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Abstract

Use of wireless network information for indoor positioning ds been an area of interest
since wireless networks became very popular. On the othernith the market started to
grow in variety and production volumes leading to a variety fodevices with many di erent
hardware and software combinations. In the eld of indoor psitioning, most of the existing
technologies are dependent on additional hardware and/or frastructure, which increases
the cost and requirements for both users and providers.

This thesis investigates possible methods of coupling indogeo-fencing with access con-
trol including authentication, identi cation, and registration in a system. Moreover, various
techniques are studied in order to improve the robustness @rsecurity of such a system.
The focus of these studies is to improve the proposed systemsuch a way that gives it
the ability to operate properly in noisy, heterogeneous, antess controlled environments
where the presence of attackers is highly probable. To achgethis, a classi cation based
geo-fencing approach using Received Signal Strength Indica{RSSI) has been employed so
that accurate geo-fencing is coupled with secure commurticen and computing. Experimen-
tal results show that considerable positioning accuracy hasén achieved while providing
high security measures for communication and transactionfavouring diversity and generic
design, the proposed implementation does not mandate useosundergo any system software
modi cation or adding new hardware components.

Vil
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Chapter 1

Introduction

Knowledge about geographical location of a mobile device iodirectly its owner can be of
enormous utility. Geo-spatial information is being used in any elds such as computer
software, physical security, in addition to location aware @rketing and advertisement. In
this context, most of the existing technologies focus on idgfying the exact location of the

user via Global Positioning System (GPS) in outdoor enviranents. A di erent view of the

location aware computing is to focus on the presence of a usera virtual perimeter of a

given geographical landscape. This second alternative viewhich complements the rst one
is called Geo-fencing and has brought in many bene ts and alshallenges to the location
based computing eld.

As stated before, the term \Geo-fence" refers to a virtuallydnced geographical area. This
concept has been employed to implement various tasks incing equipment theft control,
transportation path control [65], asset management and tcking, or automatic house arrest
monitoring systems. Social networks have also brought nedeias and use cases for Location
Based Services, including geo-spatial networking. Target and location aware marketing
and advertisement is also an interesting use case where poiions are sent to potential
customers based on the opportunities associated with theaggaphical location they visit.

The GPS technology, providing an accurate positioning metid, has made the outdoor
location based services and geo-fencing conveniently astele. GPS has become a popular
sensor chip available on nearly all computationally powerf smartphone and tablets in the
market. Navigation and location based search in outdoor are@oupled with aerial imaging
and accurate mapping of urban and rural areas has brought maayplications to the hand-
held devices. However, the GPS technology is not completelpawless. The low bit rate
of the satellite connection transmitting the timing data required for positioning makes the
task of accurate positioning slow and impossible in some caseich as indoor environments.
Additionally, due to required Line of Sight connection with the satellite infrastructure, the

technology has not been as successful in indoor setups.

1
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Another major di erence between outdoor and indoor geo-femy is the amount of tol-
erable positioning error. While in an outdoor geo-fence a d&mz of meters in error might be
tolerable, even half of this amount of error might result in acomplete failure in an indoor
setup. To bring the concept of positioning indoors, di erenapproaches have been proposed
[57]. Most of these approaches are based on wireless teahgiels for tracking tagged objects.
It means that every user/object that is tracked needs to cayra tag device such as a tagged
Smartphone or a bracelet. Many tag based approaches are basadRadio Frequency Iden-
ti cation (RFID) chips, which might require a proximity based sensing procedure that adds
to the burden for the users. Some of the special tags carry atilohal and unpopular sensors
such as ultrasonic or infrared to provide with more accurategsitioning data.

Furthermore, the emerging phenomenon of Bring Your Own Dexé¢ (BYOD) has a pow-
erful impact on how the market is demanding newer approaches tizal with the resulting
chaos [74]. With the prevalent use of mobile devices, it is dcult for industries with a
controlled environment to manage employees and customengeiracting with on-site services
using non-corporate devices. Instead of excessively limg users, it is preferred for industries
to adapt to the situation by taking more intelligent and devtce/user aware service providing
approaches. Considering the limitations imposed by the taséf tagging every new user's
device, the simple tag based world of indoor location basedrsgices is changing to a hetero-
geneous environment. This environment not only introduceshallenges regarding location
estimation, it also a ects the way multiple software compoants have to be implemented for
di erent mobile and tablet operating systems to support sut a technology.

Implementations should be based on a set of widely availaldata values that is provided
by devices out of the box. The most popular wireless techngjiies available with each hand-
held device are Bluetooth and Wi-Fi. As of now, Google's AndroidRIM's BlackBerry, and
Apple's iOS mobile operating systems are the most popular apéing systems as they are
dominating the mobile device market; with Android having a tgher speed in growing its
market share [36].

This thesis proposes a Received Signal Strength IndicatigRSSI) based system for
identi cation and access control in a geo-fenced indoor einenment. Such a system is
important for certain services where only the devices in thgeo-fenced zone are authorized
to use a service. The RSSI values are obtained from Bluetoahd/or Wi-Fi infrastructures
available on-site. Using the existing wireless network irdstructure and Android devices,
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a proof of concept implementation of this proposed system wagveloped and tested. In
this system, as a case study, access control to an online apgiion is performed based on
a user's presence in a restricted area, or geo-fenced zonetogdther, the system aims to
introduce an indoor geo-fencing methodology that also ainbs address the concerns brought
to network administrators by the BYOD phenomenon.

This system was tested using multiple types of devices andri@s geo-fenced zone di-
mensions on both Wi-Fi and Bluetooth infrastructures. Devicg include di erent Android
based tablet and smartphones. Results show that an accurateggfencing methodology has
been built where accuracy is up to 100% in most cases, and 98.lh average. The average
can be improved even more when selected zone sizes are laagdrBluetooth infrastructure
is used.

The prototype implementation of the proposed system is testl in several scenarios in-
cluding in noisy environments and under network attacks. Aacding to the behaviour of the
system and possible attack and noise conditions, the systeseems to meet the robustness
and security requirements of such indoor environments. Tdiminate the negative e ect of
noise and erroneous RSSI readings, several smoothing antli@udetection techniques are
evaluated and benchmarked to choose the best method. Basedaun evaluations, Moving
Average, is chosen as the best smoothing technique and then ednup for the best perfor-
mance based on a separate set of experiments focusing on peirs and con gurations of
this speci ¢ technique.

Known network and system attacks such as Denial of Service (B Password Guess-
ing, Man in the Middle (MitM) attacks, and spoo ng are studied on the proposed system.
Additionally, system speci c attacks such as RSSI value gusisg, infrastructure faking, and
RSSI value spoo ng are also simulated and evaluated on theqmosed system. Based on
these experiments and evaluations, defense mechanisms @deeeloped and integrated with
the present implementation of the proposed indoors geo-feégng system to e ectively tackle
the aforementioned attacks and bring su cient amount of safty to the indoor geo-fencing

based access control environment.

A US provisional patent [49] application was led by our industial partner, describing
anatomy of the proposed system. A paper describing the proof concept implementation
and experimental results was presented and published in peedings of the IEEE Computing
Intelligence in Cyber Security conference 2013 [64].
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The rest of this thesis will discuss and elaborate on di eréraspects of the system design
and implementation choices made for the proposed system. Chep2 presents the existing
industrial and academic systems reported in the literatureChapter 3 discusses the system
design and the employed positioning technique in detail. @pters 4 and 5 focus on the
analysis of the e ect of environmental noise and security tleats as well as the techniques
to counter each condition, respectively. Chapter 6 presenthe experimental results and
evaluations performed. Finally, Chapter 7 concludes the thissand proposes areas for future
research directions.



Chapter 2

Literature Survey

The work discussed in this thesis has two major phases: 1) @teg an indoor position-
ing framework, and 2) Improving the proposed system for bedt robustness and security
characteristics . As a result, the related literature and indstrial works will be presented in
Sections 2.1 and 2.2. These sections discuss related worksdoor positioning and e orts
in securing and creating robust systems, respectively.

2.1 Indoor Positioning

The third millennium is when wireless technologies startecbtbe vastly developed and em-
ployed. Bluetooth and Wi-Fi are both the children of 2000s. As d2002, Bluetooth v1.1 [3]
was introduced as a standard. While Wi-Fi was de ned in early 199%) and later clari ed
in 1999, the prevalence of its usage started growing sincelg£000s [1].

As the wireless technology started growing, with every avaible wireless technology rang-
ing from Bluetooth, Wi-Fi to other technologies such as Globabystem for Mobile (GSM),
Ultra Wide Band (UWB), Ultra High Frequency (UHF), and RFID tags, there have been
researches on positioning of devices undertaken by acadeans and industry [57]. In many
cases the creators of such techniques have sought the aidemfomdary positioning techniques
such as infrared and ultrasonic sensors to increase the away of their proposed systems
[51, 58].

One of the earliest works in wireless based indoor positiogims Radar by Microsoft Re-
search [27]. Radar uses a WaveLAN [76] network driver undererFreeBSD environment
that allows collection of data sets with more information sth as RSSI and Signal to Noise
Ratio (SNR). Using overlapping areas of WaveLAN network accegmint coverages, they
have provided a method based on empirical analysis, trianigtion, and attenuation noise
modelling to position the users in indoor environments. Thaccuracy of this system is be-
tween 2 and 3 meters. Horus [86] uses joint clustering techa&g to convert the indoor area

5
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into tiles, and then locate each device relative to those & with a higher clustering perfor-
mance. The idea of associating a subset of visible accesasoio an arealtile of the map
is the technique they use as the basis of their indoor positimg approach. First a model is
built based on association of access points and areas of ashoar map to respective ranges of
signal strength values. Then the model is used to cluster tHeSSI data received from users
into access point subsets and then locations. Not giving anymanation about the noise in
the experimental environment, they have achieved an accuma of about 90% in distances
above 2.1 meters. Miura et al. [60], and Chang et al. [41] hawsed Support Vector Machines
(SVM) to classify RSSI data samples for localizing the nodes smWi-Fi testbed. They have
used the same homogeneous wireless hardware to classify thes@nce of a user in a 2x2
meter square shaped zone. Clearing the area of other wirslesgnals, they have achieved
100% accuracy when using obstacles (e.g. walls) to separtte zone from outside areas,
which yields a larger amount of signal attenuation. Their da set includes unknown number
of instances sampled in 21 symmetric prede ned locations tife area. Likewise, Castro et
al. [40] use SVM and also triangulation to position a node ird# or outside a given zone.
However, not only they do not have a detailed error investigain in their report, they also
have static formation of anchor nodes and a homogenous haat® environment. Further-
more, in [68] and [40], researchers have used machine leagralgorithms and probabilistic
models while using ne grids of Wi-Fi access points to locate miess devices. They have
achieved an accuracy of about 1.5 meters with about 50% of teamples. Their samples are
collected in 270 xed locations, they have used 8 Wi-Fi accessipts to extract coordinates
of the users in a 16 by 40 meters o ce area. The environment re@ is not discussed, but it
is mentioned that the test area includes glass, concrete ameboden obstacles. In [30] and
[69], researchers have taken the approach of employing Artiad Neural Networks (ANN) to
determine the location of users, their results show an errof over 1 meter in most cases.
[30] uses 3 access points with unequal transmission powers, eisséing the data collected
with the experimentation area oor plan they can locate the gers. With minimum of 5
data points sampled at the training time, they have managedot locate test samples with
errors of 3 meters or above. Due to the unbalanced power of ass points and their arbi-
trary placing, they have discussed su ering from missing vaés in certain blind spots of the
experimentation area.

There are a handful of research works focusing on Wireless Serdetworks since 2004.
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Works like [77], [84], and [32] have used triangulation in sht range wireless sensor networks
like ZigBee [22] to perform location based tasks. Speci ¢gl[32] focuses on selecting anchor
nodes in between the moving objects to do relative positioningVightman et al. [82] and
also [87], have coupled the classi cation and triangulatiotechniques with Kallman Filtering
to smooth down or predict spontaneous behaviours of wiregesensor networks that are due
to noise and hardware failures.

On the other hand, only a few works have tried to experiment Bktooth for indoor
positioning. Among them [23] is worth mentioning. To achievéhe two goals they set, the
authors have used multiple Neural Networks. First goal was dead) with noisy samples
resulted by real world environments. The second goal was oering from access point or
anchor node failures. They have also tried their system witti erent Bluetooth hardware,
but never tried to tune their system to work better with di er ent devices.

Recently, Galvan et al. [73] and Baniukevic et al. [29] have @3 a combination of Blue-
tooth and Wi-Fi anchor nodes to implement hybrid indoor posibning systems. The work
introduced in [73], uses di erent combinations of Bluetodt and Wi-Fi reference points to
estimate the position of a user using trilateration and muitateration. They have established
a simulation system based on 400 base data points and have samulations with di erent
attenuation factors virtually achieving sub-meter positning accuracy. In [29], the authors
have experimented with the addition of a few Bluetooth hotspts to the present Wi-Fi in-
frastructure. This divides a building oor into certain number of regions. The short range
hotspots increase the accuracy of a position system that ajpgimates a device's location
based on the closest access point or hotspot, similar to a pmity based approach using
RFIDs. Their results based on a series of simulations has areaage error of about 2 meters
in the best case. Wang et al. [79] have employed bayesian lteg and simulated annealing
to position users. They have run simulations that is calibted using 5,460 data samples
and is then tested using about 10,000 points. Their achievemas to reduce the positioning
error from 4 meters to 2.9 meters. In many cases experiments aindertaken only using
simulations, and also the scale of sampling and eventual ust additional technologies is
what makes deployment of such techniques costly and less gene

There are other works like [78] that use RSSI values, not foodating devices but for
detecting obstacles and passing bodies. Ironically, theyausuctuations in installed wireless
sensor infrastructure to detect the motion or position of oktacles that move in between the
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sensors that are also anchor nodes. One application mengahby that work was locating
persons working in a company or for advanced anti theft and rtion detection systems.

