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Abstract. Discovering gene co-regulatory relationships is one of most important research in DNA microarray data analysis. The
problem of gene specific co-regulation discovery is to, for a particular gene of interest (called target gene), identify the condition
subsets where strong gene co-regulations of the target gene are observed and its co-regulated genes in these condition subsets.
The co-regulations are local in the sense that they occur in some subsets of full experimental conditions. The study on this
problem can contribute to better understanding and characterizing the target gene during the biological activity involved. In this
paper, we propose an innovative method for finding gene specific co-regulations using genetic algorithm (GA). A sliding window
is used to delimit the allowed length of conditions in which gene co-regulations occur and an ad hoc GA, called the progressive
GA, is performed in each window position to find those condition subsets having high fitness. It is called progressive because the
initial population for the GA in a window position inherits the top-ranked individuals obtained in its preceding window position,
enabling the GA to achieve a better accuracy than the non-progressive algorithm. kNN Lookup Table is utilized to substantially
speed up fitness evaluation in the GA. Experimental results with a real-life gene expression data demonstrate the efficiency and

effectiveness of our technique in discovering gene specific co-regulations.

1. Introduction

DNA microarray technology provides faster, more
efficient and accurate way for measuring the rela-
tive representation of each mRNA species in the total
mRNA population. A microarray experiment involves
measuring the relative representation of a large number
of mRNA species simultaneously, typically thousands
or even tens of thousands, in a set of related biological
conditions (e.g., time points taken during a biological
process). The experimental results for each condition
is compared to a common reference condition and the
result for each gene is the ratio of the relative abun-
dance of the gene in the experimental condition com-
pared to the reference. Typically, the microarray exper-
iment results are represented in a two-dimensional ta-
ble or matrix, with each row representing a gene and
each column representing an experimental time condi-
tion. The entry of the table is the log-transformed ex-
pression ratio of the gene under the given time condi-
tion. The expression ratio measures the relative expres-
sion level of gene in the experimental condition. Pos-
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itive values indicate higher expression level compared
to the reference and vice versa.

DNA microarray provides us with a global view of
gene expression and has been used in a number of dif-
ferent ways. One interesting research direction is to
study co-regulatory relationships among genes under
different temporal conditions. These temporal condi-
tions are the experimental time points along the course
of some biological activity when the expression of
genes are extracted. It has been known that a gene
may be regulated by multiple regulators along the full
timeline and the phenomenon of partial (or local) co-
expression between genes has been identified, meaning
that gene profiles may simultaneously change in a sub-
range of the time course rather than the overall time
course [24]. An interesting problem is to find condi-
tion subsets for observing strong co-regulations for the
target genes and the regulators of target gene in these
condition subsets. This is called Single Gene Approach
for gene microarray analysis [18]. The discovered co-
regulated genes and the associated condition subsets
are gene specific. The answer to this question is very
helpful for human users to better understand and char-
acterize the target gene by means of its co-regulations
with other genes in the discovered sets of experimental
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conditions during the biological activity involved. As
early DNA microarray experiments have shown that
genes of similar function yield similar expression pat-
terns [16], gene-specific co-regulations are therefore
able to assist in function prediction of unknown genes
through in-depth study on its correlated genes whose
function has been known. In this paper, we are inter-
ested in studying the local co-regulations of the tar-
get gene that occur in a few neighboring, but not nec-
essarily consecutive, conditions. Those co-regulations
among conditions located far apart from each other in
the timeline are disregarded. The biological rationale
behind this is that genes are more likely to display
biologically meaningful co-regulations at neighboring
conditions. These co-regulations may experience time-
lag [12], but such lagged co-regulation still often occur
within a relatively short time period compared to the
entire timeline involved.

Even though the problem of gene co-regulation dis-
covery has been studied intensively in recent years,
there is rare research work on gene specific co-
regulation discovery. The most naive way is to evalu-
ate co-regulation between target gene g and each other
gene in the dataset in each possible condition subset.
Another way to approach this problem is to use cluster-
ing analysis to find gene clusters in each condition sub-
set and evaluate the members of the clusters to which g
belongs in order to find its closely co-regulated genes.
Unfortunately, the complexities of these two methods
are at least O(NM?2), where N and M correspond to
the number of genes and number of conditions in the
dataset, respectively. Given the fact that M is usually
large for gene expression data, therefore these meth-
ods are prohibitively expensive. Note that genetic al-
gorithm can be applied to these two native methods to
improve their efficiency. However, in pair-wise evalua-
tion method, IV runs of genetic algorithm is required to
evaluate co-regulation between g and each other gene.
This will still be rather slow if there are large number
of genes in the dataset. While for the clustering-based
methods, the fitness function tailored to clustering pur-
pose will guide the search process towards the condi-
tion subsets where the overall quality of gene clusters
is better. Quite likely, this may lead to the loss of those
condition subsets in which the overall cluster quality is
inferior but the target gene is in fact significantly co-
regulated with others.

In this paper, we propose an approach for mining
local gene-specific co-regulation using genetic algo-
rithm. The basic idea of our approach is to first find
the condition subsets in which the target gene g is

most significantly co-regulated with others and the co-
regulated genes of g are then selected from its near-
est neighbors in these condition subsets. Specifically,
a sliding window is used to scan all the experimen-
tal conditions sequentially and the search of condi-
tion subsets is performed within each window posi-
tion. A progressive genetic algorithm is presented, in
which the top-ranked condition subsets obtained in one
window position will be used to find good subsets in
the subsequent window position. kNN Lookup Table
is used to remarkably boost the efficiency of the ge-
netic algorithm by speeding up the fitness evaluation.
Experimental results demonstrate the efficiency and ef-
fectiveness of the technique we propose.

Roadmap. The remainder of this paper is organized
as follows. Section 2 reviews some of the related work.
Section 3 presents a formal formulation of local gene-
specific co-regulation discovery problem. Our tech-
nique for discovering local gene co-regulation using
genetic algorithm is discussed in details in Section 4.
In Section 5, we elaborate on the technique for speed-
ing up the genetic algorithm. Experimental results are
presented in Section 6 and the last section concludes
the whole paper.

