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We shall study spatially homogeneous cosmological models containing a self-
interacting scalar field with an exponential potential of the fat() = Aek?. The
asymptotic properties of these models are discussed. In particular, their possible
isotropization and inflation are investigated for all values of the paranketér
particular class of models is analyzed qualitatively using the theory of dynamical
systems, illustrating the general asymptotic behavior.1997 American Institute

of Physics[S0022-24887)01510-7

I. INTRODUCTION

Scalar field cosmology is of importance in the study of inflation, an idea popularized by
Guth! during which the universe undergoes a period of accelerated expassienfor example,
Olive?). One particular class of inflationary cosmological models are those with a scalar field and
an exponential potential of the forM(¢)=AeX?, where A andk are non-negative constants.
Models with an exponential scalar field potential arise naturally in alternative theories of gravity,
such as, for example, theories based on the Brans—Dicke thdoryexample, extended
inflation®* and hyper-extended inflatiop in the Salam—Sezgin model &f=2 super-gravity
coupled to matte?, and in theories undergoing dimensional reduction to an effective four-
dimensional theory.In addition, other theories of gravity, such as, for example, quadratic La-
grangian theories, are known to be conformally equivalent to general relativity plus a scalar field
having exponential-like potentiafs. Cosmologies of this type have been studied by a number of
authors, including Halliwell, Burd and Barrow? Kitada and Maedd? and Feinstein and
Ibanez®

Our aim here is to analyze Bianchi cosmologies containing a scalar field with an exponential
potential. Since the potential is an exponential function the governing differential equations ex-
hibit a symmetry:* and when appropriate expansion-normalized variables are defined, the gov-
erning equations reduce to a dynamical system with the following desirable properties:

(1) The resulting dynamical system is polynomial.

(2) The phase space is compéekcept in the cases of Bianchi types y/IVIII and IX, in which
the phase space is closed but unbounded

(3) The differential equation for the expansion decouples from the other equations, thereby al-
lowing a reduced system of ordinary differential equations to be analyzed by standard geo-
metric (dynamical systemstechniques®*8

(4) In addition, all equilibrium points of the reduced system correspond to self-similar cosmo-
logical models®

In particular, we wish to qualitatively study whether the spatially homogeneous models inflate
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and/or isotropize, thereby determining the applicability of the so-called cosmic no-hair conjecture
in homogeneous scalar field cosmologies with an exponential potential. This latter aim is of
relevance, in part, due to the fact that inflation in such models is of power-lawttypleich is
weaker than in conventional exponential inflation for which no-hair theorems®fstsentially

the cosmic no-hair conjecture asserts that inflation is typical in a wide class of scalar field cos-
mologies. Another motivation for this work is to determine the relevance of the exact sol(dfons
Bianchi types Ill and VI found by Feinstein and [@z 2 which neither inflate nor isotropize, and

to investigate whether their qualitative properties are typical.

As noted earlier a number of authors have studied such cosmological models. Homogeneous
and isotropic FRW(Friedmann—Robertson—Walkemodels were studied by Halliwéllusing
phase-plane methodsee also, for example, Oli%e Homogeneous but anisotropic models of
Bianchi types | and Iland Kantowski—Sachs modglsave been studied by Burd and Barf8w
in which they found exact solutions and discussed their stability. Lfdsayd Aguirregabiria
et al?? found exact solutions for Bianchi type | models and Aguirregatgtial 2? also completed
a qualitative analysis of these models. Bianchi models of types Ill and VI were studied by
Feinstein and IG@ez >3 in which exact solutions were found. A qualitative analysis of all Bianchi
models withk?< 2, including standard matter satisfying various energy conditions, was completed
by Kitada and Maed&:*? They found that the power-law inflationary solution is indeed an
attractor for all initially expanding Bianchi mode{except for a subclass of the Bianchi type IX
models which will recollapse

This paper is organized as follows. In Sec. Il, we shall discuss general qualitative features of
homogeneous scalar field cosmologies with an exponential potential, such as, for example,
whether they isotropize or inflate, and we shall determine the relevance of the Feinsteaz—Iba
solutions'® In addition, we will show that all equilibrium points of the “reduced” dynamical
system correspond to self-similar cosmological models. In Sec. lll, we will perform a detailed
qualitative analysis of a particular class of Bianchi models, which includes models of Bianchi
types I, lll, V and VI, and in so doing we will illustrate the general asymptotic properties of
spatially homogeneous models discussed in Sec. Il. We shall make some concluding remarks in
Sec. IV.

