS estimation. 

 The independent computation of the height of the point of first emergence (yexit) 

relative to the foundation was done using a new method.  The method is based on the 

angle of the emergent flow field at and within the toe of the structure. It is also the 

first step toward the hydraulic isolation of the toe for this class of porous hydraulic 

structure. It should be noted here that although the Stephenson (1979) equations have 

been used for this key computation, any non-Darcy flow equation may also be 

utilized for the same purpose. 

 The independent computation of the variation in the hydraulic head within the 

vertical that has, as its upper terminus, the point of first flow emergence using a new 

general method has been presented and verified.  This makes the hydraulic isolation 

of that part of the toe of the structure, which is downstream of the said yexit vertical, 

possible.  

 The independent computation of the default tailwater depth using a new general 

method has also been presented and verified.  Knowledge of this depth is valuable to 
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the designer because if the default or representative depth of the receiving 

watercourse (just beyond the toe of the structure), such as its normal depth, is 

numerically less than this default tailwater condition (hTW), then the hTW value will 

govern and dictate the nature of the downstream condition, without which more 

thorough seepage modeling and other hydraulic modeling cannot proceed.  It has 

been shown that the hydraulic gradient needed for this computation is related to the 

previously established concept of the effective hydraulic gradient (Hansen et al. 

1995), once again of the structure as a whole. 

 The classification of the flow within the seepage-face as a case of SVF with 

increasing discharge was demonstrated.  In order to handle the interaction between 

the non-linear hydraulic head ‘pore pressure’ model and the SVF wsp algorithm, two 

numerical schemes were considered: one invoking flux nodes and one using ordinary 

head-based nodes.  The former is slightly more complex but both were found to be 

effective in modeling the entire system. 

 The discharge within the seepage-face was found to increase non-linearly even 

though Manning’s n decreased exponentially, in the downstream (down-gradient) 

direction, over the toe of the embankment.  The hydraulic resistance outcomes 

presented are used to provide guidance as to how to independently set up viable 

initial patterns of Manning’s n values.   

 The observed depth variations within the seepage-face were found to be adequately 

described using a dual linear variation with the most suitable break point being 

located at 12·c and 3·dc.  The imposition of the said dual linear variation 

dramatically decreases the number of iterations required to relax the NLHC finite-

difference grid.  Even single linear variations represent wsp’s that are not far off the 

reality, for most of the down-gradient length of the seepage-face.     

 

5.3. FUTURE WORK 

Based on a comprehensive review of the pertinent literature and the results of the 

studies conducted for this thesis, the following work is currently being undertaken: 
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 Studies of the linear growth of mine-waste dumps, specifically:  (i) the quantification 

of the discharge and the height of the point of first-emergence; especially the 

applicability of the flow-field angle and the effective hydraulic gradient theories; (ii) 

the exploration of the effects of the linear growth in crest length on the upstream 

water level and the downstream point of first-emergence of the flow.   

Existing theories and equations for exit height estimation (such as Schaffernak 1917, 

Casagrande 1932 and flow-field angle theory) for mine-waste dumps are to be 

modified and compared with experimental data.  Also it was surmised that the height 

of this point of first-emergence would not increase indefinitely for a given non-

overtopping upstream water level, but that it would asymptotically reach some 

limiting length.   

 The internal and downstream face of the hydraulics of flow-through rockfill spurs as 

a function of the upstream water level; specifically:  (i) the quantity of flow moving 

through the spur, (ii) the nature of the three-dimensional phreatic surface within the 

structure, (iii) the pattern of the seepage-face on the downstream side of the 

structure, (iv) the nature of the three-dimensional seepage pattern inside the 

structure, and (v) the theoretical stability of particles residing under the seepage-face.   

