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Abstract

■ During natural vision, eye movements are dynamically con-
trolled by the combinations of goal-related top–down (TD) and
stimulus-related bottom–up (BU) neural signals that map onto
objects or locations of interest in the visual world. In primates,
both BU and TD signals converge in many areas of the brain,
including the intermediate layers of the superior colliculus
(SCi), a midbrain structure that contains a retinotopically coded
map for saccades. How TD and BU signals combine or interact
within the SCi map to influence saccades remains poorly under-
stood and actively debated. It has been proposed that winner-
take-all competition between these signals occurs dynamically
within this map to determine the next location for gaze. Here,
we examine how TD and BU signals interact spatially within an
artificial two-dimensional dynamic winner-take-all neural field
model of the SCi to influence saccadic RT (SRT). We measured
point images (spatially organized population activity on the SC

map) physiologically to inform the TD and BU model param-
eters. In this model, TD and BU signals interacted nonlinearly
within the SCi map to influence SRT via changes to the (1) spa-
tial size or extent of individual signals, (2) peak magnitude of
individual signals, (3) total number of competing signals, and
(4) the total spatial separation between signals in the visual
field. This model reproduced previous behavioral studies of
TD and BU influences on SRT and accounted for multiple in-
consistencies between them. This is achieved by demonstrating
how, under different experimental conditions, the spatial inter-
actions of TD and BU signals can lead to either increases or
decreases in SRT. Our results suggest that dynamic winner-
take-all modeling with local excitation and distal inhibition in
two dimensions accurately reflects both the physiological activ-
ity within the SCi map and the behavioral changes in SRT that
result from BU and TD manipulations. ■

INTRODUCTION

The spatial organization of the external world is repre-
sented in neural maps throughout the visual system (Hall
& Moschovakis, 2003; Kaas, 1997; Cynader & Berman,
1972; Hubel & Wiesel, 1969). For primates, these maps
are especially important because the highest visual acuity
is limited to the fovea wherein only 1–2° of visual angle
are represented (Perry & Cowey, 1985). Because the fovea
can only be at one place at any time, simultaneously oc-
curring relevant or interesting objects in the visual field
must compete for foveation. The two neural processes
that influence saccades are stimulus-triggered bottom–up
(BU) and goal-directed top–down (TD; Fecteau & Munoz,
2006; Itti, Rees, & Tsotsos, 2005). BU processes reflect the
exogeneous properties of external visual stimuli. TD pro-
cesses involve endogeneous, internally driven cognitive
mechanisms that reflect the relevancy of task-driven goals.
In the oculomotor system, how TD and BU signals are
combined in neural maps to influence saccade processing
is poorly understood. The goal of this study is to develop

a two-dimensional neural field model of the intermediate
layers of the superior colliculus (SCi) that is constrained
by new physiological data and is capable of explaining
how TD and BU processes interact and compete to ac-
count for observed saccade behavior.

The SCi is the ideal place in which to model these
relationships because it is a critical structure in the guid-
ance of saccadic eye movements (Schiller, Sandell, &
Maunsell, 1987; Schiller, True, & Conway, 1980). The
SCi contains a map that has been described physio-
logically (Robinson, 1972) and defined mathematically
(Van Gisbergen, Van Opstal, & Tax, 1987; Ottes, Van
Gisbergen, & Eggermont, 1986). The SCi also serves as a
sensorimotor integration node where sensory (Meredith
& Stein, 1985; Goldberg & Wurtz, 1972), saccadic prepa-
ration (Basso & Wurtz, 1998; Dorris & Munoz, 1998), and
saccadic motor signals (Munoz & Wurtz, 1995a; Sparks
& Mays, 1980; Sparks, 1978) converge onto individual
neurons that are spatially aligned within the visual field
(Marino, Rodgers, Levy, &Munoz, 2008) and project directly
to the premotor circuitry in the brainstem to drive sac-
cades (Rodgers, Munoz, Scott, & Pare, 2006; Scudder,
Moschovakis, Karabelas, & Highstein, 1996; Moschovakis,
Karabelas, & Highstein, 1988).
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Recent evidence suggests that lateral interactions con-
tribute to the spatial interactions of activity within the SCi
map. These interactions can result in local regions of
excitation and surrounding regions of remote inhibition
on the SCi map (Figure 1A; Dorris, Olivier, & Munoz,
2007). When multiple BU and TD signals arrive in the
SCi, physiological evidence has suggested that a single
saccadic goal is selected via a winner-take-all mechanism
(Dorris et al., 2007; McPeek & Keller, 2002; Munoz &
Fecteau, 2002; Trappenberg, Dorris, Munoz, & Klein,
2001; Munoz & Istvan, 1998). Neural field models of
the oculomotor system employing such lateral interactions
(Amari, 1977) have been shown to accurately simulate sac-
cadic behavior (Wang, Jin, & Jabri, 2002) across several
task conditions (Kopecz, 1995; Kopecz & Schoner, 1995).
When specifically applied to describe the activity within
the SC, this type of model has been able to successfully
account for an even larger variety of saccadic behaviors,
including (1) differences in saccadic RT (SRT) because of
endogeneously and exogeneously triggered saccades
(Trappenberg, 2008; Trappenberg et al., 2001), (2) saccade
trajectory variations produced by focal SCi lesions (Badler
& Keller, 2002), and (3) competing visual stimuli (Arai &
Keller, 2005).

Here, we present a general competitive interaction
model that has been constrained by known SC physiology.
Although our model makes the assumption that the spatial
interactions that influence saccadic decisions are being
computed at the level of the SC, it does not preclude the
possibility that these computations could be occurring by
or in conjunction with other structures in the oculomotor
system and then relayed to the SC. Here, we are simply
exploring the possible consequences of these interactions
within the local SC circuitry.

The model presented here extends an earlier model
(Trappenberg et al., 2001) by addressing several limita-
tions of the previous one-dimensional architecture that
was not reflective of the two-dimensional neural map
represented within the SC (Robinson, 1972). By expand-
ing the model into two dimensions, we can incorporate
more physiological details of the spatial organization
of saccade-related activity. Although similar spatial in-
teraction mechanisms can be demonstrated within the
previous one-dimensional model, scaling up to two di-
mensions allows for a greater number of saccade-related
signals to be simulated across the visual field. Only a
two-dimensional model is capable of accurately recreat-
ing and simulating experiments wherein more than
two equally distant BU or TD saccade-related signals
are presented around the fovea.

Furthermore, the spatial sizes of the TD and BU input
parameters in this previous model were only roughly
estimated from individual neural response fields (Munoz
& Wurtz, 1995a, 1995b). A more accurate estimate of
these spatial parameters should reflect the population
activity or “point image” (McIlwain, 1986; spatially orga-
nized regions of localized activity on the SC map). This

is critical because individual response fields show sig-
nificant variation in both size and magnitude, whereas
point images remain approximately constant across the
SC map for different target locations and saccade vectors
(Marino et al., 2008; Anderson, Keller, Gandhi, & Das,
1998; Munoz & Wurtz, 1995b).
The neural mechanisms that underlie how TD and BU

processes influence saccades are poorly understood, yet
they have a profound effect on the timing or “mental
chronometry” (Posner, 2005) of the sensory to motor
transformations that are computed by the visual and
oculomotor systems. Previous RT studies on the effects
of TD target predictability and BU stimulus intensity and
numbers of stimuli show many apparent inconsistencies
and contradictions that seem to indicate that the under-
lying neural mechanisms are highly complex. However,
we demonstrate here that lateral interactions within a
winner-take-all model of the SCi can account for these
many different results via the simple spatial properties
and locations of the underlying TD and BU point images
in the SCi (Figure 1).
To improve the physiological accuracy of the model,

we measure the point images of BU sensory responses
and pretarget TD preparatory responses in the SCi
and used them to constrain the input parameters in the
model. Then, we model how the spatial interactions be-
tween TD or BU signals can influence SRT. We test how
these interactions can occur both within individual sig-
nals at a single location (i.e., via changes in magnitude
and width; Figure 1B) or between multiple signals at dif-
ferent locations in the map (Figure 1C). Specifically, we
assess how SRT is influenced by the (1) area of tissue
activated (Figure 1B), (2) peak magnitude of the input
signal, (3) distance between input signals (Figure 1C),
and (4) overall number of competing TD or BU signals.
When only one TD or BU input signal is present within
the model, we hypothesize that signals that extend be-
yond the area of local excitation in the SC map will trig-
ger saccades more slowly than narrower input signals
(Figure 1B). This may result because signals with wider
activation than the excitatory interaction region could
simultaneously activate both local excitatory and remote
inhibitory connections (Munoz & Istvan, 1998). This
should increase accumulation time to saccadic threshold
leading to an increase in SRT. When two or more input
signals are present, we hypothesize that distal signals will
mutually inhibit each other and result in slower SRTs while
simultaneously occurring proximal signals will combine
their point images (activity on the SC map) and lead to
faster SRT (Figure 1C).

