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Critical exponents and amplitude ratios from electrical resistivity measurements of dysprosium
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Resistive anomalies in helical antiferromagnets are shown to reflect the temperature depen-
dence of the specific heat sufficiently close to the Neel temperature. The temperature depen-
dence of superzone energy gaps does not enter. Numerical analysis of electrical-resistance data
for a helical antiferromagnet, dysprosium, provides quantitative support for theoretical estimates
of critical exponents and amplitude ratios obtained by renormalization-group e expansions and

by field-theoretical methods and suggests that dysprosium is described by a model whose order
parameter has n =4 degrees of freedom.

I. INTRODUCTION

There has been a great deal of interest in resistive
anomalies at magnetic critical points following the
realization that qqasielastic electronic scattering cross
sections contain information about the same spin-
fluctuation correlation function which determines the
temperature dependence of equilibrium properties,
such as the internal energy, at the critical point. For
example, based on an approximate treatment of the
de Gennes-Friedel model, ' the contribution to the to-
tal resistivity in the p, th crystallographic direction
from itinerant electrons weakly scattering from a set
of localized spins (S it I located at lattice points (R(,
when normalized to the high-temperature spin-
disorder limit, is given for T & T, by

= $P,",(R) I'(R, T)
Po

where I'(R, T) = (S-„So)/S(S+I) and P,"i(R) is an
electronic coherence factor with a finite length scale
fixed by the electronic mean-free path, '

I, or the
relevant Fermi-surface caliper, 3 2k/'. By contrast, the
length scale of the spin-correlation function is

((T) =(Ot " ~ as t =(T—T, )/T, 0. Since elec-
tronic length scales provide a cutoff in Eq. (I), and
since I'(R, T) also determines the internal energy,
Fisher and Langer2 concluded that dp" ( T)/dT —r

for t 0+ in ferromagnets. A similar conclusion was
reached by Mannari4 by somewhat different reason-
ing. This conclusion has been generalized to aniso-
tropic ferromagnets and to the ordered state for
t 0—for both isotropic' and anisotropic' ferromag-
nets. It is generally believed that theory and experi-
ment are in reasonable agreement for ferromagnets
although there are cases where more detailed analysis
is desirable.

The case of antiferromagnets and helical antifer-
romagnets, such as occur in the heavy rare-earth
metals, has been more problematic. Geldart and

Richard' concluded that dp" ( T)/dT should reflect
specific-heat temperature dependence for t- 0+ for
antiferromagnets as well as for ferromagnets, in con-
trast to the suggestion of Suezaki and Mori, ' and also
indicated that there should be a temperature regime
somewhat above Tg, but still in the critical regime,
where p" ( T) should reflect the temperature depen-
dence of "long-range" correlations. The existence of
such a generalized Ornstein-Zernike, " or long-
range regime, is due to the breakdown of the asymp-
totic short-distance expansion for I (q, T) with in-

creasing temperature at fixed q, as will be seen
below, and is not to be confused with the Ginzberg-
Landau limit. The above prediction for T ~ T~ has
been confirmed by detailed calculations of Richard'
and others, "' although there is not full agreement
in the literature concerning the possible long-range
regime. " The theoretical situation for T ( Tg has
been even less clear due to the lack of thorough
treatment of effects such as superzone gaps induced
by the long-range order, M(t) —( t)i'. —

On the experimental side, the above points have
received partial support in some cases"' but there
are substantial inconsistencies. For example, there
have been two experimental studies"" of the c-axis
resistivity of dysprosium. The interpretation of the
results of the two studies led to diametrically opposed
conclusions concerning (i) the relative roles of long-
range versus short-range correlations for t & 0 and
(ii) the role of the long-range-order parameter for
t & 0. In our opinion, this disparity was not due to
purely experimental problems but rather to the highly
unsettled state of the theory and the lack of adequate
theoretical guides to aid in the quite delicate analysis
of datp arid consequent interpretation of results.

