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Qualitative analysis of a class of Bianchi V imperfect fluid cosmologies 
A. A. Coley and K. A. Dunn 
Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, 
Nova Scotia B3H 3J5, Canada 

(Received 12 June 199 1; accepted for publication 12 December 199 1) 

It has been shown that by utilizing a set of “dimensionless” equations of state, the Einstein 
field equations governing Bianchi V imperfect fluid cosmologies reduce to a plane- 
autonomous system of equations. This plane-autonomous system shall be investigated here, 
and the qualitative behavior of the underlying cosmological models shall thereby be 
obtained. 

I. INTRODUCTION 

It is of interest to study cosmological models with a 
richer structure, both geometrically and physically, than 
the standard perfect fluid Friedmann-Robertson-Walker 
(FRW) models. Bianchi V spatially homogeneous mod- 
els are of particular interest since they are sufficiently 
complex while being a simple generalization of the nega- 
tive curvature FRW models. In a recent paper’ (hereafter 
referred to as paper I) Bianchi V imperfect fluid cosmol- 
ogies were investigated. In a second pape2 (hereafter 
referred to as paper II), it was shown how the Einstein 
field equations governing these cosmological models re- 
duce to a plane-autonomous system of equations when a 
set of “dimensionless” equations of state are utilized, 
thereby enabling the qualitative nature of the models to 
be analyzed. It is the aim of the present paper to investi- 
gate this plane-autonomous system. A more detailed ac- 
count of the motivation for this research and the deriva- 
tion of the various equations can be found in the 
references of I and II; in particular, for brevity we will 
adopt the notation that an equation or reference in either 
of these two papers will be referred to using a label I or II. 
However, we note that cosmological models that include 
viscosity have been investigated in an attempt to explain 
the currently observed highly isotropic matter distribu- 
tion (11-3) and the high entropy per baryon in the 
present state of the Universe (14 and 15)) and in order to 
further study the nature of the initial singularity (16) and 
the formation of galaxies (13). Cosmological models 
which include heat conduction have also been studied 
(17). 

We shall utilize the following set of “dimensionless” 
phenomenological equations of state (see II) for the pres- 
sure p, the bulk viscosity 4, and the shear viscosity q in 
terms of the density p [Eqs. II( 3.4)]: 

p/e2 = p&, (l.la) 

ye = c+m, (l.lb) 

7718 = VOX”, (l.lc) 

where po, co, and v. are positive constant parameters and 

I, m, and n are constants, and where x is the dimension- 
less density parameter defined by 

x = 3p/e2. (1.2) 

We note that p/02, c/e, and q/8 are dimensionless and so 
Eqs. ( 1.1) is a set of “dimensionless” equations of state. 
The motivation for these equations of state has been dis- 
cussed in detail in Ref. II. Here, we shall simply remark 
that Eqs. ( 1.1) ought to be valid (at least) in an asymp- 
totic sense, thereby justifying their use in our qualitative 
analysis. 

Hereafter, we shall assume p. = i(y - 1) [l <y<2] 
and I = 1; i.e., p and p are related by the barotropic equa- 
tion of state 

p= (y- ijp; p/e2=$(y- 1)~. (l.la’) 

We shall also be particularly interested in the case m = n 
= l/2, whence Eqs. ( 1.1) do not explicitly depend on 

the expansion 8. 
Defining the new variable fi by 

p = 2 @de, 

and the new time coordinate s1 by 

(1.3) 

dR 1 -= -- 
dt 3e (1.4) 

(where all quantities not defined here are defined in Refs. 
I and II) the Einstein field equations [Eqs. I(8c) and 
(8d); see also Eqs. 11(2.12)-(2.14)] for a co-moving 
LRS Bianchi type-V spatially homogeneous viscous fluid 
model with heat conduction reduce to the following 
plane-autonomous system: 

$f8[4-B’- (3y-22)x+9&xm+ 127#7@Xx”], 

(1.5) 

-$=x[(3y--2)(1 -x) -$] +p &-2+B- 
1 :I 

- Y&.x”( 1 -x) - 37J&p2. (1.6) 
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From the “generalized Friedmann equation” [II (2.11)] 
and the non-negative nature of p, we note that the region 
of interest is 

$ + 4X(4, 
(1.7) 

x>o. 

Also we note that the field equations imply that there is 
only one nonzero component of the heat conduction vec- 
tor. This component, ql, satisfies q1 = - @I. 

