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Indirect-exchange interactions in disordered metals at finite temperature
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We calculate the effective indirect-exchange interaction between spin-spin pairs in disordered metals.
The primary features of this work are that we include intrinsic sd exchange scattering and explicitly re-
tain finite temperature in our results. Intrinsic sd exchange scattering introduces length scales that
strongly affect the structure of the effective interaction. Finite temperature imposes a strictly finite range
on the interaction. Finite temperature and sd scattering play essential roles in establishing the depen-
dence on impurity concentration of the effective interaction in disordered systems such as metallic spin
glasses and dilute ferromagnets.

I. INTRODUCTION

The determination of the effective spin-dependent in-
teraction H, tt(R ) between localized magnetic moments in
a disordered electronic environment is fundamental to
the discussion of magnetic properties of many systems.
The initial Ruderman-Kittel-Kasuya- Yosida (RKKY)
discussion applies to the idealized case of two magnetic
moments (spins) in a pure metal in the zero-temperature
limit. ' The characteristic feature of the RKKY indirect
exchange interaction is its long-range oscillatory behavior
as a function of the distance R between spins, in contrast
to the short range expected for direct-exchange interac-
tions. The inhuence of random disorder in the host envi-
ronment of these effective spin-spin interactions has been
considered by several authors, beginning with de
Gennes. One of the central theoretical questions has
concerned the extent to which finite electron mean-free-
path (A, ) effects lead to exponential damping of the spin-
spin interactions at large R (R ) A, ).

The related experimental questions are to establish
how a characteristic magnetic "ordering" temperature
depends on the composition of the disordered host (e.g. ,
impurity concentration), and to determine how the de-
tails of the range of H, tt(R) are refiected in the composi-
tion dependence of the ordering temperature. A variety
of physical systems have been studied in this context and
we will indicate some examples which focus attention on
the question of the range of H, tt(R). Several types of di-
lute ferromagnets have been studied. The Curie-Weiss
temperatures of a sequence of (GeTe), „(MnTe)„sam-
ples, O~x ~0.5, have been measured. The dependence
of the Curie-%"eiss temperature on x in these degenerate
semiconductors could be accounted for by the usual
damped RKKY interaction in the x 0. 15 composition
range but not for x ~ 0.20. Dilute magnetic semiconduc-
tors such as Zn& „Mn Se have been extensively studied.
From data on the spin-glass transition temperatures, it
has been concluded that indirect-exchange interactions
play an important role in these systems. However, the R
dependence deduced for H, tt(R) is quite unusual. Dilute
metallic spin glasses with concentrations c; of nonmag-
netic impurities have also been investigated. The glass
transition temperature Ts(c, ) often exhibits a rapid initial

decrease with c;. This has sometimes been interpreted
through the usual damped RKKY interaction, in which—R /A, ,-H,a(R ) o- e ' for R ) I,; 0- 1/c;. However, it has been—R/1,
argued that the damping factor e ' is not present in
disordered metals at large R (R )A, ) in the low Tlimit, -

and that elastic scattering at large R will have a weak
effect on T, leaving the decrease in T with c; unex-
plained. ' Other examples could be given.

The essential conclusions are that the form of H, tt(R)
in these important classes of disordered systems and the
implications for characteristic ordering temperatures are
still not well understood. The objective of this work is to
present an improved calculation of H, tt(R) in disordered
systems. The essential features of our work are as fol-
lows: (i) A consistent treatment of the intrinsic, spin-
dependent scattering of conduction electrons from mag-
netic ions at finite T introduces length scales in the
effective spin-spin interactions. These length scales are
inextricably associated with the intrinsic sd scattering.
(ii) In contrast to the mean free path A, , due to elastic,
pure potential scattering (see above), these length scales
do appear in H,s(R ) in a disordered system and are essen

tial for a complete description of the effective interaction.
(iii) We explicitly retain finite T in our approach and
demonstrate that this is necessary for a complete picture
of H, tt(R). A brief report of our results has been given
previously. "

The organization of the remainder of this paper is as
follows. In Sec. II, we describe our model and the
methods used. The essential Feynman diagrams are
summed in Sec. III. Various simplifications are presented
in Sec. IV. The bulk of the work is presented in Sec. V,
where it is shown that the length scales emerge from the
structure of simple poles and branch points in the corn-
plex planes of various integral expressions. These results
are particularized to low temperature in Sec. VI. We dis-
cuss our results and summarize in Sec. VII, focusing on
the magnitude and range of the effective interaction.

II. MODEL AND METHODS

In order to calculate a specific form for the effective in-
teraction, we focus on systems consisting of low concen-
trations of 3d magnetic ions and nonmagnetic impurities,
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H = y H,,= —2 y y J,'bS,'Sb
(i,j ) (ij) a, b

(2. l)

where S, is the spin of magnetic moment i at position R;,
the sum is over all pairs (i,j) of spins and all Cartesian
components a, b, and J,' =j,zy,'"; y';. =y'"(R;,RJ ) is the
nonlocal electronic spin susceptibility for a fixed
configuration of 3d magnetic ions and nonmagnetic im-
purities, and j,d is the sd exchange constant which enters
V,d.

Our objective is to obtain information about the mag-
nitude and range of the effective interaction between a
typical pair of moments (i,j) with separation R = ~R;. ~,

for a typical, particular, configuration of magnetic iona
and nonmagnetic impurities, as opposed to simply the
average interaction. It has been recognized by several
previous investigators ' that the typical values of H, ff
in a disordered system cannot be extracted from [H; ],„

and that it is much better to calculate fH; ],„

in order to
obtain the required estimate of H,z for a typical
configuration. We follow this general procedure. '
Specifically, we isolate two spins, S; at R; and S at R,
and average H," over all possible configurations of all oth-
er 3d spins (position and orientation) and of all nonmag-
netic ions (positions). We denote this average by
[H;~ ),„=[H (R)],„.Th. e magnitude and range will be ex-
tracted from [ [H (R )]„]' . We will also examine
[H 1 ],„—:[K(R )],„.

We use the finite-temperature Matsubara method to
evaluate these two quantities. The leading contribu-
tions ' to [H(R)],„and [H (R)],„atlarge R (R &A, )

are given by the Feynman diagrams in Fig. 1. The solid
circles correspond to the two spins, S; at R; and S. and
R., the solid lines indicate full single-particle Green s

both of which are randomly distributed throughout a me-
tallic host. Examples of such systems include dilute fer-
romagnets, degenerate semiconductors, and metallic spin
glasses, as discussed in Sec. I.