II. ISOTROPIZATION AND THE COSMIC NO-HAIR THEOREM
A. Background

It was proven by Waltf that all initially expanding spatially homogeneous models with a
positive cosmological constarfind ordinary matter satisfying both the strong and dominant
energy conditionsasymptotically approach the isotropic de Sitter solufiexcept for a subclass
of the Bianchi type IX models which recollaps&ollowing Wald'$° result, a number of extended
“cosmic no-hair theorems” have been proven for Bianchi models. In particular, and essentially
using Wald’s approach, Kitada and Maé&tit have proven that fok?<2, all initially expanding
spatially homogeneous models containing a scalar field with an exponential pofantabrdi-
nary matter satisfying the energy conditipimcally approach an isotropic, power-law inflationary
solution(in the Bianchi type IX case the models must also satisfy the condition that the ratio of the
effective vacuum energy to the maximum three curvature is larger than some critical Valine
special cas&=0, the theorem essentially reduces to Wald’s reSudind the unique attractor is
the (exponential inflationanyde Sitter solution.

In related work, Heuslé? proved that all Bianchi models with ordinary matter satisfying the
usual energy conditions and containing a scalar field with a positive, convex pofeiritieh local
minimum such tha¥/(¢) =0; for exampleV($)= 3 m¢?], can only approach isotropy at infi-
nite times if the underlying Lie group is admitted by a FRW model. This work partially extends
(by including scalar fieldsthe famous result of Collins and Hawkitfgthat only a subclass of
measure zero in the space of all homogeneous models can asymptotically approach isotropy. Here
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we shall extend Heusler’s result to the case of a scalar field with an exponential potential with
k’>2 (see also Ref. 25 In this case the scalar field is generally not bounded and

dV' (P)=V(¢) is only satisfied whenp is positive; therefore the conditions in Heusler’'s main
theorem are not met. However, Heusler’s Propositigwhiere nowf—0 andV—0 ast—oo if

there exists a timg, with 6(tg)=0) and Proposition 2which gives necessary conditions in order

for a homogeneous model which is nhot among the Bianchi types admitted by a FRW model to
isotropize, are both true in the case of an exponential potential. Consequently in our calculation
below we effectively replace Heusler's Proposition 3 with an analogous result on the behavior of
V/E in the case of an exponential potential.

B. Equations

Cosmological models with a minimally coupled scalar field have a stress-energy tensor given
by

Tap= ¢;a¢;b_gab(%¢;c¢;c+v(¢))a 2.1
where for a homogeneous scalar figlek ¢(t), so thate. ¢ = — #? (where an over-dot denotes
differentiation with respect to the proper tijnén this case we can formally treat the stress-energy

tensor as a perfect fluid with velocity vectot= ¢'?/\/— ¢>;b¢35, where the energy density and the
pressure are given by

ps=E=3¢"+V(¢), (2.29
Py=36"—V(¢). (22b
In the models under consideration, the potential of the scalar field is given by
V(g)=Ae"?, (2.3
whereA (>0) andk are constants.
From the Einstein field equations we have the Raychaudhuri equation governing the evolution
of the expansion
0=—20%— 60— >+ V(¢), (2.4)
and the generalized Friedmann equation
6>=302+ 3>+ 3V(¢)— 2P, (2.5
whereo is the shear scalaP, is the scalar curvature of the homogeneous hypersurfaces, which is
always negative except in the Bianchi IX c&8egnd V(¢) is given by Eq.(2.3). The Klein—

Gordon equation for the scalar field with an exponential potential is then

b+ 0p+KkV($)=0. (2.6)

Defining ¢ by

.k
y=cod+ §0, (27)

and using Egs(2.4) and(2.5), the Klein—Gordon equation can be written as

J. Math. Phys., Vol. 38, No. 10, October 1997
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s 0¢+§P=0. (2.9

We now introduce new expansion-normalized variables and a new time variable as follows:

o dt 3 6 & ekd”2

B=\3 9 A0 @ ‘1’275, d=+3A 5 (2.9

With these definitions, Eq$2.4)—(2.6) can be rewritten as

6k
«1f’=—\1f(2—232—2~1f2+q>2)—f7q>2, (2.10a

6k

d'=—0 —1—2/32—2\1fz+c1>2—7x1f , (2.10b

where a prime denotes differentiation with respect to the new fim&he equilibrium points of

the system have eitheb =¥ =0, which corresponds to the massless scalar field case, or
B2+W¥2=10=0, which represents the Kasner-like initidihe) singularity, or elsgand in all
cases of interest herebey the following relation:

