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Abstract

Placement games are a subclass of combinatorial games which are played on graphs.

In this thesis, we demonstrate that placement games could be considered as games

played on simplicial complexes. These complexes are constructed using square-free

monomials.

We define new classes of placement games and the notion of Doppelgänger. To

aid in exploring the simplicial complex of a game, we introduce the bipartite flip

and develop tools to compare known bounds on simplicial complexes (such as the

Kruskal-Katona bounds) with bounds on game complexes.
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Chapter 1

Introduction

1.1 Motivation

Combinatorial games are those games that involve pure strategies, for example chess

or checkers. Recently, counting the number of allowed positions with a fixed number

of pieces for combinatorial games in which pieces are placed on a board (like Go or

Tic-Tac-Toe) has received attention (see for example [10], [19], [9] and [6]). One

of the reasons why this problem is interesting to a game theorist is that the results

are independent of whether we are playing a normal game (in which the first player

unable to move loses) or misère (in which the first player unable to move wins), and

misère games are often much harder to solve than normal-play games.

In this work, we will introduce a construction that associates a placement game

with a set of square-free monomials and a simplicial complex. We hope to be able to

use this connection between combinatorial game theory and combinatorial commuta-

tive algebra to apply results from one area to the other.

1.2 Combinatorial Game Theory

Before the 20th century, game theory consisted of studying one game at a time.

This changed in the 1930s when Sprague [17] and Grundy [12] pointed out that

Bouton’s [5] work from 1902 on Nim (a game with heaps of coins in which players

take turns picking a heap and removing coins from it) is applicable to a large class of

combinatorial games.

Combinatorial game theory was greatly advanced by the publication of On Num-

bers and Games by Conway [7] in 1976 and Winning Ways by Berlekamp, Conway,

and Guy [2] in 1982 in which many of the concepts that now build the foundations of

the area were introduced. To honour Conway’s contributions, combinatorial games

as we define them in this thesis are also sometimes called Conway games.

1
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In the last 30 years, game theory has evolved and grown steadily. Today, combi-

natorial game theory is of interest to both mathematicians and computer scientists.

Lessons in Play [1] gives a good introduction to the fundamental theories, but all

concepts that we need will be introduced in the thesis.

For a game, perfect information means that both players know which game

they are playing, on which board, and the current position. No chance means that

no dice can be rolled or cards can be dealt, or any other item involving probability

can be used.

Definition 1.1. A combinatorial game is a 2-player game with perfect information

and no chance, where the two players are Left and Right (denoted by L and R

respectively) and they do not move simultaneously. Then a game is a set P of

positions. Rules determine from which position to which position the players can

move. A legal position is a position that can be reached by playing the game

according to the rules.

In this thesis, a combinatorial game will be denoted by its name in Small Caps.

Well known examples of combinatorial games are Chess, Checkers, Tic-Tac-Toe,

Go, and Connect Four. Examples of games that are not combinatorial games

include bridge, backgammon, poker, and Snakes and Ladders.

Although games usually have a ‘winning condition’ associated to them, i.e. rules

as to which player wins, for the purposes of this thesis games do not necessarily need

to have a notion of winning identified.

For the remainder, we will assume that the board on which games are played is

a graph (or can be represented as a graph, see Section 1.2.1). A space on a board is

then equivalent to a vertex and we use the two terms interchangeably. We will also

assume that any rule for a game is universal, i.e. that it holds for every space of the

board, and we will call this condition universality. For example, the game played

on a strip in which a player may not place a piece beside one of their opponent’s,

except if either is piece is at the end, does not satisfy universality since the rules for

the spaces at the end are different then the rules for all other spaces.

Definition 1.2 (Brown et al. [6]). A placement game is a combinatorial game

which satisfies the following:
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(i) The board is empty at the beginning of the game.

(ii) Players place pieces on empty spaces of the board according to the rules.

(iii) Pieces are not moved or removed once placed.

(iv) The rules are such that if it is legal to place a piece in a space, then it must

have been legal at any other point before.

The Trivial placement game on a board is the placement game that has no addi-

tional rules.

In this work, we will be considering placement games exclusively, a class of games

only recently defined formally by Brown et al. in [6], even though several placement

games, for example Tic-Tac-Toe, have been known and studied for a long time.

The following three games are good examples for placement games. The first two

are well known in combinatorial game theory (see for example [3]).

Definition 1.3. In Snort, players may not place pieces on a vertex adjacent to a

vertex containing a piece from their opponent.

Definition 1.4. In Col, players may not place pieces on a vertex adjacent to a

vertex containing one of their own pieces.

Definition 1.5. In NoGo, at every point in the game, for each maximal group of

connected vertices of the board that contain pieces placed by the same player, one of

these needs to be adjacent to an empty vertex.

Example 1.6. Examples of legal alternating sequences of play for each are the fol-

lowing:

Snort:

L L RL→ R→

Col:

L L R L R LL→ R→ L→

NoGo:
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L L R L R
L

L R
L R

L→ R→ L→ R→

Note that other sequences of play are possible for each of these games, and we do

not claim that the sequence given are optimal under any circumstances.

Even though Col and Snort seem like very similar games from their definitions,

they differ greatly (placing pieces in Snort ‘reserves’ spaces for oneself, while in Col

one reserves spaces for the opponent), and strategies for winning one are bad for the

other. Surprisingly, as we will show in Section 3.2, Col and Snort are on the other

hand closely related when played on certain boards, as we can construct one from the

other. This shows that although they have been known for a long time, they are not

yet completely understood.

The game NoGo is very different from Col and Snort, and thus provides an-

other good example to consider.

In all three of these games, the pieces only occupy one vertex each, which is

not necessary though. For example in Crosscram [11] and Domineering [3] the

players’ pieces occupy two adjacent vertices.

1.2.1 Boards

To reiterate, when we use the word “board”, we mean a graph on whose vertices the

pieces are placed. A more ‘traditional’ board, for example a checkerboard, can be

represented by a graph by assigning to each space a vertex and connecting two vertices

if and only if the two corresponding spaces are horizontally or vertically adjacent. For

example the board on the left in Figure 1.1 is represented by the graph on the right.

We do not consider graphs of only this type for boards though, but any graph,

for example the cycle C5 or the graph given in Figure 4.1. Sometimes, we consider a

game played on several different boards. In this case, we will denote the set of boards

by B.

1.2.2 Disjunctive Sum of Games

Definition 1.7. The disjunctive sum between two positions of combinatorial games

G and H is the position in which a player can play in one of G and H but not both

simultaneously.
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Figure 1.1: A Traditional Board and Its Corresponding Graph

For a combinatorial game, the condition that players may not move simultaneously

(see Definition 1.1) is usually replaced with the stronger condition of players taking

alternating turns. Since we assume that games are part of a disjunctive sum though,

players can effectively ‘skip’ their turn on a board by playing on the other board,

i.e. not moving simultaneously and taking alternating turns are equivalent for the

purpose of this thesis.

Assuming implicitly that placement games are part of a disjunctive sum implies

that a board might be filled with more pieces of one player than of the other. For

example, for Col played on the path P3 the position in Figure 1.2 is legal.

L L

Figure 1.2: A Legal Position in Col on P3

Making this assumption is very useful since in many placement games the board

might ‘break up’ into the disjunctive sum of smaller boards.

Example 1.8. For another example, consider Col played on the path P7. If Right

has played in the third and fifth space, and Left in the fourth space, then this position

is equivalent to the one in which the middle space is ‘deleted’ (see Figure 1.3).

R L R R R∼= +

Figure 1.3: A Col Position That is the Disjunctive Sum of Two Col Positions I
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Now if the game continues, we might have a position as on the left in Figure 1.4,

which would be equivalent to the disjunctive sum of the two Col positions on the

right, one of which has two Right pieces but no Left pieces.

R R L R L R R R L∼= +

Figure 1.4: A Col Position That is the Disjunctive Sum of Two Col Positions II

The argument of a board breaking up into smaller board as play progresses is

indirectly used in the proof of Proposition 4.10, where playing a second piece on a

strip is equivalent to placing one piece on a smaller strip, an easier problem that was

solved earlier.

1.2.3 t-player Games

Even though we normally only consider 2-player games in combinatorial game theory,

we can generalize many games to other numbers of players. We call such games t-

player games. Since we are assuming that all games can be part of a disjunctive, the

order in which the players take their turns does not matter.

Example 1.9. We can generalize Col to a t-player version by using the same rules

as in Definition 1.4. For example, for a 3-player version of Col on the path P5, we

introduce a third player called Middle, whose pieces are denoted by M . Figure 1.5

gives an example position for such a game.

L R M R M

Figure 1.5: An Example Position in 3-player Col

In Chapter 4, we look at t-player games. We find this useful because some 2-player

games turn out to be equivalent to simpler t-player games.



7

1.3 Combinatorial Commutative Algebra

Combinatorial commutative algebra is an area in which combinatorial concepts are

used to study objects in commutative algebra and vice versa. One of the main roots

of combinatorial algebra lies in the relationship between square-free monomial ideals

and simplicial complexes. This connection was first studied by Stanley in 1975 [18],

by Reisner in 1976 [16], and by Hochster in 1977 [13] via the concept of the Stanley-

Reisner ideal of a simplicial complex.

Edge ideals for graphs were then introduced by Villarreal in 1990 [20], and these

were generalized to facet ideals for simplical complexes by Faridi in 2002 [8].

Definition 1.10. A simplicial complex ∆ on a finite vertex set V is a set of subsets

(called faces) of V with the conditions that if A ∈ ∆ and B ⊆ A, then B ∈ ∆. The

facets of a simplicial complex ∆ are the maximal faces of ∆ with respect to inclusion.

A non-face of a simplicial complex ∆ is a subset of its vertices that is not a face.

The f-vector (f0, f1, . . . , fk) of a simplicial complex ∆ enumerates the number of

faces fi with i vertices. Note that if ∆ 6= ∅, then f0 = 1.

In the algebraic literature, the f -vector of a complex is usually indexed from −1 to

k− 1 as this is the “dimension” of the face (the number of vertices minus 1). Due to

the connection between placement games and simplicial complexes (see Section 2.2),

we have chosen the combinatorial indexing.

Definition 1.11. An ideal I of a ring R = R(+, ·) is a subset of R such that (I,+)

is a subgroup of R and rI ⊆ I for all r ∈ R.

In a polynomial ring R, since R is Noetherian by the Hilbert basis theorem, every

ideal I has a finite number of generators, i.e. there exist g1, . . . , gq ∈ R such that

I = {
∑q

i=1 rigi | ri ∈ R, i = 1, . . . , q}. We then say that I is generated by g1, . . . , gq.

Definition 1.12. Let k be a field and R the polynomial ring k[x1, . . . , xn]. A product

xa1
1 . . . xan

n ∈ R, where the ai are non-negative integers, is called a monomial. Such

a monomial is called square-free if each ai is either 0 or 1. The sum a1 + . . .+ an is

called the degree of the monomial xa1
1 . . . xan

n .
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Definition 1.13. Let k be a field and R the polynomial ring k[x1, . . . , xn]. A mono-

mial ideal of R is an ideal generated by monomials in R. A monomial ideal is called

a square-free monomial ideal if the monomials generating it are square-free.

