
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. C4, PAGES 7011-7022, APRIL 15, 1993 

A Modified Galerkin-Spectral Model for Three-Dimensional, Barotropic, 
Wind-Driven Shelf Circulation 

JINYU SHENG AND KEITH R. THOMPSON 

Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada 

We describe an efficient numerical scheme for calculating wind-driven currents on the continental 
shelf. Our scheme is based on the spectral approach introduced by Heaps and subsequently modified 
by Lardner. The basic idea behind Heaps' approach is to express the horizontal flow, u(x, y, z, t), as 
a linear combination of vertical structure functions, Ckr(Z), and then solve numerically for the 
temporally and horizontally varying coefficients. To obtain an accurate representation of wind-driven 
flow, many •r are often required. Following Lardner, we reduce this number by subtracting from u an 
analytically defined flow field, u•,, prior to its expansion in terms of the •hr. Our choice of u•, is steady 
Ekman flow in water of finite depth. This particular choice includes, as a special case, the u•, used by 
Lardner. Using an idealized basin and time-harmonic wind forcing, we compare the convergence rate 
of the expansion of u - u•, with u•, taken to be (1) zero, corresponding to Heaps' approach, (2) flow 
with constant horizontal shear stress through the vertical, corresponding to Lardner's recent 
suggestion, and (3) steady Ekman flow. We find that removal of steady Ekman flow generally leads to 
the most rapid convergence, particularly when the water depth is much greater than the Ekman depth, 
a condition often found on the middle and outer continental shelf. 

1. INTRODUCTION 

Over the last 2 decades the spectral method has been used 
with considerable success to compute three-dimensional, 
wind-driven currents and tidal streams over the continental 

shelf during the periods of weak stratification. The underly- 
ing idea is to express the horizontal flow, u(x, y, z, t), as a 
linear combination of vertical structure functions, •br(z), 
with coefficients that vary with x, y, and t. The •br are 
normally taken to be orthogonal, and so by vertically inte- 
grating the product of the momentum equation with each •b•, 
a set of equations governing the evolution of their coeffi- 
cients can be readily obtained. Heaps [1972] was one of the 
first physical oceanographers to apply this approach in his 
seminal study of wind-driven motion in a rectangular shelf 
sea of constant water depth and constant eddy viscosity. 
Later, Davies [e.g., Davies, 1980, 1983, 1988] and others 
[e.g., Furnes, 1983; Lardner, 1990] extended Heaps' ap- 
proach to accommodate arbitrary eddy viscosity profiles, 
using a variety of vertical structure functions that include 
cosines, Chebyshev polynomials, B splines, and piecewise 
linear functions. To improve the computational efficiency of 
Heaps' approach, a time-splitting technique has also been 
introduced [Davies, 1987] whereby the first mode is inte- 
grated with a time step limited by the CFL condition, while 
the other modes integrated with a longer time step. The 
present generation of spectral models have been developed 
to the point that they are now extremely useful tools for 
studying the three-dimensional circulation over the conti- 
nental shelf. (See Davies [1987] for a comprehensive re- 
view.) 

It has been known for some time, however, that if the 
are taken to be the eigenfunctions associated with the eddy 
viscosity profile, convergence can be slow for the wind- 
driven component of the flow, particularly in the high-shear 
zone close to the sea surface. The result is that many •b• may 
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be required to accurately describe surface currents [e.g., 
Davies, 1987]. In an attempt to accelerate the convergence, 
Davies and Owen [1979] showed that accurate solutions 
could be obtained using relatively few Chebyshev polyno- 
mials because these functions are highly sheared close the 
surface and bottom. It was also found, however, that Che- 
byshev polynomials have a high computational overhead and 
the rapid rate of convergence is offset by their computational 
cost [Davies and Stephens, 1983]. Recently, Lardner [1990], 
Davies [1991, 1992], and Zitman [1992] have demonstrated 
that with minimal additional computational cost, conver- 
gence can be accelerated by first subtracting from u a 
particular flow field, ue, leaving a "remainder," uR, that can 
be accurately represented with far fewer vertical structure 
functions •b• than would be possible otherwise. Lardner's 
choice for ue was flow with constant horizontal shear stress 
through the vertical. Davies [1991, 1992] has suggested that 
ue be decomposed into two parts: one proportional to the 
surface wind stress and the other proportional to the bottom 
shear stress. Each component is a quadratic function in the 
vertical and nonzero only in the region close to the boundary 
layer. Zitman's choice of ue is proportional to the product of 
the surface wind stress and one of the eigenfunctions of the 
eddy viscosity profile, with nonzero gradient at the sea 
surface. 