6
<1>2+x1f2=—%11f. (2.12)

In terms of these new expansion-normalized variables the energy density of the scalar field
(2.29 can be written as

E:%(qﬂmﬂ), (2.12

02

and we have that

+—=—. (2.13

E 6 1 3y

7= ¥ 3(1_E5)’ (2.143
v @’ 1 K ke 2.14
E w2+ d? 6 26 (2.140

C. Isotropization

Following Heusler the necessary conditions for an anisotropic and homogeneous solution to
isotropize are:

B=0, (2.15

and (Heusler's Proposition%)

J. Math. Phys., Vol. 38, No. 10, October 1997
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E 1
Vv 2
/=3 (2.16b

where( ) denotes an appropriate time averdpgieusler” Eq. (20)].
Now, using Eq.2.143, Eqg. (2.16a implies that

(4
E_>o. (2.17

Using Eq.(2.17 we can now computéV/E) viz.,

v =1 < 2.1
g% (219
(this replaces Heusler's PropositioA®8 Hence Eq(2.16b implies that
1 € 2 k?<2 2.19
-——== <
6 3:> . (2.19

Therefore, we have shown that if the model is not of Bianchi types I, V, VII, ofi kX, is not
one which is admitted by the FRW modethenk?®<?2 is a necessary condition for these models
to isotropize. Like Heusleér we have not completely generalized the Collins and Hawing
result that only a subclass of homogeneous models of measure zero can isotropize since we have
not explicitly investigated Bianchi models of types y#nd IX.

The following questions consequently arise concerning the future asymptotic behavior of the
models wherk®>2:

(1) For those models that may isotropigemely Bianchi types |, V, VII, and 1X do they indeed
isotropize?

(2) For those models which cannot isotropize, what is the role of the Feinstéfmezllsalutions®
(since fork?>2 these solutions are neither isotropic nor inflation@ry

The first question is answered in Sec. Il E. The second question is addressed in Sec. lIl.

D. Inflation

For inflation to occur we must have that
28%+2¥?%— d2<0, (2.20
so that, using Eq92.11), (2.13 and(2.20, at the equilibrium points the solution will inflate if

(k2—2)—3k%<0. (2.2

Therefore, from Egs(2.15 and(2.17), for models to inflate and isotropiz€ must be less than
two, a well known resulf:*112

We have shown thak?<2 is a necessary condition for the homogeneous models under
consideration to isotropize, and fkf<2 these models will inflate. However, we have not proven
that all such models witk?<2 do isotropizgalthough we shall explicitly demonstrate that this is

J. Math. Phys., Vol. 38, No. 10, October 1997
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TABLE I. The isotropic equilibrium points of the Bianchi type Ylinodels and their stability.

Equilibrium point Corresponding
(B,¥,®)? Values ofk? Description Stability Eqg. in Ref. 28
(0,0,0) 0<k? Milne Unstable (2.1
(0,£1,0) 0<k? Flat FRW Unstable (2.18,(2.20
( NG K2 0<k?<2 Power-law inflation Stable (2.22
0~ —k,\/1- —)
6 6
2<k?<6 Flat FRW Unstable
6<k? DNE
( V6 2 \/g) 2<k? Open FRW Stable (2.24
3k’ 3k
0<k?<2 DNE

2The information given here utilizes the variables defined in Sec. II. Note that different variables were used in Ref. 26.
PDNE means that the equilibrium point does not exist in this case.

the case for a subclass of Bianchi models in Seqg. Mhe no-hair theorem of Kitada and
Maedal''2described in Sec. Il A, does show that f6r<2 the isotropic, power-law inflationary
FRW solution is the unique attractor for any initially expanding Bianchi model. In addition, these
authors also showétithat in these models anisotropies always enhance inflation in models with
non-positive spatial curvatufever their isotropic counterpajtand generally enhance inflation in
models of Bianchi type IX(however; see the detailed discussion in Kitada and Mega,
720-72).