METHODS

Animal Preparation

All animal care and experimental procedures were in
accordance with the Canadian Council on Animal Care
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Figure 1. (A) Left: Architecture
of the two-dimensional
neurofield model (developed
from Trappenberg et al.,
2001). Right: Schematic of the
Gaussian-shaped spatial profile
of local excitation and distal
inhibition centered at each
neural node within the model.
(B and C) Schematics of
spatial competition and lateral
interaction that can occur from
individual (B) or multiple
(C) activation signals within
the retinotopic, topographical
SCi map as predicted by our
model. (B) Lateral interaction
could theoretically result
from individual hills of activity
corresponding to spatially
specific TD or BU signals,
depending on whether they
are wider (right) or narrower
(left) than the underlying
excitatory interaction profile
in the SCi map. Spatial signals
that are wider than the width
of the excitatory area will
result in lateral inhibition
across the input signal. This
lateral inhibition is predicted
to result in longer SRT relative
to spatial signals whose width
does not exceed the width
of local excitation. (C) When
input signals (either TD or
BU) are distant, dynamic
winner-take-all mechanisms
must resolve the resulting
saccade vector by suppressing
competing TD and BU signals.
In the case where these
competing signals are distant,
the corresponding spatial
signals on the SCi map are
distant and spatially distinct.
In this case, strong lateral
inhibition suppresses each
competing signal until only
one remains. However, in the
case where these competing
signals are close together,
they could additively combine
into a larger area of excitation
in the SCi map. We predict
that the summation of nearby
signals should reduce SRT
relative to more distant signals
because of the more global
area of excitation that results
on SCi the map.
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policies on use of laboratory animals and approved by
Queenʼs University Animal Care Committee. Four male
monkeys (Macaca mulatta) were used in these studies.
A detailed description of the surgical techniques used to
prepare animals for neuronal and eye movement record-
ings in our laboratory have been described previously
(Marino et al., 2008).

Experimental Tasks and Behavioral Stimuli

Neurophysiological experiments were designed to mea-
sure BU and TD point images in the SCi. Behavioral para-
digms and visual displays were under the control of a
UNIX-based real-time data control and presentation sys-
tems (Rex 6.1; Hays, Richmond, & Optican, 1982). The
display screen spanned ±35° of the central visual field.
Luminance was measured with a hand held photometer
(Minolta CS-100) that was positioned at the same location
as the monkey (86 cm away from the display screen).
Monkeys were required to perform several interleaved
visually guided saccade tasks, including the delay and
gap tasks (e.g., Figure 2A and B), as well as the step task
and memory-guided task (paradigms and data not shown).
Experiments were performed in total darkness with in-
dividual trials lasting ∼1–2 sec. Each trial required the
monkey to generate a single saccade from the central fixa-

tion point (FP) to a peripheral visual target. During the
intertrial interval (duration of 800–1500 msec), the dis-
play screen was diffusely illuminated to prevent dark
adaptation. At the start of each trial, the screen turned
black, and after a period of 250 msec, a red FP (0.3 cd/m2)
appeared at the center of the screen against a black
background. Following FP appearance, the monkeys had
1000 msec to fixate the FP before the trial was aborted
as an error. Central fixation was then maintained for a
variable period (500–800 msec) until the target (5 cd/m2)
appeared.
The delay task (Figure 2A) was used to dissociate visual

and saccade-related activity. In this task, the monkeys
were required to continue fixation of the FP for an ad-
ditional 500–800 msec after target appearance. Only after
FP disappearance was the monkey allowed to initiate a
saccade to the target. The trial was scored as an error
and analyzed separately if fixation was broken before FP
disappearance or if the monkey did not complete a sac-
cade to the target location within a 2° window (of visual
arc) around the target or if the monkey failed to initiate
a saccade within 1000 msec of FP disappearance. The
gap task (Figure 2B) was used to minimize the inhibi-
tion resulting from active visual fixation (Krauzlis, 2003;
Machado & Rafal, 2000; Paré & Munoz, 1996; Dorris &
Munoz, 1995). In the gap task, a 200-msec period of

Figure 2. Schematic
representation of temporal
events in the delay (A) and
gap (B) tasks for the FP,
target (T) and eye position.
Numbered gray bars denote
the critical epochs used to
classify visual and motor-related
activity in the delay task
(A) as well as preparatory
activity in the gap task
(B). Representative neurons
from each class aligned on target
appearance (left column) and
saccade onset (right column).
(C) Visual–motor neuron in the
delay task. (D) Representative
visual–motor neuron with
significant pretarget buildup
activity in the gap task.
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darkness (gap) was inserted between FP disappearance
and target appearance (Saslow, 1967). The monkey
was required to continue central fixation until target ap-
pearance and then initiate a saccade to the target within
1000 msec of its appearance. Tasks were randomly inter-
leaved within two separate blocks of trials. In the first
block, targets were presented at one of two possible
locations: at the center of each neuronʼs response field
(see below) or opposite the horizontal and vertical me-
ridians. In the second block, the targets were presented
at 10° left or right of center along the horizontal merid-
ian. Each correct trial was rewarded with a drop of fruit
juice or water. The duration of all correct trials ranged
from approximately 1–2 sec, depending on the variability
of fixation duration and SRT.

Neural Classification

All techniques for extracellular neuronal recording and
data collection were described previously (Dorris et al.,
2007). To characterize the activity of individual neurons,
trains of action potentials averaged across all correct
trials were convolved into spike density functions using a
gaussian kernel (σ = 5 msec) for each spike (Richmond,
Optican, Podell, & Spitzer, 1987). Spike density functions
were aligned on target appearance when analyzing visual
responses (Figure 2C and D, left) and saccade onset when
analyzing motor responses (Figure 2C and D, right).
We recorded 113 single neurons from four monkeys

(see Table 1). The delay task was used to temporally dis-
sociate and classify visual and motor-related activity in all
neurons. On the basis of this classification, 106 of 113 neu-
rons had both visual and motor responses (VMBNs) and
7 neurons exhibited only motor responses (MBNs) when
the target was centered in each neuronʼs response field.
The gap task was used to subclassify those VMBNs and
MBNs that also exhibited buildup activity (BUNs) based
on the presence of significant pretarget preparatory activity
in the gap period (Dorris, Pare, & Munoz, 1997; Munoz
& Wurtz, 1995a). On the basis of this subclassification,

42 of 113 neurons exhibited pretarget buildup activity
(of which 35 were VMBNs and 7 were MBNs) and the
remaining 71 of 113 VMBNs had no buildup activity.

Visual responses were determined from target-aligned
activity in the delay task (50–150 msec after target appear-
ance; Figure 2A, Epoch 2). The last 100 msec of active
fixation before target appearance (Figure 2A, Epoch 1)
was used to compute a visual baseline threshold, which
was then compared with the visual response in Epoch 2.
A visual response was defined as a statistically significant
increase in target-aligned activity greater than 50 spikes/
sec above the visual baseline threshold.

Saccade responses were determined from movement-
aligned activity in the delay task (±10 msec around the
onset of the saccade; Figure 2A, Epoch 4). Saccade re-
sponses were compared with both the visual (Epoch 1)
and saccade baseline thresholds (100–50 msec before the
onset of the saccade; Figure 2A, Epoch 3). The saccade
baseline threshold (Epoch 3) was used to ensure that any
sustained tonic visual activity related to the continued pres-
ence of the target was not misclassified as motor-related
saccade activity. A motor response was defined as a statis-
tically significant increase in saccade-aligned activity that
was at least 50 spikes/sec above both the visual and sac-
cade baseline thresholds (Epochs 1 and 3). VMBNs (e.g.,
Figure 2C) exhibited a significant increase in discharge
related to both the appearance of a visual target (visual
response) and the initiation of the saccade (motor re-
sponse). MBNs were similar to VMBNs, except that they
did not exhibit a significant visual response.

All subclassified BUNs exhibited a significant increase in
their activity (preparatory buildup) during the gap epoch
(50 msec before to 50 m after target appearance in the
gap task; Figure 2B, Epoch 6) in the gap task. Preparatory
buildup activity was defined as a statistically significant
increase in discharge between the visual baseline (last
100 msec of active visual fixation in the gap task; Fig-
ure 2B, Epoch 5) and the gap epoch (Epoch 6). The gap
epoch ended before the onset of the earliest visual re-
sponses for all neurons recorded. All significant increases
between epochs were determined by a Wilcoxon rank-
sum test, p < .05.

Calculation of Neural Population Point Images
on the SC Map

We analyzed the population activity or point images
(McIlwain, 1975, 1986) of BU visual, TDmotor preparation,
and saccadic motor activity across the SC during presenta-
tion of targets at 10° left and right. The position of each
neuron on the map was determined from the saccadic
vector within the motor response field that yielded the
maximal motor discharge of action potentials at movement
onset (Marino et al., 2008). This was determined on-line
by systematically testing the motor response to multiple
saccade vectors across each cellʼs motor response field.