We calculate the effective interaction in the paramag-
netic phase where spin-flip sd scattering readily occurs.
In contrast, spin-flip scattering is less prominent in the
low-temperature magnetic phase because the individual
spins have preferred directions. Other physical effects
differ between the two phases as well. Our objective is to
obtain a form for H, tt(R) which can be used to describe
trends in transition temperatures as a function of impuri-
ty concentrations and types. This is most easily accom-
plished by calculating H,z in the paramagnetic phase and
focusing on temperatures close to the transition tempera-
ture, as opposed to working in the lower-temperature
magnetic phase.

The Hamiltonian which models such systems is
H Ho + Vgd + Vl p

where Ho describes the conduction
electrons in the pure metal, V,d the scattering of electrons
due to the sd exchange interaction with magnetic ions,
and V; the elastic scattering of electrons by the non-
magnetic impurities. The Hamiltonian H which de-
scribes the effective interaction between pairs of magnetic
ions is obtained from H in the usual manner of tracing
out the electronic degrees of freedom:

FIG. 1. The Feynman diagrams used to calculate (a) [H;, ],„

and (b) [H,', ],„.In both cases, the two dots correspond to two

spins, S; at R; and S, and R, , while the heavy lines with arrows
represent self-consistent, averaged particle propagators. The
shaded sections signify that all diffusion-propagator and all

Cooperon-propagator ladder diagrams are summed in both (a)
and (b).

III. SUMMATION OF DIAGRAMS

None of the previous approaches has considered sd
scattering. As a result, the details of our calculations
differ somewhat from previous works. Using the ansatz'

'r;~= a,5.p„+a,~., ~„, (3.1)

where cr is the Pauli spin matrix, we readily solve for A,
and 8, to obtain

[X"(R)]c,
5,bk~T g [0 ( 2—„co, roR) +%3( „,ror)] (3.2)

for the Cooperon-propagator ladder diagrams, and using
a similar ansatz for I we find

[y' (R)],„=25,bk~ T g 42(ro„—,ro„;R)
~n

for the diffusion-propagator ladder diagrams, where

C„f(p, ro„ro2;R)
(2n. ) I —C„Q(p,ro], ro2)

(3 3)

(3.4)

functions, while the shaded sections indicate sums over
all "Cooperon-propagator" (or "maximally crossed" or
"particle-hole" ) ladder diagrams, as well as over all
"diffusion-propagator" (or "completely uncrossed" or
"particle-particle" ) ladder diagrams. ' These infinite
sums are denoted by I P& and I ~&, respectively, where
a, P, y, and 5 are electron spin indices.

The most straightforward method of calculating
[H(R)],„and [H (R)],

„

is to first evaluate their
momentum-space counterparts and then convert to posi-
tion space, i.e., calculate the Fourier transform P (p) of
[y'"(R)],„directly in momentum space, then obtain
[y'"(R)],„byFourier transforming back:

3p

(2n )
[g b( R ) ] f Pb( p )e iP R

and similarly for [y,'"y,'"],„;summing over Cartesian in-
dices then gives [H(R)],„and [H (R)],„.
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d3p Cnf (p~~t~coz);p. R4(co, , co2R)= 3 1 C ((2~) — .V p coi co~
(3.5)

P(p, ;R)= G(k, co, )G(p —k, coq)e
d k —ik R

(3.6)

d k
P(p, co, , co2)

—= f 3 G(k, co, )G(p —k, co2),(2'�)' (3.7)

C, =C, +C,d,
C2 —Ci Csd

C3 =C; —3C,d,

(3.8)

G (k, co„) is the full single-particle Green's function,
co„=(2n+ l)~k&T is the Matsubara frequency, and the
C„aredefined as follows:

Cp=C, +3C,d,

where C; and C,d give, respectively, the strength of the
nonmagnetic impurity and sd scattering. The strengths
C; and C,d are given by C,-=n, U, , C,d=n U,d, where n,-

and n are, respectively, the number densities of non-
magnetic impurities and magnetic ions, and u, and U,d
are, respectively, measures of the strengths V; and V,d,
both taken to be of short range.

The calculation of [H (R)],„proceeds in a similar
manner, except that it is more complicated. The dia-
grams contributing to [H (R)],„will be grouped as fol-
lows: [H (R)],„and [H (R)],„will denote the sums of
all diagrams having diffusion-propagator ladders on both
sides, and Cooperon-propagator ladders on both sides, re-
spectively, while [H (R)],„willrepresent the sum of all
diagrams where diffusion-propagator ladders appear on
one side and Cooperon-propagator ladders on the other.
Evaluating the three terms is straightforward and gives
the following expressions:

[H (R)]„,=jd(ksT) g (4[@&(R)](S, S2) +[[cpa(R)] —[@z(R)] ]S,S~), (3.9)

[H (R)],„=jd(k&T) g (4[4&(R)] (S& S2) +[[43(R)] —[4&(R)] ]S&S2),
N~, 602

[H (R)],„=jd(2k' T) g (cp&(R)[qco(R)+qc2(R)](S& S2) + —,
' [[Io(R)+I2(R)][+0(R) qc2(R)]—

6)1,F02

+ [I3(R}—I, (R})%2(R)]5fS2),

(3.10)

(3.11)

where 4„(R).=%'„(co„co2,R) is given by Eq. (3.4), and
4„(R):—cP„(co„co2,R) by Eq. (3.5).

A general evaluation of [H ( R ) ],„and [H (R ) ],„

is
highly impractical, but these quantities need to be evalu-
ated only in certain special cases which are of physical in-
terest and which will be fully described below. In these
cases of interest, the leading asymptotic behaviors of
[H(R)]„,and [H (R)]„canbe obtained.

IV. SIMPLIFICATIONS

The fundamental structure exhibited by the effective
spin-spin interaction depends crucially on whether the
system is at "low temperature" or "high temperature, "
the two temperature regimes being separated by a tem-
perature scale Tp defined as

To —=TF I(vrkFA, ) . (4.1)

The temperature Tp readily emerges in the finite T for-
malisrn, as will be shown in Sec. V, and may be interpret-
ed physically as follows. At temperature T, thermal fluc-
tuations induce loss of electronic phase coherence on a
length scale A. z. =—TF l(mkF T). By "low tem. perature" we
mean T «Tp and k«A, &, while "high temperature"
will signify that T/Tp and k/A, z are of order unity or
greater. We wish to emphasize that the extreme condi-
tion T» Tp will usually not be realized in the systems
described in this paper. We will use the phrase "high T"
to mean that T/Tp and A, /Xz- are of order unity. We will

I

occasionally consider the T» T, extreme and will refer
to this as "extremely high T."