In the next section we shall analyze the plane-auton- 
omous system (1.5) and (1.6) using the techniques em- 
ployed in Collins3 and Belinskii and Khalatnikov.4 The 
results of the analysis will be discussed in the final sec- 
tions. 

II. ANALYSIS 

The region of interest, defined by ( 1.7), is the region 
bounded by the parabola p2 + 4x = 4 and the /? axis; we 
shall denote this region hereafter as 9. The positive and 
negative arms of the parabola from (1,O) to (0,2) and 
(0, - 2)) respectively, are themselves trajectories. 

The first step is to calculate the singular points in 9?, 
where dp/dfl = 0 and dx/ds1= 0. From ( 1.5), d/3/d0 
= 0 when /3 = 0 or 

[4 -p” - (3y - 2)x] + [Yi&P + 12r]@P] = 0; 
(2.1) 

but since 4 - f12 - 4x20 (and y(2) and x>O in 9, this 
constitutes the sum of two positive definite terms being 
equal to zero and so each term must be independently 
zero, viz., 

g=O in .%ep=O or (x=O,/?=2) 

or (x=0,/3= -2). (2.2) 

Utilizing ( 1.6), we see that, in general, there will be at 
most five singular points in 9, namely, 

(QO),(W),(Q - 2),(W),(LO), 

where B (0 < Z < 1) will be defined below. 

(2.3) 

The analysis then consists primarily of determining 
the nature of these singular points (and calculating the 
associated eigendirections) . In the case of nondegenerate 
singular points, this is straightforward (the information is 
summarized in the figures in the next section). For a 
degenerate singular point the technique utilized is to 
change to a polar coordinate system and determine the 
invariant rays which divide the neighborhood around the 
singular point into a finite number of sectors (with the 
singular point as vertex). Each sector is either parabolic 

(“fan”), hyperbolic, or elliptic (unless there are no sec- 
tors in which case the singular point is a focus or center; 
this situation does not arise here). In the situation under 
investigation there are also singular points which are 
nonanalytic, e.g., in the case m = n = l/2 (i.e., the equa- 
tions involve 6). These points are analyzed by trans- 
forming to a new variable u and a new time coordinate r, 
where u2 = x and dWdr = u. 

Further information concerning the nature of the tra- 
jectories can also be found. Most significantly, we can 
determine all points in 9%’ at which dp/dx = 0 (i.e., the 
slope of the trajectory is zero). At such points we must 
have dp/dfl = 0, and we found above [see (2.2)] that in 
9 these points consist of all points on the x axis (B = 0) 
and the (singular) points (0,2) and (0, - 2). Conse- 
quently, dp/dx can only be zero on the x axis (except at 
the singular points). Now the x axis (between the singu- 
lar points) is itself a trajectory. Thus we have that the x 
axis divides 9? into two regions (above and below the x 
axis); trajectories cannot cross the x axis. In these two 
regions dp/dx is neuer zero. Therefore, it immediately 
follows that (i) there exist no closed (periodic) trajectories 
in 9, (ii) there exist no singuIar points that are foci or 
centers, and (iii) there exist no elliptic sectors at degener- 
ate singular points lying in 92. 

Other useful information is obtained by determining 
the slope of trajectories crossing the fl axis in 9 (e.g., if 
dp/dx never becomes infinite on x = 0 (i.e., dx/dfl#O), 
then the sign of dp/dx remains the same on the positive 
and negative branches of the p axis in 9?), by determin- 
ing the sign of dp/dx close to the x axis, and by calcu- 
lating all points in 9 at which dx/dfl = 0 (i.e., at which 
the slope of the trajectory is infinite). 

Ill. QUALITATIVE BEHAVIOR OF SOLUTIONS 

We shall describe a number of cases and display their 
phase diagrams in the figures. The specific cases are cho- 
sen in order to illuminate the typical behavior, and be- 
cause they yield all the possible behaviors. We have gen- 
erally chosen to consider m = n in each case below; 
clearly other cases are possible. In addition, we have con- 
sidered m = n = l/2 as representative of the case 0 < m, 
n< 1. 

