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Generalizations of pp-wave spacetimes in higher dimensions
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We investigateD-dimensional Lorentzian spacetimes in which all of the scalar invariants constructed from
the Riemann tensor and its covariant derivatives are zero. These spacetimes are higher-dimensional generali-
zations ofD-dimensionalp p-wave spacetimes, which have been of interest recently in the context of string
theory in curved backgrounds in higher dimensions.
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I. INTRODUCTION are obtained by setting=0, are the well-knowrp p-wave
spacetimegor plane-fronted gravitational waves with paral-
Higher-dimensionalpp-wave spacetimes are of current lel rays.
interest in string theory in curved backgrounds, particularly

since these Lorentzian spacetimes are exact solutions in Il. HHIGHER ORDER THEOREM
string theory and their spectrum can therefore be explicitly _ _ ) ) )
determined. In this paper we shall discu@sdimensional This theorem can be readily generalized to higher dimen-

Lorentzian spacetimes in which all of the scalar invariantsSions. We shall study Lorentzian VS| spacetimes in arbitrary
constructed from the Riemann tensor and its covariant deP-dimensiongnot necessary even, bt=10 is of particular

rivatives are zero. These spacetimes can be regarded Haportance from string theoywith signatureD —2. In prin-
higher-dimensional ~ generalizations  ofD-dimensional ~ CiPle we could study other signatures; for example, mani-

pp-wave spacetimes. folds with signatureD —4 with D=5 may also be of physi-
This research follows on from the recent work[df in ~ cal interes{6]. L i o
four dimensions, in which it was proven that in Lorentzian L€t the tetrad bd,n,m*,m?, ...m" (I,n null with 1,

spacetimes all of the scalar invariants constructed from th& N*Na=0, I*n;=1, m' real and spaceliReso that
Riemann tensor and its covariant derivatives are zero if and
only if the spacetime is of Petrov type Ill, N or O, all eigen-
values of the Ricci tensor are zero and the common multipl
null eigenvectot? of the Weyl and Ricci tensors is geodesic,

gab=2|(anb)+ 5kajam|é (2)

®sing the notation

shearfree, nonexpanding, and nontwistifg] [i.e., the {IWpX LY Zs]} =WpXqYr Zs— WpXqZrYs— XpWqY' Zs
Newman-PenroséNP) coefficientsk, o, and p are zerd;
we shall refer to these spacetimes as vanishing scalar invari- T XpWoZrYs+YpZgWiXs — YpZgX Ws
nt (VSI imes. The Ricci tensor h he form
ant (VSI) spacetimes e Ricci tensor has the fo — 2y Wi Xt ZpY X Ws, ®)
Rap=—2Allp+4Al (o my, (1) if all zeroth order invariants vanish then there exists a tetrad

) 2 1,n, m (i=1,... N=D—2) such tha{7]
(i=1,2). The Plebaski-Petrov(PP type is N forA;#0 or O

for A;=0. We note that for PP-type N, using a null rotation, Rapcd=Ai{[lanp][l ey} + Bpijjd [mimb I mkT}
a boost and a spatial rotation we can transform away the : J.
Ricci componen® and setA;=1. For PP-type O it is pos- +Cijyflampl[Temy]}- 4

sible to setA=1 by performing a boost. . B ,
It is known that the energy-momentum tensor for a space-. WPT still have the freedom to_ choase the frar_ne and
time corresponding to PP-type N cannot satisfy the Weakc"mpl.Ify further, using bQOStS' spins and null Totations, de-
energy conditiond?2], and hence such spacetimes are no ending on the algeb_ralc structure of the Ricci and Wey!
regarded as physical in classical general relatidiigwever, ensors (a_ generalization of Petrov and Petrov-Plebanski
see[3]). Therefore, attention is usually restricted to PP-typeCIaSS'f'Cat'onS . . )
O models, in which the energy-momentum tensor corre- From Eq.(4) we obtain the Ricci tensor:
sponds to a pure null radiation fie]@]. All of these space- —oT_ A ik i
times belong to Kundt's class, and hence the metric of these Roa=2[ = A+ 2Byij ™ Il oMoy + Alola, ©
spacetimes can be expressed in an appropriate form i\W/hereAEZCjkﬁjk. We can further simplifyR,4 depending
adapted coordinat¢®,4]. The metrics for all VS| spacetimes o ts algebraic type. If the energy conditions are satisfied,
are displayed ifl]. The generalizeghp-wave solutions are

of Petrov-type N, PP-type G0 that the Ricci tensor has the Ai— 2B =0, (6)
form of null radiation with =0, and admit a covariantly -
constant null vector fiel@]. The vacuum spacetimes, which we shall refer to this as typePO. In this case we have that
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Rbd:AIbld' (7)

If this condition is not satisfied, we can use boosts, spins and
null rotations to selA=0, which we shall refer to as type

PPN.
From Eq.(4) we obtain the Weyl tensor:

Capea= Vi{llanpI[1cmyl}H+ ‘I’{ijk}{[miam{)]['cms]}
+ W ipy{[amp ]l cmg ]}, ®
where
Wi =2 i1, 8= Cppcd® Pnm!