In this regard 36 rockfill spurs have been built in the hydraulics laboratory of 

Dalhousie University and a p-Boussinesq-like equation is used for phreatic surface 

modeling within the rockfill spurs.  Also a partially-linked numerical model has been 

developed.  The model developed to address the above objectives consists of a 2-D 

and a 3-D component.  Each will run individually but will be linked externally.  The 

2-D component of the model will be used to provide key boundary conditions for the 

3-D component.  The output results of the 3-D model will then used for FS 

estimation for those particles on the downstream toe of the rockfill spurs. 
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APPENDIX A - DERIVATION OF THE NON-LINEAR HYDRAULIC 

CONDUCTIVITY EQUATION 

 

A.1. THE RELATIONSHIP BETWEEN EMPIRICAL QUANTITIES: NON-LINEAR 

HYDRAULIC CONDUCTIVITY APPROACH 

Darcy’s Law is stated as: 

 iKV   [A.1] 

A gradient-dependent non-linear hydraulic conductivity relation may be stated as: 

 
 iK  [A.2] 

where:  

= coefficient, 

ψ= exponent having a value between 0 (laminar flow) and -0.5 (fully turbulent 

flow). 

then: 

 )1(iV   [A.3] 

A common power-function form of non-Darcy flow equation is: 

 
NVi   [A.4] 

or: 
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Equating [A.3] and [A.5]: 
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 [A.6] 

therefore: 
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N
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1


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  [A.7] 

and: 1
N

1
  [A.8] 

 

A.2. DERIVATION OF THE NON-LINEAR HYDRAULIC CONDUCTIVITY PARTIAL 

DIFFERENTIAL EQUATION 

This section describes the derivation of the Non-Linear Hydraulic Conductivity 

PDE using the equivalent value of the hydraulic conductivity (non-linear hydraulic 

conductivity).   

It is known a priori that the general direction of flow for the configuration shown 

in Figure 1.1 is from left-to-right, and with a downward component.  Also, the hydraulic 

conductivity (K) is greater than zero.  Different researchers have used the magnitude of 

the hydraulic gradient (i) for gradient dependent hydraulic conductivity calculations (e.g. 

Curtis and Lawson 1967, Kells 1994), and therefore it may reasonably be assumed that 

the gradient dependency of the hydraulic conductivity in the x and y-direction is related 

to the x and y-direction gradient at a given point. The value of K in the x and y-directions 

can be expressed as: 
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which the hydraulic head is given by: 
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where: 

h= hydraulic head, 

x/h   and y/h  = gradient components in the x and y directions, respectively, 

wp  = pressure head, 

z= elevation head, 

p =pressure, 

w = unit weight of water. 

Equations [A.9] and [A.10] show that for a Darcian flow, for which  = 0 and 

therefore N = 1, the values of Kx and Ky, are equal to . For turbulent flows however, 

N>1 and therefore  < 0 and Kx and Ky are a function of the flow gradient.  Applying 

Darcy's law the velocity components in the x- and y-direction can be expressed as: 

 
x

h
KV xx




  [A.12] 

and: 

 
y

h
KV yy




  [A.13] 

Substituting the velocity components into the steady-state, two-dimensional 

continuity equation expressed as: 
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 [A.14] 

one obtains a partial differential equation for steady, two-dimensional, non-Darcy flow, 

viz. 
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Equation [A.15] is the governing equation for steady-state flow through porous 

media, and it can be applied to both Darcian and non-Darcian flow regimes alike 

provided that the Kx and Ky, term are properly described.  Substituting equations [A.9] 

and [A.10] into equation [A.15] gives: 
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Assuming the coefficient   to be constant and applying the chain rule for 

differentiation to equation [A.16] results in: 
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Also by rearranging and dividing equation [A.17] by the term ( +1), the 

simplification of the above expression yields the following equation: 
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 [A.18] 

It is emphasized that for turbulent flows  <0, and therefore equation [A.18] is 

used in its entirety in deriving a solution to a given problem. For Darcian flows,  =0 and 

equation [A.18] is reduced to the familiar LaPlace equation which is applicable to 

seepage analysis in homogeneous, isotropic soils. 
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APPENDIX B - OBSERVED DATA 

 

B.1. OVERVIEW 

In keeping with the main objectives of the thesis, various experiments were conducted: 

A. Characteristics tests (i.e. size, shape, distributions and porosity) on selected 

porous media. 

