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ODD-CYCLE-FREE FACET COMPLEXES
AND THE KONIG PROPERTY

MASSIMO CABOARA AND SARA FARIDI

ABSTRACT. Facet complexes and simplicial cycles were
introduced to help study the interplay between graph theo-
retical and algebraic properties of hypergraphs. We use the
definition of a simplicial cycle to define an odd-cycle-free facet
complex (hypergraph). These are facet complexes that do not
contain any cycles of odd length. We show that, besides one
class of such facet complexes, all of them satisfy the Konig
property. This new family of complexes includes the family of
balanced hypergraphs, which are known to satisfy the Konig
property. These odd-cycle-free facet complexes are, however,
not necessarily Mengerian.

1. Introduction. Simplicial trees were introduced by the second
author in [7] in order to generalize algebraic structures based on graph
trees. More specifically, the facet ideal of a simplicial tree, which is
the ideal generated by the products of the vertices of each facet of the
complex in the polynomial ring whose variables are the vertices of the
complex, is a normal ideal ([7]), is always sequentially Cohen-Macaulay
([8]) and one can determine exactly when the quotient of this ideal
is Cohen-Macaulay based on the combinatorial structure of the tree
([9])- These algebraic results that generalize those associated to simple
graphs, and are intimately tied to the combinatorics of the simplicial
complex, have suggested that this is a promising definition of a tree
in higher dimension. This fact was most recently confirmed when the
authors, while searching for an efficient algorithm to determine when a
given complex is a tree, produced a precise combinatorial description for
a simplicial cycle that has striking resemblance to that of a graph cycle
([4])- The main idea here is that a complex (or a simple hypergraph) is
a tree if and only if it does not contain any “holes,” or any cones over

The research of the first author was partially supported by MURST—Programma
di Ricerca Scientifica di Rilevante Interesse Nazionale Geometria Algebrica e Alge-
bra Algoritmica e Applicata, 2007-2009. The research of the second author was

supported by NSERC.
Received by the editors on September 17, 2008, and in revised form on Octo-
ber 31, 2008.

DOI:10.1216/RMJ-2011-41-4-1059 Copyright ©2011 Rocky Mountain Mathematics Consortium

1059



1060 MASSIMO CABOARA AND SARA FARIDI

holes. Our definition of a simplicial cycle as a “hole” is more restrictive
than the classic definition of a cycle for hypergraphs due to Berge [1,
2]. In a way, simplicial cycles are “minimal” hypergraph cycles, in the
sense that once a facet is removed, what remains is not a cycle anymore,
and does not contain one.

Once the concept of a “minimal” cycle is in place, a natural question
that arises is whether the length of such a cycle bears any meaning in
terms of properties of the complex? In graph theory bipartite graphs
are characterized as those that do not contain any odd cycles. One of
their strongest features is that they satisfy the Konig property; namely,
the minimum number of vertices required so that each edge contains
at least one of the vertices is the same as the maximum number is of
pairwise disjoint edges. Our purpose in this paper is to investigate
whether simplicial complexes (or hypergraphs) not containing odd
simplicial cycles, which we call odd-cycle-free complexes, also satisfy
this property. The main result of the paper is the following:

Theorem. If A is a facet complex that is odd-cycle-free and L(A)
does not contain the complement of a T-cycle as an induced subgraph,
then every subset of A satisfies the Konig property.

The proof uses tools from hypergraph theory, as well as Berge’s
recently proved Strong Perfect Graph Conjecture ([5, 6]).

A more general notion of a cycle already exists in hypergraph theory
([1, 2]); we call these hyper-cycles (Definition 5.1) to avoid confusion.
It is known that hypergraphs that do not contain odd hyper-cycles
are balanced—meaning that every one of their odd hyper-cycles has an
edge containing three vertices of the hyper-cycle-and hence they satisfy
the Ko6nig property. The class of odd-cycle-free complexes which we
study in this paper includes the class of simple hypergraphs that do not
contain odd hyper-cycles, and hence our results generalize those already
known for hypergraphs. We discuss these inclusions in Section 5.

Simis, Vasconcelos and Villarreal showed in [14] that facet ideals of
bipartite graphs are normally torsion free, and hence normal. Recently
Gitler, Reyes and Villarreal [10] have shown that facet ideals of Menge-
rian complexes (Definition 5.7) are normally torsion free (see also [12]).
This includes the class of simple hypergraphs that do not contain odd
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hyper-cycles, and more generally, balanced hypergraphs. We point out
in Section 5 that facet ideals of odd-cycle-free complexes are not neces-
sarily normally torsion-free, although they could still be normal ideals.