Kontkanen el al. [54], introduced a Wi-Fi based indoor positiuing system based on \a
combination of Bayesian networks, stochastic complexityna online competitive learning".
Later, this research led to the establishment of a commertigroduct called \Ekahau".
Although the research paper does not investigate the error tife system deeply, the o cial
Ekahau website [9] refers to room level accuracy for theirgualuct. It is also claimed that the
accuracy can be increased to bed level accuracy in an exemplaedical facility. However,
Infrared sensors are being used [9] in order to achieve suatwacy. Needless to say, the
infrared beacons can only be used in combination with the cqany provided tags. Moreover,
Ekahau also claims that their system can locate every wirale mobile device. However, there
is still no o cial version of the product in order to support tracking wireless devices in a
generic manner. Ekahau is supporting a collection of wirale devices only by installing a
custom company provided wireless driver. The driver givehi¢ device the ability of being
used in the site survey process, and not in the tracking prose

GloPos [10] is a GSM/CDMA (Code Division Multiplex Access) dailar network based
commercial positioning product. That only uses informatio from cell towers to estimate
the location of mobile devices. The system accuracy is rafl to as being 10 to 40 meters
in suburban, urban and indoor areas. Moreover, they have al@ed a 7.7 to 12.5 meters
accuracy being achieved during an independent test [11]. Hewver, the provided test report
suggests that the referred accuracy is achieved in less th@h% of the test cases, and the
overall average of accuracy is between 15.1 and 23.9 meters.

AeroScout [16] is a company o ering enterprise indoor and adibor positioning infrastruc-
ture. Their technology is a combination of RFID, GPS and Wi-Fi. Ritting these di erent
technologies together, their main goal is to cover the limations of each technology with the
bene ts of the others. Like many other indoor positioning dations, their system is based
on tags provided by the company.

The limitations of the aforementioned technologies can be&mmarized as follows:

The lack of exibility for supporting multiple o the shelf wi reless enabled devices as
tracked tags.

The use of technology that is not available in all devices. Fexample, GloPos uses
Cell Tower information while many tablet devices do not hav&sSM/CDMA active
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modules. Ekahau is also using Infrared for increasing aceaay, which is not present in

most of modern mobile devices.

The need (in some cases) for extra devices or infrastructufe data transfer or po-
sitioning. For example, GloPos depends on cellular data medrks for data transfer
and AeroScout does not interact with present infrastructurend needs a set of new
access points and tags to be in place in order for the customerhave an operational

positioning system.

High deployment e orts both in terms of number of site surveyamples and time. This
drawback will impose a fundamental change in the positiongnalgorithm even in case

of minor changes in the geo-fenced zone.

On the other hand, the market and the regulations are movingotvards the concept of
BYOD [28]. BYOD is concerned with users using the devices owneahd controlled by
themselves. This concern has many reasons; the most impaittaf which is the user privacy
and control when using the device. Another reason is the factdh predictions show that
in a few years there would be so many devices in the hands of ngsthat retailer supplied
devices are going to be far from popularly used [5]. Thus, thienitations summarized above
will become even more important as the BYOD prevails. Also mangecurity features and
mechanisms have to be generalized to other platforms [74]orRurther information about
technologies using other radio frequency bands and techngiles one can refer to [57, 51, 58].

In this research, our aim is to address some of these limitatis that have not been the
focus of other researches or industrial e orts. These issuare: 1) lack of exibility for
using di erent devices as tags, 2) using technologies such iafrared, ultrasonic, RFID, and
cellular networks that are not commonly available in hand-&ld devices available o the shelf,
3) lack of use of available infrastructure towards positiang, which means a requirement for
the installation of a secondary hardware infrastructure. & example, AeroScout needs a
separate Wi-Fi and RFID reader network.

On the other hand, in this thesis, the proposed system is méyebased on available
facilities in the hand-held devices in the market and does tiequire cellular data adaptors on
the devices. Potentially, the implementation can be empleg with any Wi-Fi or Bluetooth
infrastructure that is already in e ect in indoor areas of inerest. Moreover, it can work
with any device enabled with a wireless or Bluetooth adaptor Experiments show that
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the proposed system performs well with di erent devices urmd noisy and realistic indoors

positioning context.

2.2 Indoor Positioning Security

There have not been many works in the eld of securing indoor giioning algorithms.
It is worth noting the generic e orts like [71, 38] by Strasseand Capkun et. al, that
investigate methods to make networks that are dependent ohé key exchange initialization,
and resistance against low level jamming attacks. In add@n to such low level threats, a
handful of vulnerabilities such as encryption weaknesses)d password guessing, and denial
of service attacks associated with industrial implementains of Wi-Fi and Bluetooth stacks
and rmwares [81, 45] need to be considered.

As a basis for the user identi cation process, Authenticatiomas always been a center of
attention. Memorized string passwords have [61] ruled theontd of authentication for a long
time. Although this technique is limited by the ability of useis for memorizing and choosing
hard to guess passwords, there has not been a replacementtfi@m up to now. Bonneau et.
al [33] have studied about 35 methods that are designed to tape passwords. They have
compared these methods in terms of security, usability, andeployability. Despite the fact
that many of the studied methods are reportedly more securen@ usable, none of them is
as deployable as passwords because of the imposed extra aost the complexity of their
architectures [33].

To bring authentication and con dentiality to 802.11 wireless networks, di erent stan-
dards and protocols were proposed. The rst popular link lar protocol was Wired Equiv-
alent Privacy (WEP) [2], based on a pre-shared secret mecham. However, soon after its
release many experts started to discover weaknesses andchetdbilities in the WEP mecha-
nism [25, 34, 62, 72, 37]. Simultaneously, commercial ander®ols were released and made
many people able to exploit these weaknesses [17]. Wi-Fi alkk@ncreated the Wi-Fi Pro-
tected Access (WPA) [24] mechanism to address these weaknesseshe 802.11 standard
[46], WPA2 was proposed to standardize a slightly more securayof authentication over the
networks in comparison to WPA. WEP, WPA, and WPA2 operate in the Data link Layer of
the TCP/IP stack [70], mainly providing per frame con dentiality. However, the latter two
support an external Authentication Server (AS) to detach the pwcess of authentication from
encryption. Despite the additional security added by this ptocols, WPA and WPA2 are
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still vulnerable to cracking and dictionary attacks. With the availability of parallel comput-
ing and Graphical Processing Units, this has become much faseand easier for attackers to
in Itrate networks that su er a weak choice of passwords [50]To this end, many industrial
extensions were introduced to address the weaknesses dised above. Baek et al. [26] have
surveyed the most recent techniques in the wireless authergtion eld based on factors such
as mutual authentication, identity privacy, dictionary attack resistance, session key strength,
and having a tested implementation. As a conclusion, they ppose some extensions of the
Extensible Authentication Protocol based on Transport Laye Security (EAP-TLS) as the
best method.

In short, there are many reported e orts of securing Wi-Fi. Howeer, to the best of my
knowledge, there is no study for indoor positioning technigs in terms of evaluating attacks
against the higher layers of the protocol stack and the systenesign. Therefore, in this
research, | investigate some attack scenarios that are takjmplace in the higher layers of the
network protocol stack as well as investigating how to countehem.



Chapter 3

Methodology

In this research, there are certain functionalities that musbe guaranteed by the proposed
system. The rst functionality is authentication, that inv olves identifying users who inter-
act with the system using their hand-held devices. Entanglewith authentication is the
identi cation mechanism, by device parameters. The secorfdnctionality of such a system
is positioning, which consists of a mechanism to determineuser/device's indoor position
when she/he requests to access resources from the proteatetvork or infrastructure. The
third functionality, which intuitively is completely dependent on existence of the previous
functionalities, is access control. The access control rhaaism is generally de ned as an
apparatus that decides, based on any arbitrary technique, @ser's authorization at the time
of service usage.

The aforementioned functionalities can be categorized mtwo groups of 1) Authentica-
tion and Identi cation, and 2) Indoor Positioning . The implementation consists of multiple
network services in addition to mobile and web applicationas its building blocks. These
building blocks are described in detail in Section 3.1. Howery most of the complexity of
the system is obviously lying under the Indoor Positioning diset of functionalities that are
also described in the aforementioned Section of this thesis

3.1 System Overview

This section will discuss the components that build the wholsystem together. There are
two main categories of components in the system: Serviceada@pplications. Sections 3.1.1
and 3.1.2 will discuss these two categories, respectively.

3.1.1 Network Services

Brie 'y, principal services that are required for the operabn of a user under a location
controlled application environment include Authentication, Authorization, and Geo-fencing
(indoor positioning). While the controlled servers are of nedeniable importance, their

12
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architectural details are out of the scope of this thesis. Tthis end, these services are
considered to be resources such as web based services oramktwesources. Generalizing
network resources to services, leads to a design that doeg foxus on a low level set of
requirements.

Authentication

Because all the client transactions should be centralizedrfease of management and account-
ing purposes, Authentication must be provided as a Single Sigdhn (SSO) capable service.
There are numerous open source and commercial products tlegr this functionality out of
the box. The use of OpenlID [66] is opted out because it can be limg in terms of network
architecture. More precisely, use of OpenID with globallyaessible providers will cause the
corporation to be unable to limit the authentication steps tahe local networks in geo-fenced

Zones.

There are many open source, free, and commercial implemeidas for the Single Sign
On architecture [13]. The most well-known open source imphentations are the Java Open
Single Sign-On (JOSSO) [12] and the Central Authentication Sece (CAS) [6]. CAS and
JOSSO o er many similar features. Taking a closer look, CAS hass higher simplicity by
use of a layered dependency injection system based on Apashdaven [18], and is hence
more customizable as well as having a better community suppo CAS has also o ered
a layered deployment model, which allows the administratort distribute the physical
location of authentication servers, also known as autheotition proxies through registered
web applications. This helps to distribute the infrastructre, while keeping the ticketing
operations centralized at the same time [8].

Figure 3.1 demonstrates the cycle of getting authenticated ing) a CAS server installation
with an arbitrary authentication mechanism as the backend. &S supports a wide variety
of backends out of the box. Such mechanisms include Lightgkt Directory Access Protocol
(LDAP), Remote Authentication Dial In User Service (RADIUS), anddatabase authentica-
tion in addition to a handful of other protocols such as x509tti cate based authentication,
Simple and Protected GSSAPI Negotiation Mechanism (SPNEGO)nd Open Authentica-
tion (OAuth) [19]. CAS can also use an OpenlD backend, regardtesf version, which is
helpful if a corporate needs OpenlID bene ts while the relatklimitations are removed.
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Authentication CAS Server Application
Backend
T T T
| | User |
| | |
: : 1: Credentials :
| r |
| 1.1: Verify Credentials l
ﬂ]‘ 1.2: Ticket Granting Ticket (TGT) |
e e ___= 3 |
| |
| |
: 2: TGT, Service URL :
| b |
: 3: Service Ticket (ST) :
| 0 > 4: GET Request, ST |
| |
| | "
| | 4.1: Verify(ST, Service URL)
| [
4.2: Session Cookies
| |
| | -
| |
| |
| |
| |
| |

Figure 3.1: Authenticating to a registered application usingCAS.

Identi cation

Although in many cases Authentication and Identi cation are eferred as the same concept,
in the proposed system, getting authenticated is not enougihis is because both the user
and the device he/she is using need to be authorized to accegstem resources. As a result,
the system needs a strategy to bind user credentials and dewicharacteristics together in
order to identify them as an entity eligible for authorizaton. To do this some hardware pa-
rameters/values are associated with every device: 1) MAC @dia Access Control) address
of the Wi-Fi adapter installed on the device, 2) IMEI (International Mobile Station Equip-
ment ldentity) number of the device?!, and 3) the build model of the device. These values
are chosen to represent the device permanently, as they arat subject to change as a side
e ect of software and rmware updates. When a user registersotthe network through the
operator, these values are stored and associated to his/h@o le. To nish the registration

a random salt value is then transferred to the device using agximity based communication
medium. This salt value,Salt,; , is later used to hash a speci c string and send to server
to verify session validity [61].

To this end, the identi cation process uses both the devicena the user information.

lUnless the device does not operate on cellular networks.
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Figure 3.2: Registration process of a typical customer.

Additionally, this process involves the positioning servie which adds to the levels of po-
sitioning security because a positioning service is local the geo-fencing zone, while the
authentication services are served remotely. This enforcasers to be physically present at
the zone, eliminating the possibility that an adversary cannitiate an application session
remotely.

The registration process is demonstrated in the sequencegliam given in Figure 3.2
where a user hands his/her device and identi cation informatin to the system Operator
to get registered to the system. As can be seen in the diagram, tBalt,,; value is sent
to the device using a barcode display. This protects th8alt,,; value from eavesdropping
because the communications between the positioning serviceldarcode displays are using
SSL encrypted sockets. Scanning the barcode using the detdccamera is also helping the
security of the process in cases where the barcode displayvedl protected.

Barcodes, in this case Quick Response Code (QR), are a formN#&ar Field Communi-
cation? (NFC) [80]. Although RFID based NFC chips are becoming more popard and get
equipped into many devices nowadays, they are still not alable in every mobile device, so
| chose to use the QR barcode technology for the registratictep.

2Not to be confused with the radio NFC chip.
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Barcode Display Positioning
Station Service
User/ Barcode Reader : :
| |
| |
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.
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T
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Figure 3.3: Session initiation and positioning based on priowity based transfer of the value
SaltSession .

In addition to registration, barcodes are also used at the tismof an active session initia-
tion. This complementary method is used to ensure that usetse their registered devices.
Moreover, coupling a strict proximity based barcode scanmy results in an extra position-
ing step to ensure the presence of a user (in a geo-fencing zomeen initiating a working

session.

Every time a user visits a geo-fenced site and intends to usnaces on a previously reg-
istered device, a new salt value is sent to his/her device. Ehsalt value is calledSaltsession,
which is used along with theSalt,,,; to ensure that the device is both registered and also is
present at the geo-fenced zone where access to servicesngated. This process is demon-
strated in Figure 3.3, assuming that the user has already authticated to the system and
intends to initialize a working session.

The positioning service is implemented using the HTTP basedBSTful API standard
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[47], and is served in SSL encrypted channels. As stated befothe service is deployed on-
site for having shorter delays and also being only accessililom a speci ¢ subnet associated
with a number of geo-fences. Each positioning request incksithe RSSI data collected by
the device, and depends of the infrastructure type (Wi-Fi or Rletooth) in action which can
be based on Bluetooth or Wi-Fi. This information is then assoated with a hash value that

is computed as shown in Equation 3.1.

Hash(Salt)ni; jj Saltsession J] RSSlsuing jj Usernamejj BuildModel jj IMEI jj MAC address)
(3.1)

The values in Equation 3.1 are concatenated then hashed. EHiash value is sent to the
positioning service. Then the service veri es these valuéy reproducing the hashes using
values that are generated/entered at the time of registrabin, and session initiation. If the
two of hashes are not equal then the service will not be prowd. Otherwise, the request
will be processed normally. Please note that when the initialuthentication steps are being
taken, before the near eld salt transfer, theSaltsession 1S Set to null.

3.1.2 Web and Mobile Applications

To collect the training data used for building classi cationmodels, a mobile application
called \Surveyor" is developed. This application consistef three major functionalities:

1) Collecting Wi-Fi signals and RSSI information; and
2) Collecting Bluetooth signals and RSSI information.
3) Organizing and transferring the information to the data cdkction server.

