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Abstract

Use of wireless network information for indoor positioning has been an area of interest

since wireless networks became very popular. On the other hand, the market started to

grow in variety and production volumes leading to a variety of devices with many di�erent

hardware and software combinations. In the �eld of indoor positioning, most of the existing

technologies are dependent on additional hardware and/or infrastructure, which increases

the cost and requirements for both users and providers.

This thesis investigates possible methods of coupling indoor geo-fencing with access con-

trol including authentication, identi�cation, and regist ration in a system. Moreover, various

techniques are studied in order to improve the robustness and security of such a system.

The focus of these studies is to improve the proposed system insuch a way that gives it

the ability to operate properly in noisy, heterogeneous, andless controlled environments

where the presence of attackers is highly probable. To achieve this, a classi�cation based

geo-fencing approach using Received Signal Strength Indicator (RSSI) has been employed so

that accurate geo-fencing is coupled with secure communication and computing. Experimen-

tal results show that considerable positioning accuracy has been achieved while providing

high security measures for communication and transactions. Favouring diversity and generic

design, the proposed implementation does not mandate users to undergo any system software

modi�cation or adding new hardware components.

vii



List of Abbreviations and Symbols Used

RSSI Received Signal Strength Indicator

GPS Global Positioning System

RFID Radio Frequency Identi�cation

BYOD Bring Your Own Device

RIM Research In Motion

Wi-Fi Wireless Fidelity

DoS Denial of Service

MiTM Man in The Middle

UWB Ultra Wide Band

GSM Global System for Mobile

SNR Signal to Noise Ratio

CDMA Code Division Multiplex Access

WEP Wired Equivalent Privacy

WPA/WPA2 Wi-Fi Protected Access

TCP Transport Control Protocol

IP Internet Protocol

EAP-TLS Extensible Authentication Protocol based on Transport Layer Security

JOSSO Java Open Single Sign On

CAS Central Authentication Service

LDAP Lightweight Directory Access Protocol

viii



RADIUS Remote Authentication Dial In User Service

SPNEGO Simple and Protected GSSAPI Negotiation Mechanism

GSSAPI Generic Security Services Application Program Interface

OAuth Open Authentication

MAC Media Access Control

IMEI International Mobile Station Equipment Identity

QR-Code Quick Response Code

NFC Near Field Communication

HTTP Hypertext Transfer Protocol

SSL Secure Socket Layer

RESTful Representational state transfer

TDoA Time Di�erence of Arrical

AoA Angle of Arrival

CSM Client Status Manager

FIFO First In First Out

GHz Gigahertz

ISM Industrial, Scienti�c and Medical radio bands

SSH Secure Shell

TLS Transport Layer Security

MAC Message Authentication Code

L2CAP Logical Link Control and Adaption Protocol

ix



ToS Terms of Service

TP True Positive Prediction Count

TN True Negative Prediction Count

FP False Positive Prediction Count

FN False Negative Prediction Count

TPratio The percentage of positive predictions that are correct.

FPratio The percentage of positive predictions that are incorrect.

TNratio The percentage of negative predictions that are correct.

FN ratio The percentage of negative predictions that are incorrect.
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Chapter 1

Introduction

Knowledge about geographical location of a mobile device orindirectly its owner can be of

enormous utility. Geo-spatial information is being used in many �elds such as computer

software, physical security, in addition to location aware marketing and advertisement. In

this context, most of the existing technologies focus on identifying the exact location of the

user via Global Positioning System (GPS) in outdoor environments. A di�erent view of the

location aware computing is to focus on the presence of a userin a virtual perimeter of a

given geographical landscape. This second alternative view, which complements the �rst one

is called Geo-fencing and has brought in many bene�ts and also challenges to the location

based computing �eld.

As stated before, the term \Geo-fence" refers to a virtually fenced geographical area. This

concept has been employed to implement various tasks including equipment theft control,

transportation path control [65], asset management and tracking, or automatic house arrest

monitoring systems. Social networks have also brought new ideas and use cases for Location

Based Services, including geo-spatial networking. Targeted and location aware marketing

and advertisement is also an interesting use case where promotions are sent to potential

customers based on the opportunities associated with the geographical location they visit.

The GPS technology, providing an accurate positioning method, has made the outdoor

location based services and geo-fencing conveniently accessible. GPS has become a popular

sensor chip available on nearly all computationally powerful smartphone and tablets in the

market. Navigation and location based search in outdoor areas coupled with aerial imaging

and accurate mapping of urban and rural areas has brought manyapplications to the hand-

held devices. However, the GPS technology is not completely awless. The low bit rate

of the satellite connection transmitting the timing data required for positioning makes the

task of accurate positioning slow and impossible in some cases such as indoor environments.

Additionally, due to required Line of Sight connection with the satellite infrastructure, the

technology has not been as successful in indoor setups.

1
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Another major di�erence between outdoor and indoor geo-fencing is the amount of tol-

erable positioning error. While in an outdoor geo-fence a dozen of meters in error might be

tolerable, even half of this amount of error might result in acomplete failure in an indoor

setup. To bring the concept of positioning indoors, di�erent approaches have been proposed

[57]. Most of these approaches are based on wireless technologies for tracking tagged objects.

It means that every user/object that is tracked needs to carry a tag device such as a tagged

Smartphone or a bracelet. Many tag based approaches are based on Radio Frequency Iden-

ti�cation (RFID) chips, which might require a proximity based sensing procedure that adds

to the burden for the users. Some of the special tags carry additional and unpopular sensors

such as ultrasonic or infrared to provide with more accurate positioning data.

Furthermore, the emerging phenomenon of Bring Your Own Device (BYOD) has a pow-

erful impact on how the market is demanding newer approaches todeal with the resulting

chaos [74]. With the prevalent use of mobile devices, it is di�cult for industries with a

controlled environment to manage employees and customers interacting with on-site services

using non-corporate devices. Instead of excessively limiting users, it is preferred for industries

to adapt to the situation by taking more intelligent and device/user aware service providing

approaches. Considering the limitations imposed by the taskof tagging every new user's

device, the simple tag based world of indoor location based services is changing to a hetero-

geneous environment. This environment not only introduces challenges regarding location

estimation, it also a�ects the way multiple software components have to be implemented for

di�erent mobile and tablet operating systems to support such a technology.

Implementations should be based on a set of widely availabledata values that is provided

by devices out of the box. The most popular wireless technologies available with each hand-

held device are Bluetooth and Wi-Fi. As of now, Google's Android,RIM's BlackBerry, and

Apple's iOS mobile operating systems are the most popular operating systems as they are

dominating the mobile device market; with Android having a higher speed in growing its

market share [36].

This thesis proposes a Received Signal Strength Indication(RSSI) based system for

identi�cation and access control in a geo-fenced indoor environment. Such a system is

important for certain services where only the devices in thegeo-fenced zone are authorized

to use a service. The RSSI values are obtained from Bluetoothand/or Wi-Fi infrastructures

available on-site. Using the existing wireless network infrastructure and Android devices,
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a proof of concept implementation of this proposed system wasdeveloped and tested. In

this system, as a case study, access control to an online application is performed based on

a user's presence in a restricted area, or geo-fenced zone. Altogether, the system aims to

introduce an indoor geo-fencing methodology that also aimsto address the concerns brought

to network administrators by the BYOD phenomenon.

This system was tested using multiple types of devices and various geo-fenced zone di-

mensions on both Wi-Fi and Bluetooth infrastructures. Devices include di�erent Android

based tablet and smartphones. Results show that an accurate geo-fencing methodology has

been built where accuracy is up to 100% in most cases, and 93.1% in average. The average

can be improved even more when selected zone sizes are largerand Bluetooth infrastructure

is used.

The prototype implementation of the proposed system is tested in several scenarios in-

cluding in noisy environments and under network attacks. According to the behaviour of the

system and possible attack and noise conditions, the systemseems to meet the robustness

and security requirements of such indoor environments. To eliminate the negative e�ect of

noise and erroneous RSSI readings, several smoothing and outlier detection techniques are

evaluated and benchmarked to choose the best method. Based onour evaluations, Moving

Average, is chosen as the best smoothing technique and then tuned up for the best perfor-

mance based on a separate set of experiments focusing on parameters and con�gurations of

this speci�c technique.

Known network and system attacks such as Denial of Service (DoS), Password Guess-

ing, Man in the Middle (MitM) attacks, and spoo�ng are studied on the proposed system.

Additionally, system speci�c attacks such as RSSI value guessing, infrastructure faking, and

RSSI value spoo�ng are also simulated and evaluated on the proposed system. Based on

these experiments and evaluations, defense mechanisms aredeveloped and integrated with

the present implementation of the proposed indoors geo-fencing system to e�ectively tackle

the aforementioned attacks and bring su�cient amount of safety to the indoor geo-fencing

based access control environment.

A US provisional patent [49] application was �led by our industrial partner, describing

anatomy of the proposed system. A paper describing the proofof concept implementation

and experimental results was presented and published in proceedings of the IEEE Computing

Intelligence in Cyber Security conference 2013 [64].
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The rest of this thesis will discuss and elaborate on di�erent aspects of the system design

and implementation choices made for the proposed system. Chapter 2 presents the existing

industrial and academic systems reported in the literature. Chapter 3 discusses the system

design and the employed positioning technique in detail. Chapters 4 and 5 focus on the

analysis of the e�ect of environmental noise and security threats as well as the techniques

to counter each condition, respectively. Chapter 6 presents the experimental results and

evaluations performed. Finally, Chapter 7 concludes the thesis and proposes areas for future

research directions.



Chapter 2

Literature Survey

The work discussed in this thesis has two major phases: 1) Creating an indoor position-

ing framework, and 2) Improving the proposed system for better robustness and security

characteristics . As a result, the related literature and industrial works will be presented in

Sections 2.1 and 2.2. These sections discuss related works inindoor positioning and e�orts

in securing and creating robust systems, respectively.

2.1 Indoor Positioning

The third millennium is when wireless technologies started to be vastly developed and em-

ployed. Bluetooth and Wi-Fi are both the children of 2000s. As of2002, Bluetooth v1.1 [3]

was introduced as a standard. While Wi-Fi was de�ned in early 1990's, and later clari�ed

in 1999, the prevalence of its usage started growing since early 2000s [1].

As the wireless technology started growing, with every available wireless technology rang-

ing from Bluetooth, Wi-Fi to other technologies such as GlobalSystem for Mobile (GSM),

Ultra Wide Band (UWB), Ultra High Frequency (UHF), and RFID tags, there have been

researches on positioning of devices undertaken by academicians and industry [57]. In many

cases the creators of such techniques have sought the aid of secondary positioning techniques

such as infrared and ultrasonic sensors to increase the accuracy of their proposed systems

[51, 58].

One of the earliest works in wireless based indoor positioning is Radar by Microsoft Re-

search [27]. Radar uses a WaveLAN [76] network driver under the FreeBSD environment

that allows collection of data sets with more information such as RSSI and Signal to Noise

Ratio (SNR). Using overlapping areas of WaveLAN network accesspoint coverages, they

have provided a method based on empirical analysis, triangulation, and attenuation noise

modelling to position the users in indoor environments. Theaccuracy of this system is be-

tween 2 and 3 meters. Horus [86] uses joint clustering techniques to convert the indoor area

5
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into tiles, and then locate each device relative to those tiles with a higher clustering perfor-

mance. The idea of associating a subset of visible access points to an area/tile of the map

is the technique they use as the basis of their indoor positioning approach. First a model is

built based on association of access points and areas of an indoor map to respective ranges of

signal strength values. Then the model is used to cluster theRSSI data received from users

into access point subsets and then locations. Not giving any explanation about the noise in

the experimental environment, they have achieved an accuracy of about 90% in distances

above 2.1 meters. Miura et al. [60], and Chang et al. [41] haveused Support Vector Machines

(SVM) to classify RSSI data samples for localizing the nodes ina Wi-Fi testbed. They have

used the same homogeneous wireless hardware to classify the presence of a user in a 2x2

meter square shaped zone. Clearing the area of other wireless signals, they have achieved

100% accuracy when using obstacles (e.g. walls) to separatethe zone from outside areas,

which yields a larger amount of signal attenuation. Their data set includes unknown number

of instances sampled in 21 symmetric prede�ned locations ofthe area. Likewise, Castro et

al. [40] use SVM and also triangulation to position a node inside or outside a given zone.

However, not only they do not have a detailed error investigation in their report, they also

have static formation of anchor nodes and a homogenous hardware environment. Further-

more, in [68] and [40], researchers have used machine learning algorithms and probabilistic

models while using �ne grids of Wi-Fi access points to locate wireless devices. They have

achieved an accuracy of about 1.5 meters with about 50% of thesamples. Their samples are

collected in 270 �xed locations, they have used 8 Wi-Fi access points to extract coordinates

of the users in a 16 by 40 meters o�ce area. The environment noise is not discussed, but it

is mentioned that the test area includes glass, concrete andwooden obstacles. In [30] and

[69], researchers have taken the approach of employing Arti�cial Neural Networks (ANN) to

determine the location of users, their results show an error of over 1 meter in most cases.

[30] uses 3 access points with unequal transmission powers, associating the data collected

with the experimentation area oor plan they can locate the users. With minimum of 5

data points sampled at the training time, they have managed to locate test samples with

errors of 3 meters or above. Due to the unbalanced power of access points and their arbi-

trary placing, they have discussed su�ering from missing values in certain blind spots of the

experimentation area.

There are a handful of research works focusing on Wireless Sensor Networks since 2004.
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Works like [77], [84], and [32] have used triangulation in short range wireless sensor networks

like ZigBee [22] to perform location based tasks. Speci�cally, [32] focuses on selecting anchor

nodes in between the moving objects to do relative positioning. Wightman et al. [82] and

also [87], have coupled the classi�cation and triangulation techniques with Kallman Filtering

to smooth down or predict spontaneous behaviours of wireless sensor networks that are due

to noise and hardware failures.

On the other hand, only a few works have tried to experiment Bluetooth for indoor

positioning. Among them [23] is worth mentioning. To achievethe two goals they set, the

authors have used multiple Neural Networks. First goal was dealing with noisy samples

resulted by real world environments. The second goal was recovering from access point or

anchor node failures. They have also tried their system withdi�erent Bluetooth hardware,

but never tried to tune their system to work better with di�er ent devices.

