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ABSTRACT 
 
 Location tracking is of paramount importance to many applications such as 

healthcare, retail and navigation. Outdoor tracking can be easily implemented using the 

Global Positioning System (GPS). However, indoor tracking has been a difficult problem 

to tackle because GPS requires the line of sight to the satellites and therefore it does not 

work well in indoor environments. In this thesis, a high-precision indoor tracking system 

is proposed to identify, locate and track a person in an indoor room at a low cost.  

 The proposed tracking system consists of three components: StepscanTM tiles, 

RFID and Kalman-filter based prediction. The StepscanTM tiles can generate precise 

location information. However, using StepscanTM tiles only in an indoor tracking system 

is too expensive because the manufacturing cost of each StepscanTM tile is very high. In 

the proposed system, StepscanTM tiles are deployed to cover a part of the indoor floor 

while RFID provides a full coverage. The location information from StepscanTM tiles and 

RFID is then used as inputs for our innovative prediction algorithm based on the Kalman 

filter, which consequently generates high-precision tracking results. 

 The performance of the proposed system is investigated through extensive 

simulations. Our simulation results indicate that the proposed system increases the 

capability to track and locate a person by at least 24% (more than 50% in some cases), 

with errors ranging from 2.5% to 15%. Furthermore, the proposed system helps to reduce 

the cost of indoor tracking significantly. In terms of the number of StepscanTM tiles 

deployed in the system, a reduction of 7 to 25 tiles can be achieved in the scenarios under 

investigation. In terms of monetary cost, $21,000 to $75,000 can be saved for an indoor 

tracking system considered in our research.  
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CHAPTER 1  INTRODUCTION 

Location tracking is of paramount importance to many applications such as 

healthcare, retail and navigation. Outdoor tracking can be easily implemented using the 

Global Positioning System (GPS). However, indoor tracking has been a difficult problem 

to tackle because GPS requires the line of sight to the satellites and therefore it does not 

work well in the indoor environments. In this thesis, a high-precision indoor tracking 

system is proposed to identify, locate and track a person in an indoor room at a low cost. 

In this chapter, we first presents the motivation of this study. Then we describe the 

overview of the proposed system and the outline of the thesis. 

 

1.1 MOTIVATION 

 Location tracking has gained much interest in the field of healthcare, retail, 

navigation, emergency detection and entertainment industries. To detect the position of 

an object, a typical navigation system generally comprises either an indoor positioning 

system or an outdoor positioning system (or both). In general, the technology used for 

location tracking depends upon the environment (indoors, outdoors, etc.) and the 

application (patient tracking, asset tracking, security applications, etc.). In large outdoor 

environments, the Global Positioning System (GPS) is capable of determining the 

position of the object with excellent accuracy [1]. The system proposed to enable blind 

people to identify landmarks [2] helps to determine the location of an object using a beep 

sound in a small-scale outdoor environment. For indoor environments, as the satellite's 

radio signals weaken, the GPS system often fails to determine the position with desirable 

accuracy [3].  

 For the indoor environment, the tracking techniques generally involve sensors 

such radio-frequency (RF), infrared (IR), ultrasound sensors and Bluetooth [4-6]. 

Although, these techniques can be used to track indoor targets, each have their own 

limitations. Techniques involving radio-frequencies generally rely upon received signal 

strength (RSS) measurements [7] and the fingerprinting methods to estimate the position. 

In general, as the receiver moves away from the transmitter, there is a gradual loss in the 

signal strength. The signal strength measurement may be used to determine the location 



 

 2 
 

of the receiver. In an ideal environment, a direct relationship holds between RSS and the 

distance of the receiver from the emitter. However, in a real environment, severe fading 

may occur due to noise, multipath characteristics and physical changes. Therefore, the 

RSS measurements themselves are not enough to estimate the position of the receiver. To 

overcome the RSS uncertainty (caused by noise and multipath effect), multiple RSS 

samples could be collected and averaged to obtain more accurate positioning with 

fingerprinting positioning methods such as weighted k-nearest neighbors method and 

maximum likelihood. Other localization techniques such as triangulation and angle of 

arrival (AOA) can also be negatively affected by multipath effect. 

 RADAR [5] uses RF with fingerprinting to estimate the location of a user. It 

compares the user's runtime RSSI observations with a set of stored signal strength 

measurements known as fingerprints at each of the base stations to identify the user's 

coordinates. It uses weighted k-nearest neighbors method for fingerprinting in order to 

determine the closest match between the observed RSSI and the stored data. The major 

disadvantage of RADAR system includes extensive training coverage for fingerprinting 

and poor extrapolation for areas not covered during training phase.   

 Indoor tracking systems [8][9] based upon ultrasound or infrared technologies are 

limited by the line-of-sight requirement. Active Badge [4] is one of the earliest location 

estimating application that uses infra-red to determine the location of the user. The 

location is determined by triangulation using periodic IR waveforms. The Active Badge 

suffered from poor IR scalability and high maintenance drawbacks. The Cricket [6] 

application uses RF with ultrasonic sensors. The system uses time-of-fight difference 

between RF and ultrasonic pulses in order to locate a person. The system resulted in 

improved accuracy and stability, but it requires high maintenance and significant 

calibrations.   

 To estimate the indoor location, a number of probabilistic approaches have been 

studied. Bayesian inference [10], Particle filter [11] and Extended Kalman filter [12] are 

a few of them. Bayesian filters for location estimation using ultrasound and infrared have 

been also been surveyed [13][14].  The Kalman filter and its variants are most efficient in 

terms of memory and computation whereas particle filter converge to true posterior state 

for non-Gaussian cases. The Kalman filter has been widely used in the field of robot 
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tracking and navigation. Nonlinear Particle filters are widely used for real time tracking 

with good estimation efficiency, but at a high computational cost [14][15]. 

 Most of the existing indoor tracking systems does not have important features 

such as ease of deployment, low cost, high tracking accuracy and excellent scalability. In 

our research, we attempt to propose an indoor tracking system that incorporates these 

features. 

 

1.2 SYSTEM OVERVIEW 

The major objective of this research is to propose a high-precision indoor tracking 

system that is capable of tracking a moving object precisely at a low cost. This objective 

is achieved by integrating StepscanTM tiles with RFID and estimating the location using a 

Kalman-filter based approach. 

 The StepscanTM technology from ViTRAK Systems Inc. [16] provides a reliable, 

secure, scalable, accurate tracking and localization solution. However, the cost of a 

tracking system based only upon the StepscanTM tiles is very high. The major objective of 

this research is to reduce the overall system cost by decreasing the number of tiles 

deployed in the tracking system without seriously sacrificing the precision. The proposed 

system not only tracks a person walking on the tiles, which are deployed to cover a part 

of the indoor floor, but also attempts to predict the current location of the person when 

he/she is not stepping on the tile.  

 We tackle the problem of reducing the number of tiles in the tracking system by 

designing and developing a system that feeds the StepscanTM tile readings to Discrete 

Kalman filter [17] to estimate the user location. The location estimation results are further 

improved by filtering the Kalman estimations using the RFID system. The resulting 

system not only reduces the number of tiles, but also helps to track multiple users at the 

same time.  

 The Discrete-Kalman-filter based method used in the proposed system employs a 

probabilistic approach to estimate the user location. The behavior of the method is 

dependent upon the availability of the location information from StepscanTM tiles. In the 

cases that the tiles can locate the person, the method simply uses the precision 

information to track him/her. In the scenarios that no location information from the tiles 
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is available (i.e. the person is not stepping on the tiles), the method attempts to estimate 

the user location using previous location information. To further improve the estimation 

results, the zone information from the RFID system is compared with the estimated zone 

data and, within each RFID zone, the estimated position’s RSSI values are examined 

using the real location’s RSSI values. This helps to avoid false estimates and improves 

the location estimation effectiveness.  

 The performance of the proposed system is evaluated through extensive 

simulations. In our simulations, a person walks on an indoor floor with an area of 20x20 

ft2. The floor is partially covered by a few deployed StepscanTM tiles. In addition, the 

experimental area is almost fully covered by the RFID system.  

 

1.3 THESIS OUTLINE 
 

 The rest of the thesis is organized as follows. Chapter 2 provides the background 

and related work. It describes various indoor tracking systems, provides an overview of 

the RFID system and its use in different domains, discusses various filters (Alpha-Beta 

filters, Alpha-Beta-Gamma filters, Discrete Kalman filter, Extended Kalman filter and 

Particle filter), gives a brief introduction to mobility models and compares varied path 

finding algorithms that could be used in the simulations. Chapter 3 presents the system 

design of the proposed system. It includes the details about Discrete Kalman filter, 

various mobility models, StepscanTM tiles, RFID system and the integrated system 

design. Chapter 4 explains the simulation design and provides the detailed experimental 

results. Chapter 5 includes the conclusion and future work. 
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CHAPTER 2 RELATED WORK 

 Indoor tracking has been an active research area over the past years. Many 

different research groups have been attempting to locate the position of a person within 

the indoor environments using various concepts and technologies. This chapter describes 

the work that has been completed in the field of indoor tracking and points out the 

advantages/disadvantages of the existing systems. In addition, this chapter presents an 

overview of several important concepts and technologies that are closely related to our 

simulations and the proposed indoor tracking system. 

 

2.1 INDOOR TRACKING 

 Indoor tracking has wide range of applications in healthcare, retail and 

entertainment industry. The main approaches for indoor tracking are categorized as 

fingerprinting, trilateration, and dead reckoning (DR). Both fingerprinting and 

trilateration are based upon the received signal strength (RSS). The physical position of 

target is determined based on signal parameters such as TOA (Time of Arrival), TDOA 

(Time  difference of Arrival), RSS and AOA (Angle of Arrival) using technologies such as 

Radio Frequency Identification (RFID), Infrared (IR), Sensor Networks, Ultra-Wideband 

(UWB), Global Positioning System (GPS), Standard Wi-Fi based Positioning, etc.   

 The fingerprinting based methods are used to localize the user using wireless 

technology. Fingerprinting localization approach is a two-step approach: the off-line 

phase (training) and the on-line phase (localization). In the training phase, the map of the 

environment is built. The map is based upon the unique parameter (for example: RSS) at 

specific points within the environment. In the localization phase, the run time RSS values 

of the user being monitored are recorded and compared to the values stored in the 

database in the previous training phase. The user location is estimated based upon the 

best match between the user’s current RSS value and training database values [18][19]. 

Fingerprint based localization delivers satisfactory localization accuracy, but requires 

extensive pre-configurations (databases creation) and the map is vulnerable to 

environment changes due to change in room layout. In [20], neural network based model 

is used to determine the position of a mobile user inside a working area. RADAR [5] uses 
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WLAN RSS in combination with fingerprinting method and the theoretical propagation 

model to establish an indoor positioning system.  

 Trilateration is the process of localization by measuring the distance of the user 

from at least three stationary observation points with known locations. In 2- dimension, if 

a point lies on two curves (boundaries of circles), then given the radii and the center of 

the circles, its location can be estimated with some accuracy. The estimation accuracy is 

further improved to a single point using one more reading. This is the concept of 

trilateration. The number of beacon nodes required to accurately estimate the position of 

the user increases with increase in the indoor area, in turn incurring high infrastructure 

cost. Radio frequency based range measurements with high accuracy require high 

sampling rate, this limits the transmission power and the distance of a beacon nodes in 

order to save power and limit interference. For the same reason ultra sound based 

measurements are also limited in distance [21].  
 Dead reckoning is the process of position estimation. The current position 

estimate is based upon the previously measured position and advancing that position with 

the estimated velocity in that direction. Typically, a pedestrian dead reckoning system 

relies on sensors such as accelerometers and magnetometers to estimate the displacement 

of the object (user) in the time elapsed from a known initial location [21]. Since the 

estimation of position is based upon the measurements by sensors, which can be noisy, 

the errors in dead reckoning system can accumulate over time, irrespective of the 

methods of computing the displacement. For example, the displacement can be computed 

using double integrating the acceleration measurements [22], or by step detection [23]. 

To solve the problem of estimation error that accumulates with time, techniques such as 

Kalman filter [24], zero-velocity-update [25] and spectrum control [26] are used. 

 In [27], to establish indoor tracking, a foot-mounted inertial sensor module was 

used to encode the steps of the user, and additionally used sensors such as gyro-meter and 

magnetometers to measure the orientation of the user. Table 2.1 [28][29][30] summarizes 

various localization/tracking systems.  
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Table 2.1 Localization Systems 
 

System Name Technology Accuracy Advantage and Disadvantage 

WhereNet [83] RFID – 

TDOA 

2m to 3m  Distinctively identify the person and 

equipment. 

 High infrastructure cost. 

RADAR [5] WLAN – 

Triangulation 

2.26m  Uses the existing WLAN 

infrastructure. 

 Low level of accuracy and no 

consideration of privacy. 

COMPASS 

[84] 

WLAN – 

Fingerprint 

1.65m  Handles user orientation. 

 System design for single user.  

Active Badge 

[4] 

Infrared – 

RSS 

Room level  Address privacy 

 Low accuracy, long transmission 

period and influenced by fluorescent 

light and sunlight. 

EKAHAU [85] WLAN – 

RSSI 

1m  Low cost and low power consumption. 

 Provides 2-D localization with low 

level of accuracy. 

Cricket [6] Ultrasound, 

RF – TOA 

and 

triangulation 

10cm  Address privacy, low cost, 

decentralized administration. 

 High power consumption. 

Ubisense [86] UWB - 

TDOA and 

AOA 

Tens of  

Centimeters 

 Provides 3-D localization with high 

accuracy without line of sight 

requirement for a large coverage area. 

 High system cost. 

 
In comparison to the existing indoor tracking solutions, ours is a high precision 

indoor tracking solution. Along with reduction in the cost of the tile system, it also, helps 

to track multiple users with good accuracy using the passive RFID system hence, making 
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the system scalable. The system design helps to track and estimate the location of user 

with high precision. The tracking and location estimation effectiveness is measured in 

units of feet. For most of the estimations, the user's location prediction is within one feet 

of the actual location. 

 

2.2 RFID OVERVIEW 
 

 Radio Frequency Identification (RFID) uses radio frequency for data transfer to 

automatically identify and track the objects attached to the tags. RFID technology is 

considered an innovative solution for automatic data collection and asset tracking. RFID 

has advantage over bar coding identification technology as the RFID tags do not 

necessarily need to be within the reader line-of-sight and can be enclosed/embedded 

within the objects being tracked. In healthcare, RFID technology is usually used for 

identification and tracking.  

 The RFID system generally includes tags, readers, antennas and the software 

system. Usually the RFID systems are classified as Passive Reader Active Tag (PRAT), 

Active Reader Passive Tag (ARPT), Active Reader Active Tag (ARAT) and Passive 

Reader Passive Tag [31]. PRAT consists of passive reader that reads signals only from 

active tags. ARPT consists of active reader that transmits interrogator signals and 

receives authentication replies from passive tags. ARAT consists of active reader and 

active tags.  A variation of ARAT uses Battery Assisted Passive (BAP) tags which acts 

like passive tags but has a small battery to power the tag's return reporting signal. As the 

name suggests, Passive Reader Passive Tag system consists of passive RFID reader and 

passive RFID tags. 