Let k be a field and R = k[x1, . . . , xn] a polynomial ring. Given a simplicial

complex ∆ on n vertices, we can label each vertex with an integer from 1 to n. Each

face F (resp. non-face N) of ∆ can then be represented by a square-free monomial of

R by including xi in the monomial representing the face F (resp. the non-face N) if

and only if the vertex i belongs to F (resp. N). We then have the following:

Definition 1.14. The facet ideal of a simplicial complex ∆, denoted by F(∆), is

the ideal generated by the monomials representing the facets of ∆. The Stanley-

Reisner ideal of a simplicial complex ∆, denoted by N (∆), is the ideal generated

by the monomials representing the minimal non-faces of ∆.

Definition 1.15. The facet complex of a square-free monomial ideal I, denoted

by F(I), is the simplicial complex whose facets are represented by the square-free

monomials generating I. The Stanley-Reisner complex of a square-free monomial

ideal I, denoted by N (I), is the simplicial complex whose faces are represented by

the square-free monomials not in I.

To clarify these concepts, we will give two examples:

Example 1.16. Consider the simplicial complex ∆ in Figure 1.6 with the labeling

of the vertices as given.

3

2

5

6

4

1

Figure 1.6: An Example of a Simplicial Complex

The facet ideal of ∆ then is

F(∆) = 〈x1x2, x1x6, x2x3x4, x3x5, x4x5x6〉,
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and the Stanley-Reisner ideal of ∆ is

N (∆) = 〈x1x3, x1x4, x1x5, x2x5, x2x6, x3x4x5, x3x6〉.

Example 1.17. Consider the square-free monomial ideal I = 〈x1x3, x2x3x4〉. The

facet complex F(I) is given in Figure 1.7 and the Stanley-Reisner complex N (I) is

given in Figure 1.8.

3

1

2

4

Figure 1.7: Facet Complex of I = 〈x1x3, x2x3x4〉

1 2 3

4

Figure 1.8: Stanley-Reisner Complex of I = 〈x1x3, x2x3x4〉

It is clear that the facet operators are inverses of each other, i.e. F(F(∆)) = ∆

and F(F(I)) = I, from their definitions. This is also true of the Stanley-Reisner

operators: A minimal non-face of N (I) is a minimal monomial generator of I, thus a

generator of I, showing N (N (I)) = I. Similarly, since N (∆) contains all monomials

representing non-faces, a square-free monomial not in N (∆) has to be a face of ∆,

thus N (N (∆)) = ∆.

This shows that both the facet and the Stanley-Reisner operators give a bijection

between the set of all square-free monomial ideals in n variables and the set of all

simplicial complexes on n vertices.
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1.4 Graph Theory

Since we are playing games on graphs, we will need a few definitions from graph

theory. See for example [4].

Definition 1.18. A simple graph is a graph with no loops (an edge that has

identical ends) and no parallel edges (two or more edges that share the same two

ends). The degree of a vertex in a simple graph is the number of edges incident with

it.

Definition 1.19. A path Pn is a connected simple graph on n ≥ 2 vertices such that

two vertices have degree 1 and n− 2 vertices have degree 2.

Definition 1.20. A cycle Cn is a connected simple graph on n ≥ 3 vertices such

that all vertices have degree 2.

Definition 1.21. A complete graph Kn is a simple graph on n vertices such that

any two vertices are adjacent.

Definition 1.22. A bipartite graph G is a simple graph whose vertices can be

partitioned into two sets V1 and V2 such that every edge of G has one vertex in V1

and the other in V2. The sets V1 and V2 are the parts of G.

Definition 1.23. A complete bipartite graph Kn,m is a bipartite graph whose

parts V1 and V2 have size n and m respectively, and such that every vertex in V1 is

connected with every vertex in V2.

Example 1.24. For an example of each graph, see Figure 1.9.

(A) Path P3 (B) Cycle C4 (C) Complete

Graph K4

(D) Complete Bipartite

Graph K2,2

Figure 1.9: Examples of Graphs Considered
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Definition 1.25. A path between two vertices v and w in a graph G is a sequence

of vertices v = v1, v2, . . . , vk = w of G such that vi and vi+1 are connected by an edge

and no edge is repeated. The distance between two vertices v and w is the number

of edges of the shortest path between v and w, i.e. the number of vertices in the

shortest path minus 1. The diameter of a graph G, denoted diam(G), is the largest

distance between any pair of vertices in G.



Chapter 2

Playing Games on Simplicial Complexes

We will start this chapter by giving an introduction to game polynomials, a new

concept in combinatorial game theory developed by Brown et al. in [6], which will be

studied throughout this work.

We then show that to each placement game we can associate a set of square-free

monomials representing the legal positions of the game. From this set of monomials,

we can then build a simplicial complex, which we call the game complex. To illustrate

this useful construction, we will construct the game complexes of Col and Snort

on two different boards.

Next, we define the legal and illegal ideal of a placement game, and introduce

the illegal complex, which is closely related to the game complex. Finally, we will

demonstrate that a placement game can also be played on its game complex and

illegal complex.

2.1 The Game Polynomial

For a placement game G and a board B, let

fi(G,B)

denote the number of positions with i pieces played, regardless of which player the

pieces belong to. If the game and board are clear from context, we shorten the

notation to fi.

Definition 2.1 (Brown et al. [6]). For a game G played on a board B, the game

polynomial is defined to be

PG,B(x) =
k∑

i=0

fi(G,B)xi.

PG,B(1) is then the total number of legal positions of the game.

12
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The motivation for game polynomials came from work of Farr [10] in 2003 where

the number of end positions and some polynomials of the game Go were considered,

and work in this area was continued by Tromp and Farnebäck [19] in 2007 and by Farr

and Schmidt [9] in 2008. Even though Go is not a placement game since pieces are

removed, it shares many properties with this class of games. Thus it was natural for

the authors of [6] to consider the concept of game polynomials for placement games.

Example 2.2. Consider Col played on the path P3. The legal positions are

· · · L · · · L · · · L R · · ·R · · ·R

L · L R ·R LR · L ·R RL · R · L · LR ·RL

LRL RLR.

so that

f0 = 1 f1 = 6 f2 = 8 f3 = 2

and the game polynomial is

Pcol,P3(x) = 1 + 6x + 8x2 + 2x3

giving the total number of legal positions being Pcol,P3(1) = 17.

2.2 Constructing Monomials and Simplicial Complexes from Placement

Games

We will now introduce a construction that associates a set of monomials and a sim-

plicial complex to each placement game.

Given a placement game G on a board B, we can construct a set of square-

free monomials in the following way: First, assign a label to each space on B. For

each legal position we then create a square-free monomial by including xi if Left has

played in position i and yi if Right has placed in position i. The empty position

(before anyone has started playing) is represented by 1.

Example 2.3. Consider Col played on the path P3. We label the spaces of the

board as given in Figure 2.1.
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1 2 3

Figure 2.1: Labeling P3

The monomials representing legal positions (see Example 2.2) are then

{1, x1, x2, x3, y1, y2, y3, x1x3, y1y3, x1y2, x1y3, y1x2, y1x3, x2y3, y2x3, x1y2x3, y1x2y3}

The maximum legal positions and their corresponding monomials are given in

Figure 2.2.

L R L x1y2x3 L R x1y3

R L R y1x2y3 R L y1x3

Figure 2.2: Maximum Legal Positions for Col on P3

Using these monomials, we can build a simplicial complex ∆G,B on the vertex set

V = {x1, . . . , xn, y1, . . . , yo} by letting a subset F of V be a face if and only if there

exists a square-free monomial m representing a legal position such that each element

of F divides m.

Definition 2.4. A simplicial complex that can be constructed from a placement game

G on a board B in this way is called a game complex and is denoted by ∆G,B.

Example 2.5. Consider Col played on the path P3. Using the notation from Ex-

amples 2.2 and 2.3, we get the game complex ∆Col,P3 as given in Figure 2.3.

y2

x1

x3

x2

y3

y1

Figure 2.3: The Game Complex ∆Col,P3
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Observe that the maximum legal positions of a game, i.e. the positions in which

no piece can be placed by either Left or Right (so the game ends), correspond to the

facets of ∆G,B and thus uniquely determine ∆G,B.

In game theoretic terms, the f -vector of a game complex ∆G,B indicates that

there are fi legal positions with i pieces in the game G, regardless if pieces belong to

Left or to Right. Thus for placement games the entries of the f -vector of the game

complex ∆G,B are the coefficients of the game polynomial PG,B. Therefore we have

the following equalities:

fi(G,B) = number of legal positions in G with i pieces played on B,

= number of degree i monomials representing legal positions in G,

= number of faces with i vertices in ∆G,B,

and we can use any of these concepts to find fi.

We now give three more examples for the construction of monomials and simplicial

complexes.

P3 C3

Snort
x2

x1

x3

y2

y3

y1

x2

x1

x3

y2

y1

y3

Col
y2

x1

x3

x2

y3

y1 y1 y2 y3

x1 x2 x3

Figure 2.4: The Game Complexes ∆Snort,P3 , ∆Snort,C3 , ∆Col,P3 , and ∆Col,C3

Example 2.6. Consider Col played on the cycle C3. The labels for different positions

are given in Figure 2.5.

The monomials corresponding to the maximum legal positions are

{x1y2, x1y3, x2y3, y1x2, y1x3, y2x3}
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1

23

Figure 2.5: Labeling C3

and the game complex ∆Col,C3 is given in Figure 2.4.

Example 2.7. Consider Snort played on P3. We label the path the same way as

in Example 2.2. The maximum monomials then are

{x1x2x3, y1y2y3, x1y3, x3y1}

and the game complex ∆Snort,P3 is given in Figure 2.4.

Example 2.8. Consider Snort played on C3. We label the path the same way as

in Example 2.6. The maximum monomials then are

{x1x2x3, y1y2y3}

and the game complex ∆Snort,C3 is given in Figure 2.4.

Note that the game complexes for Col and Snort played on P3 are the same

up to relabeling of vertices. This is no coincidence: We will show in Section 3.2

that playing Col and Snort on a bipartite graph results in isomorphic simplicial

complexes.

Also note that this is not true when playing Col and Snort on C3, giving an

example of a non-bipartite graph for which the game complexes are not isomorphic.

2.3 The Ideals of a Placement Game

Through the monomials that represent legal or illegal positions of a game, we can

also associate square-free monomial ideals to a placement game.

Definition 2.9. The legal ideal, LG,B, of a placement game G played on the board

B is the ideal generated by the monomials representing maximal legal positions of G.

Definition 2.10. The illegal ideal, ILLG,B, of a placement game G played on

the board B is the ideal generated by the monomials representing minimal illegal

positions of G.
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Definition 2.11. The illegal complex, sometimes called the auxiliary board [6],

of a placement game G played on the board B, is the simplicial complex whose facets

are represented by the monomials of the minimal illegal positions of G. It is denoted

by ΓG,B.

The authors in [6] introduce the auxiliary board for so called “independence place-

ment games”, which is the class of placement games for which the illegal complex is

a graph.

Proposition 2.12. For a placement game G played on a board B we have the fol-

lowing

(1) LG,B = F(∆G,B),

(2) ILLG,B = F(ΓG,B) = N (∆G,B).

Proof. (1) The facets of ∆G,B represent the maximal legal positions of G. Thus

F(∆G,B) is the ideal generated by the monomials representing the maximal legal

positions, which is LG,B by definition.

