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We study a class of inhomogeneous and anisotropicG2 string cosmological mod-
els. In the case of separableG2 models we show that the governing equations
reduce to a system of ordinary differential equations. We focus on a class of sepa-
rable G2 M-theory cosmological models, and study their qualitative behavior~a
class of models with time-reversed dynamics is also possible!. We find that generi-
cally these inhomogeneous M-theory cosmologies evolve from a spatially inhomo-
geneous and negatively curved model with a nontrivial form field toward spatially
flat and spatially homogeneous dilaton-moduli-vacuum solutions with trivial form
fields. The late time behavior is the same as that of spatially homogeneous models
previously studied. However, the inhomogeneities are not dynamically insignificant
at early times in these models. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1504886#

I. STRING COSMOLOGY

Nonperturbative M-theory encompasses and unifies all five anomaly free, perturbative super-
string theories1 and corresponds to eleven-dimensional supergravity in the low-energy limit.2 In
particular, the compactification of M-theory on a circle,S1, leads to the type IIA superstring. A
study of the qualitative cosmological effects that can arise in M-theory is therefore of considerable
importance. To lowest order~in the inverse string tension!, the tree-level effective action for
massless fields contains a dilaton, a form field~which in four-dimensions is dynamically dual to
pseudoscalar axion field! and~a! stringy cosmological constant~s!. Even in this approximation the
one-loop string equations of motion for inhomogeneous backgrounds are very difficult to solve,
and it is a useful first step to consider models in which the homogeneity is broken only in one
spatial direction. Metrics that admit two commuting~orthogonally transitive! space-like Killing
vectors are referred to asG2 space–times.

String models admitting an Abelian group,G2 , of isometries have a number of important
physical applications. The spatially homogeneous Bianchi types I–VIIh and locally rotationally
symmetric~LRS! types VIII and IX admit aG2 group of isometries3 and so theG2 cosmologies
can be considered as inhomogeneous generalizations of these Bianchi models. Nonlinear inhomo-
geneities in the dilaton and axion fields can be investigated and, in principle, this allows density
perturbations in string-inspired inflationary models such as the pre-big bang scenario to be
studied.4,5 Given the potential importance of this scenario it is important to study its generality
with respect to inhomogeneities as well with respect to anisotropies. The general effects of small
inhomogeneities and anisotropies have been studied by Veneziano.4

In general relativity~GR! the generic singularity is neither spatially homogeneous nor isotro-
pic. Hence it is of interest to study more general models. In particular, it has been conjectured that
G2 metrics represent a first approximation to the general solution of Einstein gravity in the vicinity
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of a curvature singularity.6–9 The high curvature regime is precisely the regime where stringy
deviations from GR are expected to be significant. TheG2 models studied here may therefore
provide insight into the generic behavior of cosmologies at very early times.

A number of exact inhomogeneous and anisotropicG2 string cosmologies have been found.
Barrow and Kunze studied an inhomogeneous generalization of the Bianchi type I string
cosmology10 and Feinstein, Lazkoz, and Vazquez-Mozo derived a closed, inhomogeneous model
by applying duality transformations on the LRS Bianchi type IX cosmology.11 Clancyet al. have
found inhomogeneous generalizations of the Bianchi type VIh universe and have studied their
asymptotic behavior.12

In general, the field equations reduce to a system of coupled, partial differential equations in
two variables when spatial homogeneity is broken along a single direction. Unfortunately, these
equations are still very complicated. However, solutions can be found due to the noncompact
global symmetries of the string effective action. When the metric admits two commuting space-
like Killing vectors, there exists an infinite-dimensional symmetry on the space of solutions that
may be identified infinitesimally with the O~2,2! current algebra.13–15 This symmetry reduces to
the Geroch group, corresponding to the SL(2,R) current algebra, when the dilaton and two-form
potential are trivial,16 and includes the global SL(2,R) S-duality of the action.