As part of an interdisciplinary study of cod recruitment in 
the northwest Atlantic, a group of biological and physical 
oceanographers in the Ocean Production Enhancement Net- 
work are attempting to track a cohort of cod larvae on the 
ScotJan shelf in order to determine those factors controlling 
survival during the cod's early life history. The main contri- 
bution of the physical oceanographers will be to provide 
nowcasts and short-term forecasts of the circulation so that 

the biologists can focus their sampling effort on the same 
group of individuals and thus determine what is special about 
the larvae that survive. We are tackling this physical ocean- 
ographic problem using a limited-area circulation model 
which is driven with observed winds and flows across the 

open boundary. These boundary flows cannot be observed in 
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Fig. 1. Schematic of the closed rectangular basin showing the 

four locations at which time series of current (A, B, C) and sea level 
(D) are compared. 

real time, and so we infer them from interior current mea- 
surements using the adjoint method of data assimilation. An 
efficient numerical scheme for calculating the flow field, and 
in particular the low-frequency, near-surface currents, is an 
essential element of our data assimilation scheme. For this 

reason, we tested Lardner's method over a range of water 
depths and eddy viscosities appropriate for the Scotian shelf. 
We found, in agreement with Lardner [ 1990, p. 22,272], that 
"if a smaller eddy viscosity is used, the velocity profile is 
more rapidly varying and more eigenfunctions are required 
to represent it .... " 

The purpose of this study is to modify Lardner's method 
so that rapid convergence can be achieved over a wider 
range of water depths and eddy viscosities. We will show 
that this can be achieved simply by taking Up to be steady 
Ekman flow in water of finite depth. This includes Lardner's 
Up as a special, shallow water, case. 

We note that there are similarities between our approach 
and that proposed recently by Davies [1988]. Specifically, 
Davies decomposes u into a depth-mean flow and a remain- 
der which determines the vertical structure. This remainder, 
along with the bottom stress, can be calculated at each time 
step by numerically evaluating a set of convolution integrals 
[e.g., Jelesnianski, 1970; Forristall, 1974]. This bottom 
stress is then used in the depth-averaged model, which is 
run, in "leapfrog" fashion, with the model for the vertical 
structure. The main advantage of Davies' approach over 
conventional depth-averaged models is that the bottom 
stress is parameterized in terms of the bottom current, and 
this gives more realistic flow fields, particularly in shallow 
water. Thus Davies terms this model an "enhanced" two- 

dimensional model. It should be noted, however, that de- 
composition of the flow into a depth-mean current and a 
remainder does not accelerate convergence: the rate of con- 

vergence of the enhanced two-dimensional model is essentially 
the same as that 0f an equivalent three-dimensional model and 
hence the number of vertical structure functions required to 
achieve a given accuracy is the sam6 for both. 

In section 2 we briefly review the different choices of u? 
and outline the governing equations for the remainder, uR = 
u - up. In section 3 we compare the performance of the 
various methods, taking as our example the case of an 
enclosed sea driven by a time-varying wind. Discussion of 
results, and suggestions for further 'modification of the 
Galerkin-spectral method, are given in section 4. 

2. BASI• EQUATIONS 
The linearized horizontal momentum and continuity equa- 

tions governing barotropic flow on the continental shelf may 
be written [e.g., Davies, 1987] 

m+fkXu=__gVr/ +•Oo- /x (1) Ot 

--+V.h u do'=0 (2) 
Ot 1 

where u - (u, v) is the horizontal velocity vectoi', k is the 
upward unit vector, h is the water depth, r/is the sea surface 
elevation, f is the Coriolis parameter, g is acceleration due to 
gravity,/x is the coefficient of vertical eddy viscosity, and V 
is the operator (O/Ox, O/Oy). The o' axis points upward, with 
o' -- -1 at the seafloor and o' - 0 at the sea surface. The top 
and bottom boundary conditions are taken to be 

0u 

/x --=h'r o'=0 
0o' 