2. Related work

Unsupervised learning, i.e. clustering analysis, is
currently the most commonly used technique for gene
co-regulation study from microarray data. It is able
to identify genes that are co-regulated in a similar
manner, forming groups or clusters, under a set of
specific experimental conditions. The research efforts
have mainly been taken in two aspects in clustering
analysis of time-course gene expression data, i.e. the
clustering algorithms and similarity measures used in
the clustering analysis.

The commonly used clustering algorithms in dis-
covering gene co-regulations include hierarchical clus-
tering method [13], k-means algorithm [13], self-
organization maps (SOMs) [14] and SVD-based clus-
tering algorithm [10] that have come to existence in the
domain of machine learning and data mining for a long
time. Even though they are capable of grouping simi-
lar microarray data into clusters, most of them perform
clustering based on the entire set of conditions (i.e. full
dimensionality). This causes them to miss out those in-
teresting co-regulations embedded in the lower dimen-
sional condition subsets. This renders them incapable
to cope with local co-regulation discovery problem.
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To find the gene co-regulations in some subsets of
conditions, a few subspace clustering methods for gene
expression data, such as coupled two-way clustering
[9], bi-cluster [5] and d-cluster [21], are proposed.
They try to find sub-matrices/blocks defined by a sub-
set of genes on a subset of conditions that satisfy some
user-defined clustering criterion. Since gene expres-
sion dataset is high-dimensional by nature, thus find-
ing all these coherent blocks is a NP problem due to
the curse of dimensionality. Therefore, these methods
are mostly very slow. Moreover, the condition sub-
sets where clusters are observed are not neighboring;
most of them are actually far apart from each other.
This is inappropriate when deal with time-course mi-
croarray data. The temporal conditions where mean-
ingful co-regulations can be observed should be rela-
tively close in the time frame. To handle local gene co-
regulations, Ji et al. [12] recently proposed a method
for identifying local time-lagged gene clusters. In this
method, each gene will be clustered into a few so-
called g-clusters whose members share the same lo-
cal change pattern for ¢ consecutive conditions. Al-
though this method does not suffer the problem of full
dimensionality, it can only identify co-regulations oc-
curring in a few consecutive conditions. The conditions
in which the gene exhibit co-regulation may not con-
secutive in the sense that one or a few conditions may
be skipped in practice. In addition, the local patterns
are rigidly restricted to have a fixed length ¢ so this
method cannot find those patterns with smaller variable
lengths.

As for as the similarity measures are concerned, the
Euclidean-based distance metrics and Pearson’s cor-
relation coefficient are among the widely used ones.
Recently, there are a number of research work fo-
cusing on improving the effectiveness of similarity
measures in handling time series of gene expression
data. These work take into account of some limita-
tions in the Euclidean-based distance metrics and Pear-
son’s correlation coefficient. Feng et al. proposed a
time-frequency approach for clustering gene expres-
sion time series [7]. This method considers time se-
ries data as mathematical functions within a larger sys-
tem and identifies the relationship in these functions
by means of time-frequency analysis. Ramoni et al.
consider the time-series being generated by some sto-
chastic processes and these data can thus be grouped
into clusters that corresponding to their generating
processes [17]. In this work, each gene expression data
is represented as a so-called autoregressive equation
and clusters are generated in a way such that the pos-

terior probability of the resulting clusters can be max-
imized. In [6], Erdal et al. convert each microarray
time-series data into a binary string. This allows for
the modeling of positive and negative co-regulations.
The authors then use longest common subsequence
(LCS) to measure the similarity between genes expres-
sion data in the clustering. Similarly, Kwon et al. mark
the changes of gene expression as an event (rising (R),
constant (C) or falling (F)) by calculating the slope of
the expression value at each time interval, resulting in
a string of events [15]. A global sequence alignment
algorithm, the Needleman—Wunsch algorithm, is then
employed to match the corresponding events of two
genes, based on which a numerical score is generated
as an indicator of the likelihood of a regulatory rela-
tionship existing between those two genes. Yeung et al.
employ dominant spectral component to measure the
similarity between microarray time-series data [22].
Amato et al. focus on the pre-processing of microarray
data for noise removal and feature selection and they
use Negentropy as the similarity metric for clustering
purpose [1]. Because obvious heuristics are not avail-
able, the co-regulation discovery process using these
metric will be rather slow in exploring the subsets of
experimental conditions across the whole timeline.

Filkov et al. address a few fundamental problems in
analysis of microarray time-series data including regu-
lation prediction, edge detection, periodicity and phase
analysis, correlation comparison of distinct length se-
quences and correlation significance of small alphabet
sequences [8]. However, gene-specific co-regulation
discovery problem is untouched in this paper. Inter-
ested readers can refer to [4] for a survey of important
issues in analysis microarray time-series data.

It is worthy noting that, the most salient drawback
of clustering-based analysis methods, regardless of the
algorithms and similarity measures they use, lies in
that they cannot provide direct and efficient support
to the gene specific co-regulation discovery problem.
As discussed in the Introduction section, it will be
computationally prohibitive to extract single gene co-
regulations directly from the gene clusters. Using clus-
tering in the search method such as genetic algorithm
will divert the search direction towards the subsets of
conditions that optimized the overall clustering qual-
ity instead of those where strong co-regulations of the
target gene can be found. Furthermore, the clustering
methods are less appropriate when only a few genes are
likely to co-regulated [18] as these co-regulated genes
may not form a strong cluster. Our approach adopts a
more direct manner to deal with this problem. It first
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finds the condition subsets in which the target gene is
most significantly co-regulated with others, and then
find the co-regulated genes of the target gene from
these condition subsets.

3. Problem formulation

To define local gene co-regulations, we need to de-
limit the allowable length of a condition subset. To this
end, a sliding window with a fixed size, w, will be used.
The size of this window is specified by human users
a priori. This may require some biological knowledge
to decide the maximum possible number of conditions
under which meaningful co-regulations of the target
genes are to be studied. A large window allows for a
study on gene co-regulations within a wider span of
conditions and vice versa. To examine all the possi-
ble condition subsets, this window will be slided from
the leftmost to the rightmost position, with one condi-
tion offset each time. Therefore, for a gene expression
dataset with M dimensions, there will be M — w + 1
different positions for a sliding window with a size
of w. In the extreme case when M = w, there will
be only one position for the window as it now covers
the full dimensionality. Hence, the problem studied in
this paper is general in the sense that it is applicable
to co-regulation discovery in both partial and full di-
mensionality, depending on the specification of win-
dow size w.

