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Exchange and correlation energy in a nonuniform fermion fluid
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Recent results for the surface energy of jelliumlike surfaces are investigated within the functional-density
formalism. These results along w'th f~rst-principles considerations support the contention that the first gra-
dient coefficient of the exchange and correlation energy, in its unmodified form, is the proper nonlocal
correction to the local-density approximation in extended systems,

The extent to which the local-density approximation'2
(LDA) accounts for the exact exchange and correlation en-
ergy in a variety of systems has been, and remains, an area
of considerable interest. ' Several approaches'~' ' have
gone beyond the LDA, and claims for their success are well
documented. An elegant way of including nonlocality in the
exchange and correlation energy is the gradient expan-
sion, '2 Here, by comparing with recent calculations for the
surface energy of extended systems, we give strong support
that the nonlocal form developed initially by us, " rather
than any modified forms, ' is the appropriate one to use. '

%e first, however, briefly discuss the main results of our
previous investigations which lead us to this conclusion.

The central quantities we considered were the following.
The structure factor S&(r, r') given by

NS„(r, r') - (di~ I [p (r) —p&(r) ] [p (r') —pi (r') ] ld „)
(la)

its Fourier transform

structure factor has nothing to do with the conservation of
the particle sum rule in extended systems. This obviously
entirely separates small microscopic size systems (like atoms
or molecules) from, as an example, metallic surfaces when
we consider the behavior of S&(q, q) or E„,(q) at small q.
This is so because for microscopic systems the size of the
exchange-correlation hole, or equivalently the structure fac-
tor S&(r, r'), is confined to the size of the atom or molecule
under consideration. If the length L] reflects the size of the
atom, then lr —r'l & Li. Therefore, the limit of S&(q,q) at
small q, in the finite nonextended case, must correspond to
the conservation of particles, i.e.,

lim S„(q,q) = S&(q =O, q =0) = 0
q~0

This difference between the finite [Eq. (3)] and infinite [Eq.
(2)] systems, discussed above, implies that the small q re-
gion in E„,(q) [or S„(q,q)] must be extremely sensitive to the
nonuniform background. In Fig. 1 we illustrate the expecta-

S„(q,q) = dsr„d'r'et' "' 'S„(r, r'')

and the exchange-correlation energy

E„,-N q, E„,(q)

N " dq wl

2 " (2sr)' u(q) dh. [Si,(q, q) —1] (lc)

In Eq. (I) $~ is the full ground state for the nonuniform in-
teracting fermion system with interparticle interaction
Au(q), p(r) is the density operator, p~(r) is the density
given by p&(r)- (dpi, lp(r)litic), and N the number of fer-
mions. For the interparticle interaction kit(q) we choose
Pu(q)-X4sre'/(q'+P2). A central point of our investi-
gation involved the small q limit of Eqs. (la) and (lb). By
carefully examining a variety of nonuniform systems'5 we
were able to show that for a general system with an arbitrary
interparticle interaction in the presence of an arbitrary exter-
nal potential and general level of perturbation in the thermo-
dynamic limit,

limS~(q, q)&S„(q=O,q=0) = d3r ' d3r'St, (r, r')=0
q~ 0

s s

(2)
(the last equality is simply a statement of conservation of
particles [Eq. (la)]). In other words, the q 0 limit of the

Lp L)

qi2 it

FIG. 1. Sketch of the expected behavior of the wave-vector
decomposition for the gradient contribution to the exchange and
correlation energy (given by the dashed curves), in two microscopic
systems of lengths L~ and L2 (where L2& L~). The solid curve
gives the behavior for a macroscopic nonuniform electron gas. This
small q region has been shown to be very sensitive to the nonuni-
form perturbation (Ref. 15) and not to be determined by any intrin-
sic length scales (like kz or kTF) of the electron gas (Ref. 15). The
graph is therefore to be regarded as only a sketch of this small q re-
gion. Clearly, the extended results must overestimate the correla-
tion energy in microscopic systems, and the amount overestimated is
very sensitive to the system (e.g. , L] or L2).
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tion in the change of E„,(q) when the size of the system in-
creases from Li to L2 and finally to a macroscopic size
given by the sobd curve. '5 The solid curve is the wave-
vector decomposition (WVD) of the first gradient contribu-
tion to E„,(q) [i.e., E„,(q)]. The interparticle interaction
~(q) (in Fig. 1) is taken to be a Coulomb long-range form

Figure 1 provides some very important guidelines as we

go from nonextended to infinite systems. Clearly, the form
derived from electron-gas calculations must overestimate the
contribution in small systems. In fact, since E„,(q) oscil-
lates, as a function of q, we can even imagine changing its
overall sign by certain manipulations in the small q region.
(An incorrect sign from the electron-gas gradient forms to
the exchange-correlation energy of atomic systems was recog-
nized a long time ago. 's) To accomplish the necessary
changes in atomic systems, the long-wavelength limit of
E„', (q) was modified, " as illustrated in Fig. 1. However,
forcing the long-wavelength limit to vanish at small q can
only be justified for finite systems. There is no such justifi-
cation for semi-infinite or infinite systems due to the subtle
role played by the thermodynamic limit [Eq. (1)l. We
might still ask whether such modifications can be justified
for extended systems by numerical results; we show that
such calculations give no support to such contentions.