New inhomogeneousG2 string cosmologies containing a nontrivial two-form potential may
be generated by an application of both theS- and T-duality symmetries from simpler~dilaton-
vacuum! seed solutions. Lidseyet al.17 discuss the noncompact, global symmetries of the string
effective action in a variety of settings and review various methods for solving the Einstein-scalar
field equations utilizing generating techniques~from solutions with a minimally coupled, massless
scalar field from a vacuum,G2 cosmology!. In particular, Feinstein, Lazkoz, and Va´zquez-Mozo11

present an algorithm which permits the construction of inhomogeneous string solutions by em-
ploying a Buscher transformation, inverse scattering techniques,7,8 followed by the generating
technique of Wainwright, Ince, and Marshman.18 Feinsteinet al.employ this algorithm to generate
a closed, inhomogeneous string cosmology withS3 topology from a LRS Bianchi type IX
solution.11,19 However, this algorithm involves a number of nontrivial operations, and an alterna-
tive and more straightforward approach is to apply an O~2,2! transformation directly to the seed
cosmology.17

In this paper we shall consider a class of separable string cosmological models whose gov-
erning equations reduce to ordinary differential equations~ODE! which can be studied by quali-
tative methods. In particular, we shall focus on a class of M-theory cosmological models.

II. STRING ACTION

We consider the general string action in the form20

S5E d4xA2gH e2FFR1~¹F!226~¹b!22
1

2
e2F~¹s!222LG2

1

2
Q2e26b2LMJ , ~2.1!

in terms of the pseudoscalar axion field,s, the four-dimensional dilaton fieldF, and the modulus
field b, whereL andLM represent cosmological constant terms andQ2 may be interpreted as a
zero-form field strength. This is a phenomenological action representing the bosonic sector of the
effective supergravity action for the low-energy limit of M-theory and encompasses other string
theories.20 We are particularly interested in the class of four-dimensional cosmologies derived
from the type IIA string and M-theory effective actions and which include a nontrivial Ramond–
Ramond~RR! sector.21 In these models a specific compactification from eleven to four dimensions
was considered, where the topology of the internal dimensions was assumed to be a product space
consisting of a circle and an isotropic six-torus;21 this is dynamically equivalent to compactifica-
tions on a Calabi–Yau threefold.22 The FRW models in this class of cosmologies was studied in
Ref. 21.

Defining
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LM523e2F~¹b!22
1

4
eF~¹s!22Le2F2

1

4
Q2e26b2

1

2
LM ; Tab[gabLM22

]LM

]gab ,

the Euler–Lagrange equations then lead to the field equations~FE!23

Gmn52¹m¹nF16¹mb¹nb1 1
2 e2F¹ms¹ns2 1

2 gmn@~¹F!216~¹b!21 1
2 e2F~¹s!212L

1 1
2 Q2eF26b1LMeF22hF#, ~2.2a!

hF5 1
2 ~¹F!213~¹b!22 1

4 e2F~¹s!21L2 1
2 R, ~2.2b!

hb5¹mF¹mb2 1
4 Q2eF26b, ~2.2c!

hs52¹mF¹ms. ~2.2d!

In Eqs. ~2.2a!–~2.2d!, greek indices take on values 0, 1, 2, 3, and units are chosen so that
16pĜ51.

III. G2 COSMOLOGIES

Let us examine~2.2! within the context ofG2 cosmological models described by the line
element

ds25e2F~2dt21dz2!1eG~eq dx21e2q dy2!, ~3.1!

where the metric functions$F,G,q% and the string functions$F,b,s% are all functions oft andz
only. For anyq(t,z), we defineq̇[ ]q/]t , q8[ ]q/]z, andD2q[q̈2q9. The local behavior of
these models is determined by the gradientBm[]mG, and cosmological solutions arise ifBm is
globally time-like.

Also, the Ricci scalar is given by

R5 1
2 e22F@4D2G14D2F13~Ġ22G82!1~ q̇22q82!#. ~3.2!

Using these expressions, and defining the modified dilaton field,

w[F2F2G, ~3.3!

the field equations become

D2w5 1
2 @~ ẇ1Ḟ !22~w81F8!2#1 1

4 ~Ġ22G82!1 1
4 ~ q̇22q82!13~ ḃ22b82!

2 1
4 e2w12F12G~ ṡ22s82!2Le2F, ~3.4a!

D2b5@~ ẇ1Ḟ !ḃ2~w81F8!b8#1 1
4 Q2ew13F1G26b, ~3.4b!

D2s52@~ ẇ1Ḟ12Ġ!ṡ2~w81F812G8!s8#, ~3.4c!

D2q5@~ ẇ1Ḟ !q̇2~w81F8!q8#, ~3.4d!