Recently, Galvan et al. [73] and Baniukevic et al. [29] have used a combination of Blue-

tooth and Wi-Fi anchor nodes to implement hybrid indoor positioning systems. The work

introduced in [73], uses di�erent combinations of Bluetooth and Wi-Fi reference points to

estimate the position of a user using trilateration and multilateration. They have established

a simulation system based on 400 base data points and have ransimulations with di�erent

attenuation factors virtually achieving sub-meter positioning accuracy. In [29], the authors

have experimented with the addition of a few Bluetooth hotspots to the present Wi-Fi in-

frastructure. This divides a building oor into certain number of regions. The short range

hotspots increase the accuracy of a position system that approximates a device's location

based on the closest access point or hotspot, similar to a proximity based approach using

RFIDs. Their results based on a series of simulations has an average error of about 2 meters

in the best case. Wang et al. [79] have employed bayesian �ltering and simulated annealing

to position users. They have run simulations that is calibrated using 5,460 data samples

and is then tested using about 10,000 points. Their achievement is to reduce the positioning

error from 4 meters to 2.9 meters. In many cases experiments are undertaken only using

simulations, and also the scale of sampling and eventual useof additional technologies is

what makes deployment of such techniques costly and less generic.

There are other works like [78] that use RSSI values, not for locating devices but for

detecting obstacles and passing bodies. Ironically, they use uctuations in installed wireless

sensor infrastructure to detect the motion or position of obstacles that move in between the
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sensors that are also anchor nodes. One application mentioned by that work was locating

persons working in a company or for advanced anti theft and motion detection systems.

Kontkanen el al. [54], introduced a Wi-Fi based indoor positioning system based on \a

combination of Bayesian networks, stochastic complexity and online competitive learning".

Later, this research led to the establishment of a commercial product called \Ekahau".

Although the research paper does not investigate the error ofthe system deeply, the o�cial

Ekahau website [9] refers to room level accuracy for their product. It is also claimed that the

accuracy can be increased to bed level accuracy in an exemplary medical facility. However,

Infrared sensors are being used [9] in order to achieve such accuracy. Needless to say, the

infrared beacons can only be used in combination with the company provided tags. Moreover,

Ekahau also claims that their system can locate every wireless mobile device. However, there

is still no o�cial version of the product in order to support t racking wireless devices in a

generic manner. Ekahau is supporting a collection of wireless devices only by installing a

custom company provided wireless driver. The driver gives the device the ability of being

used in the site survey process, and not in the tracking process.

GloPos [10] is a GSM/CDMA (Code Division Multiplex Access) cellular network based

commercial positioning product. That only uses information from cell towers to estimate

the location of mobile devices. The system accuracy is referred to as being 10 to 40 meters

in suburban, urban and indoor areas. Moreover, they have claimed a 7.7 to 12.5 meters

accuracy being achieved during an independent test [11]. However, the provided test report

suggests that the referred accuracy is achieved in less than75% of the test cases, and the

overall average of accuracy is between 15.1 and 23.9 meters.

AeroScout [16] is a company o�ering enterprise indoor and outdoor positioning infrastruc-

ture. Their technology is a combination of RFID, GPS and Wi-Fi. Putting these di�erent

technologies together, their main goal is to cover the limitations of each technology with the

bene�ts of the others. Like many other indoor positioning solutions, their system is based

on tags provided by the company.

The limitations of the aforementioned technologies can be summarized as follows:

� The lack of exibility for supporting multiple o� the shelf wi reless enabled devices as

tracked tags.

� The use of technology that is not available in all devices. For example, GloPos uses

Cell Tower information while many tablet devices do not haveGSM/CDMA active
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modules. Ekahau is also using Infrared for increasing accuracy, which is not present in

most of modern mobile devices.

� The need (in some cases) for extra devices or infrastructurefor data transfer or po-

sitioning. For example, GloPos depends on cellular data networks for data transfer

and AeroScout does not interact with present infrastructureand needs a set of new

access points and tags to be in place in order for the customer to have an operational

positioning system.

� High deployment e�orts both in terms of number of site survey samples and time. This

drawback will impose a fundamental change in the positioning algorithm even in case

of minor changes in the geo-fenced zone.

On the other hand, the market and the regulations are moving towards the concept of

BYOD [28]. BYOD is concerned with users using the devices ownedand controlled by

themselves. This concern has many reasons; the most important of which is the user privacy

and control when using the device. Another reason is the fact that predictions show that

in a few years there would be so many devices in the hands of users that retailer supplied

devices are going to be far from popularly used [5]. Thus, the limitations summarized above

will become even more important as the BYOD prevails. Also manysecurity features and

mechanisms have to be generalized to other platforms [74]. For further information about

technologies using other radio frequency bands and technologies one can refer to [57, 51, 58].

In this research, our aim is to address some of these limitations that have not been the

focus of other researches or industrial e�orts. These issues are: 1) lack of exibility for

using di�erent devices as tags, 2) using technologies such as infrared, ultrasonic, RFID, and

cellular networks that are not commonly available in hand-held devices available o� the shelf,

3) lack of use of available infrastructure towards positioning, which means a requirement for

the installation of a secondary hardware infrastructure. For example, AeroScout needs a

separate Wi-Fi and RFID reader network.

On the other hand, in this thesis, the proposed system is merely based on available

facilities in the hand-held devices in the market and does not require cellular data adaptors on

the devices. Potentially, the implementation can be employed with any Wi-Fi or Bluetooth

infrastructure that is already in e�ect in indoor areas of interest. Moreover, it can work

with any device enabled with a wireless or Bluetooth adaptor. Experiments show that
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the proposed system performs well with di�erent devices under noisy and realistic indoors

positioning context.

2.2 Indoor Positioning Security

There have not been many works in the �eld of securing indoor positioning algorithms.

It is worth noting the generic e�orts like [71, 38] by Strasser and Capkun et. al, that

investigate methods to make networks that are dependent on the key exchange initialization,

and resistance against low level jamming attacks. In addition to such low level threats, a

handful of vulnerabilities such as encryption weaknesses,and password guessing, and denial

of service attacks associated with industrial implementations of Wi-Fi and Bluetooth stacks

and �rmwares [81, 45] need to be considered.

As a basis for the user identi�cation process, Authenticationhas always been a center of

attention. Memorized string passwords have [61] ruled the world of authentication for a long

time. Although this technique is limited by the ability of users for memorizing and choosing

hard to guess passwords, there has not been a replacement forthem up to now. Bonneau et.

al [33] have studied about 35 methods that are designed to replace passwords. They have

compared these methods in terms of security, usability, anddeployability. Despite the fact

that many of the studied methods are reportedly more secure and usable, none of them is

as deployable as passwords because of the imposed extra costand the complexity of their

architectures [33].

To bring authentication and con�dentiality to 802.11 wireless networks, di�erent stan-

dards and protocols were proposed. The �rst popular link layer protocol was Wired Equiv-

alent Privacy (WEP) [2], based on a pre-shared secret mechanism. However, soon after its

release many experts started to discover weaknesses and vulnerabilities in the WEP mecha-

nism [25, 34, 62, 72, 37]. Simultaneously, commercial and free tools were released and made

many people able to exploit these weaknesses [17]. Wi-Fi alliance created the Wi-Fi Pro-

tected Access (WPA) [24] mechanism to address these weaknesses. In the 802.11i standard

[46], WPA2 was proposed to standardize a slightly more secure way of authentication over the

networks in comparison to WPA. WEP, WPA, and WPA2 operate in the Data Link Layer of

the TCP/IP stack [70], mainly providing per frame con�dentiality. However, the latter two

support an external Authentication Server (AS) to detach the process of authentication from

encryption. Despite the additional security added by this protocols, WPA and WPA2 are
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still vulnerable to cracking and dictionary attacks. With the availability of parallel comput-

ing and Graphical Processing Units, this has become much faster and easier for attackers to

in�ltrate networks that su�er a weak choice of passwords [50]. To this end, many industrial

extensions were introduced to address the weaknesses discussed above. Baek et al. [26] have

surveyed the most recent techniques in the wireless authentication �eld based on factors such

as mutual authentication, identity privacy, dictionary attack resistance, session key strength,

and having a tested implementation. As a conclusion, they propose some extensions of the

Extensible Authentication Protocol based on Transport Layer Security (EAP-TLS) as the

best method.

In short, there are many reported e�orts of securing Wi-Fi. However, to the best of my

knowledge, there is no study for indoor positioning techniques in terms of evaluating attacks

against the higher layers of the protocol stack and the systemdesign. Therefore, in this

research, I investigate some attack scenarios that are taking place in the higher layers of the

network protocol stack as well as investigating how to counter them.



Chapter 3

Methodology

In this research, there are certain functionalities that must be guaranteed by the proposed

system. The �rst functionality is authentication, that inv olves identifying users who inter-

act with the system using their hand-held devices. Entangled with authentication is the

identi�cation mechanism, by device parameters. The secondfunctionality of such a system

is positioning, which consists of a mechanism to determine auser/device's indoor position

when she/he requests to access resources from the protectednetwork or infrastructure. The

third functionality, which intuitively is completely dependent on existence of the previous

functionalities, is access control. The access control mechanism is generally de�ned as an

apparatus that decides, based on any arbitrary technique, auser's authorization at the time

of service usage.

The aforementioned functionalities can be categorized into two groups of 1) Authentica-

tion and Identi�cation, and 2) Indoor Positioning . The implementation consists of multiple

network services in addition to mobile and web applicationsas its building blocks. These

building blocks are described in detail in Section 3.1. However, most of the complexity of

the system is obviously lying under the Indoor Positioning subset of functionalities that are

also described in the aforementioned Section of this thesis.

3.1 System Overview

This section will discuss the components that build the wholesystem together. There are

two main categories of components in the system: Services, and Applications. Sections 3.1.1

and 3.1.2 will discuss these two categories, respectively.

3.1.1 Network Services

Briey, principal services that are required for the operation of a user under a location

controlled application environment include Authentication, Authorization, and Geo-fencing

(indoor positioning). While the controlled servers are of non-deniable importance, their

12
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architectural details are out of the scope of this thesis. Tothis end, these services are

considered to be resources such as web based services or network resources. Generalizing

network resources to services, leads to a design that does not focus on a low level set of

requirements.

Authentication

Because all the client transactions should be centralized for ease of management and account-

ing purposes, Authentication must be provided as a Single SignOn (SSO) capable service.

There are numerous open source and commercial products thato�er this functionality out of

the box. The use of OpenID [66] is opted out because it can be limiting in terms of network

architecture. More precisely, use of OpenID with globally accessible providers will cause the

corporation to be unable to limit the authentication steps tothe local networks in geo-fenced

zones.

There are many open source, free, and commercial implementations for the Single Sign

On architecture [13]. The most well-known open source implementations are the Java Open

Single Sign-On (JOSSO) [12] and the Central Authentication Service (CAS) [6]. CAS and

JOSSO o�er many similar features. Taking a closer look, CAS hasa higher simplicity by

use of a layered dependency injection system based on Apache's Maven [18], and is hence

more customizable as well as having a better community support. CAS has also o�ered

a layered deployment model, which allows the administratorsto distribute the physical

location of authentication servers, also known as authentication proxies through registered

web applications. This helps to distribute the infrastructure, while keeping the ticketing

operations centralized at the same time [8].

Figure 3.1 demonstrates the cycle of getting authenticated using a CAS server installation

with an arbitrary authentication mechanism as the backend. CAS supports a wide variety

of backends out of the box. Such mechanisms include Lightweight Directory Access Protocol

(LDAP), Remote Authentication Dial In User Service (RADIUS), anddatabase authentica-

tion in addition to a handful of other protocols such as x509 certi�cate based authentication,

Simple and Protected GSSAPI Negotiation Mechanism (SPNEGO), and Open Authentica-

tion (OAuth) [19]. CAS can also use an OpenID backend, regardless of version, which is

helpful if a corporate needs OpenID bene�ts while the related limitations are removed.
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Figure 3.1: Authenticating to a registered application usingCAS.

Identi�cation

Although in many cases Authentication and Identi�cation are referred as the same concept,

in the proposed system, getting authenticated is not enough. This is because both the user

and the device he/she is using need to be authorized to accesssystem resources. As a result,

the system needs a strategy to bind user credentials and device characteristics together in

order to identify them as an entity eligible for authorization. To do this some hardware pa-

rameters/values are associated with every device: 1) MAC (Media Access Control) address

of the Wi-Fi adapter installed on the device, 2) IMEI (International Mobile Station Equip-

ment Identity) number of the device1, and 3) the build model of the device. These values

are chosen to represent the device permanently, as they are not subject to change as a side

e�ect of software and �rmware updates. When a user registers to the network through the

operator, these values are stored and associated to his/herpro�le. To �nish the registration

a random salt value is then transferred to the device using a proximity based communication

medium. This salt value,SaltInit , is later used to hash a speci�c string and send to server

to verify session validity [61].

To this end, the identi�cation process uses both the device and the user information.

1Unless the device does not operate on cellular networks.
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Figure 3.2: Registration process of a typical customer.

Additionally, this process involves the positioning service which adds to the levels of po-

sitioning security because a positioning service is local to the geo-fencing zone, while the

authentication services are served remotely. This enforcesusers to be physically present at

the zone, eliminating the possibility that an adversary caninitiate an application session

remotely.

The registration process is demonstrated in the sequence diagram given in Figure 3.2

where a user hands his/her device and identi�cation information to the system Operator

to get registered to the system. As can be seen in the diagram, theSaltInit value is sent

to the device using a barcode display. This protects theSaltInit value from eavesdropping

because the communications between the positioning service and barcode displays are using

SSL encrypted sockets. Scanning the barcode using the device's camera is also helping the

security of the process in cases where the barcode display iswell protected.

Barcodes, in this case Quick Response Code (QR), are a form ofNear Field Communi-

cation2 (NFC) [80]. Although RFID based NFC chips are becoming more popular and get

equipped into many devices nowadays, they are still not available in every mobile device, so

I chose to use the QR barcode technology for the registrationstep.

2Not to be confused with the radio NFC chip.
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Figure 3.3: Session initiation and positioning based on proximity based transfer of the value
SaltSession .

In addition to registration, barcodes are also used at the time of an active session initia-

tion. This complementary method is used to ensure that usersuse their registered devices.

Moreover, coupling a strict proximity based barcode scanning results in an extra position-

ing step to ensure the presence of a user (in a geo-fencing zone) when initiating a working

session.

Every time a user visits a geo-fenced site and intends to use services on a previously reg-

istered device, a new salt value is sent to his/her device. This salt value is calledSaltSession ,

which is used along with theSaltInit to ensure that the device is both registered and also is

present at the geo-fenced zone where access to services is controlled. This process is demon-

strated in Figure 3.3, assuming that the user has already authenticated to the system and

intends to initialize a working session.