B. Column tests on the porous media, carefully-characterized in Item A, in order to 

permit a limited investigation of the relationship between hydraulically-

determined 1-D non-Darcy flow parameters and parameters not determined 

hydraulically (such as porosity). 

C. A series of tests in the glass flume of the hydraulics lab of Dalhousie University.  

These provided data on 2-D flow-through rockfill structures which were then used 

to compare various computational techniques. 

Because water sediment effects on rockfill were not part of the anticipated scope 

of this thesis research, clear water was used for the experiments.  Hence all the supply 

tanks in the hydraulic laboratory were cleaned and re-filled with clear water.    

After cleaning the tanks and refilling them with clear water, the rock materials 

were selected.  The next step of the test was to select and sieve the rock material in order 

to remove fines and dirt and to achieve the desired size fraction.  In this regard ½ m
3
 of 

¾” crushed limestone called ‘clear blue’ (similar to that used in previous research 

including Parkin et al. 1966, Wilkins 1963, Hansen 1992) was selected for this research.  

A sample of the materials used in this study is shown in Figure B.1.  The same materials 

used here were also used for the column test and the model rockfill embankments.  

  

Figure B.1. Sample of rockfill materials used in this study. 
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B.2. CHARACTERISTICS OF THE POROUS MEDIA 

As sample or a control volume of rockfill (as a porous media) can be defined if the 

following is known: 

i. gradation (typical via sieve analysis), particle type(s) (see Zingg diagram), an 

particle rugosity. 

ii. porosity and hydraulic mean radius (Taylor 1948). 

iii. specific gravity (which is governed by lithology). 

As stated earlier, in this study ¾” (nominal) crushed limestone was used.  The 

first step was to conduct different experiments on the characteristics of the porous media.  

The observations and the experiments conducted on the porous media material were as 

follow: 

 

B.2.1. Porosity of the Model Embankments 

The porosity is an important parameter that characterizes rockfill deposits.  It 

depends on the shape of the rockfill particles, the gradation, and the degree of 

compaction.  From a rockfill hydraulics perspective, porosity does not vary greatly and is 

rather high (Martins 1991).  In this research, porosity was measured for the model 

embankments and for the column test, both before and after each experiment.  The results 

are shown in Tables B.1 and B.5.   
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Table B.1.   Porosity estimates for model embankments (C=cube, T=triangle). 

Wire Mesh 

Module 

Mesh  

Weight 

Total 

Weight 
Total Weight Porosity (n) Porosity (n) 