D2F5 1
2 ~ ẇ1Ḟ !22 1

2 ~w81F8!22 1
4 ~Ġ22G82!2 1

4 ~ q̇22q82!23~ ḃ22b82!

1 1
4 e2w12F12G~ ṡ22s82!2Le2F2 1

2 Q2ew13F1G26b2LMew13F1G, ~3.4e!
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D2G5@~ ẇ1Ḟ !Ġ2~w81F8!G8#1~ ṡ22s82!e2w12F12G2 1
2 Q2ew13F1G26b2LMew13F1G,

~3.4f!

~ ẇ1Ḟ !•1~w81F8!852~ ẇ1Ḟ !Ḟ12~w81F8!F81 1
2 ~Ġ21G82!1 1

2 ~ q̇21q82!16~ ḃ21b82!

1 1
2 ~ ṡ21s82!e2w12F12G, ~3.4g!

~ ẇ1Ḟ !85 1
2ĠG81 1

2q̇q816ḃb81F8~ ẇ1Ḟ !1Ḟ~w81F8!1 1
2 e2w12F12Gṡs8. ~3.4h!

These equations reduce to those in Refs. 20 and 21 in the appropriate limits.

IV. SEPARABLE G2 STRING COSMOLOGIES

A. General case

Let us assume separability of the metric functions of the form

F~ t,z![F~ t !1 f ~z!, G~ t,z![G~ t !1g~z!, q~ t,z![q~ t !1n~z!,

and appropriate separability conditions on the matter fieldsF(t,z), b(t,z), s(t,z). Then the Ricci
scalar is given by

R5 1
2 e22F22 f@4G̈14F̈13Ġ21q̇22~4g914 f 913g821n82!#.

If

4g914 f 913g821n825C, ~4.1!

whereC is a constant, then we obtain a condition which constrains the spatial dependence of the
metric. The Ricci scalar is then given by

R5 1
2 e22F22 f@4G̈14F̈13Ġ21q̇22C#.

Putting this expression for the Ricci scalar into the action~2.1!, the spatial dependence of the
geometrical terms can be eliminated~by integration over the spatial coordinates in the action!.
After applying any further separability conditions~on the matter fields!, the resulting FE will be a
system of ODEs. Note that the effect of the spatial dependence is to add a further contribution (C)
to the cosmological constantL in the action.

B. Specific example: Linear dependence in z

In an attempt to remove thez dependence, let us assume separability of the form

F~ t,z![F~ t !1 1
2 cz, G~ t,z![G~ t !, q~ t,z![q~ t !1az,

F~ t,z![F~ t !1mz, b~ t,z![b~ t !1nz,

s~ t,z![s~ t !1 lz,

wherea, c, l , m, n are constants@a2 is equivalent to the constantC in Eq. ~4.1!#, and therefore

w~ t,z!5F~ t !2F~ t !2G~ t !1~m2 1
2 c!z[w~ t !1~m2 1

2 c!z.
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With the above-given assumptions, the metric becomes an extension of the inhomogeneous scalar-
field G2 solutions found by Feinstein and Ibanez24 to M-theoretical models. In addition, for
particular values of the parameters, the metric reduces to spatially homogeneous Bianchi I, III, and
VI0 models. Hence,

ẅ5 1
2 ~ ẇ1Ḟ !21 1

4Ġ
21 1

4q̇
213ḃ22 1

4 e2w12F12G12mz~ ṡ22 l 2!2Le2F1cz2 1
4 ~a212m2112n2!,

~4.2a!

b̈5~ ẇ1Ḟ !ḃ1 1
4 Q2e[w13F1G26b1(c1m26n)z]2mn, ~4.2b!

s̈52~ ẇ1Ḟ12Ġ!ṡ1ml, ~4.2c!

q̈5~ ẇ1Ḟ !q̇2ma, ~4.2d!

F̈5 1
2 ~ ẇ1Ḟ !22 1

4Ġ
22 1

4q̇
223ḃ21 1

4 e2w12F12G12mz~ ṡ22 l !2Le2F1cz

2 1
2 Q2e[w13F1G26b1(c1m26n)z]2LMew13F1G1(c1m)z1 1

4 ~a222m2112n2!, ~4.2e!