0u (3) 
tx -- - hku o' = - I 

Oo' 
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Fig. 2. Computed surface velocities at location C (Figure 1), 30 
hours after the onset of a constant northerly wind stress of 1.5 Pa, as 
a function of the number of eigenfunctions used in the expansion. 
The water depth is uniform and equal to 200 m. The three lines for 
each panel correspond to the three methods of calculation described 
in the text: those of Heaps (MH) and Lardner (ML) and that 
proposed in this paper (MN). 
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Fig. 3. Time series of surface velocity computed by the three methods using 2 (dotted curves), 3 (short-dashed 
curves), 4 (long-dashed curves), and 50 eigenfunctions (solid curves) at (a) location A, (b) location B, and (c) location 
C (see Figure 1). The water depth increases from 20 m at the coast to 200 m in the center of the basin according to (26). 
The wind forcing is zero until t = 0 at which it varies sinusoidally with a period of T = 20 hours in the y direction (see 
(27)). (Top) MN, (middle) ML, (bottom) MH. 

where • = (rx, ry) is the kinematic wind stress vector. Note 
that the bottom stress parameterization is linear in bottom 
velocity; we will discuss use of a more realistic quadratic 
parameterization in the final section. No-slip at the bottom 
boundary corresponds to the limit that k tends to infinity. 

The vertical structure of u is often described in terms of 

eigenfunctions of the following Sturm-Liouville problem 
[e.g., Heaps, 1972; Davies, 1987]: 

h20cr t• +A&=0 (4) 
subject to 

04, 
=0 cr =0 

Ocr 

= hk& cr = -1 
Ocr 

(5) 

where Z is the eigenvalue associated with the eigenfunction 
&(cr). It should be noted that the choice of zero stress at the 
sea surface in (5) is the source of the poor convergence for 
the wind-driven problem. The main advantage of eigenfunc- 
tions is that the differential equations governing the temporal 
evolution of their coefficients decouple for linear models and 
that efficient numerical schemes have been developed to 

integrate them [e.g., Heaps, 1972; Davies, 1983; Lardner, 
1990]. 

For constant eddy viscosity, the eigenfunctions are simply 

&r(cr) = cos (arcr) r = 1, 2,"' (6) 

where the a• are the positive roots, in ascending order, of 

a tan a = kh/i• (7) 

which is obtained by substituting (6) into (5). Substituting (6) 
into (4) gives 

2 2 
X r = ari•/h 

For all r, (r- 1)rr < a• < (r- 1/2)rr with a• tending 
toward the lower limit of this range as r tends to infinity. For 
a no-slip bottom boundary condition, a• - (r - 1/2)rr for all 
r. (See Heaps [1972] for a full discussion of the properties of 
the eigenvectors and eigenvalues associated with constant 
t•.) For completeness, we give below the depth integrals of 
and &2 for constant t•, both of which will be required in our 
application of the Galerkin-spectral method: 

(4•r) = sin 
(8) 

(& •2)= (2 + sin 2a •/a •)/4 

where 
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< 1 

Clearly, - 1 < <4)r> < 1 with the modulus of <4)r) 
eventually tending to zero with increasing r at least as 
quickly as r -• . In contrast, 1/4 < (•br 2) < 3/4 with (•br 2) 
tending toward 1/2 as r tends to infinity. 

2.1. Choices of ue 

One problem with using cosines to describe the vertical 
structure of wind-driven currents is that convergence can be 
slow [e.g., Davies and Owen, 1979]. For example, Davies 
[1983] noted that, at times, even 20 cosines were insufficient 
to obtain an accurate representation of the surface currents. 
As was noted above, the problem stems from the pronounced 
vertical structure of the near-surface currents in deep water, 
coupled with the fact that the computed vertical current shear 
is identically zero at tr = 0 [Heaps, 1972; Davies, 1987]. 

Lardner's [1990] way of accelerating the convergence of 
the eigenfunction expansion of u is to first subtract a 
particular flow field, up, to deal with the inhomogeneous 
surface boundary condition, and then solve for the remain- 
der, UR = u- up, using the Galerkin-spectral method. 
Given that the components of uR satisfy the same boundary 
conditions as •b, specifically (5), Lardner argued that the •b 
expansion of u• should converge more rapidly than that of u. 
Lardner's up is the solution of 

h 2 atr /x = 0 (9) 

subject to (3). The solution, which we denote by ue = UL, is 
[Lardnet, 1990] 

U L = • d- 'rh ix (lO) 

Note that uL has constant horizontal shear stress through the 
vertical, with the surface wind stress balanced exactly by the 
bottom stress. Such flows are expected to occur in shallow 
water [e.g., Csanady, 1982]. However, uL does not accu- 
rately describe wind-driven current profiles in deep water. To 
illustrate, if we assume a mid-latitude shelf of depth 200 m, a 
steady wind stress of 0.2 Pa, and an eddy viscosity of 0.065 m 2 
s -• [e.g., Heaps, 1972], simple Ekman theory would predict a 
surface current of less than 0.1 m s- • at about 45 ø to relative to 
the wind, with most of the flow occurring in the top 50 m. In 
contrast, uL gives a significantly higher, and unrealistic, sur- 
face current of 0.6 m s -• in the same direction as the wind, 
decreasing linearly to zero at the seafloor (assuming, for 
simplicity, a no-slip bottom boundary condition). 