The major objectives of the present work have
been twofold. First, the role of the long-range order
below the Weel point has been clarified by explicitly
deriving the microscopic Boltzmann transport equa-
tion describing current flow in the presence of the
scattering from spin fluctuations near the critical
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point. The calculations are lengthy, so we give here
only the final result and an outline of the reasoning
which leads to it. The net result is that, even in the
ordered state below T~ where the thermodynamically
averaged sublattice magnetization is nonzero, the ef-
fective scattering cross section for T = T~ involves
only (S-„So)and not (S a So) —(S a) (So);
when treated with sufficient accuracy all effects due
to the long-range order disappear both in the cross
section and the electronic band structure so one is
left with a result very much like Eq. (1) in which the
electronic coherence factor has a finite length scale so
that dp~(T)/dt —ltl for both t 0+ and t 0—.
The above is in contrast to a common point of view
in which the nonzero thermodynamically averaged
long-range order below T~ is considered to give rise
to a new periodic potential and thereby to new elec-
tron energies and velocities which necessarily reflect
the temperature dependence of the order parameter.
This consequently applies also to the purely electronic
coherence function @~j(R) in Eq. (1). Having taken
account of the average part of the perturbation, the
electrons are then considered to scatter only from de-
viations from this average so that 1'( R T)
~ ((S-„—(S a) ) (S-,—(S-,) )) is also to be used in

Eq. (1). This line of reasoning is valid for some pur-
poses at temperatures below T~ but must fail very
near TN as it is based on the assumption that the ac-
tion of the localized spin system on the electronic
subsystem is dominated by the mean field (S-„).
Since the relevant time scales of the electrons are not
longer than those of the localized spin system, such a
picture can be useful only if the localized spin system
itself is well described by mean-field theory, i.e., out-
side the critical region. For T = T&, it is the fluc-
tuating part of the spin field which has the dominat-
ing influence on the electrons.

To obtain meaningful results, one must recognize
that l(sa) (S-,)I ((l(S-„So)l for fixed R and

T T~', so a more correct procedure is to calculate
the conductivity as a power expansion in the magnet-
ization while avoiding decoupling of spin correlation
functions. With this guide, a Boltzmann equation
can be derived for the charge current in which the
leading temperature dependence is clearly due to
short-distance correlations. The deviation proceeds
along the general lines established by Baym and Ka-
danoff but will be given elsewhere' in detail as it is
rather lengthy.

II. NUMERICAL RESULTS

The above results show that the electric resistivity
reflects the temperature dependence of the internal
energy so that we can now turn, with some confi-
dence, to our second major objective, which is a
quantitative comparison of renormalization-group

R(T) =Co+Ctt+Ae(t)t' (1+Ft ')

+A'e( —i) (—i) '-. , (2')

and fits were made over a variety of temperature in-
tervals and for a range of values of AI. Based on the
usual statistical criteria and the requirement that plots
of the fitted versus experimental R ( T) should have
minimal systematic structure, the best fits were ob-
tained for the interval 176 & T & 184.5 K. In these
fits, the crossover-correction exponent 4~ was held
fixed at A~ =0.55. We have not been able to find a
simultaneous fit of all parameters in R ( T); this prob-
lem is numerically ill conditioned and would require
more accurate data to be soluble. The value
AI =0.55 is the RG result for the correction for scal-

(RG) predictions for critical exponents and amplitude
ratios for the internal energy (or, equivalently, the
specific heat) with results of detailed nonhnear least-
squares analysis of published resistivity data' for c-

axis Dy. The results are as follows. The data near
T~ are well described by the short-distance expan-
sion, provided we include a colrection to scaling';
amplitude ratios and the leading critical exponent are
determined and found to be in good agreement with
theory. In particular, the value of o. is consistent
with that calculated by RG' and field-theoretical'9
methods and supports the view that Dy is to be
described by a spin model with n =4 degrees of free-
dom. The asymptotic short-distance expansion
(SDE) is shown to break down a few degrees above
T~, and the temperature range for T —T& )4 K is
found to be consistently described by long-range spin
correlations. The amplitude ratio for the leading
singular terms in this regime is also found to be in
good agreement with that numerically computed from
hcp lattice sums.

