
P HYSI CAL RE VIE% B VOLUME 13, NUMBER 4 &5 FEBRUARY 1976
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A convenient expression is derived for the coefficient, 8„,(n), which determines the first gradient corrections
to the exchange and correlation energy of an inhomogeneous electron gas. The result is exact to all orders in
e' and is expressed in terms of a single-particle propagator. The lowest-order contributions to 8„,are
evaluated without the simplifying high-density approximation. The formal structure of the derived expression
for 8„, is then used to develop an approximation method for including the contribution of all higher-order
graphs within the random-phase approximation. Numerical results are given for 8„, in the metallic density
range. Application to surface energy of metals show an improvement over any previous approximations for
8„,.

I. INTRODUCTION

For further discussion we separate the coeffi-
cients A„, and B„,into an exchange and a correla-
tion contribution, given, respectively, by A„and
B„, A, and B,.

Most calculations applying this expansion have
been restricted to using only the first (local) term
A„„since no reliable gradient term B„,has been
available at metallic densities. The need for B„,
at metallic densities is clearly reflected by the
large number of papers in which various approx-
imations have been introduced. Examples are
found in surface physics problems, ' electron-
hole droplets, ' cohesive energy of solids, etc.
Some of these works use a form of B„,evaluated
from the electron-gas screening function E(k).
(See, e. g. , Ma and Brueckner, " to be referred
to as MB. ) That is,

F(k)=a '+ bk + O(k )

in terms of which

Bxc = a (a b —a oho) ~

(2)

In a series of three papers Hohenberg, Kohn,
and Sham' have laid the foundations for a general
theory of the inhomogeneous electron gas in the
ground state. The theory is based on the fact that
the ground-state wave function, and thus all
ground-state properties (specifically the ground-
state energy), are functionals of the density n(r).

For the case in which the deviation from the uni-
form density no [i.e. , bn(r)—= n(r) —no] is slowly
varying, but possibly large, Kohn and Sham ex-
pand E„,(n) as a series in density gradients, i.e. ,

(" '( }"'['("("'9'~*'("('((l~"("
l ] ' ~)

where ao and bo refer to the small-k expansion of
the Lindhard screening function and a = —dp. /dn,
where p, denotes the exact chemical potential. The
difficulty lies in evaluating b in Eq. (2). It has
been evaluated previously only in the high-density
limit by Sham for the exchange contribution (b,),
and by MB for the correlation part (b,). Some
other works use an empirically determined B„,
either adjusted to make the total energy, given by
Eq. (1), equal to the full Har tree- Fock (HF) energy or
a, B„,obtained by minimizing the energy expressed
in the form of Eq. (1) (see Herman et al. ").

Since, as pointed out above, first-principles
calculations of B„,"' were restricted to the high-
density limit, the investigation of the validity of
the gradient expansion [Eq. (1)]was restricted to
systems with high density (atoms). In comparing
the high density B„with that obtained empirically,
the latter was found to be approximately 3 times'
too large. The difference was attributed to the ne-
glect of higher gradient contributions. ' Later cal-
culations by Geldart and Rasolt, ' Geldart, Rasolt,
and Ambladh, ' and Kleinman' showed that a first-
principles B„does not even exist. Thus the above
comparison has no fundamental meaning. Further-
more, with the reasonable assumption that the full
B„exists, it is clear that the separation of the ex-
change and correlation contributions in the gradi-
ent expansion is incorrect. "

Before we comment on B, we wish to briefly
mention the trends of the contribution of A„and A,
in atomic calculations. While including A„ac-
counted for the full HF energy (see Tong and
Sham ) to within 10%, the contribution of A,
grossly misrepresented the correlation part'
(larger by a factor of 2). Returning to B„ it was
found by MB that its contribution in atoms was al-
so too large, by approximately a factor of 5, and
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II. GENERAl. FORM FOR b

In this section we derive an expression for b

[see Eq. (2)] which is exact to all orders in e .
We start from the equation, in the usual matrix
notation, for the reducible scattering function
I"(k),"i.e. ,

I (f) = y (f)+ y (f)R(f)r(f) (4)

r(f) = r(f)+ r(f) R(f) y(f),
where y{k) is the irreducible scattering function
and matrix elements of R(k) are given by

R&, p, (k) = G(P+ 2 k)G(P —~ k)5q q. ,

thus further worsened agreement with experiment.
Finally, in applying Eq. (1) to surface energy cal-
culations, it has been shown by Lang and Sham
that B„, should be of opposite sign to that required
in atoms (i.e. , the empirical B„ofHerman' et
al. ).

To understand the above trends, we refer to the
work of Tong in which he found that systems with
discrete states are not appropriate for testing the
validity of this expansion. More precisely, Tong
has shown that it is especially the correlation
part A, (which involves energy denominators as-
sociated with virtual transitions, in contra, st to the
exchange part which does not) which is misrepre-
sented in atoms and, as expected, is too large.
Since A„ is derived from the electron gas (a sys-
tem with purely continuous states) its application
to atoms is inappropriate. The same conclusion
applies to B„with the additional constraint that
the separation to B„and B, is meaningless (see
above). From this discussion, it is clear that to
properly a.scertain the accuracy of the gradient
expansion it is necessary to apply Eq. (1) to
metallic systems. This requires that B„,be
evaluated at metallic densities, which is the pur-
pose of this work.