Since we will often speak of a quantity being "of order
of or greater than" another quantity, we introduce the
symbol 0, which means "of the order of." We write"T)O(TO), " for example, to indicate that T is greater
than a temperature of the order of Tp.

It is appropriate at this point to give specific examples
of physical systems which may be categorized as being at
"low T" or at "high T," relative to Tp as discussed
above. In the metallic spin glass Agp 974Mnpp26 studied
by Vier and Schultz, the largest value of Tp occurs for
minimal nonmagnetic impurity concentration, and is
Tp = 100 K, whereas T = 10 K. At maximum nonmag-
netic impurity concentration, Tp can be much higher.
For example, in Ag-Mn with Sb impurities, Tp =1000 K
while T =7 K at maximum Sb concentration. This
places Ag-Mn in the "low-T" category. In contrast, a
dilute ferromagnet having a transition temperature of
several hundred K can easily be in the "high-T "
category, provided the sample is clean enough that
To (0 (100 K) (viz. , A. ~ 100—200 A). One example
is the Heusler alloy Cu2Mnp 6Nip 4Sn for which O~ =350
K.' Alternatively, a ferromagnet with a relatively high
degree of disorder (e.g. , A, =20 A) could readily be in the
"low-T "regime.

Evaluation of the high-T structure of the effective in-
teraction is readily formulated once the low-T structure
has been established. Moreover, the low-temperature
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and

g (R ) =2mk~/(2m R )3,

A (R )—:Io(R ) —I, (R )
—I2(R )+ I3(R),

8 (R)—:4[I,(R)+I2(R)],

(4.3)

(4.4)

(4.5)

I„(R)=g (R)(k~T)2 g [@„(co„co2;R)]2, (4.6)

with n =0, 1, 2, or 3.
The proof that %„(R) is negligible begins with the ob-

servation that simple poles can exist in the integrands of
Eqs. (3.4) and (3.5) and that one of these simple poles
could give the dominant contribution to %„(R)if its
imaginary part pI is small compared to the imaginary
parts of other singular points, such as branch points, in
the complex p plane. This will indeed be the case for
several examples of physical interest. The magnitude of
%„(R)will depend on the inagnitude of f(p;R) at the
simple pole. We show below that these simple poles are
close to the origin. Evaluation of f(p; R ) as

~ p ~
~0 is

straightforward. Comparing the result with a similar
evaluation of P(p;R) as ~p~ ~0 reveals that the integrals
%„(R)are a factor of order (k~R) smaller than the in-
tegrals @„(R).Since R &A,, k+R &)1, and any integral
'l„(R)may be neglected compared to a @„(R)integral.
This establishes Eq. (4.2} as a simplification of Eqs.
(3.9)—(3.11).

Next, we calculate P(p, co„co2)and use the result to
evaluate @„(co„co2,R) and, in turn, I„(R).We calculate
P exactly by doing the angular integration first, followed

form of the effective interaction for two spins in a disor-
dered metal has been studied previously. ' Our focus in
this paper will be mostly on the low-T structure of the in-
teraction for the case of a finite concentration of spins in
a disordered metal. We will discuss the high-T structure
only briefly. In forthcoming publications, we will use the
low-T form to calculate T in metallic spin glasses, and
we will provide the details of the high-T form and use the
result to calculate T, in dilute ferromagnets which fall in
the high-T regime.

At low T, [H (R ) ],„givesan extremely misleading pic-
ture of the effective interaction, [H (R)],„providing a
much better estimate. ' This is because the fluctuations
in H(R;J ), froin one particular configuration to another,
are enormous compared to the average [H (R ) ],„overall
possible configurations. Consequently, [H (R ) ],„

is a
very poor measure of the strength and range of H, tt(R).
A much iinproved estimate of the niagnitude of H, tt(R } is
obtained by calculating [H (R)],„.Therefore, we subse-
quently concentrate solely on [H (R)],„.

We next show that, at low T, the integrals 4'„(R)in

Eq. (3.11) are negligible compared to the 4„(R)in Eqs.
(3.9) and (3.10). Consequently, we can neglect [H (R ) ],„

compared to [H (R )],„and[H (R ) ],„.This leaves

[H (R)],„=j,zg (R)[A(R)S;S +8(R)(S; S ) ],
(4.2)

where

by an integration in the complex k plane. Careful treat-
ment of the branch cuts gives

P(p, co„co2)=
™

[Ln(k, +k2+p) —Ln(k, +k2 —p)],
27Tp

(4.7)

where p =
~p~ and Ln(w) is defined by

Ln(io)—:lnr +i 8, n(—8 (m, (4.8)

with w =re', r and 8 real; the k~ (j =1,2) are defined in
terms of

thecal

by

k, —:kF(1+i co, /sF )'~

where Im( kj ) )0 by definition and

(4.9)

co, —:co)
—1m[X(co,. )]=co,+sgn(co, . )/(2r) . (4.10)

([H (R}],„)=[K(R)]S;SJ,
which gives

E(R)=j,dg (R)[IO(R)+Ii(R)+I2(R)+I3(R)]

(4.11)

(4.12)

Since IC(R) contains the information we seek about the
magnitude and range of the spin-spin interaction, we will
phrase our discussion in terms of K (R ) rather than
[H (R)],„.

The self-energy X(p, co„) has been evaluated self-
consistently in a Born approximation. The mean free
time ~ is the total mean free time due to both elastic col-
lisions with the impurities as well as sd scattering by the
magnetic ions, and is related to Co by r=m /(mkzCc ).

In view of Eqs. (3.5), (4.6), and (4.7), the values of
4„(R)and I„(R)will be given in terms of the branch
point at 0 i +k2 and/or the simple pole at p, . If the sim-

ple pole exists, it will be given by 1 —C„P(p„co„co2)=0.
Our next task will be to investigate the existence and lo-
cation of these simple poles, to compare their locations to
the branch point, and to obtain a suitable approximation
for [H (R ) ],„.