While this paper refers to simplicial or facet complexes most of the
time for the statements, it is important to know that these structures
are identical to simple hypergraphs. The original work on higher-
dimensional trees and cycles was done in the context of commutative
algebra, where a rich tradition of studying ideals associated to simplicial
complexes was already in place. This paper, on the other hand, uses
many results from hypergraph theory. For this reason, and for the sake
of consistency, in the introductory parts of the paper, we give a careful
review of the structures we introduced.

2. Facet complexes, trees, and cycles. We define the basic

notions related to facet complexes. More details and examples can be
found in [7, 9].

Definition 2.1 (Simplicial complex, facet). A simplicial complex A
over a finite set of vertices V is a collection of subsets of V', with the
property that if F' € A then all subsets of F' are also in A. An element
of A is called a face of A, and the maximal faces are called facets of A.

Since we are usually only interested in the facets, rather than all
faces, of a simplicial complex, it will be convenient to work with the
following definition:

Definition 2.2 (Facet complex). A facet complez over a finite set of
vertices V is a set A of subsets of V, such that for all F,G € A, F C G
implies F' = G. Each F € A is called a facet of A.

Remark 2.3 (Equivalence of simplicial complexes and facet com-
plexes). The set of facets of a simplicial complex forms a facet com-
plex. Conversely, the set of subsets of the facets of a facet complex is a
simplicial complex. This defines a one-to-one correspondence between
simplicial complexes and facet complexes. In this paper, we will work
primarily with facet complexes.
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We now generalize some notions from graph theory to facet com-
plexes. Note that a graph can be regarded as a special kind of facet
complex, namely one in which each facet has cardinality 2.

Definition 2.4 (Path, connected facet complex). Let A be a facet

complex. A sequence of facets Fi,...,F, is called a path if for all
i=1,...,n—1, F; N F41 # @. We say that two facets F' and G
are connected in A if there exists a path Fy,..., F, with F} = F and

F,, = G. Finally, we say that A is connected if every pair of facets is
connected.

In order to define a tree, we borrow the concept of leaf from graph
theory, with a small change.

Definition 2.5 (Leaf, joint). Let F' be a facet of a facet complex
A. Then F is called a leaf of A if either F' is the only facet of A, or
else there exists some G € A\ {F'} such that for all H € A\ {F}, we
have H N F C G. The facet G above is called a joint of the leaf F' if
FNG+#£2.

It follows immediately from the definition that every leaf F' contains
at least one free verter, i.e., a vertex that belongs to no other facet.

Definition 2.6 (Forest, tree). A facet complex A is a forest if every
nonempty subset of A has a leaf. A connected forest is called a tree (or
sometimes a simplicial tree to distinguish it from a tree in the graph-
theoretic sense).

It is clear that any facet complex of cardinality one or two is a forest.
When A is a graph, the notion of a simplicial tree coincides with that
of a graph-theoretic tree.

Definition 2.7 (Minimal vertex cover, vertex covering number). Let
A be a facet complex with vertex set V and facets F1,... , F,. A vertex
cover for A is a subset A of V, with the property that for every facet
F; there is a vertex v € A such that v € F;. A minimal vertex cover
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of A is a subset A of V such that A is a vertex cover, and no proper
subset of A is a vertex cover for A. The smallest cardinality of a vertex

cover of A is called the vertex covering number of A and is denoted by
a(A).

Definition 2.8 (Independent set, independence number). Let A
be a facet complex. A set {Fy,...,F,} of facets of A is called an
independent set if F; N F; = & whenever ¢ # j. The maximum possible
cardinality of an independent set of facets in A, denoted by B(A), is
called the independence number of A. An independent set of facets
which is not a proper subset of any other independent set is called a
mazimal independent set of facets.

Of particular interest to us in this paper is the Konig property.

Definition 2.9 (Konig property). A facet complex A satisfies the
Konig property if a(A) = B(A).

2.1. Cycles. In this subsection, we define a simplicial cycle as a
minimal facet complex without leaf. This in turn characterizes a tree
as a connected cycle-free facet complex. The main point is that higher-
dimensional cycles, like graph cycles, possess a particularly simple
structure: each cycle is either equivalent to a “circle” of facets with
disjoint intersections, or to a cone over such a circle.

Definition 2.10 (Cycle). A nonempty facet complex A is called a
cycle (or a simplicial cycle) if A has no leaf but every nonempty proper
subset of A has a leaf.