 The tags can be passive or active depending upon the power techniques. The 

passive RFID tags does not have battery power, and can communicate with the reader 

only when it is within the electromagnetic field of the reader. Whereas, the active RFID 

tags, using battery power can power the integrated circuits and can broadcast the response 

signal to the reader. Tags can be read only (the serial number is factory assigned) and 

read/write (object-specific data can be edited).  

 Tightly controlled interrogation zones can be created using fixed reader. The 

zones created by the reader are the reading areas for the tags whenever one comes into 
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the proximity of the reader zone. Based upon the frequency of operation, RFID 

technology is regulated (refer Table 2.2 [31] [32][33]). 

Table 2.2 RFID Frequency Bands 
 

Frequency Band Regulation Range Data 

transfer rate 

Remarks Tag cost 

120–150 kHz 

(LF) 

Unregulated 10 cm Low Animal identification, 

factory data collection 

$1 

13.56 MHz (HF) ISM band 

worldwide 

1 m Low to 

moderate 

Smart cards $0.50 

433 MHz (UHF) Short Range 

Devices 

1–100 

m 

Moderate Defense applications, with 

active tags 

$5 

865-868 MHz 

(Europe) 

902-928 MHz 

(North America) 

UHF 

ISM band 1–2 m Moderate to 

high 

EAN, various standards $0.15 

(passive 

tags) 

2450-5800 MHz 

(microwave) 

ISM band 1–2 m High 802.11 WLAN, Bluetooth 

standards 

$25 

(active 

tags) 

3.1–10 GHz 

(microwave) 

Ultra wide 

band 

Up to 

200 m 

High requires semi-active or 

active tags 

$5 

projected 

120–150 kHz 

(LF) 

Unregulated 10 cm Low Animal identification, 

factory data collection 

$1 

 

 The RFID reader scans the tags and transmits the information to the back-end 

database system. The database system filters, analyzes and saves the data. Here-on, the 

data is passed to enterprise application systems to process it as per the application logic. 

The database system can collect data from multiple readers located at various sites via 

wired or wireless networks. In healthcare, RFID systems are usually used in combination 

with technologies such as sensors and alarms, mobile device and Bluetooth for various 



 

 10 
 

purposes. Active RFID tags are primarily used for the tracking purpose whereas, passive 

RFID tags are mostly used for patient identification and drug authentication [34]. 

 In healthcare, RFID has been applied in a variety of practices like tracking, 

identification and verification, sensing, interventions, alerts and triggers, etc. Apart from 

asset and equipment tracking, RFID technology is also used for patient localization [35] 

and tracking psychiatric patients [36], children in intensive care unit [37], etc. Further, 

RFID is used to track and manage the location of patients, as well as manage the waiting-

list of patients at medical office [38]. RFID is used to improve the transportation 

performance of trauma patients [39]. MASCAL [40] tracks patients, staff and equipment 

in mass causality scenarios using RFID. The Harvard hybrid system [41] uses RFID and 

bar code for tracking equipment, patient beds and volunteering staff. In comparison to 

asset tracking, people tracking is more difficult since it involves patients, doctors, 

medical knowledge, confidentiality and social issues [34]. 

 Along with tracking, RFID can be used for identification purposes. Positive 

patient identification (PPI) applications uses a smart patient wristband that can be used to 

identify patient’s information such as name, date of birth, insurance information, etc. 

[42]. RFID has been proposed to identify surgery patients [43]. Aarhus context-aware 

application [44] identifies the patient lying in the bed. Galway RFID/handheld 

application [42] identifies patients using wearable RFID wrist bands. Intel transfusion 

system [45] enhances the blood fusion safety by identifying the patients and staff using 

secure RFID enabled wristbands and badges that contain encrypted data. 

 As already mentioned, the tags are classified as passive and active. For the 

research purpose we will use the passive tags because of its advantages over the active 

tags, such as longer life, light weight, small size, flexible shape and low tag cost.  The 

reader being used is also passive RFID reader as the indoor area being covered is small. 

 

2.3 PREDICTION FILTERS 

             It is a common practice to model a practical system with mathematical equations. 

The general idea of filtering is to form some sort of 'best estimate' for the accurate value 

of a system, given some observation and potential noise of that system [46]. The system 

could either be linear or non-linear, depending upon the relationship between the input 
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values and the output data. The linear system is the system in which the relationship 

between input and output is linear [47] i.e. if y1(t) is response for input x1(y) , and y2(t) is 

response for input x2(y), then scaled and summed input produces scaled and summed 

output i.e.  ax1(y) + bx2(y) = ay1(t) + by2(t). A non-linear system is a system whose 

output is not directly proportional to its input i.e. a system that does not satisfy the 

superposition principle. Generally, systems are often modeled as linear since it makes the 

design and analysis task mathematically tractable. If the system is either inherently linear 

or the degree of nonlinearity is negligible, the behavior of the system is as expected. 

Otherwise, there could be significant deviation from expected behavior and the 

performance of the system could degrade severely. In such cases, it is essential to apply 

nonlinear methods that properly characterize the system behavior.   

            In general, the filters can be categorized as time-invariant filters and adaptive 

filters. The time-invariant filters are filters for which the internal parameters and the 

structure of the filter are fixed. Time invariance [47] means that output of the system is 

identical except for a time delay of T seconds, given the input is same for each T seconds 

delay. For example, if y(t) is the system output due to x(t) input, then the output for input 

x(t-T) will be y(t-T), where T is the delay in input. Hence, output is independent of the 

particular time the input is applied. Adaptive filters are required when either the 

specifications cannot be satisfied by time-invariant filter or the fixed specifications are 

not known. In order to meet a performance requirement the adaptive filters continually 

change their parameters [48]. 

            In the theory of stochastic processes [49] (stochastic process or random process is 

a concept of probability theory and refers to collection of random variables, where 

random variables are variable whose value changes with each experiment outcome), the 

filtering problem is a mathematical model for a number of problems in the field of signal 

processing. To estimate the kinematic components such as position, velocity and 

acceleration of a moving target, stochastic estimation approach is the predominant 

paradigm in target tracking [47]. Conventionally, Kalman filter (KF) [50] and its 

derivatives are used for tracking of a stochastic process. Discrete Kalman filter is a linear 

optimal filtering approach. The nonlinear filtering methods being used for target tracking 

are classified as point based filtering method and the density based filtering method. The 
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point based method includes Extended Kalman filter (EKF) [51][52] and the density 

based method includes Particle filter (PF) [52]. The deterministic approach for tracking 

target includes Alpha-Beta filters [53] and its extensions.      

2.3.1 Alpha-Beta (α-β) and Alpha-Beta-Gamma (α-β-ϒ) Filters         
 
             Alpha-Beta (α-β) [53][54] filters were designed to minimize the mean square error 

in estimating position and velocity. The filter assumes that the velocity remains more or 

less constant over the small time period (the sampling rate). Thus, α-β filters have little 

capacity to track accelerating or maneuvering (changing direction) targets. The filter 

presumes that the system is sufficiently approximated by a model having two internal 

states. The two states are position X and velocity V. Hence, mathematically, the first state 

is obtained as a result of integration of the second state over time. Assuming the velocity 

change to be small between data sampling interval T, the position state X is projected 

forward to estimate its value at the next sampling time as.         ܺ௣௞  =  ܺ௦௞ିଵ  +  ܶ ∗ ௦ܸ௞ିଵ 

As velocity remains approximately constant between data sampling interval, the 

projected value for velocity state at the next sampling time equals the current value as 

given by equation:        ௣ܸ௞  =  ௣ܸ௞ିଵ 

As the filter name suggests, the alpha-beta filter takes selected alpha and beta gains. The 

filter uses alpha times the deviation (difference between the measured position and 

estimated position) to correct the position estimate, and uses beta times the 

deviation (difference between the measured position and estimated position) with a 

normalizing factor T to correct the velocity estimate as given by equations:          ܺ௦௞  =  ܺ௣௞  + ௠௞ܺ)ߙ   −  ܺ௣௞)         ௦ܸ௞  =  ௦ܸ௞ିଵ ௠௞ܺ)(ܶ/ߚ) +   −  ܺ௣௞) 

Where, 

Xs is the estimated position  

Xp is the predicted position  

Vs  is the estimated velocity  

Vp is the predicted velocity 
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α, β are filter gains 

T is the time between the samples (sampling time) 

 As long as the time between the observations (sampling time) T, or the target 

acceleration or their combination is small, alpha-beta filter will perfectly track a 

constant-velocity target moving in a straight direction without any errors [54]. For targets 

moving with constant acceleration, the alpha-beta filter will generate a constant 

prediction error for the position estimations, which is proportional to the acceleration 

[53]:  

௣௞ݔܾ          = X*T2/β 

For constant acceleration, there will also be a steady state constant delay errors for the 

estimated target position ܺ௦௞ and the estimated target velocity ௦ܸ௞ given respectively by 

[53]: 

௦௞ݔܾ           = -acceleration*T2((1-α)/β)           ܾݒ௦௞ = -acceleration*T((2α-β)/2β)  

To account for the constant acceleration, the Alpha-Beta-Gamma filter was designed. The 

filter design was extension of Alpha-Beta filter, and presumes that the second state 

(velocity) can be obtained by integrating the third (acceleration) state, analogous to the 

way state one (position) and state two (velocity) are related in Alpha-Beta filter. An 

equation is formulated to account for constant acceleration and a multiplier, gamma (γ) is 

selected for applying corrections to the new state estimates. The alpha beta gamma 

equations [55] are given as:          ܺ௦௞  =  ܺ௣௞  + ௠௞ܺ)ߙ   −  ܺ௣௞)         ௦ܸ௞  =  ௦ܸ௞ିଵ ௠௞ܺ)(ܶ/ߚ) +   −  ܺ௣௞)         ܣ௦௞  = ௦௞ିଵܣ   + ௠௞ܺ)(ܶ/ଶߛ)   −  ܺ௣௞)) 

The Alpha-Beta filter being a deterministic model, does not account for errors in process 

and measurement. The filter assumes that the measured position is entirely true without 

any errors, and the target is moving in one direction without any change in velocity. Even 

though the Alpha-Beta-Gamma filter is designed to handle changes in velocity due to 

constant acceleration, still it does not accounts for process and measurement errors.  As 

the actual systems usually have process noise and measurement noise associated, we 

cannot rely on deterministic filters such as Alpha-Beta and Alpha-Beta-Gamma to 

provide a reliable and accurate tracking and prediction solution. 
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2.3.2 Kalman Filter (KF) 

            Kalman filter is the most widely used state estimator [17]. It is an optimal 

recursive data processing algorithm [56] that estimates the state of a linear dynamic 

system from a series of random measurements, generally co-related with noise. They are 

modeled on a Markov chain, built on linear operators perturbed by Gaussian noise [57]. 

 The Kalman filter has been widely used in the application of guidance, navigation 

and vehicle controls, aircrafts and rockets. It is widely applied concept in the field 

of signal processing and econometrics [57]. The Kalman filter estimates the state of the 

system that is governed by the linear stochastic difference equation:          ݔ௞ = ௞ିଵݔܣ + ௞ݑܤ  +  ௞ିଵݓ 

With measurement update 

௞ݖ           = ௞ݔܪ +  ௞ݒ

Where, the known constant matrix are: A is nxn state transition matrix, B is nxm control 

matrix, H is qxn measurement matrix.  The random variables wk and vk represent the 

process noise and measurement noise with covariance Qk and covariance Rk respectively 

[12] and are zero-mean (E(wk) = E(vk) = 0) white Gaussian noise.  

,0)ܰ ~(ݓ)ܲ          ܳ) 
,0)ܰ ~ (ݒ)ܲ          ܴ) 
Also, the initial state x0, noise vectors w1...k and v1...k at each step are uncorrelated.  

  The algorithm is a two-step approach [12][57][58] to estimate the state of the 

system. The first step, known as the prediction step, the Kalman filter estimates the 

current state of the system along with noise. The second state, that is, the measurement 

update, updates the estimates of prediction step with the measurement data (generally 

corrupted with some amount of error (noise)). The current estimates are updated using 

weighted average; higher the certainty, more is the weight associated with the estimate. 

As the filter is recursive, it incorporates only the current input measurements and the 

previously estimated state, without the need of the past inputs of estimations. 

2.3.3 Discrete Kalman Filter (KF) 
 
  As mentioned earlier, the Kalman filter is a recursive estimator, that is,  the 

estimation of the current state is dependent only upon the last time step estimated state 
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and the current measurement. The Discrete Kalman filter is generally conceptualized in 

two distinct phases, 'Time update' also referred as prediction phase and 'Measurement 

update' also known as correction phase. The prediction phase estimates the current state 

of the system using the previous state of the system. The prediction phase is also known 

as a-priori state as even though the current state estimate is available, it does not include 

the observation information from the current time. In the measurement update phase the 

a-priori prediction is updated with the measured date (observed information) to refine the 

state estimation. The improved estimate is known as posteriori state estimate. Usually, 

the two phases work in an alternate manner with the prediction stage advancing the 

system state until the next observation is made available. However, this is not entirely 

true, if the observation data is not available, multiple prediction steps may be performed 

without the measurement update [58][59].   

Predict (Time Update):  

 The time update phase projects the state and covariance estimates from time step 

k-1 to step k as shown in equations 2.3.1 and 2.3.2 
 

          Predicted (a-priori) state estimate      ݔ௞|௞ିଵ = ௞ିଵݔ௞ܣ   ௞ିଵ    (2.3.1)ݑ௞ܤ +

 

          Predicted (a-priori) covariance estimate      ௞ܲ|௞ିଵ = ௞ܣ  ௞ܲିଵܣ௞் +  ܳ௞  (2.3.2) 

Measurement Update (Correction):   

 The measurement update phase calculates the Kalman gain, estimates the 

posterior state using the actual measurement and generates the posterior covariance 

estimate as shown in equations 2.3.3, 2.3.4 and 2.3.5 respectively. 

        Optimal Kalman gain  ܭ௞ =  ௞ܲ|௞ିଵܪ௞் ௞ܪ ) ௞ܲ|௞ିଵܪ௞் +  ܴ௞)ିଵ (2.3.3) 

 

          Updated (posteriori) state estimate ݔ௞ = ௞|௞ିଵݔ  + ௞ݖ)௞ܭ   ௞|௞ିଵ) (2.3.4)ݔ௞ܪ −

  

             Updated (posteriori) covariance estimate         ௞ܲ  = ܫ) − (௞ܪ௞ܭ  ௞ܲ|௞ିଵ (2.3.5) 

After each predict and update phase, the process is repeated with the previous posteriori 

estimates to predict the (current) new a priori estimates [12]. It is to be noted that the 
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filter is both deterministic and stochastic. The state matrices are deterministic part of the 

filter and the process and measurement noise are stochastic.  