To gather the training data samples, Surveyor maintains a t@l database on the hand-
held device. This mobile database allows the operator to cgrize and store the samples
collected during the site survey phase. The application detts and labels the samples
based on the administrator's input. There are two possible leels for each sample, which
corresponds to being inside and outside the zone. Number ofrgdes for each label is
shown in a simple way to help the administrator in keeping trek of the data he/she is
collecting. When the administrator is done collecting sames, data can be sent over to the
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SSL protected web application that stores the data in an aroke and makes it ready for
preprocessing and model building.

\Wi-Fi Demo" and \BT Demo" are two mobile applications that are then used to track
the play on the Wi-Fi and the Bluetooth infrastructures. Thesetwo applications simply
demonstrate the process of connecting and gaining accesstlo@ network and live access
control while the service being accessed. In this work, theotnile platform | focus on is the
Android operating system. Android versions ranging from 2.10t4.0.1 were tested with the
proposed system without any problems.

(a) Zone selection page.
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(b) Current zone status page.

Figure 3.4: Screenshots from the monitoring user interface.

A web application is also developed in order to give the networldministrators a view
of what is happening in the geo-fenced zones. This appliaati connects to the positioning
service using a special monitoring API and fetches statisicsuch as number of users, each
user's status according to the positioning system, type olfi¢ device, and geo-fences that each
user is having access to. Screenshots from the monitoringgusiterface are demonstrated in
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Figure 3.4. Figure Figure 3.4(a) allows the administrator to aose which node he/she wants

to monitor. Then the window shown in Figure Figure 3.4(b) is brouigt to the administrator

and is dynamically updated based on a customizable refreshea

3.2 The Proposed Positioning Algorithm

To use wireless network related data for indoor positioninghree values are popularly used.

Assuming that there are more than one access point or donglesplace, these values can

come in handy for triangulation, trilateration, or multilateration. These values are described

as follows:

1)

2)

3)

Time Dierence of Arrival (TDoA) . This value has many use cases. But mainly,
TDoA is used for calculating Angle of Arrival that results in pogion estimation. If access
points are synchronized to send signals in a speci ed time DDA can be useful for directly
estimating a user's position. However, it is rather di cult to synchronize access points
with a small error considering the sensitivity of the equatins to small errors, resulted by
the high propagation speed of radio waves.

Angle of Arrival (AoA) :is the angle in which a radio frequency is propagating at the
time of arrival to the receiving antenna. This value can be &deved by use of special
antennas or antenna arrays. The intuitive requirement of therocess is a knowledge
about current direction of the user. But having this is not eough for the process. Most
popular technique for measuring this angular value is to usegrid or array of antennas
and estimate the angle by measuring TDoA over all the elemenbf the array. In this
case the regularly available devices are hardly useable. Wdugh the devices are mostly
equipped with a magnetic sensor (compass) for direction axmation, they lack a rather
sophisticated antenna array structure that is essential fmbtaining the AoA information
based on TDoA.

Received Signal Strength Indication (RSSI) This indicator shows the amount of
power a wave is carrying at the time of arrival at the receivig antenna. This measure
is built in the IEEE 802.11 standard for roaming and power ojnization purposes [46].
According to the 802.11 standard [46], this should be a 8-bitteger value. Further
decision about how to compute such a value is dependent on timplementation. But
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the regular way of calculating the RSSI is to measure signabyer in relation to the
maximum assumed possible power (that is also carried in 802.frame headers), and
representing it in decibels, as shown in Equation 3.2. A sigd 8-bit value can range from
-128 to +127. However, in practice this value is normally a negjve integer in ranges of
-30 and -100.

ReceivedSignalP owes

RSSI =10 logy( M axP ower

(3.2)

While AoA and TDoA are values that cannot be read by primitive atennas available on
mobile devices, RSSI is available due to 802.11 methods fowgr management and roaming
decisions. Bluetooth, also supports RSSI for connectionsya 802.15.1 (Version 1.1) [4].
RSSI is basically calculated using the preamble of the patkeas they reach the receiving
antenna.

Considering the aim of this research that is to set a generiolation for hand-held devices,
AoA and TDoA based techniques are not an option for the propodesystem. Because
their recruitment imposes hardware and software modi catins. On the other hand, RSSI
is available on nearly all of the devices and software platims that support Wi-Fi and
Bluetooth connectivity with recent standards. Thereforethe proposed positioning system
is based on a machine learning approach employing the RSSlues read by devices.

3.2.1 Positioning Data

As mentioned in Chapter 2, RSSI is widely used for both exact drapproximate location
estimation purposes. Such vast applications of this value @hs its usefulness for indoor
positioning practices.

Geo-fencing is concerned with detection of the presence ofseuin a speci ¢ perimeter,
or zone. Although exact positioning can be used to geometrilyadetect the presence of the
user, its complexity and vigorous need for data collection drsimulation is a major drawback.
However, the concept of exact position information is not nessary in the problem being
studied in this thesis. To simplify the problem, this thesiswork proposes classi cation
based geo-fencing. The classi cation based geo-fencingjiee uses RSSI data to classify
devices/users as being present or absent in a speci ¢ zone.
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Table 3.1: Attributes for the collected data sets.

| Type | Attribute Names | No. Attributes |
Wi-Fi Access Point MACjj SSID 3 + label
Bluetooth Dongle MAC 6 + label

Data sets are collected using mobile applications previdygdiscussed. The already in
place Wi-Fi access points and Bluetooth enabled hardware cae lbised as anchor nodes to
collect data upon them. In this thesis, two major type of datasets are collected, Bluetooth
data and Wi-Fi data. In Wi-Fi data sets the attributes are access @int canonical names and
the attribute values are RSSI values associated with the gessponding access point at the
time of data collection. For Bluetooth data sets, the featureare Bluetooth dongle/hardware
canonical names and the values are RSSI values of their proptigg signals at the time of
data collection. Canonical names are built by concatenatingAC addresses with the display
name or Service Set Identi er (SSID) depending on the type dhe data set, i.e. Bluetooth
or Wi-Fi. All types of data sets have a label attribute that holdsthe class label value. The
class label is set to be false for being absent in a geo-fenzede, or true otherwise.

Table 3.1 tabulates the attribute names and number of attribtes for both Bluetooth and
Wi-Fi data sets. Each data set has a label attribute, which is $¢o 1(== True) for being
inside the geo-fenced zone, and 0(== False) otherwise.

@relation 'bt_SxS_samsung] _@relation 'wifi_SXS_samsung;

@attribute ABRGO272BO16FD numeric @attribute Atestwlan®6272213b275 numeric
@attribute APEO272BO16E2 numeric @attribute Atestwlan®627220b36b® numeric
@attribute APEO272BO1700 numeric @attribute Atestwlan®627220b3911 numeric
@attribute ABOB272BO16FE numeric @attribute label {©,1}

@attribute ABPGO272BO16FF numeric

@attribute APEO272BO1711 numeric @data

@attribute label {0,1} 60,-61,-65,1

-63,-59,-60,1
@data -61,-67,-69,1
-70,-71,-66,-71,-73,-78,1 -55,-58,-65,1
-63,-67,-77,-75,-72,-68,1 -56,-58,-64,1
-72,-61,-73,-76,-73,-71,1 -62,-63,-67,1
-79,-67,-68,-65,-79,-69,1 -59,-58,-62,1
-68,-69,-69,-73,-76,-71,1 -62,-53,-64,1
-67,-85,-78,-68,-73,-66,1 -57,-69,-60,1
-59,-75,-72,-61,-73,-64,1 -54,-59,-57,1
-75,-75,-72,-70,-79,-71,1 -61,-51,-59,1

Figure 3.5: Sample of the Bluetooth and Wi-Fi data sets.

Figure 3.5 is showing a sample of both Bluetooth and Wi-Fi data t& The Bluetooth
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To build the classi cation engine, experiments conducted usy Naive Bayes, C4.5 de-
cision trees, Random Forest, and Support Vector Machines. aBed on these experimental
results, that will be discussed in more detail in Chapter 6,hte top two machine learning
algorithms are then chosen for further comparison purposedltimately the Random Forest
[35] algorithm is selected as the best performing algorithmTwo machine learning algo-
rithms that are compared in the end, are: 1) C4.5 decision trd6é3], and 2) Random Forest
[35]. The C4.5 is widely used for many reasons. This algorithtras robust performance
against noisy data and missing values, it also leverages a copfpensible model structure
which makes it easy to analyse, modify, or embed for developnt and experimental pur-
poses. However, in some cases where data is imbalanced orela@e many attributes, C4.5
might build over tted models. To address this, | have also eployed the Random Forest
algorithm in the proposed system. Using an ensemble of deorsitrees, Random Forest is
known to be e cient when dealing with imbalanced data sets. This is caused by its use of a
random sub-sample of the data set for training each tree. TheaRdom Forest algorithm also
performs well in terms of using as many attributes as possébby randomly using subsets
of attributes for building each tree in the forest. In the folbwing, each of these machine
learning algorithms is discussed in more detail.

3.2.2 CA4.5 Decision Tree

Figure 3.7: A visualization of the C4.5 tree trained on Bluetoth data.
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Decision trees are built using the collected data vectors og, then the built model is
used to predict the label of an unseen data record multiplenties. The tree consists of three
building blocks, internal nodes, edges and leaves. Eachdanmtal node represents an attribute.
Edges that connect internal nodes to their children are latied with conditional expressions
based on the possible nominal or numeric value of the preceglinode. Leaf nodes of the
tree represent predicted labels. Any data record in a given taset will lead to traversing
the tree from root to one of the leaf nodes to determine the mteted label. Traversing the
tree with a sample, edge labels and the value of the corresplarg attribute in the sample
determine which child to choose for continuing the traversalown to a leaf node. Reaching
a leaf node, the prediction is determined the label of the leabde that is met and the end
of a traversal.

Training phase involves selecting attributes and link lalde in addition to leaf node asso-
ciated predictions. To build a tree from root down, featureseed to be ranked. Features are
ranked based on theitGainRatio, where the information gain ratio for an attribute a; in a
data setS is de ned in Equation 3.3.

InformationGain (a;S)

GainRatio (a;; S) = Entropy (a: S)

(3.3)

s
L a-y 2] Entropy(Y; a. _S)

InformationGain (a;;S) = Entropy(y;S) isi ;

ij 2d0m(ai )

(3.4)

j y=Cij IO J y=Cij

¢j 2dom(y)

In equations 3.4 and 3.5, is the standard deviation. Variablesg and ;; represent
labels in the class domain of the attributey and a respectively. InformationGain (&;S)
is the value that shows impurity of the values in an attributés values. Since Information
Gain is biased towards nominal attributes with many di erentvalues, the gain ratio formula
is designed to normalize it [67]. This will prevent the prol@m of zerolnformationGain for
nominal attributes that have many di erent values. More detaled information on C4.5 can
be found in [63] and [67].
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Figure 3.7 demonstrates a visualization of a C4.5 tree traideon a Bluetooth data set.
Attribute names that appear on the internal nodes, having awval shape, of the tree are the
name of dongles. The attributes are named after the lab memisethat have a desk close to
the respective anchor node. Leaf nodes, with a rectanguldrape, list the nal decision by 0
(== false or outside) and 1 (== true or inside) at the leftmost. The pair of values shown on
each leaf node in parenthesis represents the number of teatrgples that visited the speci c
leaf node. The rst number is the number of instances that werelassi ed correctly. The
second number, if present, shows the count of instances tretded up at this leaf node with
a wrong classi cation result, producing a False Negative or e Positive prediction.

3.2.3 Random Forest

Random Forest is a classi cation algorithm based on ensengldiearning [35]. Random Forest
grows a collection of trees on a training data set based on #w® rules:

1) Each tree is trained ofN samples, whereN is the size of the original data set. But the
samples are randomly selected from the original data seith replacement

2) If there are M attributes, the constant m( M) is specied. For splitting nodesm
random attributes are selected from the originaM inputs. Value of m remains constant
through the forest growing process.

3) Each tree is fully grown, which means there is no pruning.

One of the interesting features of the Random Forest classr és that it is able be unbi-
asedly trained on only training data. This is because the traing mechanism includes 33%
split of samples selected for training each tree for testingugoses. Random Forests do not
su er from over- tting, and they are also very fast in terms d training time [14].

Additionally, Random Forest is able to compute the proximityof instances in the training
data set. After each tree is built, all the instances are used ttraverse the new tree. the
instances that end their traverse at the same leaf node wilkegan incremented proximity
score. This score is normalized at the end of the training peess by dividing by the number
of trees. Then the proximity values are used to replace misgivalues at the time of testing.

However, missing values are also replaced at the time of traiwg. There are two ap-
proaches for missing value replacement at the time of traimg:
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1) Fast The missing value is replaced by the median of the correspang attribute, which
yields less accurate results than the latter.

2) Slow First a forest is built by replacing missing values inaccuraty, in order to calculate
instance proximities. When the proximities are in hand, the 8sing numeric values are
replaced calculating a weighted average of non-missing we$ in samples, where weights
are the proximity values. For nominal values, the missing Vae is replaced by the most
frequent non-missing value, where the frequencies are weggghbased on proximity values.

Random Forest is well known for building accurate classi eren di erent data sets. It
also supports methods for balancing error in unbalanced dasets and is capable of handling
a large number of attributes e ciently. More detailed information on Random Forest can
be found in [14, 35].

3.2.4 Client Status Manager

Client Status Manager (CSM) is responsible for managing useequests and collecting data
statistics. CSM holds brief and long term history of each use activity. This component
also works as a behaviour analysis system for the clients,roftling request timings and
managing the number of active devices per user. It keeps tkaof statistical characteristics
of the RSSI values sent by a device to detect anomalous actyvi CSM is a component
that is responsible for detecting and preventing attacks gei c to the indoor geo-fencing
system proposed here. Some of these attacks and their counteasures are discussed in
detail in Chapter 5. Moreover, this component is responsibl®r applying smoothing and
outlier detection on the signal strength data provided by haatrheld devices to enhance the
classi cation and user experience.

Statistics and monitoring unit uses data collected by CSM tanake an abstract view
of the client activity per geo-fenced zone. A simple web intexfe demonstrates the status
and information of clients (mobile devices) active in a spec geo-fence. The information
includes parameters such as being inside or outside the zosignal strengths, device types,
etc. Figure 3.4 demonstrates some screen shots of the statistind monitoring user interface.

As demonstrated in Figure 3.8, CSM keeps a pro le for each of théients connected to
the system. Each pro le keeps the following bu ers:
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component in the Blacklist enables the system to block usetsmporarily or permanently.