Before  
Experiments 

After  
Experiments 

Before  
Experiments 

After  
Experiments 

# (kg) (kg) (kg) (dimensionless) (dimensionless) 

C1 0.17 10.30 11.04 0.49 0.45 

C2 0.17 10.86 11.49 0.46 0.42 

C3 0.17 10.54 11.26 0.47 0.44 

C4 0.17 12.59 13.44 0.41 0.37 

C5 0.17 10.46 11.15 0.48 0.44 

C6 0.17 10.35 11.06 0.48 0.45 

C7 0.17 10.76 11.41 0.46 0.43 

C8 0.17 11.46 12.21 0.46 0.43 

C9 0.17 11.45 12.07 0.46 0.43 

C10 0.17 10.64 11.40 0.47 0.43 

C11 0.17 11.19 11.97 0.44 0.40 

C12 0.17 10.94 11.64 0.45 0.42 

C13 0.17 12.11 12.86 0.43 0.40 

C14 0.17 11.12 11.97 0.44 0.40 

C15 0.17 11.70 12.53 0.45 0.41 

C16 0.17 11.85 12.78 0.44 0.40 

C17 0.17 10.95 11.66 0.45 0.42 

C18 0.17 11.68 12.33 0.45 0.42 

C19 0.17 10.93 11.62 0.45 0.42 

C20 0.17 12.45 13.02 0.42 0.39 

C21 0.17 10.12 10.99 0.49 0.45 

C22 0.17 10.45 11.13 0.48 0.44 

C23 0.17 10.60 11.30 0.47 0.43 

C24 0.17 10.35 11.10 0.48 0.44 

C25 0.17 11.66 12.27 0.45 0.42 

C26 0.17 10.60 11.30 0.47 0.43 

C27 0.17 11.98 12.82 0.44 0.40 

C28 0.17 10.42 11.12 0.48 0.44 

C29 0.17 10.85 11.44 0.46 0.43 

C30 0.17 10.99 11.94 0.45 0.40 
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Table B.1 (Cont).   Porosity estimates for model embankments (C=cube, T=triangle). 

Wire Mesh 

Module 

Mesh  

Weight 

Total Weight Total Weight Porosity (n) Porosity (n) 

Before  

Experiments 

After  

Experiments 

Before  

Experiments 

After  

Experiments 

# (kg) (kg) (kg) (dimensionless) (dimensionless) 

C31 0.17 10.80 11.43 0.46 0.43 

C32 0.17 11.83 12.78 0.44 0.40 

C33 0.17 11.81 12.62 0.45 0.41 

C34 0.17 11.44 11.98 0.46 0.44 

C35 0.17 10.95 11.85 0.45 0.41 

C36 0.17 11.67 12.29 0.45 0.42 

T1 0.21 11.12 11.93 0.43 0.39 

T2 0.21 10.96 11.80 0.44 0.39 

T3 0.21 12.45 13.47 0.40 0.35 

T4 0.21 11.79 13.35 0.39 0.31 

T5 0.21 11.83 13.42 0.39 0.31 

T6 0.21 11.71 13.33 0.40 0.31 

T7 0.21 10.52 11.73 0.46 0.40 

T8 0.21 11.17 12.04 0.43 0.38 

T9 0.21 10.31 11.51 0.47 0.41 

T10 0.21 11.55 13.09 0.41 0.32 

T11 0.21 11.21 12.07 0.42 0.38 

T12 0.21 11.09 11.92 0.43 0.39 

T13 0.21 12.29 13.43 0.41 0.35 

T14 0.21 12.55 13.65 0.39 0.34 

T15 0.21 11.31 12.09 0.42 0.38 

T16 0.21 11.36 12.98 0.42 0.33 

Average Porosity: 0.44 0.40 

 

B.2.2. Rock Particles: Dimensions and Shape 

Zingg (1935) presented the four possible gross shapes that a single particle may 

have; spheroid, disk, rod, blade.  His perspective was geological, so artificial particles 

with reentrant surfaces (such as raschig rings) was not in view.  Figures B.2 and B.3 

shows how the three relevant orthogonal particle axes are defined and used.  The mean 

value ‘b’ is a good measure of the particle ‘size’ (see Table B.2). 
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Figure B.2.  Definition of “a”, “b” and “c” for the Zingg diagram (Hansen 1992). 

 

Table B.2. Zingg diagram observations. 