To examine data near TN, consider fitting the mea-
sured resistance data in the range 176 & T & 182.5 K
to the short-distance-expansion form

R(T) =Co+C, t+Ae(i)t' +A'e( t)(—t—)', (2)

where e( t) = 1(0) for t & 0 ( &0). We found
o,

' —n =0.016 +0.025 and equally good fits were ob-
tained with the constraint n'= n, even when a regular
C2t correction term was included. It is thus con-
sistent to assume that thy leading exponents are
indeed equal, as expected, for t 0+ so this con-
straint was subsequently adopted and the sensitivity
of the fitted parameters in Eq. (2) was studied as a
function of the temperature range of the fit. It was
found that n was very sensitive to the range, which
indicates that important correction terms must be ad-
ded to Eq. (2). A priori, such terms could be t2, t2

I- +~,
or t ', where 4~ is the correction to scaling ex-
ponent'7 At=cov. Consequently, Eq. (2) was re-
placed by
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ing exponent at n = 3 —4 and is insensitive to n.

These results, which do not improve upon inclusion
of t' or t' corrections, are summarized as follows:
TN = 180.50 +0.01 K, o. = —0.20 + 0.05,
Cp=118 37+0.04 mO, C~ = —1194+191mO,
A =2781+222 mO, A'= —1750+77 mA,
F= —1.5 +0.4, and rms error per point =28.6 p, Q.
The range of this fit is 4 x 10 &

~
t

~
& 2.5(2.2)

x 10 2 for t & 0 (t )0). The confidence intervals
given are 95% intervals (corresponding to +1.96
standard deviations) obtained in the usual way. We
have not attempted to find any F' correction term for
T & T~, since the number of measured points in this
region is rather low.

To compare RG predictions, rewrite Eq. (1) for the
c axis as

(3)

where I (q, T), the Fourier lattice transform of
I'(R, T), has been determined by Fisher and
Aharony, for small q and t, to second order in e as

I'(q, T) =I'(q, T ) [1+Ct(q) t+ C2(q) t' + ]

(3')

The first point is that the experimentally determined
o. = —0.20 +0.05 (to be identified with the specific-
heat exponent) is consistent with the second-order
RG calculation of Mukamel and co-workers'
(n ———0.17) but does not seem to be consistent with
available fixed-field theoretical estimates of o. for
n =3 systems. 2 ' Thus, the conclusion that Dy is
described by a spin model with n =4 degrees of free-
dom is tentatively supported. '8 (However, note also
the discussion in Sec. III where reference is made to
series-expansion results for u for n =3 systems. )
Second, the contribution to C~ from the slope of the
phonon background can be estimated to be
C,'" =37.1 mO so the observed value
C~ = —1194 m 0 is completely dominated by the
linear term arising from spin fluctuations. Conse-
quently, the observed amplitude ratio A/Ct =—2.33
is given to high accuracy by C2(q)/Ct(q)
= —(q(o) "(y —I)/(y I+a+) = —2.24 for q =2k',
the agreement is obviously excellent. The third
quantity to compare with RG predictions is A/A', the
negative of the specific-heat amplitude ratio given to
order ~ by Bervillier, from which we estimate
A/A' = —1.7 which is also seen to be in very satisfac-
tory agreement with the experimental value
A/A'= —1.60 (with =10% probable error). From
these results, it is evident that experimental results
for Dy and theoretical predications are in excellent
agreement in this regime.