Equivalently, A is a cycle if A is not a forest, but every proper subset
of A is a forest. If A is a graph, Definition 2.10 coincides with the
graph-theoretic definition of a cycle. The next remark is an immediate
consequence of the definitions of cycle and forest.

Remark 2.11 (A forest is a cycle-free facet complex). A facet complex
is a forest if and only if it does not contain a cycle.
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We now provide a complete characterization of the structure of cycles
as described in [4].

Definition 2.12 (Strong neighbor). Let A be a facet complex and
F,G € A. We say that F' and G are strong neighbors, written F ~a G,
if F# G and forall He A, FNG C H implies H =F or H =G.

The relation ~A is symmetric, i.e., F' ~a G if and only if G ~A F.
Note that if A has more than two facets, then F' ~x G implies that
FNG # 2.

A cycle can be described as a sequence of strong neighbors.

Theorem 2.13 (Structure of a cycle ([4])). Let A be a facet complex.
Then A is a cycle if and only if the facets of A can be written as a
sequence of strong neighbors Fy ~a Fo ~a --- ~a F, ~a Fy such that
n >3, and for all i, j

FNF; = ﬂFk ifj#i—1,4,i+1 (mod n).
k=1

The implication of Theorem 2.13 is that a simplicial cycle has a very
intuitive structure: it is either a sequence of facets joined together to
form a circle (or a hole) in such a way that all intersections are pairwise
disjoint (this is the case where the intersection of all the facets is the
empty set), or it is a cone over such a structure, which is the case where
the intersection of all the facets is nonempty.

The following example demonstrates the impact of the second condi-
tion of being a cycle in Theorem 2.13.

Example 2.14. The facet complex A has no leaves but is not a
cycle, as its proper subset A’ (which is indeed a cycle) has no leaves.
However, we have F| ~a Fy ~aA G ~a F3 ~p Fy ~a Fi, and these
are the only pairings of strong neighbors in A.

A property of cycles that we shall use often in this paper is the
following.
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F2 | F2
FI F3 FI F3

F4 F4
FIGURE 1la. A. FIGURE 1b. A’.

Lemma 2.15. Let F, Fs, F3 be facets of a facet compler A, such
that F; N F; # @ for i,j € {1,2,3}, and F1 N F, N F3 = @. Then
' = {Fy, F3, F3} is a cycle.

Proof. Since I' has three facets, all its proper subsets are forests. So
if T is not a cycle, then it must contain a leaf. Say F} is a leaf, and
F; is its joint. So we have @ # Fy N F3 C Fy, which implies that
Fy N Fy N F3 # &; a contradiction. a

3. Facet complexes as simple hypergraphs.

3.1. Graph theory terminology. All graphs that are considered in
this paper are simple graphs, meaning that they are undirected graphs
containing no loops or multiple edges.

Definition 3.1 (Induced subgraph). Let G be a graph with vertex
set V. A subgraph H of G with vertex set W C V is called an induced
subgraph of G if, for each z,y € W, x and y are connected by an edge
in H if and only if they are connected by an edge in G.

Definition 3.2 (Clique of a graph). A clique of a graph G is a
complete subgraph of G; in other words a subgraph of G whose every
two vertices are connected by an edge.

Definition 3.3 (Chromatic number). The chromatic number of a
graph G is the smallest number of colors needed to color the vertices
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of G so that no two adjacent vertices (vertices that belong to the same
edge) share the same color.

Definition 3.4 (Complement of a graph). The complement of a
graph G, denoted by G, is a graph over the same vertex set as G whose
edges connect non-adjacent vertices of G.

Definition 3.5 (Perfect graph). A graph G is perfect if for every
induced subgraph G’ of G, the chromatic number of G’ is equal to the
size of the largest clique of G'.

We call G a minimal imperfect graph if it is not perfect but all proper
induced subgraphs of G are perfect. There is a characterization of
minimal imperfect graphs that was conjectured by Berge and known
for a long time as the “Strong Perfect Graph Conjecture” and was
proved recently by Chudnovsky, Robertson, Seymour and Thomas [5];
see also [6].

Theorem 3.6 (Strong Perfect Graph Theorem ([5])). The only min-
tmal tmperfect graphs are odd cycles of length > 5 and their comple-
ments.

