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Homogeneous and isotropic, relativistic two-fluid oosmological models are investigated. In these 
models two separate fluids act as the source of the p-avitational field, as represented by the FRW 
line element. The general theory oftwo-ftuid PRW models in which neither fluid need be 
comoving or perfect is developed. However, attention is focused on the physically interesting 
special class of flat FR W models in which one fluid is a comoving .radiative perfect fluid and the 
second a noncomoving imperfect fluid. The first fluid is taken t() model the cosmic microwave 
background and the second to model the observed material content ofthe universe. One ofthe 
motivations of the present work is to model the observed velocity of our galaxy relative to the 
cosmic microwave background that was recently discovered by G. F. Smoot, M. V. Gorenstein, 
and R. A. Muller [Phys. Rev. Lett. 39, 898 (1977)]. Several models within this special class are 
found and analyzed. The models obtained are theoretically satisfactory in that they are 
represented by solutions of Einstein's field equations and the laws of thermodynamics in which all 
the physical quantities occurring in the solutions are suitably well behaved. In addition, the 
models are in agreement with current observations. Consequently it is believed that the models 
obtained are physically acceptable modellt of the universe. 

I. INTRODUCTION 

In this article we shall consider cosmological models 
that have two fluids (possibly imperfect) as the source of the 
gravitational field. In particular, we shall be dealing with 
isotropic and homogeneous models in which the metric is 
the general FRW line element given, in a "spherical polar 
coordinate system," by 

d~ = - c2 dt 2 + R2(t) (dr/(l - kr) 

(1.1) 

where t is the cosmic time, R is the expansion factor, and k 
the normalized curvature constant (i.e., k = - 1, 0, + I, 
depending on whether the model is open, flat, or closed). We 
shall also wish to study such models in "axial coordinates" in 
which the flat (k = 0) line element takes on the form 

d~ = - c2 dt 2 + R 2(t)(dx2 + dy2 + dz2} . (1.2) 

Although we shall be dealing with isotropic and homo­
geneous models, the analysis can, of course, be applied to 
general two-tluid cosmological models. In addition, we 
shall, for physical reasons that will be discussed below, focus 
our attention on models in which one of the two cosmologi­
cal fluids is a comoving perfect tluid (black-body) radiation 
field. 

The motivation behind this research is twofold. First, it 
has been established that cosmological models, in particular 
FRW models, can be interpreted as solutions of Einstein's 
field equations for a variety of diiferent sources. In the earli­
est solutions the source was taken to be a comoving perfect 
tluid. Later, and mainly in the 1960's, authors interpreted 
the gravitational field to be due to two cosmological tluids, 
both perfect and comoving (see Sec. II). More recently, I 

FR W models have been investigated in which the source is a 
noncomoving imperfect tluid either (i) with or without heat 
conduction or (ii) with or without electromagnetic field. It is 
thus the aim to complete this mathematical analysis and in­
vestigate FRW models in which two-tluid sources are pres­
ent, neither of which need be comoving or perfect. 

It will be noted that models of this type are already im­
plicitly available, for if we take a known two-tluid model, 
then we can "reinterpret" each of the two tluids separately 
using the techniques developed in Coley and Tupper. I How­
ever, in Secs. III and IV a general analysis of two-tluid cos­
mological tluids will be presented. 

It will also be noted that this does not, strictly speaking, 
complete the general investigation of the interpretation of 
FRW models, since articles have been written in which n 
(comoving, perfect) tluids have constituted the source of the 
gravitational field (see Sec. II). Thus in a full analysis there 
would be n tluids, in general noncomoving and not necessar­
ily perfect. However, such an analysis will not be undertaken 
here. First, an investigation involving n tluids (rather than 
two) would not introduce any new interesting or significant 
features from a mathematical point of view. Second, there is 
not such a strong physical motivation for studying n (> 2) 
tluid models. 

The second motivation for the present work is strictly 
physical. The presently accepted view of the evolution of the 
universe is that, except for very early times (when T> 1010_ 
1012 K, T - 1010 K corresponds to t - 10 sec), the universe is 
reasonably described by" a FRW model." The conventional 
wisdom is that the universe evolved initially from a radia­
tionlike state to a matterlike universe ("dust") at later times. 

The first FRW models to appear had as sources either 
comoving radiation perfect ftuids or comoving matter per-
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fect fluids; each model was supposedly applicable to differ­
ent eras in the evolution of the universe. Later, attempts were 
made to take a known radiation model and a known matter 
model and smoothly (or, at least, continuously) match up the 
models at P, = Pm (where P denotes the energy density and 
the indices refer to the radiation and matter fluids) in order 
to obtain a qualitative description of the evolution of the 
universe in terms of a single model (see, for example, Refs. 2 
and 3). 

The discovery in 19654
•
s of the 2.7 K isotropic cosmic 

microwave background, which was presumed to be a rem­
nant of the "primeval fireball," stimulated renewed interest 
in the subject, and led many authors to investigate FR W 
models which included both matter and radiation fields (for 
all times). In these models the source of the gravitational 
field is assumed to be two comoving perfect fluids; a brief 
review of this approach will be given in Sec. II. 

Recently it was discovered6 that there is an observed 
motion of our galaxy relative to the microwave background 
radiation. This, in turn, stimulates our present interest in 
models in which there are two cosmological fluids, one rep­
resenting the background radiation field and the second a 
matter field constituting the observed galaxies, and in which 
there is a relative motion between the two fields. We shall 
take the cosmic microwave background radiation field as 
comoving and thus seek models in which the matter field is 
noncomoving. Since the isotropy and homogeneity of both 
the cosmic microwave background and the observed matter 
is established to a reasonable experimental accuracy, we 
shall wish to study models in which isotropy and homogene­
ity is preserved, that is, FR W models. Thus we shall wish to 
investigate FRW models that have two fluids present, a co­
moving radiation field, and a tilting matter field. However, 
this is possibly only if one of the fluids (here assumed to be 
the matter field) is assumed to be imperfect. 

There is one more aspect to this type of research worth 
mentioning here. There are two approaches possible. First, 
the expansion factor R (t) in Eq. (1.1) can be specified and 
solutions are then sought in which two fluids constitute the 
source. The problem of finding such a model is essentially an 
algebraic mathematical problem; the outstanding problems 
that then need to be resolved require a determination of 
whether the resulting fluids are physically interesting. The 
second approach is to specify (physical) equations of state for 
the fluids present; seeking a model then consists of solving 
differential equations for the remaining unknown quantities 
in the model [for example, in the standard two-perfect-fluids 
case we have to solve an ordinary differential equation for 
R (t )). Both approaches have been taken in the literature, and 
both will be discussed in this article. 