An alternative ue, which we will show leads to more rapid 
convergence over a wider range of water depths and eddy 
viscosities, is steady Ekman flow uE, which is the solution of 

h 2 0tr /x -fkxu=0 (11) 

subject to (3). Analytical expressions for uE have been 
obtained for various eddy viscosity profiles including a con- 
stant [e.g., Ekman, 1905; Welander, 1957], exponential [e.g., 
Witten and Thomas, 1976], and a power law [e.g., Thomas, 
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1975; Jordan and Baker, 1980]. For constant/x, for example, 
explicit expressions for uE and vE in terms of rx and ry can be 
obtained by equating the real and imaginary parts of 

3/0 [cosh 3/1(1 + (r) + Y0 sinh 3/!(1 + (r)] uœ + ivœ = -•- . sinh ,y • + ,y 0 cosh ,y • 

where 

ß (r x + iry) (12) 

3/0 = k&œ11a(1 + i) 

Yl = (1 + i)hl&œ 

and &E is the Ekman depth defined by 

&e = (2•/f)]/2 
Note that as &e/h tends to Zero, ue tends to the familiar 
Ekman spiral. As &e/h tends to infinity, ue approaches ur. 
Thus the particular solution chosen by Lardner [ 1990] is the 
shallow water limit of (12). 

In anticipation of our application of the Galerkin-spectral 
method in the next section we now give, for arbitrary/x, the 
depth averages of ur and uE: 

(ur) = •- xh -- d(r (13) 

<uœ> = k x [T b -- T]/fh (14) 

where % is the bottom stress. We will also require the 
following projections of ur and ue onto the eigenfunctions: 

(UL4) r) -- T/A r h 

<UEqbr> = [ArT -fk X T]/h(A 2 +f2) 

(15) 

(16) 

2.2. Governing Equations for UR 

Following Lardner [1990], we subtract our particular 
solution, ue, from u and obtain a remainder, uR, which 
satisfies the following momentum and continuity equations: 

-- •+fkXUR= -gVr/ +•-7O(r /z (17) ot ot 

•+V-h u R do-- -V-h UEdO' (18) 
Ot -1 

The top and bottom boundary conditions are 

OUR 
•=0 rr =0 

OuR (19) 
• = hkuR tr = -1 

Note that by design, the boundary conditions for the compo- 
nents of uR are identical to those of the eigenfunctions. The 
initial conditions corresponding to a state of rest are uR = -ue 
at t = 0. Along solid lateral boundaries we will require the 
normal component of depth-integrated flow to vanish. 

Applying the Galerkin-spectral method to the above set of 
equations, we first express uR as a sum of eigenfunctions 
<bs(•r) with coefficients Us(x, y, t) = (Us, Vs): 
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Fig. 4. Time series of surface velocity computed by the three methods using 2 (dotted curves), 3 (short-dashed 
curves), 4 (long-dashed curves), and 50 eigenfunctions (solid curves) at (a) location A, (b) location B, and (c) location 
C (see Figure 1). The water depth increases from 20 m at the coast to 200 m in the center of the basin according to (26). 
The wind forcing is zero until t = 0 at which it varies sinusoidally with a period of T = 40 hours in the y direction (see 
(27)). (Top) MN, (middle) ML, (bottom) MH. 

= (20) 
s 

We assume below that the eigenfunctions have been 
normalized such that •b(O) = 1 and thus Us may be inter- 
preted as the contribution of the sth eigenfunction to the 
surface current. In the usual way, we substitute (20) into 
(17), multiply by •br(•r), and integrate from sea surface to 
seafloor to obtain the following equation governing the 
temporal evolution of the rth eigenfunction coefficient: 

OUr (•br) 1 

--+ fk x Ur + A rUr = -g (• V• 2 at at 
(21) 

Note that the eigenvalue, At, can be inte•reted as the 
reciprocal of the spin-down time of Ur. Manifestly, the 
forcing term is proportional to temporal changes in the 
projection of the Ekman solution onto the eigenfunctions, 
given by (16); it will, of course, vanish if the wind is steady. 