However, as the upper limit of the temperature
range of the fit was increased significantly beyond
184.5 K, the quality of fits decreased markedly and

R(T) =Co+C)t+A (t" +Ft ") (4)

where T~ =180.5 K and, since spin fluctuations in
this regime do not contribute a linear term in t, C [ is
due to the regular phonon slope given previously as
C~ =37.1 mO. With these constraints, data in the
range 185 & T & 190 K were fitted to Eq. (4) with
the results: Cp =117.60 +0.02 mO,
A =43.8+5.6 mQ, F = —1.0+0.3, and
v =0.68 +0.05 with rms deviation of 5 JM, Q per point.
Note that this estimate of v is consistent with that
obtained in the short-distance regime, v =

~
(2 —n)

=0.73 +0.02 and with RG predictions. Also, this
amplitude ratio is consistent with numerical evalua-
tion of hcp lattice sums which gave
—3 & F = S(/S[ & —1 for all combinations of model
parameters. ' These results clearly give strong sup-
port to the idea that the important spin fluctuations
in this regime are of long-range character.

The generalization of Eq. (4) when q is not con-
strained to be zero is easily determined from Eq. (1)
but it is difficult to obtain accurate independent esti-
mates of all parameters. As an alternative, we con-
strained TN and C[ as before and obtained fits for a
range of fixed positive values of q to determine the

could not be improved by adding further regular
terms. We conclude that the short-distance expan-
sion is beyond its limits of validity for T & 185 K and
that the important values of I/(qg) in Eq. (3) are no
longer small enough to apply the asymptotic expan-
sion [Eq. (3') ] so that I'(q, T) is better described in
this regime by a long-range spin-correlation function.
This was first tested by fitting the data in the range
185 K & T & T,„, for a range of values of T,„
from 190 to 230 K, to R ( T) = Co + C t +At z with Tv
fixed at 180.50 K. The results were Cp =118 mA,
C~ =60 mO, A =—50 mO, and Z =0.6 and are
very different from those of the previous fit; in par-
ticular, note that C] does not reflect the strong nega-
tive linear contribution from spin fluctuations and
that the leading exponent Z is less than unity. How-
ever, the deduced value of Z was found to be sensi-
tive to the temperature range of the fit which indi-
cates that a correction term must be added. To gain
some idea about the required correction term, return
to Eq. (1) and invoke the long-range representation:
I'(R, T) =1 for R=O and

I (R, T) = Co(a/R) (~a)~exp( —KA) cosQ R

for R ) a where Co is a constant (=0.25), a is the
average lattice constant, and Q is the magnetic-
ordering vector. Since q is expected to be small, "we
impose the temporary constraint q =0. Next, since

f(R) in Eq. (1) provides a cutoff, we may expand
the exponential in I'(R, T) to obtain p'( T)/p(
= Sf + S[t"+S(t'"+,which implies that the
data for T & 185 K should be described by
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range of q which resulted in values of v consistent
with the SDE value of v in the sense that 95% confi-
dence limits overlapped. With these criteria, the
range of allowed values of q was found to be
0 & q & 0.04 which is consistent with the RG predic-
tion&s + 0 02

III. SUMMARY AND DISCUSSION

In our opinion, the above results provide strong
support for the present interpretation of resistive
anomalies at magnetic critical points and also indicate
that detailed RG and field-theoretical calculations of
critical exponents and amplitude ratios are consistent
with experiment in both the short-distance and gen-
eralized Ornstein-Zernike or long-range temperature
regimes. Furthermore, it is clear that these results
are consistent with the view that Dy is to be
described by a spin model with n =4 degrees of free-
dom (as opposed, e.g. , to n =3, which we feel is not
favored for the data). As this is a major point of our
conclusion, we will discuss it in some detail.