Table 1. SCi Neuron Breakdown by Monkey and Subtype

Monkey (Age, Weight)
VMBN

(No Buildup) BUN VM BUN M

F (9 years, 7.2 kg) 40 18 4

H (6 years, 7.5 kg) 21 7 1

O (6 years, 11.6 kg) 10 9 2

R (8 years, 10 kg) 0 1 0

Total neurons 71 35 7

VMBN = visual–motor burst neuron with no buildup activity; BUN = a
motor burst neuron with buildup activity that may (BUN-VM) or may not
(BUN-M) also exhibit a visual response to the appearance of the target.
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To visualize spatial properties within the SC map, visual
field coordinates were transformed into SC coordinates
using previously described transformations (Van Gisbergen
et al., 1987; Ottes et al., 1986),

u ¼ Bu ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2 AR cosðΦÞ þ A2

p
A

 !
ð1Þ

v ¼ Bv arctan
R sinðΦÞ

R cosðΦÞ þ A

� �
ð2Þ

wherein u denotes the anatomical distance from the
rostral pole (mm) along the horizontal position axis, v is
the distance (mm) along the vertical axis, R is the retinal
eccentricity, and Φ is the meridional direction of the target
(°). The constants are Bu = 1.4 mm; Bv = 1.8 mm/rad; and
A = 3°. The spatial extent of each point image was cal-
culated from a cubic spline (de Boore, 1978) that in-
terpolated between the cell locations on the SC map.
Population point image activity was calculated by plotting
all activity ipsilateral to the target stimulus within the
left SC and all activity contralateral to the target stimulus
within the right SC. Neurons were mirrored across the
horizontal meridian to improve the spatial resolution of
the fitted surface by exploiting the underlying symmetry
within the map. This assumption of symmetry was based
upon no observed vertical biases (above or below the
horizontal meridian) in visuomotor responses between
the upper and lower visual fields when plotted on the SC
map beyond 2° eccentricity (Marino et al., 2008; van Opstal
& van Gisbergen, 1989).

The BU visual response was calculated from the peak
of the isolated visual response recorded from VMBNs in
the delay task (peak response occurred 102 msec after
target appearance; Figures 3A, left and 4A). It was neces-
sary to calculate the isolated visual response from the
delay task instead of the gap task because in the delay
task the visual response does not combine with TD pre-
paratory activity and is separated temporally from the
saccadic motor response. The TD preparatory response
was calculated from the maximum buildup activity of
BUNs in the gap task that occurred immediately before
the onset of the visual response (which occurred 55 msec
following target presentation; Figures 2D, 3B, and 4B).
The combined TD and BU response was calculated from
all combined VMBNs and BUNs in the gap task immedi-
ately after the onset of the visual response, but before the
extinction of the preparatory activity that had accumu-
lated at the other possible target location (90 msec fol-
lowing target presentation; Figure 4C). The saccadic
motor burst was calculated from all combined VMBNs
and BUNs in the gap task at saccade onset. The size of
the TD preparatory, BU visual, and motor point images
were determined independently using both the half
width of the peak activity falling along the horizontal
meridian (Figure 4A–D, bottom) and from the standard

deviation (σ) of a fitted two-dimensional Gaussian func-
tion defined by

f ðx; yÞ ¼ Ae−
ðx − xoÞ2 þ ð y − yoÞ2

2σ2

� �
ð3Þ

wherein xo, yo, and σ were calculated independently from
each point image (isolated within a single collicular hemi-
field) in Figure 4 using a nonlinear least squares regres-
sion (BU visual response in Figure 4A and C, σ = 0.6 ±
0.1, yo = 0.007 ± 0.002, xo = 1.91 ± 0.28; TD preparatory
response in Figure 4B and C, σ= 1.33± 0.13, yo=−1.1 ×
10−6 ± 4.8 × 10−6, left SC: xo = −1.70 ± 0.10, right SC
xo = 1.66; saccadic motor response in Figure 4D, σ =
0.54, xo = 1.97, yo = 0.003). Errors denote standard devia-
tions of the mean. In some cases, these independently cal-
culated values were slightly different because of some small
vertical and horizontal asymmetry (Figure 4A–D, top).

Two-dimensional Continuous Attractor Neural
Field Model

We modeled the neural activity represented within the SCi
temporally (relative to stimulus and saccadic events) and
spatially (across the SC map) during saccade preparation
and execution. We interpreted the input signals in the
model to represent the physiological activity in the SCi
that resulted from TD preparation signals and BU visual
responses combining. We implemented a two-dimensional
fully connected neural field model where the individual
weights between connected nodes were dependent on
their respective distances across the network and the in-
stantaneous amount of activity within the network.Weused
a spatial interaction profile that exploited the local excita-
tion and distal inhibition relationships measured within
the retinotopic SC map (Dorris et al., 2007) that were de-
scribed andmodeled previously (Trappenberg et al., 2001).

External Inputs

Three different types of external inputs were used to
represent the TD and BU signals that we recorded physi-
ologically. The BU input signal reflected the responses
produced by external visual stimuli. Two different kinds
of TD inputs were used to reflect internally generated
saccade-related signals that could occur across both SCi.
One TD signal (Figure 5A, top) represented the spatial
and temporal prediction signals in SCi BUNs that was pres-
ent before the appearance of a saccade target stimulus
(Figures 2D, 3B, and 4B) in the gap task (Dorris & Munoz,
1998; Dorris et al., 1997). Another TD signal (Figure 5A,
bottom) represented an internally generated linear sac-
cade decision signal similar to that proposed in the LATER
model (linear accumulation to threshold with ergodic rate;
Reddi & Carpenter, 2000; Carpenter & Williams, 1995) that
influenced saccade selection based on the requirements
of the task and the accumulated TD and BU information
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available (McPeek & Keller, 2002; Hanes & Schall, 1996;
Schall, 1995). This signal differed from preparatory activity
because it reflected the internally generated decision that
the appropriate visual stimulus was present and should
be foveated (Carpenter, 2004). The inclusion of this sac-
cade decision signal was important to incorporate inputs
from other visual or oculomotor brain regions that help
to select the saccade target based on internally motivated
task-related goals. This enabled the model to choose be-
tween multiple TD- or BU-driven saccadic goals and not
always choose the strongest or most salient BU sensory
input signal.
No central fixation signal was included in this model.

Although the inclusion of a fixation signal is critical when
modeling SRT differences between saccade tasks that
utilize different levels of fixation engagement (as was
demonstrated in Trappenberg et al., 2001, between over-
lap, step, and gap tasks as well as anti- and pro-saccade

tasks), such a fixation signal was not required in the
current model because the level of fixation engagement
during the simulated saccade tasks was kept constant.
Thus, it was not necessary to include a fixation signal to
demonstrate the mechanism of how the spatial interac-
tions of TD and BU signals in isolation can influence SRT.
Furthermore, the addition of a fixation signal into the
model only minimally increases global inhibition at each
of the saccade locations, which results in a small but con-
stant increase in SRT within all the simulated conditions.

Both the TD and BU external input signals were local-
ized to the retinotopic positions of the simulated visual
stimuli and saccade locations. The temporal dynamics
of these external input signals were set to increase line-
arly to their maximum activation over a fixed interval. The
BU visual and TD preparatory signals were defined to in-
crease faster than the TD saccade decision signal. This made
intuitive sense because the BU visual and TD preparation

Figure 3. Population spike density functions of VMBNs in the delay task (A) and BUNs in the gap task (B) aligned on target appearance (left
column) and saccade onset (right column). Dashed gray lines denote the times of the peak visual response in the delay task (Time a), preparatory
buildup response in the gap task (Time b), combined visual and preparatory response in the gap task (Time c), and motor saccadic response
in the gap task (Time c) that are plotted spatially on the SCi map and analyzed separately in Figure 5.

Marino et al. 321



signals are processed quickly once the target stimuli
appeared, whereas the TD goal driven movement signal
should be slower because it reflects a more cortically
driven decision process (see Discussion). This balance
ensured that lateral interactions between the BU and TD
signals significantly impacted SRT, but the TD motor
saccadic decision signal influenced which input signal
would be selected for the saccade.