3.3 Generic Access Control Mechanism

The proposed system is aimed to aid the administrators for jplementing location aware
access control. As a result, the administrators or industry elelopers need the freedom
to complement this solely location based access control rhanism to suit their specic
business model. Another case is where the same industrial @ex has di erent access
control methods for di erent installations of the proposedyeo-fencing system.

To this end, the system is designed in a manner to support a geiteaccess control
backend. This allows administrators and developers to ingeate their custom authorization
mechanisms to the system. An abstract class called \Authoriz@inDecider" is provided with
the installation libraries. This class can be extended to inlpment a tailored access control
methodology. Then the implemented method can be set to be tlefault authorization lter
for the geo-fencing system with simply modifying the con gration le.

For proof of concept purposes, a default implementation ohé AuthorizationDecider is
used where access control is simply performing a single releeck: if the device is authen-
ticated and the requested service is on the same network withe device, then access is
granted. Otherwise, the device is denied from accessing theguested resource/service.



Chapter 4

Noise, Outliers and Missing Values

The proposed system depends on RSSI values received fromhbBluetooth and Wi-Fi
infrastructures to decide upon the presence of a speci c usa a geo-fenced zone. However,
there are many factors that cause the Industrial, Science dmMMedical (ISM) band to be one
of the noisiest frequency bands: 1) The use of this band is dréor public and many non-
regulated transmitters are propagating signals. 2) The 2@Hz frequency is water resonant,
so it is e ciently absorbed by objects containing water (incuding human bodies). 3) Due
to the fact of absorption of 2.4 GHz frequency by water, many g@tiances (e.g. microwave
ovens) operate on high power adjustments in this band that &g a signi cant noise on the
ISM band. This chapter discusses the methods that are expeented and employed in this
research in order to overcome such noise for the geo-fenciegvice administration.

4.1 Smoothing Techniques

There are many approaches for dealing with noise in RSSI reags. Such approaches include
outlier detection and value estimation which leads to smobing the data samples. Value
estimation techniques estimate the next upcoming value in stream of data, or for replac-
ing missing values. Estimation, in a data stream, is normailbased on temporally local
samples of data. The wideness of this locality can be detemad by a span oW indows;ye.
Windowsj,e determines the number of data points that are taken into acemt when estimat-
ing the next possible value. The larger th&Vindows;,e, the stronger the e ect of previous
data samples on the next estimate. As a result, a larg&¥indows;,. will yield a smoother
trend line in comparison to the original data. As a result, asel from the estimation method-
ology, parameters such a®/indows,e can greatly impact the outcome of the procedure. To
choose the best, | have experimented with six di erent wellhown smoothing methods:

1. Moving Average, a low pass lIter with Iter coe cients equal to the reciprocal of the
span.
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2. Local Regression using Weighted Linear Least Squares and.st degree polynomial
model (LOWESS).

3. Local Regression using Weighted Linear Least Squares an@nd degree polynomial
model (LOESS).

4. Savitzky-Golay lter. A generalized moving average withlter coe cients determined
by an un-weighted linear least-squares regression and ayamial model.

5. Arobust version of 2 that assigns lower weight to outlieris the regression. The method
assigns zero weight to data outside six mean absolute devieits (Robust LOWESS).

6. A robust version of 3 that assigns lower weight to outliersn the regression. The
method assigns zero weight to data outside six times the madiabsolute deviations
(Robust LOESS).

4.1.1 Moving Average Method

The Moving Average method is based on the idea that RSSI readi that are close to
each other in terms of time, should also be close to each othertérms of their values. Also,
variations of these values in relation to the average valué the stream, should be temporally
proximate.

In an indoor positioning scenario, this is more understantiée considering the fact that
walking speed for an average person is between 1.25 to 1.5 enetper second [39]. Based
on the fact that users walk slower in indoor environments [§3the probability of causing
drastic changes and shootings in the perceived signal stgtim decreases, and the idea behind
Moving Average seems applicable. A moving average usin§\&indows;,. of k will result in
an estimated value calculated as shown in Equation 4.1. Eqi@n 4.2 is used to calculate
the next estimate. Where¥,.; is the estimate, andy; and y; ; are last two actual readings.

Yier = B (Ve Wt 1) (4.2)



31

Equation 4.1 is also called one-sided moving average. Twoesidmoving average tech-
niques are useful when readings are available from both bef@nd after the estimation/smoothing
point. Please note that settingk = 0 leads to putting the latest sample value as the estimate
which is also called \naive" Moving Average. Exponential wghting of the values in the
window is another approach for managing the e ect of their agon the estimate. Further
information on these methods can be found in [53].

4.1.2 Locally Weighted Regression Scatter Plot Smoothing

The method LOESS (Locally Weighted Regression Scatter Pl@moothing), was rst intro-
duced by Cleveland in 1979 [42] and was further developed iarly 90's [43]. It is a local
regression technique based on a second order polynomialivkt using a Least Square ap-
proximation. The polynomial is built using points from the whole data span, biased toward
a range of points in vicinity of the sample which is going to bestimated by an assigned
weight. The LOWESS method is the same as LOESS, unless the tesguare approxima-
tion is a rst degree or linear polynomial. The local regressn weights are calculated as
demonstrated in Equation 4.3. Whered(x) is the time di erence between the values ok
and x;.

X X .3! 3
ax) (4.3)

I = j

Least square approximation method is a popular approximath technique for data tting.
Least square tries to minimize the summation of squared vawf errors. Error is de ned
in terms of the di erence of an approximated value with the atal value observed at that
point, this di erence is also called a residual.

4.1.3 Savitzky-Golay Method

Savitzky-Golay [52] Iter is a generalized form of the movig average algorithm. The Iter
uses an ordeik polynomial regression local to the estimation point. It alsassumes that all
data points are evenly distributed in time, which does not hdl for our collected data sets.
And also might cause inconvenience when data sampling is settte on demand for purposes
such as extending device battery operation time.
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4.1.4 Robust LOESS and LOWESS Algorithms

To make LOESS and LOWESS robust, the only modi cation to the dginal methods is
that outliers are removed from the computation by simply asgning zero weights to them.
When calculating the estimate, a 1st or 2nd order polynomiakiused to approximate the
trend of data in that vicinity. However, weights are assignetb the closest values to bias the
least square approximation toward the most recently obsexd data. When zero weights are
assigned to outliers, they are simply disregarded in the ldasquare approximation process.

Outliers are detected based on comparing their residual tbé median absolute deviation.
Median absolute deviation is the median of the distances satap have from the mean of the
data observed so far. For the robust methods, regression wegyare calculated as shown
in Equation 4.4. in this Equation, r; is the i™ residual. This equation also shows how
MAD is used to give zero weights to the samples that are consieerto be outliers. MAD is
calculated as shown in Equation 4.5

8 . 2
I, = < 1 (GMr,IAD )? if jrij < 6MAD w4
0 ifjrj 6MAD

MAD = median(j r; j) (4.5)



Chapter 5

Security

As discussed in previous chapters, there have not been mangeaarches focusing speci cally
on higher level threats in an indoor positioning system. Thi Chapter discusses specic
threats that are introduced by the architecture of such systas. Additionally, attacks and
countermeasures that are related to the recruited technajees and standards employed in
the proposed system are studied.

5.1 Communication Security

The greatest concern in the context of communication is to prvide con dentiality for the
network interactions. To do so, | experimented with two methds:

1) SSH Tunnelling.
2) SSL/TLS Sockets.

Secure Shell (SSH) is an application layer protocol, that wasitially introduced to ad-
dress weaknesses of telnet and remote login protocols ascdbed in RFC 4251 [85]. This
protocol provides secure communications over an insecuréwak infrastructure. Based on
di erent implementations and platforms; services such asemote graphical shell access, tun-
nelling, and port forwarding can be provided by SSH. In this search, the OpenBSD Secure
Shell (OpenSSH) open source implementation [20] was used stablish secure connections.

The working mechanism of the SSH tunnelling is described asléws:

i- A device authenticates to the SSH server, and initiates thconnection using credentials.

ii- Alocal SOCKS proxy [56] (RFC 1928) service is then run on thdevice platform listening
for requests issued from the device itself.

iii- The application that needs to access services and gem€ing infrastructures, sends and
receives its requests through the device-local proxy serve
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Once the tunnel is established, all the communication is tinepassed through the local
proxy. This local proxy will encrypt the whole packet using SH connection parameters, and
forward it to the destination as one or multiple packets.

Secure Socket Layer version 3.0 (SSLv3), or Transport Lay8ecurity (TLS) [44], is a
transport layer security protocol that provides with: 1) Ca dentiality, 2) Message Integrity,
and 3) Mutual authentication.

TLS supports multiple strong encryption techniques. Init@l negotiation will be deter-
mining the con dentiality basics of a communication and radom parameters that are set
to prevent replay attacks. After the initial handshake, data $ encrypted and is appended a
Message Authentication Code (MAC), in addition to TLS specic headers for each packet.
The encryption technique used can be changed in order to malkeeaking the ciphers more
di cult. The details of TLS is out of the scope of this thesis,and available from the Internet
Engineering Task Force [21].

Considering both methods provide identical techniques forrgviding communication se-
curity, networking advantages are in favour of TLS. Firstly,TLS is a mechanism that does
not require extraneous authentication for initiating a seare connection. Although mutual
authentication can be enforced on TLS connections, it is notecessarily required to provide
secure communication, as client identi cation and authemtation is already provided by the
proposed system in other ways. Secondly, while TLS does oelycrypt the payload and adds
minimal control and integrity headers and trailers, SSH (du& port forwarding requirement)
has to encrypt the whole packet, including TCP headers. Thigads to a phenomenon called
TCP over TCP, that is strongly discouraged due to its overhewhen having small payloads
[75], which applies to the proposed system's use of networspurces.

Due to the aforementioned advantages of TLS over SSH, the paged system is imple-
mented on the TLS. Meanwhile, it should be noted here that thase of SSH is undeniable
for management and remote control purposes and thereforeghi be useful for large scale
deployment of the system.

5.2 Attacks and Countermeasures

The proposed system consists of multiple components that rumder di erent platforms
and use divergent set of system resources. With every dimensihat is added to a software
system through using a speci c type of resource or mechanisgegrtain threats are arisen.
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Network communication is an essential component of the whosystem. Making resources
available through well known network protocols brings exility and usability to the table.
At the same time the well known contrast between usability andecurity limits the designer
to employ techniques that are hidden from the user while at tnsame time provide su cient
security.

The proposed system can be subject to multiple attacks as iak multiple components
and packets of sensitive information owing over the netwd:. Several attacks have been
listed and tested against the implementation of the systemMany of these attacks are well
known and commonly used against di erent types of Internetesvices. Some of the attacks
are customary designed to leverage the specic design andetldata ow of the system.
However, even these custom attacks can be categorized in adeone of the well known
categories. The generic categories that are studied in thigsearch are as follows:

1. Brute Force and Token Guessing.

N

. Denial of Service.
3. Man in The Middle.
4. Spoo ng.

Sections 5.2.1 through 5.2.4 discuss these attacks and digschow the proposed system
is designed to address these threats.

5.2.1 Brute Force and Token Guessing

Perhaps the least complicated and most trivial type of attdcs are brute force attacks. These
category of attacks are mainly designed to randomly or hestically traverse the whole state

space to guess the right parameters for acquiring access toeatain system. While user name
and password guessing attacks are the most familiar ones hig category, brute forcing can

be used in many other scenarios, too. Against the proposed st an adversary can try to

guess RSSI values that lead to a positive positioning outcenHaving a collection of those
samples can give the adversary the ability of replaying thesvalues to gain access. The
RSSI spoo ng/replay attacks are discussed in detail in Sectn 5.2.4. Out of the numerous

parameters that can be guessed, | focus on the following:
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Dictionary Attacks
As described before user names and passwords are used for enttbating the users.
Brute force attacks are obviously a threat to the proposed stem. Therefore the
following approaches are taken to counter this type of brutrce attacks:

1. Authentication is performed in a throttled manner. If a cetain user name fails
to authenticate successfully more than a speci ed number ofmes (threshold),
the system blocks the user account. However, because the auitieation server
and the access control server are separate servers, the usased throttling is
implemented separately from the device based throttling. &£S is responsible for
throttling authentication requests based on user names. Whithe positioning
service takes the responsibility to control the number of fied authentications
given a certain device identity.

2. Enforcing security policies on password selection. Thisnsists of forced inclusion
of special characters and numbers, minimum password lengtAnd expiration
periods. These factors could increase the security and engla the state space
which then results in a more time consuming and nearly infeéd¢ process for
an attacker. At the same time, this may cause decrease in theality of user's
experience because the passwords are going to be less argdnfesmorable as the
constraints get more strict. As a result, using a scheme whidoes not a ect the
user experience is suggested. To this end, the proposed systelies on tracking
of request timings to limit the number of requests given by aser in a specic
time frame.

Guessing Positive RSSI Samples

This is related to the number of RSSI values required for enbilg positioning in each
zone. In my experiments | have used from 3 access points to endles. Some ex-
periments show that with some zone sizes even two dongles amdugh. Each anchor
node's RSSI value can approximately range from -36 to -90. v@n this the size of the
search space for the attacker is of siZ¢®* in my experiments, when using N anchor
nodes. Obviously, a range of values can be classi ed as iresizbne. The zone size is
small in comparison to the range which dongles or access psigover, but still the
probability of a guess coming true is high.
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In order for an adversary to guess enough samples to get awaygni the positioning
step, it needs su cient number of samples to evade being detied by the system's
RSSI spoo ng detection mechanism which is described in Siect 5.2.4.

5.2.2 Denial of Service

Denial of Service attacks are de ned as the category of attex which are aimed to disable
the system from providing service to its clients. Such att&s can be implemented based on
using up the system resources. Such resources include nekwmaindwidth, computational
load on the server or client, and available information. Drsipting the information in a way
that stops the system from serving its legitimate users is erof the most important threats
that this framework can face. The important attacks that fal into this category are discussed
as follows:

Fake Dongle/Access Point Installation
An adversary can bring in and install hardware in a way to preted that the hardware
is part of the positioning infrastructure. If successful, lis will disrupt the quality of
the data collected by devices to be sent to the server for ptishing use. Duplicate
cases could happen where a device discovers the same accesg twice or more
with di erent RSSI values. This attack can be classi ed in bth Spoo ng and DoS
categories.

It can be classi ed as a DoS attack because it can cause the teys fail to provide
with accurate positioning. This will result in a stoppage in ervice because access to
services in the area of geo-fencing are provided based on tlesipon and the quality
of this service solely depending on positioning accuracydnobustness.

