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For the uniform electron gas, the decomposition of the exchange and correlation energy

into its individual wave vectors has proved invaluable for both a deeper understanding of
its structure as well as its extensions to the metalhc range. Similar efforts made in the
nonuniform electron gas {and, in particular, surface properties) have also yielded much

finer knowledge. However, we show here unequivocally that the particle conservation

sum rule does not determine the iong-wavelength limit of the structure factor of inhomo-.

geneous many-electron systems in the thermodynamic limit. The short-wavelength region

is also examined and shown not to be given rigorously by the local-density approximation.

I. INTRODUCTION

For N electrons in the presence of an external potential V(r ) the exchange and correlation energy can be
written in terms of the structure factor Sq(r, r '), i.e.,

E„,= , f d r f d—r' (Ur —r') f dA[NS~(r, r') —n~(r)5(r —r')],
where A,u(r —r ') is an arbitrary interparticle interaction of coupling strength A, and n~(r) the electron densi-

For a uniform system of electrons [V(r) =0] Eq. (1) reduces to

d q f' dA, f dco 1 2ttNA, e
(2)

{2~)3 o A, c 2sri eg(q, co) q'

where C encloses the positive real m axis in a clockwise direction. In the random-phase approximation
{RPA)

4me A,
e~(q, co) =1+

z n(q, to),

d'k ['(ex+-, -~)-'(ek -i )]
(q, co)=2 f.

(2') ~~+-+~7

k=k /2tn', p =kg/2tn, kF =(3' no), and no
the uniform electron density. Also,

1 for x (0
0 for x po.

Salads et al. was first to recognize that Eqs.
(2)—(4) can be written as the difference between

the normal modes coo(q, k) [coo(q, k)—:e-„+-—ei, ]
for the noninteracting electron gas and the normal
modes ton(q, k) of the interacting electron gas [i.e.,
the poles of 1/e~(q, co) in Eq. (2)]. In other words,

Ett= , g [top(q, k) —co-o(q, k)] .
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The normal modes co&(q, k ) can be grouped into
two classes. The first contains modes that have a
one-to-one correspondence to e00(q, k) and are
therefore referred to as the particle-hole continuum
(PH). The second are split-off modes or bulk plas-
mons. The PH continuum exists even at large q
while thc bulk plasmon poles disappear beyond a
cutoff value of qc. '

When V( r ) is not equal to zero the spectrum of
excitations eoii( q, k ) is again going to change; such
a potential can again create new split-off modes.
The boundary confining an electron gas is one ex-

ample of such a potential V(r } which creates new

surface-plasmon modes. To see this, consider the
case of two infinite barriers separated by a distance
I. +5 (I. +go ), t—he infinite barrier model (IBM).
If, in addition, we ignore quantum interference ef-

fects, " then one can write the exchange and
correlation energy in closed form9 as

where EB is the bulk correlation energy contribu-
tion in Eq. (2) and Es, the surface contribution, is

given byc, I g~~ 1 ~e(qll "co)l~e02'
21rl 2 6(q~~, eo}

eID (qadi, co)ldN
+2

D (q i~i,
c0)

with

D(q~~(, cg) =1+—g1 2qll 1

q,'+qf~ e(q, eo)
'

where q =(q~~+ q,')
Griffin er al. have made a detailed and lucid

study of Eq. (7) by following the treatment of
Sawada6 for the uniform system. They show that
the contribution of the last term in Eq. (7) can
again be written as the difference in the normal
modes of the interacting uniform electron gas

[coii( k, q )] and the nonuniform system

[ai~(k, q)], ' i.e.,

2' , g g g [( cop(——q
~

)—,q„k )

—cog(q~~, q„k)] .

Again the normal modes &0~( q, k) can be grouped
in two categories. The first has a one-to-one
correspondence with the PH continuum and the
bulk plasmons contributions both in cori(q, k). The

second are split-off modes or a surface plasmon for
each wa"e "ector q ll

and these again disappear for

qll &qc
The importance of these surface plasmons'

and systematic ways for including such contribu-
tions in the treatment of real metallic surface ener-

gies has occupied a considerable amount of surface
studies. ' ' In most recent studies the func-
tional density formalism has become a corner stone
of such calculations. Since E„, is given uniquely

by the electronic density n (r) (Ref. 25} the first
step in such calculations is to usc the approxima-
tion of Hohenberg and Kohn or various deriva-
tives of it, i.e.,

LD NLE

where E„, is the well known local-density approxi-
iilatioil (LDA), l.e.,

E„, = I d r n(r)e„,(n (r)),
and e„,(n (r)) is the exchange-correlation energy
per electron of a homogeneous electron gas of den-
sity n(r). E„, is the nonlocal correction given by

E„,"=——, I dir I d rX„,(r r', n(r )0)—

&&[n(r)—n(r')P, (12)

with E„, related to the response function of the
umform electron gas. While it is likely that such
nonlocal corrections (based on properties of the un-

iform electron gas) can account in a systematic
way for the non-spht-off modes (see above), they
are less likely to give a satisfactory description of
the surface plasmons (or any other split-off modes
created by an external perturbation). To incor-
porate such contributions in the framework of the
functional density formalism, a new scheme [the
wave-vector interpolation (WVI)] was suggested. '