(2) The facets of ΓG,B are represented by the monomials of the minimal illegal

positions of G, which by definition generate ILLG,B, proving the first equality.

Since the faces of ∆G,B represent the legal positions of G, the minimal non-faces of

∆G,B represent the minimal illegal positions, which generate ILLG,B. Thus ILLG,B =

N (∆G,B).

Example 2.13. Consider Col played on the path P3 with labels as in Example 2.2.

We then have the legal ideal

LCol,P3 = 〈x1y2x3, y1x2y3, x1y3, y1x3〉

and the illegal ideal

ILLCol,P3 = 〈x1x2, x2x3, y1y2, y2y3〉.

The illegal complex ΓCol,P3 is given in Figure 2.6.
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x1 x2 x3

y1 y2 y3

Figure 2.6: The Illegal Complex ΓCol,P3

2.4 Playing Games on Simplicial Complexes

Since the facets of the illegal complex represent the minimal illegal positions, we can

play on ΓG,B, instead of playing G on the board B, according to the following rules:

• Left may only play on vertices labelled xi, while Right may only play on vertices

labelled yi.

• Given a facet, pieces played may not occupy all the vertices of the facet.

Since the facets of ΓG,B are the minimal illegal positions, any vertex set that does

not contain all the vertices of any facet is a legal position of G. Thus playing on ΓG,B

according to the above rules results in legal positions.

Example 2.14. Consider Col played on P5. Since pieces may not be placed on the

same space, or pieces by the same player placed side by side, the facets of ΓCol,P5

then consist of the edges between xi and yi, between xi and xi+1, and between yi and

yi+1. It is given in Figure 2.7.

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 2.7: The Illegal Complex ΓCol,P5

Then playing on the vertices x1, y3, x4, y5 is legal since we never have both vertices

of an edge. This position is shown on the top of Figure 2.8, while the bottom shows

the corresponding position played on P5.
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L L

R R

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

L R L R

1 2 3 4 5

Figure 2.8: A Legal Position on ΓCol,P5 and on P5

The illegal complexes of distance games (Chapter 3) and weight games (Chapter 4)

are graphs; this will be clear from the setup. To give an example of how to play on

an illegal complex with a facet of 3 or more vertices, we will now look at NoGo.

Example 2.15. Consider NoGo played on the path P3. The legal ideal is

LNoGo,P3 = 〈x1x2, x1x3, x1y3, x2x3, y1x3, y1y2, y1y3, y2y3〉

while the illegal ideal is

ILLNoGo,P3 = 〈x1x2x3, y1y2y3, x1y1, x1y2, x2y2, x2y3, x3y3, y1x2, y2x3〉.

The illegal complex is given in Figure 2.9.

x1

x2

x3

y1

y2

y3

Figure 2.9: The Illegal Complex ΓNoGo,P3

Then playing on x1 and x2 is legal (they form a face, but not a facet), while playing

on x1, x2, and x3 is illegal.

Similarly, playing on the game complex ∆G,B according to the following rules is

also equivalent to playing G on B:
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• Left may only play on vertices labelled xi, while Right may only play on vertices

labelled yi.

• For the set S of vertices occupied, S needs to be a face of ∆G,B.

Example 2.16. Consider Col played on C3. The game complex is given in Fig-

ure 2.4. The position on the left in Figure 2.10 is legal, while the one on the right is

illegal when playing on the complex.

L

R

y1 y2 y3

x1 x2 x3

L

R R

y1 y2 y3

x1 x2 x3

(A) Legal Position (B) Illegal Position

Figure 2.10: A Legal and an Illegal Position when Playing on ∆Col,C3

Notice that both the game complex and the illegal complex give a representation

of the game and the board that it is played on. Thus, we can use the two complexes

interchangeably, which is of advantage since sometimes the illegal complex is simpler

than the game complex (for example, the game complex of Col played on P5 has

facets with 5 vertices, while in the illegal complex the facets have 2 vertices).

2.5 Questions

From the construction of game complexes from placement games, there are several

questions that arise naturally.

First, we are interested in a possible reverse construction. In other words, we are

looking at what conditions a simplicial complex has to satisfy to be a game complex.

Since no vertex can be connected to all other vertices in a game complex (otherwise

a Left and a Right piece would occupy the same space - a contradiction to the rule

that one may only place on empty spaces), we know that not all simplicial complexes

can be game complexes (e.g. a complete graph is not).
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Also, we know that some games correspond to isomorphic simplicial complexes

(see Examples 2.5 and 2.7). We are interested in what these games have in common

with each other.

In addition, we would like to understand what known combinatorial properties of

simplicial complexes say about combinatorial games.

To answer the first two questions, in the subsequent chapters we focus on how

different boards and different rules influence the corresponding simplicial complex.

This also helps with the third question.



Chapter 3

Distance Games, the Bipartite Flip, and Doppelgänger

In this chapter, we will introduce distance games, a subclass of placement games in

which fixed distances between pieces are illegal. For a specific set of distance games

played on bipartite boards, denoted by A, we then define a bijective function from

A to A, called the bipartite flip, that maps a distance game A to a distance game

B such that A and B have the same game polynomial. We call two games with the

same game polynomial on the same board Doppelgänger, and we will show that for

any two distinct games from a specific subset of distance games there exists a board

on which they are not Doppelgänger.

3.1 Introduction

Definition 3.1. The distance between two pieces placed on a graph is the distance

between the two vertices containing the pieces. For a game G let

LG = {illegal distances between two Left pieces},

RG = {illegal distances between two Right pieces},

DG = {illegal distances between different pieces}.

If LG = RG, then we define

SG = {illegal distances between similar pieces},

i.e. SG := LG = RG. The sets LG, RG, SG, and DG are called distance sets.

Note that distance sets satisfy universality.

Example 3.2. For Col, we have DCol = ∅ and SCol = {1} since no two pieces by

the same player are allowed to be adjacent. Similarly, for Snort, we have SSnort = ∅
and DSnort = {1}.

22
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Example 3.3. Consider a game G played on the path P5 in which SG = {1} and

DG = {2}. The position on the left in Figure 3.1 is then legal, while the one on the

right is illegal since the second and third vertex both contain R even though 1 ∈ SG

and the second and fourth vertex contain different pieces even though 2 ∈ DG.

L R L R L L R R L R

(A) Legal position (B) Illegal position

Figure 3.1: Positions of the Distance Game G with SG = {1} and DG = {2}

Definition 3.4. A placement game is called a distance game if its rules consist of

distance sets only.

From the definition of a distance game, the following is immediate:

Lemma 3.5. Distance games have universal rulesets.

Notice that despite 0 being forbidden as a distance between any two pieces, since

we may not play twice on the same vertex, we do not consider 0 an element of these

sets.

The distance game in which all distance sets are empty is the Trivial placement

game.

Col and Snort are examples of distance games, while NoGo is a placement

game, but not a distance game.

3.2 The Bipartite Flip

In this section, the games satisfy LG = RG = SG and the boards are bipartite graphs

with fixed parts V1 and V2.

The class of distance games with LG = RG played on bipartite graphs will be

denoted by A. We can define a function BFV2 on A. We will first define its effects

on a single square-free monomial representing a position, then on a set of monomials,

and finally on a game:
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Definition 3.6. Given a square-free monomial xi1 . . . ximyj1 . . . yjn we can assume

without loss of generality that the indices i1, . . . , ik and j1, . . . , jl belong to V1, where

k ≤ m and l ≤ n, while the other indices belong to V2. We then define

BFV2(xi1 . . . ximyj1 . . . yjn) = xi1 . . . xikyik+1
. . . yimyj1 . . . yjlxjl+1

. . . xjn .

Essentially, this map ‘flips’ x and y for the vertices in V2.

Definition 3.7. Given a set of square-free monomials {m1, . . . ,mt}, we define BFV2(m1, . . . ,mt)

= {BFV2(m1), . . . , BFV2(mt)}.

Definition 3.8. For a game G ∈ A whose legal positions are represented by a set

of square-free monomials {m1, . . . ,mt}, we define BFV2(G) to be the game whose

legal positions are represented by the square-free monomials BFV2(m1, . . . ,mt) =

{BFV2(m1), . . . , BFV2(mt)}.

For now, we do not assume that BFV2(G) is a distance game, thus automatically

satisfying universality, but we will show this in Proposition 3.13.

Example 3.9. Consider Col played on P3 with parts V1 = {1, 3} and V2 = {2}.
The monomials representing legal positions are given in Example 2.3. The maximal

monomial x1y2x3 is mapped by BFV2 to x1x2x3, and similarly for all other monomials.

Thus BFV2(Col) is

BFV2(0, x1, x2, x3, y1, y2, y3, x1x3, y1y3, x1y2, x1y3, y1x2, y1x3, x2y3, y2x3, x1y2x3, y1x2y3)

= {0, x1, y2, x3, y1, x2, y3, x1x3, y1y3, x1x2, x1y3, y1y2, y1x3, y2y3, x2x3, x1x2x3, y1y2y3}

Note that this is Snort played on P3.

Proposition 3.10. For a game G ∈ A, we have BFV1(G) = BFV2(G).

Proof. Since LG = RG it follows easily that if xi1 . . . ximyj1 . . . yjn is a legal position

in G, then yi1 . . . yimxj1 . . . xjn is also a legal position. Thus

BFV2(xi1 . . . ximyj1 . . . yjn) = xi1 . . . xikyik+1
. . . yimyj1 . . . yjlxjl+1

. . . xjn

= BFV1(yi1 . . . yimxj1 . . . xjn)

assuming without loss of generality that the indices i1, . . . , ik and j1, . . . , jl belong to

V1, where k ≤ m and l ≤ n, while the other indices belong to V2. This shows that
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the monomials of BFV1(G) are the same as the monomials of BFV2(G), proving the

equality of the two games.

As a consequence of this, when applying the map BFV2 to a game G ∈ A, we will

sometimes drop the subscript.

Definition 3.11. The map BFV2 applied to a monomial, the map BFV2 applied to a

set of monomials, and the map BFV2 on A are all called the bipartite flip.

It will be clear from context which version of the bipartite flip we are using.

Proposition 3.12. The bipartite flip BFV2 on sets of monomials is bijective.

Proof. We claim that for any set of monomials M = {m1, . . . ,mt} with the board

partitioned by V1 and V2 we have BFV2(BFV2(M)) = M , that is BFV2 is an involution.

Take any monomial

xi1 . . . xikxik+1
. . . ximyj1 . . . yjlyjl+1

. . . yjn

in M with i1, . . . , ik, j1, . . . , jl ∈ V1 and the remaining indices in V2. This monomial

corresponds to the monomial

xi1 . . . xikyik+1
. . . yimyj1 . . . yjlxjl+1

. . . xjn

in BFV2(M). Applying the bipartite flip again, we get the original monomial.

Thus the monomials of M are the same as the monomials of BFV2(BFV2(M)),

proving the claim. It follows that the bipartite flip is its own inverse, and thus

bijective.

We remark that the proof to Proposition 3.12 also shows that no two distinct

monomials can be mapped to the same monomial by the bipartite flip.

We will now show that for a game G ∈ A, BF (G) belongs to A as well.