 The Kalman filter, with adjustment to the gain K make optimal use of the 

measurement. Specifically, the gain K will give more weight to more accurate 

measurement. If the measurement data had been missed for a step, then also the Kalman 

gain adjusts itself optimally. In addition, the filter parameters also adjust to allow for non-

equal times between the measurements. The Discrete Kalman filter, being linear can 

easily represent the physical system in mathematical form. Also, it accounts for both 

process noise and measurement noise of the system. It is an optimal choice for estimating 

the position of a target in 2-D plane.  

2.3.4 Extended Kalman Filter 

 The Extended Kalman filter is an extension of Kalman filter for the processes that 

have a non-linear relationship for measurement and/or estimation. A Kalman filter that 

linearize about the current mean and covariance is known as extended Kalman filter 

(EKF) [12][60][61]. 

 In a non-linear filter, the current state estimate and measurement have a non-

linear relationship with previous state estimate and measurement respectively. This 

relationship is given as:           ݔ௞ = ,௞ିଵݔ)݂ (௞ିଵݑ +  ௞ିଵ            Equation 1ݓ 

௞ݖ         = ℎ(ݔ௞) +  ௞             Equation 2ݒ 

Where, wk and vk represent the process and measurement noise with covariance Qk and Rk 

respectively as in Kalman filter. The non-linear function f(.) relates the predicted estimate 

with the previous step estimate. The non-linear function h(.) relates the measurement with 

the predicted estimate. uk is the control function. To apply the non-linear functions to the 

covariance, at each step the Jacobian is computed with current predicted state. This 

process essentially linearize the non-linear function around the current estimate. The non-

linear relationships can be expressed in linear forms as.          ݔ௞ = ෤௞ݔ   + ௞ିଵݔ)ܣ  − (ො௞ିଵݔ  +  ௞ିଵݓܹ 

௞ݖ           = ௞ݖ̃  + ௞ݔ)ܪ  − (෤௞ݔ  +  ௞ݒܸ 

where,  
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 ,௞ are the actual state and measurement vectorsݖ ௞ andݔ  

 .෤௞  is an a posteriori estimate of the state at step kݔ   .௞ are the approximate state and measurement vectorsݖ̃ ෤௞ andݔ  

  wk and vk represent the process noise and measurement noise. 

  A, W, H, V are the Jacobian matrices defined as:         ܣ[௜,௝] =  ߲ [݂௜]/߲ݔ[௝](ݔො௞ିଵ, ,௞ିଵݑ 0)          [ܹ௜,௝] =  ߲ [݂௜]/߲ݓ[௝](ݔො௞ିଵ, ,௞ିଵݑ [௜,௝]ܪ          (0 =  ߲ℎ[௜]/߲ݔ[௝](ݔො௞, 0)          [ܸ௜,௝] =  ߲ℎ[௜]/߲ݒ[௝](ݔො௞, 0)  
The state estimation equation can be simplified as         ݔො௞ = ෤௞ݔ  +  ௞݁̃௭ೖܭ 

where         ݁̃௭ೖ = ௞ݖ  −  .௞   is the measurement residualݖ̃ 

The predict and measurement updates for Extended Kalman filter (EKF) are defined as: 

Predict: 

 As with Kalman filter, The EKF predict stage projects the state and covariance 

estimates from time step k-1 to step k as shown in equations 2.3.6 and 2.3.7 

          Predicted state estimate                       ݔො௞|௞ିଵ = ,ො௞ିଵݔ)݂  ௞ିଵ)                       (2.3.6)ݑ
 

          Predicted covariance estimate      ௞ܲ|௞ିଵ = ௞ିଵܣ  ௞ܲିଵܣ௞ିଵ் +  ܳ௞ିଵ    (2.3.7) 

Measurement Update: 

 As with Kalman filter, The EKF measurement update stage calculates the Kalman 

gain, estimates the posterior state using the actual measurement and generates the 

posterior covariance estimate as shown in equations 2.3.8, 2.3.9 and 2.3.10 respectively. 

        Near-optimal Kalman gain ܭ௞ =  ௞ܲ|௞ିଵܪ௞் ௞ܪ ) ௞ܲ|௞ିଵܪ௞் +  ܴ௞)ିଵ  (2.3.8) 

 

        Updated state estimate               ݔෝ݇ = ෝ݇|݇−1ݔ   ݇ݖ)݇ܭ + −  ℎ(ݔෝ݇|݇−1))              (2.3.9) 

 

        Updated estimate covariance       ܲ݇ = ܫ)  (2.3.10)             1−݇|݇ܲ(݇ܪ݇ܭ −



 

 18 
 

2.3.5 Particle Filter 

 As with EFK, Particle filter is also a non-linear filter used for state estimation. It 

is known by several names for example, sequential importance sampling (SIS), bootstrap 

filtering, Monte Carlo filtering, sequential Monte Carlo filtering, etc. Particle filter 

foundation is based upon the Bayesian approach to estimation [11][62]. Similar to 

equation 1 and equation 2, suppose the non-linear system is defined by equations.           ݔ௞ାଵ = ௞݂(ݔ௞, ௞ݕ          3 ݊݋݅ݐܽݑݍܧ                                (௞ݓ =  ℎ௞(ݔ௞,  4 ݊݋݅ݐܽݑݍܧ                                         (௞ݒ

Where, k is the time sequence index, ݔ௞ is the state to be estimated and yk is the received 

measurement, wk is the process noise and vk is the measurement noise. The functions ௞݂(ݔ௞, ,௞ݔ)௞) and ℎ௞ݓ  ௞) are time-varying, non-linear state estimation and measurementݒ

equations. Both wk and vk  are uncorrelated and white. It is to be noted that equation 3 is 

defined as first order Markov process [62], and an equivalent probabilistic description of 

the state is (ݔ௞ାଵ|ݔ௞) , which is known as transition density [62]. Similarly for equation 

4, the equivalent probabilistic description of the state is  ݌(ݕ௞|ݔ௞).  

 The objective of Bayesian approach is to estimate the posterior probability 

function (pdf) of the state ′ݔ௞′  based upon measurements ݕଵ, ,ଶݕ ,ଷݕ . . . . ,  ௡. Theݕ

posterior pdf is denoted as ݔ)݌௞| ௞ܻ), where ௞ܻ = ,௜ݕ  ݅ = 1, … , ݇. The Bayesian recursive 

filter consists of prediction and update operations [62]. The prediction operation 

propagates the posterior pdf of the state from time step k forwards to time step k + 1. 

Suppose that ݔ)݌௞| ௞ܻ) is available, then ݔ)݌௞ାଵ| ௞ܻ), the prior pdf of the state is obtained 

by the use of the dynamics model.  ௣(௫ೖశభ|௒ೖ)௉௥௜௢௥ ௔௧ ௖௨௥௥௘௡௧ ௦௧௘௣ =  ∫ (௞ݔ|௞ାଵݔ)݌ ௣(௫ೖ|௒ೖ)௉௢௦௧௘௥௜௢௥ ௙௥௢௠ ௣௥௘௩௜௢௨௦ ௦௧௘௣ ௞ݔ݀  5 ݊݋݅ݐܽݑݍܧ     
The prior pdf is updated to incorporate the new measurements yk to give the required 

posterior pdf as per the Bayes rule.               ݔ)݌௞ାଵ| ௞ܻାଵ) = |௞ାଵݔ)݌(௞ାଵݔ|௞ାଵݕ)݌ ௞ܻ)/ݕ)݌௞ାଵ| ௞ܻ)        6 ݊݋݅ݐܽݑݍܧ  
Where ݔ)݌௞ାଵ| ௞ܻାଵ) is the posterior pdf (corrected estimate after measurement) 

 is the likelihood pdf (௞ାଵݔ|௞ାଵݕ)݌ 

|௞ାଵݔ)݌  ௞ܻ) is the prior (predicted estimate) 



 

 19 
 

|௞ାଵݕ)݌  ௞ܻ is the normalization factor, given by ݕ)݌௞ାଵ| ௞ܻ) =  ∫ |௞ାଵݔ)݌(௞ାଵݔ|௞ାଵݕ)݌ ௞ܻ)݀ݔ௞ାଵ       
Equation 5 and equation 6 define the Bayesian recursive filter with initial condition given 

by the specified prior pdf  ݔ)݌଴| ଴ܻ) with no measurement data. In particular, if 'f(.)' and 

'h(.)' are linear functions and, ′ݓ௞′ and ′ݒ௞′ are additive, independent and Gaussian, then 

the solution is the Kalman Filter. 
 
The Particle filter was invented to numerically implement the Bayesian estimator [11].  

1. Generate N state vectors (also called particle or sample), based upon the initial 

pdf p(x0), which is assumed to be known. The particles are denoted as ݔ଴,௜ା  ݅ =1,2, … . , ܰ, where i is the particle index. The parameter N is selected as a 

tradeoff between computational effort and estimation accuracy. 

2. For each time step k = 1,2,3,...N, perform the following: 

   a. Propagate the particles to the next step to obtain a priori estimation  ݔ௞,௜ି  of 

the N particles using the process function ݔ௞,௜ି =  ௞݂ିଵ(ݔ௞ିଵା , ௞ିଵ௜ݓ ) where each 

noise vector is randomly generated on the basis of the known pdf of ݓ௞ିଵ௜  
    b. With the measurement data, compute the relatively likelihood for each 

particle ݔ௞,௜ି  . To do this, evaluate pdf ݌൫ݕ௞หݔ௞,௜ି ൯, on the basis of the 

measurement equation (equation 4). 
   c. Scale the relative likelihood, such that the sum of all the likelihoods is equal               

to one. ݍ௜ = / ௜ݍ ∑ ௝ே௝ୀଵݍ  

   d. Based upon the relative likelihood, generate the set of posterior particles,       ݔ௞,௜ା .   
   e. Resample (with replacement) the N particles, based upon normalized weights 

to produce a new set of particles. The re-sampling effectively weights each 

prior particle of the state with respect to the current measurement. Hence, the 

re-sampling operation is biased towards the more probable prior samples. As a 

result, more heavily weighted samples may well be chosen frequently. 
 This results in a set of particles that are distributed according to their pdf's ݔ)݌௞| ௞ܻ). 
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 As the physical system can easily be defined using linear mathematical equations, 

i.e. ݌௧ = ௧ିଵ݌  + ݐ௧ିଵݒ  + ଵଶ ܽ௧ݐଶ and ݒ௧ = ௧ିଵݒ  + ܽ௧ݐ, where ݌௧ is the position, ݒ௧ is the 

velocity, ܽ௧ is the acceleration and ݐ is the time step. We prefer to use Discrete Kalman 

Filter in 2-D for the purpose of tracking and prediction. To model for Extended Kalman 

Filter or Particle Filter, the system needs to be defined by non-linear equations. To do 

so, we need the displacement in position and angle of orientation (polar coordinates) thus, 

making the system complex and difficult to estimate. As the Cartesian coordinates are 

easily attainable using the ViTRAK's Stepscan™ tiles, we can easily model the physical 

system using liner mathematical equations defined above.  

 

2.4 MOBILITY MODEL OVERVIEW 

Mobility models are used to represent the movement of mobile users, and how 

their velocity and acceleration changes with time and location. Such mobility models are 

often used for simulation purpose to investigate new communication or navigation 

techniques [63]. In recent years, several mobility models have been proposed and are 

used to evaluate the performance of both indoors and outdoors networks [64]. 

            The approaches addressing the indoor movement are Constrained Mobility Model 

(CM) [65] and Tactical Indoor Mobility Model (TIMM) [66]. In CM, the nodes move 

along edges of a graph representing valid paths inside the building and vertices represent 

the possible destinations. The movement is accompanied by traversing the edges which 

constitutes shortest path, resulting in movements through hallways and doors [65]. The 

TIMM model uses graph based approach similar to CM. The model represents the 

building as a graph, where each room and door or passageway corresponds to a vertex. 

Edges are formed by connecting the vertices with a straight line [66]. The 3-D mobility 

model proposed by Kim, assumes boundary conditions and vertical motion through 

elevators for indoor mobility model [67]. These models do not account for movement of 

a person within a room or a hall and are constrained by the floor plan, passageway and 

doors. Therefore, we cannot use these models to simulate a person walking in a 

room/hall.   

            In random based mobility models the nodes move around randomly, more 

specifically, the destination, speed and direction are all chosen at random [68]. Models 
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like Random-Waypoint-Mobility-Model (RWP) and Gauss-Markov-Mobility-Model 

(GMM) are mainly used random mobility model [66], but RWP model because of its 

simplicity and ease of use is more frequently incorporated for simulations. In RWP 

model, each node randomly selects a waypoint and moves towards that waypoint 

(Waypoint is a reference point in physical space [69]) with a constant speed chosen 

randomly from (0; Vmaximum), where Vmaximum is the maximum allowable speed for 

the node. Once the mobile node reaches that waypoint, it becomes stationary for a 

predefined pause time. After the pause interval, it selects another random waypoint 

within the simulation region (predefined area) and moves towards it. The whole process 

is continuously repeated until the end of simulation [70]. 

            Biologists have studied that animals including birds and sharks abandon 

Brownian motion, the random motion seen in swirling gas molecules [71], for Levy 

flights in search of food. A flight is defined to be a longest straight line trip from one 

location to another that a particle makes without a directional change or pause time [72]. 

Such a mobility model is known as Levy Walks. Injong [73], showed that human walk in 

outdoor settings contain statistically similar features as Levy walks including heavy-tail 

flight and pause-time distributions. Still, Levy walks cannot be used for the simulation 

purpose as our simulation scenario is confined to a 20x20 ft2 indoor area. 

            For the simulation of person walking on a floor of size 20x20 ft2, we modify the 

Random-Waypoint-Mobility-Model to generate four different simulation models. To the 

best of our knowledge, there is no existing realistic mobility model for a person walking 

on a small size area.  

 

2.5 PATHFINDING ALGORITHMS 

 Pathfinding refers to plotting of the shortest route between two points with the 

help of computer application. Generally, the pathfinding algorithm is used with intent to 

find the shortest path or route. The route is generated by searching the graph for a node 

and exploring the neighboring nodes until the destination node is reached. The primary 

purpose of using pathfinding is to find a path between two nodes and also to generate 

optimal shortest path in the graph [74]. Several algorithms have been proposed and 

written to answer the problem of pathfinding. For example Depth First Search algorithm, 
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Breadth First Search algorithm, Iterative Deepening algorithm, Best First Search 

Algorithm, Dijkstra’s Algorithm and A-Star(A*) Algorithm. 