It relies on the assumption of a universal small-q
behavior, ' dominated by surface plasmons, and an
exact large-q behavior given by the LDA, and it
proposes to interpolate between the two in the in-

termediate region. This is similar in spirit to the
interpolation procedure of Nozieres and Pines for
E„,(q) in the uniform electron gas. ' Of course,
inhomogeneous systems are more complex and we

may expect the determination of the correct small-

q and large-q limits of E„,(q) to be much more del-

icate than for uniform systems, particularly when

surface effects or corrections to bulk energies are
concerned. The question of the large-q limit and
the LDA will be considered later (Sec. IV), and we

will focus our present attention on the small-q lim-
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it. A major cornerstone of the WVI and its exten-
sion is the expectation that for inhomogeneous
(bulk or surface) systems, the exchange and corre-
lation hole around an electron will be sufficiently
localized so that thc liIQiting value as g —+0 of thc
structure factor [directly related to E„,(q)] is equal
to its value for q

—=0 which is fixed, by a sum rule,
to be zero (see Sec. III). Since a number of serious
conclusions follow from this limit behavior, if
correct, we have attempted to clarify this crucial
point by calculating the q-dependent structure fac-
tor for specific well-defined examples to study its
explicit form at small q. We show that y(q) [de-
fined in Eqs. (20) and (21)] does not vanish in gen-
eral for q~0, even though y(q

—=0)=0, and that
there is no universal structure for small q. The
failure of such expectations is due to subtle differ-
ences in pair correlation functions between uniform
and inhomogcncous systcIQs. %c shall scc that
these subtle differences are a property of extend&

or thermodynamic systems and the systems we ex-
amine here are always assumed to be of macro-
SCOP1C 81ZC.

In Sec. II, we develop expressions for E„,(q) for
both bulk and surface problems. Since one of our
objectives is to make as much use as possible of
uniform electron-gas results, it is very important to
make sure that the q in E„,(q) is the same q enter-
ing the corresponding uniform electron-gas result.
Therefore we must make a careful connection be-
tween Fourier cosine transform. s, which are natural
in the surface problem, and Fourier exponential
transforms, which are natural in bulk problems.
This is also done in Sec. II. These results are ap-
plied in Sec. III to both surface and bulk density
profiles, and it is shown that there exists no
universal small-q behavior of E„,(q). In Sec. IV,
we show that the I.DA is not exact at large q.
Section V consists of a summary of results and dis-
cussion.

II. q VECTOR DECOMPOSITION OF E„,

Equation (1) can be rewritten in a slightly different form by using the relation

iVSi(r, r ')= — xi(r, r ', iso),

h

CO

E„,= ——, f d'r f d'r'u(r —r') f dA, f xi(r, r', io))+ni(r)5(r r')— (14)

We can now write u(r —r ') in terms of any complete basis set P-(r), i.e.,

u(r —r ')= g u, g-„(r)g,(r ') .
+

Inserting Eq. (15) in Eq. (14) results in a decomposition of E„, in terms of q and q'. For a jellium surface,
where full translational symmetry exists only in the direction parallel to the surface, a rational choice is

0 + +I qt)'X
it-(r)=5(z —zi)

(with x and q~~ two-dimensional vectors parallel to the surface). Then Eq. (14) can be written as

E„,=——,A dzi dz2u(q~~, zi —zi)
(2n. )

1 ~ dd)X dA, Xi(q~(,zi,z2,ir0)+ ni(q~~ =O,zi)5(zi —zz)

with A the surface area.

Another choice for/ (r) is P (r) =e'q''/v V; then Eq. (14) becomes
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3
= ——f f d r f d r'u(q)e'~'"

(2w) ] a o

1 00

X f dA, f Xq(r, r ',iso)+nq(r)5(r r—')

For a jellium surface this reduces to

A f d q f d f d, iq, (z z') —aiz—z'I—

lima~0

1 ~ Qco
X dA

0 X~(qll, z,z', iN)+nk(qil =D,z)5(z z')—, (19)

dq
k

-)'s(q) .
2A o kF

(20)

with u(q)=4ne /q for a Coulomb interparticle
interaction. The appearance of 6 in Eqs. (18) and
(19) will be discussed shortly. The choice of this
last basis set corresponds to the wave-vector
decomposition' (WVD) and it is this choice we ex-

amine almost exclusively in this paper. There is,
of course, no a priori reason why this should be the
best representation for treating either the long- or
short-range q fluctuations in metallic surface ener-

gy calculations. Also, rather than examine the
dependence of E„,on each q vector's magnitude
and direction we follow the WVI (Ref. 3) and aver-

age over angle to define y, (q) as the spherical
decomposition of the surface energy cr„,:

In the case of a bulk system, ys(q) is defined as
the energy per unit volume:

The quantities ys(q) and y~(q) are essentially
equivalent to the corresponding averaged structure
factors. These results will be used in the following
section.