Before turning to this task, we simplify our expression
for [H (R)],„onestep further. Our ultimate objective is
to obtain the magnitude and range of the effective in-
teraction between spin pairs in a disordered metal. We
emphasize that, although [H (R ) ],„

is, by definition, an
averaged quantity, it contains valuable information about
the magnitude and range of the effective interaction be-
tween pairs of spins in a particular configuration 'More.
specifically, we can extract from [H (R)],

„

the magni-
tude of the effective interaction between an average, typi-
cal pair of spins with separation R = ~R;, ~

in a typical,
particular, configuration of nonmagnetic impurities and
magnetic ions. To do so, we average Eq. (4.2) over all
pairs (i,j ) with separation R = ~R," ~

in a particular
configuration. We denote such an average of [H (R)],

„

by ([H (R)],„),and we introduce the quantity K(R),
defined by
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V. THE SIMPLE POLES

Ln(zi, +z) —Ln(zi, —z) = 2i a„z,—

where

(5.1)

zi, —=( k i + k& )A=xb +iyb, (5.2)

z =—p, i, =—x+iy, (5.3)

There are many calculations to be discussed in this sec-
tion. In order to assist the reader, we begin by presenting
a summary of the results. We find a special temperature,
To, which separates the physical behavior of the system
into a "low-temperature" regime ( T « To ), and a "high-
temperature" regime ( T & To ). At low T, we find
simple-pole solutions which allow us to evaluate I„(R),
and hence also E (R ), thereby providing us with informa-
tion about the magnitude and range of effective interac-
tions between spin pairs. We also find that the simple-
pole locations depend strongly on the ratio pip, d, where

p,d is the resistivity due solely to the sd scattering by the
magnetic ions, and p is the total resistivity. Although it
is highly impractical to calculate K(R) explicitly for all
values of p/p, d, the simple-pole locations and the princi-
pal behavior of K(R) are readily obtained asymptotically
for "low p" (p a few times p,d, at most) and "high p"
(p»p, d).

Since the route to obtaining these results is unavoid-
ably complicated, it will be helpful to sketch the main
steps involved. It will turn out that we will encounter
five situations where we will need to consider various
"cases" for the quantities involved. We will first distin-
guish between Io(R) (n =0) and I„(R)(n =1,2, 3), since
the solutions for n =1,2, 3 are readily obtained once we
have those for n =0. The next of these situations will be
to separate the pair co„co&into two cases: co, and co& of
like sign (cv, co&&0), and cv, and co& of opposite sign
(coicoz &0). Since no simple poles exist when ~,coz & 0, we
will focus on the case co,co&&0. In discussing the case
n =0, we will encounter the quantity b,~r=(co, —co&)r

(we take co, )0&co&), which will lead to the two cases
b, co~&&1 and Ace~&)1. These cases translate directly
into T «To ("low T") and T))To ("extremely high
T"). The results for the extreme limit T)&To will be
used to infer behavior in the T & To ("high-T") regime.
The case n =1,2, 3 will involve the appearance of quanti-
ties a„.The next two cases to be considered will be
a„&—1, for which no simple poles exist, and a„&1.
The latter leads to two final cases: a„=1+v„with
0& c.„«1,which will mean p))p, d, and a„&)1, which
will mean p only a few times p,d, at most.

For further reference in reading the remainder of this
section, we summarize the five sets of cases: (1) n =0 vs
n =1,2, 3 [for I„(R)];(2) co, co, )0 vs co, iv&&0; (3)
b,car«1 (T « To) vs Acor))1 (T&)To) [for Io(R)]; (4)
a„&—1 vs a„)1 (for n =1,2, 3); and (5) a„»1("low

p,
"

p,d & p + a few times p,d) vs a„=1+c„,0 & c„«1

("high p,
"

p &)p,d ).
The existence and location of the simple poles is deter-

mined by

with Co being the C„which enters the self-energy and
therefore also ~. Since zb is fixed in terms of co, and cuz

[see Eqs. (5.2) and (4.9)], it might seem natural to use Eq.
(5.1) directly to solve for z in terins of zi, . However, the
easiest way to solve for z is to express [a„zb] manifestly
as a function of [a„z]:

[a„zi,]=—[a„z]coth[ia„z]. (5.4)

We regard Eq. (5.4) as a relationship which tells us how
the location of zb varies as point z moves about in the
complex z plane. Our strategy is to find the value of
[a„z]that gives the value of [a„zi,] which is fixed by co,
and co~. We then verify that this value [a„z]is indeed a
solution by using Eq. (5.1). Before considering various
cases, note that the definition of Ln(w), Eq. (4.8), along
with Eq. (5.1), restricts a„xto lie between +n:.

—a&a„x&m . (5.5)

Also note that, since we will be evaluating 4„,Eq. (3.5),
only by closing the contour in the upper half-plane, we
need consider only y & 0 and yb & 0.

(I) n =0, vs n =I,2, 3

The simplest way to explain our result is to first treat
the case n =0, a„=1, describe the solutions found, then
extend the results to the cases n = 1,2, 3. We begin by ex-
panding Eq. (5.4) into its real and imaginary parts:

xi, =g (x,y)[x (e ~—1)—2ye sin2x],

yi, =g (x,y)[y (e —1)—2xe sin2x ],
where

(5.6)

(5.7)

g (x,y) =[1+e —2e cos2x] (5.8)

(2j ciPicoz )0 vs coicoz & 0

Recognizing that k~ T &&c~ and kFA, ))1,we use Eqs.
(5.2), (4.9), and (4.10) to expand zi, in the two cases
co&m&&0, co&co&&0. To be specific, choose co, &0, co, &0
for one case, N& & 0 & Gt)p for the other. One easily obtains

zi, 2kFA+i-[1+(co,+co&)r], co, )0, co& &0, (5.9)

zi, -(co, +co~)r(1+ beer) l(2k~A, )+i (1+hcor),

co, & 0 & co~, (5.10)

where bror= (co, —co&)~. (We use th—e symbol "-"to sig-
nify "is asymptotic to.")

