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Abstract

This thesis is an exposition of spectral theory for bounded operators on Hilbert space. Detailed

proofs are given for the functional calculus, the multiplication operator, and the projection-valued

measure versions of the spectral theorem for self-adjoint bounded operators. These theorems are then

generalized to finite sequences of self-adjoint and commuting bounded operators. Finally, normal

bounded operators are discussed, as a particular case of the generalization.
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Chapter 1

Introduction

Spectral theory is a sophisticated area of mathematics, drawing on diverse concepts in algebra,

functional analysis, measure theory, and complex analysis. The spectral theorems are fundamental

to the mathematical modelling of quantum mechanics, which provided the initial inspiration for

their inception. They play an important role in many other applied areas, including statistical

mechanics, evolution equations, Brownian motion, financial mathematics, and recent work in image

recognition. Applications within pure mathematics are also numerous, ranging from differential

equations to harmonic analysis on manifolds and Lie groups.

In one of its most recognizable forms, the spectral theorem states that any self-adjoint operator

is unitarily equivalent to a multiplication operator on some L2 space. More specifically, if T is a

self-adjoint operator on H, then there is a unitary map U : H → L2(X,Σ, μ) such that

U T U−1(f) = MF (f) := F · f

for some function F : X → R. In the simplest case of Cn, this multiplication operator version of the

spectral theorem gives the familiar statement that every self-adjoint n×n matrix T is diagonalizable,

i.e. there is a unitary matrix U and a diagonal matrix D such that U T U−1 = D. Here, D may be

interpreted as a multiplication operator on the L2 space C
n.

The derivative operator T = −i d
dt is an example of a self-adjoint, densely-defined operator on

L2(R). Applying the Fourier transform F to T , and integrating by parts, gives

F(Tf)(ξ) =

∫ ∞

−∞
−i

d

dt
f(t)e−2πiξt dt = (−2πiξ)i

∫ ∞

−∞
f(t)e−2πiξt dt = 2πξ (Ff) (ξ).

The Fourier transform is a unitary operator on L2(R), so this shows that T is unitarily equivalent

to multiplication by 2πξ.

The real power of the spectral theorem described above is that it enables one to define ”functions”

of a self-adjoint operator T . For any bounded and measurable function g : R → C, we obtain a

bounded operator g(T ) on the Hilbert space H, by setting

g(T ) = U−1 Mg◦F U.

The collection of all functions g(T ) defined in this way is referred to as the functional calculus for

T . In the example of the derivative operator above, the functions g
(
−i d

dt

)
are none other than the

convolution operators, natural operators that are found throughout mathematics.

The functional calculus for a self-adjoint T is uniquely associated with its subcollection of char-

acteristic functions χB(T ). The functions χB(T ) may be used to define a projection-valued measure,

1
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a map from the Borel σ-algebra for R to the set of orthogonal projections on H, which behaves

similarly as a measure.

This thesis is an exposition of spectral theory for bounded operators on Hilbert space. After

discussing preliminary assumptions and results, we give detailed proofs of the functional calculus,

the multiplication operator, and the projection-valued measure versions of the spectral theorem for

self-adjoint bounded operators. These theorems are then generalized to finite sequences of self-

adjoint and commuting bounded operators. As a particular case of this generalization, we discuss

normal bounded operators.

The development largely follows that in [5] and [4], but expands on the presentations there,

carefully filling in all the details. Any basic facts we use about Hilbert space come from [2], and

standard results in analysis come from [3], unless otherwise stated.



Chapter 2

Preliminaries

This chapter provides, largely with proof, the background that is needed to discuss the spectral

theorems. In the first section, we recall the definition of a bounded operator. We also describe L(H)

as a C*-algebra, as it is a useful way of summarizing many facts that we will use later. The second

section introduces positive bounded operators and orthogonal projections, which are related objects.

In the final section, we define the spectrum and the resolvent of a bounded operator, and use the

resolvent to prove various properties of the spectrum.

2.1 A C*-algebra of Bounded Operators

Definition 2.1. If X and Y are normed vector spaces, and T : X → Y is a linear map, then T is

bounded if there exists a constant C > 0 such that ‖Tx‖Y ≤ C ‖x‖X for all x ∈ X. The collection

of bounded linear maps from X to Y is denoted by L(X,Y ). The operator norm is a function

‖ · ‖ : L(X,Y ) → R
≥0 defined by

‖T‖ = inf{C > 0 | ‖Tx‖Y ≤ C ‖x‖X ∀x ∈ X}.

If H is a Hilbert space, then a bounded linear map T : H → H is called a bounded operator. The

space of bounded operators on H is denoted by L(H).

In this section, we show that L(H) satisfies the requirements for being a unital C*-algebra.

Definition 2.2. An algebra is a complex vector space A equipped with an additional multiplication

operation which turns it into a ring, not necessarily with unity, and satisfies

α (x y) = (αx) y = x (α y)

for all α ∈ C and x, y ∈ A. An involution for an algebra A is a function ∗ : A → A such that

x∗∗ = x

(x y)∗ = y∗ x∗

(αx+ y)∗ = αx∗ + y∗

for all α ∈ C and x, y ∈ A. A Banach algebra is an algebra A with a norm ‖ · ‖, respect to which

it is a Banach space, and such that ‖x y‖ ≤ ‖x‖ · ‖y‖ for all x, y ∈ A. A unital Banach algebra has

the additional requirement that ‖I‖ = 1, where I is the multiplicative identity. A C*-algebra is a

Banach algebra A with an involution such that ‖x∗ x‖ = ‖x‖2 for all x ∈ A.

The assertions made in the following theorem may be found, for example, in the comments on

page 68 of [2].

3
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Theorem 2.3. If X and Y are normed vector spaces, then L(X,Y ) is a normed vector space with

respect to pointwise-defined operations, and the operator norm. If Y is Banach, then L(X,Y ) is also

Banach. In particular, L(H) is Banach.

With the previous theorem in mind, it is easily verified that L(H) is a unital Banach algebra,

with composition as its multiplication operation, and the identity map as its unit. Bounded linear

functionals and bounded sesquilinear maps will allows us to construct an involution for L(H).

Definition 2.4. A bounded linear functional on a normed vector space X is a bounded linear

map from X to the complex numbers. The collection of bounded linear functionals on X is denoted

by X∗, rather than L(X,C).

Lemma 2.5 (Riesz Lemma). l ∈ H∗ if and only if there exists y ∈ H such that l(x) = 〈x, y〉 for all

x ∈ H. When such a y exists, it is unique, and ‖l‖ = ‖y‖H.

Definition 2.6. A sesquilinear form on H is a sesquilinear map ψ : H×H → C. ψ is bounded

if there exists a constant C > 0 such that |ψ(x, y)| ≤ C · ‖x‖H · ‖y‖H for all x, y ∈ H. When ψ is

bounded, we define

‖ψ‖ = inf{C > 0 | |ψ(x, y)| ≤ C · ‖x‖H · ‖y‖H}.

Lemma 2.7. A sesquilinear form ψ : H×H → C is bounded if and only if there is a constant C > 0

such that |ψ(x, x)| ≤ C ‖x‖2H for all x ∈ H.

Proof. The forward implication is clear. Assuming there is a constant C > 0 such that |ψ(x, x)| ≤
C‖x‖2H for all x ∈ H, we obtain

|ψ(x, y)| = 1

4
|ψ(x+ y, x+ y)− ψ(x− y, x− y) + i · ψ(x+ iy, x+ iy)− i · ψ(x− iy, x− iy)|

≤ C

4
·
(
‖x+ y‖2H + ‖x− y‖2H + ‖x+ iy‖2H + ‖x− iy‖2H

)
= C ·

(
‖x‖2H + ‖y‖2H

)
for all x, y ∈ H, using the polarization identity and parallelogram law. Therefore |ψ(x, y)| ≤ 2 · C
for all unit vectors x, y ∈ H, which implies ψ is bounded.

Theorem 2.8. ψ is a bounded sesquilinear form on H if and only if there exists T ∈ L(H) such

that ψ(x, y) = 〈Tx, y〉 for all x, y ∈ H. When such a T exists, it is unique, and ‖T‖ = ‖ψ‖.

Proof. Given T ∈ L(H), consider the function

ψ : H×H → C

(x, y) 
→ 〈Tx, y〉.

The linearity of T and the sesquilinearity of the inner product imply that ψ is sesquilinear. The

Cauchy-Schwartz inequality and the boundedness of T then imply that ψ is a bounded sesquilinear

form on H, with ‖ψ‖ ≤ ‖T‖.
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Now, suppose ψ : H × H → C is a bounded sesquilinear form. Fixing x ∈ H, consider the

function

lx : H → C

y 
→ ψ(x, y).

lx is linear because ψ is conjugate linear in its second term. It is also clear that lx is bounded, with

‖lx‖ ≤ ‖ψ‖ · ‖x‖. Therefore, by the Riesz Lemma, there exists a unique vector Tx ∈ H such that

ψ(x, y) = lx(y) = 〈y, Tx〉 = 〈Tx, y〉

for all y ∈ H, and ‖Tx‖H = ‖lx‖. After repeating this process for each x ∈ H, we have the

well-defined function

T : H → H

x 
→ Tx.

For any α ∈ C and x1, x2 ∈ H, we have

〈T (αx1 + x2), y〉 = ψ(αx1 + x2, y)

= αψ(x1, y) + ψ(x2, y) = α 〈Tx1, y〉+ 〈Tx2, y〉 = 〈αTx1 + Tx2, y〉

for all y ∈ H. This implies the linearity of T . Recalling that ‖Tx‖H = ‖lx‖ ≤ ‖ψ‖ · ‖x‖H, it is also

clear that T is bounded, with ‖T‖ ≤ ‖ψ‖.
Taking together the reverse and forward implications proven above, it is clear that ‖T‖ = ‖ψ‖.

The uniqueness of T is necessary, given its construction using the Riesz Lemma in the forward

implication.

Theorem 2.9. Let T ∈ L(H). There exists a unique T ∗ ∈ L(H) such that 〈Tx, y〉 = 〈x, T ∗y〉 for

all x, y ∈ H. Furthermore, ‖T‖ = ‖T ∗‖.

Proof. Define the function

ψ : H×H → C

(y, x) 
→ 〈y, Tx〉.

The linearity of T and the sesquilinearity of the inner product imply that ψ is sesquilinear. The

Cauchy-Schwartz inequality and the boundedness of T then imply that ψ is a bounded sesquilinear

form, with ‖ψ‖ ≤ ‖T‖. Therefore, by Theorem (2.8), there exists a unique T ∗ ∈ L(H) such that

〈Tx, y〉 = 〈y, Tx〉 = ψ(y, x) = 〈T ∗y, x〉 = 〈x, T ∗y〉

for all x, y ∈ H. Theorem (2.8) also implies that ‖T ∗‖ = ‖ψ‖ ≤ ‖T‖. For all x ∈ H, we have

‖Tx‖2H = 〈Tx, Tx〉 = |〈x, T ∗Tx〉| ≤ ‖T ∗‖ · ‖x‖H · ‖Tx‖H,

which implies ‖T‖ ≤ ‖T ∗‖.
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Definition 2.10. Let T ∈ L(H). The unique operator associated with T in Theorem (2.9), denoted

by T ∗, is the adjoint of T . T is normal when it commutes with T ∗, and self-adjoint when T = T ∗.

The following lemma will be used later in this chapter.

Lemma 2.11. If T ∈ L(H), then T [H] = Ker(T ∗)⊥. If T is normal, then T [H] = Ker(T )⊥.

Proof. y ∈ T [H]⊥ if and only if 〈x, T ∗y〉 = 〈Tx, y〉 = 0 for all x ∈ H, which is the case if and only if

T ∗y = 0. It follows that

T [H] = T [H]⊥⊥ = Ker(T ∗)⊥.

If T is normal, then

‖Tx‖2H = 〈T ∗ Tx, x〉 = 〈T T ∗x, x〉 = ‖T ∗x‖2H

for any x ∈ H. In that case,

T [H] = Ker(T ∗)⊥ = Ker(T )⊥.

The map T 
→ T ∗ is an involution for L(H). The following lemma confirms that this involution

satisfies the necessary property for L(H) to be a C*-algebra.

Lemma 2.12. If T ∈ L(H), then ‖T‖2n =
∥∥∥(T ∗T )2

n−1
∥∥∥ for any n ∈ N.

Proof. The proof will be by induction. For the base step, consider n = 1. It is easily seen that

‖T ∗T‖ ≤ ‖T‖2. Also,

‖Tx‖2H = |〈T ∗Tx, x〉| ≤ ‖T ∗T‖ · ‖x‖2H

for all x ∈ H, which implies ‖T‖2 ≤ ‖T ∗T‖. The desired equality follows.

For the inductive step, consider n ≥ 1, and assume ‖T‖2m =
∥∥∥(T ∗T )2

m−1
∥∥∥ for 1 ≤ m ≤ n.

Because (T ∗T )2
n−1

is self-adjoint, we have

‖T‖2n+1

=
(
‖T‖2n

)2

=
∥∥∥(T ∗T )2

n−1
∥∥∥2 =

∥∥∥(T ∗T )2
n−1 ◦ (T ∗T )2

n−1
∥∥∥ =

∥∥∥(T ∗T )2
n
∥∥∥ ,

using the stated assumption. This completes the proof.

2.2 Positive Bounded Operators and Orthogonal Projections

Definition 2.13. If T ∈ L(H) is such that 〈Tx, x〉 ∈ R for all x ∈ H, then T is real. If T is such

that 〈Tx, x〉 ∈ R
≥0 for all x ∈ H, then T is positive, which is denoted by T ≥ 0.

Positive bounded operators are referred to in later chapters, in relation to the functional calculus.
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Lemma 2.14. T ∈ L(H) is real if and only if it is self-adjoint. If T is additionally idempotent,

then it is positive.

Proof. Assume T is real, and consider the sesquilinear forms ψ1(x, y) := 〈Tx, y〉 and ψ2(x, y) :=

〈x, Ty〉 on H. We necessarily have

ψ1(x, x) = 〈Tx, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = ψ2(x, x)

for all x ∈ H. Using the polarization identities for ψ1 and ψ2, it follows that 〈Tx, y〉 = 〈x, Ty〉 for

all x, y ∈ H, so T is self-adjoint.

If T is self-adjoint, then

〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉

for all x ∈ H, which shows T is real. If T is additionally idempotent, then

〈Tx, x〉 = ‖Tx‖2H ≥ 0

for all x ∈ H, which shows T is positive.

Definition 2.15. Let M be a closed subspace of H. The function

P : H = M ⊕M⊥ → H

x = x1 + x2 
→ x1

is called the orthogonal projection onto M .

Orthogonal projections are of particular importance. They are the basis for the projection-

valued measure formulation of the spectral theorem. One consequence of the following theorem is

that orthogonal projections are positive bounded operators.

Theorem 2.16. P : H → H is an orthogonal projection if and only if it is an idempotent and

self-adjoint element of L(H). If P is an orthogonal projection, then P [H] = {x ∈ H | Px = x}, and
‖P‖ = 1.

Proof. Assume that P is an orthogonal projection onto the closed subspace M . Consider any

x, y ∈ H, with x1 + x2 and y1 + y2 as their respective representations in M ⊕M⊥. If α ∈ C, then

P (αx+ y) = P ((αx1 + y1) + (αx2 + y2)) = αx1 + y1 = αPx+ Py

implies P is linear. Because 〈x1, x2〉 = 〈x2, x1〉 = 0, we have

‖Px‖2H = 〈x1, x1〉 ≤ 〈x1, x1〉+ 〈x1, x2〉+ 〈x2, x1〉+ 〈x2, x2〉 = 〈x1 + x2, x1 + x2〉 = ‖x‖2H.

This implies P is bounded, with ‖P‖ ≤ 1. Every element in H has a unique representation in

M ⊕M⊥, so Px1 = x1. It follows that

P Px = Px1 = x1 = Px,
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which shows P is idempotent. Px1 = x1 also implies ‖P‖ = 1. Because 〈x1, y2〉 = 〈x2, y1〉 = 0, we

have

〈Px, y〉 = 〈x1, y1 + y2〉 = 〈x1, y1〉 = 〈x1 + x2, y1〉 = 〈x, Py〉.

Therefore, P is self-adjoint.

Now, assume P is an idempotent and self-adjoint element of L(H). The linearity of P implies

that P [H] is a subspace of H. If x = Py ∈ P [H], then

Px = P Py = Py = x,

because P is idempotent. It follows that P [H] = {x ∈ H | Px = x}. However, Px = x if and only

if (P − I)x = 0. As the preimage of a closed set, with respect to a continuous function, P [H] is

closed. Therefore, we may consider the direct sum decomposition H = P [H]⊕ P [H]⊥. If x1 + x2 is

the representation of x ∈ H in P [H]⊕ P [H]⊥, then

Px = Px1 + Px2 = x1 + Px2.

To see that Px2 = 0, note that

〈y, Px2〉 = 〈Py, x2〉 = 0

for all y ∈ H, because P is self-adjoint. We may conclude P is an orthogonal projection onto

P [H].

Lemma 2.17. Let P1, P2 ∈ L(H) be orthogonal projections. P1 P2 is an orthogonal projection if

and only if P1 and P2 commute.

Proof. Denote P1 P2 ∈ L(H) by P . P ∗ = P2 P1 because P1 and P2 are self-adjoint, so P is self-

adjoint if and only if P1 and P2 commute. To see that P1 and P2 commuting is not only necessary,

but sufficient, for P to be an orthogonal projection, note that

P 2 = (P1 P2) (P1 P2) = (P1 P1) (P2 P2) = P1 P2

because P1 and P2 are idempotent.

