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ABSTRACT

The spatial and temporal structure of the flow, vorticity and stress over equilibrium orbital-

scale sand ripples are investigated at turbulence-resolving scales with a wide-band coherent

Doppler profiler (MFDop) in an oscillating tray apparatus. The oscillation period and

horizontal excursion were 10 s and 0.5 m. Velocity profiles were acquired with 3 mm

vertical resolution and at a 42 Hz sampling rate. Ripple wavelength and amplitude were 25

cm and 2.2 cm. The MFDop measurements are used to investigate the development of the

lee vortex as a function of phase, and the co-evolution of turbulent kinetic energy, Reynolds

stress and turbulence production. Shear stress is determined from the vertically-integrated

vorticity equation and using the double-averaging approach. Friction factors obtained from

the two methods are comparable and range from 0.1 to 0.2.

The spatial distribution of flow, Reynolds stress and turbulence as a function of oscilla-

tion phase were determined by combining the phase-averaged velocity measurements from

trials with the MFDop at different positions relative to a particular ripple crest. Estimates

of bottom shear stress were determined using different methods. It was found that the

acceleration defect integral cannot be implemented since the boundary layer approximation

does not hold over orbital-scale ripples. The law-of-the-wall yields friction factor values

of about 2.5 and hydraulic roughness values of the order of 100 cm, which are physically

unrealistic. The vorticity method assumes that the horizontal length scales are much greater

than the vertical length scales, but provides bed shear stress estimates at all points along

the ripple profile. Double-averaging necessarily produces only the net shear stress, but

yields the relative contributions from the Reynolds stress and bedform-induced stress. For

these two spatially-averaged methods, the hydraulic roughness to ripple height ratio lies

between 1 and 3, which is much more sensible than the values of 14 to 40 obtained via the

law-of-the-wall.

xi
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CHAPTER 1

INTRODUCTION

1.1 Wave-generated ripples in sandy sediments

A variety of sedimentary structures ranging from small-scale O(10 cm) wavelength ripples

to large-scale O(10 m) to O(100 m) dunes are usually present on the sea bed in sandy

coastal and continental shelf environments, and also in the deep ocean. Small-scale

structures such as ripples have an influence on the bottom boundary layer vertical structure,

sediment transport rates as well as turbulence near the bed. My research will focus on

ripples, more specifically orbital-scale vortex ripples. These ripples are usually formed

under purely oscillatory flows. Bagnold (1946) first studied in detail the formation and

physical properties such as the amplitude and wavelength of vortex ripples. Since then,

a great many studies have focused on laboratory experiments involving ripples, van der

Werf et al. (2007) being a recent example. In addition, numerical models, both Reynolds-

averaged and turbulence-resolving, are currently being used to simulate ripple formation

and evolution under oscillatory flow (Marieu et al., 2008; Chou and Fringer, 2010).

Allen (1979) assembled data from various sources to create the existence field for wave-

formed ripples, reproduced in Figure 1.1. Allen (1979) concluded that the occurrence

of these ripples is a function of near-bed orbital velocity and sediment grain size. In

Figure 1.1, the existence field of wave ripples is bounded below by the field of no bed-

material movement on a plane bed, and above by that for intense sediment transport over

a stable plane bed. Contours of limiting values of ripple steepness (ripple height η0 to

ripple wavelength λ ratio) are indicated. Flatter ripples occur at velocities near the field

boundaries, whereas steeper ripples occur in medium-grained sand at velocities between

1
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Figure 1.1: Existence field for wave-formed ripples: ripple steepness (η0/λ) as a function
of maximum near-bed orbital velocity and sediment particle diameter. The curves are
limiting values of ripple steepness (modified from Allen (1979)). The star indicates the
location of the ripples that were created experimentally in the present work.

0.16 m/s and 0.32 m/s (Allen, 1979).

Under the action of surface gravity waves, rolling-grain ripples with low steepness will

be first to appear on an initially smooth bed. Sediment in motion near the bed is then

carried away from the troughs towards the crests. As time increases, the ripples grow and

tend to organize themselves in parallel transverse zones. When ripple steepness exceeds

0.1 (Sleath, 1984), vortex formation starts to occur in the lee of each ripple crest. The

vortex scoops up grains of sediment from the troughs and places them on the ripple crests.

In the case of finer sediment, a proportion of grains will overshoot the crest and be carried

in a suspended sand cloud (Bagnold, 1946). As a result, near-bed sediment transport is

greatly influenced by these vortices. In fact, van der Werf et al. (2007) conclude that the

concentration field of suspended sediment above ripples is dominated by the formation

and diffusion of these vortices.

Clifton and Dingler (1984), re-examined later by Wiberg and Harris (1994), classify

equilibrium ripples into three categories based on wavelength λ and near-bed wave orbital

diameter d0. In order of increasing d0, three categories of 2-dimensional ripples are
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observed: orbital, suborbital and anorbital-scale ripples. Orbital-scale ripples, as defined

by Wiberg and Harris (1994), have wavelengths proportional to the near-bed wave orbital

diameter d0.

λ = 0.62d0 (1.1)

It should be noted that orbital-scale ripples and vortex ripples are often considered to

be equivalent. Wiberg and Harris (1994) also find an average steepness for orbital-scale

ripples of
η0
λ

= 0.17 (1.2)

1.2 Importance and timeliness

Before we can begin to understand the complexities of the physical processes occurring

in the nearshore region, we must first have a better understanding of the fundamental

processes involved under idealised conditions. For instance, it is essential to understand the

flow over regular bedforms under oscillatory waves before we can adequately study the flow

over irregular bedforms under unsteady forcing. Furthermore, the study of fundamental

processes involved (such as flow) is important in order to describe related mechanisms

(such as sediment transport and bed shear stress). Increased knowledge of all these physical

processes can then be applied to improve modelling of large-scale processes such as coastal

morphology and erosion.

The importance of bottom stress in wind-driven coastal circulation and its effects on

wave dissipation in shallow waters has been discussed by many, notably Grant and Madsen

(1986). In fact, Ardhuin et al. (2003) conclude that bottom friction, due to the presence of

bedforms, plays a dominant role in wave energy dissipation over broad shallow shelves.

Over symmetrical sand ripples, Tunstall and Inman (1975) determined that 7% of the total

wave energy loss resulting from bottom effects is due to the generation and motion of

vortices.

Direct measurements of stress over a fixed roughness bed using a shear plate have been

made by Riedel et al. (1972). Furthermore, indirect stress measurements over these kinds

of beds have also been obtained by Sleath (1987) and Jensen et al. (1989). Over mobile

beds, direct measurements of stress are difficult to make, and, as a result, reliable flow

measurements are needed to infer bottom stress. Hay et al. (2012c) obtained bed stress
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estimates over mobile beds in a laboratory setting. In addition, friction factors have been

estimated from the vertical turbulent velocity over mobile beds using field measurements

(Smyth and Hay, 2002; Newgard and Hay, 2007).

Three different methods are available for near-bed shear stress measurement: the mo-

mentum integral, Reynolds stress and the law-of-the-wall. Previously, there have been

important differences in the stress estimates obtained using these methods. In fact, prior

studies have concluded that one or more of the methods may yield unreliable results for

stress estimates in oscillatory boundary layers. For example, Sleath (1987) obtained stress

estimates over a fixed roughness bed via the Reynolds method that were significantly lower

than those calculated using the momentum integral approach. Over a smooth bed, Jensen

et al. (1989) conclude that their Reynolds stress estimates are also underpredicted. Over a

fixed roughness bed, Jensen (1988) estimated bed friction factors using the law-of-the-wall

that were consistent with earlier measurements, but obtained unreliable stress measure-

ments using the vertical integral method. Furthermore, Hay et al. (2012c) obtained defect

stress estimates over evolving sand ripples that were larger than the law-of-the-wall stress

calculations, but smaller than Reynolds stress estimates. As a result, redundant and reliable

stress measurements are still much needed.

Recently, new technologies have fuelled a renewed interest among researchers in in-

vestigating the wave bottom boundary layer over ripples. For example, particle image

velocimetry (PIV) has been used for near-bed velocity measurement (Nichols and Foster,

2007; van der Werf et al., 2007). In this technique, the flow is determined by using a

camera to photograph small tracer particles (illuminated by a laser lightsheet) moving

with the fluid. Furthermore, Laser Doppler Anemometry (LDA) has been used to measure

fluid velocities near the bed (Du Toit and Sleath, 1981; Sleath, 1987). In addition, a

number of studies have had success in using pulse-coherent Doppler for measuring flow

and turbulence within the wave bottom boundary layer (Hurther et al., 2011; Hurther and

Thorne, 2011; Hay et al., 2012a,b,c). Hence, the availability of better technology has been

the driving force behind some of the more recent experimental work.

At the same time, advances in computational power and computational fluid dynamics

techniques have allowed researchers to develop more accurate numerical models to simulate

the flow over vortex ripples. For example, promising advances have been made using the
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Reynolds Averaged Navier-Stokes (RANS) equations (Marieu et al., 2008) and turbulence-

resolving, i.e. large-eddy simulation (LES), techniques (Chou and Fringer, 2010). In

addition, Barr et al. (2004) have used numerical simulations to investigate near-bed

turbulence levels over different shapes of fixed ripples.

Given the current growing interest in investigating the wave bottom boundary layer,

the present research is of immediate relevance to obtaining independent flow and stress

measurements over equilibrium orbital-scale ripples. High-resolution flow measurements

will be obtained using a state-of-the-art wide-band coherent Doppler profiler (MFDop).

In doing so, the limits of the instrument will be tested in a laboratory setting as precursor

to making field measurements under similar conditions. MFDop measurements will be

used to investigate the development of the lee vortex at different phases of the forcing

cycle and the co-evolution of Reynolds stress, turbulent kinetic energy and turbulence

production. Shear stress will be calculated using several methods, so as to determine the

approach which yields the most reliable results for orbital-scale ripples. The present work

will thus provide accurate flow and stress measurements that can then be used to validate

and improve current numerical models.

1.3 Objectives

The objectives of my thesis are:

• to measure the spatial structure of the near-bed flow and vorticity field over equilib-

rium orbital-scale ripples.

• to estimate stress within the turbulent oscillatory boundary layer over orbital-scale

ripples using different methods.

• to investigate stress at a higher orbital excursion when the ripples are out of equilib-

rium.

• to test the MFDop’s limits in a laboratory setting in order to evaluate whether the

instrument is suitable for similar field conditions.
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1.4 Thesis organisation

In order to address the outlined objectives, the thesis is organised as follows. Chapter 2

summarizes the theory of flow and stress in oscillatory boundary layers. Two solutions

to the potential flow over a rippled bed are also presented. The experimental set-up and

the MFDop instrument are described in chapter 3. The data analysis methods are also

discussed in this chapter. The results and their discussion are presented in chapter 4. A

summary of the results and the conclusions are given in chapter 5.



CHAPTER 2

THEORY

2.1 Oscillatory boundary layers over a flat bed

Determining the flow in the wave bottom boundary layer is essential to understanding

the mechanics of sediment transport, which is of great importance in coastal engineering

(Nielsen, 1992). The bottom boundary layer can be defined as the thin layer of fluid that is

influenced by the bed (Nielsen, 1992). Let us define x and z as the horizontal and vertical

coordinates, with u and w as the corresponding velocity components. The fluid density is

given by ρ, p is pressure, τx is the shear stress in the x-direction and τ z is the shear stress

in the z-direction. The momentum equations are given by (Kundu, 1990)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
+

∂τx

∂z
(2.1)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −∂p

∂z
+ ρg +

∂τ z

∂x
(2.2)

where the first term is the local acceleration and the second and third terms are referred

to as the non-linear terms. For uniform oscillatory flow over a horizontal flat bed, the

momentum equations in the boundary layer is (Fredsoe and Deigaard, 1992)

ρ
∂u

∂t
= −∂p

∂x
+

∂τx

∂z
(2.3)

in the flow direction and
∂p

∂z
= 0 (2.4)

7
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perpendicular to the flow direction. These equations arise by applying the boundary layer

approximation to the momentum equations. The boundary layer approximation assumes

that, within the boundary layer, the magnitude of the variations of the flow in the stream-

wise direction is much smaller than the magnitude of the variations across the boundary

(Kundu, 1990). Since shear stresses are absent outside the boundary layer, the horizontal

momentum equation within the interior is

∂U∞
∂t

= −1

ρ

∂p

∂x
(2.5)

where U∞ is the free-stream velocity. Given that the horizontal pressure gradient ∂p/∂x is

constant throughout the boundary layer (independent of z (equation 2.4)), the horizontal

momentum equation for the boundary layer is

∂ud

∂t
=

1

ρ

∂τx

∂z
(2.6)

where the defect velocity ud is

ud = u− U∞ (2.7)

and ∂ud/∂t is the acceleration defect. It can be shown that equation 2.6 also holds for

the boundary layer above an oscillating plate with no imposed flow in the interior (see

appendix A).

Let the defect velocity within the bottom boundary layer be given by

ud(t) = u0(z) sin[ωt+ φ0(z)] (2.8)

where u0(z) and φ0(z) are the amplitude and phase of the flow and ω is the angular

frequency of the oscillation. A characteristic feature of oscillatory boundary layers is the

fact that the velocity amplitude within the boundary layer overshoots the amplitude of the

oscillatory flow in the interior (Nielsen, 1992). Since there is less inertia in the boundary

layer than in the interior, the flow within the boundary layer responds faster to the varying

pressure gradient (van der Werf et al., 2007). Thus, the flow within the boundary layer

reverses before that of the free-stream velocity.

Performing dimensional analysis on equation 2.6, using the friction velocity u∗ as the

velocity scale, with τx/ρ = u2
∗ and ∂/∂t = ω, the scale height of the oscillatory boundary
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layer is δ ∼ u∗/ω. In their analytical constant eddy viscosity model, Christoffersen and

Jonsson (1985) define δ as

δ = κu∗/ω (2.9)

where κ = 0.4 is von Karman’s constant. Using ω ∼ 1 radian/s for typical surface gravity

waves having 5 to 20 s periods and u∗ ∼ 10 cm/s, the boundary layer thickness over a flat

bed is expected to be of the order of a few centimetres.

Grant and Madsen (1986) emphasize the importance of bottom stress in wind-driven

coastal circulation and its effects on wave dissipation in shallow waters. The bed friction

factor fw is defined as

fw = 2
u∗m2

U0
2 (2.10)

where u∗m is the maximum friction velocity and U0 is the amplitude of the free-stream

velocity. For turbulent oscillatory boundary layers,

fw = fw

(rh
A

)
(2.11)

where A is the semi-excursion and rh is the hydraulic roughness which, for fixed roughness

flat beds, is proportional to grain size (Nielsen, 1992). Even though bottom friction

has been the subject of numerous studies, reliable measurements of the bottom-friction

coefficient for flow over mobile beds are scarce because measurements are difficult to

make.

2.2 Irrotational Flow over a Rippled Bed

Determining the theoretical flow over ripples can be quite complex. In order to simplify the

problem, the flow can be decoupled into two parts: an irrotational part and a rotational part.

This section presents a solution to the potential flow over smooth-crested ripples according

to Davies (1983) and over steep-crested ripples according to Longuet-Higgins (1981). Both

solutions assume that the sediment-water interface is fixed and also neglect the effects of

suspended sediment. In chapter 4, the flow field calculated from our laboratory results will

be compared to both potential flow solutions.
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2.2.1 Potential flow over smooth-crested ripples: Davies (1983)

Davies (1983) considered a two-dimensional, irrotational, deep flow over a small-amplitude

sinusoidal bed extending to infinity in both positive and negative x directions (see Figure

2.1). Let the bed be given by

ζ(x) = a cos kx (2.12)

where a is the ripple amplitude, k = 2π/λ is the ripple wavenumber and λ is the ripple

wavelength. Davies (1983) assumed that the unperturbed flow away from the bed is

uniform and of strength U0 in the positive x direction. Since the flow is irrotational, we

can define a velocity potential Φ such that

u =
∂Φ

∂x
;w =

∂Φ

∂z
(2.13)

where u and w are the horizontal and vertical components of the fluid’s velocity. The

velocity potential can be written as

Φ(x, z, t) = φ(x, z) sinωt (2.14)

where ω is the angular frequency.

Laplace’s equation
∂2φ

∂x2
+

∂2φ

∂z2
= 0 (2.15)

must be satisfied in the flow domain. On the surface of the rippled bed, the kinematical

condition (a fluid particle on the surface of the bed never leaves the surface) must also be

satisfied: that is, at the bed z = ζ ,

Dζ(x)

Dt
=
�
�
���

0
∂ζ(x)

∂t
+ u

∂ζ(x)

∂x
= w (2.16)

Using equation 2.13, the kinematic boundary condition reduces to

−∂φ

∂x

∂ζ

∂x
+

∂φ

∂z
= 0 (2.17)

Davies (1983) expanded the velocity potential φ, as well as the ripple profile ζ, in a
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y

x

λ

U
0

ζ(x)

Figure 2.1: Ripple profile used in Davies (1983)

power series

φ = αφ1 + α2φ2 + ...

ζ = αζ1 + α2ζ2 + ... (2.18)

where α is a small parameter. In doing so, the problem has now been simplified to a

first-order solution representing the velocity potential existing in the absence of ripples

and a second-order solution representing a perturbation. Using a Taylor series expansion,

the boundary condition (equation 2.17) can be linearised and applied at the mean bed level

(z = 0). [
−∂φ

∂x

∂ζ

∂x
+

∂φ

∂z

]
z=ζ

=

[
−∂φ

∂x

∂ζ

∂x
+

∂φ

∂z

]
z=0

+ ... (2.19)

Combining equations 2.17 and 2.18, we get the following

− ∂

∂x

(
αφ1 + α2φ2 + ...

) ∂

∂x

(
αζ1 + α2ζ2 + ...

)
+ α

∂φ1

∂z
+ α2∂φ2

∂z
+ ... = 0 (2.20)

Thus, from 2.20, the problem to order α is

∂φ1

∂z
= 0 (2.21)

and Laplace’s equation (2.15) becomes

∂2φ1

∂x2
+

∂2φ1

∂z2
= 0 (2.22)
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Using both these equations, the solution to order α is

φ1 = U0x (2.23)

where U0 is the amplitude of the free-stream velocity far from the bed.

From 2.20, the problem to order α2 is

−∂φ1

∂x

∂ζ1
∂x

+
∂φ2

∂z
= 0 (2.24)

and Laplace’s equation (2.15) is

∂2φ2

∂x2
+

∂2φ2

∂z2
= 0 (2.25)

The solution to Laplace’s equation takes the form

φ2 = (Aekz +Be−kz) sin kx (2.26)

where A and B are constants. Since φ2 must exist away from the bed at z = ∞, A = 0.

Equation 2.26 thus becomes

φ2 = Be−kz sin kx (2.27)

Substituting φ2 into equation 2.24,

U0ka sin kx− Bke−kz sin kx = 0 (2.28)

and at z = 0, we find that B = U0a. The solution to order α2 is

φ2 = U0ae
−kz sin kx (2.29)

Thus, the overall solution correct to the second order is

Φ = [φ1 + φ2] sinωt = [U0x+ U0ae
−kz sin kx] sinωt (2.30)
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Using equations 2.13, the velocity components are found to be

u = [1 + ake−kz cos kx]U0 sinωt (2.31)

w = −U0ake
−kz sin kx sinωt (2.32)

2.2.2 Potential flow over steep sand ripples: Longuet-Higgins (1981)

The bed profile used in Longuet-Higgins (1981) has sharper crests. Longuet-Higgins

(1981) used a conformal transformation to map the ripple profile onto the sides of a regular

polygon. The flow field (corresponding to the exterior of the polygon) is then mapped onto

the interior of a unit circle.

Consider a series of ripples of wavelength λ in the complex z-plane given by

z = x+ iy (2.33)

where x and y are rectangular coordinates and the origin is located at a ripple crest. Using

a conformal transformation (angles are preserved locally), the ripple sequence can be

mapped onto the sides of a regular polygon. The vertices of the polygon represent the

ripple crests and the interior angle at each crest is the same as the interior angle of the

corners of the polygon. This transformation on the ζ-plane can be written as

ζ = e−ikz (2.34)

where k = 2π/Pλ and P is an integer. Therefore, the origin (z = 0) in the z-plane

corresponds to ζ = 1 and the centre of the polygon (ζ = 0) corresponds to y → −∞ in

the z-plane. The interior of the polygon represents the sand and the exterior is the fluid.

Similar to Longuet-Higgins (1981), a series of five ripples was mapped onto the sides of a

pentagon (P = 5). The value 5 was chosen so that the ripple steepness of these theoretical

ripples would be similar to those created in the laboratory experiments.

Using the following transformation, the exterior of the polygon can be mapped onto the

interior of a unit circle.

ζ = ζ0 −K

W∫
W0

(1−W P )2/P

W 2
dW (2.35)
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Figure 2.2: Ripple profile in the z-plane and transformed into a polygon in the ζ-plane and
a circle in the W -plane. Two ripple crests are identified.

where ζ0, W0 and K are constants. In this plane, the exterior of the circle corresponds to

the sand and the interior represents the water. W can be expressed as

W = ρeiα (2.36)

where ρ = 1 defines the unit circle. Lines of constant ρ are represented by concentric

circles in the W -plane and by streamlines in the z-plane. Distance along a streamline is

given by α. Using equation 2.35, K can be calculated by using W0 = 1 and W = e2iπ/P ,

as well as their corresponding points in the ζ-plane: ζ0 = 1 and ζ = e−2iπ/P . To avoid a

singularity at W = 1, Longuet-Higgins (1981) suggested using W0 = e−iπ/P for numerical

computations. The constant ζ0 for this choice of W0 was then determined using the point

ζ = e−2iπ/P and its corresponding point in the W -plane mentioned earlier, as well as

equation 2.35. Figure 2.2 shows the ripple sequence in all three planes. Two ripple crests

are identified in the z-plane, as well as their corresponding points in the ζ and W -planes.

Longuet-Higgins (1981) assumed that the flow far from the bed is of uniform strength

U0 in the horizontal direction and has been started from rest impulsively. Since the flow is
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initially irrotational, a complex potential χ can be defined

χ = φ+ iψ (2.37)

in such a way that far from the bed (y → ∞),

χ ∼ U0z (2.38)

In equation 2.37, φ is the velocity potential and ψ is the stream function. Combining

equation 2.38 with equation 2.34, we get

χ ∼ (iU0/k) ln ζ (2.39)

Furthermore, for W � 1, equation 2.35 can be reduced to

ζ ∼ K/W (2.40)

and, for W → 0, equation 2.39 then becomes

χ ∼ (U0/ik) lnW (2.41)

Longuet-Higgins (1981) thus suggested that the required initial flow is given by

χ = (U0/ik) lnW (2.42)

By substituting W from equation 2.36 in equation 2.42 and taking the imaginary part, the

stream function is given by

ψ = −(U0/k) ln ρ (2.43)

The streamlines in the z-plane, represented by curves of constant ρ, are plotted in Figure

2.3. The velocity potential given by the real part of χ is

φ =
αU0

k
(2.44)
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Figure 2.3: Streamlines in the z-plane calculated from the solution given by Longuet-
Higgins (1981).

The flow field can then be calculated numerically by using the velocity potential

u =
∂φ

∂x
;w =

∂φ

∂y
(2.45)

where u and w are the horizontal and vertical components of the flow.

2.2.3 Pressure gradient in potential flow

The boundary layer approximation is used in the defect stress estimate which will be

discussed in section 2.4.1. However, this approximation may not be applicable over orbital-

scale equilibrium ripples. Using the potential flow models, let us investigate the boundary

layer approximation, and, consequently, the dependence of the pressure gradient field on

height above the bed.

The pressure gradient (∂p/∂x) can be calculated using the momentum equation for

horizontal flow over a frictionless bed.

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(2.46)

For the potential flow solution suggested by Davies (1983), the pressure gradient can be

calculated analytically using equations 2.31 and 2.32, whereas for the solution suggested
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by Longuet-Higgins (1981), the pressure gradient must be estimated numerically. For the

model given by Davies (1983), the local acceleration is

∂u

∂t
= ωU0[1 + ake−kz cos kx] cosωt (2.47)

and the non-linear terms are given by

u
∂u

∂x
= −ak2e−kzU2

0 [1 + ake−kz cos kx] sin kx sin2 ωt (2.48)

w
∂u

∂z
= a2k3e−2kzU2

0 cos kx sin kx sin
2 ωt (2.49)

The pressure at the bed can also be determined using the time-dependent form of the

irrotational Bernouilli equation (Kundu, 1990).

∂Φ

∂t
+

1

2
(u2 + w2) +

p

ρ
+ gz = 0 (2.50)

Considering that the velocity potential Φ can be written as

Φ(x, z, t) = φ(x, z) sinωt (2.51)

Bernouilli’s equation (2.50) can be rewritten as

−ωφ′(x, z) cosωt− 1

2
(u2 + w2) =

p

ρ
+ gz − ωU0x cosωt (2.52)

where φ′(x, z) = φ(x, z)− U0x. Let the right-hand-side of the equation be referred to as

p′/ρ and represent the dynamic pressure at the bed. The hydrostatic pressure is given by

the gz term and ωU0x cosωt term represents the part of the pressure field driving the mean

flow.

The top panel in Figure 2.4 shows the pressure gradient field at ωt = 90◦ over ripples

of wavelength and height similar to those in the experiments to be presented later. It can

clearly be seen that the pressure gradient is not independent of height. Areas of alternating

positive and negative pressure gradient that decay away from the bed are evident. The

bottom panel shows the dynamic pressure at the bed. As expected, the dynamic pressure is

negative over the crests and close to zero at the troughs. This result represents the typical

behaviour of flow through a constriction where the static pressure of the fluid in question
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is reduced (Kundu, 1990). It was found that the pressure gradient field, as well as the

dynamic pressure at the bed were similar when calculated numerically from the solution

described by Longuet-Higgins (1981).

The pressure gradient field at 45◦ and the dynamic pressure at the bed are shown in

Figure 2.5. Similar features of alternating negative and positive pressure gradient areas that

decay away from the bed can be observed. The acceleration term has a cosωt dependence,

whereas the non-linear terms have a sinωt dependence. As a consequence, the magnitude

of these features is smaller at 45◦ than at 90◦. Furthermore, far from the bed (z → ∞), the

only contribution to the pressure gradient field comes from the acceleration term. Since

this term has a cosωt dependence, the pressure gradient field is non-zero far from the bed

at 45◦ and close to zero at 90◦. In addition, due to weaker velocities over the ripple crests,

the dynamic pressure is also expected to be weaker over the crests at 45◦ than at 90◦.

The acceleration term ∂u/∂t and the non-linear terms (u∂u/∂x and w∂u/∂z) that were

used in calculating the pressure gradient field (equation 2.50) at 45◦ are shown in Figure

2.6. Since the bed profile has a cos kx dependence (equation 2.12), crests are given by

kx = ±2π, troughs are given by kx = ±(2n − 1)π and zero-crossings are found at

kx = ±(n + 1/2)π, where n is an integer. Thus, the w∂u/∂z (equation 2.49) is zero

over the zero-crossings due to its cos kx dependence. In addition, both non-linear terms

(equations 2.48 and 2.49) are found to be zero over the crests and troughs due to their

dependence on sin kx. As a result, the main contribution to the pressure gradient term over

the troughs and crests comes from the acceleration term. However, it is clear that the overall

main contribution to the pressure gradient field along other parts of the ripple profile comes

from the non-linear terms. This result has serious implications concerning the boundary

layer approximation. The boundary layer approximation assumes that the magnitude of

the variations of flow in the stream-wise direction is smaller than the magnitude of the

variations across the boundary (Batchelor, 1967):

∣∣∣∣ ∂∂x
∣∣∣∣ �

∣∣∣∣ ∂∂z
∣∣∣∣ (2.53)

This approximation also implies that the horizontal pressure gradient is independent of

height. These assumptions are thus valid for a flat bed or a small-amplitude rippled bed

where the boundary layer thickness is much smaller than the horizontal length scale of

the variations in bed elevation. However, it is clear from Figure 2.5 (where the pressure
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Figure 2.4: Top panel: pressure gradient field calculated analytically from Davies (1983)
potential flow solution at 90◦. Bottom panel: dynamic pressure p′ = p+ρgz−ρωU0x cosωt
at the bed.
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distribution is dependent on the height above the bed) and Figure 2.6 (where the relative

contribution of the non-linear terms are non-negligible) that this approximation may not

hold over equilibrium orbital-scale ripples.

2.3 Rotational flow in oscillatory boundary layers over a

rippled bed

The dynamics of the flow within the bottom boundary layer are strongly influenced by

the shape of the sea bed. In fact, the presence of bed forms increases near-bed turbulence

levels compared to flows over smooth beds (Nielsen, 1992; Barr et al., 2004). In a

numerical simulation of turbulent flow over fixed ripples, Barr et al. (2004) conclude that

the distribution of turbulence becomes more focused over the troughs as ripple steepness

increases. Based on the time-averaged turbulent kinetic energy, it was also found that the

turbulent boundary layer thickness is dependent on ripple shape. Over sinusoidal ripples,

the boundary layer is found to be thinner over the crests, with a “secondary thinning” over

the troughs, whereas over steeper ripples, the boundary layer thickness becomes larger

over the crests. As will be discussed in section 4.7, the variable thickness of the boundary

layer over vortex ripples has important consequences for determining the bed shear stress

using the law-of-the-wall.

A typical feature of the flow in oscillatory boundary layers over a rippled bed is the

separation of the flow at or near the ripple crest, in which the flow next to the bed reverses

direction. The flow accelerates up the ripple slope and decelerates as it descends on the

other side. Due to the decrease of pressure in the direction of the flow, the flow adheres to

the boundary upstream of the ripple crest. Downstream of the crest, the pressure increases,

the flow next to the boundary reverses direction and flow separation occurs (Kundu, 1990).

As a consequence, a region of reverse flow, sometimes referred to as a separation bubble,

between the ripple crest and a point farther downstream in the trough is created (Figure

2.7). A vortex is thus defined in the lee of the ripple crest. As the free-stream velocity

decelerates, the vortex is swept backwards over the crest and is ejected around the time of

the free-stream flow reversal (van der Werf et al., 2007).
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Figure 2.7: Sketch of the flow separation over a ripple. The separation point, the point
of reattachment and the separation bubble are shown. The free-stream velocity (U0) is
indicated by an arrow.

2.3.1 Vorticity

Detailed observations of vortex dynamics over a rippled bed have been obtained numeri-

cally (Blondeaux and Vittori, 1991; Barr et al., 2004) and experimentally (Nichols and

Foster, 2007). However, redundant measurements are still needed in order to fully under-

stand the generation and ejection of vortical structures over a rippled bed. The obtained

results will lead to a better understanding of the mechanisms involved in the re-suspension

of sediment grains and their transport (Blondeaux and Vittori, 1991).

Vorticity is defined as the curl of the flow field. The horizontal component of vorticity

perpendicular to the xz plane and thus parallel to the ripple crests is given by

ζ =
∂u

∂z
− ∂w

∂x
(2.54)

2.4 Stress and turbulence in oscillatory boundary layers

In principal, different methods can be implemented to estimate the bed shear stress: the

acceleration defect, the Reynolds stress, the law-of-the-wall, the bedform-induced stress

and from the vertically-integrated vorticity equation.
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2.4.1 Defect stress

Over a flat bed, shear stress can be obtained by vertically integrating the acceleration defect

(equation 2.6) and assuming that the stress vanishes far from the bed, i.e. τ(∞) = 0.

τ(z)

ρ
= −

∫ ∞

z

∂ud

∂t
dz (2.55)

The superscript on τx has been dropped. The stress estimates determined from this

approach are referred to as the defect stress. However, in section 2.2.3, it was shown that

over orbital-scale ripples, the boundary layer approximation likely does not hold. In fact,

it was assumed that the horizontal pressure gradient is constant with depth throughout the

boundary layer when obtaining the acceleration defect (equation 2.6). Thus, while equation

2.55 has been found to hold over flat beds (Sleath, 1987) and over smaller evolving ripples

(Hay et al., 2012c), it probably cannot be used over orbital-scale equilibrium ripples.

2.4.2 Reynolds stress

The Reynolds stress (the stress associated with the turbulent fluctuations) appears in the

Reynolds-averaged Navier-Stokes equations (Monin and Yaglom, 1971). These equations

are based on the Reynolds decomposition where a quantity θ is decomposed into its time-

averaged part θ̄ and its fluctuating part θ′. Using primes to indicate turbulent fluctuations

and an overbar to designate a time average, the vertical turbulent flux of horizontal

momentum, or in other words, the turbulent shear stress, is

τ(z)

ρ
= −u′w′ (2.56)

where −u′w′ represents the Reynolds stress.

2.4.3 Law-of-the-wall

The law-of-the-wall, which can be obtained by dimensional analysis (Monin and Yaglom,

1971), is used in the third method of determining stress. Neglecting viscous effects, it

assumes that the mean velocity gradient is only dependent on the bed shear stress τ0, fluid

density ρ and the vertical coordinate z. A unique combination of these parameters having

the dimension of a velocity gradient can be formed

√
τ0
ρ

1

z
=

u∗
z

(2.57)
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where the friction velocity u∗ =
√
τ0/ρ. Thus,

∂u(z)

∂z
∝ u∗

z
(2.58)

Therefore, the velocity distribution of the fluid near a boundary (but far enough away from

the boundary for viscous effects to be neglected) exhibits a logarithmic dependence on z.

From equation 2.58, the law-of-the-wall can be deduced and for our purposes takes the

following form:

u(x, z, t) =
u∗(x, t)

κ
ln(z′/z0) (2.59)

where z0 is the roughness height, and z′ = z + Δz, Δz being the displacement height

(Monin and Yaglom, 1971) or zero-plane displacement (Raupach, 1992). The height

above the bed at which the logarithmic velocity profile goes to zero is given by z0. The

presence of this logarithmic layer in turbulent oscillatory boundary layers over flat and

fixed roughness beds has been verified experimentally by many, notably Jensen et al.

(1989).

2.4.4 Bed shear stress from vorticity

The bed shear stress can be determined from the equation governing the rate of change

of vorticity (Kundu, 1990). This equation is obtained by cross-differentiating the two-

dimensional momentum equations for an incompressible fluid (∇ · �u = 0). The rate of

change of the horizontal component of vorticity ζ is thus given by

∂ζ

∂t
+ u

∂ζ

∂x
+ w

∂ζ

∂z
=

1

ρ

[
∂2τx

∂z2
− ∂2τ z

∂x2

]
(2.60)

and modifying,
∂ζ

∂t
+

∂

∂x
(uζ) +

∂

∂z
(wζ) =

1

ρ

[
∂2τx

∂z2
− ∂2τ z

∂x2

]
(2.61)

where the τx and τ z are the horizontal and vertical components of stress. If we assume that

the stress is mainly in the horizontal direction (τx 	 τ z) and that the horizontal length

scales are much greater than the vertical length scales (∂(uζ)/∂x � ∂(wζ)/∂z), equation

2.61 becomes
∞∫
z

⎡
⎣

∞∫
z

∂ζ

∂t
dz + wζ

⎤
⎦ dz 
 1

ρ
τx(z) (2.62)
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This approximation of horizontal length scales being greater than the vertical length scales

is a valid assumption to make for orbital-scale ripples, which have a steepness of ∼0.2

(equation 1.2).

2.4.5 Bedform-induced shear stress

The bedform-induced shear stress appears in the double-averaged (time-space averaged)

momentum equations (Nikora et al., 2007a,b; Mignot et al., 2009). The time-average of a

flow variable is given by the average over time of an Eulerian measurement of flow at a

specific Cartesian coordinate. In oscillatory flow, time-averaging refers to the average over

time of a Eulerian measurement at a specific Cartesian coordinate and at a specific phase

of the oscillation cycle.

The double-averaging procedure uses two kinds of spatial average: an intrinsic spatial

average and a superficial spatial average. The intrinsic spatial average of a flow variable θ

is given by

〈θ(x, y, z, t)〉 = 1

Af

∫
Af

θ(x, y, z, t)dA (2.63)

and the superficial spatial average is given by

〈θ(x, y, z, t)〉s = 1

A0

∫
Af

θ(x, y, z, t)dA (2.64)

where Af is the area occupied by the fluid, which excludes the space occupied by the

roughness elements, within the total area A0 (Nikora et al., 2007a,b). These two averages

are related by the roughness geometry function Ψ(z) = 〈θ〉s/〈θ〉 = Af/A0. Above the

roughness elements, Ψ(z) = 1 and, at the bed, Ψ(z) = 0. The averaging area is chosen

to be a slab of fluid close to the bed that is larger than the length scale of the roughness

elements, but smaller than the overall bed geometry such as bed slope (Mignot et al., 2009).

The double-averaged momentum equations use the Reynolds decomposition θ = θ̄ + θ′

for instantaneous variables and the decomposition θ̄ = 〈θ̄〉+ θ̃ for time-averaged variables.

The spatial fluctuation in the time-averaged variable, denoted by the tilde overbar, is given

by θ̃ = θ̄ − 〈θ̄〉.
The double-averaging can be executed in two steps: time-average the momentum

equations using the Reynolds decomposition and then spatially-average the result. The

double-averaging procedure can also be performed in a single operation (Nikora et al.,
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2007a). Compared to the conventional Reynolds-averaged momentum equations, a new

term representing the bedform-induced shear stress appears in the double-averaged equa-

tions:
τ(z)

ρ
= −〈ũw̃〉s (2.65)

This stress is due to the spatial variations in the time-averaged flow, whereas the Reynolds

stress is associated with temporal fluctuations in the flow field (Nikora et al., 2007a).

2.4.6 Turbulence

Another measurement in bottom boundary layers is the turbulent kinetic energy (TKE),

which represents the kinetic energy associated with the fluctuating motion (Monin and

Yaglom, 1971). Turbulent kinetic energy is given by

TKE =
1

2
(u′2 + v′2 + w′2) (2.66)

where the primes denote velocity fluctuations. Over orbital-scale ripples, the TKE will

be a measure of the turbulence generated by the lee vortex. From the Reynolds-averaged

Navier-Stokes equations, a term representing the production of turbulent kinetic energy

arises and is given by the product of Reynolds stress and vertical shear (Monin and Yaglom,

1971).

prod = −ρu′w′∂u
∂z

(2.67)

2.5 Hydraulic roughness of rippled beds

The hydraulic roughness is a measure of the roughness scale relative to the orbital excursion,

and is related to the friction factor. For a flat bed of densely packed particles under

oscillatory flow, the hydraulic roughness is proportional to the grain diameter (Nielsen,

1992). For a rippled mobile bed, Nielsen (1992) suggests that the hydraulic roughness be

given by the sum of the roughness of a rigid ripple profile and the roughness contribution

due to moving sand grains over the ripples. The former must be dependent on ripple height

and ripple steepness. From Nielsen (1992), the hydraulic roughness over rippled beds

under oscillatory flow is

rh =
8η20
λ

+ 170
√
θ2.5 − 0.05D50 (2.68)
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where η0 = 2a is the ripple height and the grain roughness Shields parameter is given by

θ2.5 =
f2.5(Aω)

2/2

(s− 1)gD50

(2.69)

and the grain roughness friction factor is

f2.5 = exp[5.213(2.5D50/A)
0.194 − 5.977] (2.70)

and where A = d0/2 is the semi-excursion.



CHAPTER 3

APPARATUS AND METHODS

3.1 Experimental set-up

Figure 3.1 shows the details of the RippleKart setup used in Hay et al. (2012a,b,c). A

Scotch yoke assembly drives the Kart. Rotary motion of the drive arm is converted to

rectilinear 10-s period sinusoidal oscillations parallel to the tank’s long axis. In order to

avoid any sideslip, the RippleKart is equipped with guide wheels that travel along the

centre guide rail. A 2.4 m long by 0.8 m wide tray with faired end pieces is suspended

from the Kart. These end pieces retain the sand, and the faired surfaces minimize end

effects on ripple evolution. Quartz sand (industrial blasting sand) was placed on the tray

to a thickness of approximately 10 cm. The sand size distribution (see Figure 3.2) was

determined by mechanical sieving. The median grain size D50 was 153 μm. The 16% and

84% coarser than sizes (D16 and D84) were 215 μm and 106 μm respectively. A depression

to help initiate the formation of two-dimensional ripples was created on the initially flat

bed before the RippleKart was started. The RippleKart was then run for a little under

12 hours, allowing the ripples to develop until a stable (equilibrium) ripple profile was

obtained. Figure 3.3 shows the evolution of the bed during one of the RippleKart test runs.

A wide-band coherent Doppler profiler (MFDop) was mounted underneath the centre

guide rail with the centre transducer facing the bed, and remained stationary as the Kart

passed beneath it. Once a stable ripple profile was obtained, the data were collected at as

many as six different MFDop positions (see Table 3.1). For the first run, the instrument

head was positioned directly over a ripple crest at maximum Kart speed. The MFDop

was then repositioned for the subsequent runs over an adjacent ripple trough and half-way

28
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Figure 3.1: Sketch of the RippleKart apparatus. Top panel (side view) and bottom panel
(top view) showing a. top of tank sidewalls; b. side rails; c. Kart; d. drive arm; e.
counterweight; f. drive motor; g. centre guide rail (bottom panel only); h. downriggers
(top panel only); i. bed (top panel only); j. fared end-pieces (top panel only); k. tray
sidewalls (top panel only). From Hay et al. (2012a).
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Figure 3.2: Sand size distribution: mean and standard deviation from 3 replicates. The
points indicate the cumulative percentage of mass coarser than the indicated grain size
diameter.

between the ripple crest and trough. These data were then combined in order to determine

the flow field over one full ripple profile. These measurements were also made over a new

bed of ripples at a similar RippleKart excursion (d0 = 49.6 cm) and at a higher excursion

(d0 = 60.5 cm).

Using a gravity-fed system, a mixture of agricultural lime and water from a mechanically-

stirred reservoir was continuously injected into the water close to the MFDop’s centre

transducer to increase the number of scatterers in the water, and thereby the pulse-pair

correlations. In order to remove larger particles with high settling velocities, the lime was

Table 3.1: MFDop head positions for different RippleKart excursions

d0 = 49.8 cm d0 = 49.6 cm d0 = 60.5 cm
zero-crossing - -15.65 cm -
trough - -11.34 cm -
zero-crossing -6.5 cm -5.81 cm -5.81 cm
crest 0 cm 0 cm 0 cm
zero-crossing 6.8 cm 4.40 cm 4.40 cm
trough 13.6 cm 8.80 cm -
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Figure 3.3: Ripple evolution for one of the RippleKart test runs at an excursion of 49.5 cm.
The camera was mounted to the RippleKart, but outside the tank. A laser light sheet helps
define the ripple profile.
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dry-sieved using a sieve with 0.177 mm openings. A Nortek Vectrino (acoustic Doppler

velocimeter) was used to measure the flow in the interior far from the bed. The use of

this instrument was necessary to account for the flow induced by the displacement of

water by the sediment-laden tray. The Vectrino was mounted to the centre guide rail and

was positioned next to the MFDop head. The Kart motion was measured using an in-air

acoustic travel time sensor (PASCO Motion Sensor II) and an aluminium flat plate reflector

mounted to the Kart.

3.2 The MFDop

Near-bed flow measurements over the orbital-scale ripples created with the RippleKart

apparatus were obtained using the wide-band coherent Doppler profiler (MFDop) described

in Hay et al. (2012a,b,c).

3.2.1 Pulse-coherent acoustic Doppler sonar

Reliable measurements of velocity profiles and sediment transport within the oscillatory

bottom boundary layer are scarce, as stated by Grant and Madsen (1986) in their review

of continental-shelf bottom boundary layers. Hence, the need for robust instrumentation

capable of making these measurements without disturbing the flow near the bed or the bed

itself have led to the development of pulse-coherent acoustic Doppler sonar for making

high-resolution measurements of the flow and turbulence within the bottom boundary layer

(Hay et al., 2012a; Hurther et al., 2011; Hurther and Thorne, 2011). This technology

works well in high suspended sediment conditions since scatterers are abundant.

In pulse-to-pulse coherent Doppler, the instantaneous velocity of a moving particle is

based on the rate of change of the phase of sound scattered from a detected volume at a

fixed range. The velocity accuracy depends on the degree of coherence between successive

pulses (Zedel and Hay, 1999). The ensemble-averaged complex correlation between

consecutive pulses R̄ is thus a fundamental measurement of pulse-to-pulse Doppler and

takes the following form as implemented in the MFDop (Hay et al., 2012c),

R̄ =
1

σ2

N−1∑
j=1

z∗j zj+1 (3.1)

where zj = aj exp(iϕj) is the complex amplitude of the return signal from the jth
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Figure 3.4: (a) Schematic bistatic geometry and (b) Symmetric isosceles geometry used in
the MFDop from Hay et al. (2012a).

pulse, ϕj is its phase and ∗ represents a complex conjugate. The normalization factor

σ2 =
∑|aj||aj+1|, and is related to the amplitude variance. Thus, R̄ can be expressed as

R̄ =
1

σ2

N−1∑
j=1

a∗jaj+1e
i(ϕj+1−ϕj) (3.2)

The phase of the return signal from a scatterer located at rj is ϕj = 2krj , where k is

the acoustic wavenumber. The difference in phase for two pulses is Δϕ = 2kΔr and the

variation of the change of phase over time is Δϕ/Δt = 2kV . The velocity V can thus

be expressed as a function of the mean phase difference Δϕ among a suitable number of

consecutive pulse pairs

V =
Δϕ

2kτ
(3.3)

where τ is the pulse repetition interval.

Since the mean phase difference is calculated using the arctangent of the ratio of

imaginary and real parts of the complex signal autocovariance R (Lhermitte and Serafin,

1984), Δϕ is bounded by ±π. As a consequence, phase wraps occur at ±π and an

ambiguity velocity Va = ±π/2kτ can be defined.

In a bistatic geometry (Figure 3.4a), a transmitter and a receiver are located at a distance

r1 and r2 from the origin. For a particle situated at the origin, the phase of the scattered

pulse is ϕ = kr1 + kr2. Using θ as the bisector angle, the velocity component along the
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bisector for small displacements of the scatterer is given by

V =
Δϕ

2kτ cos θ
(3.4)

and hence the velocity ambiguity is

Va =
π

2kτ cos θ
(3.5)

As a result, the observed velocity can be expressed as a function of the ambiguity velocity

V =
Δϕ

π
Va (3.6)

The bistatic geometry used in the MFDop is sketched in Figure 3.4b. The two receive-

only transducers (1 and 2) and the transmit transducer (3) are indicated. The detected

velocities V31 and V32 are the projections of the flow along the bisectors between each of

the outboard transducers and the centre transducer (Hay et al., 2012a) and are given by

V31 = u sin θ031 + w cos θ031 + ε1 (3.7)

V32 = −u sin θ032 + w cos θ032 + ε2 (3.8)

where ε represents noise and u and w are the Cartesian velocity components. These

velocities can be solved to obtain u and w:

u =

[
V31

cos θ031
− V32

cos θ032
− ε1

cos θ031
+

ε2
cos θ032

]
[tan θ031 + tan θ032]

−1 (3.9)

w =

[
V31

sin θ031
+

V32

sin θ032
− ε1

sin θ031
− ε2

sin θ032

]
[cot θ031 + cot θ032]

−1 (3.10)

Similarly, the detected velocities V35 and V36 in the transverse direction between the

orthogonal pair of outboard transducers can be determined. The cross-tank velocity v

(perpendicular to the RippleKart motion and parallel to the ripple crests) can then be

calculated from these observed velocities.

Following Hay et al. (2012b) and defining primes to denote fluctuations relative to a
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mean, the Reynolds stress can be estimated from the detected velocity fluctuations:

−u′w′ =
V

′2
32 − V

′2
31

sin θ031 + sin θ032
+ ... (3.11)

where the second-order statistics u′2 and w′2 are considered to be the same at the two

measurement points. This requires that the time-averaged turbulent energy be uniform

on horizontal scales comparable to the beam bisector separation. For the MFDop, the

separation between the beam bisectors is of the order of a few centimetres (see Appendix

B).

3.2.2 The MFDop

The MFDop consists of a centre transducer, which can transmit and receive, and four

outboard transducers that only have receive capabilities. As stated by Hay et al. (2012a),

all the transducers in the MFDop have similar beam patterns and beamwidths. Other

bistatic geometries have a centre transmit beam that has a different width than the outboard

receive beams. However, since both the transmit and outboard receive beamwidths are

narrow, the isosceles geometry implemented in the MFDop allows a higher signal-to-noise

ratio in the beam overlap region. The MFDop beam axes intersect at a range of 40 cm and

have an overlapping region that extends 10 to 15 cm above and below this point. Due to

the MFDop geometry, there is a difference in range along the vertical beam and the beam

bisectors. Thus, the measurements registered by each transducer must be interpolated onto

the centre transducer’s vertical range (see Appendix C for details).

The MFDop operates in the ∼1.2 to ∼2.3 MHz frequency band and has the capacity

to operate in single-frequency and multi-frequency modes. Since different frequencies

have distinct velocity ambiguities, multiple frequencies are used to resolve the velocity

ambiguities (Hay et al., 2008; Zedel and Hay, 2010). A sketch of the MFDop transmit

pulse in dual-frequency mode is shown in Figure 3.5. The vertical size of the detected

volume (i.e. range bins) is given by half the transmit pulse length. Hence, high spatial

resolution is achieved by using short pulses.

A typical feature of oscillatory boundary layers is the fact that the velocity amplitude

near the top of the bottom boundary layer overshoots (is larger than) the amplitude of the

oscillatory flow in the interior. For measurements over a fixed gravel bed, an observed

velocity overshoot of 4 to 8% and a maximum phase lead of 18◦ to 19◦ were obtained by
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Figure 3.5: MFDop transmit pulse sketch in dual frequency mode. The transmit pulse is
composed of two frequencies indicated by the blue and black lines.

Hay et al. (2012a). These values are comparable to measurements made by Sleath (1987)

using Laser Doppler Anemometry. Furthermore, Hay et al. (2008) showed that MFDop

measurements of flow within a turbulent wall jet agreed favourably with independent

velocity measurements acquired using a Nortek Vectrino.

MFDop amplitude calibration experiments were carried out as part of testing improve-

ments to the analog electronics in the instrument. The experiments used the jet tank

setup described in Hay (1991). The backscatter amplitude from the jet was measured as

increasing quantities of blasting sand were added. One-litre suction samples were filtered

and the dried sand was then weighed in order to obtain concentration measurements. At

frequencies for which attenuation is negligible (lower frequencies), the squared mean

backscatter amplitude was found to be linearly proportional to particle concentration,

which is similar to results obtained by Hay (1991). As sensitivity improvements were

made to the system, curves of the maximum mean squared amplitude of the signal as a

function of concentration were used to quantify the improvement.

The MFDop operating parameters used during the RippleKart experiments are listed in

Table 3.2. Data from runs using a pulse length of 4 μs and 2 μs were compared, where

the MFDop was operated in dual-frequency mode. It was found that the data using a 4 μs

pulse length have higher signal correlations away from the bed. It is important to note that

the bandwidth of the digital filters of the receivers in the system matches the bandwidth

of the transmit pulse. Noise levels increase for shorter pulse lengths due to the increased
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Table 3.2: MFDop operating parameters

Parameter Value
ensemble acquisition rate 42.4 Hz
frequency 1 1.35 MHz
frequency 2 1.8 MHz
pulse duration 4 μs
pulse pairs per ensemble 20
range resolution 3 mm
transmit amplitude 100 %

bandwidth. Furthermore, a longer pulse length increases the vertical extent of the detected

volume, which in turn can also lead to higher signal correlations, especially at low scatterer

concentrations. As a result, for these experiments, a pulse length of 4 μs was used. Also, it

was found that using 20 pulse pairs per ensemble average instead of 10 is preferable. In

this case, less noise is present in the data set since it is averaged over more points.

3.3 Synchronisation

The output signals acquired from the different instruments should ideally be synchronous;

i.e. on a common time base. However, there is a potential latency between the collected

data and their transfer to the computer. The following section examines the synchronisation

between the MFDop and the Vectrino.

3.3.1 Time delay

In order to determine the time delay between the Vectrino and the MFDop, an experiment

was conducted over a flat bed using the RippleKart apparatus. A steel rod (1/16 inch

diameter) was attached to the RippleKart in such a way that it passed through both the

Vectrino detected volume and the MFDop vertical beam. The RippleKart was then run for

∼10 cycles at an excursion of 17.2 cm.

In order to determine the Kart velocity, a sine wave was fit to the low-pass filtered Pasco

data (cut-off frequency of 1 Hz). From this fit, the first zero-upcrossing of each cycle

of the Kart motion was determined. The Vectrino amplitude data were low-pass filtered

using a cut-off frequency of 1.2 Hz. Both the Vectrino data and the MFDop amplitude
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Figure 3.6: Example data for the time delay experiment. Normalised amplitude mea-
surements averaged over several cycles from the MFDop (black) and Vectrino (red) are
compared.

measurements from the centre transducer were averaged over several cycles. The averaged

normalised amplitude measurements registered by the MFDop and the Vectrino are shown

in Figure 3.6. The two amplitude spikes represent the signal reflected from the bar as it

passed beneath the instruments during each half-cycle. The peaks occur at different times

for each instrument.

In calculating the time delay, the fact that the MFDop and the Vectrino might not be

perfectly aligned along the axis of the steel rod was taken into account as follows. The

time delay for each half cycle (Δt1, Δt2) is given by

Δt1 = δ +
Δx

uK0

(3.12)

Δt2 = δ − Δx

uK0

(3.13)

where δ is the time delay that must be added to correct the Vectrino time base, Δx is the

difference in position between the two instruments and uK0 is the amplitude of the Kart

velocity. Δt for each half-cycle was determined by finding the time difference between the

maximum of the averaged backscatter amplitude measured using the MFDop and Vectrino.

The time delay is given by

δ =
Δt1 +Δt2

2
(3.14)
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The overall time delay was calculated by averaging over the time delays for seven repeat

runs. It was found to be −0.05± 0.01s. The negative sign indicates that the MFDop led

the Vectrino.

3.4 Analysis

3.4.1 Phase-averaging

The phase average ξj of a quantity ξ at time tj over Nc cycles is given by

ξj =
1

Nc

Nc∑
i=1

ξ (tj + (i− 1)T ) (3.15)

where T is the oscillation period. Following Hay et al. (2012a), only the MFDop data from

cycles having a cycle-mean correlation away from the bed (38 cm to 41 cm from the centre

transducer) exceeding 85% were included in the phase-averaging. The phase-averaged

velocities u, v and w were computed from the range-corrected phase-averaged V ’s using

equations 3.9 and 3.10.

The time delay discussed in section 3.3.1 was based on equations 3.12 and 3.13. These

equations assume that the amplitude of the Kart velocity uK0 is the same for both half-

cycles, or in other words, that the Kart motion uK is symmetric. This assumption was

verified by calculating the residual between the low-pass filtered Kart motion and the

best-fit sinusoid. As Figure 3.7 illustrates, this residual was found to be very small (O(1)

mm/s) and lacking a distinct pattern, verifying that uK was nearly sinusoidal.

3.4.2 Kart velocity

Using the backscatter amplitude Aj from the centre transducer, the amplitude-weighted

mean range rb to the bottom was calculated over the range interval of the bottom return.

rb =

∑
Ajrj∑
Aj

(3.16)

The velocity of the bottom, and as a consequence the Kart motion, was determined by

calculating the velocity at rb. The best-fit sinusoid to the MFDop time series (∼40 cycles)

was obtained using

u(rb, tj) = a sinωKtj + b cosωKtj (3.17)
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Figure 3.7: Example of velocity data collected using the Pasco. Top panel: phase-averaged
low-pass filtered Kart velocity. Bottom panel: residual velocity between the Kart velocity
and the best fit sinusoid.

where ωK = 2π/TK is the RippleKart oscillation frequency. The amplitude UK0 =√
a2 + b2 and period TK of the Kart oscillation were then computed. These parameters

were used in determining the times of zero up-crossings of the Kart motion, which enabled

the identification of individual cycles within the time series. For each range bin, the

time series data were interpolated onto a common time base eliminating the relative time

drift between the motor driving the Kart and the data acquisition computer clock. The

phase-averaged range to the bottom was determined from the phase-averaged backscatter

amplitude using equation 3.16.

The phase-averaged Kart motion determined from the MFDop data and the Pasco data

are compared in Figure 3.8. It can be seen that both curves are sinusoidal with similar

amplitudes. This result is consistent with Hay et al. (2012a), who also confirmed that

the Kart motion is very nearly sinusoidal. However, the phase-averaged Pasco velocity,

uP , lags u(rb) by 3◦ to 6◦. This phase difference is most likely due to the lag between

the data collection with the different instruments and the data transfer to the computer.

Furthermore, both curves have similar periods of ∼10 s. The first ∼5 s represents the first

half-cycle and the last ∼5 s represents the second half-cycle when the Kart is moving in

the opposite direction.
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The theoretical Kart velocity was defined as a sine wave using:

uK =
d0
2
ωK sinωKt (3.18)

where the amplitude of the sinusoid is a function of the orbital excursion d0 and the Kart

oscillation frequency ωK . The phase-averaged velocity measured at rb is compared to uK

in Figure 3.9. Since both curves are nearly identical (similar amplitude, period and shape),

it can be concluded that the theoretical Kart velocity uK is an appropriate definition of the

Kart motion.

The phase-averaged horizontal velocities can now be obtained in the frame of reference

moving with the RippleKart:

uKF (z, t) = uLF (z, t)− uK(t) (3.19)

where uLF is the phase-averaged horizontal velocity in the laboratory (i.e. fixed) frame of

reference and uK is given by equation 3.18.

3.4.3 Ripple profile

A second estimate of the range to the bed, designated by RB, was obtained by defining

the range at which the gradient of the phase-averaged backscatter amplitude (registered

by the centre transducer) exceeded a specified threshold. This bottom profile represents

the sediment-water interface, whereas rb is located within the bed. A low-pass filter (10

Hz cutoff frequency) was then implemented to remove the quantized variations associated

with the discrete range bins. Using the phase-averaged bed velocity, the bottom profile

was transformed from the time domain to the space domain. For each half-cycle, a best fit

to the bottom profile was obtained using:

η(x) = a sin (kx) + b cos (kx) +
5∑

n=2

[an sin (nkx) + bn cos (nkx)] (3.20)

where a and b are constants, k = 2π/λ and n indicates the nth harmonic. The accuracy of

the fit was increased by adding a sum of harmonics to the fundamental signal. The fitted

bed profile defining the sediment-water interface was then transformed back to the time

domain.
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Figure 3.8: Phase-averaged bed velocity registered by the MFDop u(rb), in black, and the
Pasco uP , in cyan.
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Figure 3.9: Phase-averaged bed velocity registered by the MFDop u(rb), in black, and the
theoretical Kart velocity uK computed using equation 3.18, in magenta.
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An example of the base 10 logarithm of the phase-averaged backscatter amplitude

measured by outboard transducer 1 is presented in Figure 3.10. Both estimates of range

to the bed are indicated: rb in white and RB in black. The middle panel shows the Kart

velocity uK . The bed profile during the second half-cycle is roughly the mirror image

of the first. During this run, the MFDop head was positioned directly over a ripple crest

at maximum Kart translation speed, as can be seen in Figure 3.10: the time at which

the ripple crest passes beneath the MFDop head is 2.5 s which is the time of maximum

Kart velocity. The bottom panel shows the magnitude of the ensemble-averaged complex

correlation between consecutive pulses. Overall, the signal correlations are quite high.

As discussed in Hay et al. (2012a), patches of lower correlation (and higher error in the

amplitude and velocity estimates) are most likely due to turbulence near the bed, and to

low scatterer concentrations far from the bed.

3.4.4 Bottom contamination

Over a flat bed, the bottom return from an outboard transducer arrives earlier by 6 mm than

from the centre transducer (see Appendix D). In other words, the path of least time from

the centre transducer to an outboard transducer is shorter by 6 mm than the path from the

centre transducer and back. This result is consistent with measurements made in Hay et al.

(2012a), where they estimated that the bottom return arrived earlier by 5 mm ± 1 mm. As

a result, horizontal velocity measurements can only be accurately resolved beyond 6 mm

from the bed due to the MFDop geometry.

Using the bed profiles RB obtained from different transducers, the bottom contamination

zone for a rippled bed can be estimated. In Figure 3.11, the bed profiles obtained using

the backscatter amplitude registered by outboard transducers 1 and 2 are compared to the

bed profile determined using the data from the centre transducer. The absolute difference

between both outboard transducers and the centre transducer are given in the bottom panel.

Averaging the mean difference of various runs together, the bottom contamination layer is

estimated to start at 4 mm ± 2 mm above bed level.

3.4.5 Reaction flow

The Vectrino velocity measurements were first despiked by identifying data points that

had correlations lower than 70% and replacing these points by the average of its nearest

neighbours. Next, the data were low-pass filtered (0.2 Hz cut-off frequency) and then
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Two estimates of range to the bed are indicated: rb in white and RB in black. Middle panel:
Kart velocity uK . Bottom panel: phase-averaged correlation obtained using outboard
transducer 1.
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Figure 3.12: Top panel: velocity time series measured with the Vectrino. The raw data are
in black and the low-pass filtered data are in red. Bottom panel: phase-averages of the data
in the top panel.

interpolated onto the MFDop timebase. The time delay calculated in section 3.3.1 was

taken into account. An example Vectrino time series is shown in the top panel of Figure

3.12. The phase-averaged reaction flow induced by the displacement of water by the

sediment-laden tray was calculated from the Vectrino data (bottom panel of Figure 3.12).

All cycles were included in the Vectrino phase-averaging. It can be seen that the reaction

flow is nearly sinusoidal with a 10 s period. However, the phase-averaged velocity data

have a small (1 cm/s) non-zero mean, which could indicate asymmetry in the tank response

at the Vectrino location.

3.4.6 Relative flow

The reaction flow contributes to the forcing at the bed. The relative velocity uR is given by

uR = uK − uV (3.21)

where uK = uK0 sinωKt is the Kart velocity, ωK = 2π/T and uV is the phase-averaged

reaction flow registered by the Vectrino. The latter can be expressed as a sine wave
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Figure 3.13: Kart velocity uK , phase-averaged reaction flow registered by the Vectrino uV

and phase-averaged relative velocity uR as a function of time for a RippleKart run.

uV 0 sin(ωKt+ φV ) with phase φV . Using trigonometric identities,

uR = [uK0 − uV 0φV ] sinωKt− [uV 0 sinφV ] cosωKt (3.22)

Simplifying,

uR = uR0 sin(ωKt+ φR) (3.23)

where the relative velocity amplitude uR0 and φR are given by

uR0 =
√

uK0
2 − 2uK0uV 0 cosφV + uV 0

2 (3.24)

tanφR =
uV 0 sinφV

uK0 − uV 0 cosφV

(3.25)

The maximum of uR will occur when ωKt+ φR = π/2. Therefore,

φR = π/2− ωKtmax (3.26)

From equation 3.26, the maximum relative velocity uR was estimated to occur 3.6◦ to 5.0◦

after the maximum Kart velocity uK . The phase-averaged time series of relative velocity

uR, the Kart velocity uK and the reaction flow uV are compared in Figure 3.13. All three

signals are nearly sinusoidal with 10 s periods. The amplitude of the reaction flow is much

smaller than the Kart velocity amplitude. Furthermore, the reaction flow is nearly out of

phase with the Kart velocity: φV = 201◦ for this run.
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3.4.7 Transformation to the space domain

Let

Δx = uKΔt (3.27)

where x is the horizontal distance in the direction of the RippleKart oscillation. For each

run, the data were transformed from the time domain to the space domain using the Kart

velocity uK and then interpolated onto fixed x coordinates:

uKF (z, t) ⇒ uKF (z, x) (3.28)

This transformation to the space domain has two purposes. First, it allows the direct calcu-

lation of the second term of vorticity ∂w/∂x (equation 2.54). Second, this transformation

is used to construct an instantaneous picture of the flow using the MFDop measurements,

as discussed in the following section.

3.4.8 Flow field at different phases

The velocity profiles from different RippleKart runs were combined to determine the flow

field over one full ripple profile at different phases of the forcing cycle. For each run, data

segments of equal length in the space domain are pieced together using a linearly weighted

mean in the overlap areas. A sketch of this linear weighting in the overlap area for two

cases is presented in Figure 3.14. Data segments in the space domain are represented

by rectangular boxes and the overlap area is indicated by dotted vertical lines. For two

overlap zones (Figure 3.14a), the edge of each data segment is given less weight than the

interior. A similar procedure is used for three overlap zones (Figure 3.14b), except for

more importance given to the middle segment.

The length of each segment was determined by selecting data contained within 2%

of the maximum of uR. At 90◦ phase, this data segment represents a window spanning

±12◦ from the phase of interest with a 7◦ overlap. At this phase, the unblended region

represents ±5◦. The lengths of the data segments in phase space at different phases of

interest are listed in Table 3.3. An example of the piecing procedure is shown in Figure

3.15. Portions of the velocity distribution that are pieced together at 90◦± 12◦ are shown

in colour. The length in x of each portion can differ a little due to differences between runs

of the maximum relative flow. The resulting velocity field thus represents an instantaneous

picture of the phase-averaged flow over a ripple at a particular phase of the forcing cycle.
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Figure 3.14: A sketch indicating the linear weighting used in the overlap for 2 cases: 2
overlap zones (a) and 3 overlap zones (b). The rectangular boxes represent data segments
in the space domain and the dotted vertical lines indicate the overlap area.

Table 3.3: Length of data segments in phase space for d0 = 49.8 cm

Phase ± average overlap
(◦) (◦) (◦)
90 12 7

105 12 7
120 14 8
135 20 9
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Figure 3.15: Phase-averaged horizontal flow in the Kart frame for different RippleKart
runs. The segments to be pieced together at 90◦± 12◦ phase of the forcing cycle are shown
in colour. In a), the MFDop was positioned over the zero up-crossing of the ripple profile;
in b) over the crest; in c) over the down zero-crossing, and in d) over the trough. Dashed
lines indicate the overlap areas.
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The piecing procedure is compromised if the mean values of the overlap pieces are

widely different, indicating that the chosen length of the data segment in phase space is

too large. Thus, to check this piecing procedure, vertical profiles of the linearly-weighted

mean for each overlap section at 90◦ are compared in Figure 3.16. In this case, only two

data segments overlapped and the linearly-weighted mean was implemented as sketched in

Figure 3.14a. The solid lines indicate the linearly-weighted mean within the overlapping

section for each data segment and the dashed lines represent one standard deviation from

each mean. The location of the centre of the overlapping pieces is indicated in grey in

the inset of the horizontal flow field at 90◦. For each location, both vertical profiles are

similar indicating that the piecing procedure is doing well. However, over the crest, there

is a larger difference between the two profiles. Due to higher flow speeds, the velocity

field is changing more rapidly. As a result, the mean vertical profile of both overlapping

portions will differ since there is (at most) a 24◦ difference.

3.4.9 Vorticity, acceleration and the non-linear terms

Vorticity was calculated in the space domain using equation 2.54, where each term was

estimated by using a 3-point linear fit with the shear given by the slope. The local

acceleration (∂u/∂t) as well as the non-linear terms (u∂u/∂x and w∂u/∂z) were estimated

in a similar way. The local acceleration was calculated before the piecing procedure in

the time domain. The non-linear terms were determined after the piecing procedure in the

space domain. All three terms were smoothed by averaging together every point and its

nearest neighbours. The bottom was not included in the averaging.

3.4.10 Spatial-averaging

Presented in section 2.4.5, the roughness geometry function Ψ(z) was determined to be

Ψ(z) =
λ− b(z)

λ
(3.29)

where b(z) is the ripple width at elevation z. The ripple profile and the roughness geometry

function determined from the MFDop data are presented in Figure 3.17. The Ψ(z) function

determined from the experimental data can be compared to a theoretical ripple profile

given by

η(x) = η0

[
cos

(
2π

λ
x

)
+ 1

]
(3.30)
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Figure 3.16: Linearly-weighted mean vertical profiles of uKF within the overlapping area
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where η0 is the ripple amplitude. The corresponding roughness geometry function can be

determined from equation 3.29 using a ripple width of 2x and by isolating x in equation

3.30. The roughness geometry function determined analytically is shown in red in Figure

3.17a and is compared to the parameter determined from the experimental bed profile in

blue. In both cases, Ψ(z) = 0 in the troughs, and Ψ(z) = 1 over the crest. However, since

the troughs of the experimental bed profile are at slightly different heights, the analytical

and experimental roughness geometry functions differ close to the bed.

The intrinsic spatial average 〈θ〉 of a flow variable θ was determined by taking the

average of the flow at each range bin over a full ripple profile. The area occupied by the

ripple was excluded in this average. The spatial fluctuations ũ and w̃ of the phase-averaged

flow variables were determined by calculating the difference between the phase-averaged

flow and the double-averaged flow. The superficial spatial average 〈θ〉s of a flow variable

was obtained by calculating the product between its intrinsic spatial average and the

roughness geometry function, i.e. 〈θ〉s = Ψ(z)〈θ〉.

3.4.11 Stress and turbulence

The Reynolds stress was determined using equation 3.11. The fluctuations of the observed

velocities (V ′s) were obtained by removing the phase-averaged flow from the unfiltered

time series for each cycle. The square of the resulting time series was then phase-averaged

in order to obtain the second moments of the turbulent velocity fluctuations (V ′2). Turbulent
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kinetic energy (TKE) was estimated using equation 2.66 and turbulence production was

determined using equation 2.67. Similarly to the flow, the Reynolds stress, TKE and

turbulence production were pieced together in order to obtain an instantaneous picture of

stress and energy at different phases of the forcing cycle.

From equation 2.59, the law-of-the-wall takes the following form:

u(z, t) =
u∗(t)
κ

ln(z′/z0) + uK(t) (3.31)

where uK is the velocity of the boundary, u∗ is the friction velocity, z0 is the roughness

height, and z′ = z + Δz, Δz being the displacement height. The no-slip condition is

satisfied for a moving boundary since u = uK at z′ = z0 (Monin and Yaglom, 1971). The

law-of-the-wall stress estimates were based on fits of vertical profiles of the time-averaged

(0.1 s interval) horizontal velocity at different points along the ripple profile. Using the

mean bed level as Δz, the free parameters in the fit were the friction velocity u∗ and the

roughness height z0. The fit was only executed on the part of the vertical profile that seemed

to exhibit the characteristic logarithmic behaviour near the bed, which corresponded to

10 data points over the zero-crossings and 12 data points over the troughs. Furthermore,

due to the bottom contamination of the return signal, the closest range bins to the bed (∼3

bins) were discarded.



CHAPTER 4

RESULTS

4.1 Flow field

4.1.1 Horizontal flow

The phase-averaged horizontal velocity in the frame of reference moving with the Kart

at 90◦ phase of the forcing cycle is compared to the solutions for potential flow given by

Davies (1983) and Longuet-Higgins (1981) in Figure 4.1. The z axis indicates the height

above the first trough. Ripple amplitude and wavelength, as well as the free-stream velocity

were determined from the phase-averaged results and used in calculating the potential flow

solutions (equations 2.31 and 2.45). It is important to note that the colour map has been

reversed in all three plots in order to indicate certain features of the flow more clearly.

Negative u velocities indicate fluid moving in the negative x direction. The black line

in all three panels represents the sediment-water interface (RB). Due to the constriction

of the flow from the trough to the crest, the flow accelerates as it rises towards the crest

(right side of ripple) and then decelerates as it descends into the trough (left side of ripple),

resulting in an intensification of the horizontal flow over the ripple crest and lower near-bed

velocities in the troughs. All three panels show these two features: higher velocity over the

ripple crest and lower velocity in the troughs. Compared to both potential flow solutions, a

spatial shift of the intensification of the flow measured by the MFDop is evident. This shift

is most likely due to the lack of bottom friction in the models and due to the experimental

ripples being not quite symmetrical.

Vertical profiles of horizontal velocity above the crest and troughs are presented in

Figure 4.2. The solid lines are based on the phase-averaged horizontal velocity in the

55
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Figure 4.1: Horizontal flow during the first half cycle. Top panel: phase-averaged hor-
izontal velocity at 90◦. Middle panel: horizontal potential flow over a ripple based on
Davies (1983) solution. Bottom panel: horizontal potential flow over a steep ripple based
on Longuet-Higgins (1981) solution.
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Figure 4.2: Vertical profiles of normalised horizontal velocity above the crest and trough
during the first half-cycle at 90◦ of the forcing cycle.

Kart frame at 90◦. The dotted and dashed lines are based on the solutions obtained by

Davies (1983) and Longuet-Higgins (1981), respectively. Very close to the bed, the MFDop

profiles decrease toward zero, unlike the theoretical profiles. This difference is due to the

absence of bottom friction in the models. Over the crest, the theoretical and observed

vertical profiles of horizontal velocity increase towards the bed. This feature in the profile

corresponds to the intensification of the flow over the ripple crest discussed earlier. Due to

the sharper peaks in the model presented by Longuet-Higgins (1981), the intensification of

the potential flow over a ripple crest is more pronounced. The ripples that were created

experimentally have sharper peaks than a sine wave, yet more rounded peaks than the

bottom profile given by the model presented by Longuet-Higgins (1981). As a result, the

observed intensification of the flow over the crest is stronger than that given by Davies

(1983) and weaker than the flow in the model presented by Longuet-Higgins (1981).

Vertical profiles of horizontal flow in the frame of reference moving with the Kart

at different phases of the forcing cycle are presented in Figure 4.3. These profiles are
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Figure 4.3: Vertical profiles of horizontal flow in the frame of the reference moving with
the Kart at different phases of the forcing cycle measured by the MFDop. The red dots
indicate the flow at the same positions calculated from Davies (1983) at 90◦ phase.

compared to potential flow profiles at 90◦ calculated from Davies (1983) at the same

locations along the ripple profile. It can be seen that the intensification of the flow over the

crest varies as a function of phase, peaking around 90◦. Over the crest and troughs, the

shape of the vertical profiles of the flow above the zone influenced by bottom friction is

comparable to the model prediction. However, over the zero-crossings, the model indicates

that the flow is constant with depth. This behaviour is quite different from the MFDop data

which indicate a fluid layer with high vertical shear extending upward from the bed.

Vertical profiles of horizontal flow at different phases of the forcing cycle as measured

with the MFDop (black) and the Vectrino (red) are presented in Figure 4.4. The MFDop

measurements were obtained by averaging over five repeat runs and the grey lines indicate

the error based on one standard deviation from the mean. The relatively small error of
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the MFDop profiles confirms the repeatability of the RippleKart runs. Furthermore, these

Vectrino measurements also support the validity of the MFDop results.

4.1.2 Vertical flow

In Figure 4.5, the phase-averaged vertical velocity at 90◦ phase is compared to the vertical

flow obtained from Davies (1983) and Longuet-Higgins (1981) solutions. Consistent with

Figure 4.1, the colour map has been reversed. Upward flow is indicated by blue (positive

velocity) and downward flow is represented by red (negative velocity). As the horizontal

flow meets the ripple face, it must flow upwards and over the ripple crest coming back

down on the other side. This flow pattern is clearly shown in all three panels by patches of
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upward velocity to the right of the ripple crest and downward velocity to the left. Upward

flow in both models is stronger than the measured upward flow. Differences between the

observed and predicted flow patterns are due to bottom friction and to different ripple

shapes.

4.1.3 Cross-tank flow

The phase-averaged cross-tank horizontal velocity (parallel to the ripple crests) at 90◦

phase is shown in Figure 4.6. Positive velocities are into the page. The cross-tank flow has

little structure and is small compared to the along-tank and vertical flows. The cross-tank

flow is non-zero, likely because the ripples were not quite two-dimensional, and the crests

not perfectly aligned with the y-axis.

4.1.4 Flow field evolution

The evolution of the flow field over different phases is presented in Figure 4.7. Streamlines

are indicated in blue. At 90◦ phase, or at the time of maximum forcing, the flow is clearly

separating immediately downstream of the crest. A separation bubble is thus beginning to

form on the lee side of the ripple crest. As the free-stream velocity decelerates (phases

greater than 90◦), the separation bubble increases in size and begins to detach from the

ripple face.

4.1.5 The influence of the non-linear terms

As discussed in section 2.2.3, the horizontal pressure gradient in potential flow is dependent

on height above the bed and the relative contribution of the non-linear terms are non-

negligible. It was concluded that the boundary layer approximation is unlikely to hold over

orbital-scale ripples. This question can now be investigated further using the MFDop data.

The local acceleration ∂u/∂t and the non-linear terms determined from experimental

results at 90◦ phase are given in Figure 4.8. As stated in section 3.4.9, the local acceleration

was calculated in the time domain for each run before the piecing procedure. The non-

linear terms are obtained by multiplying the horizontal and vertical gradients by the

horizontal or vertical flow. Since u and w are nearly zero within the bed, the non-linear

terms are expected to contain less bottom noise than the acceleration term (see Figure 4.8).

Within the bottom boundary layer, the acceleration term is comparable in magnitude to the

non-linear terms. Interesting features can be seen in the w∂u/∂z component due to the



61

shortMFdop.210.12023

 

 

0.15 0.2 0.25 0.3 0.35 0.4

0.02

0.04

0.06

0.08

0.1

0.12

0.14
w (m/s)

−0.05

0

0.05

Potential Flow: Davies (1983)

 

 

0.15 0.2 0.25 0.3 0.35 0.4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−0.05

0

0.05

x (m)

z 
(m

)

Potential Flow: Longuet−Higgins (1981)

 

 

0.15 0.2 0.25 0.3 0.35 0.4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−0.05

0

0.05

Figure 4.5: Vertical flow during the first half cycle. Top panel: phase-averaged vertical
velocity at 90◦. Middle panel: vertical potential flow over smooth-crested ripples based on
the solution presented by Davies (1983). Bottom panel: vertical potential flow over steep-
crested ripples based on the solution given by Longuet-Higgins (1981). The sediment-water
interface is indicated in black.



62

x (m)

z 
(m

)

shortMFdop.210.12023

 

 

0.15 0.2 0.25 0.3 0.35 0.4

0

0.05

0.1

v (m/s)

−0.04

0

0.04

Figure 4.6: Phase-averaged cross-tank horizontal velocity at 90◦ phase. The sediment-
water interface is indicated by the black line.

presence of large vertical shear. The intensification of flow over the crest and the existence

of the lee vortex both contribute to areas of large vertical shear. The acceleration term at

60◦ as well as the non-linear components are presented in Figure 4.9. As in Figure 4.8, all

terms are comparable in magnitude.

The boundary layer approximation assumes that the magnitudes of the variations in the

stream-wise direction are much smaller than the magnitudes of the variations normal to

the boundary. The non-linear terms determined from the MFDop data have been shown to

be non-negligible, which confirms that the boundary layer approximation does not hold.

As a result, the stress over these ripples cannot be accurately resolved using the vertically

integrated defect acceleration.

4.1.6 Rotational flow

The rotational part of the flow can be estimated by subtracting the potential flow solution

(Davies, 1983) from the flow measurements obtained using the MFDop. A layer of positive

horizontal rotational flow urot is clearly visible in the top panel of Figure 4.10. Diffusion

of negative urot away from the ripple crest is also evident. In the bottom panel, patches

of negative and positive vertical rotational flow wrot are well defined on the ripple flanks.

These features of large rotational flow represent areas in the flow field that are affected by

shear stresses within the flow and at the bed.
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4.2 Vorticity field

The vorticity field over a ripple at 90◦ phase is presented in Figure 4.11. The main

contribution to vorticity is due to the vertical shear term ∂u/∂z (not shown). Consequently,

there is a high vorticity layer close to the bed. Since there is an expected increase of

vertical shear at the edges of the lee vortex, higher vorticity surrounds a patch of near

zero or weakly negative vorticity downstream from the ripple crest (at lower x values).

Furthermore, due to the intensification of the flow over the crest, vertical shear and, as a

consequence, vorticity is high and positive over the crest.

4.3 Turbulent kinetic energy

The distribution of turbulent kinetic energy (TKE) at different phases of the forcing cycle is

depicted in Figure 4.12. A region of higher TKE confined between the crest and the trough

is clearly depicted downstream of the ripple crest. High TKE is confined to a central core,

and decays outwards. At 90◦ phase, the magnitude of the TKE is larger and decays as the

free-stream velocity decelerates. As the separation bubble increases in size and begins to

detach from the ripple flank (Figure 4.7), turbulent kinetic energy diffuses from the high
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Figure 4.12: Turbulent kinetic energy at four phases of the forcing cycle. The sediment-
water interface is indicated in black and the direction of the free-stream velocity is indicated
by an arrow.

TKE core into the water column. This high TKE core is associated with the lee vortex.

The phase-averaged TKE components u′2, v′2 and w′2 at 90◦ phase are shown in Figure

4.13. The high TKE core is present to varying degrees in all three components. The main

contribution to the TKE comes from the second moment of the horizontal component

of turbulent velocity fluctuations, namely u′2. The turbulent kinetic energy is clearly

anisotropic, meaning that it is dependant on direction.

4.4 Reynolds stress

The phase-averaged Reynolds stress at four different phases of the forcing cycle is presented

in Figure 4.14. Similar to the TKE, patches of higher Reynolds stress associated with the
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presence of the lee vortex are found downstream from the ripple crest. Higher stress is

located at the centre of the vortex and decays outwards. The peak Reynolds stress occurs

after the time of maximum forcing as the lee vortex starts to detach from the ripple face.

4.5 Turbulence production

The evolution of turbulence production is presented in Figure 4.15. Turbulence production

is given by the product of Reynolds stress and vertical shear (equation 2.67). Patches of

positive turbulence production are confined close to the bed with a maximum located in

the lee of the ripple crest. This distribution of turbulence production is expected since both

Reynolds stress and vertical shear were shown to be large downstream from the ripple
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crest. Furthermore, the amount of turbulence generated by the lee vortex evolves over

time. Production of turbulence is highest at the time of maximum forcing. A secondary

maximum of turbulence production is also present at 120◦ phase when the lee vortex starts

to detach from the ripple face. Patches of negative turbulence could be artifacts due to

noise.

4.6 Vertical profiles of stress and turbulence

Vertical profiles of Reynolds stress, turbulent kinetic energy and turbulence production

through the TKE maximum in the lee vortex at phases of 90◦ and 120◦ are shown in Figure

4.16. At 90◦ phase, all three panels exhibit a clear extremum at the same height just below

the ripple crest and at ∼4 cm above the ripple trough. At 120◦ phase, the Reynolds stress
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and turbulence production extrema are higher above the bed, consistent with the lee vortex

being advected away from the bed and into the interior. The maximum TKE decreases

from 90◦ to 120◦.

4.7 Law-of-the-wall

Best fits of u(z) to the law-of-the-wall are plotted in Figure 4.17 for different positions

along the ripple profile at 90◦ phase. The top panels are for the first half-cycle, the bottom

panels for the second half-cycle. The crest position is not included since the log layer

above the crest was not well resolved. For every profile, the crest level and local bed
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level are indicated. The fits were computed only on the part of the profile that exhibited

the characteristic logarithmic behaviour. These points are indicated by open circles. Due

to its variable thickness over ripples, the logarithmic layer was often difficult to define

objectively. Hence, questions about the applicability of the law-of-the-wall can be raised

since this method is sensitive to the selection of appropriate data points (discussed further

in section 4.15).

The fits are better over the zero-crossings than over the troughs. A close-up of these fits

over the zero-crossings is shown in a semi-logarithmic plot in Figure 4.18. In this way, the

logarithmic behaviour of the vertical profiles is quite evident. The lee vortex is located

over zero-crossing A during the first half-cycle and over zero-crossing B during the second

half-cycle.

The parameter estimates obtained from the log-law fits are given in Figure 4.19. The

friction velocity u∗ exhibits a semi-sinusoidal pattern for each half-cycle with lower values

in the troughs and higher values over the zero-crossings. Similar to the fixed roughness

flat bed and small amplitude rippled bed results reported by Hay et al. (2012c), u∗ is

dominantly negative during the first half-cycle and positive during the second half-cycle.

In addition, the friction velocity is higher over the zero-crossings and lower over the

troughs. Similarly, the roughness height parameter z0 is lower over the troughs and higher

over the zero-crossings.

4.8 Bed shear stress from vorticity

The bed shear stress can be determined from the vertically-integrated vorticity equation

using equation 2.62, repeated here

τx

ρ



∞∫
z

⎡
⎣

∞∫
z

∂ζ

∂t
dz + wζ

⎤
⎦ dz (4.1)

This equation assumes that the horizontal length scales are much greater than the vertical

length scales. In order to obtain reliable results, this assumption was necessary since the

∂(uζ)/∂x term was very noisy due to the x derivative.

The time derivative of vorticity was estimated as ωζ. The two terms that are used

in determining the bed stress (
∫
∂ζ/∂tdz and wζ) and their sum (∂τ/∂z) at maximum
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forcing are presented in Figure 4.20. The magnitude of the integral of the time-derivative

of vorticity is much smaller than the wζ term. As a result, the distribution of ∂τ/∂z is

similar to the distribution of wζ . The bed stress τ0/ρ is presented in the last panel of Figure

4.20. The stress is negative downstream from the ripple crest and positive upstream of the

ripple crest.

The net stress over a full ripple wavelength given by the horizontal integral of the bed

shear stress,

τnet
ρ

=
1

λ

λ∫
0

τ0(x)

ρ
dx (4.2)

is estimated to be -2.6×10−3 m2/s2 for the first half-cycle and 2.0×10−3 m2/s2 for the

second half-cycle. The opposite signs indicate that the total bed shear stress reverses

direction for each half-cycle.
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4.9 Bedform-induced shear stress

The bedform-induced shear stress discussed in section 2.4.5 is given by 〈ũw̃〉s = ψ(z)〈ũw̃〉
where the angle brackets represent the spatial average over a full ripple wavelength. The

spatial fluctuations ũ and w̃ of the phase-averaged flow, as well as their product are shown

in Figure 4.21. The spatial fluctuation of the horizontal flow is confined to the near-bed

region and is mainly negative downstream of the ripple crest and positive upstream of the

ripple crest. The spatial fluctuation of the vertical flow exhibits very similar features to

the phase-averaged flow shown in Figure 4.5. Similar to the phase-averaged results, the

magnitude of ũ is larger than the magnitude of w̃. The product ũw̃ indicates two areas

where the correlation between the spatial fluctuations is high: around the ripple crest

and downstream of the ripple crest. From section 3.4.4, it was concluded that velocity

measurements could not be resolved any closer to the bed than 4 mm ± 2 mm. A close-up

of ũw̃ near the crest region is shown in Figure 4.21d, where the edge of the bottom return

contamination zone is indicated in grey. It is evident that the region of large ũw̃ located

near the ripple crest is partially contaminated by the bottom return, thereby reducing its

value.

The double-averaged Reynolds stress −〈u′w′〉s and the double-averaged form-induced

shear stress −〈ũw̃〉s are compared in Figure 4.22. Both stresses exhibit similar profiles:

zero shear stress at the bed and away from the bed, as well as a peak just above the

ripple crest. The magnitude of the form-induced stress is, for the most part, smaller than

the magnitude of the Reynolds stress. The shear stress peak represents the amount of

momentum being removed from the mean flow by the ripples. Except for a sign difference,

both half-cycles exhibit similar behaviour of the double-averaged stresses.

4.10 Evolution of the double-averaged shear stress

The combined double-averaged shear stress is given by the sum of the double-averaged

bedform-induced stress and Reynolds stress:

τ

ρ
= −〈ũw̃〉s − 〈u′w′〉s (4.3)
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Previously, the double-averaged stress at 90◦ phase was determined over a full ripple

wavelength. At later times in the forcing cycle, the data spans different portions of the

ripple profile. In order to determine the double-averaged stress at different phases, a

slightly different method must be implemented, whereby the double-averaging procedure

is applied over a half-wavelength (trough to crest) for each half-cycle. This method is valid

as long as the ripple profile is symmetrical or, as in our case, nearly symmetrical. The

downstream ripple flank is located to the left of the ripple crest during the first half-cycle.

During the second half-cycle, the upstream ripple flank is also located to the left of the

ripple crest. With this in mind, the profiles of shear stress double-averaged over half a

wavelength for each half-cycle can thus be summed together, yielding the double-averaged

stress over a full ripple wavelength.

The evolution of the vertical profiles of the total combined shear stress double-averaged

over a half-wavelength is presented in blue in Figure 4.23 at the same four phases as in

Figure 4.7. The magenta and green lines represent the combined stress averaged over a

half-wavelength for each half-cycle. The stress is dominantly negative during the first

half-cycle and positive during the second half-cycle. For all four phases, the peak shear

stress for each half-cycle is located near crest level. The maximum stress in each vertical

profile as a function of phase is shown in the polar plot in Figure 4.24. The maximum total

shear stress is shown in blue and the maximum stress from each half-cycle is given by the

magenta and green lines. Since the maximum stresses for each half-cycle are located at

different heights above the bed, their sums do not necessarily equal the maximum total

shear stress. Except at 105◦ phase, the maximum total shear stress increases as function of

phase.

4.11 Different orbital excursions

The following section examines the near-bed flow and stress at a larger excursion with the

intention of studying evolving ripples. A new bed of ripples was created at an excursion

of 49.6 cm. MFDop measurements were then made at two RippleKart excursions: 49.6

cm and 60.5 cm. At the higher excursion, the ripples were slowly evolving to the longer

wavelength expected for the larger excursion, and were thus out of equilibrium. The

trough-to-trough ripple wavelength λ and ripple amplitude a for each 40-cycle run are

listed in Table 4.1. The runs were consecutive: i.e. without stopping the Kart. Ripple
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Figure 4.23: Double-averaged stress at four phases of the forcing cycle. The combined
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and green, as well as their sum in blue. The crest level is given by the dashed grey line.
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Figure 4.24: Maximum shear stress double-averaged over a half-wavelength (blue) and
maximum shear stress from each half-cycle (magenta and green) as a function of phase.

wavelengths and amplitudes were determined from the sediment-water interface estimate

RB. For d0 = 49.8 cm, the ripple parameters varied little between runs with an average

wavelength of 24.6 cm ± 0.2 cm and an average amplitude of 2.22 cm ± 0.09 cm. For

the other two excursions, there is a slightly greater difference between runs for these

parameters, indicating that the rippled bed had not yet reached equilibrium. A smaller

ripple crest was present in one of the troughs during these experiments, which could affect

the estimates of the ripple parameters. However, for these experiments, the best fit sinusoid

used in determining RB was based on a portion of the rippled bed that excluded this small

ripple. Ripple wavelength estimates differ from the expected wavelength of 31 cm at the

lower excursion (equation 1.1), possibly due to the finite length of the RippleKart. The bed

profiles from the last set of experiments at the higher excursion are presented in Figure

4.25.

4.11.1 Flow and vorticity

Figure 4.26 shows the vorticity and flow field at the two different RippleKart excursions:

49.8 cm (top panel) and 60.5 cm (bottom panel). The ripple shape and size are similar in
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Table 4.1: Ripple parameters over a bed of ripples at an excursion of 49.8 cm and over a
different bed of ripples at excursions of 49.6 cm and 60.5 cm

d0

49.8 cm 49.6 cm 60.5 cm
λ a λ a λ a

(cm) (cm) (cm) (cm) (cm) (cm)
run 1 24.4 2.2 24.0 2.1 23.6 2.1
run 2 24.7 2.1 24.0 2.1 25.1 2.3
run 3 24.7 2.3 23.4 2.0 23.6 2.0
run 4 24.7 2.3 23.4 2.0
run 5 23.4 2.0
run 6 24.6 2.0

0 0.1 0.2 0.3 0.4 0.5
0
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0.02

0.03

0.04

x (m)
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run 1
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Figure 4.25: Phase-averaged bed profiles (RB) at d0 = 60.5 cm
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both figures, indicating that the ripples had not yet adjusted to the higher excursion. Higher

vorticity due to the intensification of the flow over the crest is evident at both excursions.

The size of the separation bubble is larger at the larger excursion, indicating that given

sufficient time the ripple wavelength would also increase.

4.11.2 Reynolds stress

The distribution of Reynolds stress at excursions of 49.8 cm and 60.5 cm, as well as at

two phases of the forcing cycle, is shown in Figure 4.27. All panels exhibit a region of

higher Reynolds stress downstream of the ripple crest. At the higher excursion, the high

stress region increases in size from 90◦ to 105◦, indicating that the maximum Reynolds

stress occurs later than 90◦. Furthermore, due to stronger flows at the higher excursion, the

Reynolds stress associated with the lee vortex is much larger.

4.12 Maximum Reynolds stress and TKE

The error on the maximum Reynolds stress at 90◦ was estimated using the bootstrap

method (Efron and Gong, 1983). This procedure consists of drawing a number of samples

randomly and independently, with replacement, from the original distribution. In this

case, each of the 40 cycles that was used in the phase-averaging procedure was assigned a

unique integer, from 1 to 40, and 40 numbers were drawn at random, with replacement. A

new phase-averaged Reynolds stress was computed from the 40 selected cycles, which

obviously included some (random) repeats. The position and magnitude of the maximum

Reynolds stress was then determined from the new distribution of phase-averaged Reynolds

stress. This procedure was repeated a large number of times, B.

The position of the Reynolds stress maximum for two values of B is shown in the top

panels of Figure 4.28. The variation of the magnitude of the Reynolds stress maximum is

presented in the bottom panels. For both values of B, the largest number of occurrences

of the maximum Reynolds stress occurred at the same location (x =17.2 cm and z = 4.0

cm). The magnitude of the Reynolds stress for both values of B is -0.0051 m2/s2, which

is comparable to the magnitude of the maximum Reynolds stress of the pieced profile of

-0.0044 m2/s2 found at x =17.0 cm and z = 4.0 cm. For both values of B, the distribution

of the magnitude of the maximum Reynolds stress follow a quasi-normal distribution with

a standard deviation relative to the peak value of 0.0016 m2/s2.
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Table 4.2: Magnitude and location of the maximum Reynolds stress and TKE components
using the Bootstrap method with B = 800

magnitude (cm2/s2) x (cm) z (cm)
−u′w′ -51 ± 16 17.2 ± 0.9 4.0 ± 0.5
u′2 490 ± 160 17.2 ± 0.7 4.0 ± 0.5
v′2 310 ± 120 16.8 ± 1.5 3.1 ± 1.6
w′2 50 ± 10 16.5 ± 0.6 3.7 ± 0.2

The bootstrap method can also be applied to the different TKE components. For B =

800, the largest number of occurrences for the three TKE components are indicated in

Table 4.2 and compared to the Reynolds stress results. The location of the maximum

TKE components are comparable to each other and to the maximum TKE of the original

pieced profile located at x =16.95 cm and z = 4.0 cm. The magnitude of the maximum

TKE components differ, which indicates the degree of anisotropy of the high TKE core

associated with the presence of the lee vortex. As discussed earlier (see section 4.3 and

Figure 4.13), the largest contribution to the maximum TKE comes from u′2.

4.13 Friction factors

The maximum friction velocity during a half-cycle was determined from the maximum

shear stress estimate τm using

u∗m =
√
τm/ρ (4.4)

Similar to equation 2.10, friction factors are given by

fw = 2
u∗m2

UR0
2 (4.5)

where UR0 is the amplitude of the relative velocity.

4.13.1 Single profiles of shear stress

Friction factors determined using the different methods (law-of-the-wall, vorticity method

and Reynolds stress) at maximum forcing are listed in Table 4.3. The u∗m estimates

determined via the log-law are based on the maximum values of friction velocities from

the velocity profiles at the zero-crossings and troughs. In this case, the u∗m estimate is a
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local maximum. On the other hand, the maximum friction velocities determined from the

vorticity method correspond to the maximum bed shear stress over a full ripple wavelength.

The friction velocities determined from the Reynolds stress correspond to the maximum

stress typically located above the bed.

For the vorticity method, friction factors could not be obtained at the largest excursion

since the data at maximum forcing do not span a full ripple wavelength. Both the law-

of-the-wall and the Reynolds stress methods yield larger friction velocities at the highest

excursion. Friction factors obtained using the vorticity method are smaller than the law-

of-the-wall results, but larger than the Reynolds stress estimates. For the most part, the

fw estimates are comparable for both half-cycles. However, there is as much as a factor 2

difference between half-cycles at a given excursion for the Reynolds stress and log-law

estimates. The vorticity estimates are more consistent.

4.13.2 Spatially-averaged shear stress

Friction factors obtained from the spatially-averaged stress using the vorticity method

(equation 4.2) and the combined double-averaged shear stress (equation 4.3) are presented

in Table 4.4. Again, the fw estimates could not be determined at the highest excursion of

60.5 cm, since the data at maximum forcing do not span a full ripple wavelength. The

two methods yield similar results for both half-cycles. Due to averaging, friction factors

obtained using these spatially-integrated methods are, for the most part, smaller than the

friction factors from the single profiles presented in Table 4.3.

4.13.3 Spatially-averaged shear stress versus phases

Friction factors can also be obtained from the total combined shear stress profiles double-

averaged over a half-wavelength. In this case, the friction velocity estimates correspond to

the maximum total shear stress (blue lines in Figure 4.23). These friction velocities and

their corresponding friction factors are presented in Table 4.5 as a function of phase. In

addition, the friction factor estimate at 90◦ is very similar to (only 33% smaller than) the

fw estimate at 90◦ obtained from the stress double-averaged over a full wavelength (Table

4.4). Except for the results at 105◦, friction factors increase with phase. The lower stress

estimate at 105◦ phase could be influenced by a larger stress estimate during the second

half-cycle (Figure 4.24) and by the decrease in Reynolds stress at this phase (Figure 4.14).
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Table 4.3: Single-profile values of friction factors obtained using the law-of-the-wall, the
vorticity method and Reynolds stress at 90◦

Log-law Vorticity Reynolds
d0 u∗m † fw u∗m‡ fw u∗m†† fw

(cm) (cm/s) (cm/s) (cm/s)
First half-cycle

49.8 21.1 2.5 12.6 0.88 6.7 0.25
49.6 22.6 2.8 14.9 1.25 4.6 0.12
60.5 26.2 2.5 - - 8.3 0.24

Second half-cycle
49.8 30.3 5.3 13.8 1.16 6.3 0.24
49.6 16.0 1.4 15.0 1.43 6.5 0.27
60.5 27.8 2.7 - - 7.5 0.26
† maximum value from the profiles at the zero-crossings and

troughs (see Figure 4.19)
‡ corresponding to the maximum stress at the bed (see equation

4.1)
†† corresponding to the maximum stress, typically located

above the bed (see Figure 4.14)

Table 4.4: Friction factors obtained from spatially-averaged values of stress using the
vorticity method and the double-averaging method

Vorticity Double-average
d0 u∗m† fw u∗m‡ fw

(cm) (cm/s) (cm/s)
First half-cycle

49.8 5.1 0.14 4.8 0.13
49.6 4.4 0.11 4.4 0.11

Second half-cycle
49.8 4.5 0.12 4.3 0.11
49.6 6.0 0.23 4.9 0.15
† corresponding to the average bed stress over

a wavelength
‡ corresponding to the maximum combined

stress double-averaged over a full wave-
length (see equation 4.3)
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Table 4.5: Friction factors obtained from the combined stress double-averaged over a
half-wavelength at d0 = 49.8 cm

Phase u∗m† fw

(◦) (cm/s)
90 3.9 0.09
105 2.9 0.05
120 4.5 0.12
135 4.8 0.14
† corresponding to the

maximum combined
stress double-averaged
over a half-wavelength

4.14 Hydraulic roughness

In section 2.5, a hydraulic roughness equation which included a contribution from moving

sand grains over ripples was presented. Using s = 2.6 (sediment specific gravity for sand,

Sleath (1984)) and D50 = 153μm, the hydraulic roughness rh can be calculated from the

friction factor and ripple geometry estimates. It was found that the contribution of the

second term in equation 2.68 was 3% to 7%. Since the contribution from the moving sand

grains is negligible, the hydraulic roughness of these ripples can be estimated from the

roughness of the ripple profile 8η20/λ. This method yields roughness estimates of 5 to 7

cm.

For turbulent flow over rough beds, Nielsen (1992) suggests using a modified version of

the semi-empirical formula given by Swart (1974) for fw:

fw = exp[5.5(rh/A)
0.2 − 6.3] (4.6)

Given fw, equation 4.6 can be used to estimate rh.

Using equation 4.6, the rh estimates determined from the friction factors obtained from

the single profiles of stress (Table 4.3) are listed in Table 4.6. Due to the variation in the

fw estimates using the different methods, the values of hydraulic roughness vary greatly

between the law-of-the-wall, the vorticity method and the Reynolds stress. Furthermore,

most of these rh estimates are much larger than the hydraulic roughness values of 5 to 7
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cm obtained from the ripple geometry. These results lead to questions about the reliability

of the different methods, which will be addressed in section 4.15.

In Table 4.7, values of hydraulic roughness at maximum forcing determined from the

spatially-averaged shear stress estimates (vorticity and double-averaging methods) are

presented. For the most part, the values of rh are comparable in magnitude to each other

and to the hydraulic roughness estimate of 5 to 7 cm obtained from the ripple geometry.

Hydraulic roughness estimates determined from the combined shear stress from the

half-wavelength method are listed in Table 4.8 as a function of phase of the forcing cycle.

These hydraulic roughness estimates are comparable in magnitude to each other and to

the estimates based on the combined shear stress from the full-wavelength method (Table

4.7). These rh estimates are also comparable to the hydraulic roughness estimate of 5 to 7

cm obtained from the ripple geometry. Similar to the fw estimates, hydraulic roughness

increases as a function of phase, except at 105◦.

4.15 Discussion

4.15.1 Law-of-the-wall

The law-of-the-wall was used to determine friction velocities and consequently, friction

factors. Better fits to the log-law were obtained over the zero-crossings than over the

troughs. However, difficulties arose in choosing the appropriate number of points to which

the fits were applied. In fact, some of the velocity profiles exhibit the logarithmic behaviour

very poorly. Thus, caution must be used when interpreting the law-of-the-wall results.

For fully rough turbulent flow for which rhu∗/ν > 70 (Nielsen, 1992), the hydraulic

roughness over rough beds is given by (Monin and Yaglom, 1971)

rh = 30z0 (4.7)

Since rhu∗/ν > 600 in these experiments, the flow can be assumed to be fully rough

turbulent for the present experiments. Using equation 4.7 and the law-of-the-wall results

yields rh estimates between 60 cm to 160 cm, which are physically unrealistic.

Jensen (1988) (see also Jensen et al. (1989)) implemented the law-of-the-wall to estimate

friction velocity and hydraulic roughness for fixed roughness beds in oscillatory flow. In

one of his experiments, Jensen (1988) obtained u∗m = 6 cm/s for 8-s period waves at a
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Table 4.6: Hydraulic roughness rh obtained using the law-of-the-wall, the vorticity method
and Reynolds stress

Log-law Vorticity Reynolds
d0 rh rh rh

(cm) (cm) (cm) (cm)
First half-cycle

49.8 97 44 14
49.6 105 58 6
60.5 116 - 17

Second half-cycle
49.8 158 55 14
49.6 62 64 15
60.5 124 - 18

Table 4.7: Hydraulic roughness rh from the spatially-averaged stress using the vorticity
method and the double-averaged method

Vorticity Double-Average
d0 rh rh

(cm) (cm) (cm)
First half-cycle

49.8 7.8 6.7
49.6 5.5 5.7

Second half-cycle
49.8 6.5 5.9
49.6 12.8 8.2

Table 4.8: Hydraulic roughness from the total combined shear stress double-averaged over
a half-wavelength as a function of phase at d0 = 49.8 cm

Phase rh

(◦) (cm)
90 4.6
105 2.1
120 6.4
135 7.7
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semi-excursion of 1.13 m. The height of the roughness elements (grain size) was 1.5 mm

for this experiment. The friction velocity was determined using the law-of-the-wall and

assumed a constant roughness height z0. From equation 4.7, the hydraulic roughness (rh)

was estimated to be 2.6 mm, yielding a rh to grain size ratio of 1.7. In other experiments

using different grain sizes and near-bed orbital excursions, Jensen (1988) found ratios of

2.5, which is in agreement with values reported by Kamphuis (1974). However, the median

grain size D50 is used for the height of the roughness elements in Jensen (1988), whereas

as D90 (90% of the particles are smaller than the total grain size distribution) is used in

Kamphuis (1974).

In reference to the experiments executed by Jensen (1988) (see also Jensen et al. (1989)),

it is important to realize that the log-law was implemented over a fixed roughness bed,

with roughness element size much smaller than the excursion. As a result, the number of

roughness elements that a fluid element encountered during one wave period was A/D50 ∼
O(1000), whereas in the rippled bed case A/η0 ∼ 5, where a full ripple wavelength is

considered to be a roughness element. In addition, the logarithmic layer was defined above

the roughness elements in the results presented by Jensen (1988). In contrast, the log layer

here is confined for the most part to heights below crest level (see Figure 4.17) and thus

between the roughness elements, i.e. the ripple crests. For this reason, the assumption of

a constant roughness height z0 (and displacement height) is not necessarily valid over a

rippled bed, since the log-law needs to be implemented at different positions along the

ripple profile.

In addition, the law-of-the-wall could have been implemented at several more locations

along the ripple profile in order to obtain spatially-averaged stress estimates between the

roughness elements. However, this avenue was not pursued since the results from the best

fits (over the zero-crossings) yielded physically unrealistic rh estimates and due to the

above-mentioned difficulties in implementing the law-of-the-wall.

In the present work, the law-of-the-wall was also implemented to verify the existence

of the logarithmic layer above crest level. It was found that the logarithmic nature of the

time-averaged horizontal flow over the crest was confined to several millimetres above

crest level. The existence of this logarithmic layer can also be investigated using the

double-averaging method. Over developing dunes, Coleman et al. (2006) found that the

double-averaged horizontal flow below the roughness heights is linear and obtained a
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logarithmic profile immediately above crest level. This behaviour was verified using the

MFDop data (not shown). Furthermore, it was found that the logarithmic nature of the

double-averaged horizontal flow as measured by the MFDop was confined to a very thin

(∼9 mm) layer above crest level. The logarithmic fit to this thin layer above crest level

yielded high friction factors of 3 to 8, values which are for the most part larger than the fw
estimates from the law-of-the-wall applied to the time-averaged flow (Table 4.3).

4.15.2 Spatially-averaged stress and connection to evolving ripples

The hydraulic roughness estimates obtained from spatially-averaged results (double-

averaging and vorticity methods) were comparable in magnitude to each other and to

the rh estimate obtained from the ripple geometry. Furthermore, the double-averaging

technique was also implemented over a half-wavelength as a function of phase, yielding

similar hydraulic roughness estimates. For these methods, the hydraulic roughness to

roughness height (ripple height) lies between 1 and 3. Over evolving sand ripples, Hay

et al. (2012c) also obtain a hydraulic roughness to ripple height ratio between 1 and 3. In

these experiments, the ripple steepness increased from 0.03 cm to 0.10 cm at an excursion

of 0.9 m. It is very encouraging to see that Hay et al. (2012c) obtained similar ratios

even though their experiments involved smaller amplitude ripples evolving at a larger

excursion. Stress estimates obtained using spatially-averaged approaches have yielded

sensible hydraulic roughness to ripple height ratios, which are much more realistic than

the values of 14 to 40 obtained via the law-of-the-wall. These results have thus shown that

a spatially-averaged approach is a more appropriate method to implement in the case of a

rippled bed.



CHAPTER 5

SUMMARY AND CONCLUSION

5.1 Summary

Results have been presented from a laboratory investigation of the spatial and temporal

structure of flow, vorticity and stress over orbital-scale sand ripples. Equilibrium two-

dimensional ripples having a wavelength of nearly 25 cm and an amplitude of 2 cm were

created using an oscillating tray apparatus. Near-bed flow measurements were obtained

using a wide-band coherent Doppler profiler (MFDop). Through runs at different MFDop

locations relative to a particular ripple crest, phase-averaged results were pieced together

in order to obtain an instantaneous picture of the flow field over a ripple wavelength.

5.1.1 Flow and vorticity field at maximum forcing

The main features of the flow that were observed were the acceleration of the flow up the

stoss side of the ripple and its deceleration down the lee side, as well as the intensification

of the flow over the crest. These flow features were also observed to varying degrees in the

potential flow models. At the same non-dimensional height (z/λ), the intensification of

the flow was 1.3 times larger than the free-stream velocity, compared to 1.2 and to 1.4 for

the models given by Davies (1983) and Longuet-Higgins (1981), respectively (Figure 4.2).

Differences between the model predictions and the observations in the near-bed flow field

are due to bottom friction (which is not included in the models), verified by estimating the

rotational part of the flow, and to the ripples being slightly three-dimensional. Areas of

significant rotational flow confined close to the bed represent regions in the flow field that

are affected by bed shear stress. Vertical profiles of horizontal flow, as well as the vorticity

97
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distribution over a ripple, indicate the presence of a layer of high vertical shear confined

close to the bed due to bottom friction.

Based on both the MFDop data and the potential flow solutions, it was found that the

local acceleration ∂u/∂t and the non-linear terms (u∂u/∂x and w∂u/∂z) are not only

comparable in magnitude within the boundary layer, but are also dependent on height above

the bed. Thus, the boundary layer approximation does not hold over orbital-scale ripples,

and shear stress cannot be accurately resolved using the vertically-integrated acceleration

defect. To illustrate this in a different way, the vertical integral of the acceleration defect is

clearly non-zero over the crest in potential flow, which is frictionless (see Figure 2.6). As a

result, the shear stress is not directly related to the vertically integrated acceleration defect

over orbital-scale ripples.

5.1.2 Lee vortex evolution and associated turbulence

The distribution of the flow at different phases of the forcing cycle revealed the evolution

of the lee vortex. At maximum forcing, a small separation bubble was present downstream

from the ripple crest which increased in size as the free-stream velocity slowed.

The method used to calculate the second moments of the turbulent velocity fluctuations

has yielded promising results. From the velocity fluctuation estimates, the distribution of

Reynolds stress, turbulent kinetic energy and turbulence production have been obtained

over a ripple wavelength. A region of high stress and turbulent kinetic energy associated

with the lee vortex has been observed. Furthermore, the evolution of turbulence production

over a ripple wavelength showed that the bottom as well as the lee vortex were sources of

turbulence. At the higher orbital excursion, a stronger flow field was measured and, as a

result, a larger separation bubble was present. The Reynolds stress associated with the lee

vortex was also found to be larger at the increased orbital excursion.

Reynolds stress, turbulent kinetic energy and turbulence production are all associated

with the presence of the lee vortex in different ways. Reynolds stress is a measure of

the stress applied on the mean flow by the turbulent fluctuations (Kundu, 1990), whereas

turbulent kinetic energy is a measure of the energy embedded in the lee vortex. In contrast,

turbulence production represents a rate rather than a state. Specifically, it is a measure of

the rate of energy production given by the interaction of the Reynolds stress with the mean

vertical shear (Kundu, 1990). To summarize, Reynolds stress and turbulent kinetic energy

are embedded in the lee vortex, which is a source of turbulence.
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5.1.3 Friction factors and hydraulic roughness

Shear stress estimates over equilibrium orbital-scale ripples were determined using differ-

ent methods. It should be noted that form drag is not included in any of the stress estimates.

Friction factors obtained from single profiles of stress via the law-of-the-wall are at least a

factor 10 greater than the estimates obtained from the Reynolds stress calculations. The

error bounds on the maximum Reynolds stress estimate were found to be reasonably tight

using the bootstrap technique. In contrast, the shear stress estimates and derived quantities

such as hydraulic roughness obtained using the log-law are physically unrealistic.

The vorticity method assumes that the horizontal length scales are greater than the

vertical length scales, but provides bed shear stress estimates at all points along the ripple

profile. The double-averaging approach produces vertical profiles of the spatially-averaged

Reynolds stress and bedform-induced stress, thereby yielding the net shear stress over a

full ripple wavelength. Even though several major assumptions were made, the vorticity

method produced similar results to the double-averaging technique, indicating that this

approach has potential for obtaining accurate stress results.

Friction factor estimates from the spatially-averaged methods were a factor 2 smaller

than the friction factors obtained using the Reynolds stress measurements. In addition,

friction factors as a function of phase were determined by double-averaging over a half-

wavelength. These results were consistent with the friction factors obtained via the

full-wavelength double-averaging approach. Furthermore, the double-averaging and the

vorticity methods were found to yield very similar hydraulic roughness estimates to each

other and to the rh estimate obtained from the ripple geometry. For both methods, the

hydraulic roughness to ripple height ratio lies between 1 and 3, values which are much

more sensible than the values of 14 to 40 obtained via the law-of-the-wall. Overall,

spatially-averaged approaches have proven to produce reliable shear stress estimates over

rippled beds.

5.2 Conclusion

Very promising near-bed flow measurements have been obtained using the MFDop in an

oscillating tray set-up. However, constraints of this kind of experimental set-up need to be

considered. In order to get an instantaneous picture of the flow, multiple runs where the

MFDop is located at different positions along the ripple profile must be executed. In order
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to improve tracking of the lee vortex, it would be desirable to make more MFDop mea-

surements with less physical space between them. However, executing more RippleKart

runs while increasing the excursion could be problematic since the ripples might evolve

between runs to adjust to the new forcing conditions.

One of the goals of the present research was to explore the limits of MFDop performance

in a laboratory setting as a precursor to making similar measurements in the field. This

state-of-the-art instrument has been shown to provide high resolution flow measurements

at turbulence-resolving scales over orbital-scale ripples. In addition, the near-bed distribu-

tions of Reynolds stress and turbulent kinetic energy that have been obtained are clearly

associated with the presence of the lee vortex, which is very encouraging. It would be of

great interest to compare these laboratory results with similar field measurements.

The present results are encouraging for related future work that could include inves-

tigating the effects of ripple shape and ripple steepness on the flow field. Similar to

Jonsson and Carlson (1976), measurements could be made over different beds of artificial

ripples. In addition, the effect of varying the grain size distribution on ripple morphology

and suspended sediment concentrations could be studied. In fact, creating ripples using

a wider grain size distribution would simulate certain natural conditions more closely.

Furthermore, it would be of interest to explore in detail the result of increasing the orbital

excursion, which would lead to making measurements over evolving ripples. These results

would be of use to improve our understanding of the adjustment of rippled beds to varying

hydrodynamic conditions.



APPENDIX A

EQUATIONS IN THE MOVING FRAME

OF REFERENCE

We are interested in the equations governing the flow above an oscillating plate with no

imposed flow in the moving frame of reference. Let ˆ denote variables in the frame of

reference moving with the boundary. The horizontal spatial coordinate in the moving

frame of reference x̂ as a function of the horizontal spatial coordinate in the lab frame x is

given by

x̂ = x−
∫ t

0

U(ξ)dξ (A.1)

where U is the flow in the interior. Let us assume that there is oscillatory flow in the

interior, i.e. U = U0 cosωt. Integrating equation A.1,

x = x̂+
U0

ω
sinωt (A.2)

Differentiating with respect to time,

u = û+ U0 cosωt (A.3)
∂u

∂t
=

∂û

∂t
− U0ω sinωt (A.4)

In the lab frame of reference, the Navier-Stokes equations for uniform oscillatory flow
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within the bottom boundary layer are

∂u

∂t
=

1

ρ

(
−∂p

∂x
+

∂τx

∂z

)
(A.5)

∂p

∂z
= 0 (A.6)

where ρ is the fluid density, p is the pressure and τx is the shear stress in the x-direction.

Using equation A.4 and A.5, the horizontal momentum equation in the moving frame of

reference can be determined. Within the bottom boundary layer,

∂û

∂t
− U0ω sinωt =

1

ρ

(
−∂p

∂x
+

∂τx

∂z

)
(A.7)

and in the interior,
∂û∞
∂t

− U0ω sinωt = −1

ρ

∂p

∂x
(A.8)

where û∞ is the velocity in the interior in the moving frame of reference. Using equations

A.7 and A.8,
∂

∂t
(û− û∞) =

1

ρ

∂τx

∂z
(A.9)

where û− û∞ is the defect velocity. The standard boundary layer approximation, which

assumes that the magnitude of the variations of the flow in the stream-wise direction is

much smaller than the magnitude of the variations across the boundary, has been used to

eliminate the pressure gradient term. The momentum equation for the velocity defect in

the moving frame of reference (equation A.9) is equivalent to the momentum equation in

the inertial frame of reference (equation 2.6).



APPENDIX B

MFDOP BEAM BISECTOR SEPARATION

As discussed in section 3.2, the separation between the MFDop beam bisectors increases

with distance from the point where the beam axes intersect. A sketch of the MFDop beam

bisectors is shown in Figure B.1. The distances d13 and d23 between the bisectors and the

centre beam at a distance R from the centre transducer are given by:

d13 = (r0 −R) tan θ13 (B.1)

d23 = (r0 −R) tan θ23 (B.2)

where r0 = 40 cm is the beam intersection. The bisector angles between transducers 1

and 3 and between transducers 2 and 3 are given by θ13 and θ23 respectively. From Hay

et al. (2012a), these bisector angles are θ13 =7.25◦ and θ23 =7.10◦. The beam bisector

separation is thus given by the sum of d13 and d23. A plot of the beam bisector separation

as a function of the range used for the RippleKart experiments is given in Figure B.2. The

beam bisector separation is zero at 40 cm from the centre transducer and increases as

measurements are made further away from this point. This separation is of the order of a

few centimetres.
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Figure B.1: Sketch of the MFDop beam bisectors between transducers 1 and 3 and
transducers 2 and 3. The bisector angle θ between transducers at the beam axis intersection
point is indicated. The distances d between the bisectors and the centre beam at a distance
R from the centre transducer is also indicated.
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Figure B.2: MFDop beam bisector separation as a function of range from the centre
transducer.



APPENDIX C

RANGE CORRECTION

Due to the MFDop’s geometry, the vertical range from an outboard transducer to a target

is shorter than the vertical range from the centre transducer to the same target. Therefore,

the measurements registered by each transducer must be interpolated onto the centre

transducer’s vertical range.

A sketch of the relevant angles and distances between MFDop transducers 1 and 3 is

given in Figure C.1. A pulse travelling from transducer 3 to 1 will travel a total distance

of 2r. Signals arriving at the centre transducer at the same time will also have travelled

a distance 2r. Thus, denoting the vertical distance corresponding to these simultaneous

arrivals by D33 and D13 respectively, we have

D33 = r (C.1)

D13 = r cos β (C.2)

where β is the angle between D13 and r. From Figure C.1,

β = π/2− γ − θ0 (C.3)

γ = π/2− θ (C.4)

where θ0 is the bisector angle between transducer 1 and 3 at the beam axis intersection

point and θ is the bisector angle for a scatterer located along the bisector. As a result,
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Figure C.1: MFDop sketch of angles and distances travelled by a pulse between transducers
1 and 3 showing θ0, the bisector angle between transducer 1 and 3 at the beam axis
intersection point, and θ, the bisector angle for a scatterer located along the same axis.

β = θ − θ0 and using equation C.2,

D13 = r cos(θ − θ0) (C.5)

Similarly, the distances between the other outboard transducers and centre transducer can

also be calculated.



APPENDIX D

BOTTOM CONTAMINATION

We are interested in determining the minimum distance away from the bed that measure-

ments can accurately be obtained without any contamination from the bed. A sketch of

a pulse travelling between the centre transducer and an outboard transducer is presented

in Figure D.1. The distance R = R1 + R2 that a pulse travels from transducer 1 to an

outboard transducer is given by

R1 =
√

h2
1 + x2 (D.1)

R2 =
√

h2
2 + (d− x)2 (D.2)

where d = L cos θ0 and h2 = h1 − L sin θ0. The path of least time is also the minimum

distance path Rmin. The latter can be determined when the first derivative is equal to zero:

dR(x)/dx = 0. Thus, we obtain

x√
h2
1 + x2

− d− x√
h2
2 + (d− x)2

= 0 (D.3)

Using θ0 =7◦, L = 9.6 cm and h1 = 40 cm, we can determine x. Both terms of equation

D.3 are plotted as a function of x in Figure D.2. The intersection point is located at x =

4.84 cm and, as a consequence, Rmin = R(x) = 79.4 cm. The distance that a pulse travels

from the centre transducer and back is 2h1 = 80 cm. As a result, the bottom return from

an outboard transducer arrives earlier by 6 mm.
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Figure D.1: MFDop sketch of a pulse travelling between the centre transducer and an
outboard transducer over a flat bottom.
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Figure D.2: MFDop bottom contamination: solving equation D.3



APPENDIX E

ACCELERATION FORCE

Nielsen (1992) and Tunstall and Inman (1975) have both mentioned a caveat concerning

the oscillating tray set-up. The acceleration force acting upon a sand particle being

accelerated in a stationary fluid is different from the force exerted on a stationary particle

in an accelerating flow. From Nielsen (1992) and based upon Newton’s second law of

motion, the force exerted on a resting particle on a fixed bed in an accelerating fluid is

given by

ρ(1 + CM)Vp
∂u

∂t
(E.1)

where Vp is the particle volume and CM is the added mass coefficient. In contrast, the force

exerted on a sand grain on a moving bed and, thus being accelerated in a stationary flow, is

ρ(s+ CM)Vp
∂u

∂t
(E.2)

where s is the specific sediment density or the ratio between the sediment density and

the fluid’s density. For both cases, the ρCMVp term is the added hydrodynamic mass and

corresponds to the volume of surrounding fluid that is being displaced by the particle

(Nielsen, 1992). However, in the second case, the added hydrodynamic mass is added

to the mass of the particle and thus the force has to also depend on the particle density,

ρs = sρ.

Similar to Hay et al. (2012c), the ratio between the force associated with shear stress
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(ρu∗2mAp) and the acceleration force (equation E.2) is given by

u∗2m
(s+ CM)ωU0

Ap

Vp

∼ u∗2m
(s+ CM)ωU0D50

(E.3)

where Ap is the projected area of the particle. Using s = 2.6 (sand), CM = 0.5 (value

for a sphere (Nielsen, 1992)) and U0 = 0.2 m/s, the denominator of the right-hand-side

of equation E.3 is 6×10−5 m2/s2, which is much smaller than the squared values of the

observed maximum friction velocities (see Tables 4.3 and 4.4). As a result, the fluid

pressure force acting on a particle resting on an accelerating bed used in these experiments

is much smaller than the shear stress force. Nevertheless, the ripples created in the

RippleKart could have been influenced by the forces due to the increased fluid pressure

gradients present in an oscillating tray set-up. However, other factors could have had a

more important influence such as end-effects due to the finite-length of the oscillating tray

(Hay et al., 2012c).
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