            The Depth First Search (DFS) algorithm progresses the search tree by expanding 

the first child node and diving deeper and deeper until a destination node is found, or 

until no node remains to be traversed. Thereafter, it backtracks, returning to the most 

recent node which has not been explored completely [75]. Eventually the algorithm 

transverses the entire graph. Similar to DFS, the Breadth First Search algorithm is an 

exhaustive search algorithm. Breadth First Search algorithm iterates the graph in levels. 

Starting at a given vertex considered to be at level 0, the system visits all the vertices at 

level 1. Once level 1 is searched, vertices of level 2 are iterated. The level 2 vertices are 

adjacent to level 1 vertex, and so on. The search terminates once all the vertices at all the 

levels are transverse. The BFS algorithm returns the shortest path, but with a poor time 

performance as it needs a lot of memory for queuing [76]. Both DFS and BFS 

[74][76][77][78] can be used to determine a path between two nodes using exhaustive 

search, but may not be able to determine the shortest optimal path. 

            Iterative Deepening algorithm (IDD) repeatedly runs the depth-limited search, 

increasing the search depth with each iteration until the complete depth of the graph is 

reached.  IDD is similar to breath first search algorithm, but with much less memory 

utilization, thus making it more responsive [14]. 

            Although Breadth First Search algorithm and Iterative Deepening algorithm 

finds the path given enough time, other algorithms tends to generate a shortest optimal 

path with less processing time. In general, a person walks in the direction of the 

destination and deviate at a minimum, only to avoid obstacles [12].  Hence, we avoid 

using the Breadth First Search, Depth First Search and Iterative Deepening algorithms 

for the simulation purpose to determine the shortest path. 

            Best first search algorithm uses heuristics to rank the nodes based on the 

estimated cost from current node to the goal node. “Heuristics” can be defined as a useful 

guide for problem solving. It refers to a set of problem-solving rules that do not guarantee 

a solution. The algorithm maintains an OPEN list and a CLOSED list. The OPEN list 

maintains a list of candidate nodes yet to be visited and the CLOSED list maintains a list 

of visited candidate nodes. The OPEN list maintains all unvisited successor nodes for 
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each visited node i.e., the algorithm is not restricted to only neighbors, but also selects the 

best of unvisited nodes. It is this property which distinguished best first search algorithm 

from depth first algorithm and breadth first algorithm [79][80]. The best first algorithm 

search may provide a fast solution, but it may not be an optimized solution because the 

heuristics function might not be very accurate. 

            Dijkstra’s Algorithm and A-Star(A*) Algorithm are classical algorithms for path 

finding and many variations of each have been proposed [81]. Dijkstra’s Algorithm, for a 

given (starting) vertex, can be used to find the shortest path from the starting vertex to all 

other vertices in the graph or from starting vertex to the destination vertex. The algorithm 

is similar to Breadth first search algorithm, but assigns weights to the edges. Whereas, in 

BFS each edge is assumed to have a standard weight of 1. The basic process of Dijkstra’s 

Algorithm is to assign each node (vertex) a distance value. Initially the value is zero for 

initial node and infinity for rest of the nodes [82]. 

            In Dijkstra’s Algorithm, the current node's neighbors are examined and their 

distance 'D' from the starting node to current node is calculated i.e. distance 'D' is equal to 

sum of distance of current node to the initial node and distance of current node to the 

neighbor node. The newly calculated distance value replaces previously calculated 

distance value for that node if the new distance 'D' is less than the previously calculated 

distance value. Once all the neighbors of the current node are examined, the current node 

is marked as visited and will not be examined again. The neighbor node with the new 

lowest distance value is marked as the new current node and the process repeats until the 

target is marked as visited, or all nodes are marked as visited without the target being 

found. Once the target is marked as visited, path is traced from the destination node to the 

starting node [82]. 

            A good variation of Dijkstra’s Algorithm is A-Star(A*) Algorithm. A* Algorithm 

assigns weights to each node which is equal to the sum of weight of the edge to current 

node and the approximate distance between current node and the target node. The 

approximate distance is establish by heuristics and represents a minimum possible 

distance between the current node and the target node. A* Algorithm improves upon the 

behavior of Dijkstra's algorithm using the heuristic values [74]. 
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            For each node being examined, A* Algorithm maintains three values: f(x), g(x), 

and h(x). f(x) is the sum of g(x) and h(x), where g(x) is the distance from the initial node 

to the node currently being examined through all the previous nodes traversed to get to 

that point and h(x) is the heuristic distance from the current node to the target node. The 

heuristic can be calculated in several ways, and for the purpose of simulation we used 

Manhattan distance. Manhattan distance is simple to calculate and is described as the 

distance between the two points along the x-axis plus the distance between the two points 

along the y-axis. To calculate Manhattan distance, subtract the target node's x-value from 

current node's x-value and take its absolute value. Add this to the absolute value of the 

difference between target node's y-value and current node's y-value. Calculation of 

heuristics using Manhattan distance is based upon the assumption that mostly the distance 

from the current node to the target node deviates from a straight line as it passes through 

more than one node. Therefore, a horizontal displacement plus vertical displacement 

formula is likely to result in value closer to the actual distance that will be traveled, than 

an estimate using plain Euclidean distance [82]. 

            A* Algorithm also maintains an OPEN list and a CLOSED list, which is a list of 

all unvisited nodes and list of all visited nodes respectively. At the start of search, all 

nodes are in the OPEN list with starting node marked as current node. The values of g(x), 

h(x), and f(x) are calculated for each of its neighbors. If the latest f(x) value of a node 

being examined is less than the earlier f(x) value for that node, the new f-value replaces 

the old f-value. There onwards, the current node is moved from the OPEN list to the 

CLOSED list and the neighbor node with the lowest f(x) value is marked as the new 

current node. The search process repeats until the target node is added to the CLOSED 

list, or there are no more nodes on the OPEN list [82]. 

            As already mentioned, A* Algorithm is equivalent to Dijkstra's Algorithm if the 

heuristics for A* Algorithm evaluates to zero. The heuristic value plays an important role 

in A* algorithm. As the heuristics approximation gets closer to the true distance, A* 

Algorithm examines fewer nodes and resulting in faster generation of optimal paths. A* 

Algorithm examines fewest nodes (hence fastest) when the heuristic approximation is 

exactly equal to the true distance. However, generally it is not possible to compute the 

true distance using heuristics function [44]. A* Algorithm generates pathways which are 
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not smooth. As the simulation graph is 20x20 matrix (for calculating the path using 

pathfinding), we rely on heuristics and calculate the path using A* Algorithm. Another 

drawback with A* algorithm is the memory requirement as the algorithm scans and 

builds the entire path in the open list before the path is actually traced by the user, as the 

A* algorithm is being used for non-linear path generation for the simulation models, this 

drawback is of no significance in the system design. To smooth the path returned by A* 

Algorithm, gradient descent algorithm is applied over the path generated. 
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CHAPTER 3 SYSTEM DESIGN 

 In this chapter, we present the proposed high-precision indoor tracking system. As 

mentioned previously, the StepscanTM tiles [16] can be used to locate a person in an 

indoor environment with excellent accuracy and reliability. However, the cost of a system 

consisting of only StepscanTM tiles is very high. The proposed system is designed to 

lower the cost by integrating passive RFID technology with StepscanTM tiles and filtering 

the collected data using Discrete Kalman Filter [87]. With the proposed system, we are 

able to reduce the number of tiles required to track the person without sacrificing the 

tracking precision significantly. 

 

3.1 PRELIMINARIES 

3.1.1 Discrete Kalman Filter 
 
 The Discrete Kalman filter can estimate the position of point in 2-dimensional 

plane. To estimate the position of a point in a plane, we first need to define the physical 

motion of the point and describe the same in mathematical form. In this section, we will 

explain the physics of motion, white noise, Kalman filter’s discrete time model and error 

covariance matrices. 

      Physics of motion 

 Assume (ݐ)݌ be the position of target that varies with time t. Derivate to yield 

Taylor series.  

(ݐ)݌          = ( ௡ݐ) ݌ + (௡ݐ)̇݌ݐ∆  +  ∆௧మଶ! (௡ݐ)̈݌ + ∆௧యଷ! (௡ݐ)⃛݌  +  … ..                       (3.1.1) 

where, (ݐ)݌ is the position, ̇݌ is the velocity and ̈݌ is the acceleration of target in motion. 

The above Taylor series expansion hold true for small value of t (i.e. ∆ݐ). If acceleration 

is constant, the third derivate of the Taylor series reduces to zero and the series is reduced 

to:  

(௡ାଵݐ)݌         = ( ௡ݐ) ݌ + (௡ݐ)̇݌ݐ∆  +  ∆௧మଶ!  (3.1.2)                 (௡ݐ)̈݌

This holds true for very small variations in acceleration and for small time intervals ∆ݐ. 
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 If velocity is constant, the second derivate of the Taylor series reduces to zero and 

resulting series is as follows: 

(௡ାଵݐ)݌         = ( ௡ݐ) ݌ +  (3.1.3)                   (௡ݐ)̇݌ݐ∆ 

As a result of equation F= m.a, where a is the acceleration, equation 3.1.2 suggests that 

the force F resulting in the movement of the target of mass m, is constant. This holds true 

for motion of technical systems, but for humans, the force keeps on changing.  The 

motion of equations 3.1.2 and 3.1.3 holds true only for constant acceleration and constant 

velocity motion.         

 Humans generally don’t walk with constant acceleration or constant velocity. 

Their motion under consideration is associated with white noise. So, human motion for 

constant acceleration becomes: 

(௡ାଵݐ)݌          = ( ௡ݐ) ݌ + (௡ݐ)̇݌ݐ∆  +  ∆௧మଶ! (௡ݐ)̈݌ +  ݁ݏ݅݋݊ ݁ݐℎ݅ݓ 

And motion with constant velocity becomes: 

(௡ାଵݐ)݌          = ( ௡ݐ) ݌ + (௡ݐ)̇݌ݐ∆  +  ݁ݏ݅݋݊ ݁ݐℎ݅ݓ 

For motion with constant acceleration, the acceleration component of the motion is the 

source of white noise, (i.e. the deviation from constant acceleration). For motion with 

constant velocity, a variation in velocity (i.e. acceleration) is the source of white noise.  

 The below equations describe the relation between velocity at time t+1 and time t 

for constant velocity and constant acceleration:          ݒ(ݐ௡ାଵ) =  (3.1.4)        ( ௡ݐ) ݒ

(௡ାଵݐ)ݒ         = ( ௡ݐ) ݒ +  (3.1.5)       (௡ݐ)ܽݐ∆ 

      White noise 

 A random vector is said to be a white noise vector if each of its components are 

statically independent (i.e. have zero mean probability distribution and finite variance). 

Two variable are statically independent if they are statically uncorrelated (i.e. have zero 

covariance [94]).  

 The white noise vector's 'w', covariance matrix with n elements is nxn diagonal 

matrix, where each diagonal element represents the variance. In addition, if each element 

of w has zero mean normal distribution and same variance(ߪଶ), then w is known 

as Gaussian white noise vector having multivariate normal distribution.  
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 The power spectrum P of a random vector w can be defined as Pi = E(|Wi|2), 

where, W, is Fourier transform coefficients. With this definition, Gaussian white noise 

vector will have a perfectly flat power spectrum (i.e. Pi = ߪଶ for all i). 

      Kalman filter discrete time model 

 As mentioned in Section 2.3.2, the Kalman filter estimates the state of the system 

that is governed by the linear stochastic difference equation:          ݔ௞ = ௞ିଵݔܣ + ௞ݑܤ  +  ௞ିଵݓ 

If no input vector is available, the state of the system can be expressed as:           ݔ௞ = ௞ିଵݔܣ +  ௞ିଵݓ 

And the measurement update as: 

௞ݖ         = ௞ݔܪ +  ௞ݒ

 To estimate the location of a particle in 2-dimension, the vector ݔ௞ = ,௞݌]  ,்[௞ݒ

known as process state vector consists of elements representing position ݌௞  and 

velocity ݒ௞. Matrix A relates the previous state estimate to the current state estimate ݔ௞, 

i.e. how the current position at time t is related to previous position and velocity at time t 

- 1.   

 The state matrix A describes the motion of object as per the physical model 

equations 3.1.2 and 3.1.3. For 1-dimention motion, the matrix A is written as 

ܣ         = ቂ1 0ݐ∆ 1 ቃ 
 The process noise vector ݓ௞ associated with the random process, as per [87] is 

defined as:  

         ቂݓ௣,௞ݓ௩,௞ቃ =  ⎣⎢⎢
⎢⎡න ௞ାଵݐ) −  ߬)ܺ௔(߬)݀߬௧ೖశభ௧ೖ න ܺ௔(߬)݀߬௧ೖశభ௧ೖ ⎦⎥⎥

⎥⎤ 
where ݓ௣,௞ is the process error related to the position, ݓ௩,௞ is the process error related to 

the velocity. ߬ is the time difference ‘t2 -t1’. ܺ௔(ݐ) is a random variable describing the 

acceleration (having the characteristics of white noise).  
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 As ܺ௔(ݐ) is a random variable, the integrals ݓ௣,௞ and ݓ௩,௞ cannot be determine. 

Only, moments like expected value and variance can be determined from the random 

variable ܺ௔(ݐ).  
 Assuming ݓ௞ = 0, the equation ݔ௞ = ௞ିଵݔܣ + ௞ݔ ௞ିଵ reduces toݓ  =  ௞ିଵ. Thisݔܣ

part of equation is the deterministic part. Using the above information, this equation can 

be rewritten as.          ቂ݌௞ݒ௞ቃ =  ቂ1 0ݐ∆ 1 ቃ ቂ݌௞ିଵݒ௞ିଵቃ                                     (3.1.6) 

Equation 3.1.6 is the detailed deterministic equation, representing equation of motion 

with constant velocity in 1-dimension. The first component of ݔ௞ (i.e. ݌௞) is the result of ݌௞ିଵ + ௞ݒ is the result of (௞ݒ .i.e) ௞ݔ ௞ିଵ and the second component ofݒ ݐ∆  =  .௞ିଵݒ 

Solving the above equation using matrix calculations yields equations similar to 

equations 3.1.3 and 3.1.4.  