3.2. Hypergraphs. Hypergraphs are the higher-dimensional coun-
terparts of graphs.

Definition 3.7 (Hypergraph, simple hypergraph ([1])). Let V =
{z1,...,z,} be a finite set. A hypergraph on V is a family H =
(Fi,...,Fy,) of subsets of V such that

1. F#gfori=1,...,m;
2. V=U"rF.

Each Fj is called an edge of H'. If, additionally, we have the condition:
F; C F; = i =j, then H is called a simple hypergraph.

A graph is a hypergraph in which an edge consists of exactly two
vertices.
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Definition 3.8 (Partial hypergraph). A partial hypergraph of a
hypergraph H = {F,...,Fy} is a subset H' = {F; | j € J}, where
JCA{L,...,m}.

It is clear that a facet complex A is a simple hypergraph on its set of
vertices, and a partial hypergraph is just a subset of A. For this reason,
we are able to borrow the following definitions from hypergraph theory.
The main source for these concepts is Berge’s book [1].

Definition 3.9 (Line graph of a hypergraph), Given a hypergraph
H = {F1,...,F,} on vertex set V, its line graph L(H) is a graph
whose vertices ey, ... , e, represent the edges of H, and two vertices e;
and e; are connected by an edge if and only if F; N F; # @.

Definition 3.10 (Normal hypergraph ([13])). A hypergraph H with
vertex set V' is normal if every partial hypergraph ' satisfies the
colored edge property, i.e., g(H') = §(H'), where

e ¢(H') = chromatic index of %', which is the minimum number

of colors required to color the edges of H' in such a way that two
intersecting edges have different colors; and

e §(H') = max,cy{number of edges of H' that contain z}.
Clearly, we always have q(H') > 6(H').

Definition 3.11 (Helly property). Let # = {F1,..., F,} be a simple
hypergraph, or equivalently, a facet complex. Then # is said to satisfy
the Helly property if every intersecting family of H is a star; i.e., for
every J C {1,...,q},

FinFj#@foralijecJ= (|F#2.
=

From the above definitions, the following statement (originally due
to Lovész [13]), which we shall rely on for the rest of this paper, makes
sense.

Theorem 3.12 ([1, page 197]). A simple hypergraph (or facet
complex) H is normal if and only if H satisfies the Helly property and
L(H) is a perfect graph.
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4. 0Odd-cycle-free complexes. As we discussed in the previous
section, a facet complex is a simple hypergraph.

Definition 4.1 (Odd-cycle-free complex). We call a facet complex
odd-cycle-free if it contains no cycles of odd length.

It is well known that odd-cycle-free graphs, which are known to
be equivalent to bipartite graphs, satisfy the Konig property (Defi-
nition 2.9). In higher dimensions, the Konig property is enjoyed by
simplicial trees [9], and complexes that do not contain odd special cy-
cles, which are also known as balanced hypergraphs [1, 2]. For the
definition of a special cycle, see Section 5. The class of odd-cycle-free
complexes includes balanced hypergraphs (see Section 5).

It is therefore natural to ask if odd-cycle-free complexes satisfy the
Konig property. The answer to this question is mostly positive: besides
one specific class of odd-cycle-free complexes, all of them do satisfy the
Konig property.

Theorem 4.2 (Odd-cycle-free complexes that satisfy Konig). If A
is a facet complex that is odd-cycle-free and L(A) does not contain the
complement of a T-cycle as an induced subgraph, then every subset of
A satisfies the Kdnig property.

A theorem of Lovdsz [13] (see also [1, page 195]) states that a
hypergraph H is normal if and only if every partial hypergraph of H
satisfies the Konig property. It is therefore enough to show that a facet
complex A (and its subsets) satisfy the Konig property by showing
that A is normal. By Theorem 3.12, it suffices to show that A satisfies
the Helly property and L(A) is perfect. We show these two properties
separately.

Proposition 4.3 (3-cycle-free complexes satisfy Helly property). If
the facet complex A does not contain a cycle of length 3, then it satisfies
the Helly property. In particular, odd-cycle-free complexes satisfy the
Helly property.

Proof. Suppose A does not satisfy the Helly property, so it contains
an intersecting family that is not a star. In other words, there exists a
'={F,...,F;} C A such that



ODD-CYCLE-FREE FACET COMPLEXES 1069

FiNFj#@ fori,je{l,...,m}, but ﬂFjZQ.
Jj=1

We use induction on m. If m = 3, from Lemma 2.15 it follows that
I' is a 3-cycle.

Suppose now that m > 3 and we know that every intersecting family
of less than m facets that is not a star contains a 3-cycle. Let I' be
an intersecting family of m facets Fi,..., F,,, such that every m — 1
facets of I' intersect (otherwise by the induction hypothesis I' contains
a 3-cycle and we are done), but (|-, F; = @.