In Sec. II we derive a convenient expression for
f& in Eq. (2). The result is exact to all orders in
e and is expressed in terms of the single-particle
propagators. The simplicity of this expression
allows a fundamental analysis of B„,at metallic
densitie s.

In Sec. III we apply this expression to evaluating

B„,for an arbitrary static particle-particle inter-
action within the HF class of graphs.

In Sec. IV we evaluate the lowest-order graphs
considered by MB w'ithout the simplifying high-
density approximations.

In Sec. V, using the results of Secs. II and IV,
we extend the calculation of B„,to metallic densi-
ties. Some applications to the surface energy of
metals and a conclusion follow.

R(l ) =R(O)+ f'R "&+O(f') .
Some matrix algebra using Eqs. {4)-(V) yields

I'(k) —1'(0) = I'(0)k R &I'(0)+ [1+I'(0)R(0)]

xf'y&'&[I+R(0)r(0)] . (9)

Next we define a vertex function A(k), given by

A(f) = 1+r(f)R(f) &, (lo}

where A. is a column vector with components X~= 1.
In terms of A(k), the screening function, is given

by

F(f) = 2&&R(f)A(f),

where A. is the transpose of X. Some matrix a.lge-
bra, using Eqs. (9)-(11), yields

f f& = 2A(0) k R 'A(0)+ 2'(0) [1+I'(0)R(0)]

xf'y"' [1+R(0)r(0)]R(0)&&. , (»)
where A(0) is the transpose of A(0). Noting that

~ = [I+R(0)r(0)]R(0)». ,

«(&) sG(O), sG(u)
BPO BP,

we get the final expression for 5

t =2tr, A,(O}R',A,(O)

«(P) „«(f')
d 4P'

d'ptr ( ~ ~ )-=( ~ ~ )(2»)'i

where the vertex function at k=0 is given by the
Ward identity as

( )
dG '(P)

dILjt
(14b)

This new relation for f& (and hence for B„,) is
exact and is obviously very convenient, as the
complicated equation describing the (two-body)
electron-hole correlation has been solved exactly
to order k and expressed, as far as possible, in
terms of the one-electron propagators and its de-
rivatives. The simplicity of the above expres-
sion will allow, in the following sections, a first
fundamental study of B at metallic densities.
Without lt, such analysis would be virtually lm-

with 6 denoting the exact one-electron propagator,
and P =(p, PO). Now since f& corresponds to the k
term of E(f) we next expand y(k) and R(k) to that
order, i.e. ,

y(f) =y(0)+ f'y"&+ o(f')
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possible.
We finally note that a more general expression

for E(}'3) appropriate to all powers of 0 can be
written down. Following almost identically the
previous derivation, without the expansions in Eqs.
(7) and (8), we get

Z(I ) Z(0) =+ 2tr, A,(u) [R,(u) —R,(0)]A,(0)

+ 2tr, tr„A,(a)R,(n)

x[~(f ) —y(0)]R,.(0)A,,(0), (i5)

where the appropriate limiting process for k-0
(i.e. , k3-0, iki-0) mustbeobserved inR3(0) and
E(0). Equation (15) might be useful in studying the
dynamic as well as the static properties of the
screening function E(f3).

Ry(k)= ~

POR (k)2'
X(E(p —.'k)) -y(E(p --.'k)}

E(p+ 3F) —E(p —3k)
(20)

To get RI ' from Eq. (20) we expand the Fermi
step functions, f(E(p+3k}), in Eq. (20) to third
order [because of the energy denominator in
E(p+ —,'k) —S(p}] and then expand E(p+-3'k) to second
order in k to obtain

k'R"' = -'y "(E(P))[(k ~ ~ )'@P)]

+Py"(Z(P)) [k V,z(P}]', (2

where we noted that E(p}= E(P) is independent of
angles. Inserting Eq. (21) in Eq. (IV) and inte-
grating over angles leads to

III. EXACT SOLUTION OF 6 FOR ARBITRARY STATK
PARTKLE-PARTICLE INTERACTION FOR THE HF CLASS

OF GRAPHS

Before we apply Eq. (14) for the study of 6 in
the presence of dynamically screened interaction
(Secs. IV and V) we first wish to demonstrate the
versatility of this expression by deriving an exact
expression for b in the presence of an arbitrary
spherically symmetrical static interparticle inter-
action for the HF set of graphs. These graphs
are shown in Fig. 1, where each wavy interaction
line now represents

W,, &
= —3(P-P)

and the electron lines denote self-consistent Har-
tree-Fock propagators.

That the set of graphs in Fig. 1 represent the
HF screening function E(k) is known; for complete-
ness we demonstrate it briefly in Appendix A.

Returning to Eq. (14) we note first that the last
term is now absent since the irreducible scatter-
ing function in Eq. (16}is independent of k. Sec-
ondly, A& is independent of po and thus the inte-
gration over p3 in Eq. (14}is easily evaluated.
We get for b

dp p'[AV )]'([E"(p}+(2/p}R'(p}l

xX"(E(p)).-'[R'(f )]'y'"(R(p))] .
Primes denote differentiation with respect to the
indicated argument and A(p) —= A&(0) in order to
condense the notation a bit. Since f'(E(p))
= —5(E(p) —p), where

i3 = }33P„'/2m+ Z(P~) = g(P„}

is the chemical potential, it is evidently easy to
perform the integration in Eq. (22). After some
algebra and converting derivatives with respect to
E(p) into derivatives with respect to p we obtain
the form