Having discussed the sliding window, we can now
formulate the problem to be studied in this paper math-
ematically. Some of the frequently used symbols in this
paper, together their annotations, are presented in Ta-
ble 1.let D = N x M be the table with N genes and M
conditions, representing the given microarray data, and
C = {dy,dy,...,dys} be the full set of experimental

Table 1

Notations
Symbols Meaning
N Number of genes in the expression dataset
M Number of conditions in the expression dataset
w Size of the sliding window
n Top-n subsets of conditions having highest fitness
k The number of closest neighbors considered
Ng Number of genes in the sampling dataset
P Number of individuals in each population of GA
Ng Number of generations in GA
Pe Probability of applying crossover
Pm Probability of applying mutation

conditions. Given a target gene g, the set of top n con-
dition subsets, denoted as S, in which target gene ¢ is
most significantly co-regulated with some other genes
are defined as follows:

S = {81’823'~'9STL}9

where each element s; (1 < ¢ < n) of S is subject to
the following constraints:

1. s CCand |s;] < w;
2. For any other condition subset s ¢ S, s C C and
|s| < w, we have f(g, ;) < f(g.5).
where |s| denotes the number of conditions in subset s.
f(g, s) is the function computing the normalized dis-

tance between ¢ and its kth nearest neighbors in con-
dition subset s, i.e.

_ dist(g, g, 5)
Visl

gi is kth NN(g, 5, D), ey

f(g,9)

where kth (g, s, D) is the kth nearest neighbors of g
from dataset D in s, where k is a human-specified pa-
rameter, and dist(g, g;, s) is the metric used to com-
pute Euclidean distance between g and g; in s. Suppose
Tr = {Il,l’z,. .. ,:E|8|} and Yy = {yl,yz, e ’y|s|} are
the projections of two genes x and y in s. The distance
between x and y in s is formulated as follows:

dist(x,y, s) = 2)

\/m used in Eq. (1) serves as a normalization factor.
It helps render f(g,s) to have comparable magnitude
across different condition subsets s. The set of top co-
regulated genes for the target gene g in a condition sub-
set s; € S (1 < i < n) are simply the kNNs of g
in s;.

Finally, by putting together S and the co-regulated
genes of g in each member of S, we can obtain the
answer set A to gene specific co-regulation problem as
follows:

A= {<Si,gj> | s; € S and
g;j € kNN Set(g, s;, D)}. 3

The answer to the problem is basically a set of
pairs whose first element represents condition subset s;
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and the second element represents a top co-regulated
gene g; of g in s;.

4. Genetic algorithm for discovering gene
co-regulations

The evolutionary algorithm [11], such as genetic al-
gorithm, is inspired by the Darwinian theory of evo-
lution that a competition among the various species
lead to survivals of the only fittest after a natural se-
lection process. The fitter individuals tend to mate
each other more often, resulting in better individu-
als [3]. The basic elements of genetic algorithm con-
sist of individual representation, fitness function, se-
lection operators and search operators. The individu-
als represent the candidate solutions of the problem.
There are various representation of individuals in dif-
ferent problems such as bit vector, LISP program, tree-
like structure, etc. The fitness or goodness of an indi-
vidual is evaluated by means of the fitness function.
The fitness value of an individual is similar to the
objective function value. A higher fitness value indi-
cates a fitter individual and vice versa. The commonly
used fitness function include classification/clustering
accuracy, cost of learning algorithm and complexity
of individuals. Selection operators are responsible for
selecting good individuals in the current population
for generating offerings in the subsequent generation.
Fitness-proportionate selection, rank-based selection
and tournament-based selection are among the most
common selection methods. The search operators are
then applied on these selected individuals to produce
their offerings. Mutation and crossover are two basic
search operators in GA applications.

Often, typically general-purpose black-box GA soft-
ware on straightforward string encodings does not
work very well [2]. Therefore, an ad hoc genetic al-
gorithm needs to be designed to well suit the specific
problem under study basing on a good understanding
of the problem. This involves choosing appropriate in-
dividual representation, fitness function, selection op-
erators and search operators. In the sequel, we will
elaborate on the designing details of the genetic algo-
rithm for gene specific co-regulation discovery.

4.1. Individual representation
To prevent a terminological ambiguity arisen from

the “gene” in the microarray dataset and the “gene” of
individual used in GA domain, we will call the “ene”

of individual used in GA domain as “bit” instead for
the rest of this paper. Our GA technique uses standard
binary individual encoding; all individuals are repre-
sented by strings with fixed and equal length w, where
w is the window size. Using binary alphabet £ = {0, 1}
for gene alleles, each bit in the individual will take on
the value of “0” and “1”, indicating whether or not its
corresponding condition is selected, respectively (“0”
indicates the corresponding condition is absent and
vice versa for “1”). For a simple example, the indi-
vidual “100101” when w = 6 means that the 1st, 4th
and 6th conditions in the current window are selected,
which is a 3-dimensional subset.

Please note that the locus of a bit in an individual
represents only its relative position with respect to the
window it belongs to. The final answer to our prob-
lem may entail a mapping from genotype to phenotype
that involves converting a bit’s relative locus within an
individual into the full dimensionality. This needs the
index of the window to which the individual belongs.
More precisely, let Index(1¥) be the index of a win-
dow W, L(b, W) be the relative offset of bit b in win-
dow W and L(b) be the absolute locus of b w.r.t. full
dimensionality, then we have the following mapping:

L) = Index(W) 4+ L(b,W) — 1, “)

where 1 < Index(W) < M—w+1and1 < L(b, W) <
w, M 1is the number of conditions in the dataset. For
instance, if an individual in the 2nd window position
is “100110” (the window size w is 6), then by apply-
ing the above bit-wise mapping, this individual can be
converted to a condition set {2, 5, 6}, meaning that the
above individual represents a 3-dimensional condition
set containing the 2nd, 5th and 6th conditions in the
whole set of experimental conditions of the microarray
data.