We imposed a linear increasing time course for the
external TD preparatory and BU visual input signals:

ITD;BUðtÞ ¼ ĨTD;BU t − ton
tTD;BUon

� �
if ton < t < tTD;BUon

ĨTD;BU else

(
ð4Þ

wherein I is the maximum amplitude Ĩ is a constant, ton
was the time of signal onset and ton

TD,BU was the time
required for the buildup signal to saturate (ton

TD,BU =
173 msec). The TD saccadic decision signal that we em-
ployed was similar to that proposed in the linear LATER
model (Carpenter, 2004; Reddi, Asrress, & Carpenter,
2003; Carpenter & Williams, 1995); however, in our im-
plementation, it was a separate input signal that influ-
enced the accumulation within the model and did not
reflect the direct output of the model. Like the TD pre-
paratory and BU visual signals, the TD saccadic decision
signal increased linearly; however, it followed a slower
rate of rise and was delayed relative to the pretarget TD
preparation and BU visual response to ensure that there

Figure 4. Spatial point images
of BU visual, TD preparatory,
and saccadic motor activity in
the SCi map. (A) Top: Isolated
visual response of VMBNs in
the delay task for a 10° leftward
target stimulus. Bottom:
Cross-section of the visual
response (above) from along
the horizontal meridian.
(B) Top: Isolated pretarget
preparatory responses of
BUNs in the gap task where
the target could appear with
equal probability 10° left
or right of central fixation.
Bottom: Cross-section of the
preparatory responses (above)
from along the horizontal
meridian. (C) Top: Combined
visual and preparatory response
of combined BUNs and VMBNs
in the gap task for a 10° leftward
target stimulus immediately
before the suppression of
the preparatory activity at 10°
right. Bottom: Cross-section
of the visual and preparatory
response (above) from along
the horizontal meridian.
(D) Top: Motor response of
MBNs, VMBNs, and BUNs in
the gap task for a 10° leftward
saccade at movement onset.
Bottom: Cross-section of
the saccadic motor response
(above) from along the
horizontal meridian. (A–D)
Dashed gray lines denote
FWHM. Dashed black lines
denote interpolated area of
rostral SC where no neurons
were recorded.
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was enough time for lateral interaction to occur between
these other input signals. The TD saccadic decision signal
was defined by

ITDSacðtÞ ¼
0 if ton < t < t1
ĨTDsac

t − ton
tTDsac

� �
if t1 < t < tTDsac

ĨTDsac else

8><
>: ð5Þ

wherein t1 = 104 msec and tsac
TD = 1041 msec. Although

the profile and magnitude of the local excitation re-
mained constant, the magnitude of the lateral inhibition
was dependent on the instantaneous amount of exci-
tation within the model at any time. This insured that
competing input signals were able to accumulate some
activity within the model before the competing lateral
inhibition shut them down. This assumption was based on
recent physiological evidence in mouse SC showing local
inhibitory circuitry within the SCi that followed a slower
time course relative to local excitation (Phongphanee
et al., 2008).
In Simulations 3 and 4, we increased the numbers of

BU visual distractors (Simulation 3) or TD goal-related
potential saccade locations (Simulation 4) from 1 to 2
to 4 to 6 to 8. In these simulations, each time the number
of TD or BU signals was increased, the magnitude of the
BU or TD signals was correspondingly decreased by 5%.
This successive decrease incorporated the observed de-
crease in the visual response in the SC with increasing

numbers of BU visual distractors (McPeek & Keller, 2002;
Basso & Wurtz, 1998), as well as the decrease in TD
preparatory activity with increasing numbers of potential
saccade target locations (Basso & Wurtz, 1998).

Model Architecture

The interactions between TD and BU signals affected the
time required by the model to accumulate to a single
stable hill of activity (Figure 5C and D). Because the
height of the TD and BU inputs were initially changing
linearly over time, the total resulting input (I ) at each
node location at any time (t) is given by

IðtÞin ¼ IðtÞTD þ IðtÞBU ð6Þ

wherein all types of external TD or BU input have a
Gaussian spatial shape such that the value of input at node
location k is given by

ĨTD;BUk ¼ aTD;BU exp
ððk − lÞΔxÞ2

2σ2
in

					
					 ð7Þ

Here l is the location of the center of the input signal,
Δx is the resolution of the model (2π divided by the
number of neural nodes), and aTD,BU is either a constant
(when constant magnitude of BU inputs are assumed)

Figure 5. Implementation
and functionality of the
two-dimensional neurofield
model. (A) Gaussian-shaped
inputs (representing spatially
defined TD and BU signals)
are initially fed into the model.
(B) The initial network state
before onset of the TD and
BU input signals. (C) Stable
hill of activity maintained in
the model after a dynamic
winner-take-all competition
has resolved the input signals.
The accumulation of this
activity resembles the rise
to threshold of the saccadic
motor command in BUNs
that do not possess a visual
response. (D) Activation of
two neural nodes located
at the direct center of the
resulting saccadic motor
command (Node A, black
line) and competing location
(Node B, gray line) in B
and C (white circles).
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or dependent on σ (when constant volume of BU inputs
are assumed, Simulation 1 width manipulation only).
The width of each of the TD inputs and BU inputs were
derived from the corresponding point images on the SC
(Figure 4).

The internal dynamics of the model in one dimension
were described previously (Trappenberg et al., 2001). Here,
we expanded the dynamic neural field u(x) into two di-
mensions based on the following differential equation,

τ
duðx; tÞ

dt
¼ −uðx; tÞ

þ
Z 2π

0
…

Z 2π

0
wðjx − yjÞAðy; tÞ dy1 … dy2

þ Iinðx; tÞ ð8Þ

wherein τ is a time constant and w(|x− y|) is the weight
kernel that defines the shape of spatial lateral interac-
tion. The weight kernel is dependent on the distance be-
tween nodes and is parameterized by a negatively shifted
Gaussian that results in identical local excitatory and distal
inhibitory interactions at each node.

The activation A of the field is related to u by a sigmoidal
gain function,

AðuÞ ¼ 1
1þ e−βuð Þ ð9Þ

with a slope parameter β = 0.1. All node locations are
scaled to values between 0 and 2π, and we consider a
periodic field so that the neural map forms a torus.

The model implementation had 101 × 101 nodes that
spanned two dimensions. This discrete form of the model
is given by

τ
duix;iyðtÞ

dt
¼ −uix;iyðtÞ þ

X
jx

wix;iy; jx; jy Ajx; jyðtÞΔx
þ Iextix;iyðtÞ ð10Þ

wherein each node is indexed by ix and iy, respectively.
This grid is periodic such that nodes located at the edge

wrap around their connections to the opposite side. A
shift-invariant interaction profile was used because it was
previously reported that visual and motor point images in
the SC map were symmetrical and their size remained
approximately constant and uniform across eccentricity
(Marino et al., 2008). Accumulation to saccade threshold
was plotted from the activity of the single neural node
located at the center of the resulting dynamic winner-
take-all activation (Figure 5D). This accumulation shared
a comparable trend and similar temporal dynamics to the
observed saccade-related signals in the SC (Figure 3B).
Small differences in the temporal dynamics between
network activity in the model (e.g., Figure 5D) and ob-

served SC activity (Figure 3B) was permitted as long as
the model predicted SRTs that closely matched experi-
mentally observed ranges. The resulting network activa-
tion in the model represented the simulated activity of
motor neurons in the SCi whose receptive field was like-
wise centered at the resulting saccade location (Marino
et al., 2008).

Model Parameters

The time course necessary for the model to accumulate to
saccade threshold determined the simulated SRT. Thus,
all temporal parameters and time constants (ton

TD,BU and
tsac
TD) were set in order for the model to approximate the
appropriate behavioral ranges of saccadic latencies re-
ported in humans and monkeys (Marino & Munoz, 2009;
Basso & Wurtz, 1998; Fischer, 1986; Boch, Fischer, &
Ramsperger, 1984). Furthermore, the magnitude of TD
and BU input signals in the model were likewise mapped
to approximate equivalent signals in the frequencies of
action potentials in VMBNs and BUNs in the SCi (Marino
et al., 2008; Munoz & Wurtz, 1995a; Sparks & Hartwich-
Young, 1989). We utilized a width of 0.5 mm as the standard
deviation of the Gaussian shaped excitatory interaction
profile to maintain accuracy and consistency with previous
neurophysiological studies (Dorris et al., 2007; Munoz &
Wurtz, 1995a). The maximal magnitude of distal inhibition
was set to balance equally with the maximal magnitude
of the local excitation to ensure that the parameter region
of the model would resolve to a stable memory state that
maintained the activity of the winner-take-all point image
after all external inputs were removed (Kopecz, 1995;
Kopecz & Schoner, 1995). We used an overall scale factor
of 13 and an additional afferent delay of 50 msec to con-
vert simulation cycle times to the rate of experimentally
observed RTs.

Model Simulations

Multiple simulations were run utilizing BU and TD external
inputs that were based on VMBN and BUN activities mea-
sured within the first 100 msec of visual target appearance
(Figure 4). All simulations were set up and run from the
theoretical time epoch when both BU and TD signals were
simultaneously present within the SCi map (Figure 3B,
Epoch b). In all simulations, the onset of spatially dis-
tinct external input signals (Figure 5A) resulted in winner-
take-all behavior within the model. This winner-take-all
mechanism resulted from competitive interactions be-
tween multiple external TD and BU signals within the net-
work, which ultimately stabilized via lateral inhibitory
interactions into a single Gaussian-shaped hill of activity
that remained stable even after the external input signals
were removed (Figure 5C; see Model Architecture above).
The resolution of multiple signals in the network to a sin-
gle hill of activity caused a nonlinear rise to threshold and
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demonstrated the importance of spatial interactions within
the SC (Figure 5D).Within each simulation, the external TD
and BU signals increased linearly to their maximum
activation and then were removed once network activity
had stabilized.
The maintenance of a stable network activation after

the removal of the external signals demonstrated that
our model utilized a parameter region characterized by
balanced excitation and inhibition that has been argued
previously to be of particular interest for describing the sac-
cadic systems (Kopecz, 1995; Kopecz & Schoner, 1995).
After the onset of the TD and BU signals, the internal
network dynamics resulted in a winner-take-all competi-
tion between each integrated external signal. Eventually,
after several network iterations (discrete time steps (t) of
the model as defined by Equation 10), a stable region
(Gaussian-shaped hill) of activity out-competed all others
and formed at the network location coding the chosen sac-
cade vector. As this competition occurred, the Gaussian
shaped field activation level at the winning location in-
creased until a stable level was reached. We interpreted
this activity increase at the winning location as a nonlinear
accumulating saccade-related signal (Figure 5D). The ac-
cumulating saccade activity in the model most closely re-
sembled the activity of BUNs that did not exhibit a visual
response (MBNs). Once this signal crossed a fixed move-
ment initiation threshold, the model was interpreted to
trigger a saccade to that location. We chose an activation
level of 80% (consistent with Trappenberg et al., 2001) of
the peak of the final stable activity to represent the saccadic
threshold trigger line as all other competing saccadic target
locations were eliminated at this threshold level.