2 2pEII p3(Ett)3 p8Elli

M 3, RI (Rl)3 (El)3 (Rt)z

, A, R,"&A;(0) .2w'

Now the HF self energy is given by

&(P) = —
(2 }, 3(P -P')f(&(P')),

where f(E(p)) is the usual Fermi step function and
the particle-dispersion law is

R(p) =if'p3/2m+ Z(p} . (i9)
The term Rg' is the k expansion of Eq. (8) after
integration of Po. It is straightforward to show
that R-' ' is thus simply the k term of R~(k) given
by

FIG. l. Series of graphs for E|k) in the self-con-
sistent Hartee-Fock approximation. The wavy line
represents the interparticle interaction.
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mhere all functions and derivatives are evaluated
at p= k~. Ne note that A can also be expressed in
terms of E(p} via the Ward identity

n (p —p') = I/[(p —p')'+ &'] (2'7)

has been discussed ill Ref s. (15-17). From Eq.
(24) the solution, however, is considerably more
transparent and is derived in Appendix B. The
final result is given in Eq. (B13),

Ne next use this result to discuss briefly two
cases: the bare Coulomb interaction and the
Thomas-Fermi (TF) screening, i. e. ,

X = +F -4kr/Fa(( (28)

to attempt to discuss the case of a, bare Coulomb
interaction, consider the X-0 limit. It is easy
to see from Eq. (Bll) that

ink
18(vkrao —1)

Thus the sum of the Ha, rtree-Fock series for b,
which mas calculated exactly in a nonperturbative
way, is strictly divergent for bare Coulomb inter-
a,ctions (defined as the X-0 limit of the corre-
sponding Yukawa interaction).

It is apparent from Eq. (Bll) that the perturba-
tion expansion of powers of e mill also exhibit
singularities. The usual perturbation expansion
for 5 requires e, in appropriate units, to be
small in order thai the expansion of powers of
e be meaningful. The X-0 limit is then to be
taken term by term in the expansion so as to sim-
ulate the ba, re Coulomb interaction. Applying this
procedure through order e results ln

1 6 5
4me b~+— +

18 ((kF ao (Fkr ao)

(InX3)3—,
( „).." ) . (3O)

The divergent term arises from the e contribu-
tion to b; higher-order terms also diverge in
agreement with Eq. (29). The first term of Eq.
(30) is just the Lindhard contribution, k3, the sec-
ond corresponds to the high-density exchange re-
sult of Sham, i. e. ,

4 we'8, „=—,', [I/((/kF a(l)'] .

A(p) = 1-—Z(p)
8 JLt,

from which

/i(k„) = Z'(k, )// '(k,),
where il'(kF) is evaluated from Eq. (23). Eq. (24)
is an exact closed form solution for 5 for an ar-
bitrary (/(p —p'). The form for k restricted to
5 (p —p ) of the Yllkawa form, 1.e. ,

As an attempt to include correlation contribution
and also generate some feeling for the importance
of the density dependence of the higher-order
graphs in Fig. (1), previous works ' screened
the bare Coulomb potential with TF screening
length. [See Eq. (28). ] In the next sections, we
mill show that the above procedure totally mis-
represents the correlation contributions and the
density dependence of B„,. For completeness me

present below the results for the TF screening.
Using Eqs. (Bll)-(B13)with Eq. (28) we get

A = 5+ 1 — ln 1+ phago/k' Qo

4(((kF ao) —Fkr a(( —3
( k I)3

—8vkrao (32)

a '= —kF/F /1'(kF) .
Defining a. convenient dimensional quantity

(38)

If TF C TF(r )e3/s4/3 (38)

we plot C (r,) in Fig. 2 as a function of r, [r,
=(nkra(() ' with n=( 4/9 ()(' /3]. Note the strong
density dependence of C (r,}which has dropped
by a factor of 10 from the high-density limit given
exactly by

C "(r,):—(7/432F) (3F')-'/3 .
QE (2O» ao

This suggests that the density dependence of C(r,}
may be substantial and the remainder of this paper
is devoted to obtaining a reliable estimate, with a
consistent treatment of exchange and correlation,
of C(r,) at metallic densities.

IV. FIRST-ORDER RANDOM-PHASE-APPROXIMATION
EXCHANGE AND CORRELATION CONTRIBUTION TO b

In this section me evaluate the first-order cor-
relation contribution to 6 seithout the simplifying
high-density approximation. The lowest-order ex-
change contribution to /1 (f(„) shown in Fig. 3(a)
has been evaluated in Sec. III Eq. (31). The cor-
relation contribution h, is due to dynamically

BTF [2(/krao+ 2+2/(((krao+ 1) —4/Fkra((ln(1+ Fkrao)]
27(krao —2 + (1 + 2/((kra(() ill(l + T(kFao)

(33)
il'(kz), which is given by Eq. (B6), can be similarly
expressed so that

4m'e bTp
2

—(a"+ a")
, . (34)18[((krao-I+(I/((kzao)»(I+Fkrao)]3 '

From Eq. (34), we can immediately obtain the
corresponding 8„, from Eq. (3) and the well known

form for a '
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yields

k 8'b"' k = tf —tr Z(P) —— G (P)m '- 3 8pp'

1 s k Z(kr, 0)
o(P} -248pp 7T vp pp

where

Z(p) = —t ),[V (p }Go(p+p }]
with

(39)

(40)