4.2. Fitness function
The fitness function in our GA-based technique, de-

noted by f5(g, s), is defined based on f(g, s) that is
given in Eq. (1). Its definition is presented as follows:

dist(g, g;, s) }1

|s]

falg,s) = f(g.9) " = {
g; is kth NN(g, s, D). (®)]

The purpose to make fitness function fg((g, s) to be
the inverse of f(g, s) is to achieve a consistence be-
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tween fitness function value and fitness of condition
subsets; that is, a high fitness function value corre-
sponds to a fitter solution and vice versa. Give the tar-
get gene g, our problem can be formulated as a maxi-
mization problem that aims to search for those condi-
tion subsets s that are able to maximize fg((g, ).

4.3. Selection

In our work, fitness-proportionate selection, also
known as roulette-wheel selection, is used to select
fitter solutions in each step of the evolution. Fitness-
proportionate selection is a stochastic selection method
where the selection probability of a condition subset,
w.r.t. the target gene g, is proportional to the value of
its fitness function fg(s, 9), i.e.,

fﬁt(sv g)

Pr(s) = ————,
Z{;I fhie(si, 9)

(6)

where P is the population size. Since ff,(g,s) > O,
then each individual stands a chance of being selected
for the next generation.

4.4. Crossover and mutation

Crossover and mutation are two most commonly
used search operators in genetic algorithm. Follow-
ing Holland’s canonical GA specification [11], the
crossover and mutation used in this paper is single-
point crossover and bit-wise mutation. In single-point
crossover, a crossover locus on two parent individu-
als is selected and all the bits beyond that locus in
the strings are swapped between the two parents, pro-
ducing two new children. The bit-wise mutation in-
volves flipping each bit randomly and leads to generat-
ing a new children. In our work, all the new individuals
generated by crossover and mutation are of the same
length, i.e. w, as their parent(s). There are two asso-
ciated probabilities, p. and p;,, used to determine the
frequencies for applying crossover and mutation, re-
spectively. Please note that the application of crossover
and mutation is not mutually exclusive in the sense that
each selected pair of parents will go through tests of
crossover and mutation to decide which search opera-
tor(s) is/are to be applied on them. Normally, we have
De > pm, meaning that crossover is performed in a
much higher frequency than mutation.

4.5. Progressive genetic algorithm

The naive GA-based approach to deal with our prob-
lem involves multiple steps, with a sliding window po-
sition being examined in each step. Genetic algorithm
is applied for each sliding window position indepen-
dently in order to identify top condition subsets in the
window. The initial population for each window posi-
tion is generated randomly. The top n condition subsets
within the window will be maintained as the candidate
individuals. Therefore, the total number of condition
subsets obtained after a window scan on all conditions
will be n* (M —w+ 1), given that there are M —w + 1
different window positions. The top n condition sub-
sets are selected from these n * (M — w + 1) individ-
ual candidates, together with the closely co-regulated
genes in respective condition subsets relative to the tar-
get gene.

Considering the fact that the windows locating at
two consecutive positions are highly overlapped with
each other and the results of a window position are
very useful for the subsequent one, thus a more ef-
fective method is to adapt a progressive fashion in
the search process. In contrast to the naive GA-based
method, the progressive method includes into the ini-
tial population for each window position, except the
first one, the modified individuals produced in its pre-
vious window. The initial population comes from two
sources, the modified individuals from previous win-
dow and some other individuals generated randomly
with a bias. Please note that the entire initial popula-
tion for the window in the first position is generated
randomly without any bias. Next, we will elaborate on
individual modification and biased random population
generation. The detailed description of the progressive
genetic algorithm is presented at the end of this sub-
section.

¢ Individual modification

Let us suppose that a top-ranked condition subset s
is obtained in the window at the ith position, denoted as
W;. Two cases will be considered here in which differ-
ent modification schemes will be applied accordingly:

e Case 1: The first bit of s is “1”, meaning that s
contains the first condition in window W;. An ex-
ample of such a subset s can be “101101”;

e Case 2: The first bit of s is “0”, suggesting that s
does not contain the first condition in window W;.
An example of such a subset s can be “001101”.
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Two modification operations, deletion and insertion,
will be performed on s to generate new individuals for
the next window as follows:

1. The first bit of s will be deleted;

2. If the first bit of s is “1”, then two new individ-
uals will be generated by inserting “0” and “1”
respectively into the tail position of the string ob-
tained in the first substep. If the first bit of s is
“0”, then only one new individual will be gener-
ated by inserting “1” into the tail position.

For instance, if a top-ranked condition subset in W;
is “100010”, then by deleting the first bit and inserting
“0” and “1” respectively at the end, we end up obtain-
ing two new individuals, i.e. “000100” and “000101”,
for W;.1. Whereas if the top-ranked condition subset
in Window ¢ is “000010”, then only one new individ-
ual will be generated from it by deleting the first bit
and inserting “1” at the end for W |, which generates
“000101™.

Now, let we denote by regular expressions Qfw —
1}0 and Q{w — 1}1 the strings with the format of
Q...Q0 and Q...Q1, respectively. Q is a “don’t

w—1 w—1
care” symbol that can be instantiated by either “0”

r “1”. Based on the modification scheme, we can
see that the number of modified individuals matching
Q{w — 1}1 is no less than the number of those match-
ing Q{w — 1}0.