In the figures, arrows refer to evolution in a- time 
(R-+ + CO indicates t-+0). Trajectories on the x axis rep- 
resent k = - 1 FRW cosmological models; M denotes 
the Milne (flat space-time) model. The label C denotes 
that the point represents a cigar matter singularity. Fig- 
ure 1 describes the behavior of the (non-LRS) Bianchi 
type V cosmologies in the absence of heat conduction and 
viscosity [see Ref. 31 and are included for purposes of 
comparison. [In this case the governing equations reduce 
to a plane-autonomous system for variables x and B 
equivalent to Eqs. (1.5) and (1.6), with co = 7. = 0 and 
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(non-LRS) perfect fluid 

P 

co=m=o 

(i) 1 5 y < 2 

f 

(1)11YC4/3 (II) y = 4i3 (iii) 4/3 C r C 2 (iv) y = 2 

FIG. 2. The evolution of a class of Bianchi V imperfect fluid models in 
terms of the variables x and B is described. Arrows refer to evolution in 
0, time (a-+ 00 indicates t-0). The region of interest is defined by x,0 
and @ + 4~~4. Trajectories on the x axis represent k = - 1 FRW 
cosmological models: M denotes the Mime (flat space-time) model. The 
label C denotes that the point represents a cigar matter singularity. In 
all cases p = (y - 1 )p, @3 = &x’“, $6 = vex” for various choices of 
the constants 1: {c, no, in, and n. In this figure the case co = no = 0 is 
considered. 

For y#2 there are four singular points: ( l,O> is a saddle, 
(0, - 2) is a stable two-tangent node, and (0,O) is an 
unstable two-tangent node (a repelling one-tangent node 
for y = 4/3). The point (0,2) is a degenerate singular 
point and will generally be of the complicated node-sad- 
dle type. However, we are only interested in the behaviors 
of the sectors in B here, and the (single) sector contain- 
ing .%’ is easily shown to be hyperbolic. Notice that near 
(0,2) the system is of the form p’ = - 4(p - 2) - (3~ 

(ii) y = 2 

FIG. 1. The behavior of (non-LRS) Bianchi type V cosmologies in the 
absence of heat conduction and viscosity in terms of the variables x and 
Bis described (diagrams taken from [3]). 

the second term on the right-hand-side of(1.6) omitted -- 
and fl replaced by fl; p is defined by B= - (a& 
+ l/%3,)(3 + & - 1’2, where a is a constant and /3i,& 

are quantities that measure the rate of shear in terms of 
the expansion of the (non-LRS) models.] These models 
isotropize (8-O as R+ - CO) and x-0 as Q+ + CO, 
except for the FRW (point-singularity) models (and for 
the y = 2 solutions), and so matter is generally dynami- 
cally unimportant in the early stages. Cigar singularities 
occur for l<y < 2, while for y = 2 barrels or cigars or 
points are obtained. In the special case y = 2 (i.e., stiff 
matter), the matter is always dynamically important in 
that x is bounded away from zero at all times. 

- 2)x, x’ = 4(/3 - 2) + (3~ - 2)x, so that fl’ = -x’ 
and the solution curves are p = K - x (K constant). In 
fact, in all cases the equations near (0,2) are of the form 
p’= -4(B-2) +ccP, x’=4(p-2) -axm (a con- 
stant) so that (/3 + x) ’ = 0. When y = 2 each point on 
the boundary /3’ + 4x = 4 is a singular point. For this 
case Rqs. ( 1.5) and ( 1.6) can be solved to give the family 
of solutions A@ - p + x = 0, p#O, where A is an arbi- 
trary constant determined by the initial conditions, and 
also the solution curve fl= 0, 0 <x < 1. 

8. m=n=O 

A. s‘o=q,=O 

In this case there is no viscosity, but it does not re- 
duce to the perfect fluid case since the model still contains 
heat conduction. The phase portraits are given in Fig. 2. 

If &, = 0, then there are two singular points: ( 1,0) is 
a saddle and (0,O) is an unstable two-tangent node (a 
repelling one-tangent node if 3y - 4 - 67,7c = 0). In Fig. 
3 (a) we present the case (37 - 4 - 6~) < 0. Near to the 
origin the phase portraits of the cases (3~ - 4 - 67c) 
= 0 and (3~ - 4 - 6~) > 0 are similar to those in Figs. 