Lemma 2.18. Let P1, P2 ∈ L(H) be orthogonal projections. P1 + P2 is an orthogonal projection if

and only if P1 P2 = 0 or P2 P1 = 0.

Proof. Denote P1 + P2 ∈ L(H) by P . As the sum of self-adjoint operators, P is also self-adjoint.

Therefore, P will be an orthogonal projection if and only if it is idempotent. Because P1 and P2 are

idempotent, we have

P 2 = (P1 + P2) (P1 + P2) = P1 + P1 P2 + P2 P1 + P2

which shows P is idempotent if and only if P1 P2 + P2 P1 = 0.
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If P1 P2 = 0, then

0 = 0∗ = (P1 P2)
∗ = P2 P1.

It follows that P1 P2 = 0 if and only if P2 P1 = 0. Therefore, if P1 P2 = 0 or P2 P1 = 0, P will be

idempotent.

Now, suppose P is idempotent. P1 P2 + P2 P1 = 0 implies P2 P1 P2 = 0, so the range of P1 P2

is contained in the kernel of P2. If M2 ⊂ H is the closed subspace onto which P2 projects, then

the kernel of P2 is M⊥
2 . In this case, P1 P2[H] ⊂ M⊥

2 . However, P1 P2 + P2 P1 = 0 also implies

P1 P2 = −P2 P1, so P1 P2[H] ⊂ M2. Therefore, P1 P2 = 0, because M2 ∩M⊥
2 = {0}.

2.3 The Spectrum and the Resolvent

Definition 2.19. Let T ∈ L(H). The spectrum of T , denoted σ(T ), is the set of all λ ∈ C such

that λ − T ∈ L(H) is not bijective. The point spectrum of T , denoted σp(T ), is the set of all

λ ∈ σ(T ) such that λ− T is not injective. The continuous spectrum of T , denoted σc(T ), is the

set of all λ ∈ σ(T ) such that λ−T is injective with a dense range, but not surjective. The residual

spectrum of T , denoted σr(T ), is the set of all λ ∈ σ(T ) such that λ− T is injective, but without

a dense range. σ(T ) is the disjoint union of σp(T ), σc(T ), and σr(T ).

Theorem 2.20 (Inverse Mapping Theorem). Let X and Y be Banach spaces, and let T ∈ L(X,Y ).

If T is bijective, then T−1 ∈ L(Y,X).

The previous theorem may be found, for example, in [2] (Theorem 12.5). The following theorem,

whose proof depends on the Inverse Mapping Theorem, allows us to define another subset of the

spectrum.

Theorem 2.21. T ∈ L(H) is bijective if and only if the range of T is dense in H, and there exists

ε > 0 such that ‖Tx‖H ≥ ε · ‖x‖H for all x ∈ H.

Proof. Assume T is bijective. The range of T is clearly dense in H. From the boundedness of T−1,

we have

‖x‖H = ‖T−1 Tx‖H ≤ ‖T−1‖ · ‖Tx‖H

for all x ∈ H. Taking ε to be the inverse of ‖T−1‖, we obtain the desired inequality.

Now, assume the range of T is dense in H, and that there exists ε > 0 such that ‖Tx‖H ≥ ε ·‖x‖H
for all x ∈ H. The given inequality immediately implies that Ker(T ) = {0}, so T is injective. If

{Txn} ⊂ H is a Cauchy sequence, then the same inequality also implies that {xn} is Cauchy.

The completeness of H and the continuity of T then imply that there exists x ∈ H such that

limn Txn = Tx, so T [H] is closed. As a closed and dense subset of H, it follows that T [H] = H.

Therefore, T is bijective.
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Definition 2.22. Let T ∈ L(H). λ ∈ C is in the approximate point spectrum of T if for every

ε > 0, there exists x ∈ H such that ‖(λ− T )x‖H < ε · ‖x‖H.

Theorem 2.23. For any T ∈ L(H), σp(T ) and σc(T ) are subsets of σapp(T ). If T is normal, then

σr(T ) = ∅ and σapp(T ) = σ(T ).

Proof. Consider any λ ∈ σp(T ). There exists a nonzero x ∈ H such that (λ−T )x = 0, because λ−T

is linear and not injective. Clearly ‖(λ− T )x‖H = 0, and 0 < ε · ‖x‖H for all ε > 0, so λ ∈ σapp(T ).

Now, consider any λ ∈ σc(T ). λ− T has a dense range, but it is not invertible. In view of Theorem

(2.21), we must have λ ∈ σapp(T ).

Assume T is normal, and let λ ∈ C be such that (λ−T ) ∈ L(H) is injective, i.e. Ker(λ−T ) = {0}.
T is normal, and I is the multiplicative identity in L(H), so λ− T is normal. Therefore,

(λ− T )[H] = Ker(λ− T )⊥ = {0}⊥ = H

by Lemma (2.11). This shows that λ − T has a dense range, so λ /∈ σr(T ). As desired, σr(T ) is

empty. It follows that σapp(T ) = σ(T ).

Theorem 2.24. If T ∈ L(H) is self-adjoint, then σ(T ) ⊂ R.

Proof. Consider any λ ∈ C. If λr, λi ∈ R are such that λ = λr + i · λi, then we have

‖(λ− T )x‖2H = 〈(λr − iλi − T )(λr + iλi − T )x, x〉

= 〈(λr − T )2x, x〉+ 〈λ2
ix, x〉 = ‖(λr − T )x‖2H + λ2

i · ‖x‖2H ≥ λ2
i · ‖x‖2H,

for all x ∈ H, because T is self-adjoint. This implies λ /∈ σapp(T ) when λi �= 0. Noting that

σapp(T ) = σ(T ), the desired result follows.

Definition 2.25. Consider T ∈ L(H). The resolvent set of T , denoted ρ(T ), is the set of all

λ ∈ C such that λ− T ∈ L(H) is bijective. For λ ∈ ρ(T ), Rλ(T ) ≡ (λ− T )−1 ∈ L(H) is called the

resolvent of T at λ.

Lemma 2.26. Let T ∈ L(H). If ‖T‖ < 1, then
∑∞

n=0 T
n ∈ L(H). If

∑∞
n=0 T

n ∈ L(H), then I − T

is invertible, with
∑∞

n=0 T
n as its inverse.

Proof. If ‖T‖ < 1, then we have

∞∑
n=0

‖Tn‖ ≤
∞∑

n=0

‖T‖n =
1

1− ‖T‖ ,

which shows
∑∞

n=0 T
n converges absolutely. L(H) is Banach, so every series in L(H) that converges

absolutely also converges with respect to the norm topology. Therefore,
∑∞

n=0 T
n ∈ L(H).

If
∑∞

n=0 T
n ∈ L(H), then

(I − T )

( ∞∑
n=0

Tn

)
=

∞∑
n=0

(I Tn)−
∞∑

n=0

(T Tn) =

∞∑
n=0

Tn −
∞∑

n=0

Tn+1 =

∞∑
n=0

Tn −
∞∑

n=1

Tn = I,

using the continuity of composition. The continuity of composition can also be used to show that

I − T commutes with
∑∞

n=0 T
n. Therefore, I − T is invertible, and

∑∞
n=0 T

n is its inverse.
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Theorem 2.27. Let T ∈ L(H). The series
∑∞

n=0 λ
−(n+1) Tn has an annulus of convergence which

contains {λ ∈ C | |λ| > ‖T‖}, and is contained in ρ(T ). If λ ∈ ρ(T ) is such that
∑∞

n=0 λ
−(n+1) Tn ∈

L(H), then Rλ(T ) =
∑∞

n=0 λ
−(n+1) Tn.

Proof. Consider any λ0 ∈ C such that |λ0| > ‖T‖ ≥ 0. It is then clear λ−1
0 T ∈ L(H), with

‖λ−1
0 T‖ < 1. Therefore,

∑∞
n=0

(
λ−1
0 T

)n
is convergent, by Lemma (2.26).

Now, consider any λ ∈ C for which
∑∞

n=0 λ
−(n+1) Tn is convergent. Note that λ0 satisfies this

additional property, because
∑∞

n=0 λ
−(n+1) Tn ∈ L(H) if and only if

∑∞
n=0

(
λ−1
0 T

)n ∈ L(H). By

Lemma (2.26), ( ∞∑
n=0

Tn

λn+1

)
=

(
1

λ

∞∑
n=0

(
T

λ

)n
)−1

= λ

(
I − T

λ

)
= λ− T.

Therefore, λ ∈ ρ(T ), with Rλ(T ) =
∑∞

n=0 λ
−(n+1) Tn.

Corollary 2.28. If T ∈ L(H), then limλ→∞ Rλ(T ) = 0.

Proof. By Theorem (2.27), we have Rλ(T ) =
∑∞

n=0 λ
−(n+1) Tn for |λ| > ‖T‖. Letting ψ = λ−1,

we then have Rλ(T ) =
∑∞

n=0 ψ
n+1 Tn for 0 < |ψ| < ‖T‖. This implies that the power series∑∞

n=0 ψ
n+1 Tn is valid for |ψ| < ‖T‖, and hence continuous at ψ = 0. Therefore,

lim
λ→∞

Rλ(T ) = lim
ψ→0

∞∑
n=0

ψn+1 Tn =
∞∑

n=0

0n+1 Tn = 0

as desired.

Theorem 2.29. Let T ∈ L(H). ρ(T ) is an open subset of C, on which Rλ(T ) is an L(H)-valued

analytic function.

Proof. Fix λ0 ∈ ρ(T ), and let δ = ‖Rλ0(T )‖−1 > 0. If λ ∈ Bδ(λ0) ⊂ C, then clearly

‖(λ0 − λ)Rλ0(T )‖ < ‖Rλ0(T )‖−1 · ‖Rλ0(T )‖ = 1.

In that case,
∑∞

n=0(λ0 − λ)n [Rλ0(T )]
n ∈ L(H) is the inverse of I − (λ0 − λ)Rλ0(T ), by Lemma

(2.26). This implies Rλ0
(T ) ◦

∑∞
n=0(λ0 − λ)n [Rλ0

(T )]
n
is invertible, with(

Rλ0
(T ) ◦

∞∑
n=0

(λ0 − λ)n [Rλ0
(T )]

n

)−1

= [I − (λ0 − λ)Rλ0
(T )] ◦ (λ0 − T ) = λ− T

as its inverse. Finally, note that

Rλ0
(T ) ◦

∞∑
n=0

(λ0 − λ)n [Rλ0
(T )]

n
=

∞∑
n=0

(λ0 − λ)n [Rλ0
(T )]

n+1
,

by the continuity of composition.

For an arbitrary λ0 ∈ ρ(T ), we have shown there exists δ > 0 such that Bδ(λ0) ⊂ ρ(T ).

Furthermore, Rλ(T ) : ρ(T ) → L(H) has a power series representation on Bδ(λ0), namely Rλ(T ) =∑∞
n=0(λ0−λ)n [Rλ0

(T )]
n+1

. Therefore, ρ(T ) ⊂ C is open, and Rλ(T ) is analytic on its domain.
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Corollary 2.30. Let T ∈ L(H). σ(T ) is a nonempty, compact subset of C.

Proof. σ(T ) = ρ(T )c is a closed and bounded subset of C, so it is compact. We are left with the

more difficult task of showing σ(T ) is nonempty. Towards this, assume ρ(T ) = C.

By Corollary (2.28), limλ→∞ Rλ(T ) = 0. Therefore, there exists δ > 0 such that ‖Rλ(T )‖ < 1

for |λ| > δ. For such a δ, consider the closed ball Bδ(0) ⊂ C. By the continuity of Rλ(T ), the image

of Bδ(0) under Rλ(T ) is compact in L(H), and hence bounded. Therefore, there exists C0 > 0 such

that ‖Rλ(T )‖ < C0 for |λ| ≤ δ. Letting C = max(1, C0), it follows that Rλ(T ) is bounded.

Rλ(T ) is a bounded and entire function on C, so the vector-valued version of Liouville’s theorem

implies the existence of some S ∈ L(H) such that Rλ(T ) ≡ S. However, because limλ→∞ Rλ(T ) = 0,

we must have Rλ(T ) ≡ 0 ∈ L(H). 0 ∈ L(H) is not invertible, so this is a contradiction. It follows

that σ(T ) is nonempty, as desired.

Definition 2.31. Let T ∈ L(H). We define r(T ) ≡ supλ∈σ(T ) |λ|. r(T ) is called the spectral

radius of T .

Theorem 2.32. If T ∈ L(H), then r(T ) = limn→∞ ‖Tn‖ 1
n . If T is normal, then r(T ) = ‖T‖.

Proof. We will first show that limn→∞ ‖Tn‖ 1
n exists. If T ≡ 0, then existence of the limit is trivial.

Assuming ‖T‖ > 0, define an = log ‖Tn‖ for n ∈ Z
≥0. If m,n ∈ Z

≥0, then

am+n = log ‖Tm+n‖ ≤ log (‖Tm‖ · ‖Tn‖) = log ‖Tm‖+ log ‖Tn‖ = am + an

and

an·m = log ‖Tn·m‖ ≤ log (‖Tm‖n) = n · log ‖Tm‖ = n · am.

Now, fix m0 ∈ Z
>0. For any n ∈ Z

≥m0 , there exist unique qn, rn ∈ Z such that 0 ≤ rn < m0 and

n = qn ·m0 + rn. Noting that qn
n =

(
1− rn

n

)
1

m0
, we have

an
n

=
aqn·m0+rn

n
≤ qn

n
· am0

+
arn
n

=
(
1− rn

n

) am0

m0
+

arn
n

.

{rn} and {arn} are finite, and hence bounded, sets of real numbers, so

lim sup
n

an
n

≤ lim sup
n

((
1− rn

n

) am0

m0
+

arn
n

)
= lim

n→∞

((
1− rn

n

) am0

m0
+

arn
n

)
=

am0

m0
.

Because m0 was an arbitrary positive integer, this shows lim supn
an

n is a lower bound for {an

n }n∈Z>0 .

Therefore,

lim sup
n

an
n

≤ inf
{an

n

}
n∈Z>0

≤ lim inf
n

an
n
,

which implies

lim
n→∞

an
n

= inf
{an

n

}
n∈Z>0

∈ R.

Because ex is a continuous, strictly increasing function from R onto R
>0, we have

lim
n→∞ ‖Tn‖ 1

n = lim
n→∞ e

an
n = einf{

an
n }n∈Z>0 = inf{e

an
n }n∈Z>0 = inf{‖Tn‖ 1

n }n∈Z>0 ∈ R.



13

This shows that limn→∞ ‖Tn‖ 1
n exists, as desired.

Rλ(T ) is an analytic, L(H)-valued function on the open set ρ(T ), so it is clear from Theorem

(2.27) that
∑∞

n=0 λ
−(n+1) Tn is the unique Laurent series representation for Rλ(T ), centred at 0 ∈ C,

and valid for |λ| > ‖T‖. Let r be the inner radius of convergence of
∑∞

n=0 λ
−(n+1) Tn. Because the

annulus {λ ∈ C | |λ| > r(T )} is contained in ρ(T ), we must have r ≤ r(T ). However, if r < r(T ), then

the annulus of convergence for
∑∞

n=0 λ
−(n+1) Tn will have a nonempty intersection with σ(T ). This

is a contradiction, by Theorem (2.27), so r = r(T ). Using the vector-valued version of Hadamard’s

formula, we get

r(T ) = r = lim sup
n

‖Tn‖ 1
n = lim

n→∞ ‖Tn‖ 1
n .

Finally, if T ∈ L(H) is normal, then we have

r(T ) = lim
n→∞ ‖Tn‖

1
n = lim

n→∞

∥∥∥T 2n−1
∥∥∥2·2−n

= lim
n→∞

∥∥∥(T 2n−1
)∗

T 2n−1
∥∥∥2−n

= lim
n→∞

∥∥∥(T ∗T )2
n−1

∥∥∥2−n

= lim
n→∞ ‖T‖2n·2−n

= ‖T‖,

using two applications of Lemma (2.12).



Chapter 3

Spectral Theory for Self-Adjoint Bounded Operators

In this chapter, we formulate and prove three versions of the spectral theorem for self-adjoint,

bounded operators. We introduce the functional calculus in the first section, and the multiplication

operator version in the second. The main reference for both of these sections is [5], but we provide

an expanded presentation. In the last section, we develop the projection-valued measure version,

using both [4] and [5] as references.

3.1 The Functional Calculus

Definition 3.1. For T ∈ L(H) and p(z) =
∑n

i=0 αi · zi, a complex polynomial of one variable, we

define p(T ) :=
∑n

i=0 αi · T i ∈ L(H), where T 0 = I.

The proof of the following lemma is omitted, but it is trivial.

Lemma 3.2. Let T ∈ L(H). If Q denotes the algebra of complex polynomials of one variable, then

the map p 
→ p(T ) is a unital algebraic homomorphism from Q to L(H).

Lemma 3.3. If T ∈ L(H), and p(z) is a complex polynomial of one variable, then σ [p(T )] = p[σ(T )].

In particular, if Tx = λx for some λ ∈ C and x ∈ H, then p(T )x = p(λ)x.

Proof. Consider λ ∈ σ(T ). Because p(λ)− p(z) has λ as a root, there is a complex polynomial q(z)

such that

p(λ)− p(z) = (λ− z) · q(z) = q(z) · (λ− z),

which implies

p(λ)− p(T ) = (λ− T ) q(T ) = q(T ) (λ− T ) ∈ L(H).