E. The Bianchi VIl , case

To determine if there exist any spatially homogeneous spacetimes which isotropize when
k?>2, we need to consider Bianchi models of type I, V, VIl and (ee Sec. Il for details of the
Bianchi type | and V models.In the case of the Bianchi type IX models, Kitada and Maéda
showed that for the cas€<2 any initially expanding model will isotropize toward the power-law
solution provided that the ratio of the effective cosmological constant to the maximum three-
curvature is larger than some critical val(gnd that the time derivative of this ratio be posijive
However, their analysis is incomplete. Fot>2, it is apparent that there exists an open set of
Bianchi IX initial data such that these models isotropize and an open set of initial data such that
these models recollapse. Henceforth, since the Bianchi typgs Wland | are special classes of
Bianchi models, we shall concentrate on whether the Bianchj Mibdels isotropize.

If the Bianchi VII,, models are to isotropize then they must approach a FRW model as they
evolve to the future. If we consider the system of ordinary differential equations describing the
evolution of the Bianchi type V}l models as a dynamical system, then we are able to determine
whether the models isotropize by examining the stability of the isotropic equilibrium points. This
has been done in a companion paper by the authiorsvhich the particular details of the analysis
of the Bianchi type VI models can be found. The results are summarized in Table I.

We observe that fok?<2 the zero-curvature, power-law inflationary FRW model is an
attractor for the Bianchi V|l models. On the other hand,kf>2, then we find that the attractor
is a negatively curved FRW model. Since the Bianchi,\ffiodel represents a general class of
spatially homogeneous models, we can now assert(#itlt respect to scalar field cosmological
models with an exponential potendidhere exists a set of initial dat8ianchi VIl initial data in
particulay of non-zero measure in the space of all spatially homogeneous initial data which will
evolve toward an isotropic FRW model to the future.

We note that each of the equilibrium points in Table | also exist as equilibrium points in the
Bianchi V phase spacesee Sec. I\

J. Math. Phys., Vol. 38, No. 10, October 1997
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F. Self-similarity

For an exponential potential the equation for the evolution of the expafg®idndecouples
from the “reduced dynamical system” in the new expansion-normalized varigbl@s Refs. 15
and 19; see also Eg&.11) in Sec. I}, and consequently at the equilibrium points we must have
that

6= 0t 1, (2.22

hence the corresponding cosmological models are necessarily self-similar in that they admit a
homothetic vectd’ (except in the degenerate case0 in which the right-hand side of Eq2.4)

can be zero and the corresponding model is the de Sitter space—time which does not admit a
homothetic vectqr In particular, the isotropic, power-law inflationaflyRW) attracting solutions

(in the casek?<2) are self-similar models and the Feinstein‘Aé&® solutions (in the case

k?>2) are also self-similar.

lll. A CLASS OF ANISOTROPIC COSMOLOGICAL MODELS
A. Equations
The diagonal form of the Bianchi type ymetric is given by

ds?=—dt>+a(t)?dx?+ b(t)2e®™dy?+ c(t)%e>d Z, (3.1

wherem=h—1. If m=1 then the metric is of Bianchi type V, ih=0 then the metric is of
Bianchi type 1ll, and ifm= —1 then the metric is of Bianchi type ¥! Thus we are considering
a one-parameteng) class of Bianchi models which include Bianchi types h£€0), V (m=1),
Vly (m=-1), and V|, (all otherm).
The expansion scalar, which determines the volume behavior of the fluid, is given by
a b c
0= atete (3.2

(where an over-dot denotes differentiation with respect to the propey.tirhe shear tensouo;,p, ,
determines the distortion arising in the fluid flow leaving the volume invariant. The non-zero
components of the shear tensor are

022~ 3 b a ol 3.3
ce® 2c a b
x5 \%Ta b/
and the shear scalas?=20"c,,, is given by
, 1 é2+b2+62ab ac bc as
=3l\a) *\b) "¢/ “ab ac be 34

In the case under consideration here, there is no rotation and no acceleration.
For a scalar field with an exponential potential, the Einstein field equations are