Given a game G in A, consider the appearance of indices representing vertices in

the monomials of legal positions: Since G is a placement game, any index can appear

at most once in the monomial of a legal position, and since applying the bipartite

flip does not change indices, they also appear at most once in a monomial of a legal

position of BFV2(G). Thus pieces are always placed on empty vertices in BFV2(G).
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Since placing a piece in G at a certain point during play implies that it must have

been legal before, this is also true for BFV2(G). Thus if we show that the rules of

BFV2(G) satisfy the universality condition, we will have shown that BFV2(G) is also

a placement game.

Now consider a distance game G in A with distance sets SG and DG played on a

bipartite graph with parts V1 and V2, and let H = BFV2(G).

Choose any two vertices a and b of the board. Since the board is bipartite, the

vertices along any path between a and b alternately belong to V1 or V2. Thus we have

the following: If the distance between a and b is even, then either they both belong

to V1 or they both belong to V2. If the distance between a and b is odd, then one

belongs to V1 and the other belongs to V2. This implies:

If d ∈ SG is even, then d ∈ SH , and similarly if d ∈ DG even, we have d ∈ DH .

If d ∈ SG is odd, then d ∈ DH , and if d ∈ DG is odd, then d ∈ SH .

Proposition 3.13. If G is an element of A, then H = BF (G) also belongs to A,

i.e. the bipartite flip goes from A to A. The distance sets of H are

SH = {d ∈ SG | d even} ∪ {d ∈ DG | d odd}

DH = {d ∈ SG | d odd} ∪ {d ∈ DG | d even}.

Proof. Let A = {d ∈ SG | d even} ∪ {d ∈ DG | d odd} and B = {d ∈ SG | d odd} ∪
{d ∈ DG | d even}, so that A ∪ B = SG ∪DG. From the above argument, we know

A ⊆ SH and B ⊆ DH .

Since by the proof to Proposition 3.12 the monomials representing legal positions

of G and H are in a one-to-one correspondence through the bipartite flip, we know

that the two games have the same number of monomials. Since any element added to

a distance set makes more positions illegal, if there would be a 0 < d ∈ SH \A (resp.

0 < d ∈ DH \B), then H would have less monomials representing legal positions than

G, a contradiction. Thus A = SH and B = DH .

This argument further shows that H cannot have any more rules than the dis-

tance sets (since they would make additional positions illegal). Furthermore, distance

sets satisfy universality since by definition they hold for every vertex of the board.

Therefore H is a distance game with LH = RH , played on the same board as G. Thus

we have shown that H belongs to A.
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Corollary 3.14. The bipartite flip BF on A is bijective.

Proof. Follows directly from Propositions 3.12 and 3.13.

Proposition 3.13 also shows that we can find SH and DH without having to con-

struct every legal position of H.

Example 3.15. Consider the game G given in Example 3.3. Let H = BF (G). Then

since SG = {1} and DG = {2}, we have SH = ∅ and DH = {1, 2}.

Note that we cannot apply the bipartite flip to a distance game G in which LG 6=
RG since the resulting game would not satisfy the universality condition. For example,

consider the distance game G with LG = {2, 3}, RG = {1, 2}, DG = {1} played on

the path P4. Then x1x4 represents an illegal position, while y1y4 is a legal position.

Applying the flip to these monomials with V2 = {2, 4}, we have x1y4 is illegal in

BFV2(G), while y1x4 is legal. The first would imply 3 ∈ DBFV2
(G), while the second

implies 3 6∈ DBFV2
(G), a contradiction.

Also note that we cannot generalize the bipartite flip to non-bipartite boards since

the resulting game would not necessarily satisfy universality. For example, consider

Col played on C3 (see Example 2.6) and partition the board as V1 = {1, 3} and

V2 = {2}. Then flipping the pieces on the vertices in V2, we have the game whose

maximal monomials are

{x1x2, x1y3, y1x3, y1y2, x2x3, y2y3}.

Thus two Left pieces may be adjacent on vertices 1 and 2, and vertices 2 and 3, but

not on vertices 1 and 3, a contradiction to universality.

Now consider the game complex of any game G in A and the game complex of

the corresponding game BF (G). Since the bipartite flip only relabels (xi to yi and

conversely for all indices i in one of the parts of the board), it has the same effect on

the vertices of the simplicial complexes. Thus the complexes of the two games are

the same up to relabeling. This proves the first half of the following Lemma:

Lemma 3.16. For a game G ∈ A, we have ∆G,B
∼= ∆BF (G),B and ΓG,B

∼= ΓBF (G),B.

Proof. Using Proposition 2.12 and that the facet (resp. Stanley-Reisner) operators

are inverses of each other, thus bijective, we have

ΓG,B = F(N (∆G,B)) ∼= F(N (∆BF (G),B)) = ΓBF (G),B.
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Proposition 3.13 also shows that Col and Snort are the bipartite flips of each

other when played on a bipartite board, implying by Lemma 3.16 that their simplicial

complexes are isomorphic to each other in this case.

Example 3.17. Consider Col played on P5. The auxiliary board is given in Fig-

ure 2.7.

When applying the bipartite flip, then the illegal complex changes to the one given

in Figure 3.2, which is the illegal complex for Snort played on P5.

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 3.2: The Illegal Complex ΓSnort,P5

3.3 Doppelgänger

In this section, we will assume LG = RG = SG. As in the previous section, let A be

the set of distance games played on a bipartite graph, and let BF be the bipartite

flip on A.

Definition 3.18. Two distinct games G and H are called Doppelgänger on a

set of boards B (or B-Doppelgänger) if they have the same game polynomial, i.e.

PG,B(x) = PH,B(x) (see Definition 2.1), for all B ∈ B.

The term Doppelgänger is German (literally translated it means “double goer”)

and usually indicates two people that are look-alikes to the extend that they cannot

be kept apart from their physical appearance. Since two Doppelgänger in terms of

games cannot be distinguished through their game polynomials, this term accurately

represents the concept. (On a side note: Doppelgänger is both singular and plural.)

Even though we can define Doppelgänger for any placement games, we will only

consider distance games in what follows.
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Proposition 3.19. Given a game G in A, let H = BF (G). Then G and H are

Doppelgänger on bipartite graphs.

Proof. By Lemma 3.16, we know for bipartite boards B that ∆G,B
∼= ∆H,B. Since

fi(G,B) is the number of faces with i vertices in ∆G,B and similarly for fi(H,B), it

follows directly that fi(G,B) = fi(H,B) for all i, i.e. G and H are Doppelgänger on

B.

Example 3.20. We have shown in the previous section that when played on a bi-

partite board, Col and Snort are the bipartite flip of each other. Thus Col and

Snort are Doppelgänger on all bipartite boards. This was also shown in [6].

We are interested in whether there are any two placement games that are Dop-

pelgänger on the set of all possible boards. We will partially answer this in the

following theorem.

Theorem 3.21. Let G and H be two distinct distance games satisfying LG = RG

and LH = RH . Then there is a board on which they are not Doppelgänger.

Proof. Let G and H be two distinct distance games, i.e. SG 6= SH or DG 6= DH . Let

the distance sets be given by SG = {g1, g2, . . .}, SH = {h1, h2, . . .}, DG = {g′1, g′2 . . .},
and DH = {h′1, h′2, . . .}, where g1 < g2 < · · · and similarly for the other distance sets.

If SG 6= SH , let i be the smallest index such that gi 6= hi. Similarly, if DG 6= DH , let

j be the smallest such that g′j 6= h′j. There are several cases to consider, and we will

show for each that a board exists on which G and H are not Doppelgänger.

Case 1 (SG 6= SH and DG = DH): Assume without loss of generality that gi < hi. Now

consider the games G and H played on the path Pgi+1. Since diam(Pgi+1) = gi,

no two pieces will have a distance greater than gi and we can ignore any elements

in the distance sets greater than gi. Thus essentially SG = SH ∪ {gi}. Then

since DG = DH every position with two pieces that is legal in G is also legal in

H. On the other hand though, x1xgi+1 and y1ygi+1 are legal positions of H, but

not of G. Thus f2(H) = f2(G)+2, proving that G and H are not Doppelgänger.

Case 2 (SG = SH and DG 6= DH): Assuming without loss of generality that g′j < h′j,

we can repeat the argument from the previous case by playing on Pg′j+1. Then
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the monomials x1yg′i+1 and y1xg′i+1 are legal for H, but not for G, while all other

monomials are in common. Thus f2(H) = f2(G) + 2.

Case 3 (SG 6= SH and DG 6= DH): There are 3 subcases to consider:

Case 3a (gi < hi and g′j < h′j): Let m = min{gi, g′j}. Then repeat the argument of

the first case on the path Pm+1, and observe that the monomials x1xm+1

and y1ym+1 are legal for H but not for G if m = gi, and x1ym+1 and y1xm+1

are legal for H but not for G if m = g′j, while all other monomials are in

common. Thus f2(H) > f2(G).

Case 3b (gi < hi and g′j > h′j with gi 6= h′j): Let m = min{gi, h′j}. Then repeat

the argument of the first case on the path Pm+1, and observe that the

monomials x1xm+1 and y1ym+1 are legal for H but not for G if m = gi,

and x1ym+1 and y1xm+1 are legal for G but not for H if m = h′j, while all

other monomials are in common. Thus f2(H) 6= f2(G).

Case 3c (gi < hi and g′j > h′j with gi = h′j): If gi = 2m is even, then we consider

the board in Figure 3.3(A), which consists of three paths of length m + 1

joined in one end vertex, i.e. the distance between any of the vertices a,

b, or c to the center vertex is m. If gi = 2m + 1 is odd, we consider the

board in Figure 3.3(B), which consists of a cycle of length 3, with a path

of length m + 1 joined on each vertex. Since the diameter of both graphs

is gi, we can again ignore all distances greater than gi. Thus essentially

SG = SH ∪ {gi} and DG ∪ {gi} = DH .

(A) gi = 2m

a

bc

m

mm

(B) gi = 2m + 1

a

bc

m

mm

Figure 3.3: Proof of Theorem 3.21: Boards for Case 3c
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We will look at the positions involving three pieces played. Triples involv-

ing at most one of the vertices a, b, or c will have all distances between the

pieces less than gi, thus such a triple is a legal position of G if and only

if it is a legal position of H. Let the number of triples with none of these

vertices be K0 and the number of triples involving one be K1.

Now consider the number of triples involving two of the vertices a, b, and

c. Let ak be the vertex that has distance k from the vertex a where k ≤ m

(i.e. ak is on the same ‘branch’ as a) and similarly for bk and ck. For the

case gi = 2m, we have am = bm = cm.

If daebfak is a legal position for one of the games, where d, e, f ∈ {x, y},
then through rotation and due to symmetry of the board we get the two

legal positions dbecfbk and dceafck for that game; and similarly if daebfbk or

daebfck are legal, we get two more legal positions through rotation. Thus

we can partition the number of such triples into equivalence classes where

each equivalence class is of the form

{daebfak , dbecfbk , dceafck}, {daebfbk , dbecfck , dceafak},

or

{daebfck , dbecfak , dceafbk}.

This shows that the number of triples with pieces on two of the vertices a,

b, or c, has to be divisible by 3, thus let the number of such triples in G

be 3K2 and in H be 3K ′2.