I I I

0 1 2 3 4 5
fs

FIG. 2. Calculated y~ dependence of CTF(r~) which
is related to the B~, in the Thomas-Fermi approxi-
mation, by B =C (r~)e In

screening the HF graphs, Fig. 3(b), and to the
non-HF scattering process in Fig. 3(c). In the fol-
lowing calculation, for the sake of brevity, we fol-
low the notation in MB who have carried out this
calculation only in the high-density limit. The
contributions of Figs. 3(b) and 3(c) are easily ob-
tained by expanding Eq. (14) to the appropriate
order in the dynamically screened interaction.
The contributions of the first two graphs in Fig.
3(b) are obtained by setting the vertex function
A&(0} equal to 1 and expanding Eq. (6) to first order
in the self-energy. An expansion to order k and
standard manipulation with the free-electron
Green's function

Go(p) = [p, —e;+ i),o+ ib sgn(e; —p, o)] ', (36)

where e-=K p /2m and i1o=h kz/2m (see MB)

(al

4 e~-)~)=",'. („',) -)) (41)

tr A"' — G(p)
m 2 8p, '

1 8'—
9 eo s, Go(P)8p, p

(43)

There is an additional contribution to 5 from the
k dependence of the irreducible scattering function
(Fig. 4(c)—last two terms). This contribution
simply corresponds to the last term of Eq. (14)
with 6 replaced by Gp. After some algebra we get

')) 2

b k =b'"k = k tr F'(p} I

24 8+p

and e(p') is the dielectric constant in the random-
phase approximation (RPA). [In Eq. (39) vo
= Ik,/m. ]

The contribution of the third graph in Fig. 3(b)
is obtained by approximating the vertex function in

Eq. (14) with that of Fig. 4(a) and expanding Eq.
(6} to power ko and zero order in the interaction.
We then get

2 2 2 3

b k = try Ap
2 &

o Go(p) ——e;, G,(p)
(2)~2 8 k (2) 1 8

m „28pp 9 8pp

(42)

Similarly the contribution from Fig. 3(c) is ob-
tained by approximating the vertex function with
that of Fig. 4(b). We get

(b) where

x v(p)v';v(p) v(p)
dp

(44)

V(p) = 4we'/p'e(p) (46}

(c)

FIG. 3. Lowest-order contribution to E(k) in the
random-phase approximation. (a) Lowest order
Hartree-Fock graphs; the dotted line represents the
bare Coulomb interaction. (b) Lowest-order dynam-
ic connections to the Hartree-Fock type of graphs;
the wavy line represents the dynamically screened
Coulomb interaction. (c) Lowest-order non-
Hartree-Fock class of graphs.

(46)

Following MB, it is convenient to rewrite 5, as

b, = b'+ b" + b"' —Z(kg, 0)/24r~ffvo iso, (47)

where a bit of algebra using the identity

and Fo(p) is the dynamic RPA screening function
related to e(p} by e(p)=1 —(4we /p )F (p). (See
Appendix C. )

Adding all the contributions, b, is given by

o = e'I'+ t "'+S,"&+O"'
C
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h
(2)

P ~ (3)

P

1 9 1 8
a Go(P)+ e," o Go(P}2 ~pp 9 8pp

(51)

(b) A considerable amount of algebra (see Appendix
D) using procedures similar to those of MB yields
for bz~ ' in the high-density limit

(c

FIG. 4. (a) Lowest-order dynamic contribution to
the Hartree-Fock vertex function. (b) Lowest-order
non-Hartree-Fock vertex function. (c) The irre-
ducible scattering function in the random-phase ap-
proximation.

bo
) —(2p) (e/jest)o) Z

with

2
"

y (13+9y )Zo"' =9 dyR(y) ( + 1)
= l. 4556,

(52)

n +
BP,p

yields

(43)
where

R(y) =1 —ytan '(1/y) .

g8 g 1 82
tr, Z(p) —,G,(p)

SPY 8pp 2 ep, p

1—
9 &I, o Go(p)

Bgp
(49}

and

(50)

We wish to point out that for the subsequent discus-
sion the term bz

' will need to be evaluated sepa, -
rately, otherwise we could have gone directly to
b', b", and b"'. It must be emphasized, however,
that separating the contributions of different
graphs to b'= b

' + bz ' is meaningful only in the
high-density limit. For finite densities, this
separation is inappropriate (see Sec. V and Ap-
pendix D).

Before proceeding to calculate b, without the
simplifying high-density expansion, we wish to
analyze, in the high-density limit, the following
points. We mentioned in Sec. III that as an at-
tempt to treat correlations, previous works'
simply screened the HF class of graphs, Figs.
3(a) and 3(b), in the TF approximation. It is pre-
cisely the contributions of b,' ' and bz ' which are
therefore neglected. The relative contributions of

+ b =b" and of b~ '+ b& —= b' ' are thus of
considerable interest, since it would reflect how
well the TF screening (Sec. III) incorporates the
correlation contributions. Now MB were inter-
ested in the total b, so did not need to calculate
b"' ' and b"' separately. To evaluate b3 ' we re-
turn to E(I. (43). After some rearrangement of
terms we get

h 4ge 8 1
bo

' = ——trp, —,„tr)) G()(p+ p')
m ~p~~2 ego &jP

y'+ (q+ 1)'
a(q y)=in o;+ (q —1)

(54)

q(q, y) = 2+ y q g(q, y) —2y tan 'y~+1 —q~
& 1+q

2Q'

+tan ' (55)

e(q, y) = q '+ (nr. /4n) q(q, y),

MB calculated b, ' and found the corresponding
Z,' '=0. 5914. Consequently, Z' '=2. 0470 where-
as, from the total b, (see MB} Z" ' = —0.0714.
It is obvious then that screening the HF graphs
gives only a very minor correlation to b and that
the non-HF graphs are essential. Thus, as pointed
out in Sec. III, the TF approximation totally mis-
represents the density dependence of B„,(Fig. 2).
A similar, but less extreme, situation exists for
the relative contributions ' of the graphs of Fig. 3
to a'.

