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Departamento de Fı´sica Teo´rica, Universidad del Paı´s Vasco, Bilbao, Spain

R. J. van den Hoogen
Department of Mathematics, Computing and Information Systems,
Saint Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada

~Received 2 April 1997; accepted for publication 13 May 1997!

We shall study spatially homogeneous cosmological models containing a self-
interacting scalar field with an exponential potential of the formV(f)5Lekf. The
asymptotic properties of these models are discussed. In particular, their possible
isotropization and inflation are investigated for all values of the parameterk. A
particular class of models is analyzed qualitatively using the theory of dynamical
systems, illustrating the general asymptotic behavior. ©1997 American Institute
of Physics.@S0022-2488~97!01510-7#

I. INTRODUCTION

Scalar field cosmology is of importance in the study of inflation, an idea popularized by
Guth,1 during which the universe undergoes a period of accelerated expansion~see, for example,
Olive2!. One particular class of inflationary cosmological models are those with a scalar field and
an exponential potential of the formV(f)5Lekf, whereL and k are non-negative constants.
Models with an exponential scalar field potential arise naturally in alternative theories of gravity,
such as, for example, theories based on the Brans–Dicke theory~for example, extended
inflation,3,4 and hyper-extended inflation5!, in the Salam–Sezgin model ofN52 super-gravity
coupled to matter,6 and in theories undergoing dimensional reduction to an effective four-
dimensional theory.7 In addition, other theories of gravity, such as, for example, quadratic La-
grangian theories, are known to be conformally equivalent to general relativity plus a scalar field
having exponential-like potentials.8,9 Cosmologies of this type have been studied by a number of
authors, including Halliwell,7 Burd and Barrow,10 Kitada and Maeda11,12 and Feinstein and
Ibáñez.13

Our aim here is to analyze Bianchi cosmologies containing a scalar field with an exponential
potential. Since the potential is an exponential function the governing differential equations ex-
hibit a symmetry,14 and when appropriate expansion-normalized variables are defined, the gov-
erning equations reduce to a dynamical system with the following desirable properties:

~1! The resulting dynamical system is polynomial.
~2! The phase space is compact~except in the cases of Bianchi types VII0, VIII and IX, in which

the phase space is closed but unbounded!.15

~3! The differential equation for the expansion decouples from the other equations, thereby al-
lowing a reduced system of ordinary differential equations to be analyzed by standard geo-
metric ~dynamical systems! techniques.15–18

~4! In addition, all equilibrium points of the reduced system correspond to self-similar cosmo-
logical models.19

In particular, we wish to qualitatively study whether the spatially homogeneous models inflate
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and/or isotropize, thereby determining the applicability of the so-called cosmic no-hair conjecture
in homogeneous scalar field cosmologies with an exponential potential. This latter aim is of
relevance, in part, due to the fact that inflation in such models is of power-law type,10 which is
weaker than in conventional exponential inflation for which no-hair theorems exist.20 Essentially
the cosmic no-hair conjecture asserts that inflation is typical in a wide class of scalar field cos-
mologies. Another motivation for this work is to determine the relevance of the exact solutions~of
Bianchi types III and VI! found by Feinstein and Iba´ñez,13 which neither inflate nor isotropize, and
to investigate whether their qualitative properties are typical.

As noted earlier a number of authors have studied such cosmological models. Homogeneous
and isotropic FRW~Friedmann–Robertson–Walker! models were studied by Halliwell7 using
phase-plane methods~see also, for example, Olive2!. Homogeneous but anisotropic models of
Bianchi types I and III~and Kantowski–Sachs models! have been studied by Burd and Barrow10

in which they found exact solutions and discussed their stability. Lidsey21 and Aguirregabiria
et al.22 found exact solutions for Bianchi type I models and Aguirregabiriaet al.22 also completed
a qualitative analysis of these models. Bianchi models of types III and VI were studied by
Feinstein and Iba´ñez,13 in which exact solutions were found. A qualitative analysis of all Bianchi
models withk2,2, including standard matter satisfying various energy conditions, was completed
by Kitada and Maeda.11,12 They found that the power-law inflationary solution is indeed an
attractor for all initially expanding Bianchi models~except for a subclass of the Bianchi type IX
models which will recollapse!.