2(ii) and 2( iii), and away from (0,O) the phase portraits 
are similar to those in Fig. 3(a). In Fig. 3(a) there is a 
point fi* on the /3 axis (with - 2 < p* < 0) at which &I/ 
dx is infinite. When &#O, if 95b < (3~ - 2), there are 
two singular points: (1,O) is a saddle and (X,0) [with 
I: = 9W(3y - 211 is an unstable two-tangent node. We 
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I*) 0 = 0. l3+9w1< 0 ,b,0<9&<31-2 ICI) 31-Z c %.. 6-a ,cw 31-2 < 9Io. too 

FIG. 3. m=n=O (see the caption for Fig. 2). 

present the phase portraits (Fig. 3b) for the case when 
1 -2(1 +3~c)(3y-2-9~c)-‘<O. In this case there 
are two points on the p axis in the interval ( - 2,0) at 
which da/dx becomes infinite. When 9@( 3y - 2), 
there is only one singular point. The point (1,O) is an 
unstable two-tangent node [note that when 9&, = (3~ 
- 2) this point is degenerate]. The phase portraits are 

presented in Fig. 3(c) (i) and (ii), where +l -4(1 
+ 377oN950 - (3Y - 2)) - ‘. 

C. m=n=1/2 

There are degenerate singular points at (0, - 2), 
(O,O), and (0,2). All trajectories in .S will approach (0, 
- 2) with the eigendirection associated with the invari- 

ant ray 8 = 8*, where tan 0* = (95c + 12n0)/4 so that 
0 < 8* < 7r/2. At (0,O) there are invariant rays 8 = 0 and 
e=e+, where tan 8 + = - 9&,/2 so that 3?r/2 < 8+ 
< 27r, which divide .Y%? up into a number of (or portions 
of) hyperbolic sectors. At (0,2) the (single) sector con- 
taining .@ is hyperbolic. There is a fourth singular point 
( l,O). When 9&, < (3~ - 2) it is a saddle, when 9&, > (37 
- 2), it is an unstable two-tangent node, and when 9& 
= (3~ - 2), it is degenerate (,%’ is part of a parabolic 

sector). Finally, in the case 9& < (3~ - 2), there is a fifth 
singular point, (X,0) [where 21’2= (9&-J/( 3y - 2)], 
which is an unstable two-tangent node. The phase por- 
trait for the case 95b < (3~ - 2) is given in Fig. 4(a), 
while the phase portraits for the case 9& > (37 - 2) are 
giveninFig.4(b)(i) ($<O)andFig.4b(ii) (tl,>O>.The 
phase portrait for the case 95b = (3~ - 2) is given in Fig. 
4(c). 

D. m=n=l 

The singular point (0, - 2) is a stable two-tangent 
node (it is an attracting one-tangent node when a E (3~ 
- 2) - 9& - 12qe = - 4). The singular point (0,2) is 

degenerate; the (single) sector containing Z.V is hyper- 
bolic. In general, there are two further singular points, 
(0,O) and (l,O). When 9&-,x (3y- 2), (0,O) isan unsta- 
ble two-tangent node [a repelling one-tangent node if (3 y 
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m=n=v* 

Y) 9co c W-2) w 91. > m-2L $ c 0 (bit) 910 > (3~.2,. 0 > 0 Ia 9ro = w21 

FIG. 4. m=n = l/2 (see the caption for Fig. 2). 

- 2) - 9& = 21 and (1,0) is a saddle. In Fig. 5(a) the 
phase portraits for the case (3~ - 2) - 9&c 2, L 
> - 4 are presented. When 9&, > (3~ - 2), (0,O) is a 
saddle and (l,O> is an unstable two-tangent node. The 
phase diagrams in this case (A > - 4) are presented in 
Fig. 5(b) (i) and (ii). Finally, when 95s = 3y - 2, each 
point (x,0) for O<x<l is a singular point; i.e., the x axis 
is a line-singularity. The phase portrait (A > - 4) is 
given in Fig. 5 (c) . The phase portraits for il< - 4 are 
similar to those given in Fig. 5. 

E. m>l, n>l 

When 1 <y < 2, (0, - 2) is a stable two-tangent node. 
[If y = 2, (0, - 2) is a degenerate singular point which 
can be shown to be a node; the phase portraits are similar 
to those for y< 2.1 (0,2) is a degenerate singular point 
with the (single) sector containing S? being hyperbolic. 
The origin (0,O) is an unstable two-tangent node (a one- 
tangent node when y = $) . If 9[,, < (3~ - 2)) the singular 
point ( 1,O) is a saddle and the phase portraits are given in 
Fig. 6(a)(ii) (l<y<$) and 6(a)(ii) ($<y<2). If 95c 
= 3y - 2 the singular point ( l,O> is degenerate, but fur- 

ther analysis shows it to be a saddle. When 9&‘0> (3~ 

m=n=, 

a) 0 < (31.2) - 9co c 2 It4 13Y.2) c 9co. @co W) l3Y4 c 9c.a. tax 

FIG. 5. m=n=Z (see the caption for Fig. 2). 
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(ai) (3p2) >9h 15 y< 413 @ii) (3y-2) > Qh 413 < y < 2 (bi) QCo> (3~Z), 15 y<4/3.$<0 

FIG. 6. rn, I, n, I (see the caption for Fig. 2). 