J. Math. Phys., Vol. 38, No. 10, October 1997
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Ab e
e (3.59
2 b
S (1+m)—mg—==0, (3.5b
A ab ae mie1 -
atabtac g A (3:59
B+é1b+bf: m2+m_A o 35
btab bo gz ¢ (3:54
¢ ac be me1
E+EE+BE_ a2 =Ae*?. (359

From the above equations one obtains the generalized Friedmann edsatoBq.(2.5)]
2 2 3. 2 k 3 2
0?=30%+ 54 +3Ae ¢+—2(m +m+1). (3.6)
a

Note that the quantityn?+ m+ 1=>3/4>0. The Raychaudhuri equation[isee Eq.(2.4)]
6=—20°— 1 67— p?+ A, (3.7
The evolution equation for the shear is

(1-m
3\/5\/m2+m+1\

The Klein—Gordon equation for the scalar field $e2e Eq.(2.6)]

) 3.
o=—00+ 6?>—30°— §¢2—3Aek¢ . (3.9

b=—0¢p—kAek?. (3.9

The above system of Eg.6)—(3.9) is invariant under the transformatig¢see Coley and van
den Hooget?),

0—N0, P—\o, ¢—>¢+§In)\
(3.10

o—Ao, t—A".

This invariance implies that there exists a symmetry in the dynamical sy&@&m(3.9).1* With
the change of variables given by E@.9), the evolution equations fo8, ¥ and ® become
independent of the variabl@. That is, § decouples from the dynamical system describing the
evolution of 8, ¥ and®. The dynamical system can be considered as a reduced dynamical system
for B8, ¥ and® together with an evolution equation fér(see the equations belpw

The system of differential equations in the expansion-normalized variables becomes:

J. Math. Phys., Vol. 38, No. 10, October 1997
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dg 1-m

_ _ I _P2_\2_H2

g0 ~Ba-2)+ m2+m+1(l BE— V-7, (3.113
dw 6k
—dQ:\p(q—z)——g @2, (3.11h
) k
_dQ:(D(1+q)+_\/§ Vo, (3.110

and the decoupled evolution equation for the expansion

qq - 01+, (3.119

where the deceleration parametgy,is defined by
q=2 B°+2W¥?— 2, (3.12
The domain of interedidetermined by Eq(3.6)] is the region defined by
BP+ W2+ d2<1, (3.13

which describes the surface and interior of a sphere inrbduced phase spaced, V,®). We
also note that the above system is invariant under the transformbtier- ®, and hence without
loss of generality we restrict ourselves to the set(@Bdl3 and®=0; i.e., the upper hemisphere
of the sphere defined by E¢3.13.

Inflation in the context of this paper is defined to occur whenever the deceleration parameter
is negative, i.e.q<<0. We easily see from Ed3.12 that the inflationary regime describes the
interior of a cone inside the sphere defined by &7413.

B. Qualitative Behavior

1. Equilibrium points

The equilibrium point

1-m
A= 2 \/m2+ m+1’

satisfies the boundary condition, E§.13, for all m, and whenm= —1 the point is part of the
non-isolated line of equilibrium pointg?+W2=1 (which will be discussed latgrThe inflation-

ary conditiong<0 is never satisfied and hence this point is non-inflationary. The linearized
system in a neighborhood of the equilibrium point has eigenvalues

v=0, ®=0}, (3.14

—3(m+1)2 —3(m+1)2 3(m?+1)

e L P L 3.1
2(mP+m+1) 2 2(mP4m+1)’ ° 2(mP+m+1) 313

1

It is easily seen that this point is a saddle point with a two-dimensional stable manifold. The exact
solution corresponding to this point is that of a vacuum Bianchi type rwbdel or one of its
degeneracie§i.e., if m=0 it is type Ill, and ifm=1 it is an isotropic Milne modg] with line
element(after a re-coordinatization

J. Math. Phys., Vol. 38, No. 10, October 1997
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ds?=—dt?+ aoz(tz"ldx2+tz"zezmxdy2+t2p3e2"d 2, (3.19
where
4 _m2+m _m+1 (3.17
pl ’ p2 m2+1 ’ p3 m2+11 .