Because λ−T is not invertible, it is not bijective. If λ−T is not surjective, p(λ)−p(T ) = (λ−T ) q(T )

shows that p(λ)− p(T ) is not surjective. If λ−T is not injective, i.e. λx−Tx = 0 for some nonzero

x ∈ H, then p(λ)x− p(T )x = q(T ) (λx−Tx) = 0 shows that p(λ)− p(T ) is not injective. Therefore,

p(λ)− p(T ) is not invertible. We may conclude σ [p(T )] ⊃ p[σ(T )].

Consider λ ∈ σ [p(T )], and assume p(z) has degree zero, i.e. p(z) ≡ α for some α ∈ C. Because

λ− p(T ) = (λ−α)I is not invertible, we must have λ = α. Noting that p[σ(T )] = {α} because σ(T )

is nonempty, it is then clear σ [p(T )] ⊂ p[σ(T )].

Now, assume p(z) has degree n ≥ 1. If {λi}ni=1 are the roots of λ− p(z), then we have

λ− p(z) = β(λ1 − z) · · · (λn − z)

14
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for some necessarily nonzero β ∈ C. Given this factorization,

λ− p(T ) = β(λ1 − T ) · · · (λn − T ).

Because β �= 0, λ− p(T ) would be invertible if each λi − T was invertible. However, λ− p(T ) is not

invertible, so there is some λ0 ∈ {λi}ni=1 for which λ0 − T is not invertible. Because p(λ0) = λ, we

may conclude σ [p(T )] ⊂ p[σ(T )].

Lemma 3.4. Let T ∈ L(H), and let p be a complex polynomial of one variable.

(a) If T is normal, then ‖p(T )‖ = supλ∈σ(T ) |p(λ)|.
(b) If p is a polynomial of a real variable, then so is p, and p(T ) = p(T )∗.

Proof. Consider the complex polynomial p(z) =
∑n

i=0 aiz
i. The adjoint of p(T ) is given by

p(T )∗ =

(
n∑

i=0

aiT
i

)∗
=

n∑
i=0

(
aiT

i
)∗

=

n∑
i=0

ai (T
∗)i .

From this, two facts are now clear. First, if p denotes the pointwise complex conjugation of p, then

part (b) is immediate. Second, if T is normal, then p(T ) is normal. In that case,

‖p(T )‖ = r[p(T )] = sup
λ∈σ[p(T )]

|λ| = sup
λ∈σ(T )

|p(λ)|,

using Theorem (2.32), and Lemma (3.3). This proves part (a).

Consider the following version of the Stone-Weierstrass Theorem, which may be found in [3]

(Theorem 4.51).

Theorem 3.5 (Complex Stone-Weierstrass Theorem). Let X be a compact Hausdorff space. If A
is a closed, complex *-subalgebra of C(X) that separates points, then either A = C(X) or A = {f ∈
C(X) | f(x0) = 0} for some x0 ∈ X.

Corollary 3.6. Let X be a compact subset of Rn, where n ∈ N. C(X) is the completion of the

collection of complex polynomials of n variables, with respect to the uniform norm.

Proof. Define Q to be the collection of complex polynomials of n variables. Because X is compact,

C(X) is a Banach space under the uniform norm. Therefore, the closure of Q in C(X) will also be

the completion of Q with respect to the uniform norm.

It is easily seen Q is a complex subalgebra of C(X). Q will also be closed under complex

conjugation, because the variables for any p ∈ Q are necessarily real-valued. By the continuity of

the algebra and complex conjugation operations, Q will be a closed, complex *-subalgebra of C(X).

The coordinate projection maps of Rn to C are polynomials contained in Q, so Q will necessarily

separate points of X.

The Stone-Weierstrass Theorem implies that either Q = C(X) or

Q = {f ∈ C(X) | f(a1, . . . , an) = 0}

for some [a1, . . . , an] ∈ X. However, the constant function q(x1, . . . , xn) = 1 is nonzero on X and

contained in Q, ruling out the second possibility. Therefore, C(X) is the completion of Q.



16

Theorem 3.7 (Bounded Linear Transformation Theorem). Let X be a normed vector space, and

let Y be a Banach space. Each T ∈ L(X,Y ) has a unique continuous extension to T ∈ L
(
X,Y

)
,

where X is the completion of X. Furthermore,
∥∥T∥∥ = ‖T‖.

Proof. Given any x ∈ X, there is a sequence {xn} ⊂ X which converges to x. The boundedness

of T and the completeness of Y imply that {Txn} ⊂ Y is convergent. With this in mind, we

define T : X → Y by letting Tx = limn Txn ∈ Y . However, for T to be well-defined, Tx must be

independent of the choice of sequence used in its construction.

Let {yn} ⊂ X be a sequence converging to y ∈ X. If x = y, then {xn − yn} ⊂ X converges to

0 ∈ X, by the continuity of vector subtraction in X. The continuity of T then implies

0 = lim
n

T (xn − yn) = lim
n

Txn − lim
n

Tyn,

and we may conclude T is well-defined. For any α ∈ C, {xn + αyn} ⊂ X converges to x+ αy ∈ X,

by the continuity of the vector space operations on X. Therefore,

T (x+ αy) = lim
n

T (xn + αyn) = lim
n
(Txn + αTyn) = lim

n
Txn + α lim

n
Tyn = Tx+ αTy,

using the linearity of T , and the continuity of the vector space operations on Y . This proves the

linearity of T .

Using the continuity of the norms on Y and X, and the boundedness of T on X, we obtain∥∥Tx∥∥
Y
= lim

n
‖Txn‖Y ≤ lim

n
‖T‖ · ‖xn‖X = lim

n
‖T‖ · ‖xn‖X = ‖T‖ · ‖x‖X .

This implies T is bounded with
∥∥T∥∥ ≤ ‖T‖. It is clear that

∥∥T∥∥ ≥ ‖T‖, because X contains X.

Finally, suppose S : X → Y is another continuous function extending T . S and T are continuous

functions agreeing on a dense subset of their domain, so S ≡ T .

Theorem 3.8. Let X and Y be normed vector spaces, and consider T ∈ L(X,Y ). If ‖Tv‖Y = ‖v‖X
for all v ∈ V , where V is a dense subset of X, then T is a linear isometry. If, additionally, X is

complete and T [X] is a dense subset of Y , then T is surjective.

Proof. Given any x ∈ X, there is a sequence {xn} ⊂ V which converges to x. We then have

‖Tx‖Y = lim
n→∞ ‖Txn‖Y = lim

n→∞ ‖xn‖X = ‖x‖X ,

using the continuity of T and of the norms on X and Y . It follows that T is a linear isometry.

Because T is a linear isometry, it has a well-defined inverse, T−1 : T [X] → X, which is a linear

isometry on the subspace T [X] ⊂ Y . If X is complete, and T [X] is dense in Y , then T−1 has an

extension to T−1 ∈ L(Y,X), by the Bounded Linear Transformation Theorem. The first part of this

theorem then implies T−1 is injective. Therefore, for any y ∈ Y with T−1 y = x ∈ X,

T−1 y = x = T−1 Tx = T−1 Tx

implies y = Tx. It follows that T is surjective.
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The map φ in the following theorem will be referred to as the continuous functional calculus for

T .

Theorem 3.9 (Spectral Theorem). Let T ∈ L(H) be self-adjoint. There is a unique map φ :

C(σ(T )) → L(H) such that:

(a) φ is continuous.

(b) If Id ∈ C(σ(T )) is the identity function, i.e. Id(z) = z, then φ(Id) = T .

(c) φ is a unital algebraic homomorphism.

In addition, φ has the following properties:

(d) φ is an isometry.

(e) φ is a *-homomorphism.

(f) If f ∈ C(σ(T )) is such that f ≥ 0, then φ(f) ≥ 0.

(g) If S ∈ L(H) commutes with T , then φ(f)S = S φ(f) for all f ∈ C(σ(T )).
(h) If Tx = λx for some λ ∈ σ(T ) and x ∈ H, then φ(f)x = f(λ)x for all f ∈ C(σ(T )).
(i) σ [φ(f)] = f [σ(T )] for all f ∈ C(σ(T )).

Proof. Let Q be the collection of complex polynomials of one variable, but with their domain re-

stricted to σ(T ) ⊂ R. Q is a normed vector space with respect to the uniform norm, because of the

continuity of polynomials and the compactness of σ(T ). Let φ̂ : Q → L(H) be the map described in

Lemma (3.2), i.e. φ̂(p) = p(T ). φ̂ is linear, and

‖φ̂(p)‖L(H) = ‖p(T )‖L(H) = sup
λ∈σ(T )

|p(λ)| = ‖p‖u

for all p ∈ Q, by Lemma (3.4). Therefore, φ̂ is a bounded linear transformation from Q to L(H).

Noting that L(H) is complete, the Bounded Linear Transformation Theorem implies the existence of

a unique bounded linear transformation φ : Q → L(H) which extends φ̂, where Q is the completion

of Q. However, Q = C(σ(T )) by Corollary (3.6).

We claim this φ is the desired map. Because φ agrees with φ̂ on polynomials, it must preserve

the multiplicative identity and map Id(z) = z to T . If φ preserves the multiplication operation, it

will be a unital algebraic homomorphism. Let f, g ∈ C(σ(T )). Q is dense in C(σ(T )), so there exist

sequences {pn}, {qn} ⊂ Q that converge uniformly to f and g, respectively. By continuity of the

pointwise product, {pn · qn} ⊂ Q converges uniformly to f · g ∈ C(σ(T )), and by Lemma (3.2), φ

preserves the multiplication operation when restricted to Q. Therefore,

φ(f · g) = lim
n→∞φ(pn · qn) = lim

n→∞ (φ(pn) ◦ φ(qn)) = φ(f) ◦ φ(g)

using the continuity of φ and composition.

Towards proving the uniqueness of φ, consider any map ψ that satisfies properties (a), (b), and

(c) of the theorem. For any polynomial p(z) =
∑n

i=0 αi · zi,

ψ(p) =
n∑

i=0

αi · T i = φ̂(p),
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since ψ is a unital algebraic homomorphism and ψ(Id) = T . Because ψ and φ agree on a dense

subset, their continuity implies ψ ≡ φ.

We will now prove the additional properties of φ. First, recall ‖φ(p)‖L(H) = ‖p‖u for all p ∈ Q.

Q is dense in C(σ(T )), and φ ∈ L(C(σ(T )),H), so Theorem (3.8) implies φ is an isometry.

For the remainder of the proof, let f ∈ C(σ(T )) and {pn} be as before. By Lemma (3.4), φ will

preserve the star operation on Q, which is pointwise complex conjugation. Also, by the continuity

of complex conjugation, {pn} ⊂ Q converges uniformly to f ∈ C(σ(T )). Therefore,

φ(f) = lim
n→∞φ(pn) = lim

n→∞φ(pn)
∗ = φ(f)∗

using the continuity of φ and ∗. This shows φ is a *-homomorphism.

Suppose f ≥ 0, and let g =
√
f . We then have g ∈ C(σ(T )) because f is nonnegative. Because

φ is an algebraic *-homomorphism,

〈φ(f)x, x〉 = 〈φ(g) ◦ φ(g)x, x〉 = 〈φ(g)x, φ (g)x〉 = 〈φ(g)x, φ(g)x〉 ≥ 0

for all x ∈ H. Therefore, φ(f) ≥ 0.

Suppose T S = S T for some S ∈ L(H). It is clear that p(T )S = S p(T ) for any p ∈ P. Therefore,

φ(f)S = lim
n→∞(φ(pn)S) = lim

n→∞(S φ(pn)) = S φ(f)

using the continuity of φ, right composition, and left composition. In particular, this implies that

any two bounded operators in the range of φ will commute.

Suppose Tx = λx for some λ ∈ σ(T ) and x ∈ H. By Lemma (3.3), φ(pn)x = pn(λ)x. Noting that

convergence with respect to the operator norm implies strong convergence, and uniform convergence

implies pointwise convergence, we have

φ(f)x = lim
n→∞(φ(pn)x) = lim

n→∞(pn(λ)x) = f(λ)x

from the continuity of φ and the line path lx(α) = α · x.
Consider λ /∈ f [σ(T )]. 1

λ−f ∈ C(σ(T )) because λ− f �= 0 on σ(T ). φ is an algebraic homomor-

phism, so

φ

(
1

λ− f

)
◦ (λ− φ(f)) = φ

(
1

λ− f
· (λ− f)

)
= φ(1) = I

This shows λ−φ(f) is invertible, because all elements of L(H) in the range of φ commute. We may

conclude σ [φ(f)] ⊂ f [σ(T )].

Finally, consider λ ∈ f [σ(T )]. In this case, there exists λ0 ∈ σ(T ) such that f(λ0) = λ. Because

T is self-adjoint, λ0 is in the approximate point spectrum of T . In other words, there is a sequence of

unit vectors {xn} ⊂ H such that limn→∞ ‖(λ0 − T )xn‖H = 0. We would like to use these vectors to

show λ ∈ σapp(φ(f)). Towards this, fix ε > 0. There is a polynomial p ∈ {pn} such that ‖f−p‖u < ε
3 .

Note that p(λ0)− p(z) has λ0 as a root, implying p(λ0)− p(z) = q(z) · (λ0 − z) for some q ∈ Q. For

this q, there is an x ∈ {xn} such that ‖(λ0 − T )x‖H < ε
3·‖q‖u+1 . With these selections, we obtain

‖(λ− φ(f))x‖H = ‖(f(λ0)− p(λ0) + p(λ0)− φ(p) + φ(p)− φ(f))x‖H
≤ 2 · ‖f − p‖u + ‖q‖u · ‖(λ0 − T )x‖H < ε.
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Because ε > 0 was arbitrary, λ ∈ σapp(φ(f)). We may conclude σ [φ(f)] = f [σ(T )].

Definition 3.10. Let X be a locally compact Hausdorff space. M(X) denotes the normed vector

space of complex Radon measures on X. The norm is given by

‖ · ‖M(X) : M(X) → R
≥0

μ 
→ |μ|(X),

where |μ| is the total variation of μ.

We will now use the continuous functional calculus to construct a family of complex Radon

measures with certain properties. These measures will reappear throughout the thesis. For the

construction, we require the following theorem, which may be found in [3] (Theorem 7.17).

Theorem 3.11 (Riesz Representation Theorem). Let X be a locally compact Hausdorff space. For

μ ∈ M(X) and f ∈ C0(X), define Iμ(f) =
∫
f dμ. The map μ → Iμ is an isometric isomorphism

from M(X) to C0(X)∗.

Theorem 3.12. Let T ∈ L(H) be self-adjoint. For every pair of vectors x, y ∈ H, there exists a

unique, complex measure μx,y on
(
σ(T ),Bσ(T )

)
such that

〈φ(f)x, y〉 =
∫
σ(T )

f dμx,y

for all f ∈ C(σ(T )). The family {μx,y}x,y∈H has the following properties:

(a) ‖μx,y‖M(σ(T )) ≤ ‖x‖H · ‖y‖H.

(b) Each μx,x is a finite positive measure, with μx,x(σ(T )) = ‖x‖2H.

(c) (x, y) 
→ μx,y is a sesquilinear map from H×H to M(σ(T )).

(d) μx,y = μy,x.

(e) For any f ∈ C(σ(T )), dμφ(f)x,y = f dμx,y = dμx,φ(f)y.

Proof. Fix x, y ∈ H, and define the map

lx,y : C0(σ(T )) → C

f 
→ 〈φ(f)x, y〉

where φ gives the continuous functional calculus. lx,y is linear because of the linearity of φ and the

inner product. Using the fact that φ is an isometry,

|lx,y(f)| = |〈φ(f)x, y〉| ≤ ‖φ(f)‖L(H) · ‖x‖H · ‖y‖H = ‖f‖u · ‖x‖H · ‖y‖H

for all f ∈ C0(σ(T )). Therefore, lx,y ∈ C0(σ(T ))∗.
σ(T ) is a compact subset of R. This implies σ(T ) is a second countable, compact Hausdorff space.

Therefore, every complex measure on
(
σ(T ),Bσ(T )

)
is Radon, and C0(σ(T )) = C(σ(T )). With this

in mind, the Riesz Representation Theorem implies the unique existence of a complex measure μx,y

on
(
σ(T ),Bσ(T )

)
such that

〈φ(f)x, y〉 =
∫
σ(T )

f dμx,y
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for all f ∈ C(σ(T )). By repeating this process for every pair of vectors in H, we create the family

{μx,y}x,y∈H.

The Riesz Representation Theorem also implies

‖μx,y‖M(σ(T )) = ‖lx,y‖C0(σ(T ))∗ ≤ ‖x‖H · ‖y‖H

for all x, y ∈ H. If x = y, then

|μx,x|(σ(T )) ≤ ‖x‖2H = 〈φ(1)x, x〉 =
∫
σ(T )

1 dμx,x = μx,x(σ(T )) ≤ |μx,x|(σ(T ))

because φ(1) = I. This implies μx,x(σ(T )) = ‖x‖2H = |μx,x|(σ(T )). Since μ and its total variation

agree on σ(T ), μx,x is a finite positive measure.

To see that (x, y) 
→ μx,y is a sesquilinear map from H×H to M(σ(T )), consider any α ∈ C and

x1, x2 ∈ H. For all f ∈ C(σ(T )),∫
σ(T )

f dμαx1+x2,y

= 〈φ(f)(αx1 + x2), y〉 = α〈φ(f)x1, y〉+ 〈φ(f)x2, y〉 = α

∫
σ(T )

f dμx1,y +

∫
σ(T )

f dμx2,y

=

∫
σ(T )

f d(αμx1,y + μx2,y).