RESULTS

Spatial Properties of Visual, Preparatory, and
Motor Point Images on the SC

We required neurophysiological data to constrain the
modelʼs parameters and ensure that it more accurately
reflected the spatial patterns of activity in the primate
SCi. Figure 4 illustrates point image population activity
in the monkey SCi for a BU visual response (Figure 4A), a
TD preparatory response (Figure 4B), a mixed BU and TD
response (Figure 4C), and a saccadic motor response (Fig-
ure 4D). The peak of the BU visual response (Figure 4A)
was calculated in the delay task (Epoch 2, Figure 2A) when
the visual response was dissociated temporally from sac-
cadic motor activity. In the spatially organized population
of neurons we recorded, the peak visual response occurred
102 msec after target appearance and resulted in a visual
point image with a peak of 151 spikes/sec. The width of
each point image population response was calculated in-
dependently using two separate methods. First, to avoid
any smoothing errors that could potentially have resulted
from symmetrically mirroring activity above and below
the horizontal meridian (see Methods), we calculated the

activity occurring directly along the horizontal meridian
(Figure 4A lower). From this activity profile along the hori-
zontal meridian, we calculated the width of the activity at
half of the peak. This width was 1.4 mm. Second, we also
calculated the width from the full two-dimensional point
image by fitting a two-dimensional Gaussian surface (Euler
method) to the data and calculating the standard deviation
(sigma). The sigma for the visual response in Figure 4A
was σ = 0.53 mm (mean residual = −0.9).

We measured the peak of the TD pretarget preparatory
activity during the gap task, in the epoch, immediately
before the arrival of the target-aligned visual response
(Epoch 6, Figure 2B), which is when the peak prepara-
tory activity occurred (Figures 2D and 3B). The maximal
preparatory response occurred 55 msec after target ap-
pearance and resulted in two point images, one on each
side of the SC that were centered at the location of the
two equally probable potential target locations (10° left or
right, Figure 4B). The maximum value of the TD prepara-
tory activity was 53 spikes/sec. The mean FWHM calculated
along the horizontal meridian was 1.53 mm (right) and
1.79 mm (left; Figure 4B, bottom). The Gaussian fitted
sigma for these two TD responses wereσ=1.35mm (mean
residual =−0.97; right) andσ=1.45mm (mean residual =
−1.05; left).

In the gap task, we recorded a brief period when both
BU visual and TD preparatory responses were present
within the right SCi and an isolated TD preparatory
response was simultaneously present in the left SCi (Fig-
ures 3B and 4C). This temporal overlap occurred because
at the time of the earliest part of the visual response the
preparatory activity in the opposite SC had not yet been
eliminated. Thus, although the TD preparatory spatial pre-
diction signal (opposite to the target) preceded the onset
of the BU visual response, it persisted long enough to
compete and/or interact with it. The existence of this
physiological epoch is critically important for our model
simulations because it justifies the simultaneous input of
TD and BU signals into the model to study how their com-
petitive spatial interactions influenced SRT. Within the
population of neurons recorded, the maximum combined
BU and TD responses occurred in the gap task 90 msec
after target appearance. This resulted in two point images,
one on each side of the SC that were centered at the loca-
tion of the target (Figure 4C, right SC) and the equally likely
potential location where the target could have, but did
not, appear (Figure 4C, left SC). Here, the peak of the BU
visual activity was 134 spikes/sec and the peak of the TD
preparatory activity was 38 spikes/sec. The peak TD pre-
paratory activity illustrated in Figure 4C was reduced
relative to Figure 4B because this combined BU and TD
population point image included VMBNs that did not ex-
hibit TD preparatory activity. The mean FWHM calculated
along the horizontal meridian (Figure 4C, bottom) was
1.73 mm for the BU visual response and 2.07 mm for the
TD preparatory response. The Gaussian fitted sigma for
these were σ = 0.67 mm (mean residual = −0.12, right
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BU visual) and σ = 1.19 mm (mean residual = −0.35, left
TD preparatory).

Finally, we also measured the height and width of the
peak of the saccadic motor burst from saccade-aligned
activity in the gap task (Figure 4D). The peak of this sac-
cadic motor burst was 218 spikes/sec. The FWHM calcu-
lated along the horizontal meridian (Figure 4D, bottom)
was 1.66 mm. The Gaussian fitted width was σ = 0.54 mm
(mean residual = 1.7).

Simulation 1: Spatial Interactions within Single
Input Signals

Recent evidence has shown that the magnitude of visual
responses of individual SC neurons are modulated by stim-
ulus properties such as contrast (Li & Basso, 2008) and
luminance (Marino et al., in revision). This suggests that
the corresponding magnitude of these visual response
point images were also changing. It is not known, how-
ever, whether the width of the point images on the SC
map was also affected by luminance or contrast. SRTs have
been shown to decrease to a minimum with increasing tar-
get luminance ( Jaskowski & Sobieralska, 2004; Doma &
Hallett, 1988; Boch et al., 1984) or contrast (White, Kerzel,
& Gegenfurtner, 2006; Carpenter, 2004; Ludwig, Gilchrist,
& McSorley, 2004). However, our recent study (Marino &
Munoz, 2009) suggested that SRT initially decreased with
increasing target luminance but then increased again at
brighter luminance levels. Here we assess how changes
to the height (magnitude) or width of point images (Fig-
ure 1B) in the model can explain these previous results.

Effects of Input Signal Magnitude

To assess the effect of input signal magnitude on saccadic
latency in the model, we varied the peak magnitude of
the input signal across seven different values that ranged
from 65 to 375 spikes/sec (Figure 6B) while keeping the
width of the signal constant at σ = 0.6 mm. These ranges
were used to approximate the BU visual responses that
were reported within SCi neurons when luminance or
contrast was manipulated (i.e., from below 50 spikes/sec
to more than 350 spikes/sec; Marino et al., in revision; Li
& Basso, 2008). When the magnitude of the input was
increased (Figure 6A–C), the time required by the model
to reach saccadic threshold (simulated SRT) decreased
(Figure 6C) in a manner similar to previous behavioral
results (White et al., 2006; Carpenter, 2004; Jaskowski
& Sobieralska, 2004; Ludwig et al., 2004; Doma & Hallett,
1988; Boch et al., 1984). At low magnitude (65 spikes/sec),
simulated SRT was 383 msec, whereas at high magnitude
(375 spikes/sec), simulated SRT decreased to 133 msec.

Effects of Input Signal Width

To date, no study has examined whether altered stimulus
properties can affect the size of BU visual point images in

the SC; therefore, we examined how input signal size in-
fluenced SRT in our model (Figure 1B). This is an impor-
tant simulation because we hypothesized that increases
in activation area could cause decreases or increases in
SRT, depending on the area of the SC map activated. This
possible relationship between the size of SCi point images
and SRT could explain our previous finding that SRT can
decrease or increase with increasing luminance (Marino &
Munoz, 2009).
To assess the effect of signal width on saccade latency

independently, we manipulated the width of the Gaussian
shaped input while keeping the peak magnitude constant
(150 spikes/sec, a physiological range that matched the
peak of our isolated visual response point image in Fig-
ure 4A). We systematically altered the width (σ) of the
input from 0.4 to 2.1 mm (Figure 6D–F) to insure that
we did not exceed the upper or lower width range of our
recorded BU or TD point images by more than 70% (see
Figure 4). We did not alter the width beyond these values
because larger or smaller values would probably be too
far removed from realistic physiological ranges in the SCi
(range, from 0.54 mm for the motor burst to 1.45 mm
for the preparatory buildup). When the width was in-
creased from 0.4 to 2.1 mm, simulated SRT decreased from
230 msec (σ = 0.4 mm) to 189 msec (σ = 1.2 mm) and
then increased again up to 200 msec (σ = 2.1 mm, black
line in Figure 6E and F). This resulted in a U-shaped SRT
function when width was increased and the magnitude of
the input signal was kept constant. The initial decrease
in SRT that we observed resulted from increases in the
width dependant volume of the input signal. However, as
the width of the signal increased beyond the excitatory
width of the interaction profile within our model (Fig-
ure 1B, right), the surrounding inhibition became acti-
vated and caused an 11-msec increase in SRT when the
width was increased from 1.2 to 2.1 mm. When the exter-
nal inhibition was increased by 20% (achieved by glob-
ally shifting the interaction profile more negatively, see
Methods), the SRT increase with increasing signal width
was 30 msec (difference from 1.2 to 2.2 mm within dotted
line only). Although this relationship follows our initial
prediction, the increase in SRT did not occur for all sig-
nals that were wider than the excitatory interaction pro-
file. In our model, we only observed this increase in SRT
when the input width was between 240% and 278% above
that of the excitatory interaction profile. By changing the
width (while keeping the magnitude of the signal con-
stant), we made the assumption that the overall volume
of the signals were changing.