Number 
a 

(long axis) 

b 

(intermediate axis) 

c 

(short axis) Zingg 

Shape 
# (mm) (mm) (mm) 

1 22.5 12.8 10.2 Rod 

2 22.1 12.9 12.9 Rod 

3 19.9 12.9 11.6 Rod 

4 28.6 13 12.1 Rod 

5 26.3 13 12.8 Rod 

6 13.7 13 9 Spheroid 

7 24.2 13.1 12.2 Rod 

8 23.2 13.3 12.9 Rod 

9 19.8 13.5 10 Spheroid 

10 17.7 13.8 10.6 Spheroid 

11 24.4 13.9 14.5 Rod 

12 19.7 13.9 13.1 Spheroid 

13 14.5 13.9 12.3 Spheroid 

14 15.6 14.1 8.2 Disk 

15 28.4 14.5 8.6 Blade 

16 23.3 14.5 8.7 Blade 

17 16.9 14.5 8.8 Disk 

18 31.6 14.7 13.6 Rod 

19 21.8 14.8 10.5 Spheroid 

20 19.7 14.9 12.5 Spheroid 

21 21.9 15 8.9 Disk 

22 23.2 15.2 8.1 Blade 
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Table B.2 (Cont). Zingg diagram observations. 

Number 
a 

(long axis) 

b 

(intermediate axis) 

c 

(short axis) 
Zingg 

Shape 
# (mm) (mm) (mm) 

23 22.7 15.3 12.2 Spheroid 

24 26.3 15.7 8.1 Blade 

25 34.9 15.7 15.3 Rod 

26 21.8 15.9 11.1 Spheroid 

27 23.8 15.9 8.7 Disk 

28 19.9 15.9 9.4 Disk 

29 16.8 15.9 7.9 Disk 

30 22.1 16 15.2 Spheroid 

31 25.1 16.3 14.1 Rod 

32 20.3 16.3 13.1 Spheroid 

33 21.5 16.3 11.4 Spheroid 

34 20.6 16.4 11.2 Spheroid 

35 23.7 16.4 8.9 Disk 

36 31.1 16.4 11.4 Rod 

37 25.8 16.4 16 Rod 

38 22.2 16.5 8.8 Disk 

39 25.1 16.6 9.7 Blade 

40 22.5 16.6 11.3 Spheroid 

41 23.9 16.7 9.2 Disk 

42 22.5 16.8 16 Spheroid 

43 36.3 16.9 17.4 Rod 

44 18 17 13.1 Spheroid 

45 23.8 17 15.8 Spheroid 

46 23.7 17.1 10 Disk 

47 21.3 17.1 10.8 Disk 

48 23.3 17.1 11.7 Spheroid 

49 19.9 17.3 9.9 Disk 

50 24.2 17.5 11.1 Disk 

51 19.9 17.8 13.5 Spheroid 

52 29.1 17.8 15.2 Rod 

53 34.6 17.9 12.7 Rod 

54 21.6 17.9 13.8 Spheroid 

55 18.8 17.9 12.6 Spheroid 

56 23.4 18 11.1 Disk 
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Table B.2 (Cont). Zingg diagram observations. 

Number 
a 

(long axis) 

B 

(intermediate axis) 

c 

(short axis) 
Zingg 

Shape 
# (mm) (mm) (mm) 