As mentioned above, in Sec. III the theory of two gen­
eral fluid sources in FRW models will be investigated. We 
shall discuss both "radial" and "axial" systems. In Sec. IV 
we shall restrict attention to the physically important case in 
which one fluid is comoving, perfect (black-body) radiation 
fluid and the second fluid a noncomoving imperfect fluid. 
Several acceptable models will be found, which will be dis­
cussed in Sec. V. The notation to be used in this article is 
similar to that found in Coley and Tupperl and McIntosh.7

-
9 
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II. THE STANDARD THEORY OF TWO-FLUID 
COSMOLOGIES 

Einstein's field equations, with metric (1.1), and for a 
comoving perfect fluid source are (in cgs units) 

StrGp = 3 (R 2 + ke
2
) _ Ae2 

R2 R2 ' 
(2.1 ) 

•• • 2 2 

strGp = _ (2R + ~ + ~) + Ae2 , 
~ R R2 R2 

where A is the cosmological constant and a dot denotes dif­
ferentiation with respect to t. From these equations follow 
the conservation law 

(2.2) 

To complete the solution an equation of state relating p 
and P is needed. The dimensionless function E(t) is intro-
duced where ' 

E(t) p/pe2 . (2.3) 

[If A:fO, E(t) = (S1TGp/c2 - Ae2)/(S1TGp + Ae2), and A will 
appear in all subsequent equations. For the rest of this sec­
tion we shall not include the cosmological constant.] 

Suppose that the model contains both matter (with den­
sity Pm' pressure Pm) and radiation (p" p" and temperature 
T,), then we can write 

p = p, + Pm' P = P, + Pm . (2.4) 

Thus the universe consists of two (comoving) cosmological 
perfect fluids. The temperature in these models is usually 
taken to be that of the radiation of the cosmic microwave 
background (i.e., the temperature is taken to be Tr ), since it is 
argued that the thermal balance is maintained by the radi­
ation. Indeed, Szekeres and Barnes 10 argue that since the 
entropy of the universe is almost entirely carried by photons 
(the ratio of number densities of photons to baryons is 108 

based on a background temperature of 2. 7 K) the thermody­
namics is almost entirely dictated by the photon field. If 
thermal equilibrium is assumed during the expansion all 
components consequently share the common temperature 
T,. 

If the radiation field is black body we also have that 

P, = aT~, p,/c2 = !p, , (2.5) 

where a=7.S7xlO- ls ergcm- 3 deg-4 is Stefan's con­
stant. 

For the two-fluid model we can write the conservation 
law (2.2) as 

E, +Em =0, 

where 

E,=~ {e2 !!.. (p, ,R 3) + P, !!.. (R 3)} , 
R dt dt 

Em = ;3 {e2 :t (Pm R 3) + Pm :t (R 3)} , 

(2.6) 

(2.7) 

where E, is the rate of energy transfer per unit volume from 
matter to radiation and Em that from radiation to matter. 
These expressions were first introduced by Davidson II and 
used by McIntosh.7 
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If the two fluids do not interact then the radiation and 
matter are both independently conserved, i.e., 

Er =Em =0. (2.8) 

Since we have five variables, Pm' Pr' Pm' Pro and R, 
two field equations [two of Eqs. (2.1) or (2.2) or one of(2.8)] 
and essentially two equations of state [(2.5) and one of (2.8)], 
if we assume that the two fluids are separately conserved we 
only need one more equation of state to determine the model. 
This final assumption is usually taken to be that the pressure 
of the matter field Pm is zero; that is, the pressure from the 
random motions of galaxies and interstellar matter is negligi­
ble. Thus the matter is taken to be "dust" and consequently 

Pm =0. (2.9) 

Indeed, the inclusion of radiation in the FRW models is only 
slightly affected by its interaction with matter and, in fact, 
such an effect is of about the same magnitUde as that of 
in;luding a nonzero Pm .12 

As an illustration, with the above assumptions we ob­
tain 

Pr =elR -4, Pm =e~ -3, (2.10) 

and thus 

E(t) = 1/3(1 + cR) or R (t) = e*(1 - 3E)/E (2.11) 

(where el, e2' c, and e* are constants). There remains one 
ordinary differential equation to solve for R (t ). We note that 
cR < 1 initially so that E = !, and that cR is large at later times 
(regardless of k ) so that E = 0; hence the model expands out 
of a pure radiation state towards a final matter (dust) state. 
This is, in fact, a general feature of all such two-fluid models, 
and is regarded as a desirable feature. 

Lemaitre l3 was the first to find a model of this type. 
Lemaitre only considered the case k = O. Other early solu­
tions were found by Alpher and Hermanl4 (for the case 
k = + 1) and by Chernin l5 (for general values of k, i.e., 
k = - 1,0, or + 1). Chemin's solutions were shown by 
McIntosh8 to be equivalent to results obtained by Tolman. 16 
Further models of this type, in which the universe consists of 
two noninteracting fluids, were found by Cohen,17 McIn­
tosh,8 and more recently by Nowotny 18 (all three for general 
k). Paynel9 used models of this type to investigate the effect 
of a cosmic microwave background with present tempera­
ture greater than 3 K (increasing To decreases the age of the 
universe). Harrison 12 argues that if Tr > Tb - 5 X 109 K the 
models above break down due to lepton and hadron pair 
production, and so developed a model in which a (quantum 
mechanical type) single-fluid FRW model with equation of 
state E(t) = const is matched continuously at Tr = Tb (at 
t = tb -10 sec) to a Lemaitre model. 

A slightly different approach to the problem is to con­
sider a particular functional form for R (t) (although, tradi­
tionally, this approach is not usually taken). There are, of 
course, certain constraints that should be imposed from the 
outset. Let us consider a k = 0 FR W model here. For small t 
we wish the model to be approximated by radiation so that 
R (t )-t 1/2 and the equation of state is E(t )-!. Forlarge twe 
wish the universe to be approximated by the Einstein-de 
SitterdustuniversesothatR (t )-t 2/3 andE(t )-O[moreover, 
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we wish R (t ) to be a monotonically increasing function of t ]. 
Formally, we require thatR (t) - t 1/2 andE(tHast-oand 
R (t )-t 2/3 and E(t )-0 as t_ 00. We note that the specifica­
tion of R (t ) will give rise to an algebraic relationship between 
P and p [i.e., will give rise to an equation of state E(t)] that 
mayor may not be physical. Other physical constraints to be 
imposed include P ;;;.0, p;;;'O (for all t ), and possibly we should 
restrict E(t) to be a monotonically decreasing function of t. 
Note that we are allowing the equation of state of the materi­
al content of the universe to change with time. 

As a simple illustration of the above we consider the 
expression20 

R (t) = t 1/2(1 + It 3/5)5/18 , (2.12) 

where I is a positive constant such that It 3/5 is dimensionless. 
With this choice of R (t) we note that all the constraints out­
lined in the previous paragraph are satisfied, since € < 0 for 
all t where the time varying equation of state E(t), obtained 
from Einstein's field equations (2.1), is given by 

3E(t)=(1 +13 It 3/5)/(1 +it3/5+-,//2t6/5). (2.13) 

With R (t) specified we can calculate the forms of P and 
P explicitly. If we write P = Pr + Pm and P = Pr + Pm we 
cannot find Pr' Pm' Pro and Pm independently unless we 
specify equations of state between Pr and Pr and between 
Pm and Pm' Suppose we again put Pr = (e2/3) Pr' and, for 
simplicity, Pm = 0, then we obtain 

p, = (3/3217'G)(t -2)(1 + It 3/5)-2(1 + Is It 3/5) , (2.14) 

Pm = (//517'G)(t- 7/5 )(1 + It 3/5)-2(1 +Ft 3/5 ). (2.15) 

We note that in this model Em #0. In fact, we find that 

Em = (e2//5017'G )(t -12/5)(1 + It 3/5)-3( 1 - ~ It 3/5) , 

(2.16) 

so that Em is positive for small t and will become negative for 
sufficiently large t. 