We next consider the case of a jellium surface.
Now if this potential confines the electron gas be-
tween z =0 and z =I.+5 then we can write 7 in

Eq. (13) or (17) in terms of cosine transforms, i.e.,

px(q
l l,z,z', i co }=

2

g az a, cos(P,z)cos(Pz'z')Xq(qll, P„P icoz),I. +5
PzPg

(22)

where p, and p,
' =nml(I. +5) with n =0, 1,2, . . . and a&

——1 ——,5& o. We next substitute Eq. (22) in Eq.
(19) and ignore the last term of Eq. (19), since it does not participate in the nonuniform contribution to E„,.
This yields, after considerable algebra, the following connection between the cosine transform of the suscep-
tibility of a jellium surface and the WVD of E„„

8 gf 3 f dA, f g a& a,Xx(qll, pz,p, /CO)
(2+5) (2m) s ao p

i

&g»s

(I. +5)2n5(p,' —q, )5,+(I.+5)2n.5(q, }5p p5

1 1
+Re'

(p,
'
+q, +i h)(p, +q, +i b ) (p,

' +q, +i b )(p, q, i b)——

(23)
1 1+

(p,
'

q, id, )(p, +qz+ib, ) (—p,
' —q, ib )(p, —q, id—,)— —
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where the prime above the Re restricts the contri-
bution in the following set of parentheses to p, and

p,
' either both even or both odd. Two points

should be emphasized. Firstly, the variables q~~

and q, in Eq. (23) correspond precisely to the na-
tural variables for the uniform electron system.
Secondly, the connection between these variables
and q ~~,p„p,', which are the natural variables for
the surface problem, is rather complicated, and the
discrete nature of these variables cannot be ignored
when extracting surface energies.

Before turning to specific examples, consider a
nonuniform electron gas in the presence of a weak
external potential V(r). We demonstrate how the
expansion of E„, in Eq. (14) [to second order in
V(r )] is related to the usual Feynman graphs and
response functions, with the explicit q of the struc-
ture factor again being that of the uniform electron
gas. For simplicity of this discussion, attention is
restricted to the self-consistent RPA, and then E„,
is approximated by the graphs of Fig. 1. If we ex-
pand all the electron propagators to second order
in V(r) then E„, [Eq. (14) or Fig. 1, see also Ap-
pendix A] reduces to

E„,= ——, E„, r —r', no n r —n r' (24)

which is the form of Eq. (12) strictly to second or-
der in V(r). The momentum space representation
of Eq. (24) is simply

with

dh
&„,= —f K„,(h)[n(h)]

(2n. )
(25)

K„,(h)=-, 1 1

n(h) irp(h)
(26)

Here n.p( h ) is the Lindhard and m( h ) the fully
correlated screening functions.

The non-self-consistent (i.e., lowest order RPA)
graphs for E„, are shown in Fig. 2(a) and examples
of higher order, self-consistent, RPA contributions
to K„, are illustrated in Fig. 2(b). The graphs are
evaluated in coordinate space by integrating over
r

&

. r„ following the usual Feynman rules. To
get the WVD of Fig. 1 [or Eqs. (18) and (19)] we

replace U(r —r ') by U(q)e' q (' ' ~e

G

(b)

FIG. 1. Set of graphs for the exchange and correla-
tion RPA. The single solid line is the electron propaga-
tor in the presence of the electrostatically screened exter-
nal potential V(i) [or Vn(~)]. The douhle solid lines
are the self-consistent electron propagators within the
RPA as described in (b). The dashed lines are the bare
Coulomb potentials.

in Fig. 2 and integrate over all the internal coordi-
nates [including r and r '; note that here the r and
r ' are not the same as in Eq. (24)]. This then
yields the usual momentum space representation of
Fig. 3 with the-wave vector q labeled exphcitly; all
other momentum transfers are integrated over.
Keeping 6 small and then taking its zero limit
gives, of course, the correct momentum conserva-
tion at the interaction vertex. In short, the form
of Eqs. (18) or (19) in the presence of a weak exter-
nal potential yields the usual response func-
tion with one of the interaction lines carrying
the momentum transfer corresponding to the
desired wave vector q. For the lowest order RPA
terms, only the terms in Fig. 3(b) need be con-
sidered.

This completes the formal WVD for a jellium
surface [Eq. (23)] or for an electron gas in the
presence of a weak external potential [Eq. (25)].
Using these results in the following sections, we
proceed to examine the structure of the WVD for
both small and large q for several inhomogeneous
electron systems.