By uniqueness, μαx1+x2,y = αμx1,y + μx2,y. Similarly, it can be shown μx,αy1+y2
= αμx,y1

+ μx,y2

for y1, y2 ∈ H.

Because φ preserves the star operation,∫
σ(T )

f dμx,y = 〈φ(f)x, y〉 = 〈φ(f)y, x〉 =
∫
σ(T )

f dμy,x =

∫
σ(T )

f dμy,x

for all f ∈ C(σ(T )). By uniqueness, μx,y = μy,x.

To demonstrate the final property, temporarily fix f ∈ C(σ(T )). For all g ∈ C(σ(T )),∫
σ(T )

g dμφ(f)x,y = 〈φ(g) ◦ φ(f)x, y〉 = 〈φ(g · f)x, y〉 =
∫
σ(T )

g · f dμx,y

because φ preserves the multiplication operation. By uniqueness, dμφ(f)x,y = f dμx,y. From this,

and the conjugate symmetry of the measures, it follows that

dμx,φ(f)y = dμφ(f)y,x = f dμy,x = f dμx,y

which completes the proof.

These measures will soon be used to extend the domain of the continuous functional calculus to

bounded, Borel measurable functions. This extension will be referred to as the functional calculus.

Definition 3.13. If M is a metric space, then Bb(M) will denote the *-algebra of bounded, complex-

valued, Borel functions on M . Cb(M) will denote the *-algebra of bounded, complex-valued, contin-

uous functions on M .
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Before constructing the functional calculus, we prove Bb(M) is the smallest vector space con-

taining Cb(M) and closed under pointwise limits of bounded sequences of functions. This fact will

be used to show that most of the properties of the continuous functional calculus transfer to the

functional calculus. We require the use of the Monotone Class Theorem, which may be found, for

example, in [1] (Theorem 1.9.3).

Theorem 3.14 (Monotone Class Theorem). (i) If A is an algebra of subsets of X, then the σ-

algebra generated by A is the same as the monotone class generated by A. (ii) If E is a collection

of subsets of X that is closed with respect to finite intersections, then the σ-algebra generated by E
is the same as the σ-additive class generated by E.

Theorem 3.15. If M is a metric space, then Bb(M) is the smallest vector space containing Cb(M)

and closed with respect to pointwise limits of bounded sequences of functions.

Proof. It is clear that Bb(M) is a vector space containing Cb(M). The pointwise limit of a bounded

sequence of functions will also be bounded, so Bb(M) is closed with respect to such limits. Let V be

any subspace of Bb(M) that also has these properties. If we can show Bb(M) ⊂ V, the theorem will

follow.

Let S be the collection of all B ∈ BM such that χB ∈ V . We claim S is a σ-additive class.

Towards proving this claim, first note that M ∈ S, because χM ∈ Cb(M) ⊂ V. Now, consider

A,B ∈ S such that B ⊂ A. A − B is also a Borel set, and χA−B = χA − χB ∈ V, so A − B ∈ S.
Finally, consider a pairwise-disjoint and countable collection {An} ⊂ S. {χ⋃j

n=1 An
}j ⊂ V because

each χ⋃j
n=1 An

is equivalent to the sum
∑j

n=1 χAn ∈ V. Also, all characteristic functions are bounded

by 1, and χ⋃j
n=1 An

→ χ⋃
An

pointwise. Therefore, χ⋃
An

∈ V and
⋃
An ∈ S. As claimed, S is a

σ-additive class.

Letting E be the collection of closed subsets of M , we will show E ⊂ S. Consider an arbitrary

C ∈ E . We define a monotonically decreasing sequence of functions {fn} by fn = gn ◦ d(·, C), where

gn(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if y = 0

1− n · y if 0 < y < n−1

0 if y ≥ n−1

is a complex-valued function on [0,∞), and d(·, C) is the function on M giving the distance from C.

Each fn is continuous because it is a composition of continuous functions. It is also clear that each

fn is bounded by 1, and that fn → χC1
pointwise, where C1 = {x ∈ M | d(x,C) = 0}. However,

C1 = C because C is closed. Therefore, {fn} ⊂ Cb(M) and χC ∈ V. As desired, E ⊂ S.
E is closed with respect to finite intersections, so the σ-additive class it generates is the same as

BM , by part (ii) of the Monotone Class Theorem. S is a σ-additive class containing E and contained

in BM , so S = BM . In other words, V contains all characteristic functions. It follows that V also

contains all simple functions, because V is a vector space. This implies Bb(M) ⊂ V , because every

bounded Borel function is the pointwise limit of a bounded sequence of simple functions, and V is

closed with respect to such limits.
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In the case where M is a compact subset of Rn, we have the following corollary. Its proof is

immediate from Theorem (3.15) and Corollary (3.6).

Corollary 3.16. Let M be a compact subset of Rn. Bb(M) is the smallest vector space containing all

complex polynomials of n variables, and closed with respect to pointwise limits of bounded sequences

of functions.

The map Φ in the following theorem will be referred to as the functional calculus for T .

Theorem 3.17 (Spectral Theorem). Let T ∈ L(H) be self-adjoint. There is a unique map Φ :

Bb(σ(T )) → L(H) such that:

(a) If Id ∈ Bb(σ(T )) is the identity function, i.e. Id(z) = z, then Φ(Id) = T .

(b) Φ is a unital algebraic homomorphism.

(c) If {fn} ⊂ Bb(σ(T )) is a bounded sequence which converges to f pointwise, then {Φ(fn)} converges

to Φ(f) strongly.

In addition, Φ has the following properties:

(d) Φ is continuous, with operator norm ‖Φ‖ = 1.

(e) Φ is a ∗-homomorphism.

(f) If f ∈ Bb(σ(T )) is such that f ≥ 0, then Φ(f) ≥ 0.

(g) If S ∈ L(H) commutes with T , then Φ(f)S = S Φ(f) for all f ∈ Bb(σ(T )).

(h) If Tx = λx for some x ∈ H and λ ∈ C, then Φ(f)x = f(λ)x for all f ∈ Bb(σ(T )).

Proof. Letting {μx,y}x,y∈H be the family of complex measures from Theorem (3.12), consider the

map

ψf : H×H → C

(x, y) 
→
∫
σ(T )

f dμx,y

for any fixed f ∈ Bb(σ(T )). ψf is sesquilinear because (x, y) 
→ μx,y is sesquilinear. Furthermore,

|ψf | ≤ ‖f‖u · ‖μx,y‖M(σ(T )) ≤ ‖f‖u · ‖x‖H · ‖y‖H

for all x, y ∈ H, which shows ‖f‖u is a bound for ψf . Therefore, ψf is a bounded sesquilinear form

on H. By Theorem (2.8), there exists a unique element Φ(f) ∈ L(H) such that ‖Φ(f)‖L(H) ≤ ‖f‖u
and

〈Φ(f)x, y〉 =
∫
σ(T )

f dμx,y = ψf (x, y)

for all x, y ∈ H. This allows us to unambiguously define the map Φ : Bb(σ(T )) → L(H).

We claim Φ is the desired map. Recalling that 〈φ(f)x, y〉 = ψf (x, y) for all f ∈ C(σ(T )) ⊂
Bb(σ(T )) and x, y ∈ H, we see Φ is an extension of the continuous functional calculus. In particular,

because φ maps Id(z) = z to T and preserves the multiplicative identity, Φ does also.
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We will now show that Φ is an algebraic homomorphism. For any α ∈ C and f, g ∈ Bb(σ(T )),

we have

〈Φ(αf + g)x, y〉 =
∫
σ(T )

αf + g dμx,y = α

∫
σ(T )

f dμx,y +

∫
σ(T )

g dμx,y

= α〈Φ(f)x, y〉+ 〈Φ(g)x, y〉 = 〈[αΦ(f) + Φ(g)]x, y〉

for all x, y ∈ H, which implies Φ is linear. Temporarily fix g ∈ Bb(σ(T )). Using part (e) of Theorem

(3.12), and the fact that φ preserves the star operation, we have∫
σ(T )

f dμΦ(g)x,y = 〈φ(f) Φ(g)x, y〉 = 〈Φ(g)x, φ(f)y〉 =
∫
σ(T )

g dμx,Φ(f)y =

∫
σ(T )

f · g dμx,y

for all f ∈ C(σ(T )). The uniqueness of the measures {μx,y}x,y∈H then implies dμΦ(g)x,y = g dμx,y.

Therefore, for any f, g ∈ Bb(σ(T )),

〈Φ(f · g)x, y〉 =
∫
σ(T )

f · g dμx,y =

∫
σ(T )

f dμΦ(g)x,y = 〈Φ(f) ◦ Φ(g)x, y〉

for all x, y ∈ H, implying Φ(f · g) = Φ(f) Φ(g).

To see that Φ preserves the star operation, note that

〈Φ(f)∗x, y〉 = 〈Φ(f)y, x〉 =
∫
σ(T )

f dμy,x =

∫
σ(T )

f dμx,y = 〈Φ(f)x, y〉

for all f ∈ Bb(σ(T )) and x, y ∈ H. The fact that Φ is a *-homomorphism is not part of the uniqueness

requirement. However, we use this fact in showing that Φ satisfies property (c).

Suppose {fn} ⊂ Bb(σ(T )) is a sequence of functions such that fn → f pointwise and {‖fn‖u} is

bounded. In this case, f ∈ Bb(σ(T )). For any x ∈ H,

‖[Φ(fn)− Φ(f)]x‖2H = ‖Φ(fn − f)‖2H

= 〈Φ(fn − f)∗Φ(fn − f)x, x〉 = 〈Φ(|fn − f |2)x, x〉 =
∫
σ(T )

|fn − f |2 dμx,x

because Φ preserves the star and multiplication operations. Noting that {fn − f} is dominated by

2M · χσ(T ) ∈ L2(σ(T ), μx,x), where M = sup ‖fn‖u, the dominated convergence theorem for Lp

spaces implies

lim
n→∞ ‖[Φ(fn)− Φ(f)]x‖H = 0.

This is true for every x ∈ H, so {Φ(fn)} converges to Φ(f) with respect to the strong operator

topology.

We are ready to prove the uniqueness of Φ. Consider another map Ψ : Bb(σ(T )) → L(H) that

satisfies properties (a), (b), and (c) of the theorem, and let V be the collection of all f ∈ Bb(σ(T ))

such that Ψ(f) = Φ(f). As in the proof of the continuous functional calculus, properties (a) and

(b) imply that Ψ and Φ agree on all polynomials. It is also clear that V is a vector space, because of

the linearity of Ψ and Φ. If {fn} ⊂ V is a bounded sequence which converges to f pointwise, then

we have

Ψ(f) = lim
n→∞Ψ(fn) = lim

n→∞Φ(fn) = Φ(f),
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using property (c). Therefore, by Corollary (3.16), V = Bb(σ(T )), i.e. Ψ ≡ Φ.

We will now show that Φ satisfies the remaining properties. Recalling that ‖Φ(f)‖L(H) ≤ ‖f‖u
for all f ∈ Bb(σ(T )), it is then clear Φ is continuous. Because Φ preserves the multiplicative identity

with

‖Φ(1)‖L(H) = ‖I‖L(H) = 1 = ‖1‖u,

Φ : Bb(σ(T )) → L(H) has ‖Φ‖ = 1 as its bound.

Suppose f ∈ Bb(σ(T )) is such that f ≥ 0. Using the same method as in the proof of the

continuous functional calculus, we may show Φ(f) ≥ 0. However, this may also be proven directly

from the construction of Φ. Indeed,

〈Φ(f)x, x〉 =
∫
σ(T )

f dμx,x ≥ 0

for all x ∈ H, because each μx,x is positive.

Consider any S ∈ L(H) which commutes with T , and let V be the collection of all f ∈ Bb(σ(T ))

such that Φ(f) commutes with S. By Theorem (3.9), V contains C(σ(T )). Also, V is a vector space,

because Φ and composition are linear. If {fn} ⊂ V is a bounded sequence which converges to f

pointwise, then we have

Φ(f) ◦ Sx = lim
n→∞Φ(fn) ◦ Sx = lim

n→∞S ◦ Φ(fn)x = S ◦ Φ(f)x

using the strong convergence of {Φ(fn)}, and the continuity of S. Therefore, by Theorem (3.15),

V = Bb(σ(T )), i.e. Φ satisfies property (g).

Suppose that Tx = λx for some x ∈ H and λ ∈ σ(T ), and let V be the collection of all

f ∈ Bb(σ(T )) such that Φ(f)x = f(λ)x. By Theorem (3.9), V contains C(σ(T )). The linearity of Φ

and the evaluation map at x, and the distributivity of scalar multiplication, imply that V is a vector

space. If {fn} ⊂ V is a bounded sequence which converges to f pointwise, then we have

Φ(f)x = lim
n→∞Φ(fn)x = lim

n→∞ fn(λ)x = f(λ)x

using the strong convergence of {Φ(fn)}, and the continuity of the line path lx(α) = α ·x. Therefore,
by Theorem (3.15), V = Bb(σ(T )), i.e. Φ satisfies property (h).

Corollary 3.18. If T ∈ L(H) is self-adjoint, then

σ(T ) =
⋃

x,y∈H
supp μx,y

Proof. Let A be the closure of
⋃

x,y∈H supp μx,y, and assume A is a strict subset of σ(T ). Ac is

outside of the support of each μx,y, so

〈Φ (χAc)x, y〉 =
∫
σ(T )

χAc dμx,y = μx,y (A
c) = 0
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for all x, y ∈ H. This implies Φ (χAc) = 0. Recalling that Φ is an algebraic homomorphism extending

the continuous functional calculus, we then have

φ(f) = Φ(f) = Φ (f · χAc) = Φ(f) ◦ Φ (χAc) = 0

for any f ∈ C(σ(T )) whose support is contained in Ac. If there exists such an f that is also not

identically nonzero, we will have arrived at a contradiction, because φ is injective as a linear isometry.

A is closed, so there is some r > 0 and a ∈ σ(T ) such that the closure of the ball Br(a) is

contained in Ac. Using this r and a, we define f := g ◦ d(·, a), where

g(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if z = 0

1− z
r if 0 < z < r

0 if z ≥ r

is a complex-valued function on [0,∞), and d(·, a) is the function on σ(T ) giving the distance from a.

f is continuous on σ(T ), because it is the composition of continuous functions. It is also clear that f

is not identically zero, with the closure of Br(a) as its support. Having constructed a function with

the desired properties, the aforementioned contradiction follows. We may conclude A = σ(T ).

3.2 The Associated Multiplication Operator

Definition 3.19. Let H1,H2 be Hilbert spaces. A surjective linear map U : H1 → H2 such that

〈Ux,Uy〉H2
= 〈x, y〉H1

for all x, y ∈ H1 is called a unitary map.

Lemma 3.20. Let H1,H2 be Hilbert spaces. U : H1 → H2 is a unitary map if and only if it is a

surjective linear isometry.

Proof. If U is unitary, then, in particular, 〈Ux,Ux〉H2 = 〈x, x〉H1 for all x ∈ H1. Therefore, the

forward implication is clear. If U is a linear isometry, then

〈x, y〉H1
=

1

4

(
‖x+ y‖2H1

− ‖x− y‖2H1
+ i · ‖x+ iy‖2H1

− i · ‖x− iy‖2H1

)
=

1

4

(
‖Ux+ Uy‖2H2

− ‖Ux− Uy‖2H2
+ i · ‖Ux+ i · Uy‖2H2

− i · ‖Ux− i · Uy‖2H2

)
= 〈Ux,Uy〉H2

.

The reverse implication follows.

Definition 3.21. x ∈ H is a cyclic vector for T ∈ L(H) if {p(T )x | p is a complex polynomial}
is a dense subset of H.

A self-adjoint bounded operator T with a cyclic vector is unitarily equivalent to a multiplication

operator. In proving this statement, we use the following theorem, which can be found, for example,

in [3] (Proposition 7.9).
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Theorem 3.22. If μ is a positive Radon measure on the locally compact Hausdorff space X, then

Cc(X) is dense in Lp(X,μ), for 1 ≤ p < ∞.

Lemma 3.23. Let T ∈ L(H) be self-adjoint with cyclic vector x ∈ H. There is a positive Radon

measure μ on σ(T ) and a unitary map U : H → L2(σ(T ), μ) such that

UTU−1 : L2(σ(T ), μ) → L2(σ(T ), μ)

f(z) 
→ z · f(z)

Proof. Given the cyclic vector x ∈ H, let μ = μx,x. μ is a positive Radon measure on the compact

Hausdorff space σ(T ) ⊂ R. By Theorem (3.22), C(σ(T )) / (f = g a.e.) is a dense subspace of

L2(σ(T ), μ). We wish to define a suitable map on C(σ(T )) / (f = g a.e.) that we may then extend

to a unitary transformation between L2(σ(T ), μ) and H.

Towards this end, define

Û0 : C(σ(T )) / (f = g a.e.) → H

f 
→ Φ(f)x,

where Φ gives the functional calculus. It is not immediately clear that this map is well-defined.

Using the algebraic properties of Φ, and its relationship with μx,x, we have

‖Φ(f)x‖2H = 〈Φ(|f |2)x, x〉 =
∫
σ(T )

|f |2 dμ = ‖f‖2L2(σ(T ),μ)

for all f ∈ C(σ(T )). This implies

‖Φ(f)x− Φ(g)x‖H = ‖Φ(f − g)x‖H = ‖f − g‖L2(σ(T ),μ) = 0

when f and g are a.e. equal elements of C(σ(T )), confirming that Û0 is well-defined.