 For motion with constant acceleration, the equation   ݔ௞ = ௞ିଵݔܣ + ௞ݑܤ  +  :௞ିଵ can be rewritten asݓ 

௞ݔ          = ௞ିଵݔܣ + ௞ܽܩ  +  ௞ିଵ                               (3.1.7)ݓ 

Where ܽܩ௞ is the control due to acceleration (ܽ௞) in motion. For motion of particle in 1-

dimension, the position is related to acceleration as ∆௧మଶ!  and velocity is related to 

acceleration as ∆ݐ. Hence, matrix ܩ can be defined as  

ܩ          =  ቈ∆௧మଶ!∆ݐ቉ 

 Assuming ݓ௞ = 0, equation 3.1.7 reduces to  ݔ௞ = ௞ିଵݔܣ +  ௞, which isܽܩ 

deterministic. Substituting the values, we obtain:   

        ቂ݌௞ݒ௞ቃ =  ቂ1 0ݐ∆ 1 ቃ ቂ݌௞ିଵݒ௞ିଵቃ + ቈ∆௧మଶ∆ݐ቉ ܽ௞ିଵ                  (3.1.8) 

The equation 3.1.8 represents the motion of particle with constant acceleration in 1-

dimension. Here, ݌௞ is the result of ݌௞ିଵ + ௞ିଵݒ ݐ∆  +  ∆௧మଶ! ܽ௞ and ݒ௞ is the result of ݒ௞ = ௞ିଵݒ  +  ௞. Equation 3.1.8 can be further solved using matrix calculations andܽݐ∆ 

will result in equations similar to equations 3.1.2 and 3.1.5.  

 The second part of Kalman filter deals with the measurement data according to 

the linear equation: 
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௞ݖ         = ௞ݔܪ +  ௞ݒ

 This equation relates the measurement vector ݖ௞ with state vector ݔ௞ using the 

measurement matrix H. For motion in 1-dimension or motion in 2-dimension, there is no 

need to measure the velocity of motion as that can be calculated by Kalman filter 

internally. To estimate the position and velocity using the state vector ݔ௞, only the 

measurements of position is enough. As we measure only the position, the state matrix H 

links the position measurements with the state matrix 'ݔ௞ ' position estimates. This results 

in a non square matrix H. In 1-dimension, the matrix H can be written as:           ܪ௞ =  ቂ݌௞ݒ௞ቃ =  ቂ10ቃ 

This results in the following measurement equation with zero noise:  

௭௞݌         = ቂ10ቃ ቂ݌௞ݒ௞ቃ                    (3.1.9) 

 The above section explains the Kalman matrices and vector values for motion in 

1-dimension. Modeling of motion in 2-dimension is just an extension of motion in 1-

dimension. In 2-dimensional motion, the position and velocity are both a function of x-

coordinates and y-coordinates. As the position is measured in Cartesian coordinates, it 

can be referred with notation (݌௫,  ௬ is݌ ௫ is the position in x-coordinates and݌ ,௬). Here݌

the position in y-coordinates. Similarly the velocity can be represented in x-y plane as (ݒ௫,   .(௬ݒ

 The process state vector defines 2-dimensional position and velocity. Using ݌௞,௫,݌௞,௬ , , ௞,௫ݒ   :௞,௬, equation 3.1.6 can be written asݒ

        ൥ ௣ೖ,ೣ௣ೖ,೤  ௩ೖ,ೣ ௩ೖ,೤ ൩ =  ቈ  ଵ ଴ ∆௧ ଴  ଴ ଵ ଴ ∆௧଴ ଴ ଵ ଴଴ ଴ ଴ ଵ ቉ ൥ ௣ೖషభ,ೣ௣ೖషభ,೤  ௩ೖషభ,ೣ ௩ೖషభ,೤ ൩                            (3.1.10) 

Where, 

        ൥ ௣ೖ,ೣ௣ೖ,೤  ௩ೖ,ೣ ௩ೖ,೤ ൩ =   ൥൤ ௣ೖ,ೣ௣ೖ,೤ ൨൤ ௩ೖ,ೣ ௩ೖ,೤ ൨൩ =  ቂ௣ೖ௩ೖቃ =   ௞ݔ 
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And ቂ1 0ݐ∆ 1 ቃ . ൥൤ ௣ೖ,ೣ௣ೖ,೤ ൨൤ ௩ೖ,ೣ ௩ೖ,೤ ൨൩ =  ቎൤௣ೖ,ೣ ା ∆௧௩ೖ,ೣ௣ೖ,೤ ା ∆௧௩ೖ,೤൨൤ ௩ೖ,ೣ ௩ೖ,೤ ൨ ቏ = ቈ  ଵ ଴ ∆௧ ଴  ଴ ଵ ଴ ∆௧଴ ଴ ଵ ଴଴ ଴ ଴ ଵ ቉ ൥ ௣ೖ,ೣ௣ೖ,೤  ௩ೖ,ೣ ௩ೖ,೤ ൩   
Similarly for equation of motion with constant acceleration, the equation 3.1.8 can be 

written as: 

         ൦ ݕ,݇ݒ ݔ,݇ݒ  ݕ,݇݌ݔ,݇݌ ൪ = ቎  1 0 ݐ∆ 0  0 1 0 0ݐ∆ 0 1 00 0 0 1 ቏ ൦ ݕ,1−݇ݒ ݔ,1−݇ݒ  ݕ,1−݇݌ݔ,1−݇݌ ൪  + ⎣⎢⎢⎢
௞ିଵ,௬ݐ∆௞ିଵ,௫ݐ∆௞ିଵ,௬ଶ(2/ݐ∆)௞ିଵ,௫ଶ(2/ݐ∆)⎡ ⎦⎥⎥⎥

⎤ ܽ௞ିଵ            (3.1.11) 

Where,  

         ⎣⎢⎢⎢
௞,௬ݐ∆௞,௫ݐ∆௞,௬ଶ(2/ݐ∆)௞,௫ଶ(2/ݐ∆)⎡ ⎦⎥⎥⎥

⎤ =  ⎣⎢⎢⎢
⎡ቈ(∆2/ݐ)௞,௫ଶ(∆2/ݐ)௞,௬ଶ ቉

൤∆ݐ௞,௫∆ݐ௞,௬൨ ⎦⎥⎥⎥
⎤ =  ൤(∆2/ݐ)௞ଶ∆ݐ௞ ൨ =  ௞ܩ 

Furthermore, the measurement equation 3.1.9 can be written as: 

        ቈݕ,݇݌ݔ,݇݌ ቉ =  ቂ1 0 0 00 1 0 0ቃ ቎ ݕ,1−݇ݒ ݔ,1−݇ݒ  ݕ,1−݇݌ݔ,1−݇݌ ቏                 (3.1.12) 

Solving the above equations will result in position measurement in x and y coordinates. 

As per [87], in equations 3.1.10, 3.1.11 and 3.1.12, the components of x-coordinates are 

independent of the components of y-coordinates. Also the process error vector ݓ௞ 

contains elements [ݓ௣,௞,௫, ,௣,௞,௬ݓ ,௩,௞,௫ݓ  .்[௩,௞,௬ݓ

      Error covariance matrices 

 Being a stochastic model, Kalman filter is able to handle the noise associated with 

the physical model. As mentioned earlier, the different types of white noise associated 

with Kalman filter are process noise and measurement noise. 

௝்ݓ௜ݓ]ܧ         ] = ൜ܳ௞                  ݂݅ ݅ == ݆0               ݂݅ ݅ ≠ ݆    
௜݁ൣܧ         ௝்݁ ൧  = ൜ܴ௞                  ݂݅ ݅ == ݆0               ݂݅ ݅ ≠ ݆    
௜ݓ]ܧ         ௝்݁ ] = 0   
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As the error is induced in the system due to acceleration and as ܺ௔(ݐ) has zero correlation 

for two different times, ݓ]ܧ௜ݓ௝் ] = 0 ∀ ݅ ≠ ݆. Furthermore, the acceleration at time ݐ௞ is 

not influenced by acceleration at other times. The measurement error ݁ൣܧ௜ ௝்݁ ൧  = 0 ∀ ݅ ≠ ݆. 

 The covariance matrices handling the noise are ܳ௞ and ܴ௞. Both ௞ܲ and state 

vectors are updated during the recursion process, but the process error ܳ௞ and the 

measurement error ܴ௞ are constant. As the values for process error and measurement 

error are not changed/updated by Kalman filter, it becomes essentially important to 

correctly determine the noise in the system before the execution of the Kalman recursion.  

  
      Measurement error covariance matrix 

 The measurement error covariance matrix is denoted by ܴ௞. It accounts for the 

errors in the measurement. For 2-dimensional system, we are measuring the position in x-

y plane in terms of x,y coordinates. The covariance matrix ܴ௞ accounts for the errors in 

measuring the position in x-y plane. 

 Let ܺ௘,௫(ݐ) and ܺ௘,௬(ݐ) denote the random variables describing the measurement 

error such that ݁௞,௫ = ܺ௘,௫(ݐ) and ݁௞,௬ = ܺ௘,௬(ݐ). The covariance matrix ܴ௞ is described 

as:           ܴ௞ = ,(௞ݐ)൫ܺ௘,௫]ܧ ܺ௘,௬(ݐ௞)൯்൫ܺ௘,௫(ݐ௞), ܺ௘,௬(ݐ௞)൯]           ܴ௞ =  ቈܧ[ܺ௘,௫(ݐ௞), ܺ௘,௫(ݐ௞)] ,(௞ݐ)௘,௫ܺ]ܧ ܺ௘,௬(ݐ௞)]ܧ[ܺ௘,௬(ݐ௞), ܺ௘,௫(ݐ௞)] ,(௞ݐ)௘,௬ܺ]ܧ ܺ௘,௬(ݐ௞)]቉             (3.1.13) 

As the measurement in x-coordinate is independent of measurement in y-coordinate, the 

random variables ܺ௘,௫(ݐ) and ܺ௘,௬(ݐ) have zero-mean and are uncorrelated. The 

integration of ܺ௘,௫(ݐ௞), ܺ௘,௬(ݐ௞) over some time interval will result in zero value [87]. 

Therefore, the expression ܧ[ܺ௘,௫(ݐ௞), ܺ௘,௬(ݐ௞)] and ܧ[ܺ௘,௬(ݐ௞), ܺ௘,௫(ݐ௞)] will become 

zero. The expressions ܧ[ܺ௘,௫(ݐ௞), ܺ௘,௫(ݐ௞)] and ܧ[ܺ௘,௬(ݐ௞), ܺ௘,௬(ݐ௞)] are the squares of 

standard deviation (variance) of the random variables ܺ௘,௫(ݐ) and ܺ௘,௬(ݐ) and are known 

as variances. Hence, expression 3.1.13 becomes:           ܴ௞ =  ൤ܧ[ܺ௘,௫(ݐ௞), ܺ௘,௫(ݐ௞)] 00 ,(௞ݐ)௘,௬ܺ]ܧ ܺ௘,௬(ݐ௞)]൨                          (3.1.14) 
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Measurement errors are always associated with a system [87]. The measurement errors 

are generally calculated or known and sometimes estimated. For the model, we assume 

that the tiles generate the x,y coordinate measurements with ± 0.5 feet error with equal 

probability. This deviation in measurement is a result of the human feet size (assuming 

the biggest feet size to be 1 foot and hence, the maximum measurement error). We 

consider the x,y-coordinate location to be the mean of the human feet, but as there are 

several x,y-coordinates locations related to each step, we calculate the error in 

measurement with feet’s mean x,y measurement and 0.5 ft deviation in each direction. 

Hence, resulting variance is:            ܧ[ܺ௘,௫(ݐ௞), ܺ௘,௫(ݐ௞)] = 
((ି଴.ହ)మା ଴మା ଴.ହమ)ଷ  = .167 giving the measurement covariance 

matrix as: 

          ܴ௞ =  ቂ. 167 00 . 167 ቃ 

In general, the measurement error covariance matrix for 2-dimensional motion can be 

written as:           ܴ௞ =  ቈσୣ,୶ଶ  00 σୣ,୷ଶ  ቉ where, σୣ,୶ଶ   and σୣ,୷ଶ  are the variance in x-coordinate measurement 

and y-coordinate measurement respectively. 

      Process error covariance matrix 

 For constant velocity model, the process noise is a result of deviation in constant 

velocity and is associated with random variable ܺ௔. As per [87], the random acceleration ܺ௔,௫ and ܺ௔,௬ in x,y-plane are orthogonal and independent and given by:            ܧ[ܺ௔(ݑ)ܺ(ݒ)௔்] =  ቈܧ[ܺ௔,௫(ݑ), ܺ௔,௫(ݒ)] ,(ݑ)௔,௬ܺ]ܧ ܺ௔,௬(ݒ)]ܧ[ܺ௔,௬(ݑ), ܺ௔,௫(ݒ)] ,(ݑ)௔,௬ܺ]ܧ ܺ௔,௬(ݒ)]቉ 

       =  ൤ܽଶݑ)ߜ − (ݒ 00 ܽଶݑ)ߜ −  ൨(ݒ

where a is the white noise amplitude and ߜ is Dirac delta impulse.  

As ܳ௞ = .ܩ .[௔்(ݒ)ܺ(ݑ)௔ܺ]ܧ  with matrix G equal to identity matrix, the resulting ,்ܩ

process noise covariance matrix according to [87] is: 
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           ܳ௞ =  ܽଶ
⎣⎢⎢
⎢⎢⎢
⎡∆௧యଷ 0 ∆௧మଶ 00 ∆௧యଷ 0 ∆௧మଶ∆௧మଶ 0 ݐ∆ 00 ∆௧మଶ 0 ⎥⎥⎦ݐ∆

⎥⎥⎥
⎤
  

 For constant acceleration model, the acceleration in motion is incorporated using 

the equation: 

௞ܩ           =  ⎣⎢⎢⎢
௞,௬ݐ∆௞,௫ݐ∆௞,௬ଶ(2/ݐ∆)௞,௫ଶ(2/ݐ∆)⎡ ⎦⎥⎥⎥

⎤
  

Using ܳ௞ = .ܩ   :ଶ, the process noise covariance matrix is்ܽܩ

             ܳ௞ =  ܽଶ
⎣⎢⎢
⎢⎢⎢
⎡∆௧రସ 0 ∆௧యଶ 00 ∆௧రସ 0 ∆௧యଶ∆௧యଶ 0 ∆௧ଶ 00 ∆௧యଶ 0 ∆௧ଶ ⎦⎥⎥

⎥⎥⎥
⎤
 , where ܽଶ is the spectrum amplitude.  

For the Kalman filter’s first iteration, in addition to state vectors, state matrices and noise 

co-variances, we need to determine the initial state vector ݔ௞ିଵ|௞ିଵ for equation ݔ௞|௞ିଵ ௞ିଵݔ௞ܣ = + ௞ିଵ and initial process noise covariance ௞ܲିଵ for equation ௞ܲ|௞ିଵݑ௞ܤ  ௞ܣ = ௞ܲିଵܣ௞் +  ܳ௞. For simplicity and also because both ݔ௞|௞ିଵ and ௞ܲ|௞ିଵ are iteratively 

corrected by the Kalman filter, the ݔ௞ିଵ and ௞ܲିଵ are set to initial measurement and 

process error covariance matrix respectively.  

      Kalman Recursion 

 As mentioned in Section 2.3.2, the Discrete Kalman filter is conceptualized as 

time update phase and the measurement update phase. Once the vectors, state matrices, 

noise co-variances, etc. are determined, the Kalman filter recursively predicts and 

corrects the estimated states.  