The positioning service is implemented using the HTTP based RESTful API standard
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[47], and is served in SSL encrypted channels. As stated before, the service is deployed on-

site for having shorter delays and also being only accessible from a speci�c subnet associated

with a number of geo-fences. Each positioning request includes the RSSI data collected by

the device, and depends of the infrastructure type (Wi-Fi or Bluetooth) in action which can

be based on Bluetooth or Wi-Fi. This information is then associated with a hash value that

is computed as shown in Equation 3.1.

Hash(SaltInit jj SaltSession jj RSSIstring jj Usernamejj BuildModel jj IMEI jj MAC address)

(3.1)

The values in Equation 3.1 are concatenated then hashed. This hash value is sent to the

positioning service. Then the service veri�es these valuesby reproducing the hashes using

values that are generated/entered at the time of registration, and session initiation. If the

two of hashes are not equal then the service will not be provided. Otherwise, the request

will be processed normally. Please note that when the initial authentication steps are being

taken, before the near �eld salt transfer, theSaltSession is set to null.

3.1.2 Web and Mobile Applications

To collect the training data used for building classi�cationmodels, a mobile application

called \Surveyor" is developed. This application consistsof three major functionalities:

1) Collecting Wi-Fi signals and RSSI information; and

2) Collecting Bluetooth signals and RSSI information.

3) Organizing and transferring the information to the data collection server.

To gather the training data samples, Surveyor maintains a local database on the hand-

held device. This mobile database allows the operator to categorize and store the samples

collected during the site survey phase. The application collects and labels the samples

based on the administrator's input. There are two possible labels for each sample, which

corresponds to being inside and outside the zone. Number of samples for each label is

shown in a simple way to help the administrator in keeping track of the data he/she is

collecting. When the administrator is done collecting samples, data can be sent over to the
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SSL protected web application that stores the data in an archive and makes it ready for

preprocessing and model building.

\Wi-Fi Demo" and \BT Demo" are two mobile applications that are then used to track

the play on the Wi-Fi and the Bluetooth infrastructures. Thesetwo applications simply

demonstrate the process of connecting and gaining access onthe network and live access

control while the service being accessed. In this work, the mobile platform I focus on is the

Android operating system. Android versions ranging from 2.1 to 4.0.1 were tested with the

proposed system without any problems.

(a) Zone selection page.

(b) Current zone status page.

Figure 3.4: Screenshots from the monitoring user interface.

A web application is also developed in order to give the network administrators a view

of what is happening in the geo-fenced zones. This application connects to the positioning

service using a special monitoring API and fetches statistics such as number of users, each

user's status according to the positioning system, type of the device, and geo-fences that each

user is having access to. Screenshots from the monitoring user interface are demonstrated in
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Figure 3.4. Figure Figure 3.4(a) allows the administrator to choose which node he/she wants

to monitor. Then the window shown in Figure Figure 3.4(b) is brought to the administrator

and is dynamically updated based on a customizable refresh rate.

3.2 The Proposed Positioning Algorithm

To use wireless network related data for indoor positioning, three values are popularly used.

Assuming that there are more than one access point or dongles in place, these values can

come in handy for triangulation, trilateration, or multilateration. These values are described

as follows:

1) Time Di�erence of Arrival (TDoA) : This value has many use cases. But mainly,

TDoA is used for calculating Angle of Arrival that results in position estimation. If access

points are synchronized to send signals in a speci�ed time, TDoA can be useful for directly

estimating a user's position. However, it is rather di�cult to synchronize access points

with a small error considering the sensitivity of the equations to small errors, resulted by

the high propagation speed of radio waves.

2) Angle of Arrival (AoA) : is the angle in which a radio frequency is propagating at the

time of arrival to the receiving antenna. This value can be achieved by use of special

antennas or antenna arrays. The intuitive requirement of theprocess is a knowledge

about current direction of the user. But having this is not enough for the process. Most

popular technique for measuring this angular value is to usea grid or array of antennas

and estimate the angle by measuring TDoA over all the elements of the array. In this

case the regularly available devices are hardly useable. Although the devices are mostly

equipped with a magnetic sensor (compass) for direction information, they lack a rather

sophisticated antenna array structure that is essential for obtaining the AoA information

based on TDoA.

3) Received Signal Strength Indication (RSSI) This indicator shows the amount of

power a wave is carrying at the time of arrival at the receiving antenna. This measure

is built in the IEEE 802.11 standard for roaming and power optimization purposes [46].

According to the 802.11 standard [46], this should be a 8-bit integer value. Further

decision about how to compute such a value is dependent on theimplementation. But
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the regular way of calculating the RSSI is to measure signal power in relation to the

maximum assumed possible power (that is also carried in 802.11 frame headers), and

representing it in decibels, as shown in Equation 3.2. A signed 8-bit value can range from

-128 to +127. However, in practice this value is normally a negative integer in ranges of

-30 and -100.

RSSI = 10 � log10(
ReceivedSignalPower

MaxPower
) (3.2)

While AoA and TDoA are values that cannot be read by primitive antennas available on

mobile devices, RSSI is available due to 802.11 methods for power management and roaming

decisions. Bluetooth, also supports RSSI for connections since 802.15.1 (Version 1.1) [4].

RSSI is basically calculated using the preamble of the packets as they reach the receiving

antenna.

Considering the aim of this research that is to set a generic solution for hand-held devices,

AoA and TDoA based techniques are not an option for the proposed system. Because

their recruitment imposes hardware and software modi�cations. On the other hand, RSSI

is available on nearly all of the devices and software platforms that support Wi-Fi and

Bluetooth connectivity with recent standards. Therefore,the proposed positioning system

is based on a machine learning approach employing the RSSI values read by devices.

3.2.1 Positioning Data

As mentioned in Chapter 2, RSSI is widely used for both exact and approximate location

estimation purposes. Such vast applications of this value shows its usefulness for indoor

positioning practices.

Geo-fencing is concerned with detection of the presence of a user in a speci�c perimeter,

or zone. Although exact positioning can be used to geometrically detect the presence of the

user, its complexity and vigorous need for data collection and simulation is a major drawback.

However, the concept of exact position information is not necessary in the problem being

studied in this thesis. To simplify the problem, this thesiswork proposes classi�cation

based geo-fencing. The classi�cation based geo-fencing engine uses RSSI data to classify

devices/users as being present or absent in a speci�c zone.
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Table 3.1: Attributes for the collected data sets.

Type Attribute Names No. Attributes
Wi-Fi Access Point MACjj SSID 3 + label

Bluetooth Dongle MAC 6 + label

Data sets are collected using mobile applications previously discussed. The already in

place Wi-Fi access points and Bluetooth enabled hardware can be used as anchor nodes to

collect data upon them. In this thesis, two major type of datasets are collected, Bluetooth

data and Wi-Fi data. In Wi-Fi data sets the attributes are access point canonical names and

the attribute values are RSSI values associated with the corresponding access point at the

time of data collection. For Bluetooth data sets, the features are Bluetooth dongle/hardware

canonical names and the values are RSSI values of their propagating signals at the time of

data collection. Canonical names are built by concatenatingMAC addresses with the display

name or Service Set Identi�er (SSID) depending on the type ofthe data set, i.e. Bluetooth

or Wi-Fi. All types of data sets have a label attribute that holdsthe class label value. The

class label is set to be false for being absent in a geo-fencedzone, or true otherwise.

Table 3.1 tabulates the attribute names and number of attributes for both Bluetooth and

Wi-Fi data sets. Each data set has a label attribute, which is set to 1(== True) for being

inside the geo-fenced zone, and 0(== False) otherwise.

Figure 3.5: Sample of the Bluetooth and Wi-Fi data sets.

Figure 3.5 is showing a sample of both Bluetooth and Wi-Fi data sets. The Bluetooth
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To build the classi�cation engine, experiments conducted using Naive Bayes, C4.5 de-

cision trees, Random Forest, and Support Vector Machines. Based on these experimental

results, that will be discussed in more detail in Chapter 6, the top two machine learning

algorithms are then chosen for further comparison purposes.Ultimately the Random Forest

[35] algorithm is selected as the best performing algorithm. Two machine learning algo-

rithms that are compared in the end, are: 1) C4.5 decision tree[63], and 2) Random Forest

[35]. The C4.5 is widely used for many reasons. This algorithmhas robust performance

against noisy data and missing values, it also leverages a comprehensible model structure

which makes it easy to analyse, modify, or embed for development and experimental pur-

poses. However, in some cases where data is imbalanced or there are many attributes, C4.5

might build over �tted models. To address this, I have also employed the Random Forest

algorithm in the proposed system. Using an ensemble of decision trees, Random Forest is

known to be e�cient when dealing with imbalanced data sets. This is caused by its use of a

random sub-sample of the data set for training each tree. The Random Forest algorithm also

performs well in terms of using as many attributes as possible by randomly using subsets

of attributes for building each tree in the forest. In the following, each of these machine

learning algorithms is discussed in more detail.

3.2.2 C4.5 Decision Tree

Figure 3.7: A visualization of the C4.5 tree trained on Bluetooth data.
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Decision trees are built using the collected data vectors once, then the built model is

used to predict the label of an unseen data record multiple times. The tree consists of three

building blocks, internal nodes, edges and leaves. Each internal node represents an attribute.

Edges that connect internal nodes to their children are labelled with conditional expressions

based on the possible nominal or numeric value of the preceding node. Leaf nodes of the

tree represent predicted labels. Any data record in a given data set will lead to traversing

the tree from root to one of the leaf nodes to determine the predicted label. Traversing the

tree with a sample, edge labels and the value of the corresponding attribute in the sample

determine which child to choose for continuing the traversal down to a leaf node. Reaching

a leaf node, the prediction is determined the label of the leafnode that is met and the end

of a traversal.

Training phase involves selecting attributes and link labels in addition to leaf node asso-

ciated predictions. To build a tree from root down, featuresneed to be ranked. Features are

ranked based on theirGainRatio , where the information gain ratio for an attribute ai in a

data set S is de�ned in Equation 3.3.

GainRatio (ai ; S) =
InformationGain (ai ; S)

Entropy (ai ; S)
(3.3)

InformationGain (ai ; S) = Entropy (y; S) �
X

� i;j 2 dom(ai )

j � ai = � i;j
S j

j S j
� Entropy (y; � ai = � i;j

S)

(3.4)

Entropy (y; S) =
X

cj 2 dom(y)

�
j � y= cj S j

j S j
� log2

j � y= cj S j
j S j

(3.5)

In equations 3.4 and 3.5,� is the standard deviation. Variablescj and � i;j represent

labels in the class domain of the attributesy and ai respectively. InformationGain (ai ; S)

is the value that shows impurity of the values in an attribute's values. Since Information

Gain is biased towards nominal attributes with many di�erentvalues, the gain ratio formula

is designed to normalize it [67]. This will prevent the problem of zeroInformationGain for

nominal attributes that have many di�erent values. More detailed information on C4.5 can

be found in [63] and [67].
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Figure 3.7 demonstrates a visualization of a C4.5 tree trained on a Bluetooth data set.

Attribute names that appear on the internal nodes, having anoval shape, of the tree are the

name of dongles. The attributes are named after the lab members that have a desk close to

the respective anchor node. Leaf nodes, with a rectangular shape, list the �nal decision by 0

(== false or outside) and 1 (== true or inside) at the leftmost. The pair of values shown on

each leaf node in parenthesis represents the number of test samples that visited the speci�c

leaf node. The �rst number is the number of instances that wereclassi�ed correctly. The

second number, if present, shows the count of instances thatended up at this leaf node with

a wrong classi�cation result, producing a False Negative or False Positive prediction.

3.2.3 Random Forest

Random Forest is a classi�cation algorithm based on ensemble learning [35]. Random Forest

grows a collection of trees on a training data set based on three rules:

1) Each tree is trained ofN samples, whereN is the size of the original data set. But the

samples are randomly selected from the original data setwith replacement .

2) If there are M attributes, the constant m(� M ) is speci�ed. For splitting nodes m

random attributes are selected from the originalM inputs. Value of m remains constant

through the forest growing process.

3) Each tree is fully grown, which means there is no pruning.

One of the interesting features of the Random Forest classi�er is that it is able be unbi-

asedly trained on only training data. This is because the training mechanism includes 33%

split of samples selected for training each tree for testing purposes. Random Forests do not

su�er from over-�tting, and they are also very fast in terms of training time [14].

Additionally, Random Forest is able to compute the proximityof instances in the training

data set. After each tree is built, all the instances are used to traverse the new tree. the

instances that end their traverse at the same leaf node will get an incremented proximity

score. This score is normalized at the end of the training process by dividing by the number

of trees. Then the proximity values are used to replace missing values at the time of testing.

However, missing values are also replaced at the time of training. There are two ap-

proaches for missing value replacement at the time of training:
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1) Fast The missing value is replaced by the median of the corresponding attribute, which

yields less accurate results than the latter.

2) Slow First a forest is built by replacing missing values inaccurately, in order to calculate

instance proximities. When the proximities are in hand, the missing numeric values are

replaced calculating a weighted average of non-missing values in samples, where weights

are the proximity values. For nominal values, the missing value is replaced by the most

frequent non-missing value, where the frequencies are weighted based on proximity values.

Random Forest is well known for building accurate classi�erson di�erent data sets. It

also supports methods for balancing error in unbalanced data sets and is capable of handling

a large number of attributes e�ciently. More detailed information on Random Forest can

be found in [14, 35].

3.2.4 Client Status Manager

Client Status Manager (CSM) is responsible for managing user requests and collecting data

statistics. CSM holds brief and long term history of each user's activity. This component

also works as a behaviour analysis system for the clients, throttling request timings and

managing the number of active devices per user. It keeps track of statistical characteristics

of the RSSI values sent by a device to detect anomalous activity. CSM is a component

that is responsible for detecting and preventing attacks speci�c to the indoor geo-fencing

system proposed here. Some of these attacks and their countermeasures are discussed in

detail in Chapter 5. Moreover, this component is responsiblefor applying smoothing and

outlier detection on the signal strength data provided by hand-held devices to enhance the

classi�cation and user experience.

Statistics and monitoring unit uses data collected by CSM tomake an abstract view

of the client activity per geo-fenced zone. A simple web interface demonstrates the status

and information of clients (mobile devices) active in a speci�c geo-fence. The information

includes parameters such as being inside or outside the zone,signal strengths, device types,

etc. Figure 3.4 demonstrates some screen shots of the statistics and monitoring user interface.