III. THE SMALL-q LIMIT

A. Surface behavior

To examine the general small-q behavior of y, (q) for an arbitrary jellium profile is at present an unattain-
able task. For present purposes, it is sufficient to study ys (q) within the IBM. We conclude the following:
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(i) The y, (q) for exchange only goes to a 6nite value as q —+0.
(ii) The proof of Ref. 3 for the small-q limit of the fully correlated y, (q), y, (q)~(k~/8m)q(co, —cos/2) for

an arbitrary surface profile is incomplete.
To evaluate y, {q) for exchange only we return to Eq. (23). In the Hartree-Pock (HF) approximation it is

not difficult to show that

y (q((,z,z', ia))= g f d kI) f d k)(5(q(~+k() —k()) . [8 (ek.—p) —8 (ek —p)])Qj+Q g
—Q k c

g g

X Pk, (z)A, (z)Pk, (z')Pk, (z') (27)

For the IBM

pk (z) =[2/(L +5)]'~zsink, z, (28)

and e-„=(k~~+k, )/2m with k, =nm/(L +5) (n =1,2, . . .). If we now perform the integral over frequency
and take the cosine transform over z and z', we get

~ dco p p ~

& (q~~ Pzp~ i~)+ii(9~~ P )8p Ps

with

k ' —8 ~ k ~+5 k k+ ~ —.+k'
&g g g &g g+ g &g g g &g g g

f" k~~ f d k~~5'q~~+k~~ 1 ~~)e'(k (30)

which is given in Ref. 4 (to be referred to as I).
Note that altllough we llave inclllded ii(iI(~,pg) ill

Eq. (29), this term makes no contribution to the
surface energy. If we now introduce Eq. (29) in

Eq. (23) and analyze the sum over p, and p,
'

we re-

trieve the form for the HF contribution to the sur-
face energy of the IBM as given by Eqs. (28)—(32)
of L

The y, (q) corresponding to Eqs. (28)—(32) of I
has been calculated numerically and shown to go
to a finite value for q~0. In other words, the HF
structure factor or pair distribution function, in the
presence of a surface, shows subtle long-range
behavior which renders invalid the intuitive notions
concerning small-q limits described in the Intro-
duction. More specifically, define

S(q, q)= f d r f d r'e'q'' ' 'S(r, r'), (3l)

which, from Eq. (1), has the same q dependence as

y(q) and differs only by a constant factor. Simple
conservation of particles yields the sum rule

f d r f d r'S(r, r')=0. (32

The above Hartree-Fock results, in which particle
conservation was carefully maintained (see below),

imply that

lim S(q, q)QS(@=0,q'=0) .
q-+0

(33)

Thus, y(q) exhibits a discontinuity at q =0 in this
very explicit example (other examples are discussed
in the following). We emphasize that when refer-
ring to the q~0 limit of the structure factor the
thermodynamic limit has been taken as in I.

These results, therefore, do not support the gen-
eral conclusions of Refs. 3 and 24 for the small-q
limit of y(q) or S(q,q). For example, the surface
contribution of the function X (q~~,p„p,', iso) in

Eqs. (27) and (29) is nothing more than the func-
tion gs s. of Eq. (3.16) in Ref. 3 (with the notation-
al change p, ~q, see also Appendix B) within the
RPA. But the limiting q, ~o connection between
the appropriate WVD and the cosine transform is
much more complicated than simply setting q, =0.
To be very explicit„setting qI~,p„p,

'
equal to zero

in Eq. (29) after summation over k, and k,' shows
that the sum rule, Eq. {32),is satisfied identically.
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F4 F4 f4

f2

( + /I

F2

F, F32

(a)

f4

2 ~ 3

{o)

Z~ 3

(b)

{b)

I" r'
+

(c)

FIG. 3. (a) Contribution to the LDA. (b) All of the
contributions from Fig. 2(a) after introduction of
u{r—r') =u(q)e'q'' ' ' ~~ ' '

~ and integration
over r and r '. (c) Example of some of the contributions
from Fig. 2(b). Additional terms will enter by permut-
ing the position of q in the wiggly lines.

~ 4 ~ ~ ~ ~+

{c)

FIG. 2. (a) Contribution of Fig. 1 to second order in
the screened external potential (represented by the
crosses). The solid lines are now the usual uniform
noninteracting electron propagators. The graphs are the
lowest-order contributions to the irreducible screening
function ~(r, r ') within the RPA before the final in-

tegration over r and r '. (b) Examples of higher-order
self-consistent contribution to the RPA irreducible
screening function. (c) The dynamically screened in-

teraction within the RPA. The purpose is to show that
the structure of ~(r, r ') involves placing the bare
Coulomb line in all possible distinct ways in (a) and (b).

Thus, conservation of particles is strictly main-
tained but this has no direct bearing at all on the
limiting value for q —+0 of ys(q), which was shown
in I to be finite for the IBM. The essential point is
that the limiting procedures involved are simply
very delicate particularly when account is taken of
the discrete nature of certain of the variables in-
volved. A similar problem of different origin (see

Appendix B) also occurs when all correlations are
included. For correlation, in addition, to deter-
mine the contribution to the energy at small q, it is
not sufficient to consider only to=0 or co=fixed
constant. Very important contributions come from
frequency ranges which scale with wave numbers
(i.e., co/p„. . . are relevant) in the usual way.
These properties of X will be reflected in the fully
correlated X as a consequence of the integral equa-
tion (3.18) of Ref. 3. As a consequence of these
omissions, we conclude that the proof that
y, (q)~(k~/8n ) q(tos —to&/2) is incomplete (see
Appendix B). There is no reason to expect y, (q) to
have this universal small q structure for an arbi-
trary density profile. It must be again emphasized
that to obtain a correct wave-vector decomposition,
it is necessary to make use of Eq. (23) to convert
the relevant variables.