In G, no triple involving all three vertices a, b, and c is possible. For a

contradiction, assume without loss of generality that Left has played on

vertex a. Then since the distance between a and b is gi and gi ∈ SG, we

know that Left cannot play on b, thus we can assume Right has played

on b. Similarly, we can assume Right has played on c. Since the distance

between b and c is gi, this would force gi 6∈ SG, a contradiction. In H

though, the triples xaxbxc and yaybyc are legal.

Looking at the total number of triples in G and H, we have f2(G) = K0 +

K1 + 3K2 + 0 and f2(H) = K0 +K1 + 3K ′2 + 2 (see Table 3.1). Considering
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# of vertices of Number of triples in
{a, b, c} used G H

0 K0 K0

1 K1 K1

2 3K2 3K ′2
3 0 2

Table 3.1: Proof of Theorem 3.21: Number of Triples for Case 3c

these modulo 3, we have f2(G) ≡3 K0 + K1 and f2(H) ≡3 K0 + K1 + 2,

which shows f2(G) 6= f2(H). Thus G and H are not Doppelgänger.



Chapter 4

Kruskal-Katona Type Bounds for Weight Games

This chapter begins by giving an overview of the Kruskal-Katona theorem, which

determines when a vector of non-negative integers is the f -vector of a simplicial

complex. Similarly, we would like to find both necessary and sufficient conditions for

such a vector to be the f -vector of a game complex.

We will then introduce the notion of the weight of a piece, and will study how

different weights and different boards influence the game complex by finding upper

bounds on the entries of the f -vector, thus giving necessary conditions reminiscent of

the Kruskal-Katona theorem.

4.1 The Kruskal-Katona Theorem

Recall that
(
a
0

)
= 1 and

(
a
b

)
= 0 if b > a.

Kruskal [15] and Katona [14] proved that for each pair of non-negative integers f

and i, f can be written in the form

f =

(
ni

i

)
+

(
ni−1

i− 1

)
+ . . . +

(
ni−s

i− s

)
where ni > ni−1 > . . . > ni−s ≥ i − s ≥ 1 are unique. This sum is called the

i-canonical representation of f .

We can then define the jth pseudopower of f

f
(j)
i =

(
ni

j

)
+

(
ni−1

j − 1

)
+ . . . +

(
ni−s

j − s

)
for j ≥ 1.

The Kruskal-Katona theorem gives necessary and sufficient conditions for a vector

(f0, f1, . . . , fk) with entries from the non-negative integers to be the f -vector of a

simplicial complex. The following is the version proven by Kruskal:

Theorem 4.1 (Kruskal [15]). For the sequence of non-negative integers (f0, f1, . . . , fk)

the following are equivalent:

33
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(i) (f0, f1, . . . , fk) is the f -vector of a non-empty simplicial complex;

(ii) f0 = 1 and fj ≤ f
(j)
i for all 1 ≤ i ≤ j;

(iii) f0 = 1 and fj ≥ f
(j)
i for all 1 ≤ j ≤ i.

To show that (ii) holds, it is sufficient to show that f0 = 1 and fi+1 ≤ f
(i+1)
i for

all i ≥ 1 since all other cases follow. Similarly, to show (iii), showing f0 = 1 and

fj ≥ f
(j)
j+1 for all j ≥ 1 is sufficient. The Kruskal-Katona theorem is usually stated in

terms of either one of these.

We start our discussion by stating that not every simplicial complex is a game

complex.

Lemma 4.2. Not every simplicial complex is the game complex of a placement game.

Proof. Consider any placement game G and its game complex ∆G. Since xiyi is

illegal in G, the two vertices xi and yi cannot be connected by an edge in ∆G. This

implies that if ∆G has v vertices, then every vertex can be connected to at most v−2

vertices. But we know that simplicial complexes exist in which a vertex is connected

to all other vertices (for example a complete graph).

4.2 Games with Weight

In the remainder, we will consider playing pieces of larger size. Specifically, we call

the number of connected vertices a piece covers the weight of this piece.

For example, in Crosscram [11] and Domineering [3] the pieces are dominoes

and are being placed on a checker-board. For us, they are weight 2.

Example 4.3. Consider the board given in Figure 4.1. A piece that has weight 4

could for example be played on the vertex set {1, 2, 3, 4}, but not on the vertex set

{1, 3, 5, 6} since these vertices are not connected.

Many placement games have weights greater than 1. For example, in Domi-

neering Left and Right both play pieces of weight 2 and, as we will mention in

Remark 4.14, partizan octal games are equivalent to placement games on a path with

weight.
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1

2

3 4

5

6

7

8

9

Figure 4.1: An Example Board

In the monomials representing a legal position, the Left piece of weight a occupying

the vertices labeled i1, . . . , ia will be indicated by xi1,...,ia , and similarly for Right

pieces.

We usually assume that every piece of Left has the same weight a, and every piece

of Right has the same weight b. Whenever we assign sets of weights to Left and Right,

i.e. Left can play pieces of weight {a1, . . . , ak} and Right can play pieces of weight

{b1, . . . , bl}, the upper bounds on the number of positions are the same as in a game

with k + l players in which player i plays pieces of weight ai for 1 ≤ i ≤ k and of

weight bi−k for k < i ≤ k + l. The t-player versions of the upper bounds will be given

in each section after the 2-player version.

Definition 4.4. A placement game in which the players play pieces of fixed weights

is called a game with weights. If the game has no rules besides pieces having to

be placed on connected sets of empty vertices, we call it a weight game. A 2-player

weight game will be denoted by W (a, b) where a is the weight (or set of weights) that

Left plays, while b is the weight (or set of weights) that Right plays. The t-player

weight game where player i plays weight ai is denoted by W (a1, . . . , at).

Essentially, the weight game is the Trivial placement game with weights. It is

also interesting to note the following.

Proposition 4.5. On a path Pn (resp. a cycle Cn), the weight game W (a, a) in which

Left and Right play the same weight is equivalent to a distance game H on Pn−a+1

(resp. Cn) with SH = DH = {1, 2, . . . , a− 1}.
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Before proving this, we will demonstrate via an example:

Example 4.6. Let G be the weight game W (3, 3) played on the path P6. Let xi,j,k

indicate a piece that occupies vertices i, j = i + 1, and k = i + 2, i.e. has its left-

most end on vertex i, and similarly for yi,j,k. The maximal legal positions are then

represented by

{x1,2,3x4,5,6, x1,2,3y4,5,6, y1,2,3x4,5,6, y1,2,3y4,5,6, x2,3,4, x3,4,5, y2,3,4, y3,4,5}.

We will now relabel the indices by mapping the index {i, i + 1, i + 2} to the index i.

The maximal legal positions are then represented by the monomials

{x1x4, x1y4, y1x4, y1y4, x2, x3, y2, y3}.

These maximal monomials are the same as for a distance game H played on the

path P4 with distance sets SH = DH = {1, 2}. For example, consider the position

x1,2,3y4,5,6 in G, equivalent to x1y4 in H (see Figure 4.2).

L

L L L

R

R R R

H :

G :

Figure 4.2: The Position x1,2,3y4,5,6 in G and x1y4 in H

Proof of Proposition 4.5. In the case that we are playing on a path or cycle, a piece

of weight a will be a strip, i.e. there exists an integer i such that the piece occupies

the vertices i, i + 1, . . . , i + a− 1 (mod n on the cycle).

Now consider a monomial representing a legal position in the game W (a, a). Every

index may appear at most once since we are not allowed to play on occupied vertices.

Thus if di,...,i+a−1ej,...,j+a−1 with d, e ∈ {x, y} is legal in W (a, a), then the distance

between the vertices i and j has to be greater or equal to a.

We now construct a game H with pieces of weight 1 that is equivalent to W (a, a)

by mapping the index set {i, . . . , i+a−1} of monomials in W (a, a) to the index i for

monomials in H. Since the only condition in H is that indices need distance at least
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a, we have that H is a distance game with distance sets SH = DH = {1, 2, . . . , a−1}.
Also note that if we play W (a, a) on Pn then i+ a− 1 ≤ n implies that i ≤ n− a+ 1

such that H is played on Pn−a+1. If we play W (a, a) on Cn, then i can be any value

from 1 to n, so H is played on Cn as well.

If the weight of the Left pieces is a and the weight of the Right pieces b, then we

will be able to place more pieces of the player that plays the smaller weight onto the

board than of the player with the larger weight. Specifically, assuming without loss

of generality that a is smaller, we would be able to place at most bn/ac Left pieces on

a board of n vertices. If we place a mix of Left and Right pieces or just Right pieces,

the number of pieces we are able to place will be equal or less. Thus if the f -vector

of the game complex is (f0, f1, . . . , fk), then

k ≤ max{bn/ac , bn/bc}.

Proposition 4.7. For simplicial complexes corresponding to games on any board of

n vertices with pieces of weight 1, we have

fi ≤
(
n

i

)
2i

for i ≥ 0.

Proof. We will consider the number of positions with i pieces of weight 1 in the

placement game that has no additional rules, i.e. the Trivial placement game. As

we add rules to this game to get other placement games with pieces of weight 1, the

number of positions decreases, thus the number of such positions in Trivial gives

the maximum. In Trivial, there are
(
n
i

)
ways to choose i spaces to place pieces,

for each there are 2 choices: either a Left piece, or a Right piece. Our claim now

follows.

This is easily generalized to a t-player version:

Corollary 4.8. For a simplicial complex corresponding to a t-player game on any

board of n vertices with pieces of weight 1, we have

fi ≤
(
n

i

)
ti

for i ≥ 0.
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We will now look at how playing pieces of specified weight on different classes

of boards influences the f -vector of the corresponding game complex. The classes

of boards we specifically look at are paths, cycles, complete graphs, and complete

bipartite graphs.

Note that the f -vector of a weight game gives an upper bound on the f -vector

of a game with the same weights. Thus the formulae for the weight games in the

following sections give bounds for the games with weight.

4.3 Playing on the Path Pn

Consider Left playing pieces of weight a and Right pieces of weight b on the path Pn,

n ≥ 1.

Proposition 4.9. If a simplicial complex corresponds to a weight game W (a, b) played

on Pn then

f1 =



0 if a, b > n,

n− a + 1 if a ≤ n and b > n,

n− b + 1 if a > n and b ≤ n,

2n− a− b + 2 if a, b ≤ n.

(4.1)

Proof. We are measuring the number of legal positions with only one piece on the

board. If n ≥ a, then placing one piece of weight a on a strip of length n is equivalent

to placing one piece of weight 1 (think of the left-most end of the piece) on a strip of

length n− (a− 1) = n− a+ 1, so the second and third case follow. Similarly, for the

final case

f1 = (n− a + 1) + (n− b + 1)

= 2n− a− b + 2.

Proposition 4.10. In a weight game W (a, b) played on Pn, the number of positions

with two Left pieces or two Right pieces, respectively, is

NLL =

0 if 2a > n,(
n−2a+2

2

)
if 2a ≤ n;

NRR =

0 if 2b > n,(
n−2b+2

2

)
if 2b ≤ n.
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The number of positions with one Left and one Right piece is

NLR =

0 if a + b > n,

2
(
n−a−b+2

2

)
if a + b ≤ n.