As a, final comment on the high-density limit,
it should be noted that the qualitative argument in
Sec. II of MB to show that correlation contribu-
tions to B„,are of order e is not correct, since2

their expansion of n(x+ —', r) to only first order in
Vn(x) is not sufficient to obtain all terms of order
I &n(x) I in an expansion of the form of E(I. (1).
If a consistent expansion is made for the total B„„
it can be shown that B„=0 is the resulting esti-
mate. Thus, such agreements do suggest correct-
ly that exchange and correlation contributions are
of opposite sign and of the same order in e, but
are otherwise inadequate.

To evaluate b', b", and b"' is a considerable
task. In Appendix C we give, as an example,
some of the details involved in calculating b'. Be-
low we simply quote the final results.

We first def ine the following functions:
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q'y'--, '(y'+ 1-q') (3+ 2q') (-,' —q') [(y'+ 1 —q')' —4y'q']+ 4y'(y'+ 1 —q') (-', + q')
(5V)

(s-kq'}(y'+1-q'}+ 9 y'(2+sq'), ~& y'[4y'q'-(y'+1-q'}'+2(y'+1-q')(y'-q')]

k-(IA) g (q, y}+0&3 (q, y) (56)

e' "„y'(Qy'+ ll) e' 1 "„&" Q(q, y)F (q, y)
lsv'(Kvo)' 0

y (y'+ 1)' 2v' (Kno)' 0
qq

go
y [e(q, y}]' &2 2v

6 v'(Kv, )' o q 0 e(q, y)

(59)

(so)

96m'(hv, )'
)) q Jo [i(q, y)]' )i 2vR(q, y) ' ' (y' —q'+ 1)'+ 4y'q'

+ q-4 g(q, y) +6 a- '
a 4+@(q,y) &Q(q, y)-6+2 r(q, y)

& q +y ~ (o.r,)~ +X
8 )It' 2 g

+))(q,))(' . glq, ))-2 ' " )Il. (61)

We note that Eqs. (59)-(61) reduce to the proper high-density limit (see MB).
In Sec. V we use these b', I)", and 6'" in extending the calculation of I) (or equivalently B„}to metallic

densities.

V. EVALUATION OF 8„~AT METALLIC DENSITIES

In this section we wish to extend the calculation
of 5,„+6, of Secs. III and IV to the metallic range.
Before proposing an approximate scheme for doing
this we briefly comment on E(0) (or a '). We first
recall that a is proportional to the compressi-
bility which is directly related to the second den-
sity derivative of the energy. Thus one can ob-
tain the RPA a ' from the available calculations
of the electron-gas energy in the RPA. A second
approach would entail direct calculation of the
k-0 limit of E(k) In oth.er words, calculate the
sum of the set of graphs in Fig. 1 with the inter-
action now replaced by the irreducible scattering
function of Fig. 4(c) with k= 0 and the propagators
dressed with the RPA self-energy. An essential
point to note is that a as calculated from the
ground-state energy is a very strong function of
the density and, in fact, becomes singular at x,
= r, ))& 5. Thus for the direct calculation of E(0) to
agree, the correct vertex-function enhancement
(the infinite set of higher-order contributions of
Fig. 1) is crucial. To stop at some lowest order
would totally misrepresent g ' in the metallic
range.

In this work we are attempting to generate a 5,
or equivalently, B„,by procedures closely analo-
gous to those which yield reliable estimates of A.„,
in the RPA. It is immediately apparent from the

structure of Eq. (14) that 6 depends quadraffcally
on the vertex function (which is the origin of the
density-dependent-enhancement effect in a ').
Hence, 5 is expected to be also a strong function
of the density. To include these higher-order ef-
fects in 5, we will be closely guided by Eq. (14).
%e demand that our approximations satisfy the
following constraints.

(i) The lowest-order graphs, the I indhard and
first-order RPA contributions must be given ex-
actly.

(ii) The higher-order contributions to 6 must be
well defined functions of r, (i.e. , the relevant in-
tegrals contain no divergences, when properly
grouped, see below} to all orders. However, the
Sum of these higher-order contributions can be
singular at x, = r,o.

(iii) B„,must be finite even though 5 is expected
to diverge at r, = r, )) (i.e. , the term a I) in Eq. (3)
is finite). In other words, the first gradient cor-
rection to the energy is assumed, on physical
grounds, to be finite.