G̈5~ ẇ1Ḟ !Ġ1~ ṡ22 l 2!e2w12F12G12mz2 1
2 Q2e[w13F1G26b1(c1m26n)z]2LMew13F1G1(c1m)z,

~4.2f!

~ F̈1ẅ !52~ Ḟ1ẇ1m!~ Ḟ1 1
2 c!1 1

2Ġ
21 1

2 ~ q̇1a!216~ ḃ1n!21 1
2 ~ ṡ1 l !2e2w12F12G12mz.

~4.2g!

Note that the constraint equation can be rewritten as

05~ Ḟ1m!22ẇ21c~ Ḟ1ẇ1m!1 1
2Ġ

21 1
2 ~ q̇1a!216~ ḃ1n!21 1

2 ~ ṡ1 l !2e2w12F12G12mz

1Le2F1cz1 1
2 Q2e[w13F1G26b1(c1m26n)z]1LMew13F1G1(c1m)z. ~4.3!

In order for the FE to be independent ofz, it is necessary thatm50 and that eitherc50 or
c56n. Furthermore ifc50 then we have that eithern50 or Q50. In thec56n case, we have
thatL5LM50. It is the latter case that is of interest to us here. From here forth we shall assume
that c56n and thatL5LM50. This particular subcase, which is of relevence in M-theory
cosmology, is of special physical interest.~The resulting FE in the remaining cases are displayed
in Ref. 23.!

V. INHOMOGENEOUS M-THEORY COSMOLOGICAL MODELS

Substitutingc56n, m50, L50, LM50 into ~3.4!, ~4.3! ~and taking the linear combination
@~4.2g!–~4.2e!–~4.2a!#! we obtain the following system of ODE with two constraints:

ẅ5 1
4 ~ q̇21Ġ22a212~ ẇ1Ḟ !2112ḃ2212n21e2w12F12G~ l 22ṡ2!!, ~5.1a!

b̈5ḃ~ ẇ1Ḟ !1 1
4 Q2e26b1w13F1G, ~5.1b!

s̈52ṡ~ ẇ1Ḟ12Ġ!, ~5.1c!

q̈5q̇~ ẇ1Ḟ !, ~5.1d!

F̈5 1
4 ~3a21q̇21Ġ2136n2112ḃ21e2w12F12G~ l 213ṡ2!22~ ẇ2Ḟ !218Ḟ2!, ~5.1e!

G̈5Ġ~ ẇ1Ḟ !2e2w12F12G~ l 22ṡ2!2 1
2 Q2e26b1w13F1G, ~5.1f!
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052ẇ22Ġ22q̇2212ḃ222Ḟ2212n22a22e2w12F12G~ l 21ṡ2!2Q2e26b1w13F1G,
~5.1g!

05aq̇1 le2w12F12Gṡ16n~ ẇ1Ḟ12ḃ !. ~5.1h!

From Eq. ~5.1g! we are able solve for and make a global substitution for the quantity
Q2e26b1w13F1G. Making this substitution we have the following system of ODEs:

ẅ5 1
4 ~ q̇21Ġ22a212~ ẇ1Ḟ !2112ḃ2212n21e2w12F12G~ l 22ṡ2!!, ~5.2a!

b̈5 1
4 ~2ẇ22Ġ22q̇2212ḃ222Ḟ2212n22a22e2w12F12G~ l 21ṡ2!!1ḃ~ ẇ1Ḟ !, ~5.2b!

s̈52ṡ~ ẇ1Ḟ12Ġ!, ~5.2c!

q̈5q̇~ ẇ1Ḟ !, ~5.2d!

F̈5 1
4 ~3a21q̇21Ġ2136n2112ḃ21e2w12F12G~ l 213ṡ2!22~ ẇ2Ḟ !218Ḟ2!, ~5.2e!

G̈5Ġ~ ẇ1Ḟ !2e2w12F12G~ l 22ṡ2!2 1
2 ~2ẇ22Ġ22q̇2212ḃ222Ḟ2212n22a2

2e2w12F12G~ l 21ṡ2!!, ~5.2f!

05aq̇1 le2w12F12Gṡ16n~ ẇ1Ḟ12ḃ !. ~5.2g!

From the constraint~5.1g! we see that ifẇ50, then all of the other state variables must be
simultaneously zero, which can only occur at an equilibrium point of the system. Henceẇ must be
positive~or negative! throughout the physical phase space. Here we shall assumeẇ.0 ~the case
ẇ,0 can be obtained by a time reversal—see the following!.

