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Generalizations ofpp-wave spacetimes in higher dimensions
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We investigateD-dimensional Lorentzian spacetimes in which all of the scalar invariants constructed from
the Riemann tensor and its covariant derivatives are zero. These spacetimes are higher-dimensional generali-
zations ofD-dimensionalpp-wave spacetimes, which have been of interest recently in the context of string
theory in curved backgrounds in higher dimensions.
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I. INTRODUCTION

Higher-dimensionalpp-wave spacetimes are of curre
interest in string theory in curved backgrounds, particula
since these Lorentzian spacetimes are exact solution
string theory and their spectrum can therefore be explic
determined. In this paper we shall discussD-dimensional
Lorentzian spacetimes in which all of the scalar invaria
constructed from the Riemann tensor and its covariant
rivatives are zero. These spacetimes can be regarde
higher-dimensional generalizations ofD-dimensional
pp-wave spacetimes.

This research follows on from the recent work of@1# in
four dimensions, in which it was proven that in Lorentzi
spacetimes all of the scalar invariants constructed from
Riemann tensor and its covariant derivatives are zero if
only if the spacetime is of Petrov type III, N or O, all eige
values of the Ricci tensor are zero and the common mult
null eigenvectorl a of the Weyl and Ricci tensors is geodes
shearfree, nonexpanding, and nontwisting@1# @i.e., the
Newman-Penrose~NP! coefficientsk, s, and r are zero#;
we shall refer to these spacetimes as vanishing scalar in
ant ~VSI! spacetimes. The Ricci tensor has the form

Rab522Alal b14Ai l ~a mb
i

) ~1!

( i 51,2). The Pleban´ski-Petrov~PP! type is N forAi5” 0 or O
for Ai50. We note that for PP-type N, using a null rotatio
a boost and a spatial rotation we can transform away
Ricci componentA and setAi51. For PP-type O it is pos-
sible to setA51 by performing a boost.

It is known that the energy-momentum tensor for a spa
time corresponding to PP-type N cannot satisfy the w
energy conditions@2#, and hence such spacetimes are
regarded as physical in classical general relativity~however,
see@3#!. Therefore, attention is usually restricted to PP-ty
O models, in which the energy-momentum tensor cor
sponds to a pure null radiation field@2#. All of these space-
times belong to Kundt’s class, and hence the metric of th
spacetimes can be expressed in an appropriate form
adapted coordinates@2,4#. The metrics for all VSI spacetime
are displayed in@1#. The generalizedpp-wave solutions are
of Petrov-type N, PP-type O~so that the Ricci tensor has th
form of null radiation! with t50, and admit a covariantly
constant null vector field@5#. The vacuum spacetimes, whic
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are obtained by settingA50, are the well-knownpp-wave
spacetimes~or plane-fronted gravitational waves with para
lel rays!.

II. HIGHER ORDER THEOREM

This theorem can be readily generalized to higher dim
sions. We shall study Lorentzian VSI spacetimes in arbitr
D-dimensions~not necessary even, butD510 is of particular
importance from string theory! with signatureD22. In prin-
ciple we could study other signatures; for example, ma
folds with signatureD24 with D>5 may also be of physi-
cal interest@6#.

Let the tetrad bel ,n,m1,m2, . . . ,mi ( l ,n null with l al a
5nana50, l ana51, mi real and spacelike!, so that

gab52l (anb)1d jkma
j mb

k . ~2!

Using the notation

$@wpxq#@yrzs#%[wpxqyrzs2wpxqzrys2xpwqyrzs

1xpwqzrys1ypzqwrxs2ypzqxrws

2zpyqwrxs1zpyqxrws , ~3!

if all zeroth order invariants vanish then there exists a tet
~2! l , n, mi ( i 51, . . . ,N5D22) such that@7#

Rabcd5Ai$@ l anb#@ l cmd
i #%1B[ i j ]k$@ma

i mb
j #@ l cmd

k#%

1C( i j )$@ l amb
i #@ l cmd

j #%. ~4!

We still have the freedom to ‘‘choose the frame’’ an
simplify further, using boosts, spins and null rotations, d
pending on the algebraic structure of the Ricci and W
tensors ~a generalization of Petrov and Petrov-Pleban
classifications!.

From Eq.~4! we obtain the Ricci tensor:

Rbd52@2Ai12B[ i j ]kd
jk# l (bmd)

i 1Albl d , ~5!

whereA[2Cjkd jk. We can further simplifyRbd depending
on its algebraic type. If the energy conditions are satisfie

Ai22B[ i j ]kd
jk50, ~6!

we shall refer to this as typePPO. In this case we have tha
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Rbd5Albl d . ~7!