The continuity equation accompanying (21) is 

--+ • V. h(•r)Ur = -V' h(uv) (22) 

with uv = ue in our case. The right-hand side is proportional 
to the divergence of the horizontal transport carried by the 

Ekman flow; for 8E << h it has a simple physical interpre- 
tation in terms of Ekman pumping by the top and bottom 
frictional boundary layers. For constant /• it is readily 
determined from the instantaneous wind stress by using (14) 
and (12). 

Thus we have three ways of calculating barotropic, wind- 
driven currents: they differ only in the particular solution, 
ue, that is subtracted from u prior to the eigenfunction expan- 
sion. For convenience we list below the three equations 
governing the temporal evolution of Ur, one for each method: 

Heaps (MH) 

OUr 

Ot ---FfkxUr+ ArUr + g <-•r2> Vrl = <-•r2> (23) 

Lardner (ML) 

OUr 

ot 

<6r> 

•+fk x Ur + ArUr + g (-•r2) VII 

0<u6 r> 
Ot 

• - fk x <UL•b r> (24) 
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Heaps' approach requires the numerical solution of (23), 
and (22) with ue = 0, subject to appropriate initial and lateral 
boundary conditions. Similarly, Lardner's approach requires 
the numerical solution (24), and (22) with ue = ur. Our 
modification of Lardner's approach is simply to replace ur 
with uE and solve (25) and (22). For convenience we will 
henceforth refer to Heaps', Lardner's, and the new method as 
MH, ML, and MN, respectively. Note that for both ML and 
MN, the "forcing" depends the projections of ue onto the 
eigenfunctions along with their depth means: explicit expres- 
sions for these quantifies, in terms of'r, are given by (13)-(16). 

3. FLOW IN A RECTANGULAR BASIN 

To assess the convergence rates of the three numerical 
methods, we have performed a series of calculations of wind- 
driven flow in a rectangular basin and compared the surface 
velocities and elevations at four locations (Figure 1). Detailed 
discussions of the dynamical response of closed basins to 
time-dependent wind forcing have already appeared in the 
literature (see Csanady [ 1982] for a review); this section covers 
only the numerical efficiency of MH, ML, and MN. 

The horizontal dimensions of the basin are 400 km in the x 
direction and 800 km in the y direction. These dimensions 
were used by Heaps [1972] in his pioneering study of the 

North Sea, and over the years they have become standard in 
the comparison of three-dimensional numerical models [e.g., 
Davies and Owen, 1979; Davies, 1983, 1988; Lardner and 
Smoczynski, 1990; Lardnet, 1990]. We have used •wo types 
of bathymetry' a flat bottom and one that deepens toward the 
center. We have also used two types of wind forcing: a 
steady wind and a time-harmonic wind, both switched on at 
t = 0. For all model runs we assumedf = 1.22 x 10 -4 s -1, 
corresponding to the approximate latitude of the North Sea, 
k=0.002ms -• g= 9 81ms -2, p= 1025kgm -3 atime 
step of At = 180 s, and a horizontal grid spacing of Ax = 
400/9 km and Ay = 800/17 km. 

The choice of eddy viscosity can have a significant effect 
on the convergence rate of the •r expansion of u [e.g., 
Davies, 1987; Lardner, 1990]. A wide range of values have 
been used in the past. Heaps [1972], for example, used eddy 
viscosities which were constant in the vertical, ranging in 
value from 0.03 to 0.26 m 2 s -•. Two constant values of 
have been used in this study: the highest value of/_t = 0.065 
m 2 s- 1 was used for the uniform water depth calculation and 
a lower value of/_t = 0.0244 m 2 s -• was used for the variable 
bathymetry calculation. The main reason for choosing a 
lower value of/• in the second case is to give a minimum 
value for h/15E of approximately 1. Note that for constant/•, 
eigenfunctions and eigenvalues depend on the parameter 
kh/ft. Some modelers have assumed this parameter to be 
independent of (x, y, t) and gone on to develop highly 
efficient numerical schemes [e.g., Heaps, 1972; Davies and 
Furnes, 1980; Hukuda et al., 1989; Lardner, 1990]. Although 
this may be reasonable for small variations of h, it would 
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appear unrealistic to assume that/x is proportional to kh over 
water depths ranging from 20 to 200 m, typical of continental 
shelf seas. Thus we have allowed kh/lx to vary with x and y 
and calculated the t•r and •r for each grid point, prior to the 
time integration of the momentum and continuity equations. 