Û0 is linear because both Φ and the evaluation map at x ∈ H are linear. ‖Û0(f)‖H = ‖f‖L2(σ(T ),μ)

then shows that Û0 is a linear isometry. Furthermore, the range of Û0 will be dense in H, because x is

cyclic for T and C(σ(T )) contains all complex polynomials. By the Bounded Linear Transformation

Theorem, Û0 has a unique continuous extension to a linear map U0 from L2(σ(T ), μ) to H. By

Theorem (3.8), U0 is a surjective linear isometry. Noting that L2(σ(T ), μ) and H are Hilbert spaces,

it follows that U0 is a unitary map.

We need to show U−1
0 TU0f = z · f(z) for all f ∈ L2(σ(T ), μ). Towards this, define

V : L2(σ(T ), μ) → L2(σ(T ), μ)

f(z) → z · f(z)

It is clear that V is a linear map, provided that it is well-defined. Because supz∈σ(T ) |z|2 is finite,

‖z · f(z)‖2L2(σ(T ),μ) =

∫
σ(T )

|z · f(z)|2 dμ ≤
(

sup
z∈σ(T )

|z|2
)

· ‖f(z)‖2L2(σ(T ),μ)
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implies z · f(z) ∈ L2(σ(T ), μ) when f ∈ L2(σ(T ), μ). Therefore, V is a well-defined, bounded linear

operator on L2(σ(T ), μ).

Recalling that U0 extends Û0, and Φ(z) = T , we have

U−1
0 T U0f = U−1

0 T Φ(f)x = U−1
0 Φ(z · f(z))x = U−1

0 U0(z · f(z)) = z · f(z) = V f

for all f ∈ C(σ(T )) / (f = g a.e). U−1
0 TU0 and V are bounded linear operators agreeing on a dense

subset of L2(σ(T ), μ), so continuity implies U−1
0 TU0 ≡ V .

Letting U = U−1
0 , we obtain the desired statement of the theorem.

Lemma 3.24. Let T ∈ L(H) be self-adjoint. There is a collection {Hi}i∈I of pairwise orthogonal,

closed subspaces of H such that:

(a) For each i ∈ I, T |Hi
∈ L(Hi).

(b) For each i ∈ I, there exists xi ∈ Hi such that xi is a cyclic vector for T |Hi
.

(c) H =
⊕

i∈I Hi.

Proof. If H is trivial, then the results are immediate. Assuming H is non-trivial, we will use Zorn’s

Lemma to construct the collection {Hi}i∈I . However, before giving the partial order, we define a

family of closed subspaces of H that are not necessarily pairwise orthogonal.

For every nonzero x ∈ H, let

Px = {Φ(p)x | p is a complex polynomial} ⊂ H,

where Φ gives the functional calculus. Each Px is a subspace ofH, because both Φ and the evaluation

map at x are linear. Furthermore, T is invariant on each Px, because

T ◦ Φ(p)x = Φ(z · p(z))x ∈ Px

for every polynomial p. It follows that each Px will be a closed subspace of H and invariant under

T , by the continuity of vector addition, scalar multiplication, and T ∈ L(H). We may then view

each Px as a Hilbert space with the inherited inner product, and we will have T |Px
∈ L(Px). It is

obvious that x ∈ Px will be a cyclic vector for T |Px
.

We construct our partial order by first defining

S = {A ⊂ H\{0} | Px ⊥ Py ∀ x, y ∈ A s.t. x �= y}.

It is clear (S,⊂) is a partial ordering, where ⊂ is inclusion. Assuming H is non-trivial, i.e. H\{0}
is non-empty, then S is non-empty. Let C be an arbitrary, non-empty chain in S. If we can show⋃

B∈C B ∈ S, it will immediately follow that
⋃

B∈C B is an upper bound for C. First, we have⋃
B∈C B ⊂ H\{0}, because 0 /∈ B for all B ∈ C. Now, consider distinct x, y ∈

⋃
B∈C B. There exists

some Bx,y ∈ C such that x, y ∈ Bx,y, because C is a chain. Because Bx,y ∈ S, we have Px ⊥ Py. It

follows that
⋃

B∈C B ∈ S. Therefore, every non-empty chain in S will have an upper bound. Zorn’s

Lemma implies S contains a maximal element M .
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We claim {Px}x∈M is our desired collection {Hi}i∈I . By construction, the elements of {Px}x∈M

are pairwise orthogonal, closed subspaces of H for which properties (a) and (b) of the theorem hold.

We may then take the internal direct sum K :=
⊕

x∈M Px ⊂ H. Before proving property (c) of the

theorem, we note that T is invariant on K, because T is continuous and invariant on each Px. This

then implies that T is invariant on K⊥, because T is self-adjoint.

Assume that K is a strict subset of H. Because K is closed, an equivalent assumption is that K is

not dense in H, i.e. K⊥ �= {0}. Let x0 ∈ K⊥ be non-zero. Px0
⊂ K⊥ because T is invariant on K⊥,

and K⊥ is a closed subspace. Therefore, M
⋃
{x0} is an element of S. The maximality of M implies

x0 ∈ M , but this is a contradiction because K ∩ K⊥ = {0}. We must have
⊕

x∈M Px = H.

Theorem 3.25. Let {Hi,Ki}i∈I be a collection of Hilbert spaces. If {Ui : Hi → Ki}i∈I is a family

of unitary maps, then the map

U :
⊕
i∈I

Hi →
⊕
i∈I

Ki∑
i∈I

xi 
→
∑
i∈I

Ui(xi)

is well-defined and unitary.

Proof. Let H :=
⊕

i∈I Hi and K =
⊕

i∈I Ki. Each x ∈ H has a unique representation as a formal

sum
∑

i∈I xi. From the definition of the norm on the direct sum of Hilbert spaces, we have

‖U(x)‖2K =
∑
i∈I

‖Ui(xi)‖2Ki
=
∑
i∈I

‖xi‖2Hi
= ‖x‖2H < ∞,

because each Ui is unitary. Therefore, U is well-defined and norm-preserving. The linearity of the

Ui implies that U is linear. Noting that each Ui is surjective, it follows that U is a surjective linear

isometry, and hence unitary.

Theorem 3.26 (Spectral Theorem). Let T ∈ L(H) be self-adjoint. There is a collection {μi}i∈I of

finite Radon measures on R, and a unitary map U : H →
⊕

i∈I L
2(R, μi) such that

UTU−1 :
⊕
i∈I

L2(R, μi) →
⊕
i∈I

L2(R, μi)∑
i∈I

fi(z) 
→
∑
i∈I

z · fi(z).

Proof. Let
⊕

i∈I Hi be the direct sum decomposition for H that is guaranteed by Lemma (3.24).

For each i ∈ I, we have T |Hi
∈ L(Hi), and there exists a cyclic vector xi ∈ Hi for T |Hi

. Because T

is self-adjoint, T |Hi will be self-adjoint with respect to the inherited inner product. Therefore, we

may apply Lemma (3.23) to each T |Hi
. Let {μi}i∈I and {Ui}i∈I be the resulting collection of finite

Radon measures and unitary mappings.

The map

U : H =
⊕
i∈I

Hi →
⊕
i∈I

L2(σ(T |Hi
), μi)

y =
∑
i∈I

yi 
→
∑
i∈I

Ui(yi)
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is well-defined and unitary, by Theorem (3.25). For any
∑

i∈I fi ∈
⊕

i∈I L
2(σ(T |Hi

), μi), we have

UTU−1

(∑
i∈I

fi

)
= UT

(∑
i∈I

U−1
i fi

)
= U

(∑
i∈I

TU−1
i fi

)
=
∑
i∈I

UiTU
−1
i fi =

∑
i∈I

z · fi(z)

by the definition of U , the continuity of T , and Lemma (3.23).

For each i ∈ I, we may consider μi as a finite Radon measure on (R,BR) with its support

contained in σ(T |Hi
), because σ(T |Hi

) is a Borel subset of R. With this identification,⊕
i∈I

L2(σ(T |Hi
), μi) =

⊕
i∈I

L2(R, μi).

It is finally clear that U is the desired map.

Theorem 3.27. For {(Xn,Σn, μn)}∞n=1, a countable family of positive measure spaces such that∑
n μn(Xn) is finite, define X :=

⊔
n Xn, Σ := {

⊔
n An | An ∈ Σn}, and

μ : Σ → R
≥0⊔

n

An 
→
∑
n

μn(An),

where
⊔

denotes the disjoint union. (X,Σ, μ) is a finite measure space, and

V :
⊕
n

L2(Xn, μn) → L2(X,μ)∑
n

fn 
→ f such that f |Xn
≡ fn

is unitary.

Proof. It is easily seen that Σ is a σ-algebra for the set X. Because {μn} is a family of positive

measures such that
∑

n μn(Xn) < ∞, μ is well-defined, and is such that μ(∅) = 0. μ will also be

countably additive, because any partitioning of the terms of a convergent series of positive numbers

will converge to the same sum. Therefore, (X,Σ, μ) is a finite measure space.

f is a complex valued function on X if and only if there exists a unique family of functions

{fn : Xn → C} such that f |Xn
≡ fn for each n. It is also clear that f is measurable with respect

to Σ if and only if each f |Xn is measurable with respect to Σn. In the case f is measurable, and

considering each f |Xn
as a function on X that vanishes outside of Xn ⊂ X, we have∫

X

|f |2 dμ =

∫
X

∑
n

|f |Xn
|2 dμ = lim

N→∞

∫
X

N∑
n=1

|f |Xn
|2 dμ

= lim
N→∞

N∑
n=1

∫
X

|f |Xn |2 dμ =
∑
n

∫
Xn

|f |Xn |2 dμ

using the Monotone Convergence Theorem. With these comments in mind, it follows that V is a

surjective linear isometry, and hence unitary.

The following is a corollary to the multiplication operator version of the spectral theorem. In

this corollary, the unitary equivalence of T to a multiplication operator is clear.
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Corollary 3.28. Let H be a separable Hilbert space, and let T ∈ L(H) be self-adjoint. There exists

a finite measure space (X,Σ, μ), a unitary map U : H → L2(X,μ), and a function F : X → R such

that

UTU−1 : L2(X,μ) → L2(X,μ)

f 
→ F · f.

Proof. Let U0 : H →
⊕

i∈I L
2(R, μi) be the map from Theorem (3.26). H has a countable basis,

because it is separable. Noting that U0 is unitary, we may then assume I is a countable index. From

the construction of each μi, we have

μi(R) = μxi,xi
(σ(T |Hi

)) = ‖xi‖2H,

where Hi is a closed subspace of H on which T is invariant, and xi ∈ Hi is cyclic for T |Hi
. For

any nonzero α ∈ C, α · xi will also be cyclic for T |Hi . Therefore, we may assume that the family of

measures {μi} was constructed so that
∑

i∈I μi(R) is finite.

Let
(⊔

i∈I R,Σ, μ
)
be the measure space, and V :

⊕
i∈I L

2(R, μ) → L2
(⊔

i∈I R, μ
)
the unitary

map, from Theorem (3.27). As the composition of unitary maps, U := V ◦ U0 is unitary. Also, the

properties of U and the definition of V imply that UTU−1(f) = F · f for all f ∈ L2
(⊔

i∈I R, μ
)
,

where F (z, i) := z is a real-valued function on
⊔

i∈I R.

3.3 Projection-Valued Measures

Definition 3.29. A projection-valued measure on a measurable space (X,Σ) is a function

P : Σ → L(H) such that:

(i) For each E ∈ Σ, P (E) is an orthogonal projection on H.

(ii) P (∅) = 0 and P (X) = I.

(iii) If {En}n∈N ⊂ Σ is a sequence of pairwise-disjoint sets, then
∑N

n=1 P (En) → P (
⋃∞

n=1 En)

strongly.

Lemma 3.30. If P is a PVM on the measurable space (X,Σ), then

P (E1 ∩ E2) = P (E1)P (E2)

for all E1, E2 ∈ Σ.

Proof. First, consider disjoint sets A,B ∈ Σ. P is a PVM, so P (A ∪B) , P (A), and P (B) are

orthogonal projections such that P (A ∪B) = P (A) + P (B). Therefore,

P (A)P (B) = P (B)P (A) = 0

using Lemma (2.18), and the fact that (P (A)P (B))∗ = P (B)P (A).

Now, consider arbitrary sets E1, E2 ∈ Σ. The behaviour of P on disjoint sets implies

P (E1)P (E2) = (P (E1\E2) + P (E1 ∩ E2)) (P (E2\E1) + P (E1 ∩ E2)) = P (E1 ∩ E2)

because E1\E2, E2\E1, E1 ∩ E2 ∈ Σ are pairwise disjoint.
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Theorem 3.31. Let P be a PVM on the measurable space (X,Σ). For any x, y ∈ H, the function

px,y : Σ → C

E 
→ 〈P (E)x, y〉

is a complex measure on (X,Σ). The family {px,y}x,y∈H has the following properties:

(a) Each px,x is a finite positive measure, with px,x(X) = ‖x‖2H.

(b) (x, y) 
→ px,y is a sesquilinear map from H×H to the space of complex measures on (X,Σ).

(c) px,y = py,x.

(d) For any E ∈ Σ, dpP (E)x,y = χE dpx,y = dpx,P (E)y.

Proof. Fix x, y ∈ H. px,y, as given in the theorem, is clearly a well-defined, complex-valued function

on the σ-algebra Σ. P (∅) = 0 ∈ L(H) because P is a PVM, so

px,y(∅) = 〈P (∅)x, y〉 = 〈0, y〉 = 0

All that remains in proving px,y is a complex measure is showing that it is countably additive.

Let {En}n∈N ⊂ Σ be a sequence of pairwise-disjoint sets. Because P is a PVM, {
∑N

n=1 P (En)}
converges to P (E) strongly, where E =

⋃∞
n=1 En. In particular, {

∑N
n=1 (P (En)x)} converges to

P (E)x in H. Noting that 〈·, y〉 is a continuous functional on H, we have

〈P (E)x, y〉 = lim
N→∞

〈
N∑

n=1

(P (En)x) , y

〉
= lim

N→∞

N∑
n=1

〈P (En)x, y〉 =
∞∑

n=1

〈P (En)x, y〉.

As desired, px,y(E) =
∑∞

n=1 px,y(En). Therefore, {px,y}x,y∈H is a family of complex measures.

We will proceed with proving the properties (a)-(d). Consider px,x. For any E ∈ Σ, we have

0 ≤ 〈P (E)x, P (E)x〉 = 〈P (E)x, x〉 = px,x(E),

because P (E) is self-adjoint and idempotent. We also have px,x(X) = ‖x‖2H, because P (X) = I.

Therefore, px,x is a finite positive measure.

It is clear that (x, y) 
→ px,y is a well-defined map from H × H to the vector space of complex

measures on (X,Σ). The range of P is contained in L(H), and the inner product is sesquilinear, so

this map will be sesquilinear. For every E ∈ Σ, we have

px,y(E) = 〈P (E)x, y〉 = 〈y, P (E)x〉 = 〈P (E)y, x〉 = py,x(E)

because each P (E) is self-adjoint. Therefore, px,y = py,x.

Finally, fix E ∈ Σ. Using Lemma (3.30), we have

pP (E)x,y(F ) = 〈P (F )P (E)x, y〉 = 〈P (E ∩ F )x, y〉 = px,y(E ∩ F ) =

∫
F

χE dpx,y,

for all F ∈ Σ. Therefore, dpP (E)x,y = χE dpx,y. Property (c) then implies

dpx,P (E)y = dpP (E)y,x = χE dpy,x = χE dpx,y,

which completes the proof.
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Theorem 3.32. Let P be a PVM on the measurable space (X,Σ). For each f ∈ Mb(X,Σ), there

exists a unique T ∈ L(H) such that

〈Tx, y〉 =
∫

f dpx,y

for all x, y ∈ H.

Proof. Fix f ∈ Mb(X,Σ), and consider the well-defined map

ψ : H×H → C

(x, y) 
→
∫

f dpx,y

Integration with respect to the sum and scaling of measures is linear, and we have already shown

that the map (x, y) 
→ px,y is sesquilinear. Therefore, ψ is sesquilinear. For all x ∈ H, we have

|ψ(x, x)| =
∣∣∣∣∫ f dpx,x

∣∣∣∣ ≤ ‖f‖u · ‖x‖2H,

recalling that px,x(X) = ‖x‖2H. Therefore, by Lemma (2.7), ψ is bounded. Because ψ is a bounded

sesquilinear form on H, there exists a unique T ∈ L(H) such that 〈Tx, y〉 = ψ(x, y) for all x, y ∈
H.

Definition 3.33. Suppose P is a PVM on the measurable space (X,Σ). For any f ∈ Mb(X,Σ),∫
f dP will denote the unique bounded operator on H, guaranteed by Theorem (3.32).

Corollary 3.34. If P is a PVM on the measurable space (X,Σ), then the map∫
· dP : Mb(X,Σ) → L(H)

f 
→
∫

f dP

is well defined. In addition:

(a)
∫
· dP is a unital, algebraic *-homomorphism.

(b)
∫
· dP is continuous, with operator norm

∥∥∫ · dP
∥∥ = 1.

(c) If {fn} ⊂ Mb(X,Σ) is a bounded sequence of functions which converges to f pointwise, then{∫
fn dP

}
converges to

∫
f dP with respect to the strong operator topology.

Proof. It is clear that
∫
· dP is well-defined, so we will proceed with proving property (a). Let

x, y ∈ H be arbitrary. To see that
∫
· dP is unital, note that

〈Ix, y〉 = 〈P (X)x, y〉 = px,y(X) =

∫
1 dpx,y

Uniqueness implies I =
∫
1 dP . Now, let f, g ∈ Mb(X,Σ), and let S =

∫
f dP and T =

∫
g dP .