To appreciate in simplest terms that Dy might be
described by such a model, "recall that critical fluc-
tuations for such spiral-ordering systems occur at
wave vectors +Q, where Q is the usual magnetic-
ordering vector. Since the magnetic moments order
in the basal plane, (Mz) =0, there are thus only two

(not three) degrees of freedom for each +Q, with the
result that there are four degrees of freedom of the
order parameter. (These may be regarded as corre-
sponding to left- and right-"handed" spirals with each
having x and y components. ) If we accept tentatively
that Dy corresponds to a n =4 system, the next ques-
tion to consider is that of the effective interactions
permitted by symmetry. Then the RG methods can
be applied to determine the stable fixed point of in-

terest and its associated critical exponents. This was
done to order t.' in Ref. 18, where it was shown that
the only stable fixed point exhibited tetragonal sym-

metry, even though the critical exponents coincided
with those of a fully isotropic n =4 spin model. This
coincidence is peculiar to n =4, and we are not a~are
of' any apparent reason to expect it to remain to
higher order in e. However, if our objective is to ob-
tain reasonable theoretical estimates for critical ex-
ponents for n = 4 systems, the following points
should be noted. The critical exponents of simple
systems appear to give most reliable results when
asymptotic series are truncated at order ~ . When an-
isotropy is taken into account, critical exponents cal-
culated to order e' are rather close to their corre-
sponding isotropic counterparts (one striking example
of this is indeed provided by the anisotropic Dy
model and another by the usual isotropic model with
cubic anisotropy"). In view of these facts, we feel
that reasonable theoretical estimates for critical ex-

ponents of Dy are provided by the e' expansion of
Ref. 18 with an indication of the importance of
higher-order terms being provided by field-theoretical
calculations for the isotropic n =4 model. ' " We
emphasize, as discussed further below, our objective
is to determine whether experimental data for Dy
favors n = 4 degrees of freedom of the order parame-
ter and our basic premise is that the specific-heat ex-
ponent, in particular, is much more sensitive to n for
n = 3 or 4 than it is to perturbations due to anisotro-
pic interactions. Of course, this need not apply to
amplitude ratios or to the magnitude of the ex-
ponent, A~, giving the leading correction to asymptot-
ic scaling in the short-range regime. (It is for this
reason that we also generated fits to the data for a
range of values of AI. Results were quoted above for
A~ =0.55. For II =0.30, parameters are altered
somewhat, of course. Specifically, o. becomes
—0.25 +0.06, which overlaps the 5 =0.55 value. )
However, based on the above facts, we shall assume
that comparison of theory and experiment for the
leading critical exponents may be based on estimates
provided by isotropic-spin models.

Our conclusion that experimental evidence for Dy
is consistent with n =4 as regards critical properties is
based on two points. First, if superzone gaps should
dominate for T T~, the leading critical exponent
for the resistivity would be 2P, which is =0.76 +0.03
for n =4 (Ref. 21) or =0.72 +0.02 for n =3.'
However, the leading exponent is instead found to be
=1.20 +0.05 with 95% confidence limits. Clearly,
the view that short-range correlations dominate p( T)
for T T~ is favored; so we accept o. = —0.20+0.05
as an estimate of the specific-heat exponent of Dy.
The second point is then to attempt to decide wheth-
er this value for o, favors n = 4 as opposed to other
possibilities. Restricting attention to isotropic
continuous-spin models, the second-order t expan-
sion gives —0.10 and —0.17 for 0., n =3 and 4, respec-
tively. The field-theoretical estimates are
—0.115 +0.015 and —0.21+0.02 for n =3 and 4
respectively. ' ' The essential point, as indicated
above, is that o. is very sensitive to n and that there
is almost a factor of two difference between n = 3
and n =4 estimates; this sensitivity to n is not ap-
parent in other critical exponents or in amplitude ra-
tios. For this reason, we conclude that fits to the ex-
perimental data which yield o. = —0.20 +0.05 for
At =0.55 (or n = —0.25 + 0.06 for 3 i = 0.30) with
95% confidence limits (based, of course, on the usual
assumptions concerning statistical distribution of er-
rors in the data) are consistent with n =4 but prob-
ably not consistent with n = 3 if corresponding RG
and field-theoretical estimates of o, are adequate
guides (see below). We have also done fits with n
fixed to the n =3 and n =4 values ( —0.115 and
—0.211) and found that n = —0.211 gives the better
fit, with an rms error per point 6% lower than for
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n = —0.115 for a variety of temperature ranges of the
fit. It may be noted parenthetically that if one be-
lieved certain factors such as uniaxial anisotropy to
be irrelevant for such systems as Dy, one might con-
sider also the possibility that n =6. For the n =6
isotropic-spin model, o. =—0.27 to second order in e,
and we expect more precise field-theoretical estimates
to yield o, =—0.38 on the basis of extrapolation from
smaller n (Ref. 19); we therefore consider n =6 also
to be unlikely for Dy and this possibility will not be
discussed further.