With 1= 1.06 X 10-7 we find that the model described 
above is in very good agreement with actual observations 
(see Ref. 20, Sec. V, and Table I). 

This approach was in fact taken by McIntosh9 in which 
he considered a k = 0 model of the above kind. In this model 
a particular functional form was taken for R (t ) and McIntosh 
attempted to show that this produced a model that was phy­
sically viable. Unfortunately, as pointed out by Jacobs,3 in 
this particular model Pm = Pr at te - 8 X lOIS sec, whereas 
conventional wisdoml4 suggests that te _1012-1014 sec. The 
time t. is when the universe enters the matter dominated 
stage and Gamow21 has suggested that this is when galaxy 
formation begins. 

This defect is not present in McIntosh's later models nor 
in the other models mentioned here. Nor is this defect neces­
sarily present in models in which R (t ) is specified a priori, as 
can be seen from the model represented by Eqs. (2.12H2.16) 
and the models in Ref. 20 (see Sees. IV and V and Ref. 20). 
However, it is a general feature of two-fluid models that the 
including of radiation in a matter universe will tend to de­
crease to and the inclusion of matter in a radiation universe 
will tend to decrease To. 

The above comments serve to illustrate that not all mod­
els should be restricted by the severe constraints satisfied by 
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TABLE I. The observed or theoretical values of quantities appearing in this article are given below together with their sources where appropriate. We recall 
that a zero subscript denotes a quantity's current value. 

Quantity 

Hubble constant Ho 

Age of universe to 

Temperature of cosmic 
microwave background To 

pol total energy) 

P,.o 

Pm.O 

P ... O 

Within galaxy P. 

P. 

Timet, atwhichp, =Pm 

Time at which elements 
form 

Critical values of T 

Em (early times) 

Em•o 

The velocity of the 
galaxy relative to 
the cosmic microwave 
background 

Numerical value 

2-6 X 1017 sec 
2.S X 1017 sec 

sx 1017 sec 

2.S-3 K 

1O-3O_S X 10-29 g cm-3 

10-34_10- 33 g cm-3 

1-3X 10-24 g cm-3 

S-7X 10- 12 dyn cm-2 

lQ2-W sec 

positive 

200-600 km sec - 1 

the standard noninteracting two-fluid models discussed at 
the beginning of the section. Indeed, very soon after the non­
interacting models were developed models were sought in 
which there was some energy transfer between the radiation 
and matter fields (i.e., Em =FO) and (correspondingly) models 
were sought in which Pm =FO. Generically it is thought that 
at present there is a conversion or net rate of gain of energy 
per unit volume from radiation to matter (i.e., Em•o < 0) due 
to the nuclear burning of stars in galaxies, and that Em -0 as 
t_ 00. It is believed that a reliable estimate for Em•o at pres­
entisEm.o~ - (10- 31_10- 30

) erg cm-3 sec-I. It is also spe­
culated22 that Em > 0 for small t (in the radiation dominated 
era) due to pair production and annihilation. It should be 
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Refs./sources 

various 

various 
Age of uranium and 

thorium isotopes 
Age determined for 

globular clusters 

Refs. 4, S 

Ref. 24 

(based on To between 2.S 
and 3 K) 

Refs. 14,24,29 

Ref. 30 

Refs. 3,14 

Radiation plus matter 
model breaks down due 
to lepton and hadron 
production (Ref. 12) 

Pm no longer negligible 
(Ref. 25) 

Models break down 

Ref. 22 

Ref. 24 

Ref. 6 

stressed that the above are only speculations and other forms 
for Em may be acceptable. 

Models in which the two fluids interact and consequent­
ly the energies of each are not separately conserved were 
investigated by many authors. McIntosh 7 developed general 
k models that exhibit the above generic behavior of Em and 
include absorption and emission. Models with k = 0 were 
investigated in detail with equations of state of the form (i) 
E(t) = ~ e - fJt and (ii) E(t) = ~(l + p.t ) -..t (where p, p., A. are 
positive constants chosen so that Em is ofthe "correct" sign 
in the appropriate time periods). As in the models discussed 
earlier, these models generally evolve from an E = ~ radi­
ation dominated universe to an E = 0 dustlike final state. 
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Other interacting two-fluid models were found by May and 
Mc Vittie23 and Sistero.24 In May and Mc Vittie Pm is defined 
as an arbitrary function of t but is later restricted by 
E(t ) = !(1 + JLt) - A (and it is shown that McIntosh's solu­
tions are the only ones possible in terms of elementary func­
tions). The behavior of Em is investigated in all models. Sis­
tero also assumes Pm is an arbitrary function of I through 
Pm = fiR ) Pm' where f is a non-negative function, and ex­
amines for general k the cases E(t) = 1(1 + JLI ) -1 and 
f(R) = (a - PR + yR 3)-1 in detail. 

Other models in the literature that are variations on the 
above theme include (a) models with multifluids including 
those proposed by Vajk2S [up to four noninteracting (possi­
bly relativistic) fluids for general k], Mclntosh26 [n non-in­
teracting fluids with equations of state Pi = (Yi - 1) Pi and 
general k], Szekeres and Barnes10 (radiation plus multicom­
ponent Synge gas for general k ), and Sister027 (three interact­
ing fluids including two radiation fields-photons and neu­
trinos-for general k ); (b) models with a nonzero 
cosmological constant including those proposed by May22 
(generalization of May and McVittie23

) and Mclntosh26 (in 
which a nonzero cosmological constant is treated in terms of 
an additional fluid in an n-fluid model); and (c) other two­
fluid models in which neither fluid is a radiation field (Mcln­
tosh26). 

III. GENERAL TWO-FLUID MODELS 

Einstein's field equations for two general viscous fluids 
are 

(c4/81TG)G /) 

= (p, + c-2 p,)ViVi + p,ti - 2'TJrd/ + q~vi + q!vi 

+ (Pm + c-2 Pm)uiui + Pmti - 2'TJmd~ 

(3.1) 

where d/.m is the shear tensor, 'TJ '.m. the shear viscosity coeffi­
cient, q!.m the heat conduction vector, and Vi and ui are the 
velocities of the r and m (radiation and matter) fields, respec­
tively. We could investigate models in which these velocities 
are radially or axially directed. For illustration, in this sec­
tion we shall co~sider the case when Vi and ui both have 
nonzero components in the radial direction and can be writ­
ten 

Vi = (a"p,R -1,0,0), ui = (am,pmR -1,0,0), (3.2) 

where 

a2 _p2=c2 a2 _13 2 =c2 (3.3) r r , m m .• 

Corresponding to (3.2) wealso assume that the q!.m are of the 
form 

q~ = (Q,/c)(p" - a,R,O,O) , 
(3.4) 

q'!' = (Qmle)(Pm, - amR,O,O) , 

so that q~vi = q'!'ui = ° and Q:.m=(q/qi)"m' In addition, 
there will be an appropriate set of thermodynamic laws gov­
erning the two fields (see Sec. IV). 