57 30.1 18 14.2 Rod 

58 35.3 18.2 11.9 Blade 

59 25.3 18.4 15.1 Spheroid 

60 26.2 18.4 12.2 Disk 

61 22.1 18.4 10.9 Disk 

62 22.5 18.4 13.8 Spheroid 

63 28.7 18.6 11.9 Blade 

64 34.6 18.6 16.1 Rod 

65 18.9 18.6 14.1 Spheroid 

66 32.9 18.7 11.9 Blade 

67 19.8 18.7 14.4 Spheroid 

68 21.5 18.8 8.9 Disk 

69 23.6 18.8 15.2 Spheroid 

70 24.8 18.9 14.9 Spheroid 

71 19.9 18.9 13.5 Spheroid 

72 39.7 18.9 15.6 Rod 

73 24.9 18.9 16.6 Spheroid 

74 24.1 19 10.9 Disk 

75 26.3 19.2 18 Spheroid 

76 24.5 19.5 17.4 Spheroid 

77 26.4 19.5 8.9 Disk 

78 21.2 19.6 13.9 Spheroid 

79 24.1 19.7 10.9 Disk 

80 22.4 19.8 18.6 Spheroid 

81 20.1 19.8 14 Spheroid 

82 26.3 20 10.7 Disk 

83 24.2 20 11.9 Disk 

84 21.7 20 12.1 Disk 

85 37.3 20.1 16.2 Rod 

86 28.7 20.1 11.5 Disk 

87 44.2 20.7 14.4 Rod 

88 34.6 20.9 16.7 Rod 

89 28 20.9 19.9 Spheroid 

90 25.7 20.9 20.2 Spheroid 
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Table B.2 (Cont). Zingg diagram observations. 

Number 
a 

(long axis) 

B 

(intermediate axis) 

c 

(short axis) 
Zingg 

Shape 
# (mm) (mm) (mm) 

91 25.4 21 11.6 Disk 

92 43.7 21.1 16.4 Rod 

93 22.3 21.4 13.1 Disk 

94 27.3 21.7 11.9 Disk 

95 34.6 21.7 14.6 Rod 

96 34.9 21.8 19.7 Rod 

97 24.9 21.8 19.9 Spheroid 

98 28.8 22.1 13.2 Disk 

99 24.3 22.2 15.1 Spheroid 

100 41.6 22.3 16.1 Rod 

101 32.2 22.3 11.4 Disk 

102 25.9 22.4 11.6 Disk 

103 34.1 23.1 14.5 Disk 

104 29.9 23.1 12.2 Disk 

105 27.3 23.2 12.4 Disk 

106 27.5 23.4 13.2 Disk 

107 28.4 23.5 13.4 Disk 

108 29.9 24.5 18.5 Spheroid 

109 29.8 24.6 11.3 Disk 

110 28.4 26.5 12.3 Disk 

 

 
Figure B.3.  Zingg diagram for the rocks studied in this research. 
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B.2.3. Grain Size Analysis 

A common way of characterizing a sample (large number) of particles is classical 

sieve analysis.  In this regard a sieve analysis was carried out on a selected sample of the 

rockfill material.  In this study sieves with openings 25.4 mm (1”), 19.0 mm (¾”), 15.9 

mm (0.625”) and 12.7 mm (½”) were selected.  After sieving, the rock particles were 

washed and particles larger than 1” and smaller than ½” were removed, yielding a fairly 

uniform material for use in the model embankments.  Figure B.4 shows the equipment 

used.  Table B.3 and Figure B.5 show the results of the sieving work.   

 

Figure B.4.  Sieve analysis experimental setup. 
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Table B.3.  Observation for the particle size distribution. 

a) Sieve analysis 

Particle 

Size (mm) 

Particle 

Size (inch) 

Weight 

Lower (kg) 

% Weight 

Lower 

25.4 1 9.962 100.00 

19.0 0.75 7.181 72.08 

15.9 0.625 3.359 33.72 

12.7 0.5 0.000 0.00 

b) D60, D50 and D10 of the rock particles used. 

D60: 0.71 Inch 18.05 Mm 

D50: 0.68 Inch 17.22 Mm 

D10: 0.54 Inch 13.64 Mm 

 

 

Figure B.5.  Particle size distribution. 

 

B.2.4. Hydraulic Mean Radius 

The quantity is a measure of pore size (Taylor 1948) and was used by Wilkins 

(1956) and others to characterize the ‘permeability’ of rockfill.  For a porous medium 

consisting entirely of spheres od diameter ‘d’ it may be shown that (Sissom and Pitts 

1972, Hansen 2004):   
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6

ed
m   [B.1] 

For control volume filled with non-spherical particles this has been modified to:   

 
er6

de
m   [B.2] 

where: 

e= void ration (dimensionless),  

re= surface area efficiency (Garga et al. 1991, Sabin and Hansen 1994) 

(dimensionless), 

d= representative particle diameter (L).   