Finally, it should be noted that these results are
fully consistent with corresponding results for fully
correlated inhomogeneous bulk systems.
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8. Buick

We shall now evaluate ys(q) in bulk situations
with sufficiently slowly varying density profiles
that a gradient expansion following Hohenberg and
Kohn gives an accurate representation, that is,

~

Vn
~

/n &&kz(n),

i 7;Vjn i
/[Vn

i
«kz(n) .

(34)

Then the form for E„,given by Eqs. (11) and (12)
is appropriate. As a first approximation to Eq.
(12) we evaluate it in terms of

E„, = I d r8„,(n(r))
i
Vn(r)

i
1+, (35)

the results of' Ma and Brueckner,
%e conclude the discussion of the small-q

behavior of ys (q) by considering a periodic one-
dimensional bulklike density profile of the form

2mz
n(z}=no 1+Pcos (37)

(38)

We choose P=0.5, r, =2.07 and a as the lattice
constant of aluminum. Inserting Eq. (37}in Eq.
(35) and integrating over the unit-cell volume gives

ys "(q) of Fig. 4. For comparison we also display

ys "(q) for a model surface profile

n (z) =no/( I+e "),

where 8„, is related to the screening function

through

1 1 =const+8„,h +2

p( h.
) n.( h )

(36}

(first evaluated in II) with p=0.5 again adjusted to
refiect the aluminum surface jellium variation. i3

The similarity of the two y's should be noted, in

particular the behavior at small q. %e return to
these results shortly.

To evaluate the WVD of Eq. (35) we follow the
discussion of the preceding section (Fig. 3). Figure
3(a) describes the WVD of Eq. (11) within the
non-self-consistent RPA, while Fig. 3(b) does the

same for Eq. (35). The q behavior of Eq. (11) was

first examined (for the uniform system) by Hub-

bard ' and Nozieres and Pines. The q behavior

of Eq. (35) was first presented in Ref. 23 by its

Eqs. (22) and (48). We can now derive some

rigorous results for a fully correlated nonuniform

electron gas at small q. Suppose we take the limit

of a weak and slowly varying external potential

V( r ). Equations (11) and (35) then give a rigorous
treatment for E„, We assum. e these conditions to
be satisfied. Then the WVD of E„„which is

uniquely defined (see Sec. II) permits immediate

identification of contributions to ys(q). For exam-

ple, the WVD of Eq. (11) leads to ys(q)-q at
small q in the LDA. Similarly, Eqs. (22) and (48)
of II give the small q behavior of the %'VD of
E„," It is not diff. icult to show [through a study

of z„zs, and y, of Eq. (48) of II] that ys (q) goes
to a constant for q~O (see also Appendix A).
Sillcc flic slllll 1lllc, Eq. (32), ls also satisfied ill

such systems, the above implies that ys(q} for in-

homogeneous bulk systems has a discontinuity as

q~0. The finite limit of ys(q) as q~O does not
indicate a failure of the gradient expansion. Note
that in ihe particular case of the high-density limit

(see Appendix A), the entire contribution to the
gradient corrections comes from small s —=q/2k~.
Attempts to force ys(q) to vanish for 0&s &s;„
for any finite s;„would be in disagreement with

IV. THE LARGE-q LIMIT

The %VD not only allows a detailed study of
E„,(q) to be made at small q (Sec. III) but also the
treatment of the different contributions at large q.
In particular, the fundamental question of whether

4
U

CF

POH
L

o

0.5
—8 l l I

0 3.0 &.5
q/kF

FIG. 4. q vector decomposition of the exchange and
correlation contribution from a bulk [ys(q}] and surface
density [ys(q)] profiles. The dashed curve 18 ys(q} and
the solid curve is yq(q).
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the LDA [Eq. (11)] gives a rigorous large-q limit
for E„, can be investigated. Again consider the
electron gas in the presence of a weak external po-
tential. Focusing on the RPA [Fig. 1(a)], we get
for the LDA contribution the results of Fig. 3(a)
and for the gradient contribution the results of Fig.
3(b). Now the first terin in Fig. 3(a) (the local ex-

change contribution) is identically zero for q & 2k'
(Ref. 5) and so makes no contribution in the large-

q limit. Similarly the exchange contribution in the
gradient expression [Eq. (22) of II] does not parti-
cipate for q & 2kF. In the LDA the leading contri-
bution at large q is well known to give q
behavior at large q:

e mkF4

y(q)- 2 4 J d r[n(r)] (39)

Equivalent contributions come from the gradient
expansions. It is straightforward [using Eqs. (47}
and (48) of II] to show that individual terms in the
RPA gradient contributions are also of the order

q at large q. The contribution to y(q) is

e mkF s ~
pn(r)

~y(q)—
h q [n (r)]

d f (40)

Evidently, this result does not support the con-
clusion that the LDA is exact at large q. In fact,
it is to be expected, in general, that a given set of
graphs in any self-consistent approximation will

have gradient corrections to the LDA at large q
and that this is not specific to RPA.