Predict (Time Update):  
 The time update projects the state and covariance estimates from time step k-1 to 

step k as: 
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௞|௞ିଵݔ  = ௞ିଵݔ௞ܣ  +  ௞ିଵ   estimates the current state from previousݑ௞ܤ 

estimated state.  

 ௞ܲ|௞ିଵ = ௞ܣ  ௞ܲିଵܣ௞் +  ܳ௞   estimates the current error covariance from 

previously updated error covariance. 

Measurement Update (Correction):  
 The correction update calculates the Kalman gain, estimates the posterior state 

using the actual measurement and generates the posterior covariance estimate.  

௞ܭ          =  ௞ܲ|௞ିଵܪ௞் ௞ܪ ) ௞ܲ|௞ିଵܪ௞் +  ܴ௞)ିଵ  

The Kalman gain controls the effect of measurement error. Larger the variance in 

measurement, smaller will be the Kalman gain. 

௞ݔ          = ௞|௞ିଵݔ  + ௞ݖ)௞ܭ     (௞|௞ିଵݔ௞ܪ −

The equation updates the current state estimate with current measurement.  The Kalman 

gain weights the difference between the measurement and the state estimated before 

measurement (i.e. ܭ௞(ݖ௞ −  .((௞|௞ିଵݔ௞ܪ 

              ௞ܲ  = ܫ) (௞ܪ௞ܭ − ௞ܲ|௞ିଵ   

The equation updates the error covariance estimate with current measurement. The more 

informative the measurement (ܭ௞ܪ௞), better will be the error covariance estimate.  

3.1.2 Mobility Models 
 
 To simulate the movement of a person walking in an area of 20x20 ft2, a few 

mobility models were used in our research. The models were based upon Random 

Waypoint model (as explained in Section 2.4). The random generated paths account for 

the person’s movement and provide data on how the person’s location, velocity and 

acceleration changes over time. 

 The preferred human walking speed ranges from nearly 0 ft/s to maximum of 

8.5 ft/s (9.0 km/h; 5.6 mph) with typical walk speed limiting to 4.5 ft/sec [95]. Factors 

that contribute to speed selection are mechanical, energetic, physiological and 

psychological. Motivation, destination time factor (time to reach the destination) and 

metabolic efficiency usually results in faster walks whereas ageing, joint pain, instability 

and decreased metabolic rate can cause people to walk slowly [95].   
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 To simulate the human movement in the 20x20 ft2 area, we proposed four 

simulation models namely: Constant Rate Linear Walk, Variable Rate Linear Walk, 

Constant Rate non-linear Walk and Variable Rate non-linear Walk. All of these models 

are based upon Random Waypoint model and are independent of each other. 

3.1.2.1 Constant Rate Linear Walk 
 
 Constant rate linear walk model randomly selects the destination (random 

waypoint). Once the destination is selected, the user moves along a straight line towards 

the destination from the current position. The user walks with a step size of 

approximately 1 foot. Once, the user reaches destination, the model again randomly 

locates a new destination and the process repeats resulting in constant velocity linear 

paths. The walk speed is randomly selected from 0.5 ft/sec to 4.5 ft/sec (the normal 

human walk speed range) for each destination and remains constant for that transit.  

3.1.2.2 Variable Rate Linear Walk 
 
 Variable rate linear walk model is based upon the constant rate linear walk 

model. Similar to constant rate linear walk model, the variable rate linear walk model 

randomly selects the destination inside the simulation area of 20x20 ft2. Once the 

destination is selected, the user moves along a straight line towards the destination point 

from the current position and changes its velocity with every step. In other words, 

acceleration and de-acceleration are incorporated for the variable rate linear walk model. 

The user moves along a straight line with an initial velocity selected randomly from a 

range of 0.5 ft/sec to 4.5 ft/sec. Thereafter, for the first half of the distance, with each 

step, the velocity of the user increases so as to reach a maximum velocity which is 

selected randomly (from range: initial speed to 8.5 ft/sec). For the remaining half of the 

distance, the velocity decreases with each step such that the velocity at the final location 

(destination) is equal to the initial velocity at the beginning. Once at the destination, the 

process repeats for a new destination, considering the current destination as the current 

position. Hence, variable rate linear walk model incorporates acceleration and de-

acceleration in motion along a straight line.  
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3.1.2.3 Constant Rate Non-linear Walk 
 
 Both constant rate linear walk model and variable rate linear walk model 

consider the motion to be along a straight line. However, in case of obstruction (for 

example a table) in the path from current position to destination, the human walk/motion 

will bend around the obstruction to reach the destination with shortest covered distance. 

To determine the shortest path when an obstruction is present we adopt the A* search 

approach mentioned in Section 2.5.  

 To adopt the A* search, we divided the floor area of 20x20 ft2 into a grid of 400 

squares each of size 1 foot. This square size is important because it helps determines the 

step size, which we desire to be approximately 1 foot. At first, the destination is randomly 

selected. Once the destination is selected, random tagging of the 400 squares as walkable 

and non-walkable follows. As the name suggests, walkable squares are those on which 

the user can walk and non-walkable square are the ones representing an obstruction and 

hence cannot be walked upon. Following is the criteria for square selection (refer to 

Figure 3.1). 

 Grid squares that are on the boundary of the floor are never tagged as non-

walkable. 

 The squares surrounding the current position square and destination position 

square are never tagged as non-walkable. 

 Each grid square is surrounded by at least six walkable squares 

The above selection criteria ascertain that the non-walkable tagged squares never block 

away the path between the current position and the destination position. Iterating the 

above logic several times results in walkable and non-walkable grid squares. After the 

grid squares are tagged as walkable and non-walkable, A* search is used to determine the 

shortest path from current position to the randomly selected destination.  
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Figure 3.1 Grid Representation Of 20x20 ft2. Floor Area 
 

 The path generated by A* search though is shortest, but have sharp bends and 

turns. Assuming that a user (human being), while walking, avoids unnecessary bends and 

follows a path in a smooth route, the path generated by A* search is smoothened. 

Gradient descent smoothening algorithm is used to give smooth curves to the sharp turns 

and bends. 

 To transform the planned path into a smooth path, the points (coordinates on 

which the user steps) on the path are iteratively updated. Please refer to Figure 3.2 [96] 

for a description of the smoothening process. Here xi's represent the original points on the 

path and yi's represent the smooth points for the xi's. To smoothen the path, the two 

functions (xi - yi)2 and (yi - yi+1)2 are minimized. If only (xi - yi)2 is minimized, the smooth 

path is equal to the actual path because equating the first derivate of (xi - yi)2 to zero 

yields xi  = yi. Also, if only (yi - yi+1)2 is minimized, the smooth path is equal to a point 

because equating the first derivate of (yi - yi+1)2 to zero yields yi = yi+1. By assigning 

appropriate weights to both functions (xi - yi)2 and (yi - yi+1)2, a smooth path can be 

obtained.  
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Figure 3.2 Path Smoothing 
 
 Considering Figure 3.2, the functions (xi - yi)2 and (yi - yi+1)2 are minimized 

iteratively using gradient descent. For all iterations, considering the difference between x0 

and x1, and x2 and x1, the function (yi - yi+1)2 can be written as: 

       x1 = x1 + α((x0 - x1) + (x2 - x1)). 

          => y1 = y1 + α(y0  + y2 - 2y1)                  (3.1.15) 

where, y1 = x1, y0 = x0 and y2 = x2 , in order to retain the xi's values for the next function 

and for next points in the path. Here α determines how close y1 is to new points y1-1 and 

y1+1. Similarly for each iteration, the function (xi - yi)2 can be written as: 

       y1 = y1 + β(x1 - y1)                  (3.1.16) 

where, β determines the displacement of y1 from x1.  

 As already mentioned, the equations 3.1.15 and 3.1.16 are iteratively minimized 

using gradient descent. The weights α and β control how smooth or how similar to the 

original path the new path ends up being. The gradient descent is an optimization 

algorithm that determines the minimum of a function and is defined as: 

         ܾ = ܽ −             (ܽ)ܨ∇ߛ 

Here, b is the new point (i.e. y1 in our case), a is the old point (i.e. x1 in our case) and ∇ܨ(ܽ) determines the steepest descent with the weight gamma (ߛ). Consider the 

following function to be minimized:           ܨ(ݕ௜) = ௜ݕ)2/ߙ  − ௜)ଶݔ  + ௜ݕ)2/ߚ − ௜ାଵ)ଶݕ  + ௜ݕ)2/ߚ  −  ௜ିଵ) ଶݕ 

Its derivate is డ௬డ௫ (௜ݕ)ܨ = ௜ݔ)ߙ  − (௜ݕ  + ௜ାଵݕ)ߚ + ௜ିଵݕ  −  ௜) which is similar toݕ2 

equations 3.1.15 and 3.1.16. Figure 3.3 shows an example of the path generated using A* 
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search in red and the same path after smoothening using gradient descent smoothing [96] 

in blue.  

 

 
 
 

Figure 3.3 Non-linear Path With Smoothing 
 

 Once the A* search generates a path, the grid squares are converted back to points 

and are smoothened by Gradient descent smoothening algorithm. This results in a smooth 

non-linear path with step size of approximately 1 foot. Thereafter, the speed of motion is 

selected in a manner similar to constant rate linear walk model. Once the user reaches the 

destination, a new random destination is selected. The current destination becomes the 

current position and the process repeats resulting in constant velocity non-linear paths. 

3.1.2.4 Variable Rate Non-linear Walk 
 
 Variable rate non-linear walk is similar to constant rate non-linear walk but 

incorporates acceleration and de-acceleration (as explained for Variable Rate non-linear 

Walk model). Once the A* search generated path is smoothened by Gradient descent 
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algorithm, the velocity parameters are selected. The initial velocity (i.e. the velocity at 

the current location) is randomly selected from the range 0.5 ft/sec to 4.5 ft/sec. With 

each step, the velocity of the user increases and attains a maximum velocity by half of the 

distance. The maximum velocity is randomly selected from a range between randomly 

initial velocity and velocity of 8.5 ft/sec. Depending upon the maximum velocity 

selected, the increase in velocity with each step is determined. Thereon, the velocity 

decreases with each step such that the velocity at the destination is equal to the initial 

velocity at the beginning. After reaching the destination, again, a new destination is 

selected and the process repeats resulting in variable velocity non-linear paths. 

 

3.2 STEPSCANTM TILES 

 Stepscan™ is designed by ViTRAK Systems Inc. Stepscan™ tiles use proprietary 

sensor floor technology patented by ViTRAK Systems Inc. The tiles are capable of not 

only identifying and locating the person, but can also detect early signs of dementia and 

underfoot pathologies such as diabetic foot ulcers. The Stepscan™ tiles are capable of 

tracking multiple subjects, and are expandable and customizable. Each tile has a size of 

2x2 ft2 and comes in various designs. As we are interested in tracking and predicting the 

location of a person, we utilize the localization capability of the tiles. 

  

3.3 RFID TEST BED 

 As already mentioned in Chapter 2, RFID technology can be used to identify 

targets with RFID tags within the reader's read range. It can be divided into active and 

passive types depending upon the RFID reader and tags being used. For our experimental 

setup, we used RFID passive tags with passive RFID reader. The Gao UHF RFID reader 

is ideal for indoor tracking. It can read up to 430 tags per second and connects to four 

monostatic antennas with maximum receive sensitivity of -82 dBm. Figure 3.4 [88] 

shows Gao RFID UHF Gen 2 RFID Reader/Writer with 4 Antenna Ports. For RFID 

reader specifications, refer to Table 3.1 [89]. The RFID reader is attached to four circular 

polarization Gao RFID antennas. The antennas operate in the 902 MHz to 928 MHz 

frequency range and are compatible with Gao RFID UHF Gen 2 RFID Reader/Writer. 
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Figure 3.5 [90] shows UHF 902 MHz RFID Antenna Circular Polarization Indoor. For 

RFID antenna's specifications, refer to Table 3.2 [91]. The UHF RFID Clothing tags are 

suitable for use in textile industry and are shown in Figure 3.6 [92]. The clothing tags can 

withstand printing, dyeing and washing. For tag specifications, refer to Table 3.3 [93].  

 
Figure 3.4 GAO RFID UHF Gen 2 RFID Reader/Writer With 4 Antenna Ports 

 
Table 3.1 RFID Passive Reader Specifications 

 
RFID Reader Goa RFID: UHF Gen 2 RFID Reader/Writer with 4 Antenna 

Ports 

Model  236015  

Air Interface protocol  EPC Global Class 1 Gen 2/ISO 18000-6C  

Typical Throughout  Approx. 430 tags/s  

Supported Regions   US, Canada and other regions following US FCC Part 

15 regulations  

 Europe and other regions following ETSI EN 302 208 

v1.2.1 without LBT regulations  

 Brazil  
 

Antennae  4 high performance, monostatic antenna ports  

Transmit Power  

 

 10.0 to 30.0 dBm (PoE)  

 10.0 to 32.5 dBm (external universal power supply)  

Max Receive Sensitivity  -82 dBm  

Max. Return Loss  10 dB  

Network Connectivity  10/100BASE-T auto-negotiate (full/half) with auto-sensing 
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MDI/MDX for auto-crossover (RJ-45)  

IP Address 

Configuration  

 

 DHCP  

 Static  

 Link Local Addressing (LLA) with Multicast DNS 
 

Time Synchronization  Network Time Protocol (NTP)  

Management Interfaces  Management Console using serial management console port, 

telnet or SSH  

Management Console  

 

RS-232 using a standard Cisco-style management cable (DB-9 to 

RJ-45)  

Power Source  

 

 Power over Ethernet (PoE) IEEE 802.3af  

 24 V DC, 800 mA via external universal power supply 

with locking connector-sold separately  
 

Power Consumption  

 

 Idle  Typical  LDC  

PoE at 30 dBm  3 W  11.5 W  6 W  

Power Supply 

at 6  

3 W  13.5 W  6 W  

 

Operating Temperature  -20 °C to 50 °C 

Dimensions  7.5 in × 6.9 in × 1.2 in (19 cm × 17.5 cm × 3 cm)  

Weight  1.5 Ibs (24.5 oz)  

 
 

 
Figure 3.5 UHF 902 MHz RFID Antenna Circular Polarization Indoor 
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Table 3.2 RFID Antenna Specifications 
 

Model 326003 
Polarize style Circular polarization 

Operating Frequency 902 MHz to 928 MHz 

Center Frequency 915 MHz 

Gain 7 dBi ± 1 dBi 

VSWR <1.3:1 (902 MHz to 928 MHz) 

Natural impedance 50 Ω 

Maximum Power 10 W 

Dimensions 245 mm × 235 mm × 40 mm 

Weight 470 g 

Case Material Glass fiber reinforced plastic 

Operating and Storage 

Temperature 

-20 °C to 70°C 

Compatibility Compatible with any 902 MHz - 928 MHz 

Reader 

 

 
Figure 3.6 UHF RFID Clothing Tag 

 
 

Table 3.3 RFID Tag Specifications 
 

Model 116060 

Physical Parameters 

Inlay dimension 125 mm x 7 mm 

Package material coated paper 
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Operating temperature -40 °C to 65 °C 

Storage temperature -40 °C to 85 °C 

Functional Parameters 

RF frequency 860 to 960 MHz 

Read distance 5 to 7 m 

Compliant standard ISO/IEC18000-6C 

 
 For the RFID test bed (refer to Figure 3.7 below), RFID interrogation zones were 

created to read and identify the tags. The test bed, as shown in Figure 3.8 below, consists 

of four RFID antennas and one RFID reader. The RFID antennas can transmit the RFID 

signals (radio waves) and receive the data transmitted by the excited tags. The reader 

collects the data from the antennas and converts it into useful information, which can 

later be processed using application logic. All the four antennas are connected to the 

reader using N-type female connector.  