In this study d was taken to be D50.  In this study, crushed limestone was used, as 

was used by Garga et al. (1991) and Sabin and Hansen (1994).  This lithology, together 

with comparisons of Zingg diagrams (similar) and photographs of particles in the source 

literature (Hansen 1992) led to an estimate of re of 1.84.   

 

B.2.5. Specific Gravity 

This was found by: 

i. weighting particles (submerged and unsubmerged) repeated four times, 

ii. weighting a control volume of porous medium (submerged and unsubmerged) 

repeated twice, 

and according to ASTM procedures D127 and D6743.  The average value was found to 

be 2.65 (for both methods). 
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B.3. PACKED-COLUMN TESTS 

The following summary describes the details of the data collection for packed-

column tests which allowed for the calculation of the non-Darcy parameters of the 

rockfill used in this study.   The column used is shown in Figure B.6.  

 

Figure B.6.  Packed-column test setup (length: 1100 mm,  inside diameter:  297 mm, 

volume: 76.9 L). 

Flow occurred upwards through the rock matrix in the column and passed 

unrestricted into a weighing tank.  Flow was controlled by a valve in the base of the 

column. The hydraulic head was measured at equally-spaced locations 150 mm apart.  In 

order to avoid the influence of the kinetic head and to facilitate determining the exact 

location of each tap, the tips of the piezometers were pointed directly upwards (they 

extended in the centre axis of the column).  Table B.4 gives the results from column test.  
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Table B.4.  Packed-column test results. 

Run 
Head at Tapping Point 

Elapsed Time  water Q 
1 2 3 4 5 

# (cm) (cm) (cm) (cm) (cm) (s) (cm
3
) (cm

3
/s) 

1 150 150 150 150 150 0 0.0 0.0 

2 199.2 199 198.9 198.7 198.6 478 211493 442.5 

3 205.2 204.6 204.4 204.2 204 714 507583 710.9 

4 178.8 177.8 176.7 176 175 456 613330 1345.0 

5 204.3 202 199.5 198.5 196 293 549882 1876.7 

6 228.2 225 221.8 218.8 215.6 268 634479 2367.5 

7 285.2 280 274.8 270 265.2 205 634479 3095.0 

8 274 268.2 263.1 258.3 254 219 697927 3186.9 

9 293.9 287.1 281.6 276.3 270.2 170 571031 3359.0 

10 294.7 282.9 278.6 272.3 265.2 164 634479 3868.8 

11 302.8 292.3 282.8 276.1 266.3 173 761375 4401.0 

12 316.2 304.7 292.5 278.2 264.1 149 782524 5251.8 

 

Figure B.7 shows that the best fit line to the data using i=V
N
 fromation, as follows: 

= 0.0213 (V in cm/s) 

N= 1.85 

r
2
= 0.99 

The porosity of the packed-column was also determined.  Table B.5 shows the 

observations for the porosity measurements  in the packed-column. 
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Figure B.7.  Packed-Column test results. 

Table B.5.  Observations for the porosity measurements in the packed-column. 

 Rock  Column Total 

Weight 118 (kg) 26.67 (kg) 144.67 (kg) 

Volume 44.6 (L) 76.9 (L)  

Porosity 0.42 

 

Fortunately the same porosity was achieved for the model embankments. 

 

B.4. STUDIES IN THE DALHOUSIE UNIVERSITY HYDRAULICS LABORATORY 

GLASS-WALLED FLUME 

Figure 4.2 shows the glass-walled flume of the hydraulics laboratory at the 

Department of Civil and Resource Engineering, Dalhousie University.  Placing a clean-

grid scale on the glass permitted the position of the phreatic surface, the location of the 

point of first emergence, and the seepage-face to be recorded.  In addition, individual 

photographs were taken for each experiment to better record and observe the data.  Also 

due to the turbulent nature of the flow through the rockfill, all data were measured three 

times and an average value was recorded in all cases. 
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Furthermore, photos from different sides of each model embankment were taken 

in order to enable a more accurate study of the head and the flow through the model 

rockfill embankments (see Figure B.9).   