As demonstrated in Figure 3.8, CSM keeps a pro�le for each of the clients connected to

the system. Each pro�le keeps the following bu�ers:
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component in the Blacklist enables the system to block userstemporarily or permanently.

3.3 Generic Access Control Mechanism

The proposed system is aimed to aid the administrators for implementing location aware

access control. As a result, the administrators or industry developers need the freedom

to complement this solely location based access control mechanism to suit their speci�c

business model. Another case is where the same industrial complex has di�erent access

control methods for di�erent installations of the proposedgeo-fencing system.

To this end, the system is designed in a manner to support a generic access control

backend. This allows administrators and developers to integrate their custom authorization

mechanisms to the system. An abstract class called \AuthorizationDecider" is provided with

the installation libraries. This class can be extended to implement a tailored access control

methodology. Then the implemented method can be set to be thedefault authorization �lter

for the geo-fencing system with simply modifying the con�guration �le.

For proof of concept purposes, a default implementation of the AuthorizationDecider is

used where access control is simply performing a single rulecheck: if the device is authen-

ticated and the requested service is on the same network withthe device, then access is

granted. Otherwise, the device is denied from accessing the requested resource/service.



Chapter 4

Noise, Outliers and Missing Values

The proposed system depends on RSSI values received from both Bluetooth and Wi-Fi

infrastructures to decide upon the presence of a speci�c user in a geo-fenced zone. However,

there are many factors that cause the Industrial, Science and Medical (ISM) band to be one

of the noisiest frequency bands: 1) The use of this band is free for public and many non-

regulated transmitters are propagating signals. 2) The 2.4GHz frequency is water resonant,

so it is e�ciently absorbed by objects containing water (including human bodies). 3) Due

to the fact of absorption of 2.4 GHz frequency by water, many appliances (e.g. microwave

ovens) operate on high power adjustments in this band that adds a signi�cant noise on the

ISM band. This chapter discusses the methods that are experimented and employed in this

research in order to overcome such noise for the geo-fencing service administration.

4.1 Smoothing Techniques

There are many approaches for dealing with noise in RSSI readings. Such approaches include

outlier detection and value estimation which leads to smoothing the data samples. Value

estimation techniques estimate the next upcoming value in astream of data, or for replac-

ing missing values. Estimation, in a data stream, is normally based on temporally local

samples of data. The wideness of this locality can be determined by a span orWindowSize.

W indowSize determines the number of data points that are taken into account when estimat-

ing the next possible value. The larger theWindowSize, the stronger the e�ect of previous

data samples on the next estimate. As a result, a largerW indowSize will yield a smoother

trend line in comparison to the original data. As a result, aside from the estimation method-

ology, parameters such asWindowSize can greatly impact the outcome of the procedure. To

choose the best, I have experimented with six di�erent well known smoothing methods:

1. Moving Average, a low pass �lter with �lter coe�cients equal to the reciprocal of the

span.
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2. Local Regression using Weighted Linear Least Squares and a1st degree polynomial

model (LOWESS).

3. Local Regression using Weighted Linear Least Squares anda 2nd degree polynomial

model (LOESS).

4. Savitzky-Golay �lter. A generalized moving average with�lter coe�cients determined

by an un-weighted linear least-squares regression and a polynomial model.

5. A robust version of 2 that assigns lower weight to outliersin the regression. The method

assigns zero weight to data outside six mean absolute deviations (Robust LOWESS).

6. A robust version of 3 that assigns lower weight to outliersin the regression. The

method assigns zero weight to data outside six times the median absolute deviations

(Robust LOESS).

4.1.1 Moving Average Method

The Moving Average method is based on the idea that RSSI readings that are close to

each other in terms of time, should also be close to each other in terms of their values. Also,

variations of these values in relation to the average value of the stream, should be temporally

proximate.

In an indoor positioning scenario, this is more understandable considering the fact that

walking speed for an average person is between 1.25 to 1.5 meters per second [39]. Based

on the fact that users walk slower in indoor environments [83], the probability of causing

drastic changes and shootings in the perceived signal strength decreases, and the idea behind

Moving Average seems applicable. A moving average using aWindowSize of k will result in

an estimated value calculated as shown in Equation 4.1. Equation 4.2 is used to calculate

the next estimate. Wherebyt+1 is the estimate, andyt and yt � 1 are last two actual readings.

byt =
1

k + 1

kX

j =0

yt � j (4.1)

�yt+1 = byt + ( yt � yt � 1) (4.2)
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Equation 4.1 is also called one-sided moving average. Two sided moving average tech-

niques are useful when readings are available from both before and after the estimation/smoothing

point. Please note that settingk = 0 leads to putting the latest sample value as the estimate

which is also called \naive" Moving Average. Exponential weighting of the values in the

window is another approach for managing the e�ect of their age on the estimate. Further

information on these methods can be found in [53].

4.1.2 Locally Weighted Regression Scatter Plot Smoothing

The method LOESS (Locally Weighted Regression Scatter PlotSmoothing), was �rst intro-

duced by Cleveland in 1979 [42] and was further developed in early 90's [43]. It is a local

regression technique based on a second order polynomial derived using a Least Square ap-

proximation. The polynomial is built using points from the whole data span, biased toward

a range of points in vicinity of the sample which is going to beestimated by an assigned

weight. The LOWESS method is the same as LOESS, unless the least square approxima-

tion is a �rst degree or linear polynomial. The local regression weights are calculated as

demonstrated in Equation 4.3. Whered(x) is the time di�erence between the values ofx

and x i .

! i =

 

j
x � x i

d(x)
j

3
! 3

(4.3)

Least square approximation method is a popular approximation technique for data �tting.

Least square tries to minimize the summation of squared value of errors. Error is de�ned

in terms of the di�erence of an approximated value with the actual value observed at that

point, this di�erence is also called a residual.

4.1.3 Savitzky-Golay Method

Savitzky-Golay [52] �lter is a generalized form of the moving average algorithm. The �lter

uses an order-k polynomial regression local to the estimation point. It alsoassumes that all

data points are evenly distributed in time, which does not hold for our collected data sets.

And also might cause inconvenience when data sampling is set to be on demand for purposes

such as extending device battery operation time.
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4.1.4 Robust LOESS and LOWESS Algorithms

To make LOESS and LOWESS robust, the only modi�cation to the original methods is

that outliers are removed from the computation by simply assigning zero weights to them.

When calculating the estimate, a 1st or 2nd order polynomial is used to approximate the

trend of data in that vicinity. However, weights are assignedto the closest values to bias the

least square approximation toward the most recently observed data. When zero weights are

assigned to outliers, they are simply disregarded in the least square approximation process.

Outliers are detected based on comparing their residual to the median absolute deviation.

Median absolute deviation is the median of the distances samples have from the mean of the

data observed so far. For the robust methods, regression weights are calculated as shown

in Equation 4.4. in this Equation, r i is the i th residual. This equation also shows how

MAD is used to give zero weights to the samples that are considered to be outliers. MAD is

calculated as shown in Equation 4.5

! i =

8
<

:

�
1 � ( r i

6MAD )2
� 2

if jr i j < 6MAD

0 if jr i j � 6MAD
(4.4)

MAD = median(j r i j) (4.5)



Chapter 5

Security

As discussed in previous chapters, there have not been many researches focusing speci�cally

on higher level threats in an indoor positioning system. This Chapter discusses speci�c

threats that are introduced by the architecture of such systems. Additionally, attacks and

countermeasures that are related to the recruited technologies and standards employed in

the proposed system are studied.

5.1 Communication Security

The greatest concern in the context of communication is to provide con�dentiality for the

network interactions. To do so, I experimented with two methods:

1) SSH Tunnelling.

2) SSL/TLS Sockets.

Secure Shell (SSH) is an application layer protocol, that wasinitially introduced to ad-

dress weaknesses of telnet and remote login protocols as described in RFC 4251 [85]. This

protocol provides secure communications over an insecure network infrastructure. Based on

di�erent implementations and platforms; services such as remote graphical shell access, tun-

nelling, and port forwarding can be provided by SSH. In this research, the OpenBSD Secure

Shell (OpenSSH) open source implementation [20] was used to establish secure connections.

The working mechanism of the SSH tunnelling is described as follows:

i- A device authenticates to the SSH server, and initiates the connection using credentials.

ii- A local SOCKS proxy [56] (RFC 1928) service is then run on the device platform listening

for requests issued from the device itself.

iii- The application that needs to access services and geo-fencing infrastructures, sends and

receives its requests through the device-local proxy server.
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Once the tunnel is established, all the communication is then passed through the local

proxy. This local proxy will encrypt the whole packet using SSH connection parameters, and

forward it to the destination as one or multiple packets.

Secure Socket Layer version 3.0 (SSLv3), or Transport LayerSecurity (TLS) [44], is a

transport layer security protocol that provides with: 1) Con�dentiality, 2) Message Integrity,

and 3) Mutual authentication.

TLS supports multiple strong encryption techniques. Initial negotiation will be deter-

mining the con�dentiality basics of a communication and random parameters that are set

to prevent replay attacks. After the initial handshake, data is encrypted and is appended a

Message Authentication Code (MAC), in addition to TLS speci�c headers for each packet.

The encryption technique used can be changed in order to makebreaking the ciphers more

di�cult. The details of TLS is out of the scope of this thesis,and available from the Internet

Engineering Task Force [21].

Considering both methods provide identical techniques for providing communication se-

curity, networking advantages are in favour of TLS. Firstly,TLS is a mechanism that does

not require extraneous authentication for initiating a secure connection. Although mutual

authentication can be enforced on TLS connections, it is notnecessarily required to provide

secure communication, as client identi�cation and authentication is already provided by the

proposed system in other ways. Secondly, while TLS does onlyencrypt the payload and adds

minimal control and integrity headers and trailers, SSH (dueto port forwarding requirement)

has to encrypt the whole packet, including TCP headers. Thisleads to a phenomenon called

TCP over TCP, that is strongly discouraged due to its overhead when having small payloads

[75], which applies to the proposed system's use of network resources.

Due to the aforementioned advantages of TLS over SSH, the proposed system is imple-

mented on the TLS. Meanwhile, it should be noted here that theuse of SSH is undeniable

for management and remote control purposes and therefore might be useful for large scale

deployment of the system.

5.2 Attacks and Countermeasures

The proposed system consists of multiple components that run under di�erent platforms

and use divergent set of system resources. With every dimension that is added to a software

system through using a speci�c type of resource or mechanism,certain threats are arisen.
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Network communication is an essential component of the wholesystem. Making resources

available through well known network protocols brings exibility and usability to the table.

At the same time the well known contrast between usability andsecurity limits the designer

to employ techniques that are hidden from the user while at the same time provide su�cient

security.

The proposed system can be subject to multiple attacks as it has multiple components

and packets of sensitive information owing over the network. Several attacks have been

listed and tested against the implementation of the system.Many of these attacks are well

known and commonly used against di�erent types of Internet services. Some of the attacks

are customary designed to leverage the speci�c design and the data ow of the system.

However, even these custom attacks can be categorized in at least one of the well known

categories. The generic categories that are studied in thisresearch are as follows:

1. Brute Force and Token Guessing.

2. Denial of Service.

3. Man in The Middle.

4. Spoo�ng.

Sections 5.2.1 through 5.2.4 discuss these attacks and describe how the proposed system

is designed to address these threats.

5.2.1 Brute Force and Token Guessing

Perhaps the least complicated and most trivial type of attacks are brute force attacks. These

category of attacks are mainly designed to randomly or heuristically traverse the whole state

space to guess the right parameters for acquiring access to acertain system. While user name

and password guessing attacks are the most familiar ones in this category, brute forcing can

be used in many other scenarios, too. Against the proposed system, an adversary can try to

guess RSSI values that lead to a positive positioning outcome. Having a collection of those

samples can give the adversary the ability of replaying those values to gain access. The

RSSI spoo�ng/replay attacks are discussed in detail in Section 5.2.4. Out of the numerous

parameters that can be guessed, I focus on the following:
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Dictionary Attacks

As described before user names and passwords are used for authenticating the users.

Brute force attacks are obviously a threat to the proposed system. Therefore the

following approaches are taken to counter this type of bruteforce attacks:

1. Authentication is performed in a throttled manner. If a certain user name fails

to authenticate successfully more than a speci�ed number of times (threshold),

the system blocks the user account. However, because the authentication server

and the access control server are separate servers, the userbased throttling is

implemented separately from the device based throttling. CAS is responsible for

throttling authentication requests based on user names. While the positioning

service takes the responsibility to control the number of failed authentications

given a certain device identity.

2. Enforcing security policies on password selection. Thisconsists of forced inclusion

of special characters and numbers, minimum password length, and expiration

periods. These factors could increase the security and enlarge the state space

which then results in a more time consuming and nearly infeasible process for

an attacker. At the same time, this may cause decrease in the quality of user's

experience because the passwords are going to be less and less memorable as the

constraints get more strict. As a result, using a scheme whichdoes not a�ect the

user experience is suggested. To this end, the proposed system relies on tracking

of request timings to limit the number of requests given by a user in a speci�c

time frame.

Guessing Positive RSSI Samples

This is related to the number of RSSI values required for enabling positioning in each

zone. In my experiments I have used from 3 access points to 6 dongles. Some ex-

periments show that with some zone sizes even two dongles areenough. Each anchor

node's RSSI value can approximately range from -36 to -90. Given this the size of the

search space for the attacker is of sizeN 64 in my experiments, when using N anchor

nodes. Obviously, a range of values can be classi�ed as inside zone. The zone size is

small in comparison to the range which dongles or access points cover, but still the

probability of a guess coming true is high.
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In order for an adversary to guess enough samples to get away from the positioning

step, it needs su�cient number of samples to evade being detected by the system's

RSSI spoo�ng detection mechanism which is described in Section 5.2.4.

5.2.2 Denial of Service

Denial of Service attacks are de�ned as the category of attacks which are aimed to disable

the system from providing service to its clients. Such attacks can be implemented based on

using up the system resources. Such resources include network bandwidth, computational

load on the server or client, and available information. Disrupting the information in a way

that stops the system from serving its legitimate users is one of the most important threats

that this framework can face. The important attacks that fall into this category are discussed

as follows:

Fake Dongle/Access Point Installation

An adversary can bring in and install hardware in a way to pretend that the hardware

is part of the positioning infrastructure. If successful, this will disrupt the quality of

the data collected by devices to be sent to the server for positioning use. Duplicate

cases could happen where a device discovers the same access point twice or more

with di�erent RSSI values. This attack can be classi�ed in both Spoo�ng and DoS

categories.