In the case co, )0, co& & 0, Eq. (5.9) indicates that
xb-2k+A, )&yb & 1: the branch point lies just above the
real axis and has a large real part. We then see from Eq.
(5.1) that the angle between zi, +z and zi,

—z, the magni-
tude of which is 2~x

~
[see Eqs. (4.8) and (5.3)], will be very

small unless y is very large (recall the restriction
—7r&x &m). Equations (5.6) and (5.8) imply that, for
y »1, xi, is of order one [viz. , xi, =O(1)], which forces

locate the branch point and simple pole, respectively, and

a„—= Co /C„,
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us to try y =0 (1) or y « 1. Again, Eqs. (5.6) and (5.8)
give xb =0(1) when y =0(1), leaving only the possibili-

ty y « 1, which implies x « 1 also. That g (x,y) &) 1 for
x and y both small raises the possibility of having xb » 1,
but expanding xb gives xb —

—,'xy « 1. In summary, when

co,co&) 0, ~xb ~
)& ~yb ~

) 1, and there is no way to choose x
and y for this to be so: there are no simple poles. We
therefore concentrate on the case co, & 0 & co2 [Eq. (5.10)],
for which yb-(I+A, cor) »xb &0: the branch point lies
close to, or on, the imaginary axis.

(9) hcor « I us hoor » I

Two separate cases will be examined: hco~&&1 and
ALOES » 1, which translate directly into T« To, and
T» To, where

To = TF /( m'kFA ) (5.11)

Note that the minimum value of b,mr is T/To. For a me-
tallic spin glass such as Ag-Mn, the values of TF and A. al-
ways give Tg « To, so there are many co, , co2 pairs satisfy-
ing hco~ &&1, and we are in the "low-T" regime. On the
other hand, a dilute ferromagnet could easily have
T, & To, in which case "high-T" behavior will be real-
1zed.

When b.cur » 1, yb
- ( 1+b,d'or ) )& 1 also. Exploring

the dependence of yb on x and y using Eq. (5.7) quickly
leads to the conclusion that y »1 when yb »1. Other
choices, such as y «1, which initially appear to be possi-
ble, are easily shown to fail. To leading and next-leading
order,

xb -x+(2x cos2x —2y sin2x)e

yb -y+(2x sin2x +2y cos2x)e

from which we obtain
—

2ybx -xb+(2ybsin2xb —2xbcos2xb )e
—

2yb
y -yb (2ybco—s2xb +2xb sin2xb )e

(5.12)

(5.13)

(5.14)

(5.15)

xb —xy, yb ~ 1+—y (5.16)

or

x ——', xb[3(yb —1)]

,'(co, +co2)r(35m—r) '/ (kFA, ) (5.17)

for the simple pole in the Ecole»1 case. Note that the
simple pole is exponentially close to the branch point in
this case.

When 6~~«1, 0&xb«y, and 0&y, —1«1. A
similar investigation of Eqs. (5.6)—(5.8) leads to the con-
clusion that 0&x «y «1, for which

each pair co1,co2. However, whereas in the case Ecole »1
the simple-pole contribution is 4' (co„co2',R) ~ e "/ [see
Eq. (5.15)], the contribution in the case Ecole « 1 is

@sP( .R ) ~ —(3bror} R/A. &&e
—R/k

QP1, C02,

The implication is that, at high T, the branch points and
simple poles contribute to Io(R) terms which have the
same exponential dependence. On the other hand, the
simple-pole contributions dominate the branch-point con-
tributions at low T (b,cor «1). Consequently, Io(R) has
markedly different behavior at low T as compared to high
T (see below). The exercise of comparing simple-pole and
branch-point contributions will be a key procedure when
we reach the stage of extracting the dominant contribu-
tions to each of the I„(R) and to E (R ).

(4) a„&—I usa„&I
We turn next to locating the simple poles in the case

n =1,2, 3. In extending the simple-pole solutions ob-
tained above to the case n =1,2, 3, we exploit the
feature that [a„zb] is precisely the same function of
[a„z]as zb is of z [see Eq. (5.4)]. From the definition
a„—=Co/C„and Eqs. (3.8), we have a&

=(ran+3)/(r)+1), a2=(g+3)/(r) —1), and
a&=(g+3)/(r1 —3), where g=C;/C, d &0. We may
separate the possible values of a„bynoticing that, for
any value of g & 0 and for any choice of n, either a„&—1

or a„&1.
Consider a„&—1 first. In this case, whether co&co2&0

or co,co2 & 0, there are no simple poles. Running through a
series of arguments similar to those used for n =0, one
can readily show that the requirement xb »1 cannot be
satisfied in the case co, &0, co2&0, when a„&—1. To
treat the case co&&0&~2, we make the replacements
z ~a„z and zb ~a„zb in Eqs. (5.6)—(5.8). When
Ecole»1, the requirement yb &)1 [Eq. (5.10)] cannot be
satisfied as it was for n =0 by having y -yb, since the ar-
guments of the exponentials are negative for y &0. At-
tempting yb &)1 via g(a„x,a„y)&)1leads to a„y—+0
and a„x~0: expanding Eqs. (5.6)—(5.8) shows this to be
unsuccessful. Similarly, the case Acorn. «1 also fails to
produce a simple pole when a & —1.

Simple-pole solutions do exist when a„&1.The gen-
eral solution for z can be expressed only implicitly, re-
placing z~a„zand zb —+a„zb in Eqs. (5.6)—(5.8). In
principle, these equations could be solved numerically for
x and y for each pair co1,co2 and for a given choice of
r)=C,. /C, d. The sums over co&, co& in Eqs. (4.2) and (4.6)
could then also be evaluated, in principle. The eventual
aim of such a calculation could be to obtain K(R) as a
function of C,. with C,d fixed. This would be a most am-
bitious undertaking.

y —[3(yb —1)]'/ —[3b,cur]'/ (5.18)

for the simple pole when hood « 1. In this case, the sim-
ple pole has a much smaller imaginary part than the
branch point.