The total discharge was measured with an electromagnetic field distortion meter 

and was checked with a 90
o
 V-notch weir located at the collection tank downstream of 

the glass-walled flume.  Upstream and downstream water levels were measured with a 

point gauge or a measuring tape on the glass. The ‘bed’ (surface of the downstream toe) 

was delineated using a permanent marker, such that it passed through the mean position 

of the bed, roughly through the mid-point of the particles under the seepage-face.  The 

thickness of the seepage-face wedge was measured using a 1 cm by 1 cm grid that fixed 

of the glass, followed by the application of a ruler having 1 mm divisions. The tailwater 

depth downstream was set as the default tailwater depth and no special adjustments were 

made.   The glass-walled flume was leveled using a laser leveler.  

Also in-order to prevent the washout of the rockfill material, a modular model 

setup was used (see Figure B.8).  In this regard different wire mesh boxes with ½” 

openings (13 mm by 13 mm) were built to allow for simple movement and fast 

installation. The boxes were filled with the same materials used in the column test.  The 

rectangular wire mesh box sizes were approximately 150L×150W×300H and the 

triangular wire mesh boxes were 300L×150W×300H (see Figure B.8).  

Each box was restrained with wire to prevent bulging. Wire and wire tie-wraps 

were used to tightly hold the modules together, such that no gaps were present and the 

particles in neighbouring modules were touching (through 13 mm square mesh holes).  

The porosity at these interfaces might have been slightly higher but this was not 

quantified because the phreatic surface exhibited no discontinuities.  The very low 

position of the mesh relative to the bulk of the flow (wherein the higher velocities of the 

wedge were present), the small diameter of the wires relative to their spacing, and the 

very rough nature of the surface relative to the diameter of the mesh wires all 

heuristically indicated that the mesh probably played a minor role in the seepage face 

hydraulics.  The ‘points’ of many of the crushed limestone particles under the seepage-

face protruded or nearly protruded out of the 13 mm by 13 mm holes in the mesh.  The 
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diameter of the mesh wire itself was about 1 mm.  Since the experiments simply could 

not be conducted without some sort of restraints on the particles making up the surface of 

the downstream toe, the work had to be done under conditions which did have a slight 

degree of ‘interference’ in the downgradient direction, as has also been present in 

previous studies of this kind (e.g. Kells 1995, Gerodetti 1981).  

In order to calculate the porosity of the each box, the boxes were numbered and 

the weight and volume of each box was recorded before and after the experiments were 

completed.   It should be noted that at the end of each experiment, the boxes were 

emptied and spread out to air dry for a few days before being weighed.  The porosity for 

each box was calculated individually and in the end, the average porosity was calculated 

for all of the boxes (see Section B.2.1 on porosity, for the observed data). 

Figure B.9 are simplified renditions of photos of the linear growth of model 

embankment, showing how water levels varied for a fixed rate of inflow. 

 

 

Figure B.8.    Modular orientation of the wire mesh boxes for the mode embankments. 
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a) Laboratory experiments conducted at the hydraulics laboratory of Dalhousie 

University for linear growth of model embankment.  All slopes 1V:1H.  Q=3.82 L/s 

(adapted from 2011 photographs), H= 30 cm. 

Figure B.9.    Observations and simplified renditions of photos of the linear growth of 

model embankment. 
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b) Laboratory experiments conducted at the hydraulics laboratory of Dalhousie 

University for linear growth of model embankment.  All slopes 1V:1H.  Q=2.50 L/s 

(adapted from 2012 photographs), H= 32.5 cm. 

Figure B.9 (Cont).   Observations and simplified renditions of photos of the linear 

growth of model embankment. 

For these experiments the rockfill material was added to the downstream face without 

turning off the flow. 
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