So for each j € {1,...,m}, we can find a vertex z; such that

x; € F; if and only if j # i. Therefore we have a sequence of vertices
T1,... , &y, such that for each i:

{z1,...,&iy... ,Tm}t C F; and z; ¢ F;.

Now consider three facets Fy, Fo, F3 of I'. Since {Fy, F3, F3} is not
a cycle, it must be a tree; therefore, it has a leaf, say Fj, and a
joint, say Fs. It follows that F; N F3 C F5. But then it follows that
xo € Fy N F3 C Fy, which is a contradiction. O

We now concentrate on L(A) and its relation to A.

Lemma 4.4. If A is a facet complex, then for every induced subgraph
G of L(A) there is a subset ' C A such that G = L(T).

Proof. Let G be an induced subgraph of L(A). Then two vertices
z and y of G are connected by an edge in G if and only if they are
connected by an edge in L(A). This means that, if Fy,... , F},, are the
facets of A corresponding to the vertices of G, and ' = {Fy,..., F,},
then G is precisely L(T). o

Lemma 4.5. If A is a facet complex and L(A) is a cycle of length
£ > 3, then A is a cycle of length €.
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Proof. Suppose L(A) is the cycle

{whwz} ~L(A) {wz,w?,} ~L(A)
“~pa)y {we- 1, wet ~pay {we, wi ),

where each vertex w; of L(A) corresponds to a facet F; of A. Since w;
is only adjacent to w;—; and w;+1 (mod £), it follows that

FiNF;#@ < j=i—1,4,i+1 (mod f),
which implies that A = {F},..., Fy} where
Fy ~p Fo ~p oo ~vp By~ B

Moreover, since £ > 3, we have ﬂle F; = @. Theorem 2.13 now implies
that A is a cycle of length . O

Proposition 4.6 (The line graph of an odd-cycle-free complex). If
A is an odd-cycle-free facet complez, then L(A) is either perfect, or
contains the complement of a T-cycle as an induced subgraph.

Proof. Suppose L(A) is not perfect, and let G be a minimal imperfect
induced subgraph of L(A). By Lemma 4.4, for some subset I of A,
G = L(T"). Any induced subgraph of G is, by Lemma 4.4, the line graph
of some A’ CT' C A, and is hence perfect. So G is a minimal imperfect
graph, and by the Strong Perfect Graph Theorem (Theorem 3.6), G
is either an odd cycle of length > 5, or the complement of one. If G
is an odd cycle, then so is I' by Lemma 4.5, and therefore A is not
odd-cycle-free and we are done.

So assume that G is the complement of an odd cycle of length £ > 5.
We consider two cases.

1. ¢ = 5. Since the complement of a 5-cycle is a b5-cycle, it
immediately follows from the discussions above that I' is a cycle of
length 5, and hence A is not odd-cycle-free.

2. £ >9. We show that I' contains a cycle of length 3.
Let G = C,, where C; is the ¢-cycle

{wi,wa} ~¢, {w2, w3} ~¢, -+ ~c, {we—1, we} ~c, {we, w1},
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and a vertex w; of G corresponds to a facet F; of I'. This means that
F,NF; # @ unless j =i —1,i+ 1 (mod ¢). With this indexing,
consider the subset IV = {F}, Fy, F;} of . Clearly all three facets of

IV have nonempty pairwise intersections:
hNFy#0, iNF #0, FyNF; # Q.

Suppose I is not a cycle. Since I has only three facets it must be a
tree and must therefore have a leaf, say Fi, and a joint, say Fy (and
the other cases will be similar as explained below). So

(1) @ #FiNF; CFy.
Now consider the subset I'' = {Fy, F5, F7} of A. We know that
2) FINF40, FINF 40, FBNF 40

If i N F3N F; # @, then from (1) we see that F3 N Fy # &, which
is a contradiction. Therefore F} N F3 N F7 = &, which along with the
properties in (2) and Lemma 2.15 implies that I’ is not a tree, so it
must be a cycle.

We can make similar arguments if F; or Fy are joints of I'': if F} is a
joint, then we can show that I = {Fy, Fy, F;} is a cycle, and if F; is a
joint, then I = {F}, Fy, Fg} is a cycle. So we have shown that either
IV is a 3-cycle, or one can form another 3-cycle I'" in A. Either way,
A contains an odd cycle, and is therefore not odd-cycle-free. O

Proof of Theorem 4.2. Propositions 4.3 and 4.6, along with Theo-
rem 3.12 immediately imply the statement of Theorem 4.2. ]

4.1. Are these conditions necessary for satisfying the Konig
property? A natural question is whether the conditions in Theo-
rem 4.2 are necessary for a facet complex whose every subset satisfies
the Konig property. The answer in general is negative. In this section,
we explore various properties and examples related to this issue.