The true nature of such an attack is spoong. To impersonate aaccess point or
dongle, the fake nodes need to send out beacons that are atsteearrying the same
MAC address of the others in their beacon frame headers [46].

Overwhelming Number of Requests
Depending on security and access control requirements,doency of location checking
can be di erent. In some areas that users are using devicesdocess sensitive resources,
one administrator might choose to con gure the positioningervice in order to check for
the location of users more frequently. But in almost all casdhat the system is going to
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be deployed, a location aware service in retail environmexntthe frequency of location
checks does not need to be more frequent than a few times penuate. Overcoming a
large number of requests sent out by a single device is acl@d\by properly throttling
these requests based on the frequency of location checkiffdocation checking requests
from an identi ed device are submitted in violation of the timing restrictions, and keeps
violating the restrictions more than a certain limit, users account will be blocked
temporarily or permanently based on the administrator's aoguration.

BlueSmack Attack
Under the Bluetooth stack one of the most used transport protmls is Logical link
control and adaptation protocol (L2CAP). This protocol is responsible for packet mul-
tiplexing, quality of service, segmentation and reassenybbf the packets. Additionally,
similar to the Internet Control Message Protocol's (ICMP) eho message, L2CAP also
provides the echo functionality for discovery and availabiy purposes.

Some versions of the BlueZ [7] implementation are vulnerabégainst echo packets
with an extraordinarily large (greater than 600 bytes) paydad [45, 31]. Because the
attack aims for the availability of the Bluetooth infrastructure, it is normally classi ed

as a DoS attack.

The Bluetooth infrastructure is essentially used for indaopositioning. No data or
service is provided through Bluetooth. More speci cally, Rietooth dongles are present
for sending beacon frames that make the user devices able tavé RSSI readings
and then submit positioning requests. In order for the Bluetoth anchor nodes to
propagate signals, the system uses the BlueZ stack implertation [7]. However,
BlueZ is a complete implementation of the 802.15 standard [3This means that there
are some default features that are included but are not used Ithe proposed system.
Because unnecessary services and equipments are congideeeurity risks, the BluezZ
installation is con gured not to operate on higher level prabcols of the Bluetooth
standard stack. This leads to ignoring all echo packets aving at the anchor nodes,

which makes the system resistant to such attacks.



39

5.2.3 Man in The Middle

Replay Attacks
As mentioned before in this section, communication con derglity and message in-
tegrity is provided using TLS on the transport layer. On the a@plication layer, HTTP
post messages for positioning are checked for integrity ngisession salts. Two scenar-
ios are considered for replaying positioning request data:

1) Replaying cipher data captured on the network.

2) Replaying plain text messages.

As of the rst case, TLS is made replay proof by embedding two ralom elements
generated by the client and the server in the handshake pr@se These two random
values are then used to generate the master key that is used fbetencryption algorithm

chosen in the future steps of the TLS communication. Additiorly, each TLS payload

is accompanied by a Message Authentication Code (MAC) that &so dependent on the
master encryption key. This makes replaying TLS ciphers ndg impossible. Another

way of intercepting plain text data through a TLS connectionis the SSLStrip attack

[59], whose countermeasures are discussed in the text thatdas.

For the second case, there is the prerequisite of being abtelireak the TLS cipher.
This can be achieved by guessing the random numbers exchahge having access to
the device and server's private keys. However, if these depencies are met, plain text
POST data can be sent to the server. As mentioned before, the request data is
protected against alterations using a message veri catidrash based on th&essiong
and Init g5 values. Init 5 IS permanent, in contrastSessiony; is temporary and set
to expire shortly. Each user needs to renew this salt value ibugh a NFC barcode
terminal whenever access is cut for a certain amount of timey the salt is expired.
As a result, the replaying adversary not having access to bothe salt values will be
unable to calculate the message veri cation hashes and fad teplay.

SSLStrip
In 2009 the SSLStrip was introduced. This attack exploits th weaknesses in the way
browsers validate certi cates and warn users about invaliderti cates. Low level of
awareness about SSL protection by the users is another e a@ factor that this type
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of attack can leverage.

The anatomy of SSLStrip involves accessing the network gatay, or forcing the clients
in a network to direct their SSL tra ¢ through an attacker. The latter is normally
achieved by launching a successful Address Resolution Prawb poisoning (ARP poi-
soning) attack [48]. After doing so, the attacker forwards té client browser to a plain
text communication between the rogue gateway and the clignivhile maintaining the
SSL connectivity between the rogue gateway and the intendecetv server. SSLStrip
gives the attacker the power to manipulate content and accethe client-server commu-
nication data in plain text. Meanwhile, the server will not dentify an attack because of
the SSL connection present between the rogue gateway and g®rver. Moreover, the
attacker hopes that the attack is unnoticed on the client sideue to incorrect browser
behaviour or a user's ignorance.

To counter SSLStrip, it is recommended to use bookmarked HTT3URLSs on browsers
and not trusting invalid SSL certi cates. The proposed sygm uses hard coded HTTPS
URLs with HTTP redirect handling disabled. Certi cates are set b be in nitely
veri ed down the chain. Additionally, server certi cates are hard coded with the IP
address and domain name of the servers that they are installen. Applying the
mentioned measures will disable the attacker from launchirg SSLStrip attack.

5.2.4 Spoong

RSSI Spoo ng
This type of attack involves an adversary replaying previaly recorded positive RSSI
samples. This attack is experimented and discussed in Seati6.5.

Tunnelling Based Location Spoo ng
In this case, some threatening scenarios are studied whereeatain decision could not
be made about the true class of an activity. One such scenaii® studied where an
activity cannot be marked as an attack due to ambiguous naterof such practice. This
problem also highly depends on the terms of service (ToS) ths agreed upon by a
company and its customers.

This scenario includes a device, which is physically presenta geo-fenced zone, which
is facilitating the access for users not present. Such a saép can use the third or the
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fourth generation data networks to give access to users retaly connecting.

A remote user can connect to the geo-fenced services over @ac sharing protocol
to play remotely. Or he/she can connect through a more soplisated set of services
such as remote command lines and small applications in orderobtain values such as
RSSI and hashing salt, and then can start accessing the geaded services while the
facilitating node acts as a relay or a network proxy.

Such an attack can be countered by two strategies. Firstly, @& can be con gured
such that no more than one user at a time is able to play using apsical hand held
device. Secondly, one can use the fact that in 3G networks, lipk has a smaller
delay than the down-link [55]. This helps detecting such an ity when a tunnelled
connection is used by the remote user to play through the fditating device.

As mentioned before, such a scenario is highly dependent ogiomal legislative deci-
sions in addition to the company policies and Terms of Seréc Such situations further
emphasize the need to expand legal studies in order to keep with the evolution of
the digital computing environments.

Fake Access Point/Dongle Attacks

The geo-fencing system is dependent on RSSI values for detging the position and as a
result permissions of a user. One way for an attacker to diguthis process is introducing
fake Wi-Fi or Bluetooth anchor nodes. Such an attack can be ackiedl by running a Wi-Fi
access point or Bluetooth hotspot that advertises servicegith the same MAC address or
SSID (Service Set Identi er) as one or more of the anchor nodesiployed in the geo-fencing
infrastructure.

To counter such an attack, the Bluetooth hardware used in thevireless infrastructure
constantly scans the environment for beacons from other drmar nodes. Each node will
compare each observed MAC address and/or SSID to its own MAC @SSID. If any of
the anchor nodes observe such a duplicate, an alert is sent teetadministrator for further
investigation.



Chapter 6

Experiments and Results

This chapter of the thesis focuses on the experiments that mecarried out during the

research. At a glance, multiple discussions are brought up@ut di erent aspects of the

machine learning algorithms and how to extract useful and daeain relevant information

from these algorithms. Additionally, some statistical meases are introduced to counter

speci c types of custom attacks targeting RSSI based indog@ositioning systems.

6.1 Classication Results

As mentioned before, based on my preliminary experiments éséppendix A), the two best

classi ers were C4.5 and Random Forest. Therefore, | compal these two classi ers against

each other on my data sets for this research. These data setiexied in NIMS lab area are
described in Table 6.1.

Table 6.1. Geo-fencing data set description.

Data Set Name Positive Samples Negative Samples Devices
Wi-Fi 2x2 all devices 199 204 7 di erent Android devices
Wi-Fi 2x2 TF101 41 41 Asus TF101
BT 2x2 Samsung 50 50 Samsung Galaxy Ace
BT 2x2 TF101 32 81 Samsung Galaxy Ace and Asus TF101
Wi-Fi 5x5 TF101 50 51 Asus TF101
Wi-Fi 5x5 Samsung 50 50 Samsung Galaxy Ace
BT 5x5 Samsung 50 51 Samsung Galaxy Ace
Wi-Fi 10x10 TF101 50 50 Asus TF101
Wi-Fi 10x10 Samsung 50 50 Samsung Galaxy Ace
BT 10x10 Samsung 50 51 Samsung Galaxy Ace
BT 10x10 all devices 50 51 A variety of devices
BT 10x10 TF101 50 50 Asus TF101

Each classi er was run on all data sets using 10 fold cross wtion. Multiple runs were
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performed using di erent random seeds to ensure that the neés are not biased.

The main metric used for selecting the best classi cation adgithm is the Fyeasure - This
is due to the discriminative aim of classi cation in this resarch. This goal is achieved by
minimizing the number of false negative and false positivergdictions at the same time. To
understand Fyeasure , ONE Needs to rst know Precision and Recall. Precision andeRall are
well known measures that are widely used in information regval and data mining practices.
Precision and Recall are de ned in Equations 6.1 and 6.2 regjieely.

TP

Recall = TP+ EN (6.1)
- TP
Precision = TP+ FP (6.2)

Needless to say, Recall decreases as the number of the falgmtiaes (FN) increases. On
the other hand, Precision decreases when the number of fafsesitives (FP) increases. So
there is a trade o between Recall and Precision. To build a dcriminative classi er, both

Precision and Recall must be maximized as much as possible.

Precision Recall

F =2 — 6.3
Measure P recision + Recall (6.3)

Equation 6.3 is used to calculate thé&casure Value. Clearly, this measure is maximized
to 1 when both Precision and Recall have higher values. Cogsently, Fyeasure @ Suitable
measure for evaluating a classi er to be discriminative.

As mentioned before, multiple classi ers are employed in ourr@iminary experiments..
These classi ers include: Naive Bayes, Support Vector Mactds, C4.5 decision trees, and
Random Forest. Based on the results of these initial tests, delected C4.5 and Random
Forest classi ers for further evaluations. Weka machine leaing tools kit [15] was used for
both initial testing and software integration purposes.

For further evaluations, both classi ers are rst ne tuned for all data sets based on linear
parameter search. Each classi er is run multiple times whel changing parameter values in
a linear manner. The best parameters for the top two classire being used are as follows:
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Random Forest : 250 trees in the forest, each split point is based on 2 random
features.

C4.5 Decision Tree : Con dence factor of 0.25 for nal pruning.

Figures 6.1 and 6.2 demonstrate the performance of the Randéorest classi er on Blue-
tooth and Wi-Fi infrastructure data sets respectively, wheras Figures 6.3 and 6.4 illustrate
the performance of the C4.5 classi er on the same data sets.hdsSe classi cation results
suggest that the Random Forest classi er has a better perforance on all data sets. In these
experiments Random Forest classi er has a nal F-measure of @2 in average on all data
sets as opposed to C4.5 having a F-measure of 0.67 (before ghing). Therefore, Random
Forest is chosen to be the main classi cation algorithm fortte proposed system. From this
point on all the experiments that are concerned with classtation are run using the Random
Forest algorithm.

6.2 Smoothing Results

The data collection step is basically operated by adminisators, and it depends on user
input for reading and recording the RSSI values. But in runtne, the testing applications
that operate on user devices are con gured to record Wi-Fi reatys in timed periods (5

seconds for our tests). On the other hand, due to the event l&b design of Bluetooth
scanning in Android, setting a smaller recording frequency ineeded to achieve uniformly
recorded samples. To experiment the e ect of data collectioimings on the smoothing

process, a new Bluetooth data set for the 2x2 zone size waslemikd. After performing

experiments on both the new and the old 2x2 data sets resultarh out to be nearly the

same. This is because most of the employed smoothing meth@is assuming that values
are not temporally evenly distributed. As a result, no new dat set is collected for other
zone sizes to conduct smoothing experiments.

For the smoothing method evaluations, two extensive sets ekperiments were carried
out. The rst set of experiments were aimed to determine the dst smoothing method for
the existing data sets. Then, the second round of experimanare designed to discover the
best parameter values for the method chosen in the previousund of experimentation.

In the rst round of experiments each of the 12 data sets are ssothed using all the
methods described in Chapter 4. Based on averaggeasure Of all runs on each data set,
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(a) Wi-Fi 10x10 Samsung. (b) Wi-Fi 10x10 TF101.
(c) Wi-Fi 2x2 all devices. (d) Wi-Fi 2x2 TF101.
(e) Wi-Fi 5x5 Samsung. (f) Wi-Fi 5x5 TF101.

Figure 6.1: Random Forest result distribution on non-smoo#d data sets while using the
Wi-Fi infrastructure.

the best smoothing algorithm is selected. To do so, smoothddtasets are sorted based on

averageFyeasure then the method with the best ranks is chosen as the main algtm.

These results show that the Moving Average has shown more si@gess in performance
across di erent data sets. Figures 6.7 and 6.8 show the resutis classi cation on 5x5 zone
using the Wi-Fi infrastructure. Appendix A includes detailed eperimental results on all
data sets. Table A.2 tabulates the average classi cation meares for all the methods on all

data sets for di erent smoothing methods.

The smoothing process is performed in a few steps. First, das®ts are loaded into
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(a) Bluetooth 10x10 all devices. (b) Bluetooth 10x10 Samsung.

(c) Bluetooth 10x10 TF101. (d) Bluetooth 2x2 Samsung.

(e) Bluetooth 2x2 TF101. (f) Bluetooth 5x5 Samsung.

Figure 6.2: Random Forest result distribution on non-smoo#d data sets using the Bluetooth
infrastructure.

Matlab environment from CSV le formats. Sorting the samples bsed on their reading
time, each data set represents a recorded time series of R&2ldings. Then, starting from
the beginning of the sorted data set, the algorithms aim to adgt the value of next sample
based on the samples observed up to that point. Finally, aftemsothing Iter is applied,
the data sets are saved into separate CSV les for classi dan purposes.