We define new variables of the form

F̃5
Ḟ

ẇ
, G̃5

1

&

Ġ

ẇ
, q̃5

1

&

q̇

ẇ
, s̃5

1

&
ew1F1G

ṡ

ẇ
,

b̃5A6
ḃ

ẇ
, C̃15Aa2112n2

2

1

ẇ
, C̃25

1

&
ew1F1G

l

ẇ

and a new time variable

dt

dt
5

1

ẇ
. ~5.3!

The variables are chosen so that the transformed dynamical system has a compactified phase
space. This property comes from the fact thatQ2e26b1w13F1G>0 which implies that Eq.~5.1g!
yields

1>F̃21G̃21q̃21s̃21b̃21C̃1
21C̃2

2. ~5.4!

The dynamical system~5.2! becomes

dF̃

dt
5F̃~2F̃2 r̃ !1

1

2
~ q̃21G̃21b̃213s̃213C̃1

21C̃2
22~12F̃ !2!, ~5.5a!
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dG̃

dt
5G̃~11F̃2 r̃ !2

1

&
~12F̃22G̃22q̃223s̃22b̃22C̃1

21C̃2
2!, ~5.5b!

dq̃

dt
5q̃~11F̃2 r̃ !, ~5.5c!

ds̃

dt
52s̃~&G̃1 r̃ !, ~5.5d!

db̃

dt
5b̃~11F̃2 r̃ !1

A6

2
~12F̃22G̃22q̃22s̃22b̃22C̃1

22C̃2
2!, ~5.5e!

dC̃1

dt
52C̃1r̃ , ~5.5f!

dC̃2

dt
5C̃2~11F̃1&G̃2 r̃ !, ~5.5g!

and

r̃ 5 1
2 @~11F̃ !21G̃21q̃21b̃21C̃2

22C̃1
22s̃2#,

where the constraint equation becomes

05A 2

a2112n2C̃1F&aq̃16nS 11F̃1
2

A6
b̃ D G12C̃2s̃. ~5.6!

There exists a first integral in the physical phase space (q̃Þ0,C̃1Þ0) for this system. The
function

M5
s̃C̃2

q̃C̃1

is constant, i.e.,M 850. This implies a first integral for the original system of ordinary differential
equations~5.2!

q̇5Cṡe2w12F12G,

whereC is a constant.

A. Invariant sets, monotonic functions

We first recall that the phase space for this dynamical system is the interior and boundary of
the compact set given by

1>F̃21G̃21q̃21s̃21b̃21C̃1
21C̃2

2. ~5.7!

Various hyperplanes divide the phase space into a number of different regions, they areq̃50, s̃

50, C̃150, and C̃250 hyperplanes. We note thatC̃150 divides the phase space into two
distinct regionsC̃1,0 andC̃1.0. The dynamics in the invariant setC̃1,0 is the time reversal
of the dynamics in the invariant setC̃1.0 @see~5.3!#.

Consider the function
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M15
s̃2C̃2

2

q̃4

and its derivative

dM1

dt
522M1~11F̃ !.

We easily see that this function is monotonically decreasing in the invariant setq̃Þ0,s̃Þ0,
C̃2Þ0. Therefore, we can conclude that there are no closed or periodic orbits in the seven-
dimensional phase space, except possibly on the lower dimensional boundaries of this seven-
dimensional invariant set.

We restrict ourselves now to the invariant sets̃50. Consider the function

M25
C̃1

2

q̃2

and its derivative

dM2

dt
522M2~11F̃ !.

We easily see that this function is monotonically decreasing in the invariant setq̃Þ0,C̃1Þ0.
Therefore, we can conclude that there are no closed or periodic orbits in this six-dimensional
phase space, except possibly on the lower dimensional boundaries of this six-dimensional invari-
ant set.

In the six-dimensional invariant setC̃250, the function

M35
C̃1

2

q̃2

has the derivative

dM3

dt
522M3~11F̃ !

which is monotonically decreasing in the setC̃250,q̃Þ0,C̃1Þ0. Therefore we conclude that
there are no closed or periodic orbits in this six-dimensional invariant set.