With the metric taken in the form given by Eq. (1.1), 
Einstein's field equations become 
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(3.5) 

_ (R 2 + 2RR + kc2)1c2R 2 

81TG {2 2} =7 P, +"3'TJ,X, +Pm + "3'TJm Xm , 

° = {p, + :2 P, - 3~2 'TJ,X,} a, 13, - ~ (a: + 13:) 

+ {Pm + c~ Pm - 3~2 'TJmXm} am 13m 

- Qm (a!, + P!'), 
c 

where 
X, = (it,1e +13; R -1 -13, R -lr-1)(1_ kr)1/2, 

(3.6) 
Xm = (itmle + 13 '", R -I - 13m R -lr -l)(l - kr)1/2, 

where a· prime denotes differentiation with respect to r. All 
quantities are assumed to depend on rand t only .. 

Solutions ofEqs. (3.5) are already known in certain spe­
cial cases. If we have one comoving perfect fluid (for exam­
ple, p,¥=O, a, = c, 'TJ, = Q, = 0, Pm =Pm = 'TJm = Qm 
= 0) we have the standard one-fluid FR W models. If we 
have one noncomoving viscous fluid (for example, P, = P, 
= 'TJ, = Q, = 0) we obtain the models of Ref. 1. If we have 

two comoving perfect fluids (a, = am = c, 'TJ. = 'TJm = Q. 
= Qm = 0) we recover the solutions outlined in Sec. II. We 
can use the above solutions to obtain more general solutions 
in the following manner: We take a solution in which there 
are two comoving perfect fluids; each of the "perfect fluids" 
in this model is "equated" with a noncomoving viscous fluid 
according to the prescription in Ref. 1; thus we obtain a 
solution containing two noncolhoving viscous fluids. As 
mentioned in Sec. I there will exist general solutions to Eqs. 
(3.5). However, in Sec. IV and the remainder oftlUs article 
we shall seek solutions ofEqs. (3.5) in a particular configura­
tion of physieal interest. 

IV •. RADIATIONAND VISCOUS Fl,..U.DMODELS 

Motivated by ~ argmnents outlined in Sec. I, we shall 
look for two-fluid .m~of the following description. We 
shall assume that the first fluid is a comoving, perfect fluid 
with radiative equations of state (Eq. (2.5)). This fluid will 
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model the observed cosmic microwave background. The sec­
ond fluid will be taken to be a noncomoving, imperfect fluid 
modeling the observed matter in the universe. We shall focus 
our attention on k = 0 FRW models with line element given 
by Eq. (1.2) and will assume that the matter is moving axially 
relative to the comoving radiation, thus modeling the ob­
served relative velocity between the center of our galaxy and 
the cosmic microwave background. 

In this physical configuration Einstein's equations are 
c4 

-G·· 81TG I) 

= P; (4v jv j + c2
gjj ) + ~m + :2 Pm) UjU j + Pm gjj 

(4.1) 

where a prime denotes differentiation with respect to z. 
The temperature Tr associated with the radiation field 

satisfies Pr = aT;. The physical quantities associated with 
the imperfect fluid will satisfy the set of thermodynamic laws 
set out below. Henceforward we shall drop the suffix m (per­
taining to the matter field) on all physical quantities in the 
imperfect fluid (i.e., 71, Q, n, S, T, K) since there should be no 
confusion, retaining the m suffices on Pm and Pm only. In 
general we shall not take Tr and T equal in the models. This 
means that the two fluids will not be in thermal equilibrium 
throughout the history of the universe, which is what we 
expect for imperfect fluid solutions with nonzero heat con­
duction vector. However, we shall assume that the following 
set of thermodynamic laws, based on the assumption that 
deviations from thermodynamic equilibrium are not too 
large, are valid. 

The thermodynamic laws are! the baryon conservation 
law, 

(null);JL = 0; 

Gibb's relation, 

positive entropy production, 

(4.5) 

(Sull+T-!qll);Il;;;'O; (4.7) 

and the temperature gradient law, 

qll = ( _ Kh IlV/c2)(T:v + TaJc2) , K;;;'O. (4.8) 

In the above n is the particle density (of the matter field), T 
the temperature, S the entropy density, h IlV = gllV 
+ u lluv/e2 the projection tensor, av = uv;aua the accelera-
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wherevj = (- c,O,O,O). We shall assume Uj has an axial com­
ponent and is of the form 

Uj = (-a,O,O,{3R), (4.2) 

where a 2 
- {3 2 = c2

, and a and {3 are functions of z and t. 
We also assume that 

q'!' = (Qm/c)({3,O,O, - aR), (4.3) 

so that q'!'u
j 
= 0 and Q ~ :=.q'!'q:" . 

Using Eqs. (4.1)-(4.3), Einstein's field equations for 
k = 0 become ({3 #0) 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

tion vector, and K the thermal conductivity. We note that Eq. 
( 4. 7) is automatically satisfied in the models under consi­
deration if Eq. (4.8) holds. 

In addition, we insist that the energy conditions Pr > 0, 
Pm > 0, Pm - Pm/c2>0, Pm >0 are all satisfied and we im­
pose the "boundary conditions" (I) a~ as t-+oo, (lIa) 
a- 00 as t-o, or (lib) a-+Ac as t-o, where A > 1. 

Solving Eqs. (4.4), we obtain 
• 2 

1 { 1 [R 3 2 {32 Pm=- - -( a - ) 
c2 81TG R 2 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 

The right-hand sides of Eqs. (4.9a) and (4.9b) are positive, 
which always ensures that the terms in braces on the right­
hand sides ofEqs. (4.9c) and (4.9d) are positive, so that Q is 
the same sign as f3 and 71 is non-negative if and only if 

a/c+f3'/R<O. (4.10) 

We note that Eq. (4.8) reduces to the single expression 
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K [ . aT' . Ta' R] 
Q= C2 PT+ cR + TP+ cR +PTR · (4.11) 

For K>O we must have the expression in square brackets 
divided by P non-negative (since Q8>O). 