It can be classi�ed as a DoS attack because it can cause the system fail to provide

with accurate positioning. This will result in a stoppage in service because access to

services in the area of geo-fencing are provided based on the position and the quality

of this service solely depending on positioning accuracy and robustness.

The true nature of such an attack is spoo�ng. To impersonate anaccess point or

dongle, the fake nodes need to send out beacons that are at least carrying the same

MAC address of the others in their beacon frame headers [46].

Overwhelming Number of Requests

Depending on security and access control requirements, frequency of location checking

can be di�erent. In some areas that users are using devices toaccess sensitive resources,

one administrator might choose to con�gure the positioningservice in order to check for

the location of users more frequently. But in almost all cases that the system is going to
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be deployed, a location aware service in retail environments, the frequency of location

checks does not need to be more frequent than a few times per minute. Overcoming a

large number of requests sent out by a single device is achieved by properly throttling

these requests based on the frequency of location checking.If location checking requests

from an identi�ed device are submitted in violation of the timing restrictions, and keeps

violating the restrictions more than a certain limit, user's account will be blocked

temporarily or permanently based on the administrator's con�guration.

BlueSmack Attack

Under the Bluetooth stack one of the most used transport protocols is Logical link

control and adaptation protocol (L2CAP). This protocol is responsible for packet mul-

tiplexing, quality of service, segmentation and reassembly of the packets. Additionally,

similar to the Internet Control Message Protocol's (ICMP) echo message, L2CAP also

provides the echo functionality for discovery and availability purposes.

Some versions of the BlueZ [7] implementation are vulnerableagainst echo packets

with an extraordinarily large (greater than 600 bytes) payload [45, 31]. Because the

attack aims for the availability of the Bluetooth infrastructure, it is normally classi�ed

as a DoS attack.

The Bluetooth infrastructure is essentially used for indoor positioning. No data or

service is provided through Bluetooth. More speci�cally, Bluetooth dongles are present

for sending beacon frames that make the user devices able to have RSSI readings

and then submit positioning requests. In order for the Bluetooth anchor nodes to

propagate signals, the system uses the BlueZ stack implementation [7]. However,

BlueZ is a complete implementation of the 802.15 standard [3]. This means that there

are some default features that are included but are not used by the proposed system.

Because unnecessary services and equipments are considered security risks, the BlueZ

installation is con�gured not to operate on higher level protocols of the Bluetooth

standard stack. This leads to ignoring all echo packets arriving at the anchor nodes,

which makes the system resistant to such attacks.
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5.2.3 Man in The Middle

Replay Attacks

As mentioned before in this section, communication con�dentiality and message in-

tegrity is provided using TLS on the transport layer. On the application layer, HTTP

post messages for positioning are checked for integrity using session salts. Two scenar-

ios are considered for replaying positioning request data:

1) Replaying cipher data captured on the network.

2) Replaying plain text messages.

As of the �rst case, TLS is made replay proof by embedding two random elements

generated by the client and the server in the handshake process. These two random

values are then used to generate the master key that is used for the encryption algorithm

chosen in the future steps of the TLS communication. Additionally, each TLS payload

is accompanied by a Message Authentication Code (MAC) that isalso dependent on the

master encryption key. This makes replaying TLS ciphers nearly impossible. Another

way of intercepting plain text data through a TLS connectionis the SSLStrip attack

[59], whose countermeasures are discussed in the text that follows.

For the second case, there is the prerequisite of being able to break the TLS cipher.

This can be achieved by guessing the random numbers exchanged or having access to

the device and server's private keys. However, if these dependencies are met, plain text

POST data can be sent to the server. As mentioned before, the POST request data is

protected against alterations using a message veri�cationhash based on theSessionsalt

and Init salt values. Init salt is permanent, in contrastSessionsalt is temporary and set

to expire shortly. Each user needs to renew this salt value through a NFC barcode

terminal whenever access is cut for a certain amount of time,or the salt is expired.

As a result, the replaying adversary not having access to boththe salt values will be

unable to calculate the message veri�cation hashes and fail to replay.

SSLStrip

In 2009 the SSLStrip was introduced. This attack exploits the weaknesses in the way

browsers validate certi�cates and warn users about invalidcerti�cates. Low level of

awareness about SSL protection by the users is another e�ective factor that this type
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of attack can leverage.

The anatomy of SSLStrip involves accessing the network gateway, or forcing the clients

in a network to direct their SSL tra�c through an attacker. The latter is normally

achieved by launching a successful Address Resolution Protocol poisoning (ARP poi-

soning) attack [48]. After doing so, the attacker forwards the client browser to a plain

text communication between the rogue gateway and the client, while maintaining the

SSL connectivity between the rogue gateway and the intended web server. SSLStrip

gives the attacker the power to manipulate content and access the client-server commu-

nication data in plain text. Meanwhile, the server will not identify an attack because of

the SSL connection present between the rogue gateway and theserver. Moreover, the

attacker hopes that the attack is unnoticed on the client sidedue to incorrect browser

behaviour or a user's ignorance.

To counter SSLStrip, it is recommended to use bookmarked HTTPS URLs on browsers

and not trusting invalid SSL certi�cates. The proposed system uses hard coded HTTPS

URLs with HTTP redirect handling disabled. Certi�cates are set to be in�nitely

veri�ed down the chain. Additionally, server certi�cates are hard coded with the IP

address and domain name of the servers that they are installed on. Applying the

mentioned measures will disable the attacker from launchinga SSLStrip attack.

5.2.4 Spoo�ng

RSSI Spoo�ng

This type of attack involves an adversary replaying previously recorded positive RSSI

samples. This attack is experimented and discussed in Section 6.5.

Tunnelling Based Location Spoo�ng

In this case, some threatening scenarios are studied where acertain decision could not

be made about the true class of an activity. One such scenariois studied where an

activity cannot be marked as an attack due to ambiguous nature of such practice. This

problem also highly depends on the terms of service (ToS) that is agreed upon by a

company and its customers.

This scenario includes a device, which is physically presentin a geo-fenced zone, which

is facilitating the access for users not present. Such a scenario can use the third or the
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fourth generation data networks to give access to users remotely connecting.

A remote user can connect to the geo-fenced services over a screen sharing protocol

to play remotely. Or he/she can connect through a more sophisticated set of services

such as remote command lines and small applications in orderto obtain values such as

RSSI and hashing salt, and then can start accessing the geo-fenced services while the

facilitating node acts as a relay or a network proxy.

Such an attack can be countered by two strategies. Firstly, CSM can be con�gured

such that no more than one user at a time is able to play using a physical hand held

device. Secondly, one can use the fact that in 3G networks, up-link has a smaller

delay than the down-link [55]. This helps detecting such an activity when a tunnelled

connection is used by the remote user to play through the facilitating device.

As mentioned before, such a scenario is highly dependent on regional legislative deci-

sions in addition to the company policies and Terms of Service. Such situations further

emphasize the need to expand legal studies in order to keep upwith the evolution of

the digital computing environments.

Fake Access Point/Dongle Attacks

The geo-fencing system is dependent on RSSI values for determining the position and as a

result permissions of a user. One way for an attacker to disrupt this process is introducing

fake Wi-Fi or Bluetooth anchor nodes. Such an attack can be achieved by running a Wi-Fi

access point or Bluetooth hotspot that advertises serviceswith the same MAC address or

SSID (Service Set Identi�er) as one or more of the anchor nodes employed in the geo-fencing

infrastructure.

To counter such an attack, the Bluetooth hardware used in thewireless infrastructure

constantly scans the environment for beacons from other anchor nodes. Each node will

compare each observed MAC address and/or SSID to its own MAC and SSID. If any of

the anchor nodes observe such a duplicate, an alert is sent to the administrator for further

investigation.



Chapter 6

Experiments and Results

This chapter of the thesis focuses on the experiments that were carried out during the

research. At a glance, multiple discussions are brought up about di�erent aspects of the

machine learning algorithms and how to extract useful and domain relevant information

from these algorithms. Additionally, some statistical measures are introduced to counter

speci�c types of custom attacks targeting RSSI based indoorpositioning systems.

6.1 Classi�cation Results

As mentioned before, based on my preliminary experiments (see Appendix A), the two best

classi�ers were C4.5 and Random Forest. Therefore, I compared these two classi�ers against

each other on my data sets for this research. These data sets collected in NIMS lab area are

described in Table 6.1.

Table 6.1: Geo-fencing data set description.

Data Set Name Positive Samples Negative Samples Devices
Wi-Fi 2x2 all devices 199 204 7 di�erent Android devices

Wi-Fi 2x2 TF101 41 41 Asus TF101
BT 2x2 Samsung 50 50 Samsung Galaxy Ace
BT 2x2 TF101 32 81 Samsung Galaxy Ace and Asus TF101

Wi-Fi 5x5 TF101 50 51 Asus TF101
Wi-Fi 5x5 Samsung 50 50 Samsung Galaxy Ace

BT 5x5 Samsung 50 51 Samsung Galaxy Ace

Wi-Fi 10x10 TF101 50 50 Asus TF101
Wi-Fi 10x10 Samsung 50 50 Samsung Galaxy Ace

BT 10x10 Samsung 50 51 Samsung Galaxy Ace
BT 10x10 all devices 50 51 A variety of devices

BT 10x10 TF101 50 50 Asus TF101

Each classi�er was run on all data sets using 10 fold cross validation. Multiple runs were
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performed using di�erent random seeds to ensure that the results are not biased.

The main metric used for selecting the best classi�cation algorithm is the FMeasure . This

is due to the discriminative aim of classi�cation in this research. This goal is achieved by

minimizing the number of false negative and false positive predictions at the same time. To

understandFMeasure , one needs to �rst know Precision and Recall. Precision and Recall are

well known measures that are widely used in information retrieval and data mining practices.

Precision and Recall are de�ned in Equations 6.1 and 6.2 respectively.

Recall =
TP

TP + FN
(6.1)

P recision =
TP

TP + FP
(6.2)

Needless to say, Recall decreases as the number of the false negatives (FN) increases. On

the other hand, Precision decreases when the number of falsepositives (FP) increases. So

there is a trade o� between Recall and Precision. To build a discriminative classi�er, both

Precision and Recall must be maximized as much as possible.

FMeasure = 2 �
P recision � Recall
P recision + Recall

(6.3)

Equation 6.3 is used to calculate theFMeasure value. Clearly, this measure is maximized

to 1 when both Precision and Recall have higher values. Consequently, FMeasure a suitable

measure for evaluating a classi�er to be discriminative.

As mentioned before, multiple classi�ers are employed in our preliminary experiments..

These classi�ers include: Naive Bayes, Support Vector Machines, C4.5 decision trees, and

Random Forest. Based on the results of these initial tests, Iselected C4.5 and Random

Forest classi�ers for further evaluations. Weka machine learning tools kit [15] was used for

both initial testing and software integration purposes.

For further evaluations, both classi�ers are �rst �ne tuned for all data sets based on linear

parameter search. Each classi�er is run multiple times while changing parameter values in

a linear manner. The best parameters for the top two classi�ers being used are as follows:



44

� Random Forest : 250 trees in the forest, each split point is based on 2 random

features.

� C4.5 Decision Tree : Con�dence factor of 0.25 for �nal pruning.

Figures 6.1 and 6.2 demonstrate the performance of the RandomForest classi�er on Blue-

tooth and Wi-Fi infrastructure data sets respectively, whereas Figures 6.3 and 6.4 illustrate

the performance of the C4.5 classi�er on the same data sets. These classi�cation results

suggest that the Random Forest classi�er has a better performance on all data sets. In these

experiments Random Forest classi�er has a �nal F-measure of 0.72 in average on all data

sets as opposed to C4.5 having a F-measure of 0.67 (before smoothing). Therefore, Random

Forest is chosen to be the main classi�cation algorithm for the proposed system. From this

point on all the experiments that are concerned with classi�cation are run using the Random

Forest algorithm.

6.2 Smoothing Results

The data collection step is basically operated by administrators, and it depends on user

input for reading and recording the RSSI values. But in runtime, the testing applications

that operate on user devices are con�gured to record Wi-Fi readings in timed periods (5

seconds for our tests). On the other hand, due to the event based design of Bluetooth

scanning in Android, setting a smaller recording frequency is needed to achieve uniformly

recorded samples. To experiment the e�ect of data collectiontimings on the smoothing

process, a new Bluetooth data set for the 2x2 zone size was collected. After performing

experiments on both the new and the old 2x2 data sets results turn out to be nearly the

same. This is because most of the employed smoothing methodsare assuming that values

are not temporally evenly distributed. As a result, no new data set is collected for other

zone sizes to conduct smoothing experiments.

For the smoothing method evaluations, two extensive sets ofexperiments were carried

out. The �rst set of experiments were aimed to determine the best smoothing method for

the existing data sets. Then, the second round of experiments are designed to discover the

best parameter values for the method chosen in the previous round of experimentation.

In the �rst round of experiments each of the 12 data sets are smoothed using all the

methods described in Chapter 4. Based on averageFMeasure of all runs on each data set,
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(a) Wi-Fi 10x10 Samsung. (b) Wi-Fi 10x10 TF101.

(c) Wi-Fi 2x2 all devices. (d) Wi-Fi 2x2 TF101.

(e) Wi-Fi 5x5 Samsung. (f) Wi-Fi 5x5 TF101.

Figure 6.1: Random Forest result distribution on non-smoothed data sets while using the
Wi-Fi infrastructure.

the best smoothing algorithm is selected. To do so, smootheddatasets are sorted based on

averageFMeasure then the method with the best ranks is chosen as the main algorithm.

These results show that the Moving Average has shown more steadiness in performance

across di�erent data sets. Figures 6.7 and 6.8 show the resultsof classi�cation on 5x5 zone

using the Wi-Fi infrastructure. Appendix A includes detailed experimental results on all

data sets. Table A.2 tabulates the average classi�cation measures for all the methods on all

data sets for di�erent smoothing methods.

The smoothing process is performed in a few steps. First, datasets are loaded into
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(a) Bluetooth 10x10 all devices. (b) Bluetooth 10x10 Samsung.

(c) Bluetooth 10x10 TF101. (d) Bluetooth 2x2 Samsung.

(e) Bluetooth 2x2 TF101. (f) Bluetooth 5x5 Samsung.

Figure 6.2: Random Forest result distribution on non-smoothed data sets using the Bluetooth
infrastructure.

Matlab environment from CSV �le formats. Sorting the samples based on their reading

time, each data set represents a recorded time series of RSSIreadings. Then, starting from

the beginning of the sorted data set, the algorithms aim to adjust the value of next sample

based on the samples observed up to that point. Finally, after smoothing �lter is applied,

the data sets are saved into separate CSV �les for classi�cation purposes.