Ne next focus on the first term in the right-hand
side of Eq. (14) which we denote by 5„ i.e. ,

by +2 trp Aq(0)Bq+)Aq(0) . -—
%e write

A,(o) = 1+A,(o) (6&)

(i.e. , A~(0) contains all of the interaction effects).
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Equation (62) can then be written

b, = 2 tr, {I+2A,(0)+ [A,(0)]'jB,'" . (64)

1
(1) 1 (1)

bz ~0+51
1

+51 (1 )8 I (66)

bzz ' ——5,„+fz'+ b" —Z(k~, 0)/24zz hvo lzo

and b' and b" are given in Sec. IV. Note that in
b',"we have also included the first-order contribu-
tion from the self-energies in the full propogators
in B~ '. The way this happens is clear from the
perturbation expansion of Sec. IV. The approxi-
mation of Eq. (62) assumes that the self-energy
and vertex corrections occur in essentially the
same way in higher-order graphs. This procedure
is motivated in part by the fact that the separation
of fz"' [i.e. , first two graphs of Fig. 3(b)] into
contributions from self-energy and vertex con-
tributions individually has no meaning at metallic
density since the integrand of 5"' diverges (see
Appendix D), even though a, properly screened
Coulomb interaction enters and careful grouping
must be maintained in the full sum [see constraint
(ii)], to obtain finite results. Similar cancellation
of divergences occurs also in calculating a al-

We next make the following two approximations:
(i) We treat the coupling of R~~ ' to the first-order
part of A~{0) exa, ctly while the additional higher-
order contributions from A~(0) are kept in an aver-
age way in the spirit of the Hubbard approxima-
tion. (ii) For the moment we replace the exact
R~( ' with that evaluated from the free propagators
(i.e. , G-Go).

Before we apply the above approximations to
Eq. (64) we briefly elaborate on their relation to
the Hubbard approximation. In its simplest form,
this approximation replaces y~ ~. by an effective
constant interaction. Let us denote this effective
interaction by —2zz(z;), then the fuff E(k) is given

by

E,(k) a-,'
E(k)=

( ) (-) --=E(0)=
( ), . (65)

Clearly, o(z,) may be determined by requiring
that E(0) in Eq. (65) correctly reproduce zz

' for the
range of r, of interest (for convenience, define

z) = —v(r, )ao'). Note that this result is also ob-
tained directly from Eq. (11) for k-0 by replacing
the propagators by Go and the vertex function by
(1 —zl)

' as in (i) and (ii) above.
Now returning to Eq. (64) and using the above

discussion, we keep the first-order RPA contribu-
tion exactly and approximate the higher-order
contributions to A~(0) in an average way by a factor
of (1 —z)) . The three terms in the right-hand
side of Eq. (64) then become

though they are of different origin. '
We next turn to the second term of Eq. (14)

which we denote by bzz. To maintain a consistent
analysis, we aga. in replace the full propagator by
G-Go and include higher-order effects by treat-
ing the vertex function in an average way by

—= —B(0)A(0)=
dp, 1 —'g Bpo

then

5zz = 5"'/(I —1))',

or finally

(69)

& = &0+ &"'(I --'1))/(I 1))'—+ tz'"/(I 1))'—, (70)

where b"' is given in Sec. IV.
It is interesting to compare Eq. (70) with Eq.

(65) in the limiting case of a. short-range interac-
tion. From Eq. (65), the appropriate fz is seen to
be b = bo /(1 —1)) while the first-order correction
fzz" ——2z)fzo. Returning to Eq. (70), and realizing
that b"'=0, we substitute this bz" and retrieve
the correct b.

To get B„,we simply substitute Eq. (70) in Eq.
(3). We note that the singularity in b, when z)=1,
is precisely cancelled by a in Eq. (3) [a is given
in Eq. {65)and thus leaves B„,finite for all z; as
required].

After appropriate transformations, the integrals
for b', b", and b"' were evaluated numerically
for a range of values of x, in the metallic density
range. The required values of Z()'zz, 0) and z) were
taken from the review article of Hedin and Lund-
quist. ' It is convenient to express B„,in the form
B„,= C(r,)ez/n"' and we have plotted our results
for C(r, ) as a function of z, in Fig. 5. Note that
the density dependence is substantial (there is a.

35~/& reduction in going from the high-density limit
to z, =6). Also C (z, ) (Fig. 2) is totally differ-
ent from C(z,), and even of opposite sign through-
out all y„reemphasizing that the Thomas-Fermi
approximation is totally inadequate. Applic ation
of C(r, ) to surface energy problems yields better
agreement with experiment~ than obtained in set-
ting B„,=0 or using any other available approxi-
mations. For example, discrepancies of about
15/() which exist between experiment and theory for
the surface energies of Mg and Li (Ref. 29) are
completely removed by use of the present B„,for
gradient corrections. 3

In conclusion the present B„,is consistently cal-
culated within the RPA. Our experience with its
RPA analog A„, strongly suggests that such ca,lcu-
lations are a,ccurate to about 10jq. Although some
approximations had to be introduced in extending
b to metallic range, we view this as a first funda-
mental analysis of B„,for finite x,. We also feel
that by using Eq. (14), further improvements of
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-3
3 x 10

kE

—Q v(k —k')(Pp(k'+ q)+ v(q)5p(q)+ V(q) = 6
I

R' "-0 (AB)

-3
1 x 10

O
O»

O

O»
O~

O

O»
O»

ygp) =, g "(r) e@'d'r .

In deriving (AB) we used the property (t)„-(p)
= (P )", (-p) on specializing to spherically symmetri-
cal potentials. In (AB) 5p(q) is given by

)f.~
5p(q) = 2 Q [4)„"(k+q) + 4)g (k —q )] . (A4)

I

0 1

FIG. 5. Calculated r, dependence of C{r~) which is
related to the gradient coefficient B„~ by B„~=C{~~)ej

gee now define

A;(q) V(q)~"k "= .(q)'(E---Z-)

where

~(q) = 1+ v(q) v(q),

d k'
(q)= —2 JR;(t))A;(t() (2v' '

(AB)

(AB)

B„,are possible. Just as considerable analysis
of A„ followed the original work by Gell-Mann and
Brueekner ' we hope that this work will initiate
similar refinements in the analysis of J3„,.