For any α ∈ C, we have∫
α · f + g dpx,y = α ·

∫
f dpx,y +

∫
g dpx,y = 〈(α · S + T )x, y〉
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using the linearity of integration. Furthermore,

〈S∗y, x〉 = 〈Sx, y〉 =
∫

f dpx,y =

∫
f dpx,y =

∫
f(z) dpy,x,

because px,y = py,x . Uniqueness implies
∫
α · f + g dP = α · T + S and T ∗ =

∫
f dP , so

∫
· dP is

linear and preserves the star operation. We are left with showing
∫
· dP preserves the multiplication

operation. For all E ∈ Σ, we have

pTx,y(E) = 〈P (E) ◦ Tx, y〉 = 〈Tx, P (E)y〉 =
∫

g dpx,P (E)y =

∫
E

g dpx,y

because P (E) is self-adjoint, and dpx,P (E)y = χE dpx,y. This implies dpTx,y = g dpx,y, so

〈S(Tx), y〉 =
∫

f dpTx,y =

∫
f · g dpx,y.

Uniqueness implies S ◦ T =
∫
f · g dP , completing the proof of property (a).

Using the homomorphism properties of
∫
· dP , and recalling that px,x(X) = ‖x‖2H, we get

‖Sx‖2H = 〈S∗ ◦ Sx, x〉 =
∫

f · f dpx,x =

∫
|f |2 dpx,x ≤ ‖f‖2u · ‖x‖2H.

This implies ‖S‖L(H) ≤ ‖f‖u, so
∫
· dP is continuous, as desired. Noting that ‖I‖L(H) = 1 = ‖1‖u,

the remainder of property (b) follows.

Finally, suppose {fn} ⊂ Mb(X,Σ) is a bounded sequence of functions converging to f pointwise.

f is measurable, because each fn is measurable, and bounded, because sup ‖fn‖u < ∞. If Sn =∫
fn dP , then we have

‖(S − Sn)x‖2H = 〈(S − Sn)
∗(S − Sn)x, x〉 =

∫
(f − fn)(f − fn) dpx,x =

∫
|f − fn|2 dpx,x,

again using the homomorphism properties of
∫
· dP . Noting that {f − fn} is dominated by 2M ∈

L2(X, px,x), where M = sup ‖fn‖u, the dominated convergence theorem for Lp spaces implies that

Sn converges to S with respect to the strong operator topology.

Definition 3.35. SupposeX is a locally compact Hausdorff space, and that P is a PVM on (X,BX).

P is a Radon PVM if {px,y}x,y∈H is a family of complex Radon measures. The support of P is

supp(P ) ≡
⋃

x,y∈H
supp(px,y)

P is compact if its support is compact in X.

The above definitions differ from those given in [4]. Rather than defining the regularity and

support of a PVM P directly, we define these concepts in terms of the complex measures generated

by P . This was done so that we may avoid discussing the supremum and infimum of a family of

orthogonal projections. Even with these non-standard definitions, the support of a Radon PVM is

what one would expect.
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Lemma 3.36. If X is a locally compact Hausdorff space, and P is a Radon PVM on (X,BX), then:

(a) P (B) = 0, for any B ∈ BX contained in the complement of supp(P ).

(b) P (supp(P )) = I.

(c) supp(P ) = N c, where N is the union of all open sets B ∈ BX such that P (B) = 0.

Proof. Towards proving the first part of the lemma, consider any B ∈ BX that is contained in the

complement of supp(P ), and let x, y ∈ H be arbitrary. By the definition of supp(P ), B is contained

in the complement of supp(px,y). px,y is a complex Radon measure, so px,y(B) = 〈P (B)x, y〉 = 0.

Theorem (2.8) then implies P (B) = 0, as desired. In particular, part (a) implies P (supp(P )c) = 0.

Part (b) immediately follows.

We will prove the last part of the lemma by showing that N , as defined, is equal to the com-

plement of supp(P ). It is clear N contains supp(P )c, because supp(P )c is an open set such that

P (supp(P )c) = 0. Now, consider any open B ∈ BX such that P (B) = 0. Clearly, px,x(B) =

〈P (B)x, x〉 = 0 for all x ∈ H. This shows B is null for every element of {px,x}x∈H, a family of

positive measures. (x, y) 
→ px,y(·) is a sesquilinear map from H×H to the vector space of complex

measures on (X,BX), so we may consider the polarization identity

px,y(·) =
1

4
[px+y,x+y(·)− px−y,x−y(·) + i · px+iy,x+iy(·)− i · px−iy,x−iy(·)]

for any x, y ∈ H. B is null for the positive measures on the right-hand side of the above equality, so

px,y(A∩B) = 0 for any A ∈ BX . In other words, B is null for each px,y, and hence contained in the

complement of
⋃

x,y∈H supp(px,y). Because B is open, it is contained in supp(P )c. Therefore, N is

contained in supp(P )c, completing the proof.

If P is a Radon PVM on X, Theorem (3.32) may be proven for any measurable function f : X →
C which is bounded on the support of P , rather than its entire domain. Corollary (3.34) may also

be altered accordingly. These generalizations are important because the PVM’s we consider from

this point onwards will be Radon.

Theorem 3.37. If X is a locally compact Hausdorff space that is second countable, then every PVM

on (X,BX) is Radon. In particular, every PVM on (Rn,BRn) is Radon.

Proof. Every complex measure on a second countable, locally compact Hausdorff space is Radon (see,

for example, the comments on page 222 of [3]). The proof is then immediate from the definition of

a Radon PVM.

Lemma 3.38. If P is a compact PVM on (Rn,BRn), and Πi : R
n → R is the projection map for

the i-th coordinate, then
{∫

Πi dP
}n

i=1
is a finite collection of self-adjoint and commuting operators

in L(H).

Proof. Fix the index i ∈ {1, . . . , n}. Because supp(P ) is compact and Πi is continuous, Πi ∈ B(Rn)

is bounded on supp(P ). Therefore,
∫
Πi dP is well-defined. Using the homomorphism properties of∫

· dP , and the fact that Πi is real-valued, we have(∫
Πi dP

)∗
=

∫
Πi dP =

∫
Πi dP.
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The multiplication operation in Bb(supp(P )) is commutative, and
∫
· dP is an algebraic homomor-

phism, so
{∫

Πi dP
}n
i=1

⊂ L(H) is a family of commuting operators.

Theorem 3.39. If P and P0 are compact PVM’s on (Rn,BRn) such that∫
Πi dP =

∫
Πi dP0

for i ∈ {1, . . . , n}, then P ≡ P0.

Proof. Assume that
∫
· dP and

∫
· dP0 agree on the coordinate projection maps. Recalling that∫

· dP and
∫
· dP0 are unital algebraic homomorphisms, it follows that they agree on all complex

polynomials of n real variables. Now, let K be the union of the supports for P and P0, and consider

f ∈ C0(Rn) ⊂ Bb(K). K is compact, so Corollary (3.6) implies there is a sequence {qm} of complex

polynomials of n real variables which converges to f uniformly on K. Therefore,∫
f dP = lim

m

∫
qm dP = lim

m

∫
qm dP0 =

∫
f dP0,

using the continuity of
∫
· dP and

∫
· dP0, and the definition of K.

It follows that
∫
f dpx,y =

∫
f dp0 (x,y) for all x, y ∈ H, and all f ∈ C0(Rn). Noting that px,y

and p0 (x,y) are Radon, the Riesz Representation Theorem implies

〈P (·)x, y〉 = px,y = p0 (x,y) = 〈P0(·)x, y〉

for all x, y ∈ H. We may conclude P ≡ P0.

Theorem 3.40. Let T ∈ L(H) be self-adjoint. The function

P : BR → L(H)

B 
→ χB(T ) ≡ Φ(χB)

is a PVM on (R,BR).

Proof. Characteristic functions of Borel sets are Borel measurable and bounded, so P is well-defined,

using the functional calculus for T . We may proceed with demonstrating P is a PVM. For a fixed

B ∈ BR, consider P (B) ∈ L(H). Using the homomorphism properties of the functional calculus, we

have

P (B)∗ = χB(T )
∗ = χB(T ) = χB(T ) = P (B)

and

P (B)2 = χB(T )
2 = χ2

B(T ) = χB(T ) = P (B)

because χB is real-valued and idempotent. Therefore, P (B) ∈ L(H) is an orthogonal projection.

When restricted to σ(T ), χ∅ and χR are, respectively, the zero element and multiplicative identity

in Bb(σ(T )). Therefore, P (∅) = χ∅(T ) = 0 and P (R) = χR(T ) = I.
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Finally, suppose {Bn}n∈N ⊂ BR is a sequence of pairwise-disjoint subsets. Letting BN =
⋃N

n=1 Bn

and B =
⋃∞

n=1 Bn, it is clear {χBN
} ⊂ Bb(σ(T )) is a bounded sequence of functions converging to

χB pointwise. The convergence property of the functional calculus then implies χBN
(T ) → χB(T )

strongly in L(H). However, χBN
=
∑N

n=1 χBn because the elements of {Bn} are pairwise disjoint,

so

N∑
n=1

P (Bn) =

N∑
n=1

χBn
(T ) = χBN

(T ).

Therefore,
∑N

n=1 P (Bn) → P (B) strongly, as desired.

Corollary 3.41. Let T ∈ L(H) be self-adjoint, let {μx,y}x,y∈H be the complex Radon measures on

σ(T ) used in the construction of the functional calculus for T , and let P be the PVM on (R,BR)

constructed from T . If μx,y is considered as a measure on (R,BR), then px,y ≡ μx,y. Furthermore,

supp(P ) = σ(T ) is compact.

Proof. From the definition of P and the construction of the functional calculus for T ,

〈P (B)x, y〉 = 〈χB(T )x, y〉 =
∫

χB dμx,y = μx,y(B)

for all B ∈ BR and x, y ∈ H. Corollary (3.18) then implies supp(P ) = σ(T ).

Lemma 3.42. Let T ∈ L(H) be self-adjoint, let Φ be the functional calculus for T , and let P be the

PVM on (R,BR) constructed from T . Then Φ(f) =
∫
f dP for all f ∈ B(σ(T )), and T =

∫
z dP (z),

in particular.

Proof. If f ∈ Bb(σ(T )), then Φ(f) is a well-defined element of L(H). From the construction of the

functional calculus, and using Corollary (3.41),

〈Φ(f)x, y〉 =
∫

f dμx,y =

∫
f dpx,y

for all x, y ∈ H. Noting that supp(P ) = σ(T ), uniqueness implies Φ(f) =
∫
f dP .

Theorem 3.43 (Spectral Theorem). There is a bijection between the compact PVM’s on (R,BR)

and the self-adjoint elements of L(H).

Proof. If P represents the collection of compact PVM’s on (R,BR), and T represents the collection

of self-adjoint elements in L(H), then consider the map

F : P → T

P 
→
∫

z dP (z).

Lemma (3.38) ensures that F is well-defined, and Theorem (3.39) implies that F is injective. If P is

the PVM on (R,BR) constructed from T ∈ T , as in Theorem (3.40), then it has compact support,

by Corollary (3.41). Therefore, P ∈ P, and

F (P ) =

∫
z dP (z) = T

by Lemma (3.42). This shows that F is also surjective.



Chapter 4

Generalizing to Finite Sequences

In this chapter, we generalize the spectral theorems from Chapter 3 to finite sequences {Ti}ni=1 ⊂
L(H) of self-adjoint and commuting operators. The idea for this generalization comes from the proof

of Theorem (44.1) in [4], the projection-valued measure version of the spectral theorem for normal

bounded operators. The first section defines and proves the existence of a decomposing PVM

for {Ti}ni=1, the second section presents a generalized functional calculus, and the third section

generalizes the multiplication operator version of the spectral theorem. In the final section, we

consider the particular case where n = 2, so that we may develop the spectral theory for normal

bounded operators.

4.1 Decomposing Projection-Valued Measures

Lemma 4.1. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and commuting operators,

with {Pi}ni=1 as their respective PVM’s on (R,BR). For any collection {Bi}ni=1 ⊂ BR, {Pi(Bi)}ni=1

commute, and P1(B1) · · ·Pn(Bn) ∈ L(H) is an orthogonal projection.

Proof. Consider any indices i, j ∈ {1, . . . , n}. Because Ti commutes with Tj , the functional calculus

for Ti has the property that Pi(Bi) = χBi
(Ti) commutes with Tj . The functional calculus for Tj

then has the property that Pj(Bj) = χBj
(Tj) commutes with Pi(Bi). It follows that {Pi(Bi)}ni=1

is a family of commuting orthogonal projections, which implies P1(B1) · · ·Pn(Bn) ∈ L(H) is an

orthogonal projection.

The following theorem may be found, for example, in [3] (Theorem 1.14).

Theorem 4.2. A σ-finite premeasure on an algebra A of sets has a unique extension to a positive

measure on the σ-algebra generated by A.

Theorem 4.3. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and commuting operators,

with {Pi}ni=1 as their respective PVM’s on (R,BR). For each x ∈ H, there is a unique positive

measure νx on (Rn,BRn) such that

νx(B1 × · · · ×Bn) = 〈P1(B1) · · ·Pn(Bn)x, x〉

for every measurable rectangle B1×· · ·×Bn ∈ BRn . This family {νx}x∈H has the following properties:

(a) νx(R
n) = ‖x‖2H.

(b) να·x = |α|2 · νx for any α ∈ C.

Proof. Let A be the collection of all finite, disjoint unions of measurable rectangles in BRn . A is an

algebra of sets which generates the σ-algebra BRn . We will first create a family of premeasures on

37
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A with the desired property on measurable rectangles, and then extend them uniquely to a family

of positive measures on BRn .

For each x ∈ H, define the map

ν̂x : A −→ R
≥0

k⋃
j=1

B1,j × · · · ×Bn,j 
→
k∑

j=1

〈P1(B1,j) · · ·Pn(Bn,j)x, x〉.

It is not immediately clear that ν̂x is well-defined, for two reasons. First, the range of ν̂x may

not be R
≥0. However, each P1(B1,j) · · ·Pn(Bn,j) is idempotent and self-adjoint, as an orthogonal

projection, so

k∑
j=1

〈P1(B1,j) · · ·Pn(Bn,j)x, x〉 =
k∑

j=1

‖P1(B1,j) · · ·Pn(Bn,j)x‖2H ≥ 0.

Second, a set in A does not in general have a unique representation as a finite, disjoint union of

measurable rectangles. ν̂x may give different values for the same set, depending upon the represen-

tation.

Towards showing this is not the case, consider countable collections {B1,j1}j1∈N, . . . , {Bn,jn}jn∈N

of disjoint sets in BR. Letting Bi =
⋃∞

ji=1 Bi,ji , then

B1 × · · · ×Bn =

n⋃
i=1

∞⋃
ji=1

B1,j1 × · · · ×Bn,jn ∈ A.

We will refer to {B1,j1 × · · · × Bn,jn}j1,...,jn∈N ⊂ A as a grid for B1 × · · · × Bn. The countable

additivity of P1 implies that

P1(B1) · · ·Pn(Bn) =

∞∑
j1=1

P1(B1,j1)P2(B2) · · ·Pn(Bn)

with respect to the strong operator topology. Also, for any i ∈ {2, . . . , n}, the countable additivity

of Pi, and the continuity of P1(B1,j1) · · ·Pi−1(Bi−1,ji−1), implies that

P1(B1,j1) · · ·Pi−1(Bi−1,ji−1)Pi(Bi) · · ·Pn(Bn) =

∞∑
ji=1

P1(B1,j1) · · ·Pi(Bi,ji)Pi+1(Bi+1) · · ·Pn(Bn)

with respect to the strong operator topology. Noting that strong convergence implies weak conver-

gence, it follows that

〈P1(B1) · · ·Pn(Bn)x, x〉 =
n∑

i=1

∞∑
ji=1

〈P1(B1,j1) · · ·Pn(Bn,jn)x, x〉

which implies

ν̂x(B1 × · · · ×Bn) =

n∑
i=1

∞∑
ji=1

ν̂x(B1,j1 × · · · ×Bn,jn) < ∞.
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Any two representations for the same set in A will have a common refinement that partitions

both into grids. Reordering the terms of an absolutely convergent series of real numbers will not

change the sum, so ν̂x will give the same value for both representations. We may now conclude ν̂x

is well-defined.

We claim ν̂x is a finite premeasure on A. Using the properties of {Pi}ni=1,

ν̂x(∅) = 〈P1(∅) · · ·Pn(∅)x, x〉 = 0

and

ν̂x(R
n) = 〈P1(R) · · ·Pn(R)x, x〉 = ‖x‖2H.

To show that ν̂x is countably additive, it is enough to consider a collection {B1,j × · · · ×Bn,j}j∈N of

disjoint measurable rectangles in BRn whose union is in A, i.e.

∞⋃
j=1

B1,j × · · · ×Bn,j =

k⋃
j=1

A1,j × · · · ×An,j ∈ A.

From the same argument used to prove ν̂x respects different representations of the same set, it

follows that

ν̂x

⎛⎝ ∞⋃
j=1

B1,j × · · · ×Bn,j

⎞⎠ =
∞∑
j=1

ν̂x(B1,j × · · · ×Bn,j).

As claimed, ν̂x is a finite premeasure on A. Theorem (4.2) ensures the existence of a unique

positive measure νx on BRn which extends ν̂x. Suppose ν′x is a positive measure on BRn such that

ν′x(B1 × · · · ×Bn) = 〈P1(B1) · · ·Pn(Bn)x, x〉

for all measurable rectangles B1 × · · ·×Bn. The finite additivity of measures implies ν′x agrees with

ν̂x on A, so ν′x ≡ νx by uniqueness.