For the game complex of such a game we have

f2 = NLL + NRR + NLR. (4.2)

Proof. To find NLR when n ≥ a + b, we only consider the case in which the Left

piece is the left-most piece. The other case is symmetric. We will first place the

Left piece in position i. To be able to fit a Right piece to the right of this, we have

1 ≤ i ≤ n−a−b+1. The strip to the right then has length n−(i+a−1) = n−a+1−i

i

i

a− 1

n− i

n− a + 1− i

Figure 4.3: Proof to Proposition 4.10: Placing a Piece of Weight a on a Path

(see Figure 4.3). Thus we have n− a + 1− i− (b− 1) = n− a− b + 2− i choices to

place the Right piece (see Proposition 4.9). Thus the number of position with Left

on the left and Right on the right is

n−a−b+1∑
i=1

(n− a− b + 2− i)

=(n− a− b + 1)(n− a− b + 2)−
n−a−b+1∑

i=1

i

=(n− a− b + 1)(n− a− b + 2)− (n− a− b + 1)(n− a− b + 2)

2

=
(n− a− b + 1)(n− a− b + 2)

2

=

(
n− a− b + 2

2

)
.

Then NLR = 2
(
n−a−b+2

2

)
.
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Similarly, the number of positions with Left on the left and right for n ≥ 2a and

Right on the left and right for n ≥ 2b respectively, then are

NLL =

(
n− 2a + 2

2

)
NRR =

(
n− 2b + 2

2

)
.

Since these are the only three possibilities for pairs of pieces, Equation (4.2) follows

immediately.

It is easy to see that if a = b = 1, then the previous two bounds are

f1 = 2n;

f2 = 4

(
n

2

)
.

These are the bounds given in Proposition 4.7.

Example 4.11. Consider W (2, 3) on the path P5. In the monomials of legal positions

let xi,j represent a Left piece occupying the spaces i and j, and similarly for yi,j,k.

For example, the position in Figure 4.4 is represented by x1,2y3,4,5.

L L R R R

Figure 4.4: An Example Position for W (2, 3) on P5

The maximum monomials then are

{x1,2x3,4, x1,2x4,5, x1,2y3,4,5, x2,3x4,5, y1,2,3x4,5, y2,3,4}.

The corresponding simplicial complex is given in Figure 4.5.

By Propositions 4.9 and 4.10 we have

f0 = 1

f1 = 2n− a− b + 2 = 7,

f2 =

(
n− 2a + 2

2

)
+ 2

(
n− a− b + 2

2

)
= 5,

and since max{bn/ac , bn/bc} = 2, we get the f -vector (1, 7, 5), which can be verified

from the simplicial complex.

To compare this with the Kruskal-Katona bound, we first need to find the i-

canonical representations and calculate the jth pseudopowers.
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x1,2 x2,3 x3,4 x4,5

y1,2,3 y2,3,4 y3,4,5

Figure 4.5: The Game Complex ∆W (2,3),P5

f1 =
(
7
1

)
f
(2)
1 =

(
7
2

)
= 21

f2 =
(
3
2

)
+
(
2
1

)
f
(3)
2 =

(
3
3

)
+
(
2
2

)
= 2

f
(1)
2 =

(
3
1

)
+
(
2
0

)
= 4

Then f2 = 5 < f
(2)
1 = 21, f3 = 0 < f

(3)
2 = 2, and f1 = 7 > f

(1)
2 = 4, showing that

the formulae in Propositions 4.9 and 4.10 give, at least for this example, improved

necessary conditions for a vector to be the f -vector of a game complex over the ones

given in the Kruskal-Katona theorem.

We will now show that for fixed a and b and sufficiently large n, then the bound

in Proposition 4.10 on f2 is better than the Kruskal-Katona bound. By the Kruskal-

Katona theorem we have

f2 ≤ f
(2)
1 =

(
2n− a− b + 2

2

)
=

1

2

[
4n2 + n(6− 4a− 4b) + g(a, b)

]
,

where g(a, b) is a function in a and b, whereas Proposition 4.10 gives

f2 =

(
n− 2a + 1

2

)
+

(
n− 2b + 1

2

)
+ 2

(
n− a− b + 1

2

)
=

1

2

[
4n2 + 2n(6− 4a− 4b) + h(a, b)

]
,

where h(a, b) is a function in a and b. Since a, b ≥ 1, and thus 6−4a−4b < 0, we have

1
2

[4n2 + 2n(6− 4a− 4b) + g(a, b)] < 1
2

[4n2 + n(6− 4a− 4b) + h(a, b)], showing that

as n grows larger our bound becomes increasingly better than the Kruskal-Katona

bound.



42

The results in Propositions 4.9 and 4.10 can also be generalized to include more

players. We will show how to take the argument from the 2-player case and apply it

to the t-player game for this board. The proof for the generalization to the t-player

case will be along the same lines for the other classes of boards.

Corollary 4.12. Consider the t-player weight game W (a1, . . . , at) played on Pn. The

number of positions with one piece placed by player i is

Ni =

0 if ai > n,

n− ai + 1 if ai ≤ n.
(4.3)

If a simplicial complex corresponds to this game then

f1 =
t∑

i=1

Ni.

Proof. As in the proof to Proposition 4.9, we will consider where we are able to place

the left-most end of a piece of weight ai if ai ≤ n. As in the 2-player case, there are

n − ai + 1 possibilities, proving Equation (4.3). The number of positions with one

piece, i.e. the value for f1, is then the sum of these over all players.

Corollary 4.13. Consider the t-player weight game W (a1, . . . , at) played on Pn. The

number of positions with two pieces placed by player i is

Nii =

0 if 2ai > n,(
n−2ai+2

2

)
if 2ai ≤ n.

The number of positions with one piece placed by player i and one piece by player j

where i 6= j is

Nij =

0 if ai + aj > n,

2
(
n−ai−aj+2

2

)
if ai + aj ≤ n.

If a simplicial complex corresponds to this game then

f2 =
t∑

i=1

t∑
j=i

Nij. (4.4)

Proof. Proving the formula for Nii uses the same argument as proving the formula

for NLL in the 2-player case, and Nij for i 6= j is the same as NLR in the two player

case. Summing over all pairs of indices (i, j) where order does not matter gives the

number of positions with two pieces played, proving Equation (4.4).
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Remark 4.14 (For the game theorist). The game O12 is the weight game W (1, 2,).

It is mentioned by Brown et al. in [6] that this game played on a path is equivalent

to the partizan Octal game where Left removes one piece and Right two, and both

have the possibility to split the heap. It is easy to see that weight games played on

a path are all equivalent to a specific partizan Octal game.

4.4 Playing on the Cycle Cn

Consider Left playing pieces of weight a and Right pieces of weight b on a cycle of

length n ≥ 3. For this board, the ‘left’ end of a piece is the end in counter-clockwise

direction.

Proposition 4.15. If a simplicial complex corresponds to the game W (a, b) played

on Cn then

f1 =


0 if a, b > n,

n if either a ≤ n or b ≤ n but not both,

2n if a, b ≤ n.

(4.5)

Proof. The left end of a piece can be placed on any of the n spaces if its weight is

less than n, no matter if it is a Right or Left piece.

Proposition 4.16. If a simplicial complex corresponds to the weight game W (a, b)

played on Cn then

f2 = NLL + NLR + NRR (4.6)

where

NLL =

0 if 2a > n,

n(n−2a+1)
2

if 2a ≤ n,
NRR =

0 if 2b > n,

n(n−2b+1)
2

if 2b ≤ n,

are the number of positions with two Left pieces, respectively two Right pieces, and

NLR =

0 if a + b > n,

n(n− a− b + 1) if a + b ≤ n,

is the number of positions with one Left and one Right piece.
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Proof. We will first look at the number of positions with two Left pieces if n ≥ 2a.

There are n choices for placing the first piece. Placing the second piece is equivalent

to placing one piece on the path Pn−a, i.e. there are (n− a)− a+ 1 choice for placing

the second piece. Due to symmetry, there are then n(n− 2a + 1)/2 positions of this

form. Similarly, the number of positions with two Right pieces is n(n − 2b + 1)/2 if

n ≥ 2b.

To count the number of positions with one Left and one Right piece when n ≥ a+b,

we first place the Left, then the Right piece. There are n choices for placing the Left

piece. Placing the Right piece is then equivalent to placing a piece of weight b on the

path Pn−a, i.e. there are (n− a)− b + 1 choices for placing the second pieces. Thus,

there are n(n− a− b + 1) positions of this form.

It is easy to see that if a = b = 1, then the previous two bounds are

f1 = 2n;

f2 = 4

(
n

2

)
.

These are the bounds given in Proposition 4.7.

Example 4.17. Consider W (2, 3) on the cycle C5. Let xi,j represent a Left piece

occupying spaces i and j, and similarly for yi,j,k. E.g. the position in Figure 4.6 is

represented by x1,2y3,4,5.

L

RR

LR
1

2

34

5

Figure 4.6: An Example Position for W (2, 3) on C5

The maximum monomials then are

{x1,2x3,4, x1,2x4,5, x1,2y3,4,5, x2,3x4,5, x2,3x1,5, x2,3y1,4,5,

x3,4x1,5, x3,4y1,2,5, x4,5y1,2,3, x1,5y2,3,4}
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y3,4,5

x1,2

x3,4x4,5

x2,3x1,5

y1,4,5y2,3,4

y1,2,5y1,2,3

Figure 4.7: The Game Complex ∆W (2,3),C5

The corresponding simplicial complex is given in Figure 4.7.

By Propositions 4.15 and 4.16 we have

f0 = 1

f1 = 2n = 10,

f2 =
n(n− 2a + 1)

2
+ n(n− a− b + 1) = 10,

and since max{bn/ac , bn/bc} = 2, we get the f -vector (1, 10, 10), which can be

verified from the simplicial complex.

To compare this with the Kruskal-Katona bound, we first need to find the i-

canonical representations and calculate the jth pseudopowers.

f1 =
(
10
1

)
f
(2)
1 =

(
10
2

)
= 45

f2 =
(
5
2

)
f
(3)
2 =

(
5
3

)
= 10

f
(1)
2 =

(
5
1

)
= 5

Then f2 = 10 < f
(2)
1 = 45, f3 = 0 < f

(3)
2 = 10, and f1 = 10 > f

(1)
2 = 5, showing that

the formulae in Propositions 4.15 and 4.16 give, at least for this example, improved

necessary conditions for a vector to be the f -vector of a game complex over the ones

given in the Kruskal-Katona theorem.

We will now show that for fixed a and b and sufficiently large n, then the bound
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in Proposition 4.16 on f2 is better than the Kruskal-Katona bound. By the Kruskal-

Katona theorem we have

f2 ≤ f
(2)
1 =

(
2n

2

)
=

1

2

[
4n2 + n(−2)

]
,

whereas Proposition 4.16 gives

f2 =
n(n− 2a + 1)

2
+

n(n− 2b + 1)

2
+ n(n− a− b + 1)

=
1

2

[
4n2 + n(4− 4a− 4b)

]
.

Since a, b ≥ 1, and thus 4 − 4a − 4b ≤ −4, we have 1
2

[4n2 + n(4− 4a− 4b)] <

1
2

[4n2 + n(−2)], showing that as n grows larger our bound becomes increasingly better

than the Kruskal-Katona bound.

Propositions 4.15 and 4.16 can again be generalized to more players using the

same methods of proof.