50 thatp; +p,+ps=p3-+ p3 -+ p.
The equilibrium point

B=0, qu—@, q>=§ 6—k°p, (3.18

does not exist ik?>>6 and is part of the non-isolated line of equilibrium poigfst ¥2=1 when
k?=6. The point lies on the boundary of the phase spate ¥2+®?=1 and hence it corre-
sponds to a model with zero curvature. The point is inflationary if

q=—5—<0; (3.19

that is, the point represents an inflationary modéi?#2. The linearized system in a neighbor-
hood of the equilibrium point has eigenvalues

k’—6 k’—6 )
2 y )\2= 2 y )\3=k —2. (32@

)\lz

If k?<2 the point is therefore a sink, and ikk?<6 then the point is a saddle poiiTthe nature

of this point whenk?=2 or k?=6, the bifurcation values, will be discussed latéfor k0 the
exact solution corresponding to this equilibrium point is that of a flat FRW model with line
element given byafter a re-coordinatization

d?= —d2+t**(dx+ dy?+d7), (3.21)

and if k=0 (the scalar field potential is equivalent to a positive cosmological congtae the
exact solution is the de Sitter model. The scalar fieldkfgtO0 is given by

2

The equilibrium point

(k>—2) (m—1)ym’+m+1

P T (R mrmr D )]

J6k (m2+1)

v=- ,
2 [(K®=2)(m*+m+1)+3(m?+1)]

. V6 M2+ 1\[ (K2—2)(m+ 1)+ 4(m?+ 1)]

(3.23
2 [(K2=2)(m*+m+1)+3(m?+1)]

J. Math. Phys., Vol. 38, No. 10, October 1997
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can be showr(after much algebpato satisfy the boundary condition, E.13), if k=2 and
satisfies the inflationary conditioqp<0 if k?<2. This implies that the corresponding solution is
non-inflationary when the point exists inside the physical phase space given §8.Eg. The
linearized part of the system in a neighborhood of the equilibrium point has eigenvalues

)\__§ 4(m°+1)+(k’>—2)(m+1)?
Y2 (k-2)(mP+m+1)+3(m2+1) |

(K>*=2)(m+1)2+4(m?+1)
(K>=2)(m*+m+1)+3(m?+1)

], (3.29

(K>=2)(m?+m+1)+3(m?+1)

[ VI(kK2=2)(m+1)?+4(m?+1)][4(m*+ 1) — (k*—2)(Tm?—2m+7)]
)\3: l

3 (K*=2)(m+1)2+4(m?+1)
41 (K*=2)(m?*+m+1)+3(m?+1)

3 V[(K2=2)(m+1)?+4(m?+1)][4(m*+1)— (k= 2)(7Tm?—2m+7)]
4 (k2—2)(m?+m+1)+3(m?+1) '

It can be shown that ik>>2, then all three eigenvalues are negative and hence the equilibrium
point is a stable node. It is also interesting to note thatif 2+ 4(m2+ 1)/(7m?—2m+7), then

the equilibrium point is a focué.e., the solution oscillates in a neighborhood of the equilibrium
point as it approaches the equilibrium p9irthe behavior of the system at the bifurcation value
k?=2 will be discussed later. The exact solution corresponding to this point is that of a Bianchi
type VI, model or one of its degeneraciése., if m=0 it is of type Ill and ifm=1 itis a
negatively curved FRW modelwith line element(after a re-coordinatization

ds?= — dt?+ a 2(t2Prd X2+ t2P2e?™d y? + t2P3e?*d 22, (3.25
where
pl: 11
2 (1+(k2—2)(m2+m) 326
P~ 2 2(m?+1) '
2 ( (k2—2)(m+1)
Pa= 2 2(m2+1) |
The scalar field in this case is given by
2
d=do—— Int. (3.27

k

For m# 1, the solution given by Eq$3.25—(3.27) is the exact solution found by Feinstein and
Ibanez!® Thus we see that ik?>2 then the non-isotropic and non-inflationary Feinstein and
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>

FIG. 1. Phase portrait in the invariant set=0.

IbaneZ'® solution is a stable attractor for the type Ill and,\tases. Whem=1, the correspond-
ing isotropic solution represents the future asymptotic attractor for the Bianchi tygerididels
as well as the asymptotic attractor for the Bianchi type V models.