All three numerical schemes are based on an Arakawa C grid 
with Ur, Vr and •/specified at different points. Forward time 
stepping is used for the time derivative terms, and centered 
time stepping is used for the friction terms (to avoid computa- 
tional instabilities [Heaps, 1972]). The Coriolis terms are 
treated in the manner proposed by Heaps [1972]. Specifically, 
the values of fU r and jxV r are averaged over four neighboring 
grid points. (Note, however, that the Coriolis terms for the 
steady Ekman flow are calculated on the u, v grid without 
averaging: the impact of this slight difference on the calculated 
flow fields was found to be insignificant.) To optimize the 
model we have also followed Lardher [1990] by updating Vr on 
the odd time steps using the most recent values of fU r and 
updating Ur on the even time steps using the most recent 
values ofJV r. We also note here that Heaps [1972] introduced 
a correction term for the truncation error in the expansion of 
the flow in the wind direction. This correction has not been 

included in any of the three methods. 

3.1. Flat Bottom and Steady Wind 

We assume h = 200 m everywhere. In accord with previous 
model comparisons based on the North Sea rectangle, we 
assume that tt = 0.065 m 2 s -1 , suddenly impose a northerly 
wind stress of 1.5 Pa and compare the response of current and 
sea level at t - 30 hours. Note that for this example lie/h = 
0.16. 

Surface velocities in the center of the basin, as a function 
of the number of eigenfuncti0ns (m), are shown in Figure 2. 
The surface velocity computed by MN converges rapidly: 
two or three eigenfunctions would appear to be sufficient. In 
contrast, ML requires at least seven eigenfunctions to be 
within 0.01 cm s -• of the true solution, while MH needs 
even more eigenfunctions (m > 15), particularly for that 
flow component in the same direction as the wind. In an 
additional series of calculations, we also found that the 
number of eigenfunctions required to achieve a given accu- 
racy increased with h/ti e t%r both MH and ML; in contrast, 
the number of eigenfunctions required by MN was relatively 
insensitive to this ratio. W e also found that ML and MN both 

worked well if h/lie was close to, or less than, unity. For 
example, with h/lie - 1.7, only three eigenfunctions were 
needed by these two methods to achieve an accuracy better 
than 0.01 cm s -• while 25 were needed by MH , ß 

It is clear that the situation described above is highly 
idealized, in terms of both the wind forcing and the bathym- 
etry. It is also biased in favor of MN because the circulation 
in the middle of the basin after 30 hours is close to steady 
Ekman flow, the particular solution used in MN. We have 
therefore compared the performance of the three methods 
using more a realistic bottom topography, giving a range of 
lie/h, and a time-varying wind. 

3.2. Variable Bathymetry and Time-Harmonic Wind 

We assume that the water depth (in meters) increases from 
20 along the lateral boundaries to 200 in the center of the 
basin according to 
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Fig. 5. Time series of surface elevation computed using the three methods at location D with T = 20 hours. Otherwise 
as in Figure 3. 

h(x, y)=20+ 180 sin •r sin •r (26) 

We also assume that the eddy viscosity is constant and 
equal to 0.0244 m 2 s-1. Note that kh/lx is no longer constant 
and so both the eigenvalues (Ar) and eigenfunctions (tbr) vary 
across the model domain. They were calculated and stored 
prior to the integration of the momentum and continuity 
equations. The east-west wind stress is again assumed equal to 
zero and the north-south wind stress (in pascals) is defined by 

) 
where T is the wind period. The initial conditions were taken 
to be a state of rest. 

Surface currents at three different locations (shallow, inter- 
mediate and deep; see Figure 1) are shown in Figure 3 for 
forcing by a subinertial wind with T = 20 hours. The different 
line types corresponds to different numbers of eigenfunctions 
used in the expansion of uR: m - 2, 3, 4, and 50. 

At the shallow location A (h = 50 m, h/8•: • 2.5) both 
ML and MN perform well: four eigenfunctions would appear 
to be sufficient in the sense that the curves for m = 4 and 
rn = 50 are almost identical. In contrast, MH seriously 
underestimates the surface current in the direction of the 

wind with m = 4. Note that the u component according to 
ML and MH are identical. The reason is that uL is zero 

perpendicular to wind, and hence the governing equation for 
u R is the same for both ML and MH. We will return to this 
point in the next section. 