In the six-dimensional invariant setq̃50, the function

M45
s̃2C̃2

2

C̃1
4

has the derivative

dM4

dt
52M4~11F̃ !,

which is monotonically increasing in the setq̃50,s̃Þ0,C̃2Þ0. Therefore we can conclude that
there are no closed or periodic orbits in this six-dimensional set.
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With the existence of these monotonic functionsM1 , M2 , M3 , andM4 , we can conclude that
there are no closed or periodic orbits in the physical six-dimensional phase space@except possibly
on lower dimensional~less than 5! invariant sets#.

The zero-curvature spatially homogeneous and isotropic space–times are contained in the set
q̃5C̃15C̃25G̃2&F̃50 union q̃5C̃15s̃5G2̃&F̃50.

The matter fields in~2.1! satisfy various energy conditions. For example, the positivity of the
kinetic energy of the pseudoaxion scalar field,s, demands thatṡ22 l 2>0 ~i.e., s̃22C̃2

2>0).
However, we note thats̃22C̃2

250 is not an invariant set.

B. Equilibrium points and exact solutions

There are two equilibrium points and one three-dimensional equilibrium set.
The three-dimensional equilibrium set is given by

$F̃21G̃21q̃21b̃251,s̃50,C̃150,C̃250%.

Note that since bothC̃150 andC̃250 we necessarily have thata5n5 l 50. At this point the
value of r̃ 511F̃0 . The exact solution is then

w~ t !5h12
1

r̃
ln~ r̃ t1h0!,

F~ t !5F0S h12
1

r̃
ln~ r̃ t1h0! D1F1 ,

G~ t !5&G0S h12
1

r̃
ln~ r̃ t1h0! D1G1 ,

q~ t !5&q0S h12
1

r̃
ln~ r̃ t1h0! D1q1 ,

s~ t !5s1 ,

b~ t !5
1

A6
b0S h12

1

r̃
ln~ r̃ t1h0! D1b1 ,

whereF0
21G0

21q0
21b0

251 and whereF1 , G1 , q1 , s1 , b1 , h1, andh0 are integration constants.
Since a5n5 l 50, this metric is spatially homogeneous~and flat!. Since s̃50 and Q50

~which follows from the other conditions!, this equilibrium set represents spatially flat solutions
where the form-fields~the axion field and the four-form field strength! are trivial and only the
dilaton and moduli fields are dynamically important. These solutions are known as the ‘‘dilaton-
moduli-vacuum’’ solutions~and their analytical form is given in Ref. 25!.

Recall that the dynamics of these models is restricted by the constraint given by Eq.~5.6!. At
these equilibrium points we are able to locally solve for the value ofC̃1 and substitute into the
remaining equations. The eigenvalues in the six-dimensional constraint surface are

0,0,0,&G̃,2&G̃212F̃,211F̃1&G̃2A6b̃.

The three zero eigenvalues correspond to the fact that this equilibrium set is three-dimensional. It
is clear that a subset of this equilibrium set will act as saddles of varying degree of stability, while

4857J. Math. Phys., Vol. 43, No. 10, October 2002 Inhomogeneous M-theory cosmologies

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

15:24:07



another subset will act as sinks. Consequently, a subset of these dilaton-moduli-vacuum solutions
with trivial form fields are sinks in the physical phase space, even in the presence of~negative!
spatial curvature, and are thus generic attracting solutions.

A second equilibrium point is

H F̃52
2

3
,G̃50,q̃50,b̃52

1

A6
,s̃56

&

6
,C̃15

&

3
,C̃250J .

Note that sinceC̃250 we necessarily have thatl 50. At this point the value ofr̃ 50. @Note, since
the dynamical system~5.5! is invariant under the transformation (C̃1 ,C̃2)→(2C̃1 ,2C̃2) there
exists a corresponding equilibrium point with aC̃152&/3.] The exact solution is then

w~ t !5h0t1h1 , F~ t !52 2
3 ~h0t1h1!1F1 , G~ t !5G1 ,

q~ t !5q1 , s~ t !57e21/3(h0t1h1)2(F11G1)1s1 , b~ t !52 1
6 ~h0t1h1!1b1 ,

where h05 3
2Aa2112n2, Q25 1

2(a
2112n2)e6b123F12G1, and F1 , G1 , q1 , s1 , b1 , h1 are all

constants. In this situation the variableq̃ can be eliminated. The eigenvalues restricted to the
constraint surface are

1
3 , 1

3 , 1
6 ~16A1518& i !, 1

6 ~16A1528& i !.