1 )
:ﬁ[(D_3)Ai+ZB[ij]kﬁjk]: 9

1
Wi = Ecabcomiamjbncmg

1
=Blijt 5=5 (At %1k 2B(impn ™"0j11) - (10)
and
_1 apnbCHnd
W ij)= 75 Capcd1"myn“m

1
:C(ij)_mAgij . (ll)
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In general, the covariant derivative then has the form
Ia;b= Llll al b+ LlilamL-F Lilmgl b-

We are consequently led to study spacetimes which admit
a geodesic, shear-free, divergence-free, irrotational null con-
gruencd =4, , and hence belong to the “generalized Kundt”
class in which the metric can be written as

ds?=—2du[Hdu+dv +W,dx]+g;;dxdx (13
wherei,j,k=1,... N and the metric functions

H:H(U,U,Xi), Wi:Wi(U,U,Xi), gij:gij(ulxi)

satisfy the remaining vanishing invariant conditions and the
Einstein field equationésee[2,4]). We may, without loss of
generality, use the remaining coordinate freedeny., trans-
formations of the formx'"=x"(u,x))] to simplify g;;. For

the spacetimes considered here we shall diagongjjzeand

in the particular examples below we shall takg= &6;; . The
null tetrad is then

1 .
H-+ EWZ 3, +W,dyi, m'=dy,

(14

l=—4d,, n=d,—

whereW?=W,W, 8. (Note that in 4D the uniquely defined

null vector given byl = g, is the repeated Wey! eigenvecjor.
All of the exact higher-dimensional solutions will be dis-

cussed in detail ifi7]. Let us present a subclass of typ@0

and typePN exact solutions explicitly here, in which the
Ricci tensor is given by Eq7) and the Weyl tensor is given

In analogy with the Petrov ClaSSification, we shall say thatby Eq (12) in the local coordinates above, and in which

spacetimes with¥ ;;,,#0 are of typePIll (in some in-
stances we can use the remaining tetrad freedom in this case v
to setW;;,=0). Spacetimes with’;;;,=0 will be referred

to as of typePN. Conformally flat spacetimes with’ ;.

=0 and¥ ;;,=0 will be referred to as typPO. [V, and
W jy are higher-dimensional analogues of the complex NP
coefficents¥; and ¥, in 4 dimensions. A comprehensive

ij Wl:_ex_y

1

2
U
H=—e— +Hg(u,x¥), (15)
ax2 0

higher-dimensional Petrov classification, which is not necesyhere e=1 corresponds to the caser£0” (see [1]);

sary here, will be discussed elsewhére.

For spacetimes of type PO and typePN, the Ricci ten-

sor is given by Eq(7) and the Weyl tensor is given by

1 ) .
Cabed™ C(ij)_mp“sij {[Iamlb][lcmjd]}- (12

IIl. GENERALIZED KUNDT SPACETIMES

Using the Bianchi and Ricci identities, it is possible to
prove[7] that all curvature invariants of all orders vanish for
spacetimes with Riemann tensor of the form of E4).that

higher-dimensional pp-wave spacetimes havee=0
(“7=0"). In these spacetimes all of the scalar invariants
constructed from the Riemann tensor and its covariant de-
rivatives are zero. In the case of vacuum the function
Ho(u,x¥) satisfies a differential equation.

A second example of a higher-dimensional VSI spacetime
is given by typePlll (“ 7=0") solutions
W, =eW,;(u,x¥), H=evH,(u,x)+Hg(u,x¥).