All that remains of the proof is to show the family {νx}x∈H has the additional properties specified

in the theorem. It is clear that νx(R
n) = ‖x‖2H. Given any α ∈ C,

να·x(B1 × · · · ×Bn) = 〈P1(B1) · · ·Pn(Bn)(α · x), α · x〉

= α · α〈P1(B1) · · ·Pn(Bn)x, x〉 = |α|2 · νx(B1 × · · · ×Bn).

for all measurable rectangles B1 × · · · ×Bn. Uniqueness implies να·x = |α|2 · νx.

Theorem 4.4. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and commuting operators,

with {Pi}ni=1 as their respective PVM’s on (R,BR). There is a unique PVM P on (Rn,BRn) such

that

P (B1 × · · · ×Bn) = P1(B1) · · ·Pn(Bn)

for all measurable rectangles B1 × · · · ×Bn ∈ BRn .
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Proof. Let {νx}x∈H be the family of finite positive measures on (Rn,BRn) from Theorem (4.3). With

the polarization identity in mind,

νx,y ≡ 1

4
(νx+y − νx−y + i · νx+i·y − i · νx−i·y)

creates a family {νx,y}x,y∈H of complex measures. It is easily shown νx,x = νx, using the fact that

να·x = |α|2 · νx for any α ∈ C. These complex measures will be used to construct the desired PVM.

For any B ∈ BRn , the map (x, y) 
→ νx,y(B) is a conjugate symmetric, sesquilinear form on H.

We will first verify this for the collection of measurable rectangles in BRn , which will be denoted by

R. For each B1 × · · · ×Bn ∈ R, we have

νx,y(B1 × · · · ×Bn) = 〈P1(B1) · · ·Pn(Bn)x, y〉,

using the definition of νx,y, the behaviour of the measures {νx}x∈H on B1 × · · · × Bn, and the

polarization identity. Noting that P1(B1) · · ·Pn(Bn) is self-adjoint, (x, y) 
→ νx,y(B1 × · · · × Bn) is

as claimed.

Now, let S be the collection of all B ∈ BRn such that (x, y) 
→ νx,y(B) is conjugate symmetric

and sesquilinear. We claim S is a σ-additive class. It is already clear that Rn ∈ S, because R ⊂ S.
If A,B ∈ S are such that B ⊂ A, then

νx,y(A\B) = νx,y(A)− νx,y(B)

implies (x, y) 
→ νx,y(A\B) will also have the desired properties, so A\B ∈ S. If {Bj}j∈N ⊂ S is a

disjoint collection of sets, then

νx,y

⎛⎝ ∞⋃
j=1

Bj

⎞⎠ =

∞∑
j=1

νx,y(Bj) < ∞

implies (x, y) 
→ νx,y

(⋃∞
j=1 Bj

)
will also have the desired properties, so

⋃∞
j=1 Bj ∈ S.

The intersection of two measurable rectangles is again a measurable rectangle, so R is closed

with respect to finite intersections. Noting that BRn is the σ-algebra generated by R, part (ii)

of the Monotone Class Theorem then implies BRn will also be the σ-additive class generated by

R. It follows that S = BRn , because S is a σ-additive class and R ⊂ S ⊂ BRn . This confirms

(x, y) 
→ νx,y(B) is a conjugate symmetric, sesquilinear form on H for any B ∈ BRn .

Furthermore, each map (x, y) 
→ νx,y(B) is bounded. νx,x = νx is a positive measure for each

x ∈ H, so

νx,x(B) ≤ νx(R
n) = ‖x‖2H.

The boundedness then follows from Lemma (2.7).

For each B ∈ BRn , there exists a unique P (B) ∈ L(H) such that

νx,y(B) = 〈P (B)x, y〉
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for all x, y ∈ H, because (x, y) 
→ νx,y(B) is a bounded sesquilinear form. The uniqueness of P (B)

implies that P (B1×· · ·×Bn) = P1(B1) · · ·Pn(Bn) for measurable rectangles B1×· · ·×Bn. Therefore,

the map

P : BRn → L(H)

B 
→ P (B)

has the desired decomposition on rectangles. However, it still needs to be shown that P is a PVM.

First, we will show P (B) is an orthogonal projection for every B ∈ BRn . Using the previously

demonstrated conjugate symmetry,

〈P (B)x, y〉 = νx,y(B) = νy,x(B) = 〈P (B)y, x〉 = 〈P (B)∗x, y〉

for all x, y ∈ H. The uniqueness of P (B) implies that it is self-adjoint. Therefore, if P (B) is

idempotent, it is an orthogonal projection. The idempotentcy will be demonstrated indirectly.

We claim P (A ∩B) = P (A)P (B) for all A,B ∈ BRn . For measurable rectangles A1 × · · · × An

and B1 × · · · ×Bn in R,

P ((A1 × · · · ×An) ∩ (B1 × · · · ×Bn)) = P1 (A1 ∩B1) · · ·Pn (An ∩Bn)

= P1(A1)P1(B1) · · ·Pn(An)Pn(Bn)

= P (A1 × · · · ×An)P (B1 × · · · ×Bn)

using Lemma (3.30) and Lemma (4.1). Therefore, the claim holds for pairs of measurable rectangles.

Fixing B0 ∈ R, redefine S to be the collection of all A ∈ BRn such that P (A ∩B0) = P (A)P (B0).

As before, we will show S is a σ-additive class. Clearly, Rn ∈ S because R ⊂ S. If A,B ∈ S are

such that B ⊂ A, then

νx,y ((A\B) ∩B0) = νx,y (A ∩B0)− νx,y (B ∩B0) = 〈P (A)P (B0)x, y〉 − 〈P (B)P (B0)x, y〉

= νP (B0)x,y(A)− νP (B0)x,y(B) = νP (B0)x,y(A\B) = 〈P (A\B)P (B0)x, y〉

for all x, y ∈ H. The uniqueness of P ((A\B) ∩B0) implies P ((A\B) ∩B0) = P (A\B)P (B0), so

A\B ∈ S. If {Aj}jN ⊂ S is a disjoint collection of sets, and A =
⋃∞

j=1 Aj , then

νx,y (A ∩B0) =

∞∑
j=1

νx,y (Aj ∩B0) =

∞∑
j=1

〈P (Aj)P (B0)x, y〉 =
∞∑
j=1

νP (B0)x,y(Aj)

= νP (B0)x,y(A) = 〈P (A)P (B0)x, y〉

for all x, y ∈ H. The uniqueness of P (A ∩B0) implies P (A ∩B0) = P (A)P (B0), so A ∈ S.
S is a σ-additive class containing R and contained in BRn . Using the Monotone Class Theorem

as before, S = BRn . It follows that P (A ∩B) = P (A)P (B) for all A ∈ BRn and B ∈ R. This

process can be repeated, by first fixing A0 ∈ BRn , and once more redefining S to be the collection

of all B ∈ BRn such that P (A0 ∩B) = P (A0)P (B). S is again a σ-additive class containing R,

so S = BRn . It follows that P (A ∩B) = P (A)P (B) for all A,B ∈ BRn . In particular, P (B) =

P (B ∩B) = P (B)P (B) demonstrates the idempotentcy of P (B).
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We have established that P is projection-valued. Clearly, P (∅) = P1(∅) · · ·Pn(∅) = 0 and

P (Rn) = P1(R) · · ·Pn(R) = I. Now, let {Bj}j∈N ⊂ BRn be a collection of disjoint sets. Fixing

x ∈ H, consider the sequence {P (Bj)x}j∈N ⊂ H. For indices i �= j,

〈P (Bi)x, P (Bj)x〉 = 〈P (Bj)P (Bi)x, x〉 = 〈P (Bj ∩Bi)x, x〉 = 〈P (∅)x, x〉 = 0,

so {P (B1)x}i∈N is an orthogonal sequence. If B =
⋃∞

j=1 Bj , then

‖P (B)x‖2H = 〈P (B)x, x〉 = νx,x(B) =

∞∑
j=1

νx,x(Bj) =

∞∑
j=1

〈P (Bj)x, x〉 =
∞∑
j=1

‖P (Bj)x‖2H.

The generalized Pythagorean Theorem implies
∑∞

i=1 P (Bi)x ∈ H. Therefore,

〈P (B)x, y〉 = νx,y(B) =

∞∑
j=1

νx,y(Bj) =

∞∑
j=1

〈P (Bj)x, y〉 =
〈 ∞∑

j=1

P (Bj)x, y

〉

for all y ∈ H. This implies P (B)x =
∑∞

j=1 P (Bj)x. x ∈ H was arbitrary, so P (B) =
∑∞

j=1 P (Bj)

with respect to the strong operator topology. We conclude that P is a PVM on (Rn,BRn).

Finally, suppose P0 is another PVM on (Rn,BRn) with the desired decomposition property on

measurable rectangles. For each x ∈ H, p0 (x,x) is a positive measure on BRn such that

p0 (x,x)(B1 × · · · ×Bn) = 〈P0(B1 × · · · ×Bn)x, x〉 = 〈P1(B1) · · ·Pn(Bn)x, x〉

for all B1 × · · · × Bn ∈ R. The uniqueness of νx implies p0 (x,x) ≡ νx ≡ px,x. The polarization

identities for (x, y) 
→ p0 (x,y) and (x, y) 
→ px,x then imply

〈P0(·)x, y〉 = p0 (x,y) = px,y = 〈P (·)x, y〉

for all x, y ∈ H. We conclude P0 ≡ P .

Definition 4.5. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and commuting operators.

The unique PVM on (Rn,BRn) guaranteed by Theorem (4.4) will be called the decomposing PVM

for {Ti}ni=1. If P is the decomposing PVM for {Ti}ni=1, then Pi will be assumed to be the PVM on

(R,BR) associated with Ti.

Corollary 4.6. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and commuting operators,

and let P be its decomposing PVM. P is a compact PVM whose support is contained in σ(T1) ×
· · · × σ(Tn). Furthermore, if Πi is the the function projecting the i-th coordinate of Rn onto R, then

σ(Ti) = Πi [supp(P )].

Proof. Let E = σ(T1) × · · · × σ(Tn). Recalling that supp(Pi) = σ(Ti), part (a) of Lemma (3.36)

implies Pi (σ(Ti)
c) = 0. Because Ec is the union of the disjoint rectangles

{σ(T1)× · · · × σ(Ti−1)× σ(Ti)
c × R× · · · × R | 1 ≤ i ≤ n} ⊂ BRn ,

the decomposition property of P implies P (Ec) = 0. Noting that Ec is open, part (c) of Lemma

(3.36) implies that supp(P ) is contained in E. As a closed subset of a compact set, supp(P ) is

compact.
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For some fixed index i ∈ {1, . . . , n}, let Ei = Πi [supp(P )]. It is clear Ei ⊂ σ(Ti); however, we will

assume the inclusion is strict. Ei is closed because continuous functions carry compactness forwards.

Therefore, Ec
i is an open set having a nonempty intersection with σ(Ti) = supp(Pi). Part (c) of

Lemma (3.36) implies Pi(E
c
i ) �= 0 ∈ L(H). For the measurable rectangle R×· · ·×Ec

i ×· · ·×R ∈ BRn ,

we then have

P (R× · · · × Ec
i × · · · × R) = P1(R) · · ·Pi(E

c
i ) · · ·Pn(R) = Pi(E

c
i ) �= 0 ∈ L(H),

using the decomposition property of P . This contradicts part (a) of Lemma (3.36), because R ×
· · · × Ec

i × · · · × R is disjoint from supp(P ). We may conclude Ei = σ(Ti).

We require the following lemma, which may be found in [3] (Proposition 2.34).

Lemma 4.7. Let {(Xi,Xi)}ni=1 be a collection of measurable spaces, and let f :
∏n

i=1 Xi → C be a

function that is dependent only on its i-th variable, i.e.

f :
n∏

i=1

Xi → C

(z1, . . . , zi, . . . , zn) 
→ g(zi)

for some function g : Xi → C. f is (
⊗n

i=1 Xi,BC)-measurable if and only if g is (Xi,BC)-measurable.

Lemma 4.8. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and commuting operators, let

P be its decomposing PVM, and let f ∈ B(Rn) be bounded on supp(P ). If f is dependent only on

its i-th variable, i.e.

f : Rn → C

(z1, . . . , zn) 
→ g(zi)

for some function g : R → C, then ∫
Rn

f dP =

∫
R

g dPi.

In particular,
∫
Rn Πi dP = Ti, where Πi is the i-th coordinate projection.

Proof. Suppose g ∈ BR is a simple function. If
∑M

j=1 αj · χBj
is the standard representation for g,

then we necessarily have f =
∑M

j=1 αj · χΠ−1
i [Bj ]

, where Πi : R
n → R is the projection map for the

i-th coordinate. f ∈ B(Rn) because Πi is continuous. Also,∫
Rn

f dpx,y =

M∑
j=1

αj〈P1(R) · · ·Pi(Bj) · · ·Pn(R)x, y〉 =
M∑
j=1

αj〈Pi(Bj)x, y〉 =
∫
R

g dpi (x,y)

for all x, y ∈ H. Therefore,
∫
Rn f dP =

∫
R
g dPi, by uniqueness.

Now, consider an arbitrary f with the hypothesised properties. The boundedness of f on supp(P )

implies g is bounded on σ(Ti), because σ(Ti) = Πi [supp(P )]. Also, by Lemma (4.7), g is measurable

with respect to BR, because f is measurable with respect to BRn =
⊗n

i=1 BR. Therefore, there exists
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a sequence {tm} ⊂ B(R) of simple functions which converges to g uniformly on the compact set

σ(Ti) = supp(Pi). As was done above, we may use {tm} to construct another sequence {sm} ⊂ B(Rn)

of simple functions. From its construction, {sm} will converge to f uniformly on supp(P ). Therefore,∫
Rn

f dP = lim
m

∫
Rn

sm dP = lim
m

∫
tm dPi =

∫
R

g dPi

using the continuity of the maps
∫
Rn · dP and

∫
R
· dPi on Bb(supp(P )) and Bb(supp(Pi)), respectively.

Finally, consider Πi : R
n → R. Because supp(P ) is compact, and continuous functions preserve

compactness, we have Πi ∈ Bb(supp(P )). It is clear Πi is only dependent on its i-th coordinate, so∫
Rn

Πi dP =

∫
R

z dPi(z) = Ti

by Lemma (3.42).

Theorem 4.9 (Spectral Theorem). Fix n ∈ N. There is a bijection between the compact PVM’s on

(Rn,BRn) and sequences {Ti}ni=1 ⊂ L(H) of self-adjoint and commuting operators.

Proof. Let P represent the compact PVM’s on (Rn,BRn), and let T represent the sequences {Ti}ni=1

of self-adjoint and commuting operators in L(H). Consider the map

F : P → T

P 
→
{∫

Πi dP

}n

i=1

,

where Πi is the i-th coordinate projection. Lemma (3.38) ensures that F is well-defined, and

Theorem (3.39) implies that F is injective. If P is the decomposing PVM for {Ti}ni=1 ⊂ T , then it

has compact support, by Corollary (4.6). Therefore, P ∈ P, and

F (P ) =

{∫
Rn

Πi dP

}n

i=1

= {Ti}ni=1,

by Lemma (4.8). This shows that F is also surjective.

4.2 The Functional Calculus

Theorem 4.10 (Spectral Theorem). Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and

commuting operators, and let P be its decomposing PVM. There is a unique map Φ : Bb(supp(P )) →
L(H) such that:

(a) Φ(Πi) = Ti, where Πi : R
n → R is the i-th coordinate projection.

(b) Φ is a unital algebraic homomorphism.

(c) If {fm} ⊂ Bb(supp(P )) is a bounded sequence which converges to f pointwise, then {Φ(fm)}
converges to Φ(f) strongly.

In addition, Φ has the following properties:

(d) Φ is continuous, with operator norm ‖Φ‖ = 1.

(e) Φ is a *-homomorphism.
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(f) If f ∈ Bb(supp(P )) is such that f ≥ 0, then Φ(f) ≥ 0.

(g) If S ∈ L(H) commutes with each Ti, then Φ(f)S = S Φ(f) for all f ∈ Bb(supp(P )).

(h) If for some x ∈ H there exist {λi}ni=1 ⊂ C such that Tix = λix, then Φ(f)x = f(λ1, . . . , λn)x

for all f ∈ Bb(supp(P )).

Proof. P is a PVM on (Rn,BRn), so we may define the function

Φ : Bb(supp(P )) → L(H)

f 
→
∫

f dP.

By Lemma (4.8), we have that Φ(Πi) = Ti. Φ also will inherit properties (b), (c), (d), and (e) from∫
· dP . Noting that px,x is a positive measure for every x ∈ H, property (f) may also be verified as

in Theorem (3.17).

Suppose there is some S ∈ L(H) which commutes with each Ti, and suppose there is some x ∈ H
and {λi}ni=1 such that Tix = λix. Let V be the collection of all f ∈ Bb(supp(P )) such that Φ(f)

commutes with S, and Φ(f)x = f(λ1, . . . , λn)x. First, note that Bb(supp(P )) contains all complex

polynomials of n real variables. Given any polynomial p(z1, . . . , zn) =
∑k

j=0 αj · zm1,j

1 · · · zmn,j
n , we

have

Φ(p) =
k∑

j=0

αj · Φ(Π1)
m1,j · · ·Φ(Πn)

mn,j =

k∑
j=0

αj · Tm1,j

1 · · ·Tmn,j
n ,

because Φ is an algebraic homomorphism. It follows that

Φ(p)S =

⎛⎝ k∑
j=0

αj · Tm1,j

1 · · ·Tmn,j
n

⎞⎠ S = S

⎛⎝ k∑
j=0

αj · Tm1,j

1 · · ·Tmn,j
n

⎞⎠ = S Φ(p).