Corollary 4.18. Consider the t-player weight game W (a1, . . . , at) played on Cn. The

number of positions with one piece placed by player i is

Ni =

0 if ai > n,

n if ai ≤ n.

If a simplicial complex corresponds to such a game then

f1 =
t∑

i=1

Ni.

Corollary 4.19. Consider the t-player weight game W (a1, . . . , at) played on Cn. The

number of positions with two pieces placed by player i is

Nii =

0 if 2ai > n,

n(n− 2ai + 1)/2 if 2ai ≤ n.

The number of positions with one piece placed by player i and one piece by player j

is

Nij =

0 if ai + aj > n,

n(n− ai − aj + 1) if ai + aj ≤ n.
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If a simplicial complex corresponds to such a game then

f2 =
t∑

i=1

t∑
j=i

Nij.

4.5 Playing on the Complete Graph Kn

Consider Left playing pieces of weight a and Right pieces of weight b on a complete

graph of n vertices.

Proposition 4.20. If a simplicial complex corresponds to the weight game W (a, b)

played on Kn then

fk =
k∑

l=0


k−l−1∏
i=0

(
n− ia

a

)
(k − l)!




l−1∏
j=0

(
n− (k − l)a− jb

b

)
l!

 (4.7)

for k ≥ 0.

Proof. Playing a piece of weight a on the complete graph with n vertices is equivalent

to deleting a vertices from the graph. Thus placing a second piece on the graph is

equivalent to placing a piece on the complete graph on n− a vertices.

Also, since every pair of vertices is connected, playing a piece of weight a is

equivalent to playing a pieces of weight 1, thus there are
(
n
a

)
choices for placing the

piece.

Thus playing s pieces of weight a we have∏s−1
i=0

(
n−ia
a

)
s!

choices. Then playing k − l pieces of weight a and l pieces of weight b (assuming

without loss of generality we place the pieces of weight a first) we have∏k−l−1
i=0

(
n−ia
a

)
(k − l)!

∏l−1
j=0

(
n−(k−l)a−jb

b

)
l!

different positions.

To get the total number of positions with k pieces played, we let l range from 0

to k and add the terms, giving Equation (4.7).
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If a = b, then the previous bound becomes

fk =
k∑

l=0

n(n− 1) · · · (n− (k − l)a + 1)(n− (k − l)a) · · · (n− ka + 1)

(k − l)!l!(a!)k

=
n!

(n− ka)!(a!)k

k∑
l=0

1

k!

(
k

l

)

=
n!

(n− ka)!k!(a!)k

k∑
l=0

(
k

l

)
=

n!

(n− ka)!k!(a!)k
2k.

If a = b = 1, then this becomes

fk =
n!

(n− k)!k!
2k

=

(
n

k

)
2k

which is the bound given in Proposition 4.7.

If we assume without loss of generality that a ≤ b, then we have

fk =
k∑

l=0

n(n− 1) · · · (n− (k − l)a− lb + 1)

(k − l)!l!(a!)k−l(b!)l

=
n!

k!

k∑
l=0

(
k
l

)
(a!)k−l(b!)l(n− (k − l)a− lb)!

≤ n!

k!

k∑
l=0

(
k
l

)
(a!)k(n− kb)!

=
n!

(n− kb)!k!(a!)k
2k.

We can similarly find a lower bound. Thus

n!

(n− ka)!k!(b!)k
2k ≤ fk ≤

n!

(n− kb)!k!(a!)k
2k.

For fixed a, b, and k, we then have

n(n− 1) · · · (n− ka + 1)
2k

k!(b!)k
≤ fk ≤ n(n− 1) · · · (n− kb + 1)

2k

k!(a!)k
,

and since n(n−1) · · · (n−ka+1) ≥ (n−ka+1)ka and n(n−1) · · · (n−kb+1) ≤ nkb,

this implies

C ′(n− ka + 1)ka = C ′nka + O(nka−1) ≤ fk ≤ Cnkb,
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where C and C ′ are constants depending on a and k, respectively b and k.

Also note that W (a, b) played on the complete graph Kn is the least restrictive

game on the most connected board. Thus the formula in Proposition 4.20 gives upper

bounds for any placement game with weights on any board.

Example 4.21. Consider W (2, 2) and let the board be the complete graph K4. Let

xi,j represent a Left piece occupying the vertices i and j, and similarly for yi,j. For

example the position in Figure 4.8 is represented by x1,4y2,3.

L L

R R

1

2

4

3

Figure 4.8: An Example Position for W (2, 2) on K4

The corresponding simplicial complex is given in Figure 4.9.

x1,2 x3,4 x1,3 x2,4 x1,4 x2,3

y1,2y3,4 y1,3y2,4 y1,4y2,3

Figure 4.9: The Game Complex ∆W (2,2),K4

By Proposition 4.20 we have

f0 = 1

f1 =

(
n

a

)
+

(
n

b

)
= 12,

f2 =

(
n
a

)(
n−a
a

)
2

+

(
n

a

)(
n− a

b

)
+

(
n
b

)(
n−b
b

)
2

= 12,

and since max{bn/ac , bn/bc} = 2, we get the f -vector (1, 12, 12), which can be

verified from the simplicial complex.
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To compare this with the Kruskal-Katona bound, we first need to find the i-

canonical representations and calculate the jth pseudopowers.

f1 =
(
12
1

)
f
(2)
1 =

(
12
2

)
= 66

f2 =
(
5
2

)
+
(
2
1

)
f
(3)
2 =

(
5
3

)
+
(
2
2

)
= 11

f
(1)
2 =

(
5
1

)
+
(
2
0

)
= 6

Then f2 = 12 < f
(2)
1 = 66, f3 = 0 < f

(3)
2 = 11, and f1 = 12 > f

(1)
2 = 6, showing that

the formula in Proposition 4.20 gives, at least for this example, improved necessary

conditions for a vector to be the f -vector of a game complex over the ones given in

the Kruskal-Katona theorem.

We will now show that for fixed a and b and sufficiently large n, the bound in

Proposition 4.20 for f2 is better than the Kruskal-Katona bound. By the Kruskal-

Katona theorem we have

f2 ≤ f
(2)
1 =

((n
a

)
+
(
n
b

)
2

)
=

1

2

[(
n

a

)((
n

a

)
+ 2

(
n

b

)
− 1

)
+

(
n

b

)((
n

b

)
− 1

)]
,

whereas Proposition 4.20 gives

f2 =
1

2

(
n

a

)(
n− a

a

)
+

1

2

(
n

b

)(
n− b

b

)
+

(
n

a

)(
n− a

b

)
=

1

2

[(
n

a

)((
n− a

a

)
+ 2

(
n− a

b

))
+

(
n

b

)(
n− b

b

)]
.

Recall that f(n) = O(g(n)) means that f(n) ≤ Cg(n) for some positive constant

C. Then f(n) = O(nk) means that f(n) is bounded by a polynomial of degree at

most k. Also recall that f(n) = g(n) + O(nk) means f(n)− g(n) = O(nk).

Since (
n

i

)
=

1

i!

(
ni − ni−1 i(i− 1)

2
+ O(ni−2)

)
for i ≥ 2(

n− i

j

)
=

1

j!

(
nj − nj−1 j(j + 2i− 1)

2
+ O(nj−2)

)
for j ≥ 2
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it easily follows that
(
n−a
a

)
+ 2
(
n−a
b

)
≤
(
n
a

)
+ 2
(
n
b

)
− 1 and

(
n−b
b

)
≤
(
n
b

)
− 1. Thus

1

2

[(
n

a

)((
n− a

a

)
+ 2

(
n− a

b

))
+

(
n

b

)(
n− b

b

)]
<

1

2

[(
n

a

)((
n

a

)
+ 2

(
n

b

)
− 1

)
+

(
n

b

)((
n

b

)
− 1

)]
,

showing that the new bound is better than the Kruskal-Katona bound as n grows

larger.

We have not compared the bounds for fk with k > 2 since it is difficult to find

the i-canonical representation of fk−1 in this case.

Generalizing the proof of Proposition 4.20 to several players we get

Corollary 4.22. Consider the t-player weight game W (a1, . . . , at) played on Kn. If

a simplicial complex corresponds to such a game then

fk =
∑

0≤l1,...,lt
l1+...+lt=k


t∏

j=1

lj−1∏
i=0

(n− iaj −
j−1∑
v=1

lvav

aj

)
lj!


for k ≥ 1.

Similar to the 2-player case, if a1 = . . . = at =: a, then we can simplify this

formula:

fk =
∑

0≤l1,...,lt
l1+...+lt=k

n(n− 1) · · · (n− (
∑t

i=0 lja) + 1)∏t
j=1(lj!)(a!)lj

=
∑

0≤l1,...,lt
l1+...+lt=k

n(n− 1) · · · (n− ka + 1)

(a!)k
∏t

j=1(lj!)

=
n!

(n− ka)!k!(a!)k

∑
0≤l1,...,lt

l1+...+lt=k

k!∏t
j=1(lj!)

=
n!

(n− ka)!k!(a!)k

∑
0≤l1,...,lt

l1+...+lt=k

(
k

l1, . . . , lt

)

=
n!

(n− ka)!k!(a!)k
tk.
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where
(

k
l1,...,lt

)
is the multinomial coefficient.

If a = 1, then this becomes

fk =
n!

(n− k)!k!
tk

=

(
n

k

)
tk,

which is the same bound as in Corollary 4.8.

Letting amax = max{a1, . . . , at} and amin = min{a1, . . . , at}, we similarly get the

bounds
n!

(n− kamin)!k!(amax!)k
tk ≤ fk ≤

n!

(n− kamax)!k!(amin!)k
tk.

For fixed aj, we then have

fk ≤ Cnkamax

and

fk ≥ C ′(n− kamin + 1)kamin = C ′nkamin + O(nkamin−1)

where C and C ′ are constants depending on amin and k, respectively amax and k.

4.6 Playing on the Complete Bipartite Graph Kn,m

Finally, for the complete bipartite graph, we will introduce the concept of balanced

weights.

Definition 4.23. The weight of a piece placed on a complete bipartite graph is called

balanced if the difference between the number of vertices covered in the two parts

is less than or equal to 1.

The Trivial placement game in which Left plays pieces of balanced weight a and

Right of balanced weight b is denoted by W ′(a, b). Similarly for the t-player game.

Now, consider Left playing pieces of balanced weight a and Right playing pieces

of balanced weight b on the complete bipartite graph Kn,m.

Proposition 4.24. In the game W ′(a, b) played on the complete bipartite graph Kn,m,

the number of positions with one Left piece or one Right piece, are, respectively

NL =


(

n

a/2

)(
m

a/2

)
if a is even,

2∑
k=1

(
n

a+(−1)k
2

)(
m

a−(−1)k
2

)
if a is odd,
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NR =


(

n

b/2

)(
m

b/2

)
if b is even,

2∑
k=1

(
n

b+(−1)k
2

)(
m

b−(−1)k
2

)
if b is odd.

If a simplicial complex corresponds to such a game, then

f1 = NL + NR.

Proof. To place a piece of balanced weight a on the complete bipartite graph Kn,m,

we have to alternate occupying vertices between the two parts V1 and V2. Since every

vertex in V1 is connected to every vertex in V2, and |V1| = n and |V2| = m, we have(
n
s

)(
m
t

)
choices to place a piece that would occupy s vertices in the first part and t

vertices in the second part.