- 2), the singular point ( 1,0) is an unstable two-tangent 
node and there is also a saddle at (2,O) [where 
2” - ’ E (3~ - 2)/9&-J; the phase diagrams are presented 
in Fig. 6(b) (9 (~<w34, 6(b) (ii) 
(y?>O,l<y<$, and 6(b)(iii) (IC,<O,$<r<2). 

IV. DISCUSSION 
A. Description of the trajectories (Figs. 2-6) 

7. P>O 
All trajectories in the positive 0 (upper) region of L%’ 

enter S? at a finite value of t and can therefore only 
describe the late (asymptotic) behavior of suitable mod- 
els. The one exception to this is the case cc = q. = 0, 
y = 2 [Fig. 2( iv)] for which there are solutions which 
evolve from the boundary p2 + 4x = 4 to the Milne uni- 
verse at (0,O). All these models have x bounded away 
from zero at all times and hence matter is dynamically 
important. These models have no viscosity but do have 
nonzero heat conduction (compare with Fig. 1 (ii)]. 

2. p=o 
Trajectories on the x axis (fi = 0) represent negative 

curvature FRW models with, at most, bulk viscosity. 
When co = 0, the trajectories [Figs. 2 and 3(a)] rep- 

resent the standard perfect fluid [p = (y - l)p] models 
evolving from the matter-dominated point singularity at 
( 1,0) to the Milne universe at (0,O). In Figs. 5(a) and 
6(a) (i) and (ii), where viscosity is present, the evolution 
is also from the pointlike singularity at ( 1,0) to the Milne 
universe at (0,O). These models can be interpreted as 
perfect fluid FRW cosmologies with density p and pres- 
sure p=p - Q3 satisfying p > 0 and p + 3F> 0 [since (3~ 
- 2) > 9!col. 

In the remaining cases that have no singular points 
on the x axis, other than (0,O) and ( l,O), the evolution is 
toward ( l,O). In Fig. 4(b) and (c) and Fig. 5 (b) the 
models start from the Milne universe (O,O), at t = 0, and 

A. A. Coley and K. A. Dunn: Bianchi V imperfect fluid cosmologies 

(Id,) Q[o> (3~-2), 15 I < 4/3. '@'o (biii) QCo> (31-2). 4/3-C I< 2,r/r< 0 

expand to the FRW critical point at ( 1,O). In Fig. 3 (c) 
the trajectory on the x axis enters S’ after a finite time 
[i.e., there is no singularity of the dynamical system at 
(O,O)] and so we have expansion from the Milne universe 
(O,O), at a finite time t > 0, to the FRW critical point at 
( l,O). Interpreting these models as perfect fluid FRW 
cosmologies with density p and pressure i, we have p 
+ 3&O. 

In all other cases there is another singularity on the x 
axis at the point (X,0) (where Z is a constant value of x, 
0 < B < 1, representing a nonzero value of the energy den- 
sity at this singularity). In all these cases the solution 
corresponding to the point (X,0) can be found exactly. 
For example, the point (X,0) in Fig. 4(a) corresponds to 
the solution with metric coefficients 

a(t)=b(t)=(3y-2)[(3y-2)2-81&“2t, 

density 

p(t) = 3(95b/(3y - aI2 t-2, 
pressure 

p(t) = (Y- l)p(t), 

and bulk viscosity 

c(t) =27&(3y-2)t-? 

If this model is interpreted as an FRW perfect fluid cos- 
mology with density p(t) and pressure p =p - 50, then 
it is easily seen that p > 0, p + 3F = 0. The solutions for 
(8,O) in the remaining cases, Figs. 3(b) and 6(b), are of 
the same form [i.e., a(t) = at, a = const, p + 3F = 0). 

In Fig. 3(b) there is a trajectory that represents a 
universe expanding from the point singularity (1,0) at 
t = 0 and approaching the solution (I;,O) as t + CO. There 
is also a trajectory that enters Z? at a finite time to > 0 and 
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expands to the solution (X,0> at t = CO. This solution has 
the expansion phase consisting of an open FRW solution 
with bulk viscosity proportional to the expansion 8. The 
trajectories on the x axis in Fig. 4(a) are exactly the same 
except that the second trajectory begins at the Milne uni- 
verse (0,O) at t = 0. In Fig. 6(b), both trajectories ex- 
pand from the point (8,O) at t = 0 (a pointlike singular- 
ity) and asymptotically approach the solutions at (1,O) 
or (0,O) as t-00. 