Applied smoothing techniques ( Iters) have a delay for staihg to remove the noise.
This delay is in direct relation to the Windows;j,. selected. As mentioned before, there is a
trade-o between the delay for a lIter to start its impact on th e values and the amount of
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(a) Wi-Fi 10x10 Samsung. (b) Wi-Fi 10x10 TF101.
(c) Wi-Fi 2x2 all devices. (d) Wi-Fi 2x2 TF101.
(e) Wi-Fi 5x5 Samsung. (f) Wi-Fi 5x5 TF101.

Figure 6.3: C4.5 decision tree result distribution on non-soothed data sets while using the
Wi-Fi infrastructure.

the noise that is removed by the lter.

In each data set smoothing is performed separately for eachirdiute and also separately
for each label, because each attribute value is technicallydependent from the other values.
A user's location and orientation in relation to a speci ¢ ashor node is highly e ective on
the noise. Additionally, the noise on each anchor node is alswlependent because they are
operating on di erent frequency channels.

To further examine the moving average method, experimentate been undertaken with
di erent values of Windows;,e. The Windowsj,. has been changed from 5 to 50 readings.
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(a) Bluetooth 10x10 all devices. (b) Bluetooth 10x10 Samsung.

(c) Bluetooth 10x10 TF101. (d) Bluetooth 2x2 Samsung.

(e) Bluetooth 2x2 TF101. (f) Bluetooth 5x5 Samsung.

Figure 6.4: C4.5 decision tree result distribution on non-soothed data sets while using the
Bluetooth infrastructure.

Then the Random Forest classi er is run and results are comped based on averagEyeasure -
Figures 6.5 and 6.6 illustrate the e ect of the changes iWindowsj,e on the results of
classi cation experiments. Based on these experiments\Véindows;,e of between 20 and 30
is shown to be the best for both Bluetooth and Wi-Fi data sets. Addonally, Table A.3
lists detailed classi cation results achieved on all data s& when changing the smoothing
W indowsj,e from 5 to 50.

To integrate the Moving Average method into a system that opeaites on live data streams
rather than pre-recorded data sets, the CSM (Section 3.2.A)aintains a Circular FIFO Bu er
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure 6.7: Random Forest result distribution on Wi-Fi 5x5 dateset collected using an Asus
Tablet, using di erent Smoothing methods.

6.3 Most Important Anchor Nodes

Although the Random Forest classi er yields better classi caon results, the structure of
a C4.5 decision tree can be helpful, too. To nd the most imptant anchor node in the
positioning decision process, a C4.5 tree is trained on thatd set. Then the most important
anchor node that is the anchor node that is placed in the root nedof the tree is analysed.
This is because features are ranked based on information gaihem the decision tree is
choosing the next attribute to recursively build the tree. Afer nding the most important
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure 6.8: Random Forest result distribution on Bluetooth %5 data set collected using a
Samsung Smartphone, using di erent Smoothing methods.

anchor node, the corresponding attribute is removed from théata set and a new decision
tree is built on the remaining attributes, leading to sele¢don of the next most important
anchor node and so on. This process is repeated until no lebar two attributes remain.
Figure 6.9 demonstrates the decision tree visualizations fére rst and the second most
important anchor nodes on a 2x2 geo-fenced zone using Blugtoinfrastructure. This shows
that which anchor node is the most in uential in the geo-feniag decision process. Studying
characteristics of their placement in relation to the gecehced zone being studied can give
us clues in order to perform more accurate geo-fencing inkgions. Information from this
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Table 6.2: Top 10 anchor node positions for the 5x5 geo-fed@®ne while using the Bluetooth
infrastructure for positioning.

Count Anchor Nodes F  Measure (@verage)
3 Tokunbo, Hossein, Hossein-Old 0.78
6 Patrick, Vahid, Tokunbo, Hossein, Ozge, Hossein-Old 0.77
4 Tokunbo, Hossein, Ozge, Hossein-Old 0.76
4 Vahid, Tokunbo, Hossein, Hossein-Old 0.76
1 Hossein 0.75
5 Patrick, Tokunbo, Hossein, Ozge, Hossein-Old 0.75
4 Patrick, Tokunbo, Hossein, Hossein-Old 0.75
5 Vahid, Tokunbo, Hossein, Ozge, Hossein-Old 0.747
3 Hossein, Ozge, Hossein-Old 0.746
5 Patrick, Vahid, Hossein, Ozge, Hossein-Old 0.74

number of anchor nodes. When a data set is collected, a tool eal\Subseteer" is used
to nd the best formation of access points. Subseteer rst eates subsets of the data set
and trains the Random Forest classi er on each of the subset$hen, each subset is tested
for performance using 10 fold cross validation. These testaults are then sorted based on
Fmeasure 1IN Order to choose the most discriminative model.

Table 6.2 tabulates the top 10 results from a run of Subseteen a Bluetooth data set
collected on a 5x5 meter zone. Apparently, having only three tife anchor nodes (Tokunbo,
Hossein, and Hossein-Old) is enough for performing a slightbetter positioning than the
whole set of anchor nodes. Considering Figure 3.6, anchor nedelossein” and \Hossein"
are close to the border of the 5x5 zone. And anchor node \Tokuabis far from the zone in
a place where users have the freedom to move when they are méghe zone perimeter.

Another run of Subseteer on a 10x10 Bluetooth data set denotiést the top 2 formations
are (Hossein, Hossein-Old) and (Vahid, Tokunbo, Patrick, Orj. The (Hossein, Hossein-
old) subset includes two anchor nodes from the center of there. On the other hand, the
(Vahid, Tokunbo, Patrick, Ozge) subset, includes the nodesdated at four corners of the
zone being experimented. Figure 6.10, demonstrates the slesation results for both the
top subsets relative to the original data set. In this casehe (Hossein;Hossein Old)
subset performs best by only having two anchor nodes. Thismties the importance of the
infrastructure optimization for having an accurate geo-fecing engine, which is provided by
the proposed system.
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(a) Anchor nodes on the center of the zone. (b) Anchor nodes on four corners of the zone.

(c) All anchor nodes considered.

Figure 6.10: Random Forest results considering di erent pdgns of anchor nodes on a
10x10 Bluetooth zone.

6.5 Brute Force and Spoo ng Experiments

In this case, an adversary present in a geo-fence controlleavironment can access a service
outside the speci c geo-fenced zone. In order to do so, he/sieeds to collect a set of positive
samples to be used for replaying when a spoo ng attack is ladred. By nature, guessing
positive RSSI values is more successful than password briitecing, because guessing a
positive value is more probable. In contrast, for a passwomlessing attack, there is only
one correct answer for the whole process

In this case, there are di erent methods to detect or disabla brute force attempt. The
main method for delaying brute force attacks is to throttle te number of requests a user
can submit to the server. As mentioned before, CSM keeps track request timings from

INot considering hashing algorithm con icts if the password hash is attackel.
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each user. CSM is designed to be con gurable with the followingarameters:

i) Minimum Request Delay  This determines the minimum time that a user needs to
wait to submit a new positioning request.

i) Maximum Number of Violations This determines the maximum number of times
a user can violate a constraint before the account is blackled, including the violation
of Minimum Request Delay.

iii) Time in Blacklist  This is the duration that the user will be blacklisted. This ould
be set to in nity by setting a negative value or exponential kacklisting times, if it is set
to a positive value.

Generating signal data randomly, an attacker attempts to kgethe positive samples
for future replay. Comparing the randomly generated signalto regular users' behaviour
according to the data bu ers that CSM records can distinguis users from attackers. For
each client, a long term history of RSSI values per anchor node stored. This history is
held as a set of unigue RSSI values each client has sent foriposing requests.

Because of the nature of a retail environment and human movemt speed, a regular user
sending legitimate values is limited to a number of possibl@alues in a speci c time frame.
However, because the attacker is generating random valuemaig to cover the state space,
his/her chosen RSSI values are not as limited as a benign usdio di erentiate these two
behaviours, CSM keeps track of the growth rate of the each drar node's value set per each
user. The growth rate is calculated as shown in Equation 6.4.

Size(V alueSe)

Growthae =
"% 7 T otaINumberofRequests

(6.4)

At the beginning of a session the set is empty. Consequentliet growth rate is high and
close to 1. After a number of values are submitted to the servea,user's growth rate starts
to fall, because new unique values are less likely to be addedhe set. This is because in
normal conditions, a user's behaviour most probably will emist of movements which are
limited in speed and distance [39, 83]. Experiments show thaormal users' growth rate
falls much earlier and faster than that of a random brute foliag attacker.
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Figure 6.11: Trend ofGrowth,4 for RSSI Spoo ng, Brueforcing ,and a regular users in a
2x2 zone monitored using Bluetooth RSSI values.

Assuming that attacks are anomalous activities, detectionfeuch behaviour is based on

the following principles:

1 Value sets are reset at everlf lushp i requests.

2 A user must have submitted at leasMin gequests requests to become eligible for the de-

tection process.

3 A user is reported as suspicious when its avera@eowth e is higher than the average
of Growthrate over all the eligible users with a distance of at least 3 MediaAbsolute
Deviation (3MAD) of average growth rates.

Intuitively, the variations observed in the signal values is lao dependent on the geo-
fencing zone sizes, as the user has more freedom to move amdl se more diverse set of
values in larger zones. To this end; lushpine and Min gequests Can be tuned to suit di erent
zone sizes.

Equation 6.5 demonstrates the trend of averag8rowth,,, for three di erent users over
100 positioning requests. A brute force attacker is sendimgndom RSSI values between -30
and -90. A regular user is normally moving or standing insidéné geo-fenced zone. A spoofer
is replaying 10 positive samples while staying outside theg-fenced zone. In summary, this
shows that both the RSSI spoo ng and the RSSI brute forcing &dcks can be distinguished
using the unique signal values sent by each user. Brute fargiattacks tend to have a more
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diverse set of values, while spoofers will have less dewatibecause of their use of a limited
number of previously recorded samples.

6.6 Improving The Smoothing Process

Although smoothing can improve the classi cation performare by eliminating noise and
outliers, it has speci ¢ drawbacks in the geo-fencing systenthe most important drawback
is the transition of a user from being inside to going outsider vice versa. Even a relatively
small window size (between 5 to 15 data samples) will cause thstimates to strongly re ect
the previously observed conditions. As a result, this will iprove user experience by removing
sudden decision changes, but will introduce the risk of givj access to resources while
the user is outside a zone. As mentioned before, a weighted nmgvaverage method can
help result in making predictions in favour of the latest dad points. However, due to the
signi cant amount of noise, this may also make the smoothinghethod prone to failing when
outliers or severe shootings are introduced to the sensors.

To address this issue, | use the information stored by CSM. IRigure 3.8 two circular
FIFO bu ers with sizes equal to the smoothing window size ardlustrated. The \Pure
RSSI Values" bu er stores the RSSI data points as received froa client, opposite is the
\Smoothed RSSI Values" bu er, which stores the RSSI valueshat are the output of the
smoothing algorithm, Moving Average. A third bu er, \Predictions History", stores the
three latest predictions. As one can see in Figure 3.8, this anfnation is stored for each
client separately. Based on these data points, two prediotis are made per each geo-fencing

request:

1) A prediction made by the classi er trained on the raw data bsed on the latest raw data
point.

2) A prediction made by the classi er trained on the smoothed ata based on the latest
smoothed data point.

In cases where these two decisions disagree the nal deaisie made in favour of the
smoothed decision maker. However, whenever the two classsdave disagreed more than a
k number of times, the decision will be put in favour of the rawlassi er and all smoothing
windows will be ushed. By ushing the smoothing windows, tle e ect of the smoothing
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history on the latest changes will be removed. This can als@llance the training and testing
phases for the classi ers. As mentioned before, positive anégative samples are smoothed
independently. So, ushing the bu ers at the time a user crases a border can bring the
same smoothing strategy to runtime.

Taking this approach results in a small delay when switching dm the "being present"”
condition (in the zone) to the "being absent” condition (notin the zone) in the geo-fenced
zone. In return, two negative factors are removed at the santiene. Firstly, the spontaneous
behaviour of preempting a user's access caused by noise aumitiers is eliminated. Secondly,
the smoothing drawback of making predictions relative to th past is also addressed. Ex-
periments show that settingk = 3 will lead to a good balance between switching time and

a smooth behaviour.



Chapter 7

Conclusions and Future Works

In this thesis an indoor geo-fencing and access control s3st is proposed and then studied
in noisy and insecure environments. Measures and modi catis are applied to make the
system more robust and secure.

Robustness is achieved by applying smoothing algorithms ®SSI data read by the
wireless adapters equipped in wireless devices in the gewcfieg environment. Smoothing
removes outliers and reduces the spontaneous changes inslens made by the positioning
system. Negative e ects of smoothing is addressed using dieat classi ers on di erent data
sets at the same time. Results show that smoothing not only impves the behaviour of the
software, it also improves the average accuracy up to 100%.

To the best of my knowledge, this is the rst work that studiesthreats faced by a real
world deployment of indoor location aware access controle&urity of the system is assured by
adding throttling and per user statistical analysis. Many 6the commonly known attacks are
countered by using mechanisms such as static ARP entries, aredjuest throttling. However,
to address system speci c attacks including RSSI value braitforcing and spoo ng, new
measures and detection mechanisms such as outlier detetctigpon RSSI valueGrowth, 4
and infrastructure monitoring are introduced. Detection offake Wi-Fi access points and
Bluetooth hotspots is also built-in to the system.

The proposed system architecture has been led for a US promsal patent by the
industrial partner and a paper describing early stages of thadesign and implementation is
published in IEEE CICS'2013.

To further improve the system, new factors and features forgsitioning can be taken as
the next future direction. Such factors can include: hybrighositioning based on both Wi-Fi
and Bluetooth, a user's direction (magnetometer sensor), agll as integration of NFC for
two way proximity based communication.
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Appendix A

Result Tables and Figures

A.1 Tables

This section includes tables that present the reader with d&led information about the
classi cation runs. Table A.1 tabulates the classi cation esults on the original data sets
using 4 classi ers as mentioned in section 6.1. This tablesal includes classi cation results
on a normalized copy of data sets, in order to investigate dséness of such a normalization
on the classi cation. Tables A.2 and A.3, show the results actwved from the smoothing
algorithm runs. Table A.2 tabulates the sorted results for th rst set of experiments aimed
to choose the best smoothing algorithm. Afterwards, Table Ai8 presenting the classi cation
results obtained when changing the smoothing/indows;,e from 5 to 50.

Table A.1: All the best classi cation results achieved by
runs on the original data. In these runs [0,1] normaliza-
tion is also tested.