Next we illustrate an important point. Equations (3.5),
(4.7), (5.2), (5.9), and (5.10) show, to leading order, that
the branch-point contribution 4 ~(co&, co&,R) ~ e for

(5) a„»1vs a„=I+e„,0&e„«1
Fortunately, we have found a much easier route to ob-

taining the C,. dependence of E (R ). It begins by separat-
ing the case a„&1into two asymptotic cases: a„»1
and a„=1+@.„,0&v„«1.In each case, forms for x and

y, and thus also K(R), are readily obtained. Both cases
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are straightforward. The case Aco~&&1 for n =0 gave

yb »1 and, in turn, y-yb via Eq. (5.7). Similarly,a„»1 for n = 1,2, 3 gives [a„yb]-a„(1+hcor ) ))1 and,
in turn, [a„y]—[a„yb]. Moreover, replacing z~a„z
and z&~a„zb, and following the steps used for n =0,
hco~&&1, we easily find

—2a„ybx —xb + (2ybsin2a„xb —2xbcos2a„xb )e
—

2&nyb
y -y, (2y—,cos2ct„yb+2xb»n2tz„x,)e

(5.19)

(5.20)

x —
—,'xb [3(a„yb—1)]'

—
—,'(co, +coz)r[3(E„+beer)] '~ (k~A, )

y —[3(a„yb—1)]'"-[3(E +A~r)]'" .

(5.21)

(5.22)

We have retained only the leading terms in c.„aswell as
in hco~. The main point here is that the imaginary part
of the simple pole is much smaller than that of the
branch point, and will therefore dominate when
a„=1+a„,0& c.„«1.This will have important conse-
quences for the dependence of [H (R)]„onC;.

Before turning to the final details of calculation of
[H (R)],„,we relate the cases a„)&1and a„=l+e„to
the overall resistivity p, p =p, +p,d. From the expres-
sions given above for a „a2,and a3, we have

analogously to Eqs. (5.14) and (5.15). The point is that
these results are valid, for a„))1, whateuer the Ualue of
b,cur. Thus, even at low T (b,cor &(1), the simple pole is
exponentially close to the branch point. The important
consequence is that the simple poles associated with the
I„(R)(n =1,2, 3) do not dominate over the branch
points, and, as such, I„(R)~e "~" for n =1,2, 3. This
will be discussed more fully below. It will have major im-

plications for the form of K (R) at low T.
Similarly, the arguments used for n =0, Aco~&&1,

wherein we had 0 & x„«yt,= 1+, will again apply for the
case a„=1+v„,0 & ~„&&1, n =1,2, 3. Replacing
z~a z zb~a zb=( +e }zb gives for b,cur&(1,

branch-point locations to the leading behavior of It,'(R}
as it depends on p/p, d in the low-T regime.

VI. K(E) AT LOW TEMPERATURE

Io(R )—
2

3m 2 ~ —2[3(a&) ~q)~]' R/k

4~ RA, )o)

(6.1)

for the leading behavior of Io(R) at low T. Further eval-

uation of the double sum depends on the value of R. If R
is not too large, the summation may be well approximat-
ed by integration, but if R is large enough, the largest
term in the sum wi11 dominate all of the others. These
considerations lead to

The principal result of the previous section was to es-
tablish under what conditions simple poles exist, and to
calculate their locations given those conditions. In this
section we will apply these results to obtain the dominant
behavior of E(R) at low temperature (beer«1}. We
have found that simple poles exist when co, and co2 have
opposite sign (co, )0) co2). The simple poles for n =0 at
low T are given by Eqs. (5.17) and (5.18}. The simple
poles at low T for n =1,2, 3 are given by Eqs. (5.19) and
(5.20) at "low p" (a„)&1),where p is a few times p,d at
most, while the simple poles for "high p" (a„=l+E„,
0& v,„«1),where p)&p,d, are given by Eqs. (5.21) and
(5.22). We now use these results to evaluate ID(R) and
the I„(R)(n =1,2, 3), which will give [H (R )]„atlow
T.

Consider Io(R) first. Equations (5.9) and (5.10) indi-
cate that the imaginary part yb of the branch point is of
order unity, and is therefore dominated by the simple
poles, since y —(3bcor)'" «1; viz. , @at'~ e—

yb R /'~))4&~b~ ~ e ' . Combining Eqs. (4.6), (3.5), (5.17), and
(5.18), and evaluating the simple-pole contribution to
Io(R) gives

a„=(p/p, d ) /[(p/p, d )
—2«3]

„a=2n [/3(p /p& )
—2n] .

(5.23)

(5.24)

k+R +A~,
Io(R)- —'(R/A) ) R )&r,

(6.2a)

(6.2b)

The condition 0& @.„«1implies p»p, d, while a„»1
requires that p/p, z exceed 2n /3 by a small amount. The
expressions (5.19) and (5.20) are valid asymptotically for
p/p, d only slightly larger than 2n /3 but are actually use-
ful even when p is a few times p,d. This is due to the
strong effect of the exponentials in Eqs. (5.6) and (5.7).
On the other hand, the asymptotic results of Eqs. (5.21)
and (5.22) do not extend quite as far. More specifically,
whereas the exponential factors may well pull the cz„»1
results as far as a„=1,the considerably weaker power-
law behavior for 0&v.„«1probably can be pushed no
further than about c„=—,'. These considerations will play
a major role when applying our results to obtain the p
dependence of transition temperatures in various materi-
als.

We turn next to relating the simple-pole locations and

A =(A,A. /3)' (6.3)

where

A, r = TF /(vrkF T), (6.4)

emerges from the condition that the difference between
successive values of [3(co,—co2)r]'~ R/A, be large com-
pared to unity, as discussed above. Just as the length
scale kz- is the finite range of the RKKY interaction be-
tween two spins in an otherwise pure metal at temperature

for the leading behaviors of Io(R) in the two R regimes
indicated. Again, the symbol "-"is used to emphasize
the asymptotic nature of these results: we expect Eq.
(6.2a), for example, to be a good approximation except
when R is quite close to k or to A~. The well-known
length scale Az-,
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T )0, AT is the finite range of the indirect exchange in-
teraction between pairs of 3d ions in a disordered metal at
finite temperature T. Whereas the physical origin of A, T
in the former case is simply thermal fluctuations, AT
reflects the diffusion-limited propagation of the conduc-
tion electrons and is due to combined effects of elastic im-
purity scattering and thermal fluctuations. We em-
phasize that AT «A, T and is certainly finite at any finite
temperature and ultimately determines the range of
E (R ). We will show that Ar plays an important role in a
complete description of the effective interaction.

A full discussion of the high-T regime will be given
elsewhere. However, it is useful to make a short com-
ment at this point. At high T, the simple poles approach—ybR&a
the branch points, and Io(R)~e ' ~e ~ . A fac-—R /A, Ttor e also appears at high T. This implies that the
efFective interaction has a finite range A = 1/(1/I,
+ 1/A, T ) at high T, in marked contrast to the low-T form.
Note that A will be of order A, if T is of order T0.