Finally, in Fig. 5(c), each point (x0,0) on the x axis 
(0 <xc < 1) represents a singular point of the dynamical 
system. Again, these solutions can be found exactly and 
are given by 

a(t) = b(t) = (1 -xc) -l’%, 

p(t) =3&p, 

p(t) = 3(y- 1)X()+, 

g(t) = ((3y- 2)/3)x&-‘. 

As above, they satisfy p > 0, p + 3j = 0. All these solu- 
tions represent the endpoint (t = CO ) of trajectories that 
start at the cigar singularity (0, - 2) with zero energy 
density. 

3. P<O 
In the negative fl (lower) region of 9 there are a 

variety of types of trajectories. There are trajectories that 
evolve from the cigar singularity at (0, - 2) and leave the 
region .9? after a finite value oft (Figs. 2, 4, 5, and 6) and 
therefore only describe the early (asymptotic) behavior 
of suitable models. There are trajectories which expand 
from the cigar singularity at (0, - 2) and remain in the 
region 9’ for all time. These models all isotropize as 
t-t CO and can evolve to the Milne universe at (0,O) or to 
one of the imperfect fluid FRW models at (x0,0), 0 
<xc< I (see Figs. 2, 4, 5, and 6). 

In the case m = n = 0 (Fig. 3) (i.e., viscosity pro- 
portional to expansion) all trajectories enter the region 9’ 
at a finite value oft > 0 and can therefore describe the late 
(asymptotic) behavior of suitable models only. 

Finally, the case &, = v. = 0, y = 2 [Fig. 2(iv)] has 
solutions that evolve from the boundary p2 + 4x = 4 (0 
< 0), and leave the region at a finite value of t. Again, 
these solutions can, at best, describe the early (asymp- 
totic) behavior of suitable models. 

A comparison between Fig. 1, which describes the 
non-LRS perfect fluid Bianchi V trajectories, and Figs. 
2-6, which describe the LRS imperfect fluid Bianchi V 
trajectories, is instructive. All trajectories in the non-LRS 
perfect fluid case remain in the region where the energy 
density is non-negative (x>0,p2 + 4~~4). The basic pic- 
ture (y#2) is expansion from a cigar singularity at (0,2) 
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or (0, - 2), where the energy density vanishes (and 
hence matter is not dynamically important), to the Milne 
universe (0,O) as the model isotropizes. 

With the introduction of viscosity (and heat conduc- 
tion), no trajectories remain in the region where the en- 
ergy density is non-negative for all times (O< t < CO ) when 
p> 0, and many trajectories have this same property in 
the region fi < 0. Those trajectories that do remain in the 
region (x>0,p2 + 4x<4,p < 0) also expand from the cigar 
singularity at (0, - 2) (at t = 0) and isotropize asymp- 
totically approaching an FRW model on the x axis. As 
above, all of these models evolve from a singularity where 
the energy-density vanishes. 

8. Energy conditions 

As already noted, any trajectory that crosses the p 
axis must have x, and thus p, negative after (or before) a 
finite time. Such models can only be physically realistic 
asymptotically. All models with p > 0 (yf2) cross the /? 
axis and consequently cannot be used to construct phys- 
ically realistic scenarios. The phase portraits are not sym- 
metric about the x axis due to the second term (odd in fi) 
on the right-hand side of Eq. ( 1.6). This term arises due 
to the nonzero heat conduction. Indeed, as indicated ear- 
lier, the nonzero component of the heat conduction vec- 
tor satisfies p = - q,/8 and so a change in sign of B 
corresponds to a change in the direction of the flow of 
heat conduction, and the two regions p > 0 and p < 0 cor- 
respond to distinct physics. Henceforward, we shall only 
consider the case p < 0. 

In order to be viable cosmologies it is not sufficient 
for the models to be confined to the region x)0. Other 
energy conditions must be satisfied as well. Therefore, 
although there are trajectories (for 0 < 0) which start and 
end at singular points and are confined to the region 9%’ 
(and so have p)O for all time), the corresponding solu- 
tions need not be physically acceptable since the energy 
conditions may be violated. We can write the energy con- 
ditions as follows: 

(i) weak energy conditions: 

LO 
- po, 

ilo & 
-$++a (5.1) 

(ii) dominant energy conditions: 

LO 
- po, 

ilo 47 A0 
jjzz”$” - $ ; (5.2) 
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TABLE I. (For fi<O) The noted energy conditions are always satisfied if the conditions indicated are satisfied (nr = no restriction). 