The motivation for modifying the top-ranked indi-
viduals in a window is that they preserve the segment
of strings that are potentially contained in the good in-
dividuals in next window due to the high degree of
overlap between two consecutive window positions.
Thus, these modified individuals, if properly modified,
can provide useful guidance to the search process for
the next window. Noted that the reason why we do not
add “0” to those individuals in Case 2 is because the
new modified individuals, with “0” being added at end,
has been evaluated in the current window and therefore
should be excluded from the initial population of its
subsequent window.

e Random population generation with bias

For a window position, besides modifying the top-
ranked individuals obtained from the preceding win-
dow, we will generate a set of individuals randomly to
create its initial population. To achieve the necessary
diversity of the initial population, it is desired to have
approximately equal probability for the presence of
each condition in every individual of the initial popula-

tion for each window. Unfortunately, random popula-
tion generation without any bias is not able to meet this
need due to inclusion of modified individuals from the
preceding window. As discussed earlier, among those
individuals coming from the preceding window, there
is usually a higher number of modified individuals
matching Q{w — 1}1 than those matching Q{w — 1}0.
Therefore, it is necessary to have a mechanism to off-
set this unbalance by means of introducing some bias
in the initial population generation for each window.
Probabilistically speaking, such bias will help generate
more individuals with the format of Q{w — 1}0 than
those with the format of Q{w — 1}1. To this end, we
first generate random binary strings with a length of
w — 1 and then add “0” and “1” to the end of these
strings with a probability of py and p;, respectively,
Po = p1.- po and p; are defined in three cases as fol-
lows:

o 0.5P777,0
po*P—no—nl’
_05P -
L= =y %)

ifng <n; <0.5P,
pO - 1’ pl - 07
pO == 07 pl = 07

if ng < 0.5P < ny,
ifng+n, =P,

where ng and n; denote the number of modified indi-
viduals from the preceding window matching Q{w —
1}0 and Q{w —1}1, respectively. ng and n; are subject
tong <njpandng +n; < P.

1. When ng < n; < 0.5P, the expected number
of individuals matching Q{w — 1}0 and Q{w —
1}1 introduced by random population generation
should be 0.5P —ng and 0.5 P —n, respectively.
The total number of individuals to be generated

randomly is P — ng — n;. Therefore, we have

0.5P—ng 0.5P—n,
Po=p= no—n| andpl_P ny—"ni

2. Whenng < 0. 5P < nyp, the modlﬁed individuals
with format of Q{w — 1}1 has exceeded half of
the initial population, so only the individuals that
match Q{w — 1}0 will be generated randomly.
Thus, we have pyg = 1 and p; = 0.

3. ng + n; = P suggests that the number of modi-
fied individuals alone has reached the number of
individuals in the initial population, therefore the
step of random generation is purely omitted, with
a zero probability for both pg and p;.

Based on the above discussions, we can see that the
diversity of initial population can only be guaranteed
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in the first case. This is because, in the second and third
cases, the randomly generated individuals cannot fully
compensate the unbalance introduced by inheriting the
modified individuals from preceding window. If one
wishes to ensure that the first case can always occur
in the algorithm, then we should have n < 0.5P. We
prove this in the following lemma.

Lemmal. If n < 0.5P, then we have ng < n; <
0.5P.

Proof. Let xy and x; be number of individuals, out of
the top n individuals obtained in the preceding win-
dow, whose the first bit is “0” and “1”, respectively.
Obviously, zg 4+ x| = n. Based on our aforementioned
method for modifying individuals, we have ng = x|
and ny = x9 + 1 = n. Thus if n < 0.5P, then
no < ny < 0.5P, as desired. O

Lemma 1 has established that, as long as the number
of top-ranked individuals n to be obtained in each win-
dow position is less than half of the initial population
size P, the diversity of initial population can thereby
be realized. Since ng and n; may be changed for dif-
ferent window positions, therefore we have different
po and p; for the initial population generation of dif-
ferent window positions which need to be dynamically
updated as the algorithm proceeds.

The detailed algorithm of progressive GA for gene
specific co-regulation discovery is given in Fig. 1.
CandidateSet is the set for storing the top n individ-
uals obtained in all generations and it is generation-
wisely updated (lines 7-8). There are two nested while
loops (lines 2 and 4). The outer while loop examines all

the possible window positions, whereas the inner loop
performs GA-based subset search within each window.
The progressive GA differs the naive GA in the initial
population generation for each different window posi-
tion (line 3), in which individual modification and bi-
ased random population generation are performed.

5. Speed up genetic algorithm

Like many other GA applications, the most com-
putationally expensive step performed in our genetic
algorithm lies in the fitness evaluation of individuals.
The problem of relative slow fitness evaluation in our
work is because the fitness evaluation for each indi-
vidual (i.e. subset of conditions) involves scanning all
the genes in the dataset in order to find the kth near-
est neighbors of the target gene for computing fitness
function f5:(g, s). Using indexing methods to speed up
kth NN search is not efficient in our problem whatso-
ever due to two major reasons. First, since a large num-
ber of condition subsets may be evaluated in the GA,
it will be expensive to index the genes in each pos-
sible condition subset. Second, for gene-specific co-
regulation discovery problem, we may be only inter-
ested in a small number of target genes, thus the cost
associated in building indexing cannot be amortized by
the one-time performance gain resulting from gene in-
dexing.

To speed up fitness evaluation, we draw on the kNN
Lookup Table proposed in [23] to speed up compu-
tation of fitness function in our technique. A kNN
Lookup Table for a target gene g, denoted as 79, is a
M x k table containing information about its k nearest
neighbors in each single dimension of full data space

Algorithm: Progressive_GA (the target gene g)

CandidateSet — (;

evaluate fitness of s;

S A e

Spop  selection(Spop);
Spop «— crossover(Spop, Pe);
Spop +— mutation(Spop, Prm); } }

e \O
L= o

Return (S, G).

S « Top n individuals in CandidateSet;
G « Co-regulated kNNs of g in S;

WHILE (the window does not reach the last position) DO {
Spop < initial population of P strings;
WHILE (evolution_stop_criterion=false) DO {
FOR each individual s in Spop, DO

CandidateSet — CandidateSet U top n individuals in the current generation;

Fig. 1. Progressive genetic algorithm.
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with M dimensions. The entry x;; of the table repre-
sents the jth nearest neighbor of g in the ith dimension,
where ]l <i< Mand1 < j<k.