The first observation is that not all odd cycles lack the Konig prop-
erty. Indeed, if the cycle A (or in fact any complex) is a cone, in the
sense that all facets share a vertex, then it always satisfies the Konig
property with a(A) = 8(A) = 1.



1072 MASSIMO CABOARA AND SARA FARIDI

But if we eliminate the case of cones, all remaining odd cycles lack
the Konig property.

Lemma 4.7 (Odd cycles that lack Konig). Suppose the facet complex
A ={F,... ,Foi1} is a cycle of odd length such that ﬂ?iirl F,=0.
Then A lacks the Kénig property.

Proof. Suppose without loss of generality that A can be written as
Fy ~a Fy ~op oo ~a Foggn ~a Fr

Then a maximal independent set of facets of A can have at most k
facets; say B = {F1, F3,... ,Fa,_1} is such a set, and by symmetry,
all maximal independent sets will consist of alternating facets, and will
have cardinality k. Hence 8(A) = k.

But we need at least k + 1 vertices to cover A. To see this, let us
suppose that A has a vertex cover A = {z1,...,zx}. Since B is an
independent set, we can without loss of generality assume that

1 € Fy,x9 € F3,...,2; € Fo; _1,... ,T € Fop_1.

The other facets Fy, Fy, ... , For, For+1 have to also be covered by the
vertices in A. Since Far11 NG = @ for all G € B except for G = F},
we must have x; € Far41. Working our way forward in the cycle, and
using the same argument, we get

xo € Fo,xs € Fy,... ,x; € Fo; o,... 2 € Fop_o.

But we have still not covered the facet Fbi, who is forced to share a
vertex of A from one of its two neighbors: either x; € Fpy or zp € Foy.
Neither is possible as Fo,, N Fy = For, N Fy,_ o = &, and so A cannot be
a vertex cover.

Adding a vertex of Fyy solves this problem though, so a(A) =k +1
and B(A) = k, and hence A lacks the Konig property. o

The previous lemma then brings us to the question: can we replace
the condition “odd-cycle-free” with “odd-hole-free” (where an odd hole
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is referring to an odd cycle that is not a cone) in the statement of
Theorem 4.27 The answer is again negative, as clarified by the example
below.

Example 4.8. The hollow tetrahedron A = {{z1,x2}, {z1,23},
{zo, 3}, {z1, 24}, {w3, x4}, {x2,24}} is odd-hole-free (but it does con-
tain four 3-cycles). However it lacks the Konig property, since a(A) =
2, but B(A) = 1. Similar examples in higher dimensions can be con-
structed, e.g., if d > 3 is odd then the facet complex A = {F C
{z1,... y&a41} : |F| = d} is odd-hole-free and lacks Ké&nig, since we
have a(A) = 2 but B(A) =1.

We next focus on the second condition in the statement of Theo-
rem 4.2, which turns out to be inductively necessary for satisfying the
Konig property.

Lemma 4.9. Let A be a facet complex such that L(A) is the
complement of an odd cycle of length k > 3. Then A lacks the Konig
property.

Proof. Suppose L(A) = Cj where Cy is a k-cycle and k is an
odd number. Let A = {Fy,...,Fj} be such that the vertices of Cj
correspond to the facets FY,..., Fj in that order; in other words, F}
intersects all other facets but F» and Fy, and so on (the case k = 7 is
illustrated in Figure 2).

Let B be a maximal independent set of facets, and assume F} € B.
Then, since F} intersects all facets but F5 and F}, B can contain one of
F5 and Fj, (but not both, since they intersect). So |B| = 2. The same
argument holds if B contains any other facet than Fj, so we conclude
that B(A) = 2.

Now suppose A has a vertex cover of cardinality 2, say A = {z,y}.
Then each facet of A must contain one of x and y. Without loss of
generality, suppose € F;. Since each facet does not intersect the next
one in the sequence Fy, Fs,... , Fy, F1, we have

reEF —yekh—zrcF3—ycF,—---
=y € Fy_1 = xck
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FIGURE 2. Complement of a 7-cycle.