One final note concerning notation before the various 
models are established. The models set out below may also 
be solutions of Einstein's equations with a comoving perfect 
radiation fluid and a comoving perfect fluid matter field act­
ing as the source; and in this sense the new models may be 
thought of as "reinterpretations" of standard-type two-fluid 
models. That is, the right-hand side ofEq. (4.1) may be for­
mally equivalent to 

(P~/3)(4vjv j + c2gjj ) + (P!. + c-2 P!.)uju j + P!. gjj , 
(4.12) 

where U j = Vj = ( - c,O,O,O) and P~ = Pro The asterisk nota­
tion is being used to denote the pressure and density in the 
standard-type two-fluid FRW model. Using this notation, 
the left-hand side ofEq. (4.4a) can be written as c2Pr + c2p!., 
and the left-hand sides ofEqs. (4.4b) and (4.4c) can be written 
as (c2/31or + p!.. In addition, Einstein's equations (4.9) can 
be written in the new notation as 

Pm = (a2le2)p!. + (P 2le4 )p!. , 

3Pm =p 2p!. + [(3a2 _ 2{32)le2] P!. , 

2"l(ale+p'IR) = _p 2(p!. + P!.Ic2) , 

cQ = ap(P!' + p!./2). 

(4.13a) 

(4.13a) 

(4.13c) 

(4.13d) 

Note that if P!. and P!. are both non-negative, then so are 

Pm and Pm' 
Models will exist in which the physical quantities occur­

ring in the models depend upon both z and t. However, such 
models will not be explicitly sought here. Henceforward, we 
shall look for models in which the physical quantities are 
functions of t alone (i.e., a, p, and T are functions of t only). 
This is in keeping with the types of cosmological models that 
we seek, and is also a mathematical simplification that en­
ables us to find solutions more easily. With this assumption 
the equations to be solved simplify as follows. 

(a) Einstein's equations: Equations (4.9a), (4.9b), (4.9c), 
and (4.9d) determine Pm' Pm' "l, and Q, respectively. Condi­
tion (4.10), which ensures "l is non-negative, reduces to 

a.;;;;O. (4.14) 
(b) Thermodynamical laws: We can integrate the baryon 

conservation law (4.5) to obtain 

n = noR -3a -l, (4.15) 

where no is a constant. If a, p, and n are functions of t alone, 
T = T (t ) guarantees that the Gibb's relation has a solution [T 
is the integrating factor that ensures that the right-hand side 
ofEq. (4.6) is an exact differential]. With T = T(t), Eq. (4.6) 
determines S. The temperature gradient law (4.11) then de­
termines K. The condition for K>O [ensuring Eq. (4.7)] re­
duces to 

tiT +PIP+RIR>O. (4.16) 
(c) Other restrictions: We recall that all energies must be 

non-negative. We expect T to be a decreasing function of t. 
The conditions on a are 

(I) a-c as t_ (1;) , 

(lIa) a- (1;) as t-o, (4.17) 
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or 

(lib) a-const > c as t-o. 

A.Modell 

We assume that 

Em = 0 and p!. = 0 . (4.18) 

From Eqs. (2.7) we find that 

Pr =clR -4 and P!. =c2R -3. (4.19) 

Einstein's equations now reduce to an ordinary differential 
equation for R (t), whose solution is given by8 

t + const = (2/3..1. 2)(..1.R - 2p)(..1.R + p,)1/2 , (4.20) 

where A. = (81TG 13)c2, P, = (81TG 13)cl' We note that 
Pr =aT~ so that Tr-R -I. From Eq. (4.14) a<O so we 
observe that Tr and T cannot be equal, otherwise Eq. (4.16) is 
violated. Let us choose a, T in the following manner: 

P!. = C3 T31p , T= (C2le3)P/3R -P, 

and 

ell + hR -q) 
a= , 

(1 +2hR -q)1/2 

ckR -q 
P = (1 + 2hR -q)1/2 ' 

(4.21) 

(4.22) 

where p( > i), q, and h are positive constants. With this 
choice of a the conditions (4.17) are satisfied, and Eq. (4.14) is 
satisfied implying "l > 0, since 

ale = - qh 2R - 2q- 1R 1(1 + 2hR - q)3/2 . (4.23) 

From Eqs. (4.21H4.23), Eq. (4.16) becomes 

(1 - p - q) + (2 - 2p - q)hR - q > 0, (4.24) 

which simply implies that 1 - P - q>O (providingq#O). As 
an illustration let us choose p = ~, q = ;, whence from Eqs. 
(4.5), (4.6), (4.9), and (4.11) we obtain 

Pm = c2(1 + hR -117)2R -3/(1 + 2hR -117), 

3Pm lc2 = C2h 2R - 23/7/(1 + 2hR -117), 

"l = (7c2/2)c2(1 + 2kR -117)R -3(p, +..1.R )-1/2, 

QIe = c2h (1 + hR -117)R - 2217/(1 + 2hR -1/7), 

n = (no/c)(1 + 2hR -1/7)1/2(1 + hR -117)-IR -3, 

Kle2 = KO(1 + hR -1/2)(1 + 2hR -1/7)1/2 

x (p, + ..1.R )- 1/2R -12/7 , 

(4.25) 

WhereKO=7c~l7c3-2/7h -I. We note that Pm and Pm areal­
ways positive with (3Pmle2Pm)-1 as t-o and 
(3Pmlc2Pm)-o as t-(1;). 

B. Model II 

We assume that 

p!. = 0, Em #0 , 3€(t) = prl(Pr + P!.) . (4.26) 

In particular, we shall investigate 

3€(t) = (1 + p,t) -A. , (4.27) 

where p, and A. are positive constants. Standard two-fluid 
models of this type were investigated by McIntosh 7 and May 
and McVittie,23 and the solutions (4.28) below are due to 
them. We note that with Eq. (4.27) €-! as t-o and £-0 as 
1-(1;). We also note that Em #0; indeed, Em >0 for small t 
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and Em < 0 for large I providing A < j. 
For illustrative purposes we shall investigate the model 

A = !, /-l = 3.S X 10-9
• The observational predictions of this 

model were studied by McIntosh.7 Although the model is in 
reasonable agreement with actual observations, McIntosh 
showed that the model A = n, /-l = 4.4 X 10- 11 is a better 
model in that it is in better agreement with observations. We 
shall consider the former model due to its simplicity, and 
since it serves to illustrate the general nature of such a class 
of models. 