2. Boundaries

The qualitative behavior of the system on the boundaries can also help to determine the
behavior in the interior of the phase space. Each of the boundargpse@sandBg?+ W2+ d?=1
is an invariant set. The invariant sét=0 represents models with a massless scalar field with a
zero potential. This invariant set will represent the behavior of the system as the scalaf field
tends to minus infinity. The remaining system of equationggf@and ¥ can be directly integrated
to yield

og (1—m)
A Jm2+m+1

These are straight lines emanating from the equilibrium poin{Ed4) directed inwards, and thus
in the two-dimensional invariant seb=0 the point is a sink. However, in the full three-
dimensional phase space the point is a saddle point, and thus we can conclude that the invariant set
® =0 is the two-dimensional stable manifold. Also, it is easy to see that the outer ring described
by B2+W¥2=1 is a sourcgsee Figure L

We can also analyze the invariant set+W¥2?+®2?=1, which represents Bianchi type |
models with a scalar field and an exponential potential. Again the system of equations can be
integrated and the solutions are found to be straight lines emanating from the ring of non-isolated
equilibrium points given by3?+W¥2=1 and evolving to the equilibrium point E¢3.18) if k?<6.
In the full three-dimensional phase space this equilibrium point (Bdl8 is a saddle when
2<k?<6, and consequently in this case the invariant@et ¥2+ ®2=1 is the two-dimensional
stable manifold.

In the full three-dimensional phase space the ring of equilibrium pojgts-@?=1, ®=0)
for k<6 is a global source, and f&f>6 we find that some part of the ring acts like a source and
the remaining part of the ring acts like a sad(8ee Figures 2 and)3The exact solution corre-
sponding to the equilibrium points3g, = \/1—/302, 0) has the form

v=C . (3.29

ds?= —dt?+t?Padx?+ t2P2dy? + t2P3d 22, (3.29

where
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v

Ceet—B

@“.

FIG. 2. Projection of the phase portrait in the invariant 8&t W2+ ®2?=1 with k?<6.

pi=z| 1+

u—mm)
JmZ+m+1/’

(1__(2+nUﬁo)
JmZrm+1)’

1 L (1+2m) B,
P M Y mr1)”

where —1<By<1. Note thatp,+p,+ps=1 but p3+p3+p3=31+28,); hence in general
(Bo#0) these Kasner-like points do not correspond to exact Kasner models.

w| =

_1 3.3
P2—§ (3.30

3. Closed orbits

It is very difficult to prove or disprove the existence of periodic and/or recurrent orbits in the
phase space of any of the dynamical systems corresponding to the general Bianchi models. How-
ever, in the Bianchi V casen{=1), for example, in which the phase space can be described by a
number of invariant sets, some results are possible. Recall that the phase space is a hemisphere
described byg?+ W2+ ®2<1 and®=0. The invariant sets and their dimension, as well as a

FIG. 3. Projection of the phase portrait in the invariant 8&t W2+ ®2?=1 with k*>6.
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TABLE Il. The invariant sets in the Bianchi V phase space.

Label Variables Dimension Description

A ®=0,82+P?=1 1 Equator of hemisphere
(Kasner ring

B ®=0,82+V¥?<1 2 Bottom disk of hemisphere

(massless scalar field

C &>0,82+V2+d2=1 2 Surface of hemisphere
(Bianchi I

D ®&>0p2+¥2+d2<1,8=0 2 Half disk in interior of hemisphere

(FRW)

E- ®&>082+¥2+d2<1,8<0 3 Half of interior of hemisphere
(Bianchi V)

E+ ®>082+W¥2+d2<1,8>0 3 Half of interior of hemisphere
(Bianchi V)

brief description, is given in Table Il. Since the dimension of set A is 1, closed orbits cannot exist.
In sets B and C, we are able to find the equations of the orbits explicitly and we find that there are
no closed orbit§see the solution given by E3.28 and Figure 1 and Figures 2 and 3, respec-
tively]. The set D which represents the FRW models contain no closed orbits. In the-setsdE

E+ we have thatg/dQ2>0 anddB/dQ2 <0, respectively, and consequently, singés a mono-

tonic function in each invariant set, there do not exist any closed orbits in the interior of the
hemispheré® Summarizing, there do not exist any closed periodic orbits in the case of the Bianchi
V (m=1) models.