V. CONCLUSIONS

We have studied the fundamental question of the
behavior of the structure factor, or equivalently

y(q), for inhomogeneous many electron system.
We have shown that the usual sum rule y(q =0)
=0, which is a reflection of particle conservation,
has no bearing on the limit of y(q) as q~0 for
macroscopic systems in the thermodynamic limit.
The structure factor is discontinuous at q =0.
This was shown in two examples: (1) the exchange
contribution to the surface energy of a metal, and
(2) the exchange and correlation energy of a fully
correlated weakly inhomogeneous bulk electron gas
in the presence of a very slowly varying external
potential. Furthermore, small-q structure of y(q) is
not universal and the LDA is not exact at large q.
The small-q limit reflects an important long-range
dependence, in the pair correlation function, which
is not only governed by intrinsic length scales (like
kF} but by the length scale of the external pertur-

bation. These are general features of inhomogene-
ous many electron systems. It follows that al-

though the WVD may be a useful tool for studying
the accuracy of various approximation methods in
different ranges of q, the WVD method is less

powerful than has been suggested, particularly in
cases such as surfaces where q is not the natural
variable to use to describe split-off modes as
described in the Introduction. We conclude with a
comment concerning finite systems (e.g., atoms and
molecules). Clearly from Eq. (31) and the fact that
S(r, r ') must be now localized within a finite size
L the limq OS(q, q) =0 and S(q,q) =0 for all

q «2n/L. In. the thermodynamic limit the entire
region q «2'/L disappears completely and leads
to the type of discontinuity in the structure factor
discussed above. This reemphasizesi2' the diffi-
culty of extending forms derived from extended
systems (where the spectrum of excitations is con-
tinuous) to finite systems with discrete spectrum
spaced by 2n./L.
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APPENDIX A

In this appendix, we derive Eqs. (25) and (26)
(restricting our discussion for simplicity to the
RPA) following the formulation given in Sec. III
of Ref. 3. In doing so, the objective is to obtain
rigorous results for y(q} for weakly inhomogeneous
systems and to study how the presence of inhomo-
geneity is reflected in the frequency and wave-
number-dependent response function.

Consider the electron gas, again in the presence
of a weak external potential V(r). The response
function X (r], r2, ia]) can be written as

X (r], r2, iso)=X (r] r2, ico) +]t] (r],—r2, iN),
(A 1)

where X (r]—r2, iso) is the irreducible screening
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function for the uniform electron gas and

g ( r &, rz, ico) the change due to the presence of
V(r). The RPA X (r&, rz, ico) is given by a single
bubble in Fig. 1(a), X (r 1

—rz, ico) by a single bub-

ble of Fig. 3(a), and g (r„rz, ico) [to second order
in V(r)] by Fig. 5. [Note that the crosses are the
screened V(r), or Hartree potential VH(r).] It

should be emphasized that g (r„rz,'ico) is precisely
the quantity treated in Ref. 3 (see also Appendix
8) where the inhomogeneity is due to the presence
of a surface. The properties of P are very impor-
tant.

Now Xz(r, r ', ico) is given by

Xg(r r', ico)=X (r, r', ico)+. f d r) f d rzX ( rr~, i co)i u(r~ —rz)Xg(rz, r', ico). (A2)

Unlike Ref. 3 the inhomogeneity from V(r ) extends throughout the bulk rather than being present only in
the surface region. We therefore simply Fourier transform (A2) to obtain

Xz(q, q', ico) =X (q, q', ico)+ gX (q, q&, ico)Av(q~)Xz(q&, q', ico) .
q &

Define

X (q,i c)o~

ex(q, iso) '
ex(q, iso)e~(q', iso)

(A3)

(A4)

then with straightforward manipulation (A3) can be rearranged to an integral equation for g~ in terms of
1.e.,

iLu( )
A(q, q', ico)=P (q, q', i~)+ gg'(q, q, ,i~) y~(q, , q, ,i') .

q, edqt ico)
(AS)

Equation (A5) is identical to Eq. (3.18) of Ref. 3 but now applies to bulklike inhomogeneity. Now consider
for the moment only the second-order contribution to g (qq ,i,co)'[i.e., gz~( q, q', ico), in Fig. 5(b)]; then to
second order in V(r) no iteration of Eq. (AS) is necessary and pz =pz. Using Eq. (A4) in Eq. (lg) we get
fo«he nonuniform contribution to E„, [corrections to the kinetic energy are contained in Eqs. (A6) —(A9)
and are subtracted later]

d q f dco f ~ dlu(q)p, (q, q, ico)

[ex(q, ico)]'

Now ez. in the RPA is given by Fig. 2(c), i.e.,

ez (q,i co)= 1+l,v (q)no(q, i co) .