The model is characterized by 7 

( ) -1(1 )-112' _ 9...3 E I - ~ + /-ll ,E - - '1 /-It: , 

cl(1 + 5E)516(1 - 3E)1/2 
R (I) = 4/3 ' 

E 

K=R = 6/-lE
2 

, 
R (1 + 5E)(1 - 3E) 

Pr = (9/817-G)K2E, p! = (3/81TG)K2(1 - 3E), 

where c I is a positive constant. 
We assume that a is of the form 

a (I +h~) {3 h~ 

-;- = (I + 2h~)1/2' -;- = (I + 2h~)1/2 ' 

(4.28) 

(4.29) 

where hand q are positive constants. Note that as 1_ 00, a/ 
c-I and as 1-0 (E-j), a/c-(l + h 3 -q)(1 + 2h 3 -q)-112 
> 1. Also 

aitl{32 = - ~/-lq(1 + h~)c(1 + 2h~)-' , (4.30) 

so that il < 0, which implies that 'TJ > 0 in Eq. (4.9c). We also 
assume T is of the form 

(4.31) 

where P and s are positive constants. 
The condition for K to be non-negative is T /T + ail/ 

{32 + R /R>O, which becomes 

{4(1 - p) - 3(s + q)(1 + SE)(I - 3E)] 

+ 2h~{ 4(1 - p) - 3(s + q/2)(1 + SE)(I - 3E)] >0, 

(4.32) 
which is certainly satisfied if the first term in the braces is 
positive for all E. Since (I + SE)( I - 3E) is always positive and 
has a maximum value of ~, Eq. (4.32) is (strictly) satisfied if 

I - P - ~(s + q»O . (4.33) 

In this model we wish to relate the temperature of the 
radiation Tr and the temperature of the matter T. The tem­
peratures Tr and T cannot be equal for all I otherwise Eq. 
(4.16) would be violated for particular eras. Nor would we 
necessarily expect that Tr = T for all I, since the two fields 
would then always be in thermal equilibrium. However, as 
1-00, Em and Er (and Q) tend to zero so that we might 
expect that there will be thermal equlibrium as 1- 00 . There­
fore, in this model we shall add the restriction that 

as t-oo, T /Tr-l . (4.34) 

From (4.28), as 1-00 (E-o), K_c, R--'>-E-4I3, Pr-c, 
Tr~/4, p! _E4, T ~4p + 3s)l3, so that Eq. (4.34) implies 
that 

(4.35) 
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(Note that p! _TI615asl_00 asaconsequence.)Sinces>O 
we have that p<~, and Eqs. (4.33) and (4.3S) imply that 
p - 12q>0. 

As an illustration let us choose p = ~, s = !, q = -h. With 
these values T /Tr-I as 1-00, and 'TJ andK are always posi­
tive, so that the model is physically acceptable. From Eqs. 
(4.S), (4.9), and (4.11) the full solution becomes 

Pm = (27/-l2/21TG)(1 + hE1/16f(1 + 2hEI/16 )-1 

XE4(1 + 5E)-2(1 - 3E)-I, 

3Pm/c2 = (27/-l2h 2/21TG)(1 + 2hEI/16)-1 

X~3/8(1 + SE)-2(1 - 3E)-1 , 

T = T oCl- 3/4(1 + SE)-5/8(1 _ 3E)-3/8C I4 , 

(4.36) 
'TJ = (24c2/-l/1TG)(1 + 2hEI/16) I12c(l + SE)-2(l- 3E)-I, 

Q/c = (27hq2/21TG)(1 + hE1/16)(1 + 2hEI/16)-1 

XE65/16(1 + 5E)-2(1 _ 3E)-I, 

n = (nolcct)(1 + 2hEI/16)1f2(1 + hEI/16)-1 

XE4(1 + 5E)-5/2(1 _ 3E)-3/2, 

K/C2 = Ko(1 + 2hE'/'6)'/2(1 + hEI/l6)(1 + SE)1/8 

X (I - 3E)3/8~/4 [ {2 - ¥(l + SE)( I - 3E)] 

+ hE1/16{4 - ¥(I + SE)(I- 3E)]] -I, 

where Ko = 9ci/4/128/-l1TGTo. We note that Pm and Pm are 
always positive and that 

3pm /c2pm-o as 1-00 (E-o) 

and 

3pm h 23- 1/8 0.872h 2 

c2Pm - (I + h 3- 1/16)2 = (I + 0.934h)2 ' 

as t_O (E-j). Note that this last expression continues in­
creasing as h increases but is always less than 1. 

c. Model III 

We consider the model with 

R (t) = I 112(1 + It 3/5)5/18, (4.37) 

as outlined in Sec. II. From Eqs. (2.14) and (2.IS) we have 
that 

Pr = (3/321TG)(I-2)(1 +lt 3/5)-2(1 +/slt 3/5 ), 

p! = (I /S1TG)(t -7/5)(1 + It 315)-2(1 + ift 3/5) , (4.38) 

p! =0. 

We note that E(I) and Em (;60) are given by Eqs. (2.13) and 
(2.16), respectively. 

We assume that a and {3 are of the form 

a I + hI - q {3 ht - q 

-;- = (I + 2ht -q)1/2' -;- = (I + 2ht -q)l/2 ' 
(4.39) 

where hand q are positive constants. With this choice of a we 
note that as t_oo, a/c-I and as t-o, a!c-oo. From Eq. 
(4.39) we have that 

ail _ t -I (I + ht - q) 
-- -q 
{32 (I + 2ht -q) , 

(4.40) 
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so that a <0 guaranteeing 71 >0 [Eq. (4.9c)]. We also assume 
T is of the form 

T= TcI-bR -Pas, (4.41) 

where b, p, and s are positive constants. 
Condition (4.16), ensuring K is non-negative, becomes 

(! -!p - b - q) + H - ~p - 3b - 2q)ht- q 

+ (1 - P - q - 2b - sq)h 2t - 2q 

+ (~- ~p - b - q)/t 3/5 

+ (2 - 2p - 3b - 2q)hlt -qt 3/5 

+ (t - t p - q - 2b - sq)/h 2t - 2qt 3/5>0 . (4.42) 

We note that this inequality is satisfied for all t (and all h and 
l) if (i) so;;;l and ! - p/2 - b - q>O or (ii) s> 1 and 
1 - P - 2b - q - sq>O. There will be various solutions de­
pending on the desired behavior of physical quantities (such 
as T) as t-o or t- 00. Here, we shall make the following 
assumptions. First, we shall find that as t-o, E(t H, so that 
we ~hall assume that P;; IT4-const as t-o, which implies 
that ! + q - 4b - 2p - 2qs = O. Second, we shall assume 
that as 1-00, P;; I Ta-const, where 00;;;4, which implies 
that b /2 + p/3>1. Finally, for simplicity we shall assume 
that b = 0 and so;;; 1 so that the conditions to be satisfied be-

(4.43a) 

(4.43b) 

~ + q - 2p - 2qs = 0 , (4.43c) 

1 - P - 2q>0 (or Oo;;;qo;;;A) . (4.43d) 

Writing q = ! - p/2 - 8/2 (8)0), Eq. (4.43c) becomes 

2s/5 = (H - p -8/5)/(1 - p - 8), 

so that Eq. (4.43a) implies H>p. This suggests two straight­
forward solutions: 

K = (5c2/To1TG)(1 + It 3/5)-71 /90(1 + ~ It 3/5) 

x(1 + 2ht -3125)112(1 + ht -3/25) t -31/50 

X [1 + (3h /1) t -18/25 + 5ht -3125] -I. 

We note that Pm and Pm are always positive and mono­
tonically decreasing and that 3Pm/c2Pm_1 as t-o and 
3Pm / c2Pm -0 as t- 00 • The observational predictions of this 
model will be analyzed in Sec. V. 