It is easily seen by induction that Tm
i x = λm

i x for any m ∈ N, and clearly x = T 0
i x = λ0

ix. Therefore,

Φ(p)x =
k∑

j=0

αj · Tm1,j

1 · · ·Tmn,j
n x =

k∑
j=0

αjλ
mi−1,j

i−1 · · ·λmn,j
n T

m1,j

1 · · ·Tmi,j

i x

=

k∑
j=1

αjλ
m1,j

1 · · ·λmn,j
n x = p(λ1, . . . , λn)x.

This shows that all complex polynomials of n real variables are contained in V. V is a vector space,

because Φ, composition, and the evaluation map at x are linear, and because of the distributivity

of scalar multiplication. If {fm} ⊂ V is a bounded sequence converging to f pointwise, we may use

the strong convergence of {Φ(fm)} to show f ∈ V, exactly as was done in the proof Theorem (3.17).

Therefore, by Corollary (3.16), V = Bb(supp(P )), i.e. Φ satisfies properties (g) and (h).

Let Ψ : Bb(supp(P )) → L(H) be another function satisfying properties (a), (b), and (c), and let

V be the collection of all f ∈ Bb(supp(P )) such that Ψ(f) = Φ(f). Properties (a) and (b) imply that

V contains all complex polynomials of n real variables. Also, the linearity of Ψ and Φ implies that

V is a vector space. If {fm} ⊂ V is a bounded sequence which converges to f pointwise, then we

necessarily have f ∈ V , because of property (c). Therefore, by Corollary (3.16), V = Bb(supp(P )),

i.e. Ψ ≡ Φ.
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4.3 The Associated Multiplication Operator

Definition 4.11. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of commuting operators. x ∈ H is a

cyclic vector for {Ti}ni=1 if

{p(T1, . . . , Tn)x | p is a complex polynomial of n variables}

is a dense subset of H.

Lemma 4.12. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and commuting operators,

with a cyclic vector x ∈ H, and P as its decomposing PVM. There is a positive Radon measure μ

on supp(P ) ⊂ R
n, and a unitary map U : H → L2(supp(P ), μ), such that

UTiU
−1 : L2(supp(P ), μ) → L2(supp(P ), μ)

f(z1, . . . , zn) 
→ zi · f(z1, . . . , zn)

for each i ∈ {1, . . . , n}.

Proof. The proof of this lemma is very similar to that of Lemma (3.23). We will only provide the

outline, with the necessary alterations.

Given the cyclic vector x ∈ H and the decomposing PVM P , let μ = px,x. μ is a positive

Radon measure on R
n, with its support contained in the compact set supp(P ). By Theorem (3.22),

C(supp(P )) / (f = g a.e.) is a dense subspace of L2(supp(P ), μ).

Define the map

Û0 : C(supp(P )) / (f = g a.e.) → H

f 
→ Φ(f)x,

where Φ gives the functional calculus for {Ti}ni=1. Û0 is a well-defined linear isometry. Also, its

range will be dense in H, because C(supp(P )) / (f = g a.e.) contains all complex polynomials of

n variables, and x is cyclic. Since Û0 has these properties, it may be extended to a unitary map

U0 from L2(supp(P )), μ) to H, using the Bounded Linear Transformation Theorem, and Theorem

(3.8).

For i ∈ {1, . . . , n}, define

V : L2(supp(P ), μ) → L2(supp(P ), μ)

f(z1, . . . , zn) 
→ zi · f(z1, . . . , zn).

V is a well-defined, bounded linear operator on L2(supp(P ), μ) satisfying U−1
0 TiU0f = V f for all

f ∈ C(supp(P )) / (f = g a.e.). Continuity implies U−1
0 TjU0 ≡ V .

Letting U = U−1
0 , we obtain the desired statement of the theorem.

Lemma 4.13. Let {Ti}ni=1 ⊂ L(H) be a finite sequence of self-adjoint and commuting operators.

There is a collection {Hj}j∈J of pairwise orthogonal, closed subspaces of H such that
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(a) For each j ∈ J ,
{
Ti|Hj

}n

i=1
⊂ L(Hj).

(b) For each j ∈ J , there exists xj ∈ Hj such that xj is a cyclic vector for
{
Ti|Hj

}n

i=1
.

(c) H =
⊕

j∈J Hj.

Proof. The proof of this lemma is very similar to that of Lemma (3.24). We will only provide the

outline, with the necessary alterations.

If H is trivial, then the desired results are immediate. We will assume H is non-trivial. For every

nonzero x ∈ H, let

Px = {Φ(p)x | p is a complex polynomial of n variables} ⊂ H,

where Φ gives the functional calculus for {Ti}ni=1. Each Px is a subspace of H such that

Ti Φ(p)x = Φ(zi · p(z1, . . . , zn))x ∈ Px

for every polynomial of n variables. Therefore, each Px will be a closed subspace ofH that is invariant

under {Ti}ni=1. It is then obvious that
{
Ti|Px

}n

i=1
⊂ L(Px) is a finite sequence of self-adjoint and

commuting operators which also has x as a cyclic vector.

An application of Zorn’s Lemma guarantees there is a maximal pairwise orthogonal subcollection

of {Px}x∈H. Denote this subcollection by {Px}x∈M , whereM ⊂ H. We claim {Px}x∈M is our desired

collection {Hj}j∈J . It is already clear that properties (a) and (b) of the theorem hold.

Let K :=
⊕

x∈M Px ⊂ H. {Ti}ni=1 are invariant on K, and hence invariant on K⊥, because they

are self-adjoint. If K is a strict subset of H, then there exists a nonzero x0 ∈ K⊥. In that case,

Px0
⊂ K⊥, because {Ti}ni=1 are invariant on K⊥. This is a contradiction, proving that property (c)

holds.

Theorem 4.14 (Spectral Theorem). Let {Ti}ni=1 be a finite sequence of self-adjoint and commuting

operators. There is a collection {μj}j∈J of finite, positive measures on (Rn,BRn), and a unitary

map U : H →
⊕

j∈J L2(Rn, μj), such that

UTiU
−1 :

⊕
j∈J

L2(Rn, μj) →
⊕
j∈J

L2(Rn, μj)

∑
j∈J

fj(z1, . . . , zn) 
→
∑
j∈J

zi · fj(z1, . . . , zn)

for each i ∈ {1, . . . , n}.

Proof. The proof is nearly identical to that of Theorem (3.26). Lemma (4.13) gives the direct

sum decomposition H =
⊕

j∈J Hj , where
{
Ti|Hj

}n

i=1
⊂ L(Hj) is a sequence of self-adjoint and

commuting operators, with cyclic vector xj ∈ Hj , for each j ∈ J . Letting Pj be the decomposing

PVM for
{
Ti|Hj

}n

i=1
, we use Lemma (4.12) to obtain the collections {μj}j∈J and {Uj}j∈J of measures

and unitary maps. U is constructed, and shown to have the desired properties, as in Theorem (3.26).

Noting that L2(supp(Pj), μj) = L2(Rn, μj) for each j ∈ J , the proof is complete.
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4.4 Normal Bounded Operators

Lemma 4.15. For every T ∈ L(H), there exist unique self-adjoint operators TR, TI ∈ L(H) such

that T = TR + i · TI . T is normal if and only if TR and TI commute.

Proof. For an arbitrary T ∈ L(H), let TR = 1
2 (T

∗ + T ) and TI = i
2 (T

∗ − T ). It is easily seen

that TR and TI are self-adjoint, with T = TR + i TI . Now, suppose there are additional self-adjoint

operators SR, SI ∈ L(H) which also decompose T in this way. It follows that

(TR − SR) + i (TI − SI) = 0 = 0∗ = (TR − SR)− i (TI − SI).

This implies TI = SI , so we must also have TR = SR.

If TR and TI commute, then clearly T = TR + i TI will commute with T ∗ = TR − i TI . In the

case that T is normal,

T 2
R + i (TI TR − TR TI) + T 2

I = T T ∗ = T ∗ T = T 2
R + i (TR TI − TI TR) + T 2

I

implies TR TI = TI TR.

Definition 4.16. For T ∈ L(H), let TR, TI ∈ L(H) be as given in the previous lemma. TR will be

called the real component of T , and TI will be called the imaginary component of TI .

Theorem 4.17 (Spectral Theorem). There is a bijection between the compact PVM’s on (C,BC)

and the normal operators in L(H).

Proof. Let P represent the compact PVM’s on (C,BC), let T represent the ordered pairs of self-

adjoint and commuting operators in L(H), and let N represent the normal operators in L(H).

Consider the maps

F : P → T

P 
→
{∫

C

Re(z) dP (z),

∫
C

Im(z) dP (z)

}
and

G : T → N

{TR, TI} 
→ TR + i TI .

F is the bijection from Theorem (4.9), once (C,BC) is identified with (R2,BR2). In view of Lemma

(4.15), G is also a bijection. Therefore, G ◦ F is a bijection.

Definition 4.18. Let T be normal, and let TR and TI be its real and imaginary components. The

decomposing PVM for TR and TI on (C,BC) will also be called the decomposing PVM for T .

Lemma 4.19. S ∈ L(H) commutes with the real and imaginary components of T ∈ L(H) if and

only if S commutes with both T and T ∗.
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Proof. Let TR and TI be the real and imaginary components of T . TR and TI are self-adjoint, so

T ∗ = TR − iTI . In the case that S commutes with TR and TI , it is clear S also commutes with T

and T ∗. If S commutes with T and T ∗, then

2S TR = S TR + i S TI + S TR − i S TI = S T + S T ∗

= T S + T ∗ S = TR S + i TI S + TR S − i TI S = 2TR S

implies that S commutes with TR; similarly, the identity S T − S T ∗ = T S − T ∗ S implies that S

commutes with TI .

Lemma 4.20. If T ∈ L(H) is normal, with TR and TI as its real and imaginary components, then

λ ∈ σp(T ) if and only if Re(λ) ∈ σp(TR) and Im(λ) ∈ σp(TI) have a common eigenvector. The

eigenvectors for λ ∈ σp(T ) will be the same as the shared eigenvectors for Re(λ) ∈ σp(TR) and

Im(λ) ∈ σp(TI).

Proof. If λR ∈ σp(TR) and λI ∈ σp(TI) have x ∈ H\{0} as a common eigenvector, then

Tx = TRx+ i TIx = (λR + iλI)x.

This demonstrates that λ = λR + iλI is in the point spectrum of T , with x as an eigenvector.

Because TR and TI are self-adjoint, their spectrums are subsets of R. Therefore, Re(λ) = λR and

Im(λ) = λI .

Now, consider any λ ∈ σp(T ). If x ∈ H\{0} is an eigenvector for λ, and λR = Re(λ) and

λI = Im(λ), then we have

(TR + i TI)x = (λR + iλI)x,

which implies

(TR − λR)x = i(λI − TI)x.

With this identity in mind,

i ‖(TR − λR)x‖2H = i 〈(TR − λR)x, i(λI − TI)x〉

= λI〈TRx, x〉 − 〈TRx, TIx〉 − λRλI‖x‖H + λR〈x, TIx〉

= λI〈TRx, x〉 − 〈TI TRx, x〉 − λRλI‖x‖H + λR〈TIx, x〉.

Because T is normal, TR and TI are self-adjoint and commuting operators, so TI TR is self-adjoint.

Therefore, the right hand side of the above equality is real, while the left hand side is imaginary. This

implies (TR − λR)x = 0, and, with the same argument, i(λI − TI)x = 0. It follows that TRx = λRx

and TIx = λIx. We may conclude λR is in σp(TR), λI is in σp(TI), and that they have x as a

common eigenvector.

Theorem 4.21 (Spectral Theorem). Let T ∈ L(H) be normal, and let P be its decomposing PVM

on (C,BC). There exists a unique map Φ : Bb(supp(P )) → L(H) such that:
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(a) If Id ∈ Bb(supp(P )) is the identity function, i.e. Id(z) = z, then Φ(Id) = T .

(b) Φ is a unital, algebraic *-homomorphism.

(c) If {fn} ⊂ Bb(supp(P )) is a bounded sequence which converges to f pointwise, then {Φ(fn)}
converges to Φ(f) strongly.

In addition, Φ has the following properties:

(d) Φ is continuous, with operator norm ‖Φ‖ = 1.

(e) If f ∈ Bb(supp(P )) is such that f ≥ 0, then Φ(f) ≥ 0.

(f) If S ∈ L(H) commutes with both T and T ∗, then Φ(f)S = S Φ(f) for all f ∈ Bb(supp(P )).

(g) If Tx = λx for some x ∈ H and λ ∈ C, then Φ(f)x = f(λ)x for all f ∈ Bb(supp(P )).

Proof. Let TR and TI be the real and imaginary components for T . Let Φ be the functional calculus

for {TR, TI}, an ordered pair of self-adjoint and commuting operators. Noting that

Id(z) = Re(z) + i Im(z),

and recalling Lemma (4.19) and Lemma (4.20), it is clear that Φ will satisfy properties (a) - (g).

The uniqueness conditions differ from those in Theorem (4.10). By requiring Φ to be a *-

homomorphism in addition to being a unital algebraic homomorphism, it follows that Φ(Re(z)) and

Φ(Im(z)) are self-adjoint. In this case,

Φ(Re(z)) + iΦ(Im(z)) = Φ(Id(z)) = T = TR + i TI

implies Φ(Re(z)) = TR and Φ(Im(z)) = TI , because the real and imaginary components of T are

unique. The uniqueness of Φ now follows from Theorem (4.10).

Theorem 4.22 (Spectral Theorem). Let T ∈ L(H) be normal. There is a collection {μj}j∈J of

finite, positive measures on (C,BC), and a unitary map U : H →
⊕

j∈J L2(C, μj), such that

UTU−1 :
⊕
j∈J

L2(C, μj) →
⊕
j∈J

L2(C, μj)

∑
j∈J

fj(z) 
→
∑
j∈J

z · fj(z).

Proof. Applying Theorem (4.14) to the real and imaginary components of T , let {μj}j∈J be the

resulting measures on (C,BC), and U : H →
⊕

j∈J L2(C, μj) the resulting unitary map. If TR and

TI are the real and imaginary components for T , then

UTU−1 = U(TR + i TI)U
−1 = UTRU

−1 + i UTIU
−1.

Therefore, UTU−1 maps each
∑

j∈J fj(z) ∈
⊕

j∈J L2(C, μj) to⎛⎝∑
j∈J

Re(z) · fj(z)

⎞⎠+ i

⎛⎝∑
j∈J

Im(z) · fj(z)

⎞⎠ =
∑
j∈J

z · fj(z).



Chapter 5

Conclusion

Spectral theory is an important area of mathematics with many applications; however, many of the

proofs provided in standard texts on spectral theory are terse. In this thesis, we carefully developed

the background necessary to rigorously prove several versions of the spectral theorem.

We began by constructing the functional calculus Φ : Bb(σ(T )) → L(H) for a self-adjoint

T ∈ L(H). This was done by considering polynomials of T , and then constructing the continuous

functional calculus φ : C(σ(T )) → L(H). This φ was used to create a family of complex measures

{μx,y}x,y∈H, which allowed us to define Φ. Thus defined, Φ is the unique algebra homomorphism

which maps each polynomial function p on σ(T ) to p(T ).

Turning our attention to the multiplication operator version of the spectral theorem, we showed

that T is unitarily equivalent to multiplication by Id(z) := z on L2 (σ(T ), μx,x) when it has a

cyclic vector. The functional calculus was essential to this proof. By finding a suitable direct sum

decomposition of H, we were able to prove a similar result for the case where T does not have a

cyclic vector.

We then considered the projection-valued measure version of the spectral theorem. For an

arbitrary compact PVM P on (BR,R), we constructed a family of complex measures {px,y}x,y∈H.

These measures enabled us to define the map
∫
· dP : BR → L(H), and we saw that

∫
z dP (z) would

be self-adjoint. Conversely, the functional calculus for T allowed us to construct a compact PVM

on (BR,R). In summary, we showed that there is a bijection between such PVM’s and self-adjoint

bounded operators.

Finally, we generalized the aforementioned spectral theorems to finite sequences {Ti}ni=1 ⊂ L(H)

of self-adjoint and commuting operators. Once we had proved the existence of a “decomposing”

PVM for {Ti}ni=1, the proofs of the generalized spectral theorems largely followed those from before.

By considering the particular case where n = 2, we obtained the spectral theorems for normal

bounded operators.

Spectral theory for densely-defined operators on Hilbert space is the natural extension of the

material presented in this thesis. In certain applications, the operators that arise tend to be densely-

defined and unbounded, so their associated theory is of particular importance. Furthermore, the

spectral theorems for collections of such operators is poorly documented; it would be worthwhile to

provide a rigorous presentation.

51



Bibliography

[1] V. I. Bogachev. Measure theory, volume one. Springer-Verlag, Berlin, 2007.

[2] John B. Conway. A course in functional analysis. Springer-Verlag, New York, second edition,
1990.

[3] Gerald B. Folland. Real analysis. John Wiley & Sons Inc., New York, second edition, 1999.

[4] Paul R. Halmos. Introduction to Hilbert Space and the theory of Spectral Multiplicity. Chelsea
Publishing Company, New York, 1951.

[5] Michael Reed and Barry Simon. Methods of modern mathematical physics, volume one. Academic
Press, New York, 1972.

52