This paper is organized as follows. In Sec. II, we shall discuss general qualitative features of
homogeneous scalar field cosmologies with an exponential potential, such as, for example,
whether they isotropize or inflate, and we shall determine the relevance of the Feinstein–Iba´ñez
solutions.13 In addition, we will show that all equilibrium points of the ‘‘reduced’’ dynamical
system correspond to self-similar cosmological models. In Sec. III, we will perform a detailed
qualitative analysis of a particular class of Bianchi models, which includes models of Bianchi
types I, III, V and VI, and in so doing we will illustrate the general asymptotic properties of
spatially homogeneous models discussed in Sec. II. We shall make some concluding remarks in
Sec. IV.

II. ISOTROPIZATION AND THE COSMIC NO-HAIR THEOREM

A. Background

It was proven by Wald20 that all initially expanding spatially homogeneous models with a
positive cosmological constant~and ordinary matter satisfying both the strong and dominant
energy conditions! asymptotically approach the isotropic de Sitter solution~except for a subclass
of the Bianchi type IX models which recollapse!. Following Wald’s20 result, a number of extended
‘‘cosmic no-hair theorems’’ have been proven for Bianchi models. In particular, and essentially
using Wald’s approach, Kitada and Maeda11,12 have proven that fork2,2, all initially expanding
spatially homogeneous models containing a scalar field with an exponential potential~and ordi-
nary matter satisfying the energy conditions! locally approach an isotropic, power-law inflationary
solution~in the Bianchi type IX case the models must also satisfy the condition that the ratio of the
effective vacuum energy to the maximum three curvature is larger than some critical value!. In the
special casek50, the theorem essentially reduces to Wald’s result,20 and the unique attractor is
the ~exponential inflationary! de Sitter solution.

In related work, Heusler23 proved that all Bianchi models with ordinary matter satisfying the
usual energy conditions and containing a scalar field with a positive, convex potential@with a local

minimum such thatV(f0)50; for example,V(f)5 1
2 mf2], can only approach isotropy at infi-

nite times if the underlying Lie group is admitted by a FRW model. This work partially extends
~by including scalar fields! the famous result of Collins and Hawking24 that only a subclass of
measure zero in the space of all homogeneous models can asymptotically approach isotropy. Here
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we shall extend Heusler’s result to the case of a scalar field with an exponential potential with
k2.2 ~see also Ref. 25!. In this case the scalar fieldf is generally not bounded and
fV8(f)>V(f) is only satisfied whenf is positive; therefore the conditions in Heusler’s main
theorem are not met. However, Heusler’s Proposition 1~where nowu→0 andV→0 ast→` if
there exists a timet0 with u(t0)>0) and Proposition 2~which gives necessary conditions in order
for a homogeneous model which is not among the Bianchi types admitted by a FRW model to
isotropize!, are both true in the case of an exponential potential. Consequently in our calculation
below we effectively replace Heusler’s Proposition 3 with an analogous result on the behavior of
V/E in the case of an exponential potential.

B. Equations

Cosmological models with a minimally coupled scalar field have a stress-energy tensor given
by

Tab5f ;af ;b2gab~
1
2 f ;cf

;c1V~f!!, ~2.1!

where for a homogeneous scalar fieldf5f(t), so thatf ;cf
;c52ḟ2 ~where an over-dot denotes

differentiation with respect to the proper time!. In this case we can formally treat the stress-energy
tensor as a perfect fluid with velocity vectorua5f ;a/A2f ;bf ;b, where the energy density and the
pressure are given by

rf[E5 1
2ḟ

21V~f!, ~2.2a!

pf5 1
2ḟ

22V~f!. ~2.2b!

In the models under consideration, the potential of the scalar field is given by

V~f!5Lekf, ~2.3!

whereL ~.0! andk are constants.
From the Einstein field equations we have the Raychaudhuri equation governing the evolution

of the expansion

u̇522s22 1
3 u22ḟ21V~f!, ~2.4!

and the generalized Friedmann equation

u253s21 3
2ḟ

213V~f!2 3
2 P, ~2.5!

wheres is the shear scalar,P is the scalar curvature of the homogeneous hypersurfaces, which is
always negative except in the Bianchi IX case,20 and V(f) is given by Eq.~2.3!. The Klein–
Gordon equation for the scalar field with an exponential potential is then

f̈1uḟ1kV~f!50. ~2.6!

Defining c by

c5ḟ1
k

3
u, ~2.7!

and using Eqs.~2.4! and ~2.5!, the Klein–Gordon equation can be written as
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ċ1uc1
k

3
P50. ~2.8!

We now introduce new expansion-normalized variables and a new time variable as follows:

b5A3
s

u
,

dt

dV
5

3

u
, C5

A6

2

ḟ

u
, F5A3L

ekf/2

u
. ~2.9!

With these definitions, Eqs.~2.4!–~2.6! can be rewritten as

C852C~222b222C21F2!2
A6k

2
F2, ~2.10a!

F852FS 2122b222C21F22
A6k

2
C D , ~2.10b!

where a prime denotes differentiation with respect to the new timeV. The equilibrium points of
the system have eitherF5C50, which corresponds to the massless scalar field case, or
b21C251,F50, which represents the Kasner-like initial~line! singularity, or else~and in all
cases of interest here! obey the following relation:

F21C252
A6

k
C. ~2.11!

In terms of these new expansion-normalized variables the energy density of the scalar field
~2.2a! can be written as

E

u2
5

1

3
~C21F2!, ~2.12!

and we have that

C52
k

A6
1

A3

A2

c

u
. ~2.13!

Hence, at the equilibrium points we obtain

E

u2 52
A6

3k
C5

1

3 S 12
3

k

c

u D , ~2.14a!

V

E
5

F2

C21F2 512
k2

6
1

k

2

c

u
. ~2.14b!

C. Isotropization

Following Heusler,23 the necessary conditions for an anisotropic and homogeneous solution to
isotropize are:

b50, ~2.15!

and ~Heusler’s Proposition 223!
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E

u2
→

1

3
, ~2.16a!

K V

E L >
2

3
, ~2.16b!

where^ & denotes an appropriate time average@Heusler,23 Eq. ~20!#.
Now, using Eq.~2.14a!, Eq. ~2.16a! implies that

c

u
→0. ~2.17!

Using Eq.~2.17! we can now computêV/E& viz.,

K V

EL 512
k2

6
~2.18!

~this replaces Heusler’s Proposition 323!. Hence Eq.~2.16b! implies that

12
k2

6
>

2

3
⇒k2<2. ~2.19!

Therefore, we have shown that if the model is not of Bianchi types I, V, VII, or IX~i.e., is not
one which is admitted by the FRW model!, thenk2<2 is a necessary condition for these models
to isotropize. Like Heusler,23 we have not completely generalized the Collins and Hawking24

result that only a subclass of homogeneous models of measure zero can isotropize since we have
not explicitly investigated Bianchi models of types VIIh and IX.

The following questions consequently arise concerning the future asymptotic behavior of the
models whenk2.2:

~1! For those models that may isotropize~namely Bianchi types I, V, VII, and IX!, do they indeed
isotropize?

~2! For those models which cannot isotropize, what is the role of the Feinstein–Iba´ñez solutions13

~since fork2.2 these solutions are neither isotropic nor inflationary!?

The first question is answered in Sec. II E. The second question is addressed in Sec. III.

D. Inflation

For inflation to occur we must have that

2b212C22F2,0, ~2.20!

so that, using Eqs.~2.11!, ~2.13! and ~2.20!, at the equilibrium points the solution will inflate if

~k222!23k
c

u
,0. ~2.21!

Therefore, from Eqs.~2.15! and ~2.17!, for models to inflate and isotropizek2 must be less than
two, a well known result.7,11,12

We have shown thatk2<2 is a necessary condition for the homogeneous models under
consideration to isotropize, and fork2,2 these models will inflate. However, we have not proven
that all such models withk2<2 do isotropize~although we shall explicitly demonstrate that this is
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the case for a subclass of Bianchi models in Sec. III!. The no-hair theorem of Kitada and
Maeda,11,12 described in Sec. II A, does show that fork2,2 the isotropic, power-law inflationary
FRW solution is the unique attractor for any initially expanding Bianchi model. In addition, these
authors also showed12 that in these models anisotropies always enhance inflation in models with
non-positive spatial curvature~over their isotropic counterparts! and generally enhance inflation in
models of Bianchi type IX~however; see the detailed discussion in Kitada and Maeda,12 pp.
720–721!.

E. The Bianchi VII h case

To determine if there exist any spatially homogeneous spacetimes which isotropize when
k2.2, we need to consider Bianchi models of type I, V, VII and IX.~See Sec. III for details of the
Bianchi type I and V models.! In the case of the Bianchi type IX models, Kitada and Maeda12

showed that for the casek2,2 any initially expanding model will isotropize toward the power-law
solution provided that the ratio of the effective cosmological constant to the maximum three-
curvature is larger than some critical value~and that the time derivative of this ratio be positive!.
However, their analysis is incomplete. Fork2.2, it is apparent that there exists an open set of
Bianchi IX initial data such that these models isotropize and an open set of initial data such that
these models recollapse. Henceforth, since the Bianchi types VII0, V and I are special classes of
Bianchi models, we shall concentrate on whether the Bianchi VIIh models isotropize.

If the Bianchi VIIh models are to isotropize then they must approach a FRW model as they
evolve to the future. If we consider the system of ordinary differential equations describing the
evolution of the Bianchi type VIIh models as a dynamical system, then we are able to determine
whether the models isotropize by examining the stability of the isotropic equilibrium points. This
has been done in a companion paper by the authors26 in which the particular details of the analysis
of the Bianchi type VIIh models can be found. The results are summarized in Table I.

We observe that fork2,2 the zero-curvature, power-law inflationary FRW model is an
attractor for the Bianchi VIIh models. On the other hand, ifk2.2, then we find that the attractor
is a negatively curved FRW model. Since the Bianchi VIIh model represents a general class of
spatially homogeneous models, we can now assert that~with respect to scalar field cosmological
models with an exponential potential! there exists a set of initial data~Bianchi VIIh initial data in
particular! of non-zero measure in the space of all spatially homogeneous initial data which will
evolve toward an isotropic FRW model to the future.

We note that each of the equilibrium points in Table I also exist as equilibrium points in the
Bianchi V phase space~see Sec. III!.

TABLE I. The isotropic equilibrium points of the Bianchi type VIIh models and their stability.a

Equilibrium point Corresponding
(b,C,F) a Values ofk2 Description Stabilityb Eq. in Ref. 26a

(0,0,0) 0,k2 Milne Unstable ~2.16!
(0,61,0) 0,k2 Flat FRW Unstable ~2.18!,~2.20!

S0,2
A6

6
k,A12

k2

6 D 0,k2,2 Power-law inflation Stable ~2.22!

2,k2,6 Flat FRW Unstable
6,k2 DNE

S0,2
A6

3k
,
2A3

3k D 2,k2 Open FRW Stable ~2.24!

0,k2,2 DNE

aThe information given here utilizes the variables defined in Sec. II. Note that different variables were used in Ref. 26.
bDNE means that the equilibrium point does not exist in this case.
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F. Self-similarity

For an exponential potential the equation for the evolution of the expansion~2.4! decouples
from the ‘‘reduced dynamical system’’ in the new expansion-normalized variables~2.9! @Refs. 15
and 19; see also Eqs.~3.11! in Sec. III#, and consequently at the equilibrium points we must have
that

u5u0t21, ~2.22!

hence the corresponding cosmological models are necessarily self-similar in that they admit a
homothetic vector27 ~except in the degenerate casek50 in which the right-hand side of Eq.~2.4!
can be zero and the corresponding model is the de Sitter space–time which does not admit a
homothetic vector!. In particular, the isotropic, power-law inflationary~FRW! attracting solutions
~in the casek2,2) are self-similar models and the Feinstein–Iba´ñez13 solutions ~in the case
k2.2) are also self-similar.

III. A CLASS OF ANISOTROPIC COSMOLOGICAL MODELS

A. Equations

The diagonal form of the Bianchi type VIh metric is given by

ds252dt21a~ t !2dx21b~ t !2e2mxdy21c~ t !2e2xdz2, ~3.1!

wherem5h21. If m51 then the metric is of Bianchi type V, ifm50 then the metric is of
Bianchi type III, and ifm521 then the metric is of Bianchi type VI0 . Thus we are considering
a one-parameter (m) class of Bianchi models which include Bianchi types III (m50), V (m51),
VI0 (m521), and VIh ~all otherm).

The expansion scalar, which determines the volume behavior of the fluid, is given by

u5
ȧ

a
1

ḃ

b
1

ċ

c
~3.2!

~where an over-dot denotes differentiation with respect to the proper time!. The shear tensor,sab ,
determines the distortion arising in the fluid flow leaving the volume invariant. The non-zero
components of the shear tensor are

s115
a2

3
S 2

ȧ

a
2

ḃ

b
2

ċ

c
D ,

s225
b2e2mx

3
S 2

ḃ

b
2

ȧ

a
2

ċ

c
D , ~3.3!

s335
c2e2x

3
S 2

ċ

c
2

ȧ

a
2

ḃ

b
D ,

and the shear scalar,s2[ 1
2s

absab , is given by

s25
1

3
F S ȧ

a
D 2

1S ḃ

b
D 2

1S ċ

c
D 2

2
ȧḃ

ab
2

ȧċ

ac
2

ḃċ

bc
G . ~3.4!

In the case under consideration here, there is no rotation and no acceleration.
For a scalar field with an exponential potential, the Einstein field equations are
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ä

a
1

b̈

b
1

c̈

c
52ḟ21Lekf, ~3.5a!

ȧ

a
~11m!2m

ḃ

b
2

ċ

c
50, ~3.5b!

ä

a
1

ȧ

a

ḃ

b
1

ȧ

a

ċ

c
2

m211

a2
5Lekf, ~3.5c!

b̈

b
1

ȧ

a

ḃ

b
1

ḃ

b

ċ

c
2

m21m

a2
5Lekf, ~3.5d!

c̈

c
1

ȧ

a

ċ

c
1

ḃ

b

ċ

c
2

m11

a2
5Lekf. ~3.5e!

From the above equations one obtains the generalized Friedmann equation@see Eq.~2.5!#

u253s21
3

2
ḟ213Lekf1

3

a2
~m21m11!. ~3.6!

Note that the quantitym21m11>3/4.0. The Raychaudhuri equation is@see Eq.~2.4!#

u̇522s22 1
3 u22ḟ21Lekf. ~3.7!

The evolution equation for the shear is

ṡ52su1
~12m!

3A3Am21m11
S u223s22

3

2
ḟ223LekfD . ~3.8!

The Klein–Gordon equation for the scalar field is@see Eq.~2.6!#

f̈52uḟ2kLekf. ~3.9!

The above system of Eqs.~3.6!–~3.9! is invariant under the transformation~see Coley and van
den Hoogen19!,

u→lu, ḟ→lḟ, f→f1
2

k
ln l

~3.10!

s→ls, t→l21t.

This invariance implies that there exists a symmetry in the dynamical system~3.6!–~3.9!.14 With
the change of variables given by Eq.~2.9!, the evolution equations forb, C and F become
independent of the variableu. That is,u decouples from the dynamical system describing the
evolution ofb, C andF. The dynamical system can be considered as a reduced dynamical system
for b, C andF together with an evolution equation foru ~see the equations below!.

The system of differential equations in the expansion-normalized variables becomes:
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db

dV
5b~q22!1

12m

Am21m11
~12b22C22F2!, ~3.11a!

dC

dV
5C~q22!2

A6k

2
F2, ~3.11b!

dF

dV
5F~11q!1

A6k

2
CF, ~3.11c!

and the decoupled evolution equation for the expansion

du

dV
52u~11q!, ~3.11d!

where the deceleration parameter,q, is defined by

q52 b212 C22F2. ~3.12!

The domain of interest@determined by Eq.~3.6!# is the region defined by

b21C21F2<1, ~3.13!

which describes the surface and interior of a sphere in the~reduced! phase space (b,C,F). We
also note that the above system is invariant under the transformationF→2F, and hence without
loss of generality we restrict ourselves to the set Eq.~3.13! andF>0; i.e., the upper hemisphere
of the sphere defined by Eq.~3.13!.

Inflation in the context of this paper is defined to occur whenever the deceleration parameter
is negative, i.e.,q,0. We easily see from Eq.~3.12! that the inflationary regime describes the
interior of a cone inside the sphere defined by Eq.~3.13!.

B. Qualitative Behavior

1. Equilibrium points

The equilibrium point

H b5
12m

2 Am21m11
, C50, F50J , ~3.14!

satisfies the boundary condition, Eq.~3.13!, for all m, and whenm521 the point is part of the
non-isolated line of equilibrium pointsb21C251 ~which will be discussed later!. The inflation-
ary conditionq,0 is never satisfied and hence this point is non-inflationary. The linearized
system in a neighborhood of the equilibrium point has eigenvalues

l15
23~m11!2

2~m21m11!
, l25

23~m11!2

2~m21m11!
, l35

3~m211!

2~m21m11!
. ~3.15!

It is easily seen that this point is a saddle point with a two-dimensional stable manifold. The exact
solution corresponding to this point is that of a vacuum Bianchi type VIh model or one of its
degeneracies~i.e., if m50 it is type III, and if m51 it is an isotropic Milne model!, with line
element~after a re-coordinatization!
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ds252dt21a0
2~ t2p1dx21t2p2e2mxdy21t2p3e2xdz2!, ~3.16!

where

p151, p25
m21m

m211
, p35

m11

m211
, ~3.17!

so thatp11p21p35p1
21p2

21p3
2.

The equilibrium point

H b50, C52
A6k

6
, F5

A6

6
A62k2J , ~3.18!

does not exist ifk2.6 and is part of the non-isolated line of equilibrium pointsb21C251 when
k256. The point lies on the boundary of the phase spaceb21C21F251 and hence it corre-
sponds to a model with zero curvature. The point is inflationary if

q5
k222

2
,0; ~3.19!

that is, the point represents an inflationary model ifk2,2. The linearized system in a neighbor-
hood of the equilibrium point has eigenvalues

l15
k226

2
, l25

k226

2
, l35k222. ~3.20!

If k2,2 the point is therefore a sink, and if 2,k2,6 then the point is a saddle point.~The nature
of this point whenk252 or k256, the bifurcation values, will be discussed later.! For kÞ0 the
exact solution corresponding to this equilibrium point is that of a flat FRW model with line
element given by~after a re-coordinatization!

ds252dt21t4/k2
~dx21dy21dz2!, ~3.21!

and if k50 ~the scalar field potential is equivalent to a positive cosmological constant! then the
exact solution is the de Sitter model. The scalar field forkÞ0 is given by

f5f02
2

k
ln t. ~3.22!

The equilibrium point

H b52
~k222!

2

~m21!Am21m11

@~k222!~m21m11!13~m211!#
,

C52
A6k

2

~m211!

@~k222!~m21m11!13~m211!#
,

F5
A6

2

Am211A@~k222!~m11!214~m211!#

@~k222!~m21m11!13~m211!#
J , ~3.23!

5265Coley, Ibáñez, and van den Hoogen: Spatially homogeneous scalar field cosmologies

J. Math. Phys., Vol. 38, No. 10, October 1997

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:50:35



can be shown~after much algebra! to satisfy the boundary condition, Eq.~3.13!, if k2>2 and
satisfies the inflationary conditionq,0 if k2,2. This implies that the corresponding solution is
non-inflationary when the point exists inside the physical phase space given by Eq.~3.13!. The
linearized part of the system in a neighborhood of the equilibrium point has eigenvalues

l152
3

2 H 4~m211!1~k222!~m11!2

~k222!~m21m11!13~m211!
J ,

l252
3

4 H ~k222!~m11!214~m211!

~k222!~m21m11!13~m211!
G

1
3

4 H A@~k222!~m11!214~m211!#@4~m211!2~k222!~7m222m17!#

~k222!~m21m11!13~m211!
J , ~3.24!

l352
3

4 H ~k222!~m11!214~m211!

~k222!~m21m11!13~m211!
J

2
3

4 H A@~k222!~m11!214~m211!#@4~m211!2~k222!~7m222m17!#

~k222!~m21m11!13~m211!
J .

It can be shown that ifk2.2, then all three eigenvalues are negative and hence the equilibrium
point is a stable node. It is also interesting to note that ifk2.214(m211)/(7m222m17), then
the equilibrium point is a focus~i.e., the solution oscillates in a neighborhood of the equilibrium
point as it approaches the equilibrium point!. The behavior of the system at the bifurcation value
k252 will be discussed later. The exact solution corresponding to this point is that of a Bianchi
type VIh model or one of its degeneracies~i.e., if m50 it is of type III and if m51 it is a
negatively curved FRW model!, with line element~after a re-coordinatization!

ds252dt21a0
2~ t2p1dx21t2p2e2mxdy21t2p3e2xdz2!, ~3.25!

where

p151,

p25
2

k2 S 11
~k222!~m21m!

2~m211!
D , ~3.26!

p35
2

k2 S 11
~k222!~m11!

2~m211!
D .

The scalar field in this case is given by

f5f02
2

k
ln t. ~3.27!

For mÞ1, the solution given by Eqs.~3.25!–~3.27! is the exact solution found by Feinstein and
Ibáñez.13 Thus we see that ifk2.2 then the non-isotropic and non-inflationary Feinstein and
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Ibáñez13 solution is a stable attractor for the type III and VIh cases. Whenm51, the correspond-
ing isotropic solution represents the future asymptotic attractor for the Bianchi type VIIh models
as well as the asymptotic attractor for the Bianchi type V models.

2. Boundaries

The qualitative behavior of the system on the boundaries can also help to determine the
behavior in the interior of the phase space. Each of the boundary setsF50 andb21C21F251
is an invariant set. The invariant setF50 represents models with a massless scalar field with a
zero potential. This invariant set will represent the behavior of the system as the scalar fieldf
tends to minus infinity. The remaining system of equations forb andC can be directly integrated
to yield

C5CS 2b2
~12m!

Am21m11
D . ~3.28!

These are straight lines emanating from the equilibrium point Eq.~3.14! directed inwards, and thus
in the two-dimensional invariant setF50 the point is a sink. However, in the full three-
dimensional phase space the point is a saddle point, and thus we can conclude that the invariant set
F50 is the two-dimensional stable manifold. Also, it is easy to see that the outer ring described
by b21C251 is a source~see Figure 1!.

We can also analyze the invariant setb21C21F251, which represents Bianchi type I
models with a scalar field and an exponential potential. Again the system of equations can be
integrated and the solutions are found to be straight lines emanating from the ring of non-isolated
equilibrium points given byb21C251 and evolving to the equilibrium point Eq.~3.18! if k2,6.
In the full three-dimensional phase space this equilibrium point Eq.~3.18! is a saddle when
2,k2,6, and consequently in this case the invariant setb21C21F251 is the two-dimensional
stable manifold.

In the full three-dimensional phase space the ring of equilibrium points (b21C251, F50)
for k2,6 is a global source, and fork2.6 we find that some part of the ring acts like a source and
the remaining part of the ring acts like a saddle~see Figures 2 and 3!. The exact solution corre-
sponding to the equilibrium points (b0 ,6A12b0

2, 0) has the form

ds252dt21t2p1dx21t2p2dy21t2p3dz2, ~3.29!

where

FIG. 1. Phase portrait in the invariant setF50.
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p15
1

3 S 11
~12m!b0

Am21m11
D ,

p25
1

3 S 12
~21m!b0

Am21m11
D , ~3.30!

p35
1

3 S 11
~112m!b0

Am21m11
D ,

where 21<b0<1. Note thatp11p21p351 but p1
21p2

21p3
25 1

3(112b0); hence in general
(b0Þ0) these Kasner-like points do not correspond to exact Kasner models.

3. Closed orbits

It is very difficult to prove or disprove the existence of periodic and/or recurrent orbits in the
phase space of any of the dynamical systems corresponding to the general Bianchi models. How-
ever, in the Bianchi V case (m51), for example, in which the phase space can be described by a
number of invariant sets, some results are possible. Recall that the phase space is a hemisphere
described byb21C21F2<1 andF>0. The invariant sets and their dimension, as well as a

FIG. 2. Projection of the phase portrait in the invariant setb21C21F251 with k2,6.

FIG. 3. Projection of the phase portrait in the invariant setb21C21F251 with k2.6.
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brief description, is given in Table II. Since the dimension of set A is 1, closed orbits cannot exist.
In sets B and C, we are able to find the equations of the orbits explicitly and we find that there are
no closed orbits@see the solution given by Eq.~3.28! and Figure 1 and Figures 2 and 3, respec-
tively#. The set D which represents the FRW models contain no closed orbits. In the sets E2 and
E1 we have thatdb/dV.0 anddb/dV,0, respectively, and consequently, sinceb is a mono-
tonic function in each invariant set, there do not exist any closed orbits in the interior of the
hemisphere.15 Summarizing, there do not exist any closed periodic orbits in the case of the Bianchi
V (m51) models.

4. Bifurcation values

We shall now concern ourselves with the bifurcation values.28 If k250, it is easily determined
that the critical points and the qualitative behavior is the same as in the case 0,k2,2. However,
the corresponding exact solutions are different.~Note that thek250 case corresponds to the case
of a positive cosmological constant.! At the bifurcation valuek252, we find that the equilibrium
points Eq.~3.18! and Eq.~3.24! coalesce to become a single equilibrium point. The linearized
system at this point has a zero eigenvalue. However, by using polar coordinates we find that the
point is a sink and hence the qualitative behavior of the system is the same as for the case
0,k2,2. We thus conclude that the equilibrium point Eq.~3.18! undergoes atrans-critical
bifurcation atk252. At the bifurcation value ofk256, the equilibrium point Eq.~3.18! now
becomes part of the ring of equilibrium points (b21C251, F50). This particular point remains
a saddle point and the rest of the ring of equilibrium points remain sources; however, as the value
of k2 is increased past 6 more and more of the ring starts to behave like saddle points. Thus in
some extended sense of the definition, the ring of equilibrium points (b21C251, C50) under-
goes atrans-critical-like bifurcation atk256.

C. Discussion

The qualitative behavior of the class of cosmological models under consideration depends
critically on the value ofk and somewhat on the parameterm. The parameterm determines which
Bianchi model we are considering and consequently determines if the model will isotropize to the
future. However, the parameterk has a profound affect on the qualitative behavior of the models.
For 0<k2,2 all trajectories~that is, all models of Bianchi types I, III, V and the VIh), except for
a set of measure zero, evolve from the ring of equilibrium pointsb21C251, F50 toward the
isotropic and inflationary model corresponding to the equilibrium point given by Eq.~3.18!. For
k252, all trajectories evolve from the ring of equilibrium pointsb21C251, F50 toward the
isotropic model given by Eq.~3.18!; however these models need not inflate. For 2,k2, all

TABLE II. The invariant sets in the Bianchi V phase space.

Label Variables Dimension Description

A F50,b21C251 1 Equator of hemisphere
~Kasner ring!

B F50,b21C2,1 2 Bottom disk of hemisphere
~massless scalar field!

C F.0,b21C21F251 2 Surface of hemisphere
~Bianchi I!

D F.0,b21C21F2,1,b50 2 Half disk in interior of hemisphere
~FRW!

E– F.0,b21C21F2,1,b,0 3 Half of interior of hemisphere
~Bianchi V!

E1 F.0,b21C21F2,1,b.0 3 Half of interior of hemisphere
~Bianchi V!
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trajectories in the Bianchi III and VIh phase spaces evolve from some portion of the ring
b21C251 toward the equilibrium point given by Eq.~3.24!, which is neither isotropic nor
inflationary. However, in the Bianchi I and V cases for 2,k2,6 all trajectories evolve from some
portion of the ring and isotropize to the future, but they need not inflate. When 6,k2, the Bianchi
V models continue to isotropize to the future while the Bianchi I models fail to do so.

IV. CONCLUSION

In Sec. II, we described a number of results concerning the behavior of spatially homogeneous
cosmological models with a scalar field and an exponential potential of the formV(f)5Lekf

~whereL is a positive constant!. Summarizing, we found that:

~1! If k50, then all initially expanding Bianchi models~except a subclass of the Bianchi type IX
models! will isotropize to the future toward the de Sitter solution.20

~2! If 0 ,k2,2, then all initially expanding Bianchi models~except for a subclass of the Bianchi
type IX models! isotropize to the future toward a power-law inflationary solution.11,12

~3! If 0 ,k2,2, then a subclass of the Bianchi type IX models will recollapse.11,12

~4! If 2 ,k2, then the only Bianchi models that can possibly isotropize to the future are those of
Bianchi types I, V, VII and IX.25

~5! If 2 ,k2, then the Bianchi VIIh models do indeed isotropize; and therefore, there exists an
open set of initial conditions in the space of all spatially homogeneous initial data for which
the models isotropize to the future.26

In the remainder of the paper a detailed qualitative analysis of a one-parameter family of
Bianchi models~which includes the Bianchi models of types I, III, V, and VIh) was presented,
illustrating the validity of the points above. In particular, it was shown that the future asymptotic
behavior of the Bianchi type III and VIh models is represented by the Feinstein–Iba´ñez solution.13

We note that the Feinstein–Iba´ñez solution13 is a self-similar, non-isotropic and non-inflationary
solution that is stable whenk2.2; hence the cosmic no-hair conjecture is clearly not satisfied in
this case. In addition, it was shown that the Bianchi type V models whenk2.2 asymptotically
tend to an isotropic but non-inflationary open FRW model. This does not mean that the models do
not experience inflation, it is the final equilibrium point which is marginally non-inflationary. Note
that if k2.8/3, then these Bianchi V models can be shown to experience periods of inflation as
they evolve toward the isotropic ‘‘marginally’’ non-inflationary solution.

We note that in our investigation we have not included ordinary matter~satisfying the usual
energy conditions!. Matter can be included in precisely the same way as in Heusler23 and Kitada
and Maeda.11,12 However, the addition of ordinary matter is not expected to change the primary
results.
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