The idea of using kNN Lookup Table for speeding
up fhi(g, s) is to approximate fg(g, s) by quickly com-
puting its lower and upper bounds, i.e. fr]flin(g, s) and
fllflax(g, s). For the details regarding how to compute
fn’ﬁin(g, s) and frlflax(g, s) efficiently by means of kNN
Lookup Table, please refer to [23]. The approximated
fitness of s with respect to the target gene g is com-
puted by using the average of frﬁin(g, s) and fl’flax(g, s)
as follows:

fflin(g’ s) + fr’;ax(ga s)
> .

fapp(ga 5) = ®)
kNN Lookup Table is advantageous in the following
two aspects: (1) its construction cost is O(/N M), which
is linear with respect to both number and dimension-
ality of genes in the gene expression data set. For the
whole gene expression data, only one kNN Lookup Ta-
ble is needed; (2) The total complexity for computing
£k (g,5) and fE. (g,s) is O(k?|s|?), which becomes
independent of N and M. It has been shown in [23]
that this fitness approximation scheme leads to a com-
putation saving by up to a factor of k|s| N compared to
the case when no approximation is performed. In our
work, a pre-processing step is performed to construct
kNN Lookup Table based on the gene expression data
set prior to the GA-based condition subset search.
Since we approximate fg(g, s) in the GA, the ac-
curacy of computation is thus somehow limited. To
address this problem, we can perform a refinement
step on the top condition subsets we obtain in the GA
(stored in CandidateSet). Instead of using the lower
and upper bounds of fgi(g,s) for a fast fitness ap-
proximation, the refinement step computes the accu-
rate fitness for top candidate condition subsets and
the top n condition subsets among them will be re-
turned. Admittedly, evaluating each condition subset in
this refinement process is more expensive than the ap-
proximation as it involves more accurate computations.
However, the number of candidate condition subsets is
typically much smaller than the total number of con-
dition subsets approximated in the GA. Furthermore, a
pruning optimization strategy can be devised to speed
up the computation. The basic idea of this pruning op-
timization strategy is that, after the fitness of n candi-
date condition subsets have been accurately evaluated,
we start to maintain the minimum fg(g, ) for the top
n condition subsets we have found thus far, denoted as

MinFit. Those unevaluated condition subsets that satis-
fies frlflax(g, s) < MinFit cannot become the top n con-
dition subsets and can therefore be safely pruned. This
is because that MinFit is monotonically increasing as
we examine more condition subsets in the refinement
step. Specifically, the refinement process takes the fol-
lowing steps:

1. We start the condition subset evaluation with
those subset candidates that have the maximum
frlf]ax(g, s) value. After n condition subsets candi-
dates have been evaluated, the minimum f:(g, s)
value for the top n condition subsets we have
evaluated thus far is assigned to MinFit;

2. For each condition subset s’ in CandidateSet that
has yet been examined, if f[lflax(g, s') < MinFit,
then s’ is pruned away;

3. For a candidate condition subset s that have not
been pruned in Step 2, if fx,(g, s) > MinFit, then
s is included into the top n list and the condi-
tion subset that has the smallest value of f5:(g, s)
in the current list is removed. MinFit is also up-
dated;

4. Repeat steps 2—-3 until all the condition subsets in
CandidateSet have been evaluated.

6. Experimental results and evaluation
6.1. Experimental setup

In our experiments, the Spellman’s dataset is used
that can be downloaded from http://genome-www.
stanford.edu/ cellcycle/data/rawdata. This dataset con-
tains all the data for the alpha factor, cdcl5, and elutri-
ation time courses, and includes the data for the CIb2
and CIn3 induction experiments. We used only the
alpha-factor and CDC28 datasets for our experiments,
as did in [12] and [15]. The dataset used for experi-
mental purpose contains 6178 genes at 35 time points,
forming a 6178 x 35 matrix (this dataset can be down-
loaded at http://www.comp.nus.edu.sg/jiliping/p2/
YeastData.xls).

As the experimental setup, we set the size of the
sliding window w = 10, the nearest neighbors con-
sidered £ = 10, the number of top condition subsets
returned in the end (as well as the number of top in-
dividuals kept as individual candidates in each win-
dow) n = 10, the number of generations for the GA
in each window position Ny = 20, the population size
in each generation P = 30, the frequency of apply-
ing crossover p. = 0.8 and the frequency of apply-
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ing mutation p,,, = 0.2. The same setting is applied
for all experiments except that some major parameters,
such as the window size, number of genes, number of
conditions and total number of individuals to be evalu-
ated, will be varied when experiments are performed to
evaluate their respective effect on the performance. To
create test datasets with desired number of gene and/or
conditions for our experimental purpose, random sam-
pling is performed horizontally and vertically on the
aforementioned real-life dataset. The running time re-
ported in the experiments are averages over 5 samples
with the same number of genes and/or conditions. All
the experimental evaluations are carried out on a Pen-
tium 4 PC with 512 MB RAM.

6.2. Efficiency study

We start the performance evaluation with the effi-
ciency study of our technique. Specifically, we will in-
vestigate the effect of parameters such as the number
of condition, the number of genes, the window size and
the number of individuals needs to be evaluated on the
efficiency of our method.

o Effect of number of conditions

Given that the number of conditions for most gene
expression data sets is large, we thus first evaluate the
effect of number of conditions on the performance.
Figure 2 presents the running time of our technique
when varying the number of conditions. Opposite to
what is normally perceived, the time spent grows lin-
early, rather than exponentially, when the number of
conditions increases. The underlying reason is that the
increase in the number of conditions will only lead
to an linear increase of the number of window posi-

35 T T

tions (recall that the number of window positions is
M — w + 1). Hence, the time complexity scales up
in a linear manner, providing that the search workload
for each window remains unchanged. This property en-
ables the good scalability of our method with regard to
number of conditions.

o Effect of number of genes

Figure 3 presents the running time of kNN Lookup
Table construction and our progressive genetic algo-
rithm under different number of genes. The number of
genes only affects the efficiency of constructing kNN
Lookup Table. For each single-dimensional subspace,
we need to find the kKNNs of the target gene. Thus,
the complexity of kNN Lookup Table construction is
in a linear order with regard to the number of genes.
When kNN Lookup Table has been constructed, we no
longer need to scan all the genes in the data set for kth
NN search in fitness computation. As such, the cost of
fitness computation is independent of the number of
gene; the complexity curve in Fig. 3 becomes roughly
a horizontal line.

o Effect of window size

The window size determines the size of the search
space for condition subsets within each window, which
is in an exponential order of the window size. This
does not necessarily mean that the running time of our
method will be exponential with respect to the win-
dow size whatsoever. The actual running time is de-
pended on how the search workload within each win-
dow is specified. More precisely, if we use the fixed
number of generations and population size for each
generation in the GA, i.e. fixed number of individuals
to be evaluated in each window, then the total search

30
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Fig. 2. Running time under varying number of conditions.