4. Bifurcation values

We shall now concern ourselves with the bifurcation vafifdsk?=0, it is easily determined
that the critical points and the qualitative behavior is the same as in the sdse<®. However,
the corresponding exact solutions are differéNbte that thek?=0 case corresponds to the case
of a positive cosmological constanit the bifurcation value?= 2, we find that the equilibrium
points Eq.(3.18 and Eq.(3.24 coalesce to become a single equilibrium point. The linearized
system at this point has a zero eigenvalue. However, by using polar coordinates we find that the
point is a sink and hence the qualitative behavior of the system is the same as for the case
0<k?<2. We thus conclude that the equilibrium point E8.18 undergoes arans-critical
bifurcation atk?=2. At the bifurcation value ok?=6, the equilibrium point Eq(3.18 now
becomes part of the ring of equilibrium point83+W¥2=1, ®=0). This particular point remains
a saddle point and the rest of the ring of equilibrium points remain sources; however, as the value
of k? is increased past 6 more and more of the ring starts to behave like saddle points. Thus in
some extended sense of the definition, the ring of equilibrium pots @?=1, ¥ =0) under-
goes atrans-critical-like bifurcation atk?=6.

C. Discussion

The qualitative behavior of the class of cosmological models under consideration depends
critically on the value ok and somewhat on the parameterThe parametem determines which
Bianchi model we are considering and consequently determines if the model will isotropize to the
future. However, the parametkrhas a profound affect on the qualitative behavior of the models.
For 0<k?<2 all trajectoriegthat is, all models of Bianchi types I, Ill, V and the )| except for
a set of measure zero, evolve from the ring of equilibrium poBfts ¥2=1, =0 toward the
isotropic and inflationary model corresponding to the equilibrium point given by(E#8. For
k?=2, all trajectories evolve from the ring of equilibrium poingé+W¥?=1, ®=0 toward the
isotropic model given by Eq(3.18; however these models need not inflate. FerkZ, all
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trajectories in the Bianchi Ill and ¥l phase spaces evolve from some portion of the ring
B?>+W¥?=1 toward the equilibrium point given by Eq3.24, which is neither isotropic nor
inflationary. However, in the Bianchi | and V cases for R?<6 all trajectories evolve from some
portion of the ring and isotropize to the future, but they need not inflate. Whkak? gthe Bianchi

V models continue to isotropize to the future while the Bianchi | models fail to do so.

IV. CONCLUSION

In Sec. I, we described a number of results concerning the behavior of spatially homogeneous
cosmological models with a scalar field and an exponential potential of the \iges) = A ek®
(whereA is a positive constaintSummarizing, we found that:

(1) If k=0, then all initially expanding Bianchi modelexcept a subclass of the Bianchi type IX
model3 will isotropize to the future toward the de Sitter solutfon.

(2) If 0<k?<2, then all initially expanding Bianchi mode{sxcept for a subclass of the Bianchi
type IX model$ isotropize to the future toward a power-law inflationary solufibt?.

(3) If 0<k®<2, then a subclass of the Bianchi type IX models will recollaids8.

(4) If 2<Kk?, then the only Bianchi models that can possibly isotropize to the future are those of
Bianchi types I, V, VIl and IX%®

(5) If 2<k?, then the Bianchi VI| models do indeed isotropize; and therefore, there exists an
open set of initial conditions in the space of all spatially homogeneous initial data for which
the models isotropize to the fututg.

In the remainder of the paper a detailed qualitative analysis of a one-parameter family of
Bianchi models(which includes the Bianchi models of types I, lll, V, and,Ywas presented,
illustrating the validity of the points above. In particular, it was shown that the future asymptotic
behavior of the Bianchi type Il and YImodels is represented by the Feinsteinftzasolution
We note that the Feinstein—fez solutiori® is a self-similar, non-isotropic and non-inflationary
solution that is stable whek?>2; hence the cosmic no-hair conjecture is clearly not satisfied in
this case. In addition, it was shown that the Bianchi type V models wher2 asymptotically
tend to an isotropic but non-inflationary open FRW model. This does not mean that the models do
not experience inflation, it is the final equilibrium point which is marginally non-inflationary. Note
that if k2>8/3, then these Bianchi V models can be shown to experience periods of inflation as
they evolve toward the isotropic “marginally” non-inflationary solution.

We note that in our investigation we have not included ordinary métrsfying the usual
energy conditions Matter can be included in precisely the same way as in Hédsled Kitada
and Maedd!*? However, the addition of ordinary matter is not expected to change the primary
results.
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