Before we turn to such numerical considerations it is in-
teresting to relate the above conclusions to previous con-
siderations. It has been generally recognized that localized
systems, with their discrete spectrum, are fundamentally
different from extended systems, with the corresponding
continuous single-particle excitations. '0"'6 The latter are
much more akin to either the uniform or weakly perturbed
uniform interacting electron gas, where such forms are
derived. It is, therefore, not surprising that extending such
calculations to atoms could, and does, run into considerable
difficulties, '0 particularly for the correlation contributions. '0

%e ~ould, in fact, expect the correlation energy, derived
from the uniform electron gas, to overestimate such contri-
butions in discrete systems (e.g. , atoms), since virtual exci-
tations are so much easier for a continuous excitation ener-
gy spectrum. '6 It is also not surprising that for exchange
alone this problem is less severe, since no virtual excitations
(i.e., no energy denominators) exist to sample the discrete-
ness of the eigenvalues. This way of differentiating infinite
from finite systems is now further justified using the %VD
as illustrated in Fig. 1.

The size of the system is not the only way nonuniformity
plays a subtle role in S&(q,q). In fact, we showed in our
previous investigations" that any nonuniformity, superim-
pos'ed on a uniform fermion system, JhndamentalIy changes
the nature of the structure factor Sz(r, r') in the thermo-
dynamic limit. Such conclusions are true for any interparti-
cle interaction v(q) and general level of perturbation. " For
ip(q)-4we2/q2 we traced these differences to the perfect
screening sum rule. ' This sum rule is crucial to the small q
limit of S&(q,q) in the uniform interacting electron gas. 's

Such a sum rule does not exist for the nonuniform counter-
part'5'~ and is the reason that the small-q region is ex-
tremely sensitive to the nonuniform environment. '5 These
conclusions have been challenged by Langreth and Perdew'5
who consider a nonuniform external potential of a single
Fourier component h and take the reverse limits of ours.

An arbitrary nonuniformity, however, contains aII Fourier
components. These points have been dealt with at great
length in our previously published articles. '~ As a final
point, consider the two-component fermion gas; like an
itinerant ferromagnet. Then, even for the uniform case the
perfect screening sum rule does not hold for the individual

omp nents Sl t(q q) Si 1 (q q) and St t(q, q)." There-
fore, the difference between the extended and finite non-
uniform systems is now even more pronounced for each in-
dividual structure factor component. The modification of
the small q region of the three different gradient contribu-
tions to E„,would now be much more arbitrary.

%e finally turn to numerical considerations. The problem
of correlation is very hard to treat outside the functiongl-
density formalism for nonuniform extended systems in the
thermodynamic limit with realistic metallic density profiles.
For exchange alone such solutions for surface jellium pro-
files (or more precisely accurate model representations) do
exist, and they have been studied in great detail. '7 It ls
clear that the nonlocal corrections reasonably account for
the full exchange energies. Recently, moreover, two calcu-
lations for the correlated surface energy of a jelliumlike den-
sity profile have appeared. 2 '~ The results are expected to
provide a valuable indication of the magnitude for the non-
local contribution to the total exchange and correlation en-
ergy. In Table I these results are presented along with the
gradient expansion (GE) as first proposed by us, column 7,
and the recent modified gradient forms, MGE, column 6.
Obviously, the two calculations2i 2' botlr point to a much

larger contribution for the nonlocal exchange and correla-
tion surface energy than previously suggested (column 6)
and provide no numerical justification either for the modifi-
cation at small q in extended systems. On the other hand,
the gradient expansion, as first proposed (column 7), signi-
ficantly improves the local-density values of Lang and