Integration over A, in (A6) gives36

d q f d~ Q (qzqi, ), co(qu)

(2n. ) v ~ e(q, ico)

Now for $2( q, qi co) given in Fig. 5(b), Eq. (Ag) reduces to the first three terms of Fig. 3(b), l.e.,

d h&„=——, f 3n(h)[VH(h)]z.
(2n )

(A6)

(A8)

(A9)

(Alo)

Following the same analysis for the first-order contribution to p [i.e., p& in Fig. 5(a)] and iterating Eq (A5)
once we get 'f dq f dq fdcof d&

1 ~0(, Av(q') o-,-
7T

»«grating Eq- (A10) over the coupling constant we retrieve the last two contributions to the RPA jn Fig.
3(b). Subtracting the kinetic energy contribution and using the linear screening for VH(h ) = —n (h )/~(h )

results in Eqs (25) and (26) These contributions can be explicitly written down following the usual Feyn
man rules. The first three graphs in Fig. 5(b) are given by
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n.,(h) = f ~ f, ISo(p)So(p+ h)So(p+q)[2So(p)+So(p+q+ h)] I
(2n. )' ~(q) (2m )'

(A 1 1)

and the last two graphs in Fig. 5(b} by

n, (h)= 2t' —
~ A, (q,q+h)Ab(q q+ h)d q v(q) v(q+h)

(2n. ) a'(q) e(q +h )
(A12)

where

A, (q,q+ h) = f Sp(p)So(p q)So(p—+h),
(2~}'

(A13)

d4'
Ab(q, q + h ) = f So(p')So(p'+ h )[So(p' —q)+So(p'+q + h )] .

(2n )
(A14)

In Eqs. (All) —(A14), So(p) is the noninteracting
electron propagator and we make a careful distinc-
tion between the three-dimensional q and h and
the four-dimensional vectors q =—(q, r0), p = p,po,
and p':—p,po. [Note that the q, in Eqs.
(Al 1}—(A14), is of course the same as the one
entering Eqs. (Al) —(A10} or equivalently y(q ).]

We can now get a rigorous result for y(q) in the
small-q limit for a nonuniform electron gas. Since
several different limits will be taken simultaneously

(a)

(o)

FIG. 5. (a) First-order contributions, in the screened
external potential, to the function P (q, q', iso) (see Ap-
pendix A). (b) Second-order contributions, in the
screened external potential, to the function g {q, q', ice).

we first define our system with additional care.
(i) Consider a uniform electron gas on which we

impose an external potential V(r) of a single
Fourier component h, i.e.,

V(r)=A, -„cos(h r) . (A15)

(ii) Take the uniform electron gas to the high-
density limit (HDL) without changing the value of
h in the process.

(iii) Restrict A, h «kF/2m. From (iii) we can

rigorously stop at second-order perturbation in
V(r ) so that Eq. (A9) [or Eqs. (25), (26)] gives an
exact description for the energy and consequently

}q.
From (ii) it follows that

~

h
~
/kF is small and

n.(h) can be restricted to small expansions in
powers of h. In addition, n(h) [n(h)=n. i(h)
+nq(h }]as given in Eqs. (Al 1) and (A12) is exact
in the HDL The expansion, to order h, of Eqs.
(Al 1) and (A12) have been carefully examined in
II. The HDL forms can be extracted from Eq.
(47) of Ref. 23 (see Ref. 37) and we list them
below. "

We define

n(h)=a '+b
i

h
i

with
4 3

b
e Pl

(2n. ) kF

Then in the HDL, the contribution of Eq. (All) to
Z2 1S
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7 7 2 2 2

SkF~O " ds —s2 1 I g
—61 4~ —2+ 3P p I7y~+Sy4+3Z2= dp + j. — + +

e(s,y), 2 y'+1 (y'+1)' (y'+1)' 3 (y'+1)'

and again from Eqs. (Al 1) and (A12) the contribution to Z& is

00 OO

4& $
0 o (y +1)' [e(s,y)]

*

4 p 1

X ~
+-3y + z 2 y~(2+y')

, . y'+1 3 (y'+1)',

—y,y+, +6R(y)
1 7' '3'+1

kpa04&E(s, y) 'y + 1 (y + 1)

+ z 2 2
—1+ z 2

—3R (y) —2+3R (y)
y2(y2+2) 2 2

(kpao) 4m [s(s,y)] (y +1) y +1

where e(s,y) =s +(1/kpaorr)R (y) with R (y) =1—y tan (1/y) and s =g/2k@ y =co/(2kps),
and Z =Z&+Zz. It is now not difficult to show that the integral over y of Z& [Eq. (A17)] is
=2~3m(kFao) ~ (in agreement with Ref. 24) and that

lim y(q) =A, -„~ h
~

~Z, =const .