APPENDIX A

The self-consistent Hartree-Fock equations are

f(&(k'+ q)) -f (&(k'))
E(P+q) -z(P)

Substituting (A5) in (A4) gives

6p(q) = —w(q) V(q)/(. (q)

Substituting (A5) and (AV) in (AB) gives

(A7)

(
2

~' ~ )'( ) ~ ) ( — ')O( ') &'~')(g~)

t)(r —r')p(r, r')q~Qr') d'r'=Eggy(r ), (Al)

where p(~) and p(r, r') are given self-consistently
by

p(r) =2 t()r)) (t))-, (r),
l7=0

k~

(()(r, r') = g 0;(r) 4 „"-(r') .
a=0

V(r) is an arbitrary external potential, t)(r) is a.n

arbitrary form of interparticle interaction, and
E- is defined in Eq. (19). We next expand (t)„-(r) in

k

powers of V(r), i. e. ,

0-(r) =0-"'( )+~0-" ( )")~

Keeping linear terms of V(r) in (Al) and taking
the Fourier transform we get

(E.,~-EI) (P;(k+q) —Q t)(k+q —k') P;, (k' —q)
k' =0

which completes the proof. [In deriving (AB) and

(A I) we used the relation A~. -(q) =Ay(-q) which
is seen to be consistent with (AB). ] Note that Eqs.
(AB) and (AB) can be transformed into the more
symmetrical form by the change of variables:
k k —~ q and k -k —

& q.

APPENDIX 8

In this appendix we evaluate Eq. (24) for inter-
pa.rticle interaction of Eq. (2V). We require the
self-energy which is found from Eq. (18) to be

)
8

~
kr+ l(. —P I (P+ kr) + l(.

—X tan —tan . 81

Setting p = k&, the shift in chemical potential, ac-
cording to Eq. (23), is given by

4k &+ A.

|)u(&r) = ~(&r) = -—&r+ In a4k'

(E2)
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The required derivatives of Eq. (Bl}are given by

(2a', i')) (4a', i'}

Z "(k,) = 2+
2mk~ 4k~+ X

k ~ + A. 4k ~+ A.

and finally

40k 4~ + 42k 2~ X2 + 7X' 2k 2~

2(4k'„+ l(')' 2X', '

(B2}

(B4)

(as)

[2vkz ao+ 2+ 2X /(4k++ X ) —{X/kz) in[(4k++ X )/X ]~f

2vk a —2+[(2k + l()/2k']ln[(4k'+ l(.')/X']

(B12)
where ao= 5 /me is the usual Bohr radius.

Eqs. (Bll), (B12), and (B13) complete our der-
ivation for 5 from the graphs in Pig. 1 for a
Yukawa interaction in a fully self-consistent Har-
tree -Pock approximation.

APPENDIX C

From Eqs. (49}and (41) we can write k' as

1 B

B~o 2 Bpp
e also require the derivative with respect to k~
of p(k„),

B
+ e&;, 3 G(p)

Bgp
(c 1)d, @2k~

u(k~) = u'(k~) =
'm

(where we have set k =1). Following Ma we de-
fine

e2 A2 4k~+ Z
2 lnI 4k~

(Bs)

2vy. '(k~) p (p —k~)'+ x'

Setting P = k&, we have

from Eq. (B2). The vertex function and its first
two derivatives are also required at p = k& in the
evaluation of Eq. (24}~ These can be obtained di-
rectly from Eq. (26). The result is found to be

B),(~) ~, (G.(~.o) =a.(~)), —
Bp, o

B
),(p )=t (c,(p+'p'), G,(p)),Bp, p

B'
(~)) t (G.(~.=p.),q, , G.(p)],Bp. p

(cs)

(c4)

e 4k'+ A.
A(kz) =1+ „,ln tr, , [V-(p') [--,' I,(p')+-,'I, (p')] ) . (CS)

The required derivatives of Eq. (BV) are given by

2 4kB 4k '
2vk~y. '{k?) 4k++ X~

The forms for I1(p'), Iz(p'), and I~(p') are given by
(see Ma)

A„( )
e 20k~+ Sk? l'

vkr p, '(ky) (4k r+ l( )

4k ~+ X k2~
(B10)

+- E'(P') -2»s(P,') ~(
~

p'~ ), («)
4 Bgp

Inserting these results for E'(kz), E"(kz), E'"(k„),
A(kr), A (kr), and A (kQ into Eq. (24) yleMs,
after some algebra, the following convenient di-
mensionless form:

2
zp ' -3 e p,' s ' ), cv)

4)?e b=
8 g[,( )]? (A+B),

where

+ ~
z ln

64k' - 4k2~X' —3X'
(4k? ~z)z v F no

(B11)

(B12)

).(. )-", (,', ,)'"(')~ -,'(,', ,)'"(')

z(p') +—, z'(p')B B $ B p

BPp Bpp 2 BP p

—4»&(p,') ~( $'
~

)+ no I2(p'},

wher e

s(~P'[)=( '/2 '[I)' [)f(-'-;)

(c8)



EXCHANGE AND CORRELATION ENERGY OF AN. . .