At the intermediate depth location B (h = 160 m, h/5•: • 
8) and the deep location C (h = 200 m, h/5•: • 10) we find 
that MN performs well, even though the wind is now 
unsteady; again m - 4 would appear to be sufficient. ML is 
less successful at these locations, particularly for that com- 
ponent of flow perpendicular to the wind: at C, for example, 
the first peak in u is underestimated by 53% with m = 2 and 
by 20% with m = 4. It is also clear that the v-component 
from MH converges slowly compared to both ML and MN. 

Surface currents driven by a lower frequency wind (T = 
40 hours) are shown in Figure 4. Overall, MN performs 
marginally better for T - 40 compared with T = 20 hours. 
This is to be expected, given that the forcing terms in the 
momentum equations are proportional to the rate of change 
of wind stress. In contrast, MH and ML are less successful 
with increasing T, particularly in deeper water. For exam- 
ple, at C, ML underestimates the first peak in u by 66% with 
m = 2, and about 30% with m = 4. It is also clear that MH 

not only underestimates the speed but also fails to capture 
the shape of the v time series with m = 4. In fact, there are 
still slight differences between the v calculated with MH and 
the other two methods, even with m as high as 50. 

Plots of surface elevations at location D for T - 20 and 

T - 40 hours are shown in Figures 5 and 6. All three 
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Fig. 6. Time series of surface elevat,ion computed using the three methods at location D with T = 40 hours. Otherwise 
as in Figure 4. 

methods perform well, for reasons discussed in the next 
section. 

4. SUMMARY AND DISCUSSION 

We have compared the convergence rate of the expansion 

U = Up Jr- E Uses(ø') (28) 
$ 

for three choices of Up, taking as our example wind-driven 
flow in a rectangular basin. The special case of Up = 0 
corresponds to the "traditional" method (MH) introduced 
by Heaps [1972]. Lardner's method (ML) takes Up = 
where ut; has constant horizontal shear stress through the 
vertical. Our modification (MN) of Lardner's method is to 
take Up = uE, where uE is steady Ekman flow in water of 
finite depth. MH has the slowest convergence rate of all 
three methods, particularly for that component of flow in the 
same direction as the wind. M L is highly effective at 
accelerating convergence in shallow water, but is less effec- 
tive in deep water. The convergence rate in the direction 
perpendicular to the wind is the same for both MH and ML. 
MN increases the rate of convergence in both shallow and 
deep water, and for flow both parallel and perpendicular to 
the wind. Thus our overall conclusion, based on the nu•mer- 
ical simulations given above, is that removal of steady 
Ekman flow prior to the application of the Galerkin-spectral 
method is a straightforward and effective way of reducing 

the number of vertical structure functions required to de- 
scribe the wind-driven component of the flow. We are 
presently using this approach to hindcast the time-varying, 
three-dimensional circulation on the Scotian shelf using 
observed winds and are finding that accurate results can be 
obtained with as few as four eigenfunctions. 

To understand and generalize the results of the numerical 
simulations it is useful to consider the special case of steady, 
wind-driven flow. To keep the discussion as simple aspossib,le, 
we will assume a no-slip bottom boundary condition and take ta 
to be constant. It is straightforward to show that under these 
conditions, the eigenfunction coefficients for MH are 

Ur = (1 n t- •r 4) r • VT] -- k X .• VT] 

• •r k x (29) + (1 + 8r 4) fh 
where 

8r = (r - 1/2) 21/2 h 
Thus given V r/and x, it is straightforward to calculate all 

the U r and thus reconstruct the full velocity profile. The sea 
level gradient can be obtained by substituting (29) into the 
continuity equation (22), with Up = 0, and solving the 
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resulting elliptic equation for r/. Thus for the present discus- 
sion of convergence rates, we can think of V r/as a forcing 
term, similar to x. However, given that V r/, and hence its 
contribution to Ur, is the same for all three methods, the 
following discussion will focus primarily on the wind-driven 
component of U r because this will determine the differences 
in convergence rate. 