Energy conditions 

weak 

dominant’ 

x-0 H-0 
4 

k - 5Totlo>O 
4 

co - mozo 
50 = 70 = 0 

fr- co+ ($&>0 
O<m,n < 1 
m=n=l fr- So + ( 47706)>0 Wm,n) 

,<4Z 
m,n> 1 

Y<4/3 

strong s‘o = 770 = 0 
icy- 1) -co+ (frloab0 

O<m,n < 1 
m=n=l 

nr m,n> 1 

“The conditions stated in these cases are those in addition to the weak energy conditions. 

hr- 1) - CO + &d) 20 Wm,n) 

(iii) strong energy conditions: 

-$+ c %a no 4z 
P e -$++>o 

(a = 1,2,3), where the eigenvalues of the Bianchi V im- 
perfect fluid energy-momentum tensor are given by 

20 1 -$=~(~-2)x-;~+;?7~x” 

1 2 

-- 
2 Id 

gx-g&P -&3x” -02, 
) I 

(5.4) 

4 1 7jq(y-2)x-;&xm-577&x” 

+; I4 gx-5d(” +xn -@02, J2 I (5.5) 

12 a3 1 
-$=$=#Y- l)x--~~~+;?lopx” 

[where O2 3 (p2/9) (4 - f12 - 4x)]. 
Now, a given model, with specific values for go, qo, 

m, n, and y, may or may not satisfy the weak and/or 
dominant and strong energy conditions for all x and 8; in 
particular, such a model may only satisfy these energy 
conditions for certain values of x (if at all), whence the 
qualitative nature will only be valid asymptotically (e.g., 
for small x or xz 1). Due to the term O2 in Pqs. (5.4)- 
(5.6) a full analysis is difficult. Here, we shall simply note 
that (for fl< 0) the various energy conditions are always 
satisfied for the parameters indicated in Table I. We also 
remark that in principle, since all of the eigenvalues (di- 
vided by 82) are functions of x and fi only, (for particular 
values of cob, qo, m, n, and y) the regions in the x - p 
plane for which the various energy conditions are satisfied 
can be sketched, thereby providing a simple illustration of 
which trajectories satisfy the energy conditions. 

C. Previous research 

Murphy’ has given an exactly solvable flat FRW 
model with bulk viscosity [ proportional to the density, 
i.e., 5 = crp, in which the singularity, in a sense, is elim- 
inated. The “age of the universe” is infinite in this model 
but the energy conditions are only satisfied after a finite 
time. 

Belinskii and Khalatnikov4 have studied Bianchi I 
cosmological models that include viscosity to determine if 
this characteristic of elimination of the singularity is 
found in more general models. They assume equations of 
state p = (y - 1 )p, < = &-@, q = vap” (at least asymp- 
totically ), whence the governing differential equations re- 
duce to a plane-autonomous system. These constants cl 
and c2 are subject to a number of restrictions, similar to 
those obtained in the previous section from the energy 
conditions. A complete picture of the integral curves is 
then constructed for various suitable values of the expo- 
nents and phase portraits are obtained by matching to- 
gether different asymptotic regions. They arrive at four 
basic conclusions. First, the cosmological singularity re- 
mains an inevitable factor of the evolution of the universe. 
Second, there are a variety of possible expansion scenar- 
ios but near the cosmological singularity the picture is 
unique-the singularity has infinite curvature invariants 
but the energy density vanishes at the singularity. Third, 
there are solutions corresponding to both expansion and 
contraction of the universe and these differ insofar as the 
behavior of the energy density of matter near the cosmo- 
logical singularity is concerned. A contraction starts with 
isotropic FRW stages and ends with an isotropic FRW 
singularity. Finally, the process of expansion of the uni- 
verse will, in general, lead to an isotropic FRW expan- 
sion. Depending on the initial conditions, the models 
evolve to either a node corresponding to a usual FRW 
picture with a negligible role of viscosity or a node where 
the viscosity continues to exert a substantial influence. 

The situation has been generalized to Bianchi II cos- 
mologies with viscosity by Parnovskii,6 in which the gen- 
eral conclusions drawn by Belinskii and Khalatnikov are 
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confirmed. The author also argues that models of Bianchi 
types VI, VII, VIII, and IX can be considered, but that 
the picture they give hardly differs qualitatively from the 
systems already investigated (and, in addition, the result- 
ing systems of equations require the introduction of mul- 
tidimensional phase spaces and are thus difficult to ana- 
lyze) . 