D.ModelIV 

In previous articles I we have considered imperfect ftuid 
models for which the metric is that of a standard FR W mod­
el with a perfect ftuid obeying the equation of state p = rp. 
As a final example we consider a model based on the Bin­
stein-de Sitter metric, i.e., we take R = t 2/3. In this case the 
field equations become 

Pmc2 - 3Pm = c2/61TGt 2 , 

!p,(3a2 +p2) +Pm c2 =a2/61TGt2. 
(4.46) 

These equations imply that 

3Pm p2 P, 3p2 
- < - - < (4.47) 
c2Pm a 2 ' Pm 3a2 +p2' 

and the second of these inequalities shows that P,/Pm <l 
always so that the model can describe only the later part of 
the matter-dominated era. Accordingly, there is little po~t 
in requiring 3Pm/c2Pm-1 as t-o and a-co as t-o, al­
though we could do this and then assume that the model is 
applicable only for t> 1012 sec approximately. 

Bearing in mind the inequalities (4.48) we shall assume 
that 

P'/Pm = 3p2/4a2 , (4.48) 

which leads to 

(A) p = ~, q = l, s = To (b = 0) , 

(B) p = H, q = -A, s = 0 (b = 0) . 

(4.44a) 3Pmle~m =p 2C2/4a
4 

. (4.49) 

(4.44b) The field equations now yield 

Note that in solution (A) Pm - T4 for large t and in solution 
(B) Pm - T 75

/
1
9 for large t. 

We shall concentrate on model (B) henceforward. In this 
case T = ToR -19125, 71 and K are always positive, and the 
model satisfies the end conditions outlined above. The model 
is consequently physically acceptable. Using Eqs. (4.5), (4.9), 
and (4.11) the solution becomes 

Pm = (I /51TG )(1 + It 3/5)-2(1 + ilt 3/5) 

x(1 + 2ht -3/25)-1(1 + ht -3/25)2t -7/5, 

3Pm le2 = (/h2/51TG)(1 +lt 3/5)-2(1 +i It 3/5) 

X(1 + 2ht -3125)-lt -41/25, 

61TGpm = 4a4(4a4 _ P 2C2)-lt -2 , 

61TGpr = 3a2p2(4a4 _ p 2C2)-lt -2, 

611"6Pm = !P 2C4(4a4 _ p2C2)-l t -2. 

As suitable functions for a and p we choose 

(4.50) 

a = c[ 1 + h 2(t + to) - 2b ]1/2, P = ch (t + to) - b , 

(4.51) 

where b, h, and to are positive constants. We also choose T to 
be of the form 

T = To(t + to) - m , 

where m is positive. The complete solution is 

Pr = (1/211"6)h 2(t + to) - 2b [ 1 + h (1 + to) - 2b ] 

(4.52) 

71 = (5c21 /61TG)(1 + It 3/5 )-2(1 + ~ It 3/5) 

X(1 + 2ht -3/25)1/2t -2/5, 

QIe = (/h /51TG)(1 + It 3/5 )-2(1 + ~ It 3/5) 

(4.45) X [4 + 7h 2(t + to)-2b + 4h4(t + to)-4b]-lt -2, 

414 

x (1 + 2ht -3/25)-1(1 + ht -3/25 ) t -38/25 , 

n = (no/c)(1 + It 3/5)-516(1 + 2ht -3125)112 

X(I + ht -3/25)1 -3/2, 

J. Math. Phys.; Vol. 27, No.1, January 1986 

Pm = (2/31TG)[ 1 + h 2(t + to) - 2b P [ 4 + 7 h 2(t + to) - 2b 

+ 4h 4(t + to) - 4b] -It -2 , 

3Pm/c2 = (c2/61TG)h 2(t + to)-2b [4 + 7h 2(t + to)-2b 

+ 4h 4(t + to) - 4b] -It -2 , (4.53) 
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'TJ = (c2/121TGb ) [ 4 + 3h 2(t + to) - 2b ] 

X [ 1 + h 2( t + to) - 2b ]I 12 [ 4 + 7 h 2( t + to) - 2b 

+ 4h 4(t + to) - 4b ] -I(t + to)t -2 , 

Q Ie = (1!61TG ) h (t + to) - b [ 4 + 3h 2(t + to) - 2b ] 

X [1 + h 2(t + to) - 2b ]1/2 

X [4 + 7h 2(t + to)-2b + 4h4(t + to)-2b]-lt -2, 

n = (no/c)[l + h 2(t + to)-2b ]1/2t -2, 

K = (1!181TG )c3T 0- 1(1 + tot + 1[4 + 3h 2(t + to) - 2b] 

X [1 + h 2(t + to) - 2b P/2[ 4 + 7h 2(t + to) - 2b 

+ 4h 4(t + to) - 4b] -I [ 2to + (2 - 3m - 3b ) t ] -It -I , 

where we require 
2 - 3m - 3b>0, (4.54) 

in order to ensure that K;;'O at all times. Provided that this 
condition holds, all quantities are positive and Pr' Pm' and 
Pm are montonically decreasing functions such that 
Pr/pm-D and 3Pmle2Pm-D as t-oo. We note that the 
choice m =~, b = Iin, which satisfies the condition (4.54), 
results in Pm - T 3

.
03 for large t. 

v. DISCUSSION 

In the first three models discussed in Sec. IV, R (t) is a 
monotonically increasing function of t, changing from 
R (t) = t 1/2forearlytimes, sothatthe universe was initially in 
a pure radiation state, to R (t) = t 2/3 for later times, so that 
the universe evolves towards a final dustlike state. In all the 
models Pro Pm' and Pm are always positive, monotonically 
decreasing functions of time and all positive energy condi­
tions are satisfied. Einstein's equations and the laws of ther­
modynamics (4.5) to (4.8) are satisfied. In addition, 'TJ and K 

are always positive. We conclude that the models are physi­
cally acceptable from a theoretical point of view. In order to 
show that the models are acceptable in the sense that they 
agree with the actual nature of the universe, we need to in­
vestigate the observational predictions of the models. 

In actual fact all of the models are in good agreement 
with observation, as can be seen from Refs. 7, 8, 20, and 23. 
As an illustration we shall present a detailed investigation of 
the observational predictions of model III. 

We let the SUbscript zero denote the present time. All 
numerical values will be calculated to three significant 
places only. We shall assume that the value of the arbitrary 
positive constant I is given by 1= 1.06 X 10- 7 (see Ref. 20). 
Based upon a Hubble parameter Ho = 55 km sec- I Mpc- I 

we find that t ~ _H 0- I = 5.67 X 1017 sec, so that from the 
definition of Ho and Eq. (4.37) we find that to = 3.78X 1017 

sec (the age of the universe). Note that It ~/s=3.73 X 103
• 

We shall assume that the present velocity of our galaxy 
relative to the cosmic microwave background is three 
hundred kilometers per second,6 so that from Eqs. (4.39) we 
find that ht 0- J/2S = 1.00 X 10-3, which fixes h as 
h = 1.29 X 10- 1

• 

From Eq. (4.45) we find that Pm.O = 5.57 X 10-30 

g cm- 3
• From Eq. (4.38) we find that Pr.O = 4.47 X 10-34 

g cm- 3
• Consequently, we find that Tr•o = 2.70 K from the 
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relationship Pr = aT:. In addition, Eq. (4.45) yields 
(1!c2)Pm.O = 1.86x 10-36 g cm-3. Therefore, from Eq. 
(2.3), Eo = 2.71 X 10-5 and, finally, Pm.Ole2Pm.0 
= 3.33X 10-7

• 

Let te be the time when Pr = Pm' From Eqs. (4.38) and 
(4.45) we then obtain a quadratic equation in It ;IS. Taking 
the positive root, and using the established value of I, we find 
thatte = 1.01 X 1011 sec. As remarked earlier, Em is positive 
for small t, and from Eq. (2.16) we find that Em•o 
= - 7.16x 10-32 erg cm- 3 sec-I. 