It should also be noted that the above discussion is
based on the premise that continuous-spin models
are appropriate for comparison of theory and experi-
ment. There is not universal agreement concerning
this point. In fact, information concerning n =3 sys-
tems, in particular, is also provided by analysis of
high-temperature expansions and by other experi-
ments on systems thought to correspond to n = 3.
For example, for large-spin, high-temperature series
expansions' o. = —0.14+0.04 for n =3; note that the
error bars overlap the field-theoretical estimates. '

Also note that there remain persistent and un-
resolved questions concerning the possibility of viola-
tions of hyperscaling30 (i.e. , scaling relations with ex-
plicit reference to dimensionality), with the implied
need that RG and field-theoretical work should re-
quire reconsideration. Beyond. expressing the expec-
tation that the addition of further terms in both the
high-temperature and field-theoretically-derived
series expansions (with also possibie refinements in

methods of analysis) may resolve these fundamental
questions concerning the relevance of various simpli-
fied models to real magnetic systems, we have no
further comments concerning this question which is
quite beyond the scope of this work. Next, it should
be pointed out that there exists a variety of experi-
mental data on n =3 materials and that, e.g. , Korn-
blit and Ahlers, ' consider the best experimental esti-
mate of o. for n =3 systems with isotropic short-
range interactions to be provided by RbMnF3, for
which n = —0.14 +0.01 has been estimated. It seems
to us to be quite possible that the probable error esti-
mates for this system may be too small and that ex-
perimental results for o. for n =3 systems will ulti-
mately be found to be much closer, in fact, to field-

theoretical estimates than would be judged from
presently available results. This view is based in part
on our own detailed analysis of published specific-
heat data' for Ni in a temperature range where any
inhomogeneity smearing and interference from long-
range dipolar interactions are expected to have
minimal effects. The results of this analysis are con-
sistent with RG and field-theoretical predictions for
the leading critical exponent and amplitude ratio. Fi-
nally, it may be noted that there has been experimen-
tal work directly concerned with study of the specific
heat of Dy. " Unfortunately, the data points of
Ref. 33 are too few to permit analysis of the present
type with reasonable confidence limits, while the con-
clusions of Ref. 34 are not valid as their method of
numerical analysis of data is known to be seriously
inadequate. .

"' Consequently, we have no other in-
dependent experimental estimates of the specific-heat
exponent of possible n =4 system.

In conclusion, our appraisal of all of the above
results leads us to believe (i) that the long-range or-
der, as reflected in superzone gaps, does not enter
quasistatic transport properties for T T~—and that
the dominant temperature dependence of such prop-
erties is due to short-range spin correlations; (ii) that
the critical properties of simple spiral-helical antifer-
romagnets such as Dy are probably described by a
spin model with n =4 degrees of freedom of the or-
der parameter; and (iii) that experiment and theory
are in encouraging quantitative agreement concerning
critical exponents and amplitude ratios. However,
the accuracy of this analysis of available data is still
not adequate to resolve more detailed questions such
as the precise role of various possible anisotropic
corrections to critical exponent and amplitude ratios
for these systems. We wish to encourage further ex-
perimental and theoretical work in this area.
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