In some related work Belinskii and Khalatnikov’ 
have qualitatively studied the effect of the inclusion of 
bulk viscosity in the standard FRW cosmologies. By de- 
termining the behavior of the integral curves when the 
viscosity asymptotically has the form of a power law in 
the energy density (i.e., as p-0 and p-+ CO ) and joining 
them up in these asymptotic regions, (“matched-up”) 
phase portraits are obtained describing models valid for 
all time. This work has been generalized to include a 
nonzero cosmological constant.8 The qualitative nature of 
isotropic FRW models with bulk viscosity of the form 
6 = &’ has also been studied in Ref. 9. In particular, 
models with c = f received special attention, and it was 
found that the only possible solutions that are structur- 
ally stable are those with c = f (0~6 f if a nonzero 
cosmological constant is included). 

V. CONCLUSION 

By using the equations in Sec. I (derived in Refs. I 
and II), we have obtained qualitative information about 
LRS Bianchi type V models containing a viscous fluid 
and heat conduction with equations of state ( 1.1) . From 
this we are able to calculate the asymptotic behavior of 
models to the past and to the future. In particular, we 
have shown that the general results obtained by Murphy 
and Belinskii and Khalatnikov hold in the Bianchi V case 
as well. As found by Murphy,’ there are open FRW mod- 
els with viscosity for which there is no initial singularity 
(cf. Fig. 3); however, the energy conditions will be vio- 
lated at a finite time in the past in these models. The main 
conclusions found by Belinskii and Khalatnikov4 carry 
over here also. In all cases the models expand as I+ CO 
(there are no models which contract here) toward an 
isotropic FRW model. In the non-FRW cases the cosmo- 
logical singularity remains an inevitable factor of the ev- 
olution and the energy density vanishes at the singularity 
[i.e., at the point (0, - 2)]. Several FRW models [cf. 
Figs. 4(b) and (c) and 5 (b)] evolve from the nonsingular 
Mime universe [at (O,O)], but the energy density still van- 
ishes at this initial point. We recall that Belinskii and 
Khalatnikov conclude that “this phenomenon can be in- 
terpreted as production of matter by the gravitational 
field at the instant of the big bang.” Again, depending on 
the situation considered, we can have a negligible role of 
viscosity asymptotically (at the point x = 0, p = 0) or 
the viscosity can continue to exert a substantial influence 
[at the points (x0,0), 0 <x0< 11. We find that the global 
behavior (e.g., types of singular points) depends prima- 

rily on the bulk viscosity although the precise (local) 
details depend on both bulk and shear viscosity. 

It may be worth pointing out the differences and sim- 
ilarities between this and previous work. In this work we 
employ the variables x and /3 used by Collins,3 and gen- 
eralize his work in the case of a Bianchi V space-time to 
include dissipative terms. The work by Belinskii and 
Khalatnikov includes viscous terms; the differences here 
are that (i) we use variables x and p (not p and H), (ii) 
heat conduction is also included, and (iii) we employ 
equations of state c/0 = [o(p/02)m and v/8 = vo(p/82)” 
(rather than g = &@ and 7 = ~,$*). We note that in 
the particular case m = n = l/2( ct = c2 = l/2), these 
sets of equations of state are the same (although our 
models are still different since there is nonzero heat con- 
duction). This is the particular case in which our equa- 
tions of state are independent of the expansion. It is in- 
teresting to note that this case has received a lot of 
attention in the literature.’ 

It has been the aim of this research to study the qual- 
itative nature of cosmological models more complex than 
those studied so far in the literature. Although the models 
investigated here are very specialized, this work is at least 
a first step in the right direction. Obviously, it would be 
useful to obtain qualitative descriptions, like those in Sec. 
III, for more general universe models. In situations in 
which the differential equations describing a cosmology 
can be reduced to a plane-autonomous system, it is pos- 
sible to give such a qualitative description; consequently, 
it is of interest to study these highly specialized situations. 
While such cosmologies may not exhibit the same behav- 
ior as general models, they do, as Collins and Ellis” have 
pointed out, show exact behavior of solutions of the full 
field equations. As seen above in the case of a class of 
Bianchi V imperfect fluid models, this behavior is much 
richer than in many of the cosmologies studied 
previously. 
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