Comparing the above with the values indicated in Table 
I we see that the predictions of the model are in excellent 
agreement with actual observations. Indeed, it could be 
claimed that the model is in better agreement with observa­
tions than existing cosmological models since, in addition to 
comparing very favorably with regard to the standard obser­
vations, the model is also able to predict the relative velocity 
of the galaxy with respect to the cosmic microwave back­
ground. Regardless of such merits, it is clear that the model 
is a bona fide cosmological model. The same is true of the 
other models outlined in Sec. IV. We conclude that the mod­
els in Sec. IV are physically acceptable models of the uni­
verse. 

In general the temperature of the radiation Tr and the 
temperature of the matter T need to be taken to be equal. In 
the models established in the previous section Tr and Tare 
certainly not equivalent, although in model II the possibility 
that Tr and Tare related as t_ 00 was investigated. Indeed, it 
is important that Tr and T are not equivalent in two-fluid 
cosmologies in which (at least) one fluid is imperfect with a 
nonzero heat conduction vector. In such models the two 
fluids will not be in thermal equilibrium throughout the evo­
lution of the universe. (It might be noted that it is presently 
believed that the current temperature of the "matter" in the 
universe is about four times higher than that of the cosmic 
microwave background.) 

In Sec. IV we demanded that the models satisfy the set of 
thermodynamic laws represented by Eqs. (4.5)-(4.8). It 
should be noted that these laws are based on the assumption 
that deviations from thermodynamic eqUilibrium are not too 
large. In view of the comments made in the previous para­
graph it might be argued that the models outlined here (and, 
in fact, all models of this type) deviate sufficiently from ther­
mal equilibrium that more general laws of thermodynamics 
ought to be considered (see, for example, Israel and 
Stewart28

). Indeed. it has been suggested before that a more 
general set of laws of thermodynamics is needed in the cos­
mological arena. I However, the issue of determining the 
"appropriate thermodynamics" of the universe is a very dif­
ficult and controversial question that is at present unan­
swered. We shall assume here that the laws of thermody­
namics that have been used are adequate for our purposes. 
The fact of the matter is that for reasonable values of t the 
deviations from thermodynamic equilibrium are not suffi­
cient to raise doubts about the validity of the laws of thermo­
dynamics that have been used [so that Eqs. (4.5)-(4.8) do 
govern the evolution of the universe for most values of t ]. 
Presumably, if the laws of thermodynamics do break down, 
they will break down for small values of t, where more gen-
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erallaws will consequently be needed. However, the FR W 
description of the universe breaks down for very small values 
of t regardless. 

We recall that the motivation for the present work was 
twofold. We wished to complete the work of Ref. 1 regarding 
the study ofFRW cosmological models, in which the FRW 
models are interpreted as solutions of Einstein's field equa­
tions for a variety of different sources. In the present work 
we study FRW models in the most general case-that in 
which the source of the gravitational field is due to two (gen­
eral) imperfect fluids (see Sec. III). The special cases studied 
previously can be listed as follows: The case in which there 
are two comoving perfect fluids was reviewed in Sec. II. The 
case in which there is one noncomoving imperfect fluid was 
studied in Ref. 1. The case in which there is one comoving 
perfect fluid gives rise to the so-called standard FR W mod­
els. 

Although we have alluded to the general case (as set out 
in Sec. III), we have, in fact, focused our attention on the 
special case in which one fluid is a comoving (radiative) per­
fect fluid and the second a noncomoving (matter) imperfect 
fluid moving with an axial velocity relative to the comoving 
radiation (Sec. IV). This special case is one of particular 
physical interest. We shall assume that the comoving perfect 
fluid models the cosmic microwave background and the 
noncomoving imperfect fluid models the observed matter of 
the universe. The motivation behind the study of such mod­
els is to model the observed velocity of our galaxy relative to 
the cosmic microwave background. 

There are several reasons why we have chosen to at­
tempt to model this effect in the context of two-fluid FRW 
cosmological models, namely the following: (1) both the ob­
served material content of the universe and the cosmic mi­
crowave background are observed to be (approximately) ho­
mogeneous and isotropic; (2) it is generally believed that the 
universe is described with reasonable accuracy by a FR W 
radiation model for early t and by the Einstein-de Sitter 
model for later t; and (3) with the discovery of the cosmic 
microwave background (which was presumed to be a rem­
nant of the radiation era), it became desirable to model the 
universe as consisting of two fluids, each existing forever, 
and each "dominating" in the appropriate evolutionary 
phase of the universe. 

We remark that the only way that our objective can be 
reconciled with the desire to remain within the context of a 
FRW model is for one of the fluids to be a noncomoving 
imperfect fluid. The models of Sec. IV are of this form. As 
mentioned previously, these models are theoretically reason­
able and are in excellent agreement with observation. More­
over, through these models, we have achieved our objective 
of modeling the observed motion of our galaxy relative to the 
cosmic microwave background. We note that the assump­
tion of a noncomoving imperfect fluid implies that there is a 
general motion of all matter relative to the cosmic micro­
wave background. 

The present work can be generalized somewhat. First, 
although we have concentrated on FR W models for the rea­
sons given above, we could, of course, repeat the analysis in a 
more general setting. Indeed, it might be argued that such an 
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analysis would be more appropriate in a nonisotropic and 
inhomogeneous model. Presumably one would investigate 
models that approximate FR W models (at least for later 
times) in order that agreement with present observations is 
retained. Second, in the actual models that have been de­
scribed in Sec. IV we have assumed that k = 0 and that phys­
ical quantities appearing in the models depend on t only. 
Although both of these assumptions may be relaxed, they 
have been made here partly for simplicity, but mainly be­
cause they give rise to models that exhibit precisely the type 
of behavior we seek. 

We have one final note. This present article represents a 
natural development of the work by the authors as set out in 
Ref. 1. In Ref. 1 the imperfect fluid moves relative to a "hy­
persurface orthogonal preferred observer"; however, such 
an observer has no physical role within the models. In the 
present article the imperfect fluid moves relative to the ob­
served cosmic microwave background (and thus a physical 
interpretation is given to the hypersurface orthogonal pre­
ferred observer within the models). So, from a philosophical 
point of view, the present article presents a more suitable 
environment for the study of imperfect fluid FR W models. 
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