Constant Volume Hypothesis

It is possible that the magnitude of point images does
not remain constant but that the volume of the overall
activity (regardless of its width or magnitude) might re-
main constant across different conditions. If this is the
case, a constant volume of neural activity would require
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normalization between the width and the peak. Thus any
increase in signal width would result in a corresponding
decrease in its peak magnitude to ensure that the overall
activity (volume) integrated over the SCi map remained
constant.
To examine this constant volume assumption, we ma-

nipulated signal width without the assumption of constant
magnitude. In these simulations SRT increased approxi-
mately linearly with increasing signal width from 124 msec
(σ = 0.4 mm) to 653 msec (σ = 2.1 mm; Figure 6F solid
gray line). Because the constant volume condition re-
sulted in decreases in peak magnitude with each increase
in signal width, the observed increases in SRT were most

strongly influenced by these corresponding decreases in
peak magnitude.

Simulation 1 Summary

Our model predicted that any changes to the magnitude
or the width of point images within the SCi map should
influence SRT. As the magnitude of the input signal was
increased, SRT decreased. As the width of the input sig-
nal was increased, SRT either increased or decreased
then increased, respectively depending on whether a
constant magnitude or constant volume signal was used.
On the basis of these results, the decrease of SRT with

Figure 6. Simulations of the effects of magnitude (A–C) and width (D–F) of a single input signal on modeled SRT. (A and D) Examples of
strong (375 spikes/sec; A, left) and weak (65 spikes/sec; A, right) input signal magnitudes and wide (σ = 1.5 mm; D, left) and narrow (σ = 0.4 mm
spikes/sec; D, right) input signal widths modeled. (B and E) Accumulation to saccade threshold of a neural node centered at the spatial dynamic
winner-take-all network location coding the resulting saccade over a range of signal input magnitudes (B) and widths (E). (C and F) Modeled SRT
for each input signal magnitude (C) and width (F) tested based on saccadic threshold crossing time. Solid and dotted black lines denote effects
of signal width (with constant magnitude) on SRT (F). Dotted black line denotes the effect of increasing global inhibition relative to the solid
black line. Gray data points in F denote effects of changing width while keeping volume of activation constant (i.e., signal magnitude decreases
with increasing width to maintain constant volume).
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increasing target luminance (Bell, Meredith, Van Opstal,
& Munoz, 2006; Jaskowski & Sobieralska, 2004; Doma &
Hallett, 1988; Boch et al., 1984) or contrast (White et al.,
2006; Carpenter, 2004; Ludwig et al., 2004) previously
reported likely results from increases to the magnitude
(Marino et al., in revision; Li & Basso, 2008) of the peak
visual response in the SC. The model also predicted that
changes to the spatial width of input signals also affected
SRT such that increasing the spatial width decreased
SRT until it was wide enough to extend beyond the re-
gion of local excitation and into inhibitory regions of
the map (Figure 1B). The decreases followed by in-
creases in SRT with increasing luminance that we pre-
viously reported (Marino & Munoz, 2009) could be
explained by increases to the width of visual point
images in the SCi.

Simulation 2: Effects of Spatial Signal Distance

It has been reported previously that saccades to two tar-
gets elicit a greater proportion of short latency express
saccades when the targets are closer together (i.e., located
within 45° of each other; Edelman & Keller, 1998). This
result suggests that SRT can be reduced when competing
point images are close enough together to overlap. In our
model, the distance between point images similarly deter-
mines if they will overlap and summate or compete over a
larger distance. We examined how the spatial distance
between TD- or BU-related saccade signals in the model
interacted to influence SRT. Figure 7 shows how SRT was
influenced by the spatial distance between two distinct
input signals of equal size. When the magnitude of the
input signals matched the magnitude of the isolated vi-
sual response point image (150 spikes/sec, σ = 0.6 mm;
Figure 4A), SRT increased with increasing distance be-
tween the nodes up to 1.2–2.4 mm (Figure 7B and C).
Further increases in distance had no effect on SRT. To
determine whether this effect of distance was dependant
on the strength or magnitude of the two competing sig-
nals, we also examined weak magnitude (65 spikes/sec,
which approximated the lower frequency TD prepa-
ratory signals that we recorded) and strong magnitude
(375 spikes/sec, which approximate the highest frequency
discharge of visuomotor burst neurons that we recorded of
which 23% had a peak visual response above 350 spikes/sec
in the delay task) signals independently. As the magnitude
of the two competing signals decreased, the influence
of distance between the signals increased in the simula-
tions (Figure 7B and C). Specifically, at an input magni-
tude of 65 spikes/sec, the increase in SRT between pairs
of signals located 0.5 mm apart and 2.4 mm apart was
162 msec (0.5 mm: 237 msec, 2.4 mm: 399 msec; Fig-
ure 7C, light gray circles). At an input magnitude of
375 spikes/sec, the increase in SRT between pairs of signals
located 0.5 mm apart and 2.4 mm apart was only 41 msec
(0.5 mm: 109 msec, 2.4 mm: 150 msec; Figure 7C, light
black circles).

Simulation 2 Summary

The model predicted that overlapping point images (both
TD and BU) reduced SRT compared with nonoverlapping
point images because overlapping point images summated
to reduce the time to accumulate to saccade threshold
(Figure 1C). Therefore the distance between visual stimuli
or potential saccade target locations in the visual field sig-
nificantly influenced SRT. Furthermore, the influence of
spatial distance between input signals on SRT was strongest
for weaker signals, as these require more time to accumu-
late to saccade threshold and were thus more susceptible
to be influenced by such spatial interactions. This result
supports a previous study (Edelman & Keller, 1998) that
showed increases in short latency saccades when multiple

Figure 7. Simulations of the effects of distance between two single
input signals on modeled SRT. (A) Examples of distant (6 mm, left)
and nearby (0.89 mm, right) input signal distances. (B) Accumulation
to saccade threshold of a neural node centered at the spatial dynamic
winner-take-all network location coding the resulting saccade over
a range of signal input distances. (C) Modeled SRT for each input
signal distance (weak magnitude: black line, 65 spikes/sec; medium
magnitude: dark gray line, 150 spikes/sec; and strong magnitude:
light gray line, 375 spikes/sec) tested based on saccadic threshold
crossing time.
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target stimuli were presented within the same 45° arc of
visual angle (the approximate angular width of a BU visual
point image in the SC; Marino et al., 2008; Anderson et al.,
1998).

Simulation 3: The Effects of the Number of
Competing BU Signals

During visual search experiments, a target must compete
with distractor stimuli that are simultaneously present on
the retina and compete for foveation by the saccadic sys-
tem (Schall & Thompson, 1999). Previous studies of visual
search have demonstrated that the addition of distractors
increases SRT compared with when only one target stimu-
lus is present (Arai, McPeek, & Keller, 2004; McPeek &
Keller, 2001; McPeek & Schiller, 1994). Further increasing
the number of distractors, however, has been shown to
both increase and decrease SRT. Increases in SRT with in-
creasing distractors (“set-size effect”) has been suggested
to result from increases in the time needed to find a target
among increasing numbers of distractors (Cohen, Heitz,
Woodman, & Schall, 2009; Balan, Oristaglio, Schneider, &
Gottlieb, 2008; Shen & Pare, 2006; Carrasco & Yeshurun,
1998). However, other visual search experiments have in-
stead shown that increasing numbers of distractors can
also decrease SRT without sacrificing accuracy (Arai et al.,
2004; McPeek, Maljkovic, & Nakayama, 1999). This reverse
of the “set-size effect” has been hypothesized to be related
to a BU grouping process that shifts attention to the target
more quickly when distractor densities are greater (Bravo
& Nakayama, 1992).
To determine whether these differing effects of dis-

tractor number on SRT could be explained by spatial com-
petition within our model, we examined the effects of 1, 2,
4, 6, or 8 competing BU signals. We utilized magnitude
and width profiles for the target and distractor stimuli that
matched those of the isolated visual response point image
in the SCi that we recorded in the delay task to maximize
physiological accuracy (Figures 2A and 4A). In the simula-
tions, the BU signals were placed at equally spaced loca-
tions around a circle that was centered at the midpoint
of the model. This midpoint represented the center of
the foveal region in the SCi, located between the rostral
poles of each colliculus (Krauzlis, 2003; Munoz & Wurtz,
1993). Even numbers of signals were mirrored across the
vertical meridian to ensure symmetry and equal weighting
between the left and right SC (Figure 8A and D). Because
the simple distance between input signals alone was shown
to affect our simulated SRTs significantly (Figure 7), we
examined the effects of multiple BU signals at two inde-
pendent distances across the left and right SC: far (6 mm
diameter circle) and near (0.67 mm diameter). The far
distance ensured that each BU signal remained spatially
distinct when up to eight signals were simultaneously pre-
sented (Figure 8A). The near distance ensured that the
multiple BU signals would be close enough together to
have overlapping point images of activity that would in-

teract via summation (Figure 8D). The gray line and data
points in Figure 8E and F denote simulations where the
magnitude of the BU signals did not decrease with increas-
ing numbers of signals (see Methods).