To evaluate the above functions we need the vari-
ous derivatives of the following two functions,
Fo(P') and (Bg/Bgo) (P'), given by

ylo( g) 2 p f( D+D } f(~S~ (c9)
(2w) Po —&"+ +es+i6sgnPo

n —
I p' I k w/ m+ i6 I p'

I
'k ow —mon'

n + I p' I k~/ m+ i 6 2 I p' I
'

a'+
I p' I kr/m —i6

For )p') &2hz, where

(c12)

~ d'p 6(e- -. —po)+ 6(e- —po}
(pt) 2, . 8+'0 II

BQO „(2W) P() —Co~oe+ eo+ i6 SgnPO
(cio)

or

(C 11)

o( i)
—m 1 I p' I kz —m n
2p fp't g 2jp't'

xln
n —

I p' I kz/m+ i 6 I p' I k z —m n'
—a —

I p' I kz/m+ i6 2 I p' I

—a' —Ip'Ik /wm+i6, -po+i6
a' —

I
p' I kz/m+ i6 ' po+ i6

+ fp'fk

BJ', 1 m
1

a'+
I p' I kw/m —i6

2w I p' I
n' —

I p' I kr/m+ i6

a —
I
p' I kr/m+ i6 21 po+ i6

a + Ip'Ikw/m —i6 po —i6

For Ip't &2A&,

BJ', 1 m a'+
I p' I kz/m —i6

2w' I p' I
a' —

I
p' I kw/m —i6

a —Ip'Ikw/m+ 6
a + I p'I kz/m+i6

(c14)
For Ip'j &2k+)

o I)
—m 1 Ip'I'kr —m'n
2w' Ip'I z 2lp'l'

After a considerable amount of manipulation
with various derivatives of F (p') and (B/Bgo)&(p'),
we get.

(c is)

m (1 —2q )(-y +q —1) —2y (2q +1) 1 1 y +(4+1}ooo zz 3 z + ——ln z z Ci
Skew'q' (y'+ 1 —q')'+ 4y'q' 4 q y'+(q-1)'

(& ~ &q')(-y' ~ q'-()+4q') ' (3-4e')(()"+(-q')'-4e) '] (6) '(x' ~ (-e')(l ~ e'))
Sw'k' q' (y'+ i. - q')'+ 4y'q' ' [(y'+ 1 —q')' —4y'q']'+ 15q'y'(y'+ 1 —q')'

+ „,6(p,') 6(l p'I - 2k,),
p

( )
m' (-,' —2q') (- y'+ q' —1) —2y'( —', + 2q') y'[4y'q'- (y'+ 1 —q')'+ 2(y'+ 1 —q') (y' —q')]

4w kzq (y +1 —q )"+4y q [(y'+ 1 —q'}'- 4y'q'1 '+ isy'q'(y'+ 1 —q')'

3 1 yo+(q+ l)o
+——ln, ), + i(,ofo(q), (Cilsq y+q —1

where we have rotated our functions to the imagi-
nary axis and transformed to unitless quantities,
l. e. )

p,'= 'qy'; q= ~p'~/2k, .

Combining Eqs. (C5), (C15), and (C17) we get

p
2e Spy. . 8

'2mfn O ~$0 gP~ IIfI

X gg g g q y) $+ s

where (ci9)

&(q, y) = 1+ o Q(q) y) (c2o)
4~q

and Q(q, y) and E(q, y) are defined in Eqs. (55) and
(58). The limiting procedure in Eq. (C19) is re-

quired since the integral (without differentiation
with respect to po} diverges for small q.

Finally, from Eq. (C19) we get the expression
for 6' in Eq. (59).

APPENDIX D

From Eq. (51) and Eqs. (C2), (Cs), and (C4),
b&"' can be written

~(g) 1 4me & 1
m ~

I p'I' Bpo e(p')

~[--'fi(P')+(1/9}1,(p')] . (Di)

Therefore, the evaluation of b~
' is similar to that

of 6', with an additional term BE /Bpo coming from
(BIBVo)[1/e(p')].

From Eqs. (Cii) and (C12) and after rotation to
the imaginary axis this term is given hy
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BE m 1 y +(q+1)
4v'kr q y'+ (q —1)'

where again po = 2k zqyi/m and q = I p' I /2k+. With

f, (q) and I,(q) given in Eqs. (C15) and (C1V), we
finally get

dq 'I dy -',' . (DS)+2w' Iv, .'o q.IO
y [e(q, y)]'

The high-density limit of Eq. (DS) is obtained by
using Eqs. (54)-(58) and reduces to Eq. (52}.

The difference between b' and bz ~ is due to the
additional contribution from BE0/Bpo. A careful
analysis of Eq. (D3) shows that this additional con-

tribution [i.e. , g(q, y)] enhances the singularity at
q = 1 such that the integrand of q [i.e. , after inte-
grating Eq. (DS} over y] behaves like 1/I q —1I.
This singularity is of course removed when the
contributions of b' ' and b~ ~ are added. It again
emphasizes the importance of proper grouping of
the graphs to all orders (see Sec. V).

Note added in Proof: Finally it should be pointed
out that the purpose of this discussion has only
been to illustrate the singular nature of bz3'. In a
complete evaluation of Eq. (Bl), contributions
owing to the zero-frequency singularities in the
integral must be extracted before the contour ro-
tation.
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