 These four antennas form four RFID zones, namely zone1, zone2, zone3 and 

zone4 which are represented by green, pink, orange and blue colors respectively (refer to 

Figure 3.8 and Figure 4.1). In case of no obstruction in the path of RFID signals, the 

zones formed are circular with a radius of 5 feet each. Please note that the circular shape 

of the interrogation zone attains a right angle at the corners of the room due to 

interference (i.e. reflection of RFID signals) by the walls. Hence, resulting in RFID zones 

shape as shown in Figure 3.8 and Figure 4.1. In total, the four RFID antennas cover a 

square area of 20x20 ft2. To achieve precise zonal boundary, the application logic uses 

the RSSI value (signal strength) and the tag detection frequency within each zone. Using 

the RSSI value and the tag detection frequency within each zone, we were able to create 

the interrogation zones with sharp boundaries.  

 The tag detection frequency within a RFID zone is directly proportional to 

visibility of the tag to the RFID transmitted signals from the antenna. Two passive tags 

were placed on both the shoulders of the person being tracked. This arrangement of tags 

helps to avoid the RFID signal interference due to the human head. In order to 

backscatter the signal from the tags, it was important to keep the tags at a height of 
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approximately 1 inch from the shoulders. This resulted in better detection and read 

accuracy of the RFID tags. 

 

 

Figure 3.7 RFID Test Bed 
 
The RFID reader connects and collects the data from all four RFID antennas. 

Furthermore, the reader also connects to a computer that runs the application logic and 

controls the working of the RFID reader and RFID antennas. The application running on 

the computer (it may also be integrated to run on the RFID reader itself) is used to 

configure the reader and antenna parameters as per the requirements. For our purpose, we 

configured each of the four antennas as per data in Appendix A: RFID antenna and 

reader configuration.  

 The RFID system generates target's zonal information and gives the received 

signal strength (RSS) of the RFID tag several times per second. This data is used to 

improve the tracking performed by Kalman filter.  
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Figure 3.8 RFID Reader And Antenna Setup 
 

3.4 HIGH-PRECISION INDOOR TRACKING  

 The simulation area which combines STEPSCANTM tiles and RFID is described 

in Figure 3.9. The experimental area (for the purpose of simulation) is overlaid with 

partially-deployed STEPSCANTM tiles and RFID interrogation zones. The area is divided 

into four RFID interrogation zones. Within each zone, sub-zones are formed using the 

RSS information. 

RFID Zone and sub-zone 
information is attained using 
passive RFID reader and tags. 

 Location information is 
established by stepping on the 

tiles

20
ft.

Experimental  area covered 
by RFID and Stepscan tile 

Zone 3

Zone 2

Stepscan 
Tiles

RFID zone 
and sub-

zones

20 ft.

 

Figure 3.9 Experimental Area 
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 The STEPSCANTM tiles can generate the person's precise location information 

whenever he/she steps on a tile. In addition, the RFID system can generate some location-

related information (i.e. the person's current RFID interrogation zone and the sub-zone 

information) as the person walks around within the RFID's interrogation zones. The 

information from the tiles and RFID is utilized by the Kalman filter to track the person 

precisely when he/she steps on a tile and estimate his/her location when precise location 

information is not available (Refer Figure 3.10). Without loss of generality, we assume 

that time is divided into timeslots and the area of the experimental field is 20x20 ft2. 

 Here are the detailed steps that the proposed system uses to track a person 

effectively: 

 When the person's precise location is found by a tile (i.e. when the person steps on 

a tile) during a timeslot, the Kalman filter is initiated. The precise location is 

considered to be the current location and it is used as the first input for the 

Kalman filter. The Kalman filter will be used to estimate the future location of the 

person during the following timeslots.  

 For each of the following timeslots: 

 If again the person's location is found by a tile during the timeslot, the 

precise location is considered to be the current location, which is also used 

as the input for the Kalman filter for the purpose of estimating future 

locations. 

 If the person does not step on the tile during the timeslot (i.e. no precise 

location information is generated by a tile), the Kalman filter will estimate 

the current location of the person using the precise or estimated location 

information obtained during the preceding timeslots.  

 Note that the precision of the estimations generated by the Kalman 

filter (i.e. the location information generated by the proposed system when 

the person does not step on a tile) could fluctuate seriously. In the extreme 

cases, the estimated location could be very far from the real spot. To 

guarantee that the output of the proposed tracking system does not diverge 

significantly from the real locations, our system uses the RFID readings to 

filter the estimated results. Specifically, in the simulations, for each of the 
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Kalman filter's estimated location, the RFID interrogation zone and RFID 

sub-zone information corresponding to the estimated location is compared 

to the person’s zonal and sub-zone information from the RFID test bed. In 

the cases where there is a significant discrepancy, the Kalman filter 

estimation process will stop until the person's precise location is obtained 

through a STEPSCANTM tile (i.e. the person steps on a tile). 
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 Figure 3.10 System Design and Location Estimation 
 
 
 
 
 



 

 51 
 

CHAPTER 4 EXPERIMENTAL RESULTS 

 This chapter presents the details of the simulations and the experimental results. 

The primary objective of the study is to reduce the number of STEPSCANTM tiles used 

for tracking and locating a person. The Kalman filter utilizes the location information 

generated by the tiles to estimate the position of the person in an indoor environment. 

 

4.1 SIMULATION DESIGN 

 This section describes the simulation model that integrates RFID, StepscanTM tiles 

and the Kalman filter. The simulation application was developed using Java and Matlab. 

The model simulates the movement of a person walking in a room with floor size of 

20x20 ft2 that is overlaid by StepscanTM tiles and RFID interrogation zones. As the 

person moves around the room (using the mobility models described in Section 3.1.2), 

the data generated by stepping on the tiles and the information available from the RFID 

reader is combined and used as an input for the Kalman filter. The integration of RFID, 

StepscanTM tiles and the Kalman filter not only allows to track the movement of the 

person (when the user steps on the tiles), but also predicts the current step location when 

the person is not stepping on the tile as per the application logic. The RFID readings are 

used to improve the Kalman filter estimations by stopping the estimations whenever 

necessary. 

 As described in Section 3.1.1, the Kalman filter parameter selection depends upon 

the physical model of the system, the noise associated with the process and measurement 

errors. For the mobility models described in Section 3.1.2, the parameters for Kalman 

filter are described in Table 4.1.  

 

 

 

 

 

 

 



 

 52 
 

 

Table 4.1 Kalman Parameter For Walk Models  
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In brief, as explained in Section 3.1.1, the Kalman filter model for motion with constant 

velocity holds true for Constant Rate Linear Walk model and Constant Rate Non-linear 

Walk model. Similarly, Kalman filter model for motion with constant acceleration holds 

true for Variable Rate Linear Walk model and Variable Rate Non-linear Walk model. 

 The zones created by the RFID system are further divided into sub-zone using the 

RSS information as shown in Figure 4.1. The RSSI value for each zone ranges from  -82 

dBm (at the centre of the zone) to -55 dBm (at the boundary of each zone). The sub- 

zones are created using the variation in the RSS level from centre of the zone towards its 

boundary. Within each zone, a sub-zone is formed at -62 dBm which divides the RFID 

zone into two sub-zones at around 4 ft from the centre of each zone. The inner sub-zone 

is of radius 4 ft from the centre of the zone and the area with internal radius of 4 ft and 

outer boundary as the RFID's zone boundary forms the second sub-zone. The subdivision 

helps in improving the person's location estimations when the measurement data is not 

attainable (i.e. when the person is not stepping on the tile). In particular, the Kalman 

estimation stops when the estimated location's sub-zonal and zonal information 

mismatches with the person’s actual position sub-zonal and zonal information. 

 

Zone 1

Zone 3

Zone 4

Zone 2

RSS level 
sub-zone

 

Figure 4.1 RFID Subzones 
 
 In order to integrate the tiles onto the simulation area, six floor plans are 

proposed. In each of the six floor plans, the tiles are deployed to cover a part of the 

indoor floor. Table 4.2 provides details on the number of tiles in each plan and the area 
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being covered. Each tile size is 2x2 ft2 and generates a 2-dimensional location in 

Cartesian coordinates. Please refer to Appendix B: Tile Deployment Patterns for floor 

plans snapshots.  

Table 4.2 Tiles Layout 

Floor Plans Number of Tiles Area Covered (Total area 400 sq. ft) 

Layout24 24 tiles 96 sq. ft 

Layout28 28 tiles 112 sq. ft 

Layout32 32 tiles 128 sq. ft 

Layout36 36 tiles 144 sq. ft 

Layout40 40 tiles 160 sq. ft 

Layout48 48 tiles 192 sq. ft 

 

4.2 DETAILED EXPERIMENTAL RESULTS 

4.2.1 Indoor Tracking Performance 
 
 Tables 4.3 to 4.6 includes the details of our experimental results for floor plan 

layouts mentioned in Table 4.2. In general, it is observed that the estimation rate as well 

as the estimation accuracy is more for Constant Rate Linear Walk Model and Variable 

Rate Linear Walk Model in comparison to Constant Rate Non-linear Walk Model and 

Variable Rate Non-linear Walk Model. For all the four simulation models, the estimated 

location is mostly within 1 ft of the actual location. As we move from linear models to 

non-linear models, the divergence of the estimated location from the actual location 

increases, but still the estimated location is mostly within 1 ft of the actual location. 

Appendix C: Simulation Execution Results section shows the execution results for each of 

the floor plans for various simulation models. Mathematically, the columns for the tables 

are defined as: 

         Tile Trace Coverage = (no. of steps on tiles/total no. of steps on the floor)*100  

         Kalman Trace Coverage with Half ft. accuracy = (no. of steps predicted using      

  Kalman Filter with deviation <= 0.5 ft from the actual location/ total  

  steps on the floor)*100                    
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  Kalman Trace Coverage with accuracy greater than Half ft. & less than One ft.  

  = (no. of steps predicted using Kalman Filter with deviation >0.5 ft and  

  <= 1.0 ft from the actual location/total steps on the floor)*100  

           Kalman Trace Coverage with accuracy greater than One ft. & less than Two ft.   

  = (no. of steps predicted using Kalman Filter with deviation >1.0 ft and  

  <= 2.0 ft from the actual location/total steps on the floor)*100  

          Kalman Trace Coverage with accuracy greater than Two ft. = (no. of steps  

  predicted using Kalman Filter with deviation >2.0 ft from the actual  

  location/total steps on the floor)*100 

             Trace Gain for Half ft. accuracy = ( (Kalman Trace Coverage with Half ft.  

  precision)/Tile Trace Coverage )/100  

             Trace Gain for accuracy greater than Half ft. & less than One ft.  = (Kalman  

  Trace Coverage with accuracy greater than Half ft. & less than One ft. /  

  Tile Trace Coverage)*100  

             Trace Gain for accuracy greater than One ft. & less than Two ft.  = (Kalman  

  Trace Coverage with accuracy greater than One ft. & less than Two ft. /  

  Tile Trace Coverage)*100  

             Trace Gain for accuracy greater than Two ft.  = (Kalman Trace Coverage with  

  accuracy greater than Two ft./Tile Trace Coverage)*100  

 Table 4.3 describes the results for Constant Rate Linear Walk Model. The 

estimation rate as well as the accuracy increases with an increase in the number of tiles. 

As we move from a 24 tile floor plan to a 48 tile floor plan, the location estimation 

increases from 38.80 % to 40.07 % for estimation precision within half feet of the actual 

location. Also, the error (i.e. the location estimation with more than 2 ft. deviation from 

person’s actual location) decreases from 7.07 % to 2.40 % as we shift from 24 tiles plan 

to 48 tiles plan. 

 Table 4.4 describes the results for Variable Rate Linear Walk Model. The 

observations described for Constant Rate Linear Walk Model holds true for Variable Rate 

Linear Walk Model with a slight decrease in the location estimation rate. For estimations 

with precision within half feet of the actual location, the gain in trace ranges from 29.0 % 
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to 33.00 %. In addition, the estimation error decreases significantly from 6.85 % to 2.57 

% with an increase in the number of tiles.  

 Table 4.5 and 4.6 provide data for the Constant Rate Non-linear Walk Model and 

Variable Rate Non-linear Walk Model simulation execution. As expected, the estimation 

rate and accuracy decreases with increase in the simulation complexity. As both of the 

non-linear simulation models are more complex and random in comparison to linear 

simulation models, their system accuracy and location estimation capacity decreases in 

comparison to the linear models. For Constant Rate Non-linear Walk Model the trace 

gain varies from 15.10 % to 22.20 % for precision within half feet of the actual location. 

Also, the error in estimation decreases with an increase in the number of tiles. The 

Variable Rate Non-linear Walk Model shows a somewhat random behavior (in terms of 

trace gain and error generated) with changes in the floor plans. The fluctuation in 

estimations are reasonable as the effectiveness of the Kalman filter to predict the person's 

location is influenced by the placement design of the tiles. We can expect a change in the 

observed simulation results with a change in tile's layout designs.  