J. Zhang et al. / Gene specific local co-regulations 41

30 T T

251

201

Execution time (Sec.)
c

—6— Construction of kNN Lookup Table
—*— Progressive GA
T

!

1 1
1%00 2000 3000

4000 5000 6000

Number of genes

Fig. 3. Running time under varying number of genes.

@
o

—>— Fixed number
—6— Fixed ratio

(e (o2} ~
o o o

Execution time (Sec.)
w D
o o

15 20

Window size

Fig. 4. Running time under varying window sizes.

workload for each window will be the same. In this
case, increase in window size will consequently lead
to a decrease, rather than an increase, in the number
of window positions and therefore a drop of running
time. Yet, using a fixed search workload for windows
with different sizes is obviously not an effective strat-
egy. A fixed ratio search scheme, in contrast, performs
a search workload that is proportional to the size of
search space in this window. The time complexity for
each window now becomes quadratic with respect to
the window size. Even though the number of window
positions is decreased, the overall complexity is domi-
nated by the quadratic complexity increase within each
window. The running time of these two search schemes
are presented in Fig. 4. For each window position, the
search workload with a fixed number of individuals is
set to be 400 and that of a fixed ratio is 30% of the
search space of the window.

o Effect of search workload

The search workload, i.e. the number of individu-
als to be evaluated, in each window position is mainly
decided by two factors in the GA, the number of gen-
erations Ny and the population size P in each of the
generations. The total workload is equal to P * N.
As aresult, under a fixed number of window positions,
any change in either P or Ny will give rise to a lin-
ear change in the total running time of the algorithm
accordingly. We test five workloads for each window
position in this experiment, ranging from 500 to 1500,
and the results are presented in Fig. 5.

e Comparison with brute force method

The naive brute force method searches exhaustively
the subsets of conditions in each window position for
the optimal solutions. It can be considered as the base-
line method for solving our problem. Apparently, the
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Table 2

Efficiency comparison between brute force method and our method

Methods 5 10 15 20
Brute forth 39 71 219 624
GA-based method (fixed ratio) 12 24 69 210

GA-based method (fixed number) 41 38 34 28

search complexity depends entirely on the window
size that determines the whole search space lattice. In
this experiment, we demonstrate the efficiency of our
method by comparing the time spent in our method
with that in the native brute force method. Different
window sizes, ranging from 5 to 20, are studied. The
results are tabulated in Table 2. We can see that our
method, by using GA, is more efficient than the brute
force method. The fix ration GA-based method is faster
than the brute force method by roughly a factor of é
where « is the ratio of computational workload in GA
against the total workload in each window. Our fix-
number GA-based method, which is independent of the
window size, is faster than the brute force method by a
significantly large margin, especially when the window
size is large.

6.3. Effectiveness study

For effectiveness analysis, experiments are per-
formed to test fitness enhancement of progressive GA
versus non-progressive scheme, the convergence and
finally the accuracy of our approach.

o Fitness enhancement by using progressive GA
For effectiveness study, we first investigate the con-
tribution of progressive GA used in our method to

enhancing the fitness of individuals, compared to the
case when non-progressive GA is used. They primar-
ily differ in that the progressive GA inherits the top-
ranked individuals obtained from the previous window
position with appropriate modifications and introduces
bias in the initial random population generation, while
the non-progressive GA evaluates each window inde-
pendently and the entire initial population for each
window position is generated randomly. Figure 6
presents the averaged fitness of top 10 individuals for
each window position (from No. 1 to 26). The re-
sult demonstrates that the progressive GA outperforms
non-progressive scheme in term of fitness in up to 88%
of the window positions and fitness improvement by
over 10% is observed at about 25% of the window
positions. This result indicates that progressive GA is
more capable of finding fitter individuals than the non-
progressive GA under the same computational work-
load.

e Convergence study

GA tends to produce an increasing number of fit-
ter individuals as evolution proceeds, referring to as
the phenomenon of convergence. In this experiment,
we investigate the convergence of our technique. With-
out losing generality, three window positions, the first,
middle and last (i.e. 1st, 13th and 26th), are picked up
for this study. For a better representation, we normalize
the fitness of condition subsets by dividing them with
the best fitness we observe in the GA. In this way, we
convert the fitness of condition subsets into the range
of (0,1]. For each generation, the number of individu-
als with relative good fitness (=0.7 in our experiment)
are counted. As we can see from Fig. 7 that the number
of individuals with good fitness is increased as the GA
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evolves, which indicates a good convergence of our
method. In addition, the good individuals do not only
appear in the last generation, though the overall con-
vergence of the GA has been observed. A small num-
ber of good individuals have been observed in the ear-
lier generations of the GA. This verifies the validity
of keeping track of the top-ranked individuals in each

generation of GA in our approach to prevent the loss
of good individuals appearing in different, particularly
the early, generations of the GA.

e Comparative study
Finally, we explore the accuracy of our method in
detecting co-regulated condition subsets for the target
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gene. Comparative study are first carried out between
our method and random search method. A reference
result for comparative study purpose needs to be ob-
tained and appropriate accuracy metric should be de-
rived. To get the reference result, we perform an ex-
haustive search for all the possible condition subsets in
each of possible window positions for 10 test genes. In
this search process, we only maintain the top-ranked
condition subsets, rather than their closely co-regulated
genes, for each of the test genes. This is because once
one method can correctly identify a condition subset,
then it becomes trivial to find the closely co-regulated
genes for the test genes in this condition subset. Thus,
the focus of our study is the accuracy evaluation on
the methods in detecting correct co-regulated condi-
tion subsets. The results obtained by the exhaustive
search method, used as the reference, is apparently the
best possible result we can expect to achieve. The re-
sults of our method and the random search method
will both be compared with the reference result. As far
as the accuracy metric is concerned, we define accu-
racy to measure the robustness of the method in cor-
rectly identify the condition subsets. It is defined as
follows:

N,
Accuracy = 7“ x 100%, ©)]

where N, denotes the number of correctly identi-
fied condition subsets by a method a and n denotes

the number of top subsets users are interested in ob-
taining. Here, the instances of method a are random
search method and our method. The correctly identi-
fied condition subsets by a method is the intersection
of this method’s result and that of the exhaustive search
method. The number of condition subsets returned by
the exhaustive search, random search and our method
are all fixed to n. The key considerations in design-
ing this experiment are (1) allowing the same search
workload for random search method and our method to
ensure a fair comparison and (2) the search workload
for the two methods should be considerably smaller
than that required in the exhaustive search method to
prevent them from reducing to the exhaustive search.
In this experiment, the search workload for random
search and our method is set to be 50% of that of
the exhaustive search method. Figure 8 is the box-
plot of the accuracy for the 10 test genes. The first
and second columns in the boxplots present the re-
sults for the random search and our method, respec-
tively. It illustrates that our method is able to achieve
an accuracy of 79%, which is remarkably higher than
the random search method’s 54%. This is due to the
convergence property of GA in our method. Also as
expected, the accuracy of the random search method
(54%) is approximately equal to the workload allo-
cated (50%) simply because there is no involvement
of heuristics to positively guide the search process
in random search. Of course, the accuracy is largely
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Accuracy

0.6

Different methods

Fig. 8. Accuracy of random search method and our method.
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depended on the search workload allocated; a large
workload will certainly lead to a higher accuracy but
a more expensive computation is required and vice
versa.

Besides conducting comparative study between our
method and the random search method, we further
explore the capability of clustering methods in tack-
ling gene-specific co-regulation discovery problem. In-
stead of directly finding the top n condition subsets,
by whichever means, in which the best overall quality
of gene clusters are observed, we choose the following
way for our evaluation purpose that is more economic
to implement. First, we find the top n condition sub-
sets returned by the exhaustive search method and mix
them with a number of randomly generated condition
subsets that are considered to be noise. Then, cluster-
ing is performed and top n condition subsets are found
that feature the best clustering quality. The result of
clustering will be compared with that of the exhaustive
search method to compute its accuracy. The rationale
of this experiment is that if clustering methods cannot
find all or most of the correct top n condition subsets
from the above-mentioned mixture of condition sub-
sets (i.e. the correct top n and noise subsets), then we
can conclude that the clustering methods are sensitive
to the noise we introduce and are not able to correctly
identify the true top n condition subsets. This renders
them fail to cope with gene-specific co-regulation dis-
covery problem successfully. The reason is that search-
ing a larger number of condition subsets, rather than
a small number of them as we do in this experiment,
will only increase the likelihood of end up with an even
lower accuracy level.

Now, we discuss the clustering quality metric. The
intra-cluster sum of distance of a cluster j, 1 < j < k,
in condition subset s, denoted as EJS , 1s defined as the
sum of distance between each gene in cluster j and its
center, i.e.

ns
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where m (10)

where n?, gi j and m$ correspond to the number of
genes within cluster j in s, the ith gene within cluster
7 in s and the center of cluster j in s, respectively. The
overall quality of clustering result in s is quantitized

by the total intra-cluster sum of distance of all the &k
clusters we obtain in s. That is,

k
ES = ZEg. (11)
=1

A lower value of E* indicates a better clustering qual-
ity in s.

In this experiment, we employ k-means clustering
method for clustering genes due to its widespread use
in microarray data analysis. Since cluster quality in k-
means clustering is largely depended on the choice of
pre-defined cluster number k, we therefore test 8 dif-
ferent values for k, ranging from 3 to 10, and pick up
the best cluster quality from these 8 different settings.
We vary the number of randomly generated condition
subsets from 0 to 50 and mix them with the 10 top-
ranked subsets return by the exhaustive search method.

Figure 9 illustrates the results of the clustering
method. 10 genes are tested in this experiment. As the
number of noise condition subsets increases, the ca-
pability of the clustering method in returning the cor-
rect condition subsets drops substantially. Therefore,
it is predictable that, as the number of condition sub-
sets we examine is increased to some large number, the
accuracy of clustering method will tend to become 0
for all the genes under study. The underlying reason is
because the quality of clusters is not compatible with
the objective for strong co-regulations with respect to
a particular gene. In contrast, our GA-based method is
able to achieve a high accuracy (79%) (as presented in
Fig. 8) even when working on a much larger number
of subsets. Its accuracy is able to be further improved
as long as a larger computational workload (still much
smaller than that of exhaustive search) is allowed.

7. Conclusions and discussions

This paper investigates the problem of gene co-
regulation discovery problem in DNA microarray data.
Unlike most of the existing methods that find gene co-
regulations utilizing clustering analysis, our approach
aims to discover co-regulations from the single gene
perspective. The basic idea of our approach is to first
find the subsets of conditions in which the given gene
g is most significantly co-regulated with other genes
and the co-regulated genes of g are reported by select-
ing from its nearest neighbors in these subsets of con-
ditions.
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Fig. 9. Accuracy of clustering method

Considering the search space of subsets of condi-
tions is typically large for microarray dataset, genetic
algorithm (GA) is employed. Due to inapplicability of
the general-purpose black-box GA for our problem, an
ad hoc GA-based algorithms that adopt a progressive
paradigm is proposed. Its salient feature is that they try
to make use of the top-ranked solutions found in each
window position in guiding the search process for its
subsequent window position to boost the overall accu-
racy of the algorithm.

A wide spectrum of experiments are conducted for
performance evaluation. The major experimental re-
sults suggest that our method is linearly scalable with
major parameters such as the number of conditions,
the number of genes, the total search overload exe-
cuted in each window position, etc. The only excep-
tion is the window size. It quadratically determines the
search workload in each window position if the fixed-
ratio search workload is chosen. Given its typical small
value (10 in our work) relative to the number of con-
ditions in the expression data set, the window size will
not give rise to a dramatic blowout of the search space.
In terms of effectiveness, our method features a good
convergence and has a higher accuracy compared to the
naive random search method. We have also shown that
clustering method is not able to successfully cope with
gene-specific co-regulation discovery problem. We be-
lieve that our method can serve as a promising tool for
discovering new and interesting gene co-regulations in
time-course gene expression data.
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