(A17)

ao ——fi /me2,
1)m, OZ&

(A 18)

Finally we make several comments concerning the validity of the h expansion in Eqs. (Al 1)—(A14). The
expansion of the propagator in this order of approximation (lowest-order RPA and to order h ) pose no
problem even though at first sight they do seem to produce integrals that seem divergent. One easy way to
see this is to observe that the integral over y in the HF contribution [i.e., Zq without s /e(s, y)] is identically
zero as is required to remove the ds/s integral in Zz. The second concerns the expansion of
U(q+ h)/e(q+ h) in Eq. (A12). From the structure of Z& in Eq. (A17) it is apparent that the power expan-
sion in h is not valid for y —+ oo (or equivalently s «

~

h
~
/k~). In keeping h fixmi, however, this region

disappears completely in the HDL. We conclude that the structure factor of a nonuniform electron gas goes
to a constant for any finite s —=q/2k~ which is the relevant length scale for this problem (see e.g., Fig. 4 or
Refs. 23 and 24). For finite densities the above results have the important implication of a strong depen-

dence, in the long-range part of the pair correlation function, on the external environment [i.e., V(r )].

APPENDIX 8

In this appendix we examine the small
~ q ~

limit for a metallic surface inhomogeneity. First we recall
two general results for arbitrary nonuniform electron gas.

If we define the function A(r, r ',co) in terms of X and g in Eq. (Al), i.e.,

A(r, r', co)= I d r"[g (r r",a))+P—(r, r",a))]u(r" r'), —

then

umImA r, r', m = —2 e r —r'n r +— r —r'. r
2 Bf Br

and from the analyticity of A

(S2)

A(r, r ',co) = —
z I dao'co'ImA(r, r ',co')+0

V'M N
(&3)

For surface problems where the cosine transform is most natural we can transform Eq. (Bl) to get
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A(, , ',c0)= (& ~ +& )—1.2me bee q
qll'Pz&pz & 2 2 2 p,p" p, —p"

(
2 2 )( «2+ 2)+qll "' " ' p~+qll p

X [IX'(qII,P,",co)& +P'(qll, P„P,',co)] .
Pg zing

Inserting Eq. (84} in Eqs. (82) and (83) we can get some rigorous identities for A(qll, p„p,',co) of a surface
nonuniformity. Unfortunately our problem for the exchange-correlation energy (or equivalently for the pair
correlation function) requires zeroth moment integrals in the frequency, i.e.,

f dN ImF(qll, pz,pz, co) (8

(where F=A+AF), and exact identities for Eq. (85) are not available. ' In fact our results for y(q) in the
HDL (see Appendix A) show that such identities are not possible. However, in Ref. 3, a universal small-q
limit is provided for a metallic surface, i.e.,

kF
lim y, (q) = q (co,.—sos/2) .
q

o' Sm
(86)

We show in this appendix that the derivation suffers from several omissions and thus does not constitute a
proof.

The connection between the cosine transforms of the various pieces of the response function and E„, are
detailed in Appendix C of Ref. 3 and will not be repeated here. We only wish to examine the contribution
to E„,of the last term in Eq. (C4) of Ref. 3; i.e.,

" dco ' dl, 4neA(q. II P PEc= —Im 2 2 2
p, P. +qll e2,(qll p. p.» (87)

(88)

2

Ref+(qll, p„p,',co)= — e ( ~p,"~ /2)I(pu —p,p,")—sgn(pu —p,p,") Re[(p,"p —p, u) +qll(u —1)]' j

(89)
and

where 1(i2(qll,p„pz', co) satisfies the same integral equation in terms of 1'(qII,p„pz, co) as in the preceding ap-
pendix [Eq. (A5)] now for cosine transforms. However, it is incorrect to simply replace p, by q„as is clear-
ly shown in Eq. (23) and the discussion following it, unless the functions are properly localized (a contention
not supported in the HDL nonuniform electron gas; Appendix A). A second assumption concerns the small

p„p,', and qll structure of 1(i, i.e., that

iI( (qll, P„P,',co) =A (c0)qll+B(N)P, P,
' .

For the IBM [within the RPA (Ref. 42)] the forms for 1i (qll, p„p,', co) have been derived previously"; they
are

me
1m@+(qll,p„p,',co) = ', e.(

I p.
"

I
/»sgnco Im[(p"p —p.u}'+qll(u' —»]'" (810)

with

~+ II'P"P' '+ ) +~+ qll»»

and where p,"=p, +p,', p =(qll+p, )', and
u =p +2m~/p. At small p„p,', and

q~~ and finite
frequency these forms (of course) reduce to Eq.
(88) but important contributions come as well
from intermediate values (i.e., co/p =const} in the
usual way. In that range these functions [Eqs. (89)

and (810)] have no resemblance to Eq. (88). It is
interesting to note that for exchange alone the
small-q limit is dominated by po of Eq. (84);
When correlation is included this contribution will
be strongly modified and the small-q limit now
dominated by terms like Eq. (87).
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%e conclude by making a direct comparison
with the discussion in Appendix A. Since both
here and in Appendix A the f are the response
function to an external perturbation we expect the
two to reveal similar behaviors. %e observed a
nonuniversal small-q limit (in Appendix A) consid-
ering contributions from second- and higher-order

iterations of Eq. (A5). We, therefore, expect that
corrections to Eq. (B6) would appear from such

considerations. To deiTionstfate this, however,

must involve a careful treatment of the discrete
cosine variable and a transformation like Eq. (23)
to the appropriate Fourier components q~~ and q, .
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