Metal LK SFW FHNC i i0 MGE GE

2.07
2.30
2.66
3.28
3.99
4.96
5.23

Al
Pb
Mg
Li
Na
K

Rb

—730
—130

110
210
160
100

&5

102
278
309
363
204
94
76

-222
181
383
360
261
159
105

—645

179

-280
170
305
305
210
)25
105

TABLE I. Comparison of the surface energies obtained for the
jellium model by Lang and Kohn (LK, Ref. 32), column 3; Sun, Li,
Farjam, and Woo (Ref. 23), column 4; Krotscheck, Kohn, and Qian
(Ref. 24), column 5. MGE are the results of Langreth and Mehl
(Ref. 13), column 6; and GE are the results of our original gradient
form (Ref. 11), column 7. Note that our results contain contribu-
tions to all orders and therefore go beyond the RPA. This was also
shown in great detail by Hu and Langreth in Ref. 33. All surface
energies are given in ergslcm . In the case of the MGE we took
the values for the recommended f-0.15. There are two other list-

ed choices for f 0.12 and 0.17 and the averaged gradient approxi-
mation; all of these give much smaller contributions to the nonlocal

corrections from (5 to
&

of ours), and in very poor agreement

with, columns 4 and 5. Note also that the results of LK correspond
to the %'igner exchange and correlation form for the local-density
approximation. Other more recent forms would tend to increase
the LK results at r, 2.07 by approximately 100 ergs/cm2.
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Kohn. Such improvements are obviously important and we
therefore list a convenient parametrized form for these non-
local contributions, i.e.,

ELDA + Eg

~here the nonlocal gradient contribution is

4"8„,(p(r) ) I Vp(r) P,

(4a)

(4b)

2.568+ ar, + br,2

1+ cr, + dr,~+10br,~
(4d)

with a-23.266, b-7.389x10 3, c-8.723, and d-0.472.
This form accounts accurately for the required values of
C„,(r, )

%e expect, of course, the same conclusions to carry in
multicomponent systems. As discussed above, there is
again no reason for any modifications at small q. The non-
local contributions now become

E„,- ri'r [@1(pl (r), pl (r)) I&pl(r) I'

+a„i,l (pl (r), p, (r)) Imp, (r) I'

+@.' (Pl( ),Pi( ))&Pl( ) &Pl( )] . (5)

For an itinerant ferromagnet, results in the high-density
limit (HDL) were derived first in Ref. 26. A convenient in-
terpolation form was listed in Ref. 27. From the single
component results of C„,(r, ), we might expect the HDL
results for the two spin components to still be relevant at
metallic densities, but the extension to bulk densities" is
warranted. For the multicomponent electron-hole droplet,
~here the effective densities are high, we expect our results
to be very important. The appropriate forms for silicon and
germanium are presented in Refs. 28 and 29.

and 8„, is written in terms of the unitless quantity"
C„,(r, ), as

e2
Bxg s w4i3 Cxc(rs)

p(r)
This coefficient C„,(r, ) is listed as a function r, [r,
—(3/4np)ti3 'in a.u. ] in Ref. 11. Here, for convenience of
application, we list the interpolation form

Metallic surfaces, intinerent ferrornagnets, and the
electron-hole droplet are just a few examples of nonuniform
systems ~here the original nonlocal forms are appropriate
and important. 30 %e conclude with a few remarks about the
crossover from finite to infinite systems as I.] L2 ~ in
Fig. 1.

%'hat first-principles considerations, " and now the recent
numerical calculations, ' have conclusively shown is that
the previous potential, '3 which was applied to closed-shell
atoms, cannot be applied to extended systems. It is obvi-
ously not a valid universal functional of the density, but is
limited to a narro~ class of atomic systems. The difficulty
of guessing a correct functional is enormous. There are
endless possible forms to consider, and the chance of pul-
ling out the right one is very small indeed. Only first-
principles calculations can lead to some progress, and the
nonlocal form we suggest does do that. The %VD can still
play an important role in studying the crossover from ex-
tended to finite-size systems. %e are presently trying to see
how the nonlocal contributions get corrected for the finite-
size effects. In other words, what are the corrections to
8„,(p, L) as a function of the size L of the system? Here
the WVD helps differentiate between q & 1/L and q & 1/L;
in the large q region the finite-size corrections are expected
to play a minor role. Finally, it still remains to resolve the
most intriguing question concerning the convergence of
these expansions. Specifically, it is well known that the po-
larization functionsts II(h) rapidly deviate from their small
po~er expansions in h. This is even true for the kinetic en-
ergy alone where the convergence has been closely scrutin-
ized. Apparently the continuation p p(r) plays a crucial
role in the convergence of both the LDA and higher gra-
dient corrections. 3'

In conclusion, the recent numerical calculations of the
surface energy of metals lends support for the gradient ex-
pansion in the form originally suggested. " These forms
make a significant improvement to the LDA and should be
included in many of the extended systems discussed here.
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