When distant BU inputs were used, simulated SRT in-
creased linearly with increasing numbers of competing tar-
gets from 1 (206 msec black and gray lines) to 8 (295 msec
black, 261 msec gray; Figure 8B and C). In contrast, when
near BU inputs were used (Figure 8E,F), simulated SRT in-
creased linearly with increasing numbers of competing tar-
gets from 1 (206 msec black and gray lines) to 2 (221 msec
black, 216 msec gray) to 4 (240 msec black, 230 msec gray)
targets, but then decreased from 4 to 6 (230 msec black,
224 msec gray) to 8 (216 msec black, 207 msec gray) tar-
gets. The initial increase in SRT up to four signals, resulted
from increased competition from relatively few targets; how-
ever, when sufficiently large numbers of BU signals were
present, the activity from each signal summated together
to increase network excitability over a larger area of the
model, and this resulted in an overall reduction of SRT.
The trend was the same when the magnitude of the BU sig-
nals did not decrease with increasing numbers of signals;
however, the overall magnitude of the effect was slightly
decreased.

Simulation 3 Summary

The model predicted that increasing the number of visual
stimuli increased SRT when the corresponding point im-
ages in the SC were spatially separate, but decreased SRT
when the point images overlapped (Figure 1C). This sug-
gests that different set-size effects can result, depending
upon the distance between the point images of the target
and multiple visual distractors. This simple result can ex-
plain the apparent discrepancies between classical set-size
effects (where SRT increases with increasing numbers of
distractors; Cohen et al., 2009; Balan et al., 2008; Carrasco
& Yeshurun, 1998) and other studies which show de-
creases in SRT (with corresponding increases in saccade
accuracy) with increasing numbers of visual distractors
(Arai et al., 2004; McPeek et al., 1999).

Simulation 4: Effects of Number of Competing
TD Signals

In addition to the competition that can occur between
multiple BU stimuli, multiple TD signals can also be present
in the SCi simultaneously (when foreknowledge of task re-
lated goals exists) to influence SRT (Story & Carpenter,
2009; Basso & Wurtz, 1998; Dorris & Munoz, 1998; Fig-
ure 4B and C). The effects of TD spatial target probability
on SRT have been studied previously, and many seemingly
contradictory results have been reported. Specifically, de-
creasing spatial target predictability has been shown to in-
fluence SRT in many different ways including no change
(Kveraga & Hughes, 2005; Kveraga, Boucher, & Hughes,
2002), increases (Story & Carpenter, 2009; Basso & Wurtz,
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1998), decreases (Lawrence, St John, Abrams, & Snyder,
2008), and U-shaped increases and then decreases (Marino
& Munoz, 2009). Although these results appear to be in
conflict, we show how each of them can be reproduced
by altering the spatial properties of the underlying TD and
BU signals (size, magnitude, distance apart, and number
of signals).

Figure 4C demonstrated that both BU and TD signals
were present in the SCi map simultaneously, and we
recreated this epoch to explore how the spatial com-
petition between these different signals influenced SRT.
We set up simulations with 1, 2, 4, 6, or 8 TD input sig-
nals and set the magnitude and width of these signals
to match the corresponding point images that we re-
corded in the SCi (Figure 4B and C). In addition to the
TD signals, we also included one BU signal (with width

matched to the visual response point image Figure 4C)
to mimic the single resulting visual input generated by
target appearance. We increased the magnitude of the
TD signal to 65 spikes/sec (which was larger than the
population average but still within the overall physio-
logical range of this population) in order for it to be
large enough to significantly influence the network ac-
tivity in the model. All simulations were tested inde-
pendently at two distances: far (6 mm diameter circle)
and near (0.67 mm diameter circle). The far distance
(6 mm diameter) ensured that BU and TD signals were
spatially distinct when up to 8 were simultaneously pre-
sented (Figures 1C, left, and 9A) and the near distance
(0.67 mm) ensured that these signals were close enough
together to have overlapping activity (Figures 1C, right,
and 9D). The gray line and data points in Figure 9E and

Figure 8. Simulations of the effects of number of competing BU inputs both nearby (A–C) and far (D–F) from central fixation on modeled
SRT. (A and D) Examples of individual (left) and multiple (six inputs, right) BU input signals at distant (3 mm from central fixation; A, left)
and nearby (1 mm from central fixation; D, right) locations within the network. (B and E) Accumulation to saccade threshold of a neural node
centered at the spatial dynamic winner-take-all network location coding the resulting saccade over a range of signal numbers for distant
(B) and nearby (E) signals. (C and F) Modeled SRT for each number of input signals for distant (C) and nearby (F) targets. Gray lines and data
points denote identical simulations where the magnitude of the BU inputs did not decrease with increasing numbers of signals (see Methods).

330 Journal of Cognitive Neuroscience Volume 24, Number 2



F denote simulations where the magnitude of the TD sig-
nals did not decrease with increasing numbers of signals
(see Methods).
Results were generally similar to Simulation 3. When

distant TD inputs were used, simulated SRT increased
approximately linearly with increasing numbers of com-
peting TD signals from 1 (209 msec, black and gray lines)
to 8 (237 msec, black; 245 msec, gray; Figure 9A–C).
However, when nearby TD inputs were used, simulated
SRT decreased approximately linearly with increasing
numbers of competing targets from 1 (209 msec, black
and gray lines) to 8 (147 msec, black; 136 msec, gray; Fig-
ure 9D–F). Because the TD signals were wider than the
BU signals (σ = 0.6 mm vs. σ = 1.42 mm; see Figure 4),
their activity summated together with as few as two sig-
nals to more easily increase network excitability over a

larger area and thereby reduce SRT. The trend was the
same when the magnitude of the TD signals did not
decrease with increasing numbers of signals; however,
the overall magnitude of the effect was differed slightly.

Simulation 4 Summary

The model predicted that increasing the number of TD
pretarget signals could increase or decrease SRT depend-
ing on the amount of overlap of their point images in the
SCi map. Specifically, when the number of nearby TD po-
tential target locations increased, the corresponding point
images overlapped leading to reduced SRT via excitatory
summation. In contrast, when the number of distant TD
potential target locations increased, the corresponding
point images remained separate, leading to increased

Figure 9. Simulations of the effects of number of competing TD inputs on modeled SRT for signals located nearby (A–C) and far (D–F) from
central fixation (1 BU signal representing the appearance of the visual target was always presented at the resulting saccade location). (A and D)
Examples of individual (left) and multiple (six inputs, right) BU input signals at distant (3 mm from central fixation; A, left) and nearby (1 mm
from central fixation; D, right) locations within the network. (B and E) Accumulation to saccade threshold of a neural node centered at the
spatial dynamic winner-take-all network location coding the resulting saccade over a range of signal numbers for distant (B) and nearby (E) TD
signals. (C and F) Modeled SRT for each number of TD input signals for distant (C) and nearby (F) targets. Gray lines and data points denote
identical simulations where the magnitude of the TD inputs did not decrease with increasing numbers of signals (see Methods).

Marino et al. 331



SRT via lateral inhibitory competition (Figure 1C). It is
possible that this mechanism could explain the complex
results of previous studies that have shown no change
(Kveraga & Hughes, 2005; Kveraga et al., 2002), increases
(Story & Carpenter, 2009; Basso & Wurtz, 1998), decreases
(Lawrence et al., 2008), or increases followed by de-
creases in SRT (Marino & Munoz, 2009) with increasing
numbers of potential saccade target locations. Each of
these different results potentially could be explained by
this model via different combinations of spatially interact-
ing point images (i.e., magnitude, width, and the relative
amount of overlap). For example, Kveraga et al.ʼs (2002)
observations that showed no change in SRT with increas-
ing potential target locations could result from some com-
bination of spatial parameters where the increase in SRT
caused by increasing potential target locations (Figure 9C)
was balanced by the decrease in SRT caused by increasing
their overlap (Figure 9F). Likewise, for a different combina-
tion of parameters, Marino and Munozʼs (2009) U-shaped
result could be explained if increasing potential target
locations are initially spread out enough to increase SRT
(Figure 9C) until their increased overlap (caused by in-
creasing numbers of potential targets) then causes SRT to
decrease (Figure 9D).