If this condition is not satisfied, we can use boosts, spins
null rotations to setA50, which we shall refer to as typ
PPN.

From Eq.~4! we obtain the Weyl tensor:

Cabcd5C i$@ l anb#@ l cmd
i #%1C$ i jk %$@ma

i mb
j #@ l cmd

k#%

1C^ i j &$@ l amb
i #@ l cmd

j #%, ~8!

where

C i52C$ i jk %d
jk[Cabcdn

al bncmi
d

5
1

D22
@~D23!Ai12B[ i j ]kd

jk#, ~9!

C$ i jk %[
1

2
Cabcdmi

amj
bncmk

d

5B[ i j ]k1
1

D22
~A[ id j ]k22B[ imunud

mnd j ]k! ~10!

and

C^ i j &[
1

2
Cabcdn

ami
bncmj

d

5C( i j )2
1

2~D22!
Ad i j . ~11!

In analogy with the Petrov classification, we shall say t
spacetimes withC$ i jk %Þ0 are of typePIII ~in some in-
stances we can use the remaining tetrad freedom in this
to setC^ i j &50). Spacetimes withC$ i jk %50 will be referred
to as of typePN. Conformally flat spacetimes withC$ i jk %

50 andC^ i j &50 will be referred to as typePO. @C$ i jk % and
C^ i j & are higher-dimensional analogues of the complex
coefficentsC3 and C4 in 4 dimensions. A comprehensiv
higher-dimensional Petrov classification, which is not nec
sary here, will be discussed elsewhere.#

For spacetimes of typePPO and typePN, the Ricci ten-
sor is given by Eq.~7! and the Weyl tensor is given by

Cabcd5FC( i j )2
1

2~D22!
Ad i j G$@ l amb

i #@ l cmd
j #%. ~12!

III. GENERALIZED KUNDT SPACETIMES

Using the Bianchi and Ricci identities, it is possible
prove@7# that all curvature invariants of all orders vanish f
spacetimes with Riemann tensor of the form of Eq.~4! that
satisfy the following conditions on the covariant derivati
of the uniquely defined null vectorl a;b namely

l al a50, l a
;bl b50, l a

;a50, l (a;b)l
a;b50,

l [a;b] l
a;b50.
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In general, the covariant derivative then has the form

l a;b5L11l al b1L1i l amb
i 1Li1ma

i l b .

We are consequently led to study spacetimes which ad
a geodesic, shear-free, divergence-free, irrotational null c
gruencel 5]v , and hence belong to the ‘‘generalized Kund
class in which the metric can be written as

ds2522du@Hdu1dv1Widxi #1gi j dxidxj ~13!

wherei , j ,k51, . . . ,N and the metric functions

H5H~u,v,xi !, Wi5Wi~u,v,xi !, gi j 5gi j ~u,xi !

satisfy the remaining vanishing invariant conditions and
Einstein field equations~see@2,4#!. We may, without loss of
generality, use the remaining coordinate freedom@e.g., trans-
formations of the formxi 85xi 8(u,xj )] to simplify gi j . For
the spacetimes considered here we shall diagonalizegi j , and
in the particular examples below we shall takegi j 5d i j . The
null tetrad is then

l 52]v , n5]u2S H1
1

2
W2D ]v1Wi]xi, mi5]xi,

~14!

whereW2[WiWjd
i j . ~Note that in 4D the uniquely define

null vector given byl 5]v is the repeated Weyl eigenvector!
All of the exact higher-dimensional solutions will be di

cussed in detail in@7#. Let us present a subclass of typePPO
and typePN exact solutions explicitly here, in which th
Ricci tensor is given by Eq.~7! and the Weyl tensor is given
by Eq. ~12! in the local coordinates above, and in which

gi j 5d i j , W152e
v
x1

, Wi50 ~ iÞ1!,

H52e
v2

4x1
2

1H0~u,xk!, ~15!

where e51 corresponds to the case ‘‘tÞ0’’ ~see @1#!;
higher-dimensional pp-wave spacetimes havee50
~‘‘ t50’’ !. In these spacetimes all of the scalar invaria
constructed from the Riemann tensor and its covariant
rivatives are zero. In the case of vacuum the funct
H0(u,xk) satisfies a differential equation.

A second example of a higher-dimensional VSI spaceti
is given by typePIII ~‘‘ t50’’ ! solutions

gi j 5d i j , Wi5eWi~u,xk!, H5evH1~u,xk!1H0~u,xk!.