But now z € F} N F, = &, which is a contradiction. So a(A) > 3,
and hence A does not satisfy the Kénig property. ]

Corollary 4.10. If every subset of a facet complexr A satisfies the
Konig property, then L(A) cannot contain the complement of an odd
cycle of length > 3 as an induced subgraph.

Remark 4.11 (The case of the complement of a 7-cycle). As sug-
gested above, if L(A) contains the complement of a 7-cycle as an in-
duced subgraph, A may lack the Konig property, even though it may
be odd-cycle-free. For example, consider the complex A on seven ver-
tices x1,...,x7: A = {Fy,... ,F;} where F| = {z1,22,23}, Fs =
{332, T3, $4}7 Fy = {1173, Tq, 'T5}7 F, = {%4, s, mﬁ}’ Fr = {335, T6, $7}7
F5 = {376,51,'7,331}, F3 = {a:7,:v1,:1:2}.

The graph L(A) is the complement of a 7-cycle (the labels of the
facets correspond to those in Figure 2). One can verify that A contains
no 3, 5, or 7-cycles, so it is odd-cycle-free. However by Lemma 4.9,
the facet complex A lacks the Konig property; indeed a(A) = 3 but
B(A) = 2.

On the other hand, it is easy to expand A to get another complex
I, such that L(T') does contain the complement of a 7-cycle as an
induced subgraph, and I' satisfies the Konig property. For example,
consider I' = {G, F|, F», ... , F7}, where Fy, ... , F; are the same facets
as above, and we introduce two new vertices u, v to build the new facets
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FIGURE 3. Not balanced odd-cycle-free complex.

F| = {u, 21,22, 23}, and G = {u,v}.

The set B = {G, F», F3} is a maximal independent set of facets, so
B(T') = 3. Also, we can find a vertex covering A = {u, x4, x7}, which
implies that a(A) = 3. Note, however, that I' does not satisfy the
Konig property “inductively”: it contains a subset {F], Fs,...,F7}
that lacks the Konig property by Lemma 4.9.

5. Balanced complexes are odd-cycle-free. The notion of a
cycle has already been defined in hypergraph theory, and is much more
general than our definition of a cycle (see [2], or [1, Chapter 5]). To
keep the terminologies separate, in this paper we refer to the traditional
hypergraph cycles as hyper-cycles. In particular, hypergraphs that do
not contain hyper-cycles of odd length are known to satisfy the Konig
property. In this section, we introduce this class of hypergraphs and
show that hypergraphs not containing odd hyper-cycles are odd-cycle-
free, and their line graphs cannot contain the complement of a 7-cycle
as an induced subgraph.

Definition 5.1 (Hyper-cycle [1, 2]). Let H be a hypergraph on
vertex set V. A hyper-cycle of length ¢ (£ > 2), is a sequence
(1, F1,22, Fa, ..., 24, Fp,z1) where the x; are distinct vertices and the
F; are distinct edges of #, and moreover z;,z;+1 € F; (mod ¢) for
all 4.

Definition 5.2 (Balanced hypergraph ([1, 2])). A hypergraph is said
to be balanced if every odd hyper-cycle has an edge containing three
vertices of the hyper-cycle.
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Note that a “balanced hypergraph” is different than a “balanced
simplicial complex” defined by Stanley [15].

A hyper-cycle has been called by hypergraph theorists a special cycle
or a strong cycle if, with notation as in Definition 5.1, for all ¢ we have
z; € Fjifand only if j =i—1,7 (mod ¢). In other words, if each vertex
x; of the hyper-cycle appears in exactly two facets, the hyper-cycle is
a special cycle. So a balanced hypergraph is one that does not contain
any special cycle of odd length.

In general, the following fact holds:

Lemma 5.3. A facet complexr contains a cycle if and only if it
contains a hyper-cycle.

Moreover, it is easy to see that a cycle A defined as
Fy ~p Fy ~p oo ~p Fy ~a B

produces a hyper-cycle; just pick any vertex z; € F;NF;;1 (mod ¢), A
produces a hyper-cycle, or in fact a special cycle, of the same length /¢

($17F17$27F2a"' 7$ZaFZ;w1)-

It follows that a balanced simple hypergraph is odd-cycle-free. The
converse, however, is not true.

Example 5.4 (Not all odd-cycle-free complexes are balanced). Con-
sider the complex A in Figure 3, which is odd-cycle-free, as the only
cycle is the 4-cycle {Hy, Ha, Hy, Hs}. But A is not balanced, as all of
A forms the special 5-cycle

(e, Hi, 2, Hy, 3, Hs, x4, Hy, x5, Hs, T6).