In consequence, the range of the effective interaction
between spin pairs depends on whether the physical sys-
tern falls in the "low-T" category or the "high-T"
category. The metallic spin-glass Ag-Mn, for example,
has T «T0, implying a spin-spin interaction range of
AT. Alternatively, a dilute ferromagnet with minimal
impurities can easily have 8+ & 0 ( To), giving an interac-
tion range A. The role of the finite range in establishing
trends in the transition temperatures of various disor-
dered magnetic systems will be discussed elsewhere.

Before presenting the results for I„(R),n =1,2, 3, we
use Eq. (5.23) to describe the variation of a„with p. If
p=p, d (no nonmagnetic impurities), ai=3, a2= —3, and
a3= —1. As p increases from p,d, a, is monotonic de-
creasing, while a2~ —ao as pip, d ~—', and a&~ —~ as

(pip, d )~2 . Moreover, pip, d ~—,
'+ gives a&~ ~,

while pip, „~2+gives ai~+ ~. Finally, ai is mono-
tonic decreasing for p/p, d & —'„while a3 decreases mono-
tonically for p/p, d &2. At p/p, d =2n, a„hasdecreased
to —,. The implication of these considerations is as fol-
lows.

When u„&—1, there are no simple poles, so only the
branch point contributes to I„(R).When a„»1, the
simple poles are exponentially close to the branch points,
so both simple poles and branch points make contribu-
tions to I„(R)in which the same exponential factor ap-—

yb R/A, 15pears, viz. , I„(R)~e ', where yb= 1. We have
seen in Eq. (6.2a) that Io(R}-—,', for A, &R &Ar. This
will dominate the contributions from I„(R}(n =1,2, 3)
for values of p small enough that either a„&—1 or
a„»1,since these I„(R)will be exponentially smaller
than Io(R) when R &A,. We are claiming that, for the
purposes of comparing I„(R)and Io(R), a„=—,

' may be
considered to be in the category a„»1.Taken all to-
gether, this means we can ignore I„(R)whenever

p,d ~p~2np, d, viz. , at "low p." These considerations
give

E(R)-j,dg (R)[IO(R)]'

as the leading behavior of K(R}at "low p,
" with Io(R)

given by Eqs. (6.2a) and (6.2b).
As p increases further, the a„decrease until eventually

c„«1,whereupon we are in the "high-p" regime. In
this regime, Eqs. (5.21) and (5.22} give the simple-pole lo-
cations, which dominate over the branch points, giving

2
2

I„(R)- (ke T}
4m RA.

co~ )0)N2

I
—2[3(E +ha)w)] / IR/k

e (6.6)

As with Io(R ), further evaluation depends on the value of
R. For s„»( T/To), to leading order in e„,we obtain

I„(R)-,',f„(R—)e ", A, &R &0(A„),
where

(6.7}

and

f„(R)=1+2R/A„+4R/3A„,

A„=(3s„)' A, =A[(pip, d 2n /—3)I2n]'~

(6.8)

(6.9)

Before presenting the result for E(R) in the high-p re-
gime, some comments are in order. First, we note the ap-
pearance of 0(A„)in Eq. (6.7). The reason for this is
mostly easily explained by first combining Eqs. (6.9) and
(6.3) to obtain

A„
AT

3p m.kF A. T—1
2np d TF

(6.10)

Consideration of Eq. (6.10) leads to the conclusion that
we will never have A„«Az- for any of the physical sys-
tems of interest. More specifically, in the paramagnetic
state with Tjust above the transition temperature, wheth-
er we consider metallic spin glasses or dilute ferromag-
nets, evaluation of Eq. (6.10) in the low-T, high-p regime
will always give 0.2&(A„/Ar)&1. We acknowledge
this by using 0(A„)in Eq. (6.7). The appearance of
0 (A„)in Eq. (6.7) also emphasizes that f„(R)has iinpor-
tant structure which must be considered in its entirety
when R is of order A„.

We also emphasize that, for the metallic spin glasses af
interest, we will always have Tg « To (viz. , low T}. As a
result, A„will always be smaller than AT. We have al-
ready seen that A„=A,«AT in the low-p regime. More-
over, a straightforward application of Eq. (6.10) readily
reveals that A„&AT in the high-p regime, even if
p)&p,d. Consequently, we must take the sd length scales
A„inta consideration. Similar comments apply to disor-
dered ferromagnets which fall in the low-T category.

A simple calculation shows that the oppasite extreme
e„«(TITO)is physically unrealizable in the high-p re-
gime, and corresponds instead to the ideal limiting case
p,d/p;~0+ with all scattering being elastic scattering
by nonmagnetic impurities, viz. , two spins in a disordered
metal. In this ideal case, which has been described by
previous workers, ' there are no Feynman diagrams
with sd scattering, the I„(R)(n =1,2, 3) do not occur,
and K(R) is given for all p by Eq. (6.5). Equations (6.7)
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correspond to the physically realistic case where sd
scattering must be considered, and we turn next to using
Eqs. (6.7) to derive K(R) in the high-p regime for real
systems in which there are finite concentrations of mag-
netic ions.

Just as AT was the range associated with Io(R), the A„
indicate the ranges of the I„(R).Combining Eqs. (4.12),
(6.2a), and (6.7) gives

31/2
K(R)-j,dg(R)

3 1/2

1+ g f„(R)e
n=1

The primary result of this paper has been to determine
the magnitude and range of the effective interaction be-
tween magnetic moments in a disordered metal. The in-
trinsic roles played by finite temperature, as well as the sd
scattering due to the 3d magnetic moments, have been
fully and consistently taken into consideration. The ma-
jor results are captured in Eqs. (6.5) and (6.11) which give
the low Tasymp-totic behavior of K(R) in the low-p and
high-p regimes, respectively.

One of the most important features of our work is the
appearance of the new length scales A„.These length
scales emerge as a consequence of the intrinsic sd scatter-
ing, and we may therefore denote them collectively by
A,d. %e emphasize, however, that these length scales are
due to the combined effects of sd scattering (which in-
cludes spin-flip scattering) and pure potential scattering
(which does not). The combination is revealed via Eqs.
(6.9).