Data Run Normalize |T Pratio |FPratio |TNratio |FNratio |Precision|Recall|{Fmeasure | AUC
BT-10x10-alldevs NaiveBayes none 0.8 0 1 0.2 1 0.8 |0.888889| 0.94
BT-10x10-alldevs LibSVM none 1 0 1 0 1 1 1 1
BT-10x10-alldevs LibSVM [0,1] 0.9 0.1 0.9 0.1 0.9 0.9 0.9 0.9
BT-10x10-alldevs J48 none 1 0 1 0 1 1 1 1
BT-10x10-alldevs |RandomForest| none 1 0 1 0 1 1 1 1
BT-10x10-alldevs |[RandomForest [0,1] 1 0 1 0 1 1 1 1

BT-10x10-Samsung | NaiveBayes none 1 0 1 0 1 1 1 1
BT-10x10-Samsung LibSVM none 1 0 1 0 1 1 1 1
BT-10x10-Samsung LibSVM [0,1] 1 0 1 0 1 1 1 1
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Data Run Normalize [T Pratic |FPratio |TNratio |FNratio |Precision|Recall|Fmeasure | AUC
BT-10x10-Samsung J48 none 1 0 1 0 1 1 1 1
BT-10x10-Samsung [RandomForest| none 1 0 1 0 1 1 1 1
BT-10x10-Samsung |RandomForest [0,1] 1 0 1 0 1 1 1 1

BT-10x10-Asus NaiveBayes none 1 0 1 0 1 1 1 1
BT-10x10-Asus LibSVM none 1 0 1 0 1 1 1 1
BT-10x10-Asus LibSVM [0,1] 1 0.2 0.8 0 0.833333] 1 [0.909091| 0.9
BT-10x10-Asus J48 none 1 0 1 0 1 1 1 1
BT-10x10-Asus |RandomForest| none 1 0 1 0 1 1 1 1
BT-10x10-Asus |RandomForest [0,1] 1 0 1 0 1 1 1 1
BT-2x2-Samsung NaiveBayes none 1 0 1 0 1 1 1 1
BT-2x2-Samsung LibSVM none 1 0 1 0 1 1 1 1
BT-2x2-Samsung LibSVM [0,1] 0.6 0 1 0.4 1 0.6 0.75 0.8
BT-2x2-Samsung J48 none 1 0 1 0 1 1 1 1
BT-2x2-Samsung |RandomForest none 1 0 1 0 1 1 1 1
BT-2x2-Samsung |RandomForest [0,1] 1 0 1 0 1 1 1 1
BT-2x2-Asus NaiveBayes none 1 0 1 0 1 1 1 1
BT-2x2-Asus LibSVM none 1 0 1 0 1 1 1 1
BT-2x2-Asus LibSVM [0,1] 1 1 0 0 0.75 1 |0.857143| 0.5
BT-2x2-Asus J48 none 1 0 1 0 1 1 1 1
BT-2x2-Asus RandomForest none 1 0 1 0 1 1 1 1
BT-2x2-Asus RandomForest [0,1] 1 0 1 0 1 1 1 1
BT-5x5-Samsung NaiveBayes none 1 0 1 0 1 1 1 1
BT-5x5-Samsung LibSVM none 1 0 1 0 1 1 1 1
BT-5x5-Samsung LibSVM [0,1] 0.8 0 1 0.2 1 0.8 |0.888889| 0.9
BT-5x5-Samsung J48 none 1 0 1 0 1 1 1 1
BT-5x5-Samsung |[RandomForest none 1 0 1 0 1 1 1 1
BT-5x5-Samsung |[RandomForest [0,1] 1 0 1 0 1 1 1 1
WF-10x10-Samsung| NaiveBayes none 1 0 1 0 1 1 1 1
WF-10x10-Samsung LibSVM none 1 0 1 0 1 1 1 1




Data Run Normalize [T Pratic |FPratio |TNratio |FNratio |Precision|Recall|Fmeasure | AUC
WF-10x10-Samsung LibSVM [0,1] 1 0 1 0 1 1 1 1
WF-10x10-Samsung J48 none 1 0 1 0 1 1 1 1
WF-10x10-Samsung |RandomForest | none 1 0 1 0 1 1 1 1
WF-10x10-Samsung |RandomForest [0,1] 1 0 1 0 1 1 1 1

WF-10x10-Asus NaiveBayes none 1 0 1 0 1 1 1 1
WEF-10x10-Asus LibSVM none 1 0 1 0 1 1 1 1
WF-10x10-Asus LibSVM [0,1] 1 0 1 0 1 1 1 1
WF-10x10-Asus J48 none 1 0 1 0 1 1 1 1
WF-10x10-Asus |RandomForest| none 1 0 1 0 1 1 1 1
WF-10x10-Asus  |RandomForest [0,1] 1 0 1 0 1 1 1 1
WEF-2x2-alldevs NaiveBayes none 0.7 0.2 0.8 0.3 |0.777778| 0.7 |0.736842|0.76875
WF-2x2-alldevs LibSVM none 0.85 0.4 0.6 0.15 0.68 0.85 | 0.755556| 0.725
WF-2x2-alldevs LibSVM [0,1] 1 1 0 0 0.525 1 |0.688525| 0.5
WF-2x2-alldevs J48 none 0.45 0.05 0.95 0.55 0.9 0.45 0.6 0.705
WF-2x2-alldevs |RandomForest| none 0.75 0.4 0.6 0.25 |0.652174| 0.75 |0.697674| 0.745
WF-2x2-alldevs |RandomForest [0,1] 0.75 0.4 0.6 0.25 |0.652174| 0.75 |0.697674| 0.745
WEF-2x2-Asus NaiveBayes none 1 0 1 0 1 1 1 1
WF-2x2-Asus LibSVM none 1 0 1 0 1 1 1 1
WF-2x2-Asus LibSVM [0,1] 1 0 1 0 1 1 1 1
WF-2x2-Asus J48 none 1 0 1 0 1 1 1 1
WF-2x2-Asus RandomForest none 1 0 1 0 1 1 1 1
WF-2x2-Asus RandomForest [0,1] 1 0 1 0 1 1 1 1
WEF-5x5-Samsung | NaiveBayes none 1 0 1 0 1 1 1 1
WEF-5x5-Samsung LibSVM none 1 0 1 0 1 1 1 1
WEF-5x5-Samsung LibSVM [0,1] 1 0.2 0.8 0 0.833333| 1 |0.909091| 0.9
WF-5x5-Samsung J48 none 1 0 1 0 1 1 1 1
WEF-5x5-Samsung |RandomForest| none 1 0 1 0 1 1 1 1
WF-5x5-Samsung |RandomForest [0,1] 1 0 1 0 1 1 1 1
WF-5x5-Asus NaiveBayes none 1 0.2 0.8 0 0.833333] 1 [0.909091| 0.88
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Data Run Normalize [T Pratic |FPratio |TNratio |FNratio |Precision|Recall|Fmeasure | AUC
WEF-5x5-Asus LibSVM none 1 0 1 0 1 1 1 1
WF-5x5-Asus LibSVM [0,1] 1 0.2 0.8 0 0.857143| 1 |0.923077| 0.9
WEF-5x5-Asus J48 none 1 0 1 0 1 1 1 1
WF-5x5-Asus RandomForest none 1 0 1 0 1 1 1 1
WF-5x5-Asus RandomForest [0,1] 1 0 1 0 1 1 1 1

Table A.1: All the best classi cation results achieved by

runs on the original data. In these runs [0,1] normaliza-

tion is also tested.
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Table A.2: Detailed classi cation result averages for Ran-

dom Forest on all data sets using di erent smoothing

methods, sorted based on \reasure
10 for all runs.

. Windowsj,. is set to
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Data Method TP ratio FP ratio TN ratio FN ratio Precision Recall FMeasure AUC
BT-10x10-Samsung Moving Average 0.95 0.05 0.95 0.05 0.96 0.95 0.95 1.00
BT-10x10-Samsung RLOWESS 0.95 0.05 0.95 0.05 0.96 0.95 0.95 1.00

BT-10x10-Asus Moving Average 0.93 0.07 0.93 0.07 0.94 0.93 0.93 0.99
BT-10x10-alldevs Moving Average 0.93 0.08 0.93 0.08 0.93 0.93 0.92 0.98
BT-10x10-alldevs RLOWESS 0.91 0.09 0.91 0.09 0.92 0.91 0.91 0.98

BT-10x10-Asus LOWESS 0.90 0.10 0.90 0.10 0.92 0.90 0.90 0.95

BT-10x10-Samsung LOWESS 0.90 0.10 0.90 0.10 0.92 0.90 0.90 1.00
BT-10x10-alldevs LOWESS 0.89 0.11 0.89 0.11 0.90 0.89 0.89 0.98
BT-10x10-alldevs RLOESS 0.89 0.11 0.89 0.11 0.90 0.89 0.89 0.94
WF-10x10-Samsung RLOWESS 0.89 0.11 0.89 0.11 0.91 0.89 0.89 0.95
WF-10x10-Samsung LOWESS 0.89 0.11 0.89 0.11 0.91 0.89 0.89 0.90
BT-5x5-Samsung Moving Average 0.89 0.11 0.89 0.11 0.90 0.89 0.88 0.99
BT-10x10-alldevs Savitzky-Golay 0.88 0.12 0.88 0.12 0.90 0.88 0.88 0.96
WEF-5x5-Samsung Moving Average 0.88 0.12 0.88 0.12 0.90 0.88 0.88 0.98
WF-10x10-Asus RLOWESS 0.88 0.13 0.88 0.13 0.89 0.88 0.87 0.99
WF-10x10-Samsung Moving Average 0.87 0.13 0.87 0.13 0.90 0.87 0.87 0.93
BT-2x2-Asus Moving Average 0.87 0.19 0.81 0.13 0.89 0.87 0.87 0.97
WF-10x10-Samsung LOESS 0.87 0.13 0.87 0.13 0.89 0.87 0.87 0.93
WF-10x10-Asus Moving Average 0.87 0.13 0.87 0.13 0.90 0.87 0.87 0.92
WF-10x10-Samsung Savitzky-Golay 0.87 0.13 0.87 0.13 0.89 0.87 0.87 0.91
BT-10x10-Asus RLOWESS 0.87 0.13 0.87 0.13 0.88 0.87 0.86 0.97
WF-10x10-Samsung RLOESS 0.86 0.14 0.86 0.14 0.88 0.86 0.86 0.90
WF-5x5-Samsung LOWESS 0.86 0.14 0.86 0.14 0.88 0.86 0.86 0.95
BT-5x5-Samsung RLOWESS 0.86 0.15 0.85 0.14 0.88 0.86 0.86 0.97
BT-2x2-Asus RLOWESS 0.86 0.22 0.78 0.14 0.88 0.86 0.85 0.95
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Data Method TP ratio FP ratio TN ratio FN ratio Precision Recall FMeasure AUC
BT-10x10-alldevs LOESS 0.85 0.15 0.85 0.15 0.86 0.85 0.85 0.93
BT-2x2-Samsung Moving Average 0.85 0.14 0.86 0.15 0.88 0.85 0.85 0.98

BT-10x10-Samsung Savitzky-Golay 0.85 0.15 0.85 0.15 0.87 0.85 0.85 0.97
BT-10x10-Asus LOESS 0.84 0.16 0.84 0.16 0.86 0.84 0.84 0.91
BT-2x2-Asus LOWESS 0.84 0.22 0.78 0.16 0.86 0.84 0.83 0.93
BT-5x5-Samsung LOWESS 0.84 0.16 0.84 0.16 0.87 0.84 0.83 0.94
WF-5x5-Samsung RLOWESS 0.83 0.17 0.83 0.17 0.85 0.83 0.83 0.96
WF-10x10-Asus LOWESS 0.83 0.17 0.83 0.17 0.86 0.83 0.83 0.92
BT-10x10-Samsung RLOESS 0.83 0.17 0.83 0.17 0.85 0.83 0.83 0.93
BT-2x2-Samsung RLOWESS 0.82 0.17 0.83 0.18 0.84 0.82 0.82 0.92
BT-10x10-Asus RLOESS 0.82 0.18 0.82 0.18 0.85 0.82 0.82 0.93
BT-5x5-Samsung Savitzky-Golay 0.82 0.18 0.82 0.18 0.86 0.82 0.82 0.91
BT-2x2-Samsung LOWESS 0.82 0.18 0.82 0.18 0.83 0.82 0.82 0.93
BT-5x5-Samsung RLOESS 0.82 0.19 0.81 0.18 0.84 0.82 0.82 0.89
WF-5x5-Asus Moving Average 0.82 0.18 0.82 0.18 0.85 0.82 0.82 0.89
WF-10x10-Asus RLOESS 0.82 0.18 0.82 0.18 0.85 0.82 0.81 0.86
BT-2x2-Asus Savitzky-Golay 0.82 0.26 0.74 0.18 0.83 0.82 0.81 0.91
BT-2x2-Samsung RLOESS 0.82 0.19 0.81 0.18 0.84 0.82 0.81 0.92
BT-10x10-Samsung LOESS 0.81 0.19 0.81 0.19 0.84 0.81 0.81 0.92
BT-2x2-Asus RLOESS 0.81 0.28 0.72 0.19 0.83 0.81 0.80 0.92
BT-5x5-Samsung LOESS 0.81 0.19 0.81 0.19 0.84 0.81 0.80 0.86
BT-10x10-Asus Savitzky-Golay 0.81 0.19 0.81 0.19 0.84 0.81 0.80 0.95
WF-10x10-Asus LOESS 0.80 0.20 0.80 0.20 0.84 0.80 0.79 0.89
BT-2x2-Samsung Savitzky-Golay 0.80 0.20 0.80 0.20 0.82 0.80 0.79 0.93
WF-5x5-Samsung Savitzky-Golay 0.79 0.21 0.79 0.21 0.82 0.79 0.78 0.89
BT-2x2-Asus LOESS 0.79 0.30 0.70 0.21 0.80 0.79 0.78 0.89
WF-2x2-Asus RLOWESS 0.78 0.22 0.78 0.22 0.81 0.78 0.78 0.83
WF-10x10-Asus Savitzky-Golay 0.78 0.22 0.78 0.22 0.81 0.78 0.77 0.87
BT-2x2-Samsung LOESS 0.77 0.23 0.77 0.23 0.80 0.77 0.77 0.83
WF-5x5-Asus RLOWESS 0.77 0.23 0.77 0.23 0.80 0.77 0.77 0.86




72

Data Method TP ratio FP ratio TN ratio FN ratio Precision Recall FMeasure AUC
WF-5x5-Asus LOWESS 0.77 0.23 0.77 0.23 0.79 0.77 0.76 0.81
WF-5x5-Asus Savitzky-Golay 0.76 0.24 0.76 0.24 0.78 0.76 0.76 0.82
WF-2x2-Asus Moving Average 0.76 0.24 0.76 0.24 0.80 0.76 0.75 0.81

WF-5x5-Samsung RLOESS 0.75 0.25 0.75 0.25 0.79 0.75 0.74 0.87
WF-2x2-Asus LOWESS 0.74 0.26 0.74 0.26 0.78 0.74 0.74 0.78
WEF-5x5-Samsung LOESS 0.74 0.26 0.74 0.26 0.77 0.74 0.73 0.85
WF-2x2-Asus Savitzky-Golay 0.73 0.28 0.72 0.27 0.77 0.73 0.72 0.75
WF-2x2-Asus RLOESS 0.69 0.30 0.70 0.31 0.72 0.69 0.68 0.76
WF-2x2-Asus LOESS 0.68 0.32 0.68 0.32 0.71 0.68 0.67 0.74
WF-5x5-Asus LOESS 0.65 0.35 0.65 0.35 0.67 0.65 0.64 0.72
WEF-2x2-alldevs Moving Average 0.62 0.38 0.62 0.38 0.62 0.62 0.62 0.68
WF-2x2-alldevs RLOWESS 0.60 0.40 0.60 0.40 0.60 0.60 0.59 0.63
WF-2x2-alldevs Savitzky-Golay 0.58 0.42 0.58 0.42 0.59 0.58 0.58 0.64
WF-2x2-alldevs LOWESS 0.58 0.42 0.58 0.42 0.58 0.58 0.58 0.64
WEF-2x2-alldevs RLOESS 0.57 0.43 0.57 0.43 0.58 0.57 0.57 0.62
WF-5x5-Asus RLOESS 0.58 0.42 0.58 0.42 0.60 0.58 0.57 0.68
WF-2x2-alldevs LOESS 0.55 0.45 0.55 0.45 0.55 0.55 0.55 0.58

Table A.2: Detailed classi cation result averages for Ran-

dom Forest on all data sets using di erent smoothing

methods, sorted based on yreasure - W iNndowsj,e IS set to

10 for all runs.
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Table A.3: Detailed classication results for di erent
Windowsj,e values on all data sets.