DISCUSSION

Here, we presented a new two-dimensional neural field
model of the SCi to account for many previous complex
and contradictory results regarding how BU or TD signals
converge to influence SRT via the spatial interactions of
their point images. We demonstrated that the spatial
properties (magnitude, width, distance apart, or number
of competing signals) of the underlying TD or BU signals
on the SCi map influenced SRT. We presented new neuro-
physiological data, recorded from neurons in the SCi that
were used to calculate point image size and constrain the
model parameters. These physiological point images rep-
resented isolated BU visual responses, TD preparatory
activity, and saccadic motor bursts that were spatially
organized within the SCi map. BU visual point images
had greater magnitude and a narrower width relative to
TD preparatory point images. During the initial part of a
BU visual response to an appearing saccade target stimu-
lus, TD preparatory activity persisted briefly (at other ex-
pected target locations) elsewhere within the SCi map.
This suggests that winner-take-all competition between
separate TD and BU signals takes place within the SCi
map. Our model demonstrates how during this period of
overlap, TD and BU signals compete to determine where
the next saccade will be directed. The model made novel
and experimentally supported predictions about the prop-
erties and spatial interactions of TD and BU signals in
the SCi.

The model demonstrated several simple principles that
govern how spatial signals (BU or TD) interact within the

SCi map to influence SRT: For individual input signals
(BU or TD), increasing the peak magnitude of an input de-
creased SRTwhile increasing the width decreased SRT until
it spread beyond local excitatory distances into inhibitory
ranges, which then caused SRT to increase (Figure 1A
and B). Increasing the number of spatially separate input
signals (TD or BU) increased SRT when the point images
were spatially distant in the map and decreased SRT
when these point images were close enough to overlap
and summate (Figure 1C). Thus, the model demonstrates
how the spatial interactions of individual or multiple TD
and BU point images can influence visually guided saccade
behavior.

An Expansion of Linear Saccade
Accumulator Models

Linear accumulator models remain a popular and useful
framework for describing the neural processes underly-
ing saccade initiation. One such model (LATER) assumes
that a saccadic decision signal increases linearly until
a neural threshold is crossed and a saccade is triggered
to a specific location (Carpenter, 2004; Munoz & Schall,
2003; Hanes & Schall, 1996; Carpenter & Williams, 1995).
Neural correlates of this accumulation signal have been
identified within neurons located within both the FEF
(Everling & Munoz, 2000; Hanes & Schall, 1996) and the
SCi (Paré & Hanes, 2003; Dorris & Munoz, 1998; Dorris
et al., 1997). Previously, this model has been used suc-
cessfully to describe a simplified neural framework that
can explain a wide range of SRT variations including speed
versus accuracy trade-offs (Reddi & Carpenter, 2000),
contrast and probability (Carpenter, 2004), task switching
(Sinha, Brown, & Carpenter, 2006), reading (Carpenter &
McDonald, 2007), and the gap effect (Story & Carpenter,
2009). However, the limitations of LATER are evident
whenever the effects of TD or BU experimental manipula-
tions on SRT are nonlinearly related, such as the complex
increases and decreases in SRT we have explained here via
lateral interactions. In the current study, we used linear
input signals to represent each individual TD and BU sig-
nal within the model. In particular, a TD saccade decision
signal was required by the model to reinforce the specific
BU sensory or TD task-related signal that represented the
appropriate saccade target goal. This ensured that the
correct visual stimulus was chosen over the visual distrac-
tors or other potential target locations. This TD saccadic
decision signal is conceptually very similar to the decision
signal described by the LATER model. By incorporating
a linear accumulating decision signal within our neural
field, we utilized an underlying neural mechanism that
was conceptually similar to LATER; however, we extended
its predictive power into the nonlinear domain. This en-
abled our model to be robust enough to explain the non-
linear and apparently contradictory behavioral results from
previous studies of TD and BU influences on SRT. This
additional explanatory and predictive power was achieved
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via the spatial interactions of competing point images that
resulted from the lateral interactions that are hypothesized
to be present within the SCi map (Dorris et al., 2007;
Munoz & Fecteau, 2002; Munoz & Istvan, 1998).

Oculomotor Violations of Sensorimotor
Transformation Laws

Simple laws govern the basic effects of BU and TD pro-
cesses on motor response latencies across sensory modal-
ities. Hickʼs law states that response latencies increase as
a log function of the number of possible choice response
alternatives (Hick, 1952). Here, we have modeled several
seemingly contradictory studies that have shown agree-
ment with (Thiem, Hill, Lee, & Keller, 2008; Lee, Keller,
& Heinen, 2005; Basso & Wurtz, 1998) and violations of
(Marino & Munoz, 2009; Lawrence et al., 2008; Kveraga &
Hughes, 2005; Kveraga et al., 2002) Hickʼs law. Our simu-
lations have demonstrated that the degree of overlap be-
tween potential saccade target locations within the SCi
map can lead to both agreement with (separate point
images compete and increase SRT) and violations of (over-
lapping point images summate and reduce SRT) Hickʼs
law in the oculomotor system.
Pieronʼs law mathametically describes a hyperbolic

decay function between stimulus intensity and response
latency, such that RT logarithmically decreases with in-
creasing stimulus intensity regardless of the sensory mo-
dality (Pieron, 1952). Manipulating BU target luminance
decreased and then increased SRT with increasing BU tar-
get luminance in violation of this law (Marino & Munoz,
2009). The model revealed that the spatial interactions of
individual BU visual signals within the SC map can produce
violations of Pieronʼs law whenever the width of the BU
point image becomes large enough to activate lateral in-
hibitory connections and cause SRT to increase. Thus,
the interactions of BU and TD point images in the SC
map resulting from local excitation and distal surrounding
inhibition predict a potential neural mechanism that can
account for violations of Hickʼs and Pieronʼs laws within
the oculomotor system. These mechanisms may be unique
within the visuo-saccadic modality and thus may not trans-
late across other sensory modalities or nonoculomotor
motor responses. Future research will be required to test
these assumptions.

Intrinsic versus Extrinsic Sources of
Inhibition in the SC

Previous neural field models of the SC have assumed the
existence of lateral inhibition that is intrinsic to the local
SC circuit that results in winner-take-all behavior (Badler
& Keller, 2002; Trappenberg et al., 2001; Arai, Das, Keller,
& Aiyoshi, 1999; Bozis & Moschovakis, 1998; Grossberg,
Roberts, Aguilar, & Bullock, 1997; Massone & Khoshaba,
1995; van Opstal & van Gisbergen, 1989). This assump-

tion was initially supported by evidence from an in vivo
electrical stimulation study (Munoz & Istvan, 1998) and
an in vitro pharmacological study (Meredith & Ramoa,
1998) that showed evidence of long-range inhibitory con-
nections in the SC. However, later evidence from in vitro
slices cut across the SC lamina (parasaggital or coronal)
only showed evidence for restricted, short-range inhibi-
tion (Lee & Hall, 2006). Furthermore, an in vivo micro-
injection study in the SC (cholinergic agonist nicotine)
did not produce long range inhibitory effects on saccade
performance (Watanabe, Kobayashi, Inoue, & Isa, 2005).
This led Arai and Keller (2005) to eliminate all intrinsic
lateral inhibition from their SC model and instead relied
entirely on extrinsic lateral inhibition that was input into
their model. This external inhibition was assumed to
originate from the substantia nigra pars reticulata, a BG
output structure that projects GABAergic inhibition into
the SCi (Hikosaka, 2007). More recently, studies have pro-
vided evidence for long-range lateral interactions within
the SCi, first, from an in vivo SC study that presented prox-
imal and distal visual targets and distractors to awake be-
having monkeys performing visually triggered saccades
(Dorris et al., 2007). This study demonstrated spatially
dependent lateral interactions (local excitation and distal
inhibition) between targets and distractors; however, this
study could not dissociate between intrinsic and extrinsic
sources of lateral inhibition. A recent in vitro study of
novel horizontal slice preparations of mouse SCi (which
preserved the lateral circuitry across SCi map) has dem-
onstrated long-range lateral inhibitory and excitatory syn-
aptic connections that were intrinsic to the SCi when
isolated by the voltage clamp technique at 0 and −80 mV
(Phongphanee et al., 2008). However, unlike the super-
ficial SC where such long-range inhibition is strong enough
to distally inhibit the surrounding map, the intrinsic in-
hibition in the SCi is relatively weak and largely masked
by local excitation (Phongphanee et al., 2008). Thus addi-
tional extrinsic inhibitory input from areas such as the BG
(Hikosaka, 2007) and superficial SC (Isa & Hall, 2009) are
likely required to shape the lateral interactions within the
SCi map. On the basis of this evidence, we assume that the
combination of these extrinsic and intrinsic sources of lat-
eral inhibition in the SC circuitry can result in the winner-
take-all behavior that we have modeled.

The lateral interactions in our model were a simplified
combination of both the intrinsic (originating within the
SCi) and extrinsic inhibitory signals. We acknowledge that
the interactions between these two types of inhibition are
likely more complex as the relative levels of each could
be modulated by differing amounts of dynamic BU- and
TD-related inhibition from multiple external structures,
including the BG, in addition to the activity dependent
inhibition from within the SC itself. However, such inter-
actions (wherever they are) can be utilized within an orga-
nized neural field to explain the different and apparently
contradictory behavioral findings previously reported.
This highlights the potential power and versatility of such
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simplified principles of lateral competition within a neural
winner-take-all mechanism.
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