This point represents a past attractor or a source. This corresponds to a spatially nonvacuum
inhomogeneous model with a diagonal Einstein tensor, having negative curvature.

The line element corresponding to this solution~after a few coordinate redefinitions! is

ds25C2e22Aa2112n2t16nz~2dt21dz2!1~eaz dx21e2az dy2!. ~5.8!

The third equilibrium point is

H F̃52
5

7
,G̃5

&

7
,q̃50,b̃52

A6

7
,s̃50,C̃15

2)

7
,C̃250J .

Note that sinceC̃250 we necessarily have thatl 50. At this point the value ofr̃ 50. @Note, since
the dynamical system~5.5! is invariant under the transformation (C̃1 ,C̃2)→(2C̃1 ,2C̃2) there
exists a corresponding equilibrium point with aC̃1522)/7.] The exact solution is then

w~ t !5h0t1h1 , F~ t !52 5
7 ~h0t1h1!1F1 , G~ t !5 2

7 ~h0t1h1!1G1 ,

q~ t !5q1 , s~ t !5s1 , b~ t !52 1
2 ~h0t1h1!1b1 ,

whereh05(7/2))Aa2112n2, Q25 1
3(a

2112n2)e6b123F12G1, andF1 , G1 , q1 , s1 , b1 , h1 are
all constants. This solution is a curved inhomogeneous model with a trivial axion field. In this
situation the variableq̃ can be eliminated. The eigenvalues restricted to the constraint surface are

2
7 , 2

7 , 4
7 ,2 2

7 , 1
7 ~16A23i !.

This point is always a saddle.

VI. DISCUSSION

We have studied several classes of inhomogeneous string models whose governing equations
reduce to ODE. In particular, we have found that generically solutions of the class of separableG2
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inhomogeneous M-theory cosmologies studied evolve from a spatially inhomogeneous and nega-
tively curved model with a nontrivial form fields toward~a subset! of spatially flat and spatially
homogeneous dilaton-moduli-vacuum solutions where the form-fields~the axion field and the
four-form field strength! are trivial and only the dilaton and moduli fields are dynamically impor-
tant. This late time behavior is the same as that of the spatially homogeneous models studied
previously. However, in these models the inhomogeneities are not dynamically insignificant at
early times, and the models asymptote~in the past! toward a new class of inhomogeneous cos-
mological models.

As noted earlier, the time-reversed dynamics of theẇ.0 models we have considered thus far
is equivalent to the dynamics of the case whereẇ,0. This follows by redefining the time variable
according to dt/dt 52 1/ẇ and appropriate definitions of the other state variables. The evolution
equations will have an ‘‘overall’’ change in sign, and hence the equilibrium points are identical in
both cases, but the eigenvalues have opposite signs. Consequently, the dynamics of theẇ,0
models is the time reversal of theẇ.0 models and the time-reversed dynamics of the above class
of models is deduced by interchanging the sources and sinks and reinterpreting expanding solu-
tions in terms of contracting ones, and vice versa.

Although at late times~in the ẇ.0 models! the inhomogeneities decay, the inhomogeneities
are important at intermediate times and, in particular, at early times. Thus the qualitative features
of the models are quite different to those of spatially homogeneous models studied previously. For
example, in a study of FRW models21 it was found that all negatively curved FRW models evolve
from the solution corresponding to a global source in which the curvature is~negative and!
dynamically important ~but with a trivial axion field! toward the dilaton-moduli-vacuum
solutions,25 even in the presence of spatial curvature. The physical interpretation of these models,
where both the NS–NS two-form potential and RR three-form potential are dynamically signifi-
cant, was discussed in Ref. 21, with particular emphasis on the fact that the RR field causes the
universe to collapse, but the NS–NS field has the opposite effect, whereby the interplay between
these two fields leads to the models undergoing bounces. In the models under investigation here,
orbits in the full phase space~with ẇ monotone! approach the dilaton-moduli-vacuum solution on
the zero-curvature boundary~at late times! and again exhibit a ‘‘bouncing’’ behavior; this bounc-
ing behavior is the result of the orbits shadowing orbits in the boundary that are constantly being
redirected to saddle points of the same or higher stability until it reaches a stable equilibrium.
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