Data Windowsize | TPratio | FPrato | TNrato | FNratio | Fmeasure | AUC
BT-10x10-alldevs 5 0.93 0.08 0.93 0.08 0.92 0.98
BT-10x10-alldevs 10 0.93 0.08 0.93 0.08 0.92 1.00
BT-10x10-alldevs 15 0.94 0.06 0.94 0.06 0.94 0.99
BT-10x10-alldevs 20 0.93 0.07 0.93 0.07 0.93 1.00
BT-10x10-alldevs 25 1.00 0.00 1.00 0.00 1.00 1.00
BT-10x10-alldevs 30 1.00 0.00 1.00 0.00 1.00 1.00
BT-10x10-alldevs 35 1.00 0.00 1.00 0.00 1.00 1.00
BT-10x10-alldevs 40 0.98 0.03 0.98 0.03 0.97 1.00
BT-10x10-alldevs 45 0.97 0.03 0.97 0.03 0.97 1.00
BT-10x10-alldevs 50 0.98 0.03 0.98 0.03 0.97 1.00

BT-10x10-Samsung 5 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 10 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 15 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 20 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 25 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 30 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 35 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 40 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 45 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Samsung 50 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Asus 5 0.93 0.07 0.93 0.07 0.93 0.99
BT-10x10-Asus 10 0.93 0.07 0.93 0.07 0.93 0.99
BT-10x10-Asus 15 0.93 0.07 0.93 0.07 0.93 0.99
BT-10x10-Asus 20 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Asus 25 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Asus 30 0.95 0.05 0.95 0.05 0.95 1.00
BT-10x10-Asus 35 0.95 0.05 0.95 0.05 0.95 1.00
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Data Windowsize | TPrato | FPratio | TNrato | FNratio | Fmeasure | AUC
BT-10x10-Asus 40 095 | 0.05 | 095 | 005 | 095 | 1.00
BT-10x10-Asus 45 095 | 0.05 | 095 | 005 | 095 | 1.00
BT-10x10-Asus 50 095 | 0.05 | 095 | 005 | 095 | 1.00

BT-2x2-Samsung 5 085 | 014 | 086 | 015 | 0.85 | 0.98
BT-2x2-Samsung 10 0.89 | 010 | 090 | 011 | 0.89 | 0.98
BT-2x2-Samsung 15 0.89 | 010 | 090 | 011 | 0.89 | 098
BT-2x2-Samsung 20 0.89 | 010 | 090 | 011 | 0.89 | 098
BT-2x2-Samsung 25 0.89 | 010 | 090 | 011 | 0.89 | 096
BT-2x2-Samsung 30 0.89 | 010 | 090 | 011 | 0.89 | 0.99
BT-2x2-Samsung 35 0.89 | 010 | 090 | 011 | 0.89 | 0.97
BT-2x2-Samsung 40 0.89 | 010 | 090 | 011 | 0.89 | 0.97
BT-2x2-Samsung 45 0.89 | 010 | 090 | 011 | 0.89 | 0.97
BT-2x2-Samsung 50 0.89 | 010 | 090 | 011 | 0.89 | 0.97
BT-2x2-Asus 5 0.87 | 019 | 081 | 013 | 0.87 | 0.97
BT-2x2-Asus 10 093 | 012 | 088 | 0.07 | 093 | 1.00
BT-2x2-Asus 15 093 | 012 | 088 | 0.07 | 093 | 1.00
BT-2x2-Asus 20 092 | 012 | 088 | 0.08 | 092 | 0.99
BT-2x2-Asus 25 092 | 012 | 088 | 0.08 | 092 | 0.99
BT-2x2-Asus 30 092 | 012 | 088 | 0.08 | 092 | 0.99
BT-2x2-Asus 35 092 | 012 | 088 | 0.08 | 092 | 0.99
BT-2x2-Asus 40 092 | 012 | 088 | 0.08 | 092 | 0.99
BT-2x2-Asus 45 092 | 012 | 088 | 0.08 | 0.92 | 0.99
BT-2x2-Asus 50 092 | 012 | 088 | 0.08 | 092 | 0.99
BT-5x5-Samsung 5 0.89 | 011 | 089 | 011 | 0.88 | 0.99
BT-5x5-Samsung 10 093 | 008 | 093 | 008 | 092 | 0.99
BT-5x5-Samsung 15 0.93 | 0.07 | 093 | 0.07 | 093 | 0.99
BT-5x5-Samsung 20 0.93 | 0.07 | 093 | 0.07 | 093 | 0.99
BT-5x5-Samsung 25 092 | 008 | 092 | 008 | 092 | 096
BT-5x5-Samsung 30 093 | 008 | 093 | 008 | 092 | 097
BT-5x5-Samsung 35 093 | 008 | 093 | 008 | 092 | 097
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Data Windowsize | TPratio | FPratio | TNratio | FNratio | Fmeasure | AUC
BT-5x5-Samsung 40 0.93 0.08 0.93 0.08 0.92 0.97
BT-5x5-Samsung 45 0.93 0.08 0.93 0.08 0.92 0.97
BT-5x5-Samsung 50 0.93 0.08 0.93 0.08 0.92 0.97

WF-10x10-Samsung 5 0.87 0.13 0.87 0.13 0.87 0.93
WF-10x10-Samsung 10 0.88 0.13 0.88 0.13 0.87 0.94
WF-10x10-Samsung 15 0.88 0.13 0.88 0.13 0.87 0.95
WF-10x10-Samsung 20 0.88 0.12 0.88 0.12 0.87 0.94
WF-10x10-Samsung 25 0.86 0.14 0.86 0.14 0.85 0.98
WF-10x10-Samsung 30 0.87 0.13 0.87 0.13 0.87 0.95
WF-10x10-Samsung 35 0.86 0.14 0.86 0.14 0.85 0.98
WF-10x10-Samsung 40 0.87 0.13 0.87 0.13 0.86 0.96
WF-10x10-Samsung 45 0.87 0.13 0.87 0.13 0.86 0.96
WF-10x10-Samsung 50 0.87 0.13 0.87 0.13 0.86 0.96
WF-10x10-Asus 5 0.87 0.13 0.87 0.13 0.87 0.92
WF-10x10-Asus 10 0.90 0.10 0.90 0.10 0.90 0.92
WF-10x10-Asus 15 0.88 0.12 0.88 0.12 0.88 0.95
WF-10x10-Asus 20 0.90 0.10 0.90 0.10 0.90 0.92
WF-10x10-Asus 25 0.89 0.11 0.89 0.11 0.88 0.94
WF-10x10-Asus 30 0.89 0.11 0.89 0.11 0.88 0.93
WF-10x10-Asus 35 0.89 0.11 0.89 0.11 0.88 0.95
WF-10x10-Asus 40 0.89 0.11 0.89 0.11 0.88 0.94
WF-10x10-Asus 45 0.89 0.11 0.89 0.11 0.88 0.95
WF-10x10-Asus 50 0.89 0.11 0.89 0.11 0.88 0.95
WEF-2x2-alldevs 5 0.62 0.38 0.62 0.38 0.62 0.68
WEF-2x2-alldevs 10 0.71 0.29 0.71 0.29 0.71 0.79
WEF-2x2-alldevs 15 0.80 0.20 0.80 0.20 0.80 0.87
WEF-2x2-alldevs 20 0.77 0.23 0.77 0.23 0.77 0.86
WEF-2x2-alldevs 25 0.80 0.20 0.80 0.20 0.80 0.87
WF-2x2-alldevs 30 0.81 0.19 0.81 0.19 0.81 0.90
WF-2x2-alldevs 35 0.82 0.18 0.82 0.18 0.82 0.90
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Data Windowsize | TPratio | FPratio | TNratio | FNratio | Fmeasure | AUC
WEF-2x2-alldevs 40 0.82 0.18 0.82 0.18 0.82 0.91
WEF-2x2-alldevs 45 0.82 0.17 0.83 0.18 0.82 0.92
WF-2x2-alldevs 50 0.83 0.17 0.83 0.17 0.83 0.91

WF-2x2-Asus 5 0.76 0.24 0.76 0.24 0.75 0.81
WF-2x2-Asus 10 0.85 0.16 0.84 0.15 0.85 0.90
WE-2x2-Asus 15 0.83 0.17 0.83 0.17 0.82 0.88
WEF-2x2-Asus 20 0.83 0.17 0.83 0.17 0.82 0.90
WF-2x2-Asus 25 0.83 0.17 0.83 0.17 0.82 0.91
WEF-2x2-Asus 30 0.82 0.17 0.83 0.18 0.82 0.91
WEF-2x2-Asus 35 0.83 0.17 0.83 0.17 0.83 0.90
WF-2x2-Asus 40 0.83 0.17 0.83 0.17 0.83 0.90
WF-2x2-Asus 45 0.83 0.17 0.83 0.17 0.83 0.90
WF-2x2-Asus 50 0.83 0.17 0.83 0.17 0.83 0.90
WE-5x5-Samsung 5 0.88 0.12 0.88 0.12 0.88 0.98
WF-5x5-Samsung 10 0.88 0.13 0.88 0.13 0.87 0.98
WF-5x5-Samsung 15 0.93 0.08 0.93 0.08 0.92 0.99
WF-5x5-Samsung 20 0.86 0.14 0.86 0.14 0.86 0.99
WF-5x5-Samsung 25 0.84 0.16 0.84 0.16 0.84 0.96
WF-5x5-Samsung 30 0.88 0.12 0.88 0.12 0.88 0.99
WF-5x5-Samsung 35 0.87 0.13 0.87 0.13 0.86 0.98
WF-5x5-Samsung 40 0.87 0.13 0.87 0.13 0.87 0.98
WF-5x5-Samsung 45 0.87 0.13 0.87 0.13 0.86 0.98
WEF-5x5-Samsung 50 0.87 0.13 0.87 0.13 0.86 0.98
WEF-5x5-Asus 5 0.82 0.18 0.82 0.18 0.82 0.89
WEF-5x5-Asus 10 0.78 0.22 0.78 0.22 0.77 0.88
WF-5x5-Asus 15 0.82 0.18 0.82 0.18 0.82 0.94
WF-5x5-Asus 20 0.87 0.13 0.87 0.13 0.87 0.97
WF-5x5-Asus 25 1.00 0.00 1.00 0.00 1.00 1.00
WF-5x5-Asus 30 1.00 0.00 1.00 0.00 1.00 1.00
WF-5x5-Asus 35 1.00 0.00 1.00 0.00 1.00 1.00
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Data Windowsize | TPratio | FPratio | TNratio | FNratio | Fmeasure | AUC
WF-5x5-Asus 40 1.00 0.00 1.00 0.00 1.00 1.00
WF-5x5-Asus 45 1.00 0.00 1.00 0.00 1.00 1.00
WF-5x5-Asus 50 1.00 0.00 1.00 0.00 1.00 1.00

Table A.3: Detailed classication results for di erent

Windowsj,e values on all data sets.
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A.2 Figures

Violin plot was a useful visual representation when | needed tmnderstand and compare the
classi cation results distribution. Figures A.1 through A.10visualize the results tabulated in
Table A.2 for each data set. For all the runs shown in these ges theW indows,e parameter

is equal and set to 10. At the end of this appendix, Figure A.12 dnFigure A.11 are

representing how window sizes a ect the classi catiofyeasure fOr each data set individually.

Intuitively, information given in these gures is also repesented in Table A.3, and gures
6.5 and 6.6.

(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.1: Random Forest result distribution on Wi-Fi 2x2 data st collected using a variety
of devices.
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.2: Random Forest result distribution on Wi-Fi 2x2 data st collected using an Asus
Tablet.
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.3: Random Forest result distribution on Wi-Fi 5x5 data sk collected using a
Samsung Smartphone.
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.4: Random Forest result distribution on Wi-Fi 10x10 dataset collected using a
Samsung Smartphone.
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.5: Random Forest result distribution on Wi-Fi 10x10 da& set collected using an
Asus Tablet.
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.6: Random Forest result distribution on Bluetooth 2x2data set collected using an
Asus Tablet.
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.7: Random Forest result distribution on Bluetooth 22 data set collected using a
Samsung Smartphone.
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.8: Random Forest result distribution on Bluetooth 1810 data set collected using
a Samsung Smartphone and an Asus Tablet.



86

(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.9: Random Forest result distribution on Bluetooth 1810 data set collected using
a Samsung Smartphone.
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(a) Moving Average. (b) LOWESS.
(c) LOESS. (d) Savitzky-Golay.
(e) Robust LOWESS. (f) Robust LOESS.

Figure A.10: Random Forest result distribution on Bluetooth 1810 data set collected using
an Asus Tablet.