The complex in Example 5.4 is an example of how our main result
(Theorem 4.2) generalizes the fact that balanced complexes satisfy the
Konig property. In fact, we can show that all balanced complexes
satisfy the hypotheses of Theorem 4.2.
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Proposition 5.5. Let A be a balanced complex. Then A is odd-
cycle-free and L(A) does not contain the complement of a 7-cycle as
an induced subgraph.

Proof. Let A be balanced. We have already shown that A is odd-
cycle-free. Suppose that L(A) contains the complement of a 7-cycle as
an induced subgraph.

By Lemmas 4.4 and 4.5, A contains a subset I' whose line graph is
the complement of a 7-cycle on the facets Fy,... , F7 as in Figure 2.

We claim that we can find vertices x15 € Fy N Fs5, x57 € F5 N Fr,
T7o € Fo N F7, Tog € Fo N Fﬁ, and zg1 € F1 N FG, such that

(3) (@61, F1, 15, Fs, 57, Fr, 72, F2, 26, F6, T61)

is a special cycle of length 5, and if not, A contains a special cycle of
length 3.

If the hyper-cycle in (3) is not a special 5-cycle, then at least one of
the following statements hold:

1. Fy N F5 C Fy U Fg U F7. This is not possible, since we know that
FlmFQ :F1 ﬂF7 = @, and F5ﬂF6 = @. Since FlmFs # @, one can
choose z15 € Fy N F5 such that 15 ¢ F» U Fg U Fy.

2. FsNF; C FiUFRUFg = FsNE; C Fy (since F:NF, = FrNFg = @)
In this case, consider the facet complex {Fj3, F5, F;}. Then, since
FoNF3 =@ and F5NF; C Fy, we have F3NFs N F; = . Lemma 2.15
now implies that {F3, Fs, F7} is a 3-cycle, and hence can be written as
a special 3-cycle.

3. FzﬁF7 - F1UF5UF6 = FQﬁF7 - F5 (since F7ﬂF1 = F70F6 = @)
Similar to Case 2. it follows that {Fz, Fy, F7} is a (special) 3-cycle.

4. FoNFg C F1 U F5 U Fy. Fails with argument similar to Case 1. So
one can choose z26 € Fy N Fy such that zog ¢ Fy U F5 U Fr.

5. Fy N Fg C Fy U F5 U Fy. Fails with argument similar to Case 1. So
one can choose xg; € Fy N Fg such that zg; ¢ F> U Fs U Fr.

So we have shown that either there are vertices x1s, ... ,zg1 such that
the sequence in (3) is a special 5-cycle, or otherwise, either cases 2 or
3 above would hold, in which case A would contain a (special) 3-cycle.
Either way, A is not balanced. o
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As a result, we have another proof to the following known fact (see
1, 2)).

Corollary 5.6 (Balanced complexes satisfy Konig). If A is a
balanced facet complex, then all subsets of A satisfy the Konig property.

In fact, a stronger version of the above statement was proved for
balanced hypergraphs by Berge and Las Vergnas; see [1, page 178].

In closing, we would like to briefly discuss some algebraic properties
of Mengerian facet complexes.

Definition 5.7. Let A = {F,...,F,} be a facet complex and

M = (a;;) its vertex-edge incidence matrix, i.e., a;; = 0 if i ¢ F;
and a;; = 1 if ¢ € F;. Also, for all vectors v € N", we define
v(v) =max{u-(1,...,1) |[ue R?,M -u < v} and 7(v) = min{w - v |

we N, M w > 1} where M*" = (a;;). A facet complex A is called
Mengerian if v(v) = 7(v) for all v € N"™.

As mentioned earlier in the paper, the study of combinatorial proper-
ties of hypergraphs has been much motivated by algebraic structures;
one example is the search for normal ideals. Normal ideals are ideals
whose every power is integrally closed. Bipartite graphs and balanced
complexes are known to have normally-torsion-free facet ideals, and
therefore their facet ideals are normal (see [10, 12, 14]).

Odd-cycle-free facet complexes, on the other hand, are not necessarily
Mengerian. Since Mengerian implies the Konig property, this follows
from Remark 4.11. Therefore, the facet ideal of an odd-cycle-free
complex may not be normally-torsion-free. However, this ideal could
still be a normal ideal. We have run several examples using the
computer algebra softwares Normaliz [3] and Singular [11] that confirm
this statement. It would be of great interest to know whether odd-
cycle-free complexes provide a new class of normal ideals; this would
generalize results in [7, 12, 14].
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