The most important consequence of the sd scattering is
that it leads to a reduction in the moment-moment cou-
pling strength at separations of order A,d. To understand
this reduction, consider first the case of two spins in an
otherwise pure metal, for which

K(R)=KO(R)=j,dg(R) . (7.1)

In the "pure metal" case, the factor g (R) implies a 1/R
falloff in the coupling strength as R increases. In the
more realistic case of a disordered metal, however, there
is a further reduction, which goes beyond the 1/R
falloff. This further reduction is revealed by the extra
factors in Eqs. (6.5) and (6.11). For example, from Eqs.
(6.5) and (6.2a) we see that the interaction strength for
moment pairs with R «A. is a factor (3'~ /4) smaller in
the disordered case as compared to the "pure metal"
case. If we make the very reasonable assumption that
K(R) =Ko(R) for R & A, , we come to the following con-
clusion. In the low-p regime, where sd scattering is dom-
inant, in addition to the 1/R falloff, the coupling
strength between spin-spin pairs drops, as R increases, by

A. & R & AT, (6.11)

as the leading behavior of K (R ) at "high p" for
A, &R &AT; for R «AT, K(R) is exponentially small.
For example, physical metallic spin glasses will have
A, & A„&Az even if p/p, „

is very large [see Eqs. (6.3) and
(6.9)]. As such, we will use Eq. (6.11) for high p and Eq.
(6.5) for low p.

VII. DISCUSSION

a further factor (3'~ /4) at the length scale A, . The length
scale 1, is actually just A„in disguise; recall the behaviors
of the simple poles and the branch points at low p. The
reduction in coupling strength therefore occurs at the
length scale A,d, and is due to a combination of sd
scattering by the magnetic impurities and pure potential
scattering by the nonmagnetic impurities. A similar dis-
cussion applies at high p. In that case, Eq. (6.11) de-
scribes a more gradual reduction of K (R ) with increasing
R, from K(R)-j,dg(R), when R «A, , to
K(R) —(3' /4j), dg(R), when A, «R «AT. We em-

phasize that we do not claim a sudden drop by the factor
(3' /4) at R =A, in the low-p regime. The Feynman dia-
grams of Fig. 1 give the leading behavior for R ~X, so
that we are restricted to presenting asymptotic results for
R «k. Of course, the reduction in coupling strength at
length scale A,.d occurs not only at low p and high p, but
at intermediate p as well.

Another major result of our calculation is that the
effective spin-spin interaction has a strictly finite range at
all finite T: the coupling goes exponentially to zero for
R «AT at low T, and for R «A at high T.

Note that all the length scales A„and AT, decrease
monotonically as p increases. The finite range AT ~ p
for all p, whereas the A„-A,~ p

' at low p, as compared
to A„~p '~ in the extreme high-p regime [viz. , p))p, d,
Eq. (6.9)]. This change in the rate of decrease of A,d with

increasing p will play a major role in affecting the overall
behavior of physical transition temperatures: we can im-

agine shells of radii Ar and A,d (with A,d &AT), centered
on a central spin, shrinking as nonmagnetic impurities
are added (p; and p increasing at fixed p,d), and spins
with a given R being decoupled from the central spin
when p increases enough that AT ~R. Similarly, other
spins at R' will suffer a reduction in coupling strength
when A,d falls below R'. Both processes result in a de-

crease in the overall spin-spin coupling energy. The
overall coupling or "ordering" energy is what drives the
spin system toward the ordered state; as the ordering en-

ergy decreases so will the ordering temperature. Conse-
quently, the transition temperature will decrease with p.
The quantitative relation between the transition tempera-
ture and p, for various physical systems, is planned to be
discussed in forthcoming publications. '

We also wish to emphasize that Az- is the finite range
not just on the average, but in any typical, particular
conjtguration of nonmagnetic and magnetic impurities.
This conclusion follows by recognizing that [H (R)]„is
exponentially small for R «AT, which implies that the
fraction of particular configurations in which H (R; ) is

of order unity when R," «AT must also be exponentially
small. The important consequence is that the structure
of K (R ) contains crucial information about the effective
spin-spin interaction in a typical, particular con-
figuration.

Finally, we emphasize that the essential physical
reason for the strong damping effect of the sd scattering
is the breaking of time-reversal symmetry by the local
magnetic moments of the magnetic ions. Any other in-

teractions which break time-reversal symmetry would
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also contribute to this intrinsic self-damping. Extrinsic
contributions to the damping of the spin-spin interactions
are given by the addition of impurity atoms with spin-
dependent interactions, as in the case of spin-orbit
scattering. '

Before summarizing, we briefly compare our results
with those of previous workers. ' ' We are in agree-
ment that [H;, ],„

i.s not an appropriate measure of the
strength or range of the indirect exchange interaction,
that [H; ],„

is a better measure, that A, is not the range of
the interaction, and that [H; ],„~R for A, &R &Ar.
Our work reveals the extreme importance of intrinsic sd
scattering and emphasizes that finite temperature also
plays an essential role. One of our principal results is
that the magnitude E (R ) of the interaction exhibits a de-
crease at the length scale A,d. Similar results have been
reported previously in the case of spin-orbit scattering.
For example, it has been shown that the interaction
strength decreases at the spin-orbit length AsQ, provided
Ar « AsQ « A T. However, in the case of sd scattering at
finite T, we have seen that it is not possible to have
A, «A, d «AT in the physical systems of interest. The
important consequence is that finite T must be explicitly
retained in the case of sd scattering. This is in contrast to
previous works ' ' which investigated spin-orbit
scattering and considered the case A, «AsQ«AT, finite
T was not required to be explicitly retained in those
cases. Other comparisons are possible.

In summary, we have calculated the effective indirect

exchange interaction between spin-spin pairs in disor-
dered systems at finite temperature T. We have taken
into consideration not only the elastic scattering of elec-
trons by nonmagnetic impurities, but also the intrinsic sd
exchange scattering by the magnetic ions themselves.
The sd scattering introduces length scales which give the
separations of spin-spin pairs at which the strength of the
effective interaction suffers a marked reduction, and
which play a major role in establishing the structure of
the effective interaction. We emphasize that these length
scales are inextricably associated with the intrinsic sd
scattering. This structure of the effective interaction is
revealed in Eqs. (6.5) and (6.11), which give the magni-
tude E (R ) of the effective interaction between a spin pair
with separation R. We have also emphasized that the in-
teraction has a strictly finite range at any finite tempera-
ture, and that the finite range will play a major role in ap-
plications to physical systems of interest.
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