~16!

In general these spacetimes are of typePPN ~and the re-
maining tetrad freedom can be employed to simplify the m
ric further!. In the case of typePPO ~null radiation! the
functionsWi(u,xk) andH1(u,xk) satisfy additional differen-
tial equations. The higher-dimensional typePN pp-wave
spacetimes again occur as a subcase withe50 @Wi(u,xk)
50, H1(u,xk)50#.
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IV. DISCUSSION

The VSI spacetimes have a number of important phys
applications. In particular, in four dimensions a wide ran
of VSI spacetimes~in addition to thepp-wave spacetimes!
are exact solutions in string theory to all perturbative ord
in the string tension~even in the presence of the RR fiv
form field strength! @8# ~cf. @9#!. As a result, these models a
expected to provide some hints for the study of superstri
on more general backgrounds@10#. String theory inpp-wave
backgrounds has been studied by many authors@11#, partly
in a search for a connection between quantum gravity
gauge theory dynamics. Solutions of classical field equati
for which the counter terms required to regularize quant
fluctuations vanish are also of importance because they o
insights into the behavior of the full quantum theory. A su
class of Ricci flat VSI 4-metrics, which includes the pp-wa
spacetimes and some special Petrov type III or N spacetim
have vanishing counter terms up to and including two loo
and thus VSI suffer no quantum corrections to all loop ord
@12#.

Finding new string models with Lorentzian signatu
which are exact ina8 and whose spectrum can be explicit
determined is of great interest in the context of string the
in curved backgrounds in higher dimensions and, inde
higher dimensional generalizations ofpp-wave backgrounds
have been considered by a number of authors@11#. In par-
ticular, it was recently realized@13–15# this solvability prop-
erty applies to string models corresponding not only to
Neveu-Schwarz–Neveu-Schwarz~NS-NS! but also to certain
Ramond-Ramond~RR! plane-wave backgrounds.~See also
@16#, and a general discussion ofpp waves inD510 super-
gravity appeared in@17#.!

There is also an interesting connection betweenpp-wave
backgrounds and gauge field theories. It is known that
solution of Einstein gravity admits plane-wave backgroun
in the Penrose limit@18#. This was extended to solutions o
supergravities in@19#. It was shown that the super-pp-wave
background can be derived by the Penrose limit from
AdSp3Sq backgrounds in@15#. The Penrose limit was rec
ognized to be important in an exploration of the AdS conf
mal field theory ~CFT! correspondence beyond massle
string modes in @20,13#. Maximally supersymmetric
pp-wave backgrounds of supergravity theories in elev
and ten-dimensions have also attracted interest@21#.

Recently the idea that our universe is embedded i
higher-dimensional world has received a great deal of
-

l.
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newed attention@22#. Because of the importance of branes
understanding the nonperturbative dynamics of string th
ries, a number of classical solutions of branes in the ba
ground of app-wave have been studied; in particular a ne
brane-world model has been introduced in which the b
solution consists of outgoing plane waves~only! @23#.

For example, a class ofpp-wave string solutions with
nonconstant NS-NS or RR field strengths, which are ex
type II superstring solutions to all orders ina8 since all
corrections to the leading-order field equations naturally v
ish, were discussed recently@14# ~see also@24#!. The metric
ansatz and NS-NS 2-form potential in 10-dimensional sup
string theory is given by

ds252dudv2K~xk!du21dxi
21dym

2

B25bm~xk!du`dym

H35] ibm~xk!dxi`du`dym , ~17!

wherei 51, . . . ,d andm5d11, . . . ,8 @and a dilaton of the
form f5r ixi1f̃(u) can be included#. In particular, it was
found @14# that the only nonzero component of the gener
ized curvature is

Ruiu j52
1

2
] i] jK2

1

2
] ibm] jbm . ~18!

These solutions are consequently of typePPO and typePN
@see Eqs.~7! and ~12!#. There are several special cases. F
bm50 the standard higher-dimensional generalizedpp-wave
solution is recovered withK5K0(x) being a harmonic func-
tion. Wess-Zumino-Witten~WZW! models@25# result when
thebm are linear, corresponding to homogeneous plane-w
backgrounds with constantH3 field. The Laplace equation
for bm can also be solved by choosingbm to be the real part
of complex holomorphic functions. The RR counterparts
these string models are direct analogs of thepp-wave solu-
tion @24# supported by a non-constant 5-form backgroun
Note that lifts of the above solutions to 11 dimensions belo
to a class ofD511 pp-wave backgrounds first considered
@26#.
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