(16)

In general these spacetimes are of t)FpBN (and the re-

gij = Gij s

satisfy the following conditions on the covariant derivative Maining tetrad freedom can be employed to simplify the met-

of the uniquely defined null vectdg.,, namely
181,=0, 12,1°=0, 12,=0, |@ayl*°=0,

|[a;b]|a;b:0.

ric furthen. In the case of typeP PO (null radiation the
functionsW;(u,x*) andH(u,x¥) satisfy additional differen-
tial equations. The higher-dimensional typ¥N pp-wave
spacetimes again occur as a subcase wittD [W;(u,xX)
=0, H,(u,x=0].
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IV. DISCUSSION newed attentiof22]. Because of the importance of branes in

. . ._understanding the nonperturbative dynamics of string theo-

The \./Sl spacetimes haye a num_ber of_|mportar_1t phySIca:Ijies, a number of classical solutions of branes in the back-
applications. I_n pa_rtlcular_,_ln four dimensions a W'de rangeground of app-wave have been studied; in particular a new
of VSI spacetimegin addition to thepp-wave spacetimgs brane-world model has been introducéd in which the bulk
are exact solutions in string theory to all perturbative ordersSolution consists of outgoing plane wavesly) [23]
in the_ string tensior(even in the presence of the RR five- For example, a class qfp-wave string solutio.ns with
form field strengt?l[S] (cf. [9]).' As a result, these models are nonconstant Né-NS or RR field strengths, which are exact
expected to provide some hints for_the study pf superstnng;ype Il superstring solutions to all orders’ W since all
EQCTOrrgu%%r;egsbsg';%r?&?g?& E trﬁgrt]he;l?t/hﬁlsp-v;%e corrections to the leading-order field equations naturally van-
) 9 X y y partly: h, were discussed recenfl{4] (see alsq24]). The metric
in a search for a connection between quantum gravity an nsatz and NS-NS 2-form potential in 10-dimensional super-
gauge theory dynamics. Solutions of classical field equationgtrin theorv is given b
for which the counter terms required to regularize quantuni 9 yi1sg y

fluctuations vanish are also of importance because they offer d?= —dudy — K(x)du?+ dx2+dy?,

insights into the behavior of the full quantum theory. A sub-

class of Ricci flat VSI 4-metrics, which includes the pp-wave B,=b(xX)du/\dy,,

spacetimes and some special Petrov type Ill or N spacetimes,

have vanishing counter terms up to and including two loops Ha=d,bm(x¥)dxAduAdy,,, (17)
and thus VSI suffer no quantum corrections to all loop orders

[12]. wherei=1, ... dandm=d+1,...,8[and a dilaton of the

Flndlng new String models with Lorentzian Signature form ¢: pixi+’(?)(u) can be indude}j In particu|ar' it was

which are exact ix" and whose spectrum can be explicitly found [14] that the only nonzero component of the general-
determined is of great interest in the context of string theoryzed curvature is

in curved backgrounds in higher dimensions and, indeed,

higher dimensional generalizations pp-wave backgrounds 1

have been considered by a number of auttiafs. In par- Ruiwj=— 509 K= 5dibmdjbp. (18)

ticular, it was recently realizeld 3—15 this solvability prop-

erty applies to string models corresponding not only to theThese solutions are consequently of typRO and typePN

Neveu-Schwarz—Neveu-SchwaNS-NS but also to certain  [see Eqs(7) and (12)]. There are several special cases. For

Ramond-RamondRR) plane-wave background¢See also b =0 the standard higher-dimensional generalipgevave

[16], and a general discussion pp waves inD =10 super-  solution is recovered with = K(x) being a harmonic func-

gravity appeared il7].) tion. Wess-Zumino-WitteffWZW) models[25] result when
There is also an interesting connection betwp@ravave  theb,, are linear, corresponding to homogeneous plane-wave

backgrounds and gauge field theories. It is known that anyackgrounds with constari field. The Laplace equation

solution of Einstein gravity admits plane-wave backgroundsor b can also be solved by choosibg, to be the real part

in the Penrose limif18]. This was extended to solutions of of complex holomorphic functions. The RR counterparts of

supergravities if19]. It was shown that the supem-wave  these string models are direct analogs of pipewave solu-

baCkgrOUnd can be derived by the Penrose limit from thQ|on [24] Supported by a non-constant 5-form background'

AdS, X S? backgrounds irf15]. The Penrose limit was rec- Note that lifts of the above solutions to 11 dimensions belong

ognized to be important in an exploration of the AdS confor-g 3 class of> =11 pp-wave backgrounds first considered in
mal field theory (CFT) correspondence beyond massless2g].

string modes in [20,13. Maximally supersymmetric
pp-wave backgrounds of supergravity theories in eleven- ACKNOWLEDGMENTS
and ten-dimensions have also attracted inter&h}
Recently the idea that our universe is embedded in a This work was supported, in part, by the Natural Sciences
higher-dimensional world has received a great deal of reand Engineering Research Council of Canada.
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