Applied smoothing techniques (�lters) have a delay for starting to remove the noise.

This delay is in direct relation to the WindowSize selected. As mentioned before, there is a

trade-o� between the delay for a �lter to start its impact on th e values and the amount of
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(a) Wi-Fi 10x10 Samsung. (b) Wi-Fi 10x10 TF101.

(c) Wi-Fi 2x2 all devices. (d) Wi-Fi 2x2 TF101.

(e) Wi-Fi 5x5 Samsung. (f) Wi-Fi 5x5 TF101.

Figure 6.3: C4.5 decision tree result distribution on non-smoothed data sets while using the
Wi-Fi infrastructure.

the noise that is removed by the �lter.

In each data set smoothing is performed separately for each attribute and also separately

for each label, because each attribute value is technicallyindependent from the other values.

A user's location and orientation in relation to a speci�c anchor node is highly e�ective on

the noise. Additionally, the noise on each anchor node is alsoindependent because they are

operating on di�erent frequency channels.

To further examine the moving average method, experiments have been undertaken with

di�erent values of W indowSize. The WindowSize has been changed from 5 to 50 readings.
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(a) Bluetooth 10x10 all devices. (b) Bluetooth 10x10 Samsung.

(c) Bluetooth 10x10 TF101. (d) Bluetooth 2x2 Samsung.

(e) Bluetooth 2x2 TF101. (f) Bluetooth 5x5 Samsung.

Figure 6.4: C4.5 decision tree result distribution on non-smoothed data sets while using the
Bluetooth infrastructure.

Then the Random Forest classi�er is run and results are compared based on averageFMeasure .

Figures 6.5 and 6.6 illustrate the e�ect of the changes inWindowSize on the results of

classi�cation experiments. Based on these experiments, aWindowSize of between 20 and 30

is shown to be the best for both Bluetooth and Wi-Fi data sets. Additionally, Table A.3

lists detailed classi�cation results achieved on all data sets when changing the smoothing

WindowSize from 5 to 50.

To integrate the Moving Average method into a system that operates on live data streams

rather than pre-recorded data sets, the CSM (Section 3.2.4)maintains a Circular FIFO Bu�er
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure 6.7: Random Forest result distribution on Wi-Fi 5x5 dataset collected using an Asus
Tablet, using di�erent Smoothing methods.

6.3 Most Important Anchor Nodes

Although the Random Forest classi�er yields better classi�cation results, the structure of

a C4.5 decision tree can be helpful, too. To �nd the most important anchor node in the

positioning decision process, a C4.5 tree is trained on the data set. Then the most important

anchor node that is the anchor node that is placed in the root node of the tree is analysed.

This is because features are ranked based on information gain when the decision tree is

choosing the next attribute to recursively build the tree. After �nding the most important
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure 6.8: Random Forest result distribution on Bluetooth 5x5 data set collected using a
Samsung Smartphone, using di�erent Smoothing methods.

anchor node, the corresponding attribute is removed from thedata set and a new decision

tree is built on the remaining attributes, leading to selection of the next most important

anchor node and so on. This process is repeated until no less than two attributes remain.

Figure 6.9 demonstrates the decision tree visualizations forthe �rst and the second most

important anchor nodes on a 2x2 geo-fenced zone using Bluetooth infrastructure. This shows

that which anchor node is the most inuential in the geo-fencing decision process. Studying

characteristics of their placement in relation to the geo-fenced zone being studied can give

us clues in order to perform more accurate geo-fencing installations. Information from this
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Table 6.2: Top 10 anchor node positions for the 5x5 geo-fenced zone while using the Bluetooth
infrastructure for positioning.

Count Anchor Nodes F Measure (average)
3 Tokunbo, Hossein, Hossein-Old 0.78
6 Patrick, Vahid, Tokunbo, Hossein, Ozge, Hossein-Old 0.77
4 Tokunbo, Hossein, Ozge, Hossein-Old 0.76
4 Vahid, Tokunbo, Hossein, Hossein-Old 0.76
1 Hossein 0.75
5 Patrick, Tokunbo, Hossein, Ozge, Hossein-Old 0.75
4 Patrick, Tokunbo, Hossein, Hossein-Old 0.75
5 Vahid, Tokunbo, Hossein, Ozge, Hossein-Old 0.747
3 Hossein, Ozge, Hossein-Old 0.746
5 Patrick, Vahid, Hossein, Ozge, Hossein-Old 0.74

number of anchor nodes. When a data set is collected, a tool called \Subseteer" is used

to �nd the best formation of access points. Subseteer �rst creates subsets of the data set

and trains the Random Forest classi�er on each of the subsets. Then, each subset is tested

for performance using 10 fold cross validation. These test results are then sorted based on

FMeasure in order to choose the most discriminative model.

Table 6.2 tabulates the top 10 results from a run of Subseteeron a Bluetooth data set

collected on a 5x5 meter zone. Apparently, having only three ofthe anchor nodes (Tokunbo,

Hossein, and Hossein-Old) is enough for performing a slightlybetter positioning than the

whole set of anchor nodes. Considering Figure 3.6, anchor nodes \Hossein" and \Hossein"

are close to the border of the 5x5 zone. And anchor node \Tokunbo" is far from the zone in

a place where users have the freedom to move when they are outside the zone perimeter.

Another run of Subseteer on a 10x10 Bluetooth data set denotesthat the top 2 formations

are (Hossein, Hossein-Old) and (Vahid, Tokunbo, Patrick, Ozge). The (Hossein, Hossein-

old) subset includes two anchor nodes from the center of the zone. On the other hand, the

(Vahid, Tokunbo, Patrick, Ozge) subset, includes the nodes located at four corners of the

zone being experimented. Figure 6.10, demonstrates the classi�cation results for both the

top subsets relative to the original data set. In this case, the (Hossein; Hossein � Old)

subset performs best by only having two anchor nodes. This denotes the importance of the

infrastructure optimization for having an accurate geo-fencing engine, which is provided by

the proposed system.
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(a) Anchor nodes on the center of the zone. (b) Anchor nodes on four corners of the zone.

(c) All anchor nodes considered.

Figure 6.10: Random Forest results considering di�erent positions of anchor nodes on a
10x10 Bluetooth zone.

6.5 Brute Force and Spoo�ng Experiments

In this case, an adversary present in a geo-fence controlledenvironment can access a service

outside the speci�c geo-fenced zone. In order to do so, he/sheneeds to collect a set of positive

samples to be used for replaying when a spoo�ng attack is launched. By nature, guessing

positive RSSI values is more successful than password bruteforcing, because guessing a

positive value is more probable. In contrast, for a passwordguessing attack, there is only

one correct answer for the whole process1.

In this case, there are di�erent methods to detect or disablea brute force attempt. The

main method for delaying brute force attacks is to throttle the number of requests a user

can submit to the server. As mentioned before, CSM keeps trackof request timings from

1Not considering hashing algorithm conicts if the password hash is attacked.
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each user. CSM is designed to be con�gurable with the followingparameters:

i) Minimum Request Delay This determines the minimum time that a user needs to

wait to submit a new positioning request.

ii) Maximum Number of Violations This determines the maximum number of times

a user can violate a constraint before the account is blacklisted, including the violation

of Minimum Request Delay.

iii) Time in Blacklist This is the duration that the user will be blacklisted. This could

be set to in�nity by setting a negative value or exponential blacklisting times, if it is set

to a positive value.

Generating signal data randomly, an attacker attempts to keep the positive samples

for future replay. Comparing the randomly generated signals to regular users' behaviour

according to the data bu�ers that CSM records can distinguish users from attackers. For

each client, a long term history of RSSI values per anchor nodeis stored. This history is

held as a set of unique RSSI values each client has sent for positioning requests.

Because of the nature of a retail environment and human movement speed, a regular user

sending legitimate values is limited to a number of possiblevalues in a speci�c time frame.

However, because the attacker is generating random values aiming to cover the state space,

his/her chosen RSSI values are not as limited as a benign user.To di�erentiate these two

behaviours, CSM keeps track of the growth rate of the each anchor node's value set per each

user. The growth rate is calculated as shown in Equation 6.4.

Growth rate =
Size(V alueSet)

TotalNumberofRequests
(6.4)

At the beginning of a session the set is empty. Consequently, the growth rate is high and

close to 1. After a number of values are submitted to the server,a user's growth rate starts

to fall, because new unique values are less likely to be addedto the set. This is because in

normal conditions, a user's behaviour most probably will consist of movements which are

limited in speed and distance [39, 83]. Experiments show that normal users' growth rate

falls much earlier and faster than that of a random brute forcing attacker.
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Figure 6.11: Trend ofGrowth rate for RSSI Spoo�ng, Brueforcing ,and a regular users in a
2x2 zone monitored using Bluetooth RSSI values.

Assuming that attacks are anomalous activities, detection of such behaviour is based on

the following principles:

1 Value sets are reset at everyF lushP oint requests.

2 A user must have submitted at leastMin Requests requests to become eligible for the de-

tection process.

3 A user is reported as suspicious when its averageGrowth rate is higher than the average

of Growthrate over all the eligible users with a distance of at least 3 Median Absolute

Deviation (3MAD) of average growth rates.

Intuitively, the variations observed in the signal values is also dependent on the geo-

fencing zone sizes, as the user has more freedom to move and send a more diverse set of

values in larger zones. To this end,F lushP oint and Min Requests can be tuned to suit di�erent

zone sizes.

Equation 6.5 demonstrates the trend of averageGrowth rate for three di�erent users over

100 positioning requests. A brute force attacker is sendingrandom RSSI values between -30

and -90. A regular user is normally moving or standing inside the geo-fenced zone. A spoofer

is replaying 10 positive samples while staying outside the geo-fenced zone. In summary, this

shows that both the RSSI spoo�ng and the RSSI brute forcing attacks can be distinguished

using the unique signal values sent by each user. Brute forcing attacks tend to have a more
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diverse set of values, while spoofers will have less deviation because of their use of a limited

number of previously recorded samples.

6.6 Improving The Smoothing Process

Although smoothing can improve the classi�cation performance by eliminating noise and

outliers, it has speci�c drawbacks in the geo-fencing system. The most important drawback

is the transition of a user from being inside to going outsideor vice versa. Even a relatively

small window size (between 5 to 15 data samples) will cause the estimates to strongly reect

the previously observed conditions. As a result, this will improve user experience by removing

sudden decision changes, but will introduce the risk of giving access to resources while

the user is outside a zone. As mentioned before, a weighted moving average method can

help result in making predictions in favour of the latest data points. However, due to the

signi�cant amount of noise, this may also make the smoothingmethod prone to failing when

outliers or severe shootings are introduced to the sensors.

To address this issue, I use the information stored by CSM. InFigure 3.8 two circular

FIFO bu�ers with sizes equal to the smoothing window size are illustrated. The \Pure

RSSI Values" bu�er stores the RSSI data points as received from a client, opposite is the

\Smoothed RSSI Values" bu�er, which stores the RSSI values that are the output of the

smoothing algorithm, Moving Average. A third bu�er, \Predictions History", stores the

three latest predictions. As one can see in Figure 3.8, this information is stored for each

client separately. Based on these data points, two predictions are made per each geo-fencing

request:

1) A prediction made by the classi�er trained on the raw data based on the latest raw data

point.

2) A prediction made by the classi�er trained on the smoothed data based on the latest

smoothed data point.

In cases where these two decisions disagree the �nal decision is made in favour of the

smoothed decision maker. However, whenever the two classi�ers have disagreed more than a

k number of times, the decision will be put in favour of the raw classi�er and all smoothing

windows will be ushed. By ushing the smoothing windows, the e�ect of the smoothing
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history on the latest changes will be removed. This can also balance the training and testing

phases for the classi�ers. As mentioned before, positive andnegative samples are smoothed

independently. So, ushing the bu�ers at the time a user crosses a border can bring the

same smoothing strategy to runtime.

Taking this approach results in a small delay when switching from the "being present"

condition (in the zone) to the "being absent" condition (notin the zone) in the geo-fenced

zone. In return, two negative factors are removed at the sametime. Firstly, the spontaneous

behaviour of preempting a user's access caused by noise and outliers is eliminated. Secondly,

the smoothing drawback of making predictions relative to the past is also addressed. Ex-

periments show that settingk = 3 will lead to a good balance between switching time and

a smooth behaviour.



Chapter 7

Conclusions and Future Works

In this thesis an indoor geo-fencing and access control system is proposed and then studied

in noisy and insecure environments. Measures and modi�cations are applied to make the

system more robust and secure.

Robustness is achieved by applying smoothing algorithms toRSSI data read by the

wireless adapters equipped in wireless devices in the geo-fencing environment. Smoothing

removes outliers and reduces the spontaneous changes in decisions made by the positioning

system. Negative e�ects of smoothing is addressed using di�erent classi�ers on di�erent data

sets at the same time. Results show that smoothing not only improves the behaviour of the

software, it also improves the average accuracy up to 100%.

To the best of my knowledge, this is the �rst work that studiesthreats faced by a real

world deployment of indoor location aware access control. Security of the system is assured by

adding throttling and per user statistical analysis. Many of the commonly known attacks are

countered by using mechanisms such as static ARP entries, andrequest throttling. However,

to address system speci�c attacks including RSSI value brute forcing and spoo�ng, new

measures and detection mechanisms such as outlier detection upon RSSI valueGrowth rate

and infrastructure monitoring are introduced. Detection offake Wi-Fi access points and

Bluetooth hotspots is also built-in to the system.

The proposed system architecture has been �led for a US provisional patent by the

industrial partner and a paper describing early stages of thedesign and implementation is

published in IEEE CICS'2013.

To further improve the system, new factors and features for positioning can be taken as

the next future direction. Such factors can include: hybridpositioning based on both Wi-Fi

and Bluetooth, a user's direction (magnetometer sensor), aswell as integration of NFC for

two way proximity based communication.
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Appendix A

Result Tables and Figures

A.1 Tables

This section includes tables that present the reader with detailed information about the

classi�cation runs. Table A.1 tabulates the classi�cation results on the original data sets

using 4 classi�ers as mentioned in section 6.1. This table also includes classi�cation results

on a normalized copy of data sets, in order to investigate usefulness of such a normalization

on the classi�cation. Tables A.2 and A.3, show the results achieved from the smoothing

algorithm runs. Table A.2 tabulates the sorted results for the �rst set of experiments aimed

to choose the best smoothing algorithm. Afterwards, Table A.3is presenting the classi�cation

results obtained when changing the smoothingWindowSize from 5 to 50.

Table A.1: All the best classi�cation results achieved by

runs on the original data. In these runs [0,1] normaliza-

tion is also tested.

Data Run Normalize T Pratio F Pratio T N ratio F N ratio Precision Recall Fmeasure AUC

BT-10x10-alldevs NaiveBayes none 0.8 0 1 0.2 1 0.8 0.888889 0.94

BT-10x10-alldevs LibSVM none 1 0 1 0 1 1 1 1

BT-10x10-alldevs LibSVM [0,1] 0.9 0.1 0.9 0.1 0.9 0.9 0.9 0.9

BT-10x10-alldevs J48 none 1 0 1 0 1 1 1 1

BT-10x10-alldevs RandomForest none 1 0 1 0 1 1 1 1

BT-10x10-alldevs RandomForest [0,1] 1 0 1 0 1 1 1 1

BT-10x10-Samsung NaiveBayes none 1 0 1 0 1 1 1 1

BT-10x10-Samsung LibSVM none 1 0 1 0 1 1 1 1

BT-10x10-Samsung LibSVM [0,1] 1 0 1 0 1 1 1 1
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Data Run Normalize T Pratio F Pratio T N ratio F N ratio Precision Recall Fmeasure AUC

BT-10x10-Samsung J48 none 1 0 1 0 1 1 1 1

BT-10x10-Samsung RandomForest none 1 0 1 0 1 1 1 1

BT-10x10-Samsung RandomForest [0,1] 1 0 1 0 1 1 1 1

BT-10x10-Asus NaiveBayes none 1 0 1 0 1 1 1 1

BT-10x10-Asus LibSVM none 1 0 1 0 1 1 1 1

BT-10x10-Asus LibSVM [0,1] 1 0.2 0.8 0 0.833333 1 0.909091 0.9

BT-10x10-Asus J48 none 1 0 1 0 1 1 1 1

BT-10x10-Asus RandomForest none 1 0 1 0 1 1 1 1

BT-10x10-Asus RandomForest [0,1] 1 0 1 0 1 1 1 1

BT-2x2-Samsung NaiveBayes none 1 0 1 0 1 1 1 1

BT-2x2-Samsung LibSVM none 1 0 1 0 1 1 1 1

BT-2x2-Samsung LibSVM [0,1] 0.6 0 1 0.4 1 0.6 0.75 0.8

BT-2x2-Samsung J48 none 1 0 1 0 1 1 1 1

BT-2x2-Samsung RandomForest none 1 0 1 0 1 1 1 1

BT-2x2-Samsung RandomForest [0,1] 1 0 1 0 1 1 1 1

BT-2x2-Asus NaiveBayes none 1 0 1 0 1 1 1 1

BT-2x2-Asus LibSVM none 1 0 1 0 1 1 1 1

BT-2x2-Asus LibSVM [0,1] 1 1 0 0 0.75 1 0.857143 0.5

BT-2x2-Asus J48 none 1 0 1 0 1 1 1 1

BT-2x2-Asus RandomForest none 1 0 1 0 1 1 1 1

BT-2x2-Asus RandomForest [0,1] 1 0 1 0 1 1 1 1

BT-5x5-Samsung NaiveBayes none 1 0 1 0 1 1 1 1

BT-5x5-Samsung LibSVM none 1 0 1 0 1 1 1 1

BT-5x5-Samsung LibSVM [0,1] 0.8 0 1 0.2 1 0.8 0.888889 0.9

BT-5x5-Samsung J48 none 1 0 1 0 1 1 1 1

BT-5x5-Samsung RandomForest none 1 0 1 0 1 1 1 1

BT-5x5-Samsung RandomForest [0,1] 1 0 1 0 1 1 1 1

WF-10x10-Samsung NaiveBayes none 1 0 1 0 1 1 1 1

WF-10x10-Samsung LibSVM none 1 0 1 0 1 1 1 1
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Data Run Normalize T Pratio F Pratio T N ratio F N ratio Precision Recall Fmeasure AUC

WF-10x10-Samsung LibSVM [0,1] 1 0 1 0 1 1 1 1

WF-10x10-Samsung J48 none 1 0 1 0 1 1 1 1

WF-10x10-Samsung RandomForest none 1 0 1 0 1 1 1 1

WF-10x10-Samsung RandomForest [0,1] 1 0 1 0 1 1 1 1

WF-10x10-Asus NaiveBayes none 1 0 1 0 1 1 1 1

WF-10x10-Asus LibSVM none 1 0 1 0 1 1 1 1

WF-10x10-Asus LibSVM [0,1] 1 0 1 0 1 1 1 1

WF-10x10-Asus J48 none 1 0 1 0 1 1 1 1

WF-10x10-Asus RandomForest none 1 0 1 0 1 1 1 1

WF-10x10-Asus RandomForest [0,1] 1 0 1 0 1 1 1 1

WF-2x2-alldevs NaiveBayes none 0.7 0.2 0.8 0.3 0.777778 0.7 0.736842 0.76875

WF-2x2-alldevs LibSVM none 0.85 0.4 0.6 0.15 0.68 0.85 0.755556 0.725

WF-2x2-alldevs LibSVM [0,1] 1 1 0 0 0.525 1 0.688525 0.5

WF-2x2-alldevs J48 none 0.45 0.05 0.95 0.55 0.9 0.45 0.6 0.705

WF-2x2-alldevs RandomForest none 0.75 0.4 0.6 0.25 0.652174 0.75 0.697674 0.745

WF-2x2-alldevs RandomForest [0,1] 0.75 0.4 0.6 0.25 0.652174 0.75 0.697674 0.745

WF-2x2-Asus NaiveBayes none 1 0 1 0 1 1 1 1

WF-2x2-Asus LibSVM none 1 0 1 0 1 1 1 1

WF-2x2-Asus LibSVM [0,1] 1 0 1 0 1 1 1 1

WF-2x2-Asus J48 none 1 0 1 0 1 1 1 1

WF-2x2-Asus RandomForest none 1 0 1 0 1 1 1 1

WF-2x2-Asus RandomForest [0,1] 1 0 1 0 1 1 1 1

WF-5x5-Samsung NaiveBayes none 1 0 1 0 1 1 1 1

WF-5x5-Samsung LibSVM none 1 0 1 0 1 1 1 1

WF-5x5-Samsung LibSVM [0,1] 1 0.2 0.8 0 0.833333 1 0.909091 0.9

WF-5x5-Samsung J48 none 1 0 1 0 1 1 1 1

WF-5x5-Samsung RandomForest none 1 0 1 0 1 1 1 1

WF-5x5-Samsung RandomForest [0,1] 1 0 1 0 1 1 1 1

WF-5x5-Asus NaiveBayes none 1 0.2 0.8 0 0.833333 1 0.909091 0.88
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Data Run Normalize T Pratio F Pratio T N ratio F N ratio Precision Recall Fmeasure AUC

WF-5x5-Asus LibSVM none 1 0 1 0 1 1 1 1

WF-5x5-Asus LibSVM [0,1] 1 0.2 0.8 0 0.857143 1 0.923077 0.9

WF-5x5-Asus J48 none 1 0 1 0 1 1 1 1

WF-5x5-Asus RandomForest none 1 0 1 0 1 1 1 1

WF-5x5-Asus RandomForest [0,1] 1 0 1 0 1 1 1 1

Table A.1: All the best classi�cation results achieved by

runs on the original data. In these runs [0,1] normaliza-

tion is also tested.
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Table A.2: Detailed classi�cation result averages for Ran-

dom Forest on all data sets using di�erent smoothing

methods, sorted based on FMeasure . W indowSize is set to

10 for all runs.

Data Method TP ratio FP ratio TN ratio FN ratio Precision Recall FMeasure AUC

BT-10x10-Samsung Moving Average 0.95 0.05 0.95 0.05 0.96 0.95 0.95 1.00

BT-10x10-Samsung RLOWESS 0.95 0.05 0.95 0.05 0.96 0.95 0.95 1.00

BT-10x10-Asus Moving Average 0.93 0.07 0.93 0.07 0.94 0.93 0.93 0.99

BT-10x10-alldevs Moving Average 0.93 0.08 0.93 0.08 0.93 0.93 0.92 0.98

BT-10x10-alldevs RLOWESS 0.91 0.09 0.91 0.09 0.92 0.91 0.91 0.98

BT-10x10-Asus LOWESS 0.90 0.10 0.90 0.10 0.92 0.90 0.90 0.95

BT-10x10-Samsung LOWESS 0.90 0.10 0.90 0.10 0.92 0.90 0.90 1.00

BT-10x10-alldevs LOWESS 0.89 0.11 0.89 0.11 0.90 0.89 0.89 0.98

BT-10x10-alldevs RLOESS 0.89 0.11 0.89 0.11 0.90 0.89 0.89 0.94

WF-10x10-Samsung RLOWESS 0.89 0.11 0.89 0.11 0.91 0.89 0.89 0.95

WF-10x10-Samsung LOWESS 0.89 0.11 0.89 0.11 0.91 0.89 0.89 0.90

BT-5x5-Samsung Moving Average 0.89 0.11 0.89 0.11 0.90 0.89 0.88 0.99

BT-10x10-alldevs Savitzky-Golay 0.88 0.12 0.88 0.12 0.90 0.88 0.88 0.96

WF-5x5-Samsung Moving Average 0.88 0.12 0.88 0.12 0.90 0.88 0.88 0.98

WF-10x10-Asus RLOWESS 0.88 0.13 0.88 0.13 0.89 0.88 0.87 0.99

WF-10x10-Samsung Moving Average 0.87 0.13 0.87 0.13 0.90 0.87 0.87 0.93

BT-2x2-Asus Moving Average 0.87 0.19 0.81 0.13 0.89 0.87 0.87 0.97

WF-10x10-Samsung LOESS 0.87 0.13 0.87 0.13 0.89 0.87 0.87 0.93

WF-10x10-Asus Moving Average 0.87 0.13 0.87 0.13 0.90 0.87 0.87 0.92

WF-10x10-Samsung Savitzky-Golay 0.87 0.13 0.87 0.13 0.89 0.87 0.87 0.91

BT-10x10-Asus RLOWESS 0.87 0.13 0.87 0.13 0.88 0.87 0.86 0.97

WF-10x10-Samsung RLOESS 0.86 0.14 0.86 0.14 0.88 0.86 0.86 0.90

WF-5x5-Samsung LOWESS 0.86 0.14 0.86 0.14 0.88 0.86 0.86 0.95

BT-5x5-Samsung RLOWESS 0.86 0.15 0.85 0.14 0.88 0.86 0.86 0.97

BT-2x2-Asus RLOWESS 0.86 0.22 0.78 0.14 0.88 0.86 0.85 0.95
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Data Method TP ratio FP ratio TN ratio FN ratio Precision Recall FMeasure AUC

BT-10x10-alldevs LOESS 0.85 0.15 0.85 0.15 0.86 0.85 0.85 0.93

BT-2x2-Samsung Moving Average 0.85 0.14 0.86 0.15 0.88 0.85 0.85 0.98

BT-10x10-Samsung Savitzky-Golay 0.85 0.15 0.85 0.15 0.87 0.85 0.85 0.97

BT-10x10-Asus LOESS 0.84 0.16 0.84 0.16 0.86 0.84 0.84 0.91

BT-2x2-Asus LOWESS 0.84 0.22 0.78 0.16 0.86 0.84 0.83 0.93

BT-5x5-Samsung LOWESS 0.84 0.16 0.84 0.16 0.87 0.84 0.83 0.94

WF-5x5-Samsung RLOWESS 0.83 0.17 0.83 0.17 0.85 0.83 0.83 0.96

WF-10x10-Asus LOWESS 0.83 0.17 0.83 0.17 0.86 0.83 0.83 0.92

BT-10x10-Samsung RLOESS 0.83 0.17 0.83 0.17 0.85 0.83 0.83 0.93

BT-2x2-Samsung RLOWESS 0.82 0.17 0.83 0.18 0.84 0.82 0.82 0.92

BT-10x10-Asus RLOESS 0.82 0.18 0.82 0.18 0.85 0.82 0.82 0.93

BT-5x5-Samsung Savitzky-Golay 0.82 0.18 0.82 0.18 0.86 0.82 0.82 0.91

BT-2x2-Samsung LOWESS 0.82 0.18 0.82 0.18 0.83 0.82 0.82 0.93

BT-5x5-Samsung RLOESS 0.82 0.19 0.81 0.18 0.84 0.82 0.82 0.89

WF-5x5-Asus Moving Average 0.82 0.18 0.82 0.18 0.85 0.82 0.82 0.89

WF-10x10-Asus RLOESS 0.82 0.18 0.82 0.18 0.85 0.82 0.81 0.86

BT-2x2-Asus Savitzky-Golay 0.82 0.26 0.74 0.18 0.83 0.82 0.81 0.91

BT-2x2-Samsung RLOESS 0.82 0.19 0.81 0.18 0.84 0.82 0.81 0.92

BT-10x10-Samsung LOESS 0.81 0.19 0.81 0.19 0.84 0.81 0.81 0.92

BT-2x2-Asus RLOESS 0.81 0.28 0.72 0.19 0.83 0.81 0.80 0.92

BT-5x5-Samsung LOESS 0.81 0.19 0.81 0.19 0.84 0.81 0.80 0.86

BT-10x10-Asus Savitzky-Golay 0.81 0.19 0.81 0.19 0.84 0.81 0.80 0.95

WF-10x10-Asus LOESS 0.80 0.20 0.80 0.20 0.84 0.80 0.79 0.89

BT-2x2-Samsung Savitzky-Golay 0.80 0.20 0.80 0.20 0.82 0.80 0.79 0.93

WF-5x5-Samsung Savitzky-Golay 0.79 0.21 0.79 0.21 0.82 0.79 0.78 0.89

BT-2x2-Asus LOESS 0.79 0.30 0.70 0.21 0.80 0.79 0.78 0.89

WF-2x2-Asus RLOWESS 0.78 0.22 0.78 0.22 0.81 0.78 0.78 0.83

WF-10x10-Asus Savitzky-Golay 0.78 0.22 0.78 0.22 0.81 0.78 0.77 0.87

BT-2x2-Samsung LOESS 0.77 0.23 0.77 0.23 0.80 0.77 0.77 0.83

WF-5x5-Asus RLOWESS 0.77 0.23 0.77 0.23 0.80 0.77 0.77 0.86
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Data Method TP ratio FP ratio TN ratio FN ratio Precision Recall FMeasure AUC

WF-5x5-Asus LOWESS 0.77 0.23 0.77 0.23 0.79 0.77 0.76 0.81

WF-5x5-Asus Savitzky-Golay 0.76 0.24 0.76 0.24 0.78 0.76 0.76 0.82

WF-2x2-Asus Moving Average 0.76 0.24 0.76 0.24 0.80 0.76 0.75 0.81

WF-5x5-Samsung RLOESS 0.75 0.25 0.75 0.25 0.79 0.75 0.74 0.87

WF-2x2-Asus LOWESS 0.74 0.26 0.74 0.26 0.78 0.74 0.74 0.78

WF-5x5-Samsung LOESS 0.74 0.26 0.74 0.26 0.77 0.74 0.73 0.85

WF-2x2-Asus Savitzky-Golay 0.73 0.28 0.72 0.27 0.77 0.73 0.72 0.75

WF-2x2-Asus RLOESS 0.69 0.30 0.70 0.31 0.72 0.69 0.68 0.76

WF-2x2-Asus LOESS 0.68 0.32 0.68 0.32 0.71 0.68 0.67 0.74

WF-5x5-Asus LOESS 0.65 0.35 0.65 0.35 0.67 0.65 0.64 0.72

WF-2x2-alldevs Moving Average 0.62 0.38 0.62 0.38 0.62 0.62 0.62 0.68

WF-2x2-alldevs RLOWESS 0.60 0.40 0.60 0.40 0.60 0.60 0.59 0.63

WF-2x2-alldevs Savitzky-Golay 0.58 0.42 0.58 0.42 0.59 0.58 0.58 0.64

WF-2x2-alldevs LOWESS 0.58 0.42 0.58 0.42 0.58 0.58 0.58 0.64

WF-2x2-alldevs RLOESS 0.57 0.43 0.57 0.43 0.58 0.57 0.57 0.62

WF-5x5-Asus RLOESS 0.58 0.42 0.58 0.42 0.60 0.58 0.57 0.68

WF-2x2-alldevs LOESS 0.55 0.45 0.55 0.45 0.55 0.55 0.55 0.58

Table A.2: Detailed classi�cation result averages for Ran-

dom Forest on all data sets using di�erent smoothing

methods, sorted based on FMeasure . W indowSize is set to

10 for all runs.
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Table A.3: Detailed classi�cation results for di�erent

W indowSize values on all data sets.

Data WindowSize TP ratio FPratio TN ratio FNratio FMeasure AUC

BT-10x10-alldevs 5 0.93 0.08 0.93 0.08 0.92 0.98

BT-10x10-alldevs 10 0.93 0.08 0.93 0.08 0.92 1.00

BT-10x10-alldevs 15 0.94 0.06 0.94 0.06 0.94 0.99

BT-10x10-alldevs 20 0.93 0.07 0.93 0.07 0.93 1.00

BT-10x10-alldevs 25 1.00 0.00 1.00 0.00 1.00 1.00

BT-10x10-alldevs 30 1.00 0.00 1.00 0.00 1.00 1.00

BT-10x10-alldevs 35 1.00 0.00 1.00 0.00 1.00 1.00

BT-10x10-alldevs 40 0.98 0.03 0.98 0.03 0.97 1.00

BT-10x10-alldevs 45 0.97 0.03 0.97 0.03 0.97 1.00

BT-10x10-alldevs 50 0.98 0.03 0.98 0.03 0.97 1.00

BT-10x10-Samsung 5 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 10 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 15 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 20 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 25 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 30 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 35 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 40 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 45 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Samsung 50 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Asus 5 0.93 0.07 0.93 0.07 0.93 0.99

BT-10x10-Asus 10 0.93 0.07 0.93 0.07 0.93 0.99

BT-10x10-Asus 15 0.93 0.07 0.93 0.07 0.93 0.99

BT-10x10-Asus 20 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Asus 25 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Asus 30 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Asus 35 0.95 0.05 0.95 0.05 0.95 1.00
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Data WindowSize TP ratio FPratio TN ratio FNratio FMeasure AUC

BT-10x10-Asus 40 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Asus 45 0.95 0.05 0.95 0.05 0.95 1.00

BT-10x10-Asus 50 0.95 0.05 0.95 0.05 0.95 1.00

BT-2x2-Samsung 5 0.85 0.14 0.86 0.15 0.85 0.98

BT-2x2-Samsung 10 0.89 0.10 0.90 0.11 0.89 0.98

BT-2x2-Samsung 15 0.89 0.10 0.90 0.11 0.89 0.98

BT-2x2-Samsung 20 0.89 0.10 0.90 0.11 0.89 0.98

BT-2x2-Samsung 25 0.89 0.10 0.90 0.11 0.89 0.96

BT-2x2-Samsung 30 0.89 0.10 0.90 0.11 0.89 0.99

BT-2x2-Samsung 35 0.89 0.10 0.90 0.11 0.89 0.97

BT-2x2-Samsung 40 0.89 0.10 0.90 0.11 0.89 0.97

BT-2x2-Samsung 45 0.89 0.10 0.90 0.11 0.89 0.97

BT-2x2-Samsung 50 0.89 0.10 0.90 0.11 0.89 0.97

BT-2x2-Asus 5 0.87 0.19 0.81 0.13 0.87 0.97

BT-2x2-Asus 10 0.93 0.12 0.88 0.07 0.93 1.00

BT-2x2-Asus 15 0.93 0.12 0.88 0.07 0.93 1.00

BT-2x2-Asus 20 0.92 0.12 0.88 0.08 0.92 0.99

BT-2x2-Asus 25 0.92 0.12 0.88 0.08 0.92 0.99

BT-2x2-Asus 30 0.92 0.12 0.88 0.08 0.92 0.99

BT-2x2-Asus 35 0.92 0.12 0.88 0.08 0.92 0.99

BT-2x2-Asus 40 0.92 0.12 0.88 0.08 0.92 0.99

BT-2x2-Asus 45 0.92 0.12 0.88 0.08 0.92 0.99

BT-2x2-Asus 50 0.92 0.12 0.88 0.08 0.92 0.99

BT-5x5-Samsung 5 0.89 0.11 0.89 0.11 0.88 0.99

BT-5x5-Samsung 10 0.93 0.08 0.93 0.08 0.92 0.99

BT-5x5-Samsung 15 0.93 0.07 0.93 0.07 0.93 0.99

BT-5x5-Samsung 20 0.93 0.07 0.93 0.07 0.93 0.99

BT-5x5-Samsung 25 0.92 0.08 0.92 0.08 0.92 0.96

BT-5x5-Samsung 30 0.93 0.08 0.93 0.08 0.92 0.97

BT-5x5-Samsung 35 0.93 0.08 0.93 0.08 0.92 0.97
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Data WindowSize TP ratio FPratio TN ratio FNratio FMeasure AUC

BT-5x5-Samsung 40 0.93 0.08 0.93 0.08 0.92 0.97

BT-5x5-Samsung 45 0.93 0.08 0.93 0.08 0.92 0.97

BT-5x5-Samsung 50 0.93 0.08 0.93 0.08 0.92 0.97

WF-10x10-Samsung 5 0.87 0.13 0.87 0.13 0.87 0.93

WF-10x10-Samsung 10 0.88 0.13 0.88 0.13 0.87 0.94

WF-10x10-Samsung 15 0.88 0.13 0.88 0.13 0.87 0.95

WF-10x10-Samsung 20 0.88 0.12 0.88 0.12 0.87 0.94

WF-10x10-Samsung 25 0.86 0.14 0.86 0.14 0.85 0.98

WF-10x10-Samsung 30 0.87 0.13 0.87 0.13 0.87 0.95

WF-10x10-Samsung 35 0.86 0.14 0.86 0.14 0.85 0.98

WF-10x10-Samsung 40 0.87 0.13 0.87 0.13 0.86 0.96

WF-10x10-Samsung 45 0.87 0.13 0.87 0.13 0.86 0.96

WF-10x10-Samsung 50 0.87 0.13 0.87 0.13 0.86 0.96

WF-10x10-Asus 5 0.87 0.13 0.87 0.13 0.87 0.92

WF-10x10-Asus 10 0.90 0.10 0.90 0.10 0.90 0.92

WF-10x10-Asus 15 0.88 0.12 0.88 0.12 0.88 0.95

WF-10x10-Asus 20 0.90 0.10 0.90 0.10 0.90 0.92

WF-10x10-Asus 25 0.89 0.11 0.89 0.11 0.88 0.94

WF-10x10-Asus 30 0.89 0.11 0.89 0.11 0.88 0.93

WF-10x10-Asus 35 0.89 0.11 0.89 0.11 0.88 0.95

WF-10x10-Asus 40 0.89 0.11 0.89 0.11 0.88 0.94

WF-10x10-Asus 45 0.89 0.11 0.89 0.11 0.88 0.95

WF-10x10-Asus 50 0.89 0.11 0.89 0.11 0.88 0.95

WF-2x2-alldevs 5 0.62 0.38 0.62 0.38 0.62 0.68

WF-2x2-alldevs 10 0.71 0.29 0.71 0.29 0.71 0.79

WF-2x2-alldevs 15 0.80 0.20 0.80 0.20 0.80 0.87

WF-2x2-alldevs 20 0.77 0.23 0.77 0.23 0.77 0.86

WF-2x2-alldevs 25 0.80 0.20 0.80 0.20 0.80 0.87

WF-2x2-alldevs 30 0.81 0.19 0.81 0.19 0.81 0.90

WF-2x2-alldevs 35 0.82 0.18 0.82 0.18 0.82 0.90
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Data WindowSize TP ratio FPratio TN ratio FNratio FMeasure AUC

WF-2x2-alldevs 40 0.82 0.18 0.82 0.18 0.82 0.91

WF-2x2-alldevs 45 0.82 0.17 0.83 0.18 0.82 0.92

WF-2x2-alldevs 50 0.83 0.17 0.83 0.17 0.83 0.91

WF-2x2-Asus 5 0.76 0.24 0.76 0.24 0.75 0.81

WF-2x2-Asus 10 0.85 0.16 0.84 0.15 0.85 0.90

WF-2x2-Asus 15 0.83 0.17 0.83 0.17 0.82 0.88

WF-2x2-Asus 20 0.83 0.17 0.83 0.17 0.82 0.90

WF-2x2-Asus 25 0.83 0.17 0.83 0.17 0.82 0.91

WF-2x2-Asus 30 0.82 0.17 0.83 0.18 0.82 0.91

WF-2x2-Asus 35 0.83 0.17 0.83 0.17 0.83 0.90

WF-2x2-Asus 40 0.83 0.17 0.83 0.17 0.83 0.90

WF-2x2-Asus 45 0.83 0.17 0.83 0.17 0.83 0.90

WF-2x2-Asus 50 0.83 0.17 0.83 0.17 0.83 0.90

WF-5x5-Samsung 5 0.88 0.12 0.88 0.12 0.88 0.98

WF-5x5-Samsung 10 0.88 0.13 0.88 0.13 0.87 0.98

WF-5x5-Samsung 15 0.93 0.08 0.93 0.08 0.92 0.99

WF-5x5-Samsung 20 0.86 0.14 0.86 0.14 0.86 0.99

WF-5x5-Samsung 25 0.84 0.16 0.84 0.16 0.84 0.96

WF-5x5-Samsung 30 0.88 0.12 0.88 0.12 0.88 0.99

WF-5x5-Samsung 35 0.87 0.13 0.87 0.13 0.86 0.98

WF-5x5-Samsung 40 0.87 0.13 0.87 0.13 0.87 0.98

WF-5x5-Samsung 45 0.87 0.13 0.87 0.13 0.86 0.98

WF-5x5-Samsung 50 0.87 0.13 0.87 0.13 0.86 0.98

WF-5x5-Asus 5 0.82 0.18 0.82 0.18 0.82 0.89

WF-5x5-Asus 10 0.78 0.22 0.78 0.22 0.77 0.88

WF-5x5-Asus 15 0.82 0.18 0.82 0.18 0.82 0.94

WF-5x5-Asus 20 0.87 0.13 0.87 0.13 0.87 0.97

WF-5x5-Asus 25 1.00 0.00 1.00 0.00 1.00 1.00

WF-5x5-Asus 30 1.00 0.00 1.00 0.00 1.00 1.00

WF-5x5-Asus 35 1.00 0.00 1.00 0.00 1.00 1.00
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Data WindowSize TP ratio FPratio TN ratio FNratio FMeasure AUC

WF-5x5-Asus 40 1.00 0.00 1.00 0.00 1.00 1.00

WF-5x5-Asus 45 1.00 0.00 1.00 0.00 1.00 1.00

WF-5x5-Asus 50 1.00 0.00 1.00 0.00 1.00 1.00

Table A.3: Detailed classi�cation results for di�erent

W indowSize values on all data sets.
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A.2 Figures

Violin plot was a useful visual representation when I needed tounderstand and compare the

classi�cation results distribution. Figures A.1 through A.10visualize the results tabulated in

Table A.2 for each data set. For all the runs shown in these �gures theWindowSzie parameter

is equal and set to 10. At the end of this appendix, Figure A.12 and Figure A.11 are

representing how window sizes a�ect the classi�cationFMeasure for each data set individually.

Intuitively, information given in these �gures is also represented in Table A.3, and �gures

6.5 and 6.6.

(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.1: Random Forest result distribution on Wi-Fi 2x2 data set collected using a variety
of devices.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.2: Random Forest result distribution on Wi-Fi 2x2 data set collected using an Asus
Tablet.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.3: Random Forest result distribution on Wi-Fi 5x5 data set collected using a
Samsung Smartphone.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.4: Random Forest result distribution on Wi-Fi 10x10 dataset collected using a
Samsung Smartphone.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.5: Random Forest result distribution on Wi-Fi 10x10 data set collected using an
Asus Tablet.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.6: Random Forest result distribution on Bluetooth 2x2data set collected using an
Asus Tablet.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.7: Random Forest result distribution on Bluetooth 2x2 data set collected using a
Samsung Smartphone.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.8: Random Forest result distribution on Bluetooth 10x10 data set collected using
a Samsung Smartphone and an Asus Tablet.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.9: Random Forest result distribution on Bluetooth 10x10 data set collected using
a Samsung Smartphone.
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(a) Moving Average. (b) LOWESS.

(c) LOESS. (d) Savitzky-Golay.

(e) Robust LOWESS. (f) Robust LOESS.

Figure A.10: Random Forest result distribution on Bluetooth 10x10 data set collected using
an Asus Tablet.