   

Table 4.3 Constant Rate Linear Walk Model Statistics 
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24 Tiles 96 30.40 11.80 4.65 3.50 2.15 38.80 15.30 11.50 7.07 

28 Tiles 112 39.30 15.70 5.45 4.10 2.85 39.95 13.86 10.43 7.25 

32 Tiles 128 40.50 13.10 6.40 3.85 2.90 32.35 15.80 9.50 7.15 

36 Tiles 144 42.70 17.30 5.25 4.60 3.40 40.50 12.30 10.77 7.95 

40 Tiles 160 48.00 17.80 6.50 3.60 1.40 37.10 13.54 7.50 2.90 

48 Tiles 192 52.15 20.90 5.90 3.75 1.25 40.07 11.30 7.20 2.40 
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Table 4.4 Variable Rate Linear Walk Model Statistics 
 

 
 
 

Table 4.5 Constant Rate Non-linear Walk Model Statistics 
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24 Tiles 96 31.40 9.10 5.60 4.40 2.15 29.00 17.83 14.00 6.85 

28 Tiles 112 40.80 13.40 6.23 3.95 3.10 32.85 15.27 9.68 7.35 

32 Tiles 128 43.10 13.50 6.90 5.80 2.90 31.32 16.00 13.45 6.73 

36 Tiles 144 42.40 13.60 5.63 5.55 3.30 32.10 13.28 13.10 7.78 

40 Tiles 160 50.60 16.25 6.20 4.55 2.33 32.10  12.25 9.00 4.60 

48 Tiles 192 52.40 17.30 5.80 4.65 1.35 33.00 11.05 8.87 2.57 
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24 Tiles 96 29.20 4.43 3.65 4.43 4.43 15.10 12.5 15.10 15.10 

28 Tiles 112 36.83 5.60 5.45 6.60 3.95 15.20 14.80 17.90 10.70 

32 Tiles 128 37.60 6.30 4.80 5.30 3.50 16.75 12.75 14.10 9.30 

36 Tiles 144 41.50 8.77 5.75 5.50 3.53 21.13 13.85 13.25 8.50 

40 Tiles 160 44.37 9.85 6.25 4.60 2.35 22.20 14.08 10.35 5.30 

48 Tiles 192 49.20 9.80 6.00 5.17 4.00 19.90 12.20 10.50 8.13 
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Table 4.6 Variable Rate Non-linear Walk Model Statistics 

 

4.2.2 Tile Saving Performance 
 
 The Kalman filter helps to estimate the location of the person. It is observed that 

by incorporating the Kalman filter location estimations, considerable savings in term of 

number of tiles can be achieved. In addition to the simulation models and the number of 

tiles being used for simulation, the results described in Table 4.3 to Table 4.6 are 

dependent upon the manner in which the tiles are laid upon the floor. Therefore, the 

savings in terms of number of tiles (as described in Table 4.7) is an estimate that may 

fluctuate with the change in the tiles layout design. The savings in terms of number of 

tiles is deduced by using simple linear mathematics as: 

Savings in term of number of tiles = |(No. of Tiles in Tile Configuration/Tile Trace  

           Coverage)* Kalman Trace Coverage| 

From Table 4.7, it is observed that for location estimations with precision within 1 ft. of 

actual location, the savings in tiles increases with the increase in number of tiles being 

used for the simulation. For the least complex model (i.e. Constant Rate Linear Walk 

Model) the savings in terms of number of tiles ranges from 13 to 25 tiles. For Variable 
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24 Tiles 96 36.55 6.80 3.35 4.60 3.90 18.60 9.15 12.60 10.67 

28 Tiles 112 36.70 5.40 3.55 4.75 3.70 14.70 9.67 12.95 10.10 

32 Tiles 128 38.70 5.50 3.95 4.80 4.90 14.20 10.20 12.40 12.65 

36 Tiles 144 40.90 6.50 4.50 5.40 4.30 15.90 11.00 13.20 10.50 

40 Tiles 160 48.00 7.30 4.40 4.20 3.55 15.20 9.15 8.75 7.40 

48 Tiles 192 51.70 9.25 5.65 4.75 2.90 17.90 10.90 9.18 5.60 
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Rate Non-linear Walk Model the savings in terms of number of tiles ranges from 11 to 21 

tiles. For non-linear simulation models, the savings in terms of number of tiles remain 

almost similar (ranging from 7 tiles to 15 tiles). The number of tiles being reduced ranges 

between 7 and 25 tiles for the worst case and the best case scenarios respectively. For 

location estimations with divergence greater than 2 ft. from person's actual position (i.e. 

error in location estimation), is minimal and remains somewhat constant for floor 

patterns.  

 Considering the cost of a tile to be approximately $3,000, savings in terms of cost 

ranges from $21,000 to $75,000 for floor designs that ideally costs approximately 

$72,000 to $144,000. The RFID system cost is generally low. For the RFID test setup, the 

system cost was around $3,000 which is relatively low in comparison to the overall 

savings. 

Table 4.7 Savings In Terms Of Number Of Tiles 
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 Figures 4.2 to 4.7 compare the savings in terms of number of tiles for each of the 

floor plans. As expected, the saving increases with the increase in number of tiles and 

decreases with the increase in the complexity of the motion.  

 

Figure 4.2 Savings Comparison of 24 Tiles Floor Plan 
 

 

 
Figure 4.3 Savings Comparison of 28 Tiles Floor Plan 

 

 
Figure 4.4 Savings Comparison of 32 Tiles Floor Plan 
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Figure 4.5 Savings Comparison of 36 Tiles Floor Plan 

 

 

 
Figure 4.6 Savings Comparison of 40 Tiles Floor Plan 

 

 

 
Figure 4.7 Savings Comparison of 48 Tiles Floor Plan 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

 This chapter concludes the thesis by summarizing the design of the high-precision 

indoor tracking system and the performance of the proposed system. The future work that 

is worth exploring in the future is also included. 

  

5.1 CONCLUSION 

 In our research, we propose a high precision indoor tracking system which utilizes 

the location information from the StepscanTM tiles to track and locate a person in an 

indoor environment floor with the assistance of the Discrete Kalman filter. The RFID 

zonal readings and RSSI values are used to improve the Kalman estimations. The 

proposed system tracks the person precisely when the location information can be 

obtained through the tiles and attempts to estimate the person’s position whenever the 

person’s location is not available (i.e. the person is not stepping on any tile during the 

timeslot).  

 In order to evaluate the effectiveness of the proposed system, extensive 

simulations were carried out using java and Matlab. Our simulations include the precise 

models of the StepscanTM tiles, RFID system and Discrete Kalman filter. Specifically, the 

tiles provide the location data in terms of Cartesian coordinates whenever the user steps 

on the tiles placed onto 20x20 ft2 simulation area. The placement of the tiles on the floor 

yields floor patterns described in Table 4.2. The RFID system provides the zonal 

information and the RSS level data whenever the user is in the RFID interrogation zones. 

The entire floor is divided into four RFID zones, each of which has a radius of 5 ft. as 

described in Section 3.3. Furthermore, each zone is divided into subzones based upon the 

RFID RSSI values as mentioned in Section 4.1. As each user can be uniquely identified 

using the RFID tag id, an additional benefit of multiple user tracking is provided by RFID 

system making the system scalable. The Discrete Kalman filter tracks and estimates the 

location of a user on an area of 20x20 ft2 using the data from the tiles and the RFID 

system.  

 In order to simulate the movement of a user on the floor, we designed four 

mobility models based on the Random Waypoint model: Constant Rate Linear Walk 
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Model, Variable Rate Linear Walk Model, Constant Rate Non-linear Walk Model and 

Variable Rate Non-linear Walk Model. For simulation purposes, each mobility model 

was integrated with six different floor patterns described in Section 4.1. The simulation 

results detail the effectiveness of the proposed system. Specifically, the proposes system 

not only tracks the person precisely while he/she steps on a tile, but also estimate his/her 

location when the location information cannot be obtained through the tiles.  

Our simulation results indicate that the proposed system increases the capability 

to track and locate a person by at least 24% (more than 50% in some cases), with errors 

ranging from 2.5% to 15%. Furthermore, the proposed system helps to reduce the cost of 

indoor tracking significantly. In terms of the number of StepscanTM tiles deployed in the 

system, a reduction of 7 to 25 tiles can be achieved in the scenarios under investigation. 

In terms of monetary cost, $21,000 to $75,000 can be saved for an indoor tracking system 

considered in our research. 

 

5.2 FUTURE WORK 

 A future direction based upon the proposed approach is to extend the system 

design to include doorways, corridors and staircases. Even though both the RFID system 

and the StepscanTM tiles are capable of identifying, tracking and locating multiple persons  

at the same time, the simulation models described are used for single person simulations. 

As the system accuracy for multiple person tracking is not known, understanding and 

evaluation of both the RFID system and the StepscanTM tiles for multiple person tracking 

is necessary to simulate multiple user behavior. The assumption of uniform distribution 

of space in the simulation models may not stand correct for real world scenarios, and 

hence, simulation models giving weights to space within the indoor environment where 

the probability of the user being present is more should be considered.  

 The current approach of placement of the tags on each of the shoulder by stitching 

them to the user clothes may not feasible for certain indoor environments and hence an 

alternative to the current tag placement design is required. As the efficiency of the 

proposed system is influenced by the RSS values, more rigorous RSS screening should be 

done in order to reduce the deviation of the estimated location from the actual location of 
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the person. It will be interesting to deploy the proposed system in real tracking scenarios 

and compare the observed results with the simulation results. 
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APPENDIX A:  RFID Antenna and Reader Configuration 

 
Refer to SDK documentation (available with the hardware) for detailed information on 
RFID antenna and reader configuration. 
 
<AntennaConfiguration> 

 <AntennaID>1</AntennaID> 
 <RFReceiver> 
  <!--Set the antenna receiving sensitivity as per the            
       current regulatory region. An Index setting of ‘1’ =              
  ReceiveSensitivityValue of '0' which = -80dBm. Up to index  42 =         
  ReceiveSensitivityvalue of 50 = -30dBm (the highest,  least  
  sensitive  setting)--> 
  <ReceiverSensitivity>2</ReceiverSensitivity> 
 </RFReceiver> 
 <!-- Set the Antenna RF transmit power --> 
 <RFTransmitter> 
  <!-- HopTableID value is same for all four antennas --> 
  <HopTableID>1</HopTableID>             
  <!-- ChannelIndex is same for all four antennas. Set the            
  channel from those allowed in the current regulatory region --> 
  <ChannelIndex>1</ChannelIndex> 
  <!-- TransmitPower can be configured uniquely for each antenna,    
  but we set it same for each antenna. Set the TransmitPower as per 
  the region and frequency of operation. With Reader powered by  
  adapter, the PowerIndex ranges from 1 to 91. 1 correspond to  
  transmitPowerValue:1000(minimum) and 91 correspond to   
  transmitPowerValue:3250(maximum. With each index value the   
  transmitPowerValue is changed by 25--> 
  <TransmitPower>1</TransmitPower> 
 </RFTransmitter> 
 <C1G2InventoryCommand> 
  <TagInventoryStateAware>false</TagInventoryStateAware> 
  <!-- C1G2RFControl controls the reader performance, set this      
  parameter as per the environment and RFID usage --> 
  <C1G2RFControl> 
    <!--0: Max Throughput; 2:Dense Reader; 1000: AutoSet Must   
    be same for all four antennas --> 
   <ModeIndex>0</ModeIndex> 
   <!-- Set Tari to false to enable ModeIndex--> 
   <Tari>0</Tari> 
  </C1G2RFControl> 
  <C1G2SingulationControl> 
   <!-- Session value is same for all four antennas --> 
   <Session>2</Session> 
   <!-- TagPopulation value is same for all four antennas --> 
   <TagPopulation>32</TagPopulation> 
   <!-- TagTransitTime is same for all four  antennas. It      
   measures of expected tag mobility in the field of view --> 
   <TagTransitTime>0</TagTransitTime> 
  </C1G2SingulationControl> 
  <Impinj:ImpinjInventorySearchMode> 
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  <!--Need Dual-target for lots of low level data Low, for medium  
  tag count or low-throughput applications where  repeated tag  
  observation is desirable--> 
  <InventorySearchMode>Dual_Target</InventorySearchMode> 
  </Impinj:ImpinjInventorySearchMode> 
  <Impinj:ImpinjLowDutyCycle> 
   <!--Eanble LowDutyCycleMode as per the  current   
   regulatory region --> 
   <LowDutyCycleMode>Enabled</LowDutyCycleMode> 
   <!-- EmptyFieldTimeout specifies in milliseconds the  time  
   the Reader will wait before entering low duty cycle --> 
   <EmptyFieldTimeout>10000</EmptyFieldTimeout> 
   <!-- In low duty cycle mode, the Reader will rescan every  
   FieldPingInterval milliseconds, checking for tags --> 
   <FieldPingInterval>200</FieldPingInterval> 
  </Impinj:ImpinjLowDutyCycle> 
 </C1G2InventoryCommand> 

</AntennaConfiguration> 
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APPENDIX B:  Tile Deployment Patterns 

 

  

Figure 1 48 tiles pattern     Figure 2 40 tiles pattern 
 
 
 
 

  
 

Figure 3 36 tiles pattern             
 

Figure 4 32 tiles pattern 
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Figure 5 28 tiles pattern             

 
 

Figure 6 24 tiles pattern 
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APPENDIX C:  Simulation Execution Results 

 

 
 

Figure 7  Constant Rate Linear Walk Model - 24 Tiles Floor Plan 
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Figure 8  Constant Rate Linear Walk Model - 28 Tiles Floor Plan 
 
 

 
 

Figure 9  Constant Rate Linear Walk Model - 32 Tiles Floor Plan 
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Figure 10  Constant Rate Linear Walk Model - 36 Tiles Floor Plan 
 
 

 
 

Figure 11  Constant Rate Linear Walk Model - 40 Tiles Floor Plan 
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Figure 12  Constant Rate Linear Walk Model - 48 Tiles Floor Plan 
 
 

 
 

Figure 13  Variable Rate Linear Walk Model - 24 Tiles Floor Plan 
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Figure 14  Variable Rate Linear Walk Model - 28 Tiles Floor Plan 
 

 

 
 

Figure 15  Variable Rate Linear Walk Model - 32 Tiles Floor Plan 
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Figure 16  Variable Rate Linear Walk Model - 36 Tiles Floor Plan 
 
 

 
 

Figure 17  Variable Rate Linear Walk Model - 40 Tiles Floor Plan 
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Figure 18  Variable Rate Linear Walk Model - 48 Tiles Floor Plan 
 

 

 
 

Figure 19  Constant Rate Non-linear Walk Model - 24 Tiles Floor Plan 
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Figure 20  Constant Rate Non-linear Walk Model - 28 Tiles Floor Plan 
 
 

 
 

Figure 21  Constant Rate Non-linear Walk Model - 32 Tiles Floor Plan 
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Figure 22  Constant Rate Non-linear Walk Model - 36 Tiles Floor Plan 
 
 

 
 

Figure 23  Constant Rate Non-linear Walk Model - 40 Tiles Floor Plan 



 

 88 
 

 
 

Figure 24  Constant Rate Non-linear Walk Model - 48 Tiles Floor Plan 
 
 

 
 

Figure 25  Variable Rate Non-linear Walk Model - 24 Tiles Floor Plan 
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Figure 26  Variable Rate Non-linear Walk Model - 28 Tiles Floor Plan 
 
 

 
 

Figure 27  Variable Rate Non-linear Walk Model - 32 Tiles Floor Plan 
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Figure 28  Variable Rate Non-linear Walk Model - 36 Tiles Floor Plan 
 
 

 
 

Figure 29  Variable Rate Non-linear Walk Model - 40 Tiles Floor Plan 
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Figure 30  Variable Rate Non-linear Walk Model - 48 Tiles Floor Plan 
 

 