If a is even, then having to alternate between the parts means that exactly a/2

vertices are occupied in the first part and in the second part. If a is odd, then we can

either place on a−1
2

vertices in the first part and a+1
2

vertices in the second part, or

vice versa. Thus we get the formula for NL and NR is found similarly.

Proposition 4.25. In the game W ′(a, b) played on the complete bipartite graph Kn,m,

the number of positions with two Left piece is

NLL =



(1/2)
1∏

k=0

(
n− a/2k

a/2

)(
m− a/2k

a/2

)
if a is even,

(1/2)
2∑

k=1

[(
n

a+(−1)k
2

)(
m

a−(−1)k
2

)
·

2∑
j=1

[(
n− a+(−1)k

2
a+(−1)j

2

)(
m− a−(−1)k

2
a−(−1)j

2

)]]
if a is odd,

the number of positions with two Right piece is

NRR =



(1/2)
1∏

k=0

(
n− b/2k

b/2

)(
m− b/2k

b/2

)
if b is even,

(1/2)
2∑

k=1

[(
n

b+(−1)k
2

)(
m

b−(−1)k
2

)
·

2∑
j=1

[(
n− b+(−1)k

2
b+(−1)j

2

)(
m− b−(−1)k

2
b−(−1)j

2

)]]
if b is odd,
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and the number of positions with one Left and one Right piece is

NLR =



(
n

a/2

)(
m

a/2

)(
n− a/2

b/2

)(
m− a/2

b/2

)
if a, b are even,(

n

b/2

)(
m

b/2

) 2∑
k=1

[(
n− b/2
a+(−1)k

2

)(
m− b/2
a−(−1)k

2

)]
if a is odd, b is even,(

n

a/2

)(
m

a/2

) 2∑
k=1

[(
n− a/2
b+(−1)k

2

)(
m− a/2
b−(−1)k

2

)]
if a is even, b is odd,

2∑
k=1

[(
n

a+(−1)k
2

)(
m

a−(−1)k
2

)
·

2∑
j=1

[(
n− a+(−1)k

2
b+(−1)j

2

)(
m− a−(−1)k

2
b−(−1)j

2

)]]
if a, b are odd.

If a simplicial complex corresponds to such a game, then

f2 = NLL + NLR + NRR.

Proof. Placing a piece that covers s vertices in the first part and t vertices in the

second part is equivalent to deleting those vertices, resulting in a complete bipartite

graph Kn−s,m−t. Thus playing the second piece is equivalent to placing one piece on

Kn−s,m−t. Using Proposition 4.24, we then get the formulas for NLL,NRR, and NLR,

considering symmetry in the case of two Left or two Right pieces. As an example, we

will demonstrate how to find NLR if both a and b are odd.

We will first place the Left piece. From Proposition 4.24 we know that there are∑2
k=1

( n
a+(−1)k

2

)( m
a−(−1)k

2

)
choices for this. If the Left piece occupies (a+1)/2 vertices in

the first part and (a− 1)/2 vertices in the second part, then playing the Right piece

is equivalent to playing on Kn−a+1
2

,m−a−1
2

. So for this case we have(
n

a+1
2

)(
m
a−1
2

) 2∑
j=1

[(
n− a+1

2
b+(−1)j

2

)(
m− a−1

2
b−(−1)j

2

)]

possibilities to place the two pieces. Similarly, if the Left piece occupies (a − 1)/2

vertices in the first part and (a + 1)/2 vertices in the second part, then we have(
n

a−1
2

)(
m
a+1
2

) 2∑
j=1

[(
n− a−1

2
b+(−1)j

2

)(
m− a+1

2
b−(−1)j

2

)]
possible ways to place the pieces. Adding the two gives NLR in the case that a and b

are odd.
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If a = b = 1, then the previous two bounds become

f1 = 2(n + m) =

(
n + m

1

)
21

and

f2 = 2(n + m)(n + m− 1) =

(
n + m

2

)
22

which are the bounds given in Proposition 4.7.

Example 4.26. Consider the game W ′(3, 2) and let the board be the complete bi-

partite graph K2,2. Let xi,j,k represent a Left piece occupying the vertices i, j, and

k, and similarly for yi,j. For example, the position in Figure 4.10 is represented by

x1,3,4.

L L

L

1

2

3

4

Figure 4.10: An Example Position for W ′(3, 2) on K2,2

The corresponding game complex is given in Figure 4.11.

y2,4

y1,3

y2,3

y1,4

x1,2,3 x1,2,4 x1,3,4 x2,3,4

Figure 4.11: The Game Complex ∆W (3,2),K2,2

Since this game has no additional rules, the bounds in Propositions 4.24 and 4.25

hold with equality. Thus

f0 = 1

f1 =

(
2

1

)
+

(
2

1

)
+

(
2

1

)(
2

1

)
= 8,

f2 =

(
2
1

)(
2
1

)
2

= 2,
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and since max{b(n + m)/ac , b(n + m)/bc} = 2, we get the f -vector (1, 8, 2), which

can be verified from the simplicial complex.

To compare this with the Kruskal-Katona bound, we first need to find the i-

canonical representations and calculate the jth pseudopowers.

f1 =
(
8
1

)
f
(2)
1 =

(
8
2

)
= 28

f2 =
(
2
2

)
+
(
1
1

)
f
(3)
2 =

(
2
3

)
+
(
1
2

)
= 0

f
(1)
2 =

(
2
1

)
+
(
1
0

)
= 3

Then f2 = 2 < f
(2)
1 = 28, f3 = 0 = f

(3)
2 , and f1 = 8 > f

(1)
2 = 3, showing that

the formulae in Propositions 4.24 and 4.25 give, at least for this example, improved

necessary conditions for a vector to be the f -vector of a game complex over the ones

given in the Kruskal-Katona theorem.

We can continue the argument from the last two cases to find formulas for any

fk when playing on a complete bipartite graph with balanced weights. The formulas

become complicated though since many cases need to be covered (all combinations of

a and b even or odd), thus we have chosen not to include them.

These results can again be generalized to more players using the same methods of

proof.

Corollary 4.27. Consider a t-player placement game played on Kn,m where player i

plays pieces of balanced weight ai. The number of positions with one piece placed by

player i is

Ni =


(

n

ai/2

)(
m

ai/2

)
if ai is even,

2∑
k=1

(
n

ai+(−1)k
2

)(
m

ai−(−1)k
2

)
if ai is odd

If a simplicial complex corresponds to such a game then

f1 =
t∑

i=1

Ni. (4.8)

Corollary 4.28. Consider a t-player placement game played on Kn,m where player i

plays pieces of balanced weight ai. The number of positions with two pieces placed by
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player i is

Nii =



(1/2)
1∏

k=0

(
n− ai/2k

ai/2

)(
m− ai/2k

a/2

)
if ai is even,

(1/2)
2∑

k=1

[(
n

ai+(−1)k
2

)(
m

ai−(−1)k
2

)
·

2∑
j=1

[(
n− ai+(−1)k

2
ai+(−1)j

2

)(
m− ai−(−1)k

2
ai−(−1)j

2

)]]
if ai is odd,

The number of positions with one piece placed by player i and one piece by player j

where i 6= j is

Nij =



(
n

ai/2

)(
m

ai/2

)(
n− ai/2

aj/2

)(
m− ai/2

aj/2

)
if ai, aj are even,(

n

aj/2

)(
m

aj/2

) 2∑
k=1

[(
n− aj/2
ai+(−1)k

2

)(
m− aj/2
ai−(−1)k

2

)]
if ai is odd, aj is even,(

n

ai/2

)(
m

ai/2

) 2∑
k=1

[(
n− ai/2
aj+(−1)k

2

)(
m− ai/2
aj−(−1)k

2

)]
if ai is even, aj is odd,

2∑
k=1

[(
n

ai+(−1)k
2

)(
m

ai−(−1)k
2

)
·

2∑
j=1

[(
n− ai+(−1)k

2
aj+(−1)j

2

)(
m− ai−(−1)k

2
aj−(−1)j

2

)]]
if ai, aj are odd.

If a simplicial complex corresponds to such a game then

f2 =
t∑

i=1

t∑
j=i

Nij. (4.9)



Chapter 5

Conclusion: Open Questions and Discussion

There are many more questions on placement games and their monomials, their ideals,

and their simplicial complexes. In this chapter, we will be discussing some of them.

5.1 Commutative Algebra of Placement Games

In Section 2.3, we introduced the legal and illegal ideals of a placement game, which

are the facet and Stanley-Reisner ideals of its game complex. One of the main roots of

combinatorial commutative algebra lies in the relation between square-free monomial

ideals and simplicial complexes. In a similar manner, we would like to explore the

connection between placement games and square-free monomial ideals. Especially,

we are interested in how the algebra of these ideals affects the game itself.

For example, we are interested in how the following are mirrored in a placement

game G:

• deletion-contraction operations (localization),

• Betti numbers of the legal ideal and the h-vector of the game complex,

• Alexander dual of the ideals and simplicial complexes,

• the game complex being Cohen-Macaulay,

• the game complex being acyclic, and

• resolutions of the legal ideal.

5.2 Doppelgänger and Isomorphic Game Complexes

As we have shown in Section 3.3, distance games in which the illegal distances between

two Left pieces and two Right pieces are the same do not have a Doppelgänger on the
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set of all boards. A natural question is whether there exists a game G with LG 6= RG

that has a Doppelgänger on all boards. Or even more generally, does a board exist

for all pairs of placement games on which they are not Doppelgänger?

This question is also related to two game complexes being isomorphic. We know

that two games for which this is the case are Doppelgänger, and we can directly

conclude that their ideals are also isomorphic from their complexes being isomorphic,

but we would like to know how else they are related.

On the other hand, are there any Doppelgänger whose complexes are not isomor-

phic? We know that non-isomorphic simplicial complexes exist that have the same

f -vector, but we do not know if they would both be game complexes, and if they are,

whether they would correspond to the same board.

5.3 On Distance Games and Games with Weight

The two classes of placement games introduced, distance games and games with

weight, also allow for further research.

For distance games, we would also like to find Kruskal-Katona type bounds on the

coefficients of the game polynomials. A natural question is also if we can generalize

the concepts of the 2-player game to t-player distance games. For example would a

t-player version of the bipartite flip still have the same nice properties as the 2-player

version discussed in Section 3.2?

For games with weights, it would be very exciting if we could find Kruskal-Katona

type bounds for any board such that they hold with equality if there are no additional

rules. This seems very difficult though.

Further, it is still open whether Proposition 4.5 can be generalized to all boards,

i.e. is any game with weight equivalent to a game with all weights 1. This is certainly

true for all examples in this thesis, but the construction of the equivalent game is

often non-trivial.

An interesting question would also be if we can combine the two, i.e. can we define

distance games with weights? Ideally, the distance between pieces with weight greater

than 1 should be defined in such a way that we can use results from the distance games

with weight 1. It seems very likely that, for example, to define a bipartite flip, we

would need the weights of the players to be the same.
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5.4 Overall

The main goal still is to find sufficient conditions for a simplicial complex to be a

game complex. Since it is already not easy to find necessary conditions for a vector

to be the f -vector of a game complex, this seems to be very hard and much further

work is needed.
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