As r tends to infinity, S r increases as r. Thus it is clear 
from (29) that the wind-driven component of U r in the wind 
direction will eventually decrease as r -2 and the component 
perpendicular to the wind will decrease as r-4. This explains 
why the surface currents calculated by MH converge rela- 
tively slowly in the wind direction. Consider now the effect 
of decreasing i•EIh. Given that Ixl/f is the natural scale for 
surface wind-driven currents in deep water, it is clear from 
(29) that the component of Ur in the wind direction varies 
relative to this scale as •1. Thus we should expect, and 
indeed have found in our simulations, that the surface 
currents calculated by MH will converge more slowly in 
deeper water. 

There are several ways of dealing with the slow conver- 
gence of the wind-driven component of the flow. The most 
direct way is to include more eigenfunctions although this 
will obviously increase the computational burden. Alterna- 
tively, the •br can be replaced by functions better equipped 
to describe the high shear associated with near-surface, 
wind-driven currents. For example, Davies and Owen [ 1979] 
have shown that Chebyshev and Legendre polynomials form 
a particularly effective basis sets. The approach proposed 
recently by Lardnet [1990], and the subject of this study, 
involves the subtraction of a particular solution from u prior 
to its eigenfunction expansion. For steady flow, the eigen- 
function coefficients for ML are 

_ 2(qb r) •2 a a Ur (1 q- •r 4) r y V. -- k X y V. 

-3 - k x (30) q-(1 q- ar 4) •-• 
The only difference with MH is the coefficient multiplying 

the x term' it has changed from 8r 2 to - 8; -2. Given that 8r is 
proportional to r, it follows that convergence for the wind- 
driven component of the flow in the wind direction has been 
accelerated. In fact, the contribution of the rth eigenfunction 
to the surface current in the wind direction decreases as r-6 
with increasing r, compared to r -2 for MH. However, note 
that the convergence rate for the flow perpendicular to the 
wind is the same for both MH and ML. Both of these 

features were evident in our numerical simulations. 

The convergence rate for MH and ML is slowest in deep 
water i.e., for small 8E/h. Physically, the problem stems 
from the inability of the low-order cosines to capture the 
highly structured surface Ekman layer in deep water. Our 
solution to this problem has been to replace Lardner's 
particular solution with steady Ekman flow in water of finite 
depth. The rationale is simple: subtraction of steady Ekman 
flow, in addition to dealing with the surface boundary 
condition, removes much of the vertical structure in the 
wind-driven surface flow, leaving a relatively smooth "re- 
mainder" which can be well described by relatively few 
eigenfunctions. For steady flow, the eigenfunction coeffi- 
cients for MN are 

2(•br) [r52 0 0 Vr/ (31) [Jr-- (1 + at4) ryVn kxf 
Note that [jr is determined solely by r/which, in turn, is 
forced by the initial and lateral boundary conditions and the 
transport divergence term in the continuity equation. Given 
r/and its gradient are identical for all three approaches, MH 
must have the most rapid convergence, at least for steady 
flow. From the continuity equation, it is also clear that 
changes in r/are determined by transport divergences and 
thus will be dominated by contributions from the low-order 
eigenfunctions. This is confirmed by the close agreement 
between the sea levels calculated using 4 and 50 eigenfunc- 
tions. 

We assumed that the eigenfunctions satisfy the slip bottom 
boundary condition exactly. The advantage of this assump- 
tion is that the equations governing the temporal evolution of 
[jr decouple and can be solved efficiently. There are, how- 
ever, several disadvantages. First, the eigenfunctions and 
the eigenvalues will, in general, depend on the eddy viscos- 
ity profile and water depth. This means that they have to be 
calculated separately for each grid point. Second, the bottom 
stress parameterization is necessarily linear in bottom veloc- 
ity, and yet it can be argued that a quadratic formulation is 
more appropriate. Third, the time-splitting technique can not 
be used, since the term involving the pressure gradient 
appears in the governing equations for the coefficients of 
high modes. Davies [1988] shows how these disadvantages 
can be overcome for the traditional method, MH, by (1) 
requiring that the eigenfunctions satisfy a zero-stress bottom 
boundary and (2) including the bottom stress explicitly in the 
[jr equations. This ensures that the eigenfunctions depend 
only on the shape of the eddy viscosity profile and the 
pressure gradient does not affect the coefficients of the 
second and higher modes. This leads to Davies' enhanced 
two-dimensional model discussed in the introduction. We 

conclude by noting that both ML and MN can be modified in 
a similar fashion, and thus extended to accommodate arbi- 
trary bottom stress formulations and time splitting, while 
retaining the advantage of faster convergence